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MATHEMATICAL MODELS OF BRANCHING ACTIN NETWORKS:

RESULTS AND METHODS.

Daniel B. Smith, PhD

University of Pittsburgh, 2012

Branching actin networks are made up of polymeric actin filaments and play a principle role

in cell motility and other cellular processes. Inside the lamellipodium, the thin extension

at the leading edge of a motile cell, there is a dense actin network composed of branched

filaments. That network organizes into regular patterns near the membrane and serves as an

engine moving the membrane forward. There are good models explaining how an individual

actin filament is able to generate force against a load, but it is not well understood how

filament networks collectively generate force. Multiple patterns have been observed in the

force-velocity relationships of actin networks. The first part of this dissertation uses a agent-

based stochastic to attempt to explain those patterns. We find that the rate of filament

turnover can determine the nature of the force-velocity relationship.

Electron micrographs of actin networks have shown surprisingly regular patterns in the

angle of filaments relative to the membrane normal. Several continuum models have been

proposed to explain this regularity. In the second part of this work, the limiting behavior

of those models are characterized. It has been hypothesized, with numerical evidence, that

the models select for some small number of optimal orientation patterns. The results in the

second section imply that both orientation models uniquely select for an optimal orientation

pattern. Also, a fitness function for each orientation pattern is derived.

A number of properties of actin filaments have been studied by using atomistic models

of actin monomers and filaments. Calculating those properties amounts a difficult sampling

problem as the properties are statistical in nature. In order to calculate statistical properties
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of these models, the conformational space needs to be effectively sampled. Current comput-

ing capabilities are unable to do so directly, so some form of enhanced sampling algorithm is

needed. However, there is no standard way to compare existing methods nor test new meth-

ods. The last part of this dissertation proposes a model that would allow for standardized

testing of a large class of enhanced sampling methods.
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1.0 INTRODUCTION

Actin is a globular protein involved in many cellular processes ranging from regulating gene

transcription to acting as a motor in cell motility [27]. It is one of the most conserved

proteins in all eukaryotic cells. Actin is a protein that is seen both as isolated, globular

proteins (g-actin) and as a polymeric filament (f-actin) where many actin monomers are

bound together to form a thin filament [100, 126]. Given the broad function of actin, there

has been much study of actin’s function both in the laboratory and through mathematical

modeling. The results presented here contribute both to the mathematical modeling of actin

and to the development of methods for future modeling.

Actin filaments form highly branched networks near the leading edge of motile cells [80].

While actin monomers will spontaneously polymerize in physiological conditions, inside these

branched networks, new filaments are generated by branching off of existing filaments [100].

New filaments are nucleated by the actin related proteins 2 and 3 complex (Arp2/3). To

maintain a consistent supply of actin monomers, actin filaments are eventually severed and

depolymerized. Filament density is regulated by capping protein binding to the filament

tips, ceasing polymerization [16]. Combined with filaments growing by the addition of new

monomers, these processes create a dynamic network that serves as the engine in certain

types of cell motility [100, 104]. When growing filaments reach the membrane, the filaments

continue to grow, albeit at a slower pace, which pushes the membrane forward. A more

detailed explanation of this process is included in chapter 2.

Mathematical modeling of actin has flourished in recent years [32–34, 37, 38, 74, 97].

Models of actin have been constructed across huge ranges of time and spatial scales [16, 97].

At one extreme, atomistic models of actin have studied the structure and binding properties

of actin monomers and filaments. At the other extreme, branching actin networks have been
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modeled as a gel with fluid dynamics techniques [74, 87, 97]. The first papers modeling actin

dynamics were perturbation calculations modeling how an individual actin filament could

generate force against an object [77, 93]. Growing from that work, a number of agent-based

models have been developed to study how a branching actin network could generate force

[114, 117, 137]. Models have also been constructed studying the geometric arrangement of

the branched network [68, 115, 137].

Chapter 2 reports a set of simulations investigating how a branching actin network could

collectively generate force. A number of experiments have been performed probing the

velocity of a branching actin network growing against a given resisting force [10, 11, 46, 52,

69, 73, 81, 89, 101, 135, 139]. Those measurements have been used to generate force-velocity

curves. Different experiments have shown varying shapes for these curves. Several models

have been developed to attempt to explain this disparity [117, 137]. The model developed

in chapter 2 builds upon the work by Weichsel and Schwarz [137] investigating the observed

force-velocity curves. We find that the two force-velocity curves can be explained by the

rate of filament turnover that is regulated by the ratio of capping and branching to the

filament growth rate. The total number of filaments growing at the leading edge determines

the velocity of the network and could explain other experimental effects.

Electron micrographs of branched actin networks have shown surprisingly regular pat-

terns of filament orientation [68, 124, 131, 132, 138]. There is some amount of disagreement

as to the exact nature of the pattern [68, 138], but organized patterns have generally been

reported. In spite of these observations, there is not a generally accepted mechanism even for

the simple question of why the growing end of actin filaments point towards the membrane.

There have been a number of modeling studies to examine what produces the observed reg-

ular patterns [68, 115, 137]. However, there has not been rigorous study to show that the

models are well-posed. The models amount to solutions of an ODE on an infinite-dimensional

Banach space, so proving that solutions exist is relatively straightforward. However, the na-

ture of the solutions is non-obvious. For example, it is important to know if the models

uniquely select for some number of orientation patterns. Chapter 3 proves that one model

uniquely selects for a single orientation pattern and provides strong evidence that another

model does also. Those results justify some of the numerical calculations. It also shows that
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the orientation pattern fulfills an optimization problem giving credence to the notion that

the models are selecting for an optimal orientation pattern.

Molecular dynamics (MD) simulations of actin monomers have been used to study how

the internal dynamics of individual monomers affects filament formation and behavior [19,

23, 143]. MD simulations are used to study proteins at an atomic level. Those simulations are

based on empirical energy functions fit to some experimental or quantum-level calculations.

Energy functions used include all atom models [143] and coarse-grained models [19, 20] where

groups of atoms are modeled in unison. These models can be used to calculate physical

properties of proteins including energies [20] or physical properties such as filament stiffness

[45]. In order to calculate statistical properties such as energies, the protein conformational

landscape needs to be effectively sampled. However, given current computing power, many

systems of biological interest suffer the ‘curse of dimensionality’ and cannot be efficiently

sampled directly. Enhanced sampling methods are algorithms designed to increase the rate

of sampling given a certain number of computer cycles or a certain amount of wall clock time

[134, 146]. Development of new methods remains a focus of extensive research currently.

Some examples of MD calculations done on actin include simulations to estimate the

behavior of actin monomers in different binding states with ATP or ADP [19, 23, 143].

However, the system size was generally too large for any statistical quantities such as energy

differences between states to be calculated without significant coarse-graining such as in [20].

To estimate such quantities for large systems, new enhanced sampling methods need to be

developed. In order for calculations to be done on systems the size of the actin simulations

above, new computational methods will need to be developed.

In contrast to the previous two chapters, chapter 4 is focused on method development for

studying atomistic models. While enhanced sampling methods have been used extensively,

there does not exist any way to systematically compare methods [146]. Molecular Dynamics

Meta-Simulator (MDMS) models are proposed in chapter 4 to begin to bridge that gap

for at least one class of enhanced sampling methods. Replica exchange methods are a

type of enhanced sampling method that entails running parallel simulations with different

conditions and exchanging states. One common example is running simulations at different

temperatures, utilizing the faster sampling of the replicas run at higher temperatures [30,
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127, 146]. MDMS abstracts away the dynamics of the system in between exchanges to allow

for fast testing of replica exchange methods. We are able to exactly derive the equilibrium

distribution and thermodynamic properties such as entropy and heat capacity for MDMS

models. While we do not provide an analytical formulation, MDMS allows for an exact

characterization of the the benefit of replica exchange in terms of the eigenvalues of the matrix

associated with the Markov chain. Finally, we run a few elementary tests to demonstrate the

usefulness of MDMS simulations. We show that a recently proposed temperature selection

scheme [110] does provide better results than the previously accepted geometric selection

method.
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2.0 SIMULATIONS OF BRANCHING ACTIN NETWORKS SUGGEST

LOAD-SHARING MECHANISM DETERMINES FORCE-VELOCITY

RELATIONSHIP.

2.1 BACKGROUND

Actin is a globular protein that forms thin filaments inside cells [100]. Actin is termed to be g-

actin when in globular form and f-actin when in filament form [126]. Actin filaments are also

polarized with a barbed end and a pointed end. The actin filaments grow primarily at their

barbed end [100]. Individual actin filaments join together to form densely branched networks

[80]. Those branching actin networks are important to many cellular processes. Dendritic

actin filament networks can exert considerable force against a load, which is important in

cellular processes ranging from cell motility [98] to endocytosis [28]. Understanding the basic

process by which an actin network is able to exert force against a load is a fundamental part

of understanding a number of cellular processes [99].

Actin-based motility can be thought of as involving three processes: protrusion, con-

traction and adhesion [41, 74]. Networks of actin filaments push the cell membrane forward

in the form of lamellipodia or filopodia. Focal adhesions connect the actin network to the

external surface the cell is moving along. New focal adhesions form underneath the extended

lammelipodial protrustion. Finally, the cell membrane retracts to the newly established fo-

cal adhesions, which are close to the leading edge of the lamellipodium. As the older, more

rearward focal adhesions detach, the cell moves forward as it is centered around the new

focal adhesions.

Lamellipodia are broad, flat membrane protrusions that are filled with a dense, laminar

actin network. The actin network inside the lamellipodium is highly branched [80, 123]
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protrusion that is broad and largely flat; the thickness of the lamellipodium ranges from 0.1 to

0.2 µm top to bottom [125]. The lamellipodium is the leading edge of a migrating cell, and the

protrusion of the lamellipodium is the considered the first step in the protrusion/contraction

model of cell motility [76]. Filopodia are small, spiked protrusions of the membrane at the

front edge of a lamellipodium generated by bundles of parallel actin filaments. Filopodia

allow cells to sense the surrounding environment [72] and serve as the leading point of cell

migration.

Focal adhesions serve as the mechanical connection between a branching actin network

inside of a cell and the surrounding environment. Focal adhesions are made up of a variety

of proteins, including transmembrane proteins, that can bind to the extracellular matrix

(ECM) surrounding the cell [41]. As the lamellipodium moves forward, new focal adhesions

are generated inside the advancing lamellipodium. The lamellipodium later contracts, and

the focal adhesions limit how far back the membrane can retract. The focal adhesions thereby

fix the location of the cell. As focal adhesions age, their connection to the ECM weakens

[41] causing older, rearward adhesions to release. This process occurs relatively slowly, on

the order of 10-20 minutes. When those rearward adhesions release, the cell stabilizes over

the more forward adhesions. The dynamics of this process can be seen in the diagram in

figure 2.1 A.

The biochemistry of an actin network growing in vivo involves many proteins and a

number of pathways [98]. Surprisingly, however, only a few proteins are required to generate

a branching actin network capable of generating force [65]. Loosely speaking, the processes

required are filament growth, new filament branching, filament capping which stops growth,

and filament severing/pointed-end depolymerization to maintain the supply of g-actin. These

processes are discussed in more detail below. This simplified biochemistry opens the door

to detailed modeling to try to understand the behavior of branching actin networks.

The organization of actin filaments inside the lamellipodium of a motile cell is a branched

dendritic array [80, 100]. New filaments branch off of existing filaments at a characteristic

angle of ∼ 70◦ ± 7◦ [80]. Actin related proteins 2 and 3 create a complex (the Arp2/3

complex) that serves as the branching point for new filaments and generates the characteristic

branching angle. WiskottAldrich Syndrome protein (WASp) and related proteins activate

6



Figure 2.1: This diagram shows some of the basic processes involved in actin-based cell motil-

ity. A) shows the dynamics of actin-based lamellipodia protrusion followed by retraction. B)

shows the biochemical processes involved in the growth of actin networks. Reprinted from

Mogilner 2009 [76] Copyright c©2009 Springer-Verlag. Reprinted with permission. All rights

reserved.
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the Arp2/3 complex at the membrane to generate new filaments. Filaments grow through

the addition of new actin monomers to the barbed end of uncapped filaments. Capping

proteins stop the growth of filaments by binding to the filament barbed end preventing new

monomers from binding [112]. Finally, the actin network moves the membrane forward by

continuing to elongate even after the filament tip has reached the membrane [100]. The three

relevant processes are shown in figure 2.1 B.

One way to characterize an actin network’s ability to function as a motor is to measure

the network velocity when pushing against a number of different forces. The results of such

an experiment are termed the force-velocity relationship or curve. These experiments have

been both in vivo [52, 73, 101] and in vitro using beads [10, 11, 81, 139], lipid vesicles [46, 135]

and mechanical levers [69, 89]. Different experiments have led to somewhat contradictory

results. There have been two basic shapes for the force-velocity curve observed. One type

of curve is a simple convex curve likely indicating a passive response to increasing forces.

The other curve features no significant reduction in velocity in response to small forces, a

force-independent range, and a rapid reduction in velocity after some critical force. For the

purposes of this document, the second type of curve is termed ’concave’. It is important to

note that we are using the terms convex and concave in a qualitative sense and do not mean

that the curves fulfill the mathematical definitions. An example of each type of curve can

be seen in figure 2.2.

Both types of force-velocity curves have been observed both in vitro and in vivo. A

particularly stark pair of similar experiments with dissimilar results can be seen in [69] and

[89]. The first study measured the velocity of an actin network growing against a flexible

microfiber [69] which resisted the network with a constant force, and the resulting force-

velocity relationship was convex. In another experiment, the actin network grew against

the cantilever of an atomic force microscope where the force progressively increased. In

that second experiment, the network showed a concave force-velocity relationship [89]. The

simulation results presented here indicate that the rate of network adaptation could explain

these two results.

The force-velocity relationship of a branching actin network is determined by a number

of factors. Those factors include the ability of an individual filament to support a load

8
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red dashed line is a good example of a convex force-velocity relationship, and the solid blue

line is an example of a concave curve.
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[10, 77, 78, 93, 119], the mechanism that allows multiple filaments to distribute the load [114],

the number of actively growing filaments at the membrane detached from the membrane

[35, 36, 78, 145], and the structure of the actin network itself. Our simulations were designed

to try to isolate the impact the actin network geometry and internal structure generated by

the simplest actin biochemistry has upon the force-velocity relationship.

There have been a number of models of actin dynamics in the past few decades [76]. The

models particularly relevant to this chapter relate to lamellipodial protrusion and the type of

experiments listed above. The two primary components in these models are the structure of

the actin network and the ability of actin filaments to generate force, moving the membrane

forward. The structure of an actin network can be thought of as comprising three factors:

the average filament length, the distribution of filament orientations relative to the leading

edge, and the spatial distribution of filament tips. Filaments are believed to generate force

through rectified thermal motion termed the ‘Brownian ratchet’ [77, 78, 93].

One of the first models of actin filament force generation relied on thermodynamic motion

of the load allowing new actin monomers to bind to an existing actin filament [93]. A filament

pressing against a load subject to Brownian motion would only be physically in contact with

the load for some fraction of the time. At other times, there would be a gap in between

the load and the filament tip. When that gap became sufficiently large, an additional actin

monomer could bind to the filament tip. That additional monomer binding would move the

average position of the filament tip, and therefore the load, forward. When the on-rate for

actin monomers binding is sufficiently larger than the unbinding rate, the average growth

rate will be positive, and the filament growth will move the leading edge forward. Peskin et

al. [93] derived an expression from this growth rate:

v(F ) = v0 exp

[
− Fδ

kBT

]
(2.1)

where F is the force resisting filament growth, v0 is the free growth velocity, δ is the length

of an individual actin monomer, kB is Boltzmann’s constant, and T is the temperature.

Peskin et al.’s model predicted that the velocity of a growing actin network pushing

against a load should be proportional to the size of the load fluctuations, and thus inversely

proportional to load size. However, Goldberg and Theriot [48] found that bacteria of vastly
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different sizes moved at approximately the same speed. To account for this fact, Mogilner

and Oster [77] developed a model based on gaps between the filament and the load arising

from filament fluctuations. They argued that filament fluctuations were sufficiently faster

than load fluctuations that the two could be treated separately. Singular perturbation the-

ory allowed them to calculate an expression for a number of limiting cases. The cases most

relevant to physiological conditions involved short filaments, relative to the filament persis-

tence length, and large forces irrespective of filament length. In those limits, the expression

derived by Mogilner and Oster [77] is the same as the expression derived by Peskin et al.

[93]. In cells, filaments range in average length from ∼100 nm to a few microns [96, 132]

much shorter than the ∼17 µm persistence length of actin filaments [88], justifying the short

filament assumption.

While the Brownian ratchet describes the behavior of one filament well, a unified model

of the behavior of a network of filaments has yet to be accepted. One of the first questions

needing to be addressed to develop such a model is how to model the kinetic dynamics of

branching and capping. The capping rate has generally been modeled as a first-order rate, i.e.

the capping rate is proportional to the number of freely growing filaments. This implicitly

assumes that the concentration of capping protein is close enough to constant as to not

influence the capping rate. There is more controversy regarding the branching process. The

seminal paper on the topic was written by Carlsson [15]. In that paper, Carlsson considered

the implications of having a first-order or zeroth-order branching rate. He assumed that each

filament was able to exert an equal amount of force and used the Brownian ratchet mechanism

to determine the velocity. From that, a zeroth-order branching rate was predicted to lead to

a convex force-velocity curve, and the first-order branching was predicted to have a flat force-

velocity curve. The first-order branching was able to explain the force-independent range in

the force-velocity curve, but some other mechanism would be required to explain the critical

force and eventual stalling of the network. Similarly, the zeroth-order branching explained

the convex curve, but some other mechanism would be needed to explain the concave curve.

Several papers have added additional detail to the Carlsson model for studying the

force-velocity relationship. Schaus and Borisy [114] added spatial detail and studied the

performance of a fixed number of filaments when varying the way that the resisting force
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was distributed across the filaments. They found that the performance of the network at

any given force was vastly changed by the force sharing, but that the qualitative shape of

the force-velocity curve remained unchanged. Building on similar work by [61], Schreiber

et al. [117] combined first-order branching with a finite spatial restriction. They found

that excluded volume effects from filament interactions limited filament density and led to

the concave force-velocity relationship. However, they were unable to reproduce the convex

force-velocity curve also observed.

Building on the work from the Borisy group [114, 115], Weichsel and Schwarz [137]

suggested that the pattern of filament orientations relative to the membrane could explain

both force-velocity curves. In the previous work studying the orientation pattern [4, 68, 115],

only one stable orientation pattern was seen. That orientation pattern was characterized by

two density peaks centered around −35◦ and 35◦. However, in their work, Weichsel and

Schwarz found two stable patterns that had different force-velocity profiles. One pattern

was the previously observed −35◦/35◦, and the other had peaks at −70◦, 0◦ and 70◦. Their

model, however, did not include any explicit force generation dynamics by actin filaments.

The work presented here was originally conceived to extend their work to include specific

force generation by individual actin filaments. A more detailed discussion of actin orientation

patterns is included in chapter 3.

The model presented here incorporates features from a number of previous models includ-

ing [77, 114, 137]. The model suggests that the two force-velocity curves may be explained

by the rate at which actin networks recruit new filaments to the leading edge. We also find

results relating to the network orientation pattern that explicitly contradict [115] and [137].

2.2 DEFINING THE MODEL

2.2.1 Methods

Actin Model

Each filament was modeled as a point in a two-dimensional plane representing the barbed
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Table 2.1: Table of actin network model parameters.

δ 2.7 nm Length of an actin subunit. [1]

kBT 4.6 pN·nm Absolute temperature.

λ 200κ Default branching rate.

κ 1-8/s Default capping rate. [112]

vfree 100 δ/s Default velocity. [1]

Nf 200 Average number of free filament barbed ends. = λ/κ.

Θbr 70◦ Mean branching angle. [80]

σbr 5◦ Branching standard deviation

end of an individual actin filament. The plane was bounded by a hard leading edge in the

principle direction of motion (X) and a periodic boundary in the perpendicular (Y) direction.

Each filament had three properties: an X-coordinate, a Y-coordinate and an angle of growth

θ which was relative to the X-direction. As the filament grew, the X and Y coordinates

would change in time, e.g. ẋj = vj cos(θj) for filament j growing at an angle θj, while the

angle (θ) for each filament did not change. The filaments were limited to having angles

in −90◦ < θ < 90◦ as filaments growing against the principle direction of growth (X) are

not seen in experiment [74] and would quickly grow too far away from the leading edge to

contribute to the network velocity. The default parameters for the model are listed in Table

2.1.

The filaments grew against the force exerted by the leading edge (at point X=0). A

filament was treated as being in contact with the boundary if the tip of the filament was

within one subunit length (δ) from the leading edge–i.e. if adding an additional actin subunit

would induce an energy penalty from moving the leading edge. Identifying the filaments that

were in contact with the leading edge was performed at the beginning of each time step.

Within the simulations, new filaments were generated by branching from existing fila-

ments. The filaments branched at a constant rate, calculated using zeroth-order Poisson
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1 Nbranch = −1; // Number o f branching even t s counter
2 R = ran1 ; // Uniform [0 , 1 ) random number
3 r = 0 ;
4 while ( r < R)
5 Nbranch++;
6 r += exp(−lambda∗dt ) ∗( lambda∗dt ) ∗∗Nbranch/ f a c t o r i a l (Nbranch ) ;

Figure 2.3: This pseudo-code shows how the Poisson statistics for branching and capping

events were calculated.

statistics. The pseudo-code in figure 2.3 shows how the number of branching events was

calculated. The particular filament that the new filament branched from was chosen by

drawing a random index from the set of filaments not contacting the leading edge. A con-

stant rate of branching new filaments essentially assumes that the rate limiting factor is the

concentration of Arp 2/3 [15, 100, 113, 137]. The initial tip of a new branch was placed at

a point along the initial filament randomly selected from a uniform distribution extending

a distance of 5 δ backwards from the tip of the initial filament. The difference between the

angle of the branching filament (θb) and the angle of the initial filament (θi) was drawn from

a normal distribution (N ) with mean 70◦ and variance σ2 = 25◦, i.e. |θb − θi| ∼ N (70, 25),

and the filaments branched in both directions (θb > θi or θb < θi) with equal probability [80].

Gaussian random numbers were drawn using the gasdev algorithm in Press et al. [102]. The

filaments were capped as a first-order reaction, with first-order Poisson statistics, meaning

the capping rate was dependent upon the number of active filaments not in contact with the

leading edge. For the capping process, the term ’lambda’ was replaced by ’kappa*Nf’ in the

above pseudo-code where ’kappa’ was the capping rate and ’Nf’ was the number of filaments

not in contact with the leading edge. Once a filament was capped, it was no longer able

to grow, branch or exert force upon the leading edge [112]. The first-order statistics were

calculated based on the total number of active, uncapped filaments not in contact with the

leading edge. At each time step, the number of filaments added and capped during the time

were calculated using a uniform [0,1) random number using the ran1 algorithm in Press et
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al. [102]. Filaments in contact with the leading edge were neither branched nor capped the

same as was done in previous models [14, 114, 115].

In our model, filaments grew at a deterministic, constant rate in the direction defined by

θj, based on the assumption that the rate of actin subunits adding to the filament is much

faster than the rate of the network reorganization. The principle goal of the model was to

study the role of the geometric structure of the network and modeled only average growth

dynamics. Similar to in vitro conditions, the actin monomer concentration was modeled as

saturated leading to a constant growth rate of 100 δ/s [1]. The velocity of each individual

filament in contact with the leading edge was reduced by the Boltzmann factor derived from

the Brownian-ratchet mechanism [77, 78, 93]. The force was shared across all filaments using

a modified version of the optimal force sharing from Schaus and Borisy [114]. Each time a

filament would add an additional actin subunit, the energy penalty associated with the new

actin monomer moving the leading edge forward would be proportional to Ftotδ cos(θ), where

Ftot is the total force applied by the leading edge and θ is the angle between the filament and

the normal direction to the leading edge. To model ideal conditions, the force was shared

proportionally between all filaments. Thus, the sum of the forces resisting each individual

filament was set to add up to Ftot. Dividing each force by
∑
j

cos(θj) gives the correct

total force (recall filaments are required to have orientation strictly inside (−90◦, 90◦). The

velocity term for each filament i in contact with the leading edge was therefore:

vi = v0 exp

(
−Ftotδ cos(θi)

kBT
∑

j cos(θj)

)
(2.2)

where the sum j is over all of the filaments in contact with the leading edge and Ftot is the

total force applied to the system. All other filaments grew at their equilibrium velocity.

At each time step, calculations were done in the following order. First, the location of

the leading edge was calculated, which was defined as the largest X coordinate of the active

filaments. The filaments which were then within δ of the leading edge were marked as in

contact with the leading edge and were no longer able to be capped or branch new filaments.

Next, the number of branching and capping events between times t and t+dt was calculated

by comparing a uniform random number in [0,1) and the cumulative distribution function
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for the associated Poisson distribution (see pseudo-code above). Individual filaments were

chosen randomly from the population of filaments not in contact with the leading edge to

be capped. Following that, filaments were again randomly chosen to serve as the branching

point for new filaments. Then, the normalizing constant was calculated by summing over

the filaments in contact with the boundary to get the average force felt by each filament.

Finally, the positions of the filaments are advanced by vidt where vi is the velocity of filament

i.

All simulations started with independent, identically distributed initial conditions. The

simulations started with 200 filaments uniformly distributed in the y direction and uniformly

distributed within a box of length 20 δ in the X direction, perpendicular to the leading edge,

with the constraint that half of the filaments were in the first 10 δ and half in the second

10 δ. The initial filament orientations were randomly drawn from a uniform distribution

on (−90◦, 90◦). The time step, dt, used in each simulation was 10−2s. The code for the

simulations was written in C++ and run on Ubuntu and CentOS servers.

Simulation Details

One thousand simulations were run with independent, identically distributed initial con-

ditions as above. The simulations were averaged at each time step to generate Figure 2.4(A).

Figure 2.4(B) was generated by taking the minimum velocity after force was applied. Param-

eter values were chosen to be κ = 1 and λ = 200 for the short time-scale simulations. Those

parameter were chosen to emphasize that only convex force-velocity curves were observed on

short timescales because they provided the most extreme concave case in our long time-scale

simulations.

Each data point from Figure 2.5 was the result of averaging 10 equilibrium simulations

with constant force starting from the initial conditions described above. Simulations were

run for a total of 10,000 s with a dt of 10−2 s and data was sampled every 0.2 s. Reported

data was sampled from the second half of the simulation to minimize the influence of initial

conditions. The equilibration can be seen in Figure 2.6.

The hysteresis simulations were performed with the same initial conditions. Simulations

were run for a total of 7,500 s. The first 2,500 s were run at an initial (low) force f0 to

equilibrate the system to the velocity observed in Figure 2.5. At time 2,500 s, the force was
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increased to f1. The system was allowed to equilibrate again to a lower velocity. Finally,

at time 5,000 s the force was reduced back to f0 where the velocity rapidly rose before

converging back to equilibrium.

Filaments were made to ’stick’ to the leading edge by reducing the amount of force felt by

a filament close to δ away from the leading edge. While we do not know the exact nature of

such an interaction between the filament tips and the load surface, actin tethering has been

theoretically proposed [78] and has some experimental evidence [13, 21, 46, 56, 130, 135].

The new expression force felt by each filament was Fj = F ?
j q(x) where F ?

j is the force used

in (2.2) and q(x) is a cubic polynomial of the distance between the leading edge and the

filament time, x such that:

q(x) =


1 if 0 ≤ x ≤ γ

−2
(
δ−x
δ−γ

)3

+ 3
(
δ−x
δ−γ

)2

if γ ≤ x ≤ δ

0 if x > δ

(2.3)

where γ = 0.9δ for our simulations. The effect of (2.3) was to increase the velocity of

filaments between γδ and δ away from the leading edge. Those filaments then grew faster

than filaments with the same orientation closer to the leading edge. That prevented filaments

from growing slow enough relative to the velocity of the leading edge to become greater than

δ away from the leading edge.

Curve Characterization

The implication of Figure 2.5(B) is that force-velocity curves can be characterized by the

length of the force-insensitive region, where the velocity reduction is small. Optimally, the

location of the rapid velocity reduction, and by proxy the length of the plateau, could be

found by finding a spike in the second derivative and the associated inflection point. However,

numerical estimates of the second derivative were quite noisy. As an approximation, we

characterized the force-velocity curves by their f1/2, the force at which the relative velocity

was reduced to 1
2

relative to the low-force velocity (at 850 pN). Twenty constant force

simulations were performed for each pair of branching and capping rates ranging from 850

pN to 17 nN. f1/2 was estimated by linearly interpolating between the two successive forces

where the velocities surrounded 1
2
. When the velocity at 17 nN was greater than one half,
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we used the largest force calculated (∼17 nN) for the purposes of figure 2.11. Likewise, for

the purely convex curves with f1/2 < 4 nN the value 4 nN was used in the graph for clarity.

Angular Density Plots

The density plot in Figures 2.13 and 2.14 were made using a Gaussian kernel density

estimator. The bandwidth parameter was fit using the algorithm outlined in [7] because it

generally provides better fits for multi-modal data than other bandwidth estimators including

plug-in estimators. The algorithm was implemented into the Numpy extension to Python

[2, 54, 85, 86]. The number of repeated samples, i.e. angles observed more than once due

to filaments persisting across samples or lack of precision in saved data, led to the jagged

appearance of the density curves. Other estimators, e.g. histograms or more naive bandwidth

selection methods, also led to jagged curves.

2.3 SIMULATION RESULTS

The simulations were focused on how the collective properties of a branching actin network

influence the ability of the network to exert force onto a flat, uniform load barrier. That was

done in part for simplicity and stemming from the result in [114] that showed no significant

influence of membrane shape upon network performance, in the sense of the efficiency with

which the network moved the leading edge.

The first set of simulations tested the temporal response of the velocity of branching actin

network against a fixed load force. Figure 2.4(A) shows that upon loading force, the velocity

drops almost instantly, which then recovers in a longer timescale (∼minutes) reaching a

value lower than before the application of a load. New filaments reaching the leading edge

takes time, and that defines the principal timescale of adaptation. Taking the velocity at

the bottom of the initial response to force gives a force-velocity curve for the fast timescale

response of the network. As Figure 2.4(B) shows, the force-velocity curve is convex.

Running the simulations for an extended amount of time allows for the study of the

equilibrium force velocity relationship. Figure 2.5(A) shows that the model reproduces

both convex and concave-type force-velocity curves. The only difference between the sets
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Figure 2.4: The network velocity rapidly drops in response to force application. A) shows

a characteristic time trace of the velocity response to force applied at 100 seconds, and B)

shows the convex force-velocity curve generated by the initial response of the network to

force.

19



A)

0 2 4 6 8 10 12 14 16 18
Force (nN)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

Ve
lo

ci
ty

 (v
/v

0
)

κ=1/s/fil, λ=200/s
κ=3/s/fil, λ=600/s
κ=5/s/fil, λ=1000/s
κ=7/s/fil, λ=1400/s

B)

0 2 4 6 8 10 12 14 16 18
Force (nN)

0

2000

4000

6000

8000

10000

12000

Co
nt

ac
tin

g 
Fi

la
m

en
ts

κ=1/s/fil, λ=200/s
κ=3/s/fil, λ=600/s
κ=5/s/fil, λ=1000/s
κ=7/s/fil, λ=1400/s

Figure 2.5: Varying the capping rate (κ) over an order of magnitude changes the shape of

the force-velocity curve. A) shows the continuous deformation of the force-velocity curve for

a few capping rates. B) shows the relationship between force and the equilibrium number of

contacts for the same capping rates as in B. The error bars represent the standard deviation

estimated from 10 simulations.

of simulations is the absolute value of the capping and branching coefficients. Their ratio,

and therefore the average number of filaments, was fixed. We have hypothesized that the

network is able to reinforce itself by bringing more filaments to the leading edge.

The hypothesis that the network reinforces itself by filaments growing to the leading

edge would suggest that a network with short filament lifetimes, being less likely to grow

to the leading edge, would stall at lower forces. Increasing the capping and branching rates

simultaneously causes the filaments to grow for shorter periods of time even though the total

number of filaments is kept constant. In fact, Figure 2.5(A) shows that by changing the

capping rate the force-velocity curve continuously deforms from concave to convex. Fewer

filaments reinforce the leading edge leading to lower and lower stall forces. The level of

reinforcement can be seen by the number of filaments in contact with the leading edge.

Figure 2.5(B) shows that more filaments are recruited to the leading edge when the capping

rate is low for the same level of force.

For low-force/low-capping and branching rate cases, the simulations did appear to be
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Figure 2.6: For small and large forces, the network velocity rapdily converged. A) κ =

1/s/filament and F = 2.55 nN and B) κ = 3/s/filament and F = 16.2 nN

sampling from an equilibrium distribution. For the simulations where the force-velocity

relationship was loosely flat

(
i.e.

∂V

∂F
∼ 0

)
, the velocity converged to an equilibrium quite

rapidly, as can be seen in Figure 2.6. The curves shown are the average of 10 simulations

with the highlighted region representing the estimated ± standard deviation.

However, where the force-velocity curve was sharp

(
∂V

∂F
<< 0

)
, the velocity converged

only at non-physiological time-scales, if at all. This can be seen in Figure 2.7. Because

filaments at the leading edge are protected from branching, it is reasonable to hypothesize

that filaments will eventually accumulate there to facilitate a loosely flat force-velocity curve.

The number of filaments at the leading edge controls the velocity, as can be seen in Figure

2.8, which is how filament accumulation could determine the force-velocity relationship.

However, with increasing force or capping and branching rates, the amount of time for that

to happen takes arbitrarily long. The adaptation time could explain both the convex and

the concave force-velocity curves, because running an experiment for less time than it takes

the network to adapt would look identical to the network never adapting.

We were able to estimate the stall force per filament from Figure 2.5(A). We defined the

network to be stalled when an increase in force of 170 pN led to a decrease in velocity of
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Figure 2.7: For intermediate forces, the actin network velocity does not appear to converge.κ

= 3/s/filament for both and A) F = 9.4 and B) F = 11.1 nN
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Figure 2.8: Network velocity and the number of contacting filaments were very strongly

correlated. A) κ=1, λ=20 and F=8.52 nN. B) κ=5, λ = 100, and F=3.41 nN.
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less than 1%. Our model could not truly stall due to the lack of depolymerization meaning

(2.2) could never truly be zero, but we considered further increases in force failing to further

slow the network as indicative of stalling. The stall forces per filament estimated ranged

between 0.9 pN and 2.4 pN for 1 ≤ κ ≤ 5/s/filament with a mean of 1.3 pN, which is in close

agreement with the reported value of 1.7 ± 0.8 [52]. The reported stall force per filament

provides evidence that actin networks use close to optimal force sharing.

An actin network can be visualized as a population of filaments contacting the bound-

ary and another population of filaments trailing the leading edge in reserve. The network

reinforces the filaments at the leading edge when trailing filaments grow to reach the leading

edge. That remodeling response simply depends on the rate at which trailing filaments are

able to catch up to the leading edge. Figure 2.9 is an explanatory diagram showing a hypo-

thetical branching pattern. The first filament is in contact with the boundary and is unable

to branch or be capped. The second filament is further back and serves as a source for new

filaments. The expected lifetime/length of the filament primarily determines the likelihood

that the third filament reaches the boundary. Such a scenario repeated throughout the net-

work would explain the differing rates of adaptation. If the average lifetime of filaments is

too short, the network will not sufficiently increase the number of filaments on the leading

edge leading to a drastic reduction in overall network velocity.

Figure 2.5(B) shows that the number of filaments in contact with the leading edge in-

creases with increasing force before peaking in all cases. However, the cases with lower

capping rates generate a larger increase before peaking and stalling. As can be seen in Fig-

ures 2.4, 2.6 and 2.7, the network velocity is equilibrating at multiple time scales. When the

longest time-scale is allowed to converge, there is a linear increase in density as the network

adapts to larger and larger forces. However, our model indicates that that longest time scale

gets exponentially long with increasing force or increased capping/branching rates. When the

longest time-scale becomes longer than your simulation or experiment, the network doesn’t

fully adapt, and you see a convex force-velocity curve.

The accumulation of filaments at the boundary could also explain some of the hysteresis

observed in actin networks. As seen in Figure 2.5, the number of filaments in contact with

the boundary increases with increasing force. Subjecting the network to a large force and
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A) B) C)

Figure 2.9: This diagram shows how the average lifetime/length of the filaments could

influence the number of filaments in contact with the leading edge. Filaments are represented

by black lines; the red line is the leading edge; the blue circles are actively growing barbed

ends; and the yellow circle represents a barbed end that has been capped. A) A hypothetical

scenario involving one filament barbed contacting the leading edge with a second filament

growing behind the leading edge. B) When the capping rate is high, the reserve filament is

capped (yellow circle) before it reaches the leading edge. C) When the capping rate is low,

sufficiently long filaments can grow and contact the leading edge, increasing the leading edge

velocity.
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subsequently releasing that force should leave excess filaments in contact with the leading

edge. Figure 2.10(A) shows the velocity of a simulation where the network pushed against

low force for the first third of the run, followed by high force in the middle third, and

finally the original low force. That is comparable to the experiment in Parekh et al. [89].

The velocity initially shoots back up in response to the reduced force, but it rapidly decays

back to the initial equilibrium force similar to [15]. The reduction in the load force speeds

up the growth rate of all the contacting filaments at the leading edge. Due to the angle

dependence of the load sharing for individual filaments, the speed-up of growth rates is

heterogeneous across the contacting filaments. As a result, some filaments grow faster while

staying in contact with the load, and slower growing filaments slide off the leading edge

and are capped. Ultimately, the number of contacting filaments relaxes back to the velocity

corresponding to the original force and completely loses its memory of the previous loading

force. Figure 2.10(B) shows that sustained hysteresis can be realized in the model, if we

incorporate a factor that causes the actin filaments to stick to the leading edge. While

the exact nature of such an interaction between the filament tips and the load surface is

unknown, actin tethering to the load has been theoretically proposed [78] and has some

experimental evidence [13, 21, 46, 56, 130, 135].

These results suggest that the actin network remodels itself by changing the number of

filaments in contact with the leading edge. That remodeling in turn determines the shape of

the force velocity relationship. In particular, it determines the length of the concave portion

of the curve. To obtain a more systematic, qualitative understanding of the rate dependence

of the actin force-velocity relationship, we performed a coarse parameter search over the

capping and branching rates. We used the force at which the velocity drops to 50% of the

small load force to characterize the shape of the force velocity curve. Figure 2.11 shows the

estimated f1/2 values at each parameter value that constitutes the principle prediction of the

model: larger capping rates lead to less concave force-velocity curves, and larger branching

rates lead to more concave curves.

Another result is that the model qualitatively reproduces the large velocity reduction in

response to small forces observed in experiment [101]. Figure 2.12 shows the equilibrium

velocity v/vfree in response to a 170 pN force. The only way for the network to maintain
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Figure 2.10: Plots of simulations testing for hysteresis in the force-velocity relationship.

A) shows a typical simulation result with a transient hysteresis effect. B) shows the time

dependent force used in both A and C. C) shows a typical simulation when filaments reaching

the leading edge stuck to the leading edge.

velocity with increasing force is to increase the number of filaments at the leading edge.

However, when the leading edge is moving close to the speed of a freely growing filament,

filaments trailing the leading edge are unable to catch up. Thus, leading edge must be suffi-

ciently slowed down before the force-velocity curve can plateau. Thus, the force-independent

velocities must be significantly slower than vfree.

The time-scale argument appears to explain all of the results presented here, but it

is worthwhile to compare other results from our simulations to those in [137]. The first

question is whether or not our results reproduce the orientation patterns seen by Weichsel

and Schwartz. That result attempts to reproduce the regular pattern of angles between actin

filaments and the membrane as seen in electron micrographs [124]. They see two dominant

orientation patterns. At low and high forces, they see a −70◦/0◦/70◦ pattern. However, at

intermediate forces, they see a dominant −35◦/35◦. The only orientation pattern we were

able to observe was the −70◦/0◦/70◦ pattern seen in Figure 2.13. In fact, the system rapidly

converges to that orientation pattern. To see that, define the two numbers n0 and n35 as the

number of filaments with orientation in (−5◦, 5◦) and (30◦, 40◦), we can define the orientation

26



Figure 2.11: Plot of f 1
2

for a variety of parameters. The color represents the estimated f 1
2

for

a variety of branching and capping rates. The cases with concave force-velocity curves are

labeled with white asterisks. Decreasing the capping rate and increasing the branching rate

serve to generate more filaments which shifts f 1
2

rightward, meaning a more concave curve.

27



1 2 3 4 5 6 7 8
κ (1/s/filament)

0.2

0.3

0.4

0.5

0.6

v
vfree

Figure 2.12: Equilibrium velocity reduction in response to a small (∼170 pN) force by

capping rate.

pattern parameter, Dist, from [137]:

Dist =
n0− n35

n0 + n35

That parameter is close to -1 for orientation patterns close to −35◦/35◦ and close to +1 for

orientation patterns close to −70◦/0◦/70◦. Plotting that parameter versus time as in Figure

2.13 shows rapid convergence to −70◦/0◦/70◦.

Next, we tried to reproduce the orientation patterns Weichsel and Schwartz observed by

modifying our model. In their model, new filaments were only able to branch from existing

filaments whose tips were within 2δ of the leading edge. By adding that restriction to our

model, we were able to reproduce their results as can be seen in Figure 2.14. At very low and

very high forces, the −70◦/0◦/70◦ pattern dominates, but the −35◦/35◦ pattern is seen at

intermediate forces. The exact shape of the distributions is different because of our differing

boundary value specifications. However, this effect goes away by increasing the branching

range even to 4δ.
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Figure 2.13: The −70◦/0◦/70◦ pattern was dominant in our simulations. A) shows a repre-

sentative orientation pattern observed in our standard simulations. B) uses the orientation

pattern parameter described in the text to show rapid convergence to −70◦/0◦/70◦.
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Figure 2.14: The angular density varied significnatly when the branching zone was restricted.

A-C) Angular density plots for branching restricted to 2δ, κ = 3, λ = 600, and A) F = 0.34

nN, B) F = 6.81 nN, C) F = 13.63 nN. D) Angular density for branching restricted to 4δ,

κ = 3, λ = 600 and F = 6.81 nN.
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That change in orientation pattern between limiting branching to 2δ and 4δ is only a

function of filaments that are very close to the leading edge. Figure 2.15 shows a high

density of filaments very close to the leading edge and a slow decrease in density behind

that for moderate forces. For higher forces, almost all of the density is immediately behind

the leading edge. A similar effect was seen in [114]. After about 2δ, the change in filament

density is very gradual, which would explain the lack of effect of branching restriction on the

orientation pattern.

Given that the size of the branching range changes the network orientation pattern, it

is worthwhile to test whether or not that parameter change would affect the force-velocity

relationship. Figure 2.16 shows no qualitative difference for any of the branching ranges we

tried. This is not surprising given that more than about 2δ away from the leading edge the

filament density does not change very much.

2.4 DISCUSSION

The model outlined here suggests a simple mechanism could explain multiple actin network

force experiments. The question of how to explain the two distinct force-velocity curves

observed experimentally has been a focus of a number of theoretical studies recently [61,

117, 137]. Our results indicate that the time-scale of network reorganization could explain

the two observed force-velocity curves. When the network is given sufficient time between

force application and velocity measurement, the force-velocity relationship is relatively flat.

However, the initial response of the network to force application is always convex. The

accumulation of filaments at the leading edge observed in our simulations also could explain

the hysteresis effects seen in [89]. Finally, our results on filament orientation cast doubt on

the results in [115, 137] explaining the dominance of the −35◦/35◦. Their result only holds

when new filament branching is restricted to a small, likely unphysical, zone near the leading

edge. Unfortunately, our results here do not yet provide an alternate explanation.

The number of active actin filaments at the boundary determining the force-velocity

relationship has previously been studied [14, 15, 89]. In particular, Carlsson [15] suggested
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Figure 2.15: Filament density accumulated near the leading edge with a slow decline behind

that for κ=3 and λ=600. A) F = 3.42 nN. B) F = 8.52 nN. C) F = 11.93 nN.
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Figure 2.16: The force-velocity curves when new filament branching is restricted to a few

different ranges are qualitatively similar to the unresticted case for κ = 3 and λ = 600. The

curves are reported in absolute velocities.

that actin networks with auto-catalytic branching kinetics would have an unbounded accu-

mulation of filaments at the boundary leading to completely force independent velocities.

However, some external feedback would be necessary to limit the total density to produce

the inevitable reduction in velocity at high forces that we saw in Figure 2.12. His model also

does not predict the reduction of velocity in response to small forces. Although branching

events are auto-catalytic as demonstrated in experiments [49], there will only be a finite sup-

ply of Arp2/3 in the cell leading to a saturation of the branching rate. Our model explains

both force-velocity curves with zeroth-order branching, i.e. a non-auto-catalytic model. We

believe that our results suggest that the zeroth-order statistics is the more reasonable model.

In particular, zeroth-order branching coulud be explained by Arp2/3 availability being the

rate-limiting step.

Much like our model, Carlsson’s model also predicts a transient hysteresis effect where

additional filaments at the leading edge causes a spike in velocity when the resisting force

is reduced. However, experiments have observed a sustained hysteresis effect [89]. Adding
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a term which causes filaments to stick to the membrane, like we did in Figure 2.10, would

allow either model to explain the hysteresis effect equivalently. Thus, the hysteresis results

cannot be used to differentiate our model from his.

Our model does not preclude any other negative feedback mechanism that limits the

density of actin filaments. It is likely that increased filament density would lead to excluded-

volume effects at large forces [117], which would limit the filament density at the leading

edge. However, any external negative feedback mechanism would only limit the length of the

force-insensitive region of the force-velocity curve. It is important to note that, due to the

exponential term in equation (2.2), even a relatively small change in filament density would

lead to a large change in velocity. A doubling of the number of filaments, N , would lead to

an approximately exp

[
Fδ

2NkBT

]
- fold increase in the velocity.

Figure 2.5 should be qualitatively reproducible in experiment and could serve as an

excellent test of several hypotheses for branching-actin networks. The branching and capping

rates could be manipulated by changing the concentration of the relevant proteins as in

Cameron et al. [12]. That experiment could be performed both with constant force [69]

or with a constantly increasing force [89]. Changing the concentrations of Arp 2/3 and

capping protein simultaneously would isolate the average lifetime of filaments and be the

most direct test of our predictions. Showing that the stall force of an actin network is

dependent upon the Arp 2/3 and capping protein concentrations would be strong evidence

for both the hypothesis that actin density controls the force-velocity relationship and an Arp

2/3 concentration-dependent branching rate.

The majority of the simulations were performed with constant force. However, this

model is relevant to both constant and non-constant force because it requires no equilibrium

assumptions. The model showed a relaxation time before the network reached an equilibrium

velocity. Changing the force slower than this relaxation time would allow the network to

continuously adapt to the increased forces and show strong hysteresis effects as in [89].

Increasing the force substantially faster than the relaxation time would not allow the network

to restructure itself leading to results similar to the instantaneous application of force as in

figure 2.4. An experimentally observed value for this relaxation time could be found, and

further experiments manipulating the force more slowly than the observed relaxation time
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should show these hysteresis effects.

The sharp bifurcation in behavior occurring when the branching range increases between

2δ and 4δ stems from the accumulation of filaments at the leading edge as seen in figure

2.15. It is important to note that no physical basis has been given for the choice of 2δ.

That parameter choice originates in Schaus and Borisy [115]. In that model, branching was

restricted to a small zone, and capping was restricted to outside that zone. There is evidence

that new filament branching occurs close to the leading edge [4, 100], where Arp2/3 is more

likely to be activated, but there is not any experimental evidence giving a precise estimate

of how close to the leading edge branching occurs. Similarly, interactions with the leading

edge could occlude filament capping. However, there is no reason to believe that the two

areas are mutually exclusive. Without that assumption, Schaus and Borisy [115] would have

likely have seen different results.

Our model implements a load-sharing mechanism where the contacting filaments collec-

tively share the load across the leading edge similar to [114]. That is, filament growth is

only resisted by a fraction of the total load force. In the context of our model, our results

are likely not dependent upon the exact load-sharing mechanism. However, some amount of

load-sharing is valid as long as the hypotheses for the Brownian ratchet mechanism hold. The

Brownian ratchet mechanism assumes that the thermal fluctuations between the filament tip

and the load surface are significantly faster than the addition of new actin monomers [77, 78].

For a filament to grow, fluctuations must be large enough for a new monomer to fit in the

gap between the tip and the load. Smaller and or slower fluctuations reduce the efficiency of

the mechanism. Experiments have demonstrated that reducing thermal fluctuations by low-

ering the temperature strongly hinders the efficiency of filament growth [119]. That provides

evidence for the Brownian ratchet mechanism. The separation of time scales underlying the

mechanism also implies that the load force felt by each contacting filament is averaged over

many fluctuations. Those fluctuations are also likely influenced by the density of filaments

resisting the membrane. Consequently, only the partial load force shared across filaments

would dictate the network growth rate.

The simple physical model shown here gives insight into the behavior of actin networks

growing against a load. In particular, the network velocity dependence upon the number
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of filaments pushing against the leading edge provides a simple mechanical mechanism to

explain a number of experimental effects. Further investigation into actin network properties,

both physical and biochemical, that determine how many active filaments a network is able

to recruit to the leading edge will further the understanding of actin network growth.
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3.0 ACTIN ORIENTATION DENSITY EQUATIONS SELECT FOR A

UNIQUE, STABLE EQUILIBRIUM.

3.1 INTRODUCTION

As mentioned in previous chapters, actin filaments form densely branched networks in a

motile cell’s lamellipoidum [80]. Any individual filament can be characterized by the angle

between its orientation, and the normal direction of the membrane. One obvious question

is whether or not these angles form any regular pattern. While the question has not been

extensively studied, there is some experimental evidence that the networks indeed organize

into regular patterns relative to the cell membrane [68, 138]. A few models have been

proposed to explain the existence of such patterns [68, 115, 137]. While these models have

been numerically solved, there has been no rigorous work proving the existence, uniqueness

or stability of these solutions. This chapter presents a few results that characterize the

solutions to two equations modeling the angular density of branching actin networks.

All of the models proposed to explain the orientation distribution have used a contin-

uum approximation. There is some question as to whether or not ignoring the stochastic

fluctuations of actin networks is justified [104]. However, none of the models make specific

predictions about the kinetics of network organization, and there is currently no evidence

that correlations between filaments lead to changes in the equilibrium orientation pattern.

For the rest of this chapter, we will assume the approximation is justified and focus on

long-time equilibrium behavior.

Some of first few models to study orientation patterns in actin and similar networks

studied the existence and persistence of peaks in the orientation pattern [43, 75, 79]. The

analysis was based on Fourier series and small perturbations which greatly limited their
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generality. Their analysis led to the qualitative result that peaked orientation patterns are

likely to be observed. Similar methods have been used on models of orientation and space

[8, 31]. Stability analysis has also been done on similar models, termed “ring models” in the

neuroscience literature [6, 140].

The first model we consider here was proposed by Maly and Borisy [68]. Their insight was

that if filaments were capped at different rates based on the filament orientation, filament

branching and capping could generate stable orientation patterns. The model they proposed

takes into account branching and capping explicitly and filament growth implicitly. New

filaments branch off of existing filaments at a characteristic angle ∼ 70◦ with some variance

around that. We can write out the branching kernel as a probability of a mother filament

with angle θM having a branched daughter filament with angle θD:

B(φ) = P(θD = θM − φ) (3.1)

An explanatory diagram can be seen in figure 3.1. Adding up the contribution of all filaments

with density u(φ) gives the total branching rate at angle θ:

BR(θ) ∝
∫
B(θ − φ)u(φ) dφ (3.2)

The limits for the above equation were left off intentionally as different models used different

limits. The Maly and Borisy model only considered filaments growing faster than the leading

edge, i.e. filaments with orientation |θ| ≤ θcrit = arccos
[

v
vmax

]
where v

vmax
is the velocity of

the leading edge relative to the maximum velocity of filament growth. When combined with

the total branching rate λ, the Maly and Borisy branching function was:

BR(θ) = λ

θcrit∫
−θcrit

B(θ − φ)u(φ) dφ (3.3)

They also proposed that the capping rate was proportional to the amount of time the filament

would be not in contact with the leading edge, much like [78], but used the capping function

1
cos(θ)

. Combining the two terms gives the full equation:

u̇(θ, t) = λ

θcrit∫
−θcrit

B(θ − φ)u(φ) dφ− u(θ, t)

cos(θ)
(3.4)
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Figure 3.1: Diagram for filament branching. The blue line is the leading edge, and the dotted

line is the inward normal to the leading edge. The network grows in the direction of the

outward normal to the leading edge. The two red lines are a mother and daughter filament

respectively. φ is the angle between the mother filament and the daughter filament.

where u̇ indicates the time derivative. The capping rate they chose, 1
cos(θ)

, was derived

from an argument about how much time a filament would spend physically in contact with

the leading edge. The equation is defined on (−θcrit, θcrit) × R+ with absorbing boundary

conditions.

Maly and Borisy performed two analyses on (3.4). The first analysis was to approixmate

solutions of (3.4) by solving the equation for two points in orientation space. Solutions to

the two-point approximation supported the argument that the equation selected for a unique

orientation ‘type’ that grew exponentially at the fastest rate. The second analysis was to use

numerical quadrature [5] to approximate the eigenfunctions of the right-hand side of (3.4).

However, the existence and uniqueness of the eigenfunction solutions were never rigorously

shown. They explained their results by using an evolutionary selection metaphor. In this

chapter, I show that a version of (3.4) with stricter hypotheses on the capping rate uniquely

selects for a most ’fit’ orientation pattern with a fitness function defined on the unit ball of

orientation functions.
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A very similar model was proposed by Weichsel and Schwartz [137] to explain both the

orientation patterns and the force-velocity curve (see the previous chapter). There were two

primary differences between their model and the Maly and Borisy model. First, orientations

were defined on the entire circle, S1. The effect of filaments growing slower than the leading

edge was incorporated into the capping rate. The second difference was to solve the problem

that solutions to (3.4) appear to exponentially diverge was to normalize the branching rate

so that the total branching rate was equal to λ. The Weichsel and Schwartz model was:

u̇(θ, t) =
λ∫

S1 u(φ, t) dφ

∫
S1

B(θ − φ)u(φ, t) dφ− κ(θ)u(θ, t) (3.5)

where the capping rate is proportional to the difference between the velocity of the leading

edge and a filament with a given orientation:

κ(θ) = k + c (vLE − v0 cos(θ))+ (3.6)

where vLE is the velocity of the leading edge, v0 is the rate of filament growth, and c is a

constant.

Weichsel and Schwartz performed the same two analyses as in the Maly and Borisy paper.

They found that, for certain parameters, there were two stable equilibria in the two-point

approximation to (3.5). Numerical simulations also seemed to support that hypothesis.

Finally, they used numerical techniques to calculate the equilibrium distributions. The

calculated equilibrium distributions seemed to agree with the discrete approximation results,

but no bistable results were reported. The results in this chapter explicitly contradict the

bistable hypothesis but show some evidence for the stability of a unique, positive equilibrium.

The techniques here also would go a long way towards solving two problems suggested

in [18]. In that paper, analysis of a type of nonlocal diffusion equation proceeded using

the Fourier transform. For fairly obvious reasons, that technique was not available for the

analysis presented here. At the end of that paper, they presented several open problems

for related equations that were not solvable by Fourier analysis. In particular, corollaries

of theorem 1 demonstrates the asymptotic behavior for kernels with non unit integral. The

techniques presented in this chapter should be generalizable to unbounded domains and

provide satisfactory answers to those questions.
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3.1.1 Definitions and Assumptions

As mentioned above, this chapter is studying the properties of two related nonlocal diffusion

equations describing branching actin networks. The equations are a continuum approxima-

tion in the angular density. We will describe the two equations as first-order and zeroth-order

relating to the order of the branching rate. The first-order branching is such that the branch-

ing rate BR ∝
∫
u(θ) dθ and zeroth-order so that BR ∝ 1.

The first-order branching equation is:

u̇(θ, t) = λ(B ? u)(θ, t)− κ(θ)u(θ, t) (3.7)

where λ is the branching rate, B is the branching kernel, and κ(θ) is the angularly dependent

capping function. We define the linear operator, Aλ, to be the function of u(θ) on the right

hand side. We are principally interested in positive, integrable solutions to the Cauchy

problem with initial condition u0 ∈ L1(S1). The equation is formally defined on u(θ, t) ∈

L1(S1)×R+ where S1 is the circle. It is straightforward to show that solutions with positive

initial data remain positive. An interesting question going forward would be to extend the

analysis here to a more general setting, such as the space of countably-additive measures.

In actuality, we are interested in angular densities with finite mass, so the requirement that

the density be absolutely continuous with the Lebesgue measure is a simplification for ease

of analysis.

Due to the fact that first-order branching usually leads to pathological asymptotics, the

zeroth-order branching equation was proposed. It was hypothesized that a more realistic

model involves a zeroth-order (constant) branching rate. The resulting equation would be

the nonlinear nonlocal diffusion equation:

u̇(θ, t) =
λ0

U(t)
(B ? u)(θ, t)− κ(θ)u(θ, t) (3.8)

U(t) =

∫
S1

u(ω, t) dω
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where λ0 is the total branching rate, U(t) is the total density of filaments at time t. For

future reference, define the non-linear operator G to be the function of u(θ) on the right

hand side of the above equation. The branching rate is zeroth-order in the sense that:∫
BR =

∫
λ0∫

u(φ) dφ
(B ? u)(θ) dθ = λ0

∫
B(θ) dθ

∫
u(θ) dθ∫
u(φ) dφ

= λ0 (3.9)

The non-linearity from the normalizing term introduces greater difficulty in analyzing the

asymptotic behavior. As such, this chapter contains a conjectured result with numerical

evidence backing up the conjecture.

Assumptions on B and κ:

1. B is real, positive, symmetric C2 function with ‖B‖1 = 1.

2. κ is a real, strictly positive, symmetric C2 function

The assumptions are likely stronger than necessary, but generalizing the problem is a question

for further study. They also do not exactly capture the dynamics for either paper. The first

paper, by Maly and Borisy [68], would require an infinite capping rate. However, as that

is likely unphysical, the equations at hand should be sufficient. For Weichsel and Schwarz

[137], the capping rate they used is continuous but not differentiable. The primary role of

the C2 hypothesis is to ensure compactness, and weaker hypotheses should be quite feasible.

However, the smoothness hypothesis is merely technical and should have no effect on the

interpretation of the results presented here.

3.1.2 Survey of Results

The most important result of this chapter is a Perron-Frobenius type theorem that charac-

terizes the dynamics of the first-order branching equation. Without loss of generality, we

will assume λ = 1 and refer to A1 as A during the proof of theorem 1. The exact result is:

Theorem 1. A has a principal, largest eigenvalue µ0 with a positive, integrable, bounded

eigenfunction φ(θ). Moreover, µo is an isolated element of the spectrum σ(A).

That result is proven with the following steps:

1. A is bounded and self-adjoint over L2 and therefore has no residual spectrum over L2.
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2. The operator (B ? u)(θ) is compact.

3. All elements of the spectrum outside of [− supκ,− inf κ] are either eigenvalues or in the

residual spectrum for all Lp spaces with 1 ≤ p ≤ ∞.

4. The spectrum of A over L2 outside of [− supκ,− inf κ] has no elements in the residual

spectrum and therefore is equal to the spectrum of A over L1.

5. The spectrum of A over L1 is real.

6. sup
‖u‖2=1

〈Au, u〉 is either an eigenvalue or an element of the continuous spectrum.

7. The largest element of the spectrum is greater than − inf κ.

8. Eigenvalues do not accumulate outside of [− supκ,− inf κ]. That implies the principal

eigenvalue is isolated.

9. The principal eigenvalue is simple and has a positive, bounded eigenfunction.

The second first-order result shows that solutions converge to zero or diverge to infinity

for almost all parameters:

Theorem 2. For a given B and κ, there exists precisely one branching rate λ such that (3.7)

has a non-trivial equilibrium.

Theorem 2 is shown through the following steps:

1. Show that µ0 has the same sign as the leading eigenvalue of the associated operator

λ
(B ? u)(θ)

κ(θ)
− 1 with the following two steps:

a. Show connection between the inner product spaces associated with A and A
κ(θ)

.

b. Use the supremum to show the leading eigenvalues must have the same sign.

2. Simple algebra shows the equation λµ? = 1 is only solvable for one λ since µ? 6= 0 where

µ? is the principal eigenvalue of
(B ? u)(θ)

κ(θ)
.

Similar equations have been shown to be dynamics along an energy surface E(u), i.e.

u̇ = −DE(u) where D is the Frechét derivative. In fact, we can write (3.7) as the L2

gradient along the energy surface:

E
(
u(θ)

)
=

1

4

∫∫
S1S1

B(θ − ω)
(
u(θ)− u(ω)

)2
dθ dω +

1

2

∫
S1

(κ− 1)u(θ)2 dθ (3.10)

A straightforward calculation shows that E(u) = −〈Au, u〉/2. Heuristically, we can interpret

(3.10) by the first term penalizing non-uniformity in solutions and the second term penalizing
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density accumulation where the capping rate is high. By theorem 1, the function that

minimizes the energy, E, is the principal eigenfunction which dominates the dynamics of

(3.7). That fits in nicely with the fitness concepts espoused in [68, 115, 137]. We can define

the fitness of an orientation as F = −E. That leads to the obvious corollary:

Corollary 1. The dynamics of (3.7) are dominated by the most fit orientation pattern

as defined by sup‖u‖2=1 F = − inf‖u‖2=1 E from (3.10). Moreover, the sign of the principal

eigenvalue is the same as the sign of the fitness for that eigenfunction.

Proof. By the proof of theorem 1, the principal eigenvalue solves the maximization:

sup‖u‖2=1〈Au, u〉. Straightforward calculation gives F(u) = 〈Au, u〉.

The principal result for zeroth-order branching is considerably weaker:

Theorem 3. There exists at most countable equilibria to the equation (3.8). Only one

equilibrium is positive. That equilibrium uniquely solves a related maximization problem.

Since solutions with positive initial data remain positive, there is only one possible equi-

librium for positive initial data.

Existence and uniqueness of solutions to (3.8) can be shown by adapting the Picard-

Lindelöf theorem to the Banach space L1. Global existence for all t ≥ 0 can be shown by

observing that solutions with positive, integrable initial data stay in the closed set:

U := {u ∈ L1 : u(θ) ≥ 0 and 0 < c ≤ ‖u‖1 ≤ c′ <∞}

G(u) is uniformly Lipschitz on U . It is obvious that solutions with positive initial data

remain positive. Simply observe for any u(θ, t) = 0 where u(θ, t) ≥ 0:

u̇(θ, t) = (B ? u)(θ, t)− κ(θ)u(θ, t) = (B ? u)(θ, t) ≥ 0 (3.11)

It is also straightforward to show that there exists c and c′ for the definition of U . First,

observe that
∂

∂t

∫
u(θ, t) dθ = λ0 −

∫
κ(θ)u(θ, t) dθ (3.12)

The mean value theorem gives:

(inf κ)

∫
u(θ, t) dθ ≤

∫
κ(θ)u(θ, t) dθ ≤ (supκ)

∫
u(θ, t) dθ (3.13)
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We can then write out explicit expressions for c and c′:

c = min

{∫
u(θ, 0) dθ,

λ0

supκ

}
c′ = max

{∫
u(θ, 0) dθ,

λ0

inf κ

}
(3.14)

All that remains is to show that G is uniformly Lipschitz on U . The uniform lipschitz result

comes from the straightforward result that there exists C such that ‖DGu‖op < C for all

u ∈ U . It is easy to see that a coarse estimate for C is:

‖DGu‖op ≤
2

c
+ ‖κ‖∞

Finally, simulation results and a pertrubation expansion are presented in support of the

following conjecture:

Conjecture 1. The unique, positive equilibrium of (3.8) is locally-stable on the set K:

K := {u ∈ L1(S1)|u(θ) ≥ 0 ∧
∫
u(θ) dθ > 0}

3.2 PROOF OF FIRST-ORDER THEOREM

The proof of theorem 1 will be broken down into the steps outlined above and proven in

pieces. First, we will show that the operator is well-defined on all of the relevant Lp spaces.

That immediately leads to the result that A has no residual spectrum on L2.

Step 1 A is bounded and self-adjoint over L2 and therefore has no residual spectrum over

L2.

Proof. Since ν(S1) is finite, where ν is the Lebesgue measure, we have the series of inclusions

Lq ⊂ Lp where 1 ≤ p < q ≤ ∞. This can be seen by Hölder’s inequality:

∫
S1

|f(θ)|p1 dθ ≤

∫
S1

|f(θ)|q


p
q
∫
S1

1 dθ


q
q−p

≤ ‖f‖pq(2π)
q
q−p (3.15)
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by choosing Hölder conjugates q
p

and 1− p
q
. The above inequality implies

‖f‖p ≤ ‖f‖q(2π)
q

qp−p2 . Using Young’s inequality we see that B ? u ∈ L∞ when u ∈ Lp for

any 1 ≤ p ≤ ∞ since:

‖B ? u‖∞ ≤ ‖B‖(1− 1
p)
‖u‖p ≤ 2π‖B‖∞‖u‖p <∞ (3.16)

where ‖B‖∞ < ∞ by continuity. Similarly, Hölder’s inequality shows that κu ∈ Lp for

u ∈ Lp: ∫
S1

|κ(θ)u(θ)|p dθ ≤ ‖κp‖∞‖up‖1 = ‖κp‖∞‖u‖pp <∞ (3.17)

where ‖κp‖∞ < ∞ again by continuity. Combining two inequalities shows that A is a

bounded linear operator from Lp → Lp for all 1 ≤ p ≤ ∞:

‖Au‖p ≤ ‖B ? u‖p + ‖κu‖p ≤ 2π‖B‖∞‖u‖p + ‖κp‖1/p∞ ‖u‖p (3.18)

Since B is real and symmetric, direct calculation shows:

〈Au, u〉 =

∫∫
S1S1

B(θ − ω)u(ω) dω u(θ)− κ(θ)u(θ)2 dθ

=

∫∫
S1S1

B(ω − θ)u(θ) dθ u(ω)− κ(ω)u(ω)2 dω = 〈u,Au〉

where 〈·, ·〉 is the usual real L2 inner product. The equalities hold by Fubini’s theorem and

the inclusion L2 ⊂ L1.

We are primarily interested in eigenvalues, elements of the point spectrum, so we will

use the compactness of the convolution operator to ensure the existence of eigenvalues.

Step 2

The operator (B ? u)(θ) is compact.
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Proof. When we are considering the operator B ? · over L2, we can simply observe that

B(θ − ω) is a Hilbert-Schmidt kernel and that implies that the convolution is compact.

However, proving compactness over L1 is slightly more difficult. We will use the Arzelà-

Ascoli theorem to show that B ? · maps bounded sequences to sequences with a convergent

subsequence.

Take a sequence of functions {fn}n∈N where ‖fn‖1 ≤ 1. Using Young’s inequality as

above, we obtain a uniform bound on ‖B ? fn‖∞:

‖B ? fn‖∞ ≤ ‖B‖∞‖fn‖1 ≤ ‖B‖∞ (3.19)

Since B ∈ C2, we know that ‖B′‖∞ < ∞. We can again apply Young’s inequality to show

that the derivative of B ? fn is uniformly bounded:

‖(B ? fn)′‖∞ = ‖B′ ? fn‖∞ ≤ ‖B′‖∞‖fn‖1 ≤ ‖B′‖∞ (3.20)

The (B ? fn)′ being uniformly bounded implies that {B ? fn} is uniformly Lipschitz. That

means that Arzelà-Ascoli holds and B ? · is compact.

We will now use the compactness of B ? · to show that A has no continuous spectrum

outside of the range of −κ. For the sake of notation, define σ1(A) to be the spectrum of A

over L1 and σ2(A) the spectrum of A over L2.

Step 3

All elements of the spectrum outside of [− supκ,− inf κ] are either eigenvalues or in the

residual spectrum for all Lp spaces with 1 ≤ p ≤ ∞.

Proof. This result holds equally for all the Lp spaces. I will prove the result for L1. The

argument holds by simply replacing the metric ‖·‖1 with ‖·‖p. The eigenfunctions over L1 are

bounded, so are in all of the Lp spaces. Fix a number µ ∈ σ1(A) with µ /∈ [− supκ,− inf κ]

and in either the continuous spectrum or the point spectrum. Since µ is not in the residual

spectrum, we have a sequence {un}n∈N ⊂ L1 with ‖un‖1 such that:

lim
n→∞

‖(A− µI)un‖1 = 0
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By invoking the compactness of B ? · from the previous step, there exists a subsequence unk

such that:

0 = lim
k→∞
‖(A− µI)unk‖1 = lim

k→∞
‖(B ? unk)(θ)− (κ(θ) + µ)unk(θ)‖1

= lim
k→∞
‖v(θ)− (κ(θ) + µ)unk(θ)‖1

where v is the limit of B ? unk . By hypothesis, κ(θ) + µ 6= 0, so
1

κ(θ) + µ
is bounded. We

now have that:

lim
k→∞

unk(θ) =
v(θ)

κ(θ) + µ
= w(θ)

almost everywhere. By the fact that B ? · is closed, (B ? w)(θ) = v(θ). Applying the above

identities shows that Aw = µw. Finally, observe that w ∈ L∞ since:

w =
B ? w
κ+ µ

(3.21)

B ? w is bounded by Young’s inequality and
1

κ(θ) + µ
is bounded by hypothesis.

We are interested in solutions to (3.7) over finite densities, so we are studying solutions

on L1. However, it is easier to study the spectrum of A over L2 where we can use Hilbert

space geometry. To do so, we will show that the two spectrums coincide outside the range

of −κ. We have already shown that the continuous and point spectra coincide outside of −κ

because all such points are associated with an L∞ eigenfunction. The next step will finish

proving the correspondence.

First, a quick lemma:

Lemma 1. For any given sequence fn ⊂ Lq(S1), limn→∞ ‖fn‖q = 0 =⇒ limn→∞ ‖fn‖p = 0

for all 1 ≤ p < q ≤ ∞.

Proof. Applying Hölder’s inequality as above:

lim
n→∞

‖fn‖p ≤ lim
n→∞

(2π‖fn‖q)
1/p = 0 (3.22)
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Step 4

The spectrum of A over L1 outside of [− supκ,− inf κ] has no elements in the residual

spectrum and therefore is equal to the spectrum of A over L2 .

Proof. To show this, we will consider the spectrum in three parts, the point spectrum, the

continuous spectrum, and the residual spectrum. Any eigenvalue of A on L2 is an eigenvalue

on L1 by the inclusion L2 ⊂ L1. The reverse inclusion comes from the fact that all of the

eigenvalues over L1 outside of [− supκ,− inf κ are in L∞ ⊃ L2. We now have that the two

point spectrums are equal. The result in step 3 implies that there is no elements of the

continuous spectrum outside of [− supκ,− inf κ], which implies the continuous spectrums

are equal. All that remains is to show that A has no residual spectrum on either L2 or L1.

The natural embedding of Lq into Lp where 1 ≤ p < q ≤ ∞ is a dense embedding.

Continuous functions are dense in L1 as can be seen by approximating simple functions by

continuous functions. Since continuous functions are in L∞, that implies L∞ is dense in L1.

By the inclusion Lq ⊂ L1, continuous functions are dense in Lq for all 1 < q ≤ ∞.

The last step remains to show that A has no residual spectrum over neither L2 nor L1.

By self-adjointness, A has no residual spectrum over L2. The fact that A has no residual

spectrum over L1 follows immediately from the density of the embedding L2 in L1. We know

that A− µI has dense range in L2 for all µ ∈ C whenever µ is not an eigenvalue. Assume µ

is not an eigenvalue, the dense embedding and A−µI having dense range in L2 implies that

A− µI
∣∣∣
L2

is dense in L1. That implies that A− µI
∣∣∣
L1

is dense in L1 and that µ is not in the

residual spectrum.

To further characterize the spectrum, we will show the spectrum is real, which allows us

to put an order on the elements of the spectrum.

Step 5

σ1(A) is real.

Proof. We can decompose the spectrum σ1(A) into two sets: σ1(A) ∩ [− supκ,− inf κ] and

σ1(A)\[− supκ,− inf κ]. The first set is real by definition. Step 4 implies that:

σ1(A)\[− supκ,− inf κ] = σ2(A)\[− supκ,− inf κ] ⊂ R
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The equality above follows from the fact that A is self-adjoint over L2.

Step 6

sup‖u‖2=1〈Au, u〉 is either an eigenvalue or an element of the continuous spectrum.

Proof. By the previous step, we have that both σ1(A) and σ2(A) are real, so the supremum

is well defined. Assume µ = sup‖u‖2=1〈Au, u〉. It then suffices to show that A − µI is not

invertible.

By the definition of µ, µI−A is a positive operator. Take a sequence un ⊂ L2, ‖un‖2 = 1

and limn→∞〈Aun, un〉 = µ. We can apply the generalized Cauchy-Schwartz inequality for

positive operators to observe:

lim
n→∞

‖Aun − µun‖4
2 = lim

n→∞
|〈(µI− A)un, (µI− A)un〉|2

≤ lim
n→∞
〈(µI− A)un, un〉〈(µI− A)2un, (µI− A)un〉 = 0

since limn→∞〈(µI − A)un, un〉 = 0 by hypothesis. Therefore, µ ∈ σ2(A) and maxσ2(A) ≥

sup‖u‖2=1〈Au, u〉.

We can actually show the stronger result that maxσ2(A) = sup‖u‖2=1〈Au, u〉. To show

that, assume µ = maxσ2(A). That implies there exists another sequence as above such that

limn→∞ ‖Aun − µun‖2 = 0. That implies:

lim
n→∞
〈Aun − µun, un〉 ≤ lim

n→∞
‖Aun − µun‖2 = 0

by the usual Cauchy-Schwartz inequality.

To show the existence of at least one eigenvalue, we will show that maxσ2 > − inf κ.

That implies that there is at least one eigenvalue, µ, with µ > − inf κ.

Step 7

The largest element of the spectrum is greater than − inf κ.
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Proof. From the above step, it is sufficient to show that there exists u ∈ L2 such that

〈A + (inf κ)u, u〉 > 0. By continuity of κ and compactness of the circle, κ(θ)− inf κ = 0 for

at least one θ. For the sake of notation, define g(θ) = κ(θ)− inf κ.

Observe that for any function of the form u(θ) = c + f(θ) ≥ 0 with c, f(θ) ≥ 0 where∫
S1 u(θ) = 1:

〈B ? u, u〉 =

∫∫
S1S1

B(θ − ω)(c+ f(ω)) dω(c+ f(θ)) dθ

≥ c

∫∫
S1S1

B(θ − ω)(c+ f(θ)) dω dθ = c

since f(θ) ≥ 0 and
∫
B = 1. Without loss of generality, assume g(0) = 0. Also, observe that

g′(0) = 0 since g(0) is a local minimum of a smooth function. Finally, observe that g′′ is

bounded since κ is C2. Putting those three facts together gives the relation:

g(θ) =

θ∫
0

g′(ω) dω + g(0)

=

θ∫
0

ω∫
0

g′′(φ) + g′(0) dφ

≤ Qθ2

where Q = supκ′′(θ). Define fε as:

fε =
1[−ε,ε]

2ε

where 1 is the usual indicator function. Note that
∫
f = 1. We now have the two relations:

∫
S1

fε(θ)g(θ) dθ =

ε∫
−ε

fε(θ)g(θ) dθ ≤ 2

ε

ε∫
0

Qθ2 dθ = Q
2ε2

3

∫
S1

fε(θ)
2g(θ) dθ =

ε∫
−ε

fε(θ)
2g(θ) dθ ≤ 2

ε2

ε∫
0

Qθ2 dθ = Q
2ε

3
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Combining those relations gives:

〈g(c+ fε), (c+ fε)〉 =

∫
S1

g(θ)(c+ fε(θ))
2 dθ

=

∫
S1

g(θ)
(
c2 + 2cfε(θ) + fε(θ)

2
)

dθ ≤ Rc2 + cQ
4ε2

3
+Q

2ε

3

where R =
∫
g(θ) dθ.

First, assume R ≥ 2π and Q ≥ 1. Fix c = 1
2R

, ε = 1
4RQ

and c′ = 1 − 2πc < 1. Fix

u = c+ c′fε. Putting all of the above together gives:

〈Au+ (inf κ)u, u〉 = 〈B ? (c+ c′fε), c+ c′fε〉 − 〈g(c+ c′fε), c+ c′fε〉

≥ c−Rc2 − cc′Q4ε2

3
− c′2Q2ε

3

≥ 1

2R
− R

4R2
− Q

R

2ε2

3
−Q2ε

3

≥ 1

4R
− Q

3R

1

8R2Q2
− Q

6RQ

≥ 1

4R
− 1

24R
− 1

6R
=

1

24R
> 0

If R < 2π, then set c = 1
2π

and c′ = 0. If R ≥ 2π and Q < 1, set c and c′ as above and

ε = 1
4R

. That shows we have constructed such a u and maxσ2(A) > − inf κ. A proof with a

weaker smoothness condition is outlined in section 3.9.

Step 8

Eigenvalues do not accumulate outside of outside of [− supκ,− inf κ]. That implies that

the principal eigenvalue is isolated.

Proof. By the relation σ1(A)\[− supκ,− inf κ] = σ2(A)\[− supκ,− inf κ] proven in Step 4,

it is sufficient to show the result for σ2(A).

Assume there exists a sequence of elements of the spectrum {µj}j∈N ⊂ σ1(A) such that

µj → µ. Without loss of generality, assume µj < µj+1 < µ and µj > − inf κ for all j.

That implies that all of the µj’s are eigenvalues. Choose a set of associated eigenfunctions
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{uj}j∈N ⊂ L∞ such that ‖uj‖2 = 1. By the self-adjointness of A, we have that 〈uj, uk〉 = δjk

and ‖uj − uk‖2 =
√

2(1− δjk).

‖uj − uk‖2
2 = ‖uj‖2

2 − 2〈uj, uk〉+ ‖uk‖2
2 = 2(1− δjk) (3.23)

By the compactness of B ? ·, choose a convergent subsequence {ujk}k∈N. We now arrive at

the relations:

0 = lim
k→∞
‖B ? ujk − B ? ujk+1

‖2
2 = lim

k→∞
‖(κ+ µjk)ujk − (κ+ µjk+1

)ujk+1
‖2

2

= lim
k→∞

(
‖(κ+ µ)(ujk − ujk+1

)‖2
2 + (µ− µjk)2‖ujk‖2

2 + (µ− µjk+1
)2‖ujk+1

‖2
2

)
= lim

k→∞
‖(κ+ µ)(ujk − ujk+1

)‖2
2

≥ lim
k→∞

(inf κ+ µ)2‖ujk − ujk+1
‖2

2

= lim
k→∞

(inf κ+ µ)2
(
‖ujk‖2

2 − 2<(〈ujk , ujk+1
〉) + ‖ujk+1

‖2
2

)
= 2(inf κ+ µ)2 > 0

where <(z) is the real part of z. The above is a contradiction since inf κ + µ > 0 by

hypothesis. For the case where µ < − supκ, simply replace inf κ+µ with µ+ supκ < 0.

Step 9

The principal eigenvalue is simple and has a positive, bounded eigenfunction.

Proof. Observe that we have the related eigenvalue problem:

B ? u
κ+ µ0

= γu

where µ0 is the principal eigenvalue of A. Assume there exists an eigenpair γ, u such that

γ > 1 and γ is the largest eigenvalue.

B ? u
κ+ µ0

= γu ⇐⇒

B ? u = (κ+ µ0)γu ⇐⇒

B ? u− (κu+ µ0)u = (γ − 1)(κ+ µ0)u ⇐⇒

Au− µ0u = (γ − 1)(κ+ µ0)u
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which would give:

〈Au− µ0u, u〉 = (γ − 1)〈(κ+ µ0)u, u〉 > 0

The last inequality holds since κ(θ) + µ0 > 0 for all θ. That is in contradiction to the fact

that µ0 is the principal eigenvalue of A which implies sup‖u‖2=1〈Au, u〉 = µ0. It is obvious

that µ0 is a simple eigenvalue with positive eigenfunction if and only if γ = 1 is a simple

eigenvalue with positive eigenfunction. We can use the Krein-Rutman theorem to complete

the proof [29, 60]. For the sake of notation, define the operator A′:

A′u =
B ? u
κ

(3.24)

Inspection of the above equation shows that any eigenfunction u must be continuous because

of the convolution. Thus, we will consider A′ as an operator on the space C(S1), the space of

continuous functions on the circle with supremum norm. A′ is compact on this space as can

be seen by following the argument in step 2. The set of positive functions in C(S1) forms a

cone K such that C(S1) = K + (−K) and K is solid, it has non-empty interior. A′K ⊂ K

by the fact that the convolution of two positive functions multiplied by a positive function is

itself positive. A′ is therefore a compact, positive operator, which implies that there exists

a largest positive eigenvalue µ with µ = ρ
(

A′
)

, the spectral radius. There is also a positive

eigenfunction, u ≥ 0, associated with µ.

The last thing that remains to be shown is that the eigenvalue is simple. The Krein-

Rutman theorem implies that it is sufficient to show that
(

A′
)n

is strongly positive on

continuous functions for some n. That is shown in Lemma 2.

Lemma 2. For any given kernel B, there exists n such that
(

A′
)n

is strongly positive, i.e.:

u ≥ 0 =⇒
(

A′
)n
u > 0

whenever u is continuous and not uniformly zero.
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Proof. We are only concerned with whether or not
(

A′
)n

is positive and not on the specific

value of
(

A′
)n

, so it is sufficient to show the result for Bn where Bu = B ? u. Define Σ to be

the σ−algebra associated with the Lebesgue measure on S1. We can define the set mapping

T : Σ→ Σ as:

TΩ = supp{B ? 1Ω} (3.25)

where Ω ∈ Σ. Choose some open interval (y − δ, y + δ) ⊂ supp{B} for y 6= 0, y ∈ R\Q.

Assume Ω contains an open interval (x− ε, x+ ε). Observe that for every z ∈ (x+ y− δ, x+

y + δ):

B ? 1Ω(z) =

∫
B(z − s)1Ω(s) ds ≥

x+ε∫
x−ε

B(z − s) ds =

y+ε∫
y−ε

B
(

(z − x+ y)− s′
)

ds′ > 0 (3.26)

The above argument also holds for z ∈ (x− y− δ, x− y+ δ). Notice that while the existence

of the interval was used in the above calculation, there is no explicit dependence on ε beyond

that ε > 0. Iterating T , we can observe that:

T 2nΩ ⊂ ∪0≤j≤n

(
(x+ 2jy − δ, x+ 2jy + δ) ∪ (x− 2jy − δ, x− 2jy + δ)

)
(3.27)

By the fact that x + 2y is an irrational rotation, {x + 2jy}j∈N is dense in S1 and the sets

{(x+ 2jy− δ, x+ 2jy + δ)}j∈N form an open covering of S1. The compactness of S1 implies

that there exists n ∈ N such that S1 ⊂ ∪1≤j≤n(x+2jy−δ, x+2jy+δ). Rotational symmetry

in S1 implies that n has no dependence on x. Fix some function u ∈ C(S1) with u ≥ 0 and

u not uniformly zero. We can set Ω = supp{u} and observe Ω contains an open interval

containing some x′. The above discussion implies:

T 2nΩ ⊃ ∪1≤j≤n(x′ + 2jy − δ, x′ + 2jy + δ) ⊃ S1 (3.28)

The above set relation implies B2nu > 0.
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3.3 PROOF OF SECOND THEOREM

This section shows that there is only one λ such that (3.7) has a stable equilibrium. As such,

we will recall that Aλ is defined as:

Aλu = λB ? u− κu

Define the related operator and inner product spaces:

A′u =
B ? u
κ

〈f, g〉κ =

∫
S1

f(θ)g(θ)κ(θ) dθ

We can now prove the result.

Proof. A′ is self-adjoint with respect to 〈·, ·〉:

〈A′f, g〉κ =

∫∫
S1S1

B(θ − ω)

κ(θ)
f(ω) dω g(θ)κ(θ) dθ

=

∫∫
S1S1

B(ω − θ)f(ω)g(θ) dω dθ

=

∫∫
S1S1

B(ω − θ)
κ(ω)

g(θ) dθ f(ω)κ(ω) dω = 〈f,A′g〉κ

Also, we have the relation between Aλ and A′:

〈Aλu, u〉 =

∫∫
S1S1

λB(θ − ω)u(ω) dω u(θ)− κu(θ)2 dθ

=

∫∫
S1S1

λ
B(θ − ω)

κ(θ)
u(ω) dω u(θ)κ(θ) dθ −

∫
S1

u(θ)2κ(θ) dθ

= λ〈A′u, u〉κ − 〈u, u〉κ

From the result in step 9 of theorem 1, we have that A′ has a simple principal eigenvalue,

µ′0 > 0. We know that µ0 and µ′0 can be defined by the following:

µ0 = sup
‖u‖2 6=0

〈Au, u〉
〈u, u〉

and µ′0 = sup
〈u,u,〉κ 6=0

〈A′u, u〉κ
〈u, u〉κ

(3.29)
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There is a relationship between the sign of µ0 and µ′0:

sign[λµ′0 − 1] = sign

[
sup
〈u,u〉κ 6=0

λ〈A′u, u, 〉κ − 〈u, u, 〉κ
〈u, u〉κ

]

= sup
〈u,u〉κ 6=0

[
sign

λ〈A′u, u, 〉κ − 〈u, u, 〉κ
〈u, u〉κ

]
= sup
〈u,u〉κ 6=0

[
sign

λ〈A′u, u, 〉κ − 〈u, u, 〉κ
〈u, u〉

]
= sup
‖u‖2 6=0

[
sign

λ〈A′u, u, 〉κ − 〈u, u, 〉κ
〈u, u〉

]
= sup
‖u‖2 6=0

[
sign
〈Aλu, u〉
〈u, u〉

]
= sign

[
sup
‖u‖2 6=0

〈Aλu, u〉
〈u, u〉

]
= sign[µ0] (3.30)

The argument holds since 〈u,u〉κ〈u,u〉 > 0 by hypothesis of the supremum and does not change the

sign of the argument. We know that (3.7) has a non-trivial equilibrium if and only if Aλ has

a zero eigenvalue. That equilibrium is stable if and only if all of the other elements of the

spectrum have negative real part. That is the case if and only if the zero eigenvalue is the

largest eigenvalue, i.e. µ0 = 0. The calculation above therefore implies there exists only one

λ where (3.7) has a stable equilibrium since there is only on λ such that µ0 = λµ′0−1 = 0.

3.4 PROOF OF ZEROTH-ORDER PROPOSITIONS

The following proposition provides a formula for equilibria and shows there are at most

countable equilibria. Similar to the proof of theorem 1, we will assume without loss of

generality that λ0 = 1 to simplify notation.

Proposition 1. A function u ∈ L1 is an equilibrium of equation (3.8) if and only if it is a

solution to the eigenvalue problem:

B ? u
κ(θ)

= µu(θ) (3.31)

where µ 6= 0 and
∫
S1 u(ω) dω 6= 0.
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Proof. Assume you have an equilibrium u ∈ L1 with
∫
u(ω) dω 6= 0, i.e. G(u) = 0. We know

that:
(B ? u)(θ)∫
S1 u(ω) dω

− κ(θ)u(θ) = 0

Simple algebra gives:
(B ? u)(θ)

κ(θ)
=

∫
S1

u(ω) dω u(θ)

That implies u is an eigenfunction with eigenvalue
∫
u(ω) dω 6= 0. For the other direction,

assume that we have:
B ? u
κ

= µu

and the listed hypotheses above. Simple algebra again:

B ? u− µκu = 0

Assume
∫
S1 u(ω) dω = 1. This is justified as long as

∫
S1 u(ω) dω 6= 0. The existence of

at least one positive eigenfunction with non-zero integral is ensured by the Krein-Rutman

theorem as in section 3.7. v = µu is now an equilibrium to (3.8).

The above proposition allows us to study the set of equilibria of (3.8) by studying the

spectra of the operator A′ via the eigenvalue problem (3.31). The following proposition

about A′ implies that there is only one non-negative equilibrium to (3.8).

Proposition 2. Only one eigenfunction of A′ is non-negative.

Proof. From previous results, we know the principal eigenvalue of A′ is simple and the

associated eigenfunction, u0, is non-negative. We want to show the stronger result that u0 >

0. The argument follows the same format as in lemma 2. Assume u0(x) = 0. By constructing

the set mapping T as before, that implies that u0 is zero on the set (x − y − δ, x − y + δ).

Iterating that argument shows that u0 is zero on {(x− jy− δ, x− jy+ δ}j∈N ⊃ S1. Since u0

is not uniformly zero, we have reached a contradiction and can infer that u0 > 0.

By the self-adjointness of A′, we have the all eigenfunctions uk 6= u0 are orthogonal to

u0:

0 = 〈u0, uk〉κ =

∫
S1

u0(θ)uk(θ)κ(θ) dθ
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However, we know that κu0 > 0. That implies the above can only be true if uk ≡ 0 almost

everywhere or uk is negative on some set with non-zero measure.

Given the above results, we can observe that (3.8) must either converge to a unique,

stable equilibrium or not converge to an equilibrium at all. We also know that the unique

equilibrium to (3.8) is the principal eigenvalue of A′. We also know that there cannot be any

bistable solutions to (3.8) since the equilibrium is unique. This directly contradicts [137].

3.5 SIMULATIONS

Due to the difficulty in showing stability for the zeroth-order branching equation, (3.8),

simulations were run to support conjecture 1. To demonstrate stability, two branching

kernels, two capping functions and four initial conditions were selected to feature some

amount of generality.

The two branching kernels were:

B1(θ) =
φ(θ + π

2
) + φ(θ − π

2
)

2
and B2(θ) ∝

1− θ6 + 3θ4 − 3θ2 if |θ| < 1

0 if |θ| ≥ 1

(3.32)

where B2 was normalized to have integral one and φ(θ) was a von Mises distribution:

φ(θ) =
exp [σ−2 cos(θ)]

2πI0(σ−2)
(3.33)

where σ = 7π
180

. B1 was based on the branching kernels used in [68] and [137]. Those two

papers used truncated Gaussian distributions centered around ±70◦. Here, the von Mises

distribution was used to avoid truncating the Gaussian or using the more complicated,

formally correct wrapped Gaussian distribution. Also, the offset of ±π
2

was used to simplify

the radians conversion. Finally, the constant σ was chosen to be in line with previous

numerical studies [114, 115, 137]. Both branching kernels were C2 and symmetric.

The two capping functions used were:

κ1(θ) = 1− 1

2
cos(θ) and κ2(θ) = 1 +

3

4
cos(4θ2) (3.34)
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The first capping function, κ1 was based upon [137], and the second was chosen to have

multiple minima and maxima and non-uniform oscillations.

Finally, the four initial conditions chosen were:

u1(θ) = 1 u2(θ) =
1∣∣θ − π

3

∣∣1/2
u3(θ) = 1( 7π

8
,π) + 1(− 3π

4
,− 2π

3 ) u4(θ) =

−
θ
π

if θ < 0

1− θ
π

if θ ≥ 0

(3.35)

They were chosen to include a mix of symmetric, non-symmetric, smooth and non-smooth

functions. Also, u2 was chosen so that u2 ∈ (L1\L2).

3.5.1 Methods

All simulations were run using the Numpy [2, 54, 85, 86] extension to Python. The equations

of motion were integrated using a simple Euler method. The simulations were run for 100

time units with a time step of 0.01 time units. The circle was discretized using 211 equally

spaced points from −π to π (the power of 2 was used to speed up the fast Fourier transform).

All integrals were taken using the trapezoidal method included in Numpy. The convolution

was performed by taking the real fast Fourier transform of the branching kernel B and

the density u(θ, t), multiplying, and taking the inverse real fast Fourier transform. The

built-in Numpy fast convolution method was not used because that method pads the two

convolved functions with extra zeros to prevent circular convolution, but the equations used

here explicitly call for the circular convolution. The convolution was normalized by dividing

B by the integral of the convolution of B with the constant function B ? 1
2π

. Finally, the total

branching rate was normalized by integrating the density at the previous time step, i.e.:

u(θ, t+ dt) = dt


(
B ? u

)
(θ, t)∫

u(θ, t) dθ
− κ(θ)u(θ, t)

 (3.36)
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Using the integral from the previous time step and not a more sophisticated prediction-

correction methods is justified by the following inequality:

|u(θ, t+ dt)− u(θ, t)| ≤ dt

(∫ (
B ? u

)
(θ, t) dθ +

∫
κ(θ)u(θ, t) dθ

)
≤
(

1 + sup
θ∈S1

κ(θ)
)

dt‖u(θ, t)‖1 ≤ 3 dt‖u(θ, t)‖1 (3.37)

Since simulations remain bounded, the bound above can be made uniform.

The equilibrium was calculated a priori by iterating the equilibrium operator A′. Explic-

itly, a sequence of functions was generated by:

vn+1(θ) =
1∫

vn(θ) dθ
A′vn(θ) (3.38)

where the discretization and convolution were performed exactly as above and v0 = 1
2π

. The

theoretical justification for using this method is outlined in Section 3.7. For three combina-

tions of B and κ, ‖v104−v2×104‖1 was less than numerical precision. For the combination of B1

and κ2, v104 was not sufficiently converged, so v106 was used. That decision was based on the

condition that ‖v106−v2×106‖1 was less than numerical precision. That level of precision was

used to ensure that the convergence could be seen even when ‖u(θ, t)− vn‖1 ≤ 10−6− 10−10.

Even 106 iterations of A′ only took several minutes on a standard Linux desktop system

concurrently running other programs, a number that could be reduced with further opti-

mization.

At each time-step, the L1 distance between the state of the system u(θ, t) and the equi-

librium was calculated. That quantity is plotted as a function of time in Figure 3.3.

3.5.2 Results

The first calculations run were to estimate the equilibrium distribution using the method in

section 3.7. The method was iterated until the ‖ · ‖1 difference between successive iterations

was less than double precision. The equilibrium distribution appeared to have a qualitatively

stronger dependence on κ than on B as can be seen in Figure 3.2.

All of the simulations run converged (asymptotically) exponentially to the equilibrium.

The equilibrium was calculated by iterating A′ as outlined in the following section. Figure
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Figure 3.2: The plots here show the equilibrium distributions calculated using the method

in section 3.7 for the four systems. A) B1 and κ1, B) B1 and κ2, C) B2 and κ1, and D) B2

and κ2.
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3.3 shows the L1 distance between the simulation result and the calculated equilibrium on

a log scale. The log scale was used to make the graphs legible and to show the exponential

convergence.

All of the initial conditions appear to asymptotically converge at the same rate. That

gives evidence that a stronger result that conjecture 1 may be possible. The simulations

provide evidence for exponential stability with some constant determined solely by B and κ.
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Figure 3.3: The observed L1 distances from equilibrium as a function of time are plotted

here on a log scale. The four lines on each plot each correspond to the solution starting with

a different initial condition. A) B1 and κ1. B) B1 and κ2. C) B2 and κ1. D) B2 and κ2.

63



3.6 PERTURBATION EXPANSION

Another form of evidence for the stability of the zeroth-order branching equation is to show

the stability of a first-order perturbation expansion. For this section, we will again consider

functions u ∈ L1. However, we will again appeal to Hilbert space techniques when necessary.

Assume that the capping function can be written out as:

κ(θ) = c+ εφ(θ) (3.39)

where φ is smooth, has integral zero, and reasonably small so that εφ is close to zero. The

equation of motion is thus:

u̇(θ, t) =

(
B ? u

)
(θ, t)∫

u(ω, t) dω
− (c+ εφ(θ))u(ω, t) (3.40)

For the Cauchy problem with u(θ, 0) = u?(θ), we will look for solutions of the form:

u(θ, t) =
∞∑
j=0

εjuj(θ, t) (3.41)

with the initial conditions u0(θ, 0) = u? and uj(θ, 0) = 0 for all j ≥ 1. Showing that both u0

and u1 converge to the equilibribium defined in equation (3.31) provides some evidence for

the stability of the full equation.

First, we will calculate the first couple of terms of the equilibrium using equation (3.31):

(
B ? w

)
(θ)

1 + εφ(θ)
= µw(θ) (3.42)

where we have the two expansions:

w(θ) =
∞∑
j=0

εjwj(θ) µ =
∞∑
j=0

εjµj (3.43)

Expanding out the terms in (3.42) gives:(
∞∑
j=0

(−εφ)j

cj+1

)(
∞∑
j=0

εjB ? wj

)
=

(
∞∑
j=0

εjµj

)(
∞∑
j=0

εjwj

)
∞∑
j=0

εj
j∑

k=0

(−φ)k

ck+1
B ? wj−k =

∞∑
j=0

εj
j∑

k=0

µjwj−k (3.44)
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The first term (ε0) is simply the eigenproblem for the unperturbed problem:

B ? w0 = cµ0w0 (3.45)

The only positive solution of the above is µ0 = 1
c

and w0 constant. Since we know the

equilibrium has the same integral as the eigenvalue, we know that w0 = 1
c2π

. The ε1 term

gives:
B ? w1

c
− φB ? w0

c2
= µ0w1 + µ1w0 (3.46)

Filling in the known quantities and rearranging gives:

B ? w1 − w1 =
φ

c
+
µ1

2π
(3.47)

The left hand side is a self-adjoint Fredholm operator with nullspace spanned by the constant

function, w0. By the Fredholm alternative, we know that (3.47) is solvable if and only if the

right hand side is orthogonal to w0, i.e. φ(θ) + µ1
2π

has integral zero. To have integral zero,

we know that µ1 = −2π
c

∫
φ(ω) dω = 0.

We can write out w1 in terms of the Neumann series. By hypothesis, φ is bounded, and

therefore φ ∈ L2. We know that B? has operator norm strictly less than one on the space of

functions orthogonal to w0: {w0}⊥ ( L2, which implies the Neumann series converges in L2

norm:

w1 =
∞∑
j=0

Bjφ (3.48)

where Bu = B ? u and Bj+1u = B ? Bju. The above expansion implies that
∫
w1 = 0. We

know that
∫

Bu =
∫
u which gives:

∫ n∑
j=0

(
Bjφ

)
(θ) dθ = 0 (3.49)

Since norm convergence implies weak convergence, we can finish the proof by observing:

lim
n→∞

∫
w1 −

∫ n∑
j=0

Bjφ = lim
n→∞

〈
w1(θ)−

n∑
j=0

Bjφ, 1

〉
= 0 (3.50)
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We can now consider the dynamics. We can write out (3.40) in terms of our power series:

∞∑
j=0

εju̇j(θ, t) =
1∑∞

j=0 ε
j
∫
uj(ω, t) dω

∞∑
j=0

εj
(
B ? uj

)
(θ, t)− (c+ εφ(θ))

∞∑
j=0

εju(θ, t) (3.51)

A formal treatment of the integrand could be considered, but without confidence of conver-

gence, that seems unnecessary. We are only calculating u0 and u1, so we will ignore terms

of o(ε2) or higher in the integrand:

∞∑
j=0

εju̇j(θ, t) =

(
∞∑
j=0

(
−ε
∫
u1(ω, t) dω

)j(∫
u0(ω, t) dω

)j+1

)(
∞∑
j=0

εj
(
B ? uj

)
(θ, t)

)
−
(
c+εφ(θ)

) ∞∑
j=0

εjuj(θ, t)

(3.52)

The above equation allows us to solve for the first two terms of the perturbation expansion.

The equation for the first term u0(θ, t) from the ε0 expansion is:

u̇0(θ, t) =

(
B ? u0

)
(θ, t)∫

u0(ω, t) dω
− u0(θ, t) (3.53)

We can explicitly solve for the time-dependent total density by observing:

∂

∂t

∫
u(ω, t) dω = 1−

∫
u(ω, t) dω (3.54)

Solving the above gives: ∫
u(ω, t) dω = 1 + A exp[−t] (3.55)

where A =
∫
u?(ω) dω. Substituting in to (3.53) gives:

u̇0(θ, t) =

(
B ? u0

)
(θ, t)

1 + A exp[−t]
− u0(θ, t) (3.56)

The right hand side of the above clearly depends upon the denominator 1+A exp[−t] continu-

ously in almost any operator topology. Since we are primarily concerned with the asymptotic

dynamics, it is sufficient to show that the asymptotic equation converges:

u̇0 = B ? u0 − u0 (3.57)
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From the results in Theorem 1, we know that the above equation converges to a multiple of

the principal eigenfunction w0. Equation (3.55) implies that the total density is equal to 1
c

and u0(θ, t)→ w0(θ) in norm as was required.

The second term of the expansion (ε1) is slightly more complicated:

u̇1(θ, t) =

(
B ? u1

)
(θ, t)∫

u0(ω, t) dω
−

∫
u1(ω, t) dω(∫
u0(ω, t) dω

)2

(
B ? u0

)
(θ, t)− u1(θ, t)− φ(θ)u0(θ, t) (3.58)

Substituting in known quantities gives:

u̇1 =
B ? u1

1 + A exp[−t]
−

∫
u1

(1 + A exp[−t])2
B ? u0 − u1 − φu0 (3.59)

We can now solve for the integral of u1:

∂

∂t

∫
u1 =

∫
B ? u1

1 + A exp[−t]
−

∫
u1

1 + A exp[−t]
−
∫
u1 −

∫
φu0

= −
∫
u1 −

∫
φu0 (3.60)

That gives the explicit solution:

∫
u1(ω, t) dω = − exp[−t]

t∫
0

exp[s]

∫
φ(ω)u0(ω, t) dω ds (3.61)

Weak convergence of u0 → w0 is sufficient to show that
∫
u1 → −

∫
φ. Substituting the

asymptotic forms into (3.58) similar to the first term gives:

u̇1 = B ? u1 − u1 +

∫
φ− φ

2π
(3.62)

asymptotically. Finally, to show convergence, we can write u1 as:

u1(θ, t) = w1(θ) + ε(θ, t) (3.63)

where ε(θ, 0) = −w1(θ). Putting that form into (3.62) gives:

ε̇ = B ? ε− ε (3.64)
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Inspection of (3.47) shows that w1(θ) is bounded and is therefore in L2. Since B ? u− u has

the Fourier eigenpairs {(γn, 1√
2π

exp[−inθ])}n∈N as an orthonormal basis, we can write the

L2 norm of ε as:

‖ε(θ, t)‖2
2 =

∑
n∈N

exp[γnt]|ŵ1(n)|2 (3.65)

where ŵ1(n) is the n’th Fourier component of w1(θ). We know that γn < 0 for all n > 01

and supn≥1 γn < 0. Combining those facts with the fact that ŵ1(0) = 0 because
∫
w1 = 0

gives:

‖ε(θ, t)‖2
2 =

∑
n≥1

exp[γnt]|ŵ1(n)|2 ≤ exp

[(
sup
n≥1

γn

)
t

]∑
n≥1

|ŵ1(n)|2 (3.66)

That implies that u1(θ, t)→ w1(θ) asymptotically exponentially.

We have now shown that the first two components of the perturbation expansion of (3.40)

converge to an equilibrium. Calculating further terms would not provide any additional

insight as the estimate from equation 3.44 gives a worse estimate after the first order. Recall

from the proof of proposition 1 that the integral of the equilibrium w has to be equal to the

eigenvalue µ. However, it is easy to observe that the argument showing that
∫
w1 = holds

for all wj, which implies that
∫ ∑k

j=0 ε
jwj = 1

c
for all k. However,

∑k
j=0 ε

jµj 6= µ0 = 1
c

for

all k ≥ 2. We can show that by caclulating the second term in the perturbation expansion.

Using equation 3.44, we can gather the ε2 terms:

1

c
B ? w2 −

φ

c2
B ? w1 +

φ2

c3
B ? w0 = µ0w2 + µ1w1 + µ2w0 (3.67)

Observe that B ? w1 = w1 + φ
c
, and filling in other known quantities gives the relation:

1

c
(B ? w2 − w2) =

φ

c2
B ? w1 −

φ2

c3
+ µ2w0

B ? w2 − w2 =
φ2

c2
− φ2

c2
+
φw1

c
+
µ2

2π

B ? w2 − w2 =
φw1

c
+
µ2

2π
(3.68)

It is obvious that µ2 = 0 ⇐⇒
∫
φw1 = 0. However, we can observe that:∫

φw1

c
=

∫
φ (B− I)−1 φ

c
=

〈
φ, (B− I)−1 φ

c

〉
=
〈

(B− I)w1, (B− I)(B− I)−1w1

〉
=
〈

(B− I)w1, w1

〉
(3.69)

1the γn’s are real since B is symmetric.
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by observing that (B− I)w1 = φ
c
. We can use the Cauchy-Schwarz inequality to show:

〈Bw1, w1〉 − 〈w1, w1〉 ≤ ‖Bw1‖2‖w1‖2 − ‖w1‖2
2 < 0 (3.70)

The last inequality comes from the fact that ‖Bf‖2 ≤ ‖B‖‖f‖2 = ‖f‖2 and that equality

holds if and only if f ≡ C.

An explicit example can give insight into the non-convergence discussed in the previous

paragraph. Assume B = 1
2π

and κ = 1+εφ where |εφ| < 1. It is easy to see that the principle

solution to 3.42 is w = 1
1+εφ

and µ =
∫

1
1+εφ

. Moreover, we have the exact expansion in ε:

w =
∞∑
j=0

εjwj =
∞∑
j=0

ε2(−φ)j (3.71)

By our hypothesis |εφ| < 1, we know the above converges. It is easy to see that:

(B− I)−1φ = −
∞∑
j=0

Bjφ = −φ (3.72)

which is the exact solution for the first term of the asymptotic expansion. However, the

second term gives an incorrect solution:

(B− I)−1

(
φ2 −

∫
φ2

)
=
∞∑
j=0

B

(∫
φ2 − φ2

)
=

∫
φ2(ω) dω − φ2(θ) 6= φ2(θ) (3.73)

Further terms would show the same difficulty.
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3.7 CALCULATING EQUILIBRIUM DISTRIBUTIONS

The results in this chapter justify the use of a naive eigenvalue calculation algorithm. Cal-

culating eigenvalues of integral equations is a non-trivial problem. Investigation into open

questions regarding the generality of orientation patterns across branching and capping pat-

terns, such as in [103], may require calculating the equilibrium solution to equations like

the ones analyzed here. Moreover, in the previous section, equilibrium distributions were

calculated a priori to show that simulations converged. The method below has proven to be

very efficient for the work in this chapter.

We will consider calculating the leading eigenvalue of the equilibrium operator for zeroth-

order branching, A′. As A′ is self-adjoint and compact, we can represent its range as the

sum of eigenfunctions. We can explicitly calculate the n-th iterate of A′ in terms of its

(orthonormal) eigenfunctions:

(
A′
)n
v =

(
A′
)n(∑

j

cjuj

)
=
∑
j

µnj cjuj (3.74)

where cj = 〈v, uj〉κ. We know that µ0 is equal to the spectral radius from the Krein-Rutman

theorem as in step 9 in the proof of theorem 1. That step also gives that the eigenvalue is

simple. Finally, since A′ is a compact operator, we know that there must be a spectral gap,

i.e. µ0 − |µj| > c > 0 for some c and all j 6= 0.

All that remains necessary to show that the above iteration converges to the positive

equilibrium is to show that cj = 〈v, u0〉κ 6= 0. If v equals the constant function, that

condition is fulfilled. However, a stronger result is possible. By a result in [24], we know

that u0(θ) > 0. The continuity of u0 gives that inf u0 > 0. Thus, we have the inequality:

〈v, u0〉κ ≥ inf
θ∈S1

(u0(θ)κ(θ))

∫
S1

v(θ) dθ > 0 (3.75)

which implies that the iterative procedure will converge.
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3.8 PROGRESS ON ZEROTH-ORDER STABILITY

The current work I have been doing towards proving that the unique equilibrium to the

zeroth-order branching equation is stable relies on showing that the spectrum of the lin-

earization around u0 has strictly negative real part.

The first step is to prove the Fréchet derivative is:

DGu(v) =
(B ? v)(θ)∫
S1 u(ω) dω

− κ(θ)v(θ)−
∫
S1

v(ω) dω
(B ? u)(θ)(∫
S1 u(ω) dω

)2 (3.76)

for
∫
u 6= 0.

Proof. Observe that for sufficiently small ε(θ) ∈ L1, we have the series:

1∫
S1 u(ω) + ε(ω) dω

=
∞∑
j=0

(
−
∫
S1 ε(ω) dω

)j(∫
S1 u(ω) dω

)j+1

To prove the derivative, we show the following:

lim
‖ε‖1→0

‖G(u+ ε)−G(u)−DGu(ε)‖1

‖ε‖1

= 0

Expanding out the first term gives:

G(u+ ε) =
∞∑
j=0

(
−
∫
S1 ε(ω) dω

)j(∫
S1 u(ω) dω

)j+1

((
B ? u

)
(θ) +

(
B ? ε

)
(θ)
)
− κ(θ)

(
u(θ) + ε(θ)

)
Subtracting out G(u) gives:

G(u+ ε)−G(u) =
∞∑
j=1

(
−
∫
S1 ε(ω) dω

)j(∫
S1 u(ω) dω

)j+1

((
B ? u

)
(θ) +

(
B ? ε

)
(θ)
)

+

(
B ? ε

)
(θ)∫

S1 u(ω) dω
− κ(θ)ε(θ)

Subtracting out DGu(ε) using our definition from above:

G(u+ ε)−G(u)−DGu(ε) =
∞∑
j=2

(
−
∫
S1 ε(ω) dω

)j(∫
S1 u(ω) dω

)j+1

((
B ? u

)
(θ) +

(
B ? ε

)
(θ)
)

−
∫
S1 ε(ω) dω(∫
S1 u(ω) dω

)2

(
B ? ε

)
(θ)
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By hypothesis on B, we have the inequality:

‖B ? u‖1 ≤ ‖u‖1

Formally writing out the norm in terms of the series gives:

‖G(u+ ε)−G(u)−DGu(ε)‖1 ≤
∞∑
j=2

‖ε‖j1
‖u‖j+1

1

(
‖u‖1 + ‖ε‖1

)
+
‖ε‖2

1

‖u‖2
1

=

(
‖ε‖3

1

‖u‖3
1

+
‖ε‖2

1

‖u‖3
1

) ∞∑
j=0

(
‖ε‖1

‖u‖1

)j
+
‖ε‖2

1

‖u‖2
1

=

(
‖ε‖3

1

‖u‖3
1

+
‖ε‖2

1

‖u‖3
1

)
1

1− ‖ε‖1
‖u‖1

+
‖ε‖2

1

‖u‖2
1

where the equalities hold for sufficiently small ‖ε‖1. We can now evaluate the limit by

observing:

lim
‖ε‖1→0

‖G(u+ ε)−G(u)−DGu(ε)‖
‖ε‖1

≤ lim
‖ε‖1→0

(
‖ε‖2

1

‖u‖3
1

+
‖ε‖1

‖u‖3
1

)
+
‖ε‖1

‖u‖2
1

= 0

which finishes the proof.

Since DGu0 is bounded, the spectrum σ(DGu0) is closed and bounded, and we only need

to prove that all γ with <γ ≥ 0 is in the resolvent set. An identical argument to step 3 in

the proof of theorem 1 shows that any elements of the spectrum outside of [− supκ,− inf κ]

are eigenvalues. I have shown that the following regions do not contain any eigenvalues. The

proofs rely on the following lemma:

Lemma 3. µ such that µ 6= 0 and <µ ≥ 0 is in the spectrum if and only if v defined as:

v =
(
DGu0 − µI

)−1

κu0

has integral one.
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First, a quick simplification of the expression for DGu0 . For the case DGu0 , without loss

of generality assume
∫
u0 = 1, we have the following expression:

DGu(v) =
(B ? v)(θ)∫
S1 u(ω) dω

− κ(θ)v(θ)−
∫
S1

v(ω) dω
(B ? u)(θ)(∫
S1 u(ω) dω

)2

= (B ? v)(θ)− κ(θ)v(θ)−
(∫

S1

v(ω) dω

)
κ(θ)u0(θ) = Av − 〈v, 1〉κu0 (3.77)

We can now prove the lemma:

Proof. First, observe that any eigenfunctions with eigenvalue as in the statement of the

lemma must have non-zero integral. Assume the contrary. From (3.77), we have:

Av = µv (3.78)

However, from theorem 1, we know the spectrum of A is real and has largest eigenvalue 0, in

contradiction to the assumption. We can therefore assume any eigenfunction has non-zero

integral.

Fix µ as in the statement of the lemma. Assume that v = (A − µI)−1κu0 has integral

one. That implies:

Av − µv = κu0 =

∫
v(ω) dωκu0 (3.79)

That implies that µ, v is an eigenpair.

Assume that µ v is an eigenpair and
∫

(A− µI)−1 κu0 6= 1. Define the constant C as:

C =

∫
S1

(
A− µI

)
(κu0)(ω) dω (3.80)

Since v is an eigenfunction, we know:

v =
(

A− µI
)−1

(∫
v(ω) dω

)
κu0 (3.81)

Integrating both sides gives:∫
v(ω) dω =

(∫
v(ω) dω

)∫ (
A− µI

)−1

(κu0)(θ) dθ = C

∫
v(ω) dω (3.82)

The above is solvable if and only if C = 1 or
∫
v(ω) dω = 0. Since we have already excluded

the latter case, we can conclude C = 1.
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The last calculation needed before proving the results is to split apart the real and

imaginary parts of any eigenfunctions v. Direct calculation shows that we have the two

equations:

A<v −<µ<v + =µ=v = κu0

A=v −<µ=v −=µ<v = 0 (3.83)

Whenever <µ 6= 0, we can solve the second equation since A−<µI is invertible:

=v = =µ
(

A−<µI
)−1

<v (3.84)

Writing w = <v, a = <µ and b = =µ, we have the following real equation for w:

Aw − aw + b2
(

A− aI
)−1

w = κu0 (3.85)

µ with =µ = 0

Proof. When b = =µ = 0, we can directly solve (3.85) for w:

B ? w − κw − aw = κu0

B ? w
κ+ a

− w =
κ

κ+ a
u0

w = −
(

I− B ? w
κ+ a

)−1
κu0

κ+ a

w = −
∑
j∈N

Bj
a

κu0

κ+ a
(3.86)

where Bav = B?v
κ+a

. The last equality can be derived from the fact that the spectral radius

ρ(Ba) < 1. Since Ba maps positive functions to positive functions, we can conclude that

w ≤ 0. By lemma 3, we can conclude µ is not an eigenvalue.

µ such that (=µ)ρ((A−<µI)−1) ≤ 1
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Proof. The above case can be expanded further. We can rewrite (3.85) as:

w − b2
(

A− aI
)−2

w =
(

A− aI
)−1

κu0 (3.87)

Whenever b < ρ((A− aI)−1, we can explicitly write out the solution for w:

w =
∑
j∈N

(
A− aI

)−2j−1

κu0 (3.88)

Since (A− aI)−1 maps positive functions to negative functions, odd powers of the operator

will do the same. Therefore w ≤ 0 and µ is not an eigenvalue. This result can be extended

to the case b = ρ((A− aI)−1) by observing that the inverse operator is compact and κu0 is

not an eigenvalue.

µ with <µ = 0

Proof. First, assume µ = 0. That would imply that:

B ? v
κ
− v =

(∫
v(ω) dω

)
u0 (3.89)

The nullspace of the right hand side is spanned by u0. That implies
∫
v 6= 0. However,

the Fredholm alternative states that the above is only solvable if the right hand side is

perpendicular to u0. As u0 is not perpendicular to u0, the equation is not solvable.

Next, assume =µ 6= 0. From (3.84):

B ? =v
κ

−=v = =µ<v (3.90)

The compact term above, A′ is self-adjoint with respect to 〈·, ·〉κ. The Fredholm alternative

implies that the above is solvable if and only if w = <v is perpendicular to u0, i.e. 〈w, κu0〉 =

0. That implies:

〈Aw,w〉+ b2〈A−1w,w〉 = 〈κu0, w〉 = 0 (3.91)

However, A and A−1 are negative semi-definite and 〈Aw,w〉 = 0 if and only if w = u0, in

contradiction to the hypothesis that 〈κu0, w〉 = 0.

|=µ| > C
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Proof. If we have

∥∥∥∥(A− aI + (A− aI)−1
)−1
∥∥∥∥

1

< 1 where the norm is the operator norm

associated with L1, we know that there cannot be any eigenvalues since:∫
w(ω) dω ≤ ‖w‖1 ≤

∥∥∥∥(A− aI + (A− aI)−1
)−1
∥∥∥∥ ‖κu0‖1 < 1 (3.92)

since ‖κu0‖1 = 1. We can use the spectrum of A − aI to approximate the operator norm.

We know that if γ ∈ σ(A− aI), then γ + b2

γ
< 0 is in the spectrum of A− aI + (A− aI)−1.

By differentiating, we can easily show that γ + b2

γ
≤ −2b for all γ < 0. That implies that

the spectral radius of ρ

((
A− aI + (A− aI)−1

)−1
)
< 1

2b
. We can show that in the Banach

algebra of operators on L1, B(L1), that A− aI + (A− aI)−1 is Hermitian in the sense that:∥∥∥∥exp

[
−ic
(

A− aI + (A− aI)−1
)−1
]∥∥∥∥ = 1 (3.93)

for all real c. If that Banach algebra is a C? algebra, we then have that

∥∥∥∥(A− aI + (A− aI)−1
)−1
∥∥∥∥ =

ρ

((
A− aI + (A− aI)−1

)−1
)

by Sinclair’s theorem [120], which gives us C = 1
2
. If that is

not the case, we simply have that

∥∥∥∥(A− aI + (A− aI)−1
)−1
∥∥∥∥ ≤ π

2
ρ

((
A− aI + (A− aI)−1

)−1
)

by [90].

3.9 GENERALIZATION TO MEASURES

Defining equations (3.7) and (3.8) on the space L1 was done solely for mathematical conve-

nience. However, there is no scientific justification for why the densities must be absolutely

continuous with respect to the Lebesgue measure. In particular, it is interesting to consider

situations such as having initial conditions u(θ, 0) = δ(θ) where δ is the Dirac delta. For

many diffusion processes, we could observe that solutions are regularizing and restrict our-

selves to analysis to the smoothness of the regularization. However, for nonlocal diffusion

equations such as the one considered here, solutions are not regularizing, and analysis must

be done on whatever space the initial conditions are in. Also, the hypotheses on B and κ

were largely arbitrary. This section outlines a proof of proposition similar to theorem 1 on

a less regular space and discusses the role of the hypotheses on B and κ.
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The space under consideration here is the space of finitely-additive, finite measures.

There is a trade-off in using that more abstract space. You lose the machinery of working

with functions but gain nicer topological properties. Also, solutions will obviously need to

be defined in the weak sense. Define the space ba(Σ) as the space of countably additive

measures with respect to the Borel σ-algebra, Σ, with the usual topology on the circle.

Define the space B(Σ) to be the dual space of ba(Σ). B(Σ) is the space of Σ’-measurable

functions with finite ‖ · ‖sup-norm where:

‖f‖sup = sup
θ∈S1

|f(θ)| (3.94)

Note that that B(Σ) and L∞ are very different spaces. Up to this point, all of the discussion

in this chapter has treated the Lp directly as function spaces, ignoring the fact that the

spaces are quotient spaces modular functions with zero integral. That quotient means that

some measures, such as the δ measure cannot be defined on the space L∞. ba is a Banach

space with the total variation of the measure as the metric. ba is also reflexive, which means

it is weakly compact. That fact opens new tools.

Working with the space ba also allows us to significantly weaken the hypotheses on B

and κ. For this section: B ∈ C1,
∫
B = 1, κ is Hölder continuous, i.e. κ ∈ C0,α where α ≥ 1

and B, κ ≥ 0. We can define A exactly as above:

Au = B ? u− κu (3.95)

where u ∈ ca, ? is interpreted as a convolution of measures, and equality is interpreted in

the weak sense. The weaker hypotheses do not lead to a slightly weaker conclusion:

Conjecture 2. A, defined on ba(Σ), has a principal, largest eigenvalue µ0 with a posi-

tive, finite eigenmeasure φ. The eigenmeasure φ is absolutely continuous with respect to the

Lebesgue measure and has bounded Radon-Nikodym derivative. Moreover, µo is an isolated

element of the spectrum σ(A).
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Boundedness of the Radon-Nikodym derivative dφ
dν

can be recovered by adding the con-

ditions that κ is Hölder continuous with α ≥ 1 and κ > 0. A counter-example showing

that κ > 0 and Hölder continuity with α < 1 is not sufficient for the result to hold is given

towards the end of the section. Most of the proof of theorem 1 still holds. Below is a sketch

of how the proof may work.

Proof Sketch:

Direct calculation readily shows that A is a bounded linear operator on ba. The first

steps are to characterize the structure of the spectrum. The weaker hypotheses still give

that A is from L2 to L2, so we can draw the same conclusions regarding the the spectrum

σba(A) for the non-residual spectrum, including that it is real. Also, B ? · is still compact.

However, showing that requires slightly more care. The range of B ? ba is isometric to a

subset of L∞ via the Radon-Nikodym derivative, but the range must be considered as a set

of measures. The compactness of B? allows us to characterize the non-residual spectrum

outside of [− supκ,− inf κ] in the same way as before. The final step is to prove that A

has no residual spectrum. Since L2 is not necessarily dense in ba, another technique must

be used. A heuristic argument can be made by decomposing any measure, u, in ba into a

part continuous to the Lebesgue measure uc and a part singular to the Lebesgue measure

us. Since B ? v is always absolutely continuous with respect to the Lebesgue measure, we

can solve the two equations for any µ ∈ C:

−(κ+ µ)vs = us and B ? vc = uc − B ? vs (3.96)

The first equation can be solved by division when µ /∈ [− supκ,− inf κ], and the second

is solvable, or at least approximately solvable, by the same arguments as in the original

proof since uc − B ? vs is effectively a L∞ function. More care would need to be taken for

µ ∈ [− supκ,− inf κ], if necessary.

The next step is to show the existence of the principal eigenvalue. In the original proof, κ

being C2 was required for the existence of an eigenvalue outside of the range [− supκ,− inf κ].

A different argument can be made to relax that requirement simply to C1. Simple division

shows that µ ∈ σ(A) if and only if 1 is in the spectrum of the operator: A′µ = B?
κ+µ

whenever

1
κ+µ
∈ B(Σ). A′µ for µ > − inf κ always has a positive eigenvalue equal to its spectral
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radius by Krein-Rutman. Moreover, the spectral radius is equal to the operator norm with

respect to the 〈·, ·〉κ+µ inner product. We can write the function ρ(µ) as the spectral radius

of A′µ. The fact that Gelfand’s formula uniformly converges as a function of µ gives that

ρ is continuous. We know that µ is an eigenvalue of A whenever ρ(µ) = 1. The principal

eigenvalue is thus the largest value µ where ρ(µ) ≥ 1. Therefore, it is sufficient to show that

ρ(µ) ≥ 1 for at least one µ > − inf κ. However, by the definition of ρ(µ), we have:

ρ(µ) ≥
〈

A′µ
1√
2π
,

1√
2π

〉
=

1

2π

1

κ+ µ
(3.97)

However, the last quantity goes to infinity as µ → − inf κ since κ ∈ C0,α. We now how the

existence of a principal eigenvalue with a positive eigenmeasure.

The final step is to show that the eigenvalue is simple. De Masi et al. showed that the

Markov chain generated by A′ was ergodic, which implied that the associated eigenfunction

must be simple. Without having worked through the details, it would seem likely that the

same argument would hold for this case as smoothness does not appear to be used in that

proof.

Other Hypotheses

As mentioned before, κ being Hölder continuous is a necessary hypothesis for the exis-

tence of an eigenvalue. Take the family of systems where B = 1
2π

and κ = c|θ|α + c′ where

c, c′ > 0 and 0 < α < 1. Obviously, κ is α-Hölder continuous. Assume we have an eigenpair

µ, v(θ). Dividing through wherever v(θ) 6= 0, we have:

v =

(
B ? v

)
(θ)

c|θ|α + c+ µ
=

∫
v(ω) dω

c|θ|α + c′ + µ
(3.98)

That means
∫
v(ω) dω = 1 and v = 1

c|θ|α+c′+µ
. However, if we set:

c =
1

2

∫
S1

|θ|−α dθ (3.99)

the above equations are not solvable for any pair c, µ since
∫
v(ω) dω ≤ 1

2
. That implies

that there is not any eigenvalues for A.

In [24], compactness of A′ was used to prove the existence of a principal eigenvalue. When

we relax the hypotheses on B, we cannot directly use the results from Krein-Rutman nor [24]
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because A′ may not be compact. However, for the space ba(Σ), we have weak compactness

from the space. Schauder-Tykhonov can then be used to give the existence of a positive

eigenvalue. If simplicity of the eigenvalue and the spectral gap can also be recovered without

compactness, the far weaker hypotheses B,∈ B(Σ), κ ∈ C0,α α ≥ 1, B ≥ 0, and κ > 0 can

be used.

3.10 DISCUSSION

The results presented here form a framework to study continuum models of actin filament

orientation density and formally justify some of the numerical calculations reported in the

literature. For the first-order branching equation, (3.7), theorem 1 completely characterizes

the dynamics. Solutions converge exponentially such that u(θ, t) ∼ A exp[µ0t]u0(θ). While

solutions to the zeroth-order branching equation, (3.8), have not been completely charac-

terized, the results in section 3.4 do greatly limit the possible behaviors. The simulations

in section 3.5 provide strong evidence that solutions converge to a unique equilibrium. The

results seen in section 3.8 provide a strong start to proving that the unique equilibrium to

the zeroth order branching equation is at least locally stable.

The results from Maly and Borisy [68] hold up surprisingly well. The eigenvalues and

eigenfunctions they calculated make sense if and only if the results in theorems 1 and 2

hold for their eigenproblem. It is not obvious that the steady state, when it exists, would

be from a simple eigenvalue. Without both results, the eigenfunctions calculated would not

necessarily be unique. Finally, a modified version of their suggested concept of orientation

pattern fitness turns out to be mathematically justified. Maly and Borisy attempted to

define a fitness value for each particular orientation θ. Casual inspection of (3.7) shows that

such a function is impossible as the entire density contributes to the dynamics at any given

orientation. However, there does exist a fitness function on the total orientation pattern as

seen in corollary 1.

The results relevant to Weichsel and Schwarz [137] present a more mixed picture. The

Weichsel and Schwarz model can be thought of as adding detail to the time-dependent
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dynamics to the Maly and Borisy model. In both papers, a steady-state assumption was

used to calculate the equilibrium. The conjecture 1 being proven would demonstrate that the

dynamics in the Weichsel and Schwarz model justify the steady state assumption. However,

the bistable hypothesis put forth by Weichsel and Schwarz has been proven wrong. While

the hypothesis may have some physical merit, as is the thrust of Weichsel et al. [138], the

conclusion is not mathematically justified.

One important physical question building upon this work is to study the multiplicity

of orientation patterns within potential models of branching and capping dynamics. This

has been done for a discrete approximation in [103]. It is easy to show that, given the

stronger hypotheses in this chapter, zero must be a local minimum or maximum. Under

further hypotheses based on experimental results, it is an open question on how common

one orientation pattern is over the other. Given that the current work on the topic, including

the aforementioned papers and Atilgan et al. [4], only report results for one particular choice

of B and κ, it is interesting to investigate how solutions are distributed given some reasonably

physical set of possible B and κ.

Beyond the conjecture, another line of future mathematical work stems from generalizing

the results here for both equations from L1 to weak solutions over some space of finite

measures as in section 3.9. While many nonlocal diffusion equations feature unbounded

diffusion kernels, the equations here can be studied on the space of finite, countably-additive

measures without appealing to Schwarz spaces or some other space of generalized functions

which admit some notion of smoothness. As seen in the proof sketch for conjecture 2, very

little of the analysis for theorem 1 uses results which cannot be generalized to the larger

Banach space. Similar results for zeroth-order branching would be similarly interesting.

There also remains questions regarding the smoothness required for B and κ. As seen in

the counter-example given in section 3.9, κ must at least be Hölder continuous with α ≥ 1.

Physical considerations justify the hypothesis that κ must be continuous, but the stronger

Hölder hypothesis appears to be a novel constraint. On the other hand, it appears that much

weaker conditions on B may be required. Those generalizations are relevant to consider cases

such as in [137] where κ is Lipschitz continuous but not C1.
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4.0 MDMS: MOLECULAR DYNAMICS META-SIMULATOR FOR

EVALUATING EXCHANGE TYPE SAMPLING METHODS.

4.1 INTRODUCTION

There have been a number of computer simulation studies of actin and related proteins at

the atomic level [19, 20, 22, 26, 71, 118]. These have led to some interesting experimental

predictions [50]. However, these simulations involve large molecules, actin monomer sim-

ulations include ∼80k atoms and actin filament studies include ∼600k atoms [126], where

it is difficult to calculate free energies and other statistical quantities, . For that reason,

enhanced conformational sampling algorithms are needed. Such techniques have already

been used for at least one study of actin protein folding [94]. Sampling from a protein’s

conformational space remains one of the hardest and most important problems in compu-

tational biophysics. In order to calculate important properties of a protein, such as free

energies or rigidity, thorough sampling of likely conformations is required. For small pro-

teins, standard Langevin molecular dynamics (MD) or Markov chain Monte Carlo methods

are sufficient [116]. However, for larger proteins, some form of enhanced sampling method

becomes necessary [134].

Many conformational sampling methods for macromolecules have been developed in re-

cent years [55, 64, 134]. With so many algorithms being developed, it is important to have

standardized tests to compare the methods’ ability to search multiple local minima and

preserve the desired ensemble. One popular type of enhanced sampling method is called

parallel tempering [51] or replica exchange (RE) [127]. RE employs parallel Markov chain

[44, 133] simulations where, neighboring simulation states are periodically exchanged. There

currently does not exist a standardized model to compare sampling algorithms, [146] nor
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does one exist for just exchange based RE methods. To start to fill that gap, we are propos-

ing a class of models called Molecular Dynamics Meta-Simulators (MDMS) for evaluating

RE methods.

RE methods use parallel simulations (replicas) run with different conditions to utilize

the increased rate of transitions between local minima in the conformational phase space

by modifying parameters. The most common form of RE is temperature RE. Temperature

RE methods use parallel replicas run at different temperatures to utilize the increased rate

of transitions between local minima in the conformational phase space at higher tempera-

tures. The lowest temperature replica is usually the temperature of interest, while the higher

temperatures are chosen to balance the faster transition rates at high temperatures and the

reduced probability that two replicas far apart in temperature will exchange states [110, 127].

The effectiveness of RE methods are determined by multiple factors including the rela-

tive sampling rate of the added replicas and how much the probability distribution differs

between replicas. One consideration for using RE is whether the increase in transitions be-

tween states observed in the simulation(s) run with the replica(s) of interest is great enough

to outweigh the cost in additional computing hardware from the added replicas. However,

RE has the advantage of being easily parallelizable, which can limit the added computing

time needed compared to a more direct approach. In cases where a sufficient number of

parallel nodes are available, RE can save wall clock time even if it is more expensive in terms

of total CPU cycles. RE has been successfully used to enhance conformational sampling

and calculate temperature dependent properties for biological systems [40, 91, 95, 111, 144].

However, for large systems with slow transition kinetics, standard temperature RE simula-

tions remain computationally expensive. Numerous methods have been proposed to improve

the effectiveness of RE simulations. [39, 62, 63, 66, 67, 83, 84, 106, 107, 128, 129]. MDMS

can serve to compare and evaluate these new methods.

Even within temperature RE, there are a number of open questions about how best to use

RE. Two related questions that have spurred much inquiry are what the optimal exchange

frequency is [3, 121, 122] and what temperatures to choose to achieve that [92, 110]. Other

studies have tried to understand RE from a more theoretical vantage point [108, 141, 142], but

the mapping between those theoretical studies and atomistic models is very vague. MDMS
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can serve as a useful tool in further research on all of these questions.

Any test problem must be computationally cheap enough to allow for rapid testing of

multiple algorithms, have a tractable metric to compare sampling efficacy, yet retain enough

physical detail to be relevant to practical simulations. Short peptides, like poly-Alanine

chains, are computationally efficient to simulate as test models, but their simple topologies

may mask complications. New methods developed on such peptides may not be transferable

to larger, biologically relevant systems. A model which allows for complicated kinetics while

remaining computationally cheap would allow for much faster testing of RE methods. While

we present a simple example in this chapter, MDMS is flexible enough to readily admit

complicated systems with many local minima, complicated topologies and many degrees of

freedom. Additionally, the cost of adding additional complexity to an MDMS model is very

small, especially compared to simulating larger molecules. In fact, MDMS can even be tuned

to approximate a particular system of interest for an effective comparison of methods before

running large-scale simulations. It can also be run on a standard desktop machine allowing

for a fast comparison of many algorithms.

In order to be efficient, MDMS abstracts away the dynamics of a simulation between

successive exchanges. At any given exchange attempt, the only important factors are a

model’s state and the energy of that state. MDMS represents the state of the model by

discretizing conformational space into n local minima. Then, a locally-harmonic energy

approximation to generate a continuous distribution of energies when the system is in state

i. The total energy of the system is the sum of the energy of the local minimum, Ei, and the

energy of a system of harmonic oscillators. The resulting energy distribution is independent

of the choice of specific harmonic energy function and is functionally defined by the number

of degrees of freedom and one parameter, the determinant of the harmonic energy matrix.

This model can be classified as an extension to the two-state kinetic network model

introduced by Zheng et. al. [141, 142]. The current model allows building a system with

an arbitrary number, n, states with explicitly defined free energy landscape and barriers

between minima. Since all energy values and barriers are user defined, a realistic landscape

with different intermediate states and folding pathways can be easily created and simulated.

Defining only two minima with a single barrier will simplify the kinetics to those described
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by Zheng et al. [141, 142]. A more flexible energy landscape is essential to be able to test

advanced RE methods such as reservoir RE [84, 107] where multiple free energy minima are

required to construct a realistic reservoir. We do note, however, that our presentation here

only includes linear activation entropy functions restricting each transition to only Arrhenius

or anti-Arrhenius behavior. The model is easily extendable to non-linear free energy functions

to recover the folding behavior in [141].

The model we propose is a new tool that will greatly decrease the amount of time

between new RE method idea and practical code. Using this model, a developer can test

several new RE methods in the space of an afternoon, compare new methods to to existing

algorithms, and make informed decisions for which methods should be coded into a full

molecular dynamics software such as CHARMM [9] and AMBER [17]. This model will also

allow for further analytical investigation of current and new RE methods.

4.2 SYSTEM DEFINITION AND BASIC PROPERTIES

Traditional replica exchange simulations will run dynamics for some number of steps in

between a set of exchange attempts where the parallel replicas probabilistically exchange

states. The goal in developing this model is to abstract away the dynamics between exchanges

allowing for faster simulations. When testing the efficacy of replica exchange methods,

nothing is to be gained from knowing the state of the system in between exchange attempts,

so we constructed a system where we can exactly solve for the transition probabilities between

states for the amount of simulated time between exchange attempts. MDMS dynamics are

based on continuous-time discrete-state Markov chain where we solve for the discrete-time

δ-skeleton.

4.2.1 Assumptions

MDMS uses a discretized approximation of an energy surface. Each discrete state represents

a local minimum of the energy function and the energy function around the local minimum is
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approximated by a system of harmonic oscillators. For any smooth energy function, Taylor’s

theorem implies that such an approximation can be made for small displacements around the

minimum. The individual states are then separated by finite energy barriers. The locally-

harmonic approximation is used to allow for a simple discretization of phase space without

concern to optimal partitioning (e.g. [136]). MDMS assumes essentially instant equilibration

within each energy well. With this approach, MDMS is not able to study systems where

the exchange frequencies are faster than the rate of convergence within an energy well.

However, later in this chapter, an implementation which allows for slow convergence within

the harmonic dimensions is discussed.

Transition state theory traditionally uses the free energy difference between the stable

state and the energy barrier to determine the transition rates. The free energy difference

is dependent both upon the enthalpy difference and the entropy difference. It is useful

to note here that enthalpy is a thermodynamic quantity that cannot be defined for an

individual conformation like the situation in MD simulations as the pressure of an individual

conformation is not formally defined. In terms of practical MD simulations, this can be

thought of as including an implicit solvation term in the potential energy or an expanded

energy function which includes both the molecule of interest and the solvating environment

(e.g. explicit water).

For a simple introduction, we will treat energies strictly as enthalpies. Entropic effects

can be integrated by varying the number of states i with equal energies and small or zero

energy barriers separating them. This first approximation leads to a large variety of behaviors

as can be seen by the models outlined in Section 4.3. Later in the section, MDMS energies

will be generalized to free energies.

4.2.2 Transition Rates

Transition state theory (TST) uses Arrhenius equation based rates to determine transition

rates between states. The Arrhenius equation determines that rate from the size of the

energy barrier between the two states. MDMS uses TST-like energy barriers that can be
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directly generalized to any number of states by requiring that for all states i, j:

Ei + ∆Eij = Ej + ∆Eji (4.1)

where Ei is the energy of state i and ∆Eij is the energy barrier in between states i and j.

The rate of transitions i→ j from the Arrhenius equation is then:

kij = Aij exp

[
−∆Eij
kBT

]
(4.2)

Symmetric prefactors, i.e. Aij = Aji, are necessary for a Boltzmann equilibrium. Pairs

of states that are inaccessible from each other can be defined by setting either Aij = 0 or

∆Eij =∞.

Care must be taken to ensure that all pairs of states are connected through a finite num-

ber of accessible transitions to guarantee ergodicity. A model system with more complicated,

non-symmetric, dynamics (e.g. 1→ 2→ 3→ 1) could be constructed, but it would not nec-

essarily be straightforward to ensure a Boltzmann-type temperature dependent equilibrium.

Also, note that there is no requirement for ∆Eij > 0, meaning anti-Arrhenius behavior could

be included.

From the TST rates, we construct a continuous-time discrete-state Markov system with

the rates kij and kii = −
∑

j 6=i kij. Define K = (kij). Defining P(x) as the row vector of state

probabilities, the master equation for this system is thus:

d

dt
P(x = i) =

∑
j

kjiP(x = j) (4.3)

Equivalently:
d

dt
P(x) = P(x)K (4.4)

Since we are interested in the system state at discrete time intervals, δt, we can model

the system by the transition probabilities from time t to time t+δt. Define Mδt = exp [δtK].

From (4.4), the probability vector of our system at time t given a probability vector P(x(s))

at time s with t > s is:

P(x(t)) = P(x(s))Mt−s (4.5)
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That solution gives the necessary tool to calculate the transition probabilities exactly.

For any t > 0:

P(x(t+ δt)) = P(x(t))Mδt (4.6)

It is important to note that the above equation has transition matrix independent of t.

When running simulations, we will use that fact by calculating Mδt before starting the run.

For each simulation step, however, we are not interested in general probability vectors. For

every time t during the simulation, we know exactly which state the system is in. Thus,

P(x(t) = j) = δij where i is the current state of the system, and we can use the i’th standard

basis vector as our initial condition giving the convenient relation:

P(x(t+ δt) = j|x(t) = i) = (eiMδt)j =
∑
k

δik(Mδt)kj = (Mδt)ij (4.7)

That means that all of the relevant properties of our system can then be derived from the

matrices K and Mδt.

4.2.3 Equilibrium Distribution

First, we want to show that the system has a reasonable, temperature-dependent equilibrium

distribution. In fact, we want a Boltzmann distribution as a unique equilibrium, and for

solutions to (4.4) to be ergodic. Specifically, we want:

lim
t→∞

pMt = b (4.8)

where b is our Boltzmann distribution and p is a probability vector: pj ≥ 0 and
∑

j pj = 1.

Basic linear algebra tells us that if K has zero as a simple eigenvalue with eigenvector b and

all other eigenvalues are negative, we have the following:

lim
t→∞

pMt = lim
t→∞

pU diag{1, exp[µ1t], . . . , exp[µn−1t]}U?

= pU diag{1, 0, . . . , 0}U?

= pQb = cb (4.9)
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where U is a unitary matrix, diag{. . . } is a diagonal matrix, Qb is a projection onto b, and

for some constant c. We can show that c equals 1 by observing:

d

dt

∑
j

(pMt)j =
∑
j

(pK)j =
∑
j

∑
i

kjipi =
∑
j

∑
i 6=j

kjipi −
∑
j

∑
i 6=j

kjipi = 0 (4.10)

by the definition of kjj. Since
∑

j bj =
∑

j pj = 1 by construction, c must equal 1.

Since the rows of K sum to zero, we know K has a zero eigenvalue. We want to show

that a Boltzmann-type distribution is associated with that eigenvalue. Define the Boltzmann

distribution as:

b(x = i) =
1

Z(T )
exp

[
− Ei
kBT

]
(4.11)

Z(T ) is the partition function:

Z(T ) =
∑
j

exp

[
− Ej
kBT

]
(4.12)

Showing that b is in the kernel of K is straightforward:

(bK)i =
∑

bjkji = −
∑
j 6=i

bikij +
∑
j 6=i

bjkji

= −
∑
j 6=i

Aij exp

[
−∆Eij + Ei

kBT

]
+
∑
j 6=i

Aij exp

[
−∆Eji + Ej

kBT

]
= 0 (4.13)

where the last equality comes because of the TST relation in (4.1).

It remains to show that the eigenvalue is simple, and that all of the other eigenvalues

have negative real part. Uniqueness is assured as long as the graph of the transition rates

is irreducible [42]. In other words, for every pair of states, (i, k), there must be a path of

transitions between i and k with finitely many states and finite energy barriers. An appli-

cation of the Perron-Frobenius theorem gives shows all the other eigenvalues have negative

real part [42], finishing the proof of (4.8).

The TST relation also ensures the detailed balance condition:

bjkji = bikij (4.14)

for all i and j.
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4.2.4 Limits

To be physically reasonable, MDMS should display accurate limiting behavior. For example,

the probability of the system jumping from state i to another state j as a function of the

temperature should go to zero as the temperature goes to zero. This follows directly from

the following:

lim
T→0

P(x(t+ δt) = i|x(t) = i) = lim
T→0

exp[kiiδt] = exp
[
δt lim

T→0
kii

]
= 1 (4.15)

where kii is defined as the negative sum of the Arrhenius rates in (4.2). Indeed, the matrix

Ms converges to the identity matrix as T → 0 in operator norm for all s ≥ 0.

The high temperature limit does not behave as nicely. From the Arrhenius rates, it is

obvious that the transition rate is bounded above. Increasing Aij is indistinguishable from

increasing δt. It is important to choose Aijδt sufficiently large that higher temperature

replicas will see frequent state changes. It is easy to see that lim
T→∞

kij = Aij for i 6= j and

lim
T→∞

kii = −
∑
j 6=i

Aij. The probability of a transition occurring during the window (t, t+ δt)

is:

lim
T→∞

P(x(t+ δt) 6= i|x(t) = i) = lim
T→∞

1− exp[δtkii] = 1− exp

[
−δt

∑
j 6=i

Aij

]
(4.16)

In practice, RE methods can only be used on systems with bounded temperature, so the

lack of a physical infinite temperature limit behavior is not detrimental to the applicability

of MDMS.

We are also able to take the high and low temperature limits for the equilibrium distri-

bution. The high temperature limit is simply b(x = i) = 1
n
. This can be seen via:

lim
T→∞

P(x = i) = lim
T→∞

exp
[
− Ei
kBT

]
∑

j exp
[
− Ej
kBT

] =
1∑
j 1

=
1

n
(4.17)

An ‘infinite temperature’ replica could be generated by choosing states at each time point

from the uniform distribution of states. Similarly, the low temperature limit is b(x = i) = δi0
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where E0 is the lowest energy state and δij is the Kronecker delta. Without loss of generality,

assume E0 is a unique energy minimum. The limit can be seen by:

lim
T→0

P(x = i) = lim
T→0

exp
[
− Ei
kBT

]
∑

j exp
[
− Ej
kBT

] = lim
T→0

exp
[
E0−Ei
kBT

]
1 +

∑
j>0 exp

[
E0−Ej
kBT

] =
0

1
(4.18)

for i > 0 and:

lim
T→0

P(x = 0) lim
T→0

exp
[
− Ei
kBT

]
∑

j exp
[
− Ej
kBT

] = lim
T→0

1

1 +
∑

j>0 exp
[
E0−Ej
kBT

] = 1 (4.19)

If there are k states with energy E0, the last limit simply becomes 1
k
.

4.2.5 Energies

In order for exchanges between replicas to occur, there has to be sufficient energy overlap

between the replicas. For systems with many states, with a relatively dense energy distri-

bution, energy overlap would not be a problem. However, for systems with large energy

gaps or small systems with few states, some continuous energy distribution needs to be in-

cluded. Approximating a system near a local minimum by harmonic oscillators is a standard

approach. To each state i, we assign a m × m positive-definite matrix Hi that gives the

harmonic energy function:

Vi(y) = yTHiy (4.20)

where m is the number of harmonic osccilators/dimension of the harmonic oscillator space

and is chosen to get a reasonable spread of energies.

For this section, we will mildly abuse notation. The formally correct way to write out

probabilities is:

P(x ∈ A) =

∫
A

dµ(x) (4.21)

All of the probability measures we are concerned with here are absolutely continuous with

respect to the Lebesgue measure, so we will write:

P(x = y dy) = π(y) dy (4.22)
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for our probability density π(y).

We can exactly calculate the distribution of energies for a harmonic oscillator with

positive-definite energy matrix Hi over Rm. The probability distribution is a Gaussian dis-

tribution with pdf:

P(x = y dy) =
|Hi|1/2

(πkBT )m/2
exp

[
−yTHiy

kBT

]
dy (4.23)

For any energy level E ≥ 0, we can define the surface SE:

SE := y : yTHiy = E (4.24)

That gives the expression for the probability of an energy level E:

P(E = F dF ) =
|Hi|1/2

(πkBT )m/2

∫
SF

exp

[
−yTHiy

kBT

]
dy (4.25)

There is no dF term in the above expression since the integral is the m-dimensional measure

of a (m − 1)-dimensional surface, which can be thought of as the infinitesimal. Since H is

positive-definite, we can define the matrix H1/2 and perform the change of variables x = H
1/2
i y

which gives:

P(E = F dF ) =
1

(πkBT )m/2

∫
B√F

exp

[
−xTx

kBT

]
dx (4.26)

where B√F is the Euclidean ball with radius
√
F . We have already shown that energy

density does not on the choice of Hi and can now proceed in a fashion identical to the usual

derivation of the χ2 distribution:

P(E = F dF ) =
exp

[
− F
kBT

]
(πkBT )m/2

∫
B√F

dx =
exp

[
− F
kBT

]
(πkBT )m/2

F (m−1)/22πm/2

Γ(m/2)
d
√
F (4.27)

where the second equality is obtained by the surface area of the (m − 1)-sphere times the

coordinate normal to the sphere and d
√
F is the infinitesimal volume element of the sphere

of radius
√
F . Observe that by defining F = kBT

2
G and substituting d

√
F = dF

2F 1/2 we have:

F (m/2−1) exp
[
− F
kBT

]
(kBT )m/2Γ(m/2)

dF =

(
2

kBT
G
)(m/2−1)

exp

[
−

2
kBT

G

kBT

]
(kBT )m/2Γ(m/2)

2

kBT
dG

=
G(m/2−1) exp

[
−G

2

]
2m/2Γ(m/2)

dG (4.28)
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The last term is simply the pdf for the χ2 distribution implying E ∼ kBT
2
χ2. That means

that we can simply add m unitary Gaussian random numbers and multiply by kBT
2

to get the

harmonic energies. For m > 50, a Gaussian approximation can be made with mean mkBT
2

and variance m
2

(kBT )2.

4.2.6 Exchanges

MDMS is flexible enough to admit a number of exchange criteria. For our test simulations,

see below, we used the usual exchange probabilities [44] (Px(T → T ′)):

Px(T → T ′) = min

{
1, exp

[(
1

kBT
− 1

kBT ′

)
(E − E ′)

]}
(4.29)

where the energies E, E ′ are calculated by adding the harmonic energy to the energy Ei of

the current state of the system. The exchange criterion can be interpreted as comparing the

probabilities on the extended state space on a state space Ω ⊂ Rm × N, which includes the

spatial component to the harmonic oscillator dimension. Exact exchange frequencies can be

calculated to tune the temperature gaps before running simulations.

4.2.7 Generalizing to Free Energies

MDMS is flexible enough to admit free energies or other temperature-dependent energies.

In order to maintain the relation (4.1), we will define the three temperature dependent

quantities Ei(T ), Ej(T ) and Eij(T ) = Eji(T ), where Eij(T ) is the energy of the barrier.

That gives ∆Eij(T ) = Eij(T ) − Ei(T ). While any type of temperature dependent energy

function can be used, we will only consider a free energy based function.

The above can be interpreted as a system with free energies on a state space Ω ⊂ Rm×N.

The Helmholtz free energy of each state i is simply Ei(T ) = Ei − kBT ln(Z). Both the

exchanges defined in (4.29) and the equilibrium in (4.11) hold for the marginal distribution

on N. For the energy function given in (4.20), the Helmholtz free energy of the state i, Ei(T )
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can be explicitly calculated:

Ei(T ) = Êi − kBT ln

(∫
Rm

exp

[
−Vi(y)

kBT

]
dy

)
= Êi −

kBT

2

(
m(ln kBT + ln π)− ln |Hi|

)
(4.30)

where |Hi| is the determinant of the harmonic energy matrix for state i and Ê is the energy

minimum of the state. For the sake of relative energies, the lnπ and m ln kBT terms can be

dropped. The energy barrier term can be treated similarly:

Eij(T ) = Êij +
kBT

2
ln |Aij| (4.31)

The term ln |Aij| simply behaves like a prefactor:

kij = exp

[
−Eij(T )− Ei(T )

kBT

]
= exp

[
−Êij(T )− Êi(T )

kBT
+

ln |Aij| − ln |Hi|
2

]

=

(
|Aij|
|Hi|

) 1
2

exp

[
Êij − Êi
kBT

]
(4.32)

The prefactors are no longer symmetric since the equilibrium distribution is a Boltzmann

distribution of the free energies of the states i and not the enthalpies. When the |Hi|’s are

identical, the equations become identical to the enthalpic case listed above.

The full Boltzmann distribution can be written out:

P(y = (x, i)) =
1

Z(T )
exp

[
−Êi + Vi(x)

kBT

]
(4.33)

A straightforward calculation yields:

P(y = i) =
1

Z(T )

∫
Rm

exp

[
−Êi + Vi(x)

kBT

]
dx

=
exp

[
− Êi
kBT

]
Z(T )

exp

−kBT ln
(∫

Rm exp
[
−Vi(y)

kBT

]
dy
)

−kBT


=

1

Z(T )
exp

[
−Ei(T )

kBT

]
(4.34)
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That is exactly the distribution generated by the dynamics described above. The infinite

temperature limit is no longer uniform:

lim
T→∞

P(y = i)

P(y = j)
= lim

T→∞

exp
[
−Ei(T )

kBT

]
exp

[
−Ej(T )

kBT

] =

(
|Hi|
|Hj|

) 1
2

(4.35)

An infinite temperature replica can be generated from the above relation. The two limits

also show how melting behavior can be generated where the lowest enthalpy state dominates

at low temperatures and a higher enthalpy state dominates at higher temperatures (data

not shown).

4.2.8 Heat Capacity and Entropy

The optimal distribution of replica temperatures has been suggested to be tied to the heat

capacity or entropy of the system [58, 110]. Another advantage of our model is that these

quantities can be explicitly calculated. While the expressions are not particularly intuitive,

it is easy to plot the two quantities and estimate the necessary values.

First, we will consider the enthalpic picture. It is easy to write down the expected energy

of the system:

〈E〉 =
1

Z(T )

∑
j

Ej exp

[
− Ej
kBT

]
+
∑
j

kBT

2
=
∑
j

Ejbj +m
kBT

2
(4.36)

where bj are the entries of b the equilibrium Boltzmann distribution, and the mkBT
2

comes

from the harmonic oscillators. Since we are concerned with exchange probabilities, we need

to include the harmonic oscillator contributions to the entropy and heat capacity. The square

of the energy 〈E2〉 can also be easily calculated. This is done for the free energy case in

(4.42). The enthalpic case simply drops the Ê notation. From that, the expected energy

variance of the system is similarly easy to write out, and we can write out the heat capacity

in terms of the energy variance:

C =
〈E2〉 − 〈E〉2

kBT 2
=

1

kBT 2

∑
j

E2
j bj −

(∑
j

Ejbj

)2
+

kB
2

(4.37)
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The discrete energy variance remains bounded, so the heat capacity of the system decays

asymptotically like the inverse square of the temperature to kB
2

. A straightforward calculation

shows that the heat capacity exponentially decays to kB
2

as the temperature goes to zero.

From the low temperature limit, we know that 〈E〉 → E0, so we simply need to calculate

the limit of 〈E2〉:

lim
T→0
〈E2〉 = lim

T→0

∑j Ej exp
[
− Ej
kBT

]
Z(T )

2

= lim
T→0

∑j Ej exp
[
E0−Ej
kBT

]
∑

j exp
[
E0−Ej
kBT

]
2

= lim
T→0

E0 +
∑

j Ej>0 exp
[
E0−Ej
kBT

]
1 +

∑
j>0 exp

[
E0−Ej
kBT

]
2

= E2
0 (4.38)

since E0 − Ej < 0 for all j > 0 where E0 is the lowest energy state. Putting those two

together gives:

lim
T→0

C(T ) = lim
T→0

〈E2〉 − 〈E〉2

kBT 2
= 0

If more than one state has the same energy as E0, the above calculation can be repeated

with addition of the appropriate integers. The zero and infinite temperature limits and the

fact that the heat capacity is positive implies that there is a maximum to the heat capacity

curve.

Similar to the heat capacity, the entropy in the enthalpic picture is a relatively simple

expression. Calculating directly from the Boltzmann distribution (b):

S = −kB
∑
j

bj ln[bj] + kB
m

2
ln [πekBT |H|]

= −kB
∑
j

exp
[
− Ej
kBT

]
Z(T )

ln

exp
[
− Ej
kBT

]
Z(T )

+ kB
m

2
ln [πekBT |H|]

= kB
∑
j

exp
[
− Ej
kBT

]
Z(T )

(
Ej
kBT

+ ln[Z(T )]

)
+ kB

m

2
ln [πekBT |H|]

=
〈E〉
T

+ kB ln [Z(T )] + kB
m

2
ln [πekBT |H|] (4.39)
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where the ln term comes from the harmonic oscillators. A more detailed calculation is shown

below.

The calculations for the free energy case are slightly more difficult. One consideration is

that we want to use the truncated form of Ei(T ). We will again use the energy fluctuations

to calculate the heat capacity. From our implementation, we would like to see an expression

of the form:

〈E〉 =
∑
j

bj〈Ej〉 =
∑
j

bj

(
Êj +m

kBT

2

)
(4.40)

That above form uses Ej(T ) only in the Boltzmann probabilities bj, meaning we can use the

abbreviated form as desired. Direct calculation gives exactly that result:

〈E〉 =
1

Z(T )

∑
j

∫
Rm

(
Êj + Vj(x)

)
exp

[
−Êj + Vj(x)

kBT

]
dx

=
1

Z(T )

∑
j

(
Êj

∫
Rm

exp

[
−Êj + Vj(x)

kBT

]
dx

+

∫
Rm

exp

[
−Êj + Vj(x)

kBT

]
dx

∫
Rm Vj(x) exp

[
−Vj(x)

kBT

]
dx∫

Rm exp
[
−Vj(x)

kBT

]
dx


=
∑
j

bj

(
Êj + 〈Vj(x)〉

)
=
∑
j

bj〈Ej〉 (4.41)

A similar calculation shows:

〈E2〉 =
∑
j

bj〈E2
j 〉 =

∑
j

bj

(
Ê2
j + Êjm

kBT

2
+ 3

(
m
kBT

2

)2
)

(4.42)

We now have a form for our heat capacity:

C =
〈E2〉 − 〈E〉2

kBT 2
=

∑
j Ê

2
j bj −

(∑
j Êjbj +mkBT

2

)2

kBT 2
+

∑
j Êjbj

2T
+m

3kB
4

=

∑
j Ê

2
j bj −

(∑
j Êjbj

)2

kBT 2
+m

kB
2

(4.43)

The heat capacity goes to kB
2

at zero and very high temperatures with the same peak as for

the enthalpic system with the energies {Êj}.
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The entropy of the free-energy case looks very much like the expression for the enthalpic

case:

S = −kB
∑
j

∫
Rm

exp
[
− Êj+Vj(x)

kBT

]
Z(T )

ln

exp
[
− Êj+Vj(x)

kBT

]
Z(T )

 dx

=
∑
j

∫
Rm

(
Êj + Vj(x)

) exp
[
− Êj+Vj(x)

kBT

]
Z(T )

dx + kB ln [Z(T )]

=
〈E〉
T

+ ln

[∑
j

exp

[
Ej(T )

kBT

]]
(4.44)

Note that from equations (4.34) and (4.40), the above entropy can be calculated without

explicitly evaluating any of the integrals associated with the harmonic oscillator dimensions.

4.3 EXAMPLE MODELS

In this supplement, we outline a small ’model zoo’ of potential models that could be used for

evaluating methods. This list is very far from complete, but we believe that these particular

models demonstrate the flexibility of our general model and can serve as a few effective tests

for situations that occur in protein systems.

4.3.1 Diffusion-Limited Cases

These cases consider situations where there are many states separated by small–or even

zero–energy barriers where convergence rates are limited by diffusion rates, in our case the

Arrhenius factors Aij.

2-state, 1-barrier

This model has two energy levels with diffusion-limited transitions within each energy

level and a larger barrier in between the two energy levels. Labeling the two energy levels

E0 and E1 with large energy barriers ∆E` and small energy barriers ∆Es gives a linear state

picture:

E0
∆Es←→ E0

∆Es←→ . . .
∆Es←→ E0

∆E`←→ E1
∆Es←→ E1

∆Es←→ . . .
∆Es←→ E1
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The two energy levels also include a significant entropy difference by having more states with

one energy level than the other energy level.

2-pathway

A second diffusion-limited model features two diffusion-limited pathways between two

end states. If you have end-states E0 and E1, this system looks like:

E0 ↔


∆Es←→ Ej1

∆Es←→ . . .
∆Es←→ Ejn

∆Es←→
∆Es←→ Ek1

∆Es←→ . . .
∆Es←→ Ekm

∆Es←→

↔ E1

where Eji and Eki are distinct pathways. Note that n and m may not be equal. It is also

topologically equivalent to a circle:

E0
∆Es←→ Ej1

∆Es←→ . . .
∆Es←→ Ejn

∆Es←→ E1
∆Es←→ Ek1

∆Es←→ . . .
∆Es←→ Ekm

∆Es←→ E0

This model is very easily expanded to an arbitrary number n-pathways.

4.3.2 Non-Diffusion-Limited Cases

These models have large barriers in the system that can become the rate-limiting factor.

2-state, n-barrier

To create n barriers between two states, we can explicitly define the energy of the inter-

mediate state to generate an arbitrary number of barriers. If you are interested in pathway

k between states E0 and E1, the energy levels can be explicitly written as E0 + ∆E0k = Ek

and E1 + ∆E1k = Ek. That gives the usual TST relation: E0 + ∆E0k = E1 + ∆E1k. A

3-barrier system would look like:

E0 ↔


∆E0j1←→ Ej1

∆Ej11←→
∆E0j2←→ Ej2

∆Ej21←→
∆E0j3←→ Ej3

∆Ej31←→

↔ E1

2-state, n-pathway

There is no reason all the pathways between two states need to be involved in a single

barrier. Two states could be separate by two (or more) pathways, one of which is diffusion-

limited and the other features a large barrier. As an example, consider a system with two
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states E0 = 1 kBT0 and E1 = 2 kBT0. One barrier state has energy E2 = 10kBT0, a very large

barrier. The other pathway, comprised of states Ejk = 0.05 ∗ k kBT0. The network would

look like:

E0 ↔


∆E03←→ E3

∆E31←→
∆Es←→ Ej1

∆Es←→ . . .
∆Es←→ Ej19

∆Es←→

↔ E1

The diffusion limited path uses small barriers, ∆Es. At low temperatures, the system would

move almost entirely through the diffusion-limited pathway. However, for sufficiently high

temperatures, most transitions would occur through the large barrier because of the lower

entropy cost.

4.3.3 Combining Models

All of the models listed here are only concerned with the transitions between two primary

states. These models can easily be combined by chaining them together linearly or by a

more complicated matrix of connections.

4.4 SIMULATIONS

4.4.1 Simulation Details

All of the simulations were run using the Numpy package in Python [2, 54, 85, 86]. Before

the start of each simulation, the transition matrices Mδt were calculated for all of the tem-

peratures. At each exchange attempt, first, the states of the system were updated according

to the transition matrices Mδt by comparing to a uniform random number. Then, the ener-

gies were calculated using Gaussian random numbers. Finally, neighboring replica exchange

attempts were performed. All random number generators were based upon the Mersenne

twister algorithm [70].

In order to demonstrate the effectiveness of MDMS, we devised a simple test case that

allowed us to a test the effectiveness of using parallel tempering with two temperature dis-

tributions versus standard constant temperature dynamics. For this test case, we will only
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use the enthalpic case.

4.4.2 Test Problem

Our test case is a three-state model with large barriers between the first state and the other

two states. The energy values can be seen in Table 4.1. The two large barriers lead to very

slow convergence times. The correlation time of the model at kBT0 = 1 is relatively long

(∼6.5 ns with Aij = 1/ps), and many samples would be required to get good statistics.

However, increasing the temperature to 2.828 kBT gives a correlation time of ∼15 ps.

We ran four replicas with temperatures at kBT =1, 1.414, 2 and 2.828, respectively.

Those temperatures follow the geometric recommendation in [82]. In order to get exchanges

at a reasonable frequency, we set m = 10, all of the energy functions Vi equal. The probability

density functions are shown in Figure 4.1-A.

Another advantage of MDMS is that energy density graphs such as Figure 4.1-A can

be easily made analytically, and the exchange frequency at equilibrium can be explicitly

calculated. When we ran the corresponding RE simulations, we obtain virtually identical

energy distributions at each temperature (Figure 4.1-B).

4.4.3 Results

The first test we performed was to see if MDMS can simulate the transitions between local

minima effectively. We ran 10,000 independent “MD” simulations, which represent molecular

dynamics simulations with no exchanges, for 2000 ps starting from random initial states at

Table 4.1: Table of energy values for each state and barriers between them.

E1 = 1 kBT0 ∆E12 = 12 kBT0

E2 = 2 kBT0 ∆E13 = 10 kBT0

E3 = 3 kBT0 ∆E23 = 2 kBT0

where kBT0 = 1
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Figure 4.1: The numerically calculated energy distriubtions almost exactly match the ana-

lytically calculated distribution. A) Theoretical energy distributions at each temperature.

B) Observed temperature distributions for each replica.

a temperature of kBT = 1. To ensure rapid convergence, we used energy barriers smaller

than those listed in Table 4.1. The reduced barrier heights are listed in the figure legend for

Figure 4.2. We then compared the average population of the lowest energy state (with energy

1 kBT0) to the correct equilibrium distribution. Three sets of calculations were performed

varying the sampling window δt, and no dependence on δt was observed. This can allow for

more challenging systems with even higher barriers between states requiring longer simulation

time.

To generate representative energies for each replica, we chose the harmonic dimension

parameter m = 10 because it gave a reasonable spread without overwhelming the energy

gaps. Larger m would simply require smaller gaps between the temperatures of successive

replicas as is seen in practice.

Next we ran replica exchange simulations using four replicas with temperatures kBT =1,

1.414, 2 and 2.828 respectively. As with the straight MD runs, we ran 10,000 parallel

RE simulations using the standard replica exchange rule in (4.29), independent simulations

started with random initial conditions so that each state was uniformly populated. The
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Figure 4.2: The standard MDMS MD model converges to the Boltzmann equilibrium. Also,

the convergence behavior of the system is independent of the sampling window δt. The y-

axis is the proportion of simulations where the lowest temperature replica is in the 1st state

at time t. The dashed line is the exact solution for uniform initial conditions. For the sake

of fast convergence, the energy barriers used were E12 = 6, E13 = 5 and E23 = 2.

103



population of the lowest energy state was compared to the exact equilibrium populations

(Figure 4.3). Figure 4.3 shows the convergence of the population of the lowest energy state

to the analytical result. The simulation energies are shown in Table 4.1. The standard

MD simulations would converge to equilibrium after about 30 ns, while the replica exchange

simulations reach their equilibrium values much faster (within 150 exchange attempts) and

maintain that population throughout the simulation. The difference in rate of convergence

is orders of magnitude.

To investigate the benefits of frequent exchange attempts, we ran four simulations where

we varied the interval between exchange attempts δt. As seen in Figure 4.4, going from

δt = 10 ps to δt = 1 ps shows a pronounced increase in the rate of convergence, in agreement

with previous studies [108, 121, 122]. However, smaller δt show little additional benefit.

There are obvious constraints to the sampling rate, not least of which being the rate of

sampling by the highest temperature replica. MDMS is currently limited by the lack of

an equilibration time within each well, but this result provides evidence for using frequent

exchanges to increase the rate of sampling. Using more frequent exchange rates does have

to be compared to the computational cost of doing more frequent exchange attempts.

The last test we ran was to explicitly test the recommended temperature intervals sug-

gested in [110]. We assumed that the entropy contribution of the harmonic oscillators was

small and only used the entropy from the discrete states for our calculation. As the total

entropy is bounded, we were only able to select three temperatures with a constant entropy

increase: kBT =1, 1.414, and 3.4. For comparison, the simulations with geometric temper-

ature differences were run with kBT =1, 1.414 and 2. Figure 4.5 shows significantly faster

convergence using the constant entropy increase temperature selection from [110]. These cal-

culations further show the power of MDMS in that the total time spent calculating entropies

and running simulations was less than three hours.
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Figure 4.3: A simple replica exchange simulation converges significantly faster than an MD

simulation with the parameters listed in the table. A) shows that the MD simulation is close

to constant on the time-scale of REMD convergence. B) shows that the MD simulation does

converge but at a time-scale approximately 100 times longer.
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Figure 4.4: Replica exchange simulations were run with varying exchange frequencies. Con-

vergence rates are increased with faster exchanges, but there is a limit to the rate of conver-

gence leading to diminishing returns.
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Figure 4.5: Replica exchange simulations were run with two different sets of temperature

intervals. The first set of simulations were run according to the geometric progression of

kBT =1, 1.414 and 2. The second set were run with a temperature distribution based on

[110] with kBT =1, 1.414 and 3.4.
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4.5 DISCUSSION

The simulation results we have presented here are very simple and do not break new ground,

but MDMS is very general and can be easily expanded to investigate a number of exchange

based methods and potentially even more general sampling methods. The model zoo in the

supplement gives a small selection of ideas that could be used in developing a systematic test

set for new methods. Our theoretical model may become a test-bed for future exchange based

sampling methods where many parameters can be tested and evaluated simultaneously.

In the results of this chapter, only two temperature selection schemes have been consid-

ered. However, there has been considerable work on this topic [3, 25, 57, 92, 105, 110]. In

previous attempts to quantify the effects of temperature selection such as [3], there was not

an obvious definition of optimal. For MDMS, the obvious metric is the real part of the slow-

est eigenvalue. While analytical results might be difficult to obtain, the analysis in [3] could

be repeated numerically for a few fixed models. In fact, a program could be written that

generates random models and automatically calculates convergence rates based on whatever

temperature selection method you choose.

As one example of a more general exchange method, Hamiltonian replica exchange meth-

ods could be implemented by simply modifying the barriers in the rate matrix and using

that to define the kinetics of each replica. The reduction in energy barriers could be esti-

mated directly from the particular changes to the energy function or empirically with short

simulations. For some types of Hamiltonians, such as changing the dihedral potentials such

as in [59], the change in barrier height is easy to calculate. However, even in a less straight-

forward case, such as changing Lennard-Jones potentials like in [53], potential of mean force

calculations could give an estimate for the change in barrier height.

One possible improvement would be to implement some mechanism that would allow

for non-instant equilibration in the harmonic oscillator dimensions. Before the simulation, a

family of energy distributions based on the convergence in time would be calculated. Then,

at each exchange attempt the time of the last transition would be calculated, and the energy

would be drawn from the relevant distribution. The simplest way to do that would be to

implement specific dynamics in between exchanges, e.g. using a method such as Gillespie’s
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algorithm [47]. It also should be possible to explicitly calculate the distribution of state

changes within the interval (t, t + δt) subject to the relevant boundary constraints. That

distribution would allow for calculation of a last transition time at each exchange attempt

again negating the need for explicit dynamics.

RE methods developed using MDMS will expand the size of systems for which we can

calculate statistical quantites. That means that more detailed atomistic actin-related models

can be used to calculate physical quantities. Whether it be parameterizing coarse-grained

models [19, 20], calculating binding and conformational change free energies [118], or es-

timating physical quantities of actin filaments using atomistic models [26, 71], enhanced

computational sampling methods will greatly aid the study actin networks going forward.

In conclusion, we have demonstrated a new model that allows for rapid testing of replica

exchange methods. We have developed a tool that can quickly generate many replica ex-

change simulations on a pre-defined system with exactly known statistical properties. Results

calculated with new methods can be compared to known quantities and guide method devel-

opment. We intend to use this model to test the applicability of reservoir replica exchange

methods [84, 107] and investigate their strengths and weaknesses in a systematic manner

and propose enhancements to overcome possible deficiencies and improve their efficiency.
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5.0 DISCUSSION

The results presented here both serve to improve our understanding of branching actin net-

works and justify some related numerical methods. Three different approaches are used in

studying actin networks from different perspectives. Chapter 2 used agent-based stochas-

tic simulations to probe how a branching actin network could collectively generate force

and experimentally observed force-velocity relationships. While chapter 3 is not necessarily

methodological, it is significantly more theoretical. The nature of solutions to a continuum

model of filament orientation was studied. The continuum model was shown to uniquely

select for an ‘optimal’ orientation pattern with a well-defined fitness function. However, the

results do provide new methods and perspective towards future work studying actin net-

work orientation patterns. In contrast, chapter 4 is purely methodological. Understanding

actin monomer binding properties and basic, physical properties of actin filaments, such as

stiffness, is very important for the study of branching actin networks. However, calculating

such things is close to or beyond the limit of current computing power. Even with improved

computational power, the curse of dimensionality will still persist. To improve our ability

to develop new methods for this problem, Molecular Dynamics Meta-Simulators (MDMS) is

proposed as a way to test new sampling methods.

Multiple patterns have been observed in the experimental force-velocity relationships of

branching actin networks. However, there is no accepted mechanism for how an actin net-

work can collectively generate force against a load [74]. We developed a stochastic simulation

that modeled each filament tip and the branching, capping and filament growth dynamics

explicitly. That model was able to qualitatively reproduce both general force-velocity re-

lationships experimentally observed [69, 89]. Our interpretation of the model is that the

temporal dynamics of filament turnover, i.e. new filaments branching and old filaments
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becoming capped, determines the nature of the force-velocity relationship. The network

appears to converge to an equilibrium number of filaments at the leading edge over multiple

time-scales. If an experiment is conducted on a fast time-scale, the network will not recruit

enough filaments to the leading edge to sustain the network velocity. However, if the force

is ramped up slowly or the experiment measures the velocity over a long enough time win-

dow, the slower time-scales in the network will converge sustaining the velocity in spite of

increasing velocity.

Our simulation results also explicitly contradicted previous results regarding the geom-

etry of the network. We found that filaments tended to organize in a fashion where most of

the filaments were perpendicular to the leading edge. However, previously reported simula-

tions where filaments tended to have a ∼ 35◦ degree angle relative to the normal direction

of the leading edge [115, 137]. We were able to reproduce their results for a very narrow

parameter range, which we argue is not likely physically accurate. Most experimental work

has shown the filaments organize with symmetric peaks in the orientation density some-

where between 25◦ and 45◦ relative to the normal direction of the membrane, consistent

with previous simulations. The fact that their results are consistent with experiment only

for a narrow parameter range suggests some other mechanism may be involved. Though,

recent experiments have cast doubt on the actual orientation pattern [138].

There remains much to be learned by using stochastic models of branching actin networks.

Our model did not include the dynamics of filopodia, bundles of actin filaments present at the

leading edge of a cell, which are believed to play a significant role in cell motility [72]. Motile

cells also display wave-like behavior with the lamellipodium expanding and contracting [16].

Both of these phenomena remain areas where further stochastic modeling would likely be

beneficial. Actin networks have also been successfully modeled as a visco-elastic gel [74, 97].

However, as of yet, the visco-elastic properties of actin have not been successfully connected

to the basic physical processes of actin networks.

There is also a need to develop new methods for studying such stochastic models, includ-

ing for modeling actin. One particularly active area of current research involves developing

new methods for simulating point-processes. The canonical example for this is the Gillespie

algorithm [47]. However, models such as the one in chapter 2 have a significant spatial com-
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ponent complicating the simulation details. Future modeling work will also likely require

spatial resolution [104]. The simulations presented here were very time consuming and run

on a network with significant computational resources. However, a less naive computational

method would likely significantly reduce the computational resources required. Reproducing

and extending our work would greatly benefit from such a method.

As observed in electron micrographs, branching actin networks appear to have a regular

geometry relative to the leading edge [68, 138]. The angle between the filaments and the

membrane appears to be quite regular. The exact mechanism regulating these patterns is not

currently known. Moreover, it is not even known what pathway or signal is used that causes

almost all actin filaments to point towards the membrane. One hypothesized mechanism is

that the capping rate of filaments is somehow orientation dependent [68, 137]. Continuum

models have been developed to test this hypothesis. Those models were nonlocal diffusion

equations, so the nature of the solutions is non-obvious. The analysis in chapter 3 was

done to place the numerically calculated solutions in context. We were able to completely

characterize the solution of one type of model and greatly restrict the possible dynamics of

a second model. For the model with filaments branching with a first-order rate constant, we

found that the model uniquely selected for an optimal orientation pattern in the sense that

solutions v(θ, t) ∼ exp[µt]u0(θ). When filament branching is assumed to occur at a constant,

or zeroth-order, rate, we were not able to completely characterize solutions. However, we

were able to show that there exists a unique positive equilibrium. The stability of that

equilibrium remains in doubt. Thus, both models select for a unique orientation pattern in

some sense. We also found that that orientation pattern is the unique extremum of a related

optimization problem.

Several mathematical problems immediately follow from that work. Obviously, a proof of

conjecture 1 would complete the analysis of equation (3.8). There is also an obvious general-

ization of theorem 1. The densities of interest are not necessarily absolutely continuous with

respect to the Lebesgue measure. Both (3.7) and (3.8) can be interpreted as being defined

on the space of positive, finite, countably-additive measures, which is a Banach space when

equipped with the total variation norm. Solutions are then considered in the weak sense

with respect to the dual space. The same result should still hold over that more general
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space.

The results in chapter 3 prove the existence of an optimal orientation pattern but do

not characterize that solution. The two orientation patterns generally described can be

characterized by whether or not 0◦ is a local minimum or a local maximum in the density.

It is easy to show that the symmetry hypotheses imply that 0◦ must be one of the two.

It remains an open question as to what conditions are necessary to give one pattern over

the other. Quint and Schwarz [103] used a discretization to attempt to characterize how

general the two patterns were but did not come to any strong conclusions. Further analysis

could be performed on the continuous equations to come to a stronger characterization. The

numerical method presented in section 3.7 could be used to efficiently calculate a variety

of equilibria. The numerical results presented here, however, were done with stability in

mind and include non-physical branching and capping functions. Physical considerations

could greatly limit the possible candidates for the capping and branching functions, κ and

B. For example, it has previously been assumed that κ(θ) reaches a minimum at 0◦. For

those candidates, the two orientation patterns previously reported, as in [68, 137], can be

differentiated by whether 0◦ is a local minimum or maximum of the density function u. That

it has to be one or the other can be seen, for the first-order case, by:

u′(0) =
∂

∂θ

∫
S1 B(θ − ω)u(ω) dω

κ(θ) + µ

∣∣∣∣
0

=
(κ(0) + µ)

∫
S1 B′(−ω)u(ω) dω − κ′(0)

∫
S1 B(−ω)u(ω) dω

(κ(0) + µ)2
= 0 (5.1)

and the fact that u is symmetric. The hypothesis that κ(0) is a minimum gives that κ′(0) = 0.

The hypothesis that B is symmetric implies B′ is odd. When combined with u being even,

that implies that the integral
∫
B′u = 0. Using the smoothness assumption from the proof

of theorem 1, we can characterize most solutions by the sign of the second derivative:

u′′(0) =
(κ(0) + µ)

∫
S1 B′′(−ω)u(ω) dω − κ′′(0)

∫
S1 B(−ω)u(ω) dω

(κ(0) + µ)2

Analyzing the above equation could lead to understanding the shape dependence on κ and

B.
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The development of new enhanced sampling algorithms has been a very active area of

research for a number of years [55, 64, 134, 146]. One class of enhanced sampling methods,

called replica exchange (RE) methods, use parallel simulations run in parallel while peri-

odically exchanging states [44, 133]. A number of new RE methods have been developed

[39, 62, 63, 66, 67, 83, 84, 106, 107, 128, 129], but there does not exist a way to effectively

compare methods and make informed decisions on which method to use [146]. We proposed

MDMS as a start to fill this gap, at least for RE methods. The most time consuming step of

testing RE methods is running the dynamics between exchange attempts. MDMS abstracts

those dynamics, which allows us to rapidly test exchange criteria. It drastically reduces the

amount of time it takes to initially test a new RE method.

Current and future work using MDMS is focused on developing new replica exchange

methods. In particular, MDMS is currently being used to test reservoir replica exchange

methods [62, 84, 107]. Those methods rely on exchanging states with a reservoir of confor-

mations that correspond to local minima of the energy function that are previously calculated

using some brute-force sampling method. MDMS allows for energy functions and state spaces

that can be complex while still being completely understood. For example, we know all of

the local minima for an MDMS model and can test the effect of have imperfect sampling in

the reservoir. We can also specify exact properties of the reservoir relative to properties of

the system without any expensive calculations. There is also the potential to expand MDMS

beyond temperature RE and related methods. MDMS should also be able to model Hamil-

tonian replica exchange methods such as [39, 53]. The transition rates could be modified

using an estimate of the change in energy barriers from using the modified Hamiltonian.

MDMS also could allow for analytical calculation of replica exchange efficiencies similar to

[108, 109]. Unlike previous attempts such as [3], MDMS comes with a pre-defined metric for

how to define optimal sampling.

Further work may show that MDMS is applicable even beyond the methods outlined

here. In particular, we would like to eventually extend MDMS to be able to test non-

RE sampling methods to begin to allow for rigorous comparison of the numerous enhanced

sampling algorithms available.
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APPENDIX

PSEDUO-CODE FOR THE AGENT-BASED MODEL

The following is a pseudo-code representation of the algorithm used in chapter 2. As such,

all of the memory handling, writing to file, array resizing, etc. are omitted. All calculations

are done in angles, and the trigonometric functions are assumed to be consistent with that.

ran1 generates uniform random numbers in [0,1), and gasdev generates samples from the

standard normal distribution with mean 0 and variance 1. Figure A1 outlines the basic

structure of the simulation.

1 // Var iab l e d e f i n i t i o n s
2 system [ i ] [ j ] // 2−dim array o f f i l amen t s t a t e s
3
4 system [ i ] [ 0 ] // Filament ang l e
5 system [ i ] [ 1 ] // x−po s i t i o n
6 system [ i ] [ 2 ] // Distance from l ead in g edge
7 system [ i ] [ 3 ] // Force app l i e d to f i l amen t
8
9 contact [ i ] // Boolean array f o r f i l amen t

con tac t ing
10 // l e ad in g edge
11
12 T // Tota l number o f time s t e p s
13 dt // Time s t ep l en g t h
14
15 n f i b e r s // Current number o f f i l amen t s
16 lambda // Branching cons tant
17 Cl=exp(−lambda ) // Branching Poisson cons tant
18 kappa // Capping cons tant
19 seed // Random seed
20 n f ront // Number o f f i l amen t s con tac t ing
21 // l e ad in g edge
22
23 vf // Free f i l amen t v e l o c i t y
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Figure A1: A flow chart diagramming the basic simulation structure.
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24 de l t a // Length o f i n d i v i d u a l a c t i n subun i t
25 f t o t // Tota l f o r c e
26
27 // Randomly as s i gn uniform i n i t i a l c ond i t i on s
28
29 for ( iN < n f i b e r s ) {
30 system [ iN ] [ 0 ] = −90 + 180∗ ran1 ( seed )
31 system [ iN ] [ 1 ] = ran1 ( seed )
32 }
33
34 // I t e r a t e f o r T s t e p s
35
36 for ( i t < T) {
37
38 // I d e n t i f y p o s i t i o n o f f u r t h e s t f i l amen t
39 // This d e f i n e s the p o s i t i o n o f the l e ad in g edge
40
41 Front = 0 // Reset l e ad in g edge po s i t i o n
42 for ( iN < n f i b e r s ) {
43 TestFront = Front − system [ iN ] [ 1 ]
44 i f ( TestFront<0) {
45 Front = system [ iN ] [ 1 ]
46 }
47 }
48
49 // Test to see i f f i l amen t i s w i th in one ac t i n subun i t o f l e ad in g edge
50
51 n f ront = 0 // Reset number o f con tac t ing f i l amen t s
52 system [ iN ] [ 2 ] = Front − system [ iN ] [ 1 ]
53 i f ( sysetm [ iN ] [ 2 ] < de l t a ) {
54 contact [ iN ] = 1 // Mark f i l amen t as con tac t ing l . e .
55 n f ront++
56 } else {
57 contact [ iN ] = 0
58 }
59
60 // Ca l cu l a t e number o f branching and capping even t s
61
62
63 Ck = exp(−kappa ∗( n f i b e r s−nf ront ) ∗dt ) ;
64 // Capping Poisson cons tant
65 p = 0 // Poisson dummy va r i a b l e
66 K = −1 // Reset number o f capping even t s
67 P = ran1 ( seed )
68 while (p<P) {
69 K++
70 p+=Ck∗pow( kappa ∗( n f i b e r s−nf ront ) ∗dt ,K) / f a c t o r i a l (K)
71 }
72
73 p = 0
74 L = −1 // Reset number o f branching even t s
75 P = ran1 ( seed )
76 while (p<P) {
77 L++
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78 p+=Cl∗pow( lambda∗dt ,L) / f a c t o r i a l (L)
79 }
80
81 // Implement capping and branching even t s
82 iK=0
83 while ( iK < K) {
84 iM = choose ( contact , n f i b e r s , nfront , seed )
85 // Uniform random s e l e c t i o n from
86 // f i l amen t s not con tac t ing l . e .
87 delete system [ iM ]
88 system [ iM ] = system [ n f i b e r s −1] // Reassign f i l amen t n f i b e r s −1 to iM
89 contact [ iM ] = contact [ n f i b e r s −1]
90 n f i b e r s−−
91 iK++
92 }
93
94 iL=0;
95 while ( iL < L) {
96 contact [ n f i b e r s ] = 0 // New f i l amen t not con tac t ing l . e .
97 iM = choose ( contact , n f i b e r s , nfront , seed )
98 p = ran1 ( seed )
99 system [ n f i b e r s ] [ 1 ] = system [ iM ] [ 1 ] − cos ( system [ iM ] [ 0 ] ) ∗2∗ de l t a ∗p
100 // Place new f i l amen t backwards a long
101 // e x i s t i n g f i l amen t
102 P = 5∗ gasdev ( seed ) + 70 // Choose a b s o l u t e branching ang le
103 i f (p < 0 . 5 ) // Choose branching d i r e c t i o n
104 ang le = system [ iM ] [ 0 ] + P
105 else
106 ang le = system [ iM ] [ 0 ] − P
107 i f ( abs ( ang le )>90) { // I f f i l amen t not po in t i n g forwards
108 iL++ // r e j e c t branching event , add to
109 continue // counter and cont inue
110 }
111 system [ n f i b e r s ] [ 0 ] = ang le
112 n f i b e r s++
113 iL++
114 }
115
116 // Ca l cu l a t e f o r c e s
117
118 alpha = 0 // Reset force−shar ing f a c t o r
119 for ( iN < n f i b e r s ) {
120 i f ( contact [ iN ] )
121 alpha += cos ( system [ iN ] [ 0 ] )
122 }
123
124 for ( iN < n f i b e r s ) {
125 i f ( contact [ iN ] )
126 system [ iN ] [ 3 ] = f t o t ∗ cos ( system [ iN ] [ 0 ] )
127 }
128
129 // Advance the p o s i t i o n o f the f i l amen t t i p s
130
131 for ( iN < n f i b e r s ) {
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132 i f ( contact [ iN ] )
133 sysetm [ iN ] [ 1 ] += dt∗ vf ∗ de l t a ∗ cos ( system [ iN ] [ 0 ] )
134 else
135 sysetm [ iN ] [ 1 ] += dt∗ vf ∗ de l t a ∗ cos ( sysetm [ iN ] [ 0 ] ) ∗\
136 exp(−system [ iN ] [ 3 ] ∗ de l t a ) ∗ cos ( system [ iN ] [ 0 ] )
137 }

119



Bibliography

[1] V. C. Abraham, V. Krishnamurthi, D. L. Taylor, and F. Lanni. The actin-based
nanomachine at the leading edge of migrating cells. Biophys J, 77(3):1721–1732, 1999.

[2] D. Ascher, P. F. Dubois, K. Hinsen, J. Hugunin, and T. Oliphant. Numerical Python.
Lawrence Livermore National Laboratory, Livermore, CA, ucrl-ma-128569 edition,
1999.
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