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Computational methods for peptide identification via tandem mass spectrometry (MS/MS) lie at 

the heart of proteomic characterization of biological samples. Due to the complex nature of 

peptide fragmentation process inside mass spectrometers, most extant methods underutilize the 

intensity information available in the tandem mass spectrum. Further, high noise content and 

variability in MS/MS datasets present significant data analysis challenges. These factors 

contribute to loss of identifications, necessitating development of more complex approaches. 

This dissertation develops and evaluates a novel probabilistic framework called Context-

Sensitive Peptide Identification (CSPI) for improving peptide scoring and identification from 

MS/MS data. Employing Input-Output Hidden Markov Models (IO-HMM), CSPI addresses the 

above computational challenges by modeling the effect of peptide physicochemical features 

(„context‟) on their observed (normalized) MS/MS spectrum intensities. Flexibility and 

scalability of the CSPI framework enables incorporation of many different kinds of features from 

the domain into the modeling task. Design choices also include the underlying parameter 

representation and allow learning complex probability distributions and dependencies embedded 

in the data.  
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Empirical evaluation on multiple datasets of varying sizes and complexity demonstrates 

that CSPI‟s intensity-based scores significantly improve peptide identification performance, 

identifying up to ~25% more peptides at 1% False Discovery Rate (FDR) as compared with 

popular state-of-the-art approaches. It is further shown that a weighted score combination 

procedure that includes CSPI scores along with other commonly used scores leads to greater 

discrimination between true and false identifications, achieving ~4-8% more correct 

identifications at 1% FDR compared with the case without CSPI features. 

Superior performance of the CSPI framework has the potential to impact downstream 

proteomic investigations (like protein identification, quantification and differential expression) 

that utilize results from peptide-level analyses. Being computationally intensive, the design and 

implementation of CSPI supports efficient handling of large MS/MS datasets, achieved through 

database indexing and parallelization of the computational workflow using multiprocessing 

architecture. 
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GLOSSARY 

b/y-ions: Predominant fragment ion-types produced when peptides are fragmented using 

collision-induced dissociation (CID). 

Collision-induced dissociation (CID): A commonly used method for inducing fragmentation of 

peptides inside mass-spectrometers by bombarding the gas-phase charged peptides with an inert-

gas, like argon. 

CSPI: Context-Sensitive Peptide Identification, a framework based on Input-Output Hidden 

Markov Models, for learning peptide fragmentation intensity patterns from tandem mass-

spectrometry data. Context refers to the peptide physicochemical properties, that determine its 

fragmentation behavior. 

Data Preprocessing: Steps performed to “clean” the data before training or applying the models 

to new samples, with the goal to reduce the effects of unknown sources of variation (like sample 

handling or during data acquisition) and to aid in learning better models. Some typical examples 

include data transformation and normalizations, like square-root or log transform,  noise- 

filtering etc. 

Database Indexing: A technique to store a database in a structured format amenable to fast 

search and retrieval. For example, a key-value representation, as in a dictionary, allows storing a 

“value” with an associated “key” that can later be used to query the data-structure for instant 

retrieval of the stored value. 

Database Search Parameters: Parameters used to constrain the search for candidate peptides 

from protein databases when evaluating tandem mass spectra. Examples include mass-error 

tolerance for peptides and their fragments, allowable post-translational modifications and protein 

digestion enzyme specificity of the theoretical peptides searched. 

Database Searching: A paradigm for identification of peptides, and hence proteins contained in 

samples, using mass-spectrometry technology. Each mass-spectrum is compared against a set of 
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potential candidates derived from an appropriate protein database based on the masses of 

peptides present in the database, which are then evaluated with a scoring algorithm. 

Electrospray Ionization (ESI): A commonly used technique for depositing charge on 

macromolecules like proteins and peptides by employing electricity to disperse the liquid 

containing analytes into a fine aerosol. The solvent droplets evaporate leaving behind the charge 

on the analytes, without fragmenting them. This technique is typically coupled with Liquid 

Chromatography, a technique for separating peptides which are then charged and introduced into 

the mass spectrometer directly for analysis. 

Expectation Maximization: An Iterative algorithm for obtaining the (locally) maximum 

likelihood parameter estimates of a statistical model that contains hidden or unobserved 

variables. 

False Discovery Rate (FDR): A global error control measure that corrects for multiple 

comparisons by directly controlling the type-I errors (incorrectly rejected null hypotheses). 

FASTA Database: An ASCII text file containing a list of Protein sequences where each 

sequence is preceded with a single-line header (identified with the “>” symbol in the beginning ) 

uniquely identifying and describing the sequence, followed by the lines containing the actual 

amino-acid sequence of the protein. 

Inference: Application of a trained model to a new sample for the intended purpose, for 

example, classification of the sample or enumerating the probability that the new sample 

contains similar patterns as the data that were used to train the model. 

Input-output Hidden Markov Model (IO-HMM): A sequential machine learning algorithm 

(extending classical Hidden Markov Model) that is used to learn patterns in pairs of sequences, 

called input and output. The goal is to dynamically map the influence of the input sequence on to 

the output sequence. 

Logistic Regression: A classical machine learning technique used to predict the probability 

distribution of a categorical outcome variable that can take on a finite set of values, for a sample that 

is described using a set of observed features (a.k.a. predictor variables). 

Machine Learning: A class of techniques, dealing with the design and development algorithms 

that learn patterns from empirical data representing a complex phenomenon. The goal is typically 

to describe/summarize the data or provide a means for future predictions, forecasting and 

decision making in the presence of uncertainty and limited theory. 
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Markov Assumption: This refers to the property of a stochastic process that limits the 

dependence of the probability distribution of the current state to the past observations/states. The 

„order‟ of the assumption determines how far back in time or space to look. For example, first-

order markov assumption means that the current state of the process depends only on the 

immediately preceding state and not the ones before that. 

Mass Spectrometry: Analytical tool to determine the chemical compounds present in a sample 

by measuring their masses or m/z-ratio based on their flight or motion inside electromagnetic 

fields. 

Mass-to-charge ratio (m/z): Ratio of mass of an entity to its charge state. 

Maximum Likelihood: A method of parameter-estimation of a statistical model, that maximizes 

the likelihood, in probabilistic sense, of the training data from the model. 

Multiple Comparisons or Testing Problem: Occurs when several statistical hypothesis tests 

are considered simultaneously, as a whole. Under such situations, any testing procedure is more 

likely to incorrectly reject the null hypothesis by chance and must be accounted for. 

Multiprocessing: Use of multiple CPUs or processor cores available on a single machine to 

speed up processing in computationally intensive applications, by appropriately splitting the task 

and allocating the sub-tasks to individual units.  

Peak: A signal detected by the detector unit of the mass-spectrometer, characterized by the m/z 

of the entity observed and its abundance. 

Peptide: A short sequence of amino-acids, typically ranging in length from 5 to 50 amino acids. 

Peptide-Spectrum Match (PSM): A pair of a peptide and an experimental mass-spectrum, 

either representing a true peptide or a candidate peptide being evaluated against the spectrum. 

PSM Score/feature: A score or a feature that evaluates the quality of the match between a 

peptide and a spectrum. 

Q-values: FDR equivalent of the standard p-value for an individual hypothesis test, referring to 

the minimum FDR at which the given hypothesis test can be called significant. 

Tandem Mass Spectrometry: A technique involving two stages of mass-spectrometric analysis, 

where the first stage generates a precursor mass-spectrum while the second stage selects a small 

number of abundant precursor signals for further fragmentation and analysis. 

Tandem Mass-spectrum: A plot showing the masses (or mass-to-charge ratio) of entities 

(peptide fragments) on the x-axis vs. their abundance on the y-axis. 
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Target-decoy strategy: An approach to control the false-discovery rate of peptide 

identifications in a large-scale experiment. Target database is the actual protein database of 

interest, while the decoy is a shuffled or reversed protein sequence database which contains 

false/random sequences. Database search against a decoy yields false peptide identifications, by 

design, and can be used to determine the null distribution of PSM scores required for controlling 

FDR.   

Training: The process of learning the optimal parameters of a machine learning model, by 

optimizing a certain criterion or loss function. 

Training Dataset: A dataset containing empirical examples to train a machine learning model. 
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1.0  INTRODUCTION 

Proteins are among the most important bio-molecules in all living beings, with numerous 

physiological and executive roles. They are involved in catalyzing and regulating biochemical 

processes that maintain life, in transport of molecules within and across cells, or as structural 

building blocks of many cellular components (Eidhammer et al. 2007). The set of expressed 

proteins varies extensively with time, the type of tissue or fluid or sub-cellular location, as well 

as according to the specific environment a cell finds itself in; such study and characterization 

comprises the field of Proteomics (Eidhammer et al. 2007). Rapid advances in this young and 

burgeoning field over the last decade are facilitating our understanding of cellular processes at 

molecular level as enabled through protein expression and interactions, post-translational 

modifications, and particularly their role as biomarkers of clinical conditions like disease (Vitek 

2009).  

Towards this end, mass-spectrometry technology has played a key role and continues to 

provide wealth of information in conjunction with clever experimental designs (Aebersold et al. 

2003). Of particular importance is the paradigm of bottom-up or shotgun proteomics, in which 

proteins in complex mixtures are first cleaved into smaller peptides which are then analyzed 

using mass-spectrometry (Wysocki et al. 2005). One of the cornerstones of this peptide-centric 

approach, on which much downstream analysis and interpretation rests, is the process of peptide 

identification using the information contained in the mass-spectra generated by these peptides 
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(Nesvizhskii 2007). This approach offers several advantages like high-throughput nature, greater 

sensitivity and specificity of signal detection, as well as greater dynamic range of detection (de 

Godoy et al. 2006). 

Developments in technology, together with sophisticated computational algorithms to 

process and analyze the acquired data, have transformed the shotgun method into the routine 

methodology of choice in proteomic investigations. Several large-scale collaborative projects are 

currently underway utilizing this approach to characterize the entire proteomic complement of 

key organs like liver and brain (HLP www.hlpp.org, HBP http://www.hbpp.org/ ), or in fluids 

like plasma (Anderson et al. 2004). Beyond identification of sample components, this paradigm 

is also critical in their characterization, such as protein quantification and identifying post-

translational modifications, as well as sample comparison to characterize relative occurrence, 

abundance and/or differential modification across different populations of cells. The eventual 

goal of proteomics is to develop such information-rich maps and holds tremendous promise for 

clinical applications like early diagnostic tests or discovery of new drug targets for diseases 

(Eidhammer et al. 2007). 

1.1 THE PROBLEM  

Routine shotgun proteomic experiments yield large datasets of peptide tandem mass-spectra 

(MS/MS). One primary data-analysis task then is to ascertain the peptide sequence(s) that 

generated these spectra, and subsequently infer the parent proteins from the resulting peptides 

(Steen et al. 2004). A typical approach to achieve this goal is called Database Searching, and 

http://www.hlpp.org/
http://www.hbpp.org/
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proceeds via scoring candidate peptides (obtained from a protein sequence database) against 

experimental spectra for possibility of a match (Nesvizhskii 2007). 

A critical step in scoring involves theoretical modeling of peptide fragmentation behavior 

inside mass-spectrometers. The scorer then compares the candidate theoretical spectra with 

experimental spectrum to compute agreement. Several scoring algorithms, some heuristic while 

others probabilistic, have been developed to achieve this task. These algorithms are routinely 

applied to complex proteomic investigations. However, they rely on over-simplified theoretical 

fragmentation models and scores that either completely ignore or underutilize the intensity 

dimension of MS/MS spectra. In large-scale experiments less than 30 % spectra are confidently 

assigned with peptides, and inadequacies of scoring algorithms is a key contributing factor, 

among others (Marcotte 2007). 

Peptide fragmentation inside mass-spectrometers is a complex process. Although much 

effort has been invested into deciphering the rules (Paizs et al. 2005; Hubbard et al. 2010), only 

limited qualitative understanding has been achieved which is hard to encode in deterministic 

algorithms. Several characteristics of peptide MS/MS spectra complicate their interpretation: 

1. High noise content (Ning et al. 2007):  

An average peptide has a theoretical spectrum of few tens of most important peaks while 

typical real peptide MS/MS spectrum can contain several hundreds of peaks. A large 

fraction of these peaks emerge from uncontrollable electrical and/or chemical noise as 

well as from unanticipated fragmentation events, all of which can vary from one 

experiment/laboratory to another, and also across the mass-range of individual spectra. 

Sparse signal events are then interspersed and sometimes embedded in large stretches of 
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unexplainable noise. Complicating the matters are several spectra in each experiment that 

emerge from non-peptide species and must be correctly distinguished. 

2. Variability: 

Another significant challenge is the widely varying intensity profiles of peaks produced 

by peptide fragmentation, which depends partly on the experiment, but also significantly 

on the physicochemical properties of the peptide itself (Huang et al. 2008). These profiles 

vary not only across different peptides, but also from the same peptide generated in 

different labs or experiments, making accurate and formulaic prediction of peak 

intensities a challenging task. 

3. Low mass accuracy and resolution: 

All mass spectrometers have an expected measurement error and an associated limit on 

the signal resolution, which must be taken into account when selecting candidates to 

match against a spectrum as well as in their scoring. Database searches typically result in 

large number of candidate hits per each spectrum, and for many spectra more than a few 

candidates can randomly achieve comparably high scores. This leads to many spurious or 

chance matches. While the more recent high-resolution and high mass-accuracy 

instruments, like the Fourier Transform and Orbitrap spectrometers, reduce the burden of 

evaluating too many candidates, these are not much widely available due to huge costs 

involved. The benefit may also be offset if database search constraints, like allowable 

post-translational modifications, are relaxed to search a larger space of peptides. 

Furthermore, in all cases fragmentation spectra are still acquired at lower resolution 

posing challenges for accurate identification. 
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As a result of these factors, the score distributions of true and false peptide identifications 

from simple scoring systems overlap significantly, making them hard to differentiate (Keller et 

al. 2002); this is particularly true for peptides that don‟t fragment extensively or have specific 

sequence-dependent effects (Hubbard et al. 2010). Therefore, a good scoring function is of 

primary importance for the accurate evaluation of the quality of matches between spectra and 

peptides. Along with proper normalization and transformation of spectra, this requires 

application of statistical and machine learning methods that can automatically account for 

presence of noise as well as learn complex intensity patterns from data. This will lead to 

improved peptide identification accuracy as well as downstream interpretation from large-scale 

experiments, which strongly depends on the confidently identified peptides. 

1.2 THE APPROACH 

This thesis explores novel computational approaches to address some of the above challenges 

and the unique aspects of MS/MS data. Specifically, probabilistic models of fragmentation 

behavior of peptides are developed, taking into account appropriate contextual information from 

peptide amino-acid sequence, as well as spectrum information. The overall goal is to develop 

algorithms that perform well across a wide variety of datasets and that are easily extensible to 

rapidly developing technology and new experimental protocols.  

With accumulation and ready availability of large amount of data from both controlled 

and real-world experiments in proteomic repositories, automated machine learning algorithms 

are well suited for this problem. This offers a unique opportunity to understand the data produced 

from these experiments and build models that automatically capture the underlying variability, 
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which is a major issue in mass-spectrometry based proteomics. Several recent studies have tried 

to learn peptide fragmentation behavior using automated methods and have reported improved 

identification performance as well as discovery of previously unknown fragmentation rules 

(Elias et al. 2004; Klammer et al. 2008). Algorithms in this thesis build upon these studies and 

attempt to effectively learn peptide fragmentation patterns, both the presence/absence of specific 

peaks as well as their intensity distribution, using Markovian models, thus yielding a robust 

scoring system. 

Particularly, this work develops a probabilistic framework called “Context-sensitive 

Peptide Identification” (CSPI) that uses Input-output Hidden Markov Models (IO-HMM) to 

capture the influence of peptide physicochemical properties on their observed MS/MS spectra 

(Bengio et al. 1995). These models have been previously successfully applied to several 

sequential data-mining tasks, including financial data analysis (Bengio et al. 2001), music 

processing (Jean-Fran\ et al. 2009), and gene regulation (Ernst et al. 2007). CSPI is a scalable 

and flexible framework with several modeling choices to learn complex patterns embedded in 

MS/MS data. This offers advantages as compared to previous attempts on modeling 

fragmentation spectra, which had limited flexibility. Several local and global properties of 

peptides and their fragment ions, referred to as „context’ in this thesis, are used to model their 

effect on fragmentation behavior. In order to reduce noise and make spectra comparable across 

experiments, several preprocessing steps are performed. Finally, a state-of-the-art post-processor 

is implemented that combines several scores and features of peptide-spectrum match (PSM) 

quality to distinguish true from false identifications, while controlling for false discovery rate 

(FDR) at a user-defined level. 
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1.2.1 Thesis 

The central thesis of this dissertation is that the CSPI framework is effective for peptide scoring 

and identification from tandem mass spectrometry. 

Based on the experiments performed on several datasets of varying complexity and sizes, 

from controlled as well as real-world experiments, the following specific claims are made:  

Claim 1: CSPI statistically significantly improves peptide identification performance at a 

user-defined FDR compared with the popular state-of-the-art approaches.  

Claim 2: Gains in CSPI performance depend strongly upon the fragment ion-types being 

modeled as well as data normalization protocol used. For the ion-trap data used in this research, 

y-ions and local normalization scheme show good performance characteristics 

Claim 3: CSPI‟s intensity-based scores combined with other features commonly used for 

quantifying peptide-spectrum match quality leads to greater discrimination between true and 

false peptide identifications. 

1.3 SIGNIFICANCE 

To the best of my knowledge, this is the first attempt to apply IO-HMMs to score peptide-

spectrum matches (PSMs). Since peptide scoring lies at the heart of shotgun proteomics 

approach, a good scoring system with even slightly better performance can make a significant 

difference in the downstream interpretation of results in large-scale studies. This necessarily 

involves effective utilization of the information contained in the spectrum and being able to 

differentiate true from false identifications in the presence of noise and variation. A key 
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deliverable of this work is the new scoring framework that models the fragmentation behavior 

taking into account the context of the peptide sequence (both global and local) as well as 

observed spectral features, thus providing a robust scoring system. Being highly flexible and 

scalable, it is easy to extend these models with additional features/context (as was demonstrated 

by exploiting several design choices), thus making them attractive to explore. The immediate 

impact is seen on the peptide identification accuracies and improved coverage from large-scale 

MS/MS experiments.  

The CSPI framework can be used with different approaches to peptide identification 

other than Database searching. The methods are very general and can be used for learning 

fragmentation patterns under different experimental conditions, such as for example from a 

different spectrometer or a different technique of fragmenting peptides, like Electron Transfer 

Dissociation (ETD) (Syka et al. 2004). 

The implementation of the framework and all evaluation experiments in this dissertation 

were conducted in the Python programming language (www.python.org), and are made 

available. For efficient handling of large MS/MS datasets, a multiprocessing version of database 

search was also developed and is made available. In addition, a simple (and basic) spectrum 

viewer is provided in order to visualize the effects of different preprocessing steps. 

1.4 DISSERTATION OVERVIEW 

The rest of the document is organized as follows. Chapter 2 provides background information on 

the peptide-centric mass-spectrometry analysis pipeline including a review on technology, 

experimental protocol, and current state-of-the-art algorithms. Also discussed are the analytical 

http://www.python.org/
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and machine-learning methods utilized in this dissertation to address different problems. Chapter 

3 describes the CSPI framework in details along with the evaluation protocol used to compare 

with the state-of-the-art approaches to peptide identification. Chapter 4 discusses the experiments 

and evaluation methods including description of datasets used in the thesis. Results from 

evaluation of the CSPI framework are presented in Chapter 5. Chapter 6 concludes with a 

discussion on open research questions, limitations and potential future developments of the 

methods presented here. 
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2.0  BACKGROUND 

In this chapter I provide the background material on the techniques relevant to the thesis, 

beginning with a section on mass-spectrometry (MS) technology and its application to peptide 

identification via tandem mass spectrometry (MS/MS). Next, I discuss the most popular and 

successful approach to peptide identification called Database Searching, a sampling of the 

current state-of-the-art algorithms along with challenges and motivation for my own work. Final 

sections describe the statistical and machine learning concepts used and developed herein. 

2.1 PROTEOMIC MASS SPECTROMETRY: FUNDAMENTALS 

Mass-spectrometry (MS) is an analytical technology that has been around for several decades to 

identify unknown compounds in a sample by measuring their mass or more precisely mass-to-

charge ratios (m/z). Figure 1 shows a schematic of the key components involved and the 

fundamental principle at work. The ionization source deposits charge (protons or electrons) on 

the sample constituents, which are then transformed into gas phase and introduced into the mass-

analyzer unit. Mass-analyzers are of several kinds, but essentially they are all fitted with static or 

dynamic electromagnetic fields that spatially segregate the ionized components based on their 

mass and charge status. Finally, as the ions hit the detector unit, they are registered as peaks in a 

mass-spectrum that has on the horizontal axis the m/z ratio of the ion, and on the vertical axis the 
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number of times the ion was detected, indicative of its relative abundance. Mass information for 

each component can be derived only if its charge-status is known. 

 

 

Figure 1. Schematic of components of an MS 

 

Application of MS to large and thermally unstable biomolecules, particularly peptides 

and proteins, is a relatively recent development. This was made possible largely by development 

of “soft” ionization techniques like Matrix-assisted Laser Desorption Ionization (MALDI) and 

Electrospray Ionization (ESI) that can generate stable gas-phase ions from these large and polar 

molecules, using only minute sample quantity (Aebersold et al. 2001; Aebersold et al. 2003). In 

conjunction with innovative experimental protocols and instrumentation design, robust data 

analytics enable comprehensive analysis of simple as well as complex protein mixtures at a 

global level, including their expression, interactions and post-translational modifications in a 

high-throughput fashion (Mann et al. 2001; Vitek 2009). As a result, among several technologies 

available for proteomic investigations, MS-based tools currently play a central role to address a 

diverse range of research questions. 

For simple mixtures of small analytes, information obtained from MS can be sufficient to 

determine the constituents along with their molecular formulae, with high sensitivity, selectivity 
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and little time. For large intact-proteins however, which can be several kilo-daltons in size, this 

strategy of structure determination can be rather challenging due to several factors like large 

number of possible charge states and hence multiplicity of spectrum peaks, complex isotope 

distributions and several possible locations for unknown post-translational modifications which 

can shift the m/z of proteins by an unknown amount. This renders exact identification and 

sequencing (including localization of PTMs) of proteins difficult (Steen et al. 2004). As a result 

of the aforementioned challenges and for direct sequence determination and related applications, 

shotgun proteomic methodology is more popular and versatile, involving two stages of mass-

spectrometric analysis of constituents, accordingly known as tandem mass-spectrometry. 

2.2 TANDEM MASS SPECTROMETRY (MS/MS), A.K.A. BOTTOM-UP OR 

SHOTGUN PROTEOMICS  

Figure 2. Schematic of Shotgun Proteomics Approach  

 

Typically, shotgun or MS/MS experiments begin with enzymatic digestion of a protein mixture 

into a mixture of peptides using an enzyme of known specificity, like trypsin (which cleaves 



 13 

each protein at the C-terminus of Lys and Arg residues), chymotrypsin or elastase. This is 

followed by one, or two stages of separation of peptide mixtures by Liquid Chromatography 

(LC), and ionization, after which the eluting charged peptides are analyzed via MS/MS (Figure 

2). State-of-the-art hybrid systems are fully automated and once the sample has been loaded, they 

can perform LC followed by MS/MS with minimal human intervention. 

 

 

Figure 3. (a) Amino acid structure (R: side-chain identifying the amino acid); (b) b- and y-ion structures 

(adapted from http://www.weddslist.com/ms/tandem.html) 

Mass-spectrometers continuously switch (alternate) between two different scanning 

modes: in the MS mode the masses (or m/z) of the intact peptides eluting out of the LC column 

at that instant are measured, while in the subsequent MS/MS scans, few of most abundant 

peptides (usually three to five) are selected and isolated for fragmentation, generating a MS/MS 

spectrum for each (Mann et al. 2001). One popular fragmentation protocol is called low-energy 

Collision-induced dissociation (CID) whereby charged peptides are bombarded with inert gas 

molecules (like argon) during their flight. This breaks the charged peptide molecule, 

predominantly at an amide bond, yielding charged fragments (predominantly b- and y-ions 

(Roepstorff et al. 1984); see Figure 3). Other fragmentation methods include Electron-capture 

http://www.weddslist.com/ms/tandem.html
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Dissociation (ECD), Electron-transfer Dissociation (ETD) and High-energy Collisional 

Dissociation (HCD).  

 Peptides are most commonly electrospray-ionized which deposits a charge of +1 to +3 

(most commonly). For doubly-charged peptides, the resulting fragments usually carry a single 

charge, while longer peptides which tend to carry higher charges yield higher-charged fragments 

too. In addition, these fragments may undergo secondary fragmentations and/or loose further 

neutral molecules like H2O or NH3. 

 

Figure 4. Peptide evaluation against MS/MS spectrum 

 

The resulting fragments are separated in the mass-analyzer and registered as peaks at the 

appropriate m/z value on the horizontal axis (as described previously) in a fragment-ion 

spectrum or MS/MS spectrum. The height of the peak represents the relative intensity of the 

corresponding fragment, and is indicative of the amount of associated cleavage among numerous 
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molecules of the same peptide in the spectrometer. This provides the fundamental data point (an 

MS/MS spectrum) to be analyzed. A representative (hypothetical) example is shown in Figure 4, 

with peaks of an experimental spectrum annotated with respective fragment-ion labels of a 

peptide that generated the spectrum. A typical lab can generate many thousands of such spectra 

every day, and the goal is to assign peptides to these spectra, followed by relating the peptides 

back to the parent proteins. This entire protocol is referred to as „Shotgun Proteomics‟, in 

analogy with shotgun genomics (Marcotte 2007). 

As described above, and in an ideal situation, the fragment ions from a peptide form a 

ladder of peaks, with subsequent m/z values separated by mass of some amino acid and the 

reconstruction of the peptide sequence is only a matter of identifying this contiguous ladder, a 

rather trivial computational problem even for large-scale analyses. However, real-world MS/MS 

spectra come with several complications, most predominant being, “Lots of Noise Peaks” (75% 

peaks are noise (Ning et al. 2007)), “poorly fragmenting peptides”, “incomplete sequence of 

fragments” and “Unknown fragmentation events/pathways”.  In addition, a large fraction of 

spectra are either of poor quality or from non-peptide species. These complications make 

confident assignment of peptides a challenging task. Several approaches to interpreting MS/MS 

spectra have been developed, which include: 1. Database searching; 2. DeNovo sequencing; 3. 

Sequence Tags (Steen et al. 2004). All these approaches differ in the way they search the peptide 

space for each spectrum. The one thing all have in common is a scoring function to evaluate 

candidate peptides against a spectrum, and lies at the heart of peptide identification algorithms. 

Of these, database searching is the most common and successful, and is the focus of this work. 

However, the scoring systems are in principle generic and applicable to DeNovo and Sequence 

Tag-based approaches as well. 
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2.3 DATABASE SEARCH 

Given a MS/MS spectrum that is experimentally observed, the basic procedure is to search a 

database of known proteins for candidate peptides, based on the putative peptide‟s expected m/z, 

its allowed PTMs and the cleavage enzyme‟s specificity. Due to the low resolution of commonly 

used ion-trap tandem mass spectrometers, the experimental mass of putative peptides cannot be 

determined accurately and may vary slightly from the theoretical true mass calculated from the 

amino acid sequence. Thus a user-specified mass-tolerance parameter (usually a +/- 3 Da 

window across the true mass) is applied during the search for candidate peptides, and typically 

several candidates are returned within the applied mass-window, especially for large organisms 

or for unconstrained searches. From the known rules of fragmentation, a theoretical spectrum is 

generated for each of the candidate peptides, which are then scored and ranked based on some 

form of “agreement” between the theoretical and the experimental spectra. Finally the top ranked 

peptide is assigned to the spectrum, along with a measure indicating confidence in the 

assignment (such as the expectation-value, p-value or fixed false-discovery rate, FDR) (see 

Figure 5). 

Such “shared-peak-count” approach was pioneered by Eng et al. in the Sequest algorithm, where 

agreement was measured with a “cross-correlation” based score (Eng et al. 1994). Reliability of 

Sequest scores has been evaluated in many studies and the scoring function has been refined over 

the years (Klammer AA 2009). Mascot, another peptide identification algorithm, is based on a 
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probabilistic scoring (MOWSE), which uses distributions of size of peptide fragments with 

respect to the size of peptides in the searched database. Peptide assignments are associated with a 

p-value to differentiate from random matches (Perkins et al. 1999). X!Tandem is a popular open-

source algorithm that uses a preliminary intensity-based score (hyperscore) which simply sums 

the intensities of all observed b and y-ions rather than modeling sequence specific fragmentation 

effects (Craig et al. 2004). Statistical analysis on hyperscore is used to compute an E-value, 

which summarizes the significance of the match. It also optionally allows a two-phase search 

where the 1
st
 pass can perform fast, constrained searches (for ex. with no PTMs) while the 2

nd
 

pass performs a more elaborate search (for ex. with PTMs and relaxed enzyme specificity) but 

only on the proteins shortlisted from the 1
st
 pass. 

 

Figure 5. Schematic for Peptide identification by MS/MS via database searching (adapted from (Nesvizhskii et al. 

2007)) 
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Thereafter, a host of other algorithms have been developed on similar theme with slightly 

modified search protocol or features used in the scoring system (Kapp et al. 2005; Kapp et al. 

2007). These algorithms are routinely applied to complex proteomic investigations. However, 

despite their popularity and success in several applications, they all have limitations. In large-

scale experiments less than 30 % spectra are confidently assigned with peptides, and 

inadequacies of scoring algorithms is a key contributing factor, among others (Marcotte 2007). 

There is a significant overlap in the score distributions from false and true identifications, 

which is due to extremely noisy nature of MS/MS data. In order to control false identifications 

and missed true identifications, most of these algorithms are supplemented with post-processing 

and statistical validation of scores of top-ranking PSMs (See the section on Evaluation, later), 

which essentially provides a score threshold above which an identification is „considered‟ 

correct. Attempts have also been made to improve identification confidence by combining scores 

from more than one database search algorithm (Searle et al. 2008). 

In addition to the obvious sources of error such as the existence of novel peptides (that 

are either not present in the database or contain an unknown PTM), or incorrect charge-state 

assignment to peptides, incorrect peptide assignment to spectra also occurs due to inadequacies 

resulting from using over-simplified fragmentation models (Ma 2010). Essentially, most popular 

scoring algorithms rely on models and scores/features that either completely ignore or 

underutilize the intensity dimension of MS/MS spectra, where the effect of fragmentation 

chemistry on peptide fragmentation behavior is responsible for different heights of peaks in an 

observed spectrum. Instead, a naïve theoretical spectrum (equal intensities for various fragments, 

or some similar variant) for each candidate peptide is used for comparison with the experimental 

spectrum. Similarity based on such comparison is understandably prone to error. 
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As discussed in several recent studies, intensity patterns have been shown to be 

reproducible under similar experimental conditions, and hence theoretically predictable, at least 

for certain key amino acid residues like enhanced N-terminal cleavage at Proline (Vaisar et al. 

1996; Breci et al. 2003). Influence of presence, as well as positions in the peptide chain, of basic 

residues like Arginine, Lysine and Histidine, and of acidic residues like Aspartic and Glutamic 

acids, have also been studied (Kapp et al. 2003; Tabb et al. 2004; Tsaprailis et al. 2004; Huang et 

al. 2005). In addition to computational approaches from large datasets of PSMs, much research 

has also been done to enhance the understanding of fundamental biochemical principles of 

peptide fragmentation in a tandem mass spectrometer (Paizs et al. 2005). Particularly important 

is the “Mobile Proton Theory” which associates the fragmentation efficiency of a peptide with 

the mobility of the added charge along the peptide chain, and confirms the influence of 

physicochemical content of peptides on their observed fragmentation patterns (Wysocki et al. 

2000; Huang et al. 2005). In light of these developments, attempts are being made to develop the 

next generation of scoring systems, which try to capture the influence of these physicochemical 

properties on the occurrence and intensity patterns of different fragment ion-types. 

For example, Elias et. al. used probabilistic decision trees (PDT) (Jensen et al. 2007) 

which represented peptide fragments as a set of 63 features including fragment ion-type, length 

of peptide and fragment, gas-phase basicity, hydrophobicity and helicity of flanking amino acids 

and charge-state among others (Elias et al. 2004; Gibbons et al. 2004). The models were trained 

using a large set of high-confidence PSMs (assigned using Sequest) for learning the (discretized) 

intensity distributions for different combinations of the feature values. The learning algorithm 

automatically picked up the most significant features to explain the intensity distributions, and 

only few out of the list of 63 were actually utilized. Their likelihood ratio scores, when used in 
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conjunction with Sequest scores were shown to reduce peptide identification error rate 

significantly. Zhou et. al. used similar properties with Bayesian Artificial neural network (Bishop 

1996) for predicting intensities of the commonly observed b- and y-ions and showed that 

additional features (than those utilized by PDT) were important as well for predicting the peak 

intensities (Zhou et al. 2008). Although a significant advance, these algorithms assume 

independence of fragments and ignore any correlations that might exist in series of observed ion 

intensities. 

Klammer et. al. used a Dynamic Bayesian network (DBN) (Murphy 2002) to model the 

intensities of different fragment ion-types, individually as well as in pairs, and utilized a smaller 

set of features like flanking amino-acids, position of cleavage in the peptide chain and fragment-

ion detectability (Klammer et al. 2008). Normalized ranks of fragment intensities were 

represented as a mixture of Gaussians, the parameters of which were conditioned on the 

physicochemical properties. Likelihood ratio scores were computed from all the models 

(fragment and fragment-pairs) and were then fed as features into a support-vector machine 

(SVM) (Cortes et al. 1995; Vapnik 1998) to discriminate true from false identifications. Along 

with superior identification performance, their probabilistic models were also able to discover 

some new fragmentation patterns, establishing the significance of their approach. Khatun et. al. 

have used a complex Hidden Markov Model (HMM) (Rabiner 1989) to model intensity 

dependence on fragment ion types and their mass distributions, as well as on flanking amino 

acids. Viterbi algorithm was used to automatically determine whether a peak is a noise or a true 

fragment ion (Khatun et al. 2008). 

As is evident from all of the above studies, several properties at peptide and spectrum 

level are utilized by different algorithms for assigning peptides to MS/MS spectra. Their 



 21 

complex interactions are either heuristically determined or learned automatically from large 

datasets of validated high-confidence PSMs and utilized in scoring systems. Nevertheless, the 

performance is still far from optimal in terms of utilization of the large volumes of data 

generated and a large fraction of spectra remain unconfidently assigned with peptides. Older 

algorithms like Sequest, Mascot and X!Tandem are quite mature and several studies have 

performed evaluation and comparison on different datasets demonstrating their similarities and 

differences (Kapp et al. 2005). They still are the most predominant algorithms in use and a recent 

study highlighted that more than 90% of investigations use some combination of them to analyze 

their datasets (Kandasamy et al. 2009). The more recent intensity-based models are still in their 

infancy and are being developed and refined. These models are powered by automated analyses 

and model building from large datasets of previously identified spectra, as evidenced by the 

above sampling of recent algorithmic development in this domain. Since the prime focus of this 

thesis is to utilize machine learning (ML) methods to model complex peptide fragmentation-

intensity patterns from MS/MS data, in the next few sections I discuss the relevant fundamental 

concepts in ML that were used in developing the CSPI framework. 

2.4 MACHINE LEARNING CONCEPTS  

Recent surge of technology and experimental protocol in the biomedical domain has radically 

transformed the field into a quantitative science where large amount of data are routinely utilized 

to discover or test hypotheses of interest. Towards this end automated Statistical and Machine 

Learning (ML) methods have become a standard tool in a researcher‟s toolbox to deal with and 

build from these data computer-based models of some partially or completely observable 
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phenomenon. These methods are particularly suitable for complex domains where little prior 

knowledge is available to develop deterministic mathematical models. However, with certain 

assumptions models with practical utility can still be constructed using previously observed data. 

The same is true for the field of Computational Proteomics too, where now there exist several 

huge data repositories that store raw as well as annotated MS/MS data from simple to complex 

experiments (Craig et al. 2004; Martens et al. 2005; Desiere et al. 2006). 

ML typically involves the steps of identification of the learning task, collection of prior 

experience (in the form of training examples) and a measure to evaluate the performance of the 

learner. Some of the end goals include using the models for prediction and forecasting, 

classification, explanation or grouping of entities involved, and each can usually be put in the 

form of a well-defined objective function that must be optimized, such as the overall cost of 

making mistakes (Bishop 2007). 

2.4.1 Logistic Regression 

Logistic regression (Hosmer et al. 2000) is a classical supervised statistical learning algorithm 

that is used to predict the probability distribution of a discrete outcome variable Y (i.e., Y takes 

on a value from a finite set, like {0, 1} in the case of binary classification problems) based on 

observed values of one or more predictor variables X = <X1, X2, …, Xn>, where each Xi could be 

discrete or continuous, i.e. P(Y | X). For example, in a medical diagnosis problem, X represents a 

bunch of symptoms that a patient presents with, while Y is the unknown but desired disease 

status (healthy or sick) to be predicted. In order to learn such a mapping or classifier function, a 

set of training examples of the form {(Y, X)i; i=1,2,3,…,N} are used with known values of 

covariates Xi and corresponding class labels Yi. The learning task then consists in selecting the 



 23 

functional form of the classifier, a method for training the parameters of the function, and a 

performance measure. Logistic Regression assumes a parametric form for the distribution 

P(Y|X), which for binary Y is mathematically represented (in log-odds formulation) as: 

 

 

 

In the case that Y may take more than two possible values, the model is called 

„multinomial logistic regression‟. Suppose Y can take on „k‟ possible values from the set {0, 1, 

2, …, k-1}, the log-odds form is represented as: 

 

 

 

 

Multinomial logit model is equivalent to (k-1) linear (on log-odds scale) expressions for 

representing the distribution of „k‟ possible values of Y. In binary as well as multinomial case, 

the odds are computed with respect to a base class, which in the present case is Y=0. The models 

in the above equations can be interpreted as follows: “If xi increases by one unit, log-odds for the 

outcome class (Y=j) w.r.t. base class changes by βij units”. Different values of parameters control 

the decision boundary learned for classifying the samples into individual classes. 

2.4.2 Maximum Likelihood Training 

The parameters of a statistical model can be trained using Maximum-Likelihood Estimation 

(MLE) approach (Casella G 2001). As the name suggests, MLE produces parameter estimates, 

) X, | 1=P(Y=p ,parameters  theare =}{ where

)1(*=)
p-1

p
ln( = odds-log

i

1

0









n

i

ii X

















1

1

0

j

th

ij

1

0

0

j

1 = ),|0(p and

) X, | j=P(Y=p class,j for the parameters  theare =}{ where

)2(1-k ..., 3, 2, 1,=j,*=)
p

p
ln( = odds-log

k

j

j

j

n

i

iijj

pXYP

X







 24 


MLE

, that correspond to the probability distribution that generates the observed data with the 

greatest likelihood.  

Suppose the observed Data D = {di; i=1, 2,…, N} consists of N independent and 

identically distributed (i.i.d.) observations from a probability density function with an assumed 

functional form fΘ,  where Θ are the parameters of the model. The first step in MLE is to write 

the joint distribution of D: 

 

 

When the data samples are observed and the parameters are unknown, then (3) above is 

called the Likelihood function L(|D), and is a function of the parameters Θ. The goal is then to 

maximize L(|D). In practice, it is much more convenient to work with the (natural) log 

transformation of L(|D), called the Log Likelihood Function, l(|D). The purpose of using log-

transformation is to simplify the computation by converting products to summations; this doesn‟t 

affect the final outcome because log function is monotonically increasing. The maximum 

likelihood parameters‟ estimates are then given by: 

 

 

 

 

For Logistic Regression, one way to estimate parameters through MLE is to maximize 

the conditional data likelihood or equivalently its log-transformation, i.e. the probability of the 

observed Y conditioned on covariates X. Mathematically, this can be represented as: 
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The expression P(Yi | Xi, θ) can be easily obtained from log-odds formulation of Logistic 

regression in equation 1 and equation 2 above. Since there is no closed form solution for this 

expression, one must resort to iterative numerical methods based on gradient ascent, like 

Newton-Raphson. 

2.4.3 Input-output Hidden Markov Models (IO-HMMs) 

Classic Hidden Markov Models (HMM) have been successfully applied to many sequential data-

mining problems in biology and elsewhere that have to deal with data containing sequential 

structure, like those involving gene and protein sequences (Rabiner 1989; Durbin R 1999). Some 

representative examples include “Gene-prediction” (Henderson J 1997) and “Protein secondary 

structure prediction” (Karplus K 1999). Learning and inference from such models incorporates 

the sequential dependencies that are characteristic of such data. They derive their strength and 

flexibility from the hidden-state representation of „past context‟, while restricting direct long-

range interactions using Markov assumption. In the discussion that follows, a generic sequence is 

denoted as <x1x2…,xt…xT>, where „t‟ refers to the location within the sequences being modeled 

while „T‟ is the total length of the sequence. The same length „T‟ is used for all sequences for 

notational convenience. 

HMMs (Figure 6A) consist of an observation or emission sequence y1y2…yT, and 

represent the joint conditional probability distribution P(y1y2…yT| Θ), where Θ are the model 

parameters. An intermediate hidden layer (unobserved) <q1q2…qt…qT> facilitates modeling 
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sequential dependencies. For example, in the problem of identifying protein-coding regions in a 

nucleotide sequence, the observation sequence can be the nucleotide sequence while the hidden 

states may represent the possible group labels (intronic region vs. exonic region). The goal would 

then be to compute the „most likely‟ hidden-state sequence providing the desired group labels to 

individual nucleotides in the sequence. Mathematically, HMMs are represented as the 

parameters‟ tuple Θ = (π, A, B) where: 

 π : Initial state probability distribution, P(q1) 

 A : Transition probability distribution matrix, P(qt | qt-1) 

 B : Emission/observation distribution, P(yt | qt) 

 

Figure 6. A) Classical Hidden Markov Model; B) Input-output Hidden Markov Model 

 

The underlying assumptions in HMMs are: first, the presence of a hidden state-space that 

can correspond to the different (observation) data generating processes and a first-order markov 
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assumption, which states that the probability distribution of current state is dependent only on the 

preceding state. 

IO-HMMs are an extension of HMMs and are used to stochastically model sequence 

pairs rather than individual sequences (Bengio et al. 1995). So, in addition to an observation 

(output) sequence, there is another input sequence (also observed). The graphical structure of a 

basic IO-HMMs is shown in Figure 6B. As can be seen, IO-HMMs contain extra nodes (than 

HMMs) for the input sequence <x1, x2, …, xT>, which can probabilistically influence the output 

layer and/or the hidden states, represented as <y1, y2, …, yT> and <q1, q2, …, qT> respectively. 

They represent the joint conditional probability distribution P(y1y2…yT| x1x2…xT; Θ), where „Θ‟ 

are the model parameters. 

Similar to HMM, an intermediate hidden layer <q1q2…qt…qT> facilitates modeling 

sequential dependencies as complex probability distributions. However, the additional 

conditioning on the input layer makes the transition and/or emission probability distributions 

potentially non-stationary in location. This means that unlike HMM, instead of a transition 

matrix (or emission vector) of probabilities that remains fixed throughout the hidden markov 

chain, there is now a probabilistic function that takes the context (input features xt) available at 

the specific location „t‟ under consideration, thus facilitating dynamic mapping of input-to-output 

sequences. Both xt and yt can be uni-variate or multi-variate, discrete or continuous, whereas the 

hidden states, qt, are typically discrete. Additionally, the input sequence can be constructed with 

arbitrary features (from the domain) that may or may not overlap in location, allowing rich 

contextual information at local (specific location) as well as global (sequence) level to be 

incorporated in the sequence mapping tasks. The goal, then, is to learn the sequential 
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dependencies between the input and the output. IO-HMMs have been successfully applied to 

several challenging sequential data-mining problems (Bengio et al. 2001; Ernst et al. 2007). 

The state transition probabilities qt-1  qt, and emissions yt, conditioned on the input 

layer x1x2…xT, can be represented by arbitrary probabilistic functions, as below: 

P(qt | qt-1, xt) = f(qt-1, xt) (6) 

P(yt | qt, xt) = g(qt, xt);  (7) 

where „xt„ is the input or context at location t, „yt„ is the output or emission from the current 

hidden state, „f‟ and „g‟ are any linear or non-linear functions with valid probabilistic outputs.  

In practice, there is one transition function for each hidden state, to compute the 

probability distribution of state at current location (qt) given the state at previous location (qt-1), 

i.e. P(qt | qt-1, xt). Likewise, there is one emission function for every hidden state, to compute the 

probability distribution of the emission/observation at the current location, given the state at 

current location, i.e. P(yt | qt, xt). The parameterization for the architecture shown in Figure 6(B) 

is given in Table 1 below. 

2.4.3.1 IO-HMM Training 

The structure of the IO-HMM model is fixed apriori, in terms of the input and output layer 

representation as well as the number of hidden states, and should be reflective of the domain 

being modeled. Training, then, consists of estimating the parameters of the model structure from 

a training dataset, typically using MLE approach. Depending on the domain being modeled, the 

training dataset can be one input-output pair of very long sequences, or many such pairs of short 

sequences. The work in this thesis deals with the latter situation, but the methodology is trivially 

modified to the former case as well. MLE parameter estimation of IO-HMM models is a little 
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more involved than the procedure for Logistic Regression described above due to presence of 

hidden variables (<q1q2…qT>). 

 

Table 1. Notation and Parameterization for the IO-HMM architecture in Figure 6(B) 

 

 

Symbol Description 

s Number of hidden states 

S = {S1, S2, …,  Ss} Set of hidden states 

Xn = xn,1, xn,2, …, xn,tn, …, 

xn,Tn 

Input sequence for n
th

 training sample; 

Tn: length of n
th

 input training sequence 

Qn = qn,1, qn,2, …, qn,tn,… 

qn,Tn 

State transition sequence for n
th

 training sample; Each of 

qn,t  S 

Yn = yn,1, yn,2, …, yn,tn, …, 

yn,Tn 

Output sequence for n
th

 training sample 

Θ  = (π, A, B) Model parameters 

Π Initial-state probability model parameters 

A  = {Ai; i = 1, 2, …, s} Transition-probability models‟ parameters;  

‘Ai’: set of parameters for transition model for i
th

 hidden 

state 

B  = {Bj; j=1,2, …, s}  Emission models‟ parameters 

‘Bj’: set of parameters for emission model for j
th

 hidden 

state 
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Let D be the (observed) training dataset comprising of N “independent and identically 

distributed” (iid) samples, which in the present case are pairs of input/output sequences: 

 

 

 

Given the parameters  and the probability density function p(.|), MLE parameters can 

be obtained by maximizing the conditional data log-likelihood as: 

 

 

 

 

 

 

Marginalizing over the hidden (missing) states leads to a summation expression inside the 

natural log. If the state transitions were known for each of the i.i.d. samples, this summation 

would vanish and the expression could be optimized directly with any gradient-based algorithm, 

like conjugate gradients. That not being the case, one must to resort to the numerical 

optimization method called the “Expectation Maximization” (EM), which is the standard 

methodology for MLE approach to parameter estimation in the presence of missing data 

(Dempster A 1977). 
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2.4.3.2 Expectation Maximization (in context of IO-HMM) 

Let us define the „complete data’, as: 

 

The corresponding Likelihood and log Likilihood functions are called the “complete data 

likelihood”, [CDL, L
C
(|D)], and the “complete data log likelihood” [log(CDL), l

C
(|D)], 

respectively. The optimization operation is broken down into two steps of the EM algorithm, 

which iteratively improves the parameter values starting from a random initialization. The two 

steps of EM are mathematically represented as follows:
 

1. Expectation (E-step): 

  

 

2. Maximization (M-step): 

 

 

The E-step takes the expectation of the log of complete data likelihood [log(CDL)], 

which amounts to estimating the missing data (hidden states), conditioned on the previous 

estimate of model parameters (assumed correct). The M-step maximizes the resulting function of 

the parameters to get an improved estimate of the parameter-set. In the standard case, the EM 

begins with a random initialization of all parameter values in the model. The above two steps are 

applied iteratively to improve the parameter estimates until a local maxima is obtained. It can be 

shown that for convergence only an increase in Q function of E-step is required to guarantee an 
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increase in the L(|D) in each subsequent iteration. Hence, in case when M-step cannot be 

maximized in a closed-form, one needs only to ensure an increase in the Q function value in each 

iteration rather than maximizing it. This is called the Generalized EM algorithm (GEM) 

(Dempster A 1977). Several computational steps are required to perform each iteration of EM, 

general details of which can be found in (Bengio et al. 1995). 

Using the 1
st
 order markov assumption and independence relations that follow from the 

graphical structure, L
C
(|D

C
) is factorized as follows: 

CDL: 

 

Now, taking all possible values of hidden state variables qn,t and taking log on both sides, 

the log(CDL) is obtained as: 

log(CDL): 
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As described above, since zn,i,t and zn,j,t-1 are unknown, expectation is evaluated with 

respect to the distribution of the hidden state transitions conditioned on data D and current 

„guess‟ of the parameters, 
k
. This gives the Q function of the E-step (See (Bengio et al. 1995) 

and Appendix A for details): 

 

g‟n,i,t in (15) above represents the posterior state probability, that t
th

 observation for the n
th

 

training sample (input-output pair) appears from the hidden state „i‟. h‟n,i,j,t, on the other hand, 

represents the posterior state-pair probability, that the observation pair at locations (t-1, t) 

appears from the hidden state-pair (j,i). Both g‟ and h‟ are conditioned on the current „guess‟ 

parameters 
k
 and the n

th
 training sample, and hence the label „posterior‟. In order to compute g‟ 

and h‟, first the forward and backward recursion matrices for the n
th

 training sample are 

computed (Rabiner 1989; Bengio et al. 1995). These expressions are very similar for classic 

HMMs except that everything is now conditional on the input sequence. 

Defining forward variable, n,i,t, as the probability of observing the partial sequence <yn,1, 

yn,2, …, yn,t> and ending in the hidden state qn,i,t = i (conditioned on the partial input sequence 

<xn,1, xn,2, …, xn,t>), the -matrix can be expressed and filled recursively as: 
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Similarly, the backward variable, n,i,t, is defined as the probability of observing the 

partial sequence <yn,t+1, yn,t+2, …, yn,Tn> given that the hidden state at time t is „qn,t = i‟. The -

matrix can be expressed and filled recursively as: 

 

Given the Forward and Backward matrices, the posterior state and state-pair probabilities 

can be computed as follows (See details of derivations in (Bengio et al. 1995)): 

 

Computing (18) and (19) for each training sample gives the expression for the Q-function 

and completes the E-step of the EM algorithm. We now have a function of the parameters of the 

model (like in regular MLE with no missing data). The M-step then proceeds by maximizing (or 

increasing) the Q-function and substituting the old guess parameters 
k
 with new parameter 

values 
k+1

.  

It is worth noting that in practice, the parameters for each sub-component of the model 

(‘s’ transition functions and ‘s’ emission functions) split nicely in the Q-function so that each 
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sub-component can be optimized independently of the other in the M-step. Training the IO-

HMM via GEM requires the model to be initialized to some random initial parameter values 

which are then iteratively improved until the model converges to a local maximum in the 

likelihood space. Since the model is quite complex, it is possible that the likelihood surface is not 

unimodal with only one unique maximum-likelihood estimate of parameter set. The usual 

practice under these circumstances is to perform multiple rounds of training starting from a 

different random initial seed and choosing the parameters that maximize the likelihood among all 

rounds. 

2.5 EVALUATION, SCORE COMBINATION AND POST-PROCESSING OF 

DATABASE SEARCH RESULTS  

Evaluation is a critical step in automated methods for data analysis, and involves several aspects 

depending on the application and domain. Typically, one would like to establish how well the 

model either describes the data it was learned from, or how well it predicts on future unseen data. 

The main objective of the CSPI framework is confident assignment of peptides to MS/MS 

spectra and hence, the most important evaluation deals with how well the overall framework 

performs the task of differentiating true from false peptide identifications. Several methods have 

been described in the literature to deal with this problem and are discussed next. 

As described above, each database search for a spectrum yields a list of candidates 

ranked according to their PSM scores. Typically only the top-ranking peptide is considered 

further for protein inference, although sometimes the true peptide appears at a lower rank. Due to 

multiple steps involved in the shotgun proteomics pipeline, numerous factors introduce biases 
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and noise, making all scoring algorithms prone to errors. In typical large-scale proteomics 

experiments, over 75% of spectra are of poor quality or from non-peptide species and must be 

correctly distinguished from real signals (Ning et al. 2007). Due to high amount of noise in 

MS/MS spectra, false peptide assignments to these spectra can attain reasonably good PSM 

scores, and consequently, the distributions of scores from True PSMs and random/False 

identifications exhibit significant overlap, substantially increasing the identification error rates of 

search algorithms. It is particularly important for the Database searching algorithms, because 

they always return “the best available” answer even if incorrect. 

Hence, in order to interpret and effectively utilize peptide identification results in 

downstream analyses, separating the two is a crucial step in the overall analysis and researchers 

are interested in knowing precisely the error rates of the algorithms used for their experiments, so 

as to fine-balance false-identifications with missed (estimated) true-identifications. This amounts 

to choosing a score threshold above (or below, depending on the score) which the PSM is 

considered significant (or true). 

Arbitrary choice of score thresholds (derived empirically) to call a PSM true or false is an 

inadequate solution and does not perform well across different datasets. Additionally, the vast 

numbers of different scoring schemes described in the literature are quite varied in terms of what 

they represent and their scales of measurement. Such variation makes the scoring schemes and 

their thresholds incomparable directly. In order to better control the above aspects, statistical 

validation that transforms these arbitrary scores to a statistical significance measure is an 

essential analysis step. 

This problem is that of hypothesis testing with null H0: “PSM is a random match” and 

alternative Ha: “PSM is a true match”. A test is considered significant if, under the null 



 37 

hypothesis/distribution, the observed value of the PSM-score is better than some threshold 

specified by the desired significance -level. Alternatively, a traditional p-value indicates the 

probability that the under H0, the PSM-score is at least as good as observed, while an e-value 

indicates the expected number of PSM-scores better than observed. Since for each spectrum it is 

assumed that only one candidate peptide can be possibly true, null distribution can be estimated 

from the scores for all except the top-scoring candidate. These procedures however provide an 

unsatisfactory solution due to large numbers of tests involved in a single experiment (classic 

multiple hypothesis-testing problem). As a result, a sizable proportion of tests can emerge 

significant just by random chance. Simple procedures for multiple-testing correction, like 

Bonferroni correction, will be too stringent.  

2.5.1 False Discovery Rate (FDR) and Q-values 

FDR is an alternative way of correcting for multiple comparisons and is a global error control 

measure, unlike p- or e-values, that directly controls type-I errors (incorrectly rejected null 

hypotheses) (Benjamini et al. 1995). In the context of peptide MS/MS, it is defined as the 

expected proportion of  „false‟ identifications in the entire set of „significant‟ PSMs at a specified 

score threshold (Choi et al. 2008). For example, if a 1000 PSMs obtain a score better than the 

threshold „s‟, and the FDR is controlled at a level of 0.01, then at max 10 of these PSMs are 

expected to be false positives. 

Estimating FDR requires a good choice of “null distribution” of PSM scores. One 

commonly used null model is that from a decoy database search (Elias et al. 2007). The database 

of true protein sequences (of the organism under consideration) is called the “Target” database. 

A decoy database is derived from target by some operation like reversing or shuffling all protein 
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sequences, or using markov models to generate sequences that have the same distribution and 

dependencies of amino acids as the target database (Feng et al. 2007). A search against such a 

decoy database will return top-ranking hits, which by design, are random or false identifications, 

and their scores can be used as a representative for the null distribution. 

One simple strategy for computing and controlling False Discovery Rates (FDR), based 

on target-decoy strategy is described in Kall et. al. (Kall et al. 2008). Briefly, after performing 

separate target and decoy searches, FDR at a score threshold, t, is approximated as: 

 

The underlying assumption in target-decoy strategy is that the score distribution of 

incorrect target peptides is the same as that of decoy peptides. The usual practice is to keep the 

estimated FDR to as low as 1-5% or lower, obtain the corresponding score threshold, and 

determine how many peptides are identified with scores above the chosen threshold. These are 

then considered as “estimated true” identifications, and are used in downstream inference for 

protein identification. The significant advantage of this approach is its conceptual simplicity and 

minimal effort towards implementation. 

Since FDR as computed above is associated with an entire set of PSMs, it loses a 

desirable property of being a monotonically non-increasing function of score, i.e. as the score 

threshold increases, FDR should not increase. A more useful measure, that is also associated 

with each individual PSM is the FDR analogue of p-value, called the q-value, and refers to the 
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minimum FDR at which a given PSM is called significant, or a true PSM (null-hypothesis 

rejected) (Storey et al. 2003). 

2.5.2 Score Combination, Post-processing 

The procedures described above can be used to compare performance of different scoring 

algorithms, each of which yields some primary score of quality of match based on which 

candidate PSMs are ranked. However, these scores are far from perfect due to factors described 

earlier. Additionally, they vary a lot from one spectrum to another depending upon PSM 

properties (spectrum quality and noise-level, peptide‟s propensity to fragment, charge-state etc.). 

As a result, several potentially true PSMs fall in the region of overlapping score distributions, 

particularly because the scores usually have arbitrary scales and may not be absolutely 

comparable from one instance to another. One definitive way to improve identification 

accuracies is to combine the primary score with other features of PSM match-quality, which are 

also reported alongside, or by combining the scores from multiple different algorithms (Searle et 

al. 2008). Often such combination provides additional complementary information and can 

significantly boost the performance. Several approaches of such post-hoc processing and 

combination have been developed to address this aspect; most popular ones are described next. 

Peptide Prophet was developed and optimized for the Sequest database search algorithm 

and utilizes four numeric PSM quality features as well as observable discrete peptide properties 

(Keller et al. 2002). Using a manually-verified training dataset in the first stage, the algorithm 

learns a linear discriminant function to combine the features into a composite score. The next 

step combines the composite score with peptide properties using the Empirical Bayesian 

framework, assuming conditional independence between the composite score and peptide 
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properties given the class label (which is essentially a Naïve Bayesian Classifier with hidden 

class variable). Two drawbacks of the original formulation – fixed discriminant function 

parameters across datasets and inflexible composite score distributions – were addressed in later 

extensions (Choi et al. 2008; Ding et al. 2008). Another extension also improved their 

performance using a semi-supervised approach utilizing decoys to learn a better null distribution 

(Choi et al. 2008). 

Unlike Peptide Prophet, which is an unsupervised generative algorithm, the Percolator 

algorithm uses a more discriminative approach in semi-supervised setting. It uses target-decoy 

strategy together with Support Vector Machine (SVM) classifier to combine scores/features, 

learning new parameters for each new dataset (Kall et al. 2007). Percolator iterates over the 

following steps until convergence: a) Identify a set of high-confidence target PSMs to use as 

positive training data; b) using decoy PSMs as negative training data, train an SVM classifier; c) 

score the entire set of target PSMs using the trained SVM. The iterations are initialized using 

high-confidence targets based on SEQUEST cross-correlation score, while subsequent iterations 

use SVM-based discriminant score. Confidence is measured using q-value (as described earlier) 

based on these scores. The procedure converges when no new targets are identified at high 

confidence. According to the authors, this approach does better than Peptide Prophet due to a 

larger feature set and adaptive discrimination using SVMs that adjusts to peculiarities of each 

individual dataset. 
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3.0  CONTEXT-SENSITIVE PEPTIDE IDENTIFICATION FRAMEWORK 

A novel Context-sensitive Peptide Identification (CSPI) Framework is proposed in this thesis for 

improving peptide scoring and identification from MS/MS data through modeling their 

fragmentation ion intensities. CSPI utilizes an instance of the flexible IO-HMM class of models 

to represent the complex peptide fragmentation intensity patterns in mass-spectrometers under 

low energy CID. The specific constrained structure of the model used for all analyses presented 

in this thesis, which is a special case of Figure 6(B) in section 2.4.3, is presented in Figure 7. For 

the application to peptide identification, the input contextual features (xt) are derived from the 

peptide sequence while the output variables (yt) are derived from spectrum intensities. 

 

Figure 7. IO-HMM Structure used in the CSPI Framework. Both b- and y-ion models have the same 

structure with yt representing observed b- and y-ion intensities respectively 
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This structure implies that the contextual features influence only the transition functions 

and not the emission functions. In effect, through the hidden states, the model learns complex 

mixture distributions of the output variable, conditioned on the input layer features and the 

previous hidden state distribution. The model can then be used to probabilistically evaluate how 

well a peptide‟s physicochemical properties are able to explain the observed fragment-ion 

intensity series in a spectrum, resulting in an intensity-based score. 

As described earlier, a fragmentation event can produce several different ion types. From 

low-energy CID, b- and y-ions dominate and were used to develop and evaluate models in CSPI. 

In order to capture their distinctive characteristics and distributions, the b- and y-ions are 

modeled separately, and are called CSPI_b and CSPI_y, respectively.  

Given the model structure, the next step is to transform a PSM pair into appropriate 

input-output format, requiring several preprocessing steps and fixing the functional forms of the 

components of the model, as are described next. 

3.1 INPUT LAYER (<X1X2…XT>) 

In the current work, input layer is a sequential representation of the peptide sequence being 

evaluated. Each amide-bond position in the peptide sequence (from N- to C-terminus) is 

represented as a feature vector that forms the „input‟ xt at the corresponding location, and 

represents the global (peptide- or fragment-level) and local (fragmentation site-level) context 

influencing observed fragmentation. For example, a peptide of length 10 has 9 amide bond 

positions and is represented in the input layer as a sequence of 9 feature vectors, each being of 

same length as the number of features used. The same input features and representation are used 
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for both b- and y-ion models. The directionality used in the b-ion models is from N-terminus to 

C-terminus, while that for y-ion models is from C-terminus to N-terminus. 

The features used in the model are described in Table 2. The “Mob” feature uses an 

accepted definition of mobility [ChargeState – Number of Arg – 0.5*(Number of His + Number 

of Lys) (Huang et al. 2008). The mobility values were grouped into 4 bins as shown in the table. 

Similarly, „length‟ feature was grouped into 3 categories: short (< 13), medium (between 13 and 

22) and long (> 22), binned roughly at 25
th

 and 75
th

 percentiles of peptide lengths in the training 

dataset. 

3.2 OUTPUT LAYER (<Y1Y2…YT>) 

The output layer consists of the sequence of observed intensities of the b- and y-ions of the 

peptide. In order to handle wide variation in the observed fragment intensities as well as to 

reduce the dominance of few high-abundance peaks, as part of building CSPI models certain pre-

processing steps are performed on the MS/MS spectra before they are used either for learning 

model parameters or searched against databases for candidate peptides. This is crucial so as to 

make spectra more comparable across each other as well as across multiple datasets, and 

includes the following steps (in order of operation): a) Remove the peak corresponding to the 

precursor as this can be very intense and thus overshadow many other shorter peaks; b) Square-

root transform all peaks in order to reduce the influence of very intense peaks; c) Normalize all 

the peaks so that the intensity of the tallest (base) peak is 100 while all other peaks are scaled 

accordingly; d) Filter noise peaks, where noise threshold is user-defined (default is set to 0.025,  
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Table 2. Contextual Features used in the input layer of CSPI models 

 

Feature Type 

(Length) 

Description Influence 

NAA Binary 

(19) 

Flanking N-terminal Amino acid (Considering Pro 

as baseline; 1 binary feature for remaining 19 

possible) 

Local 

CAA Binary 

(19) 

Same as NAA 

Local 

FracMz Numeric 

(1) 

Fractional mass-to-charge (m/z) of fragment relative 

to the m/z of the parent peptide; Range: (0,1) 

Local 

Mob Binary 

(3) 

Mobility value of the peptide
 

(<=0: baseline; one binary feature for 0.5, 1, >1) 

Global 

CTerm=R? Binary 

(1) 

Is the C-terminus of peptide Arg? 

Global 

K/H in b-

fragment 

Binary 

(1) 

Is there a Lys or His in the b-fragment (other than 

NAA/CAA) 

Fragment 

R in b-

fragment 

Binary 

(1) 

Is there an Arg in the b-fragment (other than 

NAA/CAA)? 

Fragment 

Length Binary 

(2) 

Length of the peptide, discretized into 3 bins 

(length<13: baseline; one binary feature each for 

13<= len < 23 and 23<= len) 

Global 

Total 47   
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i.e. 2.5% or lesser of the base peak); e) Remove the peaks below the low-mass cut-off region 

(default threshold used is 0.3 times the m/z value of the precursor; ion-trap instruments typically 

do not retain peaks in this region and filtering reduces the chance of modeling noise); f) select 

200 most intense peaks (at max) of those that remain. Finally a normalized intensity value 

(described next) is used for each observed fragment at each fragmentation site. It is important to 

note that these spectrum pre-processing steps are a part of model building process and were 

applied (as described) only to the CSPI framework. Other algorithms that were used for 

comparison follow their own pre-processing protocols. 

3.3 NORMALIZATION 

Two different normalization schemes, called “Rank-norm” and “Window-norm”, were 

evaluated. 

For „Rank-norm‟ scheme (after spectrum pre-processing), the peaks of the spectrum are 

assigned ranks, which are then normalized to range [0.001, 0.999], 0.001 being the highest 

intensity and 0.999 being the lowest. This normalization range was chosen instead of [0, 1] to 

avoid difficulties in parameter estimation for the emission distributions used for rank-norm 

scheme (see section 3.4 below). Such rank-based normalization has been used in recent studies in 

order to reduce variation, and makes intensities comparable across spectra (Wan et al. 2006; 

Klammer et al. 2008). Fragment ions that are not observed in the experimental spectrum are 

represented as “Null” in the output layer.  

For the “Window-norm” scheme, (after spectrum pre-processing) the output/emission 

value used is the logarithm of the fraction of intensity explained by the fragment within +/-75 Da 
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window around its m/z value, rationale being that the fragments from the true peptide should 

explain more abundant peaks than those from false peptides. Again, if a fragment is not observed 

the observation at that location is designated as “Null”. 

3.4 PARAMETER REPRESENTATION 

In the current implementation (Figure 7), the emission functions are represented as simple 

distributions, conditioned only on the hidden state value (qt), i.e. P(yt | qt, xt) = P(yt | qt). In CSPI 

models, IO-HMMs with four hidden-state values are used, out of which one is reserved for 

“Null” emission (i.e. when the fragment is not observed), and has emission probability of 1. The 

other three values correspond to observed fragments with continuous emission distributions. 

These can be thought of as states producing “Low”, “Medium” and “High” intensity 

observations (on average, determined by the “mean” of the emission distribution used). The 

distributions of observed (normalized) intensities of b- and y-ions from a large set of validated 

PSMs is shown in Figure 8 and Figure 9. 

Similar patterns are observed for other datasets of validated PSMs and have guided the 

choice of appropriate emission distributions used in this thesis. For the rank-norm scheme, 

Exponential emission distribution was used for b/y-ions from true peptides and Beta distribution 

for those from false/random peptides. For the window-norm scheme, Gaussian emission 

distribution was used for both b/y-ions and from true and false peptides. 
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Figure 8. Distribution of observed rank-normalized intensities of b- and y-ions from True and 

False/Random PSMs, for SO-DR dataset (See Chapter 4 for dataset description). 

3.5 TRANSITION FUNCTIONS 

Each CSPI model structure results in one transition function for each hidden-state value. Given 

the hidden-state value qt-1 = q (t > 1) and the context (input xt), the corresponding function 

provides the probability distribution over hidden-state values at current location t, i.e. P(qt | qt-1 = 

q, xt). The output of this function changes as the input xt varies along the peptide sequence. 

Additionally, there is an initial-state function for computing the distribution over hidden-state 
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values at the start of the sequence, i.e. P(qt=1 | xt=1). All these distributions are modeled using 

logistic functions. 

 

 

Figure 9. Distribution of observed rank-normalized intensities of b- and y-ions from True and 

False/Random PSMs, for SO-DR dataset (See Chapter 4 for dataset description). 

 

In the current implementation, CSPI models with s=4 hidden-state values are used (For 
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Initial-state probability is computed in a similar fashion and uses its own logistic function model, 

the output of which gives the distribution over the hidden states at location t=1, i.e. P(qt=1 | xt=1).  

The initial-state and transition functions together predict the hidden state transition 

probabilities along the peptide sequence. Based on the sequence (context), some state transitions 

will be more likely than others. CSPI models compute probabilities over all such possible state 

transitions over the entire peptide chain, in order to compute the contribution to the overall score 

(See section 3.7 for details). 

Each logistic model has (s – 1 = 4-1 = 3) weight vectors. Each weight vector is of 

size=(#input features + 1)=48. This leads to a total of 48*3=144 tunable parameters per logistic 

regression component. Since each CSPI model has 5 such logistic models (1 for initial state and 

4 for each hidden state value), the total number of logistic functions‟ parameters per CSPI model 

is 144*5=720. 

Further, each hidden-state value corresponds to an emission distribution. For s=4, and 

rank-norm scheme, this leads to 3 exponential distributions (for True models) and 3 beta 

distributions (for Null Models), for a total of 3+6=9 emission parameters. For window-norm 

scheme, three Gaussian emission models for each, True and Null models, are used for a total of 

12 tunable parameters.  

3.6 CSPI TRAINING 

For the apriori fixed structure, in terms of input-output representation and number of hidden 

states, training consists of estimating the parameters of the model structure from a training 

dataset which comprises of a set of input-output sequence pairs <(x1x2…xT); (y1y2…yT)>i, 
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i=1,2,3…,N, where N is the size of the training dataset. These are derived from high-confidence 

and validated PSMs, with representations as described above. Parameter estimation in CSPI is 

done using the “Maximum-Likelihood” approach. Due to presence of hidden variables 

(<q1q2…qT>) and absence of a closed-form solution, this is achieved using the iterative 

numerical optimization method called “Generalized Expectation Maximization” (GEM) 

(Dempster A 1977), as described in Section 2.4.3.1. For detailed derivation, see Appendix A. 

3.7 CSPI INFERENCE 

Trained CSPI models are used to score and rank candidate peptides obtained via Database Search 

for each spectrum. Inference involves evaluating the joint probability of observing the spectrum 

(a particular fragment ion series, b- or y-) given the peptide and the model (learned parameters), 

i.e., P(y1y2…yT | x1x2…xT; ). Let us consider a specific input-output sequence pair x = 

<x1x2…,xt…xT> and y = <y1y2…yt…yT>. Suppose we also know the hidden state transitions 

q=<q1q2…qt…qT> that generated the output y for this pair. The joint probability P(y, q | x; Θ) 

can be computed as: 
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In expression (22), factor (I) is computed using the initial-state logistic function. 

Remember that for each hidden-state there is one transition logistic function and one emission 

function. So, factor (II) is computed using the corresponding transition logistic functions for state 

value qt-1 at each location t. Similarly factor (III) is computed using the corresponding emission 

function for the state value qt.  

Scoring a PSM involves computing the desired probability P(spectrum | peptide; Θ) or 

more generally P(y | x ; Θ). This expression requires summing over all possible hidden state 

transitions and can be computed using (22) above as: 

 

 

To compute expression (23) efficiently, an extension of the Forward procedure used in 

classic HMMs is used, which follows similar mechanics except extra conditioning on the input 

layer at each step requiring computing the transition probability (Bengio et al. 1995). 

In order to discriminate between true and false peptide identifications, two different 

models, one for true PSMs and one for random/false PSMs, are learned for each fragment ion-

type. In each random PSM, the peptide sequence (input) used is a random/false sequence of 

(nearly) same mass as the true peptide. These models are called the True and the Null models, 

with parameters 
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 and 
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Scores from b- and y-ion models are computed in similar fashion, by replacing the output 

sequence <y1y2…yT> with the normalized intensities of appropriate fragment ion series, b or y. 

Peptide identification performance is evaluated for three PSM scores: (i) CSPI_Score
b
 (from 

model CSPI_b), (ii) CSPI_Score
y
 (from model CSPI_y), and (iii) composite CSPI_Score

byAdded
 

(= CSPI_Score
b
 + CSPI_Score

y
). 

3.8 SCORE COMBINATION WITH LOGITPERCOLATOR 

Scores from individual fragment-ion models provide complementary information that must be 

used together to perform inference on any PSM pair being evaluated. Often times, other features 

of match quality are also available and can be used as additional sources of information, as is 

typically done during manual interpretation of spectra. In that case, the simple composite score, 

that adds the individual scores, is not the most optimal as it attaches equal weight to both 

components. This can be addressed by combining scores using machine-learning approaches that 

appropriately weight the contributions of individual components. Two prominent examples of 

this approach are PeptideProphet (Keller et al. 2002) and Percolator (Kall et al. 2007), both of 

which are automated methods to post-process database search results.  

The goal in this part of the research was to develop a post-processor to appropriately 

weight and combine CSPI‟s individual intensity-based scores, as well as to demonstrate the 

utility of these features towards improving peptide identification performance when used in 

conjunction with other features popularly used in large-scale proteomics. To achieve this goal, a 

similar, albeit simplified, strategy as outlined in the Percolator algorithm (see section 2.5.2) is 

followed, with the following two differences: a) Instead of SVM, Logistic Regression classifier 
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is used, and the posterior probability of target PSMs from the model is used as the composite 

score from which FDR and q-values are computed; b) no cost-matrix for errors in classification 

is learned. Due to these differences, the current implementation, which is called 

“LogitPercolator” for the remainder of this thesis, can be considered as a baseline. 

3.9 EFFICIENT PROCESSING OF LARGE MS/MS DATASETS 

As described earlier, associating the spectra with their true peptide identification involves 

searching large protein databases to score and rank potential candidates. Depending upon the size 

of the database and constraints applied on the search, like allowable post-translational 

modifications, enzyme specificity and possible charge-states, each spectrum may have to be 

evaluated against several thousand candidates to select the one that best explains the observed 

data. Additionally, a single MS/MS experiment from a modern mass-spectrometer can generate 

up to the order of 5-10K MS/MS spectra in less than an hour, resulting in several GB of data 

each day from even a moderate-sized proteomics lab. Analyzing such large datasets requires 

significant computation time, particularly when using complex scoring systems like the CSPI 

framework presented in this thesis. Hence, in order to keep pace with the volume and rate of data 

generation, the software system implementation must support efficient data processing. 

Efficiency was achieved for the CSPI using two strategies: a) Protein database indexing, and b) 

Parallel implementation using multiprocessing. 
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3.9.1 Protein Database Indexing 

The first step in analysis is the database search component that involves extracting candidate 

peptides for each spectrum by querying a protein database, which is a simple ASCII text file with 

a list of protein sequences or character strings (the protein alphabet is of size 20, with each 

character being of a different mass). This amounts to a range query on the “expected mass” of 

the true peptide. Protein databases can be large and the naïve approach of scanning them afresh 

for each spectrum for retrieving strings of required mass will be prohibitive in terms of time. 

Most systems pre-compute once some form of index for fast querying, and similar strategy was 

followed within CSPI. 

In order to create indexes for protein databases, the appropriate protein FASTA file was 

preprocessed to generate the list of all possible peptides satisfying the desired search constraints 

for database search. These are then indexed used the python interface for the Berkeley DB key-

value database (Olsen et al. 1999), where the „key‟ is the string representation of peptide mass up 

to one decimal point; and „value‟ is the string concatenation of peptide‟s location in the database 

(protein number as it appears in the FASTA file, and position number within the protein 

sequence) and length of the peptide. Additionally, in order to keep the size of index files small, 

the entire range of expected peptide masses is split into bins of size 25 units (arbitrarily chosen 

and may be optimized further), leading to multiple index files each storing a different mass 

region. Values of candidates with same keys are concatenated with a separator. Now, for every 

new query, the index allows for fast retrieval of candidates, by first mapping the query mass 

(“key”) to the appropriate index file, followed by retrieval of candidates in the corresponding 

mass-region that meet the mass-tolerance search criterion, and reconstruction of the peptide 

sequences using the corresponding information stored in the “value” part of the key-value pair. 
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3.9.2 Parallel implementation using multiprocessing 

The next step in database searching evaluates all the candidates retrieved for each spectrum. This 

is computationally the most expensive step in the peptide identification workflow. However, 

fortunately, this particular step is amenable to massive parallelization and can exploit large 

multiprocessor and/or distributed computing architectures to alleviate the computational 

bottleneck. Specifically, for each spectrum in the dataset, searching and scoring/ranking 

candidate peptides can be performed in parallel, independent of other spectra. This approach was 

followed for evaluating the CSPI framework. 

A simple multiprocessing application design based on shared synchronized queues for 

inter-process communication is used. The flow diagram is shown in Figure 10. The main process 

reads in and preprocesses the spectra, queries the protein database stored as a pre-computed 

index on the hard disk (as described above) and places the retrieved candidates along with the 

preprocessed spectrum on a shared queue. From this queue, all the worker processes extract the 

objects, compute the CSPI scores, and store the results onto a shared output queue. Another child 

process extracts the results from this output queue and stores them in an output file. 
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Figure 10. Workflow of the multiprocessing version of CSPI scoring framework 
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4.0  EXPERIMENTS AND EVALUATION METHODS 

This chapter describes the experiments done to evaluate the CSPI framework beginning with 

description of datasets section 4.1, followed by the PSM properties and Database Search 

parameters used for all the analyses in section 4.2. Section 4.3 discusses the performance 

evaluation protocol. 

4.1 DATASETS 

In order to evaluate the performance of the CSPI framework, several MS/MS datasets of 

different sizes, complexity and nature were utilized, as briefly summarized in Table 3. The LTQ 

and LCQ instruments selectively isolate and detect precursor peptides as well as their 

corresponding fragments at low resolution and mass accuracy. Details of experimental protocol 

for each dataset can be found in the respective references. All samples were processed using 

Trypsin enzyme prior to separation via liquid chromatography and analysis using MS/MS. 

Since CSPI models contain many tunable parameters, a large training dataset is required 

to avoid over-fitting. In the absence of such large, expert-validated „gold-standard‟ 

identifications, a common strategy is to use a set of high-confidence identifications. Dataset 1 

(SO-DR) contains high-scoring identifications made initially using the Sequest algorithm, and 

further validated via  
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Table 3. Characteristics of MS/MS datasets used for comparing algorithms 

 

accurate mass detection at the same retention time by FT-ICR and under identical 

chromatographic conditions. All identifications that could not be validated were removed from 

the dataset. As a consequence, a large fraction of these identifications are expected to be correct 

and hence form a good source for learning the parameters of the models. Roughly two-thirds of 

this data came from an LTQ and remainder from an LCQ instrument. Other possibilities for 

training datasets include using: a) validated PSMs from large spectral libraries of identifications, 

# Name Usage Size Instr Validation Source 

1 SO-DR Train 13, 249 LCQ 

  + 

LTQ 

FT-ICR Shewanella Oneidensis, 

Deinococcus Radiodurans (Huang 

et al. 2008) 

(Real world) 

2 18Mix1_LCQ Test 19, 822 LCQ FDR Standard 18 protein mix (Mix1) 

(Klimek et al. 2008) 

(Controlled) 

3 18Mix1_LTQ Test 53, 507 LTQ FDR Standard 18 protein mix (Mix1) 

(Klimek et al. 2008) 

(Controlled) 

4 Yeast_LTQ Test 34, 499 LTQ FDR Yeast whole cell lysate (Kall et al. 

2007) 

(Real world) 
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which typically contain, for each peptide (in the repository) a consensus spectrum obtained by 

some form of averaging over multiple copies; b) high-confidence assignments made on various 

large publicly available datasets. For the current thesis, all the CSPI models were trained using 

the SO-DR dataset. 

While SO-DR consisted of only validated high-confidence PSMs, other datasets 

(18Mix1_LCQ, 18Mix1_LTQ, Yeast_LTQ) are large collections of MS/MS spectra and 

represent either a controlled or a real-world scenario where the goal is to assign peptides to the 

spectra and assess significance of the matches. These were also generated using low-resolution 

and low mass-accuracy LTQ instruments. All these additional datasets were used for testing the 

performance of the CSPI framework. 

4.2 PSM PROPERTIES AND DATABASE SEARCH PARAMETERS 

In this work, all analysis was restricted to a constrained but significant set of peptides. First, only 

tryptic peptides with both ends adhering to Trypsin cleavage specificity are used for all 

evaluations. Considering imperfect efficiency of Trypsin digestion, up to three internal Lys/Arg 

residues in peptides were allowed where trypsin misses to cleave. Second, only precursor charge 

state of +2 was modeled since these peptides fragment well while generating relatively less 

complex spectra than higher charge states. This class also constitutes the majority for 

Electospray Ionization, which is widely used for ionizing peptides. Finally, under low-energy 

CID peptides largely fragment at amide bonds along the peptide backbone, (most commonly) 

yielding singly charged N-terminal fragments (b-ions) and/or a singly charged C-terminal 

fragments (y-ions). Only these ions were modeled within CSPI. 
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Candidate sequences were searched using constraints as described above, with a fixed 

carbamidomethylation modification applied on Cysteine residues. A precursor tolerance of +/- 

3.0 Da and fragment-ion tolerance of +/- 0.5 Da was used throughout. Since CSPI models are 

computationally expensive a simple filter was applied, which picks only top 500 unique 

candidates for each spectrum, based on their number of theoretical fragments observed in the 

experimental spectrum. Only these shortlisted peptides are scored using CSPI. All these search 

parameters were kept the same to the extent possible for all algorithms compared in this work. 

4.3 PERFORMANCE EVALUATION AND SCORE COMBINATION 

Peptide identification problem does not fit the traditional machine learning paradigm where the 

goal is classification of each sample into, say, a binary class, for which established methods of 

evaluation work well. Rather, each sample here (PSM) is represented with a bunch of scores or 

features and represents a mixture of correct and incorrect identifications. The goal then is to be 

able to differentiate, based on these features, between these identifications keeping the error (or 

false-discovery) rate within a user-defined level. As described earlier (section 2.5.1), a simple 

strategy based on target/decoy database search was used to address this hypothesis-testing 

problem. Briefly, the primary evaluation procedure is to control FDR at a user-specified value, 

which yields a score threshold and an estimate of the number of correct peptide identifications at 

that threshold. Whichever algorithm/score estimates higher number of correct peptide 

identifications at the same controlled FDR is reported superior. 

The CSPI framework was compared with two widely used algorithms: Crux (version 

1.33) (Park et al. 2008) which is a re-implementation of the original Sequest algorithm, and 
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X!Tandem (version CYCLONE 2010.12.01.1), which is another popular open-source peptide 

identification algorithm. Simple FDR and q-values were computed for Crux, X!Tandem and 

CSPI models using their primary search scores XCorr, Hyperscore and CSPI_Score
b
 (or 

CSPI_Score
y
 or the composite score CSPI_Score

byAdded
), respectively.  

Since SO-DR dataset was obtained from Shewanella Onedensis (SO) and Deinococcus 

radiodurans (DR), the target database used for these spectra was the concatenated protein 

FASTA sequences for SO and DR (~7000 proteins). Datasets 18Mix1_LCQ and 18Mix1_LTQ 

were obtained from controlled mixture of 18 proteins (see reference for details). Hence the target 

database for these spectra was the corresponding set of protein FASTA sequences appended with 

commonly observed contaminant proteins (http://www.thegpm.org/crap/index.html). Likewise, 

for the Yeast_LTQ the target used was Yeast FASTA (~6,500 proteins) sequences, appended 

with common contaminants. Q-values for SO-DR were estimated using two different decoys: 

reversed SO/DR FASTA and a much larger reversed Human FASTA. Using a large decoy 

provides a more rigorous test of performance due to much larger number of candidates being 

evaluated for each spectrum. For all other test datasets reversed Human FASTA appended with 

corresponding reversed target database was used as the decoy. 

Similar target-decoy strategy and FDR control was applied to the score-combination 

approach using LogitPercolator. After each iteration of LogitPercolator the primary composite 

score/feature used for computing FDR and q-values is the posterior probability of target PSMs 

from the Logistic Regression model. 

 

http://www.thegpm.org/crap/index.html
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5.0  EVALUATION OF THE CSPI FRAMEWORK 

In this chapter, I present and discuss the results from evaluation of the CSPI framework using 

several MS/MS datasets of varying complexity. Section 5.1 and 5.2 present  performance 

comparison of raw scores from CSPI (CSPI_Score
b
 and CSPI_Score

y
 and CSPI_Score

byAdded
) 

with those of Crux (XCorr) and X!Tandem (Hyperscore), while Section 5.3 presents the results 

of score combination using the LogitPercolator procedure described in section 3.8. Section 5.5 

discusses the efficiency aspects of CSPI implementation for handling large datasets. 

5.1 CROSS-VALIDATION EXPERIMENT (SO-DR TRAINING DATASET) 

Cross-validation is a commonly used re-sampling strategy, based on splitting the training dataset, 

to estimate the average performance of statistical models on unobserved data. Five-fold cross-

validation (5-CFV) was performed on SO-DR dataset by splitting it into five equal parts. Of 

these four parts are used for training CSPI models while the remaining one-fifth samples are 

used for testing. The process is repeated five times so that each part becomes the test set once. 

X!Tandem and Crux do not involve any training, but each time they are evaluated on the same 

set of one-fifth samples as CSPI to facilitate performance comparison. Database search is 

performed on each of these test sets as described in section 4.2. For CSPI framework three 

scoring schemes were used for computing q-values: (i) CSPI_Score
b
, (ii) CSPI_Score

y
, and (iii) 
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CSPI_Score
byAdded

. For X!Tandem and Crux, their respective primary scores, Hyperscore and 

XCorr, were used for computing q-values. 

 Based on the size of the training dataset, each test set consisted of 2649 MS/MS spectra. 

After performing database search on these and controlling the FDR at q-value <= 1%, the 

percentage of the (assumed known) correct peptide identifications, retrieved correctly by each 

scoring feature was computed. Here, „correctness‟ refers to the case that the peptide sequence 

identified is the same as the original high-confidence assignment provided in the dataset. For 

example, if in a test set „n‟ is the actual number of correct identifications among all those 

„estimated as correct‟ at 1% q-value, the reported performance is computed as n/2649. Table 4 

reports this performance averaged over 10 test sets obtained by executing 5-CFV twice (2 x 5-

CFV) on the SO-DR dataset. 

It is observed that over both normalization schemes and decoys, byAdded models 

perform better than y-ion models, which in turn perform better than b-ion models (p < 0.001 

from one-sided two-sample paired Wilcoxon signed-rank test). Also, within each group (b-, y- or 

byAdded models) window-norm scheme outperforms rank-norm (p < 0.001), providing a 

significant boost in the number of correct identifications. 

Individually, b-ion models perform unfavorably as compared to both Crux and 

X!Tandem for both normalization schemes and decoys (p < 0.001). On the other hand, y-ion 

models perform much more favorably (better than X!Tandem for window-norm/decoy-1/2, p < 

0.001 ; better than Crux for window-norm/decoy-2, p < 0.001 ; worse than Crux for rank-

norm/decoy-1, p < 0.001; worse than Crux for window-norm/decoy-1, p < 0.05 ; no significant 

difference in remaining cases). The composite byAdded models perform the best, particularly for 

window-norm scheme (better than both Crux and XTandem for window-norm/decoy-1/2, p < 
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0.001; better than Crux and X!Tandem for rank-norm/decoy-2 and rank-norm/decoy-1 

respectively, p < 0.005; worse than Crux for rank-norm/decoy-1, p < 0.01; no significant 

difference from XTandem for rank-norm/decoy-2). It is worth noting that the commercial 

version of Crux (i.e. SEQUEST) was used to originally identify the peptides in this dataset, and 

only validated high-confidence PSMs were retained. Despite this bias in favor of Crux, CSPI 

models show superior performance, particularly for the composite score and window-norm 

scheme. 

 

Table 4. Cross-validation experiment on SO-DR dataset, reporting % of (assumed known) correct identifications, 

correctly retrieved by respective scoring feature; All values are averaged over 2-times 5-fold cross-validation (2649 

test MS/MS spectra per fold; q-value = 0.01) 

 

 

Algorithm 

Decoy 1 

(Reversed SO-DR) 

Decoy 2 

(Reversed Human) 

Rank-norm 
Window-

norm 
Rank-norm Window-norm 

CSPI_Scoreb 26.8 % 39.4 % 17.7 % 26.6 % 

CSPI_Scorey 71.0 % 75.4 % 62.8 % 66.5 % 

CSPI_ScorebyAdded 74.4 % 81.6% 64.7 % 72.8 % 

Crux 77.2 % 62.0 % 

X!Tandem 71.7 % 63.2 % 



 65 

5.2 INDEPENDENT TEST DATASET VALIDATION 

A more reliable evaluation is to train and test on completely different datasets.  

Figure 11 reports the q-value plots for different algorithms compared when the CSPI 

models were trained on SO-DR dataset while tested on the 18Mix1_LCQ and 18Mix1_LTQ 

datasets.  

 

Figure 11. FDR curves; Train on SO-DR dataset, test on: A) 18Mix1_LCQ, Rank-normalization; B) 18Mix1_LCQ, 

Window-normalization; C) 18Mix1_LTQ, Rank-normalization; D) 18Mix1_LTQ, Window-normalization. 
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Here similar trends are observed in terms of relative performance of features based on 

IO-HMM models. Specifically, the composite score CSPI_Score
byAdded

 (red) outperforms the 

individual b- or y-ion models (blue and green, respectively) for both normalization schemes 

except for 18Mix1_LCQ dataset (upper panel) for which y-ion models perform better at lower q-

values.  Comparing rank-norm (left panel) with window-norm (right-panel) scheme, a significant 

performance improvement is seen in both b- and y-ion models, and therefore the composite 

byAdded score, except for y-ions (green) for 18Mix1_LTQ (lower panel) which perform 

comparably for both normalizations. It is noted that the contribution of b-ion models to the 

composite score appears to be limited and needs further investigation and fine-tuning. Both y-ion 

and byAdded models outperform Crux and X!Tandem by a wide margin over an acceptable 

range of q-values (< 0.05) for window-norm scheme on both datasets, and for rank-norm scheme 

on 18Mix1_LTQ dataset. Specifically, at q-value = 0.01, CSPI models can achieve over ~25% 

improvement in the number of estimated correct peptide identifications. 

 

Figure 12. FDR curves; Train on SO-DR dataset, test on: A) Yeast_LTQ, Rank-normalization; B) 

Yeast_LTQ, Window-normalization. 
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In order to test the generalization of results from controlled protein mixture to a real-

world dataset, performance was evaluated on an additional dataset, Yeast_LTQ. This dataset was 

generated from yeast whole-cell lysate and consists of a set of ~ 35K spectra. CSPI models were 

trained on SO-DR dataset, and Figure 12 shows the corresponding q-value plots. Again, a 

significant performance boost is seen in the byAdded models using window-norm scheme, with 

contribution from improvement in both b- and y-ion models as compared with rank-norm 

scheme. Additionally, for the window-norm scheme y-ion and byAdded models significantly 

outperform both X!Tandem and Crux, with ~11% and 22% more estimated correct 

identifications (than X!Tandem, which does better than Crux in this case) at q-value = 0.01, 

respectively. 

With a good choice of features representing the problem at hand, machine learning 

methods have the potential to learn complex patterns even with noisy data like that obtained 

from MS/MS experiments. Incorporating several peptide properties in our models, it has been 

shown how arbitrary features can be easily plugged into and tested with the CSPI framework. 

Although each feature was not evaluated individually, the prototype appears to model y-ion 

intensities well, providing good discrimination between correct and incorrect peptides. The b-ion 

models clearly need additional fine-tuning of input layer features, normalization or both.  

Based on the experience in analyzing these datasets, one reason for inadequate 

performance of b-ion models is the nature of the datasets used. Specifically, for ion-trap data 

from trypsin-digested proteins, y-ions are preferably more abundant in number and intensity than 

b-ions, which, in many cases, are much harder to discriminate from random noise matches. For 

most correctly identified peptides, several fragments from at least one ion-series (b- or y-) are 
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observed. Since this information is lost when each ion-series is modeled separately, it might be 

beneficial to build joint models from b- and y-ion series. 

The above results also suggest that local normalization schemes may be superior to 

global approaches, possibly due the fact that different regions of the m/z range of MS/MS spectra 

show wide variability in both the density as well as intensity of peaks. This is well established in 

the literature, specifically for ion-trap data, where more and abundant peaks are generally 

observed from the middle of the peptides. Although the window-norm procedure is conceptually 

reasonable and achieves good performance, the existence of several other pre-processing 

methods in the literature is acknowledged, for example (Ning et al. 2007; Renard et al. 2009), 

that could be worth investigating within the CSPI framework. 

5.3 SCORE COMBINATION 

As described earlier, multiple features, either from the same or different search algorithms, can 

be combined to achieve greater performance. This experiment evaluates the benefit achieved by 

adding CSPI‟s intensity-based scores on top of other features/scores. Top-ranking PSMs (both 

targets and decoys) were first extracted from Crux results‟ files using in-house python scripts, 

after which CSPI models trained on SO-DR dataset were applied to them. For this experiment, 

random decoy peptide sequences generated by Crux were used instead of those from reversed 

human FASTA. Different sets of features were combined using LogitPercolator and also 

compared with original Percolator applied on Crux results. Since, from previous results, it is 

clear that window-norm is superior to rank-norm scheme, this section evaluates LogitPercolator 

only on window-norm scheme. 
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Figure 13 shows the q-value plots for various combinations of features, from 

18Mix1_LCQ, 18Mix1_LTQ and Yeast_LTQ datasets. As expected, a dramatic increase in 

performance is observed as compared with results in the previous section where a single feature 

was used (up to ~63 % extra estimated correct identifications at q-value=0.01 than the best 

performing individual feature). This corroborates earlier findings on the utility of post-processing 

and score combination approaches (Keller et al. 2002; Higdon et al. 2004; Kall et al. 2007).  

Without CSPI scores, comparable performance was achieved for 18Mix1_LTQ and 

Yeast_LTQ datasets by the baseline LogitPercolator(Crux+) compared to that of the original 

Percolator, which provides confidence in the comparison and interpretation. Further addition of 

CSPI‟s intensity-based features provides up to ~4-8% additional estimated number of correct 

identifications than without them, at q-value=0.01. However it is noted that „delta_CSPI‟ scores 

(i.e. difference in primary CSPI scores between top-ranking and the next best candidate) in 

LogitPercolator(Crux+,IOHMM+) do not always provide significant additional benefit and 

require further experimentation.  
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Figure 13. FDR curves; Train on SO-DR dataset, apply on top-ranking targets/decoys from Crux; LogitPercolator: 

Implementation of Percolator developed in this thesis using Logistic Regression Classifier; Percolator: Original 

Percolator; Crux: features from Crux {XCorr, deltaCn, SpScore}; Crux+: features {Crux, fracMatch (fraction of 

peptide fragments observed), fracExp (fraction of explained spectrum intensity)}; IOHMM: features {Crux+, 

CSPI_Score
b
, CSPI_Score

y
}; IOHMM+: features{IOHMM, delta_CSPI_Score

b
, delta_CSPI_Score

y
}, where delta is 

the difference between scores from top-ranking and the next best peptide (from original crux ranking); A) 

18Mix1_LCQ, Window-normalization; B) 18Mix1_LTQ, Window-normalization; C) Yeast_LTQ, Window-

normalization. 
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5.4 DATABASE SEARCH LOGISTICS  

As discussed earlier, a key feature of shotgun proteomic data is their high-throughput aspect. 

Effective utilization of these complex datasets requires intricate algorithms with good 

performance characteristics, but that typically require significant computation time, the CSPI 

framework being a case in point. As seen above, CSPI can confidently identify more spectra at a 

controlled FDR as compared with popular state-of-the-art methods. However, it takes ~5-8 

seconds for evaluating a spectrum (against the human protein database), and under constrained 

searches (as described in section 4.2), which is at least 2 orders of magnitude more than the 

closest competitor (Crux). Keeping pace with volume and rate of data generation will become 

even more challenging when search constraints are removed or reduced, as will be necessary for 

more thorough analysis. 

 

5.4.1 Indexing Challenge 

One commonly used strategy, also used in CSPI, for faster database search is indexing the 

FASTA database file. The approach works well for constrained database searches (total of ~10 

million peptides in the index, and ~10-20K candidates per spectrum) employed in the current 

implementation and analysis in this thesis, and took (on average) less than a second to retrieve 

candidates per query. However, unconstrained searches can yield a total space of several billion 

peptides, leading to larger index files and increased index generation as well as querying time. A 

potential scalable solution is a distributed index with capability for parallel generation and 

querying (using simple synchronization primitives) which is facilitated by splitting the index into 
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multiple files by mass region (as described earlier) as well as the fact that each spectrum can be 

queried independently of others. Such schemes or variants thereof will be crucial for future 

large-scale proteomics and must be explored. 

5.4.2 Parallelization Challenge 

Although, database search and candidate evaluation time depend upon the size of the MS/MS 

datasets as well as the number of candidates evaluated per spectrum (which in turn depends upon 

the search constraints applied), each spectrum can be evaluated independently of others. The 

CSPI framework takes advantage of this characteristic to parallelize the computational workflow 

using multiprocessing architectures. Figure 14 shows how CSPI scales with addition of processor 

units. Specifically, the constrained searches performed resulted in between 10K and 20K 

candidates to be evaluated per spectrum. 

 

Figure 14. Scalability of the multiprocessing version of CSPI scoring algorithm 
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It is seen that the throughput increases rapidly initially, although not linearly, but 

saturates at about 15-20 processors. Although simpler scoring systems can achieve much higher 

performance gains through parallelization (Xu et al. 2009), the gap can be possibly reduced with 

alternate schemes for task-distribution. 

As described above, the current workflow breaks the tasks at the individual spectrum 

level, which means once a spectrum and its potential candidates are assigned to a child process, 

they are evaluated sequentially within the same process. However, since evaluation of each 

candidate against a spectrum itself requires several steps and can be performed independently of 

all other candidates for all other spectra, there is scope for much further optimization. It is 

important to note that although the entire process of peptide identification is inherently 

parallelizable, optimum task distribution and sharing between processes will need careful 

profiling of processing needs of individual steps and will also depend critically upon such factors 

as the size of the database searched as well as search constraints applied. Further, with greater 

granularity of tasks and number of processes, overhead due to inter-process communication will 

become an important factor to consider (Xu et al. 2009). Automatically adjusting for all these 

dependencies within resource constraints is a non-trivial but interesting problem to investigate. 
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6.0  CONCLUSIONS AND FUTURE WORK 

Scoring and confident identification of peptides and proteins lies at the heart of current mass-

spectrometry-based proteomics. The primary hypothesis of this dissertation was that CSPI 

framework is effective for peptide scoring and identification from tandem mass spectrometry. In 

order to test the hypothesis, CSPI was developed and empirically evaluated on several datasets of 

different complexity.  

(Claim 1) Increased peptide identification performance was demonstrated, in terms of 

number of correct identifications at a fixed (user-defined) FDR as compared with popular state-

of-the-art algorithms (see Sections 5.1 and 5.2). The framework is highly flexible and scalable, 

and can exploit different feature types and representations, as well as choice of component 

functions, in order to learn and represent complex probability distributions.  

(Claim 2) Variable performance characteristics were observed for the two different 

fragment ion-types modeled in CSPI (see Sections 5.1 and 5.2). Particularly, y-ion models 

showed much superior performance than their complementary b-ion models. As was pointed out 

earlier, one reason for this discrepancy is the nature of data from ion-trap mass-spectrometers, 

which strongly favor y-ions. Nevertheless, the b-ions do contribute some additional information 

as was seen in superior performance of the simple composite score (CSPI_Score
byAdded

). 

Utility of CSPI‟s intensity based features was further evidenced by better performance in 

a state-of-the-art score-combination procedure. (Claim 3) It was demonstrated that addition of 
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CSPI scores to other complementary scores and features leads to better discrimination between 

true and false peptide identifications, thus leading to greater number of correctly identified 

peptides at a fixed (low) FDR (see section 5.3). This approach is also a much superior composite 

scoring scheme it appropriately weights the different features based on how much predictive they 

are of the class label. 

Since for most identifiable peptides, several fragment ions are observed from at least one 

of the two ion-series, a possible direction for future work is to construct an additional feature 

from jointly modeling the two observations at a specific fragmentation site. Since these are 

complementary fragments, this will allow modeling the dependencies between their intensity 

distributions. A couple of ideas of simple dependency models are shown in Figure 15. 

A further, more challenging extension can include several other fragment-ion types (like 

those carrying higher charge states, and neutral losses) in the output layer and learning their 

complex dependencies. Modeling fragmentation is fundamental to the shotgun proteomics 

approach. This general methodology can be adapted for modeling, either individually or 

together, ion intensities from other fragmentation modalities than CID, like ETD or ECD, all of 

which have their unique advantages and are sometimes generated as complementary sources of 

information. 

For the models developed in this thesis, the same set of features was used in the input 

layer. It would be worth investigating if different sets of features are relevant for each kind of 

observation sequence being modeled. Additionally, the models developed comprised only one 

instance of a large class where the input features influenced the transition functions alone. A 

more general model can also include their effect on the output distribution function, as well as 

allow alterations in (currently fixed) model topology and component distributions. Training in 
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such rich and expressive model space will require clever new search strategies as well as 

significant domain knowledge, and may become possible in the future as peptide fragmentation 

behavior is understood at a finer level. 

 

Figure 15. Extensions to CSPI model structure used in this thesis; A) Joint b/y-ion models, with yb,t and yy,t 

representing observed b- and y-ion intensities. Conditioned on hidden state qt, yb,t and yy,t are independent; B) Joint 

b/y-ion models, with yb,t and yy,t representing observed b-ion and y-ion intensities, respectively. Here the b-ion 

intensity depends on both the hidden state and the observed y-ion intensity 
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The findings from experiments show the importance of appropriate normalization 

protocol for effective modeling. Local approaches (for ex. the window-norm procedure) seem to 

perform better. One possible argument in support of this observation is that noise level varies 

from one region to another on the m/z (x)-axis. This information is lost in the global rank-based 

approaches, which have been more widely researched and used to date. It is conceivable that 

these two approaches provide complementary pieces of information and that a hybrid strategy 

might be superior to each alone. A related line of research that by far remains unexplored in the 

current domain is the explicit modeling of variability in signal as well as noise intensities in data 

replicated across different laboratories. Although the current models were trained on PSM pairs 

with unique peptide sequences, it is possible to obtain multiple spectra per peptide and to account 

for the variability in peak intensities within the training phase. It would be useful to quantify the 

effect similarity (or differences) in MS/MS spectra on the score assigned to a PSM.  

Confirmation of the robustness and utility of the CSPI‟s intensity-based modeling 

approach was further demonstrated in conjunction with a state-of-the-art score combination 

procedure, LogitPercolator, which appropriately weights and combines several features of match 

quality to boost performance. LogitPercolator provides a dramatic improvement over the simple 

composite score and was shown to significantly enhance performance with the addition of 

CSPI‟s intensity-based features to other features. An immediate extension to this baseline 

version would be to allow cost-sensitive learning as was done in the original Percolator 

algorithm, perhaps after factoring in features like the spectrum quality and signal-to-noise level. 

It is quite easy to add other features into the algorithm. These features generally exhibit strong 

correlations which are currently not exploited and can potentially improve performance if 

modeled appropriately. The PSM scores and other features obtained depend upon how well 
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different peptides fragment. Although this idea was exploited in the CSPI framework, 

conditioning on physicochemical context at the score-combination stage might improve 

performance further and also has the potential to elucidate dependencies and biases in individual 

features in relation to the peptide sequences being evaluated. 

 Finally, much of peptide-centric analyses are utilized in further downstream proteomic 

investigations like protein identification, quantification and differential expression. It would be 

interesting to compare the effects of differences in peptide identification performance in each of 

these analysis stages. However, in order for such comparisons to be complete and practically 

useful, the CSPI framework must first be extended to handle other data characteristics like higher 

precursor peptide charge-states, post-translational modifications and digestion enzymes, all of 

which were excluded from the current research. 
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APPENDIX A 

CSPI TRAINING: EM ALGORITHM 

Let the n
th

 observation sequence pair be represented by dn = (Xn, Yn) = (<xn,1, xn,2,…, xn,Tn>, 

<yn,1, yn,2, …, yn,Tn>), and the corresponding hidden state-sequence by qn=<qn,1 ,qn,2,…,qn,Tn>. 

Then the conditional distribution P(Yn, qn | Xn, Ө), where  Ө  are the model parameters, is given 

by: 

 

Then, for a dataset D of N independently and identically distributed (iid) sequences, the joint 

distribution is given by:  
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When considered a function of the parameters Ө, (A.2) is also known as the complete 

data likelihood (CDL). Taking natural log, we get the log(CDL) as: 

Expectation of the log(CDL) is computed w.r.t. the distribution P(q | D, Ө
k
), where Ө

k
 are the 

parameters in the previous iteration, and can be computed independently for each of the terms A, 

B and C in (A.3). Here „q’ is hidden state transition sequence for all the samples in the dataset D. 
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Similarly we can compute the expectation of the terms „B‟ and „C‟ in (A.3) 
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This completes the E-step, and the Q-function is given by: 

 
 

As described earlier, in the M-step only an increase in the Q-function is required. This can be 

achieved by a conjugate gradient method, and requires computing the partial derivatives of the 

Q-function w.r.t. each of the parameters in the model. These are described next for the functional 

forms used in CSPI framework (Logistic functions for initial state and transition probabilities, 

and Gaussian/Exponential/Beta distributions for the emission probabilities). 

 
 

Taking partial derivatives w.r.t. a specific β: 
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Hence, considering the entire dataset,  

 
 
 

The term QB in the Q-function of E-step is a function of the parameters of the emission 

distributions. For the purpose of demonstration, the following derivations correspond to 

Gaussian Emission distributions, and can be easily extended for other emission distributions. Let 

Z ~ N(μ, σ
2
) be a normally distributed variable. The following results are used for performing the 

M-step: 
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Now,  

 

 

Taking partial derivatives w.r.t. the parameters of the Gaussian emission distribution, and using 

results from (A.15) and (A.16) above, we get, 

 

For the case of Gaussian distribution, we can maximize the parameters (M-step) by equating the 

partial derivative to zero, which gives the following MLE for the mean of the distribution: 

 
 

Similarly, taking the partial derivative w.r.t. the variance parameter and equating to zero, we get 

the MLE for the variance of the distribution:  
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The term QC in the Q-function of the E-step is a function of the parameters of the transition 

probability functions. 

 
 

For the n
th

 sample and tn
th

 position,  

 

Taking partial derivatives w.r.t. a specific weight parameter β of a logistic function, we get:  
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Simplifying each of the terms, we get: 
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APPENDIX B 

CSPI MANUAL 

B.1 DESIGN AND DESCRIPTION OF PYTHON SCRIPTS 

B.1.1 Domain Objects (DO) 

a. DO/spectrumDO.py: Classes for MS/MS spectrum and spectrum peaks. These 

contain data and methods for handling spectrum files, including spectrum pre-

processing steps. 

b. DO/sequenceDO.py: Generic sequence class to store an amino-acid sequence and 

the corresponding FASTA header. 

c. DO/proteinDO.py: Inherits Sequence class, containing protein sequence-specific 

data/methods. 

d. DO/peptideDO.py: Generic peptide class that inherits from the Sequence class. 
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e. DO/candidatePeptideDO.py: Inherits the Peptide class, and contains information 

for a peptide in context of a specific Spectrum, like charge-state. 

f. DO/fragmentDO.py: Generic peptide fragment class. 

g. DO/matchedFragmentDO.py: Inherits Fragment class, and contains information 

for a fragment in context of a specific spectrum, like a Boolean  variable 

“observed/not observed”. 

h. DO/constantsDO.py: Contains data values that remain fixed, for ex. properties of 

amino acids like their masses, hydrophobicity, gas-phase basicity etc. 

B.1.2 Data Access Objects (DAO) 

a. DAO/fastaReader.py: Parser for protein FASTA databases. Given a FASTA file, 

this script is used to read in protein sequences and return Protein objects. 

b. DAO/peptideIndexerDAO.py: Script for creating and querying indexes generated 

from protein FASTA files, for fast retrieval of candidates during Database Search. 

c. DAO/resultsFileParserDAO.py: Contains parsers for extracting relevant data from 

results files of CSPI, Crux and X!Tandem. 
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d. DAO/searchResultRecordDAO.py: Container for a particular peptide-spectrum 

match, used in post-processing of database search results for storing the scores from 

database search as well as FDR/q-value. 

B.1.3 Processing Scripts (BO) 

a. BO/trainingEngineBO.py: Main script for initializing trainer, reading in training 

data and starting the trainer. 

b. BO/searchEngineBO(_mp).py: Main script for performing database search. 

“*_mp*” version utilizes multiprocessing to speed up processing of large MS/MS 

datasets. 

c. BO/ioHmmBO_mp.py: Script containing the details of the EM algorithm as well as 

the scorer class that scores PSMs.  

d. BO/modelFamilyBO_mp.py: Script containing classes for transition and emission 

models used as components in the CSPI framework. Their methods include 

computation of maximum likelihood parameter estimates as well as relevant 

methods for computing probability density/distributions. 

e. BO/psmEngineBO.py: Script for evaluating a PSM, including matching theoretical 

with experimental spectrum, computing input and output layers of CSPI models and 

computing fragmentation statistics (fracMatch and fracExplained) 
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f. BO/fdrAnalysisBO.py: Script for performing fdr analysis on search results from 

various algorithms (CSPI, Crux, X!Tandem) 

B.1.4 Parameters (Params) 

a. Params/applicationParams.py: Contains all the parameters used in training and 

applying CSPI models, as described above. 

B.2 PARAMETERS (TO BE SPECIFIED IN THE SCRIPT 

PARAMS/APPLICATIONPARAMS.PY) 

B.2.1 Training CSPI models 

a. maxNoOfIterations: Maximum number of iterations for GEM training (integer; 

default = 500) 

b. relDiff_dataLogLik_thresh: Relative difference in data log likelihood in order for 

EM to converge (floating point; default = 0.0001) 

c. maxIter: Number of steps in the conjugate gradient used in the M step of the GEM 

algorithm (integer; default = 2) 

d. seed: Floating point seed for random initialization (numeric; default = “None”, in 

which case system clock is used) 
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e. paramEvolutionFile_TP(FP)_b(y): File name storing the concatenated list of 

parameters for each iteration of the GEM algorithm, for true (TP) and Null (FP) 

models for b (or y) fragment ion-types 

f. params_IoHmm_TP(FP)_filename_b(y)ions: parameter filenames for storing the 

final parameters for trained CSPI models 

g. TP(FP)_psmMap_file: Path to the training data files for True (TP) and Null (FP) 

models   

h. spectrumParentDir: Path to the directory containing spectrum directories 

i. spectrumDirName: Name of the directory containing spectrum files 

j. spectrumDir: Path to the directory containing MS/MS spectrum files 

k. modelFamilyDict_True(Null)_b(y): Dictionary storing the model types for 

emission and transition functions 

l. results_parentDir: Parent directory for storing all the outputs to various scripts 

m. trainingResultsDir: Directory for storing parameters and parameter-evolution files 

n. noOfProcs: Number of child processes to create for training and searching (integer). 
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B.2.2 Database search and CSPI Scoring 

a. dbFilename: Protein database file (full path) 

b. MH_Lower: Lower threshold of peptide (+ proton) mass in daltons, i.e. (M+H
+
) 

c. MH_Upper: Upper threshold of peptide (+ proton) mass in daltons, i.e. (M+H
+
) 

d. precursorMassType: Type of mass used to compute peptide mass (Average or 

monoisotopic) (0 or 1; default=1, for Avg) 

e. precursorPepError: Error tolerance to search candidate peptides from database 

(floating point; default=+/- 3 Da) 

f. fragMassType: Type of mass used to compute fragment mass (Average or 

monoisotopic) (0 or 1; default=0, for Mono) 

g. fragmentError: Error tolerance to match peptide fragments with spectrum peaks 

(floating point; default=+/- 0.5 Da) 

h. enzyme:  Enzyme used in Protein digestion (char string; typically “Trypsin”) 

i. cleavageMode: Extent of cleavage enzyme specificity to use for searching 

candidates (0,1 or 2; default=2, i.e. full enzyme specificity) 
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j. maxMissCleavage: number of allowable internal enzyme-specific sites in peptides 

(integer; default=3) 

k. candidateFilterLevel: Size of filtered candidate peptides‟ list to evaluate using 

CSPI models 

l. searchResultsDir: Directory for storing database search results 

m. searchResultsFileName_b(y or byAdded)Model: Filename to store database 

search results 

n. noOfTopRanksToReport: Number of top-ranking candidate peptides to report for 

each spectrum (integer; default=10) 

B.2.3 Protein FASTA Database Indexing 

a. mzBinSize: m/z range to cover per index file (float; default=25 Da). Peptides in the 

mass range (MH_Lower, MH_upper) are considered in database search. Multiple 

index files are generated covering subsequent „mzBinSize‟ Da units. 

b. Index_parentDir: Parent directory where index files are stored 
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B.3 RUNNING THE SCRIPTS 

B.3.1 Protein FASTA Indexing 

Depending upon the task, the following lines of code are added inside 

DAO/peptideIndexerDAO.py, which can then be run as the main script: 

-- Index Generation: 

> writer = PeptideIndexWriter() 

> writer.index_proteins() 

-- Index Query: 

> reader = PeptideIndexReader() 

> reader.search(<queryMH>) 

(where where, „PeptideIndexReader‟ and „PeptideIndexWriter‟ are classes defined in 

DAO/peptideIndexerDAO.py; first line instantiates an object of the class while the 

second line calls a method defined in the class; queryMH = Expected Mass of peptide + 

Proton that is extracted from the spectrum file being evaluated) 

B.3.2 CSPI models’ training 

The following lines of code are added inside BO/trainingEngineBO.py, which can then 

be run as the main script: 

> trainingEngine = pepIoHmm_Train(<Model Type>, <Ion Type>,  

<paramEvolutionFile>, <trainedParamsFile>) 
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>   trainingEngine.start() 

(where, „pepIoHmm_Train‟ is a class defined in BO/trainingEngineBO.py; first line 

instantiates an object of the class while the second line calls a method defined in the 

class; Model Type can be “True” or “False” and Ion Type can be “b” or “y”; arguments 

paramEvolutionFile and trainedParamsFile are stated in the Params/applicationParams.py 

file) 

B.3.3 Database Searching 

The following lines of code are added inside BO/searchEngineBO_mp.py, which can 

then be run as the main script: 

> searchEngine = SearchEngine(<spectrumDir>, <paramsFile_b_TP>, 

<paramsFile_y_TP>, <paramsFile_b_FP>, 

<paramsFIle_y_FP>, <searchResultsFile_bModel>, 

<searchResultsFile_yModel>, 

<searchResultsFile_byAdded>) 

> searchEngine.start(False) 

(where, „SearchEngine‟ is a class defined in BO/searchEngineBO_mp.py; first line 

instantiates an object of the class while the second line calls a method defined in the 

class; all the arguments are specified in the Params/applicationParams.py file) 
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B.4 FILE FORMATS 

B.4.1 Spectrum files 

Currently, CSPI framework supports spectrum files in the SEQUEST „dta‟ format 

B.4.2 Files generated from CSPI Training (Location of the following files is specified in 

Params/applicationParams.py) 

a. paramEvolutionFile 

This file contains the record of CSPI models‟ parameters as they evolve through the 

iterative EM algorithm. Each record consists of concatenated parameter values from 

the Initial-state logistic model, transition logistic models and emission models. The 

number of records in the file is the same as the number of iterations it took for the 

training procedure to converge. 

b. paramsFile 

This file contains the record of trained CSPI models‟ parameters, listed in the 

following order: Initial state logistic function, transition probability logistic 

functions and emission function parameters. For logistic function models, all the 

parameters/weights from one weight vector are concatenated (with comma-

separator) and stored on one line. Hence, for ex., with four hidden states each 
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logistic model contains three weight vectors, each of which are listed on a separate 

row. Similarly, parameters for each emission model are concatenated and put on 

one row. 

B.4.3 Search Results’ files 

CSPI results files are simple ASCII text with the following components: 

a. Header for the following column labels: SpectrumIndex (unique id for a 

spectrum in the dataset), SpectrumName (spectrum filename), LogLR_b 

(CSPI_Score
b
), True_LogLik_b (CSPI_Score

bTrue
), Null_LogLik_b 

(CSPI_Score
bNull

), LogLR_y (CSPI_Score
y
), True_LogLik_y 

(CSPI_Score
yTrue

), Null_LogLik_y (CSPI_Score
yNull

), Score 

(CSPI_Score
byAdded

), MH (Mass of Peptide + proton), FrontChar (Amino acid 

of the Protein just ahead of the peptide sequence), Sequence (Peptide Amino 

Acid Sequence), EndChar (Trailing Amino Acid of the peptide sequence), 

FastaHeader (FASTA header sequence of the parent protein)) 

b. Results Records: containing values for each of the columns (see header) for 

top ‘n’ candidates for each spectrum, where ‘n’ is specified in the 

Params/applicationParams.py script 
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