

CONTEXT-SENSITIVE MARKOV MODELS FOR PEPTIDE SCORING AND

IDENTIFICATION FROM TANDEM MASS SPECTROMETRY

by

Himanshu Grover

B.Tech. Information Technology, IIIT - Allahabad (India), 2004

M.S. Biomedical Informatics, University of Pittsburgh, 2008

Submitted to the Graduate Faculty of

School of Medicine in partial fulfillment

of the requirements for the degree of

Doctor of Philosophy

University of Pittsburgh

2012

 ii

UNIVERSITY OF PITTSBURGH

SCHOOL OF MEDICINE

This dissertation was presented

by

Himanshu Grover

It was defended on

September 28, 2012

and approved by

Shyam Visweswaran, M.D., Ph.D.,

Assistant Professor, Department of Biomedical Informatics, University of Pittsburgh

Garrick Wallstrom, M.S., Ph.D.,

Assistant Professor, Department of Biomedical Informatics, Arizona State University

Christine C. Wu, Ph.D.,

Associate Professor, Department of Cell Biology & Physiology, University of Pittsburgh

 Dissertation Advisor: Vanathi Gopalakrishnan, M.S., Ph.D.,

Associate Professor, Department of Biomedical Informatics, University of Pittsburgh

 iii

Copyright © by Himanshu Grover

2012

 iv

Computational methods for peptide identification via tandem mass spectrometry (MS/MS) lie at

the heart of proteomic characterization of biological samples. Due to the complex nature of

peptide fragmentation process inside mass spectrometers, most extant methods underutilize the

intensity information available in the tandem mass spectrum. Further, high noise content and

variability in MS/MS datasets present significant data analysis challenges. These factors

contribute to loss of identifications, necessitating development of more complex approaches.

This dissertation develops and evaluates a novel probabilistic framework called Context-

Sensitive Peptide Identification (CSPI) for improving peptide scoring and identification from

MS/MS data. Employing Input-Output Hidden Markov Models (IO-HMM), CSPI addresses the

above computational challenges by modeling the effect of peptide physicochemical features

(„context‟) on their observed (normalized) MS/MS spectrum intensities. Flexibility and

scalability of the CSPI framework enables incorporation of many different kinds of features from

the domain into the modeling task. Design choices also include the underlying parameter

representation and allow learning complex probability distributions and dependencies embedded

in the data.

CONTEXT-SENSITIVE MARKOV MODELS FOR PEPTIDE SCORING AND

IDENTIFICATION FROM TANDEM MASS SPECTROMETRY

Himanshu Grover, M.S., PhD

University of Pittsburgh, 2012

 v

Empirical evaluation on multiple datasets of varying sizes and complexity demonstrates

that CSPI‟s intensity-based scores significantly improve peptide identification performance,

identifying up to ~25% more peptides at 1% False Discovery Rate (FDR) as compared with

popular state-of-the-art approaches. It is further shown that a weighted score combination

procedure that includes CSPI scores along with other commonly used scores leads to greater

discrimination between true and false identifications, achieving ~4-8% more correct

identifications at 1% FDR compared with the case without CSPI features.

Superior performance of the CSPI framework has the potential to impact downstream

proteomic investigations (like protein identification, quantification and differential expression)

that utilize results from peptide-level analyses. Being computationally intensive, the design and

implementation of CSPI supports efficient handling of large MS/MS datasets, achieved through

database indexing and parallelization of the computational workflow using multiprocessing

architecture.

 vi

TABLE OF CONTENTS

ACKNOWLEDGEMENTS ... XII

GLOSSARY.. XIV

1.0 INTRODUCTION .. 1

1.1 THE PROBLEM .. 2

1.2 THE APPROACH ... 5

1.2.1 Thesis .. 7

1.3 SIGNIFICANCE .. 7

1.4 DISSERTATION OVERVIEW ... 8

2.0 BACKGROUND .. 10

2.1 PROTEOMIC MASS SPECTROMETRY: FUNDAMENTALS 10

2.2 TANDEM MASS SPECTROMETRY (MS/MS), A.K.A. BOTTOM-UP OR

SHOTGUN PROTEOMICS .. 12

2.3 DATABASE SEARCH .. 16

2.4 MACHINE LEARNING CONCEPTS .. 21

2.4.1 Logistic Regression .. 22

2.4.2 Maximum Likelihood Training .. 23

2.4.3 Input-output Hidden Markov Models (IO-HMMs) 25

2.4.3.1 IO-HMM Training .. 28

 vii

2.4.3.2 Expectation Maximization (in context of IO-HMM) 31

2.5 EVALUATION, SCORE COMBINATION AND POST-PROCESSING OF

DATABASE SEARCH RESULTS ... 35

2.5.1 False Discovery Rate (FDR) and Q-values .. 37

2.5.2 Score Combination, Post-processing.. 39

3.0 CONTEXT-SENSITIVE PEPTIDE IDENTIFICATION FRAMEWORK 41

3.1 INPUT LAYER (<X1X2…XT>)... 42

3.2 OUTPUT LAYER (<Y1Y2…YT>) .. 43

3.3 NORMALIZATION .. 45

3.4 PARAMETER REPRESENTATION ... 46

3.5 TRANSITION FUNCTIONS ... 47

3.6 CSPI TRAINING ... 49

3.7 CSPI INFERENCE .. 50

3.8 SCORE COMBINATION WITH LOGITPERCOLATOR 52

3.9 EFFICIENT PROCESSING OF LARGE MS/MS DATASETS................... 53

3.9.1 Protein Database Indexing .. 54

3.9.2 Parallel implementation using multiprocessing .. 55

4.0 EXPERIMENTS AND EVALUATION METHODS ... 57

4.1 DATASETS .. 57

4.2 PSM PROPERTIES AND DATABASE SEARCH PARAMETERS 59

4.3 PERFORMANCE EVALUATION AND SCORE COMBINATION 60

5.0 EVALUATION OF THE CSPI FRAMEWORK .. 62

5.1 CROSS-VALIDATION EXPERIMENT (SO-DR TRAINING DATASET) 62

 viii

5.2 INDEPENDENT TEST DATASET VALIDATION 65

5.3 SCORE COMBINATION... 68

5.4 DATABASE SEARCH LOGISTICS ... 71

5.4.1 Indexing Challenge .. 71

5.4.2 Parallelization Challenge .. 72

6.0 CONCLUSIONS AND FUTURE WORK ... 74

APPENDIX A .. 79

APPENDIX B .. 89

BIBLIOGRAPHY ... 100

 ix

 LIST OF TABLES

Table 1. Notation and Parameterization for the IO-HMM architecture in Figure 6(B) 29

Table 2. Contextual Features used in the input layer of CSPI models ... 44

Table 3. Characteristics of MS/MS datasets used for comparing algorithms 58

Table 4. Cross-validation experiment on SO-DR dataset, reporting % of (assumed known)

correct identifications, correctly retrieved by respective scoring feature; All values are averaged

over 2-times 5-fold cross-validation (2649 test MS/MS spectra per fold; q-value = 0.01) 64

 x

LIST OF FIGURES

Figure 1. Schematic of components of an MS .. 11

Figure 2. Schematic of Shotgun Proteomics Approach .. 12

Figure 3. (a) Amino acid structure (R: side-chain identifying the amino acid); (b) b- and y-ion

structures (adapted from http://www.weddslist.com/ms/tandem.html) .. 13

Figure 4. Peptide evaluation against MS/MS spectrum .. 14

Figure 5. Schematic for Peptide identification by MS/MS via database searching (adapted from

(Nesvizhskii et al. 2007)) .. 17

Figure 6. A) Classical Hidden Markov Model; B) Input-output Hidden Markov Model............. 26

Figure 7. IO-HMM Structure used in the CSPI Framework. Both b- and y-ion models have the

same structure with yt representing observed b- and y-ion intensities respectively 41

Figure 8. Distribution of observed rank-normalized intensities of b- and y-ions from True and

False/Random PSMs, for SO-DR dataset (See Chapter 4 for dataset description). 47

Figure 9. Distribution of observed rank-normalized intensities of b- and y-ions from True and

False/Random PSMs, for SO-DR dataset (See Chapter 4 for dataset description). 48

Figure 10. Workflow of the multiprocessing version of CSPI scoring framework 56

 xi

Figure 11. FDR curves; Train on SO-DR dataset, test on: A) 18Mix1_LCQ, Rank-normalization;

B) 18Mix1_LCQ, Window-normalization; C) 18Mix1_LTQ, Rank-normalization; D)

18Mix1_LTQ, Window-normalization. .. 65

Figure 12. FDR curves; Train on SO-DR dataset, test on: A) Yeast_LTQ, Rank-normalization;

B) Yeast_LTQ, Window-normalization. .. 66

Figure 13. FDR curves; Train on SO-DR dataset, apply on top-ranking targets/decoys from Crux;

LogitPercolator: Implementation of Percolator developed in this thesis using Logistic Regression

Classifier; Percolator: Original Percolator; Crux: features from Crux {XCorr, deltaCn, SpScore};

Crux+: features {Crux, fracMatch (fraction of peptide fragments observed), fracExp (fraction of

explained spectrum intensity)}; IOHMM: features {Crux+, CSPI_Score
b
, CSPI_Score

y
};

IOHMM+: features{IOHMM, delta_CSPI_Score
b
, delta_CSPI_Score

y
}, where delta is the

difference between scores from top-ranking and the next best peptide (from original crux

ranking); A) 18Mix1_LCQ, Window-normalization; B) 18Mix1_LTQ, Window-normalization;

C) Yeast_LTQ, Window-normalization. .. 70

Figure 14. Scalability of the multiprocessing version of CSPI scoring algorithm 72

Figure 15. Extensions to CSPI model structure used in this thesis; A) Joint b/y-ion models, with

yb,t and yy,t representing observed b- and y-ion intensities. Conditioned on hidden state qt, yb,t and

yy,t are independent; B) Joint b/y-ion models, with yb,t and yy,t representing observed b-ion and y-

ion intensities, respectively. Here the b-ion intensity depends on both the hidden state and the

observed y-ion intensity .. 76

 xii

ACKNOWLEDGEMENTS

First and foremost, I would like to express my deep gratitude to my advisor, Dr. Vanathi

Gopalakrishnan, whose support, guidance and direction taught me a lot and tremendously helped

me in developing my thesis. It wouldn‟t be possible without her utmost patience and constant

encouragement over the long process of conceiving, designing and developing the research. I

would like to express my heartfelt thanks to Dr. Garrick Wallstrom with whom I have had the

good fortune of many long discussions that provided crucial insights into my work. I would like

to thank my thesis committee members, Drs. Shyam Visweswaran and Christine Wu for all their

guidance, time and effort. Their thoughtful feedback and unique perspectives helped me refine

the ideas in this thesis. I am also thankful to Dr. Michael MacCoss from the University of

Washington, with whom I had the opportunity to meet only a couple of times but obtained

valuable inputs during each meeting.

I am grateful to Drs. Mike Becich, Rebecca Crowley and Roger Day for their support and

encouragement on various occasions. I thank Toni Porterfield, Yolanda Dibucci and Charles

Dizard for all the valuable help they have provided me over the years.

 I acknowledge the financial support from the NIH and NIGMS, without which I wouldn‟t

have been able to pursue my doctoral studies.

I thank all my friends in Pittsburgh and elsewhere for enriching my life with wonderful

and memorable moments.

Finally and most importantly, I would like to express my deepest thanks to all my family

members, who are the pillars of my being. I am indebted forever: to my dear parents who have

always believed in me and encouraged me to pursue my dreams. Through their example they

have instilled in me the highest ideals of diligence, integrity and humility, the rewards of which I

reap every day; to my brother Harsh whose passion, indomitable spirit and optimism against all

odds is a constant source of inspiration; to my wife Radhika who has made plenty of sacrifices

 xiii

without ever complaining, and whose loving care and moral support at every step of the way

provided me with all the strength to go on.

 xiv

GLOSSARY

b/y-ions: Predominant fragment ion-types produced when peptides are fragmented using

collision-induced dissociation (CID).

Collision-induced dissociation (CID): A commonly used method for inducing fragmentation of

peptides inside mass-spectrometers by bombarding the gas-phase charged peptides with an inert-

gas, like argon.

CSPI: Context-Sensitive Peptide Identification, a framework based on Input-Output Hidden

Markov Models, for learning peptide fragmentation intensity patterns from tandem mass-

spectrometry data. Context refers to the peptide physicochemical properties, that determine its

fragmentation behavior.

Data Preprocessing: Steps performed to “clean” the data before training or applying the models

to new samples, with the goal to reduce the effects of unknown sources of variation (like sample

handling or during data acquisition) and to aid in learning better models. Some typical examples

include data transformation and normalizations, like square-root or log transform, noise-

filtering etc.

Database Indexing: A technique to store a database in a structured format amenable to fast

search and retrieval. For example, a key-value representation, as in a dictionary, allows storing a

“value” with an associated “key” that can later be used to query the data-structure for instant

retrieval of the stored value.

Database Search Parameters: Parameters used to constrain the search for candidate peptides

from protein databases when evaluating tandem mass spectra. Examples include mass-error

tolerance for peptides and their fragments, allowable post-translational modifications and protein

digestion enzyme specificity of the theoretical peptides searched.

Database Searching: A paradigm for identification of peptides, and hence proteins contained in

samples, using mass-spectrometry technology. Each mass-spectrum is compared against a set of

 xv

potential candidates derived from an appropriate protein database based on the masses of

peptides present in the database, which are then evaluated with a scoring algorithm.

Electrospray Ionization (ESI): A commonly used technique for depositing charge on

macromolecules like proteins and peptides by employing electricity to disperse the liquid

containing analytes into a fine aerosol. The solvent droplets evaporate leaving behind the charge

on the analytes, without fragmenting them. This technique is typically coupled with Liquid

Chromatography, a technique for separating peptides which are then charged and introduced into

the mass spectrometer directly for analysis.

Expectation Maximization: An Iterative algorithm for obtaining the (locally) maximum

likelihood parameter estimates of a statistical model that contains hidden or unobserved

variables.

False Discovery Rate (FDR): A global error control measure that corrects for multiple

comparisons by directly controlling the type-I errors (incorrectly rejected null hypotheses).

FASTA Database: An ASCII text file containing a list of Protein sequences where each

sequence is preceded with a single-line header (identified with the “>” symbol in the beginning)

uniquely identifying and describing the sequence, followed by the lines containing the actual

amino-acid sequence of the protein.

Inference: Application of a trained model to a new sample for the intended purpose, for

example, classification of the sample or enumerating the probability that the new sample

contains similar patterns as the data that were used to train the model.

Input-output Hidden Markov Model (IO-HMM): A sequential machine learning algorithm

(extending classical Hidden Markov Model) that is used to learn patterns in pairs of sequences,

called input and output. The goal is to dynamically map the influence of the input sequence on to

the output sequence.

Logistic Regression: A classical machine learning technique used to predict the probability

distribution of a categorical outcome variable that can take on a finite set of values, for a sample that

is described using a set of observed features (a.k.a. predictor variables).

Machine Learning: A class of techniques, dealing with the design and development algorithms

that learn patterns from empirical data representing a complex phenomenon. The goal is typically

to describe/summarize the data or provide a means for future predictions, forecasting and

decision making in the presence of uncertainty and limited theory.

 xvi

Markov Assumption: This refers to the property of a stochastic process that limits the

dependence of the probability distribution of the current state to the past observations/states. The

„order‟ of the assumption determines how far back in time or space to look. For example, first-

order markov assumption means that the current state of the process depends only on the

immediately preceding state and not the ones before that.

Mass Spectrometry: Analytical tool to determine the chemical compounds present in a sample

by measuring their masses or m/z-ratio based on their flight or motion inside electromagnetic

fields.

Mass-to-charge ratio (m/z): Ratio of mass of an entity to its charge state.

Maximum Likelihood: A method of parameter-estimation of a statistical model, that maximizes

the likelihood, in probabilistic sense, of the training data from the model.

Multiple Comparisons or Testing Problem: Occurs when several statistical hypothesis tests

are considered simultaneously, as a whole. Under such situations, any testing procedure is more

likely to incorrectly reject the null hypothesis by chance and must be accounted for.

Multiprocessing: Use of multiple CPUs or processor cores available on a single machine to

speed up processing in computationally intensive applications, by appropriately splitting the task

and allocating the sub-tasks to individual units.

Peak: A signal detected by the detector unit of the mass-spectrometer, characterized by the m/z

of the entity observed and its abundance.

Peptide: A short sequence of amino-acids, typically ranging in length from 5 to 50 amino acids.

Peptide-Spectrum Match (PSM): A pair of a peptide and an experimental mass-spectrum,

either representing a true peptide or a candidate peptide being evaluated against the spectrum.

PSM Score/feature: A score or a feature that evaluates the quality of the match between a

peptide and a spectrum.

Q-values: FDR equivalent of the standard p-value for an individual hypothesis test, referring to

the minimum FDR at which the given hypothesis test can be called significant.

Tandem Mass Spectrometry: A technique involving two stages of mass-spectrometric analysis,

where the first stage generates a precursor mass-spectrum while the second stage selects a small

number of abundant precursor signals for further fragmentation and analysis.

Tandem Mass-spectrum: A plot showing the masses (or mass-to-charge ratio) of entities

(peptide fragments) on the x-axis vs. their abundance on the y-axis.

 xvii

Target-decoy strategy: An approach to control the false-discovery rate of peptide

identifications in a large-scale experiment. Target database is the actual protein database of

interest, while the decoy is a shuffled or reversed protein sequence database which contains

false/random sequences. Database search against a decoy yields false peptide identifications, by

design, and can be used to determine the null distribution of PSM scores required for controlling

FDR.

Training: The process of learning the optimal parameters of a machine learning model, by

optimizing a certain criterion or loss function.

Training Dataset: A dataset containing empirical examples to train a machine learning model.

 1

1.0 INTRODUCTION

Proteins are among the most important bio-molecules in all living beings, with numerous

physiological and executive roles. They are involved in catalyzing and regulating biochemical

processes that maintain life, in transport of molecules within and across cells, or as structural

building blocks of many cellular components (Eidhammer et al. 2007). The set of expressed

proteins varies extensively with time, the type of tissue or fluid or sub-cellular location, as well

as according to the specific environment a cell finds itself in; such study and characterization

comprises the field of Proteomics (Eidhammer et al. 2007). Rapid advances in this young and

burgeoning field over the last decade are facilitating our understanding of cellular processes at

molecular level as enabled through protein expression and interactions, post-translational

modifications, and particularly their role as biomarkers of clinical conditions like disease (Vitek

2009).

Towards this end, mass-spectrometry technology has played a key role and continues to

provide wealth of information in conjunction with clever experimental designs (Aebersold et al.

2003). Of particular importance is the paradigm of bottom-up or shotgun proteomics, in which

proteins in complex mixtures are first cleaved into smaller peptides which are then analyzed

using mass-spectrometry (Wysocki et al. 2005). One of the cornerstones of this peptide-centric

approach, on which much downstream analysis and interpretation rests, is the process of peptide

identification using the information contained in the mass-spectra generated by these peptides

 2

(Nesvizhskii 2007). This approach offers several advantages like high-throughput nature, greater

sensitivity and specificity of signal detection, as well as greater dynamic range of detection (de

Godoy et al. 2006).

Developments in technology, together with sophisticated computational algorithms to

process and analyze the acquired data, have transformed the shotgun method into the routine

methodology of choice in proteomic investigations. Several large-scale collaborative projects are

currently underway utilizing this approach to characterize the entire proteomic complement of

key organs like liver and brain (HLP www.hlpp.org, HBP http://www.hbpp.org/), or in fluids

like plasma (Anderson et al. 2004). Beyond identification of sample components, this paradigm

is also critical in their characterization, such as protein quantification and identifying post-

translational modifications, as well as sample comparison to characterize relative occurrence,

abundance and/or differential modification across different populations of cells. The eventual

goal of proteomics is to develop such information-rich maps and holds tremendous promise for

clinical applications like early diagnostic tests or discovery of new drug targets for diseases

(Eidhammer et al. 2007).

1.1 THE PROBLEM

Routine shotgun proteomic experiments yield large datasets of peptide tandem mass-spectra

(MS/MS). One primary data-analysis task then is to ascertain the peptide sequence(s) that

generated these spectra, and subsequently infer the parent proteins from the resulting peptides

(Steen et al. 2004). A typical approach to achieve this goal is called Database Searching, and

http://www.hlpp.org/
http://www.hbpp.org/

 3

proceeds via scoring candidate peptides (obtained from a protein sequence database) against

experimental spectra for possibility of a match (Nesvizhskii 2007).

A critical step in scoring involves theoretical modeling of peptide fragmentation behavior

inside mass-spectrometers. The scorer then compares the candidate theoretical spectra with

experimental spectrum to compute agreement. Several scoring algorithms, some heuristic while

others probabilistic, have been developed to achieve this task. These algorithms are routinely

applied to complex proteomic investigations. However, they rely on over-simplified theoretical

fragmentation models and scores that either completely ignore or underutilize the intensity

dimension of MS/MS spectra. In large-scale experiments less than 30 % spectra are confidently

assigned with peptides, and inadequacies of scoring algorithms is a key contributing factor,

among others (Marcotte 2007).

Peptide fragmentation inside mass-spectrometers is a complex process. Although much

effort has been invested into deciphering the rules (Paizs et al. 2005; Hubbard et al. 2010), only

limited qualitative understanding has been achieved which is hard to encode in deterministic

algorithms. Several characteristics of peptide MS/MS spectra complicate their interpretation:

1. High noise content (Ning et al. 2007):

An average peptide has a theoretical spectrum of few tens of most important peaks while

typical real peptide MS/MS spectrum can contain several hundreds of peaks. A large

fraction of these peaks emerge from uncontrollable electrical and/or chemical noise as

well as from unanticipated fragmentation events, all of which can vary from one

experiment/laboratory to another, and also across the mass-range of individual spectra.

Sparse signal events are then interspersed and sometimes embedded in large stretches of

 4

unexplainable noise. Complicating the matters are several spectra in each experiment that

emerge from non-peptide species and must be correctly distinguished.

2. Variability:

Another significant challenge is the widely varying intensity profiles of peaks produced

by peptide fragmentation, which depends partly on the experiment, but also significantly

on the physicochemical properties of the peptide itself (Huang et al. 2008). These profiles

vary not only across different peptides, but also from the same peptide generated in

different labs or experiments, making accurate and formulaic prediction of peak

intensities a challenging task.

3. Low mass accuracy and resolution:

All mass spectrometers have an expected measurement error and an associated limit on

the signal resolution, which must be taken into account when selecting candidates to

match against a spectrum as well as in their scoring. Database searches typically result in

large number of candidate hits per each spectrum, and for many spectra more than a few

candidates can randomly achieve comparably high scores. This leads to many spurious or

chance matches. While the more recent high-resolution and high mass-accuracy

instruments, like the Fourier Transform and Orbitrap spectrometers, reduce the burden of

evaluating too many candidates, these are not much widely available due to huge costs

involved. The benefit may also be offset if database search constraints, like allowable

post-translational modifications, are relaxed to search a larger space of peptides.

Furthermore, in all cases fragmentation spectra are still acquired at lower resolution

posing challenges for accurate identification.

 5

As a result of these factors, the score distributions of true and false peptide identifications

from simple scoring systems overlap significantly, making them hard to differentiate (Keller et

al. 2002); this is particularly true for peptides that don‟t fragment extensively or have specific

sequence-dependent effects (Hubbard et al. 2010). Therefore, a good scoring function is of

primary importance for the accurate evaluation of the quality of matches between spectra and

peptides. Along with proper normalization and transformation of spectra, this requires

application of statistical and machine learning methods that can automatically account for

presence of noise as well as learn complex intensity patterns from data. This will lead to

improved peptide identification accuracy as well as downstream interpretation from large-scale

experiments, which strongly depends on the confidently identified peptides.

1.2 THE APPROACH

This thesis explores novel computational approaches to address some of the above challenges

and the unique aspects of MS/MS data. Specifically, probabilistic models of fragmentation

behavior of peptides are developed, taking into account appropriate contextual information from

peptide amino-acid sequence, as well as spectrum information. The overall goal is to develop

algorithms that perform well across a wide variety of datasets and that are easily extensible to

rapidly developing technology and new experimental protocols.

With accumulation and ready availability of large amount of data from both controlled

and real-world experiments in proteomic repositories, automated machine learning algorithms

are well suited for this problem. This offers a unique opportunity to understand the data produced

from these experiments and build models that automatically capture the underlying variability,

 6

which is a major issue in mass-spectrometry based proteomics. Several recent studies have tried

to learn peptide fragmentation behavior using automated methods and have reported improved

identification performance as well as discovery of previously unknown fragmentation rules

(Elias et al. 2004; Klammer et al. 2008). Algorithms in this thesis build upon these studies and

attempt to effectively learn peptide fragmentation patterns, both the presence/absence of specific

peaks as well as their intensity distribution, using Markovian models, thus yielding a robust

scoring system.

Particularly, this work develops a probabilistic framework called “Context-sensitive

Peptide Identification” (CSPI) that uses Input-output Hidden Markov Models (IO-HMM) to

capture the influence of peptide physicochemical properties on their observed MS/MS spectra

(Bengio et al. 1995). These models have been previously successfully applied to several

sequential data-mining tasks, including financial data analysis (Bengio et al. 2001), music

processing (Jean-Fran\ et al. 2009), and gene regulation (Ernst et al. 2007). CSPI is a scalable

and flexible framework with several modeling choices to learn complex patterns embedded in

MS/MS data. This offers advantages as compared to previous attempts on modeling

fragmentation spectra, which had limited flexibility. Several local and global properties of

peptides and their fragment ions, referred to as „context’ in this thesis, are used to model their

effect on fragmentation behavior. In order to reduce noise and make spectra comparable across

experiments, several preprocessing steps are performed. Finally, a state-of-the-art post-processor

is implemented that combines several scores and features of peptide-spectrum match (PSM)

quality to distinguish true from false identifications, while controlling for false discovery rate

(FDR) at a user-defined level.

 7

1.2.1 Thesis

The central thesis of this dissertation is that the CSPI framework is effective for peptide scoring

and identification from tandem mass spectrometry.

Based on the experiments performed on several datasets of varying complexity and sizes,

from controlled as well as real-world experiments, the following specific claims are made:

Claim 1: CSPI statistically significantly improves peptide identification performance at a

user-defined FDR compared with the popular state-of-the-art approaches.

Claim 2: Gains in CSPI performance depend strongly upon the fragment ion-types being

modeled as well as data normalization protocol used. For the ion-trap data used in this research,

y-ions and local normalization scheme show good performance characteristics

Claim 3: CSPI‟s intensity-based scores combined with other features commonly used for

quantifying peptide-spectrum match quality leads to greater discrimination between true and

false peptide identifications.

1.3 SIGNIFICANCE

To the best of my knowledge, this is the first attempt to apply IO-HMMs to score peptide-

spectrum matches (PSMs). Since peptide scoring lies at the heart of shotgun proteomics

approach, a good scoring system with even slightly better performance can make a significant

difference in the downstream interpretation of results in large-scale studies. This necessarily

involves effective utilization of the information contained in the spectrum and being able to

differentiate true from false identifications in the presence of noise and variation. A key

 8

deliverable of this work is the new scoring framework that models the fragmentation behavior

taking into account the context of the peptide sequence (both global and local) as well as

observed spectral features, thus providing a robust scoring system. Being highly flexible and

scalable, it is easy to extend these models with additional features/context (as was demonstrated

by exploiting several design choices), thus making them attractive to explore. The immediate

impact is seen on the peptide identification accuracies and improved coverage from large-scale

MS/MS experiments.

The CSPI framework can be used with different approaches to peptide identification

other than Database searching. The methods are very general and can be used for learning

fragmentation patterns under different experimental conditions, such as for example from a

different spectrometer or a different technique of fragmenting peptides, like Electron Transfer

Dissociation (ETD) (Syka et al. 2004).

The implementation of the framework and all evaluation experiments in this dissertation

were conducted in the Python programming language (www.python.org), and are made

available. For efficient handling of large MS/MS datasets, a multiprocessing version of database

search was also developed and is made available. In addition, a simple (and basic) spectrum

viewer is provided in order to visualize the effects of different preprocessing steps.

1.4 DISSERTATION OVERVIEW

The rest of the document is organized as follows. Chapter 2 provides background information on

the peptide-centric mass-spectrometry analysis pipeline including a review on technology,

experimental protocol, and current state-of-the-art algorithms. Also discussed are the analytical

http://www.python.org/

 9

and machine-learning methods utilized in this dissertation to address different problems. Chapter

3 describes the CSPI framework in details along with the evaluation protocol used to compare

with the state-of-the-art approaches to peptide identification. Chapter 4 discusses the experiments

and evaluation methods including description of datasets used in the thesis. Results from

evaluation of the CSPI framework are presented in Chapter 5. Chapter 6 concludes with a

discussion on open research questions, limitations and potential future developments of the

methods presented here.

 10

2.0 BACKGROUND

In this chapter I provide the background material on the techniques relevant to the thesis,

beginning with a section on mass-spectrometry (MS) technology and its application to peptide

identification via tandem mass spectrometry (MS/MS). Next, I discuss the most popular and

successful approach to peptide identification called Database Searching, a sampling of the

current state-of-the-art algorithms along with challenges and motivation for my own work. Final

sections describe the statistical and machine learning concepts used and developed herein.

2.1 PROTEOMIC MASS SPECTROMETRY: FUNDAMENTALS

Mass-spectrometry (MS) is an analytical technology that has been around for several decades to

identify unknown compounds in a sample by measuring their mass or more precisely mass-to-

charge ratios (m/z). Figure 1 shows a schematic of the key components involved and the

fundamental principle at work. The ionization source deposits charge (protons or electrons) on

the sample constituents, which are then transformed into gas phase and introduced into the mass-

analyzer unit. Mass-analyzers are of several kinds, but essentially they are all fitted with static or

dynamic electromagnetic fields that spatially segregate the ionized components based on their

mass and charge status. Finally, as the ions hit the detector unit, they are registered as peaks in a

mass-spectrum that has on the horizontal axis the m/z ratio of the ion, and on the vertical axis the

 11

number of times the ion was detected, indicative of its relative abundance. Mass information for

each component can be derived only if its charge-status is known.

Figure 1. Schematic of components of an MS

Application of MS to large and thermally unstable biomolecules, particularly peptides

and proteins, is a relatively recent development. This was made possible largely by development

of “soft” ionization techniques like Matrix-assisted Laser Desorption Ionization (MALDI) and

Electrospray Ionization (ESI) that can generate stable gas-phase ions from these large and polar

molecules, using only minute sample quantity (Aebersold et al. 2001; Aebersold et al. 2003). In

conjunction with innovative experimental protocols and instrumentation design, robust data

analytics enable comprehensive analysis of simple as well as complex protein mixtures at a

global level, including their expression, interactions and post-translational modifications in a

high-throughput fashion (Mann et al. 2001; Vitek 2009). As a result, among several technologies

available for proteomic investigations, MS-based tools currently play a central role to address a

diverse range of research questions.

For simple mixtures of small analytes, information obtained from MS can be sufficient to

determine the constituents along with their molecular formulae, with high sensitivity, selectivity

 12

and little time. For large intact-proteins however, which can be several kilo-daltons in size, this

strategy of structure determination can be rather challenging due to several factors like large

number of possible charge states and hence multiplicity of spectrum peaks, complex isotope

distributions and several possible locations for unknown post-translational modifications which

can shift the m/z of proteins by an unknown amount. This renders exact identification and

sequencing (including localization of PTMs) of proteins difficult (Steen et al. 2004). As a result

of the aforementioned challenges and for direct sequence determination and related applications,

shotgun proteomic methodology is more popular and versatile, involving two stages of mass-

spectrometric analysis of constituents, accordingly known as tandem mass-spectrometry.

2.2 TANDEM MASS SPECTROMETRY (MS/MS), A.K.A. BOTTOM-UP OR

SHOTGUN PROTEOMICS

Figure 2. Schematic of Shotgun Proteomics Approach

Typically, shotgun or MS/MS experiments begin with enzymatic digestion of a protein mixture

into a mixture of peptides using an enzyme of known specificity, like trypsin (which cleaves

 13

each protein at the C-terminus of Lys and Arg residues), chymotrypsin or elastase. This is

followed by one, or two stages of separation of peptide mixtures by Liquid Chromatography

(LC), and ionization, after which the eluting charged peptides are analyzed via MS/MS (Figure

2). State-of-the-art hybrid systems are fully automated and once the sample has been loaded, they

can perform LC followed by MS/MS with minimal human intervention.

Figure 3. (a) Amino acid structure (R: side-chain identifying the amino acid); (b) b- and y-ion structures

(adapted from http://www.weddslist.com/ms/tandem.html)

Mass-spectrometers continuously switch (alternate) between two different scanning

modes: in the MS mode the masses (or m/z) of the intact peptides eluting out of the LC column

at that instant are measured, while in the subsequent MS/MS scans, few of most abundant

peptides (usually three to five) are selected and isolated for fragmentation, generating a MS/MS

spectrum for each (Mann et al. 2001). One popular fragmentation protocol is called low-energy

Collision-induced dissociation (CID) whereby charged peptides are bombarded with inert gas

molecules (like argon) during their flight. This breaks the charged peptide molecule,

predominantly at an amide bond, yielding charged fragments (predominantly b- and y-ions

(Roepstorff et al. 1984); see Figure 3). Other fragmentation methods include Electron-capture

http://www.weddslist.com/ms/tandem.html

 14

Dissociation (ECD), Electron-transfer Dissociation (ETD) and High-energy Collisional

Dissociation (HCD).

 Peptides are most commonly electrospray-ionized which deposits a charge of +1 to +3

(most commonly). For doubly-charged peptides, the resulting fragments usually carry a single

charge, while longer peptides which tend to carry higher charges yield higher-charged fragments

too. In addition, these fragments may undergo secondary fragmentations and/or loose further

neutral molecules like H2O or NH3.

Figure 4. Peptide evaluation against MS/MS spectrum

The resulting fragments are separated in the mass-analyzer and registered as peaks at the

appropriate m/z value on the horizontal axis (as described previously) in a fragment-ion

spectrum or MS/MS spectrum. The height of the peak represents the relative intensity of the

corresponding fragment, and is indicative of the amount of associated cleavage among numerous

 15

molecules of the same peptide in the spectrometer. This provides the fundamental data point (an

MS/MS spectrum) to be analyzed. A representative (hypothetical) example is shown in Figure 4,

with peaks of an experimental spectrum annotated with respective fragment-ion labels of a

peptide that generated the spectrum. A typical lab can generate many thousands of such spectra

every day, and the goal is to assign peptides to these spectra, followed by relating the peptides

back to the parent proteins. This entire protocol is referred to as „Shotgun Proteomics‟, in

analogy with shotgun genomics (Marcotte 2007).

As described above, and in an ideal situation, the fragment ions from a peptide form a

ladder of peaks, with subsequent m/z values separated by mass of some amino acid and the

reconstruction of the peptide sequence is only a matter of identifying this contiguous ladder, a

rather trivial computational problem even for large-scale analyses. However, real-world MS/MS

spectra come with several complications, most predominant being, “Lots of Noise Peaks” (75%

peaks are noise (Ning et al. 2007)), “poorly fragmenting peptides”, “incomplete sequence of

fragments” and “Unknown fragmentation events/pathways”. In addition, a large fraction of

spectra are either of poor quality or from non-peptide species. These complications make

confident assignment of peptides a challenging task. Several approaches to interpreting MS/MS

spectra have been developed, which include: 1. Database searching; 2. DeNovo sequencing; 3.

Sequence Tags (Steen et al. 2004). All these approaches differ in the way they search the peptide

space for each spectrum. The one thing all have in common is a scoring function to evaluate

candidate peptides against a spectrum, and lies at the heart of peptide identification algorithms.

Of these, database searching is the most common and successful, and is the focus of this work.

However, the scoring systems are in principle generic and applicable to DeNovo and Sequence

Tag-based approaches as well.

 16

2.3 DATABASE SEARCH

Given a MS/MS spectrum that is experimentally observed, the basic procedure is to search a

database of known proteins for candidate peptides, based on the putative peptide‟s expected m/z,

its allowed PTMs and the cleavage enzyme‟s specificity. Due to the low resolution of commonly

used ion-trap tandem mass spectrometers, the experimental mass of putative peptides cannot be

determined accurately and may vary slightly from the theoretical true mass calculated from the

amino acid sequence. Thus a user-specified mass-tolerance parameter (usually a +/- 3 Da

window across the true mass) is applied during the search for candidate peptides, and typically

several candidates are returned within the applied mass-window, especially for large organisms

or for unconstrained searches. From the known rules of fragmentation, a theoretical spectrum is

generated for each of the candidate peptides, which are then scored and ranked based on some

form of “agreement” between the theoretical and the experimental spectra. Finally the top ranked

peptide is assigned to the spectrum, along with a measure indicating confidence in the

assignment (such as the expectation-value, p-value or fixed false-discovery rate, FDR) (see

Figure 5).

Such “shared-peak-count” approach was pioneered by Eng et al. in the Sequest algorithm, where

agreement was measured with a “cross-correlation” based score (Eng et al. 1994). Reliability of

Sequest scores has been evaluated in many studies and the scoring function has been refined over

the years (Klammer AA 2009). Mascot, another peptide identification algorithm, is based on a

 17

probabilistic scoring (MOWSE), which uses distributions of size of peptide fragments with

respect to the size of peptides in the searched database. Peptide assignments are associated with a

p-value to differentiate from random matches (Perkins et al. 1999). X!Tandem is a popular open-

source algorithm that uses a preliminary intensity-based score (hyperscore) which simply sums

the intensities of all observed b and y-ions rather than modeling sequence specific fragmentation

effects (Craig et al. 2004). Statistical analysis on hyperscore is used to compute an E-value,

which summarizes the significance of the match. It also optionally allows a two-phase search

where the 1
st
 pass can perform fast, constrained searches (for ex. with no PTMs) while the 2

nd

pass performs a more elaborate search (for ex. with PTMs and relaxed enzyme specificity) but

only on the proteins shortlisted from the 1
st
 pass.

Figure 5. Schematic for Peptide identification by MS/MS via database searching (adapted from (Nesvizhskii et al.

2007))

 18

Thereafter, a host of other algorithms have been developed on similar theme with slightly

modified search protocol or features used in the scoring system (Kapp et al. 2005; Kapp et al.

2007). These algorithms are routinely applied to complex proteomic investigations. However,

despite their popularity and success in several applications, they all have limitations. In large-

scale experiments less than 30 % spectra are confidently assigned with peptides, and

inadequacies of scoring algorithms is a key contributing factor, among others (Marcotte 2007).

There is a significant overlap in the score distributions from false and true identifications,

which is due to extremely noisy nature of MS/MS data. In order to control false identifications

and missed true identifications, most of these algorithms are supplemented with post-processing

and statistical validation of scores of top-ranking PSMs (See the section on Evaluation, later),

which essentially provides a score threshold above which an identification is „considered‟

correct. Attempts have also been made to improve identification confidence by combining scores

from more than one database search algorithm (Searle et al. 2008).

In addition to the obvious sources of error such as the existence of novel peptides (that

are either not present in the database or contain an unknown PTM), or incorrect charge-state

assignment to peptides, incorrect peptide assignment to spectra also occurs due to inadequacies

resulting from using over-simplified fragmentation models (Ma 2010). Essentially, most popular

scoring algorithms rely on models and scores/features that either completely ignore or

underutilize the intensity dimension of MS/MS spectra, where the effect of fragmentation

chemistry on peptide fragmentation behavior is responsible for different heights of peaks in an

observed spectrum. Instead, a naïve theoretical spectrum (equal intensities for various fragments,

or some similar variant) for each candidate peptide is used for comparison with the experimental

spectrum. Similarity based on such comparison is understandably prone to error.

 19

As discussed in several recent studies, intensity patterns have been shown to be

reproducible under similar experimental conditions, and hence theoretically predictable, at least

for certain key amino acid residues like enhanced N-terminal cleavage at Proline (Vaisar et al.

1996; Breci et al. 2003). Influence of presence, as well as positions in the peptide chain, of basic

residues like Arginine, Lysine and Histidine, and of acidic residues like Aspartic and Glutamic

acids, have also been studied (Kapp et al. 2003; Tabb et al. 2004; Tsaprailis et al. 2004; Huang et

al. 2005). In addition to computational approaches from large datasets of PSMs, much research

has also been done to enhance the understanding of fundamental biochemical principles of

peptide fragmentation in a tandem mass spectrometer (Paizs et al. 2005). Particularly important

is the “Mobile Proton Theory” which associates the fragmentation efficiency of a peptide with

the mobility of the added charge along the peptide chain, and confirms the influence of

physicochemical content of peptides on their observed fragmentation patterns (Wysocki et al.

2000; Huang et al. 2005). In light of these developments, attempts are being made to develop the

next generation of scoring systems, which try to capture the influence of these physicochemical

properties on the occurrence and intensity patterns of different fragment ion-types.

For example, Elias et. al. used probabilistic decision trees (PDT) (Jensen et al. 2007)

which represented peptide fragments as a set of 63 features including fragment ion-type, length

of peptide and fragment, gas-phase basicity, hydrophobicity and helicity of flanking amino acids

and charge-state among others (Elias et al. 2004; Gibbons et al. 2004). The models were trained

using a large set of high-confidence PSMs (assigned using Sequest) for learning the (discretized)

intensity distributions for different combinations of the feature values. The learning algorithm

automatically picked up the most significant features to explain the intensity distributions, and

only few out of the list of 63 were actually utilized. Their likelihood ratio scores, when used in

 20

conjunction with Sequest scores were shown to reduce peptide identification error rate

significantly. Zhou et. al. used similar properties with Bayesian Artificial neural network (Bishop

1996) for predicting intensities of the commonly observed b- and y-ions and showed that

additional features (than those utilized by PDT) were important as well for predicting the peak

intensities (Zhou et al. 2008). Although a significant advance, these algorithms assume

independence of fragments and ignore any correlations that might exist in series of observed ion

intensities.

Klammer et. al. used a Dynamic Bayesian network (DBN) (Murphy 2002) to model the

intensities of different fragment ion-types, individually as well as in pairs, and utilized a smaller

set of features like flanking amino-acids, position of cleavage in the peptide chain and fragment-

ion detectability (Klammer et al. 2008). Normalized ranks of fragment intensities were

represented as a mixture of Gaussians, the parameters of which were conditioned on the

physicochemical properties. Likelihood ratio scores were computed from all the models

(fragment and fragment-pairs) and were then fed as features into a support-vector machine

(SVM) (Cortes et al. 1995; Vapnik 1998) to discriminate true from false identifications. Along

with superior identification performance, their probabilistic models were also able to discover

some new fragmentation patterns, establishing the significance of their approach. Khatun et. al.

have used a complex Hidden Markov Model (HMM) (Rabiner 1989) to model intensity

dependence on fragment ion types and their mass distributions, as well as on flanking amino

acids. Viterbi algorithm was used to automatically determine whether a peak is a noise or a true

fragment ion (Khatun et al. 2008).

As is evident from all of the above studies, several properties at peptide and spectrum

level are utilized by different algorithms for assigning peptides to MS/MS spectra. Their

 21

complex interactions are either heuristically determined or learned automatically from large

datasets of validated high-confidence PSMs and utilized in scoring systems. Nevertheless, the

performance is still far from optimal in terms of utilization of the large volumes of data

generated and a large fraction of spectra remain unconfidently assigned with peptides. Older

algorithms like Sequest, Mascot and X!Tandem are quite mature and several studies have

performed evaluation and comparison on different datasets demonstrating their similarities and

differences (Kapp et al. 2005). They still are the most predominant algorithms in use and a recent

study highlighted that more than 90% of investigations use some combination of them to analyze

their datasets (Kandasamy et al. 2009). The more recent intensity-based models are still in their

infancy and are being developed and refined. These models are powered by automated analyses

and model building from large datasets of previously identified spectra, as evidenced by the

above sampling of recent algorithmic development in this domain. Since the prime focus of this

thesis is to utilize machine learning (ML) methods to model complex peptide fragmentation-

intensity patterns from MS/MS data, in the next few sections I discuss the relevant fundamental

concepts in ML that were used in developing the CSPI framework.

2.4 MACHINE LEARNING CONCEPTS

Recent surge of technology and experimental protocol in the biomedical domain has radically

transformed the field into a quantitative science where large amount of data are routinely utilized

to discover or test hypotheses of interest. Towards this end automated Statistical and Machine

Learning (ML) methods have become a standard tool in a researcher‟s toolbox to deal with and

build from these data computer-based models of some partially or completely observable

 22

phenomenon. These methods are particularly suitable for complex domains where little prior

knowledge is available to develop deterministic mathematical models. However, with certain

assumptions models with practical utility can still be constructed using previously observed data.

The same is true for the field of Computational Proteomics too, where now there exist several

huge data repositories that store raw as well as annotated MS/MS data from simple to complex

experiments (Craig et al. 2004; Martens et al. 2005; Desiere et al. 2006).

ML typically involves the steps of identification of the learning task, collection of prior

experience (in the form of training examples) and a measure to evaluate the performance of the

learner. Some of the end goals include using the models for prediction and forecasting,

classification, explanation or grouping of entities involved, and each can usually be put in the

form of a well-defined objective function that must be optimized, such as the overall cost of

making mistakes (Bishop 2007).

2.4.1 Logistic Regression

Logistic regression (Hosmer et al. 2000) is a classical supervised statistical learning algorithm

that is used to predict the probability distribution of a discrete outcome variable Y (i.e., Y takes

on a value from a finite set, like {0, 1} in the case of binary classification problems) based on

observed values of one or more predictor variables X = <X1, X2, …, Xn>, where each Xi could be

discrete or continuous, i.e. P(Y | X). For example, in a medical diagnosis problem, X represents a

bunch of symptoms that a patient presents with, while Y is the unknown but desired disease

status (healthy or sick) to be predicted. In order to learn such a mapping or classifier function, a

set of training examples of the form {(Y, X)i; i=1,2,3,…,N} are used with known values of

covariates Xi and corresponding class labels Yi. The learning task then consists in selecting the

 23

functional form of the classifier, a method for training the parameters of the function, and a

performance measure. Logistic Regression assumes a parametric form for the distribution

P(Y|X), which for binary Y is mathematically represented (in log-odds formulation) as:

In the case that Y may take more than two possible values, the model is called

„multinomial logistic regression‟. Suppose Y can take on „k‟ possible values from the set {0, 1,

2, …, k-1}, the log-odds form is represented as:

Multinomial logit model is equivalent to (k-1) linear (on log-odds scale) expressions for

representing the distribution of „k‟ possible values of Y. In binary as well as multinomial case,

the odds are computed with respect to a base class, which in the present case is Y=0. The models

in the above equations can be interpreted as follows: “If xi increases by one unit, log-odds for the

outcome class (Y=j) w.r.t. base class changes by βij units”. Different values of parameters control

the decision boundary learned for classifying the samples into individual classes.

2.4.2 Maximum Likelihood Training

The parameters of a statistical model can be trained using Maximum-Likelihood Estimation

(MLE) approach (Casella G 2001). As the name suggests, MLE produces parameter estimates,

) X, | 1=P(Y=p ,parameters theare =}{ where

)1(*=)
p-1

p
ln(= odds-log

i

1

0









n

i

ii X

















1

1

0

j

th

ij

1

0

0

j

1 =),|0(p and

) X, | j=P(Y=p class,j for the parameters theare =}{ where

)2(1-k ..., 3, 2, 1,=j,*=)
p

p
ln(= odds-log

k

j

j

j

n

i

iijj

pXYP

X





 24


MLE

, that correspond to the probability distribution that generates the observed data with the

greatest likelihood.

Suppose the observed Data D = {di; i=1, 2,…, N} consists of N independent and

identically distributed (i.i.d.) observations from a probability density function with an assumed

functional form fΘ, where Θ are the parameters of the model. The first step in MLE is to write

the joint distribution of D:

When the data samples are observed and the parameters are unknown, then (3) above is

called the Likelihood function L(|D), and is a function of the parameters Θ. The goal is then to

maximize L(|D). In practice, it is much more convenient to work with the (natural) log

transformation of L(|D), called the Log Likelihood Function, l(|D). The purpose of using log-

transformation is to simplify the computation by converting products to summations; this doesn‟t

affect the final outcome because log function is monotonically increasing. The maximum

likelihood parameters‟ estimates are then given by:

For Logistic Regression, one way to estimate parameters through MLE is to maximize

the conditional data likelihood or equivalently its log-transformation, i.e. the probability of the

observed Y conditioned on covariates X. Mathematically, this can be represented as:

)3()|()|(
1





N

i

idfDp

)4()|(maxarg

))|(ln(maxarg

)|(maxargˆ

1














N

i

i

MLE

dp

DL

Dl









 25

The expression P(Yi | Xi, θ) can be easily obtained from log-odds formulation of Logistic

regression in equation 1 and equation 2 above. Since there is no closed form solution for this

expression, one must resort to iterative numerical methods based on gradient ascent, like

Newton-Raphson.

2.4.3 Input-output Hidden Markov Models (IO-HMMs)

Classic Hidden Markov Models (HMM) have been successfully applied to many sequential data-

mining problems in biology and elsewhere that have to deal with data containing sequential

structure, like those involving gene and protein sequences (Rabiner 1989; Durbin R 1999). Some

representative examples include “Gene-prediction” (Henderson J 1997) and “Protein secondary

structure prediction” (Karplus K 1999). Learning and inference from such models incorporates

the sequential dependencies that are characteristic of such data. They derive their strength and

flexibility from the hidden-state representation of „past context‟, while restricting direct long-

range interactions using Markov assumption. In the discussion that follows, a generic sequence is

denoted as <x1x2…,xt…xT>, where „t‟ refers to the location within the sequences being modeled

while „T‟ is the total length of the sequence. The same length „T‟ is used for all sequences for

notational convenience.

HMMs (Figure 6A) consist of an observation or emission sequence y1y2…yT, and

represent the joint conditional probability distribution P(y1y2…yT| Θ), where Θ are the model

parameters. An intermediate hidden layer (unobserved) <q1q2…qt…qT> facilitates modeling

)5()),|(ln((maxargˆ

1

Re 



N

i

ii

MLE

gressionLogistic XYP 


 26

sequential dependencies. For example, in the problem of identifying protein-coding regions in a

nucleotide sequence, the observation sequence can be the nucleotide sequence while the hidden

states may represent the possible group labels (intronic region vs. exonic region). The goal would

then be to compute the „most likely‟ hidden-state sequence providing the desired group labels to

individual nucleotides in the sequence. Mathematically, HMMs are represented as the

parameters‟ tuple Θ = (π, A, B) where:

 π : Initial state probability distribution, P(q1)

 A : Transition probability distribution matrix, P(qt | qt-1)

 B : Emission/observation distribution, P(yt | qt)

Figure 6. A) Classical Hidden Markov Model; B) Input-output Hidden Markov Model

The underlying assumptions in HMMs are: first, the presence of a hidden state-space that

can correspond to the different (observation) data generating processes and a first-order markov

 27

assumption, which states that the probability distribution of current state is dependent only on the

preceding state.

IO-HMMs are an extension of HMMs and are used to stochastically model sequence

pairs rather than individual sequences (Bengio et al. 1995). So, in addition to an observation

(output) sequence, there is another input sequence (also observed). The graphical structure of a

basic IO-HMMs is shown in Figure 6B. As can be seen, IO-HMMs contain extra nodes (than

HMMs) for the input sequence <x1, x2, …, xT>, which can probabilistically influence the output

layer and/or the hidden states, represented as <y1, y2, …, yT> and <q1, q2, …, qT> respectively.

They represent the joint conditional probability distribution P(y1y2…yT| x1x2…xT; Θ), where „Θ‟

are the model parameters.

Similar to HMM, an intermediate hidden layer <q1q2…qt…qT> facilitates modeling

sequential dependencies as complex probability distributions. However, the additional

conditioning on the input layer makes the transition and/or emission probability distributions

potentially non-stationary in location. This means that unlike HMM, instead of a transition

matrix (or emission vector) of probabilities that remains fixed throughout the hidden markov

chain, there is now a probabilistic function that takes the context (input features xt) available at

the specific location „t‟ under consideration, thus facilitating dynamic mapping of input-to-output

sequences. Both xt and yt can be uni-variate or multi-variate, discrete or continuous, whereas the

hidden states, qt, are typically discrete. Additionally, the input sequence can be constructed with

arbitrary features (from the domain) that may or may not overlap in location, allowing rich

contextual information at local (specific location) as well as global (sequence) level to be

incorporated in the sequence mapping tasks. The goal, then, is to learn the sequential

 28

dependencies between the input and the output. IO-HMMs have been successfully applied to

several challenging sequential data-mining problems (Bengio et al. 2001; Ernst et al. 2007).

The state transition probabilities qt-1  qt, and emissions yt, conditioned on the input

layer x1x2…xT, can be represented by arbitrary probabilistic functions, as below:

P(qt | qt-1, xt) = f(qt-1, xt) (6)

P(yt | qt, xt) = g(qt, xt); (7)

where „xt„ is the input or context at location t, „yt„ is the output or emission from the current

hidden state, „f‟ and „g‟ are any linear or non-linear functions with valid probabilistic outputs.

In practice, there is one transition function for each hidden state, to compute the

probability distribution of state at current location (qt) given the state at previous location (qt-1),

i.e. P(qt | qt-1, xt). Likewise, there is one emission function for every hidden state, to compute the

probability distribution of the emission/observation at the current location, given the state at

current location, i.e. P(yt | qt, xt). The parameterization for the architecture shown in Figure 6(B)

is given in Table 1 below.

2.4.3.1 IO-HMM Training

The structure of the IO-HMM model is fixed apriori, in terms of the input and output layer

representation as well as the number of hidden states, and should be reflective of the domain

being modeled. Training, then, consists of estimating the parameters of the model structure from

a training dataset, typically using MLE approach. Depending on the domain being modeled, the

training dataset can be one input-output pair of very long sequences, or many such pairs of short

sequences. The work in this thesis deals with the latter situation, but the methodology is trivially

modified to the former case as well. MLE parameter estimation of IO-HMM models is a little

 29

more involved than the procedure for Logistic Regression described above due to presence of

hidden variables (<q1q2…qT>).

Table 1. Notation and Parameterization for the IO-HMM architecture in Figure 6(B)

Symbol Description

s Number of hidden states

S = {S1, S2, …, Ss} Set of hidden states

Xn = xn,1, xn,2, …, xn,tn, …,

xn,Tn

Input sequence for n
th

 training sample;

Tn: length of n
th

 input training sequence

Qn = qn,1, qn,2, …, qn,tn,…

qn,Tn

State transition sequence for n
th

 training sample; Each of

qn,t  S

Yn = yn,1, yn,2, …, yn,tn, …,

yn,Tn

Output sequence for n
th

 training sample

Θ = (π, A, B) Model parameters

Π Initial-state probability model parameters

A = {Ai; i = 1, 2, …, s} Transition-probability models‟ parameters;

‘Ai’: set of parameters for transition model for i
th

 hidden

state

B = {Bj; j=1,2, …, s} Emission models‟ parameters

‘Bj’: set of parameters for emission model for j
th

 hidden

state

 30

Let D be the (observed) training dataset comprising of N “independent and identically

distributed” (iid) samples, which in the present case are pairs of input/output sequences:

Given the parameters  and the probability density function p(.|), MLE parameters can

be obtained by maximizing the conditional data log-likelihood as:

Marginalizing over the hidden (missing) states leads to a summation expression inside the

natural log. If the state transitions were known for each of the i.i.d. samples, this summation

would vanish and the expression could be optimized directly with any gradient-based algorithm,

like conjugate gradients. That not being the case, one must to resort to the numerical

optimization method called the “Expectation Maximization” (EM), which is the standard

methodology for MLE approach to parameter estimation in the presence of missing data

(Dempster A 1977).

)8(},...,2,1);,...,,,,...,,{(

},...,2,1);,({

,2,1,,2,1, Nnyyyxxx

NnYXdD

nn TnnnTnnn

nnn





)stateshidden over ingMarginaliz(

(9)));|,(ln(maxarg

));|(ln(maxarg

)|(maxarg

1

1

^




























 









N

n q

nnn

N

n

nn

mle

n

XqYP

XYP

Dl









 31

2.4.3.2 Expectation Maximization (in context of IO-HMM)

Let us define the „complete data’, as:

The corresponding Likelihood and log Likilihood functions are called the “complete data

likelihood”, [CDL, L
C
(|D)], and the “complete data log likelihood” [log(CDL), l

C
(|D)],

respectively. The optimization operation is broken down into two steps of the EM algorithm,

which iteratively improves the parameter values starting from a random initialization. The two

steps of EM are mathematically represented as follows:

1. Expectation (E-step):

2. Maximization (M-step):

The E-step takes the expectation of the log of complete data likelihood [log(CDL)],

which amounts to estimating the missing data (hidden states), conditioned on the previous

estimate of model parameters (assumed correct). The M-step maximizes the resulting function of

the parameters to get an improved estimate of the parameter-set. In the standard case, the EM

begins with a random initialization of all parameter values in the model. The above two steps are

applied iteratively to improve the parameter estimates until a local maxima is obtained. It can be

shown that for convergence only an increase in Q function of E-step is required to guarantee an

sample) iid n(for ns transitiostate ofset specific a is >,...,,< where

)10(},...,2,1);,...,,,,...,,,,...,,{(

},...,2,1);,,({

th

,2,1,

,2,1,,2,1,,2,1,

n

nnn

Tnnn

TnnnTnnnTnnn

nnn

c

n

C

qqq

Nnyyyqqqxxx

NnYqXdD





)11(),,|;([),(,|

kCC

yxq

k yxDlEQ 

)12(),(maxarg1 kQk 





 32

increase in the L(|D) in each subsequent iteration. Hence, in case when M-step cannot be

maximized in a closed-form, one needs only to ensure an increase in the Q function value in each

iteration rather than maximizing it. This is called the Generalized EM algorithm (GEM)

(Dempster A 1977). Several computational steps are required to perform each iteration of EM,

general details of which can be found in (Bengio et al. 1995).

Using the 1
st
 order markov assumption and independence relations that follow from the

graphical structure, L
C
(|D

C
) is factorized as follows:

CDL:

Now, taking all possible values of hidden state variables qn,t and taking log on both sides,

the log(CDL) is obtained as:

log(CDL):

)Assumption Markov (Using

)13();,|(*);,|(

);,|,();|,();(

1

1,,

1

,,,,

1 1

,1,,,

1











 









N

n

tntn

T

t

tntntn

N

n

T

t

tntntntn

N

n

nnn

CC

xqqPxqyP

xqqyPxqyPDL

n

n

   

   

) 14 (.......

);,|(log**);,|(log*

);,|(*);,|(log);(

otherwise) 0 and i, =tn,q if 1 value theakes which t variableindicator an is
ti,n,

z (where,

1

,1,,1,,,,

1 1 1

,,,,,

1 1 1 1

*

,1,,,,,
1,,,,,,









  

   


















 

S

j

tntntntjntin

N

n

T

t

S

i

tntntntin

N

n

T

t

S

i

S

j

zz

tntntn

z

tntntn

CC

xjqiqPzzxiqyPz

xjqiqPxiqyPDl

n

n

tjntintin

 33

As described above, since zn,i,t and zn,j,t-1 are unknown, expectation is evaluated with

respect to the distribution of the hidden state transitions conditioned on data D and current

„guess‟ of the parameters, 
k
. This gives the Q function of the E-step (See (Bengio et al. 1995)

and Appendix A for details):

g‟n,i,t in (15) above represents the posterior state probability, that t
th

 observation for the n
th

training sample (input-output pair) appears from the hidden state „i‟. h‟n,i,j,t, on the other hand,

represents the posterior state-pair probability, that the observation pair at locations (t-1, t)

appears from the hidden state-pair (j,i). Both g‟ and h‟ are conditioned on the current „guess‟

parameters 
k
 and the n

th
 training sample, and hence the label „posterior‟. In order to compute g‟

and h‟, first the forward and backward recursion matrices for the n
th

 training sample are

computed (Rabiner 1989; Bengio et al. 1995). These expressions are very similar for classic

HMMs except that everything is now conditional on the input sequence.

Defining forward variable, n,i,t, as the probability of observing the partial sequence <yn,1,

yn,2, …, yn,t> and ending in the hidden state qn,i,t = i (conditioned on the partial input sequence

<xn,1, xn,2, …, xn,t>), the -matrix can be expressed and filled recursively as:

   

)15(.......

);,|,(' and);,|(' where

);,|(log*');,|(log*'

],,|);([),(

1,,,,,,,,

1 1 1 1

,1,,,,,,,,,,,

k

nntntntjin

k

nntntin

N

n

T

t

S

i

S

j

tntntntjintntntntin

kCk

yxjqiqPhyxiqPg

xjqiqPhxiqyPg

yxDlEQ

n









   

 

)16();,|(*);,|(*.2

);|(.1

,,,

1

,1,,1,,...2,,

1,1,1,,

k

tntntn

S

j

k

tntntntinTtin

k

tntntin

xiqyPxjqiqP

xiqP

n





























 34

Similarly, the backward variable, n,i,t, is defined as the probability of observing the

partial sequence <yn,t+1, yn,t+2, …, yn,Tn> given that the hidden state at time t is „qn,t = i‟. The -

matrix can be expressed and filled recursively as:

Given the Forward and Backward matrices, the posterior state and state-pair probabilities

can be computed as follows (See details of derivations in (Bengio et al. 1995)):

Computing (18) and (19) for each training sample gives the expression for the Q-function

and completes the E-step of the EM algorithm. We now have a function of the parameters of the

model (like in regular MLE with no missing data). The M-step then proceeds by maximizing (or

increasing) the Q-function and substituting the old guess parameters 
k
 with new parameter

values 
k+1

.

It is worth noting that in practice, the parameters for each sub-component of the model

(‘s’ transition functions and ‘s’ emission functions) split nicely in the Q-function so that each

 )17();|(*);,|(*.2

1.1

1

1,,,,1,1,,1....1,,

,,




 



S

j

k

tntn

k

tntntntjnTtin

Tin

jqyPxiqjqP
n

n





)18(

*

*
'

1

,,,,

,,,,

,,





S

j

tjntjn

tintin

ting





)19(

);,|(*);,|(*

);,|(*);,|(*
'

1 1

,,,,1,,1,,

,,,,1,,1,,

,,,


 










S

u

S

v

tun

k

ntntn

k

ntntntvn

tin

k

ntntn

k

ntntntjn

tjin

xuqyPxvquqP

xiqyPxjqiqP
h





 35

sub-component can be optimized independently of the other in the M-step. Training the IO-

HMM via GEM requires the model to be initialized to some random initial parameter values

which are then iteratively improved until the model converges to a local maximum in the

likelihood space. Since the model is quite complex, it is possible that the likelihood surface is not

unimodal with only one unique maximum-likelihood estimate of parameter set. The usual

practice under these circumstances is to perform multiple rounds of training starting from a

different random initial seed and choosing the parameters that maximize the likelihood among all

rounds.

2.5 EVALUATION, SCORE COMBINATION AND POST-PROCESSING OF

DATABASE SEARCH RESULTS

Evaluation is a critical step in automated methods for data analysis, and involves several aspects

depending on the application and domain. Typically, one would like to establish how well the

model either describes the data it was learned from, or how well it predicts on future unseen data.

The main objective of the CSPI framework is confident assignment of peptides to MS/MS

spectra and hence, the most important evaluation deals with how well the overall framework

performs the task of differentiating true from false peptide identifications. Several methods have

been described in the literature to deal with this problem and are discussed next.

As described above, each database search for a spectrum yields a list of candidates

ranked according to their PSM scores. Typically only the top-ranking peptide is considered

further for protein inference, although sometimes the true peptide appears at a lower rank. Due to

multiple steps involved in the shotgun proteomics pipeline, numerous factors introduce biases

 36

and noise, making all scoring algorithms prone to errors. In typical large-scale proteomics

experiments, over 75% of spectra are of poor quality or from non-peptide species and must be

correctly distinguished from real signals (Ning et al. 2007). Due to high amount of noise in

MS/MS spectra, false peptide assignments to these spectra can attain reasonably good PSM

scores, and consequently, the distributions of scores from True PSMs and random/False

identifications exhibit significant overlap, substantially increasing the identification error rates of

search algorithms. It is particularly important for the Database searching algorithms, because

they always return “the best available” answer even if incorrect.

Hence, in order to interpret and effectively utilize peptide identification results in

downstream analyses, separating the two is a crucial step in the overall analysis and researchers

are interested in knowing precisely the error rates of the algorithms used for their experiments, so

as to fine-balance false-identifications with missed (estimated) true-identifications. This amounts

to choosing a score threshold above (or below, depending on the score) which the PSM is

considered significant (or true).

Arbitrary choice of score thresholds (derived empirically) to call a PSM true or false is an

inadequate solution and does not perform well across different datasets. Additionally, the vast

numbers of different scoring schemes described in the literature are quite varied in terms of what

they represent and their scales of measurement. Such variation makes the scoring schemes and

their thresholds incomparable directly. In order to better control the above aspects, statistical

validation that transforms these arbitrary scores to a statistical significance measure is an

essential analysis step.

This problem is that of hypothesis testing with null H0: “PSM is a random match” and

alternative Ha: “PSM is a true match”. A test is considered significant if, under the null

 37

hypothesis/distribution, the observed value of the PSM-score is better than some threshold

specified by the desired significance -level. Alternatively, a traditional p-value indicates the

probability that the under H0, the PSM-score is at least as good as observed, while an e-value

indicates the expected number of PSM-scores better than observed. Since for each spectrum it is

assumed that only one candidate peptide can be possibly true, null distribution can be estimated

from the scores for all except the top-scoring candidate. These procedures however provide an

unsatisfactory solution due to large numbers of tests involved in a single experiment (classic

multiple hypothesis-testing problem). As a result, a sizable proportion of tests can emerge

significant just by random chance. Simple procedures for multiple-testing correction, like

Bonferroni correction, will be too stringent.

2.5.1 False Discovery Rate (FDR) and Q-values

FDR is an alternative way of correcting for multiple comparisons and is a global error control

measure, unlike p- or e-values, that directly controls type-I errors (incorrectly rejected null

hypotheses) (Benjamini et al. 1995). In the context of peptide MS/MS, it is defined as the

expected proportion of „false‟ identifications in the entire set of „significant‟ PSMs at a specified

score threshold (Choi et al. 2008). For example, if a 1000 PSMs obtain a score better than the

threshold „s‟, and the FDR is controlled at a level of 0.01, then at max 10 of these PSMs are

expected to be false positives.

Estimating FDR requires a good choice of “null distribution” of PSM scores. One

commonly used null model is that from a decoy database search (Elias et al. 2007). The database

of true protein sequences (of the organism under consideration) is called the “Target” database.

A decoy database is derived from target by some operation like reversing or shuffling all protein

 38

sequences, or using markov models to generate sequences that have the same distribution and

dependencies of amino acids as the target database (Feng et al. 2007). A search against such a

decoy database will return top-ranking hits, which by design, are random or false identifications,

and their scores can be used as a representative for the null distribution.

One simple strategy for computing and controlling False Discovery Rates (FDR), based

on target-decoy strategy is described in Kall et. al. (Kall et al. 2008). Briefly, after performing

separate target and decoy searches, FDR at a score threshold, t, is approximated as:

The underlying assumption in target-decoy strategy is that the score distribution of

incorrect target peptides is the same as that of decoy peptides. The usual practice is to keep the

estimated FDR to as low as 1-5% or lower, obtain the corresponding score threshold, and

determine how many peptides are identified with scores above the chosen threshold. These are

then considered as “estimated true” identifications, and are used in downstream inference for

protein identification. The significant advantage of this approach is its conceptual simplicity and

minimal effort towards implementation.

Since FDR as computed above is associated with an entire set of PSMs, it loses a

desirable property of being a monotonically non-increasing function of score, i.e. as the score

threshold increases, FDR should not increase. A more useful measure, that is also associated

with each individual PSM is the FDR analogue of p-value, called the q-value, and refers to the

   

34) 28, Refs.in described as 0.9at (fixed

 incorrect are that PSMs target of proportion estimated :

(decoys) targetsofnumber total: N

 t> score with peptides (decoy) target ranked-top# :n where

)20(**))((

0

t(d)

t(d)

0



 tddt nnNNtFDRE 

 39

minimum FDR at which a given PSM is called significant, or a true PSM (null-hypothesis

rejected) (Storey et al. 2003).

2.5.2 Score Combination, Post-processing

The procedures described above can be used to compare performance of different scoring

algorithms, each of which yields some primary score of quality of match based on which

candidate PSMs are ranked. However, these scores are far from perfect due to factors described

earlier. Additionally, they vary a lot from one spectrum to another depending upon PSM

properties (spectrum quality and noise-level, peptide‟s propensity to fragment, charge-state etc.).

As a result, several potentially true PSMs fall in the region of overlapping score distributions,

particularly because the scores usually have arbitrary scales and may not be absolutely

comparable from one instance to another. One definitive way to improve identification

accuracies is to combine the primary score with other features of PSM match-quality, which are

also reported alongside, or by combining the scores from multiple different algorithms (Searle et

al. 2008). Often such combination provides additional complementary information and can

significantly boost the performance. Several approaches of such post-hoc processing and

combination have been developed to address this aspect; most popular ones are described next.

Peptide Prophet was developed and optimized for the Sequest database search algorithm

and utilizes four numeric PSM quality features as well as observable discrete peptide properties

(Keller et al. 2002). Using a manually-verified training dataset in the first stage, the algorithm

learns a linear discriminant function to combine the features into a composite score. The next

step combines the composite score with peptide properties using the Empirical Bayesian

framework, assuming conditional independence between the composite score and peptide

 40

properties given the class label (which is essentially a Naïve Bayesian Classifier with hidden

class variable). Two drawbacks of the original formulation – fixed discriminant function

parameters across datasets and inflexible composite score distributions – were addressed in later

extensions (Choi et al. 2008; Ding et al. 2008). Another extension also improved their

performance using a semi-supervised approach utilizing decoys to learn a better null distribution

(Choi et al. 2008).

Unlike Peptide Prophet, which is an unsupervised generative algorithm, the Percolator

algorithm uses a more discriminative approach in semi-supervised setting. It uses target-decoy

strategy together with Support Vector Machine (SVM) classifier to combine scores/features,

learning new parameters for each new dataset (Kall et al. 2007). Percolator iterates over the

following steps until convergence: a) Identify a set of high-confidence target PSMs to use as

positive training data; b) using decoy PSMs as negative training data, train an SVM classifier; c)

score the entire set of target PSMs using the trained SVM. The iterations are initialized using

high-confidence targets based on SEQUEST cross-correlation score, while subsequent iterations

use SVM-based discriminant score. Confidence is measured using q-value (as described earlier)

based on these scores. The procedure converges when no new targets are identified at high

confidence. According to the authors, this approach does better than Peptide Prophet due to a

larger feature set and adaptive discrimination using SVMs that adjusts to peculiarities of each

individual dataset.

 41

3.0 CONTEXT-SENSITIVE PEPTIDE IDENTIFICATION FRAMEWORK

A novel Context-sensitive Peptide Identification (CSPI) Framework is proposed in this thesis for

improving peptide scoring and identification from MS/MS data through modeling their

fragmentation ion intensities. CSPI utilizes an instance of the flexible IO-HMM class of models

to represent the complex peptide fragmentation intensity patterns in mass-spectrometers under

low energy CID. The specific constrained structure of the model used for all analyses presented

in this thesis, which is a special case of Figure 6(B) in section 2.4.3, is presented in Figure 7. For

the application to peptide identification, the input contextual features (xt) are derived from the

peptide sequence while the output variables (yt) are derived from spectrum intensities.

Figure 7. IO-HMM Structure used in the CSPI Framework. Both b- and y-ion models have the same

structure with yt representing observed b- and y-ion intensities respectively

 42

This structure implies that the contextual features influence only the transition functions

and not the emission functions. In effect, through the hidden states, the model learns complex

mixture distributions of the output variable, conditioned on the input layer features and the

previous hidden state distribution. The model can then be used to probabilistically evaluate how

well a peptide‟s physicochemical properties are able to explain the observed fragment-ion

intensity series in a spectrum, resulting in an intensity-based score.

As described earlier, a fragmentation event can produce several different ion types. From

low-energy CID, b- and y-ions dominate and were used to develop and evaluate models in CSPI.

In order to capture their distinctive characteristics and distributions, the b- and y-ions are

modeled separately, and are called CSPI_b and CSPI_y, respectively.

Given the model structure, the next step is to transform a PSM pair into appropriate

input-output format, requiring several preprocessing steps and fixing the functional forms of the

components of the model, as are described next.

3.1 INPUT LAYER (<X1X2…XT>)

In the current work, input layer is a sequential representation of the peptide sequence being

evaluated. Each amide-bond position in the peptide sequence (from N- to C-terminus) is

represented as a feature vector that forms the „input‟ xt at the corresponding location, and

represents the global (peptide- or fragment-level) and local (fragmentation site-level) context

influencing observed fragmentation. For example, a peptide of length 10 has 9 amide bond

positions and is represented in the input layer as a sequence of 9 feature vectors, each being of

same length as the number of features used. The same input features and representation are used

 43

for both b- and y-ion models. The directionality used in the b-ion models is from N-terminus to

C-terminus, while that for y-ion models is from C-terminus to N-terminus.

The features used in the model are described in Table 2. The “Mob” feature uses an

accepted definition of mobility [ChargeState – Number of Arg – 0.5*(Number of His + Number

of Lys) (Huang et al. 2008). The mobility values were grouped into 4 bins as shown in the table.

Similarly, „length‟ feature was grouped into 3 categories: short (< 13), medium (between 13 and

22) and long (> 22), binned roughly at 25
th

 and 75
th

 percentiles of peptide lengths in the training

dataset.

3.2 OUTPUT LAYER (<Y1Y2…YT>)

The output layer consists of the sequence of observed intensities of the b- and y-ions of the

peptide. In order to handle wide variation in the observed fragment intensities as well as to

reduce the dominance of few high-abundance peaks, as part of building CSPI models certain pre-

processing steps are performed on the MS/MS spectra before they are used either for learning

model parameters or searched against databases for candidate peptides. This is crucial so as to

make spectra more comparable across each other as well as across multiple datasets, and

includes the following steps (in order of operation): a) Remove the peak corresponding to the

precursor as this can be very intense and thus overshadow many other shorter peaks; b) Square-

root transform all peaks in order to reduce the influence of very intense peaks; c) Normalize all

the peaks so that the intensity of the tallest (base) peak is 100 while all other peaks are scaled

accordingly; d) Filter noise peaks, where noise threshold is user-defined (default is set to 0.025,

 44

Table 2. Contextual Features used in the input layer of CSPI models

Feature Type

(Length)

Description Influence

NAA Binary

(19)

Flanking N-terminal Amino acid (Considering Pro

as baseline; 1 binary feature for remaining 19

possible)

Local

CAA Binary

(19)

Same as NAA

Local

FracMz Numeric

(1)

Fractional mass-to-charge (m/z) of fragment relative

to the m/z of the parent peptide; Range: (0,1)

Local

Mob Binary

(3)

Mobility value of the peptide

(<=0: baseline; one binary feature for 0.5, 1, >1)

Global

CTerm=R? Binary

(1)

Is the C-terminus of peptide Arg?

Global

K/H in b-

fragment

Binary

(1)

Is there a Lys or His in the b-fragment (other than

NAA/CAA)

Fragment

R in b-

fragment

Binary

(1)

Is there an Arg in the b-fragment (other than

NAA/CAA)?

Fragment

Length Binary

(2)

Length of the peptide, discretized into 3 bins

(length<13: baseline; one binary feature each for

13<= len < 23 and 23<= len)

Global

Total 47

 45

i.e. 2.5% or lesser of the base peak); e) Remove the peaks below the low-mass cut-off region

(default threshold used is 0.3 times the m/z value of the precursor; ion-trap instruments typically

do not retain peaks in this region and filtering reduces the chance of modeling noise); f) select

200 most intense peaks (at max) of those that remain. Finally a normalized intensity value

(described next) is used for each observed fragment at each fragmentation site. It is important to

note that these spectrum pre-processing steps are a part of model building process and were

applied (as described) only to the CSPI framework. Other algorithms that were used for

comparison follow their own pre-processing protocols.

3.3 NORMALIZATION

Two different normalization schemes, called “Rank-norm” and “Window-norm”, were

evaluated.

For „Rank-norm‟ scheme (after spectrum pre-processing), the peaks of the spectrum are

assigned ranks, which are then normalized to range [0.001, 0.999], 0.001 being the highest

intensity and 0.999 being the lowest. This normalization range was chosen instead of [0, 1] to

avoid difficulties in parameter estimation for the emission distributions used for rank-norm

scheme (see section 3.4 below). Such rank-based normalization has been used in recent studies in

order to reduce variation, and makes intensities comparable across spectra (Wan et al. 2006;

Klammer et al. 2008). Fragment ions that are not observed in the experimental spectrum are

represented as “Null” in the output layer.

For the “Window-norm” scheme, (after spectrum pre-processing) the output/emission

value used is the logarithm of the fraction of intensity explained by the fragment within +/-75 Da

 46

window around its m/z value, rationale being that the fragments from the true peptide should

explain more abundant peaks than those from false peptides. Again, if a fragment is not observed

the observation at that location is designated as “Null”.

3.4 PARAMETER REPRESENTATION

In the current implementation (Figure 7), the emission functions are represented as simple

distributions, conditioned only on the hidden state value (qt), i.e. P(yt | qt, xt) = P(yt | qt). In CSPI

models, IO-HMMs with four hidden-state values are used, out of which one is reserved for

“Null” emission (i.e. when the fragment is not observed), and has emission probability of 1. The

other three values correspond to observed fragments with continuous emission distributions.

These can be thought of as states producing “Low”, “Medium” and “High” intensity

observations (on average, determined by the “mean” of the emission distribution used). The

distributions of observed (normalized) intensities of b- and y-ions from a large set of validated

PSMs is shown in Figure 8 and Figure 9.

Similar patterns are observed for other datasets of validated PSMs and have guided the

choice of appropriate emission distributions used in this thesis. For the rank-norm scheme,

Exponential emission distribution was used for b/y-ions from true peptides and Beta distribution

for those from false/random peptides. For the window-norm scheme, Gaussian emission

distribution was used for both b/y-ions and from true and false peptides.

 47

Figure 8. Distribution of observed rank-normalized intensities of b- and y-ions from True and

False/Random PSMs, for SO-DR dataset (See Chapter 4 for dataset description).

3.5 TRANSITION FUNCTIONS

Each CSPI model structure results in one transition function for each hidden-state value. Given

the hidden-state value qt-1 = q (t > 1) and the context (input xt), the corresponding function

provides the probability distribution over hidden-state values at current location t, i.e. P(qt | qt-1 =

q, xt). The output of this function changes as the input xt varies along the peptide sequence.

Additionally, there is an initial-state function for computing the distribution over hidden-state

 48

values at the start of the sequence, i.e. P(qt=1 | xt=1). All these distributions are modeled using

logistic functions.

Figure 9. Distribution of observed rank-normalized intensities of b- and y-ions from True and

False/Random PSMs, for SO-DR dataset (See Chapter 4 for dataset description).

In the current implementation, CSPI models with s=4 hidden-state values are used (For

parameter notation, see Table 1). Mathematically, output of the i
th

 transition logistic function is

represented as:

i

thT

j(k)

1

1

1

1

A ors,eight vectfunction wn transitiologistici thearew where

)21(

,...,3,2,""!

)exp(1

))exp((

1,""

)exp(1

1

);,|(





































sjNAyif

jNAyif

xiqjqP

tS

k

t

T

k

t

T

j

tS

k

t

T

k

Attt i

xw

xw

xw

 49

Initial-state probability is computed in a similar fashion and uses its own logistic function model,

the output of which gives the distribution over the hidden states at location t=1, i.e. P(qt=1 | xt=1).

The initial-state and transition functions together predict the hidden state transition

probabilities along the peptide sequence. Based on the sequence (context), some state transitions

will be more likely than others. CSPI models compute probabilities over all such possible state

transitions over the entire peptide chain, in order to compute the contribution to the overall score

(See section 3.7 for details).

Each logistic model has (s – 1 = 4-1 = 3) weight vectors. Each weight vector is of

size=(#input features + 1)=48. This leads to a total of 48*3=144 tunable parameters per logistic

regression component. Since each CSPI model has 5 such logistic models (1 for initial state and

4 for each hidden state value), the total number of logistic functions‟ parameters per CSPI model

is 144*5=720.

Further, each hidden-state value corresponds to an emission distribution. For s=4, and

rank-norm scheme, this leads to 3 exponential distributions (for True models) and 3 beta

distributions (for Null Models), for a total of 3+6=9 emission parameters. For window-norm

scheme, three Gaussian emission models for each, True and Null models, are used for a total of

12 tunable parameters.

3.6 CSPI TRAINING

For the apriori fixed structure, in terms of input-output representation and number of hidden

states, training consists of estimating the parameters of the model structure from a training

dataset which comprises of a set of input-output sequence pairs <(x1x2…xT); (y1y2…yT)>i,

 50

i=1,2,3…,N, where N is the size of the training dataset. These are derived from high-confidence

and validated PSMs, with representations as described above. Parameter estimation in CSPI is

done using the “Maximum-Likelihood” approach. Due to presence of hidden variables

(<q1q2…qT>) and absence of a closed-form solution, this is achieved using the iterative

numerical optimization method called “Generalized Expectation Maximization” (GEM)

(Dempster A 1977), as described in Section 2.4.3.1. For detailed derivation, see Appendix A.

3.7 CSPI INFERENCE

Trained CSPI models are used to score and rank candidate peptides obtained via Database Search

for each spectrum. Inference involves evaluating the joint probability of observing the spectrum

(a particular fragment ion series, b- or y-) given the peptide and the model (learned parameters),

i.e., P(y1y2…yT | x1x2…xT; ). Let us consider a specific input-output sequence pair x =

<x1x2…,xt…xT> and y = <y1y2…yt…yT>. Suppose we also know the hidden state transitions

q=<q1q2…qt…qT> that generated the output y for this pair. The joint probability P(y, q | x; Θ)

can be computed as:

   

)22();|(*);,|(*);|(

)chain markovhidden on the assumption markovorder first Using(

.....*);|(*);,|(*);|(*);|(

);...|...,...();|,(

12

111

222121111

212121





























T

t

tt

T

t

ttt

TTT

qyPxqqPxqP

qyPxqqPqyPxqP

xxxqqqyyyPxqyP

 (I) (II) (III)

 51

)23();|,();|( 
q

xqyPxyP

In expression (22), factor (I) is computed using the initial-state logistic function.

Remember that for each hidden-state there is one transition logistic function and one emission

function. So, factor (II) is computed using the corresponding transition logistic functions for state

value qt-1 at each location t. Similarly factor (III) is computed using the corresponding emission

function for the state value qt.

Scoring a PSM involves computing the desired probability P(spectrum | peptide; Θ) or

more generally P(y | x ; Θ). This expression requires summing over all possible hidden state

transitions and can be computed using (22) above as:

To compute expression (23) efficiently, an extension of the Forward procedure used in

classic HMMs is used, which follows similar mechanics except extra conditioning on the input

layer at each step requiring computing the transition probability (Bengio et al. 1995).

In order to discriminate between true and false peptide identifications, two different

models, one for true PSMs and one for random/false PSMs, are learned for each fragment ion-

type. In each random PSM, the peptide sequence (input) used is a random/false sequence of

(nearly) same mass as the true peptide. These models are called the True and the Null models,

with parameters 
True

 and 
Null

, respectively. The score for a candidate PSM then is computed

as the log of likelihood ratio of the spectrum conditioned on the input peptide, from the true and

null models:

)models respective from above, described as computed arer denominato and numerator (

)24(
);

,...,2,1
|

,...,2,1
(

);
,...,2,1

|
,...,2,1

(
log_






















Null
T

x
T

yP

True
T

x
T

yP
ScoreCSPI

 52

Scores from b- and y-ion models are computed in similar fashion, by replacing the output

sequence <y1y2…yT> with the normalized intensities of appropriate fragment ion series, b or y.

Peptide identification performance is evaluated for three PSM scores: (i) CSPI_Score
b
 (from

model CSPI_b), (ii) CSPI_Score
y
 (from model CSPI_y), and (iii) composite CSPI_Score

byAdded

(= CSPI_Score
b
 + CSPI_Score

y
).

3.8 SCORE COMBINATION WITH LOGITPERCOLATOR

Scores from individual fragment-ion models provide complementary information that must be

used together to perform inference on any PSM pair being evaluated. Often times, other features

of match quality are also available and can be used as additional sources of information, as is

typically done during manual interpretation of spectra. In that case, the simple composite score,

that adds the individual scores, is not the most optimal as it attaches equal weight to both

components. This can be addressed by combining scores using machine-learning approaches that

appropriately weight the contributions of individual components. Two prominent examples of

this approach are PeptideProphet (Keller et al. 2002) and Percolator (Kall et al. 2007), both of

which are automated methods to post-process database search results.

The goal in this part of the research was to develop a post-processor to appropriately

weight and combine CSPI‟s individual intensity-based scores, as well as to demonstrate the

utility of these features towards improving peptide identification performance when used in

conjunction with other features popularly used in large-scale proteomics. To achieve this goal, a

similar, albeit simplified, strategy as outlined in the Percolator algorithm (see section 2.5.2) is

followed, with the following two differences: a) Instead of SVM, Logistic Regression classifier

 53

is used, and the posterior probability of target PSMs from the model is used as the composite

score from which FDR and q-values are computed; b) no cost-matrix for errors in classification

is learned. Due to these differences, the current implementation, which is called

“LogitPercolator” for the remainder of this thesis, can be considered as a baseline.

3.9 EFFICIENT PROCESSING OF LARGE MS/MS DATASETS

As described earlier, associating the spectra with their true peptide identification involves

searching large protein databases to score and rank potential candidates. Depending upon the size

of the database and constraints applied on the search, like allowable post-translational

modifications, enzyme specificity and possible charge-states, each spectrum may have to be

evaluated against several thousand candidates to select the one that best explains the observed

data. Additionally, a single MS/MS experiment from a modern mass-spectrometer can generate

up to the order of 5-10K MS/MS spectra in less than an hour, resulting in several GB of data

each day from even a moderate-sized proteomics lab. Analyzing such large datasets requires

significant computation time, particularly when using complex scoring systems like the CSPI

framework presented in this thesis. Hence, in order to keep pace with the volume and rate of data

generation, the software system implementation must support efficient data processing.

Efficiency was achieved for the CSPI using two strategies: a) Protein database indexing, and b)

Parallel implementation using multiprocessing.

 54

3.9.1 Protein Database Indexing

The first step in analysis is the database search component that involves extracting candidate

peptides for each spectrum by querying a protein database, which is a simple ASCII text file with

a list of protein sequences or character strings (the protein alphabet is of size 20, with each

character being of a different mass). This amounts to a range query on the “expected mass” of

the true peptide. Protein databases can be large and the naïve approach of scanning them afresh

for each spectrum for retrieving strings of required mass will be prohibitive in terms of time.

Most systems pre-compute once some form of index for fast querying, and similar strategy was

followed within CSPI.

In order to create indexes for protein databases, the appropriate protein FASTA file was

preprocessed to generate the list of all possible peptides satisfying the desired search constraints

for database search. These are then indexed used the python interface for the Berkeley DB key-

value database (Olsen et al. 1999), where the „key‟ is the string representation of peptide mass up

to one decimal point; and „value‟ is the string concatenation of peptide‟s location in the database

(protein number as it appears in the FASTA file, and position number within the protein

sequence) and length of the peptide. Additionally, in order to keep the size of index files small,

the entire range of expected peptide masses is split into bins of size 25 units (arbitrarily chosen

and may be optimized further), leading to multiple index files each storing a different mass

region. Values of candidates with same keys are concatenated with a separator. Now, for every

new query, the index allows for fast retrieval of candidates, by first mapping the query mass

(“key”) to the appropriate index file, followed by retrieval of candidates in the corresponding

mass-region that meet the mass-tolerance search criterion, and reconstruction of the peptide

sequences using the corresponding information stored in the “value” part of the key-value pair.

 55

3.9.2 Parallel implementation using multiprocessing

The next step in database searching evaluates all the candidates retrieved for each spectrum. This

is computationally the most expensive step in the peptide identification workflow. However,

fortunately, this particular step is amenable to massive parallelization and can exploit large

multiprocessor and/or distributed computing architectures to alleviate the computational

bottleneck. Specifically, for each spectrum in the dataset, searching and scoring/ranking

candidate peptides can be performed in parallel, independent of other spectra. This approach was

followed for evaluating the CSPI framework.

A simple multiprocessing application design based on shared synchronized queues for

inter-process communication is used. The flow diagram is shown in Figure 10. The main process

reads in and preprocesses the spectra, queries the protein database stored as a pre-computed

index on the hard disk (as described above) and places the retrieved candidates along with the

preprocessed spectrum on a shared queue. From this queue, all the worker processes extract the

objects, compute the CSPI scores, and store the results onto a shared output queue. Another child

process extracts the results from this output queue and stores them in an output file.

 56

Figure 10. Workflow of the multiprocessing version of CSPI scoring framework

 57

4.0 EXPERIMENTS AND EVALUATION METHODS

This chapter describes the experiments done to evaluate the CSPI framework beginning with

description of datasets section 4.1, followed by the PSM properties and Database Search

parameters used for all the analyses in section 4.2. Section 4.3 discusses the performance

evaluation protocol.

4.1 DATASETS

In order to evaluate the performance of the CSPI framework, several MS/MS datasets of

different sizes, complexity and nature were utilized, as briefly summarized in Table 3. The LTQ

and LCQ instruments selectively isolate and detect precursor peptides as well as their

corresponding fragments at low resolution and mass accuracy. Details of experimental protocol

for each dataset can be found in the respective references. All samples were processed using

Trypsin enzyme prior to separation via liquid chromatography and analysis using MS/MS.

Since CSPI models contain many tunable parameters, a large training dataset is required

to avoid over-fitting. In the absence of such large, expert-validated „gold-standard‟

identifications, a common strategy is to use a set of high-confidence identifications. Dataset 1

(SO-DR) contains high-scoring identifications made initially using the Sequest algorithm, and

further validated via

 58

Table 3. Characteristics of MS/MS datasets used for comparing algorithms

accurate mass detection at the same retention time by FT-ICR and under identical

chromatographic conditions. All identifications that could not be validated were removed from

the dataset. As a consequence, a large fraction of these identifications are expected to be correct

and hence form a good source for learning the parameters of the models. Roughly two-thirds of

this data came from an LTQ and remainder from an LCQ instrument. Other possibilities for

training datasets include using: a) validated PSMs from large spectral libraries of identifications,

Name Usage Size Instr Validation Source

1 SO-DR Train 13, 249 LCQ

 +

LTQ

FT-ICR Shewanella Oneidensis,

Deinococcus Radiodurans (Huang

et al. 2008)

(Real world)

2 18Mix1_LCQ Test 19, 822 LCQ FDR Standard 18 protein mix (Mix1)

(Klimek et al. 2008)

(Controlled)

3 18Mix1_LTQ Test 53, 507 LTQ FDR Standard 18 protein mix (Mix1)

(Klimek et al. 2008)

(Controlled)

4 Yeast_LTQ Test 34, 499 LTQ FDR Yeast whole cell lysate (Kall et al.

2007)

(Real world)

 59

which typically contain, for each peptide (in the repository) a consensus spectrum obtained by

some form of averaging over multiple copies; b) high-confidence assignments made on various

large publicly available datasets. For the current thesis, all the CSPI models were trained using

the SO-DR dataset.

While SO-DR consisted of only validated high-confidence PSMs, other datasets

(18Mix1_LCQ, 18Mix1_LTQ, Yeast_LTQ) are large collections of MS/MS spectra and

represent either a controlled or a real-world scenario where the goal is to assign peptides to the

spectra and assess significance of the matches. These were also generated using low-resolution

and low mass-accuracy LTQ instruments. All these additional datasets were used for testing the

performance of the CSPI framework.

4.2 PSM PROPERTIES AND DATABASE SEARCH PARAMETERS

In this work, all analysis was restricted to a constrained but significant set of peptides. First, only

tryptic peptides with both ends adhering to Trypsin cleavage specificity are used for all

evaluations. Considering imperfect efficiency of Trypsin digestion, up to three internal Lys/Arg

residues in peptides were allowed where trypsin misses to cleave. Second, only precursor charge

state of +2 was modeled since these peptides fragment well while generating relatively less

complex spectra than higher charge states. This class also constitutes the majority for

Electospray Ionization, which is widely used for ionizing peptides. Finally, under low-energy

CID peptides largely fragment at amide bonds along the peptide backbone, (most commonly)

yielding singly charged N-terminal fragments (b-ions) and/or a singly charged C-terminal

fragments (y-ions). Only these ions were modeled within CSPI.

 60

Candidate sequences were searched using constraints as described above, with a fixed

carbamidomethylation modification applied on Cysteine residues. A precursor tolerance of +/-

3.0 Da and fragment-ion tolerance of +/- 0.5 Da was used throughout. Since CSPI models are

computationally expensive a simple filter was applied, which picks only top 500 unique

candidates for each spectrum, based on their number of theoretical fragments observed in the

experimental spectrum. Only these shortlisted peptides are scored using CSPI. All these search

parameters were kept the same to the extent possible for all algorithms compared in this work.

4.3 PERFORMANCE EVALUATION AND SCORE COMBINATION

Peptide identification problem does not fit the traditional machine learning paradigm where the

goal is classification of each sample into, say, a binary class, for which established methods of

evaluation work well. Rather, each sample here (PSM) is represented with a bunch of scores or

features and represents a mixture of correct and incorrect identifications. The goal then is to be

able to differentiate, based on these features, between these identifications keeping the error (or

false-discovery) rate within a user-defined level. As described earlier (section 2.5.1), a simple

strategy based on target/decoy database search was used to address this hypothesis-testing

problem. Briefly, the primary evaluation procedure is to control FDR at a user-specified value,

which yields a score threshold and an estimate of the number of correct peptide identifications at

that threshold. Whichever algorithm/score estimates higher number of correct peptide

identifications at the same controlled FDR is reported superior.

The CSPI framework was compared with two widely used algorithms: Crux (version

1.33) (Park et al. 2008) which is a re-implementation of the original Sequest algorithm, and

 61

X!Tandem (version CYCLONE 2010.12.01.1), which is another popular open-source peptide

identification algorithm. Simple FDR and q-values were computed for Crux, X!Tandem and

CSPI models using their primary search scores XCorr, Hyperscore and CSPI_Score
b
 (or

CSPI_Score
y
 or the composite score CSPI_Score

byAdded
), respectively.

Since SO-DR dataset was obtained from Shewanella Onedensis (SO) and Deinococcus

radiodurans (DR), the target database used for these spectra was the concatenated protein

FASTA sequences for SO and DR (~7000 proteins). Datasets 18Mix1_LCQ and 18Mix1_LTQ

were obtained from controlled mixture of 18 proteins (see reference for details). Hence the target

database for these spectra was the corresponding set of protein FASTA sequences appended with

commonly observed contaminant proteins (http://www.thegpm.org/crap/index.html). Likewise,

for the Yeast_LTQ the target used was Yeast FASTA (~6,500 proteins) sequences, appended

with common contaminants. Q-values for SO-DR were estimated using two different decoys:

reversed SO/DR FASTA and a much larger reversed Human FASTA. Using a large decoy

provides a more rigorous test of performance due to much larger number of candidates being

evaluated for each spectrum. For all other test datasets reversed Human FASTA appended with

corresponding reversed target database was used as the decoy.

Similar target-decoy strategy and FDR control was applied to the score-combination

approach using LogitPercolator. After each iteration of LogitPercolator the primary composite

score/feature used for computing FDR and q-values is the posterior probability of target PSMs

from the Logistic Regression model.

http://www.thegpm.org/crap/index.html

 62

5.0 EVALUATION OF THE CSPI FRAMEWORK

In this chapter, I present and discuss the results from evaluation of the CSPI framework using

several MS/MS datasets of varying complexity. Section 5.1 and 5.2 present performance

comparison of raw scores from CSPI (CSPI_Score
b
 and CSPI_Score

y
 and CSPI_Score

byAdded
)

with those of Crux (XCorr) and X!Tandem (Hyperscore), while Section 5.3 presents the results

of score combination using the LogitPercolator procedure described in section 3.8. Section 5.5

discusses the efficiency aspects of CSPI implementation for handling large datasets.

5.1 CROSS-VALIDATION EXPERIMENT (SO-DR TRAINING DATASET)

Cross-validation is a commonly used re-sampling strategy, based on splitting the training dataset,

to estimate the average performance of statistical models on unobserved data. Five-fold cross-

validation (5-CFV) was performed on SO-DR dataset by splitting it into five equal parts. Of

these four parts are used for training CSPI models while the remaining one-fifth samples are

used for testing. The process is repeated five times so that each part becomes the test set once.

X!Tandem and Crux do not involve any training, but each time they are evaluated on the same

set of one-fifth samples as CSPI to facilitate performance comparison. Database search is

performed on each of these test sets as described in section 4.2. For CSPI framework three

scoring schemes were used for computing q-values: (i) CSPI_Score
b
, (ii) CSPI_Score

y
, and (iii)

 63

CSPI_Score
byAdded

. For X!Tandem and Crux, their respective primary scores, Hyperscore and

XCorr, were used for computing q-values.

 Based on the size of the training dataset, each test set consisted of 2649 MS/MS spectra.

After performing database search on these and controlling the FDR at q-value <= 1%, the

percentage of the (assumed known) correct peptide identifications, retrieved correctly by each

scoring feature was computed. Here, „correctness‟ refers to the case that the peptide sequence

identified is the same as the original high-confidence assignment provided in the dataset. For

example, if in a test set „n‟ is the actual number of correct identifications among all those

„estimated as correct‟ at 1% q-value, the reported performance is computed as n/2649. Table 4

reports this performance averaged over 10 test sets obtained by executing 5-CFV twice (2 x 5-

CFV) on the SO-DR dataset.

It is observed that over both normalization schemes and decoys, byAdded models

perform better than y-ion models, which in turn perform better than b-ion models (p < 0.001

from one-sided two-sample paired Wilcoxon signed-rank test). Also, within each group (b-, y- or

byAdded models) window-norm scheme outperforms rank-norm (p < 0.001), providing a

significant boost in the number of correct identifications.

Individually, b-ion models perform unfavorably as compared to both Crux and

X!Tandem for both normalization schemes and decoys (p < 0.001). On the other hand, y-ion

models perform much more favorably (better than X!Tandem for window-norm/decoy-1/2, p <

0.001 ; better than Crux for window-norm/decoy-2, p < 0.001 ; worse than Crux for rank-

norm/decoy-1, p < 0.001; worse than Crux for window-norm/decoy-1, p < 0.05 ; no significant

difference in remaining cases). The composite byAdded models perform the best, particularly for

window-norm scheme (better than both Crux and XTandem for window-norm/decoy-1/2, p <

 64

0.001; better than Crux and X!Tandem for rank-norm/decoy-2 and rank-norm/decoy-1

respectively, p < 0.005; worse than Crux for rank-norm/decoy-1, p < 0.01; no significant

difference from XTandem for rank-norm/decoy-2). It is worth noting that the commercial

version of Crux (i.e. SEQUEST) was used to originally identify the peptides in this dataset, and

only validated high-confidence PSMs were retained. Despite this bias in favor of Crux, CSPI

models show superior performance, particularly for the composite score and window-norm

scheme.

Table 4. Cross-validation experiment on SO-DR dataset, reporting % of (assumed known) correct identifications,

correctly retrieved by respective scoring feature; All values are averaged over 2-times 5-fold cross-validation (2649

test MS/MS spectra per fold; q-value = 0.01)

Algorithm

Decoy 1

(Reversed SO-DR)

Decoy 2

(Reversed Human)

Rank-norm
Window-

norm
Rank-norm Window-norm

CSPI_Scoreb 26.8 % 39.4 % 17.7 % 26.6 %

CSPI_Scorey 71.0 % 75.4 % 62.8 % 66.5 %

CSPI_ScorebyAdded 74.4 % 81.6% 64.7 % 72.8 %

Crux 77.2 % 62.0 %

X!Tandem 71.7 % 63.2 %

 65

5.2 INDEPENDENT TEST DATASET VALIDATION

A more reliable evaluation is to train and test on completely different datasets.

Figure 11 reports the q-value plots for different algorithms compared when the CSPI

models were trained on SO-DR dataset while tested on the 18Mix1_LCQ and 18Mix1_LTQ

datasets.

Figure 11. FDR curves; Train on SO-DR dataset, test on: A) 18Mix1_LCQ, Rank-normalization; B) 18Mix1_LCQ,

Window-normalization; C) 18Mix1_LTQ, Rank-normalization; D) 18Mix1_LTQ, Window-normalization.

 66

Here similar trends are observed in terms of relative performance of features based on

IO-HMM models. Specifically, the composite score CSPI_Score
byAdded

 (red) outperforms the

individual b- or y-ion models (blue and green, respectively) for both normalization schemes

except for 18Mix1_LCQ dataset (upper panel) for which y-ion models perform better at lower q-

values. Comparing rank-norm (left panel) with window-norm (right-panel) scheme, a significant

performance improvement is seen in both b- and y-ion models, and therefore the composite

byAdded score, except for y-ions (green) for 18Mix1_LTQ (lower panel) which perform

comparably for both normalizations. It is noted that the contribution of b-ion models to the

composite score appears to be limited and needs further investigation and fine-tuning. Both y-ion

and byAdded models outperform Crux and X!Tandem by a wide margin over an acceptable

range of q-values (< 0.05) for window-norm scheme on both datasets, and for rank-norm scheme

on 18Mix1_LTQ dataset. Specifically, at q-value = 0.01, CSPI models can achieve over ~25%

improvement in the number of estimated correct peptide identifications.

Figure 12. FDR curves; Train on SO-DR dataset, test on: A) Yeast_LTQ, Rank-normalization; B)

Yeast_LTQ, Window-normalization.

 67

In order to test the generalization of results from controlled protein mixture to a real-

world dataset, performance was evaluated on an additional dataset, Yeast_LTQ. This dataset was

generated from yeast whole-cell lysate and consists of a set of ~ 35K spectra. CSPI models were

trained on SO-DR dataset, and Figure 12 shows the corresponding q-value plots. Again, a

significant performance boost is seen in the byAdded models using window-norm scheme, with

contribution from improvement in both b- and y-ion models as compared with rank-norm

scheme. Additionally, for the window-norm scheme y-ion and byAdded models significantly

outperform both X!Tandem and Crux, with ~11% and 22% more estimated correct

identifications (than X!Tandem, which does better than Crux in this case) at q-value = 0.01,

respectively.

With a good choice of features representing the problem at hand, machine learning

methods have the potential to learn complex patterns even with noisy data like that obtained

from MS/MS experiments. Incorporating several peptide properties in our models, it has been

shown how arbitrary features can be easily plugged into and tested with the CSPI framework.

Although each feature was not evaluated individually, the prototype appears to model y-ion

intensities well, providing good discrimination between correct and incorrect peptides. The b-ion

models clearly need additional fine-tuning of input layer features, normalization or both.

Based on the experience in analyzing these datasets, one reason for inadequate

performance of b-ion models is the nature of the datasets used. Specifically, for ion-trap data

from trypsin-digested proteins, y-ions are preferably more abundant in number and intensity than

b-ions, which, in many cases, are much harder to discriminate from random noise matches. For

most correctly identified peptides, several fragments from at least one ion-series (b- or y-) are

 68

observed. Since this information is lost when each ion-series is modeled separately, it might be

beneficial to build joint models from b- and y-ion series.

The above results also suggest that local normalization schemes may be superior to

global approaches, possibly due the fact that different regions of the m/z range of MS/MS spectra

show wide variability in both the density as well as intensity of peaks. This is well established in

the literature, specifically for ion-trap data, where more and abundant peaks are generally

observed from the middle of the peptides. Although the window-norm procedure is conceptually

reasonable and achieves good performance, the existence of several other pre-processing

methods in the literature is acknowledged, for example (Ning et al. 2007; Renard et al. 2009),

that could be worth investigating within the CSPI framework.

5.3 SCORE COMBINATION

As described earlier, multiple features, either from the same or different search algorithms, can

be combined to achieve greater performance. This experiment evaluates the benefit achieved by

adding CSPI‟s intensity-based scores on top of other features/scores. Top-ranking PSMs (both

targets and decoys) were first extracted from Crux results‟ files using in-house python scripts,

after which CSPI models trained on SO-DR dataset were applied to them. For this experiment,

random decoy peptide sequences generated by Crux were used instead of those from reversed

human FASTA. Different sets of features were combined using LogitPercolator and also

compared with original Percolator applied on Crux results. Since, from previous results, it is

clear that window-norm is superior to rank-norm scheme, this section evaluates LogitPercolator

only on window-norm scheme.

 69

Figure 13 shows the q-value plots for various combinations of features, from

18Mix1_LCQ, 18Mix1_LTQ and Yeast_LTQ datasets. As expected, a dramatic increase in

performance is observed as compared with results in the previous section where a single feature

was used (up to ~63 % extra estimated correct identifications at q-value=0.01 than the best

performing individual feature). This corroborates earlier findings on the utility of post-processing

and score combination approaches (Keller et al. 2002; Higdon et al. 2004; Kall et al. 2007).

Without CSPI scores, comparable performance was achieved for 18Mix1_LTQ and

Yeast_LTQ datasets by the baseline LogitPercolator(Crux+) compared to that of the original

Percolator, which provides confidence in the comparison and interpretation. Further addition of

CSPI‟s intensity-based features provides up to ~4-8% additional estimated number of correct

identifications than without them, at q-value=0.01. However it is noted that „delta_CSPI‟ scores

(i.e. difference in primary CSPI scores between top-ranking and the next best candidate) in

LogitPercolator(Crux+,IOHMM+) do not always provide significant additional benefit and

require further experimentation.

 70

Figure 13. FDR curves; Train on SO-DR dataset, apply on top-ranking targets/decoys from Crux; LogitPercolator:

Implementation of Percolator developed in this thesis using Logistic Regression Classifier; Percolator: Original

Percolator; Crux: features from Crux {XCorr, deltaCn, SpScore}; Crux+: features {Crux, fracMatch (fraction of

peptide fragments observed), fracExp (fraction of explained spectrum intensity)}; IOHMM: features {Crux+,

CSPI_Score
b
, CSPI_Score

y
}; IOHMM+: features{IOHMM, delta_CSPI_Score

b
, delta_CSPI_Score

y
}, where delta is

the difference between scores from top-ranking and the next best peptide (from original crux ranking); A)

18Mix1_LCQ, Window-normalization; B) 18Mix1_LTQ, Window-normalization; C) Yeast_LTQ, Window-

normalization.

 71

5.4 DATABASE SEARCH LOGISTICS

As discussed earlier, a key feature of shotgun proteomic data is their high-throughput aspect.

Effective utilization of these complex datasets requires intricate algorithms with good

performance characteristics, but that typically require significant computation time, the CSPI

framework being a case in point. As seen above, CSPI can confidently identify more spectra at a

controlled FDR as compared with popular state-of-the-art methods. However, it takes ~5-8

seconds for evaluating a spectrum (against the human protein database), and under constrained

searches (as described in section 4.2), which is at least 2 orders of magnitude more than the

closest competitor (Crux). Keeping pace with volume and rate of data generation will become

even more challenging when search constraints are removed or reduced, as will be necessary for

more thorough analysis.

5.4.1 Indexing Challenge

One commonly used strategy, also used in CSPI, for faster database search is indexing the

FASTA database file. The approach works well for constrained database searches (total of ~10

million peptides in the index, and ~10-20K candidates per spectrum) employed in the current

implementation and analysis in this thesis, and took (on average) less than a second to retrieve

candidates per query. However, unconstrained searches can yield a total space of several billion

peptides, leading to larger index files and increased index generation as well as querying time. A

potential scalable solution is a distributed index with capability for parallel generation and

querying (using simple synchronization primitives) which is facilitated by splitting the index into

 72

multiple files by mass region (as described earlier) as well as the fact that each spectrum can be

queried independently of others. Such schemes or variants thereof will be crucial for future

large-scale proteomics and must be explored.

5.4.2 Parallelization Challenge

Although, database search and candidate evaluation time depend upon the size of the MS/MS

datasets as well as the number of candidates evaluated per spectrum (which in turn depends upon

the search constraints applied), each spectrum can be evaluated independently of others. The

CSPI framework takes advantage of this characteristic to parallelize the computational workflow

using multiprocessing architectures. Figure 14 shows how CSPI scales with addition of processor

units. Specifically, the constrained searches performed resulted in between 10K and 20K

candidates to be evaluated per spectrum.

Figure 14. Scalability of the multiprocessing version of CSPI scoring algorithm

 73

It is seen that the throughput increases rapidly initially, although not linearly, but

saturates at about 15-20 processors. Although simpler scoring systems can achieve much higher

performance gains through parallelization (Xu et al. 2009), the gap can be possibly reduced with

alternate schemes for task-distribution.

As described above, the current workflow breaks the tasks at the individual spectrum

level, which means once a spectrum and its potential candidates are assigned to a child process,

they are evaluated sequentially within the same process. However, since evaluation of each

candidate against a spectrum itself requires several steps and can be performed independently of

all other candidates for all other spectra, there is scope for much further optimization. It is

important to note that although the entire process of peptide identification is inherently

parallelizable, optimum task distribution and sharing between processes will need careful

profiling of processing needs of individual steps and will also depend critically upon such factors

as the size of the database searched as well as search constraints applied. Further, with greater

granularity of tasks and number of processes, overhead due to inter-process communication will

become an important factor to consider (Xu et al. 2009). Automatically adjusting for all these

dependencies within resource constraints is a non-trivial but interesting problem to investigate.

 74

6.0 CONCLUSIONS AND FUTURE WORK

Scoring and confident identification of peptides and proteins lies at the heart of current mass-

spectrometry-based proteomics. The primary hypothesis of this dissertation was that CSPI

framework is effective for peptide scoring and identification from tandem mass spectrometry. In

order to test the hypothesis, CSPI was developed and empirically evaluated on several datasets of

different complexity.

(Claim 1) Increased peptide identification performance was demonstrated, in terms of

number of correct identifications at a fixed (user-defined) FDR as compared with popular state-

of-the-art algorithms (see Sections 5.1 and 5.2). The framework is highly flexible and scalable,

and can exploit different feature types and representations, as well as choice of component

functions, in order to learn and represent complex probability distributions.

(Claim 2) Variable performance characteristics were observed for the two different

fragment ion-types modeled in CSPI (see Sections 5.1 and 5.2). Particularly, y-ion models

showed much superior performance than their complementary b-ion models. As was pointed out

earlier, one reason for this discrepancy is the nature of data from ion-trap mass-spectrometers,

which strongly favor y-ions. Nevertheless, the b-ions do contribute some additional information

as was seen in superior performance of the simple composite score (CSPI_Score
byAdded

).

Utility of CSPI‟s intensity based features was further evidenced by better performance in

a state-of-the-art score-combination procedure. (Claim 3) It was demonstrated that addition of

 75

CSPI scores to other complementary scores and features leads to better discrimination between

true and false peptide identifications, thus leading to greater number of correctly identified

peptides at a fixed (low) FDR (see section 5.3). This approach is also a much superior composite

scoring scheme it appropriately weights the different features based on how much predictive they

are of the class label.

Since for most identifiable peptides, several fragment ions are observed from at least one

of the two ion-series, a possible direction for future work is to construct an additional feature

from jointly modeling the two observations at a specific fragmentation site. Since these are

complementary fragments, this will allow modeling the dependencies between their intensity

distributions. A couple of ideas of simple dependency models are shown in Figure 15.

A further, more challenging extension can include several other fragment-ion types (like

those carrying higher charge states, and neutral losses) in the output layer and learning their

complex dependencies. Modeling fragmentation is fundamental to the shotgun proteomics

approach. This general methodology can be adapted for modeling, either individually or

together, ion intensities from other fragmentation modalities than CID, like ETD or ECD, all of

which have their unique advantages and are sometimes generated as complementary sources of

information.

For the models developed in this thesis, the same set of features was used in the input

layer. It would be worth investigating if different sets of features are relevant for each kind of

observation sequence being modeled. Additionally, the models developed comprised only one

instance of a large class where the input features influenced the transition functions alone. A

more general model can also include their effect on the output distribution function, as well as

allow alterations in (currently fixed) model topology and component distributions. Training in

 76

such rich and expressive model space will require clever new search strategies as well as

significant domain knowledge, and may become possible in the future as peptide fragmentation

behavior is understood at a finer level.

Figure 15. Extensions to CSPI model structure used in this thesis; A) Joint b/y-ion models, with yb,t and yy,t

representing observed b- and y-ion intensities. Conditioned on hidden state qt, yb,t and yy,t are independent; B) Joint

b/y-ion models, with yb,t and yy,t representing observed b-ion and y-ion intensities, respectively. Here the b-ion

intensity depends on both the hidden state and the observed y-ion intensity

 77

The findings from experiments show the importance of appropriate normalization

protocol for effective modeling. Local approaches (for ex. the window-norm procedure) seem to

perform better. One possible argument in support of this observation is that noise level varies

from one region to another on the m/z (x)-axis. This information is lost in the global rank-based

approaches, which have been more widely researched and used to date. It is conceivable that

these two approaches provide complementary pieces of information and that a hybrid strategy

might be superior to each alone. A related line of research that by far remains unexplored in the

current domain is the explicit modeling of variability in signal as well as noise intensities in data

replicated across different laboratories. Although the current models were trained on PSM pairs

with unique peptide sequences, it is possible to obtain multiple spectra per peptide and to account

for the variability in peak intensities within the training phase. It would be useful to quantify the

effect similarity (or differences) in MS/MS spectra on the score assigned to a PSM.

Confirmation of the robustness and utility of the CSPI‟s intensity-based modeling

approach was further demonstrated in conjunction with a state-of-the-art score combination

procedure, LogitPercolator, which appropriately weights and combines several features of match

quality to boost performance. LogitPercolator provides a dramatic improvement over the simple

composite score and was shown to significantly enhance performance with the addition of

CSPI‟s intensity-based features to other features. An immediate extension to this baseline

version would be to allow cost-sensitive learning as was done in the original Percolator

algorithm, perhaps after factoring in features like the spectrum quality and signal-to-noise level.

It is quite easy to add other features into the algorithm. These features generally exhibit strong

correlations which are currently not exploited and can potentially improve performance if

modeled appropriately. The PSM scores and other features obtained depend upon how well

 78

different peptides fragment. Although this idea was exploited in the CSPI framework,

conditioning on physicochemical context at the score-combination stage might improve

performance further and also has the potential to elucidate dependencies and biases in individual

features in relation to the peptide sequences being evaluated.

 Finally, much of peptide-centric analyses are utilized in further downstream proteomic

investigations like protein identification, quantification and differential expression. It would be

interesting to compare the effects of differences in peptide identification performance in each of

these analysis stages. However, in order for such comparisons to be complete and practically

useful, the CSPI framework must first be extended to handle other data characteristics like higher

precursor peptide charge-states, post-translational modifications and digestion enzymes, all of

which were excluded from the current research.

 79

APPENDIX A

CSPI TRAINING: EM ALGORITHM

Let the n
th

 observation sequence pair be represented by dn = (Xn, Yn) = (<xn,1, xn,2,…, xn,Tn>,

<yn,1, yn,2, …, yn,Tn>), and the corresponding hidden state-sequence by qn=<qn,1 ,qn,2,…,qn,Tn>.

Then the conditional distribution P(Yn, qn | Xn, Ө), where Ө are the model parameters, is given

by:

Then, for a dataset D of N independently and identically distributed (iid) sequences, the joint

distribution is given by:

e)convenienc notationalfor suppressed is (

(A.1))|(*),|(*)|(*)|(

7) Figin structure graphical

 theof properties ceindependen and assumption Markovorder 1 (using

),|(*....*),|(*)|(*

)|(*....*)|(*)|(

),|(*),,|(),|,(

,,,1,,

2

1,1,1,1,

st

,.1,,2,1,2,1,1,

,,2,2,1,1,















 nnnn

n

n

nn

nn

tntntntnntn

T

t

nnnn

TnTnnTnnnnnn

TnTnnnnn

nnnnnnnn

qyPXqqPqyPXqP

XqqPXqqPXqP

qyPqyPqyP

XqPXqYPXqYP

(A.2))|(*),|()|()|(

),|,()|,(

,,,,,

2

1,1,1,1,

1

1

1 nnnnn

n

n

tntntntntn

T

t

nnnn

N

n

nnn

N

n

qyXqqPqyPXqP

XqYPqDP













 80

When considered a function of the parameters Ө, (A.2) is also known as the complete

data likelihood (CDL). Taking natural log, we get the log(CDL) as:

Expectation of the log(CDL) is computed w.r.t. the distribution P(q | D, Ө
k
), where Ө

k
 are the

parameters in the previous iteration, and can be computed independently for each of the terms A,

B and C in (A.3). Here „q’ is hidden state transition sequence for all the samples in the dataset D.

(A.3)),|(log)|(log)|(log

)|(),|(log)|(log)|(log

})|(*),|()|()|({log

})|(*),|(*)|()|({loglog

N

1

,,,

T

2

N

1

,,

T

1

1,1,

N

1

,,

2

,,,

T

1,1,1,1,

N

1

2

,,,,,1,1,1,1,

N

1

1 2

,,,,,1,1,1,1,

1

nn

1

n

2

1

1







 

  





 



















n

tntntn

tn

tntn

t

nn

n

tntn

T

t

tntntn

t

nnnn

n

T

t

tntntntntnnnnn

n

N

n

T

t

tntntntntnnnnn

nnn

n

nn

n

nn

n

n

nnn

n

n

n

nnnnn

n

n

nnnnn

XqqPqyPXqP

qyPXqqPqyPXqP

qyPXqqPqyPXqP

qyPXqqPqyPXqPCDL

 

(A.4)),|(*),|(log

),,|(*),|(*),|(log

),|(*),|(*),|(log

1)),|((),|(*),|(log

),|(*),|(*),|(log

j) ifor q oft independen is q (since

),|(*),|(*),|(log

),|(*),|(log

),|(*),|(log][

),|(log

1

1,1,1,

2

1,,1,

1

1,1,

...2,1,

1

1,1,

1

1,1,

1

1,1,

ji

1 \

1,1,

1

1,1,

1

1,1,],|[

1

1,1,

1,

1,

'









 

 



 













 




































N

n q

k

nnn

T

m

k

nmn

k

n

N

n q

nn

k

Tn

k

n

N

n q

nn

r

kk

n

N

n q

nn

N

n r

k

q

k

nnn

kk
N

n

n

q qqr

nn

k
N

n q

nn

k

q

N

n

nnDq

N

n

nn

n

n

n

n

n

n

n

n n

DqPXqP

DqqPDqPXqP

DqPDqPXqP

DrPDqPXqP

DrPDqPXqP

DrPDqPXqP

DqPXqP

DqPXqPAE

XqPA



Function of Parameters , as in Eq
n
 (15) in Chapter 2

'

1,ng

 81

Similarly we can compute the expectation of the terms „B‟ and „C‟ in (A.3)

(A.6)),|,(*),,|(log

),|,(*),,|(log

),,,|(*),|,(*),,|(log

),|(*),,|(log

),,|(*),|(*),,|(log

),|(*),,|(log

),|(*),,|(log][

),,|(log

1

,,

2

,,,

1

,,

2 ,

,,,

1)}(),{(\

,,,,

2 ,

,,,

1 2

,,,

1 \2

,,,

1 2

,,,

1 2

,,,],|[

1 2

,,,

1

, 1,

1

1

1,,

1

1,,

11

1,,

1

1

1

1

1
'

1

 

 

  



 



 



 

 

 

 

 

 

 


 





























































N

n

k

tntn

T

t q q

tntntn

N

n

k

tntn

T

t qq

tntntn

N

n qqqr

k

tntnn

k

tntn

T

t qq

tntntn

N

n

k

n

T

t q

tntntn

N

n qqr

k

n

k

n

T

t q

tntntn

N

n

k
T

t q

tntntn

q

k
N

n

T

t

tntntnDq

N

n

T

t

tntntn

DqqPXqqP

DqqPXqqP

DqqrPDqqPXqqP

DqPXqqP

DqrPDqPXqqP

DqPXqqP

DqPXqqPCE

XqqPC

nn

n

n ntn ntn

nnn

nn

n

n ntnntn

nnn

ntnntnnn

nnnn

n

n ntnntn

nnn

n

n n

nnn

n

n

n n

nnn

n

n

nnn

n

n

nnn

n

n

nnn

 

(A.5)),|(*),|(log

),|(*),|(*),|(log

),|(*),|(log

),,|(*),|(*),|(log

),|(*),|(log

),|(*,|(log][

),|(log

1 1

,,,

1 \

,

1

,,,

1 1

,,

1 1 \

,,

1 1

,,

1 1

,,],|[

1 1

,,

,

,,

'



 



 



 



 

 

 

  

 

 


 





























N

n

T

t

k

tn

q

tntn

N

n qqr

k

tnn

T

t

k

tn

q

tntn

N

n

T

t

k

n

q

tntn

N

n

T

t qqr

k

n

k

n

q

tntn

N

n

T

t

k

q

tntn

q

k
N

n

T

t

tntnDq

N

n

T

t

tntn

n

n

n

ntn

nn

ntnnn

n

n

n

n

ntn

nn

n

n n

nn

n

n nn

nn

n

n

nn

n

n

nn

n

n

nn

DqPqyP

qrPDqPqyP

DqPqyP

DqrPDqPqyP

DqPqyP

DqPqyPBE

qyPB

'

, ntngFunction of Parameters , as in Eq
n
 (15) in Chapter 2

'

, ntnhFunction of Parameters , as in Eq
n
 (15) in Chapter 2

 82

This completes the E-step, and the Q-function is given by:

As described earlier, in the M-step only an increase in the Q-function is required. This can be

achieved by a conjugate gradient method, and requires computing the partial derivatives of the

Q-function w.r.t. each of the parameters in the model. These are described next for the functional

forms used in CSPI framework (Logistic functions for initial state and transition probabilities,

and Gaussian/Exponential/Beta distributions for the emission probabilities).

Taking partial derivatives w.r.t. a specific β:

featureslayer input are '' and ,parameters weight function logistic theare '' where

(A.8) *

)exp(1

exp

log

)exp(1

1
log*

*),|(log

sample, n For the

) Functions Logisticstate-initial for the parameters theare (Here *),|(log

'

1,,

2

2 1

,1,,

1

,1,,

2 1

,1,,

'

1,1,

1

'

1,,1,1,,

th

1 1

'

1,,1,1,

x

g

x

x

x

g

gXiqPQ

gXiqPQ

jn

S

j
s

i

V

v

vnvi

V

v

vnvj

s

i

V

v

vnvi

n

S

i

innnnA

N

n

S

i

innnA










 



 







 



 



 

















































(A.7)

][][][),(

CBA

k

QQQ

CEBEAEQ





(A.9) -------- 1,2,..., ,...,3,2 where

exp1

exp

log*

exp1

exp

log*

exp1

1
log*

'

2

2 1

,1,,

1

,1,,

',

'

1,,

2 1

,1,,

1

,1,,

',

'

1,,

2 1

,1,,

',

'

1,1,

',

,

VvSl

x

x

g

x

x

g

x

g
Q S

lj
j

S

i

V

v

vnvi

V

v

vnvj

vl

jnS

i

V

v

vnvi

V

v

vnvl

vl

lnS

i

V

v

vnvi

vl

n

vl

nA















































































































































 



 



  


 



 



 















A B C

 83

(A.10) -----------),|(**

exp1

exp)1(

*

exp1

1
log* A

1,1,

'

1,1,',

2 1

,1,,

',1,

1

,1,,

'

1,1,

2 1

,1,,
',

'

n,1,1
































































 



 
 



 

nnnvn

S

i

V

v

vnvi

vn

V

v

vnvl

nS

i

V

v

vnvi
vl

XlqPgx

x

xx

g

x

g








 

  -(A.11)-----------),|(1** x

exp1

*exp*exp*exp*exp1

*

exp1

exp

1
*

exp1

exp

log* B

1,1,

'

1,,v'n,1,

2

2 1

,1,,

',1,,1,,

1

,1,,',1,

1

,1,,

2 1

,1,,

2 1

,1,,

1

,1,,

'

1,,

2 1

,1,,

1

,1,,

',

'

1,,

























































































































































 

 

 



 



 

 

 



 



nnln

S

i

V

v

vnvi

vnvnvl

V

v

vnvlvn

V

v

vnvl

S

i

V

v

vnvi

S

i

V

v

vnvi

V

v

vnvl

ln

S

i

V

v

vnvi

V

v

vnvl

vl

ln

Xlqpg

x

xxxxxx

x

x

g

x

x

g















-(A.12)---------),|(**

exp1

*exp*exp

*

exp1

exp

1
*

exp1

exp

log* C

1,1,',

2

'

1,,

2

2 1

,1,,

',1,

1

,1,,

1

,1,,

2

2 1

,1,,

1

,1,,

'

1,,

2

2 1

,1,,

1

,1,,

',

'

1,,



















































































































































 




 




 






 






 






 



nnvn

S

lj
j

jn

S

i

V

v

vnvi

vn

V

v

vnvl

V

v

vnvjS

lj
j

S

i

V

v

vnvi

V

v

vnvj

jn

S

lj
j

S

i

V

v

vnvi

V

v

vnvj

vl

jn

XlqPxg

x

xxx

x

x

g

x

x

g















 84

Hence, considering the entire dataset,

The term QB in the Q-function of E-step is a function of the parameters of the emission

distributions. For the purpose of demonstration, the following derivations correspond to

Gaussian Emission distributions, and can be easily extended for other emission distributions. Let

Z ~ N(μ, σ
2
) be a normally distributed variable. The following results are used for performing the

M-step:

    

  (A.13)---------),|(*

),|(**

),|(1**x),|(**

'

1,,1,1,,1,

1,1,',1,

2

'

1,,

1,1,

'

1,,11,1,

'

1,1,',1,

',

,

' lnnnvn

nnvn

S

lj
j

jn

nnln,v'n,nnnvn

vl

nA

gXlqPx

XlqPxg

XlqPgXlqPgx

CBA
Q


































 





 N

n

lnnnvn

vl

A gXlqPx
Q

1

'

1,,1,1,',1,

',

-(A.14)-------),|(*


 
(A.16) --------

1

(A.15) --------

2

1
)log(

2

1
)2log(

2

1

2

1
log)),;(log(

3

2

2

2

2

2

*
2

1

2

2
























 




















 













 









 





























 

zw

zw

const
z

z

ezZfw

z

 85

Now,

Taking partial derivatives w.r.t. the parameters of the Gaussian emission distribution, and using

results from (A.15) and (A.16) above, we get,

For the case of Gaussian distribution, we can maximize the parameters (M-step) by equating the

partial derivative to zero, which gives the following MLE for the mean of the distribution:

Similarly, taking the partial derivative w.r.t. the variance parameter and equating to zero, we get

the MLE for the variance of the distribution:

ons)distributiemission for the parameters theare (Here *)],|(log[
1 1 1

'

,,,, 
  

N

n

T

t

S

i

tintntnB

n

n

nnn
giqyPQ


 










 




 N

n

T

t s

stn

tsn

s

B
n

n

n

n

y
g

Q

1 1
2

,'

,, *






(A.18)-----------

)(*

1 1

'

,,

1 1

2

,

'

,,

2





 

 







N

n

T

t

tsn

N

n

T

t

stntsn

s
n

n

n

n

n

MLEnn

MLE

g

yg 



 
(A.17) ---------

*

1 1

'

,,

1 1

,

'

,,





 

 



N

n

T

t

tsn

N

n

T

t

tntsn

s
n

n

n

n

n

nn

MLE

g

yg



 86

The term QC in the Q-function of the E-step is a function of the parameters of the transition

probability functions.

For the n
th

 sample and tn
th

 position,

Taking partial derivatives w.r.t. a specific weight parameter β of a logistic function, we get:

'

,,,

1 2

,

1

,

1

, *),,|(log
1 n

n

n

nnn tpqn

N

n

T

t

tn

S

p

tn

S

q

tnC hXpqqqPQ 
   




 

 

-(A.20)---------

exp1

exp

log*

exp1

exp

log*

exp1

1
log,*

2 1

,,,,

1

,,,,

2 ',,

'

,,,

2 1

,,,,

1

,,,,

',,

'

,,,

2 1

,,,,

',,

'

,,1,

',,

,,


























































































































 




 



 

 






 



 

S

i

V

v

vtnvik

V

v

vtnvjkS

lj
j vlk

tkjn

S

i

V

v

vtnvik

V

v

vtnvlk

vlk

tkln

S

i

V

v

vtnvik

vlk

tkn

vlk

tnC

n

n

n

n

n

n

n

n

n

x

x

h

x

x

h

x

h
Q
















 

 

 

(A.19)-----------

exp1

exp

log*

exp1

1
log*

*),,|(log

2

2 1

,,,,

1

,,,,

'

,,,

1

2 1

,,,,

'

,,1,

'

,,,,

1

,

1

,,, 1


 




 





 





 

 




































































S

q
S

i

V

v

vtnvip

V

v

vtnvqp

tpqn

S

p
S

i

V

v

vtnvip

tpn

tpqntn

S

p

tn

S

q

tntnC

n

n

n

n

n

nnnnn

x

x

h

x

h

hXpqqqPQ







A

B

C

 87

Simplifying each of the terms, we get:

(A.21)---------),|(**

exp1

exp)1(

*

exp1

1

1
*

exp1

1
log* A

,,,

'

,,1,',,

2

2 1

,,,,

',,

1

,,,,

2 1

,,,,

'

,,1,

2 1

,,,,

',,

'

,,1,

1











































































































 



 

 

 



 

 

tntntntknvtn

S

i

V

v

vtnvik

vtn

V

v

vtnvlk

S

i

V

v

vtnvik

tkn

S

i

V

v

vtnvik

vlk

tkn

XkqlqPhx

x

xx

x

h

x

h

nnnn

n

nn

n

n

n

n










  -(A.22)-------),,|(1**

exp1

*exp*exp*exp*exp1

*

exp1

exp

1
*

exp1

exp

log* B

,,,

'

,,,',,

2

2 1

,,,,

',,

1

,,,,

1

,,,,',,

1

,,,,

2 1

,,,,

2 1

,,,,

1

,,,,

'

,,,

2 1

,,,,

1

,,,,

,,

'

,,,

1


















































































































































































 

 

 



 



 

 

 



 



nnnnn

n

nnnnnn

n

n

n

n

n

n

n

tntntntklnvtn

S

i

V

v

vtnvik

vtn

V

v

vtnvlk

V

v

vtnvlkvtn

V

v

vtnvlk

S

i

V

v

vtnvik

S

i

V

v

vtnvik

V

v

vtnvlk

tkln

S

i

V

v

vtnvik

V

v

vtnvlk

tlk

tkln

XkqlqPhx

x

xxxxxx

x

x

h

x

x

h















 88

Hence,

Adding contribution from all samples and all positions within samples, we get,

 

 

-(A.23)---------),,|(**

exp1

*exp-*exp

*

exp1

exp

1
*

exp1

exp

log* C

2

,,,',,

'

,,,

2

2 1

,,,,

',,

1

,,,,

1

,,,,

2

2 1

,,,,

1

,,,,

'

,,,

2 1

,,,,

1

,,,,

2 ',,

'

,,,

1

 




 



 







 






 



 
































































































































S

lj
j

tntntnvtntkjn

S

i

V

v

vtnvik

vtn

V

v

vtnvlk

V

v

vtnvjkS

lj
j

S

i

V

v

vtnvik

V

v

vtnvjk

tkjn

S

i

V

v

vtnvik

V

v

vtnvjkS

lj
j vlk

tkjn

nnnnn

n

nnn

n

n

n

n

n

n

XkqlqPxh

x

xxx

x

x

h

x

x

h















'

,,,',,

1

'

,,,,,,',,

',,

,,

**),,|(*

CBA

1 nnnnnnn

n

tklnvtn

S

j

tkjntntntnvtn

vlk

tnC

hxhXkqlqPx

Q




























 
   














N

n

T

t

tkln

S

j

tkjntntntnvtn

vlk

C
n

n

nnnnnn
hhXkqlqPx

Q

1 2

'

,,,

1

'

,,,,,,',,

',,

-(A.24)----- *),,|(*
1

 89

APPENDIX B

CSPI MANUAL

B.1 DESIGN AND DESCRIPTION OF PYTHON SCRIPTS

B.1.1 Domain Objects (DO)

a. DO/spectrumDO.py: Classes for MS/MS spectrum and spectrum peaks. These

contain data and methods for handling spectrum files, including spectrum pre-

processing steps.

b. DO/sequenceDO.py: Generic sequence class to store an amino-acid sequence and

the corresponding FASTA header.

c. DO/proteinDO.py: Inherits Sequence class, containing protein sequence-specific

data/methods.

d. DO/peptideDO.py: Generic peptide class that inherits from the Sequence class.

 90

e. DO/candidatePeptideDO.py: Inherits the Peptide class, and contains information

for a peptide in context of a specific Spectrum, like charge-state.

f. DO/fragmentDO.py: Generic peptide fragment class.

g. DO/matchedFragmentDO.py: Inherits Fragment class, and contains information

for a fragment in context of a specific spectrum, like a Boolean variable

“observed/not observed”.

h. DO/constantsDO.py: Contains data values that remain fixed, for ex. properties of

amino acids like their masses, hydrophobicity, gas-phase basicity etc.

B.1.2 Data Access Objects (DAO)

a. DAO/fastaReader.py: Parser for protein FASTA databases. Given a FASTA file,

this script is used to read in protein sequences and return Protein objects.

b. DAO/peptideIndexerDAO.py: Script for creating and querying indexes generated

from protein FASTA files, for fast retrieval of candidates during Database Search.

c. DAO/resultsFileParserDAO.py: Contains parsers for extracting relevant data from

results files of CSPI, Crux and X!Tandem.

 91

d. DAO/searchResultRecordDAO.py: Container for a particular peptide-spectrum

match, used in post-processing of database search results for storing the scores from

database search as well as FDR/q-value.

B.1.3 Processing Scripts (BO)

a. BO/trainingEngineBO.py: Main script for initializing trainer, reading in training

data and starting the trainer.

b. BO/searchEngineBO(_mp).py: Main script for performing database search.

“*_mp*” version utilizes multiprocessing to speed up processing of large MS/MS

datasets.

c. BO/ioHmmBO_mp.py: Script containing the details of the EM algorithm as well as

the scorer class that scores PSMs.

d. BO/modelFamilyBO_mp.py: Script containing classes for transition and emission

models used as components in the CSPI framework. Their methods include

computation of maximum likelihood parameter estimates as well as relevant

methods for computing probability density/distributions.

e. BO/psmEngineBO.py: Script for evaluating a PSM, including matching theoretical

with experimental spectrum, computing input and output layers of CSPI models and

computing fragmentation statistics (fracMatch and fracExplained)

 92

f. BO/fdrAnalysisBO.py: Script for performing fdr analysis on search results from

various algorithms (CSPI, Crux, X!Tandem)

B.1.4 Parameters (Params)

a. Params/applicationParams.py: Contains all the parameters used in training and

applying CSPI models, as described above.

B.2 PARAMETERS (TO BE SPECIFIED IN THE SCRIPT

PARAMS/APPLICATIONPARAMS.PY)

B.2.1 Training CSPI models

a. maxNoOfIterations: Maximum number of iterations for GEM training (integer;

default = 500)

b. relDiff_dataLogLik_thresh: Relative difference in data log likelihood in order for

EM to converge (floating point; default = 0.0001)

c. maxIter: Number of steps in the conjugate gradient used in the M step of the GEM

algorithm (integer; default = 2)

d. seed: Floating point seed for random initialization (numeric; default = “None”, in

which case system clock is used)

 93

e. paramEvolutionFile_TP(FP)_b(y): File name storing the concatenated list of

parameters for each iteration of the GEM algorithm, for true (TP) and Null (FP)

models for b (or y) fragment ion-types

f. params_IoHmm_TP(FP)_filename_b(y)ions: parameter filenames for storing the

final parameters for trained CSPI models

g. TP(FP)_psmMap_file: Path to the training data files for True (TP) and Null (FP)

models

h. spectrumParentDir: Path to the directory containing spectrum directories

i. spectrumDirName: Name of the directory containing spectrum files

j. spectrumDir: Path to the directory containing MS/MS spectrum files

k. modelFamilyDict_True(Null)_b(y): Dictionary storing the model types for

emission and transition functions

l. results_parentDir: Parent directory for storing all the outputs to various scripts

m. trainingResultsDir: Directory for storing parameters and parameter-evolution files

n. noOfProcs: Number of child processes to create for training and searching (integer).

 94

B.2.2 Database search and CSPI Scoring

a. dbFilename: Protein database file (full path)

b. MH_Lower: Lower threshold of peptide (+ proton) mass in daltons, i.e. (M+H
+
)

c. MH_Upper: Upper threshold of peptide (+ proton) mass in daltons, i.e. (M+H
+
)

d. precursorMassType: Type of mass used to compute peptide mass (Average or

monoisotopic) (0 or 1; default=1, for Avg)

e. precursorPepError: Error tolerance to search candidate peptides from database

(floating point; default=+/- 3 Da)

f. fragMassType: Type of mass used to compute fragment mass (Average or

monoisotopic) (0 or 1; default=0, for Mono)

g. fragmentError: Error tolerance to match peptide fragments with spectrum peaks

(floating point; default=+/- 0.5 Da)

h. enzyme: Enzyme used in Protein digestion (char string; typically “Trypsin”)

i. cleavageMode: Extent of cleavage enzyme specificity to use for searching

candidates (0,1 or 2; default=2, i.e. full enzyme specificity)

 95

j. maxMissCleavage: number of allowable internal enzyme-specific sites in peptides

(integer; default=3)

k. candidateFilterLevel: Size of filtered candidate peptides‟ list to evaluate using

CSPI models

l. searchResultsDir: Directory for storing database search results

m. searchResultsFileName_b(y or byAdded)Model: Filename to store database

search results

n. noOfTopRanksToReport: Number of top-ranking candidate peptides to report for

each spectrum (integer; default=10)

B.2.3 Protein FASTA Database Indexing

a. mzBinSize: m/z range to cover per index file (float; default=25 Da). Peptides in the

mass range (MH_Lower, MH_upper) are considered in database search. Multiple

index files are generated covering subsequent „mzBinSize‟ Da units.

b. Index_parentDir: Parent directory where index files are stored

 96

B.3 RUNNING THE SCRIPTS

B.3.1 Protein FASTA Indexing

Depending upon the task, the following lines of code are added inside

DAO/peptideIndexerDAO.py, which can then be run as the main script:

-- Index Generation:

> writer = PeptideIndexWriter()

> writer.index_proteins()

-- Index Query:

> reader = PeptideIndexReader()

> reader.search(<queryMH>)

(where where, „PeptideIndexReader‟ and „PeptideIndexWriter‟ are classes defined in

DAO/peptideIndexerDAO.py; first line instantiates an object of the class while the

second line calls a method defined in the class; queryMH = Expected Mass of peptide +

Proton that is extracted from the spectrum file being evaluated)

B.3.2 CSPI models’ training

The following lines of code are added inside BO/trainingEngineBO.py, which can then

be run as the main script:

> trainingEngine = pepIoHmm_Train(<Model Type>, <Ion Type>,

<paramEvolutionFile>, <trainedParamsFile>)

 97

> trainingEngine.start()

(where, „pepIoHmm_Train‟ is a class defined in BO/trainingEngineBO.py; first line

instantiates an object of the class while the second line calls a method defined in the

class; Model Type can be “True” or “False” and Ion Type can be “b” or “y”; arguments

paramEvolutionFile and trainedParamsFile are stated in the Params/applicationParams.py

file)

B.3.3 Database Searching

The following lines of code are added inside BO/searchEngineBO_mp.py, which can

then be run as the main script:

> searchEngine = SearchEngine(<spectrumDir>, <paramsFile_b_TP>,

<paramsFile_y_TP>, <paramsFile_b_FP>,

<paramsFIle_y_FP>, <searchResultsFile_bModel>,

<searchResultsFile_yModel>,

<searchResultsFile_byAdded>)

> searchEngine.start(False)

(where, „SearchEngine‟ is a class defined in BO/searchEngineBO_mp.py; first line

instantiates an object of the class while the second line calls a method defined in the

class; all the arguments are specified in the Params/applicationParams.py file)

 98

B.4 FILE FORMATS

B.4.1 Spectrum files

Currently, CSPI framework supports spectrum files in the SEQUEST „dta‟ format

B.4.2 Files generated from CSPI Training (Location of the following files is specified in

Params/applicationParams.py)

a. paramEvolutionFile

This file contains the record of CSPI models‟ parameters as they evolve through the

iterative EM algorithm. Each record consists of concatenated parameter values from

the Initial-state logistic model, transition logistic models and emission models. The

number of records in the file is the same as the number of iterations it took for the

training procedure to converge.

b. paramsFile

This file contains the record of trained CSPI models‟ parameters, listed in the

following order: Initial state logistic function, transition probability logistic

functions and emission function parameters. For logistic function models, all the

parameters/weights from one weight vector are concatenated (with comma-

separator) and stored on one line. Hence, for ex., with four hidden states each

 99

logistic model contains three weight vectors, each of which are listed on a separate

row. Similarly, parameters for each emission model are concatenated and put on

one row.

B.4.3 Search Results’ files

CSPI results files are simple ASCII text with the following components:

a. Header for the following column labels: SpectrumIndex (unique id for a

spectrum in the dataset), SpectrumName (spectrum filename), LogLR_b

(CSPI_Score
b
), True_LogLik_b (CSPI_Score

bTrue
), Null_LogLik_b

(CSPI_Score
bNull

), LogLR_y (CSPI_Score
y
), True_LogLik_y

(CSPI_Score
yTrue

), Null_LogLik_y (CSPI_Score
yNull

), Score

(CSPI_Score
byAdded

), MH (Mass of Peptide + proton), FrontChar (Amino acid

of the Protein just ahead of the peptide sequence), Sequence (Peptide Amino

Acid Sequence), EndChar (Trailing Amino Acid of the peptide sequence),

FastaHeader (FASTA header sequence of the parent protein))

b. Results Records: containing values for each of the columns (see header) for

top ‘n’ candidates for each spectrum, where ‘n’ is specified in the

Params/applicationParams.py script

 100

BIBLIOGRAPHY

Aebersold, R. and D. R. Goodlett (2001). "Mass spectrometry in proteomics." Chem Rev 101(2):

269-295.

Aebersold, R. and M. Mann (2003). "Mass spectrometry-based proteomics." Nature 422(6928):

198-207.

Anderson, N. L., M. Polanski, et al. (2004). "The human plasma proteome: a nonredundant list

developed by combination of four separate sources." Mol Cell Proteomics 3(4): 311-326.

Bengio, Y. and P. Frasconi (1995). An Input Output HMM Architecture. Advances in Neural

Information Processing Systems.

Bengio, Y., V.-P. Lauzon, et al. (2001). "Experiments on the Application of IOHMMs to Model

Financial Returns Series." IEEE Trans. Neural Networks 12(1): 113-123.

Benjamini, Y. and Y. Hochberg (1995). "Controlling the false discovery rate: a practical and

powerful approach to multiple testing." Journal of the Royal Statistical Society 57(1):

289-300.

Bishop, C. (1996). Neural Networks for Pattern Recognition. New York, Oxford University

Press.

Bishop, C. (2007). Pattern Recognition and Machine Learning, Springer.

Breci, L. A., D. L. Tabb, et al. (2003). "Cleavage N-terminal to proline: analysis of a database of

peptide tandem mass spectra." Anal Chem 75(9): 1963-1971.

Casella G, B. R. (2001). Statistical Inference, Duxbury Press.

Choi, H., D. Ghosh, et al. (2008). "Statistical validation of peptide identifications in large-scale

proteomics using the target-decoy database search strategy and flexible mixture

modeling." J Proteome Res 7(1): 286-292.

Choi, H. and A. I. Nesvizhskii (2008). "False discovery rates and related statistical concepts in

mass spectrometry-based proteomics." J Proteome Res 7(1): 47-50.

Choi, H. and A. I. Nesvizhskii (2008). "Semisupervised model-based validation of peptide

identifications in mass spectrometry-based proteomics." J Proteome Res 7(1): 254-265.

Cortes, C. and V. Vapnik (1995). "Support-Vector Networks." Machine Learning 20(3): 273-

297.

Craig, R. and R. C. Beavis (2004). "TANDEM: matching proteins with tandem mass spectra."

Bioinformatics 20(9): 1466-1467.

Craig, R., J. P. Cortens, et al. (2004). "Open source system for analyzing, validating, and storing

protein identification data." J Proteome Res 3(6): 1234-1242.

de Godoy, L. M., J. V. Olsen, et al. (2006). "Status of complete proteome analysis by mass

spectrometry: SILAC labeled yeast as a model system." Genome Biol 7(6): R50.

Dempster A, L. N., Rubin DB (1977). "Maximum Likelihood from Incomplete Data via the EM

Algorithm." J of the Royal Statistical Society 39(1): 1-38.

 101

Desiere, F., E. W. Deutsch, et al. (2006). "The PeptideAtlas project." Nucleic Acids Res

34(Database issue): D655-658.

Ding, Y., H. Choi, et al. (2008). "Adaptive discriminant function analysis and reranking of

MS/MS database search results for improved peptide identification in shotgun

proteomics." J Proteome Res 7(11): 4878-4889.

Durbin R, E. S., Krogh A, Mitchison G (1999). Biological Sequence Analysis: Probabilistic

Models of Proteins and Nucleic Acids, Cambridge University Press.

Eidhammer, I., K. Flikka, et al. (2007). Computational Methods for Mass Spectrometry

Proteomics, John Wiley and Sons Ltd.

Elias, J. E., F. D. Gibbons, et al. (2004). "Intensity-based protein identification by machine

learning from a library of tandem mass spectra." Nat Biotechnol 22(2): 214-219.

Elias, J. E. and S. P. Gygi (2007). "Target-decoy search strategy for increased confidence in

large-scale protein identifications by mass spectrometry." Nat Methods 4(3): 207-214.

Eng, J., A. McCormack, et al. (1994). "An approach to correlate tandem mass spectral data of

peptides with amino acid sequences in a protein database." Journal of the American

Society for Mass Spectrometry 5(11): 976-989.

Ernst, J., O. Vainas, et al. (2007). "Reconstructing dynamic regulatory maps." Molecular

Systems Biology 3: 74.

Feng, J., D. Q. Naiman, et al. (2007). "Probability-based pattern recognition and statistical

framework for randomization: modeling tandem mass spectrum/peptide sequence false

match frequencies." Bioinformatics 23(17): 2210-2217.

Gibbons, F. D., J. E. Elias, et al. (2004). "SILVER helps assign peptides to tandem mass spectra

using intensity-based scoring." J Am Soc Mass Spectrom 15(6): 910-912.

Henderson J, S. S., Fasman KH (1997). "Finding genes in DNA with a Hidden Markov Model."

J Comput Biol 4(2): 127-141.

Higdon, R., N. Kolker, et al. (2004). "LIP index for peptide classification using MS/MS and

SEQUEST search via logistic regression." OMICS 8(4): 357-369.

Hosmer, D. W. and S. Lemeshow (2000). Applied Logistic Regression, Wiley-Interscience.

Huang, Y., J. M. Triscari, et al. (2005). "Statistical characterization of the charge state and

residue dependence of low-energy CID peptide dissociation patterns." Anal Chem

77(18): 5800-5813.

Huang, Y., G. C. Tseng, et al. (2008). "A data-mining scheme for identifying peptide structural

motifs responsible for different MS/MS fragmentation intensity patterns." J Proteome Res

7(1): 70-79.

Hubbard, S. J., A. R. Jones, et al. (2010). Understanding and Exploiting Peptide Fragment Ion

Intensities Using Experimental and Informatic Approaches. Proteome Bioinformatics,

Humana Press. 604: 73-94.

Jean-Fran\, \#231, et al. (2009). "Probabilistic models for melodic prediction." Artif. Intell.

173(14): 1266-1274.

Jensen, F. V. and T. D. Nielsen (2007). Bayesian networks and decision graphs. New York,

Springer.

Kall, L., J. D. Canterbury, et al. (2007). "Semi-supervised learning for peptide identification

from shotgun proteomics datasets." Nat Methods 4(11): 923-925.

Kall, L., J. D. Storey, et al. (2008). "Assigning significance to peptides identified by tandem

mass spectrometry using decoy databases." J Proteome Res 7(1): 29-34.

 102

Kandasamy, K., A. Pandey, et al. (2009). "Evaluation of Several MS/MS Search Algorithms for

Analysis of Spectra Derived from Electron Transfer Dissociation Experiments."

Analytical Chemistry 81(17): 7170-7180.

Kapp, E. and F. Schutz (2007). "Overview of tandem mass spectrometry (MS/MS) database

search algorithms." Curr Protoc Protein Sci Chapter 25: Unit25 22.

Kapp, E. A., F. Schutz, et al. (2005). "An evaluation, comparison, and accurate benchmarking of

several publicly available MS/MS search algorithms: sensitivity and specificity analysis."

Proteomics 5(13): 3475-3490.

Kapp, E. A., F. Schutz, et al. (2003). "Mining a tandem mass spectrometry database to determine

the trends and global factors influencing peptide fragmentation." Anal Chem 75(22):

6251-6264.

Karplus K, B. C., Cline M, Diekhans M, Grate L, Hughey R (1999). "Predicting protein structure

using only sequence information." Proteins: Structure, Function, and Bioinformatics 37:

121-125.

Keller, A., A. I. Nesvizhskii, et al. (2002). "Empirical statistical model to estimate the accuracy

of peptide identifications made by MS/MS and database search." Anal Chem 74(20):

5383-5392.

Khatun, J., E. Hamlett, et al. (2008). "Incorporating sequence information into the scoring

function: a hidden Markov model for improved peptide identification." Bioinformatics

24(5): 674-681.

Klammer AA, P. C., Noble WS (2009). "Statistical Calibration of the Sequest XCorr Function." J

Proteome Res 8(4): 2106-2113.

Klammer, A. A., S. M. Reynolds, et al. (2008). "Modeling peptide fragmentation with dynamic

Bayesian networks for peptide identification." Bioinformatics 24(13): i348-356.

Klimek, J., J. S. Eddes, et al. (2008). "The standard protein mix database: a diverse data set to

assist in the production of improved Peptide and protein identification software tools." J

Proteome Res 7(1): 96-103.

Ma, B. (2010). "Challenges in Computational Analysis of Mass Spectrometry Data for

Proteomics." Journal of Computer Science and Technology 25(1).

Mann, M., R. C. Hendrickson, et al. (2001). "Analysis of proteins and proteomes by mass

spectrometry." Annu Rev Biochem 70: 437-473.

Marcotte, E. (2007). "How do shotgun proteomics algorithms identify proteins?" Nature

Biotechnology 25(7): 755-757.

Martens, L., H. Hermjakob, et al. (2005). "PRIDE: the proteomics identifications database."

Proteomics 5(13): 3537-3545.

Murphy, K. (2002). Dynamic Bayesian Networks: Representation, Inference and Learning.

Computer Science Ph.D. Thesis, UC Berkeley.

Nesvizhskii, A. I. (2007). "Protein identification by tandem mass spectrometry and sequence

database searching." Methods Mol Biol 367: 87-119.

Nesvizhskii, A. I., O. Vitek, et al. (2007). "Analysis and validation of proteomic data generated

by tandem mass spectrometry." Nat Methods 4(10): 787-797.

Ning, K. and H. W. Leong (2007). "Algorithm for peptide sequencing by tandem mass

spectrometry based on better preprocessing and anti-symmetric computational model."

Comput Syst Bioinformatics Conf 6: 19-30.

Olsen, M. A., K. Bostic, et al. (1999). Berkeley DB. Proceedings of the FREENIX Track: 1999

USENIX Annual Technical Conference.

 103

Paizs, B. and S. Suhai (2005). "Fragmentation pathways of protonated peptides." Mass Spectrom

Rev 24(4): 508-548.

Park, C. Y., A. A. Klammer, et al. (2008). "Rapid and accurate peptide identification from

tandem mass spectra." J Proteome Res 7(7): 3022-3027.

Perkins, D. N., D. J. Pappin, et al. (1999). "Probability-based protein identification by searching

sequence databases using mass spectrometry data." Electrophoresis 20(18): 3551-3567.

Rabiner, L. (1989). "A Tutorial on Hidden Markov Models and Selected Applications in Speech

Recognition." Proceedings of the IEEE 77(2): 257-286.

Renard, B. Y., M. Kirchner, et al. (2009). "When less can yield more - Computational

preprocessing of MS/MS spectra for peptide identification." Proteomics 9(21): 4978-

4984.

Roepstorff, P. and J. Fohlman (1984). "Proposal for a common nomenclature for sequence ions

in mass spectra of peptides." Biomed Mass Spectrom 11(11): 601.

Searle, B. C., M. Turner, et al. (2008). "Improving sensitivity by probabilistically combining

results from multiple MS/MS search methodologies." J Proteome Res 7(1): 245-253.

Steen, H. and M. Mann (2004). "The ABC's (and XYZ's) of peptide sequencing." Nat Rev Mol

Cell Biol 5(9): 699-711.

Storey, J. D. and R. Tibshirani (2003). "Statistical significance for genomewide studies." Proc

Natl Acad Sci U S A 100(16): 9440-9445.

Syka, J. E., J. J. Coon, et al. (2004). "Peptide and protein sequence analysis by electron transfer

dissociation mass spectrometry." Proc Natl Acad Sci U S A 101(26): 9528-9533.

Tabb, D. L., Y. Huang, et al. (2004). "Influence of basic residue content on fragment ion peak

intensities in low-energy collision-induced dissociation spectra of peptides." Anal Chem

76(5): 1243-1248.

Tsaprailis, G., H. Nair, et al. (2004). "A mechanistic investigation of the enhanced cleavage at

histidine in the gas-phase dissociation of protonated peptides." Anal Chem 76(7): 2083-

2094.

Vaisar, T. and J. Urban (1996). "Probing the proline effect in CID of protonated peptides." J

Mass Spectrom 31(10): 1185-1187.

Vapnik, V. N. (1998). Statistical learning theory. New York, Wiley.

Vitek, O. (2009). "Getting started in computational mass spectrometry-based proteomics." PLoS

Comput Biol 5(5): e1000366.

Wan, Y., A. Yang, et al. (2006). "PepHMM: a hidden Markov model based scoring function for

mass spectrometry database search." Anal Chem 78(2): 432-437.

Wysocki, V. H., K. A. Resing, et al. (2005). "Mass spectrometry of peptides and proteins."

Methods 35(3): 211-222.

Wysocki, V. H., G. Tsaprailis, et al. (2000). "Mobile and localized protons: a framework for

understanding peptide dissociation." J Mass Spectrom 35(12): 1399-1406.

Xu, H. and M. A. Freitas (2009). "MassMatrix: a database search program for rapid

characterization of proteins and peptides from tandem mass spectrometry data."

Proteomics 9(6): 1548-1555.

Zhou, C., L. D. Bowler, et al. (2008). "A machine learning approach to explore the spectra

intensity pattern of peptides using tandem mass spectrometry data." BMC Bioinformatics

9: 325-341.

 104

	TITLE
	COMMITTEE MEMBERS

	ABSTRACT

	TABLE OF CONTENTS
	List of tables
	List of figures
	ACKNOWLEDGEMENTS
	GLOSSARY
	1.0 Introduction
	1.1 The Problem
	1.2 The Approach
	1.2.1 Thesis

	1.3 Significance
	1.4 Dissertation Overview

	2.0 Background
	2.1 Proteomic Mass Spectrometry: Fundamentals
	2.2 Tandem Mass Spectrometry (MS/MS), a.k.a. Bottom-up or Shotgun Proteomics
	2.3 Database Search
	2.4 Machine Learning Concepts
	2.4.1 Logistic Regression
	2.4.2 Maximum Likelihood Training
	2.4.3 Input-output Hidden Markov Models (IO-HMMs)
	2.4.3.1 IO-HMM Training
	2.4.3.2 Expectation Maximization (in context of IO-HMM)

	2.5 Evaluation, Score Combination and Post-processing of Database Search Results
	2.5.1 False Discovery Rate (FDR) and Q-values
	2.5.2 Score Combination, Post-processing

	3.0 Context-Sensitive Peptide Identification Framework
	3.1 Input Layer (<x1x2…xT>)
	3.2 Output Layer (<y1y2…yT>)
	3.3 Normalization
	3.4 Parameter Representation
	3.5 Transition Functions
	3.6 CSPI Training
	3.7 CSPI Inference
	3.8 Score Combination with LogitPercolator
	3.9 Efficient processing of large MS/MS datasets
	3.9.1 Protein Database Indexing
	3.9.2 Parallel implementation using multiprocessing

	4.0 Experiments and Evaluation Methods
	4.1 Datasets
	4.2 PSM properties and Database Search parameters
	4.3 Performance Evaluation and score combination

	5.0 Evaluation of the CSPI Framework
	5.1 Cross-validation Experiment (SO-DR training dataset)
	5.2 Independent Test Dataset Validation
	5.3 Score combination
	5.4 Database Search Logistics
	5.4.1 Indexing Challenge
	5.4.2 Parallelization Challenge

	6.0 Conclusions and Future Work
	APPENDIX. CSPI Training: EM algorithm
	APPENDIX. CSPI MANUAL
	Bibliography

