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VOLATILITY MODELS AND THEIR APPLICATION TO OPTIONS

PRICING AND RISK MANAGEMENT

A. B. Sharapov, M.S.

University of Pittsburgh, 2012

We look at various volatility models and their applications. Starting from a basic linear

GARCH model we proceed to more advanced linear GARCH models involving leverage ef-

fects and asymmetry. We also look at some examples of non-linear GARCH models such

as TGARCH, smooth transition GARCH and NNGARCH.ML estimation technique is con-

sidered. Some applications to options pricing and risk management are presented. Next we

turn our attention to discrete and continuous stochastic volatility models. Filtering tech-

niques such as Kalman filter, particle filter are presented and estimation approaches based

on filtering as well as efficient method of moments are elaborated on in details. Finally we

take a look at the implied volatility surface and some ways of its estimation.
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1.0 INTRODUCTION

For the last 20− 30 years the science of financial modeling has drastically developed. These

days in order to become a financial modeler it is sometimes required to have a PhD degree

from a top university and a highly numerate subject. This is due to a very high complexity of

financial models. Different aspects of the behavior of financial returns, volatility or pricing

should be taken into account. Nonetheless people are still unable to fully explain some

features attributed to very complex derivatives and the ongoing research will continue for

years to come.

In this thesis we take a look at one of the most important feature of any derivative

security and any financial instrument in general - volatility. Being one of most researched

subjects in finance these days it is still not fully understood and new models of volatility

appear every year in abundance. To give the reader a sense of breadth of the usage of

volatility forecasts let us list a few reasons why finance practitioners make such a big deal

out of it.

Firstly, all sorts of derivative securities prices strongly depend on the volatility. Take a

simple example of a call option of a stock. The famous Black-Scholes formula says that be-

sides some other factors the price of the option depends on volatility. Being a very simplistic

model the BS model is unable to give accurate results for options prices, but nonetheless it

gives a great deal of information on what is importance what is not. Being able to predict

volatility one can price options more accurately.

Secondly, risk managers look at volatility forecasts on a daily basis. The most popular

risk measure VaR depends on volatility, so the ability to quantify risk in directly related to

the volatility forecasting.

In this thesis we will look at two types of volatility models: the generalized autoregressive
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conditional heteroscedasticity models (GARCH) and stochastic volatility models (SV). We

well present some theory underlying these models as well as some estimation techniques. We

do not claim to cover all aspects of volatility modeling here, since the body of research on

this subject is enormous.

We start our presentation with some features of financial returns called stylized facts.

For the most part volatility models try to reproduce some of them and the quality of a model

sometimes depends of whether a certain fact in explained or not.
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2.0 STYLIZED FACTS AND PROPERTIES OF FINANCIAL TIME SERIES

The study of statistical properties of financial time series has revealed a wealth of interesting

stylized facts [1] which seem to be common to a wide variety of markets, instrument and

periods:

1. Absence of autocorrelations: autocorrelations of asset returns are often insignificant,

except for very small intraday time scales (≃ 20 minutes) for which microstructure effects

come into play.

2. Heavy tails: the (unconditional) distribution of returns seems to display a power-law or

Pareto-like tail, with a tail index which is finite, higher than two and less than five for

most data sets studied. In particular this excludes stable laws with infinite variance and

the normal distribution. However, the precise form of the tails is difficult to determine.

3. Gain/loss asymmetry: one observes a large drawdowns in stock prices and stock index

values but not equally large upward movement.

4. Aggregational Gaussianity: as one increases the time scale over which returns are calcu-

lated, their distribution looks more and more like a normal distribution. In particular,

the shape of the distribution is not the same at different time scales.

5. Intermittency: returns display, at any time scale, a high degree of variability. This is

quantified by the presence of irregular bursts in time series of a wide variety of volatility

estimators.

6. Volatility clustering: different measures of volatility display a positive autocorrelation

over several days, which is quantifies the fact that high-volatility events tend to cluster

in time.
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7. Conditional heavy tails: even after correcting returns for volatility clustering, the resid-

ual time series still exhibit heavy tails. However, the tails are less heavy than in the

unconditional distribution of returns.

8. Slow decay of autocorrelation in absolute returns: the autocorrelation function of abso-

lute returns decays slowly as a function of the time lag, roughly as a power law with an

exponent β ∈ [0.2, 0.4]. This is sometimes interpreted as a sign of long range dependence.

9. Leverage effect: most measures of volatility of an asset are negatively correlated with

the returns of the asset.

10. Volume/volatility correlation: trading volume is correlated with all measures of volatility.

11. Asymmetry in time scales: coarse-grained measures of volatility predict fine-scale volatil-

ity better than the other round.

In the following chapters we attempt to present various models that have been developed for

the last several decades. These models range from simple univariate GARCH(p,q) model to

non-linear GARCH model, multivariate GARCH models and finally the Stochastic volatility

models. We will also look at some aspect of asset pricing based on those models as well as

risk management.
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3.0 CONDITIONAL HETEROSCEDASTICITY MODELS OF VOLATILITY

3.1 LINEAR MODELS FOR CONDITIONAL HETEROSCEDASTICITY.

3.1.1 Univariate GARCH.

Autoregressive conditional heteroscedastic models were introduced by Engle (1982) and their

GARCH extension is due to Bollerslev. In these models, the key concept is the conditional

variance or put in other words, the variance conditional on past information. In the classical

GARCH models, the conditional variance is given as a linear function of the squared past

values of the series.This particular form is able to capture most of the stylized facts intrinsic to

financial time series. At the same time, this model is simple enough to allow for a thorough

study of the solutions. In the next section we present the general theory underlying the

GARCH models closely following Francq and Zakoian [40, 4].

3.1.1.1 General theory. We start with a definition of GARCH processes based on the

first two conditional moments.

Definition. A process (ϵt) is called a GARCH(p,q) precess if its first two conditional mo-

ments exist and satisfy:

• E(ϵt|ϵu, u < t) = 0, t ∈ Z

• There exist constants ω, αi, i = 1, ..., q and βj, j = 1, ..., p such that

σ2
t = V ar(ϵt|ϵu, u < t) = ω +

q∑
i=1

αiϵ
2
t−i +

p∑
j=1

βjσ
2
t−j (3.1)
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Equation (3.1) can be written in a a more compact way as

σ2
t = ω + α(B)ϵ2t + β(B)σ2

t (3.2)

where B is the standard backshift operator and α and β are polynomials of degree q and p,

respectively:

α(B) =

q∑
i=1

αiB
i, β(B) =

∑p
j=1 βjB

j

If β(z) = 0 we have

σ2
t = ω +

q∑
i=1

αiϵ
2
t−i (3.3)

and the precess is called an ARCH(q) precess. By definition, the innovation of the process

ϵ2t is the variable νt = ϵ2t − σ2
t . Substituting in (3.1) the variables σ2

t−jby ϵ
2
t−j − νt−j, we get

the representation

ϵ2t = ω +
r∑

i=1

(αi + βi)ϵ
2
t−i + νt −

p∑
j=1

βjνt−j (3.4)

where r = max(p, q), with the convention αi = 0, (βj = 0) if i > q, (j > p). This equation

has the linear structure of an ARMA model, allowing for simple computation of the linear

predictions.The ARMA representation will be useful for estimation and identification of

GARCH processes.

The above definition does not directly provide a solution process satisfying those con-

ditions. The next definition is more restrictive but allows explicit solutions to be obtained.

Let η denote a probability distribution with null expectation and unit variance.

Definition. Strong GARCH(p,q) process.

Let (ηt) be an iid sequence with distribution η. The process (ϵt) is called a strong

GARCH(p,q) (with resprect to the sequence (ηt)) if

ϵt = σtηt

6



σ2
t = ω +

q∑
i=1

αiϵ
2
t−i +

p∑
j=1

βjσ
2
t−j (3.5)

where the αi and βj are nonnegative constants and ω is a strictly positive constant.

Next we turn to stationarity study and identify stationarity conditions without proving

them. For detailed proof the reader is advised to refer to the above mentioned reference by

Francq and Zakoian. We first consider the GARCH(1,1) model which can be studied more

explicitly.

When p = q = 1 the model (3.5) has the form

ϵt = σtηt

σ2
t = ω + αϵ2t−1 + βσ2

t−1

(3.6)

with ω > 0, α ≥ 0, β ≥ 0. Let a(z) = αz2 + β.

Theorem 3.1.1. Strict stationarity of the strong GARCH(1,1) process.

If

−∞ ≤ γ := E[log{αη2t + β}] < 0 (3.7)

then the infinite sum

ht = {1 +
∞∑
i=1

a(ηt−1)...a(ηt−i)}ω (3.8)

converges almost surely and the process (ϵt) defined by ϵt =
√
htηt is the unique strictly

stationary solution of model (3.6). This solution is nonanticipative and ergodic. If γ ≥ 0

and ω > 0, then there exists no strictly stationary solution.

Remark. Condition (3.7) implies β < 1. Now, if

α + β < 1

then (3.7) is satisfied since by application of Jensen inequality

E[log{a(ηt)}] ≤ log(E{a(ηt)}) = log(α+ β) < 0

7



Theorem 3.1.2. Second-order stationarity of the GARCH(1,1) process.

Let ω > 0. If α + β ≥ 1 , a nonanticipative and second-order stationary solution to

the GARCH(1,1) mode does not exist. If α + β < 1 , the process ϵt =
√
htηt is second-

order stationary. More precisely, ϵt is a weak white noise. Moreover, there exists no other

second-order stationary and nonanticipative solution.

Proof. If (ϵt) is a GARCH(1,1) process, in the sense of definition 1, which is second-order

stationary and nonanticipative, we have

E(ϵ2t ) = E{E(ϵ2t |ϵu, u < t)} = E(σ2
t ) = ω + (α + β)E(ϵ2t−1)

that is,

(1− α− β)E(ϵ2t ) = ω

Hence, we must have α + β < 1. In addition , we get E(ϵ2t ) > 0. Conversely, suppose

α + β < 1. By Remark 1, the strict stationarity condition is satisfied. It is thus sufficient

to show the strictly stationary solution defined in ϵt =
√
htηt admits a finite variance. The

variable ht being an increasing limit of positive random variables, the infinite sum and the

expectation can be permuted to give

E(ϵ2t ) = E(ht) = [1 +
∞∑
n=1

E{a(ηt−1)...a(ηt−n)}ω] =

= [1 +
∞∑
n=1

{Ea(ηt)}n]ω = [1 +
∞∑
n=1

(α + β)n]ω =
ω

1− α− β

This proves the second-order stationarity of the solution. Moreover, this solution is a white

noise because E(ϵt) = 0 and for all h > 0, Cov(ϵt, ϵt−h) = 0. One can also prove uniqueness

but we refer the reader to the book by Francq and Zakoian.

Now we turn to the general case of a strong GARCH(p,q) process. We use the following

vector representation.

zt = bt + Atzt−1 (3.9)
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where

bt =



ωη2t

0
...

ω

0
...

0


∈ Rp+q zt =



ϵ2t
...

ϵ2t−q+1

σ2
t

...

σ2
t−p+1


∈ Rp+q

and

At =



α1η
2
t ... αqη

2
t β1η

2
t ... βpη

2
t

1 0 ... 0 0 ... 0

0 1 ... 0 0 ... 0
...

. . . . . .
...

...
. . . . . .

...

0 ... 1 0 0 ... 0 0

α1 ... αq β1 ... βp

0 ... 0 1 0 ... 0

0 ... 0 0 1 ... 0
...

. . . . . .
...

...
. . . . . .

...

0 ... 0 0 0 ... 1 0


is a (p+ q)× (p+ q) matrix.Equation (3.9) defines a first-order vector autoregressive model,

with positive and iid matrix coefficients.The distribution of zt conditional on its infinite past

coincides with its distribution of conditional on zt−1 only, which means that (zt) is a Markov

process. Model (3.9) is thus called the Markov representation of the GARCH(p,q) model.

Iterating (3.9) gives

zt = bt +
∞∑
k=1

AtAt−1...At−k+1bt−k (3.10)

provided that the series exists almost surely.

9



The main tool for studying strict stationarity is the concept of the Lyapunov exponent.

Let A be a (p+ q)× (p+ q) matrix. The spectral radius of A , denoted by ρ(A), is defined

ad the greatest modulus of its eigenvalues. Let || · || denote any norm on the space of the

(p+ q)× (p+ q) matrices.We have the following algebra result:

lim
t→∞

1

t
log ||At|| = log(ρ(A)) (3.11)

This property has the following extension to random matrices.

Theorem 3.1.3. Let {At, t ∈ Z} be a strictly stationary end ergodic sequence of random

matrices, such that E(log+ ||At||) is finite. We have

lim
t→∞

1

t
E(log ||AtAt−1...A1||) = γ = inf

t∈N∗

1

t
E(log ||AtAt−1...A1||) (3.12)

γ is called the top Lyapunov exponent and exp(γ) is called the spectral radius of the sequence

of matrices {At, t∈ Z}. Moreover,

γ = lim
t→∞

a.s
1

t
log ||AtAt−1...A1|| (3.13)

The next theorem which goes without proof states the necessary conditions for the strict

stationarity of GARCH(p,q).

Theorem 3.1.4. Strict stationarity of the GARCH(p,q) model.

A necessary and sufficient condition for the existence of a strictly stationary solution to

the GARCH(p,q) model is that

γ < 0

where γ is the top Lyaponov exponent of the sequence {At, t∈ Z}. When the strictly stationary

solution exists, it is unique, nonanticipative and ergodic.

Theorem 3.1.5. Second order stationarity.

If there exists a GARCH(p,q) process, in the sense of Definition 1, which is second-order

10



stationary and nonanticipative, and if ω > 0, then

q∑
i=1

αi +

p∑
j=1

βj < 1 (3.14)

Conversely, if (3.14) holds, the unique strictly stationary solution of model (3.5) is a

weak white noise. In addition, there exists no other second-order stationary solution.

When

q∑
i=1

αi +

p∑
j=1

βj = 1

the model is called an integrated GARCH(p,q) or IGARCH(p,q) model. This name is

comes from the unit root in the autoregressive part of representation (3.4) and is introduced

by analogy with the integrated ARMA models, ARIMA. However, this analogy can be

misleading since there exists no stationary solution of an ARIMAmodel, whereas in IGARCH

model admits a strictly stationary solution under very general conditions.

Corollary 3.1.6. Suppose that the distribution of ηt has an unbounded support and has no

mass at 0. Then if
∑q

i=1 αi +
∑p

j=1 βj = 1, model (3.5) admits a unique strictly stationary

solution.

3.1.1.2 Identification. Here we consider the problem of selecting an appropriate GAR-

CH or ARMA-GARCH model for given observations of a centered stationary process. A large

part of the finance theory rests on the assumption that prices follow a random walk. The

price variation process, X = (Xt), should thus constitute a martingale difference sequence,

and should coincide with its innovation process,ϵ = (ϵt). The first question addressed here

will be the test of this property, at least a consequence of it: absence of correlation. The

problem is far from trivial because standard tests for non-correlation are actually valid under

an independence assumption. Such an assumption is too strong for GARCH processes which

are dependent though uncorrelated.

If significant sample autocorrelations are detected in the price variations- in other words,

if the random walk assumption cannot be sustained- the practitioner will try to fit an

ARMA(P,Q) model to data before using a GARCH(p,q) model for the residuals.

11



Consider the GARCH(p,q) model

ϵt = σtη

σ2
t = ω +

∑q
i=1 αiϵ

2
t−i +

∑p
j=1 βjσ

2
t−j

(3.15)

with ηt a sequence of iid centered variables with unit variance. We saw that, whatever

the orders p and q, the non-anticipative second-order stationary solution of (3.15) is a white

noise, that is, a centered process whose theoretical autocorrelation ρ(h) = 0 for all h ̸= 0.

Given observations ϵ1, ..., ϵn, the theoretical autocorrelations of centered process (ϵt) are

generally estimated by the sample autocorrelations (SACRs)

ρ̂(h) =
γ̂(h)

γ̂(0)
, γ̂(h) = γ̂(−h) = n−1

∑n−h
t=1 ϵtϵt+h

for h = 0, 1, ..., n − 1. If (ϵt) is an iid sequence of centered random variables with finite

variance then

√
nρ̂(h) → N(0, 1) (3.16)

for all h ̸= 0. For a strong white noise, the SACRs thus lie between the confidence bounds

±1.96/
√
n with a probability of approximately 95% when n is large. These significance bands

are not valid for a weak white noise, in particular, for a GARCH process. Here we show

valid asymptotic bands.

Let ρ̂m = (ρ̂(1), ..., ρ̂(m))
′
denote the vector of the firstm SACRs, based on n observations

of the GARCH(p,q) process defined in (3.15). Let γ̂m = (γ̂(1), ..., γ̂(m))
′
denote a vector of

sample autocovariances (SACVs).

Theorem 3.1.7. Asymptotic distributions of the SACVs and SACRs

If (ϵt) is the nonanticipative and stationary solution of the GARCH(p,q) model (3.15)

and E(ϵ4t ) <∞, then, when n→ ∞,

√
nγ̂m → N(0,Σγ̂m) and

√
nρ̂m → N(0,Σρ̂m := {E(ϵ2t )}−2Σγ̂m),

12



where

Σγ̂m =


Eϵ2t ϵ

2
t−1 Eϵ2t ϵt−1ϵt−2 · · · Eϵ2t ϵt−1ϵt−m

Eϵ2t ϵt−1ϵt−2 Eϵ2t ϵ
2
t−2

...
...

. . .

Eϵ2t ϵt−1ϵt−m · · · Eϵ2t ϵ
2
t−m


is nonsingular. If law of (ηt) is symmetric then Σγ̂m is diagonal.

A consistent estimator of Σ̂γ̂m of Σγ̂m is obtained by replacing the generic term of Σγ̂m

by

n−1
n∑

i=1

ϵ2t ϵt−iϵt−j

with, by convention, ϵs = 0 for s < 1. Clearly, Σρ̂m := γ̂−2Σγ̂m is a consistent estimator

of Σρ̂m and is almost surely invertible for n large enough. This can be used to construct

asymptotic significance bands for the SACRs of a GARCH process.

The standard portmanteau test for checking that the data is a realization of a strong

where noise is that of Ljung and Box (1978). It involves computing the statistic

QLB
m := n(n+ 2)

m∑
n=1

ρ̂2(i)/(n− i)

and rejecting the strong white noise hypothesis if QLB
m is greater than the (1−α)-quantile

of χ2
m.

Portmanteau tests are constructed for checking noncorrelation, but the asymptotic dis-

tribution of the statistics is no longer χ2
m when the series departs from the strong white

noise assumption. For instance, these tests are not robust to conditional heteroscedastic-

ity. In the GARCH framework, we may wish to simultaneously test the nullity of the first

autocorrelations using more robust portmanteau statistics.

Theorem 3.1.8. Corrected portmanteau test in the presence of ARCH

Under the assumption of Theorem 5. the portmanteau statistic

Qm = nρ̂
′

mΣ̂
−1
ρ̂m
ρ̂m

13



has an asymptotic χ2
mdistribution.

Denote by rm (r̂m) the vector of the m first partial autocorrelations (sample partial

autocorrelations (SPACs)) of the process (ϵt). We know that for a weak white noise, the

SACRs and SPACs have the same asymptotic distribution. This applies in particular to a

GARCH process. Consequently, under the hypothesis of GARCH white noise with a finite

fourth-moment, consistent estimators of Σr̂m are

Σ̂
(1)
r̂m

= Σ̂ρ̂m or Σ̂
(2)
r̂m

= ĴmΣ̂ρ̂m Ĵ
′

m,

where Ĵm is the matrix obtained by replacing ρX(1), ..., ρX(m) by ρ̂X(1), ..., ρ̂X(m) in the

Jacobian matrix Jm of the mapping ρm → rm, and Σρ̂m is the consistent estimator of Σ̂ρ̂m .

One can test the simultaneous nullity of several theoretical partial autocorrelations using

portmanteau tests based on the statistics

Qr,BP
m = nr̂

′

mr̂m and Qr
m = nr̂

′

m

(
ˆ

Σ
(i)
ˆ

m

ρ

)−1
r̂m

The statistics Qr,BP
m , QBP

m , QLB
m have the same χ2

m asymptotic distribution. Under the

hypothesis of a pure GARCH process, the statistics Qr
m and Qm also have the same χ2

m

asymptotic distribution.

In case of the weak white noise the standard Barlett formulas are no longer valid. As-

suming that the law of ηt is symmetric the generalized Barlett formulas are given by

lim
n→∞

nCov{ρ̂X(i), ρ̂X(j)} = vij + v∗ij

where

vij =
∞∑
l=1

ωi(l)ωj(l), v∗ij = (κϵ − 1)
∑∞

l=1 ρϵ2(l)ωi(l)ωj(l)

and

14



ωi(l) = {2ρX(i)ρX(l)− ρX(l + x)− ρX(l − i)}

Francq and Zakoian proposed the following algorithm for estimation of generalized Bar-

lett bands.

1. Fit an AR(p0) model to the data using an information criterion for the selection of the

order p0.

2. Compute the autocorrelations ρ1(h), h = 1, 2, ..., of this AR(p0) model.

3. Compute the residuals ep0+1, ..., en of this AR(p0)

4. Fit an AR(p1) model to the squared residuals e2p0+1, ..., e
2
n using an information criterion

for p1.

5. Compute the autocorrelations ρ2(h), h = 1, 2, ..., of this AR(p1) model.

6. Estimate limn→∞ nCov{ρ̂(i), ρ̂(j)} by vij + v∗ij where

v̂ij =
lmax∑

l=−lmax

ρ1(l)[2ρ1(i)ρ1(j)ρ1(l)−2ρ1(i)ρ1(l+j)−2ρ1(j)ρ1(l+i)+ρ1(l+j−i)+ρ1(l−j−i)],

v̂∗ij =
γ̂ϵ2(0)

γ̂2ϵ (0)

lmax∑
l=−lmax

ρ2(l)[2ρ1(i)ρ1(j)ρ
2
1(l)−

−2ρ1(j)ρ1(l)ρ1(l + i)− 2ρ1(i)ρ1(l)ρ1(l + j) + ρ1(l + i){ρ1(l + j) + ρ1(l − j)}],

γ̂ϵ2(0) =
1

n− p0

n∑
t=p0+1

e4t − γ̂2ϵ (0), γ̂2ϵ (0) =
1

n−p1

∑n
t=p0+1 e

2
t

where lmax is a truncation parameter, numerically determined so as to have |ρ1(l)| and

|ρ2(l)| less than a certain tolerance for all l > lmax.

In cases when distribution of ηt is not symmetric, generalized Barlett formulas do not

work. The following theorem gives asymptotic results for behavior of SACVs and SACRs

for very general linear processes whose innovation is a weak white noise.
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Theorem 3.1.9. Let (Xt)t∈Z be a real stationary process satisfying

Xt =
∞∑

j=−∞

ψjϵt−j,
∑∞

j=−∞ |ψj| <∞

where (ϵt)t∈Zis a weak white noise such that Eϵ4t <∞. Let Υt = Xt(Xt, Xt+1, ..., Xt+m)
′
,

ΓΥ(h) = EΥ∗tΥ
∗′
t and

fΥ∗(λ) :=
1

2π

∞∑
h=−∞

e−ihλΓΥ(h),

the spectral density of the process Υ∗ = (Υ∗t ), Υ
∗
t = Υt − EΥt. Then we have

lim
n→∞

nV arγ̂0:m := Σγ̂0:m = 2πfΥ∗(0).

Francq and Zakoian propose the following algorithm for its estimation

1. Fit AR(r) model, with r = 0, 1, ..., R, to the data Υ1 − Ῡn, ...,Υn−m − Ῡn , where

Ῡn = (n−m)−1
∑n−m

t=1 Υt.

2. Select a value r0by minimizing an information criterion.

3. Take

∑̂
γ̂0:m

= Âr0(1)
−1Σ̂r0Â

′

r0
(1)

where for a vector AR(r),

Ar(B)Yt := Yt −
r∑

i=1

AiYt−i = Zt

and Zt is white noise with variance ΣZ .

Next we consider order determination for ARMA(P,Q). Executing this task by means of

SACRs and SPACs is not an easy task. We present here an alternative method called the

corner method.

Denote by D(i, j) the j × j Toepliz matrix

16



D(i, j) =


ρX(i) ρX(i− 1) · · · ρX(i− j + 1)

ρX(i+ 1)
...

ρX(i+ j − 1) · · · ρX(i+ 1) ρX(i)


and let ∆(i, j) denote its determinant. Since ρX(h) =

∑P
i=1 aiρX(h − i) = 0, for all

h > Q, it is clear that D(i, j) is not a full-rank matrix if i > Q and j > P . In other words,

P and Q are minimal orders if and only if ∆(i, j) = 0, ∀i > Q and ∀j > P , ∆(i, P ) ̸= 0

∀i ≥ Q, ∆(Q, j) ̸= 0 ∀j ≥ P .

The minimal orders P and Q can be illustrated by the following table

i\j 1 2 . . . Q Q+1 . . . .

1 ρ1 ρ2 . . . ρq ρq+1

...

P × × × × × ×

P+1 × 0 0 0 0 0

× 0 0 0 0 0

where ∆(j, i) is at intersection if row i and column j,and × denotes a nonzero element.

The entries in this table can be obtained by the following recursive formula

∆2(i, j) = ∆(i+ 1, j)∆(i− 1, j) + ∆(i, j + 1)∆(i, j − 1)

and letting ∆(i, 0) = 1, ∆(i, 1) = ρX(|i|).

Replacing theoretical values by its estimates the orders P and Q are characterized by a

corner of small values in the table. However, the notion of ’small’ is not precise enough.

It is preferable to consider the studentized statistics defined, for i = −K, ...,K and

j = 0, ..., K − |i|+ 1, by

t(i, j) =
√
n
∆̂(i, j)

σ̂∆̂(i,j)

, σ̂2
∆̂(i,j)

= ∂∆̂(i,j)

∂ρ
′
K

Σ̂ρ̂K
∂∆̂(i,j)
∂ρK

where Σ̂ρ̂K is a consistent estimator of the asymptotic covariance matrix of the first K

SACRs, and where
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∂∆̂(i, 0)

∂ρX(k)
= 0 i = −K − 1, ..., K − 1 k = 1, ..., K

∂∆̂(i, 1)

∂ρX(k)
= I{k}(|i|) i = −K − 1, ..., K − 1 k = 1, ..., K

∂∆̂(i, j + 1)

∂ρX(k)
=

2∆̂(i, j)∂∆̂(i,j)
∂ρX(k)

− ∆̂(i+ 1, j)∂∆̂(i−1,j)
∂ρX(k)

− ∆̂(i− 1, j)∂∆̂(i+1,j)
∂ρX(k)

∆̂(i, j − 1)

−
{∆̂(i, j)2 − ∆̂(i+ 1, j)∆̂(i− 1, j)}∂∆̂(i,j−1)

∂ρX(k)

∆̂(i, j − 1)2

When ∆(i, j) = 0 the statistic t(i, j) is asymptotically distributed as N(0, 1).If, in contrast,

∆(i, j) ̸= 0 then
√
n|t(i, j)| → ∞ a.s. when n → ∞.We can reject the hypothesis of nullity

of ∆(i, j) at level α if |t(i, j)| is beyond the (1− α/2)-quantile of a N(0, 1).

To identify the orders of a GARCH(p,q) process, one can use the fact that ϵ2t follows an

ARMA(P̃ , Q̃) with P̃ = max(p, q), and Q̃ = p.

To test linear restrictions on the parameters of a model the most popular tests are the

Wald test,the Lagrange multiplier test, and likelihood ration test. Here we present the LM

test.

Consider a parametric model, with true parameter value θ0 ∈ Rd, and a null hypothesis

H0 : Rθ0 = r

where R is a given s× d matrix of full rank s, and r is a give s× 1 vector. Under H0 the

test statistic is given by

LMn :=
1

n

∂

∂θ′ ln(θ̂c)Ĵ
−1 ∂

∂θ
ln(θ̂c)

where

θ̂ = arg sup
θ
ln(θ) θ̂c = arg supθ:Rθ=r ln(θ) Ĵ = − 1

n

∂2ln(θ̂
c)

∂θ∂θ′

asymptotically follows a χ2
s.
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3.1.1.3 Estimation. The quasi-likelihood method is particularly relevant for GARCH

models because it provides consistent and asymptotically normal estimators for strictly sta-

tionary GARCH processes under mild regularity conditions, but with no moment assump-

tions on the observed process. In this section we study QML method and give explicit

formulas for derivatives of likelihood function and the optimization algorithm.

Assume that the observations ϵ1, ..., ϵn constitute a realization of a GARCH(p,q) process,

more precisely a non-anticipative strictly stationary solution of

ϵt =
√
htηt

ht = ω0 +
∑q

i=1 α0iϵ
2
t−i +

∑p
j=1 β0jht−j

(3.17)

where (ηt) is a sequence of iid variables of variance 1, ω0 > 0, α0i > 0, β0j > 0. The orders

p and q are assumed known. The vector of parameters

θ = (θ1, ..., θp+q+1)
′
:= (ω, α1, ..., αq, β1, ..., βp)

′
(3.18)

belongs to a parameter space of the form

Θ ⊂ (0,+∞)× [0,∞)p+q (3.19)

The true value of the parameter is unknown, and is denoted by

θ0 = (ω0, α01, ..., α0q, β01, ..., β0p)
′

(3.20)

To write the likelihood of the model,a distribution must be specified for the iid variable

ηt. Here we do not make any assumption on the distribution of these variables, but work

with a function, called the (Gaussian) quasi-likelihood, which, conditionally in some initial

values, coincides with the likelihood when the ηt are distributed as standard Gaussian. Later

in the discussion we also show how to work with t-distributed ηt. Given the initial values

ϵ0, ..., ϵ1−q, σ̃
2
0, ..., σ̃

2
1−p to be specified below, the conditional Gaussian quasi-likelihood is given

by

Ln(θ) = Ln(θ; ϵ1, ..., ϵn =
n∏

t=1

1√
2πσ̃2

t

exp(− ϵ2t
2σ̃2

t

))
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where the σ̃2
t are recursively defined, for t ≥ 1, by

σ̃2
t = σ̃2

t (θ) = ω +

q∑
i=1

αiϵ
2
t−i +

p∑
j=1

βjσ̃
2
t−j (3.21)

For a given value of θ, under the second-order stationarity assumption, the unconditional

variance is a reasonable choice for the unknown initial values:

ϵ20 = ... = ϵ21−q = σ2
0 = ... = σ2

1−p =
ω

1−
∑q

i=1 αi −
∑p

j=1 βj
(3.22)

Such initial values are, however, not suitable for IGARCH models, in particular, and

more generally when the second-order stationarity is not imposed. Indeed, the constant

(3.22) would then take negative values for some values of θ. In such a case, suitable initial

values are

ϵ20 = ... = ϵ21−q = σ2
0 = ... = σ2

1−p = ω (3.23)

or

ϵ20 = ... = ϵ21−q = σ2
0 = ... = σ2

1−p = ϵ21 (3.24)

A QMLE of θ is defined as any measurable solution θ̂n of

θ̂n = argmax(Ln(θ))

Taking the logarithm, it is seen that maximizing the likelihood is equivalent to minimizing,

with respect to θ

In(θ) =
1

n

n∑
t=1

lt (3.25)

where

lt = lt(θ) =
ϵ2t
σ̃2
t

+ log(σ̃2
t )
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and

σ̃2
t = σ̃2

t (θ) = ω +

q∑
i=1

αiϵ
2
t−i +

p∑
j=1

βjσ̃
2
t−j (3.26)

A QMLE is thus a measurable solution of the equation

θ̂n = argmin(In(θ)) (3.27)

Theorem 3.1.10. Strong consistency of the QMLE

Let (θ̂n) be a sequence of QMLEs satisfying (3.27), with initial conditions (3.23) or

(3.24). Under assumptions

1. θ0 ∈ Θ and Θ is compact

2. γ(A0) < 0 and for all θ ∈ Θ,
∑p

i=1 βj < 1

3. η2t has a nondegenerate distribution and E(η2t ) = 1

4. If p > 0, Aθ0(z) =
∑q

i=1 αiz
i and Bθ0(z) = 1 −

∑p
j=1 βjz

j have no common roots,

Aθ0(1) ̸= 1, and α0q + β0p ̸= 0.

almost surely

θ̂n → θ0, as n→ ∞

Theorem 3.1.11. Asymptotic normality of the QMLE

Under assumptions 1-4 and

1. θ0 ∈ Θ0, where Θ0denotes the interior of Θ.

2. κη = E(η4t ) <∞.

√
n(θ̂n − θ0) → N(0, (κη − 1)J−1)

where

J := Eθ0

(
∂2lt(θ0)

∂θ∂θ′

)
= Eθ0

(
1

σ4
t (θ0)

∂σ2
t (θ0)

∂θ

∂σ2
t (θ0)

∂θ′

)
(3.28)

is a positive definite matrix.
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For more details and the proof of these theorems the an interested reader may refer to

the book by Francq and Zakoian.

3.2 MULTIVARIATE GARCH.

As in the univariate case, we can define multivariate GARCH models by specifying their first

two conditional moments. An Rm -valued GARCH process ϵt, with ϵt = (ϵ1t, ..., ϵmt), must

then satisfy, for all t,

E(ϵt|ϵu, u < t) = 0,V ar(ϵt|ϵu, u < t) = Ht

The multivariate extension of the notion of the strong GARCH process is based on an

equation of the form

ϵt = H
1/2
t ηt (3.29)

where ηt is a sequence of iid Rm-valued variables with zero mean and identity covariance

matrix. The matrix H
1/2
t can be chosen to be symmetric and positive definite but it can

also be chose to be triangular, with positive diagonal elements. The latter choice may be of

interest because if, for instance, H
1/2
t , is chosen to be lower triangular, the first component

of ϵt only depends on the first component of ηt. When m = 2, we can thus set


ϵ1t = h

1/2
11,tη1t

ϵ2t =
h12,t

h
1/2
11,t

η1t +
(

h11,th22,t−h2
12,t

h11,t

)1/2
η2t

Choosing a specification for Ht is obviously more delicate than in the univariate frame-

work because: (i) Ht should be symmetric, and positive definite for all t; (ii) the specification

should be simple enough, while being of sufficient generality; (iii) the specification should be

parsimonious enough to enable feasible estimation.
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3.2.1 Vector GARCH model.

The vector GARCH model is the most direct generalization of univariate GARCH: every

conditional covariance is a function of lagged conditional variances as well as lagged cross-

products of all components. Denote by vech(·) the operator that stacks the columns of

the lower triangular part of its argument square matrix. The next definition is a natural

extension of the standard GARCH(p,q) specification.

Definition. Let ηt be a sequence of iid variables with distribution η. The process ϵt is said

to admit a VEC-GARCH(p,q) representation if it satisfies

ϵt = H
1/2
t ηt

vech(Ht) = ω +
∑q

i=1A
(i)vech(ϵt−iϵ

′
t−i) +

∑p
j=1B

(j)vech(Ht−j)

where ω is a vector of size m(m + 1)/2 × 1, and A(i)and B(j) are matrices of dimension

m(m+ 1)/2×m(m+ 1)/2.

The VEC model potentially has an enormous number of parameters, which can make

estimation of the parameters computationally infeasible.

3.2.2 Constant conditional correlation models.

Suppose that, for a multivariate GARCH process of the form (3.29), all the past information

on ϵkt, involving all the variables ϵl,t−i is summarized in the variable hkk,t with Ehkk,t = Eϵ2kt.

Then, letting η̃kt = h
−1/2
kk,t ϵkt, we define for all k a sequence of iid variables with zero mean

and unit variance. The variables η̃ktare generally correlated, so let R = V ar(η̃t) = ρkl, where

η̃t = (η̃1t, ..., η̃mt). The conditional variance of

ϵt = diag(h
1/2
11,t, ..., h

1/2
mm,t)η̃t

is the written as

Ht = diag(h
1/2
11,t, ..., h

1/2
mm,t)Rdiag(h

1/2
11,t, ..., h

1/2
mm,t)
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By construction, the conditional correlation between the components of ϵtare time-

invariant:

hkl,t

h
1/2
kk,th

1/2
ll,t

= ρkl

To complete the specification, the dynamics of the conditional variances hkk,t, has to be

defined. The simplest constant conditional correlations (CCC) model relies on the following

univariate GARCH specification:

hkk,t = ωk +

q∑
i=1

ak,iϵ
2
k,t−i +

p∑
j=1

bkhkk,t−j (3.30)

In the multivariate framework it seems natural to extend specification (3.30) by allowing

hkk,t to depend not only on its own past, but also on the past of all variables ϵl,t. Set

h̄t =


h11,t
...

hmm,t

 , Dt =



√
h11,t 0 ... 0

0
. . .

...
. . .

0 ...
√
hmm,t

 ϵ̄t =


ϵ21t
...

ϵ2mt



Definition. Let ηt be a sequence of iid variables with distribution η. A process ϵt is called

CCC-GARCH(p,q) if it satisfies

ϵt = H
1/2
t ηt

Ht = DtRDt

h̄t = ω̄ +

q∑
i=1

Aiϵ̄t−i +

p∑
j=1

Bjh̄t−j

where R is a correlation matrix, ω̄ is an m× 1 vector with positive coefficients, and the

Ai and Bj are m×m matrices with nonnegative coefficients.
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One advantage of this specification is that a simple condition ensuring the positive def-

initeness of Ht os obtained though the positive coefficients for the matrices Ai and Bj and

the choice of a positive definite matrix R.

3.2.3 Dynamic conditional correlation models.

Dynamic conditional correlations GARCH (DCC-GARCH) models are an extension of CCC-

GARCH, obtained by introducing a dynamic for the conditional correlation. Hence, the

constant matrix R is replaced by a matrix Rt. Different DCC models are obtained depending

on the specification of Rt. A simple example is

Rt = θ1R + θ2Ψt−1 + θ3Rt−1

where the θi are positive weights summing to 1, R is a constant correlation matrix,

and Ψt−1is empirical correlation matrix of ϵt−1, ..., ϵt−M . The matrix Rtis thus a correlation

matrix.

Another way of specifying the dynamics of Rt is by setting

Rt = diag(Qt)
−1/2Qtdiag(Qt)

−1/2

where diag(Qt) is the diagonal matrix constructed with diagonal elements of Qt, and Qt

is a sequence of covariance matrices. A natural parametrization is

Qt = θ1Q+ θ2ϵt−1ϵ
′

t−1 + θ3Qt−1

where Q is a covariance matrix.

3.2.4 BEKK-GARCH model.

Definition. BEKK-GARCH(p,q))

Let ηt denote an iid sequence with common distribution η. The process ϵt is called a

strong GARCH(p,q) with respect to the sequence ηt, if it satisfies
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ϵt = H
1/2
t ηt

Ht = Ω+
∑q

i=1

∑K
k=1Aikϵt−iϵ

′
t−iA

′

ik +
∑p

j=1

∑K
k=1BjkHt−jB

′

jk

where K is an integer, Ω,Aik and Bjk are square m × m matrices, and Ω is positive

definite.

The specification obviously ensures that if the matrices Ht−i are almost surely positive defi-

nite, then so is Ht.

3.2.5 Factor GARCH models.

3.2.5.1 Factor models with idiosyncratic noise. A very popular model factor model

links individual returns ϵit to the market return ft thought a regression model

ϵit = βift + ηit

The parameter βi can be interpreted as a sensitivity to the factor, and the noise ηit as a

specific risk which is conditionally uncorrelated with ft. It follows that Ht = Ω+λtββ
′
where

β is the vector of sensitivities, λt is the conditional variance of ft and Ω is the covariance

matrix of the idiosyncratic terms. More generally, assuming the existence of r conditionally

uncorrelated factors, we obtain the decomposition

Ht = Ω+
r∑

j=1

λjtβjβ
′

j

It is not restrictive to assume that the factors are linear combinations of the components

of ϵt. If, in addition, the conditional variances λjt are specified as univariate GARCH, the

model remains parsimonious in terms of unknown parameters and the above equation can

be reduced to a particular BEKK model.

3.2.5.2 Principle component GARCH model. The concept of factor is central to

principal component analysis (PCA) and to other methods of exploratory data analysis. PCA

relies on decomposing the covariance matrix V of m quantitative variables as V = PΛP
′
,
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where Λ is a diagonal matrix whose elements are the eigenvalues λ1 ≥ λ2 ≥ ... ≥ λmof V ,

and where P is the orthogonal matrix of the corresponding eigenvectors. The first principal

component is the linear combination of them variables, with weights given by the first column

of P , which, in some sense, is the factor which best summarizes the set of m variables. There

exists m principal components, which are uncorrelated and whose variances λ1, ..., λ2 are in

decreasing order. It is natural considering this method for extracting the key factors of the

volatilities of the m components of ϵt.

We obtain a principal component GARCH (PC-GARCH) or orthogonal GARCH (O-

GARCH) model by assuming that

Ht = PΛP
′

(3.31)

where P is an orthogonal matrix and Λt = diag(λ1t, ..., λmt) , where the λit are the

volatilities, which can be obtained from univariate GARCH-type models. This is equivalent

to assuming

ϵt = Pf t

where f t = P
′
ϵt is the pricipal component vector, whose components are orthogonal

factors. If univariate GARCH(1,1) models are used of the factors fit =
∑m

j=1 P (j, i)ϵjt then

λit = ωi + αif
2
it−1 + βiλit−1

3.3 NON-LINEAR MODELS FOR CONDITIONAL

HETEROSCEDASTICITY.

In this section, we will review some popular nonlinear GARCH models following Terasvirta.

We start off with models which are linear in parameters but can be made nonlinear by

assuming a certain unknown quantity in them to be an unknown variable. The most fre-

quently used models of this type are the GJR-GARCH model by Glosten et al. (1993) and
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the threshold generalized autoregressive conditional heteroscedasticity (TGARCH) model by

Rabemananjara and Zakoian (1993) and Zakoian (1994). In applications, the GJR-GARCH

model is typically assumed to be a first order GARCH model. It can be generalized to have

higher order lags, although is practice, this almost never happens. The model for conditional

variance looks like:

yt = µt + ϵt

ϵt = zth
1/2
t

ht = α0 +

q∑
j=1

{αj + κjI(ϵt−j < 0)} ϵ2t−j +
p∑

j=1

βjht−j (3.32)

where I(A) is an indicator function. The idea of this model is to capture the leverage

effect present in stock return series. This effect creates asymmetry: a negative shock has

a greater impact on the conditional variance than the positive one with the same absolute

value.

The GJR-GARCH model can be generalized by extending the asymmetry to the other

components of the model. The volatility-switching GARCH or VS-GARCHmodel by Fornani

and Mele (1997) is such an extension. The first order version of this model looks like:

ht = α0 + ψ0sgn(ϵt−1) + {α1 + ψ1sgn(ϵt−1)} ϵ2t−1 + {β1 + ψ2sgn(ϵt−1)}ht−1 (3.33)

The TGARCH model is similar to (3.33) with one difference: what is being modeled is

the conditional standard deviation and not the conditional variance. The model is defined

by replacing ht by its square root and each ϵ2t−j by the corresponding absolute value |ϵt−j|.
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3.3.1 Nonlinear ARCH and GARCH models.

3.3.1.1 Engle’s nonlinear GARCH model. The conditional variance in this model

has the following form:

ht = α0 + α1(ϵt−1 − λ)2 + β1ht−1

When λ = 0 , this model collapses into the standard GARCH(1,1) model. These models

share the same weak stationarity condition α1 + β1 < 1, and the above equation has Eϵ2t =

(α1 + λ2)/(1− α1 − β1).

3.3.1.2 Nonlinear ARCH model. Higgins and Bera (1992) introduced a nonlinear

ARCH model (NLARCH) that nests both the standard ARCH model and the logarithmic

GARCH model of Pantula (1986) and Geweke (1986). It is an ARCH model with Box-Cox

transformed variables:

hδt
δ

= α0
ωδ − 1

δ
+ α1

ϵ2δt−1 − 1

δ
+ ...+ αq

ϵ2δt−q − 1

δ
(3.34)

where 0 ≤ δ ≤ 1, ω > 0, α0 > 0,αj ≥ 0 and
∑q

j=0 αj = 1.

This model has been very rarely used in practice.

3.3.1.3 Asymmetric power GARCH model. Ding et al. (1993) introduced the asum-

metric power GARCH or (APGARCH) model. The first-order APGARCH model has the

following form:

hδt = α0 + α1(|ϵt−1| − λϵt−1)
2δ + β1h

δ
t−1 (3.35)

where α0 > 0,α1 > 0,β1 ≥ 0,δ > 0, and |λ| ≤ 1, so it is nonlinear in parameters. Meitz

and Saikkonen (2011) considered the special case δ = 1 and called the model the asymmetric

GARCH (AGARCH) model. Using the indicator variable, they showed that in this case

(3.32) can be rewritten as a GJR-GARCH(1,1) model

ht = α0 + α1(1− λ)2ϵ2t−1 + 4λα1I(ϵt−1 < 0)ϵ2t−1 + β1ht−1 (3.36)
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Considering a number of long daily return series,it was found that the autocorrelations

ρ(|ϵ2δt , |ϵt−j|2δ) were maximized for δ = 1/2. Fittin the APGARCH model to a long daily

S&P 500 return series yielded δ̂ = 0.72.

3.3.1.4 Smooth transition GARCH model. A generalization can be done to the

GJR-GARCH model by replacing the indicator function by a continuous function of its

argument and extending the transition to also include the intercept.

ht = α10 +

q∑
j=1

α1jϵ
2
t−j +

(
α20 +

q∑
j=1

α2jϵ
2
t−j

)
GK(γ, c; ϵt−j) +

p∑
j=1

βjht−j (3.37)

where the transition function

GK(γ, c; ϵt−j) =

(
1 + exp

{
−γ

K∏
k=1

(ϵt−j − ck)

})−1
(3.38)

Here γ > 0 and c = (c1, ..., cK).

Smooth transition GARCH models are useful in situations where the assumption of two

distinct regimes is too rough an approximation to the asymmetric behavior of conditional

variance.

The standard GARCH model has the undesirable property that the estimated model

often exaggerates the persistence in volatility. This means that the estimated sum of the

αand β coefficients is close to 1. Overestimated persistence results in poor volatility forecasts

in the sense that following a large shock, the forecasts indicated too low a decrease if the

conditional variance to more normal levels. In order to find a remedy for this problem, Lanne

and Saikkonen (2005) proposed a smooth transition GARCH model, whose first-order version

has the form:

ht = α0 + α1ϵ
2
t−1 + δ1G1(θ;ht−1) + β1ht−1 (3.39)

In this equation, G1(θ;ht−1) is a continuous, monotonically increasing bounded function

of ht−1. Since ht−1 > 0 almost surely, Lanne and Saikkonen used the cumulative distribution

function of the Gamma distribution as the transition function. In empirical examples given

in the paper, this parametrization clearly alleviates the problem of exaggerated persistence.
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3.3.1.5 Neural network ARCH and GARCH models. The literature on nonlinear

GARCH models also comprises models based on artificial neural networks (ANN) type of

specification. The ANN-GARCH model of Donaldson and Kamstra (1997) has the following

form:

ht = α0 +

q∑
j=1

αjϵ
2
t−j +

p∑
j=1

βjht−j +
s∑

j=1

ϕjG(wt−j,Γj)

where the hidden units are defined as follows:

G(wt−j,Γj) =

(
1 + exp

{
γ0j +

u∑
i=1

(w
′

t−jγji)

})−1
For a user of this model, specification of p,q,s, and u is an important issue, and the

authors suggest the use of BIC criterion for this purpose.

A simpler ANN-GARCH model can be obtained by defining the hidden units as in Caulet

and Peguin-Feissolle (2000). They give the following ANN-GARCH model:

ht = α0 +

q∑
j=1

αjϵ
2
t−j +

p∑
j=1

βjht−j +
s∑

j=1

ϕjG(γ0j + ϵ
′

tγj)

where

G(γ0j + ϵ
′

tγj) = (1 + exp{γ0j + ϵ
′

tγj})−1

3.3.1.6 Time-varying GARCH. It has been argued that the assumption of the stan-

dard GARCH model having constant parameters may not hold in practice unless the series

to be modeled are sufficiently short. On can model such a behavior using the smooth tran-

sition GARCH model to fit such a situation. It is done assuming the transition function is

a function of time:

GK(γ, c; t
∗) =

(
1 + exp

{
−γ

K∏
k=1

(t∗ − ck)

})−1
where t∗ = t/T is rescaled time and T is the number of observations. The resulting

time-varying parameter GARCH or TV-GARCH model has the form:
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ht = α0(t) +

q∑
j=1

αj(t)ϵ
2
t−j +

p∑
j=1

βj(t)ht−j

where α0(t) = α01 + α02G(γ, c; t
∗), αj(t) = αj1 + αj2G(γ, c; t

∗), and βj(t) = βj1 +

βj2G(γ, c; t
∗).

The TV-GARCH model is non-stationary as the unconditional variance of ϵt varies de-

terministically over time.

3.3.1.7 Testing standard GARCH against nonlinear GARCH. The leading test-

ing principle is the score or Lagrange multiplier principle, because then only the null model

has to be estimated. These tests can be carried out in the so-called TR2 form, and under

the null hypothesis the test statistic has an asymptotic χ2−distribution. When the null

hypothesis is the standard GARCH model, the test can be carried out in several stages:

1. Estimate the parameters of the GARCH model and compute the residual sum of squares

SSR0 =
∑T

j=1(ϵ
2
t/h̃t − 1)2,where h̃tis the estimated conditional variance at t.

2. Regress z̃t
2 = ϵ2t/h̃t on the gradient of the log-likelihood function and the new variables,

and compute the residual sum of squares SSR1 from this auxiliary regression.

3. Form the test statistic

T
SSR0 − SSR1

SSR0

→ χ2
m

under the null hypothesis of dimensionm. When the null model is the standard GARCH,

the gradient equals g̃t = h̃−1t (∂ht/∂ω)0, where ω = (α0, α1, ...αq, β1..., βp), and

(∂ht/∂ω)0 = ũt +

p∑
i=1

β̃i(∂ht−i/∂ω)0

with ũt = (1, ϵ2t−1, ..., ϵ
2
t−q, h̃t−1, ..., h̃t−p). The subscript 0 indicates that the partial deriva-

tives are evaluated under H0. The auxiliary regression is thus

z̃2t = a+ g̃
′

tδ0 + v
′
δ1 + ηt
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3.4 REGIME-SWITCHING GARCH.

The idea of the RS approach to modeling asset returns is that the distribution of returns

depends on a state of the market. For example, both the level and the time series properties

of expected returns and variances may be different in bull and bear markets.

3.4.1 The RS-GARCH framework.

Assume that there are k different market regimes and that of the market is in regime j at time

t, the conditional mean and variance of the return, rt,are given by µjt and σ
2
jt, respectively.

The RS-GARCH model can the be written in the following form:

rt = µ∆t,t + σ∆t,t,ηt

where ∆t ∈ {1, ..., k} is a variable indicating the market regime at time t, and ηt is a

sequence of i.i.d. random variables with zero mean and unit variance. In many applications,

the distribution of ηt is taken to be Gaussian, so that the distribution of rt based on the

information that we are in regime j at time t, is likewise normal

ft−1(rr|∆t = j) = ϕ(rt;µj, σ
2
j ) =

1√
2πσjt

exp

{
−(rt − µjt)

2

2σ2
jt

}
(3.40)

where ft denotes a conditional density based on the return history up to time t.

Suppose that the conditional probability for the market being in regime j at time t is

πjt, that is

pt−1(∆t = j) = πjt (3.41)

Then the conditional distribution of rt is a k-component finite normal mixture distribu-

tion, with density

ft−1(rr) =
k∑

j=1

πjtϕ(rt;µjt, σ
2
jt) (3.42)
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where πjt are the mixing weights, and ϕ(rt;µjt, σ
2
jt) are the component densities, with

component means µjt and component variances σ2
jt.

The class of finite mixture distributions is known to exhibit considerable flexibility with

respect to skewness and excess kurtosis, which are important features of financial return

data. Moreover, and in contrast to many other flexible distributions used for that purpose,

normal mixtures often provide an economically plausible disaggregation of the stochastic

mechanism generating returns, such as the distinction between the bull and bear market

dynamics.

3.4.2 Modeling the mixing weights.

A particular popular approach to modeling the dynamics of market regimes is the Markov-

switching (MS) technique. It formalizes the intuition that market regimes may be persistent;

for example, if we are in a bull market currently, then the probability of being in a bull market

in the next period will be larger than that if the current regime were a bear market.

It is assumed that the regime process {∆t} follows a Markov chain with finite state space

S = {1, ..., k} and k × k transition matrix P ,

P =


p11 ... pk1
... ...

...

p1k ... pkk


where the transition probabilities pij = p(∆t = j|∆t−1 = i). Let πt = (π1t, ..., πkt) denote

the distribution of the Markov chain at time t. It follows from the law of probability that

for j = 1, .., k

πj,t+1 = p(∆t+1 = j) =
k∑

i=1

p(∆t = i)p(∆t+1 = j|∆t = i) =
k∑

i=1

πitpij

or in matrix form, and then by iteration,

πt+1 = Pπt πt+τ = P τπt τ ≥ 1,
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so that the elements of P τ are the τ−step transition probabilities. Moreover, under gen-

eral conditions, there exists a stationary and long-run distribution.If regimes are persistent,

this will be reflected in rather large diagonal elements of P . The degree of persistence can

be measured by the magnitude of the second largest eigenvalue of the transition matrix P .

A further possibility to model the dynamics of the mixing weights is to make them

depend on a set of predetermined variables. For example, in the two-component logistic

mixture model, the weight if the first component is determined by

πt =
exp{γ′

xt}
1 + exp(γ′xt)

where γ = (γ0, γ1, ..., γp−1) is a vector of parameters and xt is a vector of p predetermined

variables.

This can be generalized to more that two components which can lead to

πjt =
θjt

1 +
∑k

i=1 θit
j = 1, ..., k − 1 πkt = 1−

k−1∑
j=1

πjt

where

θjt = exp

(
γ0j +

u∑
i=1

γijϵt−i +
v∑

i=1

κijπj,t−i +
w∑
i=1

δij|ϵt−i|d
)

3.4.3 RS-GARCH specification.

There exists different specifications of RS-GARCH models. These have in common that the

coefficients of the GARCH equation and thus the conditional variance at time t depend o

the current regime ∆t, and they differ in the way the lagged variance term in the regime-

switching GARCH recursions is specified.

In the first version, this term is taken to be the lagged variance conditional on the

previous regime, that is, the time series shocks, {ϵt}, is modeled as

ϵt = σ∆tηt

where the regime-specific conditional variances are
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σ2
jt = ωj + αjϵ

2
t−1 + σ2

∆t−1,t−1

However, it was observed that maximum likelihood estimation of this specification is not

feasible because of the path dependence, and thus MS-ARCH was used rather than MS-

GARCH. To see the problem, suppose we want to calculate the likelihood function for the

above model. We face the problem that ∆t−1and therefore σ2
∆t−1,t−1 is not observable, and so

we have to integrate it out. However, σ2
∆t−1,t−1 likewise depends on the previous regime, ∆t−2,

so that in the end, the conditional variance at time t depends on the entire regime history

up to time t. Thus the evaluation of the likelihood for a sample of T observations requires

integration over all kT possible regime paths. Recently, it was shown that the MS-GARCH

model can be estimated using GMM or MCMC methods.

To circumvent the path dependence, Gray (1996) replaced σ2
∆t−1,t−1 with the conditional

variance of ϵt−1, given only the observable information up to time t−2. With this information,

the conditional distribution of ϵt−1 is a k-component mixture with variance

ht−1 =
k∑

j=1

pt−2(∆t−1 = j)σ2
j,t−1

where pt−2(∆t−1 = j) are the conditional regime probabilities implied by the model for

the regime process. This quantity ht−1is then used instead of σ2
∆t−1,t−1 in the regime-specific

GARCH equation.

3.4.4 Estimation of RS-GARCH.

Since the regimes are not observable, we cannot use the transition probabilities pij to directly

forecast future regimes. However, we can use return history to compute regime inferences

once we have estimated the parameters of an MS-GARCH process. These probabilities are

also required for the likelihood function. To this end, we define, for each point of time, t , a

k-dimensional random vector zt = (z1t, ..., zkt) with elements zjt such that

zjt =

 1 ∆t = j

0 ∆t ̸= j
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Moreover, let ϵτ = {ϵτ , ϵτ−1, ...} denote the process up to time τ , and let zjt|τ = p(zjt =

1|ϵτ ), be out probability inference of being in state j and time t, based on the process up to

time τ , and let zt|τ = (z1t|τ , ..., zkt|τ )
′
. Then assuming conditional normality we have

zt|τ =
zt|t−1 ⊙ f t

1
′
k(zt|t−1 ⊙ f t)

zt+1|t = Pzt|t

where ⊙ denotes element wise multiplication of conformable matrices, and

f t =


ϕ(ϵt;µ1, σ

2
1t)

...

ϕ(ϵt;µk, σ
2
kt)

 = (2π)−1/2


σ−11t exp{−(ϵt − µ1)

2/(2σ2
1t)}

...

σ−1kt exp{−(ϵt − µk)
2/(2σ2

kt)}


These equations can be used to calculate regime inferences recursively, and τ -step ahead

regime probabilities are obtained as zt+τ |t = P τzt|t

To initialize the the recursion, the stationary distribution of the chain may be used.

However, for reasonable long time series, as usually available in financial applications, the

choice of the initial distribution will have a negligible impact on actual out-of-sample regime

forecasts. The conditional density of ϵt+1, given the process up to time t, is

f(ϵt+1|ϵt) =
k∑

j=1

zj,t+1|tϕ(ϵt+1;µj, σ
2
j,t+1) = 1

′

k(zt+1|t ⊙ f t+1) (3.43)

and the likelihood function for a sample of size T is

logL =
T∑
t=1

log f(ϵt|ϵt−1) =
T∑
t=1

log[1
′

k(zt|t−1 ⊙ f t)]
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Figure 3.1: Ford stock returns

3.5 PRACTICAL ISSUES WITH GARCH.

3.6 APPLICATIONS.

3.6.1 Analysis of stock data.

In this example, we examine the daily series of Ford stock returns. Although there is little

serial correlation in the time series itself, it seems that both large changes and small changes

are clustered together, which is typical of many high-frequency macroeconomic and financial

time series. To confirm this, we look at the autocorrelation function of Ford returns and its

squared returns.

Obviously, there is no autocorrelation in the return series itself, while the squared returns

exhibit significant autocorrelation at least up to lag 5. We see that time series of Ford stock

returns exhibits time varying conditional heteroscedasticity or volatility clustering.

Testing for ARCH effects using the Langrange Multiplier Test we get p-value which is

smaller than the conventional 5% level, so we reject the null hypothesis that there are no
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Figure 3.2: Autocorrelation function

ARCH effects.

The model we are going to estimate generally looks like

yy = c+ ϵt

ϵt = ztσt

σ2
t = a0 +

p∑
i=1

aiϵ
2
t−i +

q∑
j=1

bjσ
2
t−j

Let us fit the GARCH(1,1) model to the Ford series. We get values for our parameters

c = 7.70e − 04, a0 = 6.534e − 06, a1 = 7.45e − 02 , and b1 = 9.102e − 01. The sum

of a1 + b1 = 0.985 which indicates a covariance stationary model with a high degree of

persistence on the conditional variance. If the model is successful at modeling the serial

correlation structure in the conditional mean and conditional variance, then there should

be no autocorrelation left in the standardized residuals and squared standardized residuals.
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Figure 3.3: QQ plot of residuals when models with the normal distribution

This can be done using Ljung-Box Test. In both cases, the null hypothesis that there are no

autocorrelation left cannot be rejected because the p-values in both cases are greater than

the conventional 5% level.

The basic GARCH model assumes a normal distribution for the errors ϵt. If the model

is correctly specified then the estimated standardized residuals ϵt/σt should behave like a

standard normal random variable. We can run the Jarque-Bera or Shapiro-Wilks test for

the standardized residuals. However, in this case these tests give opposite conclusions. To

get a more decisive conclusion we can use the qq-plot.

In the above example, a normal error distribution has been used. However, given the well

known fat tails in financial time series, it may be more desirable to use a distribution which

has fatter tails than the normal distribution. We can try to use the Student’s t distribution

and the Generalized Error Distribution. We estimate the GARCH(1,1) model for the Ford

series using the above distributions. The results look much better for Student’s Distribution.
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Figure 3.4: QQ plot of residuals when modeled with Student’s t distribution

3.6.2 Option pricing.

The GARCH process and its variants have gained increasing prominence for modeling finan-

cial time series. In this section we discuss the GARCH options pricing approach developed

by Duan (1995). The GARCH option pricing model has three distinctive features. First, the

GARCH option price is a function of the risk premium embedded in the underlying asset.

This contrasts with the standard preference-free option pricing result. Second, the GARCH

option pricing model is non-Markovian. In the option pricing literature, the underlying asset

value is usually assumed to follow a diffusion process. The standard approach is thus Marko-

vian. Third, the GARCH option pricing model can potentially explain some well-documented

systematic biases associated with Black-Scholes model. These biases include underpricing of

the OTM options, underpricing of options on low-volatility securities,underpricing of short-

maturity options, and the U-shaped implied volatility curve.The GARCH option pricing

model also subsumes the Black-Scholes model because the homoscedastic asset return pro-

cess is a special case of the GARCH model.

Due to complex nature of the GARCH process, a generalized version of risk neutraliza-
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tion, referred to as the local risk-neutral valuation relationship (LRNVR), is called for. The

LRNVR stipulates that the one-period ahead conditional variance is invariant with respect

to a change to the risk-neutralized pricing measure. This is important because, in the con-

text of the GARCH process, the unconditional variance or any conditional variance beyond

one period is not invariant to the change on measures caused by risk neutralization.

3.6.2.1 The GARCH option pricing model. Consider a discrete-time economy and

let Xt be the asset price at time t. Its one-period rate of return is assumed to be conditionally

log-normally distributed under probability measure P . That is,

log(
Xt

Xt−1
) = r + λ

√
ht −

1

2
ht + ϵt

where ϵt has mean zero and conditional variance ht under measure P ; r is a constant

one-period risk-free rate of return (continuously compounded) and λthe constant unit risk

premium. Under conditional log-normality, one plus the conditionally expected return equals

exp(r + λ
√
ht). It thus suggests that λcan be interpreted as the unit risk premium.

We also assume that ϵt follows a GARCH(p,q) process under measure P . Formally

ϵt|ϕt−1 ∼ N(0, ht)

ht = α0 +

q∑
i=1

αiϵ
2
t−i +

p∑
i=1

βiht−i

where ϕi is the information set of all information up to and including time t. Using an

alternative specification for ht will not change the basic option pricing results as long as

conditional normality remains in place.

In order to develop the GARCH option pricing model, the conventional risk-neutral

valuation relationship has to be generalized to accommodate heteroscedasticity of the asset

return process. We thus introduce a generalized version of this principle.

Definition. A pricing measure Q is said to satisfy the locally risk-neutral valuation rela-

tionship (LRNVR) if measure Q is mutually absolutely continuous with respect to measure

P , Xt/Xt−1|ϕt−1distributes log-normally under Q,
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EQ(Xt/Xt−1|ϕt−1) = er

and

V arQ(log(Xt/Xt−1)|ϕt−1) = V arP (log(Xt/Xt−1)|ϕt−1)

almost surely with respect to measure P .

In the above definition of the LRNVR, the conditional variances under the two measures

are required to be equal. This is desirable because on can observe and hence estimate the

conditional variance under P .

The implication of LRNVR is presented in the following theorem.

Theorem 3.6.1. The LRNVR implies that, under pricing measure Q,

log(
Xt

Xt−1
) = r − 1

2
ht + ξt,

where

ξt|ϕt−1 ∼ N(0, ht)

and

ht = α0 +

q∑
i=1

(ξt−i − λ
√
ht−i)

2 +

p∑
i=1

βiht−i

Proof. Since Xt/Xt−1 distributes log-normally under measure Q, it can be written as

log(
Xt

Xt−1
) = νt + ξt

where νt is the conditional mean and ξt is a Q-normal random variable. The conditional

mean of ξt equals zero and its conditional variance is to be determined. First, we prove that

νt = r − 1
2
ht.

EQ

(
Xt

Xt−1
|ϕt−1

)
= EQ(eνt+ξt |ϕt−1) = eνt+ht/2
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where ht = V arP (log(Xt/Xt−1)|ϕt−1) = V arQ(log(Xt/Xt−1)|ϕt−1) by LRNVR. Since

EQ(Xt/Xt−1|ϕt−1) = er by LRNVR, it follows that νt = r − 1
2
ht.It remains to prove that

htcan indeed be expressed as stated in the above theorem. By the preceding result, r +

λ
√
ht − 1

2
ht + ϵt = r − 1

2
ht + ξt. This implies that ϵt = ξt − λ

√
ht.

This theorem implied the the form of the GARCH(p,q) process remains largely intact

with respect to local risk neutralization. The conditional variance process under risk-

neutralized pricing measure, in not a GARCH process. The variance innovation is gov-

erned by q noncentral chi-square random variables with one degree of freedom, where as the

GARCH process under P can be seen as the process governed by q central chi-square innova-

tions. The theorem suggests that the unit risk premium λ,influences the conditional variance

process globally although the risk has been locally neutralized under the pricing measure Q.

In other words, local risk neutralization is not equivalent to global risk neutralization.

Pricing contingent payoffs requires temporally aggregating one-period asset returns to

arrive at a random terminal asset price at some future point in time. The terminal asset

price is derived in the following corollary:

Corollary 3.6.2.

XT = Xt exp

[
(T − t)r − 1

2

T∑
s=t+1

hs +
T∑

s=t+1

ξs

]
Corollary 3.6.3. The discounted asset price process e−rtXt is a Q-martingale.

Corollary 3.6.4. The option price is given by

CGH
t = e−(T−t)rEQ[(XT −K)+|ϕt]

Corollary 3.6.5. The options delta is given by

∆GH
t = e−r(T−t)EQ

[
XT

Xt

I{XT≥K}|ϕt

]

3.6.3 Risk management.

VaR has to do with the possible loss of a portfolio in a given time horizon. VaR should

be computed using the predictive distribution of future losses, that is, the conditional dis-
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tribution of the future losses using current information. However, for horizon h > 1, this

conditional distribution may be hard to obtain.

To be more specific, consider a portfolio whose value at time t is a random variable

denoted Vt. At horizon h, the loss is denoted

Lt,t+h = −(Vt+h − Vt)

The distribution of Lt,t+h is called the loss distribution. This distribution is used to

compute the regulatory capital which allows certain risks to be covered.

Definition. The (1 − α)-quantile of the conditional loss distribution is called the VaR at

the level α:

V aRt,h(α) := inf{x ∈ R|Pt[Lt,t+h ≤ x] ≥ 1− α},

when this quantile is positive. By convention V aRt,h(α) = 0 otherwise.

Let introduce the first two moments of Lt,t+h conditional on the information available at

time t:

mt,t+h = E(Lt,t+h), σ2
t,t+h = V ar(Lt,t+h)

Suppose that

Lt,t+h = mt,t+h + σt,t+hL
∗
h

where L∗h is a random variable with cumulative distribution function Fh. Denote by

F←h the quantile function of the variable L∗h, defined as the generalized inverse of Fh:

F←h (α) = inf{x ∈ R|Fh(x) ≥ α}

If Fhis continuous and strictly increasing, we simply have F←h (α) = F−1h (α), where F−1h

is the ordinary inverse of Fh. In follows that

45



1− α = Pt[V aRt,h(α) ≥ mt,t+h + σt,t+hL
∗
h] = Fh

(
V aRt,h(α)−mt,t+h

σt,t+h

)
Consequently,

V aRt,h(α) = mt,t+h + σt,t+hF
←
h (1− α).

Consider the price of a portfolio, defined as a combination of the prices of d assets,

pt = a
′
Pt and denote price variation ∆Pt = Pt − Pt−1.

Lt,t+h = −(pt+h − pt) = −a′
h∑

i=1

∆Pt+i

Example. If the ∆Pt+i are iid N(m,Σ) distributed, the law of Lt,t+h is N(−a′
mh, a

′
Σah).

It follows then that

V aRt,h(α) = −a′
mh+

√
a′Σa

√
hΦ−1(1− α)

Example. Suppose now that

∆Pt −m = A(∆Pt−1 −m) + Ut Ut ∼ N(0,Σ)

where A is a matrix whose eigenvalues have modulus strictly less than 1. The process ∆Pt

is then stationary with expectation m. It can be verified that

V aRt,h(α) = a
′
µt,h +

√
a′ΣhaΦ

−1(1− α)

where Ai = (I − Ai)(I − A)−1,

µt,h = −mh− AAh(∆Pt −m) Σh =
∑h

j=1Ah−j+1ΣA
′

h−j+1

If is often more convenient to work with log-returns rt = ∆ log(pt), assumed to be sta-

tionary, than with the price variations. Letting qt(h, α) be the α -quantile of the conditional

distribution of of the future returns rt+1 + · · ·+ rt+h
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V aRt,h(α) = {1− eqt(h,α)}pt

Even if VaR is the most widely used risk measure, the choice of an adequate risk measure

is an open issue. Var is often criticized for not satisfying, for any distribution of the price

variation, the subadditivity property. Subadditivity means that the VaR of two portfolios

after they have been merged should be no greater than the sum of their VaRs before they

were merged. In other words VaR does not favor diversification.

The simplest estimation method os based on the K last returns at horizon h. that is,

rt+h−i(h) = log(pt+h−i/pt−i), for i = h...h +K − 1. These K returns are viewed as scenario

for future returns. The nonparametric historical VaR is simply obtained by replacing qt(h, α)

by the empirical α-quantile of the last K returns. A parametric version is obtained by fitting

a particular distribution to the returns, for example, a Gaussian which amounts to replacing

qt(h, α) by µ̂+ σ̂Φ−1(α). These methods have little theoretical justification.

One can use more sophisticated GARCH-type models.The estimate V aRt(1, α) it suffices

to estimate qt(1, α) by σ̂t+1F̂
−1(α), where σ̂2

t is the conditional variance estimated by a

GARCH-type model, and F̂ is an estimate of the distribution of the normalized residuals.

It is important to note that even for a simple Gaussian GARCH(1,1), there is no explicit

available formula for computing qt(h, α) when h > 1. In that case one has to use simulations

to evaluate the quantile. The follwing procedure may be used:

• Fit a model, for instance GARCH(1,1), on the observed returns rt = ϵt and deduce the

estimate volatility σ̂2
t for t = 1, ..., n+ 1.

• Simulate a large number N of scenarios for ϵn+1, ..., ϵn+h by iterating independently for

i = 1, ..., N , the following steps.

1. simulate the values η
(i)
n+1, ..., η

(i)
n+h iid with distribution F̂ .

2. set σ
(1)
n+1 =

ˆ̂σn+1 and ϵ
(i)
n+1 = σ

(i)
n+1η

(i)
n+1.

3. for k = 2, ..., h, set
(
σ
(i)
n+k

)2
= ω̂ + α̂

(
ϵ
(i)
n+k−1

)2
+ β̂

(
σ
(i)
n+k−1

)2
and ϵ

(i)
n+k = σ

(i)
n+kη

(i)
n+k

• Determine the empirical quantile of the simulations ϵ
(i)
n+h

47



4.0 DISCRETE STOCHASTIC VOLATILITY MODELS

4.1 STATE-SPACE REPRESENTATION. LINEAR, GAUSSIAN MODELS.

4.1.1 Filtering.

The linear Gaussian state space model looks like

yt = Ztαt + ϵt

αt+1 = Ttαt +Rtηt

where ϵt ∼ N(0, Ht), ηt ∼ N(0, Qt),and α1 ∼ N(a1, P1)

Let Yt−1 denote the set of past observations y1, ..., yt−1. Starting at t = 1 and building up

the distributions of αt and yt recursively, it is easy to show that p(yt|α1, ..., αt, Yt) = p(yt|αt)

and p(αt+1|α1, ..., αt, Yt) = p(αt+1|αt).In this section we derive the Kalman filter for this

model for the case where the initial state α1 isN(a1, P1) where a1 and P1 are known. Our goal

is to calculate the conditional distribution of αt+1 given Yt. Since all distributions are normal,

conditional distributions of subsets of variables given other subsets of variables are also

normal; the required distribution is therefore determined by knowledge of at+1 = E(αt+1|Yt)

and Pt+1 = V ar(αt+1|Yt). Assume that αt given Yt−1 is N(at, Pt). We now show how to

calculate at+1 and Pt+1from at and Pt recursively.

Since αt+1 = Ttαt +Rtηt, we have

at+1 = E(Ttαt +Rtηt|Yt) = TtE(αt|Yt) (4.1)

Pt+1 = V ar(Ttαt +Rtηt|Yt) = TtV ar(αt|Yt)T
′

t +RtQtR
′

t (4.2)
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Let

vt = yt − E(yt|Yt−1) = yt − E(Ztαt + ϵt|Yt−1) = yt − Ztat (4.3)

Then vt is the one-step forecast error of yt given Yt−1.When Yt−1 and vt are fixed then Yt

is fixed and vice versa. Thus E(αt|Yt) = E(αt|Yt−1, vt). But E(vt|Yt−1) = E(yt−Ztat|Yt−1) =

E(Ztαt+ϵt−Ztat|Yt−1) = 0. Consequently, E(vt) = 0 and Cov(yj, vt) = 0 with j = 1, ..., t−1.

Using regression we have

E(αt|Yt) = E(αt|Yt−1, vt) = E(αt|Yt−1) +
Cov(αt, vt)

V ar(vt)
vt = at +MtF

−1
t vt (4.4)

where Mt = Cov(αt|vt), Ft = V ar(vt) and E(αt|Yt−1) = at by definition of at.

Here,

Mt = Cov(αt, vt) = E(E{αt(Ztαt + ϵt − Ztat)
′|Yt−1}) = E(E{αt(αt − at)

′
Z

′

t|Yt−1}) = PtZ
′

t

(4.5)

and

Ft = V ar(Ztαt + ϵt − Ztat) = ZtPtZ
′

t +Ht (4.6)

We assume that Ft is nonsingular; this assumption is normally valid in well-formulated

models. Combining the above equations one gets

at+1 = Ttat + TtMtF
−1
t vt = Ttat +Ktvt (4.7)

with

Kt = TtMtF
−1
t = TtPtZ

′

tF
−1
t (4.8)

We observe that at+1 has been obtained as a linear function of the previous value at and

vt, the forecast error of yt given Yt−1.
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Likewise, using regression approach we can compute the variance. We have

V ar(αt|Yt) = V ar(αt|Yt−1, vt) = V ar(αt|Yt−1)− Cov(αt, vt)V ar(vt)
−1Cov(αt, vt)

′
= (4.9)

= Pt −MtF
−1
t M

′

t = Pt − PtZ
′

tF
−1
t ZtPt (4.10)

and

Pt+1 = TtPtL
′

t +RtQtR
′

t (4.11)

with

Lt = Tt −KtZt (4.12)

These recursion formulas constitute the celebrated Kalman filter for out model. They

enable us to update out knowledge of the system each time a new observation comes in.

For convenience we collect these filtering equations one more time

vt = yt − Ztat Ft = ZtPtZ
′
t +Ht t = 1, ..., n

Kt = TtPtZ
′

tF
−1
t Lt = Tt −KtZt

at+1 = Ttat +Ktvt Pt+1 = TtPtL
′
t +RtQtR

′
t

with a1 and P1 as the mean vector and variance matrix of the initial state vector.
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4.1.2 State smoothing.

We now consider the estimation of αt given the entire series y1, ..., yn. Let us denote the

stacked vector (y
′
1, ..., y

′
n) by y; thus y is Yn represented as a vector. We shall estimate αt

by its conditional mean α̂t = E(αt|y) and we shall also calculate the error variance matrix

Vt = V ar(αt − α̂t). Our approach is to construct recursion for α̂t and Vt on the assumption

that α1 ∼ N(a1, P1) where a1 and P1 are known.

The vector y is fixed when Yt−1 and vt, ..., vnare fixed. We therefore have

α̂t = E(αt|y) = E(αt|Yt−1, vt, ..., vn) = at +
n∑

j=t

Cov(αt, vj)F
−1
j vj (4.13)

for t = 1, ..., n, with Cov(αt, vj) = E(αtv
′
j). It follows from () that

E(αtv
′

j) = E[αt(Zjxj + ϵj)
′
] = E(αtx

′

j)Z
′

j (4.14)

Moreover,

E(αtx
′

t) = E[E(αtx
′

t|y)] = E[E{αt(αt − at)
′ |y}] = Pt (4.15)

E(αtx
′

t+1) = E[E{αt(Ltxt +Rtηt −Ktϵy)
′ |y}] = PtL

′

t (4.16)

E(αtx
′

t+2) = PtL
′

tL
′

t+1 (4.17)

...

E(αtx
′

n) = PtL
′

t...L
′

n−1

Substituting it back gives

α̂n = an + PnZ
′

nF
−1
n vn (4.18)
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α̂n−1 = an−1 + Pn−1Z
′

n−1F
−1
n−1vn−1 + Pn−1L

′

nZ
′

nF
−1
n vn

α̂t = at + PtZ
′

tF
−1
t vt + PtL

′

tZ
′

t+1F
−1
t+1vt+1 + ...+ PtL

′

t...L
′

n−1Z
′

nF
−1
n vn

for t = n− 2, n− 3, ..., 1. We can express the smoothed state vector as

α̂t = at + Ptrt−1 (4.19)

where rt−1 = Z
′
nF
−1
n vn, rn−2 = Z

′
n−1F

−1
n−1vn−1 + L

′
n−1Z

′
nF
−1
n vn and

rt−1 = Z
′

tF
−1
t vt + L

′

tZ
′

t+1F
−1
t+1vt+1 + ...+ L

′

tL
′

t+1...L
′

n−1Z
′

nF
−1
n vn (4.20)

or

rt−1 = Z
′

tF
−1
t vt + L

′

trt (4.21)

with rn = 0.

Collecting these results gives the recursion for state smoothing,

rt−1 = Z
′

tF
−1
t vt + L

′

trt α̂t = at + Ptrt−1 t = n, ..., 1

with rn = 0.

Alternative algorithms for state smoothing have also been proposed. For example, An-

derson and Moore (1979) present the so-called classical fixed interval smoother which for our

state space model is given by

α̂t = at|t + Pt|tT
′

tP
−1
t+1(α̂t − at+1) t = n, ..., 1

where

at|t = at + PtZ
′

tF
−1
t vt Pt|t = Pt − PtZ

′

tF
−1
t ZtPt
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A recursion formula for calculating Vt = V ar(αt|y) will now be derived. Using regression

we get

Vt = V ar(αt|Yt−1, vt, ..., vn) = Pt −
n∑

j=t

Cov(αt, vj)F
−1
j Cov(αt, vj)

′
(4.22)

Using our previous results we obtain

Vt = Pt − PtNt−1Pt

where

Nt−1 = Z
′

tF
−1
t Zt + L

′

tZ
′

t+1F
−1
t+1Zt+1Lt + ...+ L

′

t...L
′

n−1Z
′

nF
−1
n ZnLn−1...Lt

Using these results we obtain the recursion formula

Nt−1 = Z
′

tF
−1
t Zt + L

′

tNtLt

Collecting together all of the previous results we get

rt−1 = Z
′

tF
−1
t vt + L

′

trt Nt−1 = Z
′

tF
−1
t Zt + L

′

tNtLt

α̂t = at + Ptrt−1 Vt = Pt − PtNt−1Pt

4.1.3 Forecasting.

Suppose we have a vector of observations y1, ..., yn which follow the state space model and

we wish to forecast yn+j for j = 1, ..., J . For that purpose let us choose the estimate

ȳn+jwhich has minimum mean square error matrix given Yn, that is, F̄n+j = E[(ȳn+j −

yn+j)(ȳn+j − yn+j)
′|y] is a minimum in the matrix sense for all estimates of yn+j.It follows

that the minimum mean square error forecast of yn+j given Yn is the conditional mean

ȳn+1 = E(yn+j|y)

For j = 1 the forecast is straightforward. We have yn+1 = Zn+1αn+1 + ϵn+1 so
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ȳn+1 = Zn+1E(αn+1|y) = Zn+1an+1

The error variance matrix or mean square error matrix

F̄n+1 = E[(ȳn+1 − yn+1)(ȳn+1 − yn+1)
′
] = Zn+1Pn+1Z

′

n+1 +Hn+1

is produced by the Kalman filter relation.We now demonstrate that we can generate

the forecasts ȳn+j for j = 2, ..., J merely by treating yn+1, ..., yn+J as missing values. Let

ān+j = E(αn+j|y) and P̄n+j = E[(ān+j−an+j)(ān+j−an+j)
′ |y]. Since yn+j = Zn+jαn+j+ϵn+j

we have

ȳn+j = Zn+jE(αn+j|y) = Zn+j ān+j

with mean square error matrix

F̄n+j = Zn+jP̄n+jZ
′

n+j +Hn+j

We now derive recursions for calculating ān+jand P̄n+j.We have αn+j+1 = Tn+jαn+j +

Rn+jηn+j so

ān+j+1 = Tn+j ān+j

for j = 1, ..., J − 1 and with ān+1 = an+1.Also

P̄n+j+1 = Tn+jP̄n+jT
′

n+j +Rn+jQn+jR
′

n+j

4.2 STATE SPACE REPRESENTATION. NON-LINEAR AND

NON-GAUSSIAN MODELS.

In this section we are closely follow the tutorial on particle filtering by Doucet and Johansen

(2008).
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4.2.1 General setup.

Consider an χ - valued discrete-time Markov process {Xn}n≥1 such that

X1 ∼ µ(x1) (4.23)

X|(Xn−1 = xn−1) ∼ f(xn|xn−1) (4.24)

All the densities are with respect to a dominating measure. We are interested in esti-

mating {Xn}n≥1 but only have access to the {Yn}n≥1 . We assume that, given {Xn}n≥1 the

observations {Yn}n≥1 are statistically independent and their marginal densities are given by

Yn|(Xn = xn) ∼ g(yn|xn) (4.25)

Models compatible with the above description are known as hidden Markov models

(HMM) or general state-space models. These equations define a Bayesian model in which

(4.23),(4.24) define the prior distribution of the process of interest {Xn}n≥1 and (4.26) defines

the likelihood function, that is:

p(x1:n) = µ(x1)
n∏

k=2

f(xk|xk−1) (4.26)

and

p(y1:n|x1:n) =
n∏

k=1

g(yk|xk) (4.27)

In such a context, inference about X1:n given a realization of the observations Y1:n = y1:n

relies upon the posterior distribution

p(x1:n|y1:n) =
p(x1:n, y1:n)

p(y1:n)
(4.28)

where

p(x1:n, y1:n) = p(x1:n)p(y1:n|x1:n) (4.29)
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p(y1:n) =

∫
p(x1:n, y1:n)dx1:n (4.30)

However, for most non-linear non-Gaussian models, it is not possible to compute these

distributions in closed form. Particle methods are a set of flexible and powerful simulation-

based algorithms which provide samples approximately distributed according to posterior

distributions of the form p(x1:n|y1:n) and facilitate the approximate calculation of p(y1:n).

The unnormalized posterior distribution p(x1:n, y1:n) satisfies

p(x1:n, y1:n) = p(x1:n−1, y1:n−1)f(xn|xn−1)g(yn|xn) (4.31)

Consequently, the posterior p(x1:n, y1:n) satisfies the following recursion

p(x1:n|y1:n) = p(x1:n−1|y1:n−1)
f(xn|xn−1)g(yn|xn)

p(yn|y1:n−1)
(4.32)

where

p(yn|y1:n−1) =
∫
p(xn−1|y1:n−1)f(xn|xn−1)g(yn|xn)dxn−1:n (4.33)

It is straightforward to check that we have

p(xn|y1:n) =
g(yn|xn)p(xn|y1:n−1)

p(yn|y1:n−1)
(4.34)

where

p(xn|y1:n−1) =
∫
f(xn|xn−1)p(xn−1|y1:n−1)dxn−1 (4.35)

Equation (4.35) is known as the prediction step and (4.34) is known as the updating

step.
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4.2.2 Sequential Monte Carlo.

SMC methods are a general class of Monte Carlo methods that sample sequentially from a

sequence of target probability densities {πn(x1:n)} of increasing dimensions. Writing

πn(x1:n) =
γn(x1:n)

Zn

(4.36)

we require only that γn : χn → R+ is known pointwise; the normalizing constant

Zn =

∫
γn(x1:n)dx1:n (4.37)

might be unknown. SMC provides an approximation of π1(x1) and an estimate of Z1 at

time 1 then an approximation of π2(x1:2) and an estimate of Z2 and so on.

For example, in the context of filtering, we could have γn(x1:n) = p(x1:n, y1:n), Zn =

p(y1:n) so πn(x1:n) = p(x1:n|y1:n).

4.2.2.1 Basics of Monte Carlo Methods. Initially, consider approximating a generic

pobability density πn(x1:n) for some fixed n. If we sample N independent random variables,

X i
1:n ∼ πn(x1:n) for i = 1, ..., N , then the Monte Carlo method approximates πn(x1:n) by the

empirical measure

π̂n(x1:n) =
1

N

N∑
i=1

δXi
1:n
(x1:n) (4.38)

Based on this approximation, it is possible to approximate any marginal, say πn(xk),

easily using

π̂n(xk) =
1

N

N∑
i=1

δXi
k
(xk)

and the expectation of any test function given by

In(ϕn) :=

∫
ϕn(x1:n)πn(x1:n)dx1:n

is estimated by
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IMC
n (ϕn) :=

1

N

N∑
i=1

ϕn(X
i
1:n)

Problem.

If πn(x1:n) is a complex high-dimensional probability distribution, then we cannot sample

from it.

4.2.2.2 Importance Sampling. This is a fundamental Monte Carlo method and the

basis of all algorithms developed later on. IS relies on the introduction of an importance

density qn(x1:n) such that

πn(x1:n) > 0 ⇒ qn(x1:n) > 0

In this case we have the following IS identities

πn(x1:n) =
ωn(x1:n)qn(x1:n)

Zn

(4.39)

Zn =

∫
ωn(x1:n)qn(x1:n)dx1:n (4.40)

where ωn(x1:n) is the unnormalized weight function

ωn(x1:n) =
γn(x1:n)

qn(x1:n)

In particular, we can select an importance density qn(x1:n) from which it is easy to

draw samples; e.g. a multivariate Gaussian. Assume we draw N independent samples

X i
1:n ∼ qn(x1:n) then by inserting the Monte Carlo approximation of qn(x1:n) - that is the

empirical measure of the samples X i
1:n - into (4.39) and (4.40) we obtain

π̂n(x1:n) =
N∑
i=1

W i
nδXi

1:n
(x1:n) (4.41)

Ẑn =
1

N

N∑
i=1

ωn(X
i
1:n) (4.42)
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where

W i
n =

ωn(X
i
1:n)∑N

j=1 ωn(X i
1:n)

(4.43)

If we are interested in computing In(ϕn) , we can also use the estimate

IISn (ϕn) =
N∑
i=1

W i
nϕn(X

i
1:n)

Unlike IMC
n (ϕn), this estimate is biased for finite N .

For a given test function, ϕn(x1:n), it is easy to establish the importance distribution

minimizing the asymptotic variance of IISn (ϕn). However, such a result is of minimal interest

in a filtering context as this distribution depends on ϕn(x1:n) and we are typically interested

in the expectations of several test functions. Moreover, even of we were interested in a single

test function, say ϕn(x1:n) = xn, then selecting the optimal importance distribution at time n

would have detrimental effects when will try to obtain a sequential version of the algorithms.

A more appropriate approach in this context is to attempt to select the qn(x1:n) which

minimizes the variance of the importance weights. Clearly, this variance is minimized for

qn(x1:n) = πn(x1:n). We cannot select qn(x1:n) = πn(x1:n) as this is the reason we used US in

the first place. However, this simple result indicates that we should aim at selecting an IS

distribution which is as close as possible to the target.

4.2.2.3 Sequential importance Sampling. We are now going to present an algorithm

that admits a fixed computational complexity at each time step in important scenarios. Thus

solution involves selecting an importance distribution which has the following structure

qn(x1:n) = qn−1(x1:n−1)qn(xn|xn−1) = q1(x1)
n∏

k=2

qk(xk|x1:k−1) (4.44)

Practically, this means that to obtain particles X i
1:n ∼ qn(x1:n) at time n, we sample

X i
1 ∼ q1(x1) at time 1 then X i

k ∼ qk(xk|X i
1:k−1) at time k for k = 2, ..., n. The associated

unnormalized weights can be computed recursively using the decomposition

ωn(x1:n) =
γn(x1:n)

qn(x1:n)
=

γn−1(xn−1)

qn−1(x1:n−1)

γn(x1:n)

γn−1(x1:n−1)qn(xn|x1:n−1)
(4.45)
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which can be written in the form

ωn(x1:n) = ωn−1(x1:n−1)αn(x1:n) = ω1(x1)
n∏

k=2

αk(x1:k)

where the incremental importance weight function αn(x1:n) is given by

αn(x1:n) =
γn(x1:n)

γn−1(x1:n−1)qn(xn|x1:n−1)
(4.46)

4.2.2.4 Resampling. Resampling is a very intuitive idea which has major practical and

theoretical benefits. Consider first an IS approximation π̂n(x1:n) of the target distribution

πn(x1:n). This approximation is based ion weighted samples from qn(x1:n) and does not

provide samples approximately distributed according to πn(x1:n). To obtain approximate

samples from πn(x1:n) , we can simply sample from its IS approximation π̂n(x1:n) ; that is

we select X i
1:n with probability W i

n. This operation is called resampling as it corresponds to

sampling from an approximation π̂n(x1:n) which was itself obtained by sampling. If we are

interested in obtaining N samples from π̂n(x1:n) , then we can simply resample N times from

π̂n(x1:n). This is equivalent to associating a number of offsprings N i
n with each particle X i

1:n

in such a way that N1:N
n = (N1

n, ..., N
N
n ) follow a multinomial distribution with parameter

vector (N,W 1:N
n ) and associating a weight of 1/N with each offspring. We approximate

π̂n(x1:n) by the resampled empirical measure

π̄n(x1:n) =
N∑
i=1

N i
n

N
δX1:n(x1:n) (4.47)

where E[N i
n|W 1:N

n ] = NW i
n. Hence π̄n(x1:n) is an unbiased approximation of π̂n(x1:n) .

Improved unbiased resampling schemes have been proposed in the literature. These are

methods of selecting N i
n such that the unbiasedness property is preserved, and such that

E[N i
n|W 1:N

n ] is smaller than that obtained via the multinomial resampling scheme described

above. The three most popular algorithms are presented below:

1. Systematic resampling. Sample U1 ∼ U [0, 1
N
] and define Ui = U1 +

i−1
N

for i = 2, ..., N ,

then set N i
n = |

{
Uj :

∑i−1
k=1W

k
n ≤ Uj ≤

∑i
k=1W

k
n

}
| with the convention

∑0
k=1 := 0.
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2. Residual resampling. Set Ñ i
n = [NW i

n], sample N̄1:N
n from a multinomial of parameters

(N, W̄ 1:N
n ) where W̄ i

n ∝ W i
n −N−1Ñ i

n, then set N i
n = Ñ i

n + N̄ i
n.

3. Multinomial resampling. Sample N1:N
n from a multinomial of parameters (N, lW 1:N

n ).

Resampling allows us to obtain samples distributed approximately according to πn(x1:n),

but it should be clear that if we are interested in estimating In(ϕn) then we will obtain an

estimate with lower variance using π̂n(x1:n) that that which we would have obtained by using

π̄n(x1:n) . By resampling we indeed add some extra noise. However, an important advantage

of resampling is that it allows us to remove particles with low weights.

4.2.2.5 A generic SMC algorithm. SMC methods are a combination of SIS and re-

sampling. At time 1, we compute the IS approximation π̂1(x1) of π1(x1) which is weighted

collection of particles {W i
1, X

i
1}. Then we use a resampling step to eliminate those parti-

cles with low weights and multiply those with high weights. We denote by { 1
N
, X̄ i

1} the

collection of equally-weighted resampled particles. Remember that each original particle

X i
1 has N i

1 offsprings so there exists N i
1distinct indices j1 ̸= j2 ̸= ... ̸= jN i

1
such that

X̄j1
1 = X̄j2

1 = ... = X̄
j
Ni
1

1 = X i
1. After the resampling step, we follow the SIS strat-

egy and sample X i
2 ∼ q2(x2|X̄ i

1).Thus (X̄ i
1, X

i
2) is approximately distributed according to

π1(x1)q2(x2|x1). Hence the corresponding importance weights in this case are simply equal

to the incremental weights α2(x1:2). We then resample the particles with respect to the

normalized weights and so on.

At any time n, this algorithm provides two approximations of πn(x1:n). we obtain

π̂n(x1:n) =
N∑
i=1

W i
nδXi

1:n
(x1:n) (4.48)

after sampling

π̄n(x1:n) =
1

N

N∑
i=1

δX̄i
1:n
(x1:n) (4.49)

after the resampling step.

As we have already mentioned, resampling has the effect of removing particles with

low weights and multiplying particles with high weights. However, this is at the cost of
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immediately introducing some additional variance. If particles have unnormalized weights

with a small variance then the resampling step might be unnecessary. Consequently, in

practice, it is more sensible to resample only when the variance of the unnormalized weights

is superior to a pre-specified threshold. This is often assessed by looking at the variability

of the weights using the so-called Effective Sample Size (ESS) criterion which is given by

ESS =

(
N∑
i=1

(W i
n)

2

)−1
(4.50)

4.2.3 Particle Filtering.

Remember that is the filtering context, we want to be able to compute a numerical approxi-

mation of the distribution {p(x1:n|y1:n)}n≥1 sequentially in time. A direct application of the

SMC methods described earlier to the sequence of target distributions πn(x1:n) = p(x1:n|y1:n)

yields a popular class of particle filters. More elaborate sequences of target and proposal

distributions yield various more advanced algorithms.

4.2.3.1 SMC for filtering. First, consider the simplest case in which the joint density

γn(x1:n) = p(x1:n, y1:n) is chosen, yielding πn(x1:n) = p(x1:n|y1:n) and Zn = p(y1:n). Practi-

cally, it is only necessary to select the importance distribution qn(xn|x1:n−1). We have seen

that in order to minimize the variance of the importance weights at time n, we should select

qoptn (xn|x1:n−1) = πn(xn|x1:n−1) where

πn(xn|x1:n−1) = p(xn|yn, xn−1) =
g(yn|xn)f(xn|xn−1)

p(yn|xn−1)
(4.51)

and the associated incremental weight is αn(x1:n) = p(yn|xn−1). In many scenarios, it is

not possible to sample from this distribution but we should aim to approximate it. In any

case, it shows that we should use an importance distribution of the form

qn(xn|x1:n−1) = q(xn|yn, xn−1) (4.52)

and that there is nothing to be gained from building importance distribution depending

also upon (y1:n−1, x1:n−2) -although, at least in principle, in some settings there may be ad-
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vantages to using information from subsequent observations if they are available. Incremental

weight is given then by

αn(x1:n) = αn(xn−1:n) =
g(yn|xn)f(xn|xn−1)
q(xn|yn, xn−1)

We obtain at time n

p̂(x1:n|y1:n) =
N∑
i=1

W i
nδXi

1:n
(x1:n)

p̂(yn|y1:n−1) =
N∑
i=1

W i
n−1αn(X

i
n−1:n)

Many techniques have been proposed to design importance distributions q(xn|yn, xn−1)

which approximate p(xn|yn, xn−1). In particular the use of standard suboptimal filtering

techniques such as the Extended Kalman Filter or the Unscented Kalman Filter to obtain

importance distributions is very popular in the literature. The use of local optimization

techniques to design q(xn|yn, xn−1) centered around the mode of p(xn|yn, xn−1) has also been

advocated.

4.2.4 Auxiliary Particle Filtering.

As was discussed above, the optimal proposal distribution when performing standard particle

filtering is q(xn|yn, xn−1) = p(xn|yn, xn−1). Indeed, α(xn−1:n) is independent of xn in this case

so it is possible to interchange the order of the sampling and resampling steps. Intuitively,

this yields a better approximation of the distribution as it provides a greater number of

distinct particles to approximate the target. This is an example of a general principle:

resampling, if it is to be applied in a particular iteration, should be performed before, rather

than after, any operation that does not influence the importance weights in order to minimize

the loss of information.

It is clear that if importance weights are independent of the new state and the proposal

distribution corresponds to the marginal distribution of the proposed states then weighting,

resampling and then sampling corresponds to a reweighing to correct for the discrepancy

between the old and new marginal distribution of the earlier states, resampling to produce
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an unweighted sample and then generation of the new state from its conditional distribution.

This intuition can easily be formalized.

However, in general, the incremental importance weights do depend upon the new states

and this straightforward change of order becomes impossible. In a sense, this interchange of

sampling and resampling produces an algorithm in which information from the next obser-

vation is used to determine which particles should survive resampling at a given time. It is

desirable to find methods for making use of this future information in a more general setting,

so that we can obtain the same advantage in situations in which it is not possible to make

use of the optimal proposal distribution.

The Auxiliary Particle Filter (APF) is an alternative algorithm which does essentially

this.It can be shown that the APF can be interpreted as a standard SMC algorithm applied

to the following sequence of target distributions

γn(x1:n) = p(x1:n, y1:n)p̃(yn+1|xn) (4.53)

with p̃(yn+1|xn) chosen as an approximation of the predictive likelihood p(yn+1|xn) if it is

not known analytically. It follows that πn(x1:n) is an approximation of p(x1:n|y1:n+1) denoted

p̃(x1:n|y1:n+1) given by

πn(x1:n) = p̃(x1:n|y1:n+1) ∝ p(x1:n|y1:n)p̃(yn+1|xn) (4.54)

In the APF we also use an importance distribution qn(xn|x1:n−1) of the form (4.52) which

is typically an approximation of (4.51) . Note that (4.51) is different from πn(xn|x1:n−1) in

this scenario. Even if we could sample from πn(xn|x1:n−1), one should remember that in this

case the object of inference is not πn(x1:n) = p̃(x1:n|y1:n+1) but p(x1:n|y1:n). The associated

incremental weight is given by

αn(xn−1:n) =
γn(x1:n)

γn−1(x1:n−1)qn(xn|x1:n−1)
=
g(yn|xn)f(xn|xn−1)p̃(yn+1|xn)
p̃(yn|xn−1)q(xn|yn, xn−1)

(4.55)
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Keeping in mind that this algorithm does not approximate the distributions {p(x1:n|y1:n)}

but the distributions {p̃(x1:n|y1:n+1)}, we use IS to obtain an approximation of p(x1:n|y1:n)

with

πn−1(x1:n−1)qn(xn|x1:n−1) = p̃(x1:n−1|y1:n)q(xn|yn, xn−1) (4.56)

as the importance distribution. A Monte Carlo approximation of this importance dis-

tribution is obtained after the sampling step in the APF and the associated unnormalized

weights are given by

ω̃n(xn−1:n) =
p(x1:n, y1:n)

γn−1(x1:n−1)qn(xn|x1:n−1)
=

g(yn|xn)f(xn|xn−1)
p̃(yn|xn−1)q(xn|yn, xn−1)

(4.57)

It follows that we obtain

p̂(x1:n|y1:n) =
N∑
i=1

W̃ i
nδXi

1:n
(x1:n) (4.58)

p̂(y1:n) =
1

N

N∑
i=1

ω̃n(X
i
n−1:n) (4.59)

where

W̃ i
n ∝ ω̃n(X

i
n−1:n)

or W̃ i
n ∝ W i

n−1:nω̃n(X
i
n−1:n) if resampling was not performed at the end of the previous

iteration. Selecting qn(xn|x1:n−1) = p(xn|yn, xn−1) and p̃(yn|xn−1) = p(yn|n − 1), when it is

possible to do so, leads to so-called “perfect adaption” case. In this case, the APF takes

a particularly simple form as αn(xn−1:n) = p(yn|xn−1) and ω̃n(xn−1:n) = 1. This is similar

to the algorithm discusses in the previous subsection where the order of the sampling and

resampling steps are interchanged.

This simple reinterpretation of the APF shows us several things:

• We should select a distribution p̃(x1:n|y1:n) with thicker tails than p(x1:n|y1:n).

• Setting p̃(yn|xn−1) = g(yn|µ(xn−1)) where µ denotes some point estimate is perhaps

unwise as this will not generally satisfy that requirement.
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• We should use an approximation of the predictive likelihood which is compatible with the

model we are using in the sense that it encodes at least the same degree of uncertainty

as the exact model.

4.2.5 Limitation of Particle Filters.

The algorithms described earlier suffer from several limitations. It is important to emphasis

at this point that, even if the optimal importance distribution p(xn|yn, xn−1) can be used,

this does not guarantee that the SMC algorithms will be efficient. Indeed, if the variance

of p(yn|xn−1) is high, then the variance of the resulting approximation will be high. Con-

sequently, it will be necessary to resample very frequently and the particle approximation

p̂(x1:n|y1:n) of the joint distribution p(x1:n|y1:n) will be unreliable. In particular, for k ≪ n the

marginal distribution p̂(x1:k|y1:n) will only by approximated by a few if not a single unique

particle because the algorithm will have resampled many times between times k andn. One

major problem with the approaches discussed above is that only the variables {X i
n} are sam-

pled at time n but the path values
{
X i

1:n−1
}
remain fixed. An obvious way to improve upon

these algorithms would involve not only sampling {X i
n} at time n, but also modifying the

values of the paths over a fixed lag
{
X i

n−L+1:n−1
}
for L > 1 in light of the new observation

yn; L being fixed or upper bounded to ensure that we have a sequential algorithm. These

limitation can be overcome using SMC filtering with MCMC moves or SMC Block Sampling

for Filtering. We do not describe these algorithms in the current work.

4.2.6 Smoothing.

One problem, which is closely related to filtering, but computationally more challenging for

reason which will be apparent later, is known as smoothing. Whereas filtering corresponds

estimating the distribution of the current state based upon the observations received up

until the current time, smoothing corresponds to estimating the distribution of the state at

a particular time given all of the observations up to some later time. The trajectory estimates

obtained by such methods, as a result of the additional information available, tend to be

smoother than those obtained by filtering. It is intuitive that if estimates of the state at time
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n are not required instantly, then better estimation performance is likely to be obtained by

taking advantage of a few later observations. Designing efficient sequential algorithms for

the solution of this problem is not quite a straightforward as it might seem, but a number

of effective strategies have been developed and are described below.

More formally: assume that we have access to the data y1:T , and we wish to compute

the marginal distribution {p(xn|y1:T )}where n = 1, ..., T or to sample from p(x1:T |y1:T ). In

principle, the marginals {p(xn|y1:T )} could be obtained directly by considering the joint

distribution p(x1:T |y1:T ) and integrating out the variables (x1:n−1, xn+1:T ) . Extending this

reasoning in the context of particle methods, one can simply use the identity p(xn|y1:T ) =∫
p(x1:T |y1:T )dx1:n−1dxn+1:T and take the same approach which is used in particle filtering:

use Monte Carlo algorithms to obtain an approximate characterization of the joint distri-

bution and then use the associated marginal distribution to approximate the distributions

of interest. Unfortunately, as is detained below, when n ≪ T this strategy id doomed to

failure: the marginal distribution p(xn|y1:n) occupies a privileged role within the particle

filter framework as it is, in some sense, better characterized than any of the other marginal

distributions.

For this reason, it is necessary to develop more sophisticated strategies in order to obtain

good smoothing algorithms.There has been much progress in this direction over the past

decade. Below, we present two alternative recursions that will prove useful when numerical

approximations are required. The key to the success of these recursions is that they rely

upon only the marginal filtering distributions {p(xn|y1:n)}.

4.2.6.1 Forward-Backward Recursions. The following decomposition of the joint dis-

tribution p(x1:T |y1:T )

p(x1:T |y1:T ) = p(xT |y1:T )
T−1∏
n=1

p(xn|xn+1, y1:T ) = p(xT |y1:T )
T−1∏
n=1

p(xn|xn+1, y1:n) (4.60)

shows that, conditional on y1:T , {Xn} is an inhomogeneous Markov process.
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Equation (4.60) suggests the following algorithm to sample from p(x1:T |y1:T ). First

compute and store the marginal distributions {p(xn|y1:n)} for n = 1, ..., T . Then sample

XT ∼ p(xT |y1:n) and for n = T − 1, T − 2, .., 1, sample Xn ∼ p(xn|Xn+1, y1:n) where

p(xn|xn+1, y1:n) =
f(xn+1|xn)p(xn|y1:n)

p(xn+1|y1:n)
(4.61)

It also follows, by integrating out (x1:n−1, xn+1:T ) in equation (4.60), that

p(xn|y1:T ) = p(xn|y1:n)
∫

f(xn+1|xn)
p(xn+1|y1:n)

p(xn+1|y1:T )dxn+1 (4.62)

So to compute {p(xn|y1:T )} ,we simply modify the backward pass and,instead of sampling

from p(xn|xn+1, y1:n), we compute p(xn|y1:T ) from (4.62).

4.2.6.2 Forward Filtering-Backward Smoothing. It is possible to obtain an SMC

approximation of the forward filering-backward sampling procedure directly by noting that

for

p̂(xn|y1:n) =
N∑
i=1

W i
nδXi

n
(xn) (4.63)

we have

p̂(xn|Xn+1, y1:n) =
f(Xn+1|xn)p̂(xn|y1:n)∫
f(Xn+1|xn)p̂(xn|y1:n)dxn

=
N∑
i=1

W i
nf(Xn+1|X i

n)δXi
n
(xn)∑N

j=1W
j
nf(Xn+1|Xj

n)
(4.64)

Consequently, the following algorithm generates a sample approximately distributed ac-

cording to p(x1:T |y1:T ): first sample XT ∼ p̂(xT |y1:T ) and for n = T − 1, T − 2, ..., 1, sample

Xn ∼ p̂(xn|Xn+1, y1:n).

Similarly, we can also provide an SMC approximation of the forward filtering-backward

smoothing procedure by direct means. If we denote by

p̂(xn|y1:T ) =
N∑
i=1

W i
n|T δXi

n
(xn) (4.65)
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the particle approximation of p(xn|y1:T ) then, by inserting (4.65) in (4.62), we obtain

p̂(xn|y1:T ) =
N∑
i=1

W i
n

[
N∑
j=1

W j
n+1|T

f(Xj
n+1|X i

n)∑N
l=1W

l
nf(X

j
n+1|X l

n)

]
δXi

n
(xn) :=

N∑
i=1

W i
n|T δXi

n
(xn) (4.66)

4.3 APPLICATION TO SV MODELS.

4.3.1 Particle filter with SV model.

Recall the state-space model formulation. It consists of two equations: the observation

equation and the transition equation which are given by

yn = mn(xn, ϵn) (4.67)

xn = hn(xn−1, ηn) (4.68)

It is assumed that the distributions of the observations and state variables admit density

functions with respect to appropriate dominating measures. These densities p(yn|xn; θ) and

p(xn|xn−1; θ) correspond to (4.67) and (4.68) respectively.

Here we call

ω̃n =
p(yn|xn; θ)p(xn|xn−1; θ)
gn(xn|xn−1, yn;ψ)

(4.69)

the incremental weights and gn(xn|xn−1, yn;ψ) is the importance density.

Using the ideas described in the previous paragraphs we can write a particle filter for

the SV model

yn = exn/2ϵn (4.70)

xn = µ+ ϕ(xn−1 − µ) + σηηn (4.71)
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where ϵn ∼ N(0, 1) and ηn ∼ N(0, 1). We generate an SV model with parameters chosen

as µ = 0.5, ϕ = 0.985, and σ2
η = 0.04 and try to use SISR and auxiliary particle filters with

this model. To implement the SISR algorithm we select the conditional proposal distribution

at each iteration to be the transition density gn(xn|x0:n−1, y1:n;ψ) = p(xn|xn−1; θ) implied by

the dynamics of the model. This means that the incremental weight function is equal to the

measurement density ω̃n = p(yn|xn; θ). We use multinomial resampling at each iteration.

We also show the application of the auxiliary particle filter. It is a popular algorithm

that is simple to implement and works well in many cases. When proposing new particles

at the beginning of each iteration, we would like to use information available in the current

observation yn. One calls particles filters that incorporate yn into their proposal adapted

particle filters. In addition, since particles carried over from last period form part of this

period’s proposal distribution, some of the old particles provide more information about xn

than others.

Pitt and Shepard (1999, 2001) approximate the incremental target distribution in

p(x0:n|y1:n) =
p(yn|xn; θ)p(xn|xn−1; θ)

p(yn|y1:n−1; θ)
p(x0:n−1|y1:n−1; θ) (4.72)

by

p(yn|xn; θ)p(xn|xn−1; θ) ≈ g1,n(yn|xn;ψ)g2,n(xn|xn−1;ψ) = (4.73)

= g1,n(yn|xn−1;ψ)g2,n(xn|xn−1;ψ, yn)

This proposal distribution is decomposed into two parts implying that the sampling of

new values
{
x
(i)
n

}N

i=1
from this distribution can be performed in two steps.

Many economic models have a special structure with non-Gaussian measurement den-

sities and linear, Gaussian transition densities. In this case if the measurement density is

log-concave, Pitt and Shephard suggest taking g1,n(yn|xn−1; θ) to be the Taylor series ex-

pansion of log(p(yn|xn; θ)) around a point µn and combining it with the transition density

g2,n(xn|xn−1; θ, yn) = p(xn|xn−1; θ, yn).
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Figure 4.1: SISR filter for SV model

In the settings where one can evaluate p(yn|xn−1; θ),one can select g1,n(yn|xn−1;ψ) =

p(yn|xn−1; θ) and g2,n(xn|xn−1; θ, yn) = p(xn|xn−1; θ, yn).

We apply this algorithm to our SV model.

The results are given in the chart below.

4.3.1.1 Likelihood-based parameter estimation. The two major issues to consider

are computing the maximum likelihood estimator in a computationally efficient way ad its

statistical properties once it is computed. Although the particle filter’s approximation of

the likelihood function at a point θ is consistent asymptotically in the number of particles,

the log-likelihood function is nota continuous function of the parameters. The log-likelihood

function is given by

logL(θ|y1:T ) = log p(y1, .., yT ; θ) =
T∑

n=1

log p(yn|y1:n−1; θ) ≈
T∑

n=1

log

[
N∑
i=1

ω
(i)
n−1ω̃

(i)
n

]
(4.74)

This discontinuity is created from the resampling stage within a particle filter and can

cause problems for gradient-based optimizers.
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Figure 4.2: Auxiliary filter for SV model

Most of the work on ML estimation using particle filters has focused on using approaches

other than gradient-based optimization that avoids the discontinuity problem. These meth-

ods include stochastic gradient-based methods, recursive maximum likelihood methods and

EM methods.

The main difficulty when using this method is the right choice of the gain sequence.

Parameters should also be of the same order of magnitude.

4.3.2 SV estimation by the efficient method of moments.

A stochastic volatility model in its basic discrete-time format reads:

yt = σtϵt (4.75)

lnσ2
t = ω + γ lnσ2

t−1 + σηηt (4.76)

where ϵt, ηt ∼ N(0, 1). This model has served as the benchmark and starting point of the

bulk of the econometric literature on stochastic volatility models. This model is in discrete
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form. Many variations of this model are possible. Here we consider a broad range of models

as in van der Sluis (1997), namely:

yt = σtϵt (4.77)

lnσ2
t = ω +

p∑
i=1

γiL
i lnσ2

t + ση

(
1 +

q∑
j=1

ξjL
j

)
ηt (4.78)

 ϵt

ηt+1

 ∼ NIID

0,

 1 λ

λ 1

 (4.79)

where −1 ≤ λ ≤ 1.

4.3.2.1 Efficient method of Moments. Gallant and Tauchen (1996) solve the effi-

ciency problems that moment-based techniques generally have by proposing the efficient

method of moments (EMM) technique. The structural model is estimated by using an auxil-

iary model. The connection between the auxiliary model and the structural model is achieved

by means of scores of the auxiliary model, where strict guidelines are given for the choice of

the auxiliary model such that maximum likelihood efficiency is attained. In short the EMM

methods is as follows. The sequence of densities for the structural model is denoted:

{p1(x1|θ), {pt(yt|xt, θ)}∞t=1} (4.80)

The sequence of densities for the auxiliary process is denoted as:

{f1(ω1|β), {ft(yt|ωt, β)}∞t=1} (4.81)

where xtand ωt are observable endogenous variables. In particular, the xt will be a vector

of lagged yt, and theωtwill also be a vector of lagged yt. We impose Assumptions 1 and 2

in Gallant and Long (1997) on the structural model. These are technical assumptions that

imply standard properties of quasi-likelihood estimator and properties of of estimators based
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on Hermite expansions, which will be explained below. It is important that the structural

model is stationary and ergodic. Define

m(θ, β) =

∫ ∫
∂

∂β
ln f(y|ω, β)p(y|x, θ)p(x|θ)dydx (4.82)

which is the expected value score of the auxiliary model under dynamic model. This

integral can be approximated by MC techniques:

mN(θ, β) =
1

N

N∑
τ=1

ln f(yτ (θ)|ωτ (θ), β) (4.83)

where yτ (θ) are drawings from the structural model. Let n denote the sample size. The

EMM estimator is defined as:

θ̂n(In) := argmin
θ∈Θ

m
′

N(θ, β̂n) (In)
−1mN(θ, β̂n)

where In is a weighting matrix and β̂n denotes an estimator for the parameter of the

auxiliary model. The optimal weighting matrix here is

I0 = lim
n→∞

V0

[
1√
n

n∑
t=1

{
∂

∂β
ln ft(yt|ωt, β

∗)

}]
where β∗ is a (pseudo) true value. The small sample pendant is:

In = V0

[
1√
n

n∑
t=1

{
∂

∂β
ln ft(ỹt|ω̃t, β̂n)

}]
The auxiliary model is built as follows. The process yt(θ) is the process under inves-

tigation, µt(β
∗) = Et−1[yt(θ)] is the conditional mean of the auxiliary model, σ2

t (β
∗) =

V art−1(yt(θ0) − µt(β
∗)) is the conditional variance, and zt(β

∗) = [yt(θ0) − µt(β
∗)]/σt(β

∗) is

the standardized process. The SNP density now takes the following form:

f(yy; β) =
1√
σ2
t

[PK(zt, xt)]
2ϕ(zt)∫

[PK(u, xt)]2ϕ(u)du
(4.84)

where ϕ denoted the standard normal density, x = (yt−1, ..., yt−L) and the polynomials

PK(z, xt) =
Kz∑
t=1

[
Kx∑
j=0

aijx
j
t

]
zi (4.85)
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4.3.2.2 Example of EMM estimation. We consider the SV model similar to the one

considered by Andersen and Sorensen (1997). This model is of the form:

yt = σtzt (4.86)

lnσ2
t = ω + β lnσ2

t + σuut (4.87)

where (zt, ut) is iid N(0, I2). This model was estimated by GMM using twenty four

moments. The return series yt is assumed to be demeaned. For −1 < β < 1 and σu > 0 the

return series, yt, is strictly stationary and ergodic, and conditional moments of any order

exist. Let ωt = ln σ2
t so that σt = eωt/2. Then the model can be rewritten as

yt = eωt/2zt (4.88)

ωt = ω + βωt−1 + σuut (4.89)

To impose stationarity on the log volatility process, the logistic transformation is used

to define the autoregressive parameter β from the unrestricted parameter β∗

β =
eβ

∗

1 + eβ∗ (4.90)

The logistic transformation restricts β to the interval (0, 1). This restriction is reasonable

since negative values of β are not empirically relevant for asset returns. The unconditional

mean of the log volatility process is µ = ω/(1− β)

We simulate a sample of size N = 4000 from the model using parameters α = −0.147,

β = 0.98 and σu = 0.166. taken from Andersen, Chung and Sorensen (1999). The parameters

are calibrated to match typical daily return data.

Andersen, Chung and Sorensen (1999) study the EMM estimation of this model using an

extensive Monte Carlo study. They find that EMM performs substantially better than GMM,

and comparably to direct likelihood-based inference procedure. For samples of size 1000 or

less they find that a simple Gaussian GARCH(1,1) SNP model is a good choice for a score

generator. Only for much larger samples do they find that adding Hermite polynomial terms
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to the SNP model improves efficiency. Regarding inference, the find that EMM objective

function test for overidentifying restriction is remarkably reliable.

The quasi-maximum likelihood estimation of the SNP model utilizes random restarts of

the optimizer to avoid getting stuck at a potentia local minimum. EMM converges with high

objective function p-value indicating that the data do not reject the single overidentifying

restriction implied by the GARCH(1,1) score generator. The estimates are ω = −0.2631,

σu = 0.1950 and β = 0.9652. They are reasonably close to their true values.

GMM and EMM estimates are remarkably similar. However, based on the extensive MC

study the above mentioned authors recommend EMM over GMM for the following reasons:

(1) EMM estimates are numerically more stable; (2) EMM estimates have smaller root mean

square errors; (3) the problems associated with the choice of weighting matrices in the case of

GMM are absent in EMM; (4) the EMM test for overidentifying restrictions is more stable;

(5) inference regarding the parameters based on EMM t-statistics is more reliable.

Next, we consider EMM estimation of our model for the S&P 500 daily returns using the

best fitting score generator. The small p-value p = 1.916e − 11 of the final EMM objective

value indicates that the SV model is rejected by the S&P 500 returns.

Gallant, Hsieh and Tauchen (1997) consider the general univariate SV model

yt = µ+

p∑
j=1

ϕjyt−j + eωt/2σzzt (4.91)

ωt =

q∑
j=1

βjωt−j + σuut (4.92)

where zt and ut are iid Gaussian random variables with mean zero, unit variance and

correlation coefficient ρ. The model allows for autoregressive effects in the mean and log

volatility. A negative correlation between the innovations to the level and log-volatility

allow for the so-called leverage effect.

Fitting this model with leverage to the S&P data produces much better results. In case

when p=1 and q = 4 we get a p-value of almost 0.2. So the model makes sense.
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4.3.3 Sequential parameter learning.

Assume a Markovian dynamic model for sequentially observed data vector yt, in which the

state vector at time t is xt and the fixed parameter vector is θ. The model is specified at

each time t by the observation equation defining the observation density

p(yt|xt, θ) (4.93)

and the Markovian evolution equation, or state equation, defining the transition density

p(xt|xt−1, θ) (4.94)

Sequential Monte Carlo methods aim to sequentially update Monte Carlo sample ap-

proximation to the sequence of posterior distributions p(xt, θ|Dt) where Dt = {Dt−1, yt} is

the information set at time t. On observing the new observation yt+1 it is desired to produce

a sample from the current posterior p(xt+1, θ|Dt+1).

We have already considered model where θwas assumed known, so that the focus was

entirely on filtering for the state vector. As time evolves to t+ 1 we observe yt+1, and want

to generate a sample from the posterior p(xt+1|Dt+1).Theoretically

p(xt+1|Dt+1) ∝ p(yt+1|xt+1)p(xt+1|Dt) (4.95)

where p(xt+1|Dt) is the prior density of xt+1 and p(yt+1|xt+1) is the likelihood function.

In the general model, standing at time t, we now have a combined sample

{
x
(j)
t , θ

(j)
t : j = 1, ..., N

}
(4.96)

and associated weights

{ω(j)
t : j = 1, ..., N} (4.97)

representing an importance sample approximation to the time t posterior p(xt, θ|Dt) for

both parameter and state. Note that the t suffix on the θ samples here indicate that they
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are from the time t posterior, not that θ is time-varying. Time evolves to t+ 1, we observe

yt+1,and now want to generate a sample from p(xt+1, θ|Dt+1). Bayes’ theorem gives us

p(xt+1, θ|Dt+1) ∝ p(yt+1|xt+1, θ)p(xt+1|θ,Dt)p(θ|Dt) (4.98)

where p(θ|Dt) is now an important ingredient.

Consider briefly a model in which θ is replaced by θtat time t, and simply include θt in

the augmented state vector. Then add an independent, zero-mean normal increment to the

parameter at each time. That is,

θt+1 = θt + ξt+1 (4.99)

ξt+1 ∼ N(0,Wt+1) (4.100)

for some specified variance matrix Wt+1 and where θt and ξt+1are conditionally indepen-

dent given Dt. With this model, the standard filtering methods for state alone now apply.

Among the various issues and drawbacks of this approach, the key on is simply that fixed

model parameters are, well, fixed. Pretending that they are in fact time-varying implied an

artificial loss of information, resulting in posteriors that are eventually too diffuse.

Understanding the imperative to develop some method of smoothing for approximation of

the required density p(θ|Dt), West (1993) developed kernel smoothing methods that provided

the basis for rather effective adaptive importance sampling techniques.

Standing at time t, suppose we have current posterior parameter samples θ
(j)
t and weights

ω
(j)
t ,providing discrete MC approximation to p(θ|Dt). Write θ̄t and Vt for the MC posterior

mean and variance matrix of p(θ|Dt), computed from the MC sample θ
(j)
t with weights ω

(j)
t .

The smooth kernel density form of West (1993) is given by

p(θ|Dt) ≈
N∑
j=1

ω
(j)
t N(m

(j)
t , h2Vt) (4.101)

with the following components. First, N(·|m,S) is a multivariate normal density mean

m and variance S, so that the above density is a mixture of N(θ|m(j)
t , h2Vt) distributions
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weighted by the sample weights ω
(j)
t .Kernel rotation and scaling uses Vt, the MC posterior

variance, and the overall scale of kernels is a function of the smoothing parameter h > 0.

The kernel locations m
(j)
t are specified using shrinkage rule introduced by West (1993).

West introduced the novel idea of shrinkage kernel locations. Take

m
(j)
t = aθ

(j)
t + (1− a)θ̄t (4.102)

where a =
√
1− h2. With these kernel locations, the resulting normal mixture retains

the mean θ̄tand now has the correct variance Vt.

The loss of information is explicitly represented by the component of Wt+1. Now, there

is close tie between (159) and (160) and the kernel smoothing approach. To see this, note

that the MC approximation to p(θt+1|Dt) implied by equation (159) is also a kernel form,

namely

p(θt+1|Dt) ≈
N∑
j=1

ω
(j)
t N(θt+1|θ(j)t ,Wt+1) (4.103)

and this is over-dispersed relative to the required variance Vt.

There is a way to correct this Liu and West by introducing At+1 = I−Wt+1V
−1
t /2, so that

in the case of approximate joint normality of (θt, ξt+1|Dt), this would imply the conditional

normal evolution in which

p(θt+1|θt) = N(θt+1|At+1θt + (I − At+1)θ̄t, (I − A2
t+1)Vt) (4.104)

The resulting MC approximation to p(θt+1|Dt) is then a generalized kernel form with

complicated shrinkage patterns. If one restricts here to the very special case in which the

evolution variance matrix is specified using a standard discount factor technique. We can

take

Wt+1 = Vt(
1

δ
− 1) (4.105)

where δ is a discount factor, typically around 0.95 − 0.99. In this case, At+1 = aI with
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a = (3δ − 1)/2δ and the conditional evolution density becomes

p(θt+1|θt) ∼ N(θt+1|aθt + (1− a) ¯θt, h2Vt) (4.106)

where h2 = 1− ((3δ − 1)/2δ)2.

4.3.3.1 Application of Liu and West filter to SV model. Let yt,for t = 1, ..., n be

modeled as

yt|xt ∼ N(0, ext) (4.107)

(xt|xt−1, θ) ∼ N(α + βxt−1, τ
2) (4.108)

where θ = (α, β, τ 2)

We are going to simulate n = 500 points, with α = −0.0031, β = 0.9951 and τ 2 = 0.0074

and x1 = α/(1− β) = −0.632653.

Prior setup:

x0 ∼ N(m0, C0)

β ∼ N(β0, Vβ)

α ∼ N(α0, Vα)

τ 2 ∼ IG(n0/2, n0τ
2
0 /2)

where m0 = 0.0, C0 = 0.1, α0 = −0.0031, Vα = 0.01, β0 = 0.9951, Vβ = 0.01, n0 = 3,

and τ 20 = 0.0074.
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Figure 4.3: Liu and West parameter learning of SV model

81



5.0 CONTINUOUS STOCHASTIC VOLATILITY MODELS.

Stochastic volatility (SV) models are useful because they explain in a self-consistent way why

options with different strikes and expirations have different Black-Scholes implied volatilities-

that is, the volatility smile. Moreover, unlike alternative models that can fit the smile(such

as local volatility model), SV models assume realistic dynamics for the underlying. From

hedging perspective, traders who use Black-Scholes model must continuously change the

volatility assumption in order to match market prices. Their hedge ratios change accordingly

in an uncontrolled way: SV models bring some order into this chaos. Distributions of real

returns are highly peaked and fat-tailed relative to the Gaussian distribution. Fat tails and

high central peak are characteristics of a mixture of distributions with different variances.

That is way variance is modeled as a random variable.

5.1 FIRST LOOK AT CONTINUOUS SV MODELS.

Suppose that the stock with the price S and its variance v = σ2 are driven by the following

stochastic differential equations:

dSt = µtStdt+
√
vtStdW1 (5.1)

dvt = α(St, vt, t)dt+ ηβ(St, vt, t)
√
vtdW2 (5.2)

with

< dW1dW2 >= ρt (5.3)
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where µt is the deterministic drift, η is the volatility of volatility and ρis the correlation

coefficient between random stock returns. dW1and dW2are Brownian motions or sometimes

called Wiener processes.

In the Black-Scholes case, there is only one source of randomness, the stock price, which

can be hedged with a stock. In this case, not only the stock price is random but also its

volatility which needs hedging as well. So we set a portfolio Π containing the option being

priced, whose value is V (S, v, t), a quantity −∆ of the stock and quantity −∆1 of asset

whose value V1 also depends on volatility.

We have

Π = V −∆S −∆1V1 (5.4)

The change in portfolio is given then by

dΠ =

{
∂V

∂t
+

1

2
vS2∂

2V

∂S2
+ ρηvβS

∂2V

∂v∂S
+

1

2
η2vβ2∂

2V

∂v2

}
dt

−∆1

{
∂V

∂t
+

1

2
vS2∂

2V1
∂S2

+ ρηvβS
∂2V1
∂v∂S

+
1

2
η2vβ2∂

2V1
∂v2

}
dt

+

{
∂V

∂S
−∆1

∂V1
∂S

−∆

}
dS +

{
∂V

∂v
−∆1

∂V1
∂v

}
dv

To make the portfolio instantaneously risk-free, we must choose

∂V

∂S
−∆1

∂V1
∂S

−∆ = 0

and

∂V

∂v
−∆1

∂V1
∂v

= 0

This gives us

dΠ =

{
∂V

∂t
+

1

2
vS2∂

2V

∂S2
+ ρηvβS

∂2V

∂v∂S
+

1

2
η2vβ2∂

2V

∂v2

}
dt
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−∆1

{
∂V

∂t
+

1

2
vS2∂

2V1
∂S2

+ ρηvβS
∂2V1
∂v∂S

+
1

2
η2vβ2∂

2V1
∂v2

}
dt = rΠdt = r(V −∆S −∆1V1)dt

where we explicitly made our portfolio risk by introducing the risk free rate. After some

rearrangements one can obtain

∂V
∂t

+ 1
2
vS2 ∂2V

∂S2 + ρηvβS ∂2V
∂v∂S

+ 1
2
η2vβ2 ∂2V

∂v2
+ rS ∂V

∂S
− rV

∂V
∂v

=
∂V
∂t

+ 1
2
vS2 ∂2V1

∂S2 + ρηvβS ∂2V1

∂v∂S
+ 1

2
η2vβ2 ∂2V1

∂v2
+ rS ∂V1

∂S
− rV1

∂V1

∂v

(5.5)

The left-hand side is a function of only V and the right-hand side is the function of only

V1. Either side should then be equal to some function of S,v and t.

∂V

∂t
+

1

2
vS2∂

2V

∂S2
+ ρηvβS

∂2V

∂v∂S
+

1

2
η2vβ2∂

2V

∂v2
+ rS

∂V

∂S
− rV = −(α− ϕβ

√
v)
∂V

∂v

ϕ(S, v, t) is called the market price of volatility risk.

5.1.1 Heston model.

The Heston model corresponds to choosing α(S, vt, t) = −λ(vt − v̄) and β(s, v, t) = 1. Then

our stochastic processes become

dSt = µtStdt+
√
vtStdW1 (5.6)

dvt = −λ(vt − v̄)dt+ η
√
vtdW2 (5.7)

with

< dW1dW2 >= ρt (5.8)

The process followed by the instantaneous variance vt may be recognized as as version

of the square root process described by Cox, Ingersoll, and Ross (CIR process).We can now

substitute the above values for into the general valuation equation to obtain:
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∂V

∂t
+

1

2
vS2∂

2V

∂S2
+ ρηvβS

∂2V

∂v∂S
+

1

2
η2vβ2∂

2V

∂v2
+ rS

∂V

∂S
− rV = λ(vt − v̄)

∂V

∂v

We also show the original derivation done by Heston of the solution of the above PDE

for the European options.

Before solving this equation with appropriate boundary conditions, we can simplify it by

making a series of changes of variables. Let K be the strike price of the option, T time to

expiration, Ft,T the time T forward price of the stock and x = log(Ft,T/K). Let denote by

C the future value to expiration of the option and τ = T − t is time to expiration. Then the

above PDE can be rewritten as

−∂C
∂τ

+
1

2
vC11 −

1

2
vC1 +

1

2
η2vC22 + ρηvC12 − λ(v − v̄)C2 = 0

where by subscripts 1 and 2 we refer to differentiation with respect to x and v respectively.

According to Duffie, Pan and Singleton (2000), the solution has the form

C(x, v, τ) = K {exP1(x, v, τ)− P0(x, v, τ)} (5.9)

Substituting this anzats into the our PDE we get

−∂Pj

∂τ
+

1

2
v
∂2Pj

∂x2
− (

1

2
− j)v

∂Pj

∂x
+

1

2
η2v

∂2Pj

∂v2
+ ρηv

∂2Pj

∂x∂v
+ (a− bjv)

∂Pj

∂v
= 0

for j = 0, 1 where

a = λv̄ bj = λ− jρη

subject to terminal conditions

lim
τ→0

Pj(x, v, τ) = 1 (5.10)
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for x > 0 and

lim
τ→0

Pj(x, v, τ) = 0 (5.11)

for x ≤ 0.

We solve our equations using Fourier transform technique. Without loading the reader

with complex derivations we simply show the final solution.

Pj(x, v, τ) =
1

2
+

1

π

∫ ∞
0

duRe

{
exp{Cj(u, τ)v̄ +Dj(u, τ)v + iux}

iu

}
(5.12)

where

D(u, τ) = r−
1− e−dτ

1− ge−dτ

C(u, τ) = λ

{
r−τ −

2

η2
log

(
1− ge−dτ

1− g

)}

r± =
β ± d

η2
=
β ±

√
β2 − 4αγ

2γ

g =
r−
r+

α = −u
2

2
− iu

2
+ iju

β = λ− ρηj − ρηiu

γ =
η2

2
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5.2 LOCAL VOLATILITY.

Given the computational complexity of stochastic volatility models and the difficulty of

fitting parameters of the current prices of vanilla options,practitioners sought a simpler way

of pricing exotic options consistently with the volatility skew. The breakthrough came when

Dupire (1994) and Dernan and Kani (1994) noted that under the risk-neutrality, there was

a unique diffusion process consistent with the distribution of marker prices of options. The

correspoding unique state-dependent diffusion coefficient σL(S, t), consistent with current

European options prices, is known as the local volatility function.

5.2.1 A review of Dupire’s work.

For a given expiration T and current stock price S0,the collection {C(S0, K, T )} of undis-

counted option prices of different strikes yields the risk-neutral probability density function

ϕ of the final spot ST through the relationship

C(S0, K, T ) =

∫ ∞
K

dSTϕ(ST , T ;S0)(ST −K) (5.13)

Differentiating twice with respect to K we get

ϕ(K,T ;S0) =
∂2C

∂K2

Given the distribution of final spot prices for each time T conditional of some starting

spot price S0, Dupire was able to show that there is a unique risk neutral diffusion process

which generates these distributions.

Suppose the stock price diffuses with risk-neutral drift µt = rt −Dt where rt is the free

interest rate and Dtis the dividend yield and local volatility σ(S, t) according to the equation:

dS

S
= µtdt+ σ(St, t)dW (5.14)

The pseudo-probability density function ϕ(ST , T
′S0) of the final spot at time T evolves
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according to the Fokker-Planck equation:

1

2

∂2

∂S2
T

(
σ2S2

Tϕ
)
− S

∂

∂ST

(µSTϕ) =
∂ϕ

∂T
(5.15)

Differentiating (5.13) with respect to T gives

∂C

∂T
=

∫ ∞
K

dST

{
∂2

∂S2
T

(
σ2S2

Tϕ
)
− ∂

∂ST

(µSTϕ)

}
(ST −K) (5.16)

Integrating by parts gives:

∂C

∂T
=
σ2K2

2

∂2C

∂K2
+ µ(T )

(
−K ∂C

∂K

)
(5.17)

which is the Dupire equation when the underlying stock has risk-neutral drift µ. That

is, the forward price of the stock at time T is given by

FT = S0 exp

{∫ T

0

dtµt

}
Were we to express the option price as a function of the forward FT = S0 exp

{∫ T

0
dtµ(t)

}
,

we would get the same expression minus the drift term. That is,

∂C

∂T
=
σ2K2

2

∂2C

∂K2

where C now represents C(FT , K, T ). Inverting this gives

σ2(K,T, S0) =
∂C
∂T

1
2
K2 ∂2C

∂K2

(5.18)

We can view this expression as a definition of local volatility function regardless of what

kind of process governs the evolution of volatility.

5.2.2 Local volatility in terms of implied volatility.

Market prices of options are quoted in terms of Black-Scholes implied volatility σBS(K,T ;S0).

In other words, we may write

C(S0, K, T ) = CBS(S0, K, σBS(S0, K, T ), T )
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It will be more convenient to work in terms of two dimensionless variables:

w(S0, K, T = σBS(K,T ;S0)T

and

y = log

(
K

FT

)
In terms of these variables, the Black-Scholes formula becomes

CBS(FT , y, w) = FT

{
N

(
− y√

w
+

√
w

2

)
− eyN

(
− y√

w
−

√
w

2

)}
(5.19)

and the Dupire equation becomes

∂C

∂T
=
vL
2

{
∂2C

∂y2
− ∂C

∂y

}
+ µ(T )C (5.20)

where vL = σ2(S0, K, T ). After some manipulation with derivatives of the Black-Scholes

price and prices of options in terms the implied volatility we arrive at the following result

vL =
∂w
∂T

1− y
w

∂w
∂y

+ 1
4

(
−1

4
− 1

w
+ y2

w2

)(
∂w
∂y

)2
+ 1

2
∂2w
∂y2

(5.21)

5.3 STOCHASTIC VOLATILITY WITH JUMPS.

Assume the stock price follows the SDE

dS = µSdt+ σSdW + (J − 1)dq (5.22)

where the dq is the Poisson process.

So, once again we, we set up a portfolio Π containing the option being priced whose value

we denote by V (S, v, t) , a quantity −∆ of the stock and a quantity −∆1 of another asset

whose value V1 depends on the jump.

We have

Π = V −∆S −∆1V1 (5.23)
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The change on this portfolio can be found using the Ito’s lemma and is given by

dΠ =

{
∂V

∂t
+

1

2
σ2S2∂

2V

∂S2

}
dt−∆1

{
∂V1
∂t

+
1

2
σ2S2∂

2V1
∂S2

}
dt+

{
∂V

∂S
−∆1

∂V1
∂S

−∆

}
dSc+

{V (JS, t)− V (S, t)−∆1(V1(JS, y)− V1(S, t))−∆(J − 1)S} dq

where Sc(t) is the continuous part of S(t).

To make the portfolio risk free, we must choose

∂V

∂S
−∆1

∂V1
∂S

−∆ = 0

V (JS, t)− V (S, t)−∆1(V1(JS, y)− V1(S, t))−∆(J − 1)S = 0

This leaves us with

dΠ =

{
∂V

∂t
+

1

2
σ2S2∂

2V

∂S2

}
dt−∆1

{
∂V1
∂t

+
1

2
σ2S2∂

2V1
∂S2

}
dt = rΠdt = r(V −∆S −∆1V1)dt

(5.24)

Collecting all terms with V on one side and terms with V1on the other side we get

∂V
∂t

+ 1
2
σ2S2 ∂2V

∂S2 + rS ∂V
∂S

− rV

δV − (J − 1)S ∂V
∂S

=
∂V1

∂t
+ 1

2
σ2S2 ∂2V1

∂S2 + rS ∂V1

∂S
− rV1

δV1 − (J − 1)S ∂V1

∂S

where we have defined δV = V (JS, t)− V (S, t).

The only way the above expression can be true if each side is equal to a function of S

and t, which we denote by −λ.

∂V

∂t
+

1

2
σ2S2∂

2V

∂S2
+ rS

∂V

∂S
− rV + λ

{
V (JS, t)− V (S, t)− (J − 1)S

∂V

∂S

}
= 0
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5.3.1 Risk management.

Volatility is a measure of risk involved in financial and economic decision making and it

is a key part of modern financial theory. So far, we have looked at the volatility modeling

through time series prism where GARCH and SV models prevail as the cornerstones. Another

prospective on volatility modeling can be gained by looking at financial mathematics and in

particular derivatives pricing. The celebrated result by Black and Scholes (BS) in 1973 offers

a framework for valuation of European style derivatives within a simple set of assumptions.

Six parameters enter the pricing formula: the current underlying asset price, the strike price,

the expiry date of the option, the riskless interest rate, the dividend yield, and a constant

volatility parameter that describes the instantaneous standard deviation of the returns of

the log-asset price. The application of the formula, however, faces an obstacle: only its five

parameters are known quantities. The last one, the volatility parameter, is unknown.

Going back to our second perspective we can estimate the volatility from option prices.

In other words we recover the volatility that the market has priced into a given option. We

are interested in what volatility is implied in observed option prices, if the BS model is valid

description of market conditions? This reverse perspective is called BS implied volatility.

IV exhibits a pronounced curvature across strikes and is also curved across time to maturity

but not as much. For a given time to maturity this function has been named smile, and the

entire curved surface is called the implied volatility surface (IVS).

IV popularity can be explained for two reasons. One of them is simplicity of BS formula

and easiness of communication. Another reason is more fundamental and says that the

option implied volatility is a forward looking variable (because option are bets on future

development of the underlying asset). IV reflects market expectations on volatility over the

remaining life time of the option.
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5.4 IMPLIED VOLATILITY SURFACE.

Let’s recall the form of the BS formula. The price C(St, t) of a plain vanilla call is the

solution to the PDE with the boundary condition C(ST , T ) = (ST − K)+. The explicit

solution is known as the Black and Scholes formula for calls:

CBS(St, t,K, T, σ, r, δ) = e−δτStΦ(d1)− e−rτKΦ(d2) (5.25)

where

d1 =
ln(St/K) + (r − δ + 1

2
σ2)τ

σ
√
τ

(5.26)

d2 = d1 − σ
√
τ (5.27)

and where Φ(u) =
∫ u

−∞ ϕ(x)dx is the cdf of standard normal distribution. τ is time to

maturity.

It is obvious that the BS formula is derived under assumptions that are not likely to

be met in reality: frictionless markets, not transaction costs, no price jumps, and constant

volatility. Due to the simplicity of the model, any deviation from these assumptions is

summarized in one parameter: the IV smile and IVS.

The only unknown parameter in the BS pricing formula is the volatility. Given observed

market prices C̃t, it is therefore natural to define the implied volatility (IV):

σ̃ : CBS(St, t,K, T, σ̃)− C̃t = 0

IV is the empirically determined parameter that makes the BS formula fit market prices

of options. Since the BS is monotone in σ, there exists a unique solution σ̃ > 0. In the

derivation of of the BS formula it is assumed that the volatility is constant. IV σ̃, however,

is a curve across options strikes K and across expiry date T . Thus IV is in fact a mapping

from time,strike price and expiry days to R+:
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σ̃ : (t,K, T ) → σ̃t(K,T )

The mapping is called the implied volatility surface (IVS).

Often it is not convenient to work in absolute variables as expiry dates and strikes. Rather

one prefers relative variables, since the analysis becomes independent of expiry effects and

movement of the underlying. As a new scale, one typically uses time to maturity τ = T − t

and moneyness. A stock price moneyness can be defined by:

κ = K/St (5.28)

We say that an option is at-the-money (ATM) when κ ≈ 1.A call option is called out-of-

the-money, OTM, (in-the-money,(ITM)), if κ > 1(κ < 1) with the reverse applying to puts.

The most fundamental conclusion is that OTM puts and ITM calls are traded at higher

prices that the corresponding ATM options. Obviously, the BS model does not properly

capture the probability of of large downward movements of the underlying asset price.

5.4.1 Static stylized facts.

1. For short time to maturities the smile is very pronounced, while the smile becomes more

and more shallow for longer time to maturities.

2. The smile function achieves its minimum in the neighborhood of ATM to near OTM call

options.

3. OTM put regions display higher levels of IV than OTM call regions.

4. The volatility of IV is biggest for short maturity options and monotonically declining

with time to maturity.

5. Returns of the underlying asset and returns of IV are negatively correlated indicating a

leverage effect.

6. IV appears to be mean-reverting.

7. Shocks across the IV are highly correlated.
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5.4.2 Hedging and risk management.

In the presence of smile, a first obvious challenge is the computation of the relevant hedge

ratios. At first glance, an answer may be to insert IV into the BS derivatives in order to

compute the hedge ratios for some option positions. This strategy is called an IV compen-

sated BS hedge. However, one should be aware that this strategy can be erroneous, since IV

is not necessarily equal to the hedging volatility. Analogously to IV, the hedging volatility,

for instance for the delta, is defined by:

σ̃h :
∂CBS(St, t,K, T, σ̃h)

∂S
−

˜∂Ct

∂S
= 0,

which is the volatility that equates the BS delta with the delta of the true model. The

hedging volatility is not directly observable.

One can prove that the bias in this approximation is systematic. The bias translates

into the following errors in the hedge ratios: for ITM options the use of IV to compute the

hedge ratios leads to an underhedge position in the delta, while for OTM options it leads an

overhedge position. Only for ATM options this type of a hedge is perfect.

A better strategy due to Lee (2001) includes the stochastic volatility case. Consider

∂C̃t

∂K
=
∂CBS(St, t,K, T, σ̃)

∂K
+
∂CBS(St, t,K, T, σ̃)

∂σ̃

∂σ̃

∂K
(5.29)

and

∂C̃t

∂S
=
∂CBS(St, t,K, T, σ̃)

∂S
+
∂CBS(St, t,K, T, σ̃)

∂σ̃

∂σ̃

∂S
(5.30)

Using the second equation we can find that

∂σ̃

∂S
= −K

S

∂σ̃

∂K
(5.31)

Thus the corrected hedge ration is:

∂C̃t

∂S
=
∂CBS(St, t,K, T, σ̃)

∂S
− ∂CBS(St, t,K, T, σ̃)

∂σ̃

K

St

∂σ̃

∂K
(5.32)
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This delta-hedge can be implemented without estimating an underlying stochastic volatil-

ity model.

For risk management, other difficulties appear, especially when IV compensated hedge

ratios are used. When different BS models apply for different strikes, one may question

whether delta and vega risks across different strikes can simply be adds to assess the overall

risk in the option book: being a certain amount of dollars delta long in hight strike options,

and the same amount delta short in low strike options, need not necessarily imply that the

book is delta-neutral.

5.4.3 Pricing.

A next challenge is valuing exotic options. The reason is that even the simplest path depen-

dent options, like barrier option, require sophisticated volatility specification. In some cases

one knows the explicit formula for the price. However, which IV should we use for pricing.

One could use the IV at the strike K, the one at the barrier L, or some average of both.

The problem is the more virulent the more sensitive the exotic option is to volatility.

At this point it becomes clear that, in the presence of the IV, pricing is not sensible

without a self-consistent and reliable model. One can use the stochastic volatility models.

Another way, which is much closer to the concept of the IVS, is offered by the smile consistent

local volatility models. These models rely on a volatility function that is directly backed out

of prices of plain vanilla options observed in the market. Thus, the exotic option is priced

consistently with the entire IVS. This is a natural approach, especially when the exotic

option is to be hedged with plain vanilla options.

5.4.4 Predictive capabilities of IV.

In an efficient market, options instantaneously adjust to new information. Thus, IV predic-

tions do not depend on the historical price or volatility series in an adaptive sense. This may

be viewed as an advantage of IV type of models. There are two caveats though. First, the

test on the forecasting ability of IV is always a joint test of option market efficiency and the

option pricing model. Second, given the presence of the smile, one either has to restrict the
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analysis to ATM options or to find an appropriate weighting scheme of IV across different

strikes. The overall consensus of the literature is that IV based predictions do contain a

substantial amount of information on future volatility and are better than (only) time series

based methods. At the same time, most authors conclude the IV is a biased predictor.

5.5 ESTIMATION OF IVS.

Parametric attempts to model the IVS along the strike profile usually employ quadratic spec-

ification. However, it seems that these parametric approaches are not capable of capturing

the salient features of IVS patterns, and produce biased estimates.

Recently, non- and semi-parametric smoothing techniques for estimating the IVS have

been used more and more. The main idea of these methods can be stated as follows: suppose

we are given a data set {(xi, yi)}ni=1. In the context of IVS estimation, this would be some

moneyness measures and time to maturity, or either of them, and IV respectively. The goal

is to estimate the regression relationship

yi = m(xi) + εi (5.33)

5.5.1 Nadaraya-Watson estimator.

For simplicity, consider the univariate model

Y = m(X) + ε (5.34)

with unknown regression function m. The explanatory variable X and the response

variable Y take value in R, have the joint pdf f(x, y) and are independent of ε. The error

has the properties E(ε|x) = 0 and E(ε2|x) = σ2(x).

Using the definition of conditional expectation we can write

m(x) = E(Y |X = x) =

∫
yf(x, y)dy

fx(x)
(5.35)
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where fxis the marginal pdf. This form shows that the regression function can be esti-

mated using kernel density estimates of the joint and marginal density.

Suppose we are given the randomly sampled iid data set {(xi, yi)}ni=1. Then the Nadaraya-

Watson estimator is given by:

m̂(x) =
n−1

∑n
i=1Kh(x− xi)yi

n−1
∑n

i=1Kh(x− xi)
(5.36)

where K(u) is a kernel function satisfying
∫
K(u)du = 1, Kh(u) =

1
h
K(u

h
) and h is called

the bandwidth.

One can rewrite the above result as

m̂(x) =
1

n

n∑
i=1

ωi,n(x)yi (5.37)

where

ωi,n(x) =
Kh(x− xi)

n−1
∑n

i=1Kh(x− xi)
(5.38)

Under some regularity conditions, the Nadaraya-Watson estimator is consistent, i.e.

m̂(x) → m(x) (5.39)

in probability.

5.5.2 Local polynomial smoothing.

Another view on the Nadaraya-Watson estimator can be taken by noting that it can be

written as the minimizer of

m̂(x) = min

n∑
i=1

(yi −m)2Kh(x− xi) (5.40)

Computing the normal equations leads (60) as a solution for m. This reveals that

Nadaraya-Watson estimator is a special case of fitting a constant in a local neighborhood of
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x. In local polynomial smoothing this idea is generalized to fitting locally a polynomial of

order p. This estimator can be formulated in terms of quadratic minimization problem

min
∑

(yi − β0 − β1(x− xi)− ...− βp(x− xi)
p)Kh(x− xi) (5.41)

The solution to this problem looks like

β̂(x) = (XTWX)−1XTWy (5.42)

where

X =


1 x− x1 (x− x1)

2 ... (x− x1)
p

1 x− x2 (x− x2)
2 ... (x− xp2)

...
...

...
. . .

...

1 x− xn (x− xn)
2 ... (x− xn)

p

 (5.43)

and

W =


Kh(x− x1) 0 ... 0

0 Kh(x− x2) ... 0
...

...
. . .

...

0 0 ... Kh(x− xn)

 (5.44)

An important byproduct of local polynomial estimators is that they provide an easy and

efficient way for computing derivatives up to order (p+ 1) of the regression function:

m̂(j)(x) = j!β̂j(x) (5.45)

Another important difficulty with kernel estimator is bandwidth selection. We are not

touching this subject here since it is a vast topic. We can only add that it is usually done

using cross validation techniques or penalization approaches based on information criteria.

5.5.3 Least squares kernel smoothing.

In this section, we discuss a special smoother designed to estimate the IVS. It is a one-

step procedure based on a least squares kernel estimator that smoothes IV in the space of
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option prices. There is no need to invert the BS formula in order to extract IV observations.

The LSK estimator is a special case of a general class of estimators, the so-called kernel

M-estimators, that has been introduced by Gourieoux.

We first rewrite the BS formula in terms of moneyness metric:

CBS(St, t,K, T, σ, r, δ) = Stc
BS(κt, τ, σ, r, δ) (5.46)

where cBS(κt, τ, σ, r, δ) = Φ(d1)− κte
−rτΦ(d2), and d1 =

− lnκt+(r+ 1
2
σ2)τ

σ
√
τ

, d2 = d1 − σ
√
τ .

The LSK estimator for the IVS is defined by:

σ̂(κt, τ) = argminσ

n∑
i=1

{c̃ti − cBS(·, σ)}2ω(κti)K(1)

(
κt − κti
h1

)
K(2)

(
τ − τi
h2

)
(5.47)

K(1)and K(2) are univariate kernels, and ω(·) is a weight function, which allows for

differential weights of observed option prices. The reason why one incorporated these weights

is explained by he fact that ITM options contain a liquidity premium and should be used to

a lesser extent.

One can prove using certain assumptions that this IVS estimator is consistent and has

asymptotic normality.
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