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A STOCHASTIC EM ALGORITHM FOR G-RHO FAMILY ACCELERATED FAILURE TIME

MODEL WITH RANDOM EFFECTS

KyungAh Im, PhD

University of Pittsburgh, 2013

We propose an accelerated failure time model with random effects for correlated or clustered survival

time data. We assume that the error distribution belongs to the family of Gρ distribution and random

effects follow multivariate normal distribution. The Gρ family distribution allows us to model “attenu-

ating” or “converging” hazard functions over time, which represent a type of non-proportional hazards,

with the special case of ρ = 1 corresponding to the proportional odds model. In Gρ family distribution,

the larger the value of ρ the higher the degree of non-proportionality in the data. Thus, estimating ρ

as a regression parameter instead of assuming a priori fixed value allows us more flexibility handling

many different types of non-proportional converging hazards occurring in practice. We utilize EM al-

gorithm for estimation. More specifically, Stochastic Expectation-Maximization(StEM) algorithm is

used to maximize the complete data log-likelihood in the presence of random effects. The conditional

expectation in the classical E-step is replaced by a stochastic draw from the posterior distribution of

the latent variable via Gibbs sampler method. The computational complexity of the likelihood then can

be avoided by maximizing the pseudo-complete data. We also examine the robustness of the estimated

fixed effects and the estimated variance components when the error distribution or distribution of the

random effects is misspecified through simulation studies, followed by an application to a clinical trial

dataset.

Public health significance: The proposed method enables researchers 1) to model dependent or

clustered survival data which arise frequently in medical research; for example, in familial studies or

multi-center clinical trials. 2) to model attenuating hazards which is a type of non-proportional hazard.

3) to reduce bias in estimating treatment effects in the presence of non proportional hazards and

unobserved heterogeneity. The proposed method contributes to more accurate estimation of important

covariate effects (such as treatment effects) in practical settings such as in randomized clinical trial.

KEYWORDS: Accelerated failure time model, Gρ family distribution, frailty, random effects,

Stochastic Expectation-Maximization(StEM), ARMS, Gibbs sampler.
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1.0 INTRODUCTION

The field of survival analysis is very rich and has been growing tremendously in the 20th century

and still very active field in statistical community. Fleming and Lin (2000) review the past develop-

ments and future directions in survival analysis in clinical trials. These two authors mentioned that

Kaplan-Meier method [35], the log-rank statistic [51], the Cox proportional hazards model [10] and

the counting-process martingale theory [1] provided the most profound impact on clinical trials. In

addition, much progress has been made and further developments are expected in many other areas:

including the accelerated failure time model, multivariate failure time data, interval-censored data,

dependent censoring, dynamic treatment regimes and causal inference, joint modeling of failure time

and longitudinal data, and Bayesian methods [19, 56].

Survival data concern measuring time to a particular event of interest. Especially in clinical trials

or any observational cohort studies in epidemiology, one of the most prevalent study endpoint is a

survival outcome such as time to death, time to major organ failure, time to serious infection, heart

attack, stroke, time to occurrence of disease or complication or symptom.

A special feature of survival data is “censoring” which means information is incomplete in the sense

that we may not observe the true time to event for some subjects during the course of the study and this

needs to be taken into account for analysis. Another feature is “conditioning”. For a simple example

given by Hougaard (1999), calculating a probability for a person to die at age 75 does not make sense

1



if that person had died at age 70. What is relevant is the truncated distribution of the lifetime after

age 75 years, i.e., the distribution given that the lifetime exceeds 75 years. In this regard among other

things, the concept of “hazard” became very appealing and important in this field. The hazard function

is the probability of death (or event) within a short interval, given that the person was alive (or had

not experienced the event) at the beginning of the interval, usually denoted by λ(t) or h(t):

h(t) = lim
∆t→0

Pr(t < T < t+ ∆t |T ≥ t)
∆t

, (1.1)

which is basically a limiting conditional probability as the short interval becomes extremely small. The

hazard function is also called the instantaneous death rate, the intensity rate, or the force of mortality.

It is a rate since it is a function of time. Of note, the hazard rate is not a probability per se because

it can exceed 1. Without conditioning on T ≥ t in (1.1), this quantity becomes the probability density

function f(t). Another quantity of interest is the survivor function, which is the probability that the

survival time T is greater than t, and

S(t) = Pr(T > t) = 1− F (t) , (1.2)

where F (t) = Pr(T ≤ t) and that we have following basic mathematical relationships

h(t) =
f(t)

S(t)
= − d

dt
logS(t) , (1.3)

The cumulative hazard can be obtained by integrating both sides in equation (1.3) for the continuous

T in the interval (0, t)

H(t) = − logS(t) , (1.4)

and the density function is

f(t) = − d

dt
S(t). (1.5)
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1.1 BASIC REGRESSION MODELS IN SURVIVAL ANALYSIS

One of the interests in survival analysis is to relate a set of explanatory variables to the survival

outcome. A popular model is the semi-parametric Cox proportional hazards model [10] for which the

hazard for a j-th individual is denoted by

hj(t) = h0(t) exp(βTZj), (1.6)

which is a product of a baseline hazard h0(t) and a term exp(βTZj) that depends on the observable

covariates Zj . In this model, the ratio of the hazards for two individuals is constant over time. In

other words, the hazard for any individual is a fixed proportion of the hazard for any other individual.

Thus, it is a proportional hazards model. For example, the difference in the risk of experiencing an

event (i.e., hazard function) between the two individuals (lines) at any given time point stays constant

regardless of the shape of the hazard functions as in Figure 1.1 (a) through (c).

The semi-parametric Cox proportional hazards model has become popular mostly because the par-

tial likelihood estimation of the model does not require a parametric form for the baseline hazard

function h0(t) to estimate the effect of parameters β. It describes relative risks which are independent

of time but depend on the values of covariates. Cox models have been extensively used in medical

research.

However, there may be factors other than the observed covariates that significantly affect the

distribution of survival time or pertinent covariates are omitted in the model due to lack of knowledge.

This is commonly known as unobserved random heterogeneity in the survival analysis literature. The

first model of mortality data to include of this kind of individual heterogeneity was introduced by

Vaupel et al (1979). The model allowed each individual to have a frailty term to account for individual

differences in mortality hazard rate. The individual frailty was assumed to be a random variable and

3
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Figure 1.1: Proportional and non-proportional hazards

defined as a positive constant, say Uj , which imposed a multiplicative effect on the force of mortality

(hazard) so that the hazard for a j-th individual was defined as

hj(t) = Ujh0(t). (1.7)

For example, an individual with a frailty of Uj = 2 is twice as likely to die at any particular age

and time, as the “standard” individual whose hazard is denoted by h0(t). Frail individuals with high

values of Uj tend to die first. Thus, Vaupel et al. coined the term “frailty” for the random variable

Uj which was assumed to follow a gamma distribution for a mathematical convenience. This model

(1.7) is regarded as a univariate frailty model in survival analysis literature. In his study, individuals

were independent of each other and had each frailty term. The main objective of Vaupel et al. was to

show that population mortality hazard rates do not reflect the the mortality hazard rates of individuals

from that population. Differences between population hazard and individual hazards become larger
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as variance (heterogeneity) in the population becomes greater. The important message of Vaupel’s

work is that heterogeneity in the hazard function of different individuals should not be neglected. The

assumptions that the frailty is independent of age (which means frailty is not dependent on time) and

that it acts multiplicatively on an underlying hazard have been taken as the basis for much subsequent

work on random heterogeneity in survival analysis including clustered survival data [36].

The most common frailty model is the shared frailty model which is an extension of the Cox pro-

portional hazards regression model. In this model, all individuals within a group or cluster share

a common unobservable random effect, the frailty, which acts multiplicatively on each individual’s

hazard rate, i.e., for the jth individual in a cluster i,

hij(t) = Uih0(t) exp(βTZij), (1.8)

where Ui is the frailty and it is usually an exponentiated function of random effects (such as exp (bi))

to be a positive quantity (Ui > 0). Ui is generally assumed to be an independent and identically

distributed sample from a distribution with known mean and some unknown variance θ. In equation

(1.8), the dependence on the covariates is further parameterized in the Cox model setting under the

standard assumption of the hazard being proportional over time. The baseline hazard function in this

model can be specified (such as Weibull or piecewise constant) or arbitrary which yields parametric or

semi-parametric Cox frailty models, respectively. In univariate frailty models, one often assumes that,

conditional on the unobserved frailty, individuals within a cluster are independent of each other. This

assumption can be relaxed when we consider the multivariate frailty model setting.

A proportional hazards model with frailty has been considered by many authors in the literature

and different frailty distributions have been considered including the gamma distribution by Klein

(1992) [37] and Clayton (1991) [9], the positive-stable distribution and the inverse-Gaussian distri-
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bution by Hougaard (1986a, 1986b) [27, 28], the log-normal distribution by McGilchrist and Aisbett

(1991) [52], and the normal distribution by Vaida and Xu (2000) [69]. Of note, the frailty model in

equation (1.8) can lead to hazards not being proportional except when frailty follows a positive stable

distribution (Hougaard 1995, 1999) [29, 30].

Ignoring frailty can lead to non-proportional hazards in the proportional hazards parameterization

and can yield biased regression coefficient estimates β̂ [63]. In general, “frailty model” in survival

analysis literature refers to the random effects model in the Cox model setting and is used to account

for overdispersion or correlation in the survival data.

Rather than having the hazard function be described as a function of explanatory variables, it is

possible to let the explanatory variables act directly on the survival time via a scale factor under the

accelerated failure time model setting [30]. There are two basic ways to express this type of model. An

accelerated failure time representation and a log-linear model representation. The general form of the

log-linear model representation is presented with more detail in the next chapter. For comparison with

the Cox model we will use an accelerated failure time model representation using hazard functions to

describe a general accelerated failure time model in this section, that is, for j-th individual

hj(t) = h0(t× exp (ηTZj)) exp (ηTZj) , (1.9)

where η is the vector of fixed effects regression coefficients including an intercept term and Zj is the

vector of observed covariates. The factor ψj = exp (ηTZj) is also called an acceleration factor indicating

how a change in covariate values changes the time scale from the baseline time scale. This implies that

the models can be interpreted in terms of the speed of progression of a disease. The general accelerated

failure time model that incorporates a frailty term Ui can be written

hij(t) = Uih0(t× exp (ηTZij)Ui) exp (ηTZij) , (1.10)
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where Ui = exp (bTi Wij). Here, bi represents a random effect assigned to a cluster i. These random

effects are unobserved (latent or missing data) and are estimable quantities. Wij represents either

a design matrix or a subset of the covariate data Z, depending on the structure of frailty or random

effects in the model. If we let ψ? be a function of covariates Z without an intercept term and ψ be

a function of the covariates Z with an intercept term then we have the following four basic types of

regression models in survival analysis (Table 1).

Table 1: Basic regression models in survival analysis

Cox model Accelerated Failure Time model

hj(t) = h0(t)ψ
? hj(t) = h0(t× ψ)ψ

Cox model with Frailty Accelerated Failure Time model with Frailty

hij(t) = Uih0(t)ψ
? hij(t) = Uih0(t× ψUi)ψ

Although the parametric proportional hazards models are widely used in the analysis of survival

data, the accelerated failure time models are an important alternative in circumstances for which the

proportional hazards assumption is not tenable. With a wider range of survival time distributions the

accelerated failure time model can be used to accommodate various departures from the proportional

hazards assumption including crossing hazards and attenuating hazard ratios such as in Figure 1.1

(d).

When the deviations from proportional hazards are due to unaccounted random heterogeneity (e.g.,

omitted important covariates in the model) the accelerated failure time model parameters are more

robust than the Cox proportional hazards model parameters, and Hougaard (1999) noted that this is

a major drawback of Cox proportional hazards model [30]. In addition, regression parameters in the

proportional hazards model are more sensitive to the distribution of the frailty. Keiding et al (1997)

[36] show that the regression parameters of the AFT model are robust against the misspecification
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of the frailty distribution. This finding is further supported by the empirical results from simulation

studies of Lambert et al (2004) [44].

For clustered data, an AFT model with random effects can be considered as a classical linear

mixed effects model of Laird and Ware (1982) [43] with the logarithmic link function. The practical

interpretation under this model is more straightforward than the Cox model with random effects

because one does not have to resort to the hazard function. In addition, the fixed effects regression

coefficient can have a population-averaged (marginal) interpretation of a given covariate as well as the

a cluster specific (conditional) interpretation given the random effect parameter. Also, a simple one-

way random effects AFT model (such as a random intercept model) can have the natural decomposition

of overall variation of the response into within-individual (cluster) and between-individual (cluster)

variations.

Anderson and Louis (1995) [3] show an example using an AFT model under a scale change random

effects model for bivariate survival data using the Gompertz distribution for baseline survival distri-

bution and gamma frailty distribution. Klein et al (1999) [38] utilize an AFT model for the bivariate

survival time to occurrences of coronary heart disease among sibling groups selected from the Fram-

ingham Heart Study. These authors use the log-normal distribution for both the baseline survival

distribution and the frailty distribution. More recently, Lambert et al (2004) [44] explored the para-

metric random effects AFT models for kidney transplant data including the gamma, inverse-Gaussian,

log-normal, log-logistic and Weibull distributions for the baseline survival distribution and developed a

parametric mixture distribution for baseline survival distribution. Komarek et al (2007) [41] explored

random effects AFT model with a normal mixture error distribution in Bayesian framework. However,

the Gρ family of distribution, which can handle non proportional attenuating hazard functions, has

not been considered in the literature for the baseline survival distribution in the accelerated failure
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time model setting. In this dissertation, we propose to model the distribution of the error term using

the family of Gρ distributions for the clustered right-censored survival data and to develop an estima-

tion procedure based on Markov Chain Monte Carlo method. The organization of this dissertation is

as follows. We present some basic details about a log-linear model representation of the AFT model,

the family of Gρ distributions and other distributional assumptions in chapter 2. Chapter 3 presents

the estimation and inference algorithm. We investigate finite sample performance of the estimator

through simulations in chapters 4. We will also examine, through simulation studies, the robustness

of the estimated fixed effects and the estimated variance components when the error distribution or

distribution of the random effects is misspecified. Chapter 5 presents the application of our model to a

randomized clinical trial followed by discussion in chapter 6.
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2.0 ACCELERATED FAILURE TIME MODEL

Let S0(t) be a survivor function for the placebo group (Z=0) and S1(t) be a survivor function for the

treatment group (Z=1). In general, an AFT model is described using an accelerated failure time

representation using the survival function at a time t:

S1(t) = S0(t ∗ψ), (2.1)

where ψ = exp (θTZ) is an acceleration (or deceleration) factor that determines how much to move on

the time scale. ψ is a function of covariates Z and a vector of regression coefficients θT = (θ1, . . . , θp).

This implies that the shape of survivor function stays the same but shifts to the left or to the right on

the time scale. Corresponding hazard and density functions are h1(t) = ψh0(t∗ψ) and f1(t) = ψf0(t∗ψ),

respectively.

For example, the AFT model states that the survival function of an individual in the treatment

group S1(t) with covariate Z = 1 at a time t is the same, by shifting the time scale, as the survival

function of an individual in the placebo group S0(t) with a baseline survival function at a time t ×

exp (θTZ). That is,

S1(t) = S0(t× exp (θTZ)) . (2.2)

If the factor exp (θTZ) is greater than 1 in the equation (2.2), the event-free time (survival time) for the

treatment group is shorter than that of the placebo group. Treatment (covariate) speeds up the process

(here, the process means the expected time to failure or event). Thus, it’s called an acceleration factor
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(Figure 2.1.(a)). If the factor exp (θTZ) is less than than 1 in the equation (2.2), the event-free time

for the treatment would be longer than that of placebo group, i.e., treatment slows down the process.

Thus, it’s called a deceleration factor (Figure 2.1.(b)). For clinical trial settings in which the outcome

is death we want the treatment to slow down the process or lengthen the event-free time, so we need

a deceleration factor; whereas, in a clinical trial where the end-point outcome is time to recovery we

want the treatment to reduce time to outcome. so we hope for an acceleration factor.

Time

S
(t

)

t t*exp(θTZ)

0.
0

0.
5

1.
0

S(t|TRT)

S(t*exp(θTZ)|Placebo)
● ●

(a) Acceleration [exp(θTZ)>1 ]

Time

S
(t

)

t*exp(θTZ) t

0.
0

0.
5

1.
0

S(t*exp(θTZ)|Placebo) S(t|TRT)
● ●

(b) Deceleration [exp(θTZ)<1 ]

Figure 2.1: Acceleration and Deceleration in the AFT model

The acceleration (or deceleration) factor can also be interpreted in terms of the median survival

times of subjects on the treatment and placebo groups. Let t1(50) and t0(50) be such two median

survival times, respectively. These values are such that S1{t1(50)} = S0{t0(50)} = 0.5. Under an AFT
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model, we have S1{t1(50)} = S0{t1(50) ∗ ψ} where ψ can be any positive quantity. Thus, it follows that

t1(50) = t0(50)/ψ. The median survival time of a subject on the treatment is 1/ψ times that of a subject

on the placebo. The same argument can be used for any percentile of the survival time distribution.

2.1 LOG-LINEAR FORM OF THE AFT MODEL

Consider two random variables T1 and T0 for survival times of treatment and placebo group, respec-

tively. Under the accelerated failure time model setting in 2.1, an individual having survival time t

under the treament group (Z = 1) would have survival time tζ under the placebo group (Z = 0), i.e.,

the corresponding random variables are related by T1 = T0ζ where ζ can be some positive quantity.

Now suppose further the constant ζ is a function of some observed covariates Z: ζ(Z). Then we have

T1 = T0ζ(Z). Taking a natural logarithm,

log(T ) = log T0 + log ζ(Z) + ε, (2.3)

where ε is error term since T is a random variable. It is usually assumed that the expectation of the

error distribution is zero E(ε) = 0 and independent of observed covariates Z. Since we want ζ(Z) ≥ 0

and ζ(Z = 0) = 1 a natural candidate for ζ(.) is exp(βTZ). Then an AFT model can be expressed in the

log-linear model representation:

log(T ) = µ+ βTZ + τε, (2.4)

where µ is an intercept term which is the baseline log survival time ( log T0) and τ is a scale parameter.
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We can also obtain an acceleration factor using the regression coefficients β from the log-linear AFT

model (2.3). Consider the survivor function of an individual j,

Sj(t) = Pr(Tj ≥ t)

= Pr
(
exp {µ+ βTZj + τεj} ≥ t

)
= Pr

(
exp {µ+ τεj} ≥ t/eβ

TZj
)

= S0(t e−β
TZj ) , (2.5)

which is the general form of the survivor function for the jth individual in an accelerated failure

time model, if exp {µ+ τεj} follows the S0(.) distribution. Here, the acceleration factor is the term

exp (−βTZj). Comparing to the factor from the accelerated failure time representation which is

exp (θTZ) we have the following relationship,

θ = −β . (2.6)

This indicates that one needs to reverse the sign of the regression coefficients from the log-linear AFT

model to calculate an acceleration (or deceleration) factor.

The AFT model can be represented as a location-scale model using εj =
log t− (µ+ βTZj)

τ
so the

survivor function of log T can be found by using the distribution of the error εj :

S(t) = S0(
log t− (µ+ βTZj)

τ
) (2.7)

where εj ∼ S0(ε).

Commonly used distributions of ε are normal S0(ε) = 1− Φ(ε), extreme value S0(ε) = exp(−eε), and

logistic S0(ε) = (1 + eε)−1, which correspond to log-normal, Weibull and log-logistic distributions for

survival time T .
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2.2 AFT MODEL WITH RANDOM EFFECTS

Using the log-linear model notation from equation (2.4), we can incorporate random effects by adding

the term bTi Wij ,

log Tij = βTZij + bTi Wij + τ ∗ εij , (2.8)

where i denotes a group membership and j denotes an observation, Tij is the failure time, Zij and Wij

are covariate vectors, β is the vector of fixed effects, and bi is the vector of random effects for the ith

group. The intercept µ is absorbed in the β vector and the scale parameter τ is assumed to be one.

The random effects AFT model can be considered as a classical linear mixed model of Laird and Ware

(1982) [43] with the logarithmic link function. The log-linear formulation of the model above can also

be used to give a general form of the survivor function. With the parametric distribution of the error

terms we can express the survivor function of the jth individual in the ith group in terms of the error

random variable εij ,

Sij(t) = Pr(Tij ≥ tij)

= Pr(log Tij ≥ log tij)

= Pr(βTZij + bTi Wij + εij ≥ log tij)

= Pr(εij ≥ log t− βTZij − bTi Wij)

= Sεij (log t− βTZij − bTi Wij). (2.9)

The cumulative hazard function of the distribution of Tj is given by,

Hij(t) = − logSij(t) (2.10)

= − logSεij (log tij − βTZij − bTi Wij)

= Hεij (log tij − βTZij − bTi Wij). (2.11)
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By differentiating Hij(t) with respect to t the hazard function of ε is

hj(t) =
1

t
hεj (log t− βTZ − bTW ). (2.12)

2.3 Gρ BASELINE SURVIVAL DISTRIBUTION

We study a random effects AFT model for right-censored clustered data for which the error distri-

bution follows the family of Gρ distributions (Harrington and Fleming, 1982) [26]. The family of

Gρ distributions includes the logistic distribution as a special case and gives rise to the generalized

odds-rate model studied by Dabrowska and Doksum (1988) and Jeong et al (2003) [11, 34] in the Cox

model setting. The survivorship functions of the family of Gρ distributions are given as follows:

S0(t) = exp(−et) (ρ = 0), (2.13)

Sρ(t) = (1 + ρet)−1/ρ (ρ > 0, −∞ < t <∞). (2.14)

When ρ = 0 the survivor function is the extreme value distribution which leads to a proportional

hazards model. When ρ > 0 the hazard functions for different groups converge as t→∞. A closer look

at these two expressions reveals that the family of Gρ distributions consists of an extreme value distri-

bution and a class of logistic distributions combined through the parameter ρ. Harrington and Fleming

(1982) pointed out that the family of Gρ distributions is an important subset of the generalized-F fam-

ily of distributions. The family of Gρ distributions is useful in modeling attenuating (or converging)

hazard functions that often arise in practice (see figure 2.2), and the special case of ρ = 1 corresponds
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to the proportional odds model. We re-parameterize ρ = exp (α) and use α = log ρ in the simulation

studies and modeling. Only ρ > 0 (−∞ < α < ∞) is considered throughout the dissertation. α = log ρ

is estimated from the data. Then, the survivor function of the random variable εij for the jth individual

in group i from equation (2.9) and (2.14) can be written

Sεij (ε) =
(
1 + eα+εij

)−e−α
=

[
1 + eα+(log t−βTZij−bTi Wij)

]−e−α
= Sij(t). (2.15)

And hazard function of the random variable εij is

hεij (ε) = − ∂

∂ε
lnSεij (ε)

= − ∂

∂ε

[
(−e−α) ln (1 + eα+εij )

]
= e−α

1

(1 + eα+εij )
eα+εij

=
eεij

1 + eα+εij

=
elog t−βTZij−bTi Wij

1 + eα+log t−βTZij−bTi Wij
. (2.16)

Then the hazard function of t for an individual j using hεj (ε) can be written from equation (2.12)

hij(t) =
1

t
hεij (εj)

=
1

t

(
e(log t−βTZij−bTi Wij)

1 + eα+(log t−βTZij−bTi Wij)

)
. (2.17)
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The density function is then given by

fij(t) = −dSij(t)/dt

= hij(t)Sij(t)

=
1

t

(
e(log t−βTZij−bTi Wij)

1 + eα+(log t−βTZij−bTi Wij)

)
×
[
1 + eα+(log t−βTZij−bTi Wij)

]−e−α
. (2.18)

Figure 2.2 shows different scenarios of converging hazard functions as the value of α varies α =

(1.0, 0.5, 0.0,−0.69) for the Figures (a),(b),(c) and (d), respectively. α = 0.0 corresponds to a proportional

odds rate model. These plots are based on the simulated data from a fixed effects AFT model Y =

µ+ β1X1 − β2X2 + ε where X1 is a continuous variable representing some baseline measurement such

as blood pressure and X2 is a binary variable indicating treatment group. The dotted line represents

the hazard function of a subject in the treatment group A and the solid line represents the hazard

function of a subject in the treatment group B.
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Figure 2.2: Attenuating hazard plots from an AFT model with Gρ error distribution.
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2.4 RANDOM EFFECTS STRUCTURE AND DISTRIBUTION

Depending on the structure of frailty we obtain different types of random effects model.

Shared frailty model in univariate setting: A random effect variable bi is assigned to each

cluster i, so all the members within a cluster i have the same random effect. This causes correlation

among the members of a cluster. Random effects variables for all of the clusters b = (b1, . . . , bG)

(whereG is the total number of clusters) follow a common distribution. However, by conditioning on the

random effects it is assumed that observations are independent. One typical example of the application

of this model would be modeling the heterogeneity across clusters such as study sites. Another example

would be repeated measurement data within each individual study subject. By assigning a random

effect for each subject the correlation among repeated measurement data can be taken into account

in the analysis. Shared frailty model in multivariate setting: We can also assign more than one

random variable within a cluster so that some members of the cluster i can be assigned to one random

variable b1i whereas the rest of the members are assigned to another random variable b2i. These two

random variables b1i and b2i can be independent or correlated. This is an example of a bivariate Shared

Frailty model. An example would be family data. One random variable can be assigned for parents

and another for the children so that they would no longer be constrained to have a common frailty.

Since they all belong to the same cluster (family) we can imagine these two random effects could be

correlated. (Xue and Brookmeyer 1996 [73]).

Consider a random effects AFT model in log-linear model representation: log Tij = βTZij + bTi Wij +

εij where bi is the random effect from the ith cluster, and Zij ,Wij are the covariate vectors for the

fixed and random effects. For a simple univariate shared frailty model, Wij is the vector of ’1’s which

represents the cluster effect on the baseline log survival time, that is, log Tij = β0 +β1Z1ij + b0i + εij for
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a covariate Z1ij . This is equivalent to a random intercept model. For a bivariate shared frailty model,

for example, log Tij = β0 + β1Z1ij + b1iW1ij + b2iW2ij + εij where Wij = [W1ij ,W2ij ]
T are the indicator

variables for two sub-clusters membership within a cluster i. It fits a random intercept β0 + b1i for

sub-cluster 1i and another random intercept β0 + b2i for sub-cluster 2i within a cluster i.

Mixed effects model setting: Another type of random effects model can be chosen in the context

of a classical linear mixed effects model by Laird and Ware (1982) [43]. That is, the matrix W is a

subset of covariate vector Z. For a simple example, let W = [1, Z1ij ]
T , Z = [1, Z1ij ]

T and b = [b0i, b1i],

resulting in a mixed effects model log Tij = β0 + β1Z1ij + b0i + b1iZ1ij + εij . In this model, b0i is the

main cluster effect and b1i represents the interaction between the cluster and the respective covariate

Z1ij . The coefficient β1 represents the main effect of the covariate Z1ij . If we consider Z1ij to be,

for example, the treatment indicator in a multi-center clinical trial then b1i represents an interaction

between treatment and cluster, thus it is modeling the treatment heterogeneity across clusters or

institutional treatment effects. This is one example of a mixed effects model. The matrices Z and W

can also be mutually exclusive.

Thus, a log-linear mixed effects AFT model as in the equation ( 2.8) gives more options for modeling

the random effects. It can accommodate a simple univariate shared frailty model, multivariate shared

frailty model, the nested frailty structure, and true mixed effects models by allowing other exploratory

variables of interests to be random effects.

In this dissertation we will assume that the random effects bi, (i = 1, . . . , G cluster) follow multivari-

ate normal distribution with known mean E[bi] = 0 and unknown covariance matrix Σ. The number of

random effects within a cluster can be up to d (where d ≤ ni the number of members in a cluster).

bi∼N(0d×1,Σd×d) , (2.19)
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where Σ =

 σ2
1 ··· ρσdσ1

...
. . .

...
ρσ1σd ··· σ2

d

. Initially we assume a diagonal matrix for variance components of

the random effects and then try to estimate a covariance component in the bivariate random effects

model setting in simulation study. The distribution of random effects can be other than the normal

distribution, such as the multivariate t-distribution.
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3.0 ESTIMATION AND INFERENCE

3.1 BACKGROUND

The regression analysis of independent observations from survival data with a log-linear model has

been studied extensively. The two classical approaches to semi-parametric AFT models for uncorre-

lated data are the Buckley-James method (1979) [5] and the method based on estimating equation

using linear rank statistics (Tsiatis 1990) [67]. Wei (1992) [72] reviews these two methods. More

recently, Komarek, Lesaffre and Hilton (2005) [40] proposed an AFT model with the error distribution

estimated by a penalized maximum likelihood method.

For correlated failure time data, Pettitt (1986) [59] considered a normal mixed effects model

approach to estimate the random subject effects (bi) for the logarithm of right-censored repeated

measures data from a matched skin graft study and used maximum likelihood estimation via the

Expectation-Maximization (EM) algorithm of Dempster, Laird and Rubin (1977) [12]. This is an ex-

ample of the one-way random effects model or the random intercept only model. Anderson and Louis

(1995) [3] considered maximum likelihood estimation of a scale change random effects model using

numerical integration to evaluate the likelihood function.

Hughes (1999) [32] adapted a Monte-Carlo EM (MCEM) algorithm based on Gibbs sampling for

the linear mixed effects model of Laird and Ware (1982) [43] and provided a general solution to
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accommodate both right- and left-censored data. Hughes (1999) extended Pettitt’s model (1986) in

a repeated measures study in which an individual is a unit of a cluster in the area of AIDS research.

Both Pettitt (1986) and Huges (1999) considered Gaussian errors and random effects in their models.

Klein, Pelz, and Zhang (1999) [38] also considered the random effects AFT model with Gaussian

error distribution using the Newton-Raphson method. Ha et al (2002) [25] applied the hierarchical-

likelihood approach of Lee and Nelder (1996) [48] for right censored survival data in a normal linear

mixed models setting (again, a random intercept model: log Tij = βTZij + bi + εij).

Pan and Louis (2000) [58] proposed a different approach for the same linear mixed effects model of

Hughes (1999) where only the random effects were treated as missing and incorporated the Buckley-

James methods (1979) [5] to handle the censored data. Their procedure iterates between (a) estimating

the marginal distribution of log Tij−βTZij using Kaplan-Meier estimation and imputing censored event

times, and (b) estimating regression coefficients using a Monte Carlo EM algorithm. Pan and Louis

(2000) [58] only considered a univariate random effects model in their approach. Although Pan and

Louis (2000) [58] assumed normality (both error and random effects follow Gaussian distribution) their

method is considered to be semi-parametric due to the incorporation of nonparametric least-squares

estimation and the Kaplan-Meier estimator.

Early estimation approaches for the semi-parametric AFT model with correlated survival data are

based on the estimating equation. Lee et al. (1993) [47] considers the log-linear model for the jth

observation in the ith individual: log Tij = βTZij + εij and first developed a marginal approach to

correlated failure time data by using GEE method of Liang and Zeger (1986) [49]. Their main interest

was to obtain the average response for the population, thus the correlation in the data is treated

as a nuisance parameter. Pan and Connett (2001) [57] adopted the data augmentation method of

Tanner and Wong (1987a) [66] to impute censored failure times and fit either a marginal model
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based on the GEE approach with the sandwich estimator for covariance or a linear mixed effects

model with restricted maximum likelihood estimator (REML) for the variance components. Pan and

Connett (2001) [57] did not assume any parametric form for the distribution of the error term. Only a

univariate random effects model was considered by Pan and Connett (2001).

There also have been Bayesian approaches to semi-parametric AFT modelling by Walker and

Mallick (1999) [70] and Kottas and Gelfand (2001) [42] among others. More recently, a fully Bayesian

approach to a parametric mixed effects accelerated failure time model have been suggested by Ko-

marek, Lesaffre and Legrand (2007a) [41] and Komarek and Lesaffre (2007b) [39] using a Markov

chain Monte Carlo algorithm for estimating the regression parameters with a parametric normal mix-

ture error distribution and a multivariate normal distribution for the random effects.

Estimating a fully parametric model can be done by the usual likelihood method, i.e., by differen-

tiating the log-likelihood. In principle, this presents no special problems in simple settings. However,

some formulas get very complicated and the statistical models may not always be exponential fam-

ilies and therefore there is no simple way of analytical reductions [31]. As mentioned above, there

have been various estimation approaches to a normal mixed effects log-linear model with correlated

censored data. The most commonly applied estimation method is the EM-algorithm. Although the

EM-algorithm can be computationally intensive it is a popular approach because of its conceptual

simplicity and solutions can be obtained for many problems.

In this dissertation, we are interested in estimating a log-linear shared frailty AFT model when

the error distribution follows a family of Gρ distributions. Much of our work is motivated by the

work of Vaida and Xu (2000) [69] who developed a mixed effects model approach in Cox proportional

hazards model setting using a modified EM-algorithm. In the following sections, a brief review on

EM-algorithm, Stochastic EM-algorithm (StEM) and Gibbs sampling is given separately.
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3.1.1 Expectation-Maximization (EM)

The basic idea of EM is that one augments the observed data Y with the latent data (Z) that sim-

plifies the calculation of the parameter estimates by performing a series of simpler maximizations or

simulations. Conceptually, the EM algorithm replaces missing values by their expectations given the

current parameter estimates, and then reestimates parameters using the previously estimated values

of missing data, then reestimate the missing values assuming the updated parameter estimates are

correct and reestimates parameters and iterates until convergence. Thus, the EM algorithm consists

of two steps: Expectation (E-step) and Maximization (M-step). The E step is used to fill in the missing

data. In the E-step, we take the expectation of the log of the complete data likelihood, conditioning on

the observed data y and current estimates of parameters θn with respect to the distribution of latent

data. This quantity is usually denoted as Q in the EM literature. Some authors call Q a surrogate

function because Q is proportional to the log likelihood, in general [46]. The important point is that

this log-augmented posterior or likelihood function should be linear in the latent data. Otherwise es-

timates can be severely biased when this approach is applied [65]. Let Ω = unobserved complete data,

Y = observed incomplete data, Z = missing or latent data, and denote the unobserved compete data

matrix as Ω = (Y,Z). Let f(Ω|θ) be the (unobserved) complete data probability density and p(θ|Y,Z)

be the augmented posterior distribution. In the E-step, we calculate the surrogate function Q:

Q(θ|θn) = E[log f(Ω|θ)|Y = y, θn]

= EZ|y,θn [log f(Y, Z|θ)|Y = y, θn]

=

∫
Z

log[p(θ|Y,Z)]p(Z|θn, Y = y)dZ , (3.1)
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where θn is the current estimated value of θ. In the M step, we maximize Q(θ|θn) with respect to θ.

This yields the new parameter estimate θn+1, and we repeat this two-step process until convergence.

|Q(θ|θn+1)−Q(θ|θn)| < ε , (3.2)

where ε is very small positive number. In the EM algorithm, the log-likelihood of the observed data at

the parameter θn+1 is always greater than or equal to the log-likelihood evaluated at the parameter

θn. This is called the “ascent property of EM” and was proved by using measure theory and Jensen’s

inequality. This means that the EM algorithm increases the log-likelihood at each iteration. So, EM

will converge to a parameter that maximizes the log-likelihood. However, EM may converge to a

stationary point (local maxima or saddle points), rather than the global maximum. Also, EM is known

for its linear convergence rate, with its rate depending on the proportion of the information about θ.

This means the convergence can be slow if a large portion of the data are missing. However, EM is

known for its stable and reliable convergence properties. More details on EM-algorithm can be found

in Tanner and Wong (1996) and Lange (2010) [65].

3.1.2 Stochastic EM

Although the classical deterministic EM algorithm is a popular and often efficient approach to maxi-

mum likelihood estimation or for locating the posterior mode of a distribution, there are some draw-

backs: (1) Its limiting (or convergence) position can depend on its starting position, (2) its rate of con-

vergence can be slow and (3) it can provide a saddle point of the likelihood function rather than a local

maximum as stated previously. In addition, the maximization step of EM is sometimes intractable.

The main idea of Stochastic EM (StEM) is to impute the latent data with plausible values given the

observed data and current estimates of the parameters. This is also called S-step or St-E step. Thus,
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StEM incorporates a stochastic step between the E and M steps. Based on the pseudo-complete sam-

ple, compute the maximum likelihood estimates (MLE) of the parameters in the unobserved complete

data log-likelihood function. The updated MLE of the parameter is stored as the new parameter value

and then the process is iterated. Introducing random perturbation of the latent data in the S-step

and performing subsequent maximization (the M-step) generates a Markov chain θ(m) that converges

to a stationary distribution under mild conditions [33]. Biscarat, Celeux and Diebolt (1992) reported

that these stochastic perturbations (the random drawings) prevent the sequence {θr} from converging

to the first stationary point of the log-likelihood function it encounters. At each iteration, there is a

postive (a non-zero) probability of accepting an updated estimate θr+1 with lower likelihood value than

θr. Thus, Stochastic EM algorithm can avoid the saddle points or the nonsignificant local maxima of

the likelihood function. In most situations, Stochastic EM yields reasonably fast convergence requir-

ing comparatively small number of iterations. Since StEM maximizes the complete data log-likelihood

of pseudocompleted samples (imputed complete data), it avoids analytic intractability that sometimes

occurs in the M-step of the EM algorithm [4, 14, 33]. If one random draw is used for imputation in

the St-E step it is called Stochastic EM (StEM). If more than one draw is used it is called Monte Carlo

EM (MC-EM) by Wei and Tanner (1990) [71]. If the multiple draws are generated by Gibbs sampling

it is called Gibbs-EM [69]. Although Gibbs-EM algorithm has a component of stochastic imputation

it is different from StEM and MC-EM in that the Gibbs-EM algorithm is not necessarily maximizing

the complete data log-likelihood, but rather the Q function. If it is maximizing the complete data

log-likelihood it is called Data Augmentation.
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3.1.3 Gibbs sampling

Gibbs sampling was originally developed by Geman and Geman (1984, 1993) as a tool for image recon-

struction [22, 21]. A brief review is given in this section based on Raudenbush and Bryk (2002) [61]

and Gelman et al (1995) [20]. Gibbs sampling is an approximating method for posterior distributions

when they can not be evaluated analytically or have too complicated mathematical forms. By sampling

from a sequence of conditional distributions, it produces draws from the approximate joint posterior at

each iteration. After many iterations, the process converges stochastically, and subsequent draws may

be described as representing the posterior distribution of interest.

The joint density of unknown parameters can be written as a product of conditional densities.

Gibbs sampling uses this fact, capitalizing on the equivalence of different representations of the joint

density. For example, when we consider a joint density with four unknowns parameters (µ, β1, β2, α)

given observed data Y and the latent data b we have

P (µ, β1, β2, α|Y, b) = Pµ(µ|β1, β2, α, Y, b) rµ(β1, β2, α|Y, b) (3.3)

= Pβ1
(β1|µ, β2, α, Y, b) rβ1

(µ, β2, α|Y, b) (3.4)

= Pβ2
(β2|µ, β1, α, Y, b) rβ2

(µ, β1, α|Y, b) (3.5)

= Pα(α|β1, β2, µ, Y, b) rα(µ, β1, β2|Y, b), (3.6)

where P (.) denotes full conditional distributions and r(.) denotes densities.

We start with initial estimates (β(0)
1 , β

(0)
2 , α(0)) and we sample µ(1) from Pµ and then we use

(µ(1), β
(0)
2 , α(0)) to sample β(1)

1 from Pβ1 and so on. This process is repeated until we reach stochastic

convergence, say (m)th iteration. Usually, the joint densities rp(.) are not of importance as long as they
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are free of one of the four unknown parameters (µ, β1, β2, α), for example. The empirical distributions

of these samples of the unknown parameters

µ1 , µ2, . . . , µm

β1
1 , β2

1 , . . . , β
m
1

β1
2 , β2

2 , . . . , β
m
2

α1 , α2, . . . , αm.

may be regarded as an approximation to the true joint posterior distribution. Assuming (m) is large

the marginal posterior for any unknown parameter may be approximated by the empirical distribution

of the m samples of that unknown parameter produced by the Gibbs sampler.

3.1.3.1 ARS and ARMS Certain full conditionals can reduce analytically to well-known distribu-

tions, for which special methods for efficient random variate generation are available. However, more

often, no analytical reduction is possible. For log-concave distributions efficient random variate gen-

eration can be achieved through adaptive rejection sampling (ARS) [24]. ARS works by constructing

an envelope function of the log of the target density, which is then used in rejection sampling. The

envelope function is a piece-wise exponential function. Whenever a point is rejected by ARS, the en-

velope is updated to correspond more closely to the true log density, thereby reducing the chance of

rejecting subsequent points. In the original formulation of ARS, the envelope is constructed from a set

of tangent lines to the log-density. The tangent line is a line that touches a curve at a point without

crossing over. Formally, it is a line which which intersects a differentiable curve at a point where the

slope of the curve equals the slope of the line. In a later version the envelope is constructed from

chords (secants) intersecting on the log-density. Both methods assume that the log density is concave.
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Gilks and Wild (1992) [24] showed that many full conditional distributions encountered in practice

are log-concave. However, not all models yield log-concave full conditionals, typically in non-linear

models, or with non-exponential family distributions. ARMS (Adaptive rejection metropolis sampling)

deals with this situation by performing a Metropolis step on each point accepted at an ARS rejection

step, suggested by Gilks, Best and Tan (1995) [23]. The Metropolis step is a Markov chain Monte

Carlo (MCMC) method for obtaining a sequence of random samples from a probability distribution for

which direct sampling is difficult. This sequence can be used to approximate the distribution. Details

concerning the algorithms for ARS and ARMS have been published in the above mentioned references

( [24, 23]).
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3.2 DETAILS ON THE ESTIMATION APPROACH

A log-linear random effects AFT model is given below

log Tij = βTZij + bTi Wij + εij . (3.7)

Observed data are usually denoted as Y = (Tij , δij , Zij ,Wij) and bi is the vector of random effects

for the ith group which follow a Gaussian distribution with mean 0 and unknown variance Σ. Then

the unobserved complete data are (Y, b). β is the vector of fixed effects regression coefficients. The

distribution function of the error εij is denoted as F (ε;α). Notations are summarized in the table 2.

Table 2: Notations

Xij potential event time

Cij potential censoring time

δij event indicator δij = I(Xij < Cij)

Tij observed event or censoring time Tij = min(Xij , Cij)

Zij covariate vectors for the fixed effects

Wij covariate vectors for the random effects

β a vector of fixed effects coefficients

b a vector of random effects (b0i, b1i, . . .)

Σ variance-covariance matrix of b

i cluster index (i = 1...G)

j subject index (j = 1...ni)

3.2.1 Complete data likelihood

In our problem, we treat the random effects bi for ith cluster as latent or missing data. Consider the

joint distribution of the random effects and the observed data y as if random effects bi were observed.

Under the following assumptions
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(A.1) Censoring times are independent of survival times conditioning on the frailties bi

(A.2) Censoring times are noninformative about random effects,

the contribution of the jth observation in the ith group to the likelihood can be written as

Pr[bi, Tij , δij ] = Pr[bi]Pr[Tij , δij |bi]

= Pr[bi]Pr[Tij , δij = 1|bi]Pr[Tij , δij = 0|bi]

= Pr[bi]

[
Pr(Tij = X|δij = 1, bi)Pr(δij = 1|bi)

][
Pr(Tij = X|δij = 0, bi)Pr(δij = 0|bi)

]
(3.8)

Then, based on the statement (3.8) unobserved complete data likelihood or full likelihood for all obser-

vations is

L[y, b] =

G∏
i=1

ni∏
j=1

Pr[bi]Pr[Tij , δij |bi]

=

G∏
i=1

{
ni∏
j=1

f(tij |bi)δijS(tij |bi)1−δij

}
Pr[bi]

=

G∏
i=1

{
ni∏
j=1

h(tij |bi)δijS(tij |bi)

}
Pr[bi]

=

G∏
i=1

{
ni∏
j=1

(
1

t
hεij (εij)

)δij
Sεij (εij)

}
Pr[bi], (3.9)

where i = 1, 2, .., G clusters; j = 1, 2, .., ni subjects in cluster i. The complete data log-likelihood is

logL[y, b] = l =
∑
i

∑
j

δij log

(
1

t
hεij (εij)

)
+
∑
i

∑
j

logSεij (εij) +
∑
i

logPr[bi]

=

{∑
i

∑
j

δij

{
− log t+ log hεij (εij)

}
+
∑
i

∑
j

logSεij (εij)

}
+
∑
i

logPr[bi]

= l1(β, α) + l2(Σ). (3.10)

31



The first two terms of the above complete data log-likelihood l1(β, α) can be rewritten by plugging

in hazard hεij and survival Sεij functions of error (εij) random variable from (2.15) and (2.17).

l1(β, α) =
∑
i

∑
j

δij

{
− log tij + log hεij (εij)

}
+
∑
i

∑
j

logSεij (εij)

=
∑
i

∑
j

{
− δij log tij + δij log

e(log tij−βTZij−bTi Wij)

1 + eα+(log tij−βTZij−bTi Wij)

}
−

∑
i

∑
j

e−α log
(

1 + eα+(log tij−βTZij−bTi Wij)
)

=
∑
i

∑
j

{
− δij log tij + δij(log tij − βTZij − bTi Wij)− δij log

(
1 + e(α+log tij−βTZij−bTi Wij)

)
− e−α log

(
1 + eα+(log tij−βTZij−bTi Wij)

)}
= −

∑
i

∑
j

{
δij(β

TZij + bTi Wij) + (δij + e−α) log
(

1 + eα+(log tij−βTZij−bTi Wij)
)}

. (3.11)

And the second part of the complete data log-likelihood l2(Σ) can be written

l2(Σ) = −Gd
2

log(2π)− G

2
log |Σ| −

G∑
i=1

bTi Σ−1bi
2

, (3.12)

where we assume bi = (b1, . . . , bd)
T follows multivariate normal distribution with mean zero and

d×d variance-covariance matrix Σ: f(bi; Σ) = 1
(2π)d/2|Σ|1/2 exp

(
− 1

2b
T
i Σ−1bi

)
where i = 1, 2, .., G clusters;

j = 1, 2, .., ni subjects in cluster i; d is the number of random effects within a cluster.

3.2.2 Difficulties in the classic EM method

3.2.2.1 E-step In the E-step of a traditional EM method we calculate the expectation of the log-

likelihood of the augmented data (yi, bi) conditional on the observed data and the current parameter

32



value. Let θ(k) = (βk, αk,Σk) be current estimates of parameter values in iterations. Then, at kth

iteration for Q function in (3.1) we have

Q(β(k), α(k),Σ(k)) = E
{
l1(β, α)|Y, θ(k)

}
+ E

{
l2(Σ)|Y, θ(k)

}
= Q1(β, α) +Q2(Σ). (3.13)

Taking conditional expectation over complete data log likelihood for (β, α) in l1 yields

Q1(β, α) = −E
[∑

i

∑
j

{
δij(β

TZij + bTi Wij) + (δij + e−α) log
(

1 + eα+(log tij−βTZij−bTi Wij)
)}
|Y, θ(k)

]
= −

{∑
i

∑
j

δij(β
TZij) + E[bTi |Y, θ(k)]Wij + (δij + e−α)E

[
log
(

1 + eα+(log tij−βTZij−bTWij)
)
|Y, θ(k)

]}
= −

{∑
i

∑
j

δij(β
TZij) + (δij + e−α)E

[
gij(β, α; bi)|Y, θ(k)

]}
, (3.14)

where gij(β, α; bi) = log
(

1 + eα+(log tij−βTZij−bTWij)
)
. And we have Q2

Q2(Σ) =
∑

E[log f(bi; Σ)|y, θn] ∝ −1

2

d∑
g=1

(
G log σ2

g +
1

σ2
g

G∑
i=1

E[b2ig|Y, θ(k)]

)
. (3.15)

This is for the multivariate normal frailty case when Σ is constrained to be a diagonal matrix. For

general unconstrained Σ, a similar formula involving the expectation of cross-products bigbi′g can be

used. Therefore, the classical E-step in EM algorithm consists of calculating the following conditional

expectations E
[
gij(β, α; bi)|Y, θ(k)

]
and E[b2ig|Y, θ(k)]. Thus, we need to calculate the conditional expecta-

tions E[gij(β, α; bi)|Y, θ(k)] from Q1 and E[b2ig|Y, θ(k)] from Q2, which is of the type E[gij(β, α; bi)|Y, θ(k)] =

∫
log
(

1 + eα+(log tij−βTZij−bTWij)
)
p(big|Y, θ(k))dbig and E[b2ig|Y, θ(k)] =

∫
b2igp(big|Y, θ(k))dbig for univari-

ate random effects model. The conditional distribution of bi given the observed data and current es-

timates p(big|Y, θ(k)) does not have a closed form for the family of Gρ distributions. In addition, as

the dimension of random effects vector increases this integration will be multi-dimensional. For the

bivariate random effects problem, Gaussian quadratures may be used [73]. For higher dimensions

numerical integration becomes prohibitive [69, 73].
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3.2.2.2 M-step Maximizing Q1 in equation (3.14) is not straightforward since the parameters ap-

pear in the expectation. Our initial approach to this problem was the EM gradient algorithm by Lange

(1995) [45] to linearize Q1 in the equation (3.14) of by replacing gij(β, α; bi) at (k+1)-th M-step with

G
(k+1)
ij = gij(β

(k), α(k); bi) + (β − β(k))T
∂gij
∂β

(β(k), α(k); bi) + (α− α(k))T
∂gij
∂α

(β(k), α(k); bi), (3.16)

where the partial derivatives are

∂gij
∂β

(β(k), α(k); bi) =
−Zij

1 + eα+(log tij−βTZij−bTi Wij)
eα+(log tij−βTZij−bTi Wij)

=
−Zij

e−[α+(log tij−βTZij−bTi Wij)] + 1
β=β(k),α=α(k) , (3.17)

∂gij
∂α

(β(k), α(k); bi) =
1

1 + eα+(log tij−βTZij−bTi Wij)
eα+(log tij−βTZij−bTi Wij)

=
1

e−[α+(log tij−βTZij−bTi Wij)] + 1
β=β(k),α=α(k) . (3.18)

and β(k), α(k) are the parameter estimates from the k-th step. However, the EM algorithm failed to

converge with this approximation in our problem.

3.2.3 Stochastic EM

To avoid numerical integrations in the E-step of the classical EM algorithm we propose a stochastic

version of the EM algorithm (Nielsen 2000) [55] that utilizes Monte Carlo technologies such as the

Gibbs sampler. In the case of no closed form for conditional distribution the Gibbs sampler may

be implemented based on the adaptive rejection sampling algorithm of Gilks and Wild (1992, 1995)

[24, 23]. In our problem, the M step of the EM algorithm is also not analytically tractable. Since

StEM maximizes the complete data log-likelihood of pseudo completed sample it does not involve

such difficulties. The basic idea underlying Stochastic EM (StEM) is to replace the computation and

maximization of the Q function by the simpler computation and simulation of an unobserved random
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effects bi, and then to update θ(k) = (β(k), α(k)) on the basis of the pseudocompleted sample xc = (y, bci ).

More specifically, we iterate the following two procedures with an initial guess of θ(0).

(1) Stochastic E-step (S-step): draw Monte Carlo samples from the conditional distribution of the

latent data given the observed data and θ(0) to form a pseudo-complete sample.

(2) M-step: find the maximum likelihood estimator (MLE) θ(k) based on the pseudo-complete data,

and update θ(k) to θ(k+1).

The full conditional distribution of the latent data in S-step for our problem is given by

p(big|bi(−g),yi, θ(k)),

where bi(−g) = (bi1, . . . , bi,k−1, bi,k+1, . . . , bid). And the Gibbs sampler proceeds by successively sampling

from p(big|bi(−g),yi, θ(k)) for g = 1 . . . d, using the adaptive rejection sampling algorithm [24, 23].

Imputing pseudo-complete data (the S-step) and subsequent maximization (the M-step) alternately

generates a Markov chain {θ(m)} that converges to a stationary distribution Ψ under mild conditions

[33]. Thus, the Stochastic EM point estimate for θ is

Mean(Ψ) =
1

M −m0

M∑
m=m0+1

θ(m), (3.19)

where M is a total number of draws or EM iterations and m0 is a burn-in period to approximately

reach the stationarity and is discarded from the calculation. It has been shown that its relationship to

MLE (θ̂) is Mean(Ψ) = θ̂ +O(1/n) for the exponential family case.

The maximum likelihood estimator (MLE) of Q1 in the M-step can be found by maximizing the

complete data log-likelihood via a non-linear optimization method.

θn+1
∼= arg max

θ
l1(Y, bn|θn).
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This is very straightforward step now due to the imputation. To maximize Q2, Vaida and Xu (2000)

noted that this is the log-likelihood corresponding to G independent observations from the ‘prior’

random effects distribution p(bi) in which the standard sufficient statistics are replaced with their

conditional expectations and, in general, the solution is readily available. That is, in the case of

diagonal G the estimates are

σ̂2
g =

1

G

G∑
i=1

E[b2ig|Y, θ(k)], (3.20)

for g = 1, . . . , d. In the Stochastic EM, the expectations E[b2ig|Y, θ(k)] are replaced by a single Monte

Carlo draw for each big. If the variance matrix Σ is unconstrained, then it is maximized by

Σ̂ =
1

G

G∑
i=1

E[bib
T
i |Y, θ(k)], (3.21)

where bi = [bi1, . . . , big]
T and g is the dimension of random effects.

3.2.4 Variance estimation

The observed information matrix I(θ̂) can be computed from the complete data log-likelihood function

denoted by `c using the Louis’ method [50].

I(θ̂) = −E[∇2`c(θ; y, b)|y, θ]− E[∇`c(θ; y, b)⊗2|y, θ], (3.22)

where u⊗2 = uuT , ∇ and ∇2 denote the first and the second derivatives with respect to parameters.

The expectations in the above Louis formula is computed by an empirical version in Stochastic EM:

1

M −m0

M∑
i=m0+1

−∇2`c(θ; y, b(i))− 1

M −m0

M∑
i=m0+1

∇`c(θ; y, b(i))⊗2, (3.23)
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where the parameter θ is fixed at Mean(Ψn). M and m0 are defined earlier. The components of

∇`c(b), the first derivatives of complete data log-likelihood, are

∂`

∂β
= (−1)

G∑
i

ni∑
j

Zij(δij − e−αeA)

1 + eA
, (3.24)

∂`

∂α
= (−1)

G∑
i

ni∑
j

{
− e−α log (1 + eA) +

eA(δij + e−α)

1 + eA

}
, (3.25)

∂`

∂σ2
g

= −1

2

{
G

σ2
g

−
∑G
i b

2
ig

(σ2
g)2

}
, (3.26)

for g = 1, . . . , d diagonal case and ` is given in equation (3.10). For the second derivatives

∂2`

∂β2
= (−1)

G∑
i

ni∑
j

Z⊗2
ij e

A(e−α + δij)

(1 + eA)2
, (3.27)

∂2`

∂α2
= (−1)

G∑
i

ni∑
j

{
e−α log (1 + eA)− eAe−α

1 + eA
+
eA(δij − e−αeA)

(1 + eA)2

}
, (3.28)

∂2`

∂(σ2
g)2

= −1

2

{
G

(σ2
g)2
−
∑G
i b

2
ig

(σ2
g)3

}
, (3.29)

∂2`

∂β∂α
= (−1)

G∑
i

ni∑
j

−eAZij(δij − e−αeA)

(1 + eA)2
, (3.30)

where eA = eα+(log tij−βTZij−bTi Wij) and z⊗2 = zzT for vector z, and all other off-diagonal elements

of ∇2`ij are zero.
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3.2.5 Inference

A Wald-type statistic can be used to test whether each of the fixed effects parameter estimates differs

from a specified value. Inference regarding the inclusion or exclusion of random effects in linear

mixed models is challenging because the variance components are located on the boundary of their

parameter space under the usual null hypothesis of the variance components being zero. As a result,

the asymptotic null distribution of the Wald, score, and likelihood ratio tests will not have the χ2

distribution. Especially, the null distribution of the likelihood ratio test (LRT) is shown to follow a

50:50 mixture χ2 distribution (Self and Liang 1987 [62], Stram and Lee 1994 [64], Zhang and Lin

2008 [74]). The p-value of the LRT test for given observed LRT statistic Tobs is given as

0.5[χ2
s ≥ Tobs] + 0.5P [χ2

s+1 ≥ Tobs] , (3.31)

where Tobs = −2 logL(β̂, α̂) + 2 logL(β̂, α̂, θ̂) and s is the number of variance components in Σ. For

example, s = 1 for univariate shared AFT frailty model. s = 2 for bivariate shared AFT frailty model

in the absence of correlation.

As for model selection criteria, the classical Akaike Information Criterion (AIC) (Akaike 1973)

[2] for parametric models is formulated by rewarding goodness of fit via −2 logL but penalizing the

number of estimated parameters, p, in the model by adding 2p.

AIC = −2 logL+ 2p. (3.32)

In the parametric AFT model setting, p includes the number of parameters associated with the error

distribution such as shape and scale parameters. In the presence of random effects, Vaida and Blan-

chard (2003) [68] distinguished between the marginal and the conditional focus of comparisons in the

linear random effects model context. When we are interested in the inference on population param-

eters but not on the random effects and these random effects are only a convenient way of modeling
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the correlation within a cluster and the real interests lie on the fixed effects parameters, the marginal

Akaike Information Criterion (mAIC) (Burnham and Anderson 2002) [6] is used.

mAIC = −2 logL+ 2(p+ s), (3.33)

where s is the number of variance components and p is as defined earlier. Whereas the random effects

themselves are quantities of interest Vaida and Blanchard (2003) [68] proposed a conditional Akaike

Information Criterion (cAIC).

cAIC = −2 logL+ 2(ρ∗ + 1), (3.34)

where ρ∗ is the effective degrees of freedom and is estimated by ρ∗ = trace(H) where H is the pseudo-

projection matrix [68]. There is currently no literature of application of cAIC in the AFT frailty

model setting. For all AIC calculations across different models it is important to keep the number of

observations equal since each observation contributes to the log-likelihood.
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4.0 SIMULATION

Simulation studies were conducted to evaluate the performance of finite sample properties of the

proposed estimation procedure for the log-linear AFT model with a family ofGρ distribution in both the

univariate and bivariate shared frailty model setting. We also examine the robustness of the estimated

fixed effects and the estimated variance components when the error distribution or distribution of the

random effects is misspecified. Performance of the estimators are evaluated by the following measures.

The percentage bias is computed as proportion of the difference from the true value:

( β̂N − β
β

)
∗ 100, (4.1)

where β is a true value and the mean parameter estimate is

β̂N =
1

N

N∑
1

β̂i, (4.2)

where N is a total number of simulation datasets generated and β̂i = 1
M−m0

∑M
m=m0+1 θ

(m)
i from

equation (3.19) in section 3.2.3. By the definition in equation (4.1) positive percent bias indicates over-

estimation and negative percent bias indicates under-estimation of the true parameter. The sample

standard deviation of the parameter estimators (SD) is the empirical standard error computed as

SD(β̂) =

√√√√ 1

N − 1

N∑
1

(β̂i − β̂N )2. (4.3)

The standard error (SE) of the parameter estimate is the average of the model-based estimates of the

large sample standard errors for the parameter estimate by the Louis method [50] as indicated in
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equation (3.23) in section 3.2.4. The mean squared error (MSE) of the estimated regression coefficients

is defined as

M̂SE =
1

N

N∑
i=1

(β̂i − β)2 ≈ (β̂N − β)2 + (SE(β̂))2, (4.4)

where SE(β̂) is the average large sample standard error of the estimate over all simulations. The

95% coverage probability (CP) is the observed proportion of simulations for which the 95% confidence

interval includes the true value. For all data simulation and parameter estimation, R software was

used [60].

4.1 SIMULATION MODEL I

4.1.1 Shared frailty model in univariate setting

Simulation datasets were generated from the following log-linear Gρ family AFT model with random

effects.

log Tij = β0 + β1x1ij + β2x2ij + bi + τ ∗ ε(α)ij , (4.5)

where i = 1...G clusters, j = 1...ni subjects within a cluster. The covariates x1ij and x2ij

follow normal(0,1) and I(binomial(0.5) > 0.5) distributions, respectively. The random effects

b = (b1, . . . , bi, . . . , bG) are assumed to follow a normal distribution, N(0, θ). τ is the scale parameter.

The error term ε follows the Gρ family distribution with an additional parameter α which reflects the

degree of the attenuation of the hazard functions.

The random cluster effect, bi, is shared by members within each cluster but varies independently

across clusters. An example of this setting is a multi-center clinical trial with centers as clusters.

Center effects are regarded as random and one failure time is recorded for each patient within each
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center. For simulations, the b were independently drawn from a normal distribution with mean 0 and

variance θ. This θ represents the variance component of univariate random effects model. The fixed

effect covariates in the simulation are x1ij and x2ij . The continuous covariate x1ij can be considered to

be some baseline measurement for which adjustment is needed for. The binary covariate x2ij can be

considered as a treatment assignment, e.g., a clinical trial in which subjects were randomly assigned

to one of two treatments within each cluster. β0 represents the intercept term which is the log baseline

survival time. The scale parameter τ is fixed at 1 and not estimated in simulations.

The true values of the coefficients corresponding to the covariate vector xT = (1, x1ij , x2ij) were βT =

(β0, β1, β2) = (1, 1, 1). The α was arbitrarily set at 1. The variance component θ of the random effects

was set at 1. The following number of clusters were considered in the univariate shared frailty model

setting: G = (10, 20, 50, 100) with the number of observations per cluster (i.e. cluster size) varying

from 8 to 20, n = (8, 12, 20). The error (εij) followed the Gρ family distribution where the parameter

ρ is re-parametrized as α = log ρ. The four different values of α = log ρ = (−0.69, 0.60, 0.00, 1.00)

were evaluated in the simulated models as well. Of note, α = 0 indicates a proportional odds model.

Censoring times were generated independently from the exponential distribution with the parameter

that resultsed in the censoring proportion of approximately 20%.

4.1.2 Simulation Results

Figure (4.1) shows 2000 StEM sequences for the model parameters after fitting an AFT shared frailty

model Y = β0 + β1X1 + β2X2 + bi + ε with G=50, n=20, (β0, β1, β2, α) = (1.0, 1.0, 1.0, 1.0) and θ = 1.0

for the case of 20% censoring. Convergence plots in panel (a) show the magnification of the first

100 StEM sequences. Panel (b) shows the convergence plots with the full 2000 StEM sequences.

All parameter estimates converged quickly except for the intercept term µ, but the difference in the
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number of iterations to reach the stationary was less than 20. Whether we used 2000 or 250 Stochastic

EM iterations the results did not change much, therefore all simulations from the univariate random

effects model were performed with m =250 Stochastic EM runs. In addition, the burn-in period was

set at m0 = 50 to reach the stationary sequence θm.

The mean parameter estimates (Mean), empirical standard errors (SD), asymptotic standard errors

(SE), percentage bias, mean squared error (MSE) and 95% coverage rate are reported in Tables 3

through 6 for simulation datasets with different numbers of clusters G = (10, 20, 50, 100) and cluster

sizes n = (8, 12, 20) using the univariate shared AFT frailty model specified earlier in the simulation

model equation (5.1).

We examined the effects of number of clusters (Table 3), cluster size (Table 4 and 5), and the effect

of changes in the parameter α (Table 6). Both fixed effects and random effect parameters are estimated

with as few as G = 20 clusters and n = 20 observations with percentage bias less than or about 3%. An

increase in the number of clusters reduces standard errors and increases precision of the estimates.

The percentage bias of the random effect estimate is noticeably reduced with more clusters when the

number of observations is fixed (Figure 4.3).

The asymptotic standard errors (SE) are not perfectly aligned with empirical standard errors (SD).

Nonetheless, as the number of cluster increases the asymptotic standard errors appear to be closer

to the empirical standard errors. But there is noticeable underestimation of the empirical standard

errors of the intercept parameter β0 (Table 3). When the number of clusters is fixed the effects of

cluster size has the largest impact on the random effect parameter estimation (Figure 4.4).

The larger the cluster size the more precise the mean estimate is (Table 4). In addition, an increase

in the number of clusters when the cluster size is small does not improve the estimates of random

effects. For example, when the number of clusters is increased from G = 20 to G = 50 but the cluster
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size is only n = 8 the percentage bias for the random effect estimate is around 50% (Table 4 and Table

5). This indicates that enough observations are needed in each cluster to reduce the bias of estimation

of random effects. When the parameter α is varied from α = (−0.69, 0.60, 0.00, 1.00) all parameter

estimation is reasonably good with percent bias less than 3.5% for all parameters and less than 2.1%

for the parameter α (Table 6).

As a result of the last Stochastic E-step we also obtain the predicted random effects for each

cluster, that is b̂i = E[bi|y, θ̂] for i = 1, . . . , G, with variance v̂i = var(bi|yi, θ̂) and the corresponding

95 per cent credibility intervals (Bayesian confidence intervals) using the normal approximation i.e.,

(E[bi|y, θ̂]± 2
ˆ
v

1/2
i ). These results are shown in Figure (4.5). Observed and predicted random effects are

plotted based on the results after fitting an AFT shared frailty model Y = β0 + β1X1 + β2X2 + bi + ε

with G=50, n=20, (β0, β1, β2, α, θ) = (1.0, 1.0, 1.0, 1.0, 1.0) for the case with 20% censoring. In general,

the predicted random effects are well within the credibility intervals.
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Figure 4.1: StEM sequences for the model parameters
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Figure (4.2) shows the histograms with smoothed density curves (dotted line) and normal density

overlay (solid line) of the parameter estimates from 200 simulated datasets based on an AFT shared

frailty model Y = β0 +β1X1 +β2X2 + bi+ ε with G=100, n=20, (β0, β1, β2, α, θ) = (1, 1, 1, 1, 1) for the case

of 20% censoring. These histograms show that the estimated regression parameters are approximately

symmetrically distributed.
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Figure 4.2: Distribution of estimated model parameters
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Table 3: Effects of number of clusters

Parameter True Mean SD SE Bias MSE coverage

Value (%) (%)

G=10

β0 1 0.940 0.435 0.188 -6.0 0.192 58.0

β1 1 0.997 0.188 0.190 -0.3 0.035 94.0

β2 1 0.975 0.365 0.272 -2.5 0.133 84.0

α 1 0.999 0.138 0.133 -0.1 0.019 94.5

θ 1 0.907 0.511 0.457 -9.3 0.268 75.0

G=20

β0 1 1.020 0.305 0.128 2.0 0.093 52.5

β1 1 1.001 0.136 0.133 0.1 0.018 94.0

β2 1 0.997 0.284 0.188 -0.3 0.080 80.0

α 1 0.987 0.086 0.094 -1.3 0.007 97.0

θ 1 0.985 0.383 0.346 -1.5 0.146 85.0

G=50

β0 1 1.031 0.174 0.080 3.1 0.031 66.0

β1 1 1.003 0.082 0.084 0.3 0.007 94.5

β2 1 0.981 0.171 0.118 -1.9 0.029 82.0

α 1 0.992 0.052 0.059 -0.8 0.003 95.0

θ 1 1.017 0.238 0.225 1.7 0.057 93.0

G=100

β0 1 1.000 0.135 0.057 0.0 0.018 60.0

β1 1 0.996 0.057 0.060 -0.4 0.003 97.0

β2 1 1.009 0.123 0.084 0.9 0.015 83.0

α 1 0.996 0.038 0.042 -0.4 0.001 97.0

θ 1 0.998 0.174 0.160 -0.2 0.030 90.5
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Table 4: Effects of cluster size: G=20

Parameter True Mean SD SE Bias MSE coverage

Value (%) (%)

n=8

β0 1 0.972 0.384 0.257 -2.8 0.147 78.5

β1 1 0.987 0.215 0.217 -1.3 0.046 95.5

β2 1 1.043 0.390 0.335 4.3 0.153 90.0

α 1 0.982 0.147 0.159 -1.8 0.022 97.0

θ 1 0.486 0.354 0.172 -51.4 0.389 26.5

n=12

β0 1 1.003 0.366 0.188 0.3 0.133 62.0

β1 1 1.014 0.161 0.176 1.4 0.026 97.5

β2 1 0.979 0.317 0.261 -2.1 0.100 88.5

α 1 0.986 0.128 0.126 -1.4 0.017 95.0

θ 1 0.785 0.385 0.275 -21.5 0.194 63.0

n=20

β0 1 1.020 0.305 0.128 2.0 0.093 52.5

β1 1 1.001 0.136 0.133 0.1 0.018 94.0

β2 1 0.997 0.284 0.188 -0.3 0.080 80.0

α 1 0.987 0.086 0.094 -1.3 0.007 97.0

θ 1 0.985 0.383 0.346 -1.5 0.146 85.0
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Table 5: Effects of cluster size: G=50

Parameter True Mean SD SE Bias MSE coverage

Value (%) (%)

n=8

β0 1 0.933 0.247 0.158 -6.7 0.065 79.5

β1 1 0.998 0.138 0.141 -0.2 0.019 94.0

β2 1 0.995 0.229 0.211 -0.5 0.052 91.5

α 1 1.022 0.089 0.097 2.2 0.008 96.5

θ 1 0.500 0.240 0.110 -50.0 0.308 16.0

n=12

β0 1 0.969 0.199 0.116 -3.1 0.041 70.0

β1 1 1.017 0.100 0.112 1.7 0.010 96.5

β2 1 1.012 0.206 0.161 1.2 0.043 87.0

α 1 0.997 0.080 0.079 -0.3 0.006 95.0

θ 1 0.806 0.237 0.176 -19.4 0.093 64.5

n=20

β0 1 1.031 0.174 0.080 3.1 0.031 66.0

β1 1 1.003 0.082 0.084 0.3 0.007 94.5

β2 1 0.981 0.171 0.118 -1.9 0.029 82.0

α 1 0.992 0.052 0.059 -0.8 0.003 95.0

θ 1 1.017 0.238 0.225 1.7 0.057 93.0
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Table 6: Effects of α

Parameter True Mean SD SE Bias MSE coverage

Value (%) (%)

α = −0.69

β0 1.00 1.014 0.158 0.051 1.4 0.025 50.0

β1 1.00 0.999 0.052 0.052 -0.1 0.003 96.5

β2 1.00 0.998 0.096 0.073 -0.2 0.009 85.0

α -0.69 -0.704 0.142 0.160 2.1 2.924 98.0

θ 1.00 0.966 0.226 0.203 -3.4 0.052 87.5

α = 0.60

β0 1.00 1.021 0.173 0.068 2.1 0.030 54.0

β1 1.00 1.007 0.072 0.072 0.7 0.005 94.5

β2 1.00 1.008 0.133 0.101 0.8 0.018 84.5

α 0.60 0.595 0.065 0.069 -0.8 0.168 95.0

θ 1.00 0.983 0.243 0.215 -1.7 0.059 89.0

α = 0.00

β0 1.00 1.001 0.178 0.057 0.1 0.031 43.0

β1 1.00 0.999 0.058 0.059 -0.1 0.003 94.5

β2 1.00 1.003 0.111 0.084 0.3 0.012 84.5

α 0.00 -0.016 0.087 0.097 -1.6 1.041 98.5

θ 1.00 0.979 0.243 0.209 -2.1 0.059 84.5

α = 1.00

β0 1.00 1.031 0.174 0.080 3.1 0.031 66.0

β1 1.00 1.003 0.082 0.084 0.3 0.007 94.5

β2 1.00 0.981 0.171 0.118 -1.9 0.029 82.0

α 1.00 0.992 0.052 0.059 -0.8 0.003 95.0

θ 1.00 1.017 0.238 0.225 1.7 0.057 93.0
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4.1.3 Misspecified models

In this section, we present the impact of misspecifying the error distribution and the frailty distribution

on mean parameter estimates (Mean), empirical standard errors (SD), asymptotic standard errors

(SE), percentage bias, mean squared error (MSE) and coverage rate in the univariate AFT shared

frailty model. Simulation datasets were generated from the following log-linear Gρ family AFT model

with random effects.

log Tij = β0 + β1x1ij + β2x2ij + bi + ε(α)ij , (4.6)

where i = 1...G clusters, j = 1...ni subjects within a cluster. The covariates x1ij and x2ij follow

normal(0,1) and I(binomial(0.5)> 0.5) distributions, respectively. True values of the parameters are set

at (β0, β1, β2) = (1, 1, 1) but the true value of the parameter α can not be set at a predetermined value

for the misspecified error model. This is because the parameter α is specific to the Gρ distribution. The

following distributions are considered for eij and bi.

Misspecified error model (eij): We considered a standard log normal distribution and standard

logistic distribution as the distribution functions of the error F (ε;α) misspecification. For both log

normal and logistic distribution the percentage bias of covariate effects for (β1, β2) are all less than

1%. The variance components (θ) of the random effects (bi) are overestimated in general with log

normal error distribution. In addition, the bias of the intercept term β0 is fairly large (Table 7). The

model performs well with the logistic error distribution (Table 8 and Table 9).

Misspecified frailty model (bi): Gamma distribution, Inverse Gaussian distribution and log nor-

mal distribution are considered for the distribution of misspecified random effects bi. For all mis-
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specified frailty distributions the percentage bias of covariate effects for (β1, β2) is less than 1%. The

variance components θ of random effects bi are also well estimated with less than 5% percentage bias

(Table 10). Overall, the results indicate that misspecified AFT models give asymptotically unbiased

estimates of the covariate effect, but the estimate of the intercept parameter β0 is biased.

Table 7: Effects of standard log normal misspecified error distribution

Parameter True Mean SD SE Bias MSE coverage

Value (%) (%)

n = 30

β0 1.00 1.386 0.175 0.034 38.6 0.180 3.5

β1 1.00 1.005 0.036 0.038 0.5 0.001 96.0

β2 1.00 1.009 0.075 0.052 0.9 0.006 83.5

α NA -4.612 4.209 31.810 -.- -.- -.-

θ 1.00 1.064 0.265 0.262 6.4 0.074 97.0

n = 40

β0 1.00 1.333 0.165 0.030 33.3 0.138 3.5

β1 1.00 1.010 0.029 0.033 1.0 0.001 95.0

β2 1.00 1.006 0.059 0.045 0.6 0.004 87.0

α NA -2.780 1.782 3.338 -.- -.- -.-

θ 1.00 1.135 0.275 0.293 13.5 0.093 96.5

n = 50

β0 1.00 1.279 0.184 0.027 27.9 0.112 5.5

β1 1.00 1.008 0.029 0.030 0.8 0.001 94.0

β2 1.00 1.008 0.052 0.040 0.8 0.003 87.0

α NA -2.581 1.242 1.895 -.- -.- -.-

θ 1.00 1.216 0.272 0.323 21.6 0.120 99.0
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Table 8: Effects of standard logistic misspecified error distribution

Parameter True Mean SD SE Bias MSE coverage

Value (%) (%)

n = 20

β0 1.00 1.002 0.260 0.092 0.2 0.067 49.0

β1 1.00 0.995 0.102 0.094 -0.5 0.010 94.5

β2 1.00 1.006 0.178 0.134 0.6 0.032 86.5

α 0.00 -0.013 0.130 0.155 -1.3 1.043 98.0

θ 1.00 0.963 0.329 0.330 -3.7 0.109 87.0

n = 30

β0 1.00 0.997 0.265 0.070 -0.3 0.070 44.0

β1 1.00 1.010 0.078 0.076 1.0 0.006 93.5

β2 1.00 0.977 0.160 0.106 -2.3 0.026 78.5

α 0.00 -0.006 0.107 0.121 -0.6 1.024 98.0

θ 1.00 1.017 0.366 0.352 1.7 0.134 91.0

n = 40

β0 1.00 0.961 0.226 0.059 -3.9 0.053 35.0

β1 1.00 1.002 0.065 0.066 0.2 0.004 96.0

β2 1.00 1.012 0.116 0.090 1.2 0.014 87.0

α 0.00 -0.001 0.096 0.104 -0.1 1.011 97.0

θ 1.00 1.061 0.350 0.372 6.1 0.126 94.0
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Table 9: Effects of standard logistic misspecified error distribution

Parameter True Mean SD SE Bias MSE coverage

Value (%) (%)

n = 20

β0 1.00 0.985 0.196 0.063 -1.5 0.038 48.0

β1 1.00 1.003 0.064 0.066 0.3 0.004 94.0

β2 1.00 1.002 0.137 0.093 0.2 0.019 82.0

α 0.00 -0.009 0.100 0.107 -0.9 1.029 95.5

θ 1.00 0.981 0.248 0.234 -1.9 0.061 88.0

n = 30

β0 1.00 0.984 0.162 0.049 -1.6 0.026 43.0

β1 1.00 1.004 0.048 0.054 0.4 0.002 95.5

β2 1.00 1.001 0.105 0.075 0.1 0.011 81.5

α 0.00 -0.007 0.073 0.086 -0.7 1.019 97.0

θ 1.00 1.023 0.257 0.247 2.3 0.066 94.0

n = 40

β0 1.00 1.007 0.172 0.042 0.7 0.030 23.0

β1 1.00 0.987 0.037 0.046 -1.3 0.002 97.5

β2 1.00 1.000 0.073 0.064 0.0 0.005 95.0

α 0.00 -0.011 0.059 0.074 -1.1 1.025 100.0

θ 1.00 1.030 0.237 0.255 3.0 0.057 95.0
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Table 10: Effects of misspecified frailty distribution

Frailty Parameter True Mean SD SE Bias MSE coverage

Value (%) (%)

Gamma(κ, ζ) β0 1.00 1.994 0.206 0.079 99.4 1.030 0.0

κ = ζ = 1 β1 1.00 1.003 0.088 0.084 0.3 0.008 91.0

β2 1.00 1.000 0.164 0.117 -0.0 0.027 85.5

α 1.00 0.997 0.054 0.059 -0.3 0.003 97.5

θ 1.00 1.040 0.431 0.235 4.0 0.187 73.5

Inv.Gaussian(λ, µ) β0 1.00 2.006 0.176 0.080 100.6 1.043 0.0

λ = µ = 1 β1 1.00 0.994 0.078 0.084 -0.6 0.006 97.0

β2 1.00 1.004 0.163 0.118 0.4 0.027 84.5

α 1.00 0.994 0.054 0.059 -0.6 0.003 97.0

θ 1.00 0.998 0.405 0.224 -0.2 0.163 72.0

Lognormal(µ, σ) β0 1.00 1.991 0.184 0.080 99.1 1.016 0.0

µ = −η2/2 β1 1.00 1.010 0.083 0.084 1.0 0.007 94.5

σ = η2 β2 1.00 1.005 0.160 0.118 0.5 0.025 83.5

η2 = log(τ−1 + 1) α 1.00 0.995 0.054 0.059 -0.5 0.003 96.5

θ 1.00 0.949 0.461 0.215 -5.1 0.214 58.5
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4.2 SIMULATION MODEL II

4.2.1 Bivariate AFT shared frailty model

The bivariate AFT shared frailty model that was considered has G independent clusters, each con-

taining 2 sub-clusters (indexed by k). Each sub-cluster has n/2 observations indexed by j. The total

number of observations in each dataset is G×n. Data were generated based on the following log-linear

AFT model:

log Tijk = β0 + β1xijk + w1ik ∗ b1i + w2ik ∗ b2i + τ ∗ ε(α)ijk, (4.7)

where i = 1 . . . G independent clusters, j = 1 . . . n observations in each k sub-cluster and k =1, 2 two sub-

clusters within each cluster i. w1ik and w2ik are 0/1 indicator variables that specify to which sub-cluster

an observation belongs. Z1ij is generated from a standard normal distribution. The scale parameter τ

is fixed at 1 and not estimated in simulations to simplify the problem. And the error term εijk follows

a family of Gρ distributions where α is set at 1. The vectors b1i and b2i are the random effects on the

sub-cluster level within a cluster i. These random effects have a joint distribution: b1i

b2i

 ∼ N


 0

0


 θ1 ρ

√
θ1

√
θ2

ρ
√
θ1

√
θ2 θ2


 ,

where θ1 and θ2 represent the variance components of the random effects b1i and b2i, respectively.

When ρ = 0 the variance-covariance matrix Σ becomes a diagonal matrix.

Two sets of scenarios were considered in this simulation. The number of observations within a

cluster is n=20. The number of clusters were G=40, 50, 60 for each setting, and 200 datasets were

generated for each setting. The correlation between the frailties was set at ρ = (0.0, 0.6).
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4.2.2 Simulation results

Table 11 and Table 12 presents results from fitting an AFT bivariate shared frailty model (4.7) under

the assumption that the two random effects (b1i, b2i) within a cluster i are independent ρ = 0.0 and

dependent with a magnitude of correlation of ρ = 0.6, respectively. Data are generated with n=20

observations in each cluster, β0 = 1, β1 = 1, α = 1, and G = (40, 50, 60) for the case of 20% censoring.

The fixed effect parameters (β0, β1, α) are estimated with percent bias less than 1% when random

effects are independent and less than 2% in the presence of correlation. Although there appears to

be fluctuations in estimates due to sampling variability, the percent bias for fixed effect parameters

decreases, in general, as the number of cluster increases. The variance components of random effects

(b1i, b2i) are estimated with percent bias less than 2% for the independent case and less than 3% for

the correlated cases. The estimates of correlation coefficients are also reasonably good with percent

bias less than 2% for the independent case and less than 6% when the correlation is ρ = 0.6.

The asymptotic standard errors (SE) are relatively in good agreement with empirical standard

errors (SD) for the fixed effect parameters β1 and α based on the coverage probabilities. However, the

asymptotic standard errors for the intercept term β0 and the standard errors of variance of the variance

components are underestimated. The empirical standard errors for all parameters are reduced by

increasing the number of clusters, as expected.
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Table 11: The AFT bivariate shared frailty model 1: (ρ = 0.0)

Parameter True Mean SD SE Bias MSE coverage

Value (%) (%)

G = 40

β0 1.00 1.006 0.147 0.136 0.6 0.021 87.0

β1 1.00 0.998 0.090 0.103 -0.2 0.008 94.5

α 1.00 0.996 0.058 0.066 -0.4 0.003 93.0

θ1 1.00 0.981 0.332 0.295 -1.9 0.109 86.0

θ2 1.00 0.988 0.335 0.300 -1.2 0.111 86.5

ρ 0.00 -0.007 0.181

G = 50

β0 1.00 1.006 0.144 0.119 0.6 0.021 85.5

β1 1.00 1.005 0.081 0.089 0.5 0.007 94.0

α 1.00 0.997 0.055 0.058 -0.3 0.003 96.0

θ1 1.00 0.992 0.273 0.270 -0.8 0.074 91.0

θ2 1.00 1.003 0.288 0.264 0.3 0.082 88.5

ρ 0.00 -0.012 0.176

G = 60

β0 1.00 0.997 0.137 0.102 -0.3 0.019 86.5

β1 1.00 1.001 0.076 0.081 0.1 0.006 96.0

α 1.00 1.003 0.052 0.052 0.3 0.003 95.5

θ1 1.00 0.988 0.275 0.227 -1.2 0.075 87.5

θ2 1.00 0.983 0.274 0.233 -1.7 0.075 84.0

ρ 0.00 -0.017 0.185
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Table 12: The AFT bivariate shared frailty model 2: (ρ = 0.6)

Parameter True Mean SD SE Bias MSE coverage

Value (%) (%)

G = 40

β0 1.00 1.019 0.179 0.104 1.9 0.031 76.5

β1 1.00 1.004 0.099 0.091 0.4 0.009 88.0

α 1.00 0.996 0.062 0.062 -0.4 0.004 92.0

θ1 1.00 0.972 0.306 0.228 -2.8 0.090 78.5

θ2 1.00 0.962 0.273 0.221 -3.8 0.073 79.0

ρ 0.60 0.566 0.216

G = 50

β0 1.00 1.013 0.156 0.091 1.3 0.024 75.5

β1 1.00 1.003 0.080 0.081 0.3 0.006 95.5

α 1.00 0.996 0.062 0.055 -0.4 0.004 90.0

θ1 1.00 1.003 0.277 0.201 0.3 0.075 83.5

θ2 1.00 1.008 0.271 0.202 0.8 0.072 83.5

ρ 0.60 0.592 0.211

G = 60

β0 1.00 1.010 0.138 0.082 1.0 0.019 74.0

β1 1.00 1.004 0.076 0.074 0.4 0.006 92.0

α 1.00 0.998 0.052 0.050 -0.2 0.003 92.0

θ1 1.00 1.007 0.237 0.182 0.7 0.055 79.0

θ2 1.00 0.993 0.230 0.180 -0.7 0.052 81.5

ρ 0.60 0.576 0.172
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4.2.3 Bivariate AFT nested frailty model

We consider another, yet similar, bivariate frailty model in this section.

log Tijk = β0 + β1xijk + ηi + z1k(i) ∗ b1k(i) + z2k(i) ∗ b2k(i) + ε(α)ijk, (4.8)

where i = 1 . . . G independent clusters, each containing 2 sub-clusters (indexed by k). Each sub-cluster

has n/2 observations indexed by j, where j = 1 . . . nki observations in each k sub-cluster. The total

number of observations in each dataset is G× n. The subscript notation k(i) indicates that k is nested

within a cluster i. More specifically, sub-cluster k is nested within a cluster ηi in model (4.8). The

random effects vectors b1k(i) and b2k(i) are the random effects on the sub-cluster level within a cluster i.

Since ηi is assumed to be a fixed effects covariate these random effects have the same joint distribution

as in the previous model (4.7). b1i

b2i

 ∼ N


 0

0


 θ1 ρ

√
θ1

√
θ2

ρ
√
θ1

√
θ2 θ2


 ,

where θ1 and θ2 represent the variance components of the random effects b1k(i) and b2k(i), respectively.

When ρ = 0 the variance-covariance matrix Σ becomes a diagonal matrix. Data were generated based

on above log-linear AFT nested frailty model (4.8). As before, two sets of data scenarios were considered

in this simulation. The number of observations within a cluster is n=30. The number of clusters ranged

between 40 and 60 (G=40, 50, 60) for each setting, and 200 datasets were generated for each setting.

The correlation between the nested frailties was set at ρ = (0.0, 0.6).
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4.2.4 Simulation results

The results are presented in the following Table 13 and Table 14 from fitting an AFT bivariate nested

frailty model (4.8) under the assumption that two random effects (b1k(i), b2k(i)) within a cluster i are

independent ρ = 0.0 and dependent with a magnitude of correlation of ρ = 0.6, respectively. Data are

generated with n=30 observations in each cluster, β0 = 1, β1 = 1, α = 1, and G = (40, 50, 60) for the

case of 20% censoring, as before.

The fixed effect parameters (β0, β1, α) are estimated with percent bias less than 2.2% when random

effects are independent and less than 3% in the presence of correlation. Although there appears to

be some slight fluctuations in estimation due to sampling variability, the percent bias for fixed effect

parameters decreases, in general, as the number of cluster increases.

The variance components of random effects (b1k(i), b2k(i)) are estimated with percent bias less than

4% for the independent case and less than 4.5% for the correlated cases. The estimates of the corre-

lation coefficients have relative bias less than 2% for the independent case and less than 4.5% for the

correlation of ρ = 0.6.

But, the asymptotic standard errors (SE) are not in a good agreement with empirical standard

errors (SD) for the fixed effect parameters. Observe that asymptotic standard errors for the intercept

term β0 and also for the cluster variable ηi are seriously underestimated. For finite sample sizes, we

recommend the bootstrap method for estimating standard errors. In this case, resampling is done at

the level of clusters.
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Table 13: The AFT bivariate nested frailty model 1: (ρ = 0.0)

Parameter True Mean SD SE Bias MSE coverage

Value (%) (%)

G = 40

β0 1.00 1.022 0.302 0.100 2.2 0.091 47.0

β1 1.00 1.005 0.073 0.082 0.5 0.005 95.0

η 1.00 0.999 0.014 0.005 -0.1 0.000 45.0

α 1.00 0.999 0.049 0.051 -0.1 0.002 94.5

θ1 1.00 0.960 0.312 0.246 -4.0 0.098 81.5

θ2 1.00 1.014 0.305 0.257 1.4 0.093 85.5

ρ 0.00 -0.009 0.264

G = 50

β0 1.00 1.003 0.242 0.091 0.3 0.058 56.5

β1 1.00 0.997 0.081 0.074 -0.3 0.007 93.5

η 1.00 1.000 0.009 0.003 0.0 0.000 56.5

α 1.00 0.996 0.040 0.046 -0.4 0.002 97.5

θ1 1.00 0.975 0.265 0.220 -2.5 0.071 87.0

θ2 1.00 0.984 0.288 0.236 -1.6 0.083 84.0

ρ 0.00 0.020 0.242

G = 60

β0 1.00 0.985 0.234 0.082 -1.5 0.054 51.0

β1 1.00 1.002 0.066 0.067 0.2 0.004 95.0

η 1.00 1.000 0.008 0.003 0.0 0.000 51.0

α 1.00 0.999 0.040 0.041 -0.1 0.002 95.0

θ1 1.00 1.022 0.247 0.216 2.2 0.061 85.0

θ2 1.00 0.981 0.249 0.203 -1.9 0.061 86.0

ρ 0.00 -0.012 0.217
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Table 14: The AFT bivariate nested frailty model 2: (ρ = 0.6)

Parameter True Mean SD SE Bias MSE coverage

Value (%) (%)

G = 40

β0 1.00 1.007 0.336 0.107 0.7 0.111 45.0

β1 1.00 1.006 0.070 0.078 0.6 0.005 96.5

η 1.00 1.000 0.017 0.005 -0.0 0.000 41.5

α 1.00 0.999 0.043 0.057 -0.1 0.002 96.5

θ1 1.00 1.034 0.321 0.190 3.4 0.102 74.5

θ2 1.00 1.010 0.311 0.184 1.0 0.095 71.0

ρ 0.60 0.596 0.176

G = 50

β0 1.00 0.991 0.302 0.077 -0.9 0.091 40.5

β1 1.00 0.993 0.071 0.070 -0.7 0.005 96.5

η 1.00 1.001 0.012 0.003 0.1 0.000 41.0

α 1.00 0.998 0.041 0.043 -0.2 0.002 96.0

θ1 1.00 1.043 0.246 0.169 4.3 0.062 85.0

θ2 1.00 1.030 0.325 0.166 3.0 0.106 70.5

ρ 0.60 0.595 0.143

G = 60

β0 1.00 1.029 0.291 0.070 2.9 0.085 40.5

β1 1.00 0.998 0.068 0.064 -0.2 0.005 93.5

η 1.00 1.000 0.009 0.002 -0.0 0.000 32.5

α 1.00 0.997 0.036 0.039 -0.3 0.001 95.0

θ1 1.00 1.030 0.251 0.154 3.0 0.064 79.0

θ2 1.00 1.002 0.252 0.150 0.2 0.063 76.5

ρ 0.60 0.574 0.138
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5.0 APPLICATION

5.1 NSABP PROJECT B-14: A RANDOMIZED CLINICAL TRIAL

5.1.1 Univariate AFT shared frailty model

We consider a dataset from a breast cancer clinical trial from the National Surgical Adjuvant Breast

and Bowel Project (NSABP) trial, Protocol B-14. This was a phase III randomized double-blind multi-

center clinical trial to determine the effectiveness of adjuvant tamoxifen therapy in patients with

primary operable breast cancer who had estrogen receptor-positive tumors and no axillary lymph node

involvement. More detailed description of the trial can be found in Fisher et al [16, 17, 18]. This study

concluded that the treatment yielded a significantly better outcome than placebo.

Of the 2885 patients only 2817 eligible patients were randomized either to placebo and tamoxifen

(1413 for placebo group and 1404 for tamoxifen group). There were 167 study sites in the study. The

number of patients at each site varied from 1 to 241 with a median of 38 patients. There were twenty-

seven sites with a single observation. These sites are not included in the analysis. This reduced the

total number of sites to 140 and patients to 2790, with 1396 for placebo group and 1394 for tamoxifen

group. The primary outcome was disease-free survival. A patient was considered to have an event in

cases of recurrence, having a second primary cancer, or death (whichever occurs first). The average

patient age in the analysis cohort was 55 years old ranging from 25 to 75 years old at the start of the

trial.
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The following univariate AFT shared frailty model was considered to examine the treatment effects

and variability in log baseline survival time across the centers after adjusting for age and size of tumor:

log Tij = β0 + β1Treatmentij + β2Ageij + β3Sizeij + b0i + ε(α)ij . (5.1)

The cluster is the study site i where i = 1...G with varying number of observations j = 1...ni within

a cluster. The variance component of the random site effects b0i is assumed to follow the normal

distribution N(0, θ). The model is fitted without random effects (Model 1) and with random effects

(Model 2). The error term ε follows the Gρ family distribution with an additional parameter α.

Table 15: NSABP B-14 project

Model 1 Model 2

Parameters Estimate SE 95% CI Estimate SE 95% CI

Intercept β̂0 3.095 0.086 ( 2.927, 3.263) 3.097 0.044 ( 3.012, 3.182)

Treatment β̂1 0.469 0.074 ( 0.324, 0.615) 0.474 0.051 ( 0.374, 0.575)

Age (at 55) β̂2 -0.005 0.004 (-0.012, 0.002) -0.005 0.004 (-0.013, 0.004)

Tumor Size β̂3 -0.188 0.029 (-0.246,-0.131) -0.186 0.021 (-0.227,-0.145)

α α̂ -0.165 0.206 (-0.568, 0.239) -0.216 0.327 (-0.857, 0.426)

Random center

effect variance θ̂ 0.049

Interpretation of fixed effects parameters: The sign of the fixed effect coefficient indicates

how a covariate affects the log survival times. A positive coefficient means that higher values of

the covariate lead to longer log survival times. A negative coefficient means that higher values of

the covariate lead to shorter log survival time. In terms of the magnitude, the coefficients can be

interpreted either as the time ratio or percentage change in survival time. Time ratio is calculated by

exponentiating the coefficient: exp ( ˆβkδ) where δ is amount of change in the covariate value. Percentage

change is calculated by 100[exp ( ˆβkδ)− 1]. See Appendix ?? for the details.
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Based on the results from the Model 2, the sign of the coefficient of treatment effect is positive

indicating treatment increases the survival time compared to that of placebo group, as expected, by

61%. The age variable was centered at its mean in the analysis. As the age of the patient increases

from 55 years old the log survival time decreases. A one year increase in age results in a 0.5% decrease

in the survival time. As the size of tumor increases the log survival time decreases. A one centimeter

increase in tumor size results in a 17% decrease in the survival time.

Variance component of random site effects: The magnitude of the variance of the site effect is

estimated to be 0.049 (Model 2 in the Table 15). This indicates that there appears to be very small

variability in the baseline log survival time across the sites. Figure 5.1 shows a histogram with

smoothed density curves (dotted line) and normal density overlay (solid line) of the predicted random

effects. The predicted frailties appear to be centered around zero and symmetrically distributed.
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Figure 5.1: Distribution of predicted random effects
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Figure 5.2 shows the non-parametric and parametric hazard estimates for the NSABP B-14 study.

The dotted lines are the non-parametric empirical life-table estimates. The upper line is for the placebo

group and the lower line is for the treatment group. The solid lines in Figure 5.2 represent the

corresponding parametric hazard estimates from the Model 2. The tests for the proportional hazard

assumption yielded p-value < 0.001. In general, the parametric estimates depicts the non-parametric

hazard rates well. Of note, the large early treatment difference in the first two years shown by the

non-parametric estimates is reduced by the parametric estimates. This is partly due to the fact that

our model takes into account age and tumor size.
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Figure 5.2: Non-parametric and parametric hazard estimates for NSABP B-14 data
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5.1.2 Bivariate AFT nested frailty model

In this section, we considered each age group as a unit of cluster. In other words, the age group is

considered as a cluster instead of the study site. Further, we categorized patients into two groups

based on the size of tumor (size ≤ 2.0cm and size > 2.0cm) within each age group. Therefore, two

tumor size groups k = 1, 2 which are nested within the same age group i are considered as sub-clusters

and thus the levels of random effects. This was done to examine variability in the baseline log survival

times across the age groups with the size of tumor. With NSABP B-14 data, forty age groups were

formed from age 31 to age 70. The number of patients in each age group varied from 10 to 124 with a

median of 73 patients. There are n=1381 patients for placebo group and n=1386 patients for treatment

group. The following AFT model with nested bivariate random effects is considered for the data:

log Tijk = β0 + β1Treatmentijk +Agei + sizesmall.k(i) ∗ b1k(i) + sizelarge.k(i) ∗ b2k(i) + ε(α)ijk, (5.2)

where i = 1 . . . G independent age clusters, j = 1 . . . njk observations in each k sub-cluster and k =1,

2 two sub-clusters within each cluster i. The subscript notation k(i) indicates k is nested with a

cluster i. Model (5.2) was run with 2000 EM iterations. In addition, B=200 bootstrap resampling

with replacement was done to estimate standard errors for this model. Results are summarized in

Table 16.

Interpretation of fixed effects parameters: The signs of the fixed effect coefficients for treat-

ment and age are consistent with the previous two models (Model 1 and Model 2 from the Table 15).

The magnitude of treatment effect is slightly reduced from the univariate random effects model such

that treatment increases the survival time by 57%. It is possible that the magnitude of treatment

effects in Model 3 is slightly decreased by modeling the tumor size as nested random effects. The

magnitude of the age effect did not change. A one year increase in age resulted in a 0.5% decrease in
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the survival time. There was noticeable change in the estimate of α. It decreased from α̂ = −0.216 in

Model 2 to α̂ = −0.380 in Model 3. This may indicate that the early treatment differences were slightly

greater in the Model 3 compared to the Model 2.

Table 16: NSABP B-14 project: Bivariate AFT nested frailty model

Model 3

Parameters Estimate SELouis SEBoot 95% CIBoot

Intercept β̂0 2.848 0.041 0.108 ( 2.635,3.061)

Treatment β̂1 0.450 0.038 0.069 ( 0.315,0.585)

Agei η̂i -0.005 0.001 0.004 (-0.013,0.003)

α α̂ -0.380 0.346 0.294 (-0.955,0.195)

Age(Size ≤ 2.0cm)1k(i) θ̂1 0.052 0.015 0.021 ( 0.011,0.093)

Age(Size > 2.0cm)2k(i) θ̂2 0.098 0.025 0.038 ( 0.023,0.173)

correlation(θ1, θ2) ρ̂ 0.028 0.089 (-0.147,0.203)

Variance components of random size effects: Though the magnitudes of the variance com-

ponents of tumor size effect are not exceedingly large, patients with larger tumor sizes (> 2.0cm)

have twice the variability in survival time across the age groups as patients with smaller tumor sizes

(≤ 2.0cm). There is a slight positive correlation between these two tumor size sub-clusters, but with

a small magnitude (ρ̂ = 0.028). This positive correlation can be interpreted as the random effects of

two tumor size sub-clusters moving together in the same direction. Figure 5.3 depicts the predicted

random effects by the tumor size sub-clusters. In Figure 5.3 (a), the predicted random effects of pa-

tients with tumor size ≤ 2.0cm are shown. The random effects are mostly close to zero or above the

zero-line across age groups, indicating positive outlook on the survival time. However, in Figure 5.3

(b), the predicted random effects of patients with tumor size > 2.0cm depicts more variation across the

age groups and they also vary around the zero line but are mostly under the zero line, indicating its
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association with decreased survival time across the age groups. Especially, patients with larger tumor

size have lower survival time across almost all the age groups above 60 years old.

When marginal Akaike’s information criterion (AIC) is compared across the models Model 3 does

not necessarily outperform the others. In fact, Model 2 appears to be the best choice (Table 17).

Table 17: NSABP B-14 data: Values for −2
∑

log L̂ and mAIC

Model 1 Model 2 Model 3

-2
∑

log L̂ 8982.40 8918.96 8986.12

s 0 1 3

p 5 5 4

mAIC 8992.4 8930.96 9000.12
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(b) Tumor size > 2.0 cm

Figure 5.3: Predicted random effects by age and tumor size: NSABP B-14 data:

The predicted random effects for tumor size sub-cluster k nested with each age cluster i, that is ˆbk(i) = E[bk(i)|y, θ̂] for i = 1, . . . , G and k = 1, 2,

and the corresponding 95 per cent credibility intervals using the normal approximation are plotted. Predicted random effects are based on

the results after fitting a bivariate AFT nested model as in the equation (5.2)
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6.0 DISCUSSION

We proposed a Stochastic Expectation-Maximization (StEM) estimation procedure for AFT models

with random effects to model non-proportional attenuating hazards for the correlated survival times.

The stochastic EM method [8, 13, 14] is conceptually simple in that the computational complexity of

the likelihood is avoided by imputing the latent data so that the complete data likelihood can be used.

This estimation method is not restricted to any specific distribution of data and can be used for a broad

range of statistical models. The mean of the stationary distribution is considered to be an estimate of

the parameter of interest and it approaches the maximum likelihood estimator in the order of O(1/n)

as the sample size n increases. In addition, results of consistency and asymptotic normality of this

mean estimator have been established previously for specific examples (Diebolt and Celeus, 1993) [13],

discussed (Ip, 1994) [33] and generalized (Nielsen, 2000) [55].

The NSABP B-14 data are characterized by attenuating hazards (Figure 5.2). It is interesting

to note that the hazards for the control group continually decrease over time which results in the

attenuating pattern of the treatment effect. The reason for the continual decrease in the hazards

for the control group is not clear. However, it is plausible to conjecture that there may have been a

survivorship effect. Those who survived without receiving the treatment for the long term are more

likely to be strong survivors and more robust against the event. Their risk of experiencing an event

becomes more comparable with those who survived with the treatment as time goes by.
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The NSABP B-14 study was a double-blind study. Patients were treated either with tamoxifen (10

mg twice a day, given orally) or with placebo, similarly administered. Placebo and tamoxifen tablets

were indistinguishable on the basis of taste and physical appearance. The pharmacologic formulation

of the placebo was identical to that of the tamoxifen except for the absence of active drug. Double

blinding was used so that neither medical personnel nor the patients could determine the type of

treatment administered. Both groups received the treatment for five years. Compliance with protocol-

designed therapy during the first five years of the study was similar for both groups [16, 17, 18]. It

is conceivable that hazard attenuation may reflect a placebo effect, though this is usually known as

a short term effect. The important question is whether the treatment differences in the presence of

attenuation are still significant. The answer was yes using our proposed model (Table 15 and Table 16).

There was a slight increase in the hazard in the treatment group between year 2 and year 4 (Figure

5.2). This implies a higher incidence of events for the treatment group during this period but that may

have been caused by a random fluctuation. However, this increase may be worth further investigation.

Another finding was that the large early treatment differences observed with the unadjusted non-

parametric life-table method was reduced by the adjusted analysis. This finding was interesting in

that the large initial treatment difference was reduced once analysis accounted for the differences in

age and tumor size of the patients.

By adapting a family of Gρ distribution for the errors, one can model such non-proportional atten-

uating hazards in the NSABP B-14 clinical trial. Thus, this work expanded the perimeter of error

distributions in the accelerated failure time literature. For the frailty distribution, the multivariate

normal distribution was used. Though computationally intensive, the multivariate normal distribution

enables us to model either positive or negative correlation among the frailties. These models together

provide a flexible approach to the parametric analysis of correlated survival data.
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The Stochastic Expectation-Maximization (StEM) is a stochastic variant method of EM algorithm,

for which that additional steps are needed to find the variance-covariance matrix. Computing the

variance estimates is a major issue using EM. When the EM algorithm is used, Louis (1982) derived a

procedure for obtaining the asymptotic variance-covariance matrix. Louis (1982) showed that the ob-

served information is the difference of complete and missing data information. Since the EM algorithm

deals with data composed of complete data and latent missing data, Louis’ method has been concep-

tually intuitive and thus appealing to the EM algorithm users. Various authors have come up with

different ways to estimate asymptotic standard errors including the methods proposed by Meng and

Rubin (1991), Meilijson (1989) and Carlin (1987) [54, 7, 53]. However, Efron (1992) [15] pointed out

that these methods are basically delta methods and they often underestimate the variance. Thus, the

Louis method [50] was used to estimate the asymptotic standard errors in this dissertation. It works

well for the fixed effects parameters with continuous variables in a simple setting. However, overall,

the finite sample properties are not optimal with the sample sizes studied in this dissertation. It does

not have a good coverage rate for the intercept parameter and also underestimates standard errors for

binary variables. Underestimation is greater in a more complicated model setting. Binary variables

are important since one is often interested in treatment effects which are commonly coded as a binary

variable. One possible explanation for underestimation in our case might be due to the approximation

to the observed information. This is because of the stochastic nature of StEM algorithm, i.e., imputing

the latent data. This point was also noted by Diebolt and Ip (1994) [14].

Further research is needed in the area of estimation of asymptotic variance-covariance matrix after

StEM algorithm. In general, we recommend a non-parametric bootstrap method for standard error

estimation. It is a non-parametric alternative to an analytical solution. It is conceptually simple and

can be carried out by implementing the resampling of the observed dataset and repeat the estimation.
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This can be implemented in the programming, though the resampling and re-estimation will require

more time on top of already very time consuming simulations using the StEM algorithm.

In this dissertation, simulation studies showed that fixed effects parameters and variance compo-

nents were estimated with little percentage bias as the sample size increased. However, increasing the

number of clusters at a fixed cluster size had only a small effect on reducing the bias in the estimates

of variance components of the random effects. Adequate cluster size is also needed for acceptable bias

in estimates of the variance components in these settings.

These simulations were carried out for the cases with equal sample size across the clusters. It is

expected that the fixed effects parameters will be less affected by the unequal cluster sizes than the

random effects parameters as long as the overall sample size is large enough. However, it is expected

that the unequal cluster sizes will impact on the estimates of the random effects, and thus the variance

components. This will be reflected in the credibility intervals for the estimated random effects. The

intervals would be wider if the corresponding cluster sizes are smaller. Then, caution is required when

interpreting these results. More weights should be given for those clusters with large cluster sizes.

Further simulation studies are needed to quantify the exact effects of varying cluster sizes.

As noted by various authors [36, 44] the AFT model exhibits robustness of parameter estimation

in the presence of misspecification and presence of heterogeneity in the study population. This is

one of the main advantages of the AFT model over the Cox proportional hazards model [31]. In

our simulation study, misspecifying several frailty distributions did not affect parameter estimation,

except for the intercept term. In practice, clinicians are often interested in the effect of treatment.

When the question of interest is centered around the treatment effect only, the bias in the intercept

does not introduce a major issue. However, when one wants to evaluate the average baseline log-

survival time the over- or under-estimation of intercept will introduce a bias. As to why the bias is
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occurred in the intercept term in the misspecified frailty model, that needs further investigation.

Our simulation study also showed that the estimates of the intercept and variance components are

biased when the error distribution is assumed to be a log-normal distribution. However, other fixed

effects parameters were estimated well. Although parametric MLEs are consistent and most efficient

when the baseline hazard is correctly specified, they are generally biased when the baseline hazard is

misspecified. Strong distributional assumption of the survival times is a drawback of parametric AFT

models. This can be relaxed in the semi-parametric AFT model setting and is an area for the future

research. Other areas of further investigation include an AFT model-based sample size calculation,

model diagnostics and model comparisons using conditional Akaike information criterion (cAIC).
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APPENDIX A

TIME RATIO AND PERCENTAGE CHANGE

Consider a log-linear AFT model from the equation (2.8) in the section 2.2:

log T = βTZ + bTW + τ ∗ ε, (A.1)

where T is the failure time, Z andW are covariate vectors for the fixed and random effects, respectively,

β is the vector of fixed effects, and b is the vector of random effects. Then, the marginal effect of Zk on

log T is

∂log T

∂T
= βk (A.2)

And from the equation (A.1)

T = exp (βTZ) exp (bTW ) exp (τ ∗ ε). (A.3)

Suppose we change the value of some covariate Zk, by some amount δ, the ratio of the survival times

is

T (Zk + δ)

T (Zk)
= exp [(Zk + δ)− Zk]β̂k (A.4)

= exp (β̂kδ).
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If δ is just one unit, this simplifies to

T (Zk + δ)

T (Zk)
= exp β̂k, (A.5)

where exp β̂k is known as the time ratio. We can interpret this in a similar way to the hazard ratio in

a Cox proportional hazards model. For example, if the exponentiated coefficient, exp β̂k = 1.50, then

we say that a one unit increase in Zk increases the survival time by a factor of 1.5. In other words, the

survival time is 1.5 times longer.

Another interpretation is to use the percentage change in the survival time associated with a

change in the value of some covariate, Zk, by some amount δ:

Percentage change = 100[exp (β̂kδ)− 1]. (A.6)

If δ is just one unit and the exponentiated coefficient, exp β̂k = 1.50, then we say that a one unit increase

in Zk increases the surival time by 50%.

(References: Jenkins, Stephen P. 2008. “Survival Analysis.” Unpublished manuscript, Institute for

Social and Economic Research, University of Esses, Colchester.)
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APPENDIX B

R PROGRAM FOR AFT MODEL WITH NESTED RANDOM EFFECTS

1 ##################################################################################
2 # nested_AFT_model_with_random_effects.R
3 # simulation program
4 ###################################################################################
5 #remove(list=ls(all=TRUE))
6 library(lattice)
7 library(mcmc)
8 library(coda)
9 library(lattice)
10 library(MASS)
11 library(MCMCpack)
12 library(mvtnorm)
13 library(SamplerCompare)
14 library(splines)
15 library(survival)
16 library(smoothSurv)
17 library(bayesSurv)
18 library(xtable)
19 library(boot)
20
21 #-----------------------------------------------------------------------------
22 # Set the directory for output files
23 #-----------------------------------------------------------------------------
24 directory <-"c:\\_dissertation\\outputs\\BivariateModel\\optim\\nested\\corr06\\G60n30\\" # need to change
25
26 #-----------------------------------------------------------------------------
27 # Generate data -- Simulation parameters
28 #-----------------------------------------------------------------------------
29 NUM.DATA <- 200
30 simul.summary <- matrix(NA,nrow=NUM.DATA,ncol=26)
31 save.seeds <- matrix(NA,nrow=NUM.DATA,ncol=1)
32 begin.time <- date()
33
34 n.cluster <- 60 # CHANGE HERE overall number of clusters
35 n.obs <- 30 # CHANGE HERE n.obs/2 per each sub-cluster
36 cluster <- c(rep(1:n.cluster,each=n.obs))
37 n.sub.cluster <- 2
38 EMsteps <- 250
39 initial <- 50 # first 50 estimates will not be included to estimate parameter means
40 ARMsteps <- 1
41 n.Gibbs <- 1 ## MCEM if >1 otherwise SEM
42 T.alpha <- 1
43 my.theta1 <- 1
44 my.corr <- 0.6
45 my.sigma <- matrix(c(1,my.corr,my.corr,1),2,2)
46 T.eta.grp <- 1
47 true.value<- c(1,1,T.eta.grp,T.alpha,my.sigma[1,1], my.sigma[2,2], my.sigma[1,2], my.sigma[1,2], my.sigma

[1,2])
48
49 #-----------------------------------------------------------------------------
50 # Functions
51 #-----------------------------------------------------------------------------
52 #Run a function that creates a diagonal matrix
53 #source http://tolstoy.newcastle.edu.au/R/help/04/05/1322.html
54 bdiag <- function(x){
55 if(!is.list(x)) stop("x not a list")
56 n <- length(x)
57 if(n==0) return(NULL)
58 x <- lapply(x, function(y) if(length(y)) as.matrix(y) else
59 stop("Zero-length component in x"))
60 d <- array(unlist(lapply(x, dim)), c(2, n))
61 rr <- d[1,]
62 cc <- d[2,]
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63 rsum <- sum(rr)
64 csum <- sum(cc)
65 out <- array(0, c(rsum, csum))
66 ind <- array(0, c(4, n))
67 rcum <- cumsum(rr)
68 ccum <- cumsum(cc)
69 ind[1,-1] <- rcum[-n]
70 ind[2,] <- rcum
71 ind[3,-1] <- ccum[-n]
72 ind[4,] <- ccum
73 imat <- array(1:(rsum * csum), c(rsum, csum))
74 iuse <- apply(ind, 2, function(y, imat) imat[(y[1]+1):y[2],
75 (y[3]+1):y[4]], imat=imat)
76 iuse <- as.vector(unlist(iuse))
77 out[iuse] <- unlist(x)
78 return(out)
79 }
80 #-----------------------------------------------------------------------------
81 # Function of b1 given random.b2
82 #-----------------------------------------------------------------------------
83 posterior.b.i.z.all.b1 <- function(random.b1){
84 new.data <- my.data[which(cluster==i),] # by site
85 new.b1 <- random.b1
86 new.b2 <- random.b2
87 all.b <- matrix( c(random.b1, random.b2), 1, n.sub.cluster) # so 1x2 matrix for b rand.effects, n.sub.

cluster is always 2 for now
88 Z <- cbind(1,as.matrix(subset(new.data,select= c(x1,eta.grp)))) # data for fixed effects 200x3
89 newW <- as.matrix(mymat2[[i]])
90
91 xbeta <- c(beta1,beta2, beta3)
92 W.b <- newW %*% t(all.b) # i runs from 1 .. to n.cluster , change 7/10/2011
93 Z.beta <- Z %*% xbeta # 20x3 times 3x1 generates 20x1 Z.beta matrix
94 logT <- log(new.data$t)
95 T <- new.data$t
96 delta <- as.matrix(new.data$status, nrow(new.data),ncol=1)
97 summyb <- sum(apply(all.b,1, function(x) { #print(x)
98 myb <- matrix(x,1,2,byrow=TRUE)
99 myb %*% solve(sigma.mat) %*% t(myb)}))

100 logl.1 <- (-1)*sum(delta*(Z.beta+W.b)+(delta+exp(-alpha))*log(1+exp(alpha+logT-Z.beta-W.b)))
101 logl.2 <- (-n.cluster*n.sub.cluster/2)*(log(2*pi)) + (n.cluster/2)*log(det(solve(sigma.mat)))- summyb/2
102 logl.b <- logl.1 + logl.2
103 return(logl.b)
104 }
105 #-----------------------------------------------------------------------------
106 # Function of b2 given random.b1
107 #-----------------------------------------------------------------------------
108 posterior.b.i.z.all.b2 <- function(random.b2){
109 new.data <- my.data[which(cluster==i),] # by site
110 new.b1 <- random.b1
111 new.b2 <- random.b2
112 all.b <- matrix( c(random.b1, random.b2), 1, n.sub.cluster) # so 1x2 matrix for b rand.effects
113 Z <- cbind(1,as.matrix(subset(new.data,select= c(x1, eta.grp)))) # data for fixed effects 200x3
114 newW <- as.matrix(mymat2[[i]])
115 xbeta <- c(beta1,beta2,beta3)
116 W.b <- newW %*% t(all.b) # i runs from 1 .. to n.cluster , change 7/10/2011
117 Z.beta <- Z %*% xbeta # 20x3 times 3x1 generates 20x1 Z.beta matrix
118 logT <- log(new.data$t)
119 T <- new.data$t
120 delta <- as.matrix(new.data$status, nrow(new.data),ncol=1)
121 summyb <- sum(apply(all.b,1, function(x) { #print(x)
122 myb <- matrix(x,1,2,byrow=TRUE)
123 myb %*% solve(sigma.mat) %*% t(myb)}))
124 logl.1 <- (-1)*sum(delta*(Z.beta+W.b)+(delta+exp(-alpha))*log(1+exp(alpha+logT-Z.beta-W.b)))
125 logl.2 <- (-n.cluster*n.sub.cluster/2)*(log(2*pi)) + (n.cluster/2)*log(det(solve(sigma.mat)))- summyb/2
126 logl.b <- logl.1 + logl.2
127 return(logl.b)
128 }
129 #-----------------------------------------------------------------------------
130 # calculate E[G_{ij}|Y, \thetaˆ(k)] function with given expectations from E-step
131 #-----------------------------------------------------------------------------
132 E.gij <- function(beta1,beta2,beta3,alpha,old.beta, old.alpha, bb){
133 new.data <- my.data
134 e.beta <- c(beta1, beta2, beta3)
135 newb <- bb # this should be "stacked" b.vector
136 W.b <- W %*% newb
137 Z.beta <- Z %*% old.beta
138 logT <- log(new.data$t)
139 T <- new.data$t
140 delta <- as.matrix(new.data$status, nrow(new.data),ncol=1)
141 g.log <- log(1+exp(alpha+(logT-Z.beta-W.b))) # component 1
142 e.alpha <- alpha # expected value of alpha at (k)th iteration
143 W.b <- W %*% c(newb) # 200x10 time 10x1 genereate 20x1 W.b matrix
144 Z.beta <- Z %*% old.beta # 200x3 times 3x1 generates 20x1 Z.beta matrix
145 logT <- log(new.data$t)
146 T <- new.data$t
147 delta <- as.matrix(new.data$status, nrow(new.data),ncol=1)
148
149 dg.dbeta.lower <- exp(-(alpha+(logT-Z.beta-W.b)))+1
150 dg.dbeta1 <- Z[,1]/dg.dbeta.lower
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151 dg.dbeta2 <- Z[,2]/dg.dbeta.lower
152 dg.dbeta3 <- Z[,3]/dg.dbeta.lower
153 xdg.dbeta <- cbind(dg.dbeta1,dg.dbeta2, dg.dbeta3) # matrix
154 dg.dbeta <- xdg.dbeta %*% (e.beta - old.beta) # component 2
155 dg.alpha.lower <-exp(-(alpha+(logT-Z.beta-W.b)))+1
156 xdg.alpha <- 1/dg.alpha.lower
157 dg.alpha <- xdg.alpha %*% (e.alpha - old.alpha) # component 3
158 out.gij <- g.log + dg.dbeta + dg.alpha
159 return(out.gij)
160 }
161 #-----------------------------------------------------------------------------
162 # calculate Q1
163 #-----------------------------------------------------------------------------
164 Q1 <- function(beta1, beta2, beta3, alpha, xEgij) {
165 new.data <- my.data
166 beta <- c(beta1, beta2,beta3)
167 #print(paste("printing beta -->", beta))
168 Z.beta <- Z %*% beta # 200x3 times 3x1 generates 200x1 Z.beta matrix
169 logT <- log(new.data$t)
170 delta <- as.matrix(new.data$status, nrow(new.data),ncol=1)
171 out.Q1 <- (-1)*sum(delta*Z.beta + (delta+exp(-alpha))*xEgij)
172 # E.g = E[g_{ij}|Y, \thetaˆ{k}] is from above
173 return(out.Q1)
174 }
175 #-----------------------------------------------------------------------------
176 # calculate Q2 -- updated for bivariate case
177 #-----------------------------------------------------------------------------
178 Q2 <- function(bb, sigma) {
179 #G is number of cluster
180 G <- n.cluster
181 d <- n.sub.cluster # number of random effects
182 allmyb <- do.call("rbind",b.vector.test)
183 summyb <- sum(apply(allmyb,1, function(x) { #print(x)
184 myb <- matrix(x,1,2,byrow=TRUE)
185 myb %*% solve(sigma.mat) %*% t(myb)}))
186 out.Q2 <- (-0.5)*G*d*log(2*pi) - (G/2)*log(det(sigma.mat))- summyb/2
187 return(out.Q2)
188 }
189 #-----------------------------------------------------------------------------
190 #
191 #-----------------------------------------------------------------------------
192 new.Q1 <- function(theta, bb){
193 new.data <- my.data
194 # these are current estimates at k-th iteration
195 old.theta <- c(get.beta1[k,],get.beta2[k,],get.beta3[k,],get.alpha[k,]) # c(beta1,beta2,beta3,alpha)
196 newb <- bb # this should be "stacked" b.vector [b1 b2]
197 W.b <- W %*% newb # 200x10 time 10x1 genereate 20x1 W.b matrix
198 Z.beta <- Z %*% old.theta[1:3] # 200x3 times 3x1 generates 20x1 Z.beta matrix
199 logT <- log(new.data$t)
200 T <- new.data$t
201 delta <- as.matrix(new.data$status, nrow(new.data),ncol=1)
202 # This is g_{ij}ˆ{k}
203 g.log <- log(1+exp(old.theta[4]+(logT-Z.beta-W.b))) # component 1
204 #e.alpha <- alpha # expected value of alpha at (k)th iteration
205 e.alpha <- theta[4]
206
207 dg.dbeta.lower <- exp(-(old.theta[4]+(logT-Z.beta-W.b)))+1
208 dg.dbeta1<- Z[,1]/dg.dbeta.lower
209 dg.dbeta2<- Z[,2]/dg.dbeta.lower
210 dg.dbeta3<- Z[,3]/dg.dbeta.lower
211 xdg.dbeta<- cbind(dg.dbeta1,dg.dbeta2,dg.dbeta3) # matrix
212 dg.dbeta <- xdg.dbeta %*% (theta[1:3] - old.theta[1:3]) # component 2
213 dg.alpha.lower <-exp(-(old.theta[4]+(logT-Z.beta-W.b)))+1
214 xdg.alpha<- 1/dg.alpha.lower
215 dg.alpha<- xdg.alpha %*% (theta[4] - old.theta[4]) # component 3
216 new.gij <- g.log + xdg.dbeta %*% (theta[1:3] - old.theta[1:3]) + xdg.alpha %*% (theta[4] - old.theta[4])
217 my.Q1<- (-1)*(-1)*sum(delta*(Z %*% theta[1:3]) + W.b + (delta+exp(-theta[4]))*(g.log + xdg.dbeta %*% (theta

[1:3] - old.theta[1:3]) + xdg.alpha %*% (theta[4] - old.theta[4])) )
218 my.el<- (-1)*(-1)*sum(delta*(Z %*% theta[1:3]) + delta*W.b + (delta+exp(-theta[4]))*(log(1+exp(theta[4]+logT-

Z %*% theta[1:3]-W.b))))
219 return(my.el)
220 } # end of new.Q1 function
221 #-----------------------------------------------------------------------------
222 #
223 #-----------------------------------------------------------------------------
224 calc.Q1 <- function(theta, bb){
225 new.data <- my.data
226 # these are current estimates at k-th iteration
227 old.theta <- c(get.beta1[k,],get.beta2[k,],get.beta3[k,],get.alpha[k,]) # c(beta1,beta2,alpha)
228 newb <- bb # this should be "stacked" b.vector [b1 b2]
229 W.b <- W %*% newb # 200x10 time 10x1 genereate 20x1 W.b matrix
230 Z.beta <- Z %*% old.theta[1:3] # 200x3 times 3x1 generates 20x1 Z.beta matrix
231 logT <- log(new.data$t)
232 T <- new.data$t
233 delta <- as.matrix(new.data$status, nrow(new.data),ncol=1)
234 # This is g_{ij}ˆ{k}
235 g.log <- log(1+exp(old.theta[4]+(logT-Z.beta-W.b))) # component 1
236 e.alpha <- theta[4]
237 dg.dbeta.lower <- exp(-(old.theta[4]+(logT-Z.beta-W.b)))+1
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238 dg.dbeta1<- Z[,1]/dg.dbeta.lower
239 dg.dbeta2<- Z[,2]/dg.dbeta.lower
240 dg.dbeta3<- Z[,3]/dg.dbeta.lower
241 xdg.dbeta<- cbind(dg.dbeta1,dg.dbeta2,dg.dbeta3) # matrix
242 dg.dbeta <- xdg.dbeta %*% (theta[1:3] - old.theta[1:3]) # component 2
243 dg.alpha.lower <-exp(-(old.theta[4]+(logT-Z.beta-W.b)))+1
244 xdg.alpha<- 1/dg.alpha.lower
245 dg.alpha <- xdg.alpha %*% (theta[4] - old.theta[4]) # component 3
246 new.gij <- g.log + xdg.dbeta %*% (theta[1:3] - old.theta[1:3]) + xdg.alpha %*% (theta[4] - old.theta[4])
247 my.Q1 <- (-1)*sum(delta*(Z %*% theta[1:3]) + W.b + (delta+exp(-theta[4]))*(g.log + xdg.dbeta %*% (theta[1:3]

- old.theta[1:3]) + xdg.alpha %*% (theta[4] - old.theta[4])) )
248 return(my.Q1)
249 } # end of new.Q1 function
250 #-----------------------------------------------------------------------------
251 #
252 #-----------------------------------------------------------------------------
253 calc.el <- function(theta, bb){
254 new.data <- my.data
255 # these are current estimates at k-th iteration
256 old.theta <- c(get.beta1[k,],get.beta2[k,],get.beta3[k,],get.alpha[k,]) # c(beta1,beta2,alpha)
257 newb <- bb # this should be "stacked" b.vector [b1 b2]
258 W.b <- W %*% newb # 200x10 time 10x1 genereate 20x1 W.b matrix
259 Z.beta <- Z %*% old.theta[1:3] # 200x3 times 3x1 generates 20x1 Z.beta matrix
260 logT <- log(new.data$t)
261 T <- new.data$t
262 delta<- as.matrix(new.data$status, nrow(new.data),ncol=1)
263 # This is g_{ij}ˆ{k}
264 g.log <- log(1+exp(old.theta[4]+(logT-Z.beta-W.b))) # component 1
265 #e.alpha <- alpha # expected value of alpha at (k)th iteration
266 e.alpha <- theta[4]
267 dg.dbeta.lower <- exp(-(old.theta[4]+(logT-Z.beta-W.b)))+1
268 dg.dbeta1<- Z[,1]/dg.dbeta.lower
269 dg.dbeta2<- Z[,2]/dg.dbeta.lower
270 dg.dbeta3<- Z[,3]/dg.dbeta.lower
271 xdg.dbeta<- cbind(dg.dbeta1,dg.dbeta2,dg.dbeta3) # matrix
272 dg.dbeta <- xdg.dbeta %*% (theta[1:3] - old.theta[1:3]) # component 2
273 dg.alpha.lower <-exp(-(old.theta[4]+(logT-Z.beta-W.b)))+1
274 xdg.alpha<- 1/dg.alpha.lower
275 dg.alpha <- xdg.alpha %*% (theta[4] - old.theta[4]) # component 3
276 new.gij <- g.log + xdg.dbeta %*% (theta[1:3] - old.theta[1:3]) + xdg.alpha %*% (theta[4] - old.theta[4])
277 my.el <- (-1)*sum(delta*(Z %*% theta[1:3]) + delta*W.b + (delta+exp(-theta[4]))*(log(1+exp(theta[4]+logT-Z %*

% theta[1:3]-W.b))))
278 return(my.el)
279 } # end of calc.el function
280
281 #-----------------------------------------------------------------------------
282 # END OF ALL FUNCTIONS
283 #-----------------------------------------------------------------------------
284
285 for (kk in (1:NUM.DATA)) {
286
287 #-----------------------------------------------------------------------------
288 # Generate data -- based on nested AFT model with bivariate random effects
289 #-----------------------------------------------------------------------------
290 my.seed <- round(100000*runif(1))
291 save.seeds[kk,] <- my.seed
292 set.seed(my.seed) # set the seed for random number generator
293
294 x1 <- c(rnorm(n.cluster*(n.obs), mean=0, sd=1))
295 z1 <- rep(c(rep(1,n.obs/2),rep(0,n.obs/2)), n.cluster)
296 z2 <- rep(c(rep(0,n.obs/2),rep(1,n.obs/2)),n.cluster)
297 U <- runif(n.cluster*(n.obs)) # uniform random variable
298 e3 <- (-T.alpha) + log(exp((-1)*(exp(T.alpha))*(log(1-U)))-1)
299 my.b1.b2 <- mvrnorm(n=n.cluster, mu=c(0,0), Sigma=my.sigma) # bivariate data generateion from library(MASS)
300 xmyb1 <- rep(my.b1.b2[,1], each=n.obs)
301 xmyb2 <- rep(my.b1.b2[,2], each=n.obs)
302 eta.grp <- cluster
303 tt2 <- exp(1+x1+eta.grp+z1*xmyb1+z2*xmyb2+e3)
304 cc <- c(rexp(n.cluster*(n.obs), 1/quantile(tt2, 0.815)))
305 status <- ifelse(cc<=tt2, 0,1)
306 t <- pmin(tt2,cc)
307 pcc <- 1- sum(status)/(n.cluster*(n.obs)) # percent censoring
308 print(pcc)
309 print(paste("simul corr(xmyb1,xmyb2) is ", round(corr(as.matrix(cbind(xmyb1,xmyb2))),2), " my.corr is ", my.

corr, sep=""))
310 print(paste("simul var(xmyb1) is ", var(xmyb1), " var(xmyb2) is ", var(xmyb2),sep=""))
311 data2 <- data.frame(t ,status, x1,xmyb1, xmyb2, eta.grp, cluster, z1, z2) # about 20% censoring
312 my.data <- data2
313 #-----------------------------------------------------------------------------
314 # Name output pdf files & data object names
315 #-----------------------------------------------------------------------------
316 output.pdf <-paste(kk,"final_Bivariate_","corr",my.corr*10,"_G",n.cluster,"_n",n.obs,"_r",ARMsteps,"xEM",

EMsteps,"_Random_alpha",abs(T.alpha),".pdf", sep="")
317 outputxtable.txt <- paste(kk,"final_Bivariate_","corr",my.corr*10,"_G",n.cluster,"_n",n.obs,"_r",ARMsteps,"xEM"

,EMsteps,"_Random_alpha",abs(T.alpha),"Xtable.txt", sep="")
318 output.csv <-paste(kk,"final_Bivariate_","corr",my.corr*10,"_G",n.cluster,"_n",n.obs,"_r",ARMsteps,"xEM",

EMsteps,"_Random_alpha",abs(T.alpha),".csv", sep="")
319 get_G.csv <-paste(kk,"final_Bivariate_","corr",my.corr*10,"_G",n.cluster,"_n",n.obs,"_r",ARMsteps,"xEM",EMsteps

,"_Random_alpha",abs(T.alpha),"get_G.csv", sep="")
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320 output.name <- paste(kk,"final_Bivariate_","corr",my.corr*10,"_G",n.cluster,".n",n.obs,".r",ARMsteps,".xEM_
Random_",EMsteps,"alpha",abs(T.alpha), sep="")

321 output_raw.csv <-paste(kk,"final_Bivariate_","corr",my.corr*10,"_G",n.cluster,"_n",n.obs,"_r",ARMsteps,"xEM",
EMsteps,"_Random_alpha",abs(T.alpha),"_RAW.csv", sep="")

322 output.b.csv <-paste(kk,"final_Bivariate_","corr",my.corr*10,"_G",n.cluster,"_n",n.obs,"_r",ARMsteps,"xEM",
EMsteps,"_Random_alpha",abs(T.alpha),"_b_vector.csv", sep="")

323 output.b1.csv <-paste(kk,"final_Bivariate_","corr",my.corr*10,"_G",n.cluster,"_n",n.obs,"_r",ARMsteps,"xEM",
EMsteps,"_Random_alpha",abs(T.alpha),"_b1_vector.csv", sep="")

324 output.b2.csv <-paste(kk,"final_Bivariate_","corr",my.corr*10,"_G",n.cluster,"_n",n.obs,"_r",ARMsteps,"xEM",
EMsteps,"_Random_alpha",abs(T.alpha),"_b2_vector.csv", sep="")

325 b.bT.by.site.csv <- paste(kk,"final_Bivariate_","corr",my.corr*10,"_G",n.cluster,"_n",n.obs,"_r",ARMsteps,"xEM"
,EMsteps,"_Random_alpha",abs(T.alpha),"_bbTbySite.csv", sep="")

326 output.hessian.csv <-paste(kk,"final_bivariate_","corr",my.corr*10,"_G",n.cluster,"_n",n.obs,"_r",ARMsteps,"xEM
",EMsteps,"_Random_alpha",abs(T.alpha),"_hessian.csv", sep="")

327 #-----------------------------------------------------------------------------
328 # Keep the raw dataset
329 #-----------------------------------------------------------------------------
330 write.csv(my.data , file=paste(directory,output_raw.csv,sep=""))
331 #-----------------------------------------------------------------------------
332 # Getting Z and W data matrices for fixed and random effects parameters
333 #-----------------------------------------------------------------------------
334 Z <- cbind(1,as.matrix(subset(my.data,select= c(x1, eta.grp))))
335 mymat2 <- rep(list(matrix(c(rep(1,n.obs/2),rep(0,n.obs/2),rep(0,n.obs/2),rep(1,n.obs/2)),n.obs,2)),n.cluster)
336 myW <- bdiag(mymat2) # you need function ’bdiag’
337 newW <- matrix(rep(1:n.cluster,each=n.obs),nrow=nrow(my.data),ncol=1)
338 W <- myW # (n.clusterxn.obs)x(n.cluster) e.g. 200x10
339 #-------------------------------------------------------
340 #
341 # 1) Set initial values outside iterative function
342 #-----------------------------------------------------------------------------
343 init.out <-survreg(Surv(t,status)˜ x1+eta.grp, data=data2, dist="loglogistic")
344 beta1<- init.out$coefficients[1] # intercept
345 beta2<- init.out$coefficients[2] # x1
346 beta3<- init.out$coefficients[3] # eta
347 alpha <- 0
348 sigma.mat <- matrix(c(1,0,0,1),2,2) # diag(2) # 2x2 identity matrix in R
349 random.b1 <- 0 # initial value for random effect b1
350 random.b2 <- 0 # initial value for random effect b2
351 init.beta1 <-0
352 init.beta2 <-0
353 init.beta3 <-0
354 init.alpha <-0
355 UPPER <- EMsteps # number of loops
356 b.rho <-0
357 b.rho.x <- 0
358 get.beta1 <- matrix(NA,nrow=UPPER,ncol=1)
359 get.beta2 <- matrix(NA,nrow=UPPER,ncol=1)
360 get.beta3 <- matrix(NA,nrow=UPPER,ncol=1)
361 get.alpha <- matrix(NA,nrow=UPPER,ncol=1)
362 get.sigma11 <- matrix(NA,nrow=UPPER,ncol=1)
363 get.sigma22 <- matrix(NA, nrow=UPPER, ncol=1)
364 get.sigma12 <- matrix(NA, nrow=UPPER, ncol=1)
365 get.rho <- matrix(NA, nrow=UPPER, ncol=1)
366 get.rho.x <- matrix(NA, nrow=UPPER, ncol=1)
367 val.Q2 <- matrix(NA,nrow=UPPER,ncol=1)
368 val.Q1 <- matrix(NA,nrow=UPPER,ncol=1)
369 val.el <- matrix(NA,nrow=UPPER,ncol=1)
370 val.E.gij <- vector("list", length=UPPER)
371 get.sigma.mat <- vector("list",length=UPPER)
372 get.G.mat <- matrix(NA, nrow=UPPER, ncol=4)
373 # create a list to save up all random effects genereated
374 get.b.vector <- vector("list",length=UPPER)
375 get.b1.vector <- matrix(NA, nrow=UPPER, ncol=n.cluster) #
376 get.b2.vector <- matrix(NA, nrow=UPPER, ncol=n.cluster) #
377 sub.get.b1.vector <- matrix(NA, nrow=n.Gibbs, ncol=n.cluster) # added for p2 4/3/12
378 sub.get.b2.vector <- matrix(NA, nrow=n.Gibbs, ncol=n.cluster) # added for p2 4/3/12
379 x.all.b1.b2 <- matrix(NA, nrow=EMsteps, ncol=n.cluster)
380 all.my.corr <- matrix(NA, nrow=EMsteps, ncol=1)
381 mytest <- vector("list")
382 b.bT.by.site <- vector("list")
383 my.hessian <- vector("list")
384 #-----------------------------------------------------------------------------
385 #
386 # 2) For loop for Gibbs EM step
387 #-----------------------------------------------------------------------------
388 for (k in (1:EMsteps)) { # open big loop
389 print(paste("Nested model rho=",my.corr," NUM.DATA=",kk,"--EM iteration ", k, "--n.cluster = ",n.cluster," n.

obs = ",n.obs,sep=""))
390 print(paste(" printing beta1 ", round(beta1,3)))
391 print(paste(" printing beta2 ", round(beta2,3)))
392 print(paste(" printing beta3 ", round(beta3,3)))
393 print(paste(" printing alpha ", round(alpha,3)))
394 print(paste(" printing sigma11 ", round(sigma.mat[1,1],3)))
395 print(paste(" printing sigma22 ", round(sigma.mat[2,2],3)))
396 print(paste(" printing sigma12 ", round(sigma.mat[1,2],3)))
397 #-----------------------------------------------------------------------------
398 # store all parameter values
399 #-----------------------------------------------------------------------------
400 get.beta1[k,]<- beta1
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401 get.beta2[k,]<- beta2
402 get.beta3[k,]<- beta3
403 get.alpha[k,]<- alpha
404 get.sigma11[k,] <- sigma.mat[1,1]
405 get.sigma22[k,] <- sigma.mat[2,2]
406 get.sigma12[k,] <- sigma.mat[1,2]
407 init.theta <- c(get.beta1[k,],get.beta2[k,],get.beta3[k,],get.alpha[k,])
408 get.rho[k,] <- b.rho
409 get.rho.x[k,] <- b.rho.x
410 print(paste(" printing get.rho ", round(get.rho[k,],2)," get.rho.x ", round(get.rho.x[k,],2)))
411 get.sigma.mat[[k]] <- sigma.mat
412 #-----------------------------------------------------------------------------
413 # E-Step:
414 #-----------------------------------------------------------------------------
415 b.dist.z1 <- make.dist(1,’bdist1’,’plain("bdist1")(random.b1)’,log.density=posterior.b.i.z.all.b1, grad.log.

density=1, mean=0)
416 b.dist.z2 <- make.dist(1,’bdist2’,’plain("bdist2")(random.b2)’,log.density=posterior.b.i.z.all.b2, grad.log.

density=1, mean=0)
417 # beta1.dist <- make.dist(1,’betadist1’,’plain("betadist1")(beta1)’,log.density=posterior.beta1, grad.log.

density=1, mean=beta1, cov=NULL)
418 # beta2.dist <- make.dist(1,’betadist2’,’plain("betadist2")(beta2)’,log.density=posterior.beta2, grad.log.

density=1, mean=beta2, cov=NULL)
419 # beta3.dist <- make.dist(1,’betadist3’,’plain("betadist")(beta3)’,log.density=posterior.beta3, grad.log.

density=1, mean=beta3, cov=NULL)
420 # alpha.dist <- make.dist(1,’alphadist’,’plain("alphadist")(alpha1)’,log.density=posterior.alpha, grad.log.

density=1, mean=alpha, cov=NULL)
421 # print(paste("done making distributions"))
422 #--------------------------------------------------------------------------------------------------
423 # Draw b (random effects) from full conditional distributions using Gibbs sampling b1|b2, and b2|b1
424 #--------------------------------------------------------------------------------------------------
425 sub.get.b1.vector <- matrix(NA, nrow=n.Gibbs, ncol=n.cluster) #
426 sub.get.b2.vector <- matrix(NA, nrow=n.Gibbs, ncol=n.cluster) #
427 for (gg in (1:n.Gibbs)) {
428 b.samp <- vector("list",n.cluster)
429 # draw b1 given b2
430 for ( i in (1:n.cluster)) {
431 ifelse(k >1, random.b2 <- get.b2.vector[k-1,i], random.b2)
432 b.samp[[i]][[1]] <- arms.sample(b.dist.z1, x0=runif(1), sample.size=ARMsteps, tuning=5)$X
433 }
434 b1.vector.test <- sapply(b.samp, function(x) mean(x[[1]]))
435 sub.get.b1.vector[gg,] <- b1.vector.test
436 # draw b2 given b1
437 for (i in (1:n.cluster)) {
438 ifelse(k>1, random.b1 <- get.b1.vector[k-1,i], random.b1) # update it for each site then goes into the

function b.dist.z2
439 b.samp[[i]][[2]] <- arms.sample(b.dist.z2, x0=runif(1), sample.size=ARMsteps, tuning=5)$X
440 }
441 b2.vector.test <- sapply(b.samp, function(x) mean(x[[2]]))
442 sub.get.b2.vector[gg,] <- b2.vector.test
443 } # END OF n.Gibbs steps
444 get.b1.vector[k,] <- apply(sub.get.b1.vector,2, mean)
445 get.b2.vector[k,] <- apply(sub.get.b2.vector,2, mean)
446 #--------------------------------------------------------------------------------------------------
447 b.vector.test <- vector("list", n.cluster)
448 for ( i in (1:n.cluster)) {
449
450 b.vector.test[[i]] <- sapply(b.samp[[i]], function(x) mean(x))
451
452 } # each list is site. within each list each column is random effect 1 and 2 etc..
453
454 b.vector <- do.call("rbind",b.vector.test) # thus each row is site with its random effects
455 b <- as.vector(t(b.vector)) # this is 4x1 -- stack the rows of b.vector above
456 # make a list to save 4x2 (n.cluster by #random effects) matrix for each iteration
457 # use get.b.vector to calculate G matrix later
458 get.b.vector[[k]] <- b.vector
459 #-----------------------------------------------------------------------------
460 # M-step
461 #-----------------------------------------------------------------------------
462 my.output <- optim(init.theta, new.Q1, bb=b, method="L-BFGS-B" )
463 beta1 <- my.output$par[1]
464 beta2 <- my.output$par[2]
465 beta3 <- my.output$par[3]
466 alpha <- my.output$par[4]
467 my.hessian[[k]] <- NA # my.output$hessian
468 #-----------------------------------------------------------------------------
469 # calculate E[G_{ij}|Y, \thetaˆ(k)] function with given expectations from E-step
470 #-----------------------------------------------------------------------------
471 val.E.gij[[k]] <- E.gij(beta1, beta2,beta3,alpha, old.beta=c(get.beta1[k,],get.beta2[k,], get.beta3[k,]), old.

alpha=get.alpha[k,], bb=b)
472 #-----------------------------------------------------------------------------
473 # update sigma matrix for z1 and z2 for unconstrained G var-cov matrix 2
474 #-----------------------------------------------------------------------------
475 all.b1.mean <- apply((na.omit(get.b1.vector)), 2, mean)
476 all.b2.mean <- apply((na.omit(get.b2.vector)), 2, mean)
477 b1.row.mean <- matrix(apply(na.omit(get.b1.vector),1, mean), k, 1) # k = EMsteps
478 x.all.b1 <- matrix(apply(na.omit(get.b1.vector), 2, function(x) x - b1.row.mean), k, n.cluster)
479 xx.all.b1 <- matrix(apply(na.omit(get.b1.vector), 2, function(x) x ), k, n.cluster)
480 x.all.b1.mean <- apply(na.omit(x.all.b1), 2, mean)
481 all.b1.square <- apply((na.omit(x.all.b1))ˆ2, 2, mean) #
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482 fresh.var.b1 <- sum(all.b1.square)/n.cluster
483 b2.row.mean <- matrix(apply(na.omit(get.b2.vector),1, mean), k, 1) # k = EMsteps
484 x.all.b2 <- matrix(apply(na.omit(get.b2.vector), 2, function(x) x - b2.row.mean), k, n.cluster)
485 xx.all.b2 <- matrix(apply(na.omit(get.b2.vector), 2, function(x) x ), k, n.cluster)
486 x.all.b2.mean <- apply(na.omit(x.all.b2), 2, mean)
487 all.b2.square <- apply((na.omit(x.all.b2))ˆ2, 2, mean) #
488 #all.b2.square <- apply((na.omit(get.b2.vector))ˆ2, 2, mean) #
489 fresh.var.b2 <- sum(all.b2.square)/n.cluster
490 b.rho <- corr(cbind(x.all.b1.mean,x.all.b2.mean))
491 if (b.rho.x>1) {n.cov.var <- b.rho*sqrt(fresh.var.b1)*sqrt(fresh.var.b2) } else {n.cov.var <- b.rho.x*sqrt(

fresh.var.b1)*sqrt(fresh.var.b2)}
492 if(b.rho.x>1) { b.rho.x<- 1 }
493 if(b.rho.x< (-1)) {b.rho.x<- (-1)}
494 n.cov.var <- mean(x.all.b1.mean*x.all.b2.mean)
495 b.rho.x <- n.cov.var/(sqrt(fresh.var.b1)*sqrt(fresh.var.b2))
496 my.G <- matrix( c(fresh.var.b1,n.cov.var,n.cov.var,fresh.var.b2),2,2,byrow=TRUE)
497 sigma.mat <- my.G
498 sigma11 <- my.G[1,1]
499 sigma12 <- my.G[1,2]
500 sigma22 <- my.G[2,2]
501 #-----------------------------------------------------------------------------
502 # calculate Q1
503 #-----------------------------------------------------------------------------
504 val.Q1[k,] <- calc.Q1(theta=c(beta1,beta2,beta3,alpha), bb=b)
505 # print(paste("printing value of Q1... ", val.Q1[k,],"for",k," iteration"))
506 #-----------------------------------------------------------------------------
507 # calculate Q2
508 #-----------------------------------------------------------------------------
509 val.Q2[k,] <- Q2(bb=b.vector, sigma)
510 # print(paste("printing value of Q2... ", val.Q2[k,],"for",k," iteration"))
511 # print(paste("-----returning to loop..-------"))
512 #-----------------------------------------------------------------------------
513 # get el
514 #-----------------------------------------------------------------------------
515 val.el[k,] <- calc.el(theta=c(beta1,beta2,beta3,alpha), bb=b)
516 # print(paste("printing value of logl... ", val.el[k,],"for",k," iteration"))
517 } # End of EM loop
518 #-----------------------------------------------------------------------------
519 # Plot EM steps
520 #-----------------------------------------------------------------------------
521 myx <- seq(1,UPPER,1)
522 ylab1.name <- expression(paste(hat(beta),"1"))
523 ylab2.name <- expression(paste(hat(beta),"2"))
524 ylab3.name <- expression(paste(hat(beta),"3"))
525 ylab4.name <- expression(paste(hat(alpha)))
526 ylab5.name <- expression(paste(hat(sigma),"11"))
527 ylab5b.name <- expression(paste(hat(sigma),"22"))
528 ylab5c.name <- expression(paste(hat(sigma),"12"))
529 ylab5d.name <- expression(paste(hat(rho)))
530 ylab6.name <- expression(paste(hat(plain(Q1))))
531 ylab7.name <- expression(paste(hat(plain(Q2))))
532
533 par(mfrow=c(5,2))
534 plot(myx , c(get.beta1[1:UPPER,]), type="l", xlab="EM steps", ylab=ylab1.name);
535 mtext(paste(kk," sim"," bivar ", "G=",n.cluster," n=",n.obs," alpha=", T.alpha, " ARMS=",ARMsteps, " EM

steps=", UPPER," corr=",my.corr," Gibbs ",n.Gibbs,sep=""), side=3, line=1, outer=F, cex=0.7)
536 plot(myx , c(get.beta2[1:UPPER,]),type="l", xlab="EM steps", ylab=ylab2.name);
537 plot(myx , c(get.beta3[1:UPPER,]),type="l", xlab="EM steps", ylab=ylab3.name);
538 plot(myx , c(get.alpha[1:UPPER,]),type="l", xlab="EM steps", ylab=ylab4.name);
539 plot(myx , c(get.sigma11[1:UPPER,]),type="l", xlab="EM steps", ylab=ylab5.name);
540 plot(myx , c(get.sigma22[1:UPPER,]),type="l", xlab="EM steps", ylab=ylab5b.name);
541 plot(myx , c(get.rho.x[1:UPPER,]),type="l", xlab="EM steps", ylab=ylab5d.name);
542 plot(myx[-1] , c(val.Q1[2:UPPER,]),type="l", xlab="EM steps", ylab=ylab6.name);
543 plot(myx[-1] , c(val.Q2[2:UPPER,]),type="l", xlab="EM steps", ylab=ylab7.name);
544 # use option paper="a4r" for landscape
545 pdf(file=paste(directory,output.pdf,sep=""),onefile=TRUE ,paper="a4", height=11,width=8 )
546 par(mfrow=c(5,2))
547 plot(myx , c(get.beta1[1:UPPER,]), type="l", xlab="EM steps", ylab=ylab1.name);
548 mtext(paste(kk," sim"," bivar ", "G=",n.cluster," n=",n.obs," alpha=", T.alpha, " ARMS=",ARMsteps, " EM

steps=", UPPER," corr=",my.corr," Gibbs ",n.Gibbs,sep=""), side=3, line=1, outer=F, cex=0.7)
549 plot(myx , c(get.beta2[1:UPPER,]),type="l", xlab="EM steps", ylab=ylab2.name);
550 plot(myx , c(get.beta3[1:UPPER,]),type="l", xlab="EM steps", ylab=ylab3.name);
551 plot(myx , c(get.alpha[1:UPPER,]),type="l", xlab="EM steps", ylab=ylab4.name);
552 plot(myx , c(get.sigma11[1:UPPER,]),type="l", xlab="EM steps", ylab=ylab5.name);
553 plot(myx , c(get.sigma22[1:UPPER,]),type="l", xlab="EM steps", ylab=ylab5b.name);
554 plot(myx , c(get.rho.x[1:UPPER,]),type="l", xlab="EM steps", ylab=ylab5d.name);
555 plot(myx[-1] , c(val.Q1[2:UPPER,]),type="l", xlab="EM steps", ylab=ylab6.name);
556 plot(myx[-1] , c(val.Q2[2:UPPER,]),type="l", xlab="EM steps", ylab=ylab7.name);
557 dev.off()
558 #-----------------------------------------------------------------------------
559 # save results in .csv file
560 #-----------------------------------------------------------------------------
561 all.matrix.G40.n50.a1.0em1000 <- cbind(get.beta1, get.beta2, get.beta3,get.alpha, get.sigma11,get.sigma22, get.

sigma12,get.rho, get.rho.x, val.Q1, val.Q2)
562 colnames(all.matrix.G40.n50.a1.0em1000) <- c("beta1","beta2","beta3","alpha","sigma11","sigma22","sigma12", "

rho","rho.x", "Q1","Q2")
563 write.csv(all.matrix.G40.n50.a1.0em1000, file=paste(directory,output.csv,sep=""))
564 write.csv(get.G.mat, file=paste(directory, get_G.csv, sep=""))
565 # save get.b.vector list
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566 dput(get.b.vector,file=paste(directory,output.b.csv,sep=""))
567 # save each b1.vector and b2.vector to separate files?
568 write.csv(get.b1.vector, file=paste(directory, output.b1.csv, sep=""))
569 write.csv(get.b2.vector, file=paste(directory, output.b2.csv, sep=""))
570 # save b.bT.by.site list which contains results of b1%*% t(b1) for each site
571 dput(b.bT.by.site,file=paste(directory,b.bT.by.site.csv,sep=""))
572 myresults <- all.matrix.G40.n50.a1.0em1000
573 #save my.hessian
574 dput(my.hessian, file=paste(directory, output.hessian.csv, sep=""))
575 #-----------------------------------------------------------------------------
576 # gather the results for LaTex table
577 #-----------------------------------------------------------------------------
578 # true.value in the order of beta1, beta2, eta, alpha, sigma11, sigma22, corr
579 my.results.G40.n50.a1.0em1000 <- cbind(get.beta1, get.beta2, get.beta3, get.alpha, get.sigma11, get.sigma22,

get.sigma12,get.rho, get.rho.x)
580 my.results.Q <- cbind(val.Q1,val.Q2)
581 mean.q <-apply(my.results.Q[-c(1:initial),], 2, function(x) mean(x))
582 mean.el <- mean(val.el[-c(1:initial),])
583 mean.get.G <- apply(get.G.mat,2,mean)
584 mean.param.estimates <- apply(my.results.G40.n50.a1.0em1000[-c(1:initial),], 2, function(x) mean(x))
585 empirical.bias <- mean.param.estimates - true.value
586 empirical.SD <- apply(my.results.G40.n50.a1.0em1000[-c(1:initial),], 2, function(x) sd(x))
587 empirical.SE <- apply(my.results.G40.n50.a1.0em1000[-c(1:initial),], 2, function(x) sd(x))
588 parameters <- c("beta0", "beta1" ,"eta","alpha","sigma11","sigma22","sigma12","rho","rho.x")
589 test.table.G40.n50.a1.0em1000 <- cbind(true.value, mean.param.estimates, empirical.bias, empirical.SD)
590 final.table.G40.n50.a1.0em1000 <- data.frame(parameters, test.table.G40.n50.a1.0em1000)
591 #final.table.G40.n50.a1.0em1000
592
593 sink(file=paste(directory,outputxtable.txt,sep=""))
594 print(paste("Bivariate_",n.cluster,"_clusters_",n.obs,"_obs",sep=""))
595 options(scipen=4)
596 print(pcc)
597 print(paste("simul corr(xmyb1,xmyb2) is ", round(corr(as.matrix(cbind(xmyb1,xmyb2))),2), " my.corr is ", my.

corr, sep=""))
598 print(paste("simul var(xmyb1) is ", var(xmyb1), " var(xmyb2) is ", var(xmyb2),sep=""))
599 print(paste("mean.get.G ", mean.get.G))
600 print(final.table.G40.n50.a1.0em1000)
601 print(paste("Bivariate model with G=", n.cluster," n=", n.obs,"n.Gibbs=", n.Gibbs, " EM=", EMsteps,sep=""))
602 xtable( final.table.G40.n50.a1.0em1000, digits=4)
603 sink()
604 #-----------------------------------------------------------------------------
605 # gather the results for each NUM.DATA run
606 #-----------------------------------------------------------------------------
607 simul.summary[kk,1] <- mean.param.estimates[1] #beta1
608 simul.summary[kk,2] <- mean.param.estimates[2] #beta2
609 simul.summary[kk,3] <- mean.param.estimates[3] #beta3
610 simul.summary[kk,4] <- mean.param.estimates[4] #alpha
611 simul.summary[kk,5] <- mean.param.estimates[5] #sigma11
612 simul.summary[kk,6] <- mean.param.estimates[6] #sigma22
613 simul.summary[kk,7] <- mean.param.estimates[7] #sigma12
614 simul.summary[kk,8] <- mean.param.estimates[8] #get.rho
615 simul.summary[kk,9] <- mean.param.estimates[9] #get.rho.x
616 simul.summary[kk,10] <- empirical.SD[1] #beta1
617 simul.summary[kk,11] <- empirical.SD[2] #beta2
618 simul.summary[kk,12] <- empirical.SD[3] #beta3
619 simul.summary[kk,13] <- empirical.SD[4] #alpha
620 simul.summary[kk,14] <- empirical.SD[5] #sigma11
621 simul.summary[kk,15] <- empirical.SD[6] #sigma22
622 simul.summary[kk,16] <- empirical.SD[7] #sigma12
623 simul.summary[kk,17] <- empirical.SD[8] #get.rho
624 simul.summary[kk,18] <- empirical.SD[9] #get.rho.x
625 simul.summary[kk,19] <- mean.q[1] #q1
626 simul.summary[kk,20] <- mean.q[2] #q2
627 simul.summary[kk,21] <- round(pcc,2) #pcc
628 simul.summary[kk,22] <- my.seed
629 simul.summary[kk,23] <- round(var(xmyb1),2)
630 simul.summary[kk,24] <- round(var(xmyb2),2)
631 simul.summary[kk,25] <- round(corr(as.matrix(cbind(xmyb1,xmyb2))),2)
632 simul.summary[kk,26] <- mean.el
633 } ##END OF BIG NUM.DATA RUN (kk)
634 colnames(simul.summary) <- c("beta0","beta1","eta","alpha","sigma11","sigma22","sigma12","get.rho","get.rho.x",

"beta0.sd","beta1.sd","eta.sd","alpha.sd","sigma11.sd","sigma22.sd","sigma12.sd","get.rho.se","get.rho.x.se
","Q1","Q2","PCC","my.seed", "var.myb1","var.myb2","corr.myb1b2","mean.logl")

635 #write.csv( simul.summary , file=paste(directory,"Simulation_table_out_", NUM.DATA, "RUNS.csv",sep=""))
636 write.csv( simul.summary , file=paste(directory,"G",n.cluster,"_n.obs",n.obs,"_Simulation_table_out_", NUM.DATA

, "RUNS.csv",sep=""))
637 #-------------------------------------------------
638 #
639 #-------------------------------------------------
640 end.time <- date()
641 sink(file=paste(directory,"Final_summary_bivariate",n.cluster,"cluster_",n.obs,"obs_", EMsteps,"EMsteps.txt",

sep=""))
642 print(paste("Bivariate_",n.cluster,"_clusters_",n.obs,"_obs",sep=""))
643 options(scipen=4)
644 avg.summary <- as.matrix(apply(simul.summary, 2, function(x) mean(x)))
645 avg.summary
646 x1.c <- strptime(begin.time, "%a %b %d %H:%M:%S %Y")
647 x2.c <- strptime(end.time, "%a %b %d %H:%M:%S %Y")
648 difftime(x2.c, x1.c, units=’mins’)
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649 difftime(x2.c, x1.c, units=’hours’)
650 difftime(x2.c, x1.c, units=’days’)
651 print(paste("n.cluster=", n.cluster, " n.obs=", n.obs, " my.corr=", my.corr, " T.alpha=", T.alpha, " theta=",

my.theta1," EM=", EMsteps, " ARMS=", ARMsteps, " n.Gibbs=", n.Gibbs, sep=""))
652 hrs <- difftime(x2.c, x1.c, units=’hours’)
653 req.hours <- (hrs/NUM.DATA)*200
654 print(paste("estimated time required to run NUM.DATA=200 is ", round(req.hours,2), " hours"))
655 print(paste("NUM.DATA=",NUM.DATA))
656 #print(paste("simul corr(xmyb1,xmyb2) is ", round(corr(as.matrix(cbind(xmyb1,xmyb2))),2), " my.corr is ", my.

corr, sep=""))
657 #print(paste("simul var(xmyb1) is ", var(xmyb1), " var(xmyb2) is ", var(xmyb2),sep=""))
658 #print(paste("mean.get.G ", mean.get.G))
659 sink()
660
661 options(scipen=4)
662 avg.summary <- as.matrix(apply(simul.summary, 2, function(x) mean(x)))
663 avg.summary
664 x1.c <- strptime(begin.time, "%a %b %d %H:%M:%S %Y")
665 x2.c <- strptime(end.time, "%a %b %d %H:%M:%S %Y")
666 difftime(x2.c, x1.c, units=’secs’)
667 difftime(x2.c, x1.c, units=’mins’)
668 difftime(x2.c, x1.c, units=’hours’)
669 print(paste("n.cluster=", n.cluster, " n.obs=", n.obs, " my.corr=", my.corr, " T.alpha=", T.alpha, " theta=",

my.theta1," EM=", EMsteps, " ARMS=", ARMsteps, " n.Gibbs=", n.Gibbs, sep=""))
670 hrs <- difftime(x2.c, x1.c, units=’hours’)
671 req.hours <- (hrs/NUM.DATA)*200
672 print(paste("estimated time required to run NUM.DATA=200 is ", round(req.hours,2), " hours"))

./nested AFT model with random effects simulation.R

1 #################################################################################
2 # Variance estimation by Louis method after EM
3 ##################################################################################
4 #remove(list=ls(all=TRUE))
5 library(lattice)
6 library(mcmc)
7 library(coda)
8 library(lattice)
9 library(MASS)
10 library(MCMCpack)
11 library(mvtnorm)
12 library(SamplerCompare) # gives arms.sample function
13 library(splines)
14 library(survival)
15 library(smoothSurv)
16 library(bayesSurv)
17 library(xtable)
18 library(boot)
19 #-----------------------------------------------------------------------------
20 # Run a function that creates a diagonal matrix
21 #-----------------------------------------------------------------------------
22 bdiag <- function(x){
23 if(!is.list(x)) stop("x not a list")
24 n <- length(x)
25 if(n==0) return(NULL)
26 x <- lapply(x, function(y) if(length(y)) as.matrix(y) else
27 stop("Zero-length component in x"))
28 d <- array(unlist(lapply(x, dim)), c(2, n))
29 rr <- d[1,]
30 cc <- d[2,]
31 rsum <- sum(rr)
32 csum <- sum(cc)
33 out <- array(0, c(rsum, csum))
34 ind <- array(0, c(4, n))
35 rcum <- cumsum(rr)
36 ccum <- cumsum(cc)
37 ind[1,-1] <- rcum[-n]
38 ind[2,] <- rcum
39 ind[3,-1] <- ccum[-n]
40 ind[4,] <- ccum
41 imat <- array(1:(rsum * csum), c(rsum, csum))
42 iuse <- apply(ind, 2, function(y, imat) imat[(y[1]+1):y[2],
43 (y[3]+1):y[4]], imat=imat)
44 iuse <- as.vector(unlist(iuse))
45 out[iuse] <- unlist(x)
46 return(out)
47 }
48 #---------------------------------------------------------------------------------
49 # Change the input directory where data are
50 #---------------------------------------------------------------------------------
51 directory <-"c:\\_dissertation\\outputs\\BivariateModel\\optim\\nested\\corr06\\G50n30\\" # NEED TO CHANGE
52 begin.time <- date()
53 #-----------------------------------------------------------------------------
54 # Simulation parameters --same as earliler
55 #-----------------------------------------------------------------------------
56 NUM.DATA <- 200
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57 num.par <- 7 # number of parameters
58 n.cluster <- 60 # CHANGE HERE overall number of clusters
59 n.obs <- 30 # CHANGE HERE n.obs/2 per each sub-cluster
60 cluster <- c(rep(1:n.cluster,each=n.obs))
61 n.sub.cluster <- 2
62 EMsteps <- 250
63 initial <- 50 # first 50 estimates will not be included to estimate parameter means
64 ARMsteps <- 1
65 n.Gibbs <- 1
66 T.alpha <- 1
67 my.theta1 <- 1 # so that sigma11 should be 1
68 my.corr <- 0.6
69 my.sigma <- matrix(c(1,my.corr,my.corr,1),2,2)
70 T.eta.grp <- 1
71 true.value <- c(1,1,T.eta.grp,T.alpha,my.sigma[1,1], my.sigma[2,2], my.sigma[1,2])
72 louis.summary <- matrix(NA,nrow=NUM.DATA,ncol=num.par)
73 for (kk in (1:NUM.DATA)) {
74 #-----------------------------------------------------------------------------
75 # Name output pdf files & data object names
76 #-----------------------------------------------------------------------------
77 output.pdf <-paste(kk,"final_Bivariate_","corr",my.corr*10,"_G",n.cluster,"_n",n.obs,"_r",ARMsteps,"xEM",

EMsteps,"_Random_alpha",abs(T.alpha),".pdf", sep="")
78 outputxtable.txt <- paste(kk,"final_Bivariate_","corr",my.corr*10,"_G",n.cluster,"_n",n.obs,"_r",ARMsteps,"xEM"

,EMsteps,"_Random_alpha",abs(T.alpha),"Xtable.txt", sep="")
79 output.csv <-paste(kk,"final_Bivariate_","corr",my.corr*10,"_G",n.cluster,"_n",n.obs,"_r",ARMsteps,"xEM",

EMsteps,"_Random_alpha",abs(T.alpha),".csv", sep="")
80 get_G.csv <-paste(kk,"final_Bivariate_","corr",my.corr*10,"_G",n.cluster,"_n",n.obs,"_r",ARMsteps,"xEM",EMsteps

,"_Random_alpha",abs(T.alpha),"get_G.csv", sep="")
81 output.name <- paste(kk,"final_Bivariate_","corr",my.corr*10,"_G",n.cluster,".n",n.obs,".r",ARMsteps,".xEM_

Random_",EMsteps,"alpha",abs(T.alpha), sep="")
82 output_raw.csv <-paste(kk,"final_Bivariate_","corr",my.corr*10,"_G",n.cluster,"_n",n.obs,"_r",ARMsteps,"xEM",

EMsteps,"_Random_alpha",abs(T.alpha),"_RAW.csv", sep="")
83 output.b.csv <-paste(kk,"final_Bivariate_","corr",my.corr*10,"_G",n.cluster,"_n",n.obs,"_r",ARMsteps,"xEM",

EMsteps,"_Random_alpha",abs(T.alpha),"_b_vector.csv", sep="")
84 output.b1.csv <-paste(kk,"final_Bivariate_","corr",my.corr*10,"_G",n.cluster,"_n",n.obs,"_r",ARMsteps,"xEM",

EMsteps,"_Random_alpha",abs(T.alpha),"_b1_vector.csv", sep="")
85 output.b2.csv <-paste(kk,"final_Bivariate_","corr",my.corr*10,"_G",n.cluster,"_n",n.obs,"_r",ARMsteps,"xEM",

EMsteps,"_Random_alpha",abs(T.alpha),"_b2_vector.csv", sep="")
86 b.bT.by.site.csv <- paste(kk,"final_Bivariate_","corr",my.corr*10,"_G",n.cluster,"_n",n.obs,"_r",ARMsteps,"xEM"

,EMsteps,"_Random_alpha",abs(T.alpha),"_bbTbySite.csv", sep="")
87 output.hessian.csv <-paste(kk,"final_bivariate_","corr",my.corr*10,"_G",n.cluster,"_n",n.obs,"_r",ARMsteps,"xEM

",EMsteps,"_Random_alpha",abs(T.alpha),"_hessian.csv", sep="")
88 #---------------------------------------------------------------------------------
89 # Get the simulated data
90 #---------------------------------------------------------------------------------
91 data2 <- read.csv(file=paste(directory,output_raw.csv,sep=""), header=TRUE, sep=",")
92 new.data <- data2
93 my.data <- data2
94 #-----------------------------------------------------------------------------
95 # Getting Z and W data matrices for fixed and random effects parameters
96 #-----------------------------------------------------------------------------
97 Z <- cbind(1,as.matrix(subset(my.data,select= c(x1, eta.grp))))
98 mymat2 <- rep(list(matrix(c(rep(1,n.obs/2),rep(0,n.obs/2),rep(0,n.obs/2),rep(1,n.obs/2)),n.obs,2)),n.cluster)
99 myW <- bdiag(mymat2) # you need function ’bdiag’

100 newW <- matrix(rep(1:n.cluster,each=n.obs),nrow=nrow(my.data),ncol=1)
101 W <- myW # (n.clusterxn.obs)x(n.cluster) e.g. 200x10
102 #---------------------------------------------------------------------------------
103 # GET beta estimates from the model and the output from each simulation
104 #---------------------------------------------------------------------------------
105 xmy.results <- read.csv(file=paste(directory, output.csv, sep=""), header=TRUE)
106 my.results <- xmy.results[,2:10] # only selecting beta1 beta2 eta alpha sigma11 sigma22 sigma12 rho rho.x

parameters
107 mean.param.estimates <- apply(my.results[-c(1:initial),], 2, function(x) mean(x))
108 h.beta1 <- mean.param.estimates[1]
109 h.beta2 <- mean.param.estimates[2]
110 h.beta3 <- mean.param.estimates[3]
111 h.alpha <- mean.param.estimates[4]
112 h.sigma11 <- sqrt(mean.param.estimates[5])
113 h.sigma22 <- sqrt(mean.param.estimates[6])
114 h.rho.x <- (mean.param.estimates[8]) # for rho
115 all.mean.param.estimates <- c(h.beta1,h.beta2,h.beta3, h.alpha,h.sigma11ˆ2,h.sigma22ˆ2,h.rho.x)
116 h.beta.all <- matrix(c(h.beta1, h.beta2, h.beta3),3,1)
117 beta <- h.beta.all
118 #---------------------------------------------------------------------------------
119 # Need b1 and b2 vectors. These vectors changes.
120 #---------------------------------------------------------------------------------
121 b1.vector.out <- read.csv(file=paste(directory,output.b1.csv, sep=""),header=TRUE)
122 b2.vector.out <- read.csv(file=paste(directory,output.b2.csv, sep=""),header=TRUE)
123 b1.out <- b1.vector.out[-c(1:initial),-1] # remove first 50 rows and first column
124 b2.out <- b2.vector.out[-c(1:initial),-1] # remove first 50 rows and first column
125 #ˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆ
126 # Calculate second derivative and score matrix for each b matrix
127 # Save the results in the lists
128 #ˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆ
129 score.score.T <- vector("list", length=(EMsteps-initial))
130 score <- vector("list", length=(EMsteps-initial))
131 second.deriv <- vector("list", length=(EMsteps-initial))
132 x.Louis.v <- vector("list", length=(EMsteps-initial))
133 for (k in (1:(EMsteps-initial))) {
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134 get.b1 <- b1.out[k,]
135 get.b2 <- b2.out[k,]
136 both.b <- as.matrix(rbind(get.b1,get.b2))
137 b <- as.vector(both.b) # check this b again with the rest of the codes go back to other programste
138 print(paste("--NUM.DATA=",kk,"---------iteration ", k))
139 new.data <- my.data
140 W.b <- W %*% b # 200x10 time 10x1 genereate 200x1 W.b matrix
141 Z.beta<- Z %*% beta # 200x3 times 3x1 generates 200x1 Z.beta matrix
142 logT <- log(new.data$t)
143 T <- new.data$t
144 delta <- as.matrix(new.data$status, nrow(new.data),ncol=1)
145 e.A <- exp(h.alpha+logT - Z.beta - W.b) # this will change per b values as well
146 #ˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆ
147 # Define derivatives for the score
148 #ˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆ
149 Z.1 <- matrix(Z[,1],nrow(Z),1)
150 Z.2 <- matrix(Z[,2],nrow(Z),1)
151 Z.3 <- matrix(Z[,3],nrow(Z),1)
152 #### this is working version 1 -- small numbers
153 D.beta1 <- (-1)*sum( Z.1*(delta - exp(-h.alpha)*e.A)/(1+ e.A))
154 D.beta2 <- (-1)*sum( Z.2*(delta - exp(-h.alpha)*e.A)/(1+ e.A))
155 D.beta3 <- (-1)*sum( Z.3*(delta - exp(-h.alpha)*e.A)/(1+ e.A))
156 D.alpha <- (-1)*sum( (-1)*exp(-h.alpha)*log(1+e.A) + ((delta+ exp(-h.alpha))*((e.A)/(1+e.A))))
157 #---------------------------------------------------------------------------------
158 # h.sigma11, h.sigma22 and h.rho.x parameters
159 #---------------------------------------------------------------------------------
160 D.sigma11 <- (-1/2)*(n.cluster/(h.sigma11ˆ2)) + sum(get.b1ˆ2)/(2*(1-h.rho.xˆ2)*h.sigma11ˆ4)-(1/2)*(sum(get.b1*

get.b2)*h.rho.x)/((1-h.rho.xˆ2)*h.sigma22*(h.sigma11ˆ3))
161 D.sigma22 <- (-1/2)*(n.cluster/(h.sigma22ˆ2)) + sum(get.b2ˆ2)/(2*(1-h.rho.xˆ2)*h.sigma22ˆ4)-(1/2)*(sum(get.b1*

get.b2)*h.rho.x)/((1-h.rho.xˆ2)*h.sigma11*(h.sigma22ˆ3))
162 D.rho.x <-(n.cluster*n.obs*h.rho.x)/(1-h.rho.xˆ2) - (sum(get.b1ˆ2)/(h.sigma11ˆ2) + sum(get.b2ˆ2)/(h.sigma22ˆ2)

)*(h.rho.x*(1-h.rho.xˆ2)ˆ(-2)) + (sum(get.b1*get.b2)/(h.sigma11*h.sigma22))*((1+h.rho.xˆ2)/(1-h.rho.xˆ2)ˆ2)
163 #---------------------------------------------------------------------------------
164 # the individual score
165 #---------------------------------------------------------------------------------
166 score.theta <- matrix(c(D.beta1,D.beta2,D.beta3,D.alpha,D.sigma11,D.sigma22,D.rho.x),7,1)
167 score.score.T[[k]] <- score.theta %*% t(score.theta) # store each matrix into a list
168 score[[k]] <- score.theta # this is 5x1 matrix
169 #ˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆ
170 # Second derivative matrix
171 #ˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆ
172 # this is working version now
173 DD.beta1 <- (-1)*sum((Z.1ˆ2 * e.A * (exp(-h.alpha)+delta))/((1+e.A)ˆ2))
174 DD.beta2 <- (-1)*sum((Z.2ˆ2 * e.A * (exp(-h.alpha)+delta))/((1+e.A)ˆ2))
175 DD.beta3 <- (-1)*sum((Z.3ˆ2 * e.A * (exp(-h.alpha)+delta))/((1+e.A)ˆ2))
176 DD.alpha <- (-1)*sum(exp(-h.alpha)*log(1+e.A) - (e.A*exp(-h.alpha)/(1+e.A))+ (e.A*(delta-exp(-h.alpha)*(e.A))/

((1+e.A)ˆ2)))
177 DD.sigma11 <- (1/2)*(n.cluster/(h.sigma11ˆ4))-sum(get.b1ˆ2)/((1-h.rho.xˆ2)*h.sigma11ˆ6)+ (3/4)*(sum(get.b1*get.

b2)*h.rho.x)/((1-h.rho.xˆ2)*h.sigma22*h.sigma11ˆ5)
178 DD.sigma22 <- (1/2)*(n.cluster/(h.sigma22ˆ4))-sum(get.b2ˆ2)/((1-h.rho.xˆ2)*h.sigma22ˆ6)+ (3/4)*(sum(get.b1*get.

b2)*h.rho.x)/((1-h.rho.xˆ2)*h.sigma11*h.sigma22ˆ5)
179 a.1 <- n.cluster*n.obs*(1+h.rho.xˆ2)/((1-h.rho.xˆ2)ˆ2)
180 b.1 <- (-1)*(sum(get.b1ˆ2)/(h.sigma11ˆ2) + sum(get.b2ˆ2)/(h.sigma22ˆ2) )*(( (1-h.rho.xˆ2)ˆ2 + 4*h.rho.x*(1-h.

rho.xˆ2))/(1-h.rho.xˆ2)ˆ4)
181 c.1 <- (sum(get.b1*get.b2)/(h.sigma11*h.sigma22))*( ( 2*h.rho.x*(1-h.rho.xˆ2)ˆ2 + 4*h.rho.x*(1-h.rho.xˆ2)*(1+h.

rho.xˆ2))/(1-h.rho.xˆ2)ˆ4)
182 DD.rho.x <- a.1 + b.1 + c.1
183 #2nd trial
184 DD.beta12 <- 0 #(-1)*(-1)*sum((Z.12 %*% e.A %*% t(exp(-h.alpha)+delta) ))/sum((1+e.A)%*%t(1+e.A))
185 DD.beta13 <- 0 #(-1)*(-1)*sum((Z.13 %*% e.A %*% t(exp(-h.alpha)+delta) ))/sum((1+e.A)%*%t(1+e.A))
186 DD.beta23 <- 0 # (-1)*(-1)*sum((Z.23 %*% e.A %*% t(exp(-h.alpha)+delta) ))/sum((1+e.A)%*%t(1+e.A))
187 DD.beta1.alpha <- (-1)*sum((-1)*(Z.1*e.A*(delta - exp(-h.alpha)*e.A))/(1+e.A)ˆ2 )
188 DD.beta2.alpha <- (-1)*sum((-1)*(Z.2*e.A*(delta - exp(-h.alpha)*e.A))/(1+e.A)ˆ2 )
189 DD.beta3.alpha <- (-1)*sum((-1)*(Z.3*e.A*(delta - exp(-h.alpha)*e.A))/(1+e.A)ˆ2 )
190 DD.beta1.sigma11 <- 0
191 DD.beta2.sigma11 <- 0
192 DD.beta3.sigma11 <- 0
193 DD.alpha.sigma11 <- 0
194 DD.beta1.sigma22 <- 0
195 DD.beta2.sigma22 <- 0
196 DD.beta3.sigma22 <- 0
197 DD.alpha.sigma22 <- 0
198 #DD.sigma11.22 <-0
199 partA.1 <- sum(get.b1ˆ2)*(h.rho.x*(1-h.rho.xˆ2)/(h.sigma11ˆ4))
200 partA.2 <- (-1/2)*(sum(get.b1*get.b2)/(h.sigma22*(h.sigma11ˆ3)))*( (1+h.rho.xˆ2)/((1-h.rho.xˆ2)ˆ2))
201 DD.sigma11.rho <- partA.1 + partA.2
202 partB.1 <-sum(get.b2ˆ2)*(h.rho.x*(1-h.rho.xˆ2)/(h.sigma22ˆ4))
203 partB.2 <-(-1/2)*(sum(get.b1*get.b2)/(h.sigma11*(h.sigma22ˆ3)))*( (1+h.rho.xˆ2)/((1-h.rho.xˆ2)ˆ2))
204 DD.sigma22.rho <- partB.1+partB.2
205 DD.sigma11.22 <- (1/4)*(sum(get.b1*get.b2)*h.rho.x)/((1-h.rho.xˆ2)*(h.sigma11ˆ3)*(h.sigma22ˆ3))
206 DD.sigma22.11 <- DD.sigma11.22 # same
207 x.second.deriv <- rbind( c(DD.beta1 , DD.beta12 , DD.beta13 , DD.beta1.alpha , DD.beta1.sigma11,DD.

beta1.sigma22, 0),
208 c(DD.beta12 , DD.beta2 , DD.beta23 , DD.beta2.alpha , DD.beta2.sigma11,DD.beta2.sigma22

, 0),
209 c(DD.beta13 , DD.beta12 , DD.beta3 , DD.beta3.alpha , DD.beta3.sigma11,DD.beta3.

sigma22, 0),
210 c(DD.beta1.alpha , DD.beta2.alpha , DD.beta3.alpha , DD.alpha , DD.alpha.sigma11,DD.

alpha.sigma22, 0),
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211 c(DD.beta1.sigma11 , DD.beta2.sigma11, DD.beta3.sigma11, DD.alpha.sigma11, DD.sigma11 ,DD.
sigma11.22 , DD.sigma11.rho) ,

212 c(DD.beta1.sigma22 , DD.beta2.sigma22, DD.beta3.sigma22, DD.alpha.sigma22, DD.sigma11.22 ,DD.
sigma22 , DD.sigma22.rho) ,

213 c( 0, 0, 0, 0 , DD.sigma11.rho ,DD.sigma22.rho , DD.rho
.x ))

214 #print(paste("calculating second derivative.."))
215 #print(x.second.deriv)
216 second.deriv[[k]] <- as.matrix(x.second.deriv)
217 } # End of [k] Loop calculation
218 #---------------------------------------------------------------------------------
219 # The average score over b
220 #---------------------------------------------------------------------------------
221 avg.score.score.T <- matrix(NA,num.par,num.par)
222 for (i in (1:num.par))
223 for (j in (1:num.par))
224 {
225 avg.score.score.T[i,j] <- mean(sapply(score.score.T, function(x) x[i,j]))
226 }
227 x.avg.score <- matrix(NA, num.par,1)
228 for (i in (1:num.par))
229 { x.avg.score[i,1] <- mean(sapply(score, function(x) x[i,1])) }
230 avg.score <- x.avg.score %*% t(x.avg.score)
231 #---------------------------------------------------------------------------------
232 # The expected second derivative matrix
233 #---------------------------------------------------------------------------------
234 avg.second.deriv <- matrix(NA,num.par,num.par)
235 for (i in (1:num.par))
236 for (j in (1:num.par))
237 {
238 avg.second.deriv[i,j] <- mean(sapply(second.deriv, function(x) x[i,j]))
239 }
240 # print(paste("printing expected second derivative matrix..."))
241 # avg.second.deriv
242 #---------------------------------------------------------------------------------
243 # Calculate variance-covariance I(theta) matrix using Louis formula
244 #---------------------------------------------------------------------------------
245 options(scipen=10)
246 # print(paste("printing difference of the average.."))
247 Louis.v <- (-1)*avg.second.deriv - (avg.score.score.T - avg.score)
248 Louis.v
249 Louis.var.cov <- solve(Louis.v)
250 Louis.var.cov
251 num.param <- num.par
252 louis.var.pos <- vector("list",EMsteps-initial)
253 louis.inv.pos <- vector("list",EMsteps-initial)
254 louis.inv.diag <- matrix(NA, EMsteps-initial, num.param)
255 louis.se.pos <- matrix(NA, EMsteps-initial, num.param)
256 for (ii in (1:(EMsteps-initial))) {
257 louis.var.pos[[ii]] <- (-1)*second.deriv[[ii]] - score.score.T[[ii]]
258 louis.inv.pos[[ii]] <- solve(louis.var.pos[[ii]])
259 louis.inv.diag[ii,] <- diag(louis.inv.pos[[ii]])
260 louis.se.pos[ii,] <- t(as.matrix(sqrt(louis.inv.diag[ii,])))
261 }
262 # counting number of missings in louis.se.pos[ii,]
263 my.count <- apply(louis.se.pos, 1, function(x) sum(is.na(x))) #/ ncol(louis.se.pos) * 100
264 # drop the row with negative iterations
265 louis.se.pos2 <- louis.se.pos[apply(louis.se.pos, 1, function(x)!any(is.na(x))), , drop=F]
266 #---------------------------------------------------------------------------------
267 # print out final Louis SE
268 #---------------------------------------------------------------------------------
269 final.louis.se <- apply(louis.se.pos2, 2, function(x) mean(x))
270 # print(paste("final Louis SE..",sep=""))
271 # final.louis.se
272 #---------------------------------------------------------------------------------
273 # print out final Louis SE
274 #---------------------------------------------------------------------------------
275 final.louis.se <- apply(louis.se.pos2, 2, function(x) mean(x))
276 #print(paste("final Louis SE..",sep=""))
277 #print(final.louis.se)
278 louis.summary[kk,1] <- final.louis.se[1]
279 louis.summary[kk,2] <- final.louis.se[2]
280 louis.summary[kk,3] <- final.louis.se[3]
281 louis.summary[kk,4] <- final.louis.se[4]
282 louis.summary[kk,5] <- final.louis.se[5]
283 louis.summary[kk,6] <- final.louis.se[6]
284 louis.summary[kk,7] <- final.louis.se[7]
285 } # END OF KK iterations
286 colnames(louis.summary) <- c("beta0.se","beta1.se","eta.se","alpha.se","sigma11.se","sigma22.se","get.rho.se")
287 write.csv( louis.summary , file=paste(directory,"corr",my.corr*10,"_G",n.cluster,"_n.obs",n.obs,"_Simulation_

table_out_", NUM.DATA, "RUNS_Louis_SE.csv",sep=""))
288 end.time <- date()
289 x1.c <- strptime(begin.time, "%a %b %d %H:%M:%S %Y")
290 x2.c <- strptime(end.time, "%a %b %d %H:%M:%S %Y")
291 difftime(x2.c, x1.c, units=’secs’)
292 difftime(x2.c, x1.c, units=’mins’)
293 difftime(x2.c, x1.c, units=’hours’)
294 #---------------------------------------------------------------------------------
295 #---------------------------------------------------------------------------------
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296 sim.out <- read.csv( file=paste(directory,"G",n.cluster,"_n.obs",n.obs,"_Simulation_table_out_", NUM.DATA, "
RUNS.csv",sep=""))

297 xresults.out <- sim.out[,c(2:7,9)]
298 xlouis.out <- louis.summary
299 all.out <- na.omit(cbind(xresults.out, xlouis.out))
300 results.out <- all.out[,c(1:7)]
301 louis.out <- all.out[,c(8:14)]
302 mean.out <- apply(results.out, 2,mean)
303 median.out <-apply(results.out, 2,median)
304 sd.out <- apply(results.out, 2, sd)
305 avg.se.out <- apply(louis.out, 2, mean)
306 bias.out <- mean.out - true.value
307 # percent.bias updated
308 percent.bias <- ifelse(true.value==0, (mean.out-true.value)*100,((mean.out-true.value)/true.value)*100)
309 mse.out <- apply( apply(results.out, 2, function(y) (y-1)ˆ2), 2, sum)/(NUM.DATA)
310 t05 <- qt(0.975, n.cluster*n.obs-1)
311 c.louis <- as.data.frame(louis.out)
312 c.beta0 <- 100*(sum((results.out$beta0-t05*c.louis$beta0.se <= true.value[1]) & (results.out$beta0+t05*c.louis$

beta0.se >= true.value[1])))/NUM.DATA
313 c.beta1 <- 100*(sum((results.out$beta1-t05*c.louis$beta1.se <= true.value[2]) & (results.out$beta1+t05*c.louis$

beta1.se >= true.value[2])))/NUM.DATA
314 c.eta <- 100*(sum((results.out$eta-t05*c.louis$eta.se <= true.value[3]) & (results.out$eta+t05*c.louis$eta.se

>= true.value[3])))/NUM.DATA
315 c.alpha <- 100*(sum((results.out$alpha-t05*c.louis$alpha.se <= true.value[4]) & (results.out$alpha+t05*c.louis$

alpha.se >= true.value[4])))/NUM.DATA
316 c.theta1 <- 100*(sum((results.out$sigma11-t05*c.louis$sigma11.se <= true.value[5]) & (results.out$sigma11+t05*c

.louis$sigma11.se >= true.value[5])))/NUM.DATA
317 c.theta2 <- 100*(sum((results.out$sigma22-t05*c.louis$sigma22.se <= true.value[6]) & (results.out$sigma22+t05*c

.louis$sigma22.se >= true.value[6])))/NUM.DATA
318 c.rho.x <- 100*(sum((results.out$get.rho-t05*c.louis$get.rho.se <= true.value[7]) & (results.out$get.rho+t05*c

.louis$get.rho.se >= true.value[7])))/NUM.DATA
319 coverage <- c(c.beta0, c.beta1, c.eta, c.alpha, c.theta1,c.theta2, c.rho.x)
320 options(scipen=3)
321 final.out <- cbind(true.value, mean.out, median.out, sd.out, avg.se.out, percent.bias, mse.out, coverage)
322 print(final.out, digits=3)
323 parameters <- c("Beta0","Beta1","eta", "alpha","theta1","theta2","rho")
324 final.out2 <- cbind(true.value, mean.out, sd.out, avg.se.out, percent.bias, mse.out, coverage)
325 final.out3 <- cbind(true.value, mean.out, sd.out, avg.se.out, percent.bias, mse.out )
326 sink(file=paste(directory,"G",n.cluster,"_n.obs",n.obs,"_final_summary_xtable_out.txt",sep=""))
327 print(paste("G=",n.cluster," n=",n.obs," alpha=",T.alpha," results", sep=""))
328 final.out
329 print(paste("G=",n.cluster," n=",n.obs," alpha=",T.alpha," results", sep=""))
330 print(xtable(final.out, digits=c(7,0,3,3,3,3,1,3,1)))#
331 final.out3
332 print(paste("G=",n.cluster," n=",n.obs," alpha=",T.alpha," results", sep=""))
333 print(xtable(final.out3, digits=c(7,0,3,3,3,1,3)))#
334 final.out2
335 print(paste("G=",n.cluster," n=",n.obs," alpha=",T.alpha," results", sep=""))
336 print(xtable(final.out2, digits=c(7,2,3,3,3,1,3,1)))#
337 sink()
338 ######################################################################################
339 # Plot the distribution of parameters for any G= n=
340 ######################################################################################
341 lwd.par <-1
342 lty.par <-2
343 par(mfrow=c(4,2))
344 hist(results.out[,1], prob=TRUE, xlab=expression(paste("estimated ", beta,"0")), main=" ")
345 mtext(paste("G=",n.cluster," n=",n.obs," alpha=", T.alpha, " ARMS=",ARMsteps, " EM steps=", EMsteps,sep=""

), side=3, line=1, outer=F, cex=0.9)
346 lines(density(results.out[,1]), col="red", lty=2, lwd=lwd.par)
347 curve(dnorm(x, mean=mean(results.out[,1]), sd=sd(results.out[,1])), add=TRUE, col="blue", lwd=1)
348 hist(results.out[,2], prob=TRUE, xlab=expression(paste("estimated ",beta,"1")), main=" " )
349 lines(density(results.out[,2]), col="red", lty=2, lwd=lwd.par)
350 curve(dnorm(x, mean=mean(results.out[,2]), sd=sd(results.out[,2])), add=TRUE, col="blue")
351 hist(results.out[,3], prob=TRUE, xlab=expression(paste("estimated ",eta)), main=" " )
352 lines(density(results.out[,3]), col="red", lty=2, lwd=lwd.par)
353 curve(dnorm(x, mean=mean(results.out[,3]), sd=sd(results.out[,3])), add=TRUE, col="blue")
354 hist(results.out[,4], prob=TRUE, xlab=expression(paste("estimated ",alpha)), main=" ")
355 lines(density(results.out[,4]), col="red", lty=2, lwd=lwd.par)
356 curve(dnorm(x, mean=mean(results.out[,4]), sd=sd(results.out[,4])), add=TRUE, col="blue")
357 hist(results.out[,5], prob=TRUE, xlab=expression(paste("estimated ",theta,"1")), main=" ", axes=TRUE)
358 lines(density(results.out[,5] ), col="red", lty=2, lwd=lwd.par)
359 curve(dnorm(x, mean=mean(results.out[,5]), sd=sd(results.out[,5])), add=TRUE, col="blue")
360 hist(results.out[,6], prob=TRUE, xlab=expression(paste("estimated ",theta,"2")), main=" ")
361 lines(density(results.out[,6]), col="red", lty=2, lwd=lwd.par)
362 curve(dnorm(x, mean=mean(results.out[,6]), sd=sd(results.out[,6])), add=TRUE, col="blue")
363 hist(results.out[,7], prob=TRUE, xlab=expression(paste("estimated ",rho)), main=" ")
364 lines(density(results.out[,7]), col="red", lty=2, lwd=lwd.par)
365 curve(dnorm(x, mean=mean(results.out[,7]), sd=sd(results.out[,7])), add=TRUE, col="blue")
366 # use option paper="a4r" for landscape
367 pdf(file=paste(directory,"G",n.cluster,"_n.obs",n.obs,"_final_histogram.pdf",sep=""),onefile=TRUE ,paper="a4",

height=11,width=8 )
368 par(mfrow=c(4,2))
369 hist(results.out[,1], prob=TRUE, xlab=expression(paste("estimated ", beta,"0")), main=" ")
370 mtext(paste("G=",n.cluster," n=",n.obs," alpha=", T.alpha, " ARMS=",ARMsteps, " EM steps=", EMsteps,sep="

"), side=3, line=1, outer=F, cex=0.9)
371 lines(density(results.out[,1]), col="red", lty=2, lwd=lwd.par)
372 curve(dnorm(x, mean=mean(results.out[,1]), sd=sd(results.out[,1])), add=TRUE, col="blue", lwd=1)
373 hist(results.out[,2], prob=TRUE, xlab=expression(paste("estimated ",beta,"1")), main=" " )
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374 lines(density(results.out[,2]), col="red", lty=2, lwd=lwd.par)
375 curve(dnorm(x, mean=mean(results.out[,2]), sd=sd(results.out[,2])), add=TRUE, col="blue")
376 hist(results.out[,3], prob=TRUE, xlab=expression(paste("estimated ",eta)), main=" " )
377 lines(density(results.out[,3]), col="red", lty=2, lwd=lwd.par)
378 curve(dnorm(x, mean=mean(results.out[,3]), sd=sd(results.out[,3])), add=TRUE, col="blue")
379 hist(results.out[,4], prob=TRUE, xlab=expression(paste("estimated ",alpha)), main=" ")
380 lines(density(results.out[,4]), col="red", lty=2, lwd=lwd.par)
381 curve(dnorm(x, mean=mean(results.out[,4]), sd=sd(results.out[,4])), add=TRUE, col="blue")
382 hist(results.out[,5], prob=TRUE, xlab=expression(paste("estimated ",theta,"1")), main=" ", axes=TRUE)
383 lines(density(results.out[,5] ), col="red", lty=2, lwd=lwd.par)
384 curve(dnorm(x, mean=mean(results.out[,5]), sd=sd(results.out[,5])), add=TRUE, col="blue")
385 hist(results.out[,6], prob=TRUE, xlab=expression(paste("estimated ",theta,"2")), main=" ")
386 lines(density(results.out[,6]), col="red", lty=2, lwd=lwd.par)
387 curve(dnorm(x, mean=mean(results.out[,6]), sd=sd(results.out[,6])), add=TRUE, col="blue")
388 hist(results.out[,7], prob=TRUE, xlab=expression(paste("estimated ",rho)), main=" ")
389 lines(density(results.out[,7]), col="red", lty=2, lwd=lwd.par)
390 curve(dnorm(x, mean=mean(results.out[,7]), sd=sd(results.out[,7])), add=TRUE, col="blue")
391 dev.off()

./Louis method after EM.R
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