COMPLEXITY OF FAMILIES OF COMPACT SETS IN \mathbb{R}^{N}

by

Merve Kovan-Bakan

BS in Mathematics, Koç University, 2005
MS in Mathematics, Koç University, 2008

Submitted to the Graduate Faculty of the Department of Mathematics in partial fulfillment of the requirements for the degree of Doctor of Philosophy

University of Pittsburgh

UNIVERSITY OF PITTSBURGH DEPARTMENT OF MATHEMATICS

> This dissertation was presented
> by

Merve Kovan-Bakan

It was defended on
August 2nd 2012
and approved by
Dr. Paul M. Gartside, University of Pittsburgh

Dr. Udayan Darji, University of Louisville
Dr. Benjamin Espinoza, University of Pittsburgh
Dr. Robert W. Heath, University of Pittsburgh
Dr. Christopher Lennard, University of Pittsburgh
Dissertation Director: Dr. Paul M. Gartside, University of Pittsburgh

ABSTRACT
 COMPLEXITY OF FAMILIES OF COMPACT SETS IN \mathbb{R}^{N}

Merve Kovan-Bakan, PhD
University of Pittsburgh, 2012

The space of all compact subsets of \mathbb{R}^{N} with the Vietoris topology, denoted $\mathcal{K}\left(\mathbb{R}^{N}\right)$, is a Polish space, i.e. separable and completely metrizable. It is naturally stratified by dimension. In this work, we study the zero and one dimensional compact subsets of \mathbb{R}^{N}, and two equivalence relations on $\mathcal{K}\left(\mathbb{R}^{N}\right)$: the homeomorphism relation and the embedding relation induced by the action of autohomeomorphisms of \mathbb{R}^{N}.

Among the zero dimensional compact subsets, Cantor sets are generic and form a Polish subspace. We study the topological properties of this space as well as the structure with respect to the embedding relation. Moreover, we show that the classification of Cantor sets up to embedding relation is at least as complex as the classification of countable structures.

Next, we look into one dimensional compact subsets, particularly those that are connected, i.e. curves. The curves also form a Polish subspace. We introduce a new connectedness property, namely strong arcwise connectedness. We study the complexity of curves with this property using descriptive set theory tools, and show that the space of all curves which are strong arcwise connected, is not Borel, and is exactly at the second level of the projective hierarchy. In addition, we examine the classification of curves up to either equivalence relation and show that the curves are not classifiable by countable structures.

Keywords: Cantor sets, embedding, classification, turbulence, curves, Borel hierarchy, difference hierarchy, Projective hierarchy, strong arcwise connectedness, rational continuum, dendrites, dendroids.

TABLE OF CONTENTS

PREFACE vii
0.0 INTRODUCTION 1
1.0 BOREL HIERARCHY AND BOREL EQUIVALENCE RELATIONS 5
1.1 POLISH SPACES 5
1.2 WADGE HIERARCHY 7
1.2.1 TREES 8
1.3 POLISH GROUPS AND BOREL EQUIVALENCE RELATIONS 9
2.0 SPACE OF COMPACT SUBSETS 12
2.1 COMPACT SUBSETS of \mathbb{R}^{N} 13
2.2 SUBCONTINUA of \mathbb{R}^{N} 18
3.0 ZERO DIMENSIONAL COMPACT SUBSETS 20
3.1 CANTOR SETS IN \mathbb{R}^{3} 20
3.1.1 PROPERTIES OF $\mathcal{C}\left(\mathbb{R}^{3}\right)$ 23
3.2 STRUCTURE OF CANTOR SETS 26
3.3 COMPLEXITY OF CLASSIFICATION 29
4.0 ONE DIMENSIONAL COMPACT SUBSETS 35
4.1 STRONGLY ARC-CONNECTED CURVES 35
4.2 COMPLEXITY OF 3-SAC GRAPHS AND ω-SAC CONTINUA 45
4.2.1 3-SAC GRAPHS 45
4.2.2 ω-SAC CONTINUA 48
4.3 COMPLEXITY OF CLASSIFICATION 61
4.3.1 DENDROIDS 61
4.3.2 EQUIVALENCE ON AN ORBIT OF HOMEOMORPHISM 64
APPENDIX. EMBEDDINGS OF A COMPACT METRIC SPACE 68
A. 1 RELATION of $\operatorname{Emb}\left(K, \mathbb{R}^{N}\right)$ and $\mathcal{K}_{K}\left(\mathbb{R}^{N}\right)$ 68
BIBLIOGRAPHY 71

LIST OF FIGURES

2.1 $F(\alpha, \beta)$ for some α and β 15
3.1 Standard double cone 30
3.2 Cantor cones in the intervals 31
3.3 Construction of Cantor Set for given α 31
3.4 Disjoint open sets containing x and y, case I 32
3.5 Disjoint open sets containing x and y, case II 32
4.1 Circle and Theta curve with points p, q, r 38
$4.2 T$ and X_{2} 42
4.3 Graph of $F(\alpha, \beta)$ 47
4.4 Examples of Tiles 52
4.5 Sine-curve made of tiles 53
4.6 Branch space $B(T, \tau)$ 54
4.7 Construction of rational continuum K_{τ} 56
4.8 A neighborhood with countable boundary in K_{τ} 57
4.9 Construction of $L\left(x_{n}\right)$ 62
4.10 Tying a knot inside given ball 65
4.11 Construction of curve $C(z)$ 66

PREFACE

I wish to thank various people who contributed towards the successful completion of this dissertation.

I genuinely thank my advisor, Professor Paul Gartside for his enthusiastic encouragement and support throughout my studies. He has been a great mentor and I feel privileged to have worked with his guidance on many interesting problems.

I would like to express my appreciation to the members of my dissertation committee: Professors Udayan Darji, Bob Heath, Benjamin Espinoza and Chris Lennard, for their insightful comments and suggestions, which has shaped the final version of this work.

Of course, I am grateful to my parents for their unconditional love, who encouraged me to go my own way. I would not be here without their support.

Finally, I thank my husband Ahmet, for his love and support.

0.0 INTRODUCTION

Embeddings of a space into another space is a major research topic in topology. Circles embedded in \mathbb{R}^{3} are knots. While Antoine's famous necklace is an example of a wild embedding of the Cantor set in \mathbb{R}^{3}. Most results on this topic has been achieved by studying examples one-by-one. My research has been on a method of taking a big-picture view of all embeddings simultaneously. We use tools from topology and descriptive set theory, and actions of Polish groups to understand how hard it is to characterize certain important classes of embeddings.

A topological space X is Polish if it is separable and completely metrizable, and it is a Polish group if it is a topological group and the topology is Polish. Lie groups, separable Banach spaces, automorphism groups of certain countable objects (trees, groups, and so on) are examples of Polish spaces or groups. In a Polish space the Borel sets are those that can be defined from the open sets in countably many steps. These countable steps form a hierarchy of Borel classes; at the first level are the classes of open and closed sets, at the second level the classes of F_{σ} and G_{δ} sets, at the third level the classes of $F_{\sigma \delta}$ and $G_{\delta \sigma}$ and so on. Intuitively, Borel sets are those that are 'computable', and the sets in higher levels of this hierarchy are more complex ('harder to compute') than the sets in lower levels. Between levels of the Borel hierarchy lies the difference hierarchy, which gives a construction of the intersection of Borel classes of the same level.

Throughout this work, we study the hyperspace of \mathbb{R}^{N} consisting of all compact subsets of \mathbb{R}^{N}, denoted $\mathcal{K}\left(\mathbb{R}^{N}\right)$, and its various subspaces. The topology of this hyperspace is the Vietoris topology, which is the same as the topology induced by the Hausdorff metric. This space is separable, and Hausdorff metric complete, hence $\mathcal{K}\left(\mathbb{R}^{N}\right)$ is Polish.

On the hyperspace $\mathcal{K}\left(\mathbb{R}^{N}\right)$, there are two kinds of natural equivalence relations. One is the homeomorphism relation, i.e. two compact sets are equivalent if and only if there is a homeomorphism that takes one set to the other. The other is induced by the action of the group of autohomeomorphisms of \mathbb{R}^{N}, denoted by $\operatorname{Aut}\left(\mathbb{R}^{N}\right)$, on $\mathcal{K}\left(\mathbb{R}^{N}\right)$. Under the compact-open topology, $\operatorname{Aut}\left(\mathbb{R}^{N}\right)$ is a Polish group. The standard action of this group on \mathbb{R}^{N}, defined by taking a homeomorphism and an element in \mathbb{R}^{N} to the image of this element under the homeomorphism, is continuous. Moreover, this action extends in the obvious way to the space of all compact subsets, $\mathcal{K}\left(\mathbb{R}^{N}\right)$, by taking a compact set to its image under the homeomorphism.

Under this action there are two kinds of natural invariant subsets:

- $\mathcal{K}_{\mathcal{P}}\left(\mathbb{R}^{N}\right)$: the set of all compact subsets of \mathbb{R}^{N} with the topological property \mathcal{P}, for example connectedness, perfectness, being m-dimensional, etc.
- $\mathcal{K}_{K}\left(\mathbb{R}^{N}\right)$: all homeomorphic copies of compact set K in \mathbb{R}^{N}, where K is a specific compact set like Cantor space \mathcal{C}, circle S^{1}, the unit interval I, etc.

Using the Borel hierarchy, we can give upper and lower bounds on the complexity of these invariant sets. Thus we can prove that the problem, for example, of deciding if a given compact subset of \mathbb{R}^{N} is homeomorphic to the circle is of a certain complexity (not higher, and - provably - not lower).

It is clear that the space of all compact subsets of \mathbb{R}^{N} stratifies under this action by dimension. So our strategy towards understanding the action of $\operatorname{Aut}\left(\mathbb{R}^{N}\right)$ on $\mathcal{K}\left(\mathbb{R}^{N}\right)$ is to work our way up through the dimensions. We start with the zero-dimensional compact subsets of \mathbb{R}^{N}, which we verify is a complete G_{δ} subset in $\mathcal{K}\left(\mathbb{R}^{N}\right)$. On the other hand, we have shown that the class of one-dimensional compact sets is a little more complicated than that, namely it is in the difference hierarchy of $D_{2}\left(\Sigma_{2}^{0}\right)$ (for $N \geq 3$). While the set of N-dimensional compact subsets of $\mathbb{R}^{N}, \mathcal{K}_{N}\left(\mathbb{R}^{N}\right)$, is a complete F_{σ} set. We also show that for any m with $1 \leq m<N$, the space of m-dimensional compact subsets, $\mathcal{K}_{m}\left(\mathbb{R}^{N}\right)$ is in the same difference class.

Among the zero-dimensional compact subsets, the class of Cantor subsets, denoted $\mathcal{C}\left(\mathbb{R}^{N}\right)$, form a G_{δ} subset of $\mathcal{K}\left(\mathbb{R}^{N}\right)$. We have unraveled topological properties as well as

Borel structure of this space. For example, we know that it is separable, completely metrizable, path connected and locally path connected but not locally compact. On the space of Cantor subsets, the homeomorphism relation is not interesting since all Cantor sets are homeomorphic. However, the action of $\operatorname{Aut}\left(\mathbb{R}^{N}\right)$ induces a non-trivial equivalence relation on Cantor sets, which is the same as the equivalence relation defined in earlier studies of Cantor sets, $[2,20,21]$. Two Cantor sets are equivalent if there is a homeomorphism of \mathbb{R}^{N} which takes one Cantor set to the other. A Cantor set equivalent to the standard Cantor set is called tame, and otherwise it is called wild. We have shown that tame Cantor sets are generic in the space $\mathcal{C}\left(\mathbb{R}^{N}\right)$ in Theorem 3.2.3.

A very important class in $\mathcal{K}\left(\mathbb{R}^{N}\right)$ is the set of all compact connected subsets of \mathbb{R}^{N}, namely the space of all subcontinua, denoted $\mathbf{C}\left(\mathbb{R}^{N}\right)$. This is a closed subset of $\mathcal{K}\left(\mathbb{R}^{N}\right)$ and hence it is Polish as well. Moreover, being an invariant subspace, the induced action also stratifies $\mathbf{C}\left(\mathbb{R}^{N}\right)$ by dimension. In this case, the zero-dimensional compact connected sets are exactly the one point sets, and this class is a closed set. One dimensional subcontinua of \mathbb{R}^{N} are called curves. We show that the curves form a G_{δ} subset of $\mathbf{C}\left(\mathbb{R}^{N}\right)$, see Theorem 2.2.1.

For many subclasses of curves, including some homeomorphism classes, the Borel complexity of the class has been determined, see [3]. These examples use descriptive set theory methods to classify previously studied topological objects. In this work, we will examine new classes of curves, namely the class of n-sac and ω-sac curves, and use both topological and descriptive set theoretic methods to characterize them.

A continuum X is called n-sac (n strongly arc-connected) if for any n points x_{1}, \ldots, x_{n} X there is an arc in X that visits the points in the given order. It is called ω-sac if for any n, X is n-sac. In the case of finite graphs, which is a subclass of curves, being 3 -sac has been characterized in section 4.1 and we know that no finite graph is 4 -sac. Additionally, we know that regular curves are never n-sac for all n. The next natural class is the rational curves, and we prove that it is essentially impossible to characterize rational ω-sac curves by showing that the subspace of rational ω-sac curves in $\mathcal{K}\left(\mathbb{R}^{N}\right)$ is very complex, indeed not even Borel. This relies on being able to construct many widely different rational ω-sac
curves.
Throughout this work, we not only study the Borel complexity of classes of sets arising from the two equivalence relations defined above but also the complexity of the classification up to these equivalences. For example, the classification of curves up to either equivalence relation is strictly more complex than that of classifying countable groups. While classification of Cantor sets is at least as complex as the classification of countable groups.

Chapter 1 provides fundamental definitions and facts on the Polish spaces, Borel and projective hierarchy as well as on Polish groups and actions, which will be needed in the following chapters.

In Chapter 2 we develop the general setting for the complexity questions we will answer later on. We prove that the class of m-dimensional compact subsets of \mathbb{R}^{N} is in the difference hierarchy $D_{2}\left(\boldsymbol{\Sigma}_{2}^{0}\right)$ for $1<m<N$, and it is simpler for $m=0$ or $m=N$. Additionally, in Section 2.2 we introduce the space of all subcontinua of \mathbb{R}^{N} and some important examples of continua.

Chapter 3 is on zero dimensional compact subsets of \mathbb{R}^{N}. It turns out most of these are Cantor sets. We will examine the space of Cantor sets in \mathbb{R}^{3} in detail, in Section 3.1. Section 3.2 is devoted to complexity of classes of Cantor sets, whereas Section 3.3 is on the complexity of classification of Cantor sets.

The natural successor to the zero dimensional compact subsets are the one dimensional compact subsets in \mathbb{R}^{N}, which is discussed in Chapter 4. The organization of this chapter is similar to the previous chapter. First we discuss the classes of n-strongly arc connected and ω-strongly arc connected curves in Section 4.1 and their complexity in Section 4.2. Then in Section 4.3, we discover complexity of classification problems of curves and some of its subclasses.

1.0 BOREL HIERARCHY AND BOREL EQUIVALENCE RELATIONS

This chapter gives some background in classical descriptive set theory and equivalence relations. This includes basic notions and facts about Polish spaces and groups. Most of these can be found in [15] and [12], which are our main references on descriptive set theory and equivalence relations.

1.1 POLISH SPACES

A topological space is Polish if it is separable and completely metrizable. $\mathbb{R}, \mathbb{C}, \mathbb{R}^{N}, 2^{\mathbb{N}}, \mathbb{R}^{\mathbb{N}}$ are some examples of Polish spaces.

Given a topological space X, Borel sets is the smallest collection containing the open sets that is closed under complements, countable unions and intersections, and is denoted by $\mathcal{B}(X)$. For metrizable space X, this class can be analyzed in a transfinite hierarchy of length ω_{1}, called the Borel hierarchy. It consists of classes of subsets of the space and these classes are defined inductively from the open sets with the following rules:

- Σ_{1}^{0} is the class of open subsets
- Π_{α}^{0} consists of complements of $\boldsymbol{\Sigma}_{\alpha}^{0}$
- A set A is in the class $\Sigma_{\alpha}^{0}, \alpha>1$ if there is a sequence of sets $\left(A_{i}\right)_{i \in \mathbb{N}}$ such that A_{i} is $\Pi_{\alpha_{i}}^{0}$ for some $\alpha_{i}<\alpha$ and $A=\bigcup_{i} A_{i}$

In the first level are the open sets $\left(\boldsymbol{\Sigma}_{1}^{0}\right)$ and closed sets $\left(\boldsymbol{\Pi}_{1}^{0}\right)$, in the second level F_{σ} 's $\left(\boldsymbol{\Sigma}_{2}^{0}\right)$ and G_{δ} 's $\left(\boldsymbol{\Pi}_{2}^{0}\right)$, in the third level we have $G_{\delta \sigma}$'s $\left(\boldsymbol{\Sigma}_{3}^{0}\right)$ and $F_{\sigma \delta}$'s $\left(\boldsymbol{\Pi}_{3}^{0}\right)$, etc. We can also consider the ambiguous classes, denoted Δ_{α}^{0}, where $\Delta_{\alpha}^{0}=\boldsymbol{\Sigma}_{\alpha}^{0} \cap \boldsymbol{\Pi}_{\alpha}^{0}$. So the Δ_{1}^{0} is the class
of both open and closed subsets, Δ_{2}^{0} is the set of both G_{δ} and F_{σ} sets, etc. Hence $\mathcal{B}(X)$ ramifies as follows:

where every class is contained in any class to the right of it. We think of sets in higher levels as more 'complex', as their definitions in terms of open sets are more complex.

Beyond the Borel sets we have projective sets, these are obtained by continuous images and complementation from Borel sets. A subset A of Polish space X is analytic (denoted $\boldsymbol{\Sigma}_{1}^{1}$) if it is the continuous image of a Borel subset of a Polish space. Borel subsets are analytic, but the converse is not true. A set is co-analytic $\left(\boldsymbol{\Pi}_{1}^{1}\right)$ if its complement is analytic. The class of projective sets ramifies in an infinite hierarchy of length ω :

$$
\begin{array}{llllll}
& \boldsymbol{\Sigma}_{1}^{1} & \boldsymbol{\Sigma}_{2}^{1} & & \boldsymbol{\Sigma}_{n}^{1} & \boldsymbol{\Sigma}_{n+1}^{1} \\
\mathcal{B}(X) & & & \ldots & & \\
& \Pi_{1}^{1} & \Pi_{2}^{1} & & \Pi_{n}^{1} & \Pi_{n+1}^{1}
\end{array}
$$

where every class is contained in any class to the right of it. Moreover, a set A is in the class $\boldsymbol{\Sigma}_{n}^{1}$ if it is continuous image of a set from the class $\boldsymbol{\Pi}_{n-1}^{1}$, and $\boldsymbol{\Pi}_{n}^{1}$ consists of complements of the sets in $\boldsymbol{\Sigma}_{n}^{1}$.

Another hierarchy that is interesting is the difference hierarchy, which gives a construction of the ambiguous class $\Delta_{\alpha+1}^{0}$ from the class $\boldsymbol{\Sigma}_{\alpha}^{0}$. We will only use the first levels of this hierarchy, mainly $D_{2}\left(\boldsymbol{\Sigma}_{\alpha}^{0}\right)$ and $\hat{D}_{2}\left(\boldsymbol{\Sigma}_{\alpha}^{0}\right)$. A set is in $D_{2}\left(\boldsymbol{\Sigma}_{\alpha}^{0}\right)$ if it is the intersection of a $\boldsymbol{\Sigma}_{\alpha}^{0}$ set and a Π_{α}^{0} set. And a set is in $\hat{D}_{2}\left(\boldsymbol{\Sigma}_{\alpha}^{0}\right)$ if the complement is in $D_{2}\left(\boldsymbol{\Sigma}_{\alpha}^{0}\right)$. Also note that $D_{1}\left(\boldsymbol{\Sigma}_{\alpha}^{0}\right)=\boldsymbol{\Sigma}_{\alpha}^{0}$ and $\hat{D}_{1}\left(\boldsymbol{\Sigma}_{\alpha}^{0}\right)=\boldsymbol{\Pi}_{\alpha}^{0}$.

Example 1. Let $Q_{2}=\left\{\left(x_{n}\right)_{n \in \mathbb{N}} \in 2^{\mathbb{N}} \mid \exists m, \forall n \geq m\left(x_{n}=0\right)\right\}$. It is a known $\boldsymbol{\Sigma}_{2}^{0}\left(F_{\sigma}\right)$ set, hence the complement Q_{2}^{c} is $\Pi_{2}^{0}\left(G_{\delta}\right)$ in $2^{\mathbb{N}}$. And thus the product $Q_{2} \times Q_{2}^{c}$ is in the difference hierarchy - $D_{2}\left(\boldsymbol{\Sigma}_{2}^{0}\right)$ - of $2^{\mathbb{N}} \times 2^{\mathbb{N}}$.

Note that a basic neighborhood of an element $x=\left(x_{n}\right)_{n \in \mathbb{N}} \in 2^{\mathbb{N}}$ is denoted by $N(x \upharpoonright m)$ for some $m \in \mathbb{N}$, where it is the following set $\left\{y=\left(y_{n}\right)_{n \in \mathbb{N}} \in 2^{\mathbb{N}} \mid y_{i}=x_{i}, \forall i \leq m\right\}$.

It is important to know the hierarchy of a natural set, not only because it is a beautiful result of descriptive set theory, but also because it can lead us to learn more about the topological properties. So it is important to place a given set in the lowest possible level of Borel or projective hierarchies.

1.2 WADGE HIERARCHY

Wadge hierarchy is another hierarchy of sets which extends the Borel hierarchy and gives us a way to decide which sets belong to which level of the hierarchy. Knowing the exact level for a certain set may lead to nicer characterizations.

Let X, Y be topological spaces and $A \subset X, B \subset Y . A$ is Wadge reducible to B, denoted $A \leq_{W} B$, if there is a continuous reduction of A to B, i.e. there is a continuous map $f: X \rightarrow Y$ with $f^{-1}(B)=A$. We denote this continuous reduction by $f:(X, A) \rightarrow(Y, B)$. Intuitively, if $A \leq_{W} B$, then A is 'simpler' than B. This reduction leads to an equivalence relation: $A \equiv_{W} B \Longleftrightarrow A \leq_{W} B$ and $B \leq_{W} A$

It turns out the Borel hierarchy forms the initial segment of the Wadge hierarchy given by \leq_{W}. If B is $\boldsymbol{\Sigma}_{\alpha}^{0}$ set and $A \leq_{W} B$, then A is $\boldsymbol{\Sigma}_{\alpha}^{0}$ set. The same holds for $\boldsymbol{\Pi}_{\alpha}^{0}$.

Let Γ be a class of sets like $\boldsymbol{\Sigma}_{\alpha}^{i}$ and Y be a Polish space. Then a set $B \subset Y$ is called Γ-hard if $A \leq_{W} B$ for any $A \in \Gamma(X)$, where X is a zero dimensional Polish space. If additionally, $B \in \Gamma(Y)$, then B is called Γ-complete.

Let $\hat{\Gamma}$ denote the class of sets which are complements of those in Γ.
Facts. 1. If $\hat{\Gamma} \neq \Gamma$ on zero dimensional Polish spaces and Γ is closed under continuous preimages, then no Γ-hard set is in $\hat{\Gamma}$.
2. If A is Γ-hard then A^{c} is $\hat{\Gamma}$-hard.
3. If B is Γ-hard and $A \leq_{W} B$, then A is Γ-hard.

This gives us a very common method to show that a given set B is Γ-hard: choose a known Γ-hard set A and show $A \leq_{W} B$. Though for the Borel sets there is another good way:

Theorem 1.2.1. Let X be a Polish space, and $A \subset X$. If $A \in \boldsymbol{\Sigma}_{\alpha}^{0} \backslash \boldsymbol{\Pi}_{\alpha}^{0}$, then A is $\boldsymbol{\Sigma}_{\alpha}^{0}{ }^{-}$ complete. (Similarly, interchanging $\boldsymbol{\Sigma}_{\alpha}^{0}$ and $\boldsymbol{\Pi}_{\alpha}^{0}$).

This theorem also holds for the difference hierarchy $D_{2}\left(\boldsymbol{\Sigma}_{\alpha}^{0}\right)$ and its complement $\hat{D}_{2}\left(\boldsymbol{\Sigma}_{\alpha}^{0}\right)$, [3].

Example 2. $Q_{2} \times Q_{2}^{c}$ in Example 1 is actually $D_{2}\left(\boldsymbol{\Sigma}_{2}^{0}\right)$-complete since Q_{2} is a $\boldsymbol{\Sigma}_{2}^{0}$-complete. Example 3. Let $S_{3}^{*}=\left\{\alpha \in 2^{\mathbb{N} \times \mathbb{N}}: \exists J \forall j>J \exists k \alpha(j, k)=0\right\}$, it is a known $\boldsymbol{\Sigma}_{3}^{0}$-complete set. Also let $P_{3}=\left\{\beta \in 2^{\mathbb{N} \times \mathbb{N}}: \forall j \exists K \forall k \geq K \beta(j, k)=0\right\}$, which is known to be Π_{3}^{0}-complete in $2^{\mathbb{N} \times \mathbb{N}}$. Thus $S_{3}^{*} \times P_{3}$ is a $D_{2}\left(\Sigma_{3}\right)$ subset of $\left(2^{\mathbb{N} \times \mathbb{N}}\right)^{2}$.

1.2.1 TREES

A tree is a basic tool in descriptive set theory. However, it is not the same notion as the one used in graph theory.

Let A be a nonempty set, by $A^{<\mathbb{N}}$ we denote the set of all finite sequences on A. Let $s \in A^{<\mathbb{N}}$, so $s=\left(a_{0}, \ldots, a_{n-1}\right)$ for some $n \in \mathbb{N}$. Then we denote the length of s by length(s) which is n, and for $m \leq n$, the restriction is $s \upharpoonright m=\left(a_{0}, \ldots, a_{m-1}\right)$. For finite sequences s and t on A, we say s is initial segment of t if $s=t \upharpoonright m$ for some $m \leq l e n g t h(t)$. The concatenation of the finite sequences $s=\left(a_{i}\right)_{i<n}$ and $t=\left(b_{j}\right)_{j<m}$ is the sequence $s^{\frown} t=\left(a_{0}, \ldots, a_{n-1}, b_{0}, \ldots, b_{m-1}\right)$.

A tree on a set A is a subset τ of $A^{<\mathbb{N}}$, which is closed under initial segments, i.e. if $t \in \tau$ and s is an initial segment of t, then $s \in T$. An infinite branch of τ is a sequence $x \in A^{\mathbb{N}}$ such that $x \upharpoonright n \in \tau$ for all $n \in \mathbb{N}$.

A tree is well-founded if it has no infinite branches. If, on the other hand, T has an infinite branch then it is called an ill-founded tree. We will denote the space of all trees on \mathbb{N} by Tr, the space of all well-founded trees on \mathbb{N} by $\mathbf{W F}$ and the space of all ill-founded trees on \mathbb{N} by IF. It turns out Tr is a Polish space, being a closed subset of the Polish space $\{0,1\}^{\mathbb{N}^{<N}}$, see [15].

For a tree T on a product of sets, for example in the form $A=B \times C$, we will identify elements of T with pairs of finite sequences. So if $s \in T$, then $s=\left(s_{i}\right)_{i<n}$ for some n, and $s_{i}=\left(b_{i}, c_{i}\right) \in B \times C$, and we will write $s=(t, r)$ where $t=\left(b_{i}\right)_{i<n}$ is a finite sequence on
B and $r=\left(c_{i}\right)_{i<n}$ is a finite sequence on C. For such a tree T, and an infinite sequence $x \in B^{\mathbb{N}}, T(x)=\left\{s \in C^{<\mathbb{N}}:(x \upharpoonright\right.$ length $\left.(s), s) \in T\right\}$ is called the section tree on C.

Fact. IF is $\boldsymbol{\Sigma}_{1}^{1}$-complete, hence $\mathbf{W F}$ is $\boldsymbol{\Pi}_{1}^{1}$-complete. (See [15])

1.3 POLISH GROUPS AND BOREL EQUIVALENCE RELATIONS

A topological group is Polish group if the topology is Polish. Countable groups with discrete topology, separable Banach spaces and locally compact second countable groups are examples of Polish groups.

Let G be a Polish group and X be a Polish space, X is called a Polish G-space if G acts continuously on X, i.e. there is a continuous map $a: G \times X \rightarrow X$ defined by $a(g, x)=g \cdot x$ with the following properties:

- $g \cdot(h \cdot x)=(g h) \cdot x$
- $e \cdot x=x$, where e is identity of G

This action induces an equivalence relation on X - orbit equivalence relation, denoted E_{G}^{X}, given by:

$$
x E_{G}^{X} y \Longleftrightarrow \exists g \in G(g \cdot x=y)
$$

The orbit of x, denoted $[x]_{G}$, is the set $\{g \cdot x \mid g \in G\}$. The set $G_{x}=\{g \in G \mid g \cdot x=x\}$ is the stabilizer of x.

For a subset $A \subset X, g \cdot A=\{g \cdot x \mid x \in A\}$, and A is invariant if for each $g \in G$, $g \cdot A=A$.

For a Polish space X, an equivalence relation E on X is Borel if it is Borel subset of the product space $X \times X$. For example, the equality relation on \mathbb{R}, denoted $\operatorname{id}(\mathbb{R})$, is the set $\left\{(x, x) \in \mathbb{R}^{2} \mid x \in \mathbb{R}\right\}$ and it is a closed subset of $\mathbb{R} \times \mathbb{R}$, thus it is a Borel equivalence relation.

Equivalence relations give us a way to classify elements of the set we work on. Classification of objects up to some notion of equivalence is an important problem in many areas
of mathematics. However, it is also important to be able to understand how complicated this classification is. For equivalence relations we have a way to compare them, namely the Borel reduction.

A function $f: X \rightarrow Y$ is Borel if the inverse image of any open set in Y is Borel in X. f is called a Borel isomorphism if it is a bijection and both f and f^{-1} are Borel maps.

Given equivalence relations E and F on X and Y, we say that E is Borel reducible to F, denoted $E \leq_{B} F$, if there is a Borel function $f: X \rightarrow Y$ so that for all $x_{1}, x_{2} \in X$, $x_{1} E x_{2} \Longleftrightarrow f\left(x_{1}\right) F f\left(x_{2}\right)$. We write $E \leq_{c} F$ if there is a continuous reduction and $E<_{B} F$ if $E \leq_{B} F$ holds and $F \leq_{B} E$ fails. Intuitively, if $E \leq_{B} F$, then E has a classification problem which is at most as difficult as that of F.

An equivalence relation E is called smooth if $E \leq_{B}$ id((\mathbb{R}). If E is a smooth equivalence relation, and F is any other equivalence relation which is Borel reducible to E, then F is also smooth.

Let $L O$ be the set of all linear orderings, i.e. for any element $\alpha \in L O$, there is a relation $<_{\alpha}$ on \mathbb{N} which is a linear order. Two elements $\alpha, \gamma \in L O$ are equivalent if there is a bijection $f: \mathbb{N} \rightarrow \mathbb{N}$ with $n<_{\alpha} m \Longleftrightarrow f(n)<_{\gamma} f(m)$ for each $m, n \in \mathbb{N}$, such an f is called an order isomorphism. Let $\sim_{L O}$ denote the equivalence relation on linear orders. An equivalence relation E is said to admit classification by countable structures if $E \leq_{B} \sim_{L O}$. If additionally, $\sim_{L O} \leq_{B} E$, then E is called $S_{\infty^{-}}$-universal.

Theorem 1.3.1 (Becker, Kechris). S_{∞} is the group of all permutations of \mathbb{N}. Let G be a closed subgroup of S_{∞} and X be a Polish G-space. Then E_{G}^{X} admits classification by countable structures.

It turns out there are classification problems that are beyond the level of countable structures. A tool to show that a given classification problem is beyond this level or not comparable is called turbulence.

Let G be Polish group and X be a Polish G-space. The action of G on X is called turbulent if:

1. every orbit is dense
2. every orbit is meager
3. for all $x, y \in X, U \subset X, V \subset G$ open with $x \in U, 1 \in V$, there is $y_{0} \in[y]_{G}$ and $\left(g_{i}\right)_{i \in \mathbb{N}} \subset V,\left(x_{i}\right)_{i \in \mathbb{N}} \subset U$ with $x_{0}=x, x_{i+1}=g_{i} \cdot x_{i}$ and for some subsequence $\left(x_{n_{i}}\right)_{i \in \mathbb{N}}$, $x_{n_{i}} \rightarrow y_{0}$

A turbulent orbit equivalence relation refuses classification by countable structures. Actually, turbulence is necessary for non-classification.

Theorem 1.3.2 (Hjorth, [12]). Let G be a Polish group and X a Polish G-space. Then exactly one of the following holds:

1. the orbit equivalence relation is reducible to isomorphism on countable models
2. there is a turbulent Polish G-space Y and a continuous G-embedding from Y to X.

A common method for showing a given equivalence relation E is turbulent is to find a known turbulent equivalence relation F and find a Borel reduction from F to E. One such example is:

Example 4. The space $c_{0}=\left\{\left(x_{n}\right)_{n \in \mathbb{N}} \in \mathbb{R}^{\mathbb{N}} \mid x_{n} \rightarrow 0\right\}$ with the sup norm acts on the ambient space $\mathbb{R}^{\mathbb{N}}$ by translation. $\mathbb{R}^{\mathbb{N}}$ is a Polish c_{0}-space as the inclusion map from c_{0} to $\mathbb{R}^{\mathbb{N}}$ is continuous. This action is one of the simplest examples of a turbulent action. (see [12], p. 52)

2.0 SPACE OF COMPACT SUBSETS

In this chapter, we will define the space of all compact subsets of a metric space X and its topology, and then we will study the case when $X=\mathbb{R}^{N}$.

Let X be a separable metric space, and $\mathcal{K}(X)$ be the space of all non-empty compact subsets of the space X with the Vietoris topology. A basic open set in $\mathcal{K}(X)$ has the form:

$$
B\left(U_{1}, U_{2}, \ldots, U_{n}\right)=\left\{K \in \mathcal{K}(X) \mid K \subseteq \bigcup_{i} U_{i} \text { and } K \cap U_{i} \neq \emptyset, \forall i\right\}
$$

where U_{1}, \ldots, U_{n} are open sets in X.

The topology arising from the Hausdorff metric gives us the same topology [7], which is defined as:

$$
d(K, L)=\max \left\{\sup _{a \in K} d(a, L), \sup _{b \in L} d(b, K)\right\}
$$

where d is the metric on X. If the metric d is complete then so is the induced Hausdorff metric on $\mathcal{K}(X)$. Moreover, $\mathcal{K}(X)$ is second countable metric space hence separable since X is a separable metric space. Hence for a Polish space X, the space of all compact subsets, $\mathcal{K}(X)$, is also Polish.

On the space of compact subsets of X we can talk about two kind of equivalence relations:
$\left(\sim_{H}\right)$ The equivalence relation induced by homeomorphism defined by:

$$
K \sim_{H} L \Longleftrightarrow \text { there is a homeomorphism } h: K \rightarrow L
$$

(\sim) The equivalence relation induced by the action of $\operatorname{Aut}(X)$ on $\mathcal{K}(X)$ defined by: $K \sim L \Longleftrightarrow$ there is a homeomorphism $h \in \operatorname{Aut}(X)$ such that $h(K)=L$

We will look into Borel complexity of certain invariant subspaces as well as some classification problems arising from these equivalence relations on some of the invariant subspaces of $\mathcal{K}\left(\mathbb{R}^{N}\right)$.

2.1 COMPACT SUBSETS OF \mathbb{R}^{N}

In this section, we will examine certain subspaces of $\mathcal{K}\left(\mathbb{R}^{N}\right)$ for a fixed natural number N. We will see that the space of at most m-dimensional compact subsets form a dense G_{δ}, whereas the space of all m-dimensional subsets form a provably more complex class, and they are in the difference hierarchy $D_{2}\left(\Sigma_{2}^{0}\right)$.

The topological dimension of a space X is the minimal number n such that any finite open cover of X has a finite open refinement in which no point of X is included in more than $n+1$ elements.

Lemma 2.1.1 (Lebesgue Covering Lemma). Let (X, d) be a compact metric space. For any open cover of X, there is a $\delta>0$ such that any subset of X with diameter $<\delta$ is contained in some member of the cover. δ is called the Lebesgue number.

The space $\mathcal{K}\left(\mathbb{R}^{N}\right)$ stratifies with dimension. Let

$$
\mathcal{K}_{\leq m}\left(\mathbb{R}^{N}\right)=\left\{A \in \mathcal{K}\left(\mathbb{R}^{N}\right) \mid \operatorname{dim} A \leq m\right\}
$$

Theorem 2.1.2. $\mathcal{K}_{\leq m}\left(\mathbb{R}^{N}\right)$ is a G_{δ} subset of $\mathcal{K}\left(\mathbb{R}^{N}\right)$.

Proof. Consider the sets:
$\mathcal{U}_{n}=\bigcup\left\{B\left(U_{1}, \ldots, U_{r}\right) \mid r \in \mathbb{N}, \operatorname{diam} U_{i}<1 / n, U_{i_{1}} \cap U_{i_{2}} \ldots \cap U_{i_{m+2}}=\emptyset, \forall i_{1} \neq \ldots \neq i_{m+2}\right\}$
where $U_{i} \subset \mathbb{R}^{N}$ are open sets. Obviously, each \mathcal{U}_{n} is an open set in $\mathcal{K}\left(\mathbb{R}^{N}\right)$. We will show that the intersection of these \mathcal{U}_{n} 's is the set $\mathcal{K}_{\leq m}\left(\mathbb{R}^{N}\right)$.

Let $A \subset \mathbb{R}^{N}$ be compact and $\operatorname{dim} A \leq m$. Fix $s \in \mathbb{N}$ arbitrary. Then $\{B(x, 1 /(3 s))\}_{x \in A}$ covers A, so it has a finite subcover $\left\{B\left(x_{i}, 1 /(3 s)\right)\right\}_{i=1}^{k}$. Then since $\operatorname{dim} A \leq m$ there is a finite
open refinement $\left\{V_{i}\right\}_{i=1}^{t}$ of the finite cover $\left\{B\left(x_{i}, 1 /(3 s)\right)\right\}_{i=1}^{k}$ such that $V_{i_{1}} \cap V_{i_{2}} \ldots \cap V_{i_{m+2}}=\emptyset$ for distinct i_{j} 's and diam $V_{i}<1 / s$ for each $i \leq t$. Thus $A \in \mathcal{U}_{s}$.

For the converse, suppose $A \in \bigcap_{s} \mathcal{U}_{s}$. Let $\left\{V_{i}\right\}_{i=1}^{l}$ be a finite open cover for A. By Lebesgue Covering Lemma, there is $r>0$ such that for any $E \subset A$ with diam $E<r$, there is i such that $E \subset V_{i}$. Take $s \in \mathbb{N}$ so that $1 / s<r$. For this s, there is $B\left(U_{1}, \ldots, U_{k}\right)$ in \mathcal{U}_{s} with $A \in B\left(U_{1}, \ldots, U_{k}\right)$. Let $E_{i}=A \cap U_{i}$, so $A=\bigcup_{i} E_{i}$, and $\operatorname{diam} E_{i}<1 / s<r$, hence there exists j_{i} such that $E_{i} \subset V_{j_{i}}$. Set $W_{i}=U_{i} \cap V_{j_{i}}$ for $i=1, \ldots, k$. $\left\{W_{i}\right\}_{i=1}^{k}$ is a finite open refinement of $\left\{V_{i}\right\}_{i=1}^{l}$ because $A=\bigcup_{i} E_{i} \subset \bigcup_{i}\left(U_{i} \cap V_{j_{i}}\right)=\bigcup_{i} W_{i}$. Moreover, $\left\{W_{i}\right\}_{i=1}^{k}$ is of order $\leq m$ as:

$$
W_{i_{1}} \cap \ldots \cap W_{i_{m+2}}=\left(U_{i_{1}} \cap V_{j_{i_{1}}}\right) \cap \ldots \cap\left(U_{i_{m+2}} \cap V_{j_{i_{m+2}}}\right) \subset U_{i_{1}} \cap \ldots \cap U_{i_{m+2}}=\emptyset
$$

for $i_{1} \neq i_{2} \ldots \neq i_{m+2}$. Hence $\operatorname{dim} A \leq m$.
Thus $\mathcal{K}_{\leq m}\left(\mathbb{R}^{N}\right)=\bigcap_{m} \mathcal{U}_{m}$.
Consider the m-dimensional subsets: $\mathcal{K}_{m}\left(\mathbb{R}^{N}\right)=\mathcal{K}_{\leq m}\left(\mathbb{R}^{N}\right) \backslash \mathcal{K}_{\leq m-1}\left(\mathbb{R}^{N}\right)$.
Corollary. $\mathcal{K}_{m}\left(\mathbb{R}^{N}\right)$ is dense, but not a G_{δ}.
Proof. Let $B\left(U_{1}, \ldots, U_{k}\right)$ be a basic open set. Since each $U_{i} \neq \emptyset$, we can find open balls $B_{i} \subset U_{i}$ such that $B_{i} \cap B_{j}=\emptyset, i \neq j$. Then take F_{i} a homeomorphic copy of I^{m} in B_{i}. So $F=\bigcup_{i} F_{i}$ meets each $U_{i}, \operatorname{dim} F=m$ and it is compact. Hence any basic open set meets $\mathcal{K}_{m}\left(\mathbb{R}^{N}\right)$.

If $\mathcal{K}_{m}\left(\mathbb{R}^{N}\right)$ were a G_{δ} subset, then by Baire Category theorem, $\mathcal{K}_{m}\left(\mathbb{R}^{N}\right) \cap \mathcal{K}_{\leq m-1}\left(\mathbb{R}^{N}\right)$ is dense, but this intersection is empty.

Now since for each $m \leq n, \mathcal{K}_{m}\left(\mathbb{R}^{N}\right)$ is the difference of two G_{δ} sets, it is in the difference hierarchy: $D_{2}\left(\Sigma_{2}^{0}\right)$. However, some of these sets are simpler.

Corollary. $\quad \mathcal{K}_{n}\left(\mathbb{R}^{N}\right)$ is F_{σ}-complete.

- $\mathcal{K}_{0}\left(\mathbb{R}^{N}\right)$ is G_{δ}.

It turns out the set of all m dimensional compact subsets $\mathcal{K}_{m}\left(\mathbb{R}^{N}\right)$, for $1 \leq m<n$, is not simpler.

Theorem 2.1.3. $\mathcal{K}_{m}\left(\mathbb{R}^{N}\right)$ is $D_{2}\left(\boldsymbol{\Sigma}_{2}^{0}\right)$-complete, for $n>1$ and $1 \leq m<n$.

Proof. We will use a known $D_{2}\left(\boldsymbol{\Sigma}_{2}^{0}\right)$-complete set, $Q_{2} \times Q_{2}^{c}$ which was described in Chapter 1 Example 1. We need a continuous reduction $F:\left(2^{\mathbb{N}} \times 2^{\mathbb{N}}, Q_{2} \times Q_{2}^{c}\right) \rightarrow\left(\mathcal{K}\left(\mathbb{R}^{N}\right), \mathcal{K}_{m}\left(\mathbb{R}^{N}\right)\right)$ so that:

$$
(\alpha, \beta) \in Q_{2} \times Q_{2}^{c} \Longleftrightarrow F(\alpha, \beta) \text { is } m \text { dimensional. }
$$

Recall that such a continuous reduction is a continuous map $F: 2^{\mathbb{N}} \times 2^{\mathbb{N}} \rightarrow \mathcal{K}\left(\mathbb{R}^{N}\right)$ with $F^{-1}\left(\mathcal{K}_{m}\left(\mathbb{R}^{N}\right)\right)=Q_{2} \times Q_{2}^{c}$.

For any $n>m, \mathbb{R}^{m+1}$ embeds in \mathbb{R}^{N} so it is enough to show this for $n=m+1$. F will still be continuous reduction from $\left(2^{\mathbb{N}} \times 2^{\mathbb{N}}, Q_{2} \times Q_{2}^{c}\right)$ to $\left(\mathcal{K}\left(\mathbb{R}^{N}\right), \mathcal{K}_{m}\left(\mathbb{R}^{N}\right)\right)$ when considered for other n.

Fix a sequence $\left(S_{n}\right)_{n \in \mathbb{N}}$ of disjoint cubes (isometric copies of $\left.I^{n}\right)$ in \mathbb{R}^{N} that converge to the origin. And let $\left(K_{n}\right)_{n \in \mathbb{N}}$ be a sequence of curves that converge to a space filling curve in the unit square $I \times I$. And let $\left(C_{n}\right)_{n \in \mathbb{N}}$ be a sequence of Cantor sets such that for each $n, C_{n} \subset K_{n}$ and $d_{H}\left(C_{n}, K_{n}\right)<1 / n$. We can find such a sequence of Cantor sets, since the Cantor sets are dense in $\mathcal{K}\left(\mathbb{R}^{N}\right)$.

Let $L_{p q}$ be the isometric copy of $C_{p} \times I^{m-1}$ in the cube S_{q} and $M_{p q}$ be the isometric copy of $K_{p} \times I^{m-1}$ in the cube S_{q}. Since $\left(K_{n}\right)_{n \in \mathbb{N}}$ and $\left(C_{n}\right)_{n \in \mathbb{N}}$ both converge to the square $I \times I$, the sequences $\left(C_{n} \times I^{m-1}\right)_{n \in \mathbb{N}}$ and $\left(K_{n} \times I^{m-1}\right)_{n \in \mathbb{N}}$ converge to the unit cube I^{m+1}.

- $(0,0)$

Figure 2.1: $F(\alpha, \beta)$ for some α and β

We define F as follows:

$$
F(\alpha, \beta)=\bigcup_{q} \begin{cases}S_{q} & \text { if } \beta(n)=0, \forall n \geq q, \\ L_{p_{q} q} & \text { if } \exists m \geq q \ni \alpha(m)=1 \text { where } p_{q}=\min \{m \geq q \mid \alpha(m)=1\} \\ M_{s_{q} q} & \text { if } \forall n \geq q, \alpha(n)=0 \text { and } \\ & \exists m \geq q \ni \beta(m)=1 \text { where } s_{q}=\min \{m \geq q \mid \beta(m)=1\}\end{cases}
$$

Claim 1. F is a reduction of $Q_{2} \times Q_{2}^{c}$ to $\mathcal{K}_{m}\left(\mathbb{R}^{N}\right)$.
If $\alpha \in Q_{2}$ and $\beta \in Q_{2}^{c}$, then there is $q \in \mathbb{N}$ with $\forall n \geq q, \alpha(n)=0$ and there is $m \geq q$ with $\beta(m)=1$. Thus $F(\alpha, \beta)$ is a disjoint union of finitely many $L_{p q}$'s, the origin and $M_{p q}$'s in cubes after the $q^{\text {th }}$ cube. Hence it is m dimensional.

If $\alpha \notin Q_{2}$, then for each q, there is $m \geq q$ with $\alpha(m)=1$, hence $F(\alpha, \beta)$ is a union of disjoint sets $L_{p q}$ and the origin. Hence it is $m-1$ dimensional.

If $\beta \in Q_{2}$, then there is q such that $\forall n \geq q, \beta(n)=0$, hence $F(\alpha, \beta)$ includes the cubes after S_{q}, hence it is $m+1$ dimensional.

Claim 2. F is continuous.
Fix $\varepsilon>0$ and $(\alpha, \beta) \in 2^{\mathbb{N}} \times 2^{\mathbb{N}}$. Take a neighborhood $B=B\left(U_{1}, \ldots, U_{r}\right)$ of $F(\alpha, \beta)$, where $U_{i}=B\left(x_{i}, \varepsilon\right)$ for some $x_{i} \in F(\alpha, \beta)$. Without loss of generality suppose x_{r} is the origin. Since $S_{q} \rightarrow x_{r}$, there is m such that $\forall q \geq m, S_{q} \subset U_{r}$. Also, for arbitrary q, there is k such that $\forall p \geq k, d_{H}\left(L_{p q}, S_{q}\right)<\varepsilon / 2$ and $d_{H}\left(M_{p q}, S_{q}\right)<\varepsilon / 2$.

We need to show that there is a neighborhood \mathcal{N} of (α, β) such that $F(\mathcal{N}) \subset B$.

1. $\alpha, \beta \in Q_{2}$ implies that there are m_{1}, m_{2} with $\forall n>m_{1}, \alpha(n)=0$ and $\forall n>m_{2}, \beta(n)=0$. Let m_{1}, m_{2} be smallest such integers so that $\alpha\left(m_{1}\right)=1$ and $\beta\left(m_{2}\right)=1$. Also let $M=$ $\max \left\{m, k, m_{1}, m_{2}\right\}$ and $\mathcal{N}=\{\alpha\} \times \mathcal{N}(\beta \upharpoonright M)$, recall that the set $\mathcal{N}(\beta \upharpoonright M)$ is a basic neighborhood of β which includes all the sequences that start with the same first M values in the sequence β. Let $(\alpha, \theta) \in \mathcal{N}$. Then $F(\alpha, \beta)=\bigcup_{q>m_{2}} S_{q} \cup \bigcup_{q=m_{1}+1}^{m_{2}} M_{s_{q} q} \cup \bigcup_{q=1}^{m_{1}} L_{p_{q} q}$. If $q \leq \max \left\{m_{1}, m_{2}\right\}$, then $F(\alpha, \theta) \cap S_{q}=F(\alpha, \beta) \cap S_{q}$; if $q>\max \left\{m_{1}, m_{2}\right\}$, then $F(\alpha, \beta) \cap S_{q}=S_{q} \supset F(\alpha, \theta) \cap S_{q}$. Hence $F(\alpha, \theta) \subset \bigcup_{i} U_{i}$.

We also need, $F(\alpha, \theta) \cap U_{i} \neq \emptyset$ for each i. For $x_{i} \in F(\alpha, \beta) \cap S_{q}$, we have the following cases:

- if $q \leq \max \left\{m_{1}, m_{2}\right\}$, then $x_{i} \in F(\alpha, \theta) \cap S_{q}$, hence $U_{i} \cap F(\alpha, \theta) \neq \emptyset$.
- if $q>\max \left\{m_{1}, m_{2}\right\}$, then $F(\alpha, \theta) \cap S_{q}$ is either $M_{p q}$ for some $p>M$, or it is the whole cube S_{q}. In either case, $d_{H}\left(F(\alpha, \theta) \cap S_{q}, S_{q}\right)<\varepsilon / 2$. Hence $F(\alpha, \theta) \cap U_{i} \neq \emptyset$.

Thus $F(\alpha, \theta) \in B$ and $F(\mathcal{N}) \subset B$.
2. $\alpha \in Q_{2}$ and $\beta \notin Q_{2}$ implies there is m_{1} with $\forall n>m_{1}, \alpha(n)=0$.

Then $F(\alpha, \beta)=\bigcup_{q>m_{1}} M_{s_{q} q} \cup \bigcup_{q=1}^{m_{1}} L_{p_{q} q}$.
Let $M=\max \left\{m, k, m_{1}\right\}$ and $\mathcal{N}=\{\alpha\} \times \mathcal{N}(\beta \upharpoonright M)$, and take $(\alpha, \theta) \in N$.
If $q \leq M$, then $F(\alpha, \theta) \cap S_{q}=F(\alpha, \beta) \cap S_{q}$; if $q>M$, then $F(\alpha, \theta) \cap S_{q}=M_{r_{q} q}$ or S_{q}, in either case $F(\alpha, \theta) \subset U_{r}$. Hence $F(\alpha, \theta) \subset \bigcup_{i} U_{i}$.

For $x_{i} \in F(\alpha, \beta) \cap S_{q}$, we have the following cases:

- if $q \leq M$, then $x_{i} \in F(\alpha, \theta) \cap S_{q}$, hence $U_{i} \cap F(\alpha, \theta) \neq \emptyset$.
- if $q>M$, then $F(\alpha, \theta) \cap S_{q}$ is either $M_{p q}$ for some $p>M$, or it is the whole cube S_{q}.

In either case, $d_{H}\left(F(\alpha, \theta) \cap S_{q}, S_{q}\right)<\varepsilon / 2$. Also, $d_{H}\left(M_{s_{q} q}, S_{q}\right)<\varepsilon / 2$, so $d_{H}(F(\alpha, \beta) \cap$ $\left.S_{q}, F(\alpha, \theta) \cap S_{q}\right)<\varepsilon$. Hence $F(\alpha, \theta) \cap U_{i} \neq \emptyset$.

Thus $F(\alpha, \theta) \in B$ and $F(\mathcal{N}) \subset B$.
3. $\alpha \notin Q_{2}$ and $\beta \in Q_{2}$ implies that there is m_{2} with $\forall n>m_{2}, \beta(n)=0$.

Then $F(\alpha, \beta)=\bigcup_{q} L_{p_{q} q}$.
Let $M=\max \left\{m, k, m_{2}\right\}$ and $\mathcal{N}=\{\alpha\} \times \mathcal{N}(\beta \upharpoonright M)$, and take $(\alpha, \theta) \in \mathcal{N}$. Then $F(\alpha, \theta)=F(\alpha, \beta)$. Hence $F(\mathcal{N}) \subset B$.
4. $\alpha, \beta \notin Q_{2}$. Then $F(\alpha, \beta)=\bigcup_{q} L_{p_{q} q}$. Let $M=\max \{m, k\}$ and $\mathcal{N}=\{\alpha\} \times \mathcal{N}(\beta \upharpoonright M)$. For $(\alpha, \theta) \in \mathcal{N}, F(\alpha, \theta)=F(\alpha, \beta)$. Hence $F(\mathcal{N}) \subset B$.

2.2 SUBCONTINUA OF \mathbb{R}^{N}

In this section, we will introduce the space of all subcontinua of \mathbb{R}^{N} and some important classes of continua, like Peano continuum, dendrites and dendroids. Later in Chapter 4 we will see some complexity results on these classes.

The space of subcontinua of \mathbb{R}^{N} consists of all connected compact subsets of \mathbb{R}^{N}, denoted $\mathbf{C}\left(\mathbb{R}^{N}\right)$. Being a closed subset of $\mathcal{K}\left(\mathbb{R}^{N}\right)$ it is also a Polish space with Vietoris topology.

Similar to $\mathcal{K}\left(\mathbb{R}^{N}\right), \mathbf{C}\left(\mathbb{R}^{N}\right)$ also stratifies with dimension under the action of $\operatorname{Aut}\left(\mathbb{R}^{N}\right)$. Let $\mathbf{C}_{\leq m}\left(\mathbb{R}^{N}\right)$ be the set of all subcontinua of dimension $\leq m$ and $\mathbf{C}_{m}\left(\mathbb{R}^{N}\right)$ be the set of all subcontinua of dimension m. Then $\mathbf{C}_{0}\left(\mathbb{R}^{N}\right)$ consists of all one point subsets of \mathbb{R}^{N}, which is known to be a closed subset. And for $m \geq 1$;

Corollary. - $\mathbf{C}_{\leq m}\left(\mathbb{R}^{N}\right)$ is a G_{δ} set.

- $\mathbf{C}_{n}\left(\mathbb{R}^{N}\right)$ is an F_{σ} set.

Proof. Now $\mathbf{C}_{\leq m}=\mathcal{K}_{\leq m} \cap \mathbf{C}\left(\mathbb{R}^{N}\right)$, so intersection of a G_{δ} (by Theorem 2.1.2) and a closed set, hence is a G_{δ}.

Being the complement of the G_{δ} set $\mathbf{C}_{\leq n-1}\left(\mathbb{R}^{N}\right), \mathbf{C}_{n}\left(\mathbb{R}^{N}\right)$ is F_{σ}.
Theorem 2.2.1. The class of curves in \mathbb{R}^{N} is a G_{δ} in $\mathbf{C}\left(\mathbb{R}^{N}\right)$.
Proof. The set of all curves is the difference of the sets $\mathbf{C}_{\leq 1}\left(\mathbb{R}^{N}\right)$ and $\mathbf{C}_{0}\left(\mathbb{R}^{N}\right)$, where the first one is a G_{δ} and the second is a closed set. Hence the difference is G_{δ}.

Let $K \subset \mathbb{R}^{N}$ be a non-degenerate continuum, i.e. it has more than one element, and let $\mathcal{H}(K)=\left\{X \in \mathbf{C}\left(\mathbb{R}^{N}\right) \mid X\right.$ is homeomorphic to $\left.K\right\}$. It is well known that $\mathcal{H}(K)$ is dense in $\mathbf{C}\left(\mathbb{R}^{N}\right)$. In particular, $\mathbf{C}_{m}\left(\mathbb{R}^{N}\right)$ is dense in $\mathbf{C}\left(\mathbb{R}^{N}\right)$ for $1 \leq m \leq n$.

A Peano continuum is a continuum which is locally connected. An arc is a continuum homeomorhic to the closed interval.

A graph is a continuum which can be written as the union of finitely many arcs which pairwise intersect only in their end points. A dendrite is a locally connected compact connected set (continuum) which does not include a subcontinuum homeomorphic to the circle.

A continuum is X a dendroid if it is arcwise connected and hereditarily unicoherent, where X is arcwise connected if for all $x \neq y \in X$ there is an arc contained in X with the end points x, y and it is unicoherent if whenever it is written as the union of two subcontinua then their intersection is a continuum.

It is known that dendrites form a Π_{3}^{0}-complete set, whereas dendroids are more complex and the class of dendroids is $\boldsymbol{\Pi}_{1}^{1}$-complete, see [3].

A continuum is regular if for every point there is a local base where each element of the base has a finite boundary. A continuum is rational if for every point there is a local base where each element of the base has a countable boundary.

Any regular or rational continuum is a curve. Dendrites are regular, and dendroids are rational curves. In [6], the authors show that the set of regular continua is a $\boldsymbol{\Pi}_{4}^{0}$-complete set. Also, the set of rational continua is $\boldsymbol{\Pi}_{1}^{1}$-hard, however the complete classification is not known.

3.0 ZERO DIMENSIONAL COMPACT SUBSETS

For a given zero dimensional compact subset K of \mathbb{R}^{N}, by Cantor-Bendixson theorem, there are unique subsets P and C of K where P is a perfect and C is countable such that $K=P \cup C$ (see [15]). Furthermore, if K is uncountable then P is a Cantor set, since it is compact perfect and zero dimensional. So the two natural classes of zero dimensional compact subsets are: countable compact subsets and Cantor subsets.

The set of all countable compact subsets of \mathbb{R}^{N} is a Π_{1}^{1}-complete set in $\mathcal{K}\left(\mathbb{R}^{N}\right)$ (see [15], p.210). Moreover, it is an invariant subset of $\mathcal{K}\left(\mathbb{R}^{N}\right)$ under both equivalence relations \sim_{H} and \sim.

In the rest of this chapter, we will examine the class of Cantor subsets of \mathbb{R}^{3}, which is denoted by $\mathcal{C}\left(R^{3}\right)$. We will show that $\mathcal{C}\left(R^{3}\right)$ is a G_{δ} subset of $\mathcal{K}\left(\mathbb{R}^{3}\right)$, hence it is a Polish space itself. Since all Cantor sets are homeomorphic, we will only consider the equivalence relation \sim on $\mathcal{C}\left(R^{3}\right)$.

3.1 CANTOR SETS IN \mathbb{R}^{3}

This section will introduce the space of Cantor subsets of \mathbb{R}^{3} and its topology, which is induced from $\mathcal{K}\left(\mathbb{R}^{3}\right)$.

A set $C \subset \mathbb{R}^{3}$ is a Cantor set if and only if it is totally disconnected, perfect, compact metric space. For a Cantor set C in \mathbb{R}^{3} a sequence $\left(C_{n}\right)_{n \in \mathbb{N}}$ of compact 3-manifolds with boundary is a defining sequence for C if and only if:

1. for each $i \in \mathbb{N}, C_{i}$ is the union of a finite number of mutually exclusive polyhedral cubes
with handles,
2. for each $i \in \mathbb{N}, C_{i+1} \subseteq \operatorname{Int}\left(C_{i}\right)$, and
3. $C=\bigcap_{n} C_{n}$

Two Cantor sets $K, K^{\prime} \subset \mathbb{R}^{3}$ are equivalent if there is a homeomorphism $h: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ such that $h(K)=K^{\prime}$. This is the equivalence relation induced by the action of $\operatorname{Aut}\left(\mathbb{R}^{3}\right)$. A Cantor set K is tame if it is equivalent to standard Cantor set, $E_{1 / 3}$. Otherwise, it is called wild. A well known example for wild Cantor sets is the Antoine's necklace, [1].

It is known that, every Cantor set has a defining sequence. Moreover, two Cantor sets K and L are equivalent if and only if there are equivalent defining sequences $\left\{M_{i}\right\}$ and $\left\{N_{i}\right\}$ for K and L respectively, where $\left\{M_{i}\right\}$ and $\left\{N_{i}\right\}$ are equivalent means that for each i, there is a homeomorphism $h_{i} \in \operatorname{Aut}\left(\mathbb{R}^{3}\right)$ such that $h_{i}\left(M_{i}\right)=N_{i}$ and $h_{i+1} \upharpoonright\left(\mathbb{R}^{3}-M_{i}\right)=h_{i} \upharpoonright\left(\mathbb{R}^{3}-M_{i}\right)$. [Sher, [20]]

We will show below that the space of Cantor subsets of \mathbb{R}^{3} is Polish itself, and then we will discover that some of the natural subclasses are in the first few levels of the Borel hierarchy of this space. The following lemma is a well-known result, we will include the proof here for completeness.

Lemma 3.1.1. 1. $\mathcal{K}_{P}\left(\mathbb{R}^{3}\right)=\left\{K \in \mathcal{K}\left(\mathbb{R}^{3}\right) \mid K\right.$ is perfect $\}$ is a dense G_{δ} set in $\mathcal{K}\left(\mathbb{R}^{3}\right)$. 2. $\mathcal{K}_{C}\left(\mathbb{R}^{3}\right)=\left\{K \in \mathcal{K}\left(\mathbb{R}^{3}\right) \mid K\right.$ is a Cantor set $\}$ is a (dense) G_{δ}, and thus Polish.

Proof. 1. Let

$$
\mathcal{U}_{n}=\bigcup\left\{B\left(U_{1}, \ldots, U_{r}\right) \mid r \in \mathbb{N}, \operatorname{diam}\left(U_{i}\right)<1 / n, \forall i, \exists j \neq i \text {, s.t. } U_{i} \cap U_{j} \neq \emptyset\right\}
$$

where U_{i} 's are open disks (ie homeomorphic to open ball in \mathbb{R}^{3}).

Claim 1. $\bigcap \mathcal{U}_{n}=\mathcal{K}_{P}\left(\mathbb{R}^{3}\right)$
Suppose K is not perfect, we will show it is not in the intersection. There is an isolated point $x \in K$, so $d(x, K \backslash\{x\})>0$. So there is $N \in \mathbb{N}$ with $d(x, K \backslash\{x\})>1 / N>0$. Let $n=2 N$, then $K \notin \mathcal{U}_{n}$ because, for each open disk U with $x \in U$, $\operatorname{diam}(U)<1 / n$, and for any open disk U^{\prime} with $\operatorname{diam}\left(U^{\prime}\right)<1 / n \&(K \backslash\{x\}) \cap U^{\prime} \neq \emptyset$, the intersection
$U \cap U^{\prime}$ is empty. (Since otherwise, there is $y \in U \cap U^{\prime}$ and $z \in K \cap U^{\prime}$, and $d(x, z) \leq$ $d(x, y)+d(y, z)<1 / N$ contradicting the choice of $N)$.

For the converse, suppose K is perfect compact set. Fix n. We need to show $K \in \mathcal{U}_{n}$. Take the open cover $\{B(x, 1 /(2 n))\}_{x \in K}$, then since K is compact there are finitely many $x_{i} \in K$ such that $\left\{U_{i}=B\left(x_{i}, 1 /(2 n)\right)\right\}_{i=1}^{k}$ covers K. Now if for some $i, U_{i} \cap U_{j}=\emptyset$, for all $j \neq i$, then there exist $x \in U_{i}$ such that $x \neq x_{i}$, as otherwise $K \cap U_{i}=\left\{x_{i}\right\}$ and so x_{i} is an isolated point, which is not possible. Then take $U_{k+1}=B(x, 1 /(2 n))$. Now for the new finite open cover $\left\{U_{i}\right\}_{i=1}^{k+1}$ if there is U_{j} which does not meet other U_{i} 's, then we can repeat as above and add finitely many more open sets of diameter $<1 / n$. Hence after finitely many steps we have $\left\{U_{i}\right\}_{i=1}^{r}$, such that $K \in B\left(U_{1}, \ldots, U_{r}\right)$, $\operatorname{diam} U_{i}<1 / n$ and for any $1 \leq i \leq r$, there is $j \neq i$ with $U_{i} \cap U_{j} \neq \emptyset$. Thus $K \in \mathcal{U}_{n}$.

For denseness, take a basic open set in $\mathcal{K}\left(\mathbb{R}^{3}\right), B\left(U_{1}, \ldots, U_{r}\right)$. Then for any i, take $x_{i} \in U_{i}$. Then there is $\varepsilon>0$ with $B\left(x_{i}, \varepsilon\right) \subset U_{i}$ for each i. Take $K=\bigcup_{i=1}^{r} \mathrm{Cl} B\left(x_{i}, \varepsilon / 2\right)$. Then $K \in B\left(U_{1}, \ldots, U_{r}\right)$. Moreover, K is perfect, since otherwise an isolated point of K would be isolated in one of the closed balls $B\left(x_{i}, \varepsilon\right)$, which can not happen. Thus $\mathcal{K}_{P}\left(\mathbb{R}^{N}\right)$ is dense in $\mathcal{K}\left(\mathbb{R}^{N}\right)$.
2. By 2.1.2, when $m=0$, we get all zero dimensional subsets of \mathbb{R}^{3}, which is a G_{δ} and $\mathcal{C}\left(\mathbb{R}^{3}\right)=\mathcal{K}_{P}\left(\mathbb{R}^{3}\right) \cap \mathcal{K}_{0}\left(\mathbb{R}^{3}\right)$, hence it is a G_{δ} subset as well.

Lemma 3.1.2. If $K \in \mathcal{C}\left(\mathbb{R}^{3}\right)$ has defining sequence $\left\{M_{n}\right\}_{n \in \mathbb{N}}$, then K has the following as a local base in $\mathcal{K}\left(\mathbb{R}^{3}\right)$:
$\left\{B\left(V_{1}^{n}, \ldots, V_{m_{n}}^{n}\right) \mid V_{1}^{n}, \ldots, V_{m_{n}}^{n}\right.$ are interiors of the components of $\left.M_{n}\right\}$

Proof. Let $B\left(U_{1}, \ldots, U_{k}\right)$ be a basic open set containing K.
$K=\bigcap_{n} M_{n} \subset \bigcup_{i=1}^{k} U_{i}$, so for some $l_{1} \in \mathbb{N}, M_{l_{1}} \subset \bigcup_{i=1}^{k} U_{i}$, since otherwise we get a sequence of compact non-empty sets $C_{n}=M_{n}-\bigcup_{i=1}^{k} U_{i}$, whose intersection is non-empty subset of K but not a subset of $\bigcup_{i=1}^{k} U_{i}$, hence gives us a contradiction.

Let $S=\left\{(i, j): V_{j}^{\ell_{1}} \cap U_{i} \cap K \neq \emptyset, 1 \leq i \leq k, 1 \leq j \leq m_{\ell_{1}}\right\}$. For each (i, j) in S fix $x_{i j} \in V_{j}^{\ell_{1}} \cap U_{i} \cap K$.

Then, for each $(i, j) \in S$, since $x_{i j}$ is in open U_{i}, and using the definition of defining sequence, there is an $\ell_{i j}$ such that the component of $M_{\ell_{i j}}$ containing $x_{i j}$ in its interior is a subset of U_{i}.

Let $\ell=\max \left(\ell_{1}, \ell_{i j}:(i, j) \in S\right)$.
We will show that $K \in B\left(V_{1}^{\ell}, \ldots, V_{m_{\ell}}^{\ell}\right) \subseteq B\left(U_{1}, \ldots, U_{k}\right)$ - as required.
As the V_{j}^{ℓ} are the interiors of the components of M_{ℓ}, by definition of defining sequence, K is in $B\left(V_{1}^{\ell}, \ldots, V_{m_{\ell}}^{\ell}\right)$.

Now take any K^{\prime} in $B\left(V_{1}^{\ell}, \ldots, V_{m_{\ell}}^{\ell}\right)$. Since $\ell \geq \ell_{1}, K^{\prime} \subseteq \bigcup_{j=1}^{m_{l}} V_{j}^{\ell} \subseteq M_{\ell} \subseteq M_{\ell_{1}} \subseteq \bigcup_{i=1}^{k} U_{i}$.
It remains to show that $K^{\prime} \cap U_{i} \neq \emptyset$ for all i. So fix i.
Since $U_{i} \cap K \neq \emptyset$, and $K \subseteq \bigcup_{j} V_{j}^{\ell_{1}}$, for some j_{i} we have $U_{i} \cap V_{j_{i}}^{\ell_{1}} \cap K \neq \emptyset$. Thus $\left(i, j_{i}\right)$ is in S, and some component of $M_{\ell j_{i}}$ containing $x_{i j_{i}}$ in its interior is a subset of U_{i}. Since $\ell \geq \ell_{i j_{i}}$, it follows that some $V_{j^{\prime}}^{\ell}$ is contained in U_{i}. As K^{\prime} meets this $V_{j^{\prime}}^{\ell}$ it meets U_{i}.

From now on a basic open set for a Cantor set K will refer to a set $B\left(U_{1}, \ldots, U_{m}\right)$ where each U_{i} is an open set and $\mathrm{Cl} U_{i} \cap \mathrm{Cl} U_{j}=\emptyset$ when $i \neq j$.

3.1.1 PROPERTIES OF $\mathcal{C}\left(\mathbb{R}^{3}\right)$

A Cantor set K in \mathbb{R}^{3} is n-decomposable if there are n topological open balls U_{1}, \ldots, U_{n} in \mathbb{R}^{3} with pairwise disjoint closures such that $K \subset \bigcup_{i=1}^{n} U_{i}$ and $K \cap U_{i} \neq \emptyset$ for all i. A Cantor set which is n-decomposable for each n is ω-decomposable. Clearly, all tame Cantor sets are ω-decomposable. A Cantor set which is not 2-decomposable is indecomposable.

Lemma 3.1.3. The orbit of a Cantor set K-under the equivalence relation $\sim-$ is dense if and only if K is ω-decomposable.

Proof. Suppose the orbit of K is dense in $\mathcal{C}\left(\mathbb{R}^{3}\right)$. Fix $n \in \mathbb{N}$. Let K^{\prime} be an n-decomposable Cantor set, so there are n topological open balls $U_{1}, \ldots, U_{n} \subset \mathbb{R}^{3}$ with $B\left(U_{1}, \ldots, U_{n}\right)$ a basic open neigborhood of K^{\prime}. And there is a homeomorphism $h: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ such that $h(K) \in B\left(U_{1}, \ldots, U_{n}\right)$. Then $K \subset \bigcup_{i=1}^{n} h^{-1}\left(U_{i}\right)$, and $h^{-1}\left(U_{i}\right) \cap K \neq \emptyset, \forall i$. Moreover $K \in B\left(h^{-1}\left(U_{1}\right), \ldots, h^{-1}\left(U_{n}\right)\right)$, and $h^{-1}\left(U_{i}\right)$'s are topological open balls with pairwise disjoint
closures (as h is homeomorphism). Hence K is n-decomposable. Since n is arbitrary, K is ω-decomposable.

On the other hand, let K be ω-decomposable. Let L be arbitrary Cantor set, and let $B\left(V_{1}, \ldots, V_{m}\right)$ be a basic open set containing L. Since K is ω-decomposable, it is m decomposable and there are topological open balls U_{1}, \ldots, U_{m} such that $B\left(U_{1}, \ldots, U_{m}\right)$ is a basic open neighborhood of K. Now there is a homeomorphism $h: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ such that $h\left(\mathrm{Cl} U_{i}\right) \subset V_{i}$. But then $h(K)$ is in the orbit of K and in $B\left(V_{1}, \ldots, V_{m}\right)$. Hence the orbit is dense.

So the space of Cantor subsets of \mathbb{R}^{3} is connected, as it contains a dense connected subspace - the equivalence class of tame Cantor sets. Actually more is true:

Theorem 3.1.4. $\mathcal{C}\left(\mathbb{R}^{3}\right)$ is path connected.

Proof. We will prove a more general statement below:

Lemma 3.1.5. Let $U \subset \mathbb{R}^{3}$ be an open subset. And let K be a Cantor set in U. And let C be a tame Cantor set in U. Then there is a path from C to K that lies in U.

Proof: K has a defining sequence $\left(K_{n}\right)_{n \in \mathbb{N}}$, where each K_{n} is finite disjoint union of handlebodies. Without loss of generality, $K_{n} \subset U$ for each n. Let K_{n} have q_{n} components.

We can cover C with q_{0} disjoint open balls, say $B_{1}^{0}, \ldots, B_{q_{0}}^{0}$, which are subsets of U. Let $K_{1}^{0}, \ldots, K_{q_{0}}^{0}$ be a listing of components of K_{0}. There is an isotopy $H^{0}: \mathbb{R}^{3} \times[0,1 / 2] \rightarrow \mathbb{R}^{3}$, such that H_{t}^{0} is an autohomeomorphism of \mathbb{R}^{3} for each $t \in[0,1 / 2]$, and $H_{0}^{0}=\mathrm{id}$ and $H_{1 / 2}^{0}\left(B_{i}^{0}\right) \subset \operatorname{Int}\left(K_{i}^{0}\right)$. Let $C^{0}=H_{1 / 2}^{0}(C)$, so $C^{0} \subset \operatorname{Int}\left(K_{0}\right)$ and is a tame Cantor set.

Now in each component K_{i}^{0} of K_{0}, there is a piece of C^{0}, which is in the topological ball $H_{1 / 2}^{0}\left(B_{i}^{0}\right)$. Since it is tame, we can cover the piece in $H_{1 / 2}^{0}\left(B_{i}^{0}\right)$ with q_{1}-many disjoint open balls, say $B_{1}^{1, i}, \ldots, B_{q_{1}}^{1, i}$, which are subsets of the interior of corresponding component K_{i}^{0} (hence of U). Let $K_{1}^{1, i}, \ldots, K_{q_{1}}^{1, i}$ be a listing of components of K_{1} in K_{i}^{0}. There is an isotopy $H^{1}: \mathbb{R}^{3} \times[1 / 2,3 / 4] \rightarrow \mathbb{R}^{3}$ such that H_{t}^{1} is an autohomeomorphism of $\mathbb{R}^{3}, H^{1} \upharpoonright\left(\mathbb{R}^{3}-K_{0}\right)=$ $\operatorname{id}_{\mathbb{R}^{3}-K_{0}}, H_{1 / 2}^{1}=\operatorname{id}$ and $H_{3 / 4}^{1}\left(B_{j}^{1, i}\right) \subset \operatorname{Int}\left(K_{j}^{1, i}\right)$. Let $C^{1}=H_{3 / 4}^{1}\left(C^{0}\right)$, so $C^{1} \subset \operatorname{Int}\left(K_{1}\right)$ and is a tame Cantor set.

Continuing this way we get an isotopy $H^{n}: \mathbb{R}^{3} \times\left[1-1 / 2^{n}, 1-1 / 2^{n+1}\right] \rightarrow \mathbb{R}^{3}$, for each n, where at each n, only points in K_{n} are moved.

Now let define a path as follows: $p:[0,1] \rightarrow \mathcal{C}\left(\mathbb{R}^{3}\right)$,

$$
p(t)= \begin{cases}H^{n}\left(C^{n-1}, t\right), & 1-1 / 2^{n} \leq t \leq 1-1 / 2^{n+1} \\ K, & t=1\end{cases}
$$

This is a continuous path from C to K in $U . p$ is obviously continuous for $t<1$. We only need to check continuity at $t=1$. Take basic open neighborhood of $K, B\left(U_{1}, \ldots, U_{k_{n}}\right)$, where U_{i} 's are interiors of the components of some K_{n}. So $C^{n}=H_{1-1 / 2^{n-1}}^{n}\left(C^{n-1}\right) \subset \bigcup_{i=1}^{k_{n}} U_{i}$, and by definition $C^{n} \cap U_{i} \neq \emptyset$, for each i. And for each $t>1-\frac{1}{2^{n-1}},(t<1) 1-1 / 2^{m} \leq t \leq 1-1 / 2^{m+1}$ for some $m \geq n, p(t)=H^{m}\left(C^{m-1}, t\right) \subset K_{m} \subset \bigcup_{i=1}^{k_{n}} U_{i}$, and by definition $C^{n} \cap U_{i} \neq \emptyset$, for each i. Hence for each $t>1-\frac{1}{2^{n-1}}, p(t) \in B\left(U_{1}, \ldots, U_{k_{n}}\right)$.

Now suppose K and L are Cantor sets, and let C be a tame Cantor set. Then by taking $U=\mathbb{R}^{3}$, we get a path from $K \subset \mathbb{R}^{3}$ to C and a path from L to C. Now following the path from K to C and then the second one backwards from C to L we get a path from K to L.

Theorem 3.1.6. $\mathcal{C}\left(\mathbb{R}^{3}\right)$ is locally path connected.

Proof. Fix Cantor set K and basic open neighborhood $B=B\left(U_{1}, \ldots, U_{n}\right)$. For each i select a tame Cantor set $C_{i} \subset U_{i}$. Let $C=\bigcup_{i=1}^{n} C_{i}$. Then C is a tame Cantor set in the basic neighborhood B.

Take any other L in B, we want to define a path inside B which takes K to L. Let $L_{i}=U_{i} \cap L=\mathrm{Cl} U_{i} \cap L$, so it is a Cantor set. Then by Lemma 3.1.5 there are paths p_{i} from C_{i} to L_{i} inside U_{i}. Now let $p: I \rightarrow \mathcal{C}\left(\mathbb{R}^{3}\right)$ be defined as $p(t)=\bigcup_{i=1}^{n} p_{i}(t)$, then $p(0)=\bigcup_{i=1}^{n} p_{i}(0)=\bigcup_{i=1}^{n} C_{i}=C, p(1)=\bigcup_{i=1}^{n} p_{i}(1)=\bigcup_{i=1}^{n} L_{i}=L$ and each $p(t)$ is a Cantor set in $B=B\left(U_{1}, \ldots, U_{n}\right)$, as it is a finite union of Cantor sets. So we only need to show p is continuous: To this end, fix $t \in[0,1]$, let $B\left(V_{1}, \ldots, V_{m}\right)$ be a basic open set including $p(t)=\bigcup_{i=1}^{n} p_{i}(t)$. Now for each i, let $V_{i_{1}}, \ldots, V_{i_{k(i)}}$ be the ones that intersect $p_{i}(t)$, so $p_{i}(t) \in B\left(V_{i_{1}}, \ldots, V_{i_{k(i)}}\right)$. Now let $U=\bigcap_{i=1}^{n} p_{i}^{-1}\left(B\left(V_{i_{1}}, \ldots, V_{i_{k(i)}}\right)\right)$, then U is open neighborhood of t. And $p(U) \subset B\left(V_{1}, \ldots, V_{m}\right)$, as for any $s \in U, p_{i}(s) \in B\left(V_{i_{1}}, \ldots, V_{i_{k(i)}}\right)$,
and the union $p(s)=\bigcup_{i} p_{i}(s)$ is a Cantor set which is a subset of $\bigcup_{i=1}^{m} V_{i}$ and meets each one of V_{i} 's.

3.2 STRUCTURE OF CANTOR SETS

Recall that a Cantor set is called n-decomposable if there are n disjoint topological open balls covering the Cantor set, where each of them intersects the Cantor set. We know that such open balls will form a basic open neighborhood for a Cantor set in $\mathcal{C}\left(\mathbb{R}^{3}\right)$. Also, a Cantor set is called ω-decomposable if it is n-decomposable for each n. Thus we have:

Proposition 3.2.1. - The set of n-decomposable Cantor sets form a dense open subset of $\mathcal{C}\left(\mathbb{R}^{3}\right)$.

- The set of ω-decomposable Cantor sets form a dense G_{δ} subset of $\mathcal{C}\left(\mathbb{R}^{3}\right)$.

Proof. Let $D_{n}=\bigcup\left\{B\left(U_{1}, \ldots, U_{n}\right)\right.$ basic open $\mid U_{i}$'s are topological open balls $\}$. Then $K \in$ $\mathcal{C}\left(\mathbb{R}^{3}\right)$ is n-decomposable if and only if K is in D_{n}, and clearly D_{n} is a dense open subset of $\mathcal{C}\left(\mathbb{R}^{3}\right)$. Also let $D=\bigcap_{n} D_{n}$, then D is a dense G_{δ}. Moreover, K is in D if and only if K is ω-decomposable.

Now consider the Cantor sets which can be decomposed with open sets homeomorphic to the interior of solid n-tori. We call a Cantor set K to be $(g, \geq n)$-decomposable if there are n open sets U_{1}, \ldots, U_{n} each homeomorphic to the interior of g-tori with disjoint closures such that $K \subset \bigcup_{i}^{n} U_{i}$ and $K \cap U_{i} \neq \emptyset$ for each i. K is (g, n)-decomposable if it is $(g, \geq n)$ decomposable but not $(g, \geq n+1)$-decomposable. And K is (g, ω)-decomposable if for each n, it is $(g, \geq n)$-decomposable. A Cantor set which is not $(g, 2)$-decomposable is g indecomposable.

A Cantor set has genus less than or equal g if and only if it has a defining sequence so that the genus of each component at each level is less than or equal to g. It has genus g if and only if it has genus $\leq g$ but not $\leq(g-1)$. Note that a genus zero Cantor set is tame, [23].

Let $B\left(U_{1}, \ldots, U_{n}\right)$ and $B\left(V_{1}, \ldots, V_{m}\right)$ be basic open sets in $\mathcal{C}\left(\mathbb{R}^{3}\right)$. Write

$$
B\left(U_{1}, \ldots, U_{n}\right) \prec B\left(V_{1}, \ldots, V_{m}\right)
$$

if and only if for each U_{j} there is a V_{i} so that $\mathrm{Cl} U_{j} \subseteq V_{i}$.
Lemma 3.2.2. The following statements are equivalent:
(a) A Cantor set K in \mathbb{R}^{3} has genus g,
(b) it has a defining sequence where all the components in the sequence are genus-g handlebodies whose diameters $\rightarrow 0$,
(c) K has a sequence of open neighborhoods $\left(B\left(U_{1},{ }^{n}, \ldots, U_{m_{n}}^{n}\right)\right)_{n}$ such that
(i) for each $n, j, \mathrm{Cl} U_{j}^{n}$ is a genus g handlebody whose diameter $\rightarrow 0$ with n,
(ii) the closures of distinct U_{j}^{n} and U_{k}^{n} are disjoint,
(iii) $B\left(U_{1}^{n}, \ldots U_{m_{n}}^{n}\right) \prec B\left(U_{1}^{n^{\prime}}, \ldots U_{m_{n^{\prime}}}^{n^{\prime}}\right)$ if $n>n^{\prime}$, and
(iv) $\left(B\left(U_{1}^{n}, \ldots, U_{m_{n}}^{n}\right)\right)_{n}$ is a local base at K.

Proof. K has genus- g if and only if it has a defining sequence so that the genus of each component at each level is g if and only if (a).
$(\mathrm{c}) \Longrightarrow(\mathrm{b})$: Let $K_{n}=\bigcup_{i=1}^{m_{n}} \mathrm{Cl} U_{i}^{n}$, then $\left(K_{n}\right)_{n \in \mathbb{N}}$ is a defining sequence for K where each K_{n} is a disjoint union of genus- g handlebodies whose diameter $\rightarrow 0$ (as $n \rightarrow \infty$).
$(\mathrm{b}) \Longrightarrow(\mathrm{c})$: Conversely let $\left(K_{n}\right)_{n \in \mathbb{N}}$ as in (a). Without loss of generality, we can assume that for each n, diam (components of K_{n}) $<\frac{1}{n}$. (We can make sure this happens by removing some levels from the original defining sequence)

Now let $\left\{U_{1}^{n}, \ldots, U_{m_{n}}^{n}\right\}$ be a listing of interiors of the handlebodies at level n of the defining sequence. So $\left(B\left(U_{1}^{n}, \ldots, U_{m_{n}}^{n}\right)\right)$ is a sequence of basic open neighborhoods of K which satisfies (i), (ii) and (iii) by definition of the defining sequence. Also by Lemma 3.1.2, this forms a local base.

Theorem 3.2.3. For any genus g;

1. The set of genus-g Cantor sets are dense in $(g-1)$-indecomposables.
2. The set of genus-g Cantor sets are a G_{δ}.
3. The set of $(g, \geq n)$-decomposable Cantor sets is an open (invariant) set.
4. The set of (g, ω)-decomposable Cantor sets is $a G_{\delta}$ set, containing genus-g ones, hence it is dense.
5. The set of all g-indecomposable Cantor sets is closed and nowhere dense in $(g-1)$ indecomposables.

Proof. We set all Cantor subsets to be -1 -indecomposable.

1. Take any $(g-1)$-indecomposable Cantor set K, and a basic neighborhood $B\left(V_{1}, \ldots, V_{m}\right)$, without loss of generality V_{i} 's are interior of handlebodies.

Since K is $(g-1)$-indecomposable, V_{i} 's must be linked.
Now shrink the handlebody V_{i} to a 'skeleton' S_{i}, so S_{i} 's are linked as V_{i} 's. On each S_{i}, add skeletons of tori, so that they are linked and they cover S_{i}. Now replacing each torus with a genus $g,(g-1)$-indecomposable Cantor set, will give us a genus g Cantor set in the basic neighborhood $B\left(V_{1}, \ldots, V_{m}\right)$.
2. Let $T_{n}=\bigcup\left\{B\left(U_{1}, \ldots, U_{m}\right)\right.$ basic : the closures of the U_{i} 's are handlebodies of genus g with diameters $<1 / n\}$. Let $T=\bigcap_{n} T_{n}$. Then every genus g Cantor set is in T. Moreover, we will show that every $K \in T$ has genus g.

Since K is in T, for each n there is a $B\left(U_{1}^{n}, \ldots, U_{m_{n}}^{n}\right)$ from T_{n} which contains K. We will prove: ($*$) given any basic neighborhood $B\left(V_{1}, \ldots, V_{m}\right)$ of K, there is an n such that $B\left(U_{1}^{n}, \ldots, U_{m_{n}}^{n}\right) \prec B\left(V_{1}, \ldots, V_{m}\right)$.

Applying this claim recursively we can easily find a subsequence $\left(n_{k}\right)_{k \in \mathbb{N}}$ such that $B\left(U_{1}^{n_{k}}, \ldots, U_{m_{n_{k}}}^{n_{k}}\right) \prec B\left(U_{1}^{n_{k}^{\prime}}, \ldots, U_{m_{n_{k}^{\prime}}}^{n_{k}^{\prime}}\right)$ if and only if $k>k^{\prime}$. Then Lemma 3.2.2 completes the proof.

To prove (*) fix a basic neighborhood $B\left(V_{1}, \ldots, V_{m}\right)$ of K. Let ϵ to be the minimum of $d\left(K, \mathbb{R}^{3} \backslash \bigcup_{i} V_{i}\right)$ and $d\left(\mathrm{Cl} V_{i}, \mathrm{Cl} V_{j}\right)$ for all $i \neq j$. Pick n so that $1 / n<\epsilon$ and, by the Lebesgue Covering Lemma, so that if x, x^{\prime} are in K and $d\left(x, x^{\prime}\right)<1 / n$ then x and x^{\prime} are in some V_{i}.

We check that each $\mathrm{Cl} U_{j}^{n}$ is contained in some V_{i}. To this end take any U_{j}^{n}. Let $K^{\prime}=K \cap U_{j}^{n}=K \cap \mathrm{Cl} U_{j}^{n}$. Then (by the second condition on n) K^{\prime} is contained in
some V_{i}, and further $\mathrm{Cl} U_{j}^{n}$ meets only this V_{i} (otherwise U_{j}^{n} would meet V_{i} and $V_{i^{\prime}}$, contradicting $\operatorname{diam}\left(U_{j}^{n}\right) \leq 1 / n<\epsilon$ and $\left.d\left(\mathrm{Cl} V_{i}, \mathrm{Cl} V_{i^{\prime}}\right) \geq \epsilon\right)$.
Suppose, for a contradiction, that $\mathrm{Cl} U_{j}^{n} \nsubseteq V_{i}$. Then there is a y in $\mathrm{Cl} U_{j}^{n} \backslash V_{i} \subseteq \mathbb{R}^{3} \backslash \bigcup_{i^{\prime}} V_{i^{\prime}}$. So $d\left(K^{\prime}, y\right) \geq \epsilon$. Pick x in K^{\prime} so that $d(x, y) \geq \epsilon$. Now we see that x and y are in $\mathrm{Cl} U_{j}^{n}$, and the diameter of $\mathrm{Cl} U_{j}^{n} \leq 1 / n<\epsilon$, contradiction.
3. Let $D_{m}=\bigcup\left\{B\left(T_{1}, \ldots, T_{m}\right)\right.$ basic $\mid T_{i}$'s are open sets homeomorphic to the interior of solid g-torus $\}$. Then K is in D_{m} if and only if K is $(g, \geq m)$-decomposable. Clearly each D_{m} is an open set.
4. Let $D=\bigcap_{n} D_{n}$, then D is G_{δ} and K is in D if and only if K is (g, ω)-decomposable. A genus- $g,(g-1)$-indecomposable Cantor set is necessarily (g, ω)-decomposable. Hence (g, ω)-decomposable Cantor sets are dense in $(g-1)$-indecomposables.
5. Let $\mathcal{I}=\bigcap_{n} D_{n}^{C}$ (complements of D_{n} 's), hence \mathcal{I} is a closed nowhere dense subset of $\mathcal{C}\left(\mathbb{R}^{3}\right)$. Also $K \in \mathcal{I}$ if and only if K is g-indecomposable.

3.3 COMPLEXITY OF CLASSIFICATION

In this section, we consider the classification of Cantor sets up to the equivalence \sim as defined in Chapter 2. In the previous section, we have seen that there are many different Cantor sets, but some of those may be equivalent. In this section we will show that there are many inequivalent classes of Cantor sets by showing that there are at least as many as the countable linear orders have.

Lemma 3.3.1. For a given linear order α, we can construct a sequence of pairwise disjoint open intervals $\left(p_{n}, q_{n}\right)_{n \in \mathbb{N}}$ with end points in $(0,1)$ and with the following properties:

1. The order of $\left\{p_{n} \mid n \in \mathbb{N}\right\}$ is isomorphic to the order coded by α,
2. $\inf _{n} p_{n}=0$ if and only if the order has no smallest element,
3. $\sup _{n} q_{n}=1$ if and only if the order has no largest element,
4. For any $x \notin \bigcup_{n}\left(p_{n}, q_{n}\right)$, $\sup \left\{q_{n} \mid q_{n} \leq x\right\}=\inf \left\{p_{n} \mid p_{n} \geq x\right\}$ if and only if there is no biggest q_{n} below x and no smallest p_{n} above x,
5. $\left|p_{n}-q_{n}\right|<\frac{1}{n}$

Moreover, we can assign a collection of intervals $\left\{\left(p_{n}^{\alpha}, q_{n}^{\alpha}\right) \mid n \in \mathbb{N}\right\}$ to each linear order $\alpha \in L O$ such that if α and β agree on the order of $1, \ldots, N$ then $\left(p_{n}^{\alpha}, q_{n}^{\alpha}\right)=\left(p_{n}^{\beta}, q_{n}^{\beta}\right)$ for all $n=1, \ldots, N$.

See the proof in [11] by Gartside and Pejic, the only difference is that we use the interval $(0,1)$ rather than $(0,1 / 2)$.

Note. Any Antoine's necklace can be embedded into the closed standard double cone, which is the set $\left\{(x, y, z) \in \mathbf{R}^{3}\left|\sqrt{y^{2}+z^{2}}+|x| \leq 1\right\}\right.$, such that the intersection of the Antoine set and the boundary of the cone is precisely the set $\{(\pm 1,0,0)\}$, which are called the end points, (see Figure 3.1).

Figure 3.1: Standard double cone

Theorem 3.3.2. The classification problem of Cantor sets up to equivalence is at least as complicated as classification of countable linear orders.

Proof. We will define a Borel map $f: L O \rightarrow \mathcal{C}\left(\mathbb{R}^{3}\right)$ such that two linear orders $\alpha, \gamma \in L O$ are equivalent if and only if $f(\alpha), f(\gamma)$ are equivalent Cantor sets.

Let A be a rigid Antoine necklace. Now given a linear order α, we will define a corresponding Cantor set C_{α} as follows:

Let $\left\{\left(p_{n}^{\alpha}, q_{n}^{\alpha}\right)\right\}_{n \in \mathbb{N}}$ be the intervals from the Lemma 3.3.1. For each n, let us put an isometric copy of the closed standard double cone in $\left(p_{n}^{\alpha}, q_{n}^{\alpha}\right)$ with end points being the end

Figure 3.2: Cantor cones in the intervals
points of the interval, then we embed the Cantor set A into this cone, and will call it A_{n}^{α}. (see Figure 3.2)

Also for every consecutive $m, k \in \mathbb{N}$ with respect α, put an isometric copy of the closed standard double cone in $\left(q_{m}, p_{k}\right)$ with end points being the end points of the interval, then we embed the Cantor set A into this cone, and will call it $A_{m, k}^{\alpha}$

Figure 3.3: Construction of Cantor Set for given α
Then let $C_{\alpha}=f(\alpha)=\bigcup_{n} A_{n}^{\alpha} \cup \bigcup_{m<\alpha} k A_{m, k}^{\alpha}$, where m, k in the second union are consecutive with respect to α. (see Figure 3.3)

Claim 1. C_{α} is a Cantor set.
C_{α} is obviously perfect, as none of the points will be isolated. It is bounded as it is a subset of $[0,1]^{3}$.

Let $x \in \mathbb{R}^{3} \backslash C_{\alpha}$. If $x \notin[0,1]^{3}$, then we can find an open ball including x and not intersecting C_{α}. For $x=\left(x_{1}, x_{2}, x_{3}\right) \in[0,1]^{3},\left(x_{1}, 0,0\right)$ is in at least one of the cones along $[0,1]$, say the one including A_{n}^{α}. Let $A_{m, n}^{\alpha}$ be the necklace preceding A_{n}^{α}, and $A_{n, k}^{\alpha}$ be the succeeding necklace. Since $x \notin C_{\alpha}, x \notin A_{n}^{\alpha} \cup A_{m, n}^{\alpha} \cup A_{n, k}^{\alpha}$. Since these are compact sets, $\varepsilon=\min \left(d\left(x, A_{m, n}^{\alpha}\right), d\left(x, A_{n}^{\alpha}\right), d\left(x, A_{n, k}^{\alpha}\right)\right)>0$. Hence $B_{\varepsilon}(x) \cap C_{\alpha}=\emptyset$. Hence it is closed (thus compact).

Suppose $C \subset C_{\alpha}$ is a connected component, let $x \in C$. Then without loss of generality $x \in A_{n}^{\alpha}$ for some n. If $C \subset A_{n}^{\alpha}$, then C must be a one point set. Suppose for a contradiction that $y \neq x$ in C and in some other Antoine necklace. Then:

- either y is in Antoine necklace right next to A_{n}^{α}, so in one of $A_{m, n}^{\alpha}, A_{n, k}^{\alpha}$, say the
second. Then there are open sets $U^{\prime}, V^{\prime} \subset \mathbb{R}^{3}$ with $A_{n, k}^{\alpha} \subset U^{\prime} \cup V^{\prime}, A_{n . k}^{\alpha} \cap U^{\prime} \cap V^{\prime}=\emptyset$ and $\left(q_{n}^{\alpha}, 0,0\right) \in U^{\prime}, y \in V^{\prime}$.

Figure 3.4: Disjoint open sets containing x and y, case I

- or there is at least one Antoine necklace between A_{n}^{α} and the Antoine necklace including y, say A_{k}^{α}. Without loss of generality, suppose $n<_{\alpha} k$ are consecutive. Then there are open sets $U^{\prime}, V^{\prime} \subset \mathbb{R}^{3}$ with $A_{n, k}^{\alpha} \subset U^{\prime} \cup V^{\prime}, A_{n, k}^{\alpha} \cap U^{\prime} \cap V^{\prime}=\emptyset$ and $\left(q_{n}^{\alpha}, 0,0\right) \in U^{\prime},\left(p_{k}^{\alpha}, 0,0\right) \in V^{\prime}$.

Figure 3.5: Disjoint open sets containing x and y, case II

Also in either case, U^{\prime} does not intersect any Antoine necklace after $A_{n, k}^{\alpha}$ and V^{\prime} does not intersect any Antoine necklace before $A_{n, k}^{\alpha}$. Take $U=U^{\prime} \cup\left\{\tilde{x} \in \mathbb{R}^{3} \mid \tilde{x}_{1}<q_{n}^{\alpha}\right\}$ and $V=V^{\prime} \cup\left\{\tilde{x} \in \mathbb{R}^{3} \mid \tilde{x}_{1}>p_{k}^{\alpha}\right\}$, then $x \in U, y \in V, C_{\alpha} \subset U \cup V$ and $U \cap V \cap C=\emptyset$. Hence C is not connected. Thus C must be a one-point set.

Claim 2. f is Borel.
To show f is Borel, it is enough to work with subbasic open sets in $\mathcal{C}\left(\mathbb{R}^{3}\right)$, which are: $B_{1}(U)=\{K \mid K \subset U\}$ and $B_{2}(U)=\{K \mid K \cap U \neq \emptyset\}$, where $U \subset \mathbb{R}^{3}$ is open.

We will show that $S_{1}=f^{-1}\left(B_{1}(U)\right)$ is closed and $S_{2}=f^{-1}\left(B_{2}(U)\right)$ open.
Consider $S_{1}=\{\alpha \in L O \mid f(\alpha) \subset U\}$, so $S_{1}^{c}=\left\{\alpha \in L O \mid f(\alpha) \cap U^{c} \neq \emptyset\right\}$. For $\alpha \in S_{1}^{c}$, $f(\alpha) \cap U^{c} \neq \emptyset$, hence for some $n, U^{c} \cap A_{n}^{\alpha} \neq \emptyset$.

Now take the basic open set $M=\{\gamma \in L O \mid \alpha, \gamma$ agree on the order of $1, \ldots, n\}$ in $L O$. Then $\left(p_{n}^{\alpha}, q_{n}^{\alpha}\right)=\left(p_{n}^{\gamma}, q_{n}^{\gamma}\right)$ for all $\gamma \in M$. In particular, $A_{n}^{\gamma}=A_{n}^{\alpha}$ for all $\gamma \in M$, hence $f(\gamma)$
meets U^{c}, and thus $M \subset S_{1}^{c}$ is a neighborhood of α. Thus S_{1} is closed. (If $U^{c} \cap A_{n, m}^{\alpha} \neq \emptyset$, then take M to be linear orders that agree on the order of $1, \ldots, \max (n, m))$.

Consider $S_{2}=f^{-1}\left(B_{2}(U)\right)=\{\alpha \in L O \mid f(\alpha) \cap U \neq \emptyset\}$. For $\alpha \in S_{2}, f(\alpha) \cap U \neq \emptyset$, hence for some $n, U \cap A_{n}^{\alpha} \neq \emptyset$.

Now take the basic open set $N=\{\gamma \in L O: \alpha, \gamma$ agree on the order of $1, \ldots, n\}$ in $L O$. Then $\left(p_{n}^{\alpha}, q_{n}^{\alpha}\right)=\left(p_{n}^{\gamma}, q_{n}^{\gamma}\right)$ for all $\gamma \in N$. In particular, $A_{n}^{\gamma}=A_{n}^{\alpha}$ for all $\gamma \in N$, hence $f(\gamma)$ meets U, and thus $N \subset S_{2}$ is a neighborhood of α. Thus S_{2} is open.

Claim 3. α, γ are equivalent if and only if C_{α}, C_{γ} are equivalent Cantor sets.
(\Rightarrow) Suppose α, γ are equivalent linear orders. Then there is an order preserving map $g:\left\{p_{n}^{\alpha} \mid n \in \mathbb{N}\right\} \rightarrow\left\{p_{n}^{\gamma} \mid n \in \mathbb{N}\right\}$ (i.e. $n<_{\alpha} m \Longleftrightarrow p_{n}^{\alpha}<p_{m}^{\alpha} \Longleftrightarrow g\left(p_{n}^{\alpha}\right)<g\left(p_{m}^{\alpha}\right)$ and g is bijection). Now define $h: C_{\alpha} \rightarrow C_{\gamma}$ as follows:
$h \mid A_{n}^{\alpha}$ is homeomorphism of A_{n}^{α} and A_{k}^{γ} where $h\left(p_{n}^{\alpha}\right)=g\left(p_{n}^{\alpha}\right)=p_{k}^{\gamma}$, thus $h\left(q_{n}^{\alpha}\right)=q_{k}^{\gamma}$, and $h \mid A_{n, m}^{\alpha}$ is homeomorphism of $A_{n, m}^{\alpha}$ and $A_{k, l}^{\gamma}$ where $h\left(p_{m}^{\alpha}\right)=g\left(p_{m}^{\alpha}\right)=p_{l}^{\gamma}$

Now h is a homeomorphism of the Cantor sets C_{α} and C_{γ}. The only problem can occur at the intersection points, but for a sequence $\left(x_{n}\right)_{n \in \mathbb{N}} \in C_{\alpha}$ converging to an intersection end point p_{n}^{α}, without loss of generality for infinitely many $n, x_{n} \in A_{n}^{\alpha}$, so $h\left(x_{n}\right) \in h\left(A_{n}^{\alpha}\right)$. h is a homeomorphism on A_{n}^{α}, hence $h\left(x_{n}\right)$ converges to $h\left(p_{n}^{\alpha}\right)$.

We can easily extend this homeomorphism to the cones including the Antoine necklaces, which in turn can be extended to the whole \mathbb{R}^{3}.
(\Leftarrow) Suppose there is a homeomorphism $h: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ with $h\left(C_{\alpha}\right)=C_{\gamma}$. Consider $g=$ $h \mid\left\{p_{n}^{\alpha} \mid n \in \mathbb{N}\right\}$. Since h is a homeomorphism and the points $p_{n}^{\alpha}, q_{n}^{\alpha}$ are different from the other points on the Antoine necklaces $A_{n}^{\alpha}, A_{n, m}^{\alpha}, A_{n, k}^{\alpha}$ (as well as the corresponding ones for $\gamma), g\left(\left\{p_{n}^{\alpha} \mid n \in \mathbb{N}\right\}\right) \subset\left\{p_{n}^{\gamma}, q_{n}^{\gamma} \mid n \in \mathbb{N}\right\}$. Moreover, it is a bijection.

Enough to show that: if $n<\alpha_{\alpha} m$ (so $p_{n}^{\alpha}<p_{m}^{\alpha}$) then $g\left(p_{n}^{\alpha}\right)<g\left(p_{m}^{\alpha}\right)$, hence γ is an equivalent order. Suppose not, then $g\left(p_{m}^{\alpha}\right)<g\left(p_{n}^{\alpha}\right)$ (they are not equal since bijection). Then we have two cases:
(i) For each $k \neq m, n$ either $k<_{\alpha} n$ or $m<_{\alpha} k$ (i.e. m, n are consecutive wrt α)

Then $h\left(A_{n, m}^{\alpha}\right)$ is in the cone with end points $h\left(q_{n}^{\alpha}\right)$ and $g\left(p_{m}^{\alpha}\right)$ and should be right after $h\left(A_{n}^{\alpha}\right)$ but also right before $h\left(A_{m}^{\alpha}\right)$, which is not possible since $g\left(p_{m}^{\alpha}\right)<g\left(p_{n}^{\alpha}\right)$.
(ii) There is $k \in \mathbb{N}$ with $n<_{\alpha} k<_{\alpha} m$, then by (i), the image of Antoine necklace consecutive to A_{n}^{α} should be consecutive to $h\left(A_{n}^{\alpha}\right)$. Following each Antoine necklace in the middle of A_{n}^{α} and A_{m}^{α} one by one, we get $h\left(A_{m}^{\alpha}\right)$ should come after $h\left(A_{n}^{\alpha}\right)$, but $g\left(p_{m}^{\alpha}\right)<g\left(p_{n}^{\alpha}\right)$ means $h\left(A_{m}^{\alpha}\right)$ comes before.

Thus either case leads to a contradiction.

Now this tells us that the classification of all Cantor subsets is complicated, however the following question remains:

Question 1. Is Cantor sets classifiable by countable structures?
We know, by the work of Curtis and van Mill in [5], that the problem of classifying Cantor sets in \mathbb{R}^{3} is the same as the problem of classifying open submanifolds of \mathbb{R}^{3}. Thus by the above theorem, we have:

Corollary. Classifying open 3-manifolds is at least as complex as classifying countable groups.

In comparison, the recently completed classification of compact 3-manifolds is a simpler classification.

4.0 ONE DIMENSIONAL COMPACT SUBSETS

The most interesting class in the space of all one dimensional compact subsets is the space of curves. This includes many important classes of continua, like dendrites, dendroids, regular and rational continua.

Let $\mathscr{C}\left(\mathbb{R}^{N}\right)$ denote the class of all curves in $\mathcal{K}\left(\mathbb{R}^{N}\right), N \geq 2$. Then $\mathscr{C}\left(\mathbb{R}^{N}\right) \subset \mathbf{C}\left(\mathbb{R}^{N}\right)$ and it is a G_{δ} set (see Theorem 2.2.1).

In this chapter we will explore curves with additional connectedness properties, namely strongly arc connected (sac) curves. We will characterize 3-sac graphs, find the Borel complexity and show that the ω-sac curves cannot be characterized simpler than the definition. In the last section, we will look into the classification problem of dendroids and dendrites, and show that the classification of dendroids up to equivalence is provably more complex than classifying countable structures.

4.1 STRONGLY ARC-CONNECTED CURVES

A space X is n-strongly arc connected (n-sac) if for every distinct x_{1}, \ldots, x_{n} in X there is an arc $\alpha:[0,1] \rightarrow X$ such that $\alpha((i-1) /(n-1))=x_{i}$ for $i=1, \ldots, n-$ in other words, the arc α 'visits' the points in order. Further, call a space ω-sac if it is n-sac for every n. Note that being 2-sac is the same as being arc-connected.

Lemma 4.1.1. Let X be a space.
If there is a finite F such that $X \backslash F$ is disconnected, then X is not $(|F|+2)$-sac.

Proof. If F is empty then X is disconnected and hence not 2 -sac. So suppose F has n
elments, say x_{1}, \ldots, x_{n}, for $n \geq 1$. Let U and V be an open partition of $X \backslash F$. Pick x_{n+1} in U and x_{n+2} in V. Consider an $\operatorname{arc} \alpha$ in X visiting x_{1}, \ldots, x_{n}, and then x_{n+1}. Then α ends in U and cannot enter V without passing through F. Thus no arc extending α can end at $x_{n+2}-$ and X is not $n+2-\mathrm{sac}$, as claimed.

Corollary. Let X be a space.
(1) If there is an open set U with non-empty but finite boundary, then X is not $(|\partial U|+2)-$ sac.
(2) No regular continuum is ω-sac.
(3) A continuum containing a free arc is not 4-sac.
(4) No compact continuous image of an interval is 4-sac.

Proof. (1) is simply a restatement of Lemma 4.1.1. Then (2) is immediate from (1). For (3), apply (1) to an open interval inside the free arc. While for (4) note that, by Baire Category, a compact continuous image of an interval contains a free arc, so apply (3).

Call an arc α in a space X a 'no exit' arc if every arc β containing the endpoints of α, and meeting α 's interior must contain all of α.

Lemma 4.1.2. If a space contains a no exit arc then it is not 4-sac.

Proof. Let x_{1} and x_{2} be the endpoints of α. Pick x_{3} and x_{4} so that $x_{1}, x_{3}, x_{4}, x_{2}$ are in order along α. Suppose, for a contradiction, β is an arc visiting the x_{i} in order. Since x_{3} and x_{4} are in the interior of α, by hypothesis, β contains α. Now we see that if β enters the interior of α from x_{1} then it visits x_{3} before x_{2}. While if β enters the interior of α from x_{2} it visits x_{4} before x_{3}. Either case leads to a contradiction.

Proposition 4.1.3. No planar continuum is 4-sac.

Proof. Let K be a plane continuum. If it is not arc connected then it is not $2-$ sac, so suppose K is arc connected. Pick \mathbf{x}_{-}(respectively, \mathbf{x}_{+}) in K to have minimal x-coordinate (resp., maximal x-coordinate). If \mathbf{x}_{-}and \mathbf{x}_{+}have the same x-coordinate, then X is an arc, and so not 3-sac.

Otherwise, translating the mid point between \mathbf{x}_{-}and \mathbf{x}_{+}to the origin, shearing in the y-coordinate only to move \mathbf{x}_{-}and \mathbf{x}_{+}onto the x-axis, and then scaling, we can assume without loss of generality that $\mathbf{x}_{-}=(-1,0), \mathbf{x}_{+}=(+1,0)$ and $K \subseteq[-1,1] \times \mathbb{R}$.

There is an arc α in K from \mathbf{x}_{-}to \mathbf{x}_{+}. Some sub-arc, α^{\prime}, of α meets $\{-1\} \times \mathbb{R}$ and $\{+1\} \times \mathbb{R}$ in just one point (each). If for every x in $(-1,1)$ the vertical line $\{x\} \times \mathbb{R}$ meets α^{\prime} in just one point, then α^{\prime} is a free arc, and K is not $4-$ sac, as claimed.

Otherwise there is an $x_{0} \in(-1,1)$ such that there are two distinct points \mathbf{x}_{3} and \mathbf{x}_{4} in $K \cap\left(\left\{x_{0}\right\} \times \mathbb{R}\right)$. We can suppose \mathbf{x}_{3} has minimal y-coordinate, y_{3}, while \mathbf{x}_{4} has maximal y-coordinate, y_{4}. Assume, for a contradiction, that there is an $\operatorname{arc} \beta$ from $\mathbf{x}_{1}=\mathbf{x}_{-}$to \mathbf{x}_{4} visiting $\mathbf{x}_{2}=\mathbf{x}_{+}$and \mathbf{x}_{3} in order. Let β_{1} be the sub-arc from \mathbf{x}_{1} to \mathbf{x}_{2} and β_{3} be the sub-arc from \mathbf{x}_{3} to \mathbf{x}_{4}. Note that $\beta_{1} \cap \beta_{3}=\emptyset$, and so β_{1} meets $\left\{x_{0}\right\} \times \mathbb{R}$ only inside $\left\{x_{0}\right\} \times\left(y_{3}, y_{4}\right)$. Hence the line $L=(-\infty,-1) \times\{0\} \cup \beta_{1} \cup(+1,+\infty) \times\{0\}$ splits the plane into two disjoint open sets, U_{3} containing \mathbf{x}_{3}, and U_{4} containing \mathbf{x}_{4}. However β_{3} is supposed, on the one hand, to be an arc from \mathbf{x}_{3} to \mathbf{x}_{4}, and so must cross L, and on the other hand, is forced to be disjoint from each part of L : β_{1} (by choice of β) and both $(-\infty,-1) \times\{0\}$ and $(+1,+\infty) \times\{0\}$ (since $K \subseteq[-1,1] \times \mathbb{R})$ - contradiction.

So many continua are not even 4-sac. But some curves are ω-sac.
Example 5. The Menger curve is ω-sac.

Since graphs are never 4-sac, regular continua are not ω-sac and the Menger curve is not rational, the following questions are natural.

Question 2. 1. Which graphs are 3 -sac? Can we characterize them?
2. Is there a rational ω-sac curve? Can we characterize ω-sac continua?

The circle and theta curve are 3-sacs. Three points, p, q, r, on the theta curve below in figure 4.1 do not lie on any simple closed curve.

It turns out, these characterize the 3 -sac graphs:
Proposition 4.1.4. Suppose G is a finite graph. Then the following are equivalent:

1. G is 3-sac.
2. G has no cut point.

Figure 4.1: Circle and Theta curve with points p, q, r
3. Any three points in G are contained in either a simple closed curve or a theta curve.

Notation: If $\alpha:[0,1] \rightarrow G$ is an arc, then for $t<l, t, l \in[0,1], \alpha_{t, l}$ will denote a sub-arc of α from $\alpha(t)$ to $\alpha(l)$.

Lemma 4.1.5. Suppose G is a finite graph with possibly a vertex taken out. Suppose K and L are non-empty, disjoint (connected) subgraphs of G. Then there is an arc $\alpha:[0,1] \rightarrow G$ such that $\alpha(0) \in K, \alpha(1) \in L, \alpha((0,1)) \cap(K \cup L)=\emptyset$.

Proof. Pick $a \in K, b \in L$. Since G is arc-connected there is an arc $\beta:[0,1] \rightarrow G$ such that $\beta(0)=a, \beta(1)=b$. Since K, L, G are finite graphs, there are vertices $c=\beta\left(t_{1}\right) \in L$ and $d=\beta\left(t_{0}\right) \in K$, such that $\beta\left(\left[0, t_{1}\right)\right) \cap L=\emptyset$ and $\beta\left(\left(t_{0}, t_{1}\right)\right) \cap K=\emptyset$. Since K, L are disjoint $t_{0} \neq t_{1}$. If s is a homeomorphism from [0,1] to $\left[t_{0}, t_{1}\right]$ mapping 0 to t_{0}, then $\alpha=\beta_{t_{0}, t_{1}} \circ s$ is desired arc.

Lemma 4.1.6. Suppose G is a finite graph without any cut points. Suppose K and L are non-empty, disjoint (connected) subgraphs of G. Then there exist disjoint arcs α, β in $\operatorname{cl}(G-(K \cup L))$ with endpoints a_{1}, a_{2} and b_{1}, b_{2} respectively such that $a_{1}, b_{1} \in K$ and $a_{2}, b_{2} \in L$. If $K(L)$ contains only one point then $a_{1}=b_{1}\left(a_{2}=b_{2}\right)$.

Proof. Induction on n, number of edges in $\operatorname{cl}(G-(K \cup L))$.
If $n=1$ then the only edge in $\operatorname{cl}(G-(K \cup L))$ will be connecting K and L and any point on it will be a cut point. Hence $n>1$.

If $n=2$, suppose α, β are the two edges in $\operatorname{cl}(G-(K \cup L))$ with endpoints a_{1}, a_{2} and b_{1}, b_{2} respectively. Then without loss of generality we have the following cases:

- $a_{1} \in K, a_{2}=b_{1}, b_{1} \notin K \cup L, b_{2} \in L$ and all points on α and β are cut points.
- $a_{1} \in K, a_{2}, b_{1}, b_{2} \in L$ and any point on α is a cut point.
- $a_{1}, b_{1} \in K, a_{2} \in L, b_{2} \notin L$, then there is a cut point on α.
- $a_{1}, b_{1} \in K, a_{2}, b_{2} \in L$ and without loss of generality $a_{1}=b_{1}$. If K is a point then Lemma 2 holds otherwise a_{1} is a cut point.
- $a_{1}, b_{1} \in K, a_{2}, b_{2} \in L$ and $a_{1}, b_{1}, a_{2}, b_{2}$ are distinct points. Then we have two disjoint arcs starting at K and ending at L.

So Lemma 4.1.6 holds for $n=2$.

Now suppose the lemma holds for n and $\operatorname{cl}(G-(K \cup L))$ has $n+1$ edges. Then there are the following cases:

1. Each edge starts in K and ends in L : if there are two edges that start at distinct points and end at distinct points then lemma holds. If without loss of generality all edges end at the same point of L, say c, then either L is a point and Lemma 4.1.6 holds or c is a cut point.
2. There is an edge, say γ that starts at $c \in K$ and ends at $d \notin L$ (so it does not intersect $L)$. Then let $K \cup \gamma=K^{\prime}$ and $\gamma \cup \alpha^{\prime}=\gamma^{\prime}$, which is an arc starting at c and ending at a_{2}. Then K^{\prime}, L satisfy hypothesis of Lemma 4.1.6 and $c l\left(G-\left(K^{\prime} \cup L\right)\right)$ has n edges. Hence by induction hypothesis there exists a pair of disjoint $\operatorname{arcs} \alpha^{\prime}, \beta^{\prime}$ with endpoints a_{1}^{\prime}, a_{2} and b_{1}^{\prime}, b_{2} such that $a_{1}^{\prime}, b_{1}^{\prime} \in K^{\prime}$ and $a_{2}, b_{2} \in L$ and if L contains only one point then $a_{2}=b_{2}$. Subcases:
2.1. If $a_{1}^{\prime}, b_{1}^{\prime} \in K$ then let $\alpha=\alpha^{\prime}, \beta=\beta^{\prime}$ and Lemma 4.1.6 holds.
2.2. If without loss of generality $a_{1}^{\prime} \in K^{\prime}-K, b_{1}^{\prime} \in K-\{c\}$ then only possibility is $a_{1}^{\prime}=d$. If we let $\alpha=\gamma^{\prime}, \beta=\beta^{\prime}$, Lemma 4.1.6 holds.
2.3. Say $a_{1}^{\prime}=d, b_{1}^{\prime}=c$. Since c is not a cut point $G-\{c\}$ is arc-connected (G is a finite graph). Apply Lemma 4.1.5 to $K-\{c\}$ and $\left(L \cup \gamma^{\prime} \cup \beta^{\prime}\right)-\{c\}$ to obtain an arc $\delta:[0,1] \rightarrow$ $G-\{c\}$ such that $\delta(0) \in K-\{c\}, \delta(1) \in\left(L \cup \gamma^{\prime} \cup \beta^{\prime}\right)-\{c\}, \delta((0,1)) \cap\left(K \cup L \cup \gamma^{\prime} \cup \beta^{\prime}\right)=\emptyset$.

Now if $\delta(1) \in L$, let $\alpha=\delta$ and $\beta=\beta^{\prime}$ or α^{\prime} whichever does not have $\delta(1)$ as an endpoint, Lemma 4.1.6 holds.

If $\delta(1) \in \beta^{\prime}$, hence $\delta(1)=\beta^{\prime}(t)$ for some $t \in(0,1]$. Let $\alpha=\gamma^{\prime}, \beta=\delta \cup \beta_{t, 1}^{\prime}$ and Lemma 4.1.6 holds.

If $\delta(1) \in \gamma^{\prime}$, hence $\delta(1)=\gamma^{\prime}(t)$ for some $t \in(0,1]$. Let $\alpha=\delta \cup \gamma_{t, 1}^{\prime}, \beta=\beta^{\prime}$ and Lemma 4.1.6 holds.

Proof. (Proposition 4.1.4)
" $(1) \Rightarrow(2)$ " follows immediately from Lemma 4.1.1.
$"(2) \Rightarrow(3) "$ let $p, q, r \in G$ be any three points. Apply Lemma 4.1.6 to $\{p\}=K,\{q\}=L$ and resulting $\alpha \cup \beta$ gives a simple closed curve containing p, q. If $r \in \alpha \cup \beta$ then all three lie on a simple closed curve. If $r \notin \alpha \cup \beta$ then apply Lemma 4.1.6 to $K=\alpha \cup \beta, L=\{r\}$ to obtain two disjoint arcs connecting $\alpha \cup \beta$ and r, say $\alpha^{\prime}, \beta^{\prime}$ then $\alpha \cup \beta \cup \alpha^{\prime} \cup \beta^{\prime}$ is a theta curve that contains all three of p, q, r.
" $(3) \Rightarrow(1)$ " obvious.

Lemma 4.1.7 (Finite Gluing). If X and Y are $2 n-1$-sac, and Z is obtained from X and Y by identifying pairwise $n-1$ points of X and Y, then Z is n-sac (but not $n+1$-sac by Lemma 4.1.1).

Proof. Pick any $z_{1}, z_{2}, \ldots, z_{n}$ in Z. For each i, if $z_{i} \in X-Y$ and $z_{i+1} \in Y-X$ or $z_{i} \in Y-X$ and $z_{i+1} \in X-Y$, pick $z_{(i, i+1)} \in(X \cap Y)-\left\{z_{1}, z_{2}, \ldots, z_{n}, z_{(1,2)}, z_{(2,3)}, \ldots, z_{(i-1, i)}\right\}$ (if these $z_{(1,2)}, z_{(2,3)}, \ldots, z_{(i-1, i)}$ were picked). This is possible since $|X \cap Y|=n-1$. Let \mathcal{Z} be a sequence of z_{j} 's with $z_{(i, i+1)}$'s inserted between z_{i} and z_{i+1} whenever they exist. And let $\mathcal{Z}_{\mathcal{X}}$ be a sequence derived from \mathcal{Z} by deleting terms that do not belong to X. Define $\mathcal{Z}_{\mathcal{Y}}$ similarly. Since elements of $\mathcal{Z}_{\mathcal{X}}$ come either from $\left\{z_{1}, z_{2}, \ldots, z_{n}\right\}$ or from $X \cap Y,\left|\mathcal{Z}_{\mathcal{X}}\right| \leq 2 n-1$. Similarly, $\left|\mathcal{Z}_{\mathcal{Y}}\right| \leq 2 n-1$. Let β be an arc in X going through elements of $\mathcal{Z}_{\mathcal{X}}$ in order and γ be an arc in Y going through elements of $\mathcal{Z}_{\mathcal{Y}}$ in order. Let $a_{1}, a_{2}, \ldots, a_{k}$ be $z_{(1,2)}, z_{(2,3)}, \ldots, z_{(n-1, n)}$ whenever they exist, respectively. Without loss of generality, suppose $z_{1} \in X$. Define α to be the arc consisting of the following parts:

- part of β from z_{1} to a_{1};
- part of γ from a_{1} to a_{2};
- part of β from a_{2} to $a_{3} \ldots$
- part of β or γ (depending on whether k is even or odd) from a_{k} to z_{n}.

Now we turn to our second question, and give an example of a rational ω-sac curve.
Theorem 4.1.8. There is a rational continuum which is ω-sac.

Proof. Write $B(\mathbf{x}, r)$ for the open disk in the plane of radius r centered at \mathbf{x}. Write $S(\mathbf{x}, r)$ for the boundary circle of $B(\mathbf{x}, r)$. Pick any sequence $\left(x_{n}\right)_{n \in \mathbb{N} \cup\{0\}}$ in $(0,1)$ increasing to 1 . Let $c_{0}=0, r_{0}=x_{0}$ and $c_{n}=\left(x_{n}+x_{n-1}\right) / 2, r_{n}=\left(x_{n}-x_{n-1}\right) / 2$ for $n \geq 1$. Let θ be rotation of the plane by 90° clockwise.

Let $U=\bigcup_{i=0}^{3} \theta^{i}\left(\bigcup_{n=0}^{\infty} B\left(\left(c_{n}, 0\right), r_{n}\right)\right)$, and $T=[-1,+1]^{2} \backslash U$.
Let S be the geometric boundary of T, so $S=\bigcup_{i=0}^{3} \theta^{i}\left(\bigcup_{n=0}^{\infty} S\left(\left(c_{n}, 0\right), r_{n}\right)\right)$. Let S^{-} and S^{+}be the two circles in S immediately to the left and right of the center circle, i.e. $S^{-}=S\left(\left(-x_{1}, 0\right), r_{1}\right)$ and $S^{+}=S\left(\left(x_{1}, 0\right), r_{1}\right)$. For $\mathrm{i}=0$ (respectively, $\left.\mathrm{i}=1\right)$ pick a two sided sequence of points, $\left(p_{m, i}^{-}\right)_{m \in \mathbb{Z}}$, on the top (respectively, bottom) edge of S^{-}converging on the left to $\left(-x_{1}-r_{1}, 0\right)$ (the leftmost point of $\left.S^{-}\right)$and on the right to $\left(-x_{1}+r_{1}, 0\right)$ (the rightmost point of $\left.S^{-}\right)$. Find a corresponding pair, $\left(p_{m, i}^{+}\right)_{m \in \digamma}$ for $i=0$, and 1 of double sequences on the top and bottom edges of S^{+}converging to the leftmost and rightmost points of S^{+}. Let $T_{i}=\theta^{i}\left([0,1]^{2} \cap T\right)$ for $i=0,1,2,3$. Note that each T_{i} is a topological rectangle with natural 'corners' and 'midpoints' of the sides.

Let $X_{1}=T, R_{(i)}=T_{i}$ and $S_{1}=S$. Let $h_{(0)}$ be a homeomorphism of $[-1,+1]^{2}$ with T_{0} carrying top-right corner to top-right corner etc, and midpoints to midpoints. Let $h_{(i)}=$ $\theta^{i} \circ h_{(0)}$ for $i=1,2,3$.

Inductively, suppose we have continuum X_{n}, geometric boundary S_{n}, and for each $\sigma \in$ $\Sigma_{n}=\{0,1,2,3\}^{n}$ a rectangle R_{σ} and a homeomorphism h_{σ} of $[-1,+1]^{2}$ with R_{σ}. Fix a σ for a moment. Then R_{σ} has four subrectangles $h_{\sigma}\left(T_{i}\right)$. For $i=0,1,2,3$ let $h_{\sigma \wedge i}$ be a

Figure 4.2: T and X_{2}
homeomorphism of $[-1,+1]^{2}$ with $h_{\sigma}\left(T_{i}\right)$ taking corners to corners etcetera. Let $R_{\sigma \wedge i}=$ $h_{\sigma}\left(T_{i}\right)=R_{\sigma} \backslash h_{\sigma \curvearrowright i}(U)$. Let $X_{n+1}=\bigcup_{\sigma \in \Sigma_{n}} \bigcup_{i=0}^{3} R_{\sigma \curvearrowright i}=\bigcup_{\sigma \in \Sigma_{n+1}} R_{\sigma}$. Let S_{n+1} be the natural geometric boundary.

Let $X=\bigcap_{n} X_{n}$. Then X is a variant of Charatonik's description of Urysohn's locally connected, rational continuum in which every point has countably infinite order, see [4]. Thus X is rational (and locally connected). Since it is planar it is not 4 -sac. Note that each $R_{\sigma} \cap X$ has a countable boundary contained in the sides of R_{σ}. Call a side of R_{σ} 'finite' if it contains only finitely many boundary points. A side containing infinitely many boundary points, is said to be 'infinite'.

For each n and σ in Σ_{n}, there are two circles, $h_{\sigma}\left(S^{-}\right)$and $h_{\sigma}\left(S^{+}\right)$. Identify, for all $m \in \mathbb{Z}$ and $i \in\{0,1\}$, the points $h_{\sigma}\left(p_{m, i}^{-}\right)$and $h_{\sigma}\left(p_{m, i}^{+}\right)$(creating a 'rational bridge' between the circles). Note that the diameters of the circles shrink to zero with n. It follows that the resulting quotient space, Y, is a locally connected, rational continuum. We show that Y is ω-sac.

Fix distinct points x_{1}, \ldots, x_{n} in Y. The diameters of the rectangles, R_{σ} for $\sigma \in \Sigma_{m}$, shrink to zero with m, so we can find an N such that if $i \neq j, x_{i} \in R_{\sigma}$, and $x_{j} \in R_{\tau}$ where $\sigma, \tau \in \Sigma_{N}$ then R_{σ} and R_{τ} are disjoint. For each i, let R_{i} be the unique R_{σ} containing x_{i}.

Subdivide the square $r=[-1,+1]^{2}$ into four subsquares $r_{(i)}=\theta^{i}\left([0,1]^{2}\right)$. And continue
subdividing to get a final subdivision of $[-1,+1]^{2}$ into subsquares r_{σ} for $\sigma \in \Sigma_{N}$. Note that two squares r_{σ} and r_{τ} are adjacent if and only if the corresponding rectangles R_{σ} and R_{τ} are adjacent. For each σ in Σ_{N}, consider R_{σ}. It has four sides, at most two are 'finite' sides. For each finite side remove the line segment in r which is the corresponding side in r_{σ}. The result r^{\prime} is an open, connected subset of the plane. It follows that r^{\prime} is ω-sac. Hence there is an arc α^{\prime} which visits the interior of the squares r_{i} in order: $r_{1}, r_{2}, \ldots, r_{n}$ (indeed we can suppose α^{\prime} visits the centers of the r_{i} in turn). Further, we can suppose that α^{\prime} consists of a finite union of horizontal or vertical line segments of the form $\{p / q\} \times J$ or $J \times\{p / q\}$ where $p \in \mathbb{Z}$, $q \in \mathbb{N}$ and J is a closed interval. Let M be a common denominator of all the denominators (q 's) used. Then α^{\prime} is an arc on the grid $r^{\prime} \cap\left(\left(\bigcup_{p \in \mathbb{Z}}\{p / M\} \times \mathbb{R}\right) \cup\left(\bigcup_{p \in \mathbb{Z}} \mathbb{R} \times\{p / M\}\right)\right)$.

Consider X_{1}. There is a connected chain of circles, V_{0}, in X_{1} from the bottom edge to the top, and a connected chain of circles, H_{0}, from the left side to the right. Note that V_{0} and H_{0} are in X. Now consider X_{2}. There is a connected chain of circles to the right of V_{0} from the top edge to a circle in H_{0}, and another to the right of V_{0} from the bottom edge to a circle in H_{0}. By construction, both chains end at the same circle of H_{0}. Call the union of these two chains, along with the circle they connect to, V_{1}. It is a vertical connected chain of circles from the top edge to the bottom. Similarly, there is a vertical connected chain of circles, V_{-1} from the top edge to the bottom, lying to the left of V_{0}. Further there are two horizontal connected chains of circles, H_{1} and H_{-1}, above and, respectively, below, H_{0}. Observe that V_{0} and $V_{ \pm 1}$ are disjoint, as are H_{0} and $H_{ \pm 1}$. Together these six chains form a three-by-three 'grid' in X. Repeating, we find a 'grid' of horizontal, $H_{ \pm n}$ and vertical, $V_{ \pm n}$, chains, all in X, where the $H_{ \pm n}$ converges to the left and right sides, $\{ \pm 1\} \times[-1,1]$ and $V_{ \pm n}$ converges to the top and bottom edges $[-1,1] \times\{ \pm 1\}$.

Now consider a rectangle R_{σ} for some σ in Σ_{N}. It has at least two 'infinite' sides. For concreteness let us suppose that the bottom and right sides of R_{σ} are infinite, with the limit point on the bottom edge being to the right, and the limit along the right edge being at the top (all other cases are very similar). The vertical chains, V_{n} in X, for $n \in \mathbb{N}$, have analogues in R_{σ}. By construction, each V_{n} meets the bottom edge of R_{σ} in an arc of a circle whose ends are points in the R_{τ} 'below' R_{σ}. Extend V_{n} to include this arc. Repeat at the top edge, if it is infinite. Apply the same procedure to the horizontal chains, H_{n} for $n \in \mathbb{N}$.

The horizontal chains, and respectively the vertical chains, remain disjoint. Note that, by construction, if R_{τ} is the rectangle 'below' R_{σ}, then the nth vertical chain in R_{σ} connects to the nth vertical chain in R_{τ} (and similarly for the rectangle to the right of R_{σ}). If x_{i} is in R_{σ} but not on the geometric boundary of R_{σ}, then let P_{i} be sufficiently large that x_{i} is to the left of $V_{P_{i}}$ and below $H_{P_{i}}$.

Now let P be the maximum of the P_{i}. Return to an individual rectangle, R_{σ}, as in the previous paragraph. Take the union of the vertical chains, V_{P}, \ldots, V_{P+M}, and the horizontal chains, H_{P}, \ldots, H_{P+M}. Take the union now over all σ in Σ_{N}. This gives a 'grid', G, naturally containing an isomorphic copy of the grid G^{\prime} in r^{\prime}. Think of the grid, G^{\prime}, as a graph, and α^{\prime} as an edge arc in this graph. Then we can realize the arc α^{\prime} in G^{\prime} as a connected chain of circles in X. Evidently (by traveling along the 'top' or 'bottom' edges of the circles in the union) we can extract an arc, α_{*}, contained in this union. The arc α_{*} visits the R_{i} in order. Note that α_{*} is not (necessarily) an arc in Y, but it can easily be modified to be so, call this arc, α_{0}.

To complete the proof, we modify α_{0}, to another arc α in Y, which visits the points x_{i} in order. As α_{0} visits the R_{i} in turn, there are sub-arcs β_{i} of α_{0}, where β_{i} comes before β_{j} if $i<j$, such that β_{i} crosses from one infinite edge of R_{i} to another (along the 'grid' G inside R_{i}). We will replace β_{i} in α_{0} by another sub-arc, visiting x_{i}, contained inside R_{i}, with the same start and end as β_{i}, but otherwise disjoint from the 'grid' G. Doing this for all i, gives the arc α in Y.

Fix i. Again for concreteness, orient $R_{i}=R_{\sigma}$ as above. Suppose that β_{i} enters R_{i} at y_{i}, a point on the bottom edge, and exits at z_{i}, a point on the right edge. Pick Q in \mathbb{N} sufficiently large that, V_{Q} is to the right of the rightmost vertical chain in $G \cap R_{i}$, above the highest horizontal chain in $G \cap R_{i}$ (i.e. $Q>P+M$) and if x_{i} is not on the geometric boundary of R_{i}, the vertical chain V_{-Q} is to the left of x_{i} and the horizontal chain H_{-Q} is below x_{i}. The union of $V_{ \pm Q}$ and $H_{ \pm Q}$ contains an obvious 'ring', a connected cycle of circles, just interior to the geometric boundary of R_{i}. Observe that this ring meets each arc component of $\alpha_{0} \cap R_{i}$ in two circles, which are bridges. Select a simple closed curve (in Y), S, contained in this ring, which connects with β_{i} at two points (one, call it y_{i}^{\prime}, near y_{i}, and another, call it z_{i}^{\prime}, near z_{i}), but which uses the bridges to prevent intersection with any other (arc component of) α_{0}.

We will modify S so that it visits x_{i}. If this is possible then either the arc 'travel along β_{i} from y_{i} to y_{i}^{\prime}, then clockwise along S until we reach z_{i}^{\prime}, followed by traveling along the arc β_{i} to z_{i}^{\prime}; or the arc obtained by following S anti-clockwise, is the required modification of β_{i}.

Two cases arise. If x_{i} is on the geometric boundary of R_{i}, we can find two arcs starting at x_{i}, and otherwise disjoint, both meeting S (but disjoint from the grid G). The required modification of S is now obvious (follow S, then the first arc met, to x_{i}, back to S along the second arc, and finish following S). If x_{i} is not on the geometric boundary, then it is to the left and below the grid. It is also in some rectangle, R_{τ}, τ from some $\Sigma_{N^{\prime}}$ where $N^{\prime}>N$, where R_{τ} is disjoint from the geometric boundary of R_{i}. Following S anticlockwise we can get to a point, a_{i}, below the lowest horizontal line of the grid, but above and to the left of the top-left corner of R_{τ}. Following S clockwise we can get to a point, b_{i}, left of the leftmost vertical line of the grid $G \cap R_{i}$, but below and to the right of the bottom-right corner of R_{τ}. We can now find disjoint arcs from a_{i} to the top-left corner of R_{τ}, and from b_{i} to the bottom-right corner of R_{τ}. And these can be extended to disjoint (except at x_{i}) arcs a_{i} to x_{i} and b_{i} to x_{i}. Again, using these arcs, we can modify S to detour through x_{i}.

4.2 COMPLEXITY OF 3-SAC GRAPHS AND ω-SAC CONTINUA

In this section we will examine the complexity of 3 -sac graphs and ω-sac rational curves.

4.2.1 3-SAC GRAPHS

Lemma 4.2.1. Let \mathcal{G} be any collection of graphs and $N \in \mathbb{N}$ a fixed number. Then $H(\mathcal{G})$, the set of all subcontinua of I^{N} homeomorphic to some member of \mathcal{G}, is $\boldsymbol{\Pi}_{3}^{0}-h a r d$ and in the difference hierarchy $D_{2}\left(\boldsymbol{\Sigma}_{3}^{0}\right)$.

Proof. That $H(\mathcal{G})$ is Π_{3}^{0}-hard is immediate from Theorem 7.3 of [3]. It remains to show it is in $D_{2}\left(\boldsymbol{\Sigma}_{3}^{0}\right)$.

For spaces X and Y, write $X \leq Y$ if X is Y-like, which means that for each $\varepsilon>0$ there is a continuous map $f: X \rightarrow Y$ such that f is onto and $\{x \in X \mid f(x)=y\}$ has diameter
less than ε for each $y \in Y$. We also write $X<Y$ if $X \leq Y$ but $Y \not 又 X$ and $X \sim Y$ if $X \leq Y$ and $Y \leq X$. Further write $\mathcal{L}_{X}=\{Y: Y \leq X\}$ and $Q(X)=\{Y: X \sim Y\}$.

Up to homeomorphism there are only countably many graphs. So enumerate $\mathcal{G}=\left\{G_{m}\right.$: $m \in \mathbb{N}\}$. According to Theorem 1.7 of [3], for a graph G and Peano continuum, P, we have that P is G-like if and only if P is a graph obtained from G by identifying to points disjoint (connected) subgraphs. For a fixed graph G, then, there are, up to homeomorphism, only finitely many G-like graphs. For each G_{m} in \mathcal{G} pick graphs $G_{m, i}$ for $i=1, \ldots, k_{m}$ such that each $G_{m, i}$ is G-like but G is not $G_{m, i}$-like, i.e. $G_{m, i}<G$, and if G^{\prime} is a graph such that $G^{\prime}<G$ then for some i we have $H\left(G^{\prime}\right)=H\left(G_{m, i}\right)$.

For a graph $G, H(G)=Q(G)([14])$. Hence, writing \mathcal{P}, for the class of Peano continua, we have that $H(\mathcal{G})=\bigcup_{m} Q\left(G_{m}\right)=\mathcal{P} \cap\left(\bigcup_{m} R_{m}\right)$, where $R_{m}=\mathcal{L}_{G_{m}} \backslash \bigcup_{i=1}^{k_{m}} \mathcal{L}_{G_{m, i}}=\mathcal{L}_{G_{m}} \cap$ $\left(C\left(I^{N}\right) \backslash \bigcup_{i=1}^{k_{m}} \mathcal{L}_{G_{m, i}}\right)$.

By Corollary 5.4 of [3], for a graph G, the set \mathcal{L}_{G} is Π_{2}^{0}. Hence each R_{m}, as the intersection of a $\boldsymbol{\Pi}_{2}^{0}$ and a $\boldsymbol{\Sigma}_{2}^{0}$, is $\boldsymbol{\Sigma}_{3}^{0}$, and so is their countable union. Since \mathcal{P} is $\boldsymbol{\Pi}_{3}^{0}$, we see that $H(\mathcal{G})$ is indeed the intersection of a $\boldsymbol{\Pi}_{3}^{0}$ set and a $\boldsymbol{\Sigma}_{3}^{0}$ set.

Proposition 4.2.2. Let $S G_{3}$ be the set of subcontinua of I^{N} which are 3-sac graphs. Then $S G_{3}$ is $D_{2}\left(\boldsymbol{\Sigma}_{3}^{0}\right)$-complete.

Proof. According to Lemma 4.2.1 $S G_{3}$ is $D_{2}\left(\boldsymbol{\Sigma}_{3}^{0}\right)$, so it suffices to show that it is $D_{2}\left(\boldsymbol{\Sigma}_{3}^{0}\right)-$ hard. To show that $S G_{3}$ is $D_{2}\left(\Sigma_{3}^{0}\right)$-hard it suffices to show that there is a continuous map $F:\left(2^{\mathbb{N} \times \mathbb{N}}\right)^{2} \rightarrow C\left(I^{N}\right)$ such that $F^{-1}\left(S G_{3}\right)=S_{3}^{*} \times P_{3}$. We do the construction for $N=2$. Since \mathbb{R}^{2} embeds naturally in general \mathbb{R}^{N}, the proof obviously extends to all $N \geq 2$.

For x, y in \mathbb{R}^{2}, let $\mathrm{Cl} x y$ be the straight line segment from x to y. Set $O=(0,0), T=$ $(3,1), B_{1}=(1,0), B_{2}=(4 / 3,0), B_{3}=(5 / 3,0), B_{4}=(2,0)$ and $T_{1}=(1,1), T_{2}=(4 / 3,1)$, $T_{3}=(5 / 3,1), T_{4}=(2,1)$. Let $K_{0}=\mathrm{Cl} O B_{4} \cup \mathrm{Cl} B_{4} T \cup \mathrm{Cl} T T_{1} \cup \mathrm{Cl} T_{1} O \cup \cup \mathrm{Cl} B_{2} T_{2} \cup \mathrm{Cl} B_{3} T_{3}$. Then K_{0} is a 3-sac graph. Define $b_{j}=(1 / j, 0), t_{j}=(1 / j, 1 / j), t_{j}^{k}=(1 / j, 1 / j-1 /(k j))$ and $s_{j}^{k}=(1 / j-1 /(k j(j+1)), 0)$. Then $K_{J}=K_{0} \cup \bigcup_{j=1}^{J} \mathrm{Cl} b_{j} t_{j}-$ for each $J-$ is also a 3-sac graph.

Let K_{0}^{\prime} be K_{0} with the interior of the line from O to B_{1}, and the interior of the line from T_{4} to T, deleted.

Figure 4.3: Graph of $F(\alpha, \beta)$

We now define F at some α and β in $2^{\mathbb{N} \times \mathbb{N}}$. Fix j. If $\alpha(j, k)=1$ for all k, then let $R_{j}=\mathrm{Cl} b_{j} t_{j} \cup \mathrm{Cl} b_{j} b_{j+1}$. Otherwise, let $k_{0}=\min \{k: \alpha(j, k)=0\}$, and let $R_{j}=$ $\mathrm{Cl} b_{j} t_{j}^{k_{0}} \cup \mathrm{Cl} t_{j}^{k_{0}} s_{j}^{k_{0}} \cup \mathrm{Cl} s_{j}^{k_{0}} b_{j+1}$.

For any j, k set $p_{j}=3-1 / j, q_{j}^{k}=1-1 /(j+k), \ell_{j}=p_{j}+(1 / 8)\left(p_{j+1}-p_{j}\right)$ and $r_{j}=p_{j}+(7 / 8)\left(p_{j+1}-p_{j}\right)$. Fix j. Define

$$
\begin{aligned}
S_{j} & =\mathrm{Cl}\left(p_{j}, 1\right)\left(p_{j}, q_{j}^{1}\right) \cup \mathrm{Cl}\left(p_{j}, q_{j}^{1}\right)\left(\ell_{j}, q_{j}^{1}\right) \cup \mathrm{Cl}\left(\ell_{j}, 1\right)\left(p_{j+1}, 1\right) \\
& \cup \bigcup\left\{\mathrm{Cl}\left(\ell_{j}, q_{j}^{k}\right)\left(\ell_{j}, q_{j}^{k+1}\right): \beta(j, k)=0\right\} \\
& \cup \bigcup\left\{\mathrm{Cl}\left(\ell_{j}, q_{j}^{k}\right)\left(r_{j}, q_{j}^{k}\right) \cup \mathrm{Cl}\left(r_{j}, q_{j}^{k}\right)\left(\ell_{j}, q_{j}^{k+1}\right): \beta(j, k)=1\right\} .
\end{aligned}
$$

Let $F(\alpha, \beta)=K_{0}^{\prime} \cup \bigcup_{j}\left(R_{j} \cup S_{j}\right)$. Then it is straightforward to check F maps $\left(2^{\mathbb{N} \times \mathbb{N}}\right)^{2}$ continuously into $C\left([0,4]^{2}\right)$.

Take any α. For any j, the set R_{j} connects the bottom edge $\mathrm{Cl} O B_{1}$ with the diagonal edge $\mathrm{Cl} O T_{1}$ if $\alpha(j, k)=1$ for all k, and otherwise is an arc from b_{j} to b_{j+1}. Hence $\bigcup_{j} R_{j}$ is a free arc from B_{1} to O if α is in S_{3}^{*}, and otherwise can't be a subspace of a graph (because it contains infinitely many points of order 3).

Take any β. For any j, S_{j} is an arc from $\left(p_{j}, 1\right)$ to $\left(p_{j+1}, 1\right)$ if $\beta(j, k)=0$ for all but finitely many k, but contains a 'topologists sine curve' if $\beta(j, k)=1$ for infinitely many k. Thus $\bigcup_{j} S_{j}$ is a free arc from T_{4} to T if β is in P_{3}, and otherwise can't be a subspace of a graph (because it contains a 'topologists sine curve').

Hence if (α, β) is in $S_{3}^{*} \times P_{3}, F(\alpha, \beta)$ is homeomorphic to some K_{J}, which in turn means it is a graph which is 3-sac. On the other hand, if either α is not in S_{3}^{*} or β is not in P_{3}, then $F(\alpha, \beta)$ contains subspaces which can't be subspaces of a graph - and so is not a graph. Thus $F^{-1}\left(S G_{3}\right)=S_{3}^{*} \times P_{3}$ as required.

4.2.2 ω-SAC CONTINUA

From now on we will look into ω-sac curves. First we will define examples of rational ω-sac curves, then we will show that the set of such curves is very complex - not Borel.

We will build examples of spaces by laying out 'tiles'. A 'tile' is simply any space T which is (i) a subspace of the solid square pyramid in \mathbb{R}^{3} with base $S=[-1,+1]^{2} \times\{0\}$ and vertex at $(0,0,1)$ (so it has height 1) and (ii) contains the four corner points of the base, (i, j) for $i, j= \pm 1$. Call the intersection of a tile T with S, the base of T. Call the intersection of T with the boundary $B=([-1,1] \times\{-1,1\} \times\{0\}) \cup(\{-1,1\} \times[-1,1] \times\{0\})$ of the base S, the boundary of T. Call the point $(-1,1,0)$ the top-left corner of the base.

Lemma 4.2.3. There are (homeomorphic) subspaces T_{0} and T_{1} of $[-1,+1]^{2} \times \mathbb{R}$ such that: (i) T_{0} and T_{1} are ω-sac rational curves, (ii) T_{0} and T_{1} are contained in the pyramid with base $[-1,+1]^{2} \times\{0\}$ and with height 1 , (iii) T_{0} contains the boundary of the square $[-1,+1]^{2} \times\{0\}$, and (iv) the intersection of T_{1} and the boundary of the square $[-1,+1]^{2} \times\{0\}$ is $(A \times\{-1,1\} \times\{0\}) \cup(\{-1,1\} \times A \times\{0\})$ where A is a sequence on $[-1,0]$ converging to 0 along with -1 and 0.

Proof. The example, Y, of an ω-sac rational curve given in Theorem 4.1.8 is derived from a space X. This space X is a subspace of $[-1,+1]^{2}$. We may suppose that X is in fact a subspace of the square $S=[-1,+1]^{2} \times\{0\} \subseteq \mathbb{R}^{3}$. The space Y is obtained from X by identifying a sequence of pairs of double sequences. These double sequences all are disjoint from the boundary, B, of the square S, and the diameters and distance between pairs of sequences converges to zero. This identification process can be repeated in $(-1,+1)^{2} \times \mathbb{R}$, keeping the boundary, B, of the square, S, fixed, to get a space T_{0}^{\prime} homeomorphic to Y. Applying a homeomorphism of $[-1,+1]^{2} \times \mathbb{R}$ fixing B, the boundary of the square, and changing only the z-coordinates, to T_{0}^{\prime}, we get a space T_{0}, also homeomorphic to Y and
containing B, and which is contained in the pyramid with base $[-1,+1]^{2} \times\{0\}$ and height 1.

Scaling \mathbb{R}^{3} around the center point of the the base square, S, we can shrink T_{0} away from the boundary B of S and still have it inside the required pyramid. Instead of doing this transformation, shrink T_{0} while keeping fixed the set $(A \times\{-1,1\} \times\{0\}) \cup(\{-1,1\} \times A \times\{0\})$. This gives T_{1}.

Let X be a space and A an infinite subset. We say that X is $\omega-s a c^{+}$(with respect to A) if for any points x_{1}, \ldots, x_{n} in X there is an arc α in X visiting the x_{i} in order, such that α meets A only in a finite set. Observe that if X is $\omega-\mathrm{sac}^{+}$with respect to A, and A^{\prime} is an infinite subset of A, then X is $\omega-\operatorname{sac}^{+}$with respect to A^{\prime}.

Lemma 4.2.4 (ω-Gluing). Let $Z=X \cup Y$, where X, Y and $A=X \cap Y$ are infinite. If X is ω-sac ${ }^{+}$with respect to A, and Y is ω-sac, then Z is ω-sac.

Proof. Take any finite sequence of points z_{1}, \ldots, z_{N} in Z. By adding points to the start and end of the sequence, if necessary, we can suppose that z_{0} and z_{N} are in X. Group the sequence, $z_{1}, \ldots, z_{n_{1}}, z_{n_{1}+1}, \ldots, z_{n_{2}}, \ldots, z_{n_{k-1}}, z_{n_{k-1}+1}, \ldots, z_{n_{k}}$, where $z_{1}, \ldots, z_{n_{1}}$ are in X, $z_{n_{1}+1}, \ldots, z_{n_{2}}$ are in $Y \backslash X$, and so on, until $z_{n_{k-1}+1}, \ldots, z_{n_{k}}=z_{N}$ are in X. Pick $t_{1}^{ \pm}, \ldots, t_{k}^{ \pm}$ in $A \backslash\left\{z_{i}\right\}_{i \leq N}$.

Using the fact that X is $\omega-$ sac $^{+}$, pick arc α^{-}in X visiting in order, $z_{1}, \ldots, z_{n_{1}}, t_{1}^{-}, t_{1}^{+}$, $z_{n_{2}+1}, \ldots, z_{n_{2}+1}, \ldots, z_{n_{3}}, t_{2}^{-}, t_{2}^{+}$and so on, ending with $z_{n_{k}}$, such that α^{-}meets A only in a finite set F.

Using the fact that Y is ω-sac, pick an arc α^{+}in Y visiting in order the points, $t_{1}^{-}, z_{n_{1}+1}$, $\ldots, z_{n_{2}}, t_{1}^{+}, t_{2}^{-}$and so on, avoiding $F \backslash\left\{t_{1}^{ \pm}, \ldots, t_{k}^{ \pm}\right\}$.

Now we can interleave α^{-}and α^{+}to get an arc, α, visiting all the specified points in order. So we start α by following α^{-}to visit z_{1}, \ldots, t_{1}^{-}, then pick up α^{+}at t_{1}^{-}to visit $z_{n_{1}+1}, \ldots, z_{n_{2}}, t_{1}^{+}$, and back to α^{-}from t_{1}^{+}, and so on.

Lemma 4.2.5.

(i) The tile T_{0} is ω-sac ${ }^{+}$with respect to any infinite discrete subset of its boundary.
(ii) The tile T_{1} is ω-sac ${ }^{+}$with respect to its boundary.

Proof. Recall that T_{0} and T_{1} are both homeomorphic. In turn, T_{0} is a homeomorph of Y from Theorem 4.1.8 with the boundary square for both not just homeomorphic but identical (when we identify the plane, \mathbb{R}^{2}, with $\mathbb{R}^{2} \times\{0\}$). So we argue this for Y only. Looking at the proof that Y is ω-sac it is clear that the arc, α_{0}, visiting some specified points, x_{1}, \ldots, x_{n}, in order, need only touch the boundary in an arbitrarily small neighborhood of any x_{i} which happens to be on the boundary. This immediately gives the first claim - Y (and so T_{0}) is $\omega-$ sac $^{+}$with respect to infinite discrete subsets of the boundary square.

Further, the point $(0,-1)$ can be reached from the interior of Y (away from the boundary square) by two disjoint arcs which meet the set $(A \times\{-1,1\}) \cup(\{-1,1\} \times A)$ only at $(0,-1)$ - for one arc, α^{-}, follow one side of the sequence of circles converging to $(0,-1)$ and for the other, α^{+}, start at $(0,-1)$ go right along the boundary edge a short way, and then go into the interior. The same is true for the points $(0,1),(-1,0)$, and $(1,0)$.

Now to get the desired arc, if every x_{i} is not one of $(0,-1),(0,1),(-1,0)$, or $(1,0)$, then just use α_{0}. While if x_{i}, is say, $(0,-1)$, then pick α_{0} to visit $x_{1}, \ldots, x_{i-1}, t^{-}, t^{+}, x_{i+1}, \ldots$, where t^{-}, t^{+}are points close to $(0,-1)$ on α^{-}and α^{+}respectively. Now let α be the arc that follows α_{0} to t^{-}, then follows α^{-}to $x_{i}=(0,-1)$, then α^{+}to t^{+}, and then resumes along α_{0}.

For any tile $T, \mathbf{x}=(x, y)$ in \mathbb{R}^{2} and $a, b>0$, denote by $T(\mathbf{x}, a, b)$ the space T scaled in the x and y coordinates so its base has length a and width b, then scaled in the z coordinate so that the pyramid containing it has height no more than the smaller of a and b, and then translated in the x, y-plane so that the top-left corner is at $(x, y, 0)$.

From Lemma 4.2.4, part (ii) of Lemma 4.2.5, and an easy induction argument, the following is clear.

Lemma 4.2.6. Any space obtained by gluing along matching edges a finite family of translated and scaled copies of T_{1} is a rational ω-sac curve.

Proof. Let S be a space obtained by gluing along matching edges a finite family of translated and scaled copies of T_{1}. Fix a point $x \in S$, then x is in one of the tiles say t_{1}. Then there are two cases, either there is another tile t_{2} which meets t_{1} at one side of its base, and x is in this intersection. Then since each t_{i} is rational, there is a neighborhood base \mathcal{B}_{i} for x in
t_{i}, for each $i=1,2$. Let $\mathcal{B}=\left\{B_{1} \cup B_{2} \mid B_{i} \in \mathcal{B}_{i}\right\}$. Then \mathcal{B} is a neighborhood base at x in $t_{1} \cup t_{2}$, since for any open set U including $x, U \cap t_{i}$ is open in t_{i} and includes x, so there is $B_{i} \in \mathcal{B}_{i}$ with $B_{i} \subset U \cap t_{i}$, and thus $x \in B_{1} \cup B_{2} \subset U$. Also each $B \in \mathcal{B}$ has countably many boundary points, because when we combine two sets we add at most countably many more points to the boundary as the intersection of two tiles is a sequence of points in the boundary. Otherwise, there is a neighborhood base of x in t_{1} such that all elements of this base has countably infinite boundary.

Let now, $\left\{x_{1}, \ldots, x_{n}\right\} \subset S$. We want to find an arc α through these points in order. If all of these points are in one tile, we have such an arc since each tile is ω-sac. Otherwise, there are at least two different tiles in which the points lie, and we need a finite number of tiles from S to have a connected subset of it including the points. Say we need at least m tiles, then we will proceed by induction on m :
$m=1$ is the first case. Suppose $m=2$, so the points lie in two tiles t_{1} and t_{2}, and the tiles intersect along one edge of their bases. Then by using ω-gluing lemma, $t_{1} \cup t_{2}$ is also ω-sac, hence we can find an arc through the points in the given order. Suppose now, for any $m-1$ tiles that form a connected subset of S, this subset is ω-sac. Then for m tiles that form a connected subset, there is at least one tile t such that when we remove this tile the rest of them are still connected, call the union of the rest Y. Then again using ω-gluing lemma for $X=t$ and Y, we get that the union is ω-sac.

We define recursively a sequence of tiles. The first in the sequence is T_{1} from above. Given tile T_{n}, where $n \geq 1$, define T_{n+1} to be $T_{n}((-1,1), 1,1) \cup T_{n}((-1,0), 1,1) \cup T_{n}((0,1), 1,1) \cup$ $T_{n}((0,0), 1,1)$ scaled in the z-coordinate only so as to fit inside the pyramid with base S and height 1 . Then all the tiles T_{n} are rational ω-sac continua.

Theorem 4.2.7. Fix $N \geq 3$. For $n \geq 2$ or $n=\omega$, let R_{n} be the set of rational n-sac continua, and let $R_{n, \neg(n+1)}$ be the set of rational continua which are n-sac but not $n+1$-sac.

Then all the sets R_{n} and $R_{n, \neg(n+1)}$ are Σ_{1}^{1}-hard subsets of the space $\mathcal{K}\left(\mathbb{R}^{N}\right)$.

Proof. We prove that there is a continuous map K of the space \mathcal{T} of all trees on \mathbb{N} into the space $\mathcal{K}\left(\mathbb{R}^{3}\right)$ such that: if the tree τ has no infinite branch then K_{τ} is a rational continuum which is not arc-connected (in other words, 2-sac), while if τ has an infinite branch, then K_{τ}

Figure 4.4: Examples of Tiles
is an ω-sac rational continuum. The claim that R_{n} is a $\boldsymbol{\Sigma}_{1}^{1}$-hard subset of the space $\mathcal{K}\left(\mathbb{R}^{N}\right)$, follows simultaneously for all n and N. We then give the minor modifications necessary to have that K_{τ} is n-sac but not $n+1$-sac when τ has an infinite branch. The remaining claims follows immediately.

A basic building block for K_{τ} is $S(T)$ a variant of the topologist's sine-curve based on a tile T. This sine-curve lies in the rectangular box

$$
\left\{(x, y, z) \in \mathbb{R}^{3}: 0 \leq x \leq 13 / 3,0 \leq y \leq 5 / 2,0 \leq z \leq 1\right\}
$$

We call the point $(0,5 / 2,0)$ the top left corner of $S(T)$.
Explicitly $S(T)$ is $\left(D_{0} \cup A B_{0} \cup U_{0} \cup A T_{0}\right) \cup \bigcup_{n \geq 1}\left(D_{n} \cup C_{n} \cup A B_{n} \cup U_{n} \cup A T_{n}\right)$ where

$$
\begin{aligned}
D_{n}= & \bigcup_{i=1}^{2 \cdot 4^{n}} T\left(10 /\left(3 \cdot 4^{n}\right), 1 / 2+i / 4^{n}, 1 / 4^{n}\right) \\
C_{n}= & T\left(10 /\left(3 \cdot 4^{n}\right), 1 / 2-1 / 4^{n}, 1 / 4^{n}\right) \cup T\left(10 /\left(3 \cdot 4^{n}\right), 1 / 2,1 / 4^{n}\right) \quad(n \geq 1) \\
A B_{n}= & T\left(\left(7 /\left(3 \cdot 4^{n}\right), 1 / 2+1 / 4^{n}\right), 1 / 4^{n}\right) \\
U_{n}= & \bigcup_{i=1}^{2 \cdot 4^{n}-1} T\left(\left(4 /\left(3 \cdot 4^{n}\right), 1 / 2+i / 4^{n}\right), 1 / 4^{n}\right) \\
& \cup T\left(\left(4 /\left(3 \cdot 4^{n}\right), 5 / 2-1 / 4^{n+1}, 1 / 4^{n}, 3 / 4^{n+1}\right)\right. \\
& \cup T\left(\left(4 /\left(3 \cdot 4^{n}\right), 5 / 2,1 / 4^{n}, 1 / 4^{n+1}\right), \quad\right. \text { and } \\
A T_{n}= & T\left(\left(4 /\left(3 \cdot 4^{n}\right)-1 / 4^{n+1}, 5 / 2,1 / 4^{n+1}, 1 / 4^{n+1}\right) .\right.
\end{aligned}
$$

For each $m \geq 1$, let $c_{m}=T\left(10 /\left(3 \cdot 4^{n}\right), 1 / 2-1 / 4^{n}, 1 / 4^{n}\right)$ be the tile in $S(T)$ at the bottom of the m th connector, C_{m}.

For any point y in \mathbb{R}, and any $a>0$, let $S(y, a, T)$ be the sine curve $S(T)$ scaled (in all directions) by a, and translated so that its top left corner is at $(0, y, 0)$.

Figure 4.5: Sine-curve made of tiles

Next, given a tree τ and a tile T, we define a 'branch space', $B(T, \tau)$, lying in the rectangular box,

$$
\left\{(x, y, z) \in \mathbb{R}^{3}: 0 \leq x \leq 13 / 3,0 \leq y \leq 10 / 3,0 \leq z \leq 1\right\}
$$

which is $\bigcup\left\{S_{s}: s \in \tau\right\}$, where each S_{s} is defined with the aid of some connecting tiles, c_{s}, and numbers, y_{s}, by induction on the length of s, as follows:

Step 1: Let $y_{()}=5 / 2+5 / 6=10 / 3$, and let $S_{()}=S\left(y_{()}, 1, T\right)$ (i.e. the sine-curve defined above based on T, translated along the y-axis by $5 / 6$).

Step 2: The sine curve, $S_{()}$has a family of connecting tiles c_{m}. Set $c_{(m)}=c_{m}$. Let $y_{(m)}=y_{()}-2 / 4^{0}-2 / 4^{m}$, and let $S_{(m)}=S\left(y_{(m)}, \frac{1}{4^{m}}, T\right)$. Note, critically, that the top-right tile of this sine-curve, $S_{(m)}$, is such that its top edge coincides with the bottom edge of $c_{(m)}$.

Step $n+1$: Fix an $s \in \tau$ with length n. We again will have connecting tiles, c_{m}, from the sine-curve S_{s}. Set $c_{s \neg m}=c_{m}$. Let $y_{s \neg m}=y_{s}-2 / 4^{L}-2 / 4^{L+m}$ where $L=\sum_{i=1}^{n} s_{i}$, and let $S_{s \neg m}=S\left(y_{s \neg m}, 1 / 4^{L+m}\right)$. Again note that the top-right tile of $S_{s \neg m}$ has its top edge coinciding with the bottom edge of $c_{s}{ }_{m}$.

Assume, for this paragraph only, that $\tau=\tau_{c}$ is the complete tree, and T is the solid tile. For any s in τ, let $\tau_{s}=\left\{s^{\prime} \in \tau: s^{\prime}\right.$ extends $\left.s\right\}$, and let $B_{s}=\bigcup\left\{S_{s}: s \in \tau_{s}\right\}$. By construction, $B_{(1)}$ is a $1 / 4$ th copy of $B(T, \tau)=B_{()}$, and $B_{(2)}$ is a $1 / 16$ th copy. It is easy to check that the height (in the y-coordinate) of $B_{()}$is exactly $10 / 3$. So the height of $B_{(2)}$ is $1 / 16$ th of this, which is $5 / 24$. The gap between the top edge of $B_{(1)}$ and the top edge of $B_{(2)}$ is $9 / 24$. Thus $B_{(2)}$ is disjoint from $B_{(1)}$. By self-similarity it follows that B_{s} and B_{t} meet if and only if one of s and t is an immediate successor of the other. This all shows that, for any tree and any tile, $B(T, \tau)$ is well defined, and is the edge connected union of tiles meeting along matching edges.

Figure 4.6: Branch space $B(T, \tau)$
We call the point $(0,10 / 3,0)$ the top left corner of $B(T, \tau)$. For y in \mathbb{R} and $a>0$, let $B(y, a, T, \tau)$ be $B(T, \tau)$ scaled in the y-coordinate only by a, and translated so its top left corner is at $(0, y, 0)$.

Now our K_{τ} will consist of $\bigcup_{n \geq 0} B_{n} \cup L \cup S$, where $B_{n}=B\left(y_{n}, 1 / 2^{n}, T_{n+1}, \tau\right)$, for $y_{n}=$ $7 / 2^{n}$, and the two pieces L and S are defined as follows.

The set L is a homeomorphic copy of the tile T_{0}, bent in the middle so that its base is
contained in the L-shaped area

$$
\left\{(x, y, 0) \in \mathbb{R}^{3}:-2 / 3 \leq x \leq 0,-1 \leq y \leq 7 \text { or } 0 \leq x \leq \frac{22}{3},-1 \leq y \leq 0\right\}
$$

and the boundary of the base of the tile is the boundary of this area.
The set S is a sine curve variant based on the tile T_{1}, which connects the branch spaces B_{n}, and converges down to the x-axis. Concretely, $S=\bigcup_{n \geq 0}\left(A R_{n} \cup D_{n} \cup A L_{n} \cup C_{n}\right)$ where

$$
\begin{aligned}
A R_{n}= & \bigcup_{i=0}^{3 \cdot 4^{n}-1} T_{1}\left(\left(13 / 3+i / 4^{n}, 7 / 2^{n}\right), 1 / 4^{n}\right) \\
D_{n}= & \bigcup_{i=1}^{3 \cdot 2^{n}-1} T_{1}\left(\left(13 / 3+3-1 / 4^{n}, 7 / 2^{n}-i / 4^{n}\right), 1 / 4^{n}\right) \\
A L_{n}= & \bigcup_{i=1}^{2 \cdot 4^{n}-2} T_{1}\left(\left(13 / 3+1+i / 4^{n}, 7 / 2^{n}+1 / 4^{n}-3 / 2^{n}\right), 1 / 4^{n}, 1 / 4^{n}\right) \\
& \cup T_{1}\left(\left(13 / 3+1,7 / 2^{n}+1 / 4^{n}-3 / 2^{n}\right), 1 / 4^{n+1}, 1 / 4^{n}\right) \\
& \cup T_{1}\left(\left(13 / 3+1+1 / 4^{n}, 7 / 2^{n}+1 / 4^{n}-3 / 2^{n}\right), 3 / 4^{n+1}, 1 / 4^{n}\right), \quad \text { and } \\
C_{n}= & \bigcup_{i=1}^{2^{n+1}} T_{1}\left(13 / 3+1,7 / 2^{n+1}+i / 4^{n+1}, 1 / 4^{n+1}\right)
\end{aligned}
$$

Claim 1. K_{τ} is a rational continuum.

Proof: Let $R=\bigcup_{n} B_{n} \cup S$.
Let $L^{\prime}=\left\{(x, y, 0) \in \mathbb{R}^{3}: x=0,-1 \leq y \leq 7\right.$ or $\left.-2 / 3 \leq x \leq 22 / 3, y=0\right\}$, be the inner boundary of the base of L.

Since $\operatorname{cl}(R) \subseteq R \cup L^{\prime}, K_{\tau}$ is clearly compact. Since L and R are connected, and S is a variant topologists sine curve, clearly K_{τ} is connected.

For all the points of K_{τ} except those on L^{\prime}, we have a natural neighborhood base at the point for which each element has a countable boundary (which comes from the tile(s) the point is in).

Take any point \mathbf{x} in L^{\prime}. We suppose now, $\mathbf{x}=\left(x_{0}, 0,0\right)$ (the other case is similar). Because B_{n} is based on the tile T_{n}, combined with the fact that the T_{1} 's in the connecting sine curve, S, have size shrinking to zero, the set M of all x-components of the left and right edges of the base of tiles in R is dense in $[0,22 / 3]$.

Figure 4.7: Construction of rational continuum K_{τ}

Let U be a rectangular neighborhood of \mathbf{x} in \mathbb{R}^{3}, and $r_{\min }=\min \{x:(x, 0,0) \in U\}$ and $r_{\max }=\max \{x:(x, 0,0) \in U\}$. Without loss of generality, if $y_{\max }$ is the value of the maximum y-component in U then $\left\{(x, y, z) \in U \mid y=y_{\max }\right\}$ do not intersect with any of the B_{n}, i.e. the top of U is in between B_{n} and B_{n+1} for some n.

The set $U \cap L$ includes a neighborhood N of x which has countable boundary. Let $a=\min \{x:(x, 0,0) \in N\}$ and $b=\max \{x:(x, 0,0) \in N\}$. Since M is dense there are sequences $\left(a_{n}\right)_{n \in \mathbb{N}}$ and $\left(b_{n}\right)_{n \in \mathbb{N}}$ in M such that a_{n} increases to a, b_{n} decreases to b, and for each $n, r_{\min } \leq a_{n} \leq a<b \leq b_{n} \leq r_{\max }$. Let $m_{1} \geq n$ be such that both of the lines $x=a_{1}$ and $x=b_{1}$ intersect the $x y$-projection of $B_{m_{1}} \cup\left\{(x, y, z) \in S: y \leq 7 / 2^{m_{1}}\right\}$ along edges of tiles only. Let $S_{n}=\left\{(x, y, z) \in S: y \leq 7 / 2^{n}\right\}$. And inductively, let $m_{i} \geq m_{i-1}$ such that the lines $x=a_{i}$ and $x=b_{i}$ intersect the $x y$-projection of $B_{m_{i}} \cup S_{m_{i}}$ along edges of tiles only. Now take $N^{\prime}=\bigcup_{i}\left(\left(S_{m_{i}} \backslash S_{m_{i+1}} \cup \bigcup_{k+m_{i}<m_{i+1}} B_{m_{i}+k}\right) \cap\left\{(x, y, z): a_{i} \leq x \leq b_{i}\right\}\right)$.

Here for each i, we cut $B_{m_{i}+k}$ along edges of finitely many tiles, hence the boundary is

Figure 4.8: A neighborhood with countable boundary in K_{τ}
at most countable. And similarly for $S_{m_{i}} \backslash S_{m_{i+1}}$, we cut along the edges of finitely many tiles. Thus N^{\prime} has countable boundary. Moreover, $N \cup N^{\prime} \subset R$ is a neighborhood of \mathbf{x} with countable boundary.

Claim 2. If τ has an infinite branch (i.e. $\tau \in \mathbf{I F}$) then K_{τ} is ω-sac.

Proof: Suppose τ has an infinite branch. Note that if T is any tile, then there is a branch of edge connected tiles in $B(T, \tau)$ which converges to a point \mathbf{y}_{τ} on the y-axis.

We first show that for any $m \geq 1$, the branch space $B\left(T_{m}, \tau\right) \cup\left\{\mathbf{y}_{\tau}\right\}$ is ω-sac. To do so we only need to check that if \mathbf{y}_{τ} is one of the n-points x_{1}, \ldots, x_{n} in $B\left(T_{m}, \tau\right) \cup\left\{\mathbf{y}_{\tau}\right\}$, then we can find an arc joining them in that order. Suppose $x_{k}=\mathbf{y}_{\tau}$. Then the points $x_{1}, \ldots, x_{k-1}, x_{k+1}, \ldots, x_{n}$ are in some finite family of edge connected tiles of $B\left(T_{m}, \tau\right)$. Let t be a tile in the branch space $B\left(T_{m}, \tau\right)$ such that none of the x_{i} 's is in the tiles to the left and bottom of this tile except for $x_{k}=\mathbf{y}_{\tau}$. Let \mathbf{y}_{1} be the bottom left corner of t, and \mathbf{y}_{2} be the top left corner of t. Then by Lemma 4.2.6 there is an arc α_{0} in $B\left(T_{m}, \tau\right)$ through the
points $x_{1}, \ldots, x_{k-1}, \mathbf{y}_{1}, \mathbf{y}_{2}, x_{k+1}, \ldots, x_{n}$ in the given order. Let α_{1} be the part of α_{0} through $x_{1}, \ldots, x_{k-1}, \mathbf{y}_{1}$. Let β_{1} be the arc starting at \mathbf{y}_{1} and ending at \mathbf{y}_{τ} obtained by traveling along the right and bottom edges of tiles of the branch converging to \mathbf{y}_{τ}. Similarly, let α_{2} be the part of α_{0} through $y_{2}, x_{k+1}, \ldots, x_{n}$. And let β_{2} be the arc starting at \mathbf{y}_{τ}, and following the left and top edges of tiles of the branch converging to \mathbf{y}_{τ}, back to \mathbf{y}_{2}. Then the arc α obtained by following $\alpha_{1}, \beta_{1}, \beta_{2}$ and then α_{2}, is the desired arc through the points x_{1}, \ldots, x_{n} in the given order.

Back now to K_{τ}, when τ has an infinite branch. For each n, B_{n} a has a corresponding branch converging to a point \mathbf{y}_{n} on the y-axis. An easy modification of the argument for $B\left(T_{m}, \tau\right) \cup\left\{\mathbf{y}_{\tau}\right\}$ shows that the space $R \cup\left\{\mathbf{y}_{n}: n \in \mathbb{N}\right\}$ is ω-sac.

Since $R \cup\left\{\mathbf{y}_{n}\right\}_{n}$ is ω-sac, $\left(R \cup\left\{\mathbf{y}_{n}\right\}_{n}\right) \cap L=\left\{\mathbf{y}_{n}\right\}_{n}$, and L is ω-sac ${ }^{+}$with respect to discrete sets (Lemma 4.2.5, part (i)), it follows from the ω-Gluing Lemma that $K_{\tau}=R \cup L$ is indeed ω-sac.

Claim 3. If τ has no infinite branch (i.e. $\tau \in \mathbf{W F}$) then K_{τ} is not 2-sac.

Proof: If τ does not have any infinite branches, then there are no arcs connecting L to R. This is clear because, without infinite branches, any path starting in R and attempting to reach L is forced to travel along a topologist's sine curve variant - which is impossible.

Claim 4. The map $\tau \mapsto K_{\tau}$ is continuous.

Proof: Let $K: \operatorname{Tr} \rightarrow \mathcal{K}\left(\mathbb{R}^{3}\right)$ given by $K(\tau)=K_{\tau}$. Let s be in $\mathbb{N}<\mathbb{N}$, and write $[s]$ for the set of all trees containing s. Then $[s]$ is a closed and open subset of Tr. Subbasic open sets in $\mathcal{K}\left(\mathbb{R}^{3}\right)$ are of one of two forms: (i) $\langle U\rangle=\{C: C \subseteq U\}$ and (ii) $\langle X ; V\rangle=\{C: C \cap V \neq \emptyset\}$, where U and V are open subsets of \mathbb{R}^{3}. We show inverse images under K of both types of subbasic open set are open in Tr, thus confirming continuity of the map $\tau \mapsto K_{\tau}$.

For subbasic sets of type (ii), the sets V may be taken to come from any basis for \mathbb{R}^{3}; we will take for V open balls in \mathbb{R}^{3} which either meet, or have closure disjoint from, $L \cup S$. Fix such a V. If V meets $L \cup S$, then $K^{-1}\langle X ; V\rangle=\operatorname{Tr}$. If the closure of V is disjoint from L, then for any tree τ, V meets only finitely many $B_{n}(\tau)$, and in each of these branch spaces,
meets only finitely many sine curves. Suppose V meets sine curves labelled by s_{1}, \ldots, s_{k}. Then $K^{-1}\langle X ; V\rangle=\bigcup\left\{\left[s_{i}\right]: 1 \leq i \leq k\right\}$, which is open (each $\left[s_{i}\right]$ is open).

For subbasic sets of type (i), if $L \cup S$ is not contained in U, then $K^{-1}\langle U\rangle=\emptyset$. So suppose, $L \cup S \subseteq U$. Let τ_{c} be the complete tree. Then all but finitely many of the sine curves making up the $B_{n}\left(\tau_{c}\right)$'s are contained in U. Let them be labelled by s_{1}, \ldots, s_{k}. Then $K^{-1}\langle U\rangle=\mathcal{K}\left(\mathbb{R}^{3}\right) \backslash \bigcup\left\{\left[s_{i}\right]: 1 \leq i \leq k\right\}$, which is open (each $\left[s_{i}\right]$ is closed).

Claims $1-4$ show that $\tau \mapsto K_{\tau}$ is a continuous reduction $(\mathcal{T}, \mathbf{I F}) \rightarrow\left(\mathcal{K}\left(\mathbb{R}^{3}\right), R_{\omega}\right)$ where K_{τ} is a rational continuum which is ω-sac if τ has an infinite branch, but is not even 2-sac when τ has no infinite branches.

We now turn to the case for $R_{n, \neg(n+1)}$. To start fix $n \geq 2$. Select $n-2$ points a_{1}, \ldots, a_{n-2} from the interior of the right hand edge of the base of T_{0}. Similarly to the definition of T_{1}, shrink T_{0} while keeping fixed the set $\left\{a_{1}, \ldots, a_{n-2}\right\}$ and the top edge of the base. This gives a tile \widehat{T}_{n}. Now consider the map $\tau \mapsto K_{\tau}^{n}$ where K_{τ}^{n} is K_{τ} along with the tile $\widehat{T}_{n}(22 / 3,0,1)$. Then it is easy to see (given our previous work) that K_{τ}^{n} is a rational continuum and the $\operatorname{map} \tau \mapsto K_{\tau}^{n}$ is continuous. Because the extra tile, $\widehat{T}_{n}(22 / 3,0,1)$, meets the rest of K_{τ}^{n} in exactly $n-1$ points (namely a_{1}, \ldots, a_{n-2} and the topleft corner of the base of the tile), K_{τ}^{n} is never $n+1$-sac. When τ has no infinite branch, then K_{τ}^{n} is not 2 -sac, so definitely not in $R_{n, \neg(n+1)}$. But when τ has an infinite branch, both $\widehat{T}_{n}(22 / 3,0,1)$ and the rest of K_{τ}^{n} are ω-sac, and (again) meet in $n-1$ points - so by Lemma 4.1.7, K_{τ}^{n} is n-sac.

Theorem 4.2.8. The sets S_{n} of n-sac continua, for a natural number $n \geq 2$ or $n=\omega$, are Π_{2}^{1}-complete subsets of the space $\mathcal{K}\left(\mathbb{R}^{N}\right)$, where $N \geq 4$.

Proof. First note that the definition of n-sac is a Π_{2}^{1} statement. Thus each S_{n} is a Π_{2}^{1} set. Also, note that in the case of $n=2, S_{n}$ is the set of all arc connected continua, and this was proved to be $\boldsymbol{\Pi}_{2}^{1}$-complete by Ajtai and Becker, see [15] for details.

We prove the claim, for all n and N simultaneously, by proving that there is a continuous map Φ from the space $\mathbb{N}^{\mathbb{N}}$ into the space $\mathcal{K}\left(\mathbb{R}^{4}\right)$ such that: given a Π_{2}^{1} set $A \subset \mathbb{N}^{\mathbb{N}}$, if $x \in A$ then $\Phi(x)=P_{x}$ is a continuum which is not arc-connected (i.e. 2-sac), while if $x \in A$, then P_{x} is an ω-sac continuum. (See [15] 37.11 for a similar argument).

Let A be a Π_{2}^{1} subset of $\mathbb{N}^{\mathbb{N}}$ and B be a $\boldsymbol{\Sigma}_{1}^{1}$ subset of $\mathbb{N}^{\mathbb{N}} \times 2^{\mathbb{N}}$ with $x \in A$ if and only if for each $y \in 2^{\mathbb{N}},(x, y) \in B$. Now let τ be a tree on $\mathbb{N} \times 2 \times \mathbb{N}$ with
$B=\left\{(x, y) \mid \exists z \in \mathbb{N}^{\mathbb{N}}(x, y, z)\right.$ is a branch of $\left.\tau\right\}=\{(x, y) \mid \tau(x, y) \notin \mathbf{W F}\}$. Recall that $\tau(x, y)=\{s:(x \upharpoonright$ length $(s), y \upharpoonright$ length $(s), s) \in \tau\}$ is a tree on \mathbb{N}.

Now for each $x \in \mathbb{N}^{\mathbb{N}}$, we will construct a continuum $P_{x} \subset \mathbb{R}^{4}$ as follows:
First, we identify the Cantor space $2^{\mathbb{N}} \subset \mathbb{N}^{\mathbb{N}}$ with the standard Cantor set in $[0,1]$. Then for each $y \in 2^{\mathbb{N}}$, let $L_{x, y}=K_{\tau(x, y)}$, as described in Theorem 4.2.7, placed in the cube $\left\{(a, b, c, d) \left\lvert\,-\frac{2}{3} \leq a \leq \frac{22}{3}\right.,-1 \leq b \leq 7, c \geq 0, d=y\right\}$. Thus the outside edges of the tile L in $K_{\tau(x, y)}$ is on $a=-\frac{2}{3}$ or $b=-1$. Now we will connect the continua $L_{x, y}$ along the edges on $a=-\frac{2}{3}$ with Menger cube M which is placed in the cube $\left\{(a, b, c, d) \left\lvert\,-2 \leq a \leq-\frac{2}{3}\right.,-1 \leq\right.$ $b \leq 7, c=0,0 \leq d \leq 1\}$.

Now let $P_{x}=\bigcup_{y \in 2^{\mathbb{N}}} L_{x, y} \cup M$.
Then, P_{x} is a continuum and the map $x \mapsto P_{x}$ from $\mathbb{N}^{\mathbb{N}} \rightarrow \mathcal{K}\left(\mathbb{R}^{4}\right)$ is continuous. Moreover, $x \in A$ if and only if for each $y \in 2^{\mathbb{N}}, \tau(x, y) \in \mathbf{I F}$. Thus if $x \notin A$, then there is $y \in 2^{\mathbb{N}}$ with $\tau(x, y) \in \mathbf{W F}$, so the corresponding rational ω-sac continua $L_{x, y}=K_{\tau(x, y)}$ is not 2-sac, hence the union $P_{x}=M \cup \bigcup_{y \in 2^{\mathbb{N}}} L_{x, y}$ is not 2-sac.

On the other hand, if $x \in A$, then for each $y \in 2^{\mathbb{N}}, L_{x, y}$ is ω-sac by Theorem 4.2.7. We also know that the cube M is ω-sac. To show P_{x} is ω-sac, we will only go through one example, all other cases will be similar:

Let x_{1}, \ldots, x_{n} be points in P_{x}. Suppose that for all odd indices $k \leq n, x_{k} \in L_{x, y_{0}}$ for some fixed $y_{0} \in 2^{\mathbb{N}}$. Also suppose that for each even index $m \leq n, x_{m} \in L_{x, y_{m}}$ for some $y_{m} \in 2^{\mathbb{N}}$ so that $y_{i} \neq y_{j}$ for $i \neq j$. Then choose distinct $z_{k} \in L_{x, y_{0}} \cap M$ for odd numbers $k \leq n$ and choose distinct $z_{m}^{1}, z_{m}^{2} \in L_{x, y_{m}} \cap M$ for even numbers $m \leq n$. Since $L_{x, y_{0}}$ is ω-sac, there is an arc α through the points $x_{1}, z_{1}, x_{3}, z_{3}, \ldots, x_{K}, z_{K}$ (where K is the largest odd integer less than or equal to n). Similarly, for each even m less than or equal to n, there is an arc α_{m} through the points $z_{m}^{1}, x_{m}, z_{m}^{2}$. Additionally, as M is ω-sac there is an arc β through the points $z_{1}, z_{2}^{1}, z_{2}^{2}, z_{3}, z_{4}^{1}, z_{4}^{2}, z_{5}, \ldots, z_{K}, z_{n}^{1}, z_{n}^{2}$ (without loss of generality n is even). Now we define an arc in P_{x} as follows:

Starting at x_{1} follow α until z_{1}, then we switch to β and follow until z_{2}^{1}, then switch to α_{2} and follow until z_{2}^{2}, then switch back to β until z_{3}, and switch to α to follow until z_{4}^{1},
etc. In this way, we will go through all x_{i} 's in the given order, which gives us an arc inside P_{x}.

4.3 COMPLEXITY OF CLASSIFICATION

In [3], Camerlo, Darji and Marcone have shown that the classification problem for homeomorphism on dendrites is S_{∞}-universal, hence classifiable by countable structures.

Question 3. Are dendrites up to equivalent embedding classifiable by countable structures?
In this section we show that the dendroids have very complicated classification problem, hence the classification of all curves is very complicated.

4.3.1 DENDROIDS

Since the dendroids include all dendrites, the classification problem of dendroids up to homeomorphism is at least S_{∞}-universal. However, it is not classifiable by countable linear orders, in fact it is strictly more complex than the classification of any countable structures. Let \mathscr{D} denote the set of all dendroids.

Theorem 4.3.1. Homeomorphism on dendroids is a turbulent equivalence relation.

Proof. It's known that the equivalence on $\mathbb{Z}^{\mathbb{N}}$ defined as $\left(x_{n}\right)_{n \in \mathbb{N}}$ and $\left(y_{n}\right)_{n \in \mathbb{N}}$ are equivalent if $\frac{x_{n}-y_{n}}{n} \rightarrow 0$, is a turbulent one. We will reduce this equivalence relation to the homeomorphism relation on dendroids.

We will define a Borel map $f: \mathbb{Z}^{\mathbb{N}} \rightarrow \mathscr{D}$ so that $\frac{x_{n}-y_{n}}{n} \rightarrow 0 \Longleftrightarrow f(x)$ is homeomorphic to $f(y)$.

Let L be the following set: $\{0\} \times\{0\} \times[-1,1] \cup[0,1] \times\{0\} \times\{0\} \cup \bigcup_{n}\{1 / n\} \times\{0\} \times[-1,1]$. It is a dendroid.

Fix two sequences of distinct prime numbers $\left(p_{n}\right)_{n \in \mathbb{Z}}$ and $\left(q_{n}\right)_{n \in \mathbb{N}}$. Also fix a countable dense subset $\left(d_{n}\right)_{n \in \mathbb{N}}$ of $[-1,1]$, say $d_{0}=0$. Let $g:[-\pi / 2, \pi / 2] \rightarrow[-1,1]$ be the map $g(x)=\frac{2 x}{\pi}$.

Figure 4.9: Construction of $L\left(x_{n}\right)$

Fix a sequence $\left(x_{n}\right)_{n \in \mathbb{N}} \in \mathbb{Z}^{\mathbb{N}}$ and consider the following set:
On L put branches at the point $\mathbf{x}_{n}=\left(1 / 2 n, 0, g\left(\arctan \left(x_{n}\right)\right)\right)$ so it is a branching point of order p_{n}, where the new branches meet the set L only at branching point \mathbf{x}_{n}.

Also put branches on the line $x=1 / n$, for $n=2 k+1$, at the points $\mathbf{x}_{n, i}=\left(1 / n, 0, d_{i}\right)$ for $i=1, \ldots, k$ so that $\mathbf{x}_{n, i}$ is of order q_{i}. And the new branches meet the modified compact set only at the branching point. Call this set $L\left(x_{n}\right)$. (See Figure 4.9)

Claim 1. $L\left(x_{n}\right)$ is a dendroid.
$L\left(x_{n}\right)$ is closed and bounded subset of \mathbb{R}^{3}, and it is a countable union of connected sets with non-empty intersection. So it is a continuum.

It is arcwise connected as there are only finitely many branches at each branching point.
To show it is also hereditarily unicoherent, it is enough to show that $L\left(x_{n}\right)$ is unicoherent, since the possible subcontinua are: points, arcs, finite trees or copies of $L\left(x_{n}\right)$. If A, B are two subcontinua with $A \cup B=L\left(x_{n}\right)$, then possible intersections are: a point, an arc, a finite graph or a dendroid, which are continua.

Claim 2. $\left(x_{n}\right)_{n \in \mathbb{N}}$ is equivalent to $\left(y_{n}\right)_{n \in \mathbb{N}}$ if and only if $L\left(x_{n}\right) \sim_{H} L\left(y_{n}\right)$

Suppose there is a homeomorphism $h: L\left(x_{n}\right) \rightarrow L\left(y_{n}\right)$. Since a homeomorphism should map a branching point of order p to a branching point of the same order, $h\left(\mathbf{x}_{n}\right)=\mathbf{y}_{n}$ and $h\left(\mathbf{x}_{n, i}\right)=\mathbf{y}_{n, i}$. Hence the line $l=\{0\} \times\{0\} \times[-1,1]$ is fixed.

For a contradiction, suppose $\left(x_{n}\right)_{n \in \mathbb{N}}$ and $\left(y_{n}\right)_{n \in \mathbb{N}}$ are not equivalent, then $\frac{x_{n}-y_{n}}{n} \nrightarrow 0$, so $g\left(\arctan \left(\frac{x_{n}}{n}\right)\right)-g\left(\arctan \left(\frac{y_{n}}{n}\right)\right) \nrightarrow 0$. So that $\mathbf{x}_{n}-\mathbf{y}_{n} \nrightarrow(0,0,0)$. So for some $\varepsilon>0$ there is a subsequence with $\left|\mathbf{x}_{n_{k}}-h\left(\mathbf{x}_{n_{k}}\right)\right| \geq \varepsilon, \forall k$. But there is a convergent subsequence $\left(\mathbf{x}_{n_{k_{i}}}\right)_{i \in \mathbb{N}}$ of $\left(\mathbf{x}_{n_{k}}\right)_{k \in \mathbb{N}}$, say to \mathbf{x}. Then $h\left(\mathbf{x}_{n_{k_{i}}}\right) \rightarrow h(\mathbf{x})=\mathbf{x}$, as the line l is fixed by any homeomorphism. Thus we get a contradiction, as $\left|h\left(\mathbf{x}_{n_{k_{i}}}\right)-\mathbf{x}_{n_{k_{i}}}\right| \leq\left|h\left(\mathbf{x}_{n_{k_{i}}}\right)-\mathbf{x}\right|+\left|\mathbf{x}_{n_{k_{i}}}-\mathbf{x}\right|<\varepsilon$ will be true for sufficiently large i.

For the other direction, suppose $\left(x_{n}\right)_{n \in \mathbb{N}}$ and $\left(y_{n}\right)_{n \in \mathbb{N}}$ are equivalent sequences in $\mathbb{Z}^{\mathbb{N}}$, i.e. $\frac{x_{n}-y_{n}}{n} \rightarrow 0 \Longleftrightarrow g\left(\arctan \left(\frac{x_{n}}{n}\right)\right)-g\left(\arctan \left(\frac{y_{n}}{n}\right)\right) \rightarrow 0$. Let \mathbf{x}_{n} and \mathbf{y}_{n} be as above. Define $h: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ as follows:
$h\left(\mathbf{x}_{n}\right)=\mathbf{y}_{n}$, and $h\left(\mathbf{x}_{n, i}\right)=\mathbf{y}_{n, i}$. And h fixes the line I. To have $h\left(L\left(x_{n}\right)\right)=L\left(y_{n}\right)$, we can make sure h is defined continuously between branching points, as in both sets they are copies of unit interval. We need to check continuity on the line l. Let $\mathbf{z}=(0,0, z) \in l$ be fixed, we know $h(\mathbf{z})=\mathbf{z}$.

If \mathbf{z} is a cluster point of $\left(\mathbf{x}_{n}\right)_{n \in \mathbb{N}}$, then there exist a subsequence $\left(\mathbf{x}_{n_{i}}\right)_{i \in \mathbb{N}}$ that converges to z. Then we have $g\left(\arctan \left(\frac{x_{n_{i}}}{n_{i}}\right)\right) \rightarrow z$ and $g\left(\arctan \left(\frac{x_{n_{i}}}{n_{i}}\right)\right)-g\left(\arctan \left(\frac{y_{n_{i}}}{n_{i}}\right)\right) \rightarrow 0$, hence $g\left(\arctan \left(\frac{y_{n_{i}}}{n_{i}}\right)\right) \rightarrow z$. Thus $h\left(\mathbf{x}_{n_{i}}\right)=\mathbf{y}_{n_{i}} \rightarrow h(\mathbf{z})=\mathbf{z}$.

If \mathbf{z} is not a cluster point of $\left(\mathbf{x}_{n}\right)_{n \in \mathbb{N}}$, then there is some $\varepsilon>0$ so that $B(\varepsilon, \mathbf{z})$ does not include any of the branching points $\mathbf{x}_{n}(n>0)$ in the definition of $L\left(x_{n}\right)$. Suppose for a contradiction \mathbf{z} is a cluster point for \mathbf{y}_{n}, say $\mathbf{y}_{n_{i}} \rightarrow \mathbf{z}$. Then $g\left(\arctan \left(\frac{y_{n_{i}}}{n_{i}}\right)\right) \rightarrow z$ and $g\left(\arctan \left(\frac{x_{n_{i}}}{n_{i}}\right)\right)-g\left(\arctan \left(\frac{y_{n_{i}}}{n_{i}}\right)\right) \rightarrow 0$, hence $g\left(\arctan \left(\frac{x_{n_{i}}}{n_{i}}\right)\right) \rightarrow z$. So for large enough i, $\mathbf{x}_{n_{i}} \in B(\varepsilon, \tilde{z})$. Thus \mathbf{z} can not be a cluster point of \mathbf{y}_{n}.

This proves that curves up to homeomorphism are not classifiable by countable structures as well, since curves include all the dendroids.

Theorem 4.3.2. Equivalence of dendroids is a turbulent equivalence relation.

Proof. The construction in Theorem 4.3.1 works for equivalence as well. Also the proof with minor modifications will work here. For a given sequence $\left(x_{n}\right)_{n \in \mathbb{N}} \in \mathbb{Z}^{\mathbb{N}}$, we use $L\left(x_{n}\right)$ as
defined in previous proof. (See Figure 4.9).
If there is a homeomorphism $h: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ with $h\left(L\left(x_{n}\right)\right)=L\left(y_{n}\right)$, then proving that $\left(x_{n}\right)_{n \in \mathbb{N}}$ and $\left(y_{n}\right)_{n \in \mathbb{N}}$ are equivalent is exactly the same.

If on the other hand, we have equivalent sequences $\left(x_{n}\right)_{n \in \mathbb{N}},\left(y_{n}\right)_{n \in \mathbb{N}}$, then we modify the definition of the homeomorphism by extending continuously to all \mathbb{R}^{3} (since the homeomorphism is defined inside the cube $[0,1] \times[-1,1] \times[-1,1]$, we can define h as identity outside this cube and extend continuously in between). And the only set we have to check continuity is still the line l, which follows from previous proof.

4.3.2 EQUIVALENCE ON AN ORBIT OF HOMEOMORPHISM

Let \mathcal{E} be a set of curves all of which are homeomorphic. We know that this is a Borel subset of $\mathcal{K}\left(I^{n}\right)$. Although they are all homeomorphic, they are not necessarily equivalent.

Question 4. How complex is the classification problem of \mathcal{E} under equivalence?
One class we can look into is the class of all Warsaw circles, denoted \mathcal{W}, i.e. all circles homeomorphic to the standard Warsaw circle. It turns out this classification is very complex as well. To prove that we will use a sequence of inequivalent prime knots. A prime knot is a knot which can not be decomposed into non-trivial knots as a connected sum of knots. For example, trefoil knot, figure-eight knot are prime knots. It is known that there are infinitely many prime knots which are not equivalent under the equivalence relation \sim.

Theorem 4.3.3. The equivalence on \mathcal{W} is a turbulent equivalence relation.

Proof. Will define a Borel map $f: \mathbb{Z}^{\mathbb{N}} \rightarrow \mathcal{W}$ so that $\frac{x_{n}-y_{n}}{n} \rightarrow 0 \Longleftrightarrow f\left(x_{n}\right)$ is equivalent to $f\left(y_{n}\right)$.

For $n \in \mathbb{Z}$, fix a prime knot K_{n}, which is not equivalent to any of the previous ones. Let $0<\varepsilon<1 / 2$. Also fix a countable dense subset $\left(d_{n}\right)$ of $[-1,1]$, say $d_{0}=0$. Let $g:[-\pi / 2, \pi / 2] \rightarrow[-1,1]$ be the map $g(x)=\frac{2 x}{\pi}$.

Now fix a sequence $z=\left(z_{n}\right)_{n \in \mathbb{N}} \in \mathbb{Z}^{\mathbb{N}}$. Consider the set $S=\{(x, 0, \sin (1 / x)) \mid x \in(0,1]\}$ and $L=\{(0,0, t) \mid t \in[-1,1]\}$. And let W be the usual Warsaw circle. Let

$$
S_{n}=\left\{(x, 0, \sin (1 / x)) \in S \left\lvert\, \frac{2}{(2 n+1) \pi} \leq x \leq \frac{2}{(2 n-1) \pi}\right.\right\} \text { and }
$$

Figure 4.10: Tying a knot inside given ball

$$
\begin{aligned}
& z_{n}^{\prime} \in\left[\frac{(4 n-1) \pi}{2}, \frac{(4 n+1) \pi}{2}\right] \text { be such that } \sin \left(z_{n}^{\prime}\right)=g\left(\arctan \left(z_{n} / n\right)\right) \text {, and } \\
& d_{n, i}^{\prime} \in\left[\frac{(4 n-3) \pi}{2}, \frac{(4 n-1) \pi}{2}\right] \text { for } 1 \leq i \leq n \text { be such that } \sin \left(d_{n, i}^{\prime}\right)=d_{i-1}
\end{aligned}
$$

And then put a ball B_{n} with center at $\mathbf{z}_{n}=\left(1 / z_{n}^{\prime}, 0, g\left(\arctan \left(z_{n} / n\right)\right)\right) \in S_{2 n}$ so that $B_{n} \cap S_{m}=$ \emptyset for $m \neq n$ and diam $B_{n}<\frac{1}{2(n+1)}$. Also put balls $B_{1}^{k}, \ldots, B_{k}^{k}$ on $S_{2 k-1}$ as follows: B_{i}^{k} has center $\mathbf{d}_{k, i}=\left(1 / d_{k, i}^{\prime}, 0, d_{i-1}\right)$ so that $B_{i}^{k} \cap S_{m}=\emptyset$ for $m \neq k$ and $\operatorname{diam} B_{i}^{k}<\frac{1}{2(i+k+1)}$.

Now we will tie copies of knots in the following way (see Figure 4.10): The copy of the knot will be in the interior of the ball specified. Cut the knot K_{n} at some point so we have two end points and remove the piece $S_{2 n} \cap B\left(\mathbf{z}_{n}, \varepsilon^{n+1}\right)$ from $S_{2 n}$, which is in the interior of the ball B_{n}, then identify the end points of the knot K_{n} with the end points in the line $S_{2 n}$. We will call $S_{2 n}$ with the attached knot K_{n} to be $S_{2 n}^{\prime}$

Also tie a copy of K_{i} to $S_{2 k-1}$ where $i<0$ and $0<|i|<k$ as explained above, denote it as K_{i}^{k}, so that K_{i}^{k} lies inside the ball $B_{|i|}^{k}$. Let $S_{2 k-1}^{\prime}$ denote the set $S_{2 k-1}$ together with the attached knots on it.

Now let $C(z)=W \cup \bigcup_{n} S_{n}^{\prime}$ (See Figure 4.11).
Claim 1. $C(z)$ is a Warsaw circle.
Two knots are always homeomorphic, so adding knots to a standard Warsaw circle we still get a Warsaw circle.

Claim 2. z and y are equivalent sequences if and only if $C(z) \sim C(y)$

Figure 4.11: Construction of curve $C(z)$

Suppose there is a homeomorphism $h: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ with $h(C(z))=C(y)$. Since each knot K_{n} in the definition of these curves are inequivalent knots, h should map each to itself. So in particular, h fixes L and $\left|h\left(\mathbf{z}_{n}\right)-\mathbf{y}_{n}\right| \rightarrow 0$, where \mathbf{y}_{n} is defined accordingly.

For a contradiction, suppose z and y are non-equivalent sequences, so $\frac{z_{n}-y_{n}}{n} \nrightarrow 0$, and $g\left(\arctan \left(\frac{z_{n}}{n}\right)\right)-g\left(\arctan \left(\frac{y_{n}}{n}\right)\right) \nrightarrow 0$. Then $\mathbf{z}_{n}-\mathbf{y}_{n} \nrightarrow(0,0,0)$. So for some $\varepsilon>0$ there is a subsequence with $\left|\mathbf{z}_{n_{k}}-\mathbf{y}_{n_{k}}\right| \geq \varepsilon$, $\forall k\left(^{*}\right)$. But there is a convergent subsequence $\left(\mathbf{z}_{n_{k_{i}}}\right)_{i \in \mathbb{N}}$ of $\left(\mathbf{z}_{n_{k}}\right)_{k \in \mathbb{N}}$, say to \mathbf{z}. Then $h\left(\mathbf{z}_{n_{k_{i}}}\right) \rightarrow h(\mathbf{z})=\mathbf{z}$, as the line L is fixed by any homeomorphism. Thus we get a contradiction, as $\left|\mathbf{y}_{n_{k_{i}}}-\mathbf{z}_{n_{k_{i}}}\right| \leq\left|h\left(\mathbf{z}_{n_{k_{i}}}\right)-\mathbf{y}_{n_{k_{i}}}\right|+\left|h\left(\mathbf{z}_{n_{k_{i}}}\right)-\mathbf{z}_{n_{k_{i}}}\right|<\varepsilon$ will be true for sufficiently large i, contradicting $\left(^{*}\right)$.

For the other direction, suppose z and y are equivalent sequences in $\mathbb{Z}^{\mathbb{N}}$, i.e. $\frac{z_{n}-y_{n}}{n} \rightarrow 0$, and thus $g\left(\arctan \left(\frac{z_{n}}{n}\right)\right)-g\left(\arctan \left(\frac{y_{n}}{n}\right)\right) \rightarrow 0$. Let $\tilde{z_{n}}$ and $\tilde{y_{n}}$ be as above. Define $h: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ as follows:
h maps corresponding knots as expected, and h fixes the line L, and the curves from
the first knot to the point $(0,0,-1)$ is extended homeomorphically. Thus $h(C(z))=C(y)$. Moreover, h is identity outside the box $[-1,1] \times[-1,1] \times[-1,1]$.

As the balls are disjoint we can make sure h is defined continuously outside $C(z)$ and inside the box (start with first and second balls of $C(z)$ and $C(y)$ we can extend definition of h between the planes $x=1 / z_{1}^{\prime}$ and $x=1 / z_{2}^{\prime}$ using the definition of h given above, and then proceed in order...). Thus we need to only check continuity on the line L. Let $\mathbf{z}=(0,0, z) \in L$ be fixed. We know $h(\mathbf{z})=\mathbf{z}$. Moreover, since the corresponding knots are mapped to each other, $\left|h\left(\mathbf{z}_{n}\right)-\mathbf{y}_{n}\right| \rightarrow 0\left(^{* *}\right)$.

If \mathbf{z} is a cluster point of $\left(\mathbf{z}_{n}\right)_{n \in \mathbb{N}}$, then there exist a subsequence $\left(\mathbf{z}_{n_{i}}\right)_{i \in \mathbb{N}}$ that converges to z. Then we have $g\left(\arctan \left(\frac{z_{n_{i}}}{n_{i}}\right)\right) \rightarrow z$ and $g\left(\arctan \left(\frac{z_{n_{i}}}{n_{i}}\right)\right)-g\left(\arctan \left(\frac{y_{n_{i}}}{n_{i}}\right)\right) \rightarrow 0$, hence $g\left(\arctan \left(\frac{y_{n_{i}}}{n_{i}}\right)\right) \rightarrow z$. Thus $\mathbf{y}_{n_{i}} \rightarrow h(\mathbf{z})=\mathbf{z}$, hence by $\left({ }^{* *}\right) h\left(\mathbf{z}_{n_{i}}\right) \rightarrow \mathbf{z}$.

If \mathbf{z} is not a cluster point of $\left(\mathbf{z}_{n}\right)_{n \in \mathbb{N}}$, then there is some $\varepsilon>0$ so that $B(\varepsilon, \mathbf{z})$ does not intersect any of the knots $K_{n}(n>0)$ in the definition of $C(z)$. Suppose for a contradiction \mathbf{z} is a cluster point for $h\left(\mathbf{z}_{n}\right)$, say $h\left(\mathbf{z}_{n_{i}}\right) \rightarrow \mathbf{z}$. Then by $(* *), \mathbf{y}_{n_{i}} \rightarrow \mathbf{z}$. Then $g\left(\arctan \left(\frac{y_{n_{i}}}{n_{i}}\right)\right) \rightarrow z$ and $g\left(\arctan \left(\frac{z_{n_{i}}}{n_{i}}\right)\right)-g\left(\arctan \left(\frac{y_{n_{i}}}{n_{i}}\right)\right) \rightarrow 0$, hence $g\left(\arctan \left(\frac{z_{n_{i}}}{n_{i}}\right)\right) \rightarrow z$. So for large enough i, $K_{n_{i}} \cap B(\varepsilon, \tilde{z}) \neq \emptyset$. Thus z can not be a cluster point of $\left(h\left(\mathbf{z}_{n}\right)\right)_{n \in \mathbb{N}}$.

This theorem tells us that Warsaw circles are not classifiable by countable structures but it might be true that they are not comparable.

APPENDIX

EMBEDDINGS OF A COMPACT METRIC SPACE

Let K be a compact metric space, consider the following space of functions:
$\operatorname{Emb}\left(K, \mathbb{R}^{N}\right)=\left\{e: K \rightarrow \mathbb{R}^{N} \mid e\right.$ is an embedding $\}$.
It is known that the space of continuous functions from K to $\mathbb{R}^{N}, C\left(K, \mathbb{R}^{N}\right)$ is a Polish space, (see [15], p. 24). Moreover, $\operatorname{Emb}\left(K, \mathbb{R}^{N}\right)$ is a G_{δ} subset of $C\left(K, \mathbb{R}^{N}\right)$ (see [13], p.56), hence $\operatorname{Emb}\left(K, \mathbb{R}^{N}\right)$ is a Polish space.

A. 1 RELATION OF $\operatorname{Emb}\left(K, \mathbb{R}^{N}\right)$ AND $\mathcal{K}_{K}\left(\mathbb{R}^{N}\right)$

Let $\Phi: \operatorname{Emb}\left(K, \mathbb{R}^{N}\right) \rightarrow \mathcal{K}_{K}\left(\mathbb{R}^{N}\right)$ - all copies of K in \mathbb{R}^{N} - be defined as $\Phi(h)=h(K)$. Obviously, Φ is onto but not one to one.

Proposition A.1.1. Φ is continuous.
Proof. Fix $e \in \operatorname{Emb}\left(K, \mathbb{R}^{N}\right)$ and $\varepsilon>0$. There are elements $x_{1}, \ldots, x_{n} \in 2^{\mathbb{N}}$ such that $\left\{B\left(\varepsilon, e\left(x_{i}\right)\right)\right\}_{i=1}^{n}$ cover $e(K)$. Let $V=B\left(B\left(2 \varepsilon, e\left(x_{1}\right)\right), \ldots, B\left(2 \varepsilon, e\left(x_{n}\right)\right)\right)$ is an open neighborhood of $\Phi(e)=e(K)$. Any open neighborhood of $\Phi(e)$ contains an open set in the form of V.

Let $\gamma<\varepsilon$, and $W=B(\gamma, e)=\left\{g \in \operatorname{Emb}\left(K, \mathbb{R}^{N}\right)| | g(x)-e(x) \mid<\gamma, \forall x \in K\right\}$, then

- for $x \in K$, there is i such that $e(x) \in B\left(\varepsilon, e\left(x_{i}\right)\right)$, for this i and any $g \in W$,

$$
\left|g(x)-e\left(x_{i}\right)\right| \leq|g(x)-e(x)|+\left|e(x)-e\left(x_{i}\right)\right|<2 \varepsilon
$$

- Since $\left|g\left(x_{i}\right)-e\left(x_{i}\right)\right|<\varepsilon, \Phi(g) \cap B\left(2 \varepsilon, e\left(x_{i}\right)\right) \neq \emptyset$

Hence $\Phi(g) \in V$. And since g is arbitrary, $\Phi(W) \subset V$.
Now, fix a compact set $K \in \mathcal{K}\left(\mathbb{R}^{N}\right)$. Consider the group $G=A u t(K)$ acting on $\operatorname{Emb}\left(K, \mathbb{R}^{N}\right)$ by $(h, e) \mapsto(e \circ h)$. This is a continuous Polish group action.

Moreover, we have the continuous map $\Phi: \operatorname{Emb}\left(K, \mathbb{R}^{N}\right) \rightarrow \mathcal{K}_{K}\left(\mathbb{R}^{N}\right)$, which satisfies all the requirements of a theorem by Ryll-Nardzewski in [19] as a level set of Φ is $\Phi^{-1}(L)=$ $\left\{e \in \operatorname{Emb}\left(K, \mathbb{R}^{N}\right) \mid e(K)=L\right\}$, where $L=e_{0}(K)$ and the orbit of e_{0} is $\left\{e_{0} \circ h \mid h \in \operatorname{Aut}(K)\right\}$ are equal sets. The reverse inclusion is clear by definition of the action. Suppose $e \in \Phi^{-1}(L)$, then $e(K)=L$. Define $h: L \rightarrow L$ by $h(x)=e_{0}^{-1}(e(x))$, then $h \in A u t(L)$ and $e=e_{0} \circ h$. Thus we have,

Theorem A.1.2. For any $K \in \mathcal{K}\left(\mathbb{R}^{N}\right)$, the set of all instances of K in $\mathbb{R}^{N}, \mathcal{K}_{K}\left(\mathbb{R}^{N}\right)$ is an absolutely Borel set.

Theorem A.1.3. Φ is an open map, for $K=\mathcal{C}$ and $n=3$.

Proof. Fix $e \in \operatorname{Emb}\left(\mathcal{C}, \mathbb{R}^{3}\right)$ and $\varepsilon>0$. We will show that $\Phi(B(e, \varepsilon))$ includes a neighborhood of $K=\Phi(e)$.

Since K is a Cantor set, it has a defining sequence $\left\{M_{n}\right\}_{n}$. And there is $n \in \mathbb{N}$ such that the diameters of components of $M_{n}<\varepsilon$. Let F_{1}, \ldots, F_{m} be the components of M_{n}.

Now take $L \in B\left(F_{1}, \ldots, F_{m}\right)$. Let $K_{i}=K \cap F_{i}$ and $L_{i}=L \cap F_{i}$, they are also Cantor sets. Also let $C_{i}=e^{-1}\left(K_{i}\right)$, which is Cantor and clopen subset of \mathcal{C}. Define f_{i} on C_{i} as embedding of C_{i} onto L_{i}, and let $f=f_{i}$ on C_{i}. Then $f(\mathcal{C})=L, C_{i}$'s are disjoint, so f is a well defined embedding. Morevoer, for $x \in \mathcal{C}, x \in C_{i}$ for some i, so $|e(x)-f(x)|<\operatorname{diam} F_{i}<\varepsilon$, as both K_{i} and L_{i} are subsets of F_{i}.

Now $K \in B\left(\operatorname{Int}\left(F_{1}\right), \ldots, \operatorname{Int}\left(F_{m}\right)\right) \subset B\left(F_{1}, \ldots, F_{m}\right) \subset \Phi(B(e, \varepsilon))$.

Thus all the structure we have on Cantor sets can be moved to the embedding space $\operatorname{Emb}\left(\mathcal{C}, \mathbb{R}^{3}\right)$. In particular, most embeddings of Cantor set in \mathbb{R}^{3} are tame. On the other hand, it is known that most embeddings of the circle in $\mathbb{R}^{N}(N \geq 4)$ are unknotted (tame), while most embeddings of circle in \mathbb{R}^{3} are wildly knotted by Milnor [17].

Remark. Φ is not open when $K=I$ - unit interval.

Consider the embedding $e(x)=(x, 0,0)$ and fix $0<\gamma<1 / 4$. Let $W=B(\gamma, e)$. If $\Phi(W)$ were open, then in particular it includes a basic open neighborhood of $e(I)$. So there exist $\varepsilon>0$ so that $x_{1}=(0,0,0)$ and $x_{k}=(1,0,0)$ are connected by a simple chain consisting of open sets of the form $B(\varepsilon, x)$, say U_{1}, \ldots, U_{m}. So $\left(U_{i}\right)_{i=1}^{m}$ is a finite open cover for $e(I)$ and without loss of generality $\varepsilon<\gamma$. Let $V=B\left(U_{1}, \ldots, U_{m}\right)$ be that basic open neighborhood in $\Phi(W)$. Now consider the compact set C defined as follows: $C=h(I)$, where

$$
h(x)= \begin{cases}\left(2 x, \frac{\varepsilon}{2} \sqrt{1-2 x}, 0\right) & 0 \leq x \leq 1 / 2 \\ \left(2-2 x,-\frac{\varepsilon}{2} \sqrt{2 x-1}, 0\right) & 1 / 2 \leq x \leq 1\end{cases}
$$

$C \in V$, but $C \notin \Phi(W)$: Note that the non-cut points 0,1 of I should map to the non-cut points of C and $e(I)$. Suppose for a contradiction $g \in W$ with $g(I)=C$, then without loss of generality $g(0)=\left(0, \frac{\varepsilon}{2}, 0\right)$ and $g(1)=\left(0,-\frac{\varepsilon}{2}, 0\right)$. But then $|g(1)-e(1)|>1>\gamma$, contradicting $g \in W$.

Question 5. What about when $K=S^{1}$? $K=I \times I$?
The Polish group $G=\operatorname{Aut}\left(\mathbb{R}^{3}\right)$ acts on $X=\operatorname{Emb}\left(\mathcal{C}, \mathbb{R}^{3}\right)$ by $h \cdot e=h \circ e$. This is a continuous action. The image of an orbit of this equivalence relation under the map Φ is an orbit of the action of G on $\mathcal{K}_{C}\left(\mathbb{R}^{N}\right)$.

Let $K \subset \mathbb{R}^{3}$ be a Cantor set, consider the fiber of K in $\operatorname{Emb}\left(\mathcal{C}, \mathbb{R}^{3}\right)$,

$$
F_{K}=\left\{e \in \operatorname{Emb}\left(\mathcal{C}, \mathbb{R}^{3}\right) \mid e(\mathcal{C})=K\right\}
$$

Proposition A.1.4. F_{K} is closed nowhere dense.

Proof. $F_{K}=\Phi^{-1}(K)$, so closed.
Suppose for a contradiction $e \in \operatorname{Int}\left(F_{K}\right)$, so there is $\varepsilon>0$ such that $B(\varepsilon, e) \subset F_{K}$. If K is wild, then since tame Cantor sets is dense there is $g \in B(\varepsilon, e)$ with $g(\mathcal{C})$ is tame, so $g \notin F_{K}$. If K is tame, then there is an ω-decomposable non-tame Cantor set in this open set, hence in either case there is $g \in B(\varepsilon, e)$ with $g(\mathcal{C}) \neq K$.

BIBLIOGRAPHY

[1] L. Antoine, Sur l'homeomorphisme de deux figures et leurs voisinages, J. Math. Pures Appl., no. 86, pp. 221-325, 1921.
[2] R. H. Bing, Tame Cantor Sets in E ${ }^{3}$, Pacific J. Math., no. 11, pp. 435-446, 1961.
[3] R. Camerlo, U. B. Darji, A. Marcone, Classification Problems in Continuum Theory, Trans. Amer. Math. Soc., Vol. 357, No. 11, pp. 4301-4328, Nov 2005.
[4] J. J. Charatonik, On generalized homogeneity of curves of a Constant Order, Rocky Mountain J. Math. 24, pp. 491-504, 1994.
[5] D. W. Curtis and J. van Mill, Zero-dimensional countable dense unions of Z-sets in the Hilbert cube, Fund. Math. 118, pp. 103-108, 1983.
[6] U. B. Darji and A. Marcone, Complexity of Curves, Fund. Math. 182, pp. 79-93, 2004.
[7] R. Engelking, General Topology, Heldermann Verlag, 1989.
[8] B. Espinoza, P. Gartside, M. Kovan-Bakan, A. Mamatelashvili, Strong Arcwise Connectedness, preprint.
[9] D. Garity, D. Repovš, M. Željko, Rigid Cantor Sets in \mathbb{R}^{3} with Simply Connected Complement, Proc. Amer. Math. Soc. 134, no. 8, pp. 2447-2456, 2006.
[10] D. Garity, D. Repovš, D. Wright, M. Željko, Distinguishing Bing-Whitehead Cantor Sets, Trans. Amer. Math. Soc. 363, pp. 1007-1022, 2011.
[11] P. Gartside and B. Pejic, The Complexity of the Set of Squares in the Homeomorphism Group of the Circle, Fund. Math. 195, no. 2, pp. 125-134, 2007.
[12] G. Hjorth, Classification and Orbit Equivalence Relations, Mathematical Surveys and Monographs, 75, American Mathematical Society, Providence, Rhode Island, 2000.
[13] W. Hurewicz and H. Wallman, Dimension Theory, Princeton U. Press, 1948.
[14] Kato, H; Ye, X; On Burgess' Theorem and Related Problems, Proc. Amer. Math. Soc., vol 128, no 8 (2000), pp 2501-2506.
[15] A. Kechris, Classical Descriptive Set Theory, Springer-Verlag, 1995.
[16] M. Kovan-Bakan, Space of Cantor Subsets of \mathbb{R}^{3}, preprint.
[17] J. Milnor, Most Knots are Wild, Fund. Math. 54, pp. 335-338, 1964.
[18] T.B. Rushing, Topological Embeddings, Academic Press, 1973.
[19] C. Ryll-Nardzewski, On a Freedman's Problem, Fund. Math. 57, pp. 273-274, 1965.
[20] R. B. Sher, Concerning Wild Cantor Sets in E^{3}, Proc. Amer. Math. Soc., Vol. 19, No.5, pp.1195-1200, 1968.
[21] R. Skora, Cantor Sets in \mathbb{R}^{3} with Simply Connected Complements, Topology Appl. 24, pp.181-188, 1986.
[22] D. G. Wright, Bing-Whitehead Cantor Sets, Fund. Math. 132, no. 2, pp. 105-116, 1989.
[23] M. Željko, Genus of a Cantor Set, Rocky Mountain J. Math. 35, pp. 349-366, 2005.

