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In order to identify the genes associated with a given disease, a number of different high-

throughput techniques are available such as gene expression profiles. However, these high-

throughput approaches often result in hundreds of different candidate genes, and it is thus very 

difficult for biomedical researchers to narrow their focus to a few candidate genes when studying 

a given disease. In order to assist in this challenge, a process called gene prioritization can be 

utilized. Gene prioritization is the process of identifying and ranking new genes as being 

associated with a given disease. Candidate genes which rank high are deemed more likely to be 

associated with the disease than those that rank low. This dissertation focuses on a specific kind 

of gene prioritization method called network-based gene prioritization. Network-based methods 

utilize a biological network such as a protein-protein interaction network to rank the candidate 

genes. In a biological network, a node represents a protein (or gene), and a link represents a 

biological relationship between two proteins such as a physical interaction.  

 The purpose of this dissertation was to investigate if the incorporation of biological 

knowledge into the network-based gene prioritization process can provide a significant benefit. 

The biological knowledge consisted of a variety of information about a given gene including 

gene ontology (GO) functional terms, MEDLINE articles, gene co-expression measurements, 

and protein domains to name just a few. The biological knowledge was incorporated into the 

network’s links and nodes as link and node knowledge respectively. An example of link 

knowledge is the degree of functional similarity between two proteins, and an example of node 
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knowledge is the number of GO terms associated with a given protein. Since there were no 

existing network-based inference algorithms which could incorporate node knowledge, I 

developed a new network-based inference algorithm to incorporate both link and node 

knowledge called the Knowledge Network Gene Prioritization (KNGP) algorithm.  

The results showed that the incorporation of biological knowledge via link and node 

knowledge can provide a significant benefit for network-based gene prioritization. The KNGP 

algorithm was utilized to combine the link and node knowledge.  
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GLOSSARY 

Candidate gene prioritization – is the process of identifying and ranking new genes as potential 

candidates of being associated with a disease or phenotype. 

Knowledge network – is a graph that consists of nodes and links between pairs of nodes where 

nodes represent entities and the links represent a variety of pair-wise relations that can exist 

among the entities. For example, in a protein-protein interaction knowledge network, nodes 

represent proteins, and the links represent pair-wise interactions among the proteins. 

Link weight – is a value assigned to a link in the knowledge network. The link weight is a 

number that characterizes a relationship between a pair of nodes. 

Node weight – is a value assigned to a node in the knowledge network. The node weight is a 

number that characterizes a node property. 

Root nodes – are nodes known to be associated with a given concept (e.g., disease) in a 

knowledge network. The set of root nodes is denoted by R. 

Root set – is a set of genes or proteins known to be associated with a given disease.  

Candidate nodes – are nodes in a knowledge network that a user wants to rank or prioritize 

relative to a set of root nodes. The set of root nodes is denoted by C. 

Candidate set – is a set of genes or proteins that a user wants to rank or prioritize relative as 

being associated with a given disease.  
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Inference – in a network is the process of ranking nodes relative to a set of root nodes. Examples 

of network inference algorithms include PageRank and PageRank with Priors. 

PageRank – is a network inference algorithm that is widely used by internet search engines. 

PageRank with Priors – is an extension of the PageRank algorithm which incorporates a prior 

probability vector for nodes of the network.  

Knowledge network gene prioritization (KNGP) algorithm – is a new network inference 

algorithm that was developed in this dissertation and allows the incorporation of both link 

weights and node weights. In contrast, the PageRrank and PageRank with Priors algorithms are 

able to incorporate only link weights. 
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1.0  INTRODUCTION 

Understanding the genetic and biological mechanisms of diseases is an ongoing challenge. 

Common diseases such as Alzheimer’s disease and asthma that occur relatively frequently in the 

population are likely to have complex and multifactorial underlying mechanisms. Moreover, 

common diseases likely arise from a combination of several genetic factors that interact with 

environmental factors. In recent years, several high-throughput techniques that survey a large 

number of genes or even the entire genome have been developed for elucidating the genetic 

factors of common diseases. Such techniques include, for example, gene expression profiling, 

genotyping of single nucleotide polymorphisms (SNPs), and whole genome sequencing. One 

challenge with such techniques is that they typically produce hundreds of candidate genes 

associated with the disease of interest. In this dissertation, I focus on one approach to reduce the 

number of candidate genes for a disease of interest that can then be examined in detail by the 

biomedical researcher. This approach integrates several types of knowledge and information 

about genes in general with knowledge of genes already known to be associated with the disease 

of interest and produces a small set of candidate genes. 

Candidate gene prioritization is the process of identifying and ranking new genes as 

potential candidates of being associated with a disease or phenotype. Genes that rank higher are 

more likely to be associated with the disease and more worthy of further biological investigation 

compared to those genes that rank lower. Most candidate gene prioritization methods rely on a 
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set of genes that are already known to be associated with the disease (the root set) to rank the 

other genes. Developing excellent methods for candidate gene prioritization is important, 

because such methods can save biomedical researchers a significant amount of time, effort and 

resources by allowing them to focus on a relatively small set of promising genes to be studied in 

depth. Thus, candidate gene prioritization has enormous potential for accelerating progress in 

translational bioinformatics and in the development of new therapies.  

Many gene prioritization methods rank candidate genes based on the similarity between 

the candidate genes and the genes in the root set. Similarity between genes is typically computed 

from known knowledge and information about genes such as the function and the cellular 

location of the corresponding protein. Such knowledge is obtained from functional annotations 

[1], sequence data [2] and gene expression data [3]. Information from non-human sources have 

also been shown to be useful in a recent study that incorporated mouse phenotype information 

[4].  

1.1 OVERVIEW OF NETWORK-BASED APPROACH 

More recently, network-based approaches have been applied to candidate gene prioritization. In 

the network-based approach, biological knowledge about genes is represented as a network. A 

network is a mathematical object that consists of nodes and links between pairs of nodes where 

nodes represent entities and the links represent a variety of pair-wise relations that can exist 

among the entities. For example, in a protein-protein interaction network (PPIN), nodes represent 

proteins, and the links represent pair-wise interactions among the proteins. In a co-expression 

network, nodes represent genes measured in a microarray experiment, and the links may 
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represent correlations between expressions of pairs of genes. A network that incorporates 

knowledge is called a knowledge network. 

In network-based gene prioritization, an inference algorithm is applied to the knowledge 

network to rank the genes relative to the root set of genes (or proteins) associated with a disease 

of interest. The premise underlying this approach is that genes in the network that are in close 

proximity to genes in the root set are more likely to be associated with the disease than those that 

are further away. Proximity between genes in a network can be defined and computed using a 

variety of inference methods that have been developed for social- and Web-network analysis 

such as PageRank [5] and Hyperlink-Induced Topic Search (HITS) [6]. 

 In this dissertation, I investigate - in depth - the network-based approach for the 

candidate gene prioritization problem. In particular, I investigate how a variety knowledge 

sources about genes can be incorporated into the network, and if such incorporation is useful for 

improving the network-based gene prioritization process. In the past, researchers have 

investigated the incorporation of only a single type of knowledge in network-based gene 

prioritization. My hypothesis is that combining and incorporating several types of knowledge in 

the network will outperform a network that incorporates only a single type of knowledge. A 

major challenge in incorporating several knowledge sources is to design a suitable network 

representation that denotes combined knowledge. In conjunction with this, I investigated two 

ways of representing knowledge in a network – namely – as nodes and links. An example of 

knowledge that can be represented as a link between two nodes is the degree of functional 

similarity between two genes where a node denotes a gene and a link denotes the degree of 

functional similarity between a pair of genes. Additional examples of link knowledge include 

known protein-protein interactions, gene expression information, and gene functional 
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information. An example of knowledge that can be represented in a node is the number of 

MEDLINE articles associated with a given gene of interest. Additional examples of such node 

knowledge include the number of gene ontology annotations associated with a gene and the 

number of functional domains on the corresponding protein derived from a gene. In addition to 

investigating the utility of each type of knowledge, I also investigate combining several types of 

knowledge and representing them in the network. Figure 1 illustrates a small network that 

represents both node and link knowledge in the form of node and link weights.  

Inference in a network is the process of ranking nodes relative to a set of root nodes. 

Examples of network inference algorithms include PageRank and PageRank with Priors. These 

algorithms can do inference only on a network containing link knowledge - not on networks 

which contain both link and node knowledge. Because of this limitation of existing inference 

algorithms, I developed a new inference algorithm called the Knowledge Network Gene 

Prioritization (KNGP) algorithm which is a generalization of the PageRank and PageRank with 

Priors algorithms. The PageRank with Priors inference algorithm takes as input a network and a 

root set and then computes a relative importance score for each of the remaining nodes in the 

network. This relative importance score is a measure of how likely the corresponding gene is to 

be associated with the disease of interest. The PageRank algorithm is a link analysis algorithm 

that was developed by Larry Page and is used by the Google Internet search engine [7]. It assigns 

a relative importance score to each webpage of a hyperlinked set of webpages with the purpose 

of measuring its relative importance within the set. The PageRank with Priors algorithm is a 

generalization of the PageRank algorithm. The Knowledge Network Gene Prioritization 

inference algorithm is an important contribution of this dissertation.  
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Figure 1. Example of a network with link weights and node weights. 

1.2 MAIN AIMS 

The main aim of this dissertation is to determine if the incorporation of knowledge is helpful in 

network-based gene prioritization. The incorporation of knowledge in the form of node 

knowledge, link knowledge, a combination of link knowledge, and a combination of link and 

node knowledge together was investigated. In order to determine if the knowledge added any 

significant benefit, the PPIN was used as the baseline, because this is the type of network that is 

typically used in network-based gene prioritization. The null and alternative hypotheses for the 

four main aims are the following:  

 

The null (H0) and alternate hypotheses (H1) for the first aim are as follows: 

H0: The incorporation of link knowledge from a single source does not provide a benefit 

for network-based gene prioritization. The link knowledge investigated include gene 



 6 

function information from the biological process ontology, molecular function ontology, 

cellular component ontology, MEDLINE and gene expression measurements.  

H1: Some forms of link knowledge provide a benefit for network-based gene 

prioritization. 

 

The null (H0) and alternate hypotheses (H1) for the second aim are as follows: 

H0: The combination of different types of link knowledge does not provide a benefit for 

network-based gene prioritization. The types of link knowledge that were combined for 

investigation included gene functional information and predicted protein-protein 

interactions. 

H1: The combination of some forms of link knowledge provides a benefit in network-

based gene prioritization. 

 

The null (H0) and alternate hypotheses (H1) for the third aim are as follows: 

H0: The incorporation of node knowledge does not provide a benefit for network-based 

gene prioritization. The node knowledge investigated include the number of MEDLINE 

articles associated with each gene, the number of gene ontology annotations for a given 

gene, and the number of domains associated with each protein.  

H1: Some forms of node knowledge provide a benefit in network-based gene 

prioritization. 

 

The null (H0) and alternate hypotheses (H1) for the fourth aim are as follows: 
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H0: The incorporation of node knowledge and link knowledge together does not provide a 

benefit for network-based gene prioritization.  

H1: The combination of node and link knowledge together can provide a benefit for 

network-based gene prioritization.  

1.3 CONTRIBUTIONS 

There are two major contributions of this dissertation.  

The first major contribution is the development of a network-based inference algorithm 

that can utilize both link and node knowledge for network-based gene prioritization. Currently, 

there are no network-based inference algorithms which can incorporate node knowledge into the 

network-based gene prioritization process. Thus, in order to incorporate node knowledge, a new 

algorithm had to be developed, and this algorithm is called the Knowledge Network Gene 

Prioritization algorithm.  

The second major contribution is the investigation of whether biological knowledge can 

successfully be used to significantly benefit the network-based gene prioritization process. Both 

the introduction of link and node knowledge was investigated. The aims listed in the previous 

section directly address this contribution. In order to determine if the biological knowledge 

added any significant benefit, the knowledge sources were compared to the protein-protein 

interaction network, because this network does not represent the incorporation of any new 

knowledge into the network-based gene prioritization process and represents what is traditionally 

used for network-based gene prioritization.  
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1.4 OVERVIEW OF DISSERTATION 

Chapter 2 provides the relevant background for gene prioritization. The background includes a 

broad overview of network and non-network based gene prioritization methods and a detailed 

review of the common network inference algorithms including PageRank and PageRank with 

Priors.  

Chapter 3 provides a detailed description of the Knowledge Network Gene Prioritization 

algorithm including its components and computational complexity. Chapter 4 provides details of 

the experimental methods and describes the knowledge sources used in creating the knowledge 

networks, the creation of root sets for the experimental diseases and the evaluation protocol. 

Chapter 5 provides the experimental results including results on networks derived from synthetic 

data and networks derived from real biological knowledge. Chapter 6 summarizes the 

contributions and discusses some limitations and future work. 
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2.0  BACKGROUND 

This chapter provides background on gene prioritization methods and inference methods for 

networks. Section 2.1 gives a general overview of the different types of gene prioritization 

methods including similarity and network-based methods. Section 2.2 describes the 

representation of knowledge in networks, and Section 2.3 describes two common network-based 

inference algorithms including Page Rank and Page Rank with Priors algorithms. Section 2.4 

briefly reviews previous work that uses several knowledge sources in networks.  

2.1 GENE PROPRITIZATION METHODS 

The gene prioritization methods described in the literature can be broadly classified into two 

groups: similarity-based and network-based methods. Section 2.1.1 provides a review of 

similarity-based gene prioritization methods and Section 2.1.2 summarizes the literature on 

network-based similarity methods. The section ends with an overview of network-based 

methods.  
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2.1.1 Similarity-based methods 

Similarity-based methods attempt to identify those candidate genes whose features are most 

similar to genes known to be associated with a particular disease. Examples of such features 

include expression patterns [3], sequence features [1], and functional annotations [8] to name just 

a few. The following are a rather exhaustive description of the similarity based papers in the 

literature.  

Radivojac et al. [9] constructed a Support Vector Machine classifier using similarity 

features to predict a gene’s association with a disease. Three different types of features were 

constructed: Protein-protein interaction disease ontology (PPI-DO), protein-protein interaction 

gene ontology (PPI-GO), and sequence, physiochemical, and other predicted properties (SPP-

GO). The PPI-DO and PPI-GO features were constructed by counting the number of disease and 

gene ontology terms at various protein interaction distances in the PPIN. The interaction distance 

was defined as the shortest distance between two nodes in the PPIN. The SPP-GO features were 

constructed from physiochemical or predicted properties (intrinsic disorder, hydrophobic 

moment, prediction of helix, sheet, coil, predictable surface area, etc.). The classifier was used to 

predict associated genes for 422 diseases, and the mean area under the ROC curve (AUC) was 

73.1%. The authors showed that a state-of-the art classifier using similarity features was able to 

identify candidate genes with reasonable performance.  

Rossi et al. [10] created Transcriptomics of OMIM (TOM). TOM first uses sequence 

information to identify candidate genes at a given chromosomal area of interest. The candidate 

genes are then filtered based on their expression profile and GO annotation similarity to the 

genes already known to be associated with the disease. The algorithm is available online, and it 
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allows the user to associate gene mapping and functional annotations in the search for candidate 

genes.  

In one of the earliest approaches, Perez-Iratxeta et al. [11] created a gene prioritization 

system based on a fuzzy set theory. The system calculated gene-disease associations by linking 

phenotype to genotype and filtered the candidate genes through a MEDLINE search. The system 

was used to discover gene-disease relationships for 455 genetically inherited diseases.  

Chen et al. [4] constructed an application called ToppGene that uses a fuzzy similarity 

based score which measures the similarity between sets of feature annotations for two genes. The 

types of annotations used for computing the measures of similarity were GO, Mammalian 

Phenotype, Pathway, Protein Domain, MEDLINE, and Protein Interactions. In ToppGene, those 

candidate genes with more similar annotation sets to the known disease related genes were 

deemed more likely to be associated with the disease.  

Adi et al. [1] constructed a gene prioritization tool called PROSPECTR that uses a wide 

variety of sequence features such as the sequence’s percent protein identity to a rat homolog, the 

number of exons, and whether the protein has a predicted transmembrane domain. These 

sequence features were input into a decision tree classifier to predict a gene’s likely involvement 

in a disease. The authors showed that PROSPECTR was able to expand the set of genes thought 

to be implicated in the disease from the root set two-fold 77% of the time. The same authors later 

created SUSPECTS [2]. SUSPECTS is a freely available web service which combines sequence 

and annotation purposes for the purpose of gene prioritization. Most notably, the method is able 

to limit the effect of annotation bias by combining the precision of annotation-based methods 

with the better recall of sequence-based methods. In conclusion, the authors found that 

SUSPECTS was an improvement over PROSPECTR.  
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Aerts et al. [3] constructed Endeavor to prioritize genes for human diseases. Endeavor 

attempts to integrate multiple data sources which annotate a variety of protein and gene 

characteristics including functional annotations (Gene Ontology), microarray experiments, and 

pathway membership. Candidate test genes are then ranked according to their similarity with the 

training set of genes based on the above characteristics. The authors obtained an AUC of 0.866 

by integrating all of the data sources. Endeavor is also able to prioritize genes in biological 

pathways sets using similar methodology.  

George et al. [12] created a methodology called Common Module Profiling (CMP) to 

prioritize genes in a specific locus. CMP uses a method called SSEARCH – an implementation 

of the Smith and Waterman alignment algorithm – to calculate the similarity between the 

domains of the candidate proteins and the known diseased proteins, and this similarity is utilized 

to identify novel disease genes. With 170 diseased genes for 29 diseases, a specificity of 0.69 

and sensitivity of 0.59 was obtained.  

Hua et al. [13] proposed an ensemble learner in combination with a bootstrapping method 

to impute the missing expression values in a microarray. The new expression vectors were then 

used to prioritize a list of genes using the student’s t-test. The authors compared their 

methodology to a common non-ensemble approach, and they showed that their method was 

better able to control the false positives in gene prioritization.  

De Bie et al. [14] constructed a novel kernel based method for gene prioritization based 

on a number of data sources including the GO InterPro Domains (IP), and KEGG pathways to 

name just a few, and the authors showed that a combination of these data sources performed 

more adequately than using just one data source. The authors showed that their new kernel 

method outperformed the previous Endeavor methodology mentioned previously. 
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Hutz et al. [15] created CANDID. CANDID is a gene prioritization tool to output 

rankings of candidate genes for a given disease. CANDID uses several data sources to produce 

the rankings including publications, protein domain descriptions, gene expression profiles, cross 

species conservation measures, and protein-protein interactions. Each candidate gene then 

receives a score based on the gene’s similarity to the traits associated with the desired disease for 

each data source. For instance, if a candidate gene is very similar to a given disease’s protein 

domains, the gene will receive a high score. In order to produce a final ranking, a user-defined 

weight for each for each data source is defined, and the scores in conjunction with the weights 

are then coalesced to produce a final ranking for each gene. CANDID was tested on several 

known diseases from the Online Mendelian Inheritance of Man (OMIM) and performed 

adequately. The approach taken by these authors to incorporate the knowledge sources is 

somewhat similar to the approach taken in this dissertation, even though it was not in the 

network-based context. 

All of the preceding similarity approaches consider a very large set of proteins as the 

candidate gene set to prioritize for a given disease. However, there are some similarity based 

methods which only prioritize a small subset of genes. For instance, some prioritization methods 

only prioritize genes within a given quantitative trait locus (QTL). A QTL is a small stretch of 

DNA which is suspected to be linked to a given trait through an experimental measure (SNP 

testing). The following similarity methods prioritize a small subset of genes.  

Gauton et al. [16] developed a freely available gene prioritization service called 

CEASER. CEASER combines data and text mining to rank genes according to a given biological 

process (such as a disease). CEASER consists of three steps. CEASER uses ontologies to exploit 

the knowledge of complex traits in the literature; this knowledge is then semantically mapped to 
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trait and protein-centric information from a variety of data sources such as protein-protein 

interactions, metabolic pathways and tissue-specific gene expression. CEASER was tested on 18 

susceptibility genes for 11 complex traits and shown to be rather successful. The test genes were 

ranked higher than about 96% of all genes on average. 

Shriner et al. [17] utilized an approach which was highly dependent on the GO.. The GO 

is a network of functional terms with links which describe the function of a given gene. This 

dissertation utilizes the GO, and the GO is further explained in Section 3.1. Using the GO for 

gene prioritization, the typical approach is to try to find the genes which are most represented in 

a given set of interesting genes (i.e., differentially expressed genes). This is called gene 

enrichment. However, the problem with most gene enrichment approaches is that there are 

several inherent correlations of the terms within the GO, and these correlations are not accounted 

for in the statistical machinery. In order to alleviate this correlation concern, the authors 

developed a dimension reduction method through Principle Component Analysis. The authors 

then applied this method in conjunction with a novel scoring scheme to prioritize genes within a 

given Quantitative Locus Region (QTL). This method was called Commonality of Functional 

Annotation (CFA). The method was applied to two complex traits: Alzheimer’s disease and 

Body Mass Index.  

Linghu et al. [18] integrated 16 different genomic data sources including protein-protein 

interactions and expression data among others to create a functional-linkage network. In order to 

create the functional linkage network, a naïve Bayes classifier was used to compute functional 

links between all possible gene pairs. The functional links (or weights) represented the 

probability of the gene pair sharing in the same biological process (i.e., disease) after summing 

over all the data sources. After the functional link weights were created, a linkage weight cutoff 
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score (or threshold) was chosen such as to determine if the pair of genes retained a link. This 

threshold was used to determine if the overall evidence supported the functional linkage. The 

threshold retained edges with more evidence for functional association and removed edges with 

more evidence against functional association. In order to prioritize the genes, a similarity-based 

neighborhood weighting scoring scheme was utilized which prioritized a given gene according to 

the sum of its weights with the neighboring root genes. The authors used their gene prioritization 

methodology to predict new candidate disease genes for 110 diseases. Furthermore, the authors 

showed that the integration of multiple data sources outperformed the use of just individual data 

sources. It is important to note that the authors used a local based inference algorithm instead of 

a global based inference algorithm. The difference between these two types of algorithms is 

described in Section 2.2.2. 

2.1.2 Network-based methods 

Network-based gene prioritization methods primarily use the topology of a knowledge network 

where the nodes represent entities, and the links represent relationships between the entities. The 

most common type of network utilized is a PPIN, but other types of networks such as co-

expression networks may also be utilized. Network-based gene prioritization methods make the 

assumption that the genes associated with a disease are likely to be topologically close together 

in the network. For example, in a PPIN, the assumption is that the proteins related to a disease 

are likely to reside in the same sub-network. This section describes papers which utilize the 

network-based approach to gene prioritization. If possible, the relationship of the paper to this 

dissertation will be discussed.  
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Chen et al. [19] compared ToppGene (an integrated functional-similarity based method 

described in the Section 2.1) to several network-based methods. The authors found that 

similarity-based methods performed better than any of the network-based methods and 

concluded that network-based methods are not as effective as integrated functional annotation-

based methods. However, the authors also found that the network-based methods performed 

better than any individual knowledge sources using the similarity-based methods and are easier 

to apply in practice than integrated functional annotation based methods. Thus, the authors 

concluded that network-based methods can effectively be used for candidate gene prioritization.  

Oti et al. [20] used a PPIN to search for genes associated with a given disease. First, the 

authors identified the protein-protein interaction partners of a given disease gene on a PPIN. If an 

interacting gene was found to be within one or more chromosomal loci of a disease gene, then it 

was considered to be a candidate for the disease. In total, about 300 disease candidate gene 

predictions were made, and the accuracy of the predictions was tested using a benchmark set of 

known diseased genes. Of these 300 disease gene predictions, about 10% or more were expected 

to be genuine disease genes which represented a 10-fold enrichment. Even though the 

methodology in this paper was very simple, it is significant, because it was one of the first papers 

to show that protein-protein interactions can indeed be used to discover disease candidate genes.  

In an earlier paper, Chen et al. [21] used a network-based gene prioritization algorithm to 

rank each protein in the Online Predicted Human Interaction Database (OPHID) according to the 

protein’s association with Alzheimer’s. Any gene which directly interacted with a root gene on 

the PPIN was considered to be in the candidate gene list – this is known as a “nearest neighbor” 

based approach. In order to prioritize the genes, a relevancy score was introduced which utilized 

the PPIN. Even such a simple gene prioritization approach was shown to be effective. For 



 17 

example, a protein, B Catenin, was predicted to be associated with Alzheimer’s disease which 

had not been previously implicated in the disease. The authors validated the novel finding by 

showing that, in the literature, B-Catenin was related to Alzheimer’s disease via a signaling 

pathway. This dissertation – in a very similar fashion – utilized the species (e.g., human, fly, 

worm) that a given interaction was derived from as a knowledge source. 

Gonzalez et al. [22] constructed an interaction network using only the interactions 

involved with genes in the root set (the set of genes already known to be associated with the 

disease). The genes that interacted with the root set of genes were the candidate set of genes. The 

candidate genes were then prioritized based on the confidence level of the interactions with the 

proteins in the root set and how relevant the gene was for maintaining the local inter-connectivity 

of the protein network. A high degree of local inter-connectivity has been previously shown to 

identify sets of functionally related proteins [23, 24]. Greater confidence was given to genes 

derived from curated sources than those derived from a natural language processing system. 

Using this prioritizing schema, a novel protein, PRKCG (protein kinase C), was found which had 

not been previously implicated in the disease atherosclerosis. The authors validated the finding 

by pointing out that protein kinase C is known to play a role in the action of cytokines, and other 

cytokines – such as IL1 and IL6 – are known to have a strong relationship with atherosclerosis. 

This paper was one of the first to show that the property of inner-connectivity in a biological 

network can successfully be used to prioritize proteins.  

Kohler et al. [25] constructed a PPIN and used a random walk and diffusion kernel 

network algorithm to prioritize the candidate genes. The random walk method models the 

probability of a random walker being at a given protein in a network based on an adjacency 

matrix. The diffusion kernel method is based on a similar but slightly different method from the 
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random walk method. The authors compared the random walk and diffusion kernel methods to 

the previously mentioned PROSPECTR and Endeavor methodologies using a family of diseases 

caused by a single disease (monogenic), a family of cancer diseases, and a family of diseases 

caused by multiple genes (polygenic). For the polygenic and cancer families, the authors showed 

an improvement for the random walk and kernel methods over the previously mentioned 

PROSPECTR and Endeavor methodologies. This paper showed that global based inference 

algorithms for gene prioritization are better than local based inference algorithms. This 

dissertation uses a global based similarity measure. The major difference between global and 

local based measures is explained in Section 2.2.2.  

Wu et al. [26] constructed a PPIN for the purpose of gene prioritization. The authors also 

utilized phenotype similarity scores in the manner of van Driel et al. [27] which represented how 

similar two phenotypes (or diseases) were. The authors used the phenotypes (diseases) defined in 

the OMIM database, and the phenotype similarity scores were calculated from the Medical 

Subject Heading (MeSH) terms. The MeSH represents the topical associations for a given 

MEDLINE article. In order to prioritize the genes, a novel method called CIPHER (Correlating 

protein Interaction network and PHEnotype network to pRedict disease genes) was constructed. 

The CIPHER is dependent on a novel concordance score. The authors used the prioritization 

method to successfully rank known disease genes in 709 out of 1444 linkage intervals; the 

method was shown to be effective for prioritizing genes with little genetic basis.  

The vast majority of network-based gene prioritization algorithms described in the 

literature utilizes a PPIN. However, other types of networks such as co-expression networks have 

also been utilized. I now briefly describe the literature on the use of other types of networks.  
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Ala et al. [28] constructed a co-expression network from microarray data to prioritize 

genes within a specific disease loci. The analysis of the co-expression network began with the 

construction of co-expression clusters. A co-expression cluster was defined as a given gene plus 

all of the nearest neighbors in the co-expression network. These clusters were then used to 

identify new diseased genes in a specific genetic locus. The authors applied their methodology to 

850 OMIM phenotype entries where mapped disease loci existed but no diseased genes could be 

identified. For validation, the authors noted that for 3 of the OMIM phenotypes, the prediction 

included genes that had already been found to be mutated in the disease, but were not correctly 

annotated in OMIM. Consequently, this dissertation also uses microarray measurements as a 

knowledge source.  

Nitch et.al. [29] created a gene prioritization method to overcome the problem of 

insufficient knowledge about genes associated with a given disease in question. To overcome 

this problem, the authors used differential gene expression data between healthy and disease 

affected samples. Using a gene/protein network, a candidate gene was accessed by considering 

the degree of differential expression in the local neighborhood around the gene under the 

assumption that candidate genes tend to be surrounded by differential expressed neighbors. A 

weight-based inference algorithm was then used to score and rank all the candidate genes. The 

authors demonstrated their approach on four monogenic diseases. The authors then later 

approved upon this method [30] with various machine learning approaches including ridge 

regression, a Heat Kernel Diffusion Ranking [31], the Arnoldi algorithm [32] and an average 

based neighborhood ranking method. Using a functional annotation and a PPIN, the authors 

found that the Heat Kernel Diffusion Ranking method performed the best. The authors also 
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created PINTA: a web resource for candidate gene prioritization using a PPIN [33]. As input, 

PINTA requires expression data and the resource is freely available online. 

Karni et al. [34] introduced an approach which combined the use of PPINs with gene 

expression data. Unique to the paper, instead of creating a set of gene-disease associations (the 

root set), the authors made use of the use of genes which change their expression level within a 

given affected tissue. These are then designated as the disease-related genes. The authors’ gene 

prioritization algorithm relies on the assumption that in the disease state, the causal genes are 

disrupted which leads to expression level changes downstream in the signaling pathways of the 

expression network. In order to uncover the causal genes, the authors then attempt to find the 

smallest set of genes which could best explain the expression level changes in the genes. In 

simulations, the authors were able to show that their algorithm was very effective and 

outperformed a naïve algorithm which ranked disease associated genes based on their distances 

in the network. Essentially, these authors combined the use of pathway and expression 

knowledge in their prioritization algorithm.  

2.2 KNOWLEDGE REPRESENTATION IN NETWORKS 

This section describes the construction of knowledge networks and the types of representation 

used in such networks.  
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2.2.1 Network construction 

Network-based methods first construct a knowledge network from data that is a graph with nodes 

and links which may be un-weighted or weighted. Typically, for gene prioritization, the 

knowledge network takes the form of a PPIN where the nodes represent proteins, and the links 

between the nodes represent protein-protein interactions. The node and link weights are derived 

from properties associated with the nodes and/or links and are deduced from domain knowledge. 

Hence, knowledge is incorporated into the network either through the nodes (as node weights) or 

through the links (as link weights). For example, a node weight may represent the number of 

biological pathways that the protein is involved in, and a link weight may represent the GO 

molecular functional similarity between the two interacting proteins. The final knowledge 

network thus consists of nodes, links, node weights, and link weights. A network-based inference 

algorithm is then applied to the knowledge network to rank a set of candidate nodes of interest to 

the user given a set of root nodes (those genes or proteins known to be associated with the 

disease). A candidate gene or protein that is ranked high asserts that it is topologically closely 

associated with the known disease genes or proteins, and this topological association is assumed 

to imply a high degree of association with the disease itself. It is important to note that in order 

for the prioritization algorithm to be considered a network-based inference algorithm, the 

algorithm must explicitly use a network-based property of the candidate node. An example of a 

network-based property would be the shortest distance to another node, the degree distribution, 

or the neighbors of a given candidate node.  

Figure 2 provides the flow chart for network-based gene prioritization. A network is 

created from data which consists of binary interactions between proteins. An inference engine 

then queries the network to output a rank-ordering of nodes. 
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Figure 2. Overview of network-based gene prioritization. 

 

The following two sections describe global versus local based inference algorithms and 

continuous versus binary inference algorithms.  

2.2.2 Global versus local inference algorithms 

A network-based inference algorithm can be either a global or local based inference algorithm. 

The PageRank with Priors algorithm is an example of a global based inference algorithm. In a 

global based inference algorithm, in order to determine whether a given gene is associated with a 

given disease, information from all other genes can used to determine whether the given gene is 

associated with the given disease. This is in contrast to a local based inference algorithm. In a 

local based inference algorithm, in order to determine whether a given gene is associated with a 

given disease, only local information around the gene or subset of proteins is utilized. For 

instance, in a PPIN, only those proteins which directly interact with the given protein of interest 
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are often utilized. In this case, the protein-protein interactions determine the locality around a 

given protein.  

It has been shown in the literature that global based approaches are much more effective 

than local based approaches for gene prioritization. For instance, Kohler et al. [25] applied a 

random walk and diffusion kernel inference method for network-based gene prioritization – both 

of which capture global relationships with a network – and showed that these two methods are 

vastly superior to two other local based similarity measures. The two local based similarity 

measures were the direct interactions method of Oti et al. [20] and the single shortest path 

method of George et al. [12]. Both of these papers were discussed in the background section.  

2.2.3 Continuous versus binary link weights  

A network-based inference algorithm can utilize either binary link weights (a link weight is 

either 0 or 1) or continuous link weights (a link weight can take any value between 0 and 1). The 

approach utilized in this dissertation uses continuous link weights, which is contrary to what 

typically is done in the literature for network-based gene prioritization. For example, almost all 

authors – when creating a co-expression network – use a threshold on the correlation coefficient 

scores to create the co-expression network. In order for a link to exist between the two proteins, 

the coefficient score between the two proteins has to be above a given threshold. In other words, 

the author is essentially creating a binary network for the given knowledge source. However, 

when one does this, information in the link weights is essentially lost, because the continuous 

link weights are converted to a binary value. For example, in Figure 3, which represents a 

network with continuous link weights, node A has a much greater link weight with node B than 

node C: 0.99 versus 0.50 respectively. If this network was converted to a binary network with a 
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threshold of 0.5, both link weights would equivocally convert to a value of 1.0. Thus, the 

difference in link weights between the two values would be lost which would also subsequently 

result in a loss of information. This dissertation alleviates this concern by retaining the 

continuous link weights.  

 

 

Figure 3. A network with continuous link weights. 

 

2.3 INFERENCE IN NETWORKS 

This section describes the common algorithms used in network-based inference including the 

PageRank and the PageRank with Priors algorithms.  
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2.3.1 The PageRank algorithm 

The basic PageRank algorithm as described by Brin and Page [35] was developed to compute the 

importance of a webpage, and the importance is then used to rank the webpages. An intuitive 

description of the PageRank and the PageRank algorithm is provided followed by a formal 

description. 

PageRank is a numeric value that represents the importance of a webpage on the Web. 

The intuition is that when a webpage links to another webpage, it can be considered as casting a 

vote for the other webpage. The importance of the webpage that is casting the vote determines 

how important the vote itself is. The more votes that are cast for a webpage, the more important 

the webpage is considered to be.  

The PageRank algorithm computes the PageRank for each webpage on the Web. Imagine 

a web surfer who starts at a webpage and moves from one webpage to another by clicking on a 

hyperlink in a random fashion. The sequence of webpages visited by such a random web surfer is 

used to compute the PageRank of a webpage. After the random web surfer has visited a long 

sequence of webpages, the PageRank of a webpage is proportional to the number of visits to that 

webpage. 

2.3.2 Random walk on a directed graph 

More formally, the web is represented by a graph; the sequence of webpages visited by a random 

web surfer is called a random walk and is represented by a Markov chain model. The relative 

number of visits to a webpage is obtained by computing the stationary probability of the Markov 

chain for that webpage. These concepts are discussed in further detail below. 
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The Web is represented as a directed graph where the nodes are webpages and a directed 

link between two nodes represents the corresponding hyperlink from one webpage (node) to the 

other node (webpage).  

A Markov chain is a stochastic model describing a sequence of events in which the 

probability of each event depends only on the state attained in the previous event. The sequence 

of events is called a random walk. In the context of the random surfer, a Markov chain describes 

a sequence of webpage visits in which the probability of visiting a webpage depends only on the 

webpage visited in the previous step. 

A Markov chain consists of: 

 A set S, the state space. The elements of S are called states and is represented by the set 

{v1, v2, …, vn}. A walk is a sequence of events x1, x2, …, xt where Sxi   and the event xi 

denotes the state at xi. 

 The walk is a sequence of events where each event corresponds to visiting a node vi. 

 A starting probability vector )0(Po  where the ith element poi is the probability the walk 

starts in state vi. 

 A transition probability matrix Q where the element at ith row and jth column is denoted 

by qij. All qij are ≥ 0 and  
i

ijq 1. This matrix denotes that a walk which is now at vi 

will be at vj after the next step with probability qij. 

The key property of the Markov chain is that the choice of the state for the next event in a 

walk only depends on the state in the current event and not on the states achieved in events 

previous to the current event.  
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2.3.3 The stationary distribution 

Given the starting probability vector )0(Po and the transition probability matrix Q, the probability 

vector after the first step is given by: 

)0()1( PoPo  Q          (1) 

where )1(Po  is a probability vector where element poi denotes the probability of the walk being 

at state vi after the first step. This equation can be applied sequentially to generate a new 

probability vector at step i. Under certain conditions, a Markov chain will have a stationary 

probability distribution. This occurs if at some step i+1 the probability vector remains unchanged 

from step i for a given state. Typically, )0(Po is set to the uniform probability distribution. 

Once the stationary probability distribution is reached, the Po vector does not change 

with further steps, and the Markov chain is said to have converged to a stationary distribution. 

The stationary probability distribution denotes the fraction of time that a surfer spends at any one 

node during the random walk and can be interpreted as the importance of the node relative to the 

other nodes in the network.  

The basic PageRank algorithm uses an iterative algorithm to compute the stationary 

distribution from the prior probability vector and the transition probability matrix. For each 

iteration of the algorithm, a new probability vector is computed from the probability vector in the 

previous step and the transition matrix. The algorithm terminates when the change in the 

probability vector from one iteration to the next is below a specified tolerance threshold. The 

final probability vector is provided as output. 
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2.3.4 PageRank with Priors algorithm 

White and Smyth [36] extended PageRank for estimating relative importance in networks to 

PageRank with Priors. Let G be a graph with a set of nodes V and a set of links L. Given G, a set 

of nodes C where VC  and a set of root nodes R where VR  , the goal is to rank the nodes in 

C with respect to R. To do this, they compute a measure called node importance )|( RcI for all 

Cc  so that the largest values can be said to have the highest importance and conversely for the 

smallest values. 

The authors defined a vector Pr of prior probabilities },...,,{ ||21 RprprprPr   such that 

the probabilities sum to 1, and Pr represents the prior relative importance attached to node v. 

Specifically, they defined the prior as: 

Rvfor
R

Prv 
1

         (3)

 

RvforPrv  0  

where R is the set of root nodes. In this equation, all of the root nodes have equal prior 

probability. Thus, PageRank with Priors differs from PageRank in the prior probability vector. In 

PageRank, this vector is uniform over all the nodes; while for PageRank with Priors, this vector 

is uniform over root nodes and 0 for the non-root nodes. In addition, PageRank with Priors also 

defines a “back probability” 10  ββ, which determines how often the algorithm jumps back to 

the set of root nodes. The iterative stationary probability equations for PageRank with Priors are 

of the form: 
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where, )1( i

vPo  denotes the probability attached to node v at the (i+1) iteration. When Po reaches 

the stationary distribution, the algorithm terminates. The relative importance is then obtained as 

vPoRvI )|( after convergence; this relative importance is biased towards the set R due to the 

second term on the right hand side in Equation 4. 

Intuitively, this equation represents a Markov chain for a random surfer who transitions 

“back” to the root set R with probability β at each time-step. This is similar in spirit to the use of 

weighted paths as follows: we are evaluating the probability of landing on a node in the modified 

Markov chain where a random graph surfer starts in the set R (with appropriate prior 

probabilities) and executes a random walk that ends stochastically with probability β (at which 

point the process restarts). This process defines an (infinite) set of walks of variable length 

starting at the root set (they follow a geometric distribution with mean 1/β). The “rank” equation 

above estimates the relative probability of landing on any particular node during this set of 

walks. 

Chen et al. [19] successfully applied the PageRank with Priors algorithm to the gene 

prioritization problem. The algorithm was applied to 19 different disease data sets and used a 

PPIN derived from OPHID as the knowledge network. An AUC of 0.8 was obtained. Perhaps 

most importantly, the authors showed that network-based methods used to study primarily social 

and web networks can be successfully applied to gene prioritization.  
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2.4 INCORPORATION OF KNOWLEDGE IN NETWORKS 

This section provides details about papers from the literature which have previously incorporated 

various knowledge sources for the purpose of network-based gene prioritization.  

The following papers integrate multiple data sources for the purpose of network-based 

gene prioritization. It is important to note that the primary objective in these papers was not to 

compare the performance of the individual knowledge sources against each other, and thus the 

methodology does not reflect this objective. In order to make this comprehensive comparison, 

the results from the various data sources need to be compared across multiple diseases on a 

disease-by-disease basis - none of the papers did this. Thus, the authors cannot make the general 

statement that one type of knowledge source is more useful than another one for the purpose of 

network-based gene prioritization. Furthermore, only the incorporation of link knowledge was 

investigated – not the incorporation of node knowledge as was done in this dissertation.  

Frank et al. [37] created a PPIN derived from several true positive interaction data 

sources for the purpose of gene prioritization. Because the true positive data source only 

included a limited number of interactions between genes, the authors used some other data 

sources to predict interactions between the remaining gene pairs. These data sources include the 

GO, microarray expression measurements, predicted protein-protein interactions and true-

positive (known) protein-protein interactions. A Bayesian classifier was used to predict the 

interactions, and this classification scheme could be used to combine knowledge from the 

aforementioned knowledge sources. For each network, a link weight represented the evidence of 

interaction for a gene pair, and this was learned from a Bayesian classifier. A Guassian kernel 

function was then applied to prioritize all the genes in a given locus which utilized the shortest 

distance between two given genes on the network. Of all the networks created, the network 



 31 

which performed the best was the network with supplemented knowledge from the GO and 

microarray expression measurements. Using this network, the authors were able to detect at least 

one known disease gene in 54% of the diseases studied and this represented a 2.8-fold increase 

over random selection.  

Chen et al. [38] created a network-based gene prioritization framework which can utilize 

several data sources including protein-protein interactions, expression data, and pathway data. 

For each data source, a separate binary network was created (a binary network is one where the 

link weights are all either one or zero). A variety of network-based inference algorithms were 

then used to prioritize genes for each network. In order to integrate the various knowledge 

sources, a novel data integration rank (DIR) score was produced. The DIR score assures that 

only the most informative networks – derived from the previously mentioned binary networks – 

will contribute to the final disease-gene relationship for a given candidate gene. A network is 

considered to be more informative if the disease genes in the network are more closely connected 

in terms of their binary interactions. The results showed that the DIR score improved when 

multiple data sources were utilized compared to a single data source. In conclusion, the authors 

showed that their approach out-performed two previous gene prioritization programs: 

ENDEAVOR and random walk with restarts.  

The aforementioned papers all showed a benefit when multiple knowledge sources were 

utilized for the network-based gene prioritization process. The papers essentially incorporated 

the knowledge in the form of link weights, and the papers seemed to show the most benefit when 

the link knowledge from multiple data sources were combined.  
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3.0  KNOWLEDGE NETWORK GENE PRIORITIZATION ALGORITHM 

This chapter describes the Knowledge Network Gene Prioritization (KNGP) algorithm. This 

algorithm was developed to overcome the main limitation of existing inference algorithms such 

as PageRank and PageRank with Priors algorithms. These algorithms can successfully 

incorporate link knowledge but not node knowledge. The KNGP algorithm includes both link 

knowledge and node knowledge for inference and generalizes the Page Rank with Priors 

algorithm. 

3.1 OVERVIEW OF THE KNGP ALGORITHM 

The KNGP algorithm creates a knowledge network from biological knowledge related to genes. 

The biological knowledge is represented in two ways: 1) knowledge related to a gene is 

represented as a node weight of the corresponding node (e.g., the number of articles in 

MEDLINE associated with a gene), and 2) knowledge related to a pair of genes is represented as 

a link weight (e.g., whether the products of a pair of genes interact) of the link connecting the 

corresponding nodes in the network. The algorithm computes a ranking for the nodes in the 

network relative to a set of genes already known to be associated with a disease of interest which 

is specified as the root node set in the network. Computing the ranking is called inference. More 

specifically, inference on the knowledge network outputs a number called the posterior node 
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importance for each gene in a set of genes of interest which is specified as the candidate node 

set in the network. The posterior node importance of a node is a measure of how likely the 

corresponding gene is to be associated with the disease of interest. The development of the 

KNGP algorithm was motivated and is based on the PageRank with Priors algorithm (see Section 

2.3.4). The main advance of the KNGP algorithm is its ability to combine node weights 

representing node knowledge with the ability to specify if a node is a member of the root node 

set by modifying its node weight. In contrast, the PageRank with Priors algorithm uses node 

weights only to specify whether a node is a member of the root node set or not. 

 

 

 

Figure 4. Components of the KGNP algorithm. 
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Figure 4 shows the components, inputs, and output of the KNGP algorithm. The four 

components of the algorithm include 1) creating the knowledge network, 2) computing the prior 

node importance, 3) searching for the optimal value of the parameter f, and 4) doing inference. 

The inputs include link weights, node weights, the set of root nodes R and the set of candidate 

nodes C and the output is the posterior node importance for each candidate node. The following 

sections describe the components of the KNGP algorithm in detail. 

3.1.1 Create knowledge network 

The knowledge network consists of a graph of nodes and links. The link knowledge is 

represented as link weights. There are two matrices that can be defined for the knowledge 

network: the link knowledge matrix and the transition probability matrix which is derived from 

the link knowledge network. The link knowledge matrix is a n*n matrix where n is the number 

of nodes in the knowledge network. An entry in the knowledge matrix represents the link weight 

between the nodes specified by the row number and the column number. For instance, an entry 

of 0.6 in the cell specified by row 1 and column 7 represents a link weight of 0.6 for the link 

between node number 1 and node number 7. Typically, the link weight takes a value between 0 

and 1.0. Details of how the link weights can be obtained from knowledge sources are provided in 

Chapter 4. The transition probability matrix is a n*n matrix and is derived from the link 

knowledge matrix. An entry in this matrix gives the transition probability of going to one node 

(represented by the row number) from another node (represented by the column number) in the 

network. The transition probability of going to node v from node u is given by:  
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where lw(u,v) is the link weight between node u and v obtained from the link knowledge matrix, 

and neighbors(u) is the set of neighboring nodes for node u.  

3.1.2 Compute prior node importance 

The prior node importance of a node represents how likely the corresponding gene is to be 

associated with a given disease. The prior node importance is defined by two vectors: the node 

knowledge vector and the prior probability vector which is derived from the node knowledge 

vector. The node knowledge vector is a n dimensional vector where n is the number of nodes in 

the knowledge network. An entry in the vector represents the node weight associated with the 

corresponding node. For instance, the entry in position 7 represents the node weight for node 

number 7. Typically, the node weight takes a value between 0 and positive infinity. For example, 

for the MEDLINE knowledge source, the node weight may represent the number of articles 

associated with a given gene. Details on how the node weights may be obtained from a given 

knowledge source are provided in Chapter 4. The prior probability vector is also a n 

dimensional vector and is derived from the node knowledge vector. This vector contains the 

prior probabilities or prior importance for the nodes. I extend the prior probability vector used in 

the PageRank with Priors algorithm (see Section 2.3.5) for the KNGP algorithm to incorporate 

node knowledge into the network-based gene prioritization process. The prior probability vector 

is defined as:  
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where R is the set of root nodes, wv is the node weight associated with the node v that is obtained 

from the node knowledge vector, and f is a parameter that takes a value between 0 and positive 

infinity. The next section describes the f parameter in more detail and how the optimal value of f 

is obtained.  

3.1.3 Search for optimal f  

After the knowledge network is created and the prior node importance is computed, the next step 

is to search for the optimal f value for a given knowledge network and root node set. In order to 

search for the optimal f value, a double cross validation methodology is utilized which consists 

of two loops: an inner and outer loop. The purpose of the outer loop is to iterate through all of 

the f values (defined by the user) and the purpose of the inner loop is to iterate through each of 

the root set members and produce an AUC for each individual f value from the outer loop. At the 

very end, the f value with the best AUC is returned. The optimal f value which is obtained 

depends on the relative distribution of the link and node weights between the root node and 

candidate node sets. Further explanation is provided in Section 5.1 which presents result about 

the behavior of the KNGP algorithm using synthetic data.  

3.1.4 Do inference 

After the optimal f value is determined, inference is performed to rank the candidate nodes which 

are the nodes that are of interest to the user. Inference produces a posterior probability vector 
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which is a n dimensional vector where n is the number of nodes in the network. The posterior 

probability vector represents the relative probability of a given node being associated with a 

disease after the node weights and link weights from the knowledge network are utilized. The 

posterior probability is taken to be the relative importance of the node with respect to the set of 

root nodes. The posterior probability vector is computed using the following iterative equation: 

PrPoPo ii   )Q()1( )()1(

       

(7) 

where Pr is the prior probability vector (an n*1 dimensional vector), Q is the transitional 

probability matrix (an n*n matrix) and Po is the posterior probability vector (an n*1 vector). At 

i=0, the Po vector is set to an n dimensional vector of all 0s. The term ß is a constant, 0 ≤ ß ≤1, 

which represents how often the Markov process jumps back to the set of root nodes. At iteration 

(i+1), the Po is updated by multiplying the Po at iteration (i) with the matrix Q. This equation is 

imputed for several iterations until the stationary distribution is reached. The stationary 

distribution occurs when the difference in the sum of the probabilities of Po at (i+1) and Po at (i) 

are less than some small constant.  

The posterior probability vector includes a probability for every node in the network. 

After the stationary posterior probability vector is obtained, the KNGP algorithm ranks the 

candidate nodes and outputs them along with the posterior node importance (which is equal to 

the posterior probability). Often times, the candidate nodes will consist of all nodes in the 

network that are not in the root node set.  

3.1.5 Illustrative example of inference 

The following provides a simple example of the difference between the PageRank with Priors 

algorithm and the KGNP algorithm. In this example, the domain consist of 5 genes of which the 
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first two are root nodes associated with a fictitious disease of interest and the remaining three are 

candidate nodes that we want to prioritize.  

The two algorithms differ in the specification of the prior probability vector Pr and in this 

example, they are specified as follows. For PageRank with Priors, the root set is defined to have 

uniform probability distribution and the non-root nodes have probabilities of 0. In this example, 

Pr = [0.5, 0.5, 0, 0, 0] which shows that the two root nodes have prior probabilities of 0.5 and the 

non-root nodes have probabilities of 0. For KNGP, the Pr entries are obtained by combining 

node weights (representing node knowledge) with information about whether a node belongs to 

the root node set or not. In this example, the node knowledge vector representing node 

knowledge is [20, 40, 20, 20, 40]. A key function of the KNGP algorithm is to identify the 

optimal f value for a given disease of interest. However, in this simple illustration, we assume 

that the optimal f = 2 and applying Equation 6 we obtain Pr = [0.2, 0.4, 0.1, 0.1, 0.2]. Note that 

the PageRank with Priors algorithm does not use the node knowledge vector. 

Inference for both algorithms is done by applying Equation 7. The link weight matrix was 

the following: [[1.0,0.3,0.3,0.1,0.3], [0.3,1.0,0.6,0.2,0.3], [0.3,0.6,1.0,0.1,0.4], 

[0.1,0.2,0.1,1.0,0.2], [0.3,0.3,0.4,0.2,1.0]]. The transition probability matrix, Q, was derived 

from the link weight matrix and was the following: [[0.5,0.13,0.13,0.06,0.14], 

[0.15,0.42,0.25,0.12,0.14], [0.15,0.25,0.42,0.06,0.18], [0.05,0.08,0.04,0.59,0.09], 

[0.15,0.13,0.17,0.12,0.45]]. The Pr vector is specified as described in the preceding paragraph. 

The Po vector for iteration 0 is set to the 0 vector and the back-probability β is set to 0.5. The 

stationary distribution which is the vector Po in the final iteration is reached after 17 iterations in 

this example. The final Po for PageRank with Priors is [0.21,0.24,0.21,0.13,0.19] and for KNGP 

is [0.19,0.,24,0.22,0.15,0.21].  
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3.2 PSEUDOCODE 
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The pseudocode for the KGNP algorithm is given in Figure 5. The top level procedure is called 

KGNP which takes as input link and node knowledge and R the set of root nodes. It outputs the 

posterior node importance for the candidate nodes C. The find_best_f procedure finds the best 

value of f from a set of possible values. It does so by performing inference on each f parameter 

// Knowledge network gene prioritization (KNGP) 

KNGP (knowledge, R)  

input:  knowledge in the form of prior node importance and link weights 

R is a set of root nodes for disease of interest 

output: C is the set of candidate nodes with posterior node importance 

 

network ← knowledge network created from knowledge 

F ← set of f values 

N ← set of nodes in network 

best_f ← find_best_f (network, R, F) 

prior ← compute prior node importance for all nodes in N using best_f 

C ← inference (network, prior, R, N / R)  // N / R denotes set difference 

return C  

 

 

// search for optimal f 

find_best_f (network, R, F)  

input:  network is a knowledge network 

R is set of root nodes 

F is set of f values 

output: best_f which is the f that has highest AUC 

 

N ← set of nodes in network 

best_f = null 

best_auc = -infinity 

for each f in F: 

for each node i in R: 

mix i with 99 nodes drawn randomly from N / R to create set S 

prior ← compute prior node importance for all nodes in N using f 

  posterior ← inference (network, prior, R, S)  

store posterior 

end for 

auc ← compute AUC from all posteriors 

if auc > best_auc: 

best_auc = auc 

best_f = f 

end if 

end for 

return best_f 

 

Figure 5. Pseudocode for the KGNP algorithm. 
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value and then chooses the value that maximizes the AUC. The inference procedure implements 

Equation 7 and computes the posteriori probability from the prior probability vector and the 

transitional probability matrix. Note that the inference procedure is called for every value of f 

that is evaluated by the find_best_f procedure and called once by the KGNP procedure for the 

optimal value of f.  

3.3 COMPUTATIONAL COMPLEXITY 

This section provides an analysis of the time and space complexity of the KGNP algorithm.  

// do inference 

inference (network, prior, R, S)  

input:  network is a knowledge network 

prior is prior node importance for all nodes in network 

R is a set of root nodes 

S is a set of nodes for which to compute posterior node importance 

output: S with posterior node importance 

 

Pr  ← prior // prior probability vector 

Q ← getTransProbMatrix(network) // transitional probability matrix 

Po ← 0 // initialize posterior probability vector to 0 

 

ß = 0.5 

threshold = 0.00001 

delta = 1 

Po_prev = Po 

 

do while delta > threshold: 

Po_curr ← (1- ß)*(Q*Po_prev) + ß*Pr 

delta = abs(Po_curr - Po_prev) 

Po_prev ← Po_curr 

end while 

 

return S from Po 

 

Figure 5 (continued). Pseudocode for the KGNP algorithm. 
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The time complexity of the inference procedure is O(n
2
t) where n is the number of nodes 

in the network and t is the number of iterations needed to converge to the stationary distribution. 

In each iteration, the complexity is dominated by the multiplication of matrix Q which is of size 

n*n with vector Po which is of size n; the complexity of this operation is O(n
2
). Since this 

operation is done t times, the overall complexity of the inference procedure is O(n
2
t). 

The find_best_f procedure calls the inference procedure once for each value of f in F and 

each node i in R. Thus, the time complexity of find_best_f procedure is O(n
2
t|F||R|) where |F| is 

the number of values in F and |R| is the number of nodes in the root set.  

The KNGP procedure calls the find_best_f and inference procedures once. Hence, the 

time complexity of the KNGP procedure is O(n
2
t|F||R|) + O(n

2
t). Since the first term in the sum 

dominates, the time complexity of the KNGP algorithm is O(n
2
t|F||R|). 

The space complexity comes mainly from the transitional probability matrix, the prior 

probability vector, and the posterior probability vectors. The complexity of storing the matrix 

and the vectors is O(n
2
) + O(n) + O(n). Since the first term in the sum dominates, the overall 

space complexity is O(n
2
).  

In my experiments, n=17,631 which lead to a fairly large time and space requirement to 

execute the KGNP algorithm. Thus, running times for the experiments were fairly long. 
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4.0  EXPERIMENTAL METHODS  

This chapter describes the experimental methods. Section 4.1 gives details of the knowledge 

sources used to create various knowledge networks. The knowledge networks that were created 

include networks created from a single link knowledge source, networks created from multiple 

link knowledge sources, networks created from a single node knowledge source, and networks 

crated from both link knowledge and node knowledge sources. Section 4.2 describes the creation 

of the root sets for the diseases used in the experiments. Section 4.3 gives details of the 

evaluation protocol.  

4.1 CREATION OF KNOWLEDGE NETWORKS 

The UniProt database provides a comprehensive catalog and annotation of all known proteins 

[39]. This annotation includes information such as the protein’s name and description, the amino 

acid sequence, taxonomic data, cross-reference data, experimental data, and biological ontology 

information. The UniProt database has been utilized in several biological and bioinformatics 

research projects such as the study and structure of kinases [40], the construction of rule based 

models for cell signaling systems [41] and in the analysis of interactome networks [42].  
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I downloaded all 17,691 unique proteins from UniProt in March of 2011. For each 

knowledge source, I created a knowledge network whose nodes were the set of 17,691 proteins 

obtained from UniProt. For each pair of proteins (or corresponding genes), u and v, I calculated a 

link weight between proteins u and v that was specific to the knowledge source. The link weight 

ranged between 0 and 1 where 0 represents the notion that the corresponding proteins are 

dissimilar, and 1 represents the notion that the corresponding proteins are similar or interact with 

each other. The following sections define the link weights derived from various knowledge 

sources.  

4.1.1 Knowledge networks created from a single link knowledge source 

IID Link Weight Network: The Interologous Interaction Database (IID) contains 102,740 human, 

protein-protein, experimental interactions from a number of model organisms including human, 

mouse, rat and fly [43] [44]. The IID database extracts their interaction information from a 

variety of interaction databases such as the Human Protein Reference Database (HPRD) [45] and 

the Molecular Interaction Database (MINT) [46]. For the link weight, if an interaction was 

present in IID, I assigned a weight of 1.0 to the corresponding link. Otherwise, I assigned a 

weight of 0 to the corresponding link. Thus, for the IID Link Weight Network, a link weight was 

either 0 or 1. In total, this network resulted in 77,410 interactions between 10,487 proteins.  

  

Species Link Weight Network: Every experimental interaction is derived from a related 

organism (e.g., yeast two-hybrid assay), and this data is available in the IID. In one of the earliest 

network-based gene prioritization papers, Chen et al. [21] used the species that a given protein-

protein interaction was derived from as a knowledge source. For the link weight, generally 
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speaking, greater confidence was given to those experiments which were human based since I 

was trying to model the human cell condition. If the interaction came from a human based 

experiment, then the species link feature was assigned a value of 0.9. If the experiment came 

from a mammalian based experiment, then the value was 0.6, and if the experiment came from a 

non-mammalian based organism, the value was 0.3. If the species was unknown, a value of 0.0 

was entered. A species value was calculated for each of the 77,410 interactions for the IID 

Network.  

 

GO Molecular Function Link Weight Network: The Gene Ontology (GO) [47] is a set of 

controlled vocabularies which describes the functions of proteins within the cell. The ontology is 

constructed as a graph with nodes and edges where the nodes represent functional terms and the 

edges represent hierarchal relationships between the nodes. As one goes down the graph, the 

terms become more specific. For instance, at the very top, a very general functional term such as 

“Biological Process” may be defined. As a child term, more specific terms may be defined such 

as “Cell Proliferation” and under that may be “Muscle Cell Proliferation.” The child-to-parent 

semantic relationships in the GO are defined as being “is-a” or “part-of”. For instance, Cell 

Proliferation (child) “is-a” Biological Process (parent). provides a simple example of the gene 

ontology. Each protein within UniProt is associated with a set of GO Ontology Terms based on 

the protein’s function, and this associated information is available from the Gene Ontology 

Consortium [47].  
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Figure 6. A simple example of the Gene Ontology. 

 

The gene ontology is divided into three separate ontologies: Molecular Function, 

Biological Process, and Cellular Component. The subsequent sections on GO link weights 

describe each of these ontologies in more detail. This link weight deals with the GO Molecular 

Function ontology.  

The GO Molecular Function ontology annotates single event activities which occur at the 

molecular level [47]. Two examples of activities are binding and transporter activities. I used the 

Wang et al. [48] similarity measure as the GO Molecular Function link weight. The similarity 

measure calculates the similarity between two sets of GO terms associated with the two genes, 

and the similarity measure ranges from 0 to 1 where 0 represents the smallest degree of 

molecular function similarity between two genes, and 1 represents the greatest degree of 

molecular function similarity between two genes. Most importantly, the measure takes into 

account the distance of the GO terms in the ontological graph from each other, and the depth of 

the GO terms. For instance, dealing with depth, two terms which are very close together and 

higher up in the ontology will get a smaller similarity score than if they were farther down in the 

ontology graph, because the terms with greater depth in the gene ontology are more specifically 
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defined. This is in contrast to the commonly used Jaccard similarity measure which just simply 

takes the intersection of the two sets of GO terms – GO1 and GO2 – and divides it by the union: 

21

21

21 ),(
GOGO

GOGO
GOGOJaccard




         (8) 

This measure will give the same score to two sets of GO Ontology terms which are the 

same distance apart from a given parent node on the ontology regardless of their depth on the 

ontology graph. For example, in Figure 6, ontology terms B and C would receive the same 

similarity score as ontology terms F and G using the Jaccard similarity score, because they are 

the same distance apart from a given parent node on the ontology graph. However, the Wang 

similarity measure will correctly give a greater similarity score to ontology terms F and G, 

because they are farther down on the ontology graph and more specifically defined. The Wang 

similarity measure also utilizes the semantic relationships between the GO terms in the gene 

ontology.  

 

 

Figure 7. Two sets of ontology terms at different locations on the ontology graph. 
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In total, 100,997,587 GO Molecular similarity calculations were computed between 

14,215 proteins. 

 

GO Biological Process Link Weight Network: I computed the GO Biological Process link weight 

in the same manner as the GO Molecular Function link weight using the GO molecular function 

ontology. A biological process is a series of events carried out by assemblies of molecular 

functions. Two such examples are cellular localization and cell adhesion. In total, 88,411,753 

GO Biological similarity calculations were computed among 13,297 proteins.  

  

GO Cellular Component Link Weight Network: I computed the GO Cellular Component link 

weight in the same manner as the GO Molecular Function link weight using the GO Cellular 

Component ontology. A cellular component describes the location of a biological process. Two 

such examples are extracellular region and the organelle part. In total, 110,342,940 GO Cellular 

similarity calculations were computed between 14,855 proteins.  

 

MEDLINE Link Weight Network: Currently, MEDLINE contains more than 18 million records 

from about 5,000 journals in a variety of health science fields. Each publication in MEDLINE 

has a unique MEDLINE identifier, and the Jaccard similarity measure between the two proteins 

was used as the MEDLINE Citations link weight. Given sets A and B which are the MEDLINE 

articles associated with the two proteins, the Jaccard similarity measure is computed as: 

BABABAJaccard  /),( . Thus, the Jaccard similarity measure counts the number of 

articles associated with both proteins and divides it by the total number of articles associated 
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with either of the proteins. I used NIH David [49, 50] to identify the MEDLINE articles 

associated with the two proteins. In total, 137,640,715 MEDLINE similarity calculations were 

calculated among 17,658 proteins.  

 

Co-Expression Link Weight Network: The explosion of high-throughput technologies in recent 

years has elevated the study of genomics and proteomics. There are a variety of platforms 

currently available such as mass spectrometry and high throughput sequencing data. This 

network utilized high throughput microarray expression values from the Beer et al [51]. Only the 

4206 proteins in the Beer data set were utilized instead of the full complement of proteins from 

UniProt. Furthermore, only the healthy samples were used – not the diseased samples – since I 

was trying to model a healthy human organism. For the link weight, the Spearman correlation 

between the two protein’s expression profiles was calculated and the absolute value was taken. 

Thus, the link weight represented the degree of similarity between the expression profiles for the 

two sets of genes. In total, there were 8,847,321 co-expression calculations among 4,206 

proteins.  

4.1.2 Knowledge networks created from a combination of link knowledge sources 

Predicted Protein-Protein Interaction (PPPI) Link Weight Network: The protein-protein 

interactions used in the IID Network represent experimentally derived interactions. I postulated 

that the addition of predicted protein-protein interactions may improve performance. I obtained 

predicted protein-protein interactions from the human protein-protein interaction (HPPI) 

database and created the PPI network from the union of experimental interactions and predicted 

interactions [52, 53] . The HPPI database contains over 79,000 predicted interactions and has 
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little overlap with the IID database. If the interaction was present within the IID or the HPPI, a 

link weight of 1.0 was entered. Otherwise, a value of 0.0 was entered. Essentially, this network 

turns some of the zeros in the IID Network to ones. In total, this network resulted in 126,668 

interactions between 11,259 proteins. Thus, there were a total of 49,258 interactions added from 

the IID Network to the PPI Network. In other words, about 49,000 of the 0s in the IID Network 

changed to 1s in the PPI Network. This network combined knowledge from the HPPI and IID 

knowledge sources.  

 

PPPI + Gene Ontology Molecular Function (GOM) Link Weight Network: I speculated that 

combining predicted protein-protein interaction knowledge with the GO knowledge source 

should lead to better gene prioritization performance. This network utilized the GO Molecular 

Function Ontology. The PPI+GOM link weight was calculated as follows. If the PPI link weight 

as computed in the PPI Link Weight Network was 0, I assigned a value of 0 as the link weight. 

Otherwise, I assigned the value from the GO Molecular Function Link Weight Network. This 

network combined information from the HPPI, PPI, and GOM knowledge sources. 

 

PPPI + Gene Ontology Biological Process (GOB) Link Weight Network: This link weight was 

computed in the same manner as the PPI+GOM Link Weight Network except the GO Biological 

Process Ontology was utilized. This network combined information from the HPPI, PPI, and 

GOB knowledge sources.  

 

PPPI + Gene Ontology Cellular Component (GOC) Link Weight Network: This link weight was 

computed in the same manner as the PPPI+GOM Link Weight Network except the GO Cellular 
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Component Ontology was utilized. This network combined information from the HPPI, PPI, and 

GOC knowledge sources.  

4.1.3 Knowledge networks created from node knowledge sources 

InterPro Node Weight Network: InterPro [54] is an integrated database of protein signatures used 

for the classification and annotation of proteins and genomes. Among the types of annotations 

annotated by InterPro are the functional domains for a given protein. This node weight 

represented the number of InterPro domains associated with a given protein.  

 

GO Node Weight Network: As previously mentioned, the GO is a set of controlled vocabularies 

which describes the functions of proteins within the cell as previously described. This node 

weight represented the number of gene ontology associations for a given protein. The ontology 

associations were summed across all of three different types of gene ontologies previously 

mentioned: cellular, molecular, and functional.  

4.1.4 Knowledge network from node and link knowledge sources 

PPPI+GOC Link Weight and GO Node Weight Network: This network represented the 

incorporation of both link and node knowledge. The link weights were the same as those used in 

the PPPI+GOC Link Weight Network, and the node weights were the same as those used in the 

GO Node Weight Network.  
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4.1.5 Overview of knowledge networks 

Table 1 gives details of the node and link knowledge used in the networks for Aims 1 through 4. 

The subsequent sections explain how the knowledge was incorporated into the knowledge 

networks, and why the individual knowledge sources were added. 

 

Table 1. Networks associated with each aim. 

Aims Networks 

Aim 1: Link knowledge IID Link Weight Network, Species Link Weight Network, GO 

Molecular Function Link Weight Network, GO Biological 

Process Link Weight Network, GO Cellular Function Link 

Weight Network, MEDLINE Link Weight Network, Co-

Expression Link Weight Network  

Aim 2: Combination of link knowledge Predicted Protein-Protein Interaction (PPPI) Link Weight 

Network, PPPI+GOM Link Weight Network, PPPI+GOB Link 

Weight Network, PPPI+GOC Link Weight Network 

Aim 3: Node knowledge InterPro Node Weight Network, GO Node Weight Network 

Aim 4: Node and link knowledge PPPI+GOC Link Weight and GO Node Weight Network 

 

4.1.5.1 How knowledge is represented in the network 

As previously mentioned, the knowledge is incorporated into the network through link and node 

weights. The knowledge is being represented through the link weights via the calculation of 

similarity scores between protein pairs. This approach makes sense, since in a network, a high 

weight traditionally means a greater degree of similarity between two nodes than a low weight 

score, and this is the assumption that the network inference algorithm works on. Furthermore, 

there is backing for this link weight approach in the literature. Sharma et al. [55] created a gene 

prioritization approach which integrates weights in a network similar to the type of weights used 

in this dissertation. The new approach was able to enrich the candidate list for type 2 diabetes by 

6.8 fold.  



 53 

 The knowledge in the network is also represented through node weights by counting the 

number of associations (GO, and InterPro) for a given protein. For network-based inference 

algorithms, the node weight represents the prior node importance, and a greater node weight 

means the corresponding protein is assigned greater prior importance. This makes sense, since 

proteins which are studied more will have more associations, and should thus be more likely to 

be associated with a disease.  

It is interesting to note that Navlakha et al. [56] in their comparison of various network-

based inference based algorithms found that disease related proteins which were spread far apart 

on the PPIN, the inference algorithms suffered with low precision and recall. The authors 

showed that predictions made for more homophilic diseases (homphily represents the closeness 

of a set of nodes on a graph) were of much greater quality than those that had less homphily. In 

order to alleviate this concern, the authors suggested the use of different knowledge sources and 

for more computational efforts to be directed in this area. The various networks created in this 

dissertation – formed from the disparate knowledge sources – are an effort in this direction.  

4.1.5.2 An explanation for the various knowledge sources 

For network-based gene identification, if two interacting genes share a feature in common and 

would also be more likely to share a similar disease in common, then it would make sense to add 

the feature. In other words, given that genes G1 and G2 interact, if the two genes share a similar 

feature F in common, then the two genes would also be more likely to share a similar disease D 

in common if it’s known that one of those two genes is already associated with the disease.  

It has been known in the literature for some time that diseased genes tend to share 

functional characteristics in common, and several gene prioritization papers in the literature 

reflect this. In one of the earliest papers, Freudberg et al. [8] created clusters of diseases and their 
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respective causative genes, and scored potential disease genes according to their functional 

similarity to genes in the clusters. Furthermore, Jimenez-Sanchez et al. [57] found a strong 

correlation between gene function and certain disease features such as age of onset and mode of 

inheritance. Thus, including the GO Ontology as a link feature should add a significant benefit 

for network-based gene identification.  

It has also been shown in the literature that diseased genes also tend to share similar co-

expression patterns. For instance, Alu et al. [28] showed systematically that the integration of 

expression profiles in human and mouse – in conjunction with a phenotype similarity map – 

allowed for the identification of disease genes in very large genotypic regions. Oti et al. [58] had 

a similar result. The authors showed that evolutionary conserved co-expression patterns can be 

used to prioritize candidate genes effectively. Interestingly, the authors also showed that co-

expression across multiple species (fly, rat, yeast, etc.) are a better predictor of candidate disease 

genes than using just human alone.  

It would also seem to make sense to add the species and MEDLINE knowledge sources 

for the link weights. Chen et al. [21] successfully utilized the species link knowledge source in 

one of the earliest known network-based gene prioritization papers. The authors decided to 

utilize the species knowledge source in place of using just protein-protein interactions, so this 

evidentially would imply that the authors thought that the species knowledge source was more 

useful than using just protein-protein interactions. Furthermore, it would also seem to make 

sense to utilize the MEDLINE knowledge source. Since protein-disease associations are reported 

in MEDLINE, if two proteins have similar literature trails, they may be implicated in the same or 

at least similar diseases. There is backing for the use of MEDLINE articles for gene prioritization 

in the literature. For instance, Hritizvoski et al. [59] created a gene prioritization system called 
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BITOLA which was almost totally dependent on the use of MEDLINE articles. The system 

attempted to discover new relations between a given starting concept of interest (disease) and 

other concept (i.e., disease-related gene) by automatically mining MEDLINE. The authors 

showed that BITOLA could successfully be used for the purpose of gene prioritization. 

However, in general, I was not as confident about the inclusion of the MEDLINE knowledge 

source, because a given protein can be associated with a MEDLINE article for a variety of 

reasons and may not even be related to the main topic of interest for the article.  

The predicted protein-protein interaction knowledge source should also add a benefit. 

Many gene prioritization papers have utilized predicted protein-protein interactions with success, 

and it would thus seem to make sense that adding predicted protein-protein interactions should 

provide a benefit. It is interesting to note that Franke et al. [37] employed the use of predicted 

protein-protein interactions in his paper with success. The predicted interactions were derived 

from microarray measurements and the gene ontology.  

I also considered additional knowledge sources that were not included in this dissertation. 

These sources included the KEGG Pathway knowledge source – which provides a 

comprehensive catalog of biological pathways for every gene – and PROSITE – which provides 

a comprehensive database of protein domains, families and functional sites. However, neither of 

these knowledge sources provided the sufficient annotation coverage for the full list of 17,691 

unique proteins downloaded from UniProt. Both of these knowledge sources had annotation 

coverage of less than 50%. Given the small annotation coverage, it is not possible to provide a 

fair comparative evaluation for these knowledge sources against the other knowledge sources.  

Even though several knowledge sources could not be included due to insufficient 

annotation coverage, it is important to note that the predicted interactions from the human 
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protein-protein interaction (HPPI) database combined information from several knowledge 

sources including gene co-expression, orthology, co-occurrence of domains, post-translational 

modifications, co-localization of the proteins within the cell and analysis of the local topology of 

the predicted PPIN. The authors used a naïve Bayes model in the fashion of Scott and Barton 

[53] to predict the probability of a given pair of proteins interacting. First, probabilities were 

obtained for each disparate knowledge source, and then the probabilities were combined to give 

an overall likelihood of interaction for each pair of proteins. Thus, even though several 

knowledge sources could not be included in this dissertation directly because of insufficient 

annotation coverage, they were included indirectly through the predicted protein-protein 

interactions.  

4.2 CREATION OF ROOT NODE SETS 

The root nodes consisted of proteins known to be associated with the disease of interest. For my 

experiments, I chose 19 diseases and created a set of genes for each disease that are known to be 

associated with that disease. I call such a set as a root set for the disease of interest. I obtained 

the root sets for the 19 experimental diseases from the Gene Association to Disease (GAD) 

database. The GAD contains both positive and negative gene-disease associations. A positive 

association asserts that the protein is associated with the disease of interest and a negative 

association asserts that the protein is not associated with the disease of interest. I selected 19 

experimental diseases such that each disease had a root set of 5 or more genes. For a gene to be 

eligible to be included in the root set, the gene had to have two more positive associations than 
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negative associations with the respective disease in the GAD. Table 2 provides some statistics 

for the genes extracted from the GAD.  

Table 2. Statistics for the genes extracted from the GAD. 

Total # of genes with at least one positive disease 

association in the GAD 

3562 

Total # of genes with at least one positive association 

for the 19 experimental diseases 

845 

Total # of genes with two more positive than negative 

associations for the 19 experimental diseases 

229 

Total # of genes with two more positive than negative 

associations for the 19 experimental diseases which are 

associated with more than one of the 19 diseases 

58 

 

Table 3 provides the list of 19 experimental diseases and number of genes associated with 

each disease. Appendix A provides a list of all the root set genes (using UniPort identifiers) 

associated with each disease.  

Table 3. Number of genes known to associated with each of the 19 experimental diseases. 

Disease Number 

of genes 

Rheumatoid Arthritis 24 

Parkinson’s Disease 21 

Celiac Disease 16 

Esophageal Cancer 8 

Hepatitis C 8 

Crohn’s Disease 17 

Breast Cancer 27 

Asthma 29 

Alzheimer’s Disease 21 

Ulcerative Colitis 24 

Endometriosis 5 

Lymphoma 7 

Osteoarthritis 8 

Epilepsy 6 

Atherosclerosis 43 

Pancreatitis 6 

Cirrhosis 7 

Myocardial Infarction 32 

Tuberculosis 12 
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4.3 EVALUATION 

This section describes the evaluation protocol used. The evaluation protocol is shown in Figure 

8. In the protocol, it is important to note that for aims 1 and 2, there is no search for the optimal f 

parameter value in the KGNP algorithm since in these aims node knowledge is not used. Hence, 

for these two aims, the find_best_f procedure from the pseudocode (Section 3.2) was not 

executed.  

 

 

The protocol generates a total of m*10 (where m is the size of the root node set) rank 

ordered lists of 100 nodes each with a left-out node that is embedded in 99 non-root nodes. A 

threshold rank (for example, the 5
th

 rank) for such a list separates those nodes that are ranked 

above it from those that are ranked below it. For a given threshold rank, sensitivity is defined as 

the percentage of lists where the left-out node was ranked above the threshold and specificity as 

the percentage of lists where the left-out node was ranked below the threshold. Varying the 

threshold rank produced a series of sensitivity and specificity values from which a ROC curve 

was constructed, and the corresponding AUC was calculated.  

1. Iterate through each of the proteins in the root set in a leave-one-out cross validation manner.  

2. Take the node in step 1 and mix it with 99 other nodes randomly chosen from the set of non-root 

nodes. Call the node that was selected as the left-out node.  

3. Using the full set of root nodes (excluding the left-out node), apply the KNGP algorithm to the 

network and rank order the 100 nodes selected in Step 2. Compute the AUC. (In Aims 1 and 2, do 

not search for optimal f parameter value).  

4. Repeat Steps 2 and 3 for each of the nodes chosen in Step 1. 

5. Repeat steps 1 through 4 for a total of 10 times 

Figure 8. Evaluation protocol. 
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4.3.1 Link and node weights 

For a given knowledge source, the extracted link weights were represented as the link knowledge 

matrix. For instance, if the GO Molecular Function is the knowledge source, then the link weight 

represented the GO Molecular Function similarity between two proteins. For the node weight 

networks (Aim 3), the link weights were the same as the IID link weight network.  

 The node weights derived from a knowledge source were represented as the node 

knowledge vector. For aims 3 and 4, the node weight was assigned the value from the respective 

node weight knowledge source. For instance, for the GO knowledge source, the node weight for 

a node represents the number of GO tersm associated with the corresponding protein. Aims 1 and 

2 do not utilize the node knowledge vector and thus are not initially assigned node weights. 

Rather, they use the same prior weights as the Page Rank with Priors algorithm.  

4.3.2 Wilcoxon paired-samples signed-rank test 

The Wilcoxon paired-samples signed-rank test was used for comparing the performance of the 

knowledge sources. This test is a nonparametric procedure used to test whether there is sufficient 

evidence that the median of two probability distributions are significantly different [60]. In 

evaluating knowledge sources, it can be used to test whether two knowledge sources differ 

significantly in performance on a specified measure such as the AUC. The IID Network was 

used as the baseline since it is commonly used in the literature and does not represent the 

incorporation of any new knowledge. 
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5.0  EXPERIMENTAL RESULTS 

This chapter provides experimental results and also discusses the results. Section 5.1 provides 

results from synthetic data experiments to characterize the behavior of the f parameter in the 

KNGP algorithm. Section 5.2 describes the results for the experimental diseases using real 

knowledge networks. These include results from single link knowledge networks, combined link 

knowledge networks, node knowledge networks, and combined link and node knowledge 

networks. 

5.1 RESULTS OF SYNTHETIC DATA EXPERIMENTS  

This section describes synthetic data experiments and the results from them that I conducted to 

explore the behavior of the KNGP algorithm. My goal was to examine how the node weights 

interacted with the link weights to influence the AUCs at different f values in the KGNP 

algorithm. The goal was to understand under which circumstances the node weights are more 

important than the link weights, link weights are more important than the node weights and links 

weights and node weights are roughly equally important in determining the AUCs.  

A set of synthetic datasets were created as follows. Each dataset contained 1000 nodes of 

which nodes 1 to 100 are designated as root nodes and the remaining nodes are designated as 
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candidate nodes (or non-root nodes). To assign node weights and link weights, the 1000 nodes 

were partitioned into the following 5 groups (see Table 11): 

 Group 1 consisted of root nodes 1 through 50 

 Group 2 consisted of root nodes 51 through 10 

 Group 3 consisted of candidate nodes 101 through 150 

 Group 4 consisted of candidate nodes 151 through 200 

 Group 5 consisted of candidate nodes 201 through 1000 

Four datasets were generated in the following manner: 

 In dataset 1, each of the 1000 nodes was assigned a random node weight between 0 and 

1. Thus, root nodes and candidate nodes had similar node weights. The links among the 

root nodes (i.e., node groups 1 and 2) were assigned a random weight between 0.5 and 1 

and the links among the candidate nodes and among the root nodes and the candidate 

nodes were assigned a random weight between 0 and 0.5. Thus, links among root nodes 

had higher weights than other links. 

 In dataset 2, the root nodes (i.e., groups 1 and 2) were assigned a random node weight 

between 0.5 and 1, and the candidate nodes (i.e., groups 3, 4 and 5) were assigned a 

random node weight between 0 and 0.5. Thus, root nodes had higher node weights than 

all of the candidate nodes. All links were assigned a random link weight between 0 and 1. 

Thus, links among root nodes, links among candidate nodes and links among root nodes 

and candidate nodes had similar weights. 

 In dataset 3, the root nodes were assigned a random weight between 0.9 and 1.0, and the 

candidate nodes were assigned a random weight between 0.5 and 1.0. Thus, the root 

nodes, on average, had higher node weights than the candidate nodes, but some of the 
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candidate nodes could have had greater node weights. The link weights between the root 

nodes were assigned a value between 0.55 and 1.0, and the link weights between the 

candidate nodes were assigned a value between 0.5 and 1.0. Thus, the links between the 

root nodes were, on average, were higher than the link weights between the candidate 

nodes, but some of the candidate node link weights could have been higher.  

 In dataset 4, the root nodes were assigned a random node weight between 0.95 and 1.0, 

and the candidate nodes were assigned a random node weight between 0 and 1.0. Thus, 

the root nodes, on average, had higher node weights than the candidate nodes, but some 

of the candidate nodes could have had greater node weights. The link weights between 

the root nodes were assigned a value between 0.1 and 1.0, and the link weights between 

the candidate nodes were assigned a value between 0 and 1.0. Thus, the links between the 

root nodes were, on average, higher than the link weights between the candidate nodes, 

but some of the candidate node link weights could have been higher.  

 

For each of the 4 datasets, the KNGP algorithm was run using the evaluation protocol for a 

range of f parameter values. The f parameter values tested were the following: 0, 1, 15, 100, 

10,000 and 1 trillion (which represents infinity). At f=0, the prior probability of the root nodes 

becomes 0.0, and at f=1 trillion, the prior probability of the root nodes approach infinity, and the 

prior probability for the candidate nodes approaches 0.0.  Table 4 provides the link weights 

utilized for each dataset.  Table 5 and Table 6 provide the link weights for each individual group 

and between the groups respectively.  Table 7 provides the AUCs for each data set. The highest 

AUC is in bold font.  
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Table 4. Specification of node weights for each group. 

Dataset  Node Weights 

 Group 1  Group 2  Group 3  Group 4  Group 5  

1 rand(0,1) rand(0,1) rand(0,1) rand(0,1) rand(0,1) 

2 rand(0.5,1) rand(0.5 rand(0,0.5 rand(0,0.5) rand(0,0.5) 

3 rand(0.9,1) rand(0.9,1) rand(0.5,1) rand(0.5,1) rand(0.5,1) 

4 rand(0.95,1) rand(0.95,1) rand(0,1) rand(0,1) rand(0,1) 

 

Table 5. Specification of link weights for each group. 

Dataset Link Weights 

 Group 1 Group 2 Group 3 Group 4 Group 5 

1 rand(0.5,1) rand(0.5,1) rand(0,0.5) rand(0,0.5) rand(0,0.5) 

2 rand(0,1) rand(0,1) rand(0,1) rand(0,1) rand(0,1) 

3 rand(0.55,1.0) rand(0.55,1.0) rand(0.5,1) rand(0.5,1) rand(0.5,1) 

4 rand(0.1,1.0) rand(0.1,1.0) rand(0,1) rand(0,1) rand(0,1) 

 

Table 6. Specification of link weights between groups. 

Dataset Link Weights 

 Group 1-2 Group 1-3 Group 1-4 Group 1-5 Group 2-3 Group 2-4 Group 2-5 Group 3-4 Group 3-5 Group 4-5 

1 rand(0.5,1) rand(0,0.5) rand(0,0.5) rand(0,0.5) rand(0,0.5) rand(0,0.5) rand(0,0.5) rand(0,0.5) rand(0,0.5) rand(0,0.5) 

2 rand(0,1) rand(0,1) rand(0,1) rand(0,1) rand(0,1) rand(0,1) rand(0,1) rand(0,1) rand(0,1) rand(0,1) 

3 rand(0.55,1.0) rand(0.5,1) rand(0.5,1) rand(0.5,1) rand(0.5,1) rand(0.5,1) rand(0.5,1) rand(0.5,1) rand(0.5,1) rand(0.5,1) 

4 rand(0.1,1.0) rand(0.1,1.0) rand(0,1) rand(0,1) rand(0,1) rand(0,1) rand(0,1) rand(0,1) rand(0,1) rand(0,1) 
 

Table 7. AUCs for each dataset. 

Dataset f=0 f=1 f=15 f=100 f=10,000 f=INF 

1 0.602 0.651 0.991 1.000 1.000 1.000 

2 1.000 0.999 0.996 0.877 0.467 0.461 

3 0.898 0.901 0.941 0.977 0.924 0.922 

4 0.974 0.978 0.991 0.975 0.897 0.895 

 

 

As Table 7 shows, the optimal f value (i.e., the f value that achieved the highest AUC) 

depends on the degree to which the link and node weights are biased towards the root nodes 

versus the non-root nodes. In this context, the bias indicated how much greater the node or link 
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weights were for the root nodes versus the non-root nodes. If the link weights were considerably 

more biased towards the root nodes than the non-root nodes – as in dataset 1 – than the highest 

AUC was obtained at the largest f value. Conversely, if the node weights were considerably more 

biased towards the root nodes than the non-root nodes – as in dataset 2 – than the highest AUC 

was obtained at the smallest f value. When the bias towards the root nodes was more balanced 

between the node weights and link weights – as in datasets 3 and 4 – than the highest AUC was 

obtained at a f value between the two extremes.  

 These synthetic experiments provide some intuition for the f parameter in the KGNP 

algorithm. The f parameter represents the tradeoff in the importance between the link weights 

and the node weights in determining the relative importance of nodes. If the optimal f value is 

high then it implies that the link weights dominate over the node weights in determining the 

relative importance. In other words, the connectivity of the root nodes according to the link 

weights matters a great deal, and the node weights contribute little – if any – benefit at this 

extreme. Conversely, if the optimal f value is low then it implies that the node weights dominate 

over the link weights in determining the relative importance. In other words, the connectivity of 

the link weights between the root nodes matters very little – if at all – and network-based gene 

prioritization is thus not useful at this extreme, because the network itself (characterized by the 

links) is not being utilized. These results imply that in order for node knowledge to contribute to 

determining the relative importance, the optimal f value must occur between the two extremes.  
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5.2 RESULTS OF DISEASE DATA EXPERIMENTS 

This section provides results from the application of the KNGP algorithm to 19 diseases on a 

variety of link knowledge networks, node knowledge networks and combined link knowledge 

and node knowledge networks. First, I describe the results from the incorporation of link 

knowledge from single data sources (Aim 1); second, I describe the results from the 

incorporation of link knowledge from multiple data sources (Aim 2); third, I describe the 

incorporation of node knowledge (Aim 3); and fourth, I describe the incorporation of both node 

and link knowledge together (Aim 4).  

5.2.1 Incorporation of single link knowledge source 

Table 8 shows the AUCs for each network and knowledge source based on the incorporation of 

link knowledge from a single knowledge source. The performance of the IID Network was used 

as the baseline. The last row in the table provides the average AUC obtained by averaging the 

AUCs for the 19 diseases.  

 

Table 8. AUCs for networks using single link knowledge. 

Disease IID Species GO 

Molecular 

GO 

Biological  

GO 

Cellular 

MEDLINE  Expression  

Rheumatoid Arthritis 0.699 0.699 0.597 0.766 0.600 0.522 0.592 

Parkinson's Disease 0.631 0.639 0.572 0.736 0.582 0.224 0.552 

Celiac Disease 0.772 0.774 0.662 0.792 0.606 0.413 0.716 

Esophageal Cancer 0.857 0.842 0.742 0.870 0.693 0.734 0.673 

Hepatitis C 0.721 0.731 0.440 0.810 0.437 0.300 0.468 

Crohn’s Disease 0.814 0.812 0.619 0.719 0.615 0.443 0.464 

Breast Cancer 0.834 0.839 0.702 0.782 0.561 0.651 0.502 

Asthma 0.774 0.778 0.595 0.726 0.649 0.500 0.539 

Alzheimer’s Disease 0.835 0.838 0.575 0.685 0.638 0.256 0.497 

Ulcerative Colitis 0.672 0.672 0.550 0.676 0.610 0.482 0.480 

Endometriosis 0.772 0.776 0.486 0.856 0.595 0.663 0.677 
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Lymphoma 0.830 0.828 0.630 0.880 0.521 0.724 0.352 

Osteoarthritis 0.753 0.755 0.880 0.686 0.836 0.475 0.473 

Epilepsy 0.578 0.579 0.611 0.794 0.634 0.225 0.921 

Atherosclerosis 0.798 0.800 0.638 0.817 0.764 0.453 0.457 

Pancreatitis 0.767 0.780 0.537 0.548 0.352 0.637 0.433 

Cirrhosis 0.600 0.564 0.368 0.474 0.600 0.448 0.165 

Myocardial Infarction 0.865 0.867 0.662 0.770 0.748 0.448 0.379 

Tuberculosis 0.664 0.672 0.662 0.851 0.604 0.745 0.583 

Average 0.747 0.750 0.600 0.749 0.613 0.492 0.522 

p-value  ref. <0.90 <0.99 <0.90 <0.99 <0.99 <0.99 

  

Among the networks constructed from a single knowledge source, the GO Biological 

Network had the highest average AUC but its performance was not statistically significantly 

better than the IID knowledge source based on the Wilcoxon paired-samples signed-rank test. 

Furthermore, none of the networks based on the other types of knowledge sources – including 

the GO Cellular and GO Component Networks – did significantly better than the IID Network. 

Overall, these results suggest that gene functional information, MEDLINE information, species 

information, and co-expression knowledge – by itself – are not more useful for network based 

gene prioritization than protein-protein interaction knowledge.  

The result for the GO Networks was somewhat surprising since it has been reported in 

previous publications that disease genes tend to share a high degree of functional similarity. In 

one of the earliest papers, Freudberg et al. [8] created clusters of diseases based on their 

respective causative genes, and scored potential disease genes according to their functional 

similarity to genes in the clusters. Furthermore, Jimenez-Sanchez et al. [57] found a strong 

correlation between gene function and certain disease features such as age of onset and mode of 

inheritance. Both these papers suggest that disease genes tend to share common functionality. 

Given this literature trail, one would think that including the GO may add a significant benefit 

for network-based gene identification, but compared to using just protein-protein interactions, it 

did not.  
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 It was also surprising that the Co-Expression Link Weight Network did not perform 

significantly better than the IID Network. Ala [28] showed that genes involved in similar 

diseases tend to share the same expression pattern, and given this observation, one may think that 

the Co-Expression Link Weight Network would add a significant benefit, but it did not.  

And lastly, it was not too surprising that the Species Network did not perform 

significantly better than the IID Network. It is known that interactions from several highly 

related species like fly and yeast tend to be very similar to human protein-protein interactions. 

Thus, by just simply giving more confidence to human protein-protein interactions, I did not 

expect a significant benefit, but it was still worth looking at.  

5.2.1.1 Topological explanation for AUCs  

One interesting question was why the AUCs in Table 8 for one type of disease and link weight 

network were greater than another. For instance, why was the AUC using the GO Cellular 

Component Network (0.856) significantly greater than the AUC using the GO Biological Process 

Network (0.595) for endometriosis? I provide some explanations based on the network topology 

in the following sections. 

Node strength of root nodes and relationship to relative importance 

The degree of a node v is defined as the number of links that v has to other nodes in the network. 

In a weighted network (that has weighted links), the node strength of a node v is obtained by 

summing the weights on the links that u has to other root nodes and dividing it by the number of 

root nodes: 

R
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where R is the set of root nodes and lw(v, u) is the link weight between nodes v and u.  

I conjectured that the greater the relative importance (or posterior probability, see Section 

3.1.4) assigned by the KNGP algorithm to a root node the larger its node strength. Figure 9, 

Figure 10 and Figure 11 plot the relative importance versus the node strength for the root nodes 

of rheumatoid arthritis for the following knowledge networks: the GO Molecular Function 

Network, the GO Biological Function Network, and the GO Cellular Component Network.  

In all three plots, as the node strength increased, the relative importance also increased, 

and this correlation was significant for all three networks (p-value < 0.01). Similar results were 

observed for diseases other than rheumatoid arthritis (data not shown). Thus, a node that has high 

link weights to other nodes in the root set tends to obtain a higher relative importance. 

.  

 

Figure 9. Relative importance versus node strength for the GO Molecular Function Network for 

rheumatoid arthritis. 



 69 

 

Figure 10. Relative importance versus node strength for the GO Biological Process Network for 

rheumatoid arthritis. 

 

 

 

Figure 11. Relative importance versus node strength for the GO Cellular Component Network for 

rheumatoid arthritis. 
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Average node strength 

The average node strength for the set R of root nodes is defined as the average of the 

node strengths of the nodes in R and is given by the following equation: 

R
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Similarly, the average node strength for the set C of candidate nodes is given by the following 

equation: 
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For a disease D, the difference between avg_str(R) and avg_str(C) is given by the following 

equation: 

C

vstr

R

vstr

Ddiff CvRv
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I conjectured that greater the diff(D) for a disease D the higher will be the AUC obtained from 

the application of the KNGP algorithm to D. Figures 12, 13, 14 and 15 plot the diff(D) versus the 

AUCs for the 19 experimental diseases using the following knowledge networks respectively: 

the IID Network, the GO Molecular Network, the GO Biological Network, and the GO Cellular 

Network.  
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Figure 12. AUCs versus diff(D) for the IID Network. 

  

 

Figure 13. AUCs versus diff(D) for the GO Molecular Network. 
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Figure 14. AUCs versus diff(D) for the GO Biological Network. 

 

 

Figure 15. AUCs versus diff(D) for the GO Cellular Network. 

    

In all four networks, there was a significant positive correlation between diff and AUC 

(p-value < 0.01), thus indicating that as the AUC increased, so did diff. Since diff is an indicator 

of the difference in similarity between the root and candidate genes, these results indicate that 
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root genes which are more similar (or more close together) to each other according to a given 

knowledge source will result in a greater AUC. In other words, the reason why the AUC for the 

GO Cellular Component Network (0.856) was greater than the GO Cellular Component Network 

(0.595) for pancreatitis is that the root proteins are more similar according to the GO Cellular 

Component network compared to the GO Biological Process network. Thus, when choosing a 

knowledge source for network-based gene prioritization, one should choose the knowledge 

source which would naturally provide the greatest amount of similarity among the genes known 

to be associated with the disease.  

Table 9 below provides some of the link weight values between the endometriosis root 

proteins for the gene ontology cellular component network and the gene ontology biological 

process network. The first column provides a sample of some of the root protein pairs, and the 

second and third column provide the link weight values for the GO Cellular and GO Biological 

networks respectfully. The last row provides the average link weight values between the root 

proteins. As the table shows, the link weights for the GO Cellular Network were greater than the 

link weights for the GO Biological Process Network. The average link weight value for the GO 

Cellular Component Network was 0.55 and the average link weight value for the GO Biological 

Process network was 0.2. This up-weighted the transition probability values between the root 

proteins for the GO Cellular network vs. the GO Biological network which also increased the 

AUC values, because the KNGP algorithm utilizes the transition probability values. In other 

words, the average node strength for the GO Cellular network was greater than the average node 

strength for the GO Biological Process network which – as just previously mentioned and 

demonstrated – also increased the AUC values.  
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Table 9. Link Weight Values for the GO Cellular and GO Biological Component Networks 

Root Protein Pair GO Cellular 

Component 

Network 

GO Biological 

Process Network 

P24394-Q9BXN1 0.58 0.0 

P24394-P02458 0.53 0.12 

P24394-P11473 0.23 0.27 

P24394-P43026 0.60 0.25 

P24394-P02452 0.76 0.22 

.... …. …… 

Average  0.55 0.20 

  

5.2.2 Incorporation of combined link knowledge sources 

Table 10 gives the AUCs for each network and knowledge source based on the incorporation of 

link knowledge from a combination of knowledge sources. The AUCs for the IID Network are 

shown for comparison. It is important to note that the IID Network contains only experimental 

interactions whereas the PPPI Network contains both experimental and predicted interactions.  

 

Table 10. AUCs for networks with link weights from combination of sources. 

Disease IID  PPPI PPPI+ 

GOM 

PPPI+ 

GOB 

PPPI+ 

GOC 

Rheumatoid Arthritis 0.699 0.806 0.750 0.830 0.798 

Parkinson's Disease 0.631 0.648 0.652 0.668 0.668 

Celiac Disease 0.772 0.837 0.744 0.814 0.795 

Esophageal Cancer 0.857 0.846 0.840 0.871 0.858 

Hepatitis C 0.721 0.749 0.502 0.764 0.759 

Crohn’s Disease 0.814 0.837 0.850 0.862 0.846 

Breast Cancer 0.834 0.859 0.866 0.872 0.865 

Asthma 0.774 0.861 0.797 0.856 0.825 

Alzheimer’s Disease 0.835 0.835 0.807 0.843 0.828 

Ulcerative Colitis 0.672 0.725 0.740 0.706 0.738 

Endometriosis 0.772 0.940 0.747 0.953 0.944 

Lymphoma 0.830 0.837 0.770 0.875 0.872 
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Osteoarthritis 0.753 0.823 0.840 0.778 0.837 

Epilepsy 0.578 0.573 0.579 0.622 0.612 

Atherosclerosis 0.798 0.820 0.880 0.840 0.827 

Pancreatitis 0.767 0.847 0.852 0.715 0.865 

Cirrhosis 0.600 0.667 0.525 0.689 0.683 

Myocardial Infarction 0.865 0.878 0.884 0.892 0.880 

Tuberculosis 0.664 0.871 0.800 0.887 0.876 

Average 0.747 0.805 0.757 0.807 0.809 

p-value ref. <0.05 <0.30 <0.05 <0.05 

 

The PPPI Network performed well, and its AUCs were significantly greater than the IID 

Network (p-value < 0.00001) and the GO Biological Network (p-value < 0.03). Of the three 

PPPI+GO Networks, two of the three – the PPPI+GOB and PPPI+GOC Networks – performed 

significantly better than the IID Network (p-value < 0.001). Of all the networks, the network 

which performed the best was the PPPI+GOC Link Weight Network. These results underscore 

the importance of combining knowledge from multiple sources when performing network based 

gene prioritization and knowing which data sources to combine. 

The fact that the PPPI Network performed significantly better than the IID Network was 

not surprising. The results from the incorporation of link knowledge from single knowledge 

sources (Section 4.1) showed that protein-protein interactions, by themselves, perform quite 

well, and it was thus not surprising that adding predicted interactions would also provide a 

benefit – especially since the predicted interactions came from a good source and had little 

overlap with the interactions from the IID.  

Overall, the finding that multiple sources of knowledge can be combined to improve 

network based gene prioritization is not too surprising given the literature trail. For instance, Sun 

et al. [61] created a weighting scheme to combine information for gene prioritization from 

several genetic data sources for the disease schizophrenia. The genetic data sources included 

more than two-thousand association studies, genome-wide linkage scans, and gene expression 
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studies. The authors showed that their approach can be promising for gene prioritization and had 

some success. Even though the authors did not use a network-based approach as was used in this 

dissertation, the authors showed that the combination of knowledge can be useful for gene 

prioritization for at least one disease. 

 To understand the superior performance of PPPI, I examined a number of additional links 

among the root nodes in the PPPI Network compared to the IID Network. I calculated a disease 

statistic ds(D) that measured the difference in the number of recorded interactions between the 

PPPI and IID Networks among the root nodes for a disease D. The disease statistic was defined 

as follows: 

ds(D) = PercRootInt(PPPI) – PercRootInt(IID)     (12) 

 

where PercRootInt is a procedure which outputs the percentage of links that are present among 

all possible root links for a given binary network. In other words, if the percentage is 0.10, this 

means that 10 percent of all possible root-root links were actually recorded as interactions in the 

given binary network. The first term on the right hand side of the equation uses the PPPI 

Network and the second term uses the IID Network. This disease statistic has a lower bound of 0, 

because the interactions in the IID Network always exist in the PPPI Network.  

If there was a substantial difference in the AUC between the PPPI and IID Networks for a 

given disease (Table 10), one would expect the ds(D) to be high. In order to test this, the 

difference in the AUCs between the PPPI and IID Networks were obtained along with the ds(D) 

for each disease. Figure 16 shows the AUC differences versus ds(D) for the experimental 

diseases. 
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Figure 16. AUC difference versus ds(D). 

  

There was a statistically significant correlation between ds(D) and the AUCs (p-value < 

0.05). In other words, the large difference in the AUCs between the IID and PPPI Networks were 

due in large part to the additional interactions added to the PPPI Network among the root nodes. 

5.2.3 Incorporation of node knowledge source 

This section presents the results of networks that incorporate only node knowledge. Table 11 

gives the AUCs for the following node weight networks: GO and InterPro. The AUCs for the IID 

Network are included for comparison.  

 

Table 11. AUCs for node weight networks. 

Disease IID GO  InterPro 

Rheumatoid Arthritis 0.699 0.770  0.765  

Parkinson's Disease 0.631 0.724  0.715  
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Celiac Disease 0.772 0.775  0.794  

Esophageal Cancer 0.857 0.876  0.846  

Hepatitis C 0.721 0.774  0.707  

Crohn’s Disease 0.814 0.808  0.832  

Breast Cancer 0.834 0.855  0.841  

Asthma 0.774 0.794  0.834  

Alzheimer’s Disease 0.835 0.868  0.854  

Ulcerative Colitis 0.672 0.701 0.702  

Endometriosis 0.772 0.758  0.880  

Lymphoma 0.830 0.910 0.851  

Osteoarthritis 0.753 0.803  0.790  

Epilepsy 0.578 0.710  0.672  

Atherosclerosis 0.798 0.885  0.821  

Pancreatitis 0.767 0.755  0.809  

Cirrhosis 0.600 0.579  0.673  

Myocardial Infarction 0.865 0.885  0.868  

Tuberculosis 0.664 0.833  0.745  

Average 0.749 0.793 0.789 

p-value ref. <0.05 <0.05 

 

As Table 11 shows, the GO Node Weight Network had the highest average AUC. Both 

the GO and InterPro networks were significantly greater than the IID Network (p-value < 0.05). 

These results show that adding node knowledge – derived from a variety of different data 

sources – can significantly benefit the network-based gene prioritization process.  

The reason that the two node weight networks performed significantly better than the IID 

Network is that the root proteins tend to have more GO and InterPro associations (and a 

correspondingly higher prior probabilities) than candidate proteins. This resulted in a prior 

probability vector where the root nodes had higher probabilities than the candidate nodes. For the 

GO Node Weight Network, the median number of GO associations for all 17,658 proteins (both 

root and candidate) was 36. However, the median number of GO associations for all 229 root 

proteins was 80. It is expected that root proteins would have more associations than candidate 

proteins, because disease-related proteins are probably researched considerably more than non-
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disease-related proteins. In summary, the three node weight networks are taking advantage of the 

implicit property of the root proteins having more associations than the candidate proteins.  

The plot in Figure 21 shows the distribution of GO associations for all proteins and the 

plot in Figure 22 shows the distribution of GO associations for only the root proteins. Thus, 

Figure 21 represents all 17,691 proteins, and Figure 22 represents the 229 unique root proteins 

associated with the 19 diseases.  

 

 

Figure 17. Histogram of GO associations for all proteins. 
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Figure 18. Histogram of GO associations for root proteins. 

 

 Form these two figures, it can be seen that the number of GO associations for the root 

proteins was – on average – larger than the number of GO associations for all 17,691 proteins. 

This resulted in the node weights (and subsequent prior weights) for the root proteins to be 

higher than the node weights for the candidate nodes resulting in greater AUC scores, because 

the relative importance of a given node in the KGNP algorithm is derived in part from the prior 

probabilities. This same relationship existed for the InterPro knowledge source as well.  

5.2.4 Incorporation of link and node knowledge sources 

The results in the preceding sections showed that incorporation of link knowledge in the form of 

predicted protein-protein interactions and GO Cellular Component knowledge combined 

(PPPI+GOC) and incorporation of node knowledge in the form of GO associations led to 
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improved performance. This section presents the results of a network that combines link weights 

from the PPPI+GOC Link Weight Network and node weights from the GO Node Weight 

Network. Table 12 below provides the AUCs for the PPPI+GOC Link Weight and GO Node 

Weight Network along with the AUCs for the PPPI+GOC Link Weight Network and the GO 

Node Weight Network for comparison. The PPPI+GOC Link Weight Network represented the 

optimal network using link knowledge, and the GO Node Weight Network represented the 

optimal network using node knowledge.  

 

Table 12. AUCs for combined link and node weight networks. 

Disease PPPI+ 

GOC Link 

Weight 

Network 

GO Node 

Weight 

Network 

PPI+GOC 

Link Weight 

and GO Node 

Weight 

Network 

Rheumatoid Arthritis 0.798 0.770  0.835  

Parkinson's Disease 0.668 0.724  0.734  

Celiac Disease 0.795 0.775  0.807  

Esophageal Cancer 0.858 0.876  0.853  

Hepatitis C 0.759 0.774  0.756  

Crohn’s Disease 0.846 0.808  0.847  

Breast Cancer 0.865 0.855  0.867  

Asthma 0.825 0.794  0.845  

Alzheimer’s Disease 0.828 0.868  0.863  

Ulcerative Colitis 0.738 0.701  0.740  

Endometriosis 0.944 0.758  0.986  

Lymphoma 0.872 0.910  0.918  

Osteoarthritis 0.837 0.803  0.858  

Epilepsy 0.612 0.710  0.718  

Atherosclerosis 0.827 0.885  0.896  

Pancreatitis 0.865 0.755  0.878  

Cirrhosis 0.683 0.579  0.666  

Myocardial Infarction 0.880 0.885  0.907  

Tuberculosis 0.876 0.833  0.943  

Average 0.809 0.793 0.838 

p-value ref ref <0.05 / <0.05 
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The AUCs for the PPPI+GOC and GO Node Weight Network were significantly greater than the 

AUCs for the best link weight only network and the best node weight only network (p-value < 

0.05). This shows that the incorporation of both link and node knowledge together can 

significantly benefit the network-based gene prioritization process. This combined link and node 

weight network represents the optimal network for the purpose of network-based gene 

prioritization.  

5.2.5 Validation for asthma 

For each of the 19 diseases, I scored and ranked all 17,691 proteins using the full set of root 

nodes and the PPPI+GOC Link Weight and GO Node Weight Network which was the best 

performing network. Table 13 gives the 5 top ranking candidate proteins (identified by UniProt 

identifier) for the disease asthma, and Appendix B provides the top 10 ranking candidate proteins 

for all 19 diseases. I searched the literature and found evidence for the two highlighted proteins 

in Table 13 being associated with asthma. Both of these proteins ranked low using the IID 

Network.  

Table 13. Top five ranked candidate proteins for asthma. 

Q01113 (IL9R) 

Q13224 (GRIN2B) 

P24394 (IL4R) 

P29460 (IL12B) 

P48357 (LEPR) 

 

 Kauppi et al. [62] genotyped several alleles from the IL9R gene and compared results 

between a large cohort of patients with asthma and healthy-control samples. The results were 

studied using linkage analysis, transmission disequilibrium, and homozygosity analyses. The 

authors showed that a IL9R allele – sDF2*10 – was more likely to be transmitted among patients 
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with asthma and was found homozygotic among asthma patients more often than expected. 

Furthermore, a specific X chromosome haplotype was found to be more associated for patients 

with asthma. This gene was ranked 1
st
 out of approximately 17,500 proteins using the 

PPPI+GOC Link Weight and GO Node Weight Network but 926
th

 using the IID Network. In 

order to test the hypothesis that the IL12B gene contains polymorphisms associated with asthma, 

Randolph et al. [63] performed a genotype analysis for polymorphisms in the IL12B gene 

between patients with asthma and their parents. In the results, the authors showed that one of the 

alleles of the IL12B gene was under-transmitted to children with asthma. Furthermore, the 

authors showed that a polymorphism of the IL2B gene may be significantly associated with 

asthma severity in whites. The IL12B gene was ranked 4
th

 using the PPPI+GOC link weight and 

GO Node Weight Network but 290
th

 using the IID Network.  

Both the IL9R and IL12B genes were found to have a high likelihood of being associated 

with their respective diseases from the literature. This supports the validation and use of the 

PPPI+GOC Link Weight and GO Node Weight Network over the IID Network alone (the 

baseline) since the two genes were ranked high with the PPPI+GAD Network but low with the 

IID Network.  
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6.0  CONCLUSIONS 

This dissertation explored in depth the network-based gene prioritization approach. Section 6.1 

summarizes the main contributions of this dissertation. Section 6.2 discusses some of limitations 

and section 6.3 provides some directions for future work. 

6.1 CONTRIBUTIONS 

The first major contribution was the development of a network-based inference algorithm in 

order to incorporate node knowledge into the network-based gene prioritization process, and I 

called this algorithm the knowledge network-gene prioritization algorithm (KNGP). This 

algorithm generalizes two current network-based inference algorithms: PageRank and PageRank 

with Priors. Previous network-based inference algorithms could be used to incorporate only link 

knowledge while the KNGP algorithm can incorporate both link and node knowledge. The 

KGNP algorithm can be used to incorporate knowledge for any general purpose which can use 

network-based inference – not just gene prioritization.  

 The second major contribution was the investigation of whether biological knowledge 

can successfully be used to benefit the network-based gene prioritization process. This 

contribution was enveloped into four aims. For the first aim, the null hypothesis is accepted that 

the incorporation of knowledge from a single source does not provide a benefit for network-
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based gene prioritization. The results showed that the use of protein-protein interaction 

knowledge is equal or better than all of the other types of knowledge sources tested. For the 

second aim, the null hypothesis was rejected that the combination of knowledge cannot provide a 

benefit for network-based gene prioritization. Particularly, the use of predicted-protein 

interactions – by itself – and in combination with the Gene Cellular Component ontology 

performed significantly better than using just experimental interactions. For the third aim, the 

null hypothesis was rejected that the incorporation of node knowledge does not provide a benefit 

for network-based gene prioritization. Particularly, the incorporation of GO and InterPro 

associations was shown to provide a significant benefit given that the node weights for all of the 

proteins are utilized. For the fourth aim, the null hypothesis was rejected that the combination of 

node and link knowledge does not provide a benefit for network-based gene prioritization. 

Particularly, the incorporation of link knowledge in the form of predicted protein-protein 

interactions with the Gene Cellular Component and node knowledge in the form of GO 

associations was shown to add a significant benefit.  The following table provides the summary 

of the results for each of the aims enveloped within the second contribution.   

 

Table 14.  The Summary of Results for Each Aim 

Aim Summary of Results 

Aim 1: Link Knowledge From a Single 

Source 

Species and GOB network equal to IID 

network 

Aim 2: Link Knowledge From a 

Combination of Sources 

PPPI, PPPI+GOB, and PPPI+GOC 

networks were significantly better than IID 

network 

Aim 3: Node Knowledge GO and InterPro networks were 

significantly better than IID network 

Aim 4: Combined Link and Node 

Knowledge 

Combined link and node knowledge 

network was best network 
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The results from this contribution are significant in the area of gene prioritization for 

several reasons. First, this dissertation is the first to comprehensively compare multiple 

knowledge sources for the purpose of network-based gene prioritization. Second, this 

dissertation marks the first time that node knowledge has been incorporated into the network-

based gene prioritization process. Previous work has only incorporated link knowledge.  

6.2 LIMITATIONS  

The biggest limitation of incorporating knowledge into the network-based approach is that many 

of the knowledge sources that I considered had poor annotation coverage for the proteins. I 

applied the criterion that in order for a given knowledge source to be included, the knowledge 

source should have at least one known annotation for at least 75% of all proteins listed in 

UniProt. This criterion eliminated several knowledge sources including protein domain and 

pathway knowledge. One possible remedy for this problem is to include predicted knowledge 

similar to predicted knowledge that is available for protein-protein interactions. 

 The other major limitation is the high computational space and time requirements of the 

PageRank with Priors and KGNP algorithm. The PageRank with Priors algorithms could be 

implemented using matrix algebra, but with a total of approximately 17,500 proteins, this 

required a ~ 17,500 by 17,500 matrix of real numbers to be stored in memory (although only half 

of these numbers actually needed to be stored due to the symmetric nature of the matrix). 

Fortunately, a computer with a sufficient amount of RAM could be found to run the algorithm in 

sufficient space and – thanks to Python’s multi-processor threading capabilities – in sufficient 

time. 
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6.3 FUTURE WORK 

There are several possible extensions to the work described in this dissertation. For example, 

there are several additional knowledge sources which could have been added. There is a wealth 

of proteomic and genomic knowledge stored in a number of different systems biology databases. 

These systems biology databases store complex information about genes and proteins such as 

more in depth information about how various proteins interact (e.g., transcription, methylation, 

etc.). This in-depth systems type information could be used as an additional knowledge source 

for gene prioritization. However, it is not exactly clear how one would create a similarity 

measure for this type of information, because these types of databases tend to be fee-for-service 

software and thus the data would not be easy to download and obtain. There is also a wealth of 

predicted knowledge which could potentially be added to this dissertation. For instance, 

Troyanskaya et al. [64] constructed MAGIC ((Multisource Association of Genes by Integration 

of Clusters). MAGIC is based on a Bayesian system that combines evidence from heterogeneous 

data sources (mostly high throughput data) to predict whether two proteins are functionally 

related. The authors compared their predictive system to the Gene Ontology (GO) as the gold 

standard, and the system performed adequately. Dale et al. [65] used a series of machine learning 

methods – including naïve Bayes, decision trees, and logistic regression – to predict the 

pathways for a number of proteins. The authors showed that these machine learning methods 

performed better than several previously known pathway prediction algorithms. These predicted 

sources of biological knowledge could be useful. However, it may be difficult to obtain and use 

these algorithms to predict the biological data.  
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APPENDIX A 

PROTEINS ASSOCIATED WITH EACH DISEASE BY UNIPROT ID 

Rheumatoid 

Arthritis 

Parkinson's 

disease 

Celiac Disease Esophageal 

Cancer 

Hepatitis C Crohn’s 

Disease 

P20039 

P21580 

P08700 

Q03519 

Q96A65 

Q9UNS1 

P01909 

P49279 

P51681 

Q15116 

Q14116 

P22301 

P16410 

O75015 

P08637 

P01920 

P01584 

Q7RTU3 

P18510 

P31939 

P19438 

Q96P31 

P01579 

P08254 

P29475 

P27338 

P04062 

P15559 

Q5S007 

P00326 

P07339 

Q9H1E3 

P10635 

Q8IUH8 

Q92731 

P50406 

P23560 

P10636 

P27169 

Q9BXM7 

P43354 

P09488 

O60260 

P52824 

P06307 

P29459 

P01920 

O95256 

Q9HBE4 

Q13478 

Q01638 

Q08116 

Q04864 

P01909 

P16410 

Q9Y6W8 

P60568 

P32246 

P51677 

Q2LD37 

Q9UQQ2 

P04818 

P24385 

P42898 

P15559 

P05091 

P34896 

O14965 

P04798 

Q8IZI9 

P20591 

Q8IZJ0 

P16410 

P10914 

P01130 

P30685 

Q30201 

P20039 

P17706 

P08571 

P35408 

P54652 

Q8TAU0 

Q14116 

Q9H015 

O76082 

P08183 

P19438 

P00738 

P26927 

P01375 

Q5VWK5 

P14174 

Q676U5 

Breast Cancer Asthma Alzheimer’s 

Disease 

Ulcerative 

Colitis 

Endometriosis Lymphoma 

P20815 

P05121 

P08183 

P03372 

P01024 

Q9GZX7 

P60022 

P21731 

P02654 

P21397 

O96008 

P01375 

P20039 

P40879 

P09622 

P12318 

P04440 

P06401 

P15692 

P01909 

P04637 

P22301 

P16410 

P24394 
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P04637 

P05164 

P27169 

P50225 

P09211 

P04179 

P06401 

P38398 

Q16678 

P05093 

P22455 

P21802 

P39060 

P16035 

P33241 

Q13233 

P05106 

P04798 

P29474 

P11473 

Q14790 

P01579 

P08253 

P05121 

Q15746 

P36222 

P01375 

P01920 

P20930 

Q9NQ38 

Q9BZ11 

P13500 

P13501 

P01909 

Q14116 

P35225 

P04440 

P05112 

P10145 

Q14765 

P51677 

P05106 

P29475 

P11684 

Q9UIL8 

P01011 

P01579 

P14780 

P05164 

P78380 

Q15165 

Q12800 

P10909 

Q9BZA7 

P01584 

Q03014 

Q9Y6A2 

P02649 

P01034 

P30533 

P28223 

P30456 

P06276 

P49768 

P04406 

P08571 

P01903 

Q9NZK7 

Q8TAU0 

Q9NPH9 

P07942 

O00206 

Q14116 

P22301 

P20809 

P08183 

Q9H257 

P26927 

P01375 

Q5VWK5 

P14174 

P01579 

Q9NXI6 

Q9UIR0 

Q0VDK5 

P03372 Q9UNQ0 

P10415 

P41182 

Osteoarthritis Epilepsy Atherosclerosis Pancreatitis Cirrhosis Myocardial 

Infarction 

P24394 

Q9BXN1 

P02458 

P11473 

P43026 

P02452 

P01583 

Q9UEF7 

P01213 

P23560 

O95180 

Q8N135 

P35498 

P18507 

P13498 

P02656 

P29474 

P08571 

P16284 

Q07869 

P02741 

P49238 

P45452 

P04035 

P11150 

P11597 

P34913 

Q6Q788 

P02647 

P02649 

P09601 

P05231 

P23946 

P05362 

P12821 

Q9BQB6 

O60603 

P07204 

P20039 

P07477 

O00206 

P00995 

P05091 

P13569 

P05091 

Q5SRN2 

P01375 

P01920 

P05019 

Q9UIR0 

Q30201 

P40225 

P42772 

P29474 

P15692 

P02741 

P02649 

P04114 

P07359 

P16442 

P05362 

P42771 

P51681 

P08514 

P07204 

P03372 

P41597 

P00488 

Q15848 

P12821 

P07996 

P00748 

P16284 

P05019 

P30533 
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P07203 

Q15848 

P30556 

P04180 

P01344 

P35520 

P16109 

P78380 

P27169 

P35568 

Q15165 

P01303 

P14780 

P08253 

P08254 

Q9UEF7 

P06858 

Q8TE73 

P01019 

P78380 

P27169 

Q15165 

P08254 

P11712 

P05121 

P06858 

P01019 

Tuberculosis      

P20039 

Q99572 

P11473 

P42701 

P01909 

P10145 

P49279 

O60603 

P22301 

P29460 

P01920 

P01579 

     

 

  

 



 91 

APPENDIX B 

TOP 10 RANKING CANDIDATE PROTEINS FOR EACH OF THE 19 

EXPERIMENTAL DISEASES 

Rheumatoid 

Arthritis 

Parkinson's 

disease 

Celiac Disease Esophageal 

Cancer 

HepatitisC Crohns 

P01023 

Q03518 

P29460 

P48357 

Q01113 

O15533 

P28062 

P42702 

P08253 

P30685 

P31946 

P14672 

Q15796 

Q92793 

P06241 

P63104 

P62158 

P84022 

Q9Y4K3 

P04637 

P01562 

P29460 

Q9HBE5 

Q14213 

P23743 

P01589 

P31785 

P19397 

P14784 

P29353 

P00167 

P00387 

Q9UBK8 

P11142 

P14672 

P08107 

Q9BZE4 

Q9UL45 

P04637 

Q92541 

P15813 

P61769 

Q9BXS5 

P04114 

P02786 

P29016 

P30456 

P17693 

P30511 

P42229 

P11831 

Q15599 

O14745 

Q5T2W1 

Q86UT5 

P20333 

P01374 

Q93038 

Q9Y5U5 

P08138 

Breast Cancer Asthma Alzheimer Ulcerative 

colitis 

Endometriosis Lymphoma 

P00167 

P00387 

Q9UBE0 

P16435 

Q9UBK8 

Q03135 

P29460 

P48357 

P08047 

P00451 

Q01113 

Q13224 

P24394 

P29460 

P48357 

P07477 

P42702 

P02751 

P27694 

P08887 

P00740 

P02647 

P02652 

Q9UBK8 

P04070 

P00742 

P02768 

P00734 

P13500 

P31946 

P01023 

P11831 

Q14626 

P43364 

P19438 

Q08334 

O95999 

P20333 

P29460 

Q15599 

O14786 

P49765 

P17948 

Q13275 

P49763 

P22105 

P29279 

P35052 

P09486 

P04004 

P3194 

P14672 

Q15796 

Q92793 

P06241 

P63104 

P62158 

P84022 

Q9Y4K3 

O15198 

Osteoarthritis Epilepsy Atherosclerosis Pancreatitis Cirrhosis Myocardial 

Infarction 

Q16270 

P12643 

Q99985 

P01584 

Q99584 

P31946 

P14672 

Q15796 

Q92793 

P06241 

P00519 

P42684 

P00734 

P04114 

P00740 

O60603 

O60602 

Q15399 

Q99836 

P01903 

P17936 

P24593 

P22692 

P08833 

P18065 

P00734 

P00740 

P04070 

P00742 

P02647 
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Q9NPH3 

P02751 

P21810 

P09486 

P07996 

P63104 

P62158 

P84022 

Q9Y4K3 

P04637 

Q07954 

Q02156 

P31946 

P00747 

P02652 

Q9BXR5 

Q9Y2C9 

P58753 

P08571 

Q9NYK1 

P24592 

P19438 

P20333 

Q16270 

P01374 

P02760 

P01008 

P05155 

Q04756 

P04004 

Tuberculosis      

P01023 

O95425 

P54852 

P16333 

P62736 

P00519 

P62993 

Q08334 

P42702 

P48357 
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