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MULTILEVEL JOINT ANALYSIS OF LONGITUDINAL AND BINARY

OUTCOMES

Seo Yeon Hong, PhD

University of Pittsburgh, 2012

Joint modeling has become a topic of great interest in recent years. The models are simulta-

neously analyzed using a shared random effect that is common across the two components.

While these methods are useful when time-to-event data are available, there are many cases

where the outcome of interest is binary and a logistic regression model is used. We propose

the use of a joint model with a logistic regression model being used for the binary outcome

and a hierarchical mixed effects model being used for the longitudinal outcome. We link

the two sub-models using both subject and cluster level random effects and compare it with

models using only one level of random effects. We use the Gaussian quadrature technique im-

plemented in the software package aML (Multiprocess Multilevel Modeling software). Sim-

ulation studies are presented to illustrate the properties of the proposed model. We also

applied our model to the repeated measures of mid-arm muscle circumference (MAMC)

and mortality rate for patients within 75 units from 15 centers from a randomized study

of hemodialysis (HEMO) and found that the model performs well. We further extend this

work by developing methods that can be used to calculate individualized predictions based

on our proposed joint model. We use the Bayesian approach to obtain these predictions and

implement the method in the software package WinBUGS. The proposed method provides

a mechanism for understanding the relationship between a longitudinal measure and a given

binary outcome. Thus, it can be used to address several types of public health problems.

First, it can be used to understand how changes in a biomarker or other longitudinal measure

are related to changes in status of a subject. Second, it can be used to predict the outcome
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of a subject based on the trajectory of the longitudinal outcome providing information that

can be used in a personalized medicine setting. This allows researchers to identify potentially

harmful patterns and intervene at an earlier stage.
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1.0 LITERATURE REVIEW

1.1 JOINT MODEL

Joint modeling has become a topic of great interest in recent years. The focus has been

primarily on models that include a longitudinal and a survival component. In the past,

the repeated measures and failure outcomes are treated separately. However, when the two

outcomes are related, the separate models may be both inappropriate and uninformative.

Joint models have several advantages. They can incorporate (i) time-varying variables, (ii)

informative dropout and (iii) censored longitudinal covariates.

The most common approach to the construction of a joint model is the use of shared

random effects. The models are simultaneously analyzed using a shared random effect that is

common across the two components. The random effects, bi, which usually follow a normal

distribution, are used to link the repeated measures, yi, and the event time of survival

outcome, di. The joint likelihood is as follows [1]:

L =
n∏
i=1

∫
f(yi, di|bi)f(bi)dbi

=
n∏
i=1

∫
f(yi|bi)f(di|bi)f(bi)dbi.

where f(bi) has a certain distribution.

We will first review the joint model for a longitudinal outcome and a survival outcome.

Then, we will summarize the joint modeling of a longitudinal and a binary outcome. Finally,

we will assess the joint model in multilevel data.
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1.1.1 Joint Model of Longitudinal and Survival Data

Tsiatis et al. [2] used a two-stage approach where the longitudinal process and the Cox

proportional hazards model is incorporated. In the first stage, the linear mixed effects model

is used and then in the second stage, the empirical Bayes estimates replaced the covariates

of the Cox model. They also applied the method to survival and CD4 counts in patients

with AIDS.

Schluchter [3] discussed several methods for modeling informatively censored longitudinal

data. When informative censoring occurs, it causes problems such as bias in the standard

likelihood-based analyses. He pointed out that the Expectation-Maximization (EM) algo-

rithm has several advantages when applied to this problem, namely that it allows for unbal-

anced data and unequally spaced time intervals. The EM algorithm (Dempster, Laird and

Rubin [4] ) has been a popular method in the joint random effects model framework. The

EM algorithm is an iterative optimization method used to estimate some unknown parame-

ters. More generally, the EM algorithm can be described as follows for a general likelihood

function;

l(θ) = logp(x|θ) = log
∑
z

p(x, z|θ)

= log
∑
z

q(z|x, θ)p(x, z|θ)
q(z|x, θ)

≥
∑
x

q(z|x, θ)logp(x, z|θ)
q(z|x, θ)

≡ F (q, θ),

where X denotes the observed variables, Z denotes the unobserved latent variables and θ

is an unknown parameter vector. Note that logp(x, z|θ) is a complete log-likelihood and

q(z|x, θ) is an arbitrary density over Z. In the E-step, the random coefficients are estimated

using the conditional expectation of the log-likelihood given the observed data, that is,

E-step: q(t+1) = argmax
q

F (q, θ(t)).
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Then, in the M-step, the expected log-likelihood is maximized using the estimated random

effects yielding

M-step: θ(t+1) = argmax
θ

F (q(t+1), θ).

DeGruttola and Tu [5] applied the EM algorithm to a joint model of the progression of CD4-

lymphocyte count and survival time using random effects. They assumed that the joint

distribution of the covariate process and survival times were multivariate normal. Wulfshon

and Tsiatis [6] relaxed some of the assumptions placed on prior methods. They assumed that

the individual’s random effects need not be normally distributed at every time point since

the risk set changes at each failure time. Henderson et al. [7] proposed that the two models

are linked by a common latent stochastic process. The researchers used a latent bivariate

Gaussian process W (t) = {W1(t),W2(t)} and assumed that the repeated measurement and

the failure time process were conditionally independent given W (t) and the covariates. The

association of the two outcomes was created through the cross-correlation between W1(t) and

W2(t). Therefore, the joint distribution of both outcomes for the ith subject is assumed to

be an unobserved or latent zero-mean bivariate Gaussian process, Wi(t) = {W1i(t),W2i(t)}.

The sub-model for the repeated measurements part is as follows;

Yij = X1i(t)
′β1 +W1i(tij) + εij, (1.1)

where X1i(t) are possiblely time-varying covariates and β1 are the corresponding coefficients

associated with the repeated measures. The sequence of mutually independent measurements

errors, εij is assumed to be N(0, σ2
ε ). The other sub-model is the semi-parametric model for

the event intensity process at time t, and is given by

λi(t) = Hi(t)λ0(t)exp{X2i(t)
′β2 +W2i(t)}, (1.2)

with Hi(t) being the zero-one process and λ0(t) being the unspecified form of the baseline

hazard. Estimation for the models described in (1.1) and (1.2) is based on an extension of

the EM algorithm. Lin et al. [8] introduced a joint model comprised of multiple longitudinal

outcome variables and a survival outcome. The model incorporated the correlations among

longitudinal co-variables and used a one-step-late EM algorithm.
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Song et al. [9] also tested the sensitivity of violation of the normality assumption in a

joint model with a longitudinal and a survival outcome based on the EM algorithm. They

relaxed the assumption of a smooth density and found that the results were remarkably

robust and consistent to the assumption of normality. For the same joint model, Hsieh et al.

[10] confirmed that the joint likelihood with the normality assumption of random effects is

robust and efficient as long as the longitudinal outcome does not carry large measurement

errors.

The Markov chain Monte Carlo (MCMC) methods are another widely used algorithm in

the joint model setting. In Bayesian inference, the unknown random effects are estimated

based on the posterior distribution. The previous sample values are used to randomly gen-

erate the next set of sample values until the Markov chain reaches a stationary distribution.

Faucett and Thomas [11] simultaneously analyzed repeated measurements as a prediction of

disease risk. They used the Markov chain Monte Carlo technique of Gibbs sampling to esti-

mate the unknown parameters. Gibbs sampling is a special case of the Metropolis-Hastings

algorithm. Suppose that x = (x1, x2, . . . , xk) is from a joint distribution p(x1, x2, . . . , xk).

The samples are updated as follows:

X
(t+1)
1 ∼ p(x1|x(t)2 , x

(t)
3 , . . . , x

(t)
k )

X
(t+1)
2 ∼ p(x2|x(t+1)

1 , x
(t)
3 , . . . , x

(t)
k )

X
(t+1)
3 ∼ p(x3|x(t+1)

1 , x
(t+1)
2 , x

(t)
4 . . . )

...
...

X
(t+1)
k ∼ p(xk|x(t+1)

1 , x
(t+1)
2 , . . . , x

(t+1)
k−1 ).

From the updated samples, the most recent values are used. Their method reduced bias

in the parameter estimates due to covariate measurement error and informative censoring.

Later, Xu and Zeger [12] generalized the Markov chain Monte Carlo technique using a latent

variable. Guo and Carlin [13] developed the method of Henderson et al. into a fully Bayesian
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version using the Markov chain Monte Carlo technique. The researchers applied the method

to the CD4 counts and time to death simultaneously via a latent bivariate Gaussian process.

Hogan and Laird [14] focused on incomplete data in the longitudinal measurements in

the joint modeling setting. They used the missing mechanisms described in Little and Rubin

[15], and discussed below. If missingness does not depend on the data Y, then it is defined

as missing completely at random (MCAR). In this case

f(M |Y, φ) = f(M |φ) for all Y, φ,

where Y is the complete data, M is missing-data indicator matrix and φ denotes the unknown

parameters. If missingness depends only on observed components, Yobs, then the missing-

data mechanism is called missing at random (MAR) and

f(M |Y, φ) = f(M |Yobs, φ) for all Ymis, φ,

where Yobs denotes the observed components and Ymis denotes the missing components. If

missingness depends on the missing values in the data Y, then it is called not missing at

random (NMAR). They also discussed selection and mixture models for the evaluation of

missing values in both longitudinal and survival outcomes.

Tsiatis and Davidian( [16], [17] ) generalized the joint model by placing no assumptions

on the distribution of the random effects. Prior to this work, most methods assumed that the

random effects followed a normal distribution. They relaxed the assumptions of normality

of the random effects and their semiparametric approach may cause a loss of efficiency

relative to the models where the parametric specification for the random effects is made.

They used the conditional score (CS) approach proposed by Stefanski and Carroll [18].

The conditional score is obtained by conditioning on certain sufficient statistics when the

explanatory variables are fixed constants. Later, Song et al. [19] extended this approach to

include multiple, possibly correlated, time-dependent covariates using the conditional score

method.

Proc NLMIXED [20] is an another convenient tool for estimation in the joint modeling

setting. Vonesh et al. [21] proposed a joint model comprised of parametric or semiparametric

survival models for the survival component and the generalized linear or non-linear mixed-

effects models for the longitudinal component. This allows flexibility in the specification of

5



the distribution of the event time and the association of the longitudinal outcome. They

used the Laplace approximation implemented in Proc NLMIXED in SAS to obtain estimates

from the model. Liu [22] considered a joint model when the values of the repeated measures

contain a large number of zero values and right-skewed positive values. They applied the

method to the longitudinal monthly medical costs of chronic heart-failure patients using the

Gaussian quadrature techniques implemented in SAS Proc NLMIXED [23].

We have discussed several estimation methods for the joint model of longitudinal and

survival outcomes. Due to the unknown random effects, the Expectation-Maximization

(EM) and Markov chain Monte Carlo (MCMC) algorithms have been the popular methods

and extended in many ways. Also, some papers focused on incomplete data in longitudinal

measurements. The conditional score (CS) approach was another method used to relax

the normality assumption of random effects. Recently, Proc NLMIXED in SAS has been

conveniently utilized, since it can easily accommodate a user-specified likelihood. While

these methods are useful when time-to-event data are available, there are many cases where

the outcome of interest is binary and a logistic regression model is used. We will discuss

some papers where a binary outcome was used in place of a survival outcome.

1.1.2 Joint Model of Longitudinal and Binary Data

Wang et al. [24] considered a joint model using a naive estimator. They used a regression cal-

ibration (RC) estimator, where repeated measurements were assumed to be linear. However,

when the measurements were nonlinear, the RC model produced a biased estimator. They

used the refined RC (RR) estimator in logistic regression to generate an unbiased estimate.

Li et al. [25] introduced the sufficiency score (SS) and the conditional score (CS), which

generalized the linear model with no distributional assumptions on the random effects and

consistent inference even when the distribution was misspecified. Later, Li et al. [26] devel-

oped the generalized sufficiency score (GSS) and the generalized conditional score (GCS),

which have no distributional nor covariance structural assumptions placed on the covariate

random effects. These approaches are more flexible and are applicable to the multivariate

longitudinal covariate processes.
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Horrocks et al. [27] considered the prediction of pregnancy based on longitudinal measure-

ments of adhesiveness of certain blood lymphocytes. They used the joint model developed by

Wang et al. [24] and used a Bayesian approach to estimate the parameters as implemented

in WinBUGS. Wannemuehler et al. [28] explored the joint model of longitudinal and logistic

health outcomes in left- and interval-censored data. They compared the joint model with a

two-stage approach, and the joint modeling approach implemented in SAS Proc NLMIXED

performed better with little bias and near-nominal confidence interval coverage.

In summary, the sufficiency score (SS) and the conditional score (CS) methods were used

to relax the distributional assumptions on the random effects. Also, Bayesian methods and

the likelihood-based approach were discussed in the joint modeling of a longitudinal and a

binary outcome.

1.1.3 Joint Model with Multilevel Data

Hierarchical or clustered structures are presnet in many biomedical studies. A common

example is in longitudinal studies where an individual’s repeated measures are correlated with

each other. Individuals may be further nested within geographical areas or institutions such

as schools or hospitals. In this situation, there are clustering effects due to the correlation

between the same levels nested within the higher levels. As a result of this clustering, there

are different random effects between levels, so we can use mixed model to account for these

random effects.

Ratcliffe et al. [29] developed a joint model for the longitudinal and survival outcome

in multilevel data. They linked the two submodels with cluster-level random effects and

applied the EM algorithm to estimate the parameters. In the presence of clustered data, the

cluster-level linkage performed better than a subject-level link.

Liu et al. [30] linked the joint model of a longitudinal and a survival outcome using both

cluster level and subject level random effects. They used the Gaussian quadrature technique

implemented in aML (Multiprocess Multilevel Modeling software [31] ). The researchers

showed that failure to satisfy the assumptions placed on the dependence structure between

the outcomes can cause serious biases.
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The joint model of longitudinal and binary outcomes in multilevel data is still under

development. The focus of this paper is on the setting where we only have information

about the events (dead or alive), but not the failure time in the presence of the clustering

effect. This model is applicable in a setting where the data are hierarchically structured, such

as, hospitals at level 1, patients at level 2, and longitudinal measurements at level 3. In other

words, when the subjects are clustered within higher levels, the random effects are different

between their levels. This work focuses on the setting where the longitudinal outcome is

subject to multiple hierarchical levels and the second outcome is binary. We propose the

use of a joint model with a logistic regression model being used for the binary outcome and

a hierarchical mixed effects model being used for the longitudinal outcome. Here, we link

the two sub-models using both subject and cluster level random effects and compare it with

models using only one level of random effects. We present simulation results that compare

the results of a single level random effect to the multi-level random effects. Then we apply

this model to the motivating example of the HEMO data [32].

Another major issue in joint modeling is the estimation of predicted values for each of

the observations in the data set. While there has been some research related to prediction

for the joint model of longitudinal and survival outcomes, there has been little work for

joint model of longitudinal and binary outcomes. To address this issue we obtain individual

predictions for our proposed joint model. Through fitting our model in WinBUGS, which is

based on the Bayesian method using a Markov chain Monte Carlo (MCMC), we will obtain

estimates of the individual predicted probability. Then, we can assess the performance of

the longitudinal measures in the prediction of mortality.
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2.0 MULTILEVEL JOINT ANALYSIS OF LONGITUDINAL AND BINARY

OUTCOME

2.1 INTRODUCTION

Joint modeling has become a topic of great interest in recent years, seeing extensions to

methodology for jointly modeling two different outcomes, extensions to accommodate in-

formative censoring and methods for incorporating censored longitudinal covariates into a

survival model. These methods address the need to link longitudinal information to other

types of models and provide for improved estimates. This is in contrast to traditional meth-

ods where each component is modeled separately or where the longitudinal component is

included as a time-varying covariate in a survival model, providing potentially biased re-

sults. While joint models offer the advantage of allowing for the joint assessment of two

outcomes and the reduction in bias in estimates, the models can be difficult to fit and need

extra care in interpretation.

The focus of work in the area of joint modeling has primarily been on the development

of models that include a longitudinal and a survival component in a single model. Re-

search in this area has centered on several different approaches; the use of the expectation-

maximization (EM) and Markov chain Monte Carlo (MCMC) algorithms to obtain estimates

for the joint model and the use of the full likelihood. The EM algorithm has been used by

many researchers. DeGruttola and Tu [5] assumed that the joint distribution of the covari-

ate process and survival times were multivariate normal. Wulfshon and Tsiatis [6] assumed

that the individual’s random effects need not be normally distributed all the time when the

individuals are at risk at each event time and thus removed from observation. Henderson et

al. [7] proposed that the two models are linked by a common latent stochastic process. Lin

9



et al. [8] introduced multiple longitudinal variables and the survival outcome. The model

incorporated the correlations among longitudinal co-variables. Song et al. [9] relaxed the

assumption with a smooth density and found out the results were remarkably robust and

consistent to the assumption of normality. Hsieh et al. [10] confirmed that the joint like-

lihood with normality assumption of random effects is robust and efficient as long as the

longitudinal outcome does not carry large measurement errors.

Several researchers applied the MCMC approach to joint modeling as well. Faucett and

Thomas [11] used the Markov chain Monte Carlo technique of Gibbs sampling to estimate

unknown parameters. Xu and Zeger [12] generalized the Markov chain Monte Carlo technique

using a latent variable. Guo and Carlin [13] developed the method of Henderson into a fully

Bayesian version using the Markov chain Monte Carlo technique.

PROC NLMIXED in SAS [20] has been another widely used piece of statistical software

for joint modeling using the likelihood approach. Vonesh et al. [21] proposed a joint model

including parametric and semiparametric survival models and generalized linear or non-

linear mixed-effects models which allow for flexibility in the specification of the distribution

of the event time for the survival component of the joint model. They used the Laplace

approximation implemented in PROC NLMIXED in SAS for fitting this model. Liu [22]

also used PROC NLMIXED for the case where the repeated measures outcome contains a

large number of zero values and right-skewed positive values. Tsiatis and Davidian ([16], [17])

generalized the joint model by developing a model where there are no assumptions placed

on the distribution of the random effects. They used the conditional score (CS) approach

proposed by Stefanski and Carroll [18]. This was later extended to the setting where there

are multiple, possibly correlated, time-dependent covariates (Song et al. [19]).

The motivation for this work arose from several practical applications where one of the

outcomes of interest was a binary outcome, rather than a survival outcome. One example

arose out of a study of intensive care units looking at the relationship between in-hospital

mortality and daily sunlight exposure while in the intensive care unit. The second example

came out of a clinical trial of dialysis approaches and mortality. In these setting, there was

interest in examining the relationship between longitudinal measures of mid-arm muscle cir-

cumference (MAMC) and mortality. While there has been some development of joint models
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for binary and longitudinal outcomes, these modeling techniques are not as well developed

as those that are available for a joint model including survival and a longitudinal outcome

and there have been no models developed for hierarchically structured data. Horrocks [27]

used a Bayesian approach for the prediction of pregnancy and other authors have used the

sufficiency score (SS) and the conditional score (CS) to develop joint models with a binary

and longitudinal outcome with no assumptions placed on the random effects ([25], [26]). The

incorporation of multilevel data into the joint model has not been as widely studied. Ratcliffe

et al. [29] developed a joint model for a longitudinal and survival outcome in multilevel data

linking the two submodels with cluster-level random effects. The EM algorithm was then

used to obtain parameter estimates from this joint model. They then showed that cluster-

level linkage performed better than a subject-level linkage in the presence of clustered data.

Liu et al. [30] linked the joint model composed of a longitudinal and survival outcome using

both cluster level and subject level random effects. To implement this method, they used

the Gaussian quadrature technique implemented in aML (Multiprocess Multilevel Modeling

software [31]). They also showed that the model is sensitive to the assumptions on the de-

pendence structure between the outcomes, resulting in serious bias when these assumptions

are violated.

The focus of this work is on the development of a joint model in the multilevel data setting

where the outcomes include a binary and a longitudinal outcome. This model is applicable in

setting where data are hierarchically structured, such as, hospitals at level 1, patients at level

2, and longitudinal measurements at level 3. In other words, when the subjects are clustered

within higher levels, the random effects are different between their levels. This work focuses

on the setting where the longitudinal outcome is subject to multiple hierarchical levels and

the second outcome is binary. We propose the use of a joint model with a logistic regression

model being used for the binary outcome and a hierarchical mixed effects model being used

for the longitudinal outcome. Here, we link the two sub-models using both subject and

cluster level random effects and compare it with models using only one level random effects.

We showed the simulation results which were compared with the results of one level random

effects. Then we applied this model to the motivating example of the HEMO data [32].
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2.2 METHODS

Let Yijk denote the k-th repeated measure for the j-th subject within i-th cluster (i =

1, 2, ..., n, j = 1, 2, ..., ni, and k = 1, 2, ...,mij). Let pij denote the probability of response

for the j-th subject of a binary zero-one outcome variable, Xij. Let Zijk and Wij denote

the covariate vectors of fixed effects for the longitudinal outcome model and the logistic

regression model, respectively. We assume that the missing mechanism is missing at random

(MAR). Under this assumption, we keep all of the observations in the sample whether the

observations are missing or not. The missing data simply do not contribute to the estimation.

As shown in (2.2) below, the repeated measures k are indexed from 1 to mij. In this model,

ai and bij denote the random effects at the cluster and subject levels, respectively. They are

assumed to be independent and identically distributed according to a normal distribution

with mean 0 and corresponding variances, e.g. σ2
a and σ2

b .

We define the joint model as

yijk = ZT
ijkβ + ai + bij + eijk

logit(pij) = Wijα + γ1ai + γ2bij,
(2.1)

where β and α are unknown vectors of parameters. In this model γ1 and γ2 represent the

association between the two models at each cluster and subject level. The error term, eijk is

assumed to be N(0, σ2
e) and independent of (ai, bij, Xij). Let Oij denote the observed data

for the i-th subject within the j-th cluster, then the likelihood is as follows:

L =
n∏
i=1

Li =
n∏
i=1

∫ ni∏
j=1

Lijφ(ai)dai (2.2)

where

Lij =

∫
L(Oij|ai, bij)dbij
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=

∫ mij∏
k=1

φ(eijk)

[
ni∏
j=1

p
xij
ij (1− pij)(1−xij)

]
φ(bij)dbij.

Note that

eijk = yijk − ZT
ijkβ − ai − bij,

and that φ(ai) represents a normal density function with mean 0 and variance σ2
a. Likewise,

φ(bij) is the normal density function with mean 0 and variance σ2
b . Here, xij denotes the

realization of Xij.

We also considered the two reduced models discussed by Liu et al. [30]. The first model

we consider, ‘reduced model A’, restricts the number of random effects related to the binary

outcome by including only the cluster-level random effect, ai, in the model. This results in

a model where γ2 in equation (2.1) is set equal to zero and is written as

yijk = ZT
ijkβ + ai + bij + eijk

logit(pij) = Wijα + γ1ai.
(2.3)

The other model we consider, ‘reduced model B’, restricts the number of random effects

related to the binary outcome by including only the subject-level random effect, bij, in the

model. This results in a model where γ1 in equation (2.1) is set equal to zero and is written

as

yijk = ZT
ijkβ + ai + bij + eijk

logit(pij) = Wijα + γ2bij.
(2.4)

The likelihoods of the reduced models are different in terms of the pij when compared

to our model, which includes both subject and cluster level random effects. Note that the

likelihood equations presented in (2.2) will include a single integration.

The integration of the random effects in (2.2) requires the use of special software. Proc

NLMIXED in SAS is a convenient tool for the fitting of joint models. However, our data is

multilevel data and Proc NLMIXED in SAS can not handle clustered level random effects.
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We used the aML software to implement the joint model using Gaussian quadrature tech-

niques. This software is specific for the estimation of multilevel and multiprocess models. It

uses a numerical integration algorithm based on Gaussian quadrature techniques. We used

five quadrature points for the simulation study and it was enough for this purpose. Also,

we used 50 quadrature points for our application data to get more accurate results. Huber-

corrected standard error estimates were used for the covariance matrix of the parameter

estimates which is robust to heteroscedasticity.

2.3 SIMULATION STUDY

We conducted simulation studies to identify the sensitivity of the estimates when the as-

sumptions of the dependence structure were violated. We compared our full model with two

reduced models which included only one of the random effect terms. The ‘reduced model A’

was only linked via the cluster-level random effect and ‘reduced model B’ was only linked

via the subject-level random effect. We generated data for the simulation study following

that outlined in Liu et al. [30]. For all simulations we simulated data on 500 subjects with

a cluster size of 50, so that there were 10 subjects within each of the clusters. The results

presented are based on 600 simulated samples for each scenario. The model below was used

for generating data:

yijk = β0 + β1Zij + β2time+ ai + bij + eijk

logit(pij) = α0 + α1Zij + γ1ai + γ2bij.

Let yijk represent the repeated measurement at the integer time k, with k ranging from

1 to 5. We generated the subject-level covariate, Zij, from a binary distribution with prob-

ability 0.5. Coefficent parameters were β = (β0, β1, β2)
T = (−1,−.5,−.2)T . The random

intercepts ai and bij were also included in the model. We assumed ai
iid∼ N(0, σ2

a) with σ2
a = 1

and bij
iid∼ N(0, σ2

b ) with σ2
b = 1. Since the repeated measures from a subject j share the

common random effects bij and the subjects from a cluster share the common random effects

ai, the correlation is induced from the random effects. Here, the covariance structure is
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compound symmetry where the variance at all time points is the same and the correlation

between any two distinct measurements is the same. The covariance structure is as follows:

COV (yijk) =

σa2 + σb2 + σe2



1
σa2+σb2

σa2+σb2+σe2

σa2+σb2
σa2+σb2+σe2

σa2+σb2
σa2+σb2+σe2

σa2+σb2
σa2+σb2+σe2

σa2+σb2
σa2+σb2+σe2

1
σa2+σb2

σa2+σb2+σe2

σa2+σb2
σa2+σb2+σe2

σa2+σb2
σa2+σb2+σe2

σa2+σb2
σa2+σb2+σe2

σa2+σb2
σa2+σb2+σe2

1
σa2+σb2

σa2+σb2+σe2

σa2+σb2
σa2+σb2+σe2

σa2+σb2
σa2+σb2+σe2

σa2+σb2
σa2+σb2+σe2

σa2+σb2
σa2+σb2+σe2

1
σa2+σb2

σa2+σb2+σe2

σa2+σb2
σa2+σb2+σe2

σa2+σb2
σa2+σb2+σe2

σa2+σb2
σa2+σb2+σe2

σa2+σb2
σa2+σb2+σe2

1


The error term was eijk

iid∼ N(0, σ2
e) with σ2

e = 1. The logistic regression included an

intercept α0 and the subject-level covariate Zij with coeficient α = (α0, α1)
T = (1.5,−1)T .

Also, the random effects ai, at the cluster level, and bij, at the subject level, were included

in the model. In case I, we assumed that the coefficient parameters γ = (γ1, γ2)
T = (1, 1)T .

Non-adaptive Gaussian quadrature with 5 quadrature points was implemented in aML.

Table 1 presents the simulation results. As expected, the estimates of the proposed model

had very small biases and the coverage probability showed that the model performed much

better than the other two reduced models. The reduced model A was where the model was

linked only via the cluster-level random effect. Likewise, the reduced model B was set to

be linked only via the subject-level random effects. The reduced model A showed a lower

coverage probability percent in the parameters α0, α1 and γ1 than our model. Also, the

estimates were biased for the parameters α0, α1 and σa in the reduced model B.

In case II, we assumed that the coefficient parameters γ = (γ1, γ2)
T = (1, 0)T and other

parameters remained the same in case I. In this case, the reduced model A was the true

model. The results can be seen in Table 2. The estimates of the proposed model are still

unbiased and the coverage probability percent is reasonable. However, reduced model B

showed lower coverage probability for α0, α1 and γ2.

In case III, we also generated the data with γ = (γ1, γ2)
T = (0, 1)T , where the reduced

model B was the true model. The proposed model still showed unbiased estimates and
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reasonable coverage probability. In the reduced model A, α0, α1 and γ1 were poorly estimated

with low coverage probability. The results are presented in Table 3.
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Table 1: Simulation Results for case I : γ = (γ1, γ2)
T = (1, 1)T

Our model Reduced model A Reduced model B

Parameter Est SE CP Percent Est SE CP Percent Est SE CP Percent

β0 = −1 -0.997 0.161 94.33 -0.997 0.161 94.34 -0.998 0.161 94.33

β1 = −0.5 -0.503 0.101 94.83 -0.503 0.102 95.01 -0.503 0.103 94.67

β2 = 0.2 0.200 0.014 94.50 0.200 0.014 94.51 0.201 0.014 94.50

α0 = 1.5 1.563 0.252 93.50 1.303 0.206 80.17 1.288 0.209 78.33

α1 = −1 -1.040 0.261 94.17 -0.869 0.216 90.83 -0.858 0.229 89.33

γ1 = 1 1.022 0.147 93.17 0.934 0.119 85.81

γ2 = 1 1.051 0.168 93.67 0.995 0.135 94.17

σa = 1 0.982 0.108 93.50 0.986 0.107 93.99 0.815 0.101 53.33

σb = 1 0.997 0.039 94.83 0.995 0.039 94.99 1.024 0.043 91.83

σe = 1 1.000 0.016 92.50 1.000 0.016 92.50 1.000 0.016 92.50
CP is the coverage probability of the 95 percent confidence interval.
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Table 2: Simulation Results for case II : γ = (γ1, γ2)
T = (1, 0)T

Our model Reduced model A Reduced model B

Parameter Est SE CP Percent Est SE CP Percent Est SE CP Percent

β0 = −1 -0.998 0.161 94.17 -0.998 0.161 94.17 -0.997 0.161 94.33

β1 = −0.5 -0.502 0.101 95.17 -0.502 0.101 95.00 -0.503 0.101 94.67

β2 = 0.2 0.201 0.014 94.50 0.201 0.014 94.50 0.201 0.014 94.50

α0 = 1.5 1.512 0.225 93.83 1.506 0.224 93.67 1.268 0.193 73.83

α1 = −1 -1.013 0.222 95.67 -1.010 0.221 96.17 -0.855 0.201 88.67

γ1 = 1 1.014 0.147 93.00 1.010 0.145 93.00

γ2 = 0 -0.009 0.124 95.00 0.096 0.108 85.50

σa = 1 0.983 0.108 93.33 0.983 0.108 93.33 0.966 0.108 91.67

σb = 1 0.998 0.039 95.00 0.998 0.039 95.00 1.000 0.040 95.17

σe = 1 1.000 0.016 92.50 1.000 0.016 92.50 1.000 0.016 92.50

18



Table 3: Simulation Results for case III : γ = (γ1, γ2)
T = (0, 1)T

Our model Reduced model A Reduced model B

Parameter Est SE CP Percent Est SE CP Percent Est SE CP Percent

β0 = −1 -1.002 0.170 94.13 -0.997 0.161 94.17 -0.998 0.161 94.17

β1 = −0.5 -0.502 0.111 93.96 -0.503 0.101 94.67 -0.502 0.101 93.83

β2 = 0.2 0.201 0.014 94.46 0.201 0.014 94.50 0.201 0.014 94.50

α0 = 1.5 1.523 0.306 93.79 1.262 0.152 64.00 1.440 0.174 92.50

α1 = −1 -1.008 0.319 94.63 -0.842 0.199 85.33 -0.955 0.226 93.00

γ1 = 0 0.026 0.617 96.31 0.082 0.103 88.33

γ2 = 1 1.030 0.208 93.29 0.976 0.135 91.83

σa = 1 0.986 0.178 93.46 0.983 0.108 93.33 0.984 0.106 93.17

σb = 1 0.998 0.073 95.13 0.998 0.039 95.00 0.998 0.039 95.33

σe = 1 1.000 0.016 93.29 1.000 0.016 92.50 1.000 0.016 92.50

We also simulated data for both random intercept and random slope effects. The model

was as follows:

yijk = β0 + β1Zij + β2time+ ai + b1ij + b2ijtime+ eijk

logit(pij) = α0 + α1Zij + γ1ai + γ2b1ij + γ3b2ij

The model was linked with the three random effects, which were the cluster-level random

intercept ai, the subject-level random intercept b1ij and the subject-level random slope b2ij.

The b2ij shows the within subject variation over time. The coefficient parameter γ3 and

the variance component σb
2
2 were set to be .5. The results for the proposed model showed

reasonable estimates. The results are shown in Table 4.

We also conducted several different simulation studies by changing the sample size and

the cluster size. As the sample size gets smaller, we found that the coverage probabilities

of the cluster level association and the cluster level variance component were lower. We
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also changed the values of the association of the joint model, setting γ1 = γ2 = 1.5. These

results had lower lower coverage probabilities for the cluster level variance component than

the cases where γ1 = γ2 = 1.

Table 4: Simulation Results for case IV : γ = (γ1, γ2, γ3)
T = (1, 1, 0.5)T

Our model Reduced model A Reduced model B

Parameter Est SE CP Percent Est SE CP Percent Est SE CP Percent

β0 = −1 -0.997 0.166 94.00 -0.997 0.166 94.00 -0.996 0.169 94.89

β1 = −0.5 -0.493 0.128 94.33 -0.493 0.128 94.50 -0.495 0.131 94.53

β2 = 0.2 0.199 0.034 94.50 0.199 0.034 94.50 0.199 0.034 94.89

α0 = 1.5 1.631 0.278 93.50 1.289 0.205 78.83 1.267 0.204 75.84

α1 = −1 -1.085 0.276 92.33 -0.859 0.213 86.83 -0.848 0.222 85.36

γ1 = 1 1.060 0.168 93.67 0.922 0.124 83.83

γ2 = 1 1.119 0.272 97.00 1.026 0.174 94.18

γ3 = 0.5 0.532 0.198 92.83 0.415 0.165 89.42

σa = 1 0.984 0.114 92.00 0.991 0.113 92.33 0.803 0.109 52.38

σb1 = 1 0.989 0.066 93.83 0.986 0.066 93.83 1.037 0.070 92.42

σb2 = 0.7 0.705 0.025 92.50 0.704 0.024 92.83 0.705 0.025 92.42

σe = 1 0.999 0.018 92.17 1.000 0.018 92.00 1.000 0.018 92.42

From the simulation study we presented, the estimates are sensitive to the violation

of the assumptions of the dependence structure between the longitudinal outcome and the

binary outcome. The results show that the binary part and the variance component have

poor coverage probability and biased estimates if we ignore the correct assumptions.
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2.4 APPLICATION

The HEMO study was a randomized controlled trial designed to identify the effects of dial-

ysis dose and membrane flux on morbidity and mortality for patients undergoing chronic

hemodialysis. The study enrolled 1846 patients nested within 75 units within 15 centers,

randomized by dose (standard or high) and by membrane type (high or low). One question

of secondary interest is the relationship between mid-arm muscle circumference and overall

health. To address this we fit a joint model with the logistic outcome being mortality and

the longitudinal component being mid-arm muscle circumference. A mixed model was fit to

the data with the longitudinal measure of mid-arm muscle circumference (MAMC) as the

outcome [33]. This measure was calculated using the following equation:

MAMC (cm) = mid-arm circumference (cm)

- 3.142 × triceps skinfold (TSF) (cm).

Our analysis included 1799 patients who had at least one measure of mid-arm muscle

circumference (MAMC). Time is calculated from randomization date to the visit date for

evaluation in years. The average number of follow-up visits is 3 (range 1-8) and the average

follow-up time is 2.09 years (range: 0 - 6.36). Out of 1799 patients, 840 (46.7%) died during

the study. The mean MAMC value is 24.6 (range 8.5 - 51.2).

The following baseline variables were included in both models: age at the first visit (mean

58 years), gender (44 % male), Index of Coexisting Disease (ICED) severity score which was

calculated with diabetes excluded (36 % with a score of 1, 31 % with a score of 2 and 33 %

with a score of 3), diabetic status (44 % diabetes) and race (63 % black). Also, the variables

indicating treatment assignment, dose (standard vs. high dose) and membrane type (high

or low flux membranes), were considered. Time in years since randomization date was also

included in the longitudinal model.

Since patients receive similar treatment if they are in the same unit, there will be a

within-cluster correlation for patients who are treated in the same unit (level 1). Also, the

repeated measurements of mid-arm muscle circumference (MAMC) (level 3) are nested within

a patient (level 2). We assumed that mortality might depend on the repeated measures
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of MAMC at both the unit level and the subject level. First, we built the longitudinal

submodel with the outcome of MAMC and then we built the logistic regression submodel

with the outcome of all-cause mortality. We linked the two sub-models using both subject

and cluster level random effects. The results, shown in Table 5, are based on 50 quadrature

points.

There was a significant linear decreasing pattern in MAMC over time. It decreased by

0.122 per year with a p-value of <0.001. Patients who had a higher index of coexistent

diseases (ICED) score had significantly higher mortality. Also, patients who had diabetes

had higher mortality when compared to the patients with no diabetes by 0.317 and a p-value

of 0.012. We observed that patients with an older age had a higher mortality by 0.052 with

a p-value of <0.001.

We found that the random effects at both the cluster and the subject levels were signif-

icant for MAMC. The estimate of σa (cluster level) was 0.420 with a p-value of 0.05 and σb

(subject level) was 3.179 with a p-value <0.001. The longitudinal MAMC was negatively

correlated with mortality rate at the subject level (γ2), but not at the unit level (γ1).

We also wanted to compare our proposed model with four reduced models. Two of these

reduced models include both the cluster level and the subject level of random effects in the

mixed model. Reduced model A was only linked via the cluster level. For this model, we

found that γ1 was slightly smaller in magnitude when compared to the full model but it was

still not significant. Reduced model B was only linked via the subject level and we found

that γ2 was very similar to our model. Since γ1 was not significant, the reduced model B was

also appropriate for our data. In both cases, while coefficients differed in magnitude across

the models, the overall inference is the same.

We also considered reduced models that contain only one random effect. These models,

C and D, are also included in the table. Reduced model C was only linked via the cluster

level. The model is as follows,

yijk = ZT
ijkβ + ai + eijk

logit(pij) = Wijα + γ1ai.
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Reduced model D was only linked via the subject level, i.e.

yijk = ZT
ijkβ + bij + eijk

logit(pij) = Wijα + γ2bij.

We found that the variance components, σa and σe, in reduced model C, and σb in

reduced model D were inflated. Also, there were some differences in estimates between the

two types of reduced models. For example, black patients have lower MAMC for models C

and D which contained only one random effect. Reduced model C also had a lower MAMC

time slope in magnitude when compared to the other models presented. These discrepancies

showed that the correct modeling at the cluster level or the subject level is important. We

also fitted models with the center level as a cluster level. Using unit level as a cluster level

had a higher association even though the cluster level was not significant. We tried to fit a

random slope in the time trend of MAMC, but it was not significantly different from zero.

For the goodness of fit test of the joint models, the performance of the proposed model

was investigated further by computing the Akaike Information Criterion (AIC) and Bayesian

Information Criterion (BIC). The AIC and the BIC were applied to the HEMO data, which

are shown in Table 5. The results show that our proposed model is better in terms of

goodness of fit when compared with other reduced models.
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Table 5: Results for HEMO data

Our model Red. model A Red. model B Red. model C Red. model D

Parameter Est SE P Est SE P Est SE P Est SE P Est SE P

MAMC

Intercept 23.844 0.523 0.000 23.814 0.518 0.000 23.767 0.525 0.000 23.762 0.494 0.000 23.871 0.540 0.000

Male 1.443 0.165 0.000 1.448 0.165 0.000 1.417 0.159 0.000 1.476 0.191 0.000 1.435 0.163 0.000

Back 0.803 0.196 0.000 0.810 0.195 0.000 0.805 0.199 0.000 0.740 0.204 0.001 0.789 0.212 0.001

High Kt/V 0.025 0.153 0.873 0.027 0.154 0.861 0.011 0.152 0.940 -0.067 0.162 0.681 0.004 0.151 0.980

High flux 0.130 0.129 0.318 0.130 0.129 0.316 0.121 0.127 0.343 0.113 0.133 0.401 0.118 0.129 0.367

ICED=3 -0.840 0.189 0.000 -0.838 0.189 0.000 -0.830 0.192 0.000 -0.744 0.211 0.001 -0.827 0.186 0.000

ICED=2 -0.413 0.205 0.049 -0.411 0.205 0.050 -0.397 0.201 0.054 -0.425 0.189 0.028 -0.407 0.203 0.050

Diabetes 0.907 0.210 0.000 0.904 0.211 0.000 0.907 0.209 0.000 0.862 0.207 0.000 0.922 0.217 0.000

Age -0.002 0.008 0.789 -0.002 0.007 0.840 -0.002 0.007 0.838 -0.002 0.007 0.817 -0.003 0.007 0.635

Time -0.122 0.031 0.000 -0.115 0.031 0.001 -0.123 0.031 0.000 -0.014 0.031 0.650 -0.123 0.031 0.000

Logit

Intercept -4.001 0.314 0.000 -3.923 0.303 0.000 -3.859 0.324 0.000 -3.801 0.314 0.000 -3.879 0.324 0.000

Male 0.230 0.136 0.096 0.238 0.128 0.070 0.232 0.122 0.064 0.241 0.119 0.047 0.233 0.123 0.064

Back -0.144 0.152 0.350 -0.142 0.148 0.345 -0.117 0.142 0.411 -0.106 0.138 0.444 -0.118 0.143 0.410

High Kt/V -0.001 0.103 0.994 0.003 0.101 0.976 0.031 0.104 0.776 0.025 0.101 0.808 0.030 0.104 0.772

High flux -0.074 0.094 0.435 -0.072 0.089 0.423 -0.055 0.087 0.532 -0.060 0.084 0.481 -0.055 0.088 0.535

ICED=3 1.173 0.153 0.000 1.134 0.151 0.000 1.102 0.144 0.000 1.088 0.142 0.000 1.109 0.143 0.000

ICED=2 0.717 0.175 0.000 0.696 0.167 0.000 0.679 0.167 0.000 0.664 0.161 0.000 0.682 0.168 0.000

Diabetes 0.317 0.122 0.012 0.303 0.118 0.013 0.282 0.119 0.022 0.282 0.117 0.020 0.284 0.120 0.022

Age 0.052 0.005 0.000 0.051 0.005 0.000 0.051 0.005 0.000 0.050 0.005 0.000 0.051 0.005 0.000

γ1 -1.178 1.125 0.300 -1.094 0.685 0.116 -0.209 0.193 0.285

γ2 -0.120 0.020 0.000 -0.124 0.019 0.000 -0.124 0.019 0.000

Var. Comp.

σa 0.420 0.214 0.050 0.432 0.144 0.004 0.558 0.110 0.000 0.804 0.072 0.000

σb 3.179 0.096 0.000 3.174 0.094 0.000 3.151 0.094 0.000 3.200 0.093 0.000

σe 1.832 0.115 0.000 1.832 0.115 0.000 1.832 0.115 0.000 3.500 0.096 0.000 1.832 0.115 0.000

AIC 27811.9 27850.8 27828.1 31038.4 27839.0

BIC 27943.8 27977.2 27954.5 31159.3 27959.9
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2.5 DISCUSSION

Hierarchical structure is common in many biomedical studies, and ignoring the multi-level

correlation dependence will lead to incorrect results. In this paper we developed a multi-

level joint model of a longitudinal and a binary outcome. The two sub-models were linked

with both the cluster and the subject level random effects. The results were compared with

models that assumed only one level of dependence. The Gaussian quadrature technique

was implemented using the aML software. Our simulation results showed that ignoring the

correlations between outcomes can cause biased estimates.

In our motivating example of the HEMO study, the association between the repeated

measurement of MAMC and the mortality rate were significant, but not for the association

between unit level and mortality rate. In this example, the reduced model A was not appro-

priate because the model was linked only with the cluster level. Although the association

of the cluster level was not significant in the HEMO study, it is still important to check

for associations. We fitted the model with the center level as a cluster level. Using unit

level as a cluster level had higher association even though it was not significant. We also

tried to fit both a random intercept and a random slope in the time trend of MAMC, but

random slope was not significantly different from zero. Our model assumed the cluster level

random effect and subject level random effect were independent. For further investigation,

the generalization of them could be considered.
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3.0 INDIVIDUAL PREDICTIONS OF JOINT MODEL

3.1 INTRODUCTION

In joint modeling studies, investigators often want to predict an individual mortality rate

in situations where future individualized treatments may be considered. There are some

papers which present the subject-specific predictions in the joint modeling of longitudinal and

survival outcomes. Taylor et al. [34] and Yu et al. [35] focused on individualized predictions

for disease progression. They predicted future prostate-specific antigen (PSA) biomarkers

and the predicted probability of cancer recurrence for censored and alive patients. The

Markov chain Monte Carlo (MCMC) method has been applied to have individual draws.

Garre et al. [36] proposed a joint latent class model for longitudinal and survival data with

two latent classes and their predictions were better than other joint models. Proust-Lima

and Taylor [37] focused on the dynamic prognostic tool from a joint latent class model and

evaluated the predictive accuracy measures. Rizopoulos [38] assessed the predictive ability

of the longitudinal marker of the joint model. Also, Horrocks et al. [27] considered the

prediction of pregnancy in the joint model of longitudinal and binary outcomes.

In this chapter, we will fit our proposed model in WinBUGS, which is for Bayesian

analysis using Markov chain Monte Carlo (MCMC) methods. Guo and Carlin [13] devel-

oped the method of Henderson into a fully Bayesian version using the Markov chain Monte

Carlo technique. We will compare the estimates from using the Gaussian quadrature tech-

nique implemented in aML with the fully Bayesian approach via Markov Chain Monte Carlo

(MCMC) methods.

Next, we focus on individualized predictions of mortality for a patient. The motivation

for this work arose from individual prediction of our proposed model. Here, the longitudinal
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measures of mid-arm muscle circumference (MAMC) serve as an indicator of health. By

observing the longitudinal MAMC, we will be able to calculate the predicted probability of

individual mortality.

3.2 METHODS

Let Yijk denote the k-th repeated measure for the j-th subject within the i-th cluster (i =

1, 2, ..., n, j = 1, 2, ..., ni, and k = 1, 2, ...,mij). Let pij denote the probability of response

for the j-th subject of a binary zero-one outcome variable, Xij. Let Zijk and Wij denote

the covariate vectors of fixed effects for the longitudinal outcome model and the logistic

regression model, respectively. In this model, ai and bij denote the random effects at the

cluster and subject levels, respectively. They are assumed to be independent and identically

distributed according to a normal distribution with mean 0 and corresponding variances, e.g.

σ2
a and σ2

b .

We define the joint model as

yijk = ZT
ijkβ + ai + bij + eijk

logit(pij) = Wijα + γ1ai + γ2bij,
(3.1)

where β and α are unknown vectors of parameters. In this model γ1 and γ2 represent the

association between the two models at each cluster and subject level. The error term, eijk is

assumed to be N(0, σ2
e) and independent of (ai, bij, Xij). Let Oij denote the observed data

for the i-th subject within the j-th cluster.

The individual patient has a different predicted probability, standard error and confidence

bands using the Bayesian posterior distribution. The predicted probability of death for a

subject is

P̂ij =
exp(Wijα̂ + γ̂1âi + γ̂2b̂ij)

1 + exp(Wijα̂ + γ̂1âi + γ̂2b̂ij)
, (3.2)
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where α̂ is the estimated coefficient of the logistic regression submodel, and γ̂1and γ̂2 are

the estimated associations of the joint model at the cluster level and the subject level,

respectively. The predicted subject level and cluster level random intercepts are âi and b̂ij,

respectively.

We will fit our proposed model in WinBUGS 1.4.3 which is based on the Markov Chain

Monte Carlo (MCMC) method. It can be called from R using the R package ‘R2WinBUGS’.

WinBUGS has several advantages when fitting Bayesian models providing great flexibility,

especially for multilevel modelling. There is also no restriction on number of levels of ran-

dom effects. On the other hand, the program uses more computational time than a standard

joint model fit using PROC NLMIXED in SAS. While this is not necessarily a fair com-

parison, since more complex models can not be fit using NLMIXED in SAS, it is certainly

a consideration. Part of this computational burden arises from the fact that the estimates

are simulated from posterior distributions. We used the estimates from the likelihood based

method using the Gaussian quadrature techniques for the initial values of the parameters

for the WinBUGs program to make the simulation computationally efficient.

Following the approach used by Guo and Carlin [13], we used proper but vague prior dis-

tributions, so that the priors will have minimal impact relative to data. For the longitudinal

submodel, we assumed multivariate normal and inverse gamma priors for the main effects

and the error variance, respectively. For the logistic regression submodel, normal priors were

used. For the cluster level and the subject level random effects, the normal priors were used.

Again, the normal priors were used for the associations of the joint model. To determine the

accuracy of the predicted values, we computed ROC curves.

3.3 SIMULATION STUDY

We conducted a simulation study to better understand the performance of the proposed

model when it is fit in the BUGS (Bayesian inference Using Gibbs Sampling) software using

Markov chain Monte Carlo (MCMC) methods. The development of the BUGS project is

currently focused on OpenBUGS, while WinBUGS is stable and not undergoing further
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development. BRugs is an R package, that allows OpenBUGS to interface with R. Here, we

used OpenBUGS 3.2.2 for the simulation study.

For all simulations we simulated data on 500 subjects with a cluster size of 50, so that

there were 10 subjects within each of the clusters. The results presented are based on 600

simulated samples for each scenario. The model below was used for generating data:

yijk = β0 + β1Zij + β2time+ ai + bij + eijk

logit(pij) = α0 + α1Zij + γ1ai + γ2bij.

Let yijk represent the repeated measurement at the integer time k, with k ranging from 1

to 5. We generated the subject-level covariate, Zij, from a binary distribution with probabil-

ity 0.5. The coefficient parameters were as follows; β = (β0, β1, β2)
T = (−1,−.5,−.2)T . The

random intercepts ai and bij were also included in the model. We assumed ai
iid∼ N(0, σ2

a)

with σ2
a = 1 and bij

iid∼ N(0, σ2
b ) with σ2

b = 1. Since the repeated measures from a subject

j share the common random effects bij and the subjects from a cluster share the common

random effects ai, the correlation is induced from the random effects. Here, the covariance

structure is compound symmetry where the variance at all time points is the same and the

correlation between any two distinct measurements is the same.

The error term was eijk
iid∼ N(0, σ2

e) with σ2
e = 1. The logistic regression model included an

intercept α0 and the subject-level covariate Zij with coefficient α = (α0, α1)
T = (1.5,−1)T .

Also, the random effects ai, at the cluster level, and bij, at the subject level, were included

in the model. We assumed that the coefficient parameters were as follows; γ = (γ1, γ2)
T =

(1, 1)T . We used two MCMC sampling chains of 10,000 iterations each, following a 5,000-

iteration burn-in period.

Table 6 presents the simulation results. The estimates of our proposed model have

very small bias and the coverage probability shows that the performance of our model is

reasonable using a Bayesian approach. Figure 1 presents boxplots of simulation results with

600 samples providing graphs of the distribution of the estimates. The estimates of both the

longitudinal model margin and the logistic regression model margin are unbiased, but the

variance component of cluster level, σa, is highly variable with some outliers when compared

to the other σ’s. Also, the association parameters of the two models, γ1 and γ2, appear to
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have larger variability than the other parameters. The area under the curve (AUC), which

estimates the prediction performance, is 0.8326 using the average of 600 samples of the data.

For the simulation study we presented, we also note that the estimates using MCMC

methods were unbiased with reasonable coverage probabilities. Based on the AUC results,

the proposed model does a good job for prediction of binary outcome.

Table 6: Simulation Results

Parameter Est SD CP Percent

β0 = −1 -0.997 0.163 93.8

β1 = −0.5 -0.507 0.103 94.3

β2 = 0.2 0.199 0.014 96.5

α0 = 1.5 1.526 0.251 94.3

α1 = −1 -1.010 0.257 93.3

γ1 = 1 1.037 0.152 95.5

γ2 = 1 1.041 0.164 94.3

σa = 1 0.995 0.242 95.0

σb = 1 1.007 0.082 94.8

σe = 1 1.000 0.032 95.5
CP is the coverage probability of the 95 percent credible interval.
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Figure 1: Boxplots of simulation results
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3.4 APPLICATION

The HEMO study was a randomized controlled trial designed to identify the effects of dial-

ysis dose and membrane flux on morbidity and mortality for patients undergoing chronic

hemodialysis. The study enrolled 1846 patients nested within 75 units within 15 centers,

randomized by dose (standard or high) and by membrane type (high or low). One question

of secondary interest is the relationship between mid-arm muscle circumference and overall

health. To address this we fit a joint model with the logistic outcome being mortality and

the longitudinal component being mid-arm muscle circumference. A mixed model was fit to

the data with the longitudinal measure of mid-arm muscle circumference (MAMC) as the

outcome [33]. This measure was calculated using the following equation:

MAMC (cm) = mid-arm circumference (cm)

- 3.142 × triceps skinfold (TSF) (cm).

Our analysis included 1799 patients who had at least one measure of mid-arm muscle circum-

ference (MAMC). Time is calculated from randomization date to the visit date for evaluation

in years. The average number of follow-up visits is 3 (range 1-8) and the average follow-up

time is 2.09 years (range: 0 - 6.36). Out of 1799 patients, 840 (46.7%) died during the study.

The mean MAMC value is 24.6 (range 8.5 - 51.2).

The following baseline variables were included in both models: age at the first visit (mean

58 years), gender (44 % male), Index of Coexisting Disease (ICED) severity score which was

calculated with diabetes excluded (36 % with a score of 1, 31 % with a score of 2 and 33 %

with a score of 3), diabetic status (44 % diabetes) and race (63 % black). Also, the variables

indicating treatment assignment, dose (standard vs. high dose) and membrane type (high

or low flux membranes), were considered. Time in years since randomization date was also

included in the longitudinal model.

Since patients receive similar treatment if they are in the same unit, there will be a

within-cluster correlation for patients who are treated in the same unit (level 1). Also, the

patients are nested within hospital (level 2) and finally the repeated measurements of mid-

arm muscle circumference (MAMC) are nested within a patient (level 3). We assumed that
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mortality might depend on the repeated measures of MAMC at both the unit level and the

subject level. First, we built the longitudinal submodel with the outcome of MAMC and

then we built the logistic regression submodel with the outcome of all-cause mortality. We

linked the two sub-models using both subject and cluster level random effects. The results,

shown in the right hand column of Table 7, are based on two MCMC sampling chains of

20,000 iterations each, following a 10,000-iteration burn-in period. The left hand column of

Table 7 contains the results obtained from using gaussian quadrature techniques based on

50 quadrature points.

Most of the estimates are similar when comparing the gaussian quadrature techniques

with the MCMC method. If we look at the results from the analysis based on the MCMC

method, there was a significant linear decreasing pattern in MAMC over time. It decreased

by 0.122 per year, since the 95% credible interval does not include 0. Patients who had a

higher index of coexistent diseases (ICED) score had significantly higher mortality. Also,

patients who had diabetes had higher mortality when compared to the patients with no

diabetes by 0.320. We observed that patients with an older age had a higher mortality by

0.052.

We found that the random effects at both the cluster and the subject levels were signifi-

cant for MAMC. The estimate of σa (cluster level) was 0.355 and σb (subject level) was 3.198.

The longitudinal MAMC was negatively correlated with mortality rate at the subject level

(γ2) and at the unit level (γ1). The association at the cluster level, γ1, was not significant

in the gaussian quadrature method. This is the only difference when we compare with the

results from the two methods.

Figure 2 shows the individual trajectory of the MAMC for two selected patients, A and

B, who are both alive. Patient A is 38 years old, black, male with an ICED score of 2 and no

diabetes. Patient B is 68 years old, non black, male with an ICED score of 3 with diabetes.

In this figure we see a clear difference in the trajectories of these 2 subjects. Patient A

exhibited a rather stable pattern over time. The predicted probability of death is 0.2078

with a credible interval of (0.1247, 0.3117). Patient B, on the other hand, has a trajectory

with a decreasing pattern at the end of measurement times. The predicted probability of

death for this patient is 0.8405 with a credible interval of (0.7576, 0.9050). Note that patient
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B has a much higher probability of death when compared with patient A. Figure 3 shows the

ROC curve for the HEMO data. The area under the curve (AUC), estimates the prediction

performance which is 0.7869 in our proposed model. Based on this result, the proposed

model does a good job of predicting death in this cohort.
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Table 7: Results for HEMO data: Gaussian Quadrature vs. MCMC

Gaussian Quadrature MCMC

Parameter Est. P-value Posterior Mean 95% CI

MAMC

Intercept 23.844 0.000 23.800 (23.010, 24.610)

Male 1.443 0.000 1.454 (1.117, 1.774)

Back 0.803 0.000 0.814 (0.472, 1.160)

High Kt/V 0.025 0.873 0.033 (-0.277, 0.343)

High flux 0.130 0.318 0.136 (-0.173, 0.445)

ICED=3 -0.840 0.000 -0.828 (-1.229, -0.425)

ICED=2 -0.413 0.049 -0.406 (-0.809, 0.001)

Diabetes 0.907 0.000 0.913 (0.577, 1.246)

Age -0.002 0.789 -0.002 (-0.014, 0.009)

Time -0.122 0.000 -0.122 (-0.160, -0.085)

Logit

Intercept -4.001 0.000 -4.047 (-4.741, -3.436)

Male 0.230 0.096 0.229 (0.001, 0.461)

Back -0.144 0.350 -0.150 (-0.412, 0.101)

High Kt/V -0.001 0.994 -0.007 (-0.225, 0.208)

High flux -0.074 0.435 -0.076 (-0.297, 0.137)

ICED=3 1.173 0.000 1.186 (0.910, 1.470)

ICED=2 0.717 0.000 0.728 (0.457, 1.003)

Diabetes 0.317 0.012 0.320 (0.094, 0.549)

Age 0.052 0.000 0.052 (0.044, 0.062)

γ1 -1.178 0.300 -1.910 (-3.773, -0.759)

γ2 -0.120 0.000 -0.120 (-0.159, -0.082)

Var. Comp.

σa 0.420 0.050 0.355 (0.177, 0.572)

σb 3.179 0.000 3.198 (3.074, 3.324)

σe 1.832 0.000 1.832 (1.790, 1.875)
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Figure 2: Observed MAMC for Patients A and B
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Figure 3: ROC Curve for HEMO data

3.5 DISCUSSION

The individualized predictions based on joint models are of increasing interest to many scien-

tific investigators and the methods presented here provide an approach to address prediction.

We focused on individual predictions estimated from the joint model of longitudinal and bi-

nary outcomes using the Bayesian approach available in the software package WinBUGS.

This approach relies on Markov Chain Monte Carlo (MCMC) methods for the joint model

analysis. WinBUGS provides great flexibility and there is no restriction on the number of

random effects that can be included in the model. It can also fit more complex models, such
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as multilevel models. We used proper but vague prior distributions in WinBUGS, so that

the priors will have minimal impact relative to the data.

We focused on the individual predictions of our proposed model of multilevel joint model

of longitudinal and binary outcomes. The individual prediction of mortality can be calculated

from the draws in the Markov chain. We applied this method to the HEMO data to assess the

relationship between the longitudinal trajectory of mid-arm muscle circumference (MAMC)

and the predicted mortality. We observed a steep decreasing pattern of MAMC which may

be an indicator of an increased mortality rate and suggest directions for the future treatment.
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4.0 DISCUSSION

Hierarchical structure is common in many biomedical studies, such as longitudinal measures

nested within subject and then nested within hospital. If we ignore the multi-level correlation

dependence, it will lead to incorrect results. Here, we proposed a multi-level joint model of

a longitudinal and a binary outcome. The two sub-models were linked with both the cluster

and the subject level random effects. The results were compared with models that assumed

only one level of dependence. The Gaussian quadrature technique was implemented using

the aML software. The simulation study presented showed that the estimates were sensitive

to the violation of the assumptions of the dependence structure between the longitudinal

outcome and the binary outcome. We applied our model to the HEMO data which was a

randomized controlled trial designed to identify the effects of dialysis dose and membrane flux

on morbidity and mortality for patients undergoing chronic hemodialysis. The patients are

nested within a unit and finally the repeated measurements of mid-arm muscle circumference

(MAMC) are nested within a patient.

We also extended our approach to obtain individual predictions based on the proposed

joint model. The motivation for this work arose from individual prediction of our proposed

model. We fit our proposed model in software package (WinBUGS) for Bayesian analysis us-

ing Markov chain Monte Carlo (MCMC) methods. We focused on the individual predictions

of our proposed model of the multilevel joint model of longitudinal and binary outcomes.

The simulation study presented showed that based on the area under the curve (AUC) re-

sults, the proposed model is able to predict well for the binary outcome. The area under the

curve (AUC) for the HEMO data also indicate that the model does a good job of predicting

death in this cohort. Thus, the proposed method provides a mechanism for understanding

the relationship between a longitudinal measure and a given binary outcome.
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WinBUGS provides great flexibility and there is no restriction on the number of random

effects that can be included in the model. It can also fit more complex models, such as

multilevel models. On the other hand, the program uses more computational time than a

standard joint model fit using PROC NLMIXED in SAS. While this is not necessarily a

fair comparison, since more complex models can not be fit using NLMIXED in SAS, it is

certainly a consideration.
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