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Wheelchair users face the challenge of using their arms to mobilize their bodies instead of their 

legs—resulting in pain and injury. Development of tools to measure motions occurring during 

wheelchair propulsion presents the opportunity to study patterns and activities of wheelchair 

users to help prevent pain and injury. This study combined measurement tools including 

accelerometers and a wheel rotation data logger to collect data on activities performed by manual 

wheelchair users. Twenty-six participants with spinal cord injury completed lab visits of data 

collection. A model was created from lab data to classify data as propulsion, rest, activities of 

daily living (ADLs), or being pushed. The best percent accuracies of the classifying model for 

each activity are as follows: 84.5% for propulsion, 85.6% for rest, 84.6% for ADLs, and 79.9% 

for being pushed. When applied to data from a user’s natural environment, this model can 

provide information on average time spent per day in each activity. With future work, the 

wheelchair propulsion monitoring devices of this study could quantify movement in manual 

wheelchair users’ natural environments. 
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1.0  INTRODUCTION 

1.1 RATIONALE 

Data from the National Spinal Cord Injury Statistical Center (2012) reports annual incidence of 

spinal cord injury (SCI) in the U.S. as approximately 12,000 new cases each year, excluding 

those who die at the scene of the accident.1 These data report 270,000 persons with SCI in the 

U.S. in 2012.1 Mobility aids, such as wheelchairs and scooters, are vital to persons with SCI. Of 

those U.S. residents with SCI using wheelchairs, 40.5% use manual wheelchairs.1 Because the 

shoulder is not anatomically designed to propel the body through space like the hip is, people 

using manual wheelchairs frequently develop pain and injury. For manual wheelchair users, 

preventing upper extremity (UE) repetitive strain injuries is vital to maintain an independent life 

style. Studies on pain in manual wheelchair users found a 64-94% prevalence of UE pain.2,3 

Another study found 71% of respondents reported shoulder pain, 53% reported wrist pain, 43% 

reported hand pain, and 35% reported elbow pain. These pains were more likely associated with 

pressure reliefs, transfers, and wheelchair use than seven other functional activities.4 Other 

studies of pathologies among people with SCI found 73% of participants had rotator cuff tears,5 

72% had degenerative joint changes,6 and 64% had carpal tunnel syndrome.7,8 

For people with SCI to maintain quality of life, UE pain must be prevented because it 

limits mobility. UE pain among people with SCI who use manual wheelchairs is associated with 
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overuse and incorrect use of their wheelchairs, as discussed in a Clinical Practice Guideline on 

the Preservation of Upper Limb Function Following Spinal Cord Injury.9 Laboratory data on 

wheelchair propulsion have been used to study UE pain among people with SCI; however, data 

collected in a natural environment regarding activities of manual wheelchair users are lacking. 

The device used in this study can potentially collect such data.  

This investigation identified whether a Wheelchair Propulsion Monitoring Device 

(WPMD) is able to determine specific UE motions of manual wheelchair users including 

propulsion, rest, being pushed, and Activities of Daily Living (ADLs). The WPMD includes 3-

axis accelerometers (Shimmer ResearchTM, Dublin, Ireland)10 on the upper arm and underneath 

the seat and a wheel rotation data logger clipped to the wheel. The WPMD can be used in a 

natural environment of a manual wheelchair user to quantify and classify functional use of the 

UE; such information can be used to analyze quality of movement — a goal of both clinicians 

and researchers. Analyzing quality and quantity of movement are two important steps to 

understanding and addressing the pain and injury experienced by manual wheelchair users. 

Overall, this study was a subsection of a larger study that aims to develop and validate 

accelerometry-based field measures for kinematic and kinetic performance of wheelchair 

propulsion in natural environments. To accomplish such goal, the larger study needs a device 

that can determine when manual wheelchair users are propelling their chairs in their home and 

community settings — the study of this thesis addresses this goal. A WPMD that can collect data 

to be classified as activities of manual wheelchair users can be used to examine propulsion 

parameters (stroke number, cadence, propulsion forces and moments) to provide insight on both 

quality and quantity of propulsion. 
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1.2 AIMS AND HYPOTHESES 

This investigation used a WPMD, including two accelerometers and a wheel rotation data logger, 

to collect data from manual wheelchair users. Movement data on activities of manual wheelchair 

users obtained in the laboratory from this study were used to develop an activity classification 

model for classifying type of UE movements based on the WPMD.   

Specific Aim 1: Develop a model based on WPMD data that estimates time spent on four 

types of UE movement including: independent wheelchair propulsion, being pushed, resting, and 

UE movement for ADLs. 

Hypothesis 1a: The model will be able to estimate the time spent on the four activities to 

be within 10% difference from the criterion measure by video recording. 

 

1.3 BACKGROUND AND SIGNIFICANCE 

Activity classification with activity monitors has been well documented in ambulatory 

populations but is lacking in manual wheelchair user populations.11-15 In fact, accelerometers 

have been used in a number of studies to measure a person’s posture, gait, running style, severity 

of tremor in some conditions, physical activity, and energy expenditure.16-21 Despite the 

extensive investigation into quantifying motion of the ambulatory population, limited research 

exists for the population of manual wheelchair users. The studies that do exist focus on gross 

wheelchair motion (distance and speed); whereas the study of this thesis went further to classify 

more specific activities of manual wheelchair users. 
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Sonenblum et al (2012) used a wheel rotation data logger that measured time and distance 

to quantify bouts of mobility in everyday life of manual wheelchair users. Sonenblum et al 

(2012a) quantified distance and time of aggregated wheeling, but did not classify activity of 

manual wheelchair users as this thesis’s study did.22 In a separate study, Sonenblum et al (2012b) 

used a wheel-mounted accelerometer to study manual wheelchair movement by measuring 

distance wheeled and determining if the wheelchair was moving.23 As seen in these previous 

studies, wheel rotation data loggers only provide gross motion of a wheelchair and are not 

adequate to assess movement quality and distinguish activity type because it is unclear whether 

the user is propelling or being pushed. The wheel rotation data logger used in the study of this 

thesis has been used in many previous studies to quantify wheelchair traveling information 

including distance and speed24 and to collect mobility characteristics of manual wheelchair 

users.25-28  

Activity classification of manual wheelchair users is important for investigations of pain, 

injury, and propulsion interventions.  Researchers need to quantify motion occurring during 

propulsion by first classifying different activities of manual wheelchair users and then 

quantifying time spent in each activity. Activities classified in this study include propulsion, rest, 

being pushed, and ADLs. To classify activities of manual wheelchair users, accelerometers were 

used in this study to provide more specific measure of UE motion (arm) and wheelchair motion 

(seat) in addition to gross wheelchair motion detected by the wheel rotation data logger. 

While work with accelerometers to classify activities of manual wheelchair is limited, a 

few studies are mentioned here; however, these studies lack aspects that the study of this thesis 

addressed. French et al. (2008) found 80-90% accuracy for classifying propulsion patterns with 

dual-axis wrist accelerometers on participants’ wrists and wheelchair frames; however, this study 
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only included 3 able-bodied individuals, which is not an adequate amount to validate the 

algorithm.29 A separate study by Postma et al (2005) also found accelerometers to be valid 

detectors of wheelchair propulsion. Postma et al achieved 92% accuracy of detecting wheelchair 

propulsion; however, the use of six ADXL202 piezo-resistive accelerometers on different body 

parts is not practical to real-life situations.30 Additional classification of activity by manual 

wheelchair user was performed by Ding et al (2008) with a tri-axis wrist-mounted accelerometer 

and a wheel rotation data logger, resulting with accuracies of 89.4-91.9%.24 Ding et al did not 

include a wide variety of manual wheelchair user activities to classify, especially in regards to 

ADLs which are daily components of manual wheelchair users’ lives. 

In conclusion, activity classification by quantifying motion of manual wheelchair users is 

lacking. This study used a WPMD, including a wheel rotation data logger in addition to arm and 

seat accelerometers, to measure gross wheelchair motion, specific UE motion, and specific 

wheelchair motion. Quantifying and classifying activity of manual wheelchair users with the 

WPMD will assist future investigations of pain and injury.  
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2.0  METHODS 

2.1 INSTRUMENTATION 

The WPMD includes three devices: a wheel rotation data logger attached to the wheelchair 

wheel, a 3-axis accelerometer worn on the dominant upper arm, and a 3-axis accelerometer 

attached underneath the wheelchair seat. The WPMD monitors wheelchair movement as well as 

upper limb movement. 

The wheel rotation data logger was developed at the Human Engineering Research 

Laboratories to monitor mobility of manual wheelchair users in natural environments. The wheel 

rotation data logger is self-contained, approximately 5 cm in diameter, and 3.8 cm in depth. The 

wheel rotation data logger is powered by a 1/6D wafer-cell lithium battery, with the ability to 

collect and store data for more than 3 months. No wheelchair modifications were required 

because the wheel rotation data logger easily attaches to spokes of a wheelchair. The wheel 

rotation data logger measures rotation with three reed switches. Each switch is mounted 120° 

apart on the back of the printed circuit board. A magnet is mounted at the bottom of a pendulum 

which maintains position as a result of gravity. With wheel rotation exceeding 120°, one reed 

switches is triggered, resulting in a date and time stamp which is then processed to obtain 

distance traveled, speed, time of movement, and number of stops.27  
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The accelerometer is a low-power inertial sensor platform that uses an onboard 3-axis 

accelerometer to record motion data. The accelerometer is about 3cm in width, 5 cm in length, 

1.5cm in depth, and about 60 gm.  Accelerometers used in this study contain a single tri-axial 

accelerometer and a power source to collect and store data for up to four days. Accelerometers 

were attached to the participant’s dominant upper arm and underneath the wheelchair seat with 

elastic straps. Upper arm and wheelchair seat accelerometers were configured at 20 and 60 Hz, 

respectively. 

2.2 PROTOCOL 

2.2.1 Participants 

A sample of 26 participants completed the study. Participants were identified through use of IRB 

approved registries developed by the Human Engineering Research Laboratories (VA IRB# 

0212005) and UPMC Department of Physical Medicine and Rehabilitation (Pitt IRB # 0304069). All 

participants in these registries have provided informed consent to be contacted for future research 

studies. Registry coordinators received an IRB approved flyer to distribute to participants according 

to procedures approved in their respective IRB protocols. In addition, participants were recruited via 

flyers posted in local rehabilitation facilities and outpatient facilities. Participants were included if 

they 1) were 18 years of age or greater; 2) use a manual wheelchair as a primary means of mobility 

(80% or more of their time spent moving); 3) have a Spinal Cord Injury. Participants were excluded 

if they were unable to tolerate sitting for 2 hours, and/or have upper limb pain limiting mobility. 
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2.2.2 Testing 

The study was divided into two visits for reasons pertaining to the larger study of which this 

study was a subsection. The larger study needed participants to return to their home with the 

WPMD to collect natural environment data for an average of two days. Each visit took about 2.5 

hours, and was conducted at the Human Engineering Research Laboratories.  

During visit one, participants completed an informed consent document, a demographics 

survey, and the Wheelchair User’s Shoulder Pain Index (WUSPI). After completing required 

paperwork, accelerometers were attached to each participant’s dominant arm and underneath the 

wheelchair seat (see Figures 1 and 2). Figure 1 includes an additional wrist accelerometer that 

was used for other protocol from the larger study of which this study was a subsection. A wheel 

rotation data logger was attached to each participant’s wheel on his or her dominant side. 

Sampling frequencies of these devices can be found in Table 1.  

 

 

 

Figure 1. Arm(A) accelerometer and wheel rotation data logger (B) 

 

 

A 

B 
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Figure 2. Seat accelerometer 

 

 

Table 1. Devices’ Sampling Frequencies 

Device Sampling Frequency 
Arm Accelerometer 20Hz 
Seat Accelerometer 60Hz 

 

 

 

Participants then completed a propulsion course, an ADL course, and finished with the 

propulsion course again. The propulsion course contained a level surface (33 meters) and a 1:12 

sloped surface (13 meters) and was completed at three different speeds: self-selected, slow 

(approximately 0.59m/s), and fast (approximately 1.75m/s). Slow and fast speeds were 

controlled by requiring participants to follow a power chair operated by an investigator. The 

ADL course was comprised of activities including: putting on and taking off a jacket, opening a 

door, doing laundry, and preparing a meal. This ADL course also had a portion in which the 

participant pushed and was pushed in his or her wheelchair along the propulsion course. 

During visit two, participants were set up with same devices from lab visit one. 

Participants completed the propulsion course twice during this second visit with a rest period in 
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between, during which participants watched an instructional video on propulsion for protocol of 

the larger study.  

With completion of both visits, each participant propelled for a total of 24 level-surface 

trials at self-selected speed, low speed, and fast speed, and 12 sloped-surface trials at a self-

selected speed. Additionally, each participant completed one ADL trial and was pushed for two 

level-surface trials and two sloped-surface trials.  

 

2.3 DATA COLLECTION 

Acceleration data collected were saved in the accelerometer’s memory. All acceleration data 

were converted to g forces (m/s) using Shimmer software and were later processed using a 

MATLAB® algorithm. Data collected from the wheel rotation data logger were saved and 

converted using data logger software. These data were later processed with a MATLAB® 

algorithm to obtain distance and speed. Accelerometers and the wheel rotation data logger were 

synchronized based from a central computer time. 

Videos from laboratory trials were used as a reference for data analysis. Participants’ 

movements were labeled as 1 of 13 activities based from video (see Table 2, Activity Labels). 

Two research assistants labeled activities based from video to double check for errors. 

Incomplete rest differed from complete rest by including movements of participants in which 

they were stationary in their chairs but had slight upper extremity motion. Examples of 

incomplete rest include when participants adjusted clothing and when participants used hands for 

gestures during normal conversation.  
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Table 2. Activity Labels 

Activity Re-assignment 
Level Propulsion Propulsion 
Up-Slope Propulsion Propulsion 
Down-Slope Propulsion Propulsion 
Being pushed on a level surface Being Pushed 
Being pushed up a slope Being Pushed 
Being pushed down a slope Being Pushed 
Turn  Propulsion 
Complete Rest Rest 
Incomplete Rest Rest 
Dressing ADL 
Meal Preparation ADL 
Opening a door ADL 
Doing Laundry ADL 

 

 

 

Start times of WPMD (accelerometers and wheel rotation data logger) for each visit were 

plotted and visually synchronized so data could be analyzed and compared. Figure 3 shows an 

example of synchronized data. Next a research assistant used a MATLAB® (Version 7.11.0 

R2010b, The Mathworks, Inc. USA) algorithm to label data with corresponding activities from 

video recording of each visit. The algorithm segmented data into windows with 50% overlap, 

then each window was assigned the majority activity. The algorithm then re-assigned activities 

into 1 of 4 groups: self-propulsion, being pushed, rest, and ADLs (See Table 2 for re-assignment 

classifications). Statistical features calculated for each window include: mean, standard 

deviation, root mean square, mean absolute deviation, zero crossing, mean crossing, magnitude, 

energy, entropy and correlation to resultant. These features were calculated for x, y, z and 

resultant axis from accelerometers and for velocity from the wheel rotation data logger. Different 
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size windows were used to see the effect number of samples had on model accuracy; five, 10, 

and 30 second windows were used. Different window sizes produced different numbers of 

sample data to create the model with; the larger the window the fewer samples. Five second 

windows produced 32,944 samples, 10 second windows produced 15,851 samples, and 30 

second windows produced 5,338 samples. In addition to creating the model with different 

window sizes, the model was also created both with and without seat accelerometer data to see 

the effect on accuracy.  

 

 

 

Figure 3. Plot Synchronization 
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3.0  DATA ANALYSIS 

Features calculated for data labeled as 1 of 4 activities were organized into matrices and fed into 

WEKA (Waikato Environment for Knowledge Analysis version 3.6.4 1999-2010) to develop a 

classifying model using a decision tree method (Random Forest) with 10-fold cross validation. 

WEKA is a program that uses machine-learning algorithms to classify a data set. The data from 

the WPMD were organized as described in the data collection section, and then WEKA created a 

model based off of this data to classify future WPMD data as self-propulsion, being pushed, rest 

or ADLs based on labels of data collected from lab visits. WEKA uses algorithms to classify 

data based on variables provided. The 10-fold cross validation used to create the classifying 

model split the data into 10 sections, then used nine sections to create a model and the tenth 

section to determine the accuracy of the model. Each of the 10 sections was used once to validate 

the model; percent accuracies presented in this paper are averages of the 10 accuracies obtained 

for each validation run. An attribute selection option in WEKA was used to eliminate highly 

correlated variables from features matrices. Different selections of variables were used to see the 

effect on percent accuracy. See Table 3 for different combinations of variables used to create the 

model. 
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Table 3. Attribute Selection 

Arm Accelerometer and Data Logger 
12 Variables 
Mean (x axis, arm accelerometer– g) 
Mean absolute deviation (x axis, arm accelerometer– g) 
Correlation (x axis, arm accelerometer– g) 
Correlation (y axis, arm accelerometer– g) 
Mean absolute deviation (z axis, arm accelerometer– g) 
Standard deviation (xyz axis, arm accelerometer– g) 
Mean absolute deviation (xyz axis, arm accelerometer– g) 
Mean crossing (xyz axis, arm accelerometer– g) 
Entropy (xyz axis, arm accelerometer– g) 
Mean (velocity– m/s) 
Root mean squared (velocity– m/s) 
Mean absolute deviation (velocity– m/s) 
10 Variables 
Exclude mean crossing and entropy for all data 
7 Variables 
Exclude mean crossing and entropy for all data 
Exclude root mean squared and mean absolute deviation for velocity 
Arm Accelerometer, Seat Accelerometer, and Data Logger 
16 Variables 
Mean (x axis, arm accelerometer– g) 
Correlation (x axis, arm accelerometer– g) 
Correlation (y axis, arm accelerometer– g) 
Mean absolute deviation (z axis, arm accelerometer– g) 
Standard deviation (xyz axis, arm accelerometer– g) 
Mean absolute deviation (xyz axis, arm accelerometer– g) 
Mean crossing (xyz axis, arm accelerometer– g) 
Entropy (xyz axis, arm accelerometer– g) 
Mean (x axis, seat accelerometer– g) 
Mean absolute deviation (x axis, seat accelerometer– g) 
Mean absolute deviation (z axis, seat accelerometer– g) 
Mean absolute deviation (xyz axis, seat accelerometer– g) 
Entropy (xyz axis, seat accelerometer– g) 
Mean (velocity– m/s) 
Root mean squared (velocity– m/s) 
Mean absolute deviation (velocity– m/s) 
13 Variables 
Exclude mean crossing and entropy for all data 
12 Variables 
Exclude mean crossing and entropy for all data 
Exclude root mean squared and mean absolute deviation for velocity 
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Random Forest is a decision tree machine learning algorithm requiring data that can be 

described by features. To predict class label, this algorithm uses a logical set of decisions 

summarized by a tree. A small tree with low error achieves effectiveness. A decision tree 

algorithm was used because relationships between collected data and corresponding labels are 

nonlinear and have complex relationships since the labels were based on activity that was unique 

to each participant.32 Other studies investigating activity recognition also used a decision tree 

algorithm because of its balance between accuracy and complexity.33-35 Additional studies 

investigating wheelchair activity cite use of Random Forest, further supporting this study’s use 

of the algorithm for activity classification.24, 36 
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4.0  RESULTS 

4.1 PARTICIPANTS 

Twenty-six participants including six females and 20 males with SCI and an average age of 

40±14 years were tested. Participants have been using a manual wheelchair 12.62±8.11 years and 

all participants use their wheelchairs over six hours a day. More details regarding demographic 

information of participants can be found in Table 4. No participants experienced adverse events 

from participation in this study. The participants in this study reported average pain levels of 

5.13 based on the WUSPI (0 being no pain, 150 being extreme pain).  
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Table 4. Participants’ Demographics 

Characteristic  
Male gender – no. (%) 20 (77) 
Age – yr.  40±14 
Weight – lb. 159.12±40.71 
Ethnic Origin – no. (%)  
     Caucasian 20 (77) 
     African-American 4 (15) 
     Asian-American 2 (8) 
SCI Level – no. (%)  
     Cervical  6 (23) 
     Thoracic 15 (58) 
     Thoracic – Lumbar 2 (8) 
     Lumbar 2 (8) 
     Cauda Equina 1 (4) 
Wheelchair Type – no. (%)  
     Depot 8 (31) 
     Light Weight 7 (27) 
     Ultra-Light 10 (38) 
     Power Assist 1 (4) 
Years spent using wheelchair 12.62±8.11 

4.2 DATA  

Table 5 compares percent accuracies for different window lengths, different variables, and 

different device combinations. For the 26 participants, the classifying model based on Random 

Forest Tree Decision algorithm had best percent accuracy using 16 variables of data from arm 

accelerometer, seat accelerometer, and wheel rotation data logger split into 10 second windows. 

Figure 4 is a confusion matrix of this model, illustrating how the model classified and 

misclassified windows of recorded data. 
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Table 5. Percent Accuracy 

Arm Accelerometer and Data Logger 
12 Variables 

 5 second window 10 second window 30 second window 
ADL 78.8% 81.0% 65.8% 
Being Pushed 74.4% 71.9% 78.4% 
Propulsion 79.6% 81.2% 83.3% 
Rest 80.3% 80.2% 76.9% 

10 Variables 
ADL 77.5% 80.0% 65.8% 
Being Pushed 71.6% 71.8% 78.0% 
Propulsion 79.5% 80.8% 81.9% 
Rest 80.1% 80.2% 76.9% 

7 Variables 
ADL 73.5% 78.9% 66.0% 
Being Pushed 69.2% 68.4% 77.2% 
Propulsion 79.2% 80.5% 81.6% 
Rest 78.5% 79.7% 76.3% 

Arm Accelerometer, Seat Accelerometer, and Data Logger 
16 Variables 

 5 second window 10 second window 30 second window 
ADL 85.1% 84.6% 75.4% 
Being Pushed 80.0% 79.9% 80.1% 
Propulsion 83.9% 84.5% 87.3% 
Rest 85.3% 85.6% 82.8% 

13 Variables 
ADL 84.0% 84.3% 73.4% 
Being Pushed 79.0% 78.7% 80.0% 
Propulsion 83.4% 84.2% 86.9% 
Rest 85.2% 85.5% 83.0% 

12 Variables 
ADL 81.4% 83.7% 75.3% 
Being Pushed 81.6% 78.2% 79.3% 
Propulsion 83.7% 83.8% 84.8% 
Rest 84.8% 84.6% 81.0% 
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Predicted Activity based on Model 

ADL Being pushed Propulsion Rest  

2160 4 105 254 ADL C
riterion m

easure 
based on video  

13 428 81 79 Being Pushed 

157 50 5206 620 Propulsion 

222 54 769 5649 Rest 

Figure 4. Confusion Matrix 

 

 

The total time participants spent in the four activities during lab visits was totaled based 

on the video recording. The model then quantified the time spent in the four activities for each 

participant. The percent error for total times are as follows: 2.3% error for time propelling, 0% 

error for time resting, 6.5% error for time performing ADLs, and 18.1% error for time being 

pushed. See Table 6 for average total times spent in each activity. 

 

 

Table 6. Total Time Comparison: Model vs. Video 

 Average time participants spent in each activity during lab visits 

Video Model Difference Percent Error 

Propulsion 00:21:00 00:20:32 00:00:28 2.3% 

Being Pushed 00:02:11 00:01:47 00:00:24 18.1% 

ADL 00:09:06 00:08:30 00:00:36 6.5% 

Rest 00:22:00 00:22:00 00:00:00 0.0% 
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5.0  DISCUSSION 

Previous studies have attempted to use activity monitors to detect gross mobility levels in terms 

of traveling distance, speed,37-40 and wheelchair propulsion episodes.41 Performance accuracy 

results obtained in the decision tree Random Forest classifier for self-propulsion and external 

pushing of 84.5% and 79.9% respectively are similar to results by Ding et al (2008) with average 

accuracies of 88% and 71 % respectively.24 The study presented in this thesis included a more 

extensive span of activities to collect data on (specifically ADLs) than Ding et al (2008). Another 

study on wheelchair activity classification, by Postma et al (2005), achieved accuracies of 87-

92% for detecting wheelchair propulsion versus non-propulsion, as compared to this study’s 

accuracies of 84.5% for propulsion and 85.6% for rest.30 The study presented in this thesis had 

more participants than Postma et al (2005), expanding variety of data used to create the 

classifying model. French et al (2008) recognized propulsion patterns over a variety of surfaces 

with a wrist mounted accelerometer and found accuracies of 80-90%.29 Unlike the study 

presented in this thesis, French et al (2008) did not classify activities of wheelchair users outside 

of propulsion.  French et al. (2008) did another study on propulsion patterns with a virtual coach 

to classify self-propulsion and external pushing resulting with average accuracies of 80%.36 This 

thesis’s study had different devices than these other studies discussed above, including a seat 

accelerometer. As seen in Table 5, the percent accuracy of the classifying model improves with 

the use of data from the seat accelerometer. Although this study did not investigate transfers, the 
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inclusion of the seat accelerometer in the WPMD provides the opportunity for future work to 

classify transfers as an activity. Additional protocol for the larger study required multiple visits 

which expanded the amount of data obtained to create the classifying model. Multiple visits also 

increased variety of data by including data from different days. 

Figure 4, a confusion matrix, illustrates how some lab data are misclassified. The 

classifying model predicted some data to be rest when the criterion measure was ADL. Rest and 

ADL activities both involve little chair motion; this is a possible source of misclassification. 

Additionally, when labeling activities based from video criterion, all movements occurring 

during ADLs were labeled as ADLs. For instance, if the subject took a rest between getting 

cooking materials and preparing a meal, it was still classified as ADL. Other errors of 

classification may stem from confusion due to data from downhill propulsion. Data from 

downhill propulsion were labeled as propulsion, despite the dramatic difference in upper 

extremity motion from uphill or level propulsion. This combination of wheel rotation and little 

upper extremity motion may contribute to model’s incorrect classification of propulsion data as 

being pushed. Further error of the model may be related to the little data collected while 

participants were being pushed. As seen by Table 6, participants only spent an average of two 

minutes and 11 seconds being pushed. Future work should focus on more specific labeling of 

activities to improve classification accuracy.   

This model can be important to researchers for data collection and to clinicians for 

analysis of motion in users’ natural environments. First, the WPMD in the study successfully 

collected data on activities of manual wheelchair users in a laboratory. Quantifying data on such 

activities can help researchers study etiology of pain and injury and propulsion patterns. The pain 

levels of the participants in this study need to be considered when applying data from a different 
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population. The model was not created based on data from participants with severe pain, and 

thus it may need modification before being generalized to this population. As previously 

discussed, overuse of manual wheelchairs is associated with pain and injury for users, but not a 

lot of data exists to define overuse. The WPMD can quantify data on propulsion to help make 

this definition. More importantly, the WPMD can be used in a user’s natural environment. If a 

WPMD is used in clients’ natural environments and their data are applied to this model, 

clinicians can produce an estimate for quantity of time spent in activities. This information is 

useful for implementing and monitoring any therapeutic home-programs in addition to defining 

overuse. Quantifying wheelchair use can also aid clinicians in justifying wheelchair choices. For 

example, a clinician can use a WPMD to prove whether a client propels more using a light 

weight manual wheelchair than using a standard chair. Quantified activity in a client’s natural 

environment has potential to impact insurance policies, such as those restricting wheelchair 

upgrades and renewals.  

A WPMD can also potentially evaluate quality of UE motions for propulsion and other 

ADLs. Such information could help healthcare professionals reduce UE pain experienced by 

people with SCI using manual wheelchairs. A Clinical Practice Guideline on the Preservation of 

Upper Limb Function Following Spinal Cord Injury mentions the importance of reducing 

frequency of repetitive upper limb tasks.9 This study could result in a potential tool to monitor 

activity of manual wheelchair users and contribute to preservation of upper limb functions. If 

WPMD data in this study are found to be correlated with biomechanical data of wheelchair 

propulsion, the WPMD will become an integral tool for researchers to examine UE motions of 

wheelchair users in their natural environments. Once again, this will help with understanding 

etiology of UE pain and injury in this population.  
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As previously discussed, the study of this thesis is part of a larger study. By validating 

WPMD collection and classification of data on activities of manual wheelchair users, this study 

will assist the larger study in evaluating and quantifying activities in a natural environment. 

Additionally, another aspect of the larger study examined usefulness of a WPMD to count stroke 

number, which can help users adjust propulsion patterns to preserve upper limb function. Future 

work should focus on increasing classification accuracy of the model; more data could be 

collected from more participants to build a larger base for the model to use to make decisions. 
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6.0  CONCLUSION 

This study has shown, when used together, accelerometers and a wheel rotation data logger can 

detect activities of wheelchair users including propulsion, being pushed, rest, and ADLs. 

Collecting data on these activities from 26 participants with spinal cord injury has added to the 

pool of information regarding manual wheelchair propulsion and has created a model to classify 

activities based off data. Data collected in manual wheelchair users’ natural environments with 

accelerometers and wheel rotation data logger can be applied to the model created in this study to 

quantify and classify activity. The model has percent accuracies for classifying each activity as 

follows: 84.8% for propulsion, 85.8% for rest, 84.9% for ADLs, and 79.7% for being pushed.  
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