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Animals can generate distinct rhythmic behaviors using a shared set of muscles and mo-

toneurons, and in certain cases, the structure responsible for generating these movements

is unknown. Distinct networks could be dedicated solely to particular behaviors, a singular

network could control various movements through reorganization or under different inputs,

or a hybrid of these two concepts could exist. In the first chapter of this thesis, we explore the

compatibility of different network characteristics with experimental results regarding swim-

ming and scratching rhythm generation in the turtle. We propose three distinct architectures

that represent a range of connectivity between networks responsible for these rhythms, and

test their performance against a set of experimental benchmarks regarding dual stimulation.

The results of our modeling concur with experimental results, suggesting that networks that

generate locomotion and scratching share important components.

In the second and third chapters, we focus our attention on a previously published

neuromechanical locomotor model. In this closed loop system, a central pattern generator

(CPG) establishes a rhythm under sufficient supra-spinal drive and controls the activity of a

pendular limb, which sends afferent signals back to the CPG, affecting its operation. Increas-

ing the drive to the CPG increases the limb frequency through changes in the stance phase

duration only, which is a key feature of normal overground locomotion. Using geometric

singular perturbation theory, we analyze the mechanisms responsible for rhythm generation

in the CPG, both in the presence and absence of feedback. We exploit our observations

to construct a reduced model that is qualitatively similar to the original, but tractable for
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rigorous discussion. We prove the existence of a locomotor cycle in this reduced system using

a novel version of the Melnikov function, adapted for discontinuous systems. We highlight

how the limb dynamics shape overall model behavior, and indicate a crucial relationship

between components that controls the model’s asymmetric response to drive changes. Fi-

nally, we utilize our understanding of the model dynamics to explain its performance under

various modifications, including recovery of oscillatory behavior after spinal cord injury and

response to changes in load.

Keywords: central pattern generators (CPGs), rhythm generation, escape, release, central

nervous system (CNS).
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1.0 INTRODUCTION

In the early 1900s, T. Graham Brown showed that the mammalian spinal cord could generate

stepping patterns without rhythmic afferent input, proposing the idea of the half-center

oscillator model of the spinal locomotor network [11, 12]. Views shared by Sherrington and

others proposed an alternative concept, that the spinal cord contained sufficient sensory

reflex circuitry to produce the basic alternation of flexor and extensor activity in locomotion

[67, 52], with switching in the locomotor cycle triggered by sensory feedback. The former

viewpoint was generally ignored in favor of the latter until fifty years later, when the idea that

locomotion could be produced by the central nervous system (CNS) in absence of sensory

afferents was again demonstrated in other systems like the locust, where oscillatory behavior

replicating the rhythm seen in flight was exhibited despite the removal of timed sensory inputs

[82] and in the deafferented crayfish abdominal nerve cord, which could generate coordinated

spiking in motor axons, seen during forward swimming [52]. Rhythmic patterns in absence

of sensory feedback in in vitro experiments in newts, cockroaches, leeches, and cats, provided

further evidence that alternating flexor and extensor activity could be produced solely by

the central nervous system [52].

Brown’s original concept of a half-center model was later tailored by Lundberg to provide

the prevailing structure of two excitatory neural populations driving flexor and extensor

motoneurons and inhibiting each other via inhibitory interneurons. These networks, which

produce oscillatory output in absence of rhythmic input and sensory afferents, are referred to

as central pattern generators (CPGs). CPGs underlie a wide variety of repetitive movements,

such as breathing, swallowing, swimming, and many others.

A fundamental question that remains to be answered regards the structure of networks

responsible for generating rhythmic movements from a shared set of muscles and motoneu-
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rons. On one end of the spectrum, distinct CPGs could be configured solely for individual

tasks, and on the other, a multifunctional circuitry might be able to produce various rhythms

under different inputs or reorganization. Certainly a hybrid of these two configurations could

exist, where distinct networks overlap and share key components. Identifying the neurons

central to the circuitry responsible for certain movements can be a difficult task for motor

systems physiologists, however, due to both the complexity of the CNS and because neurons

can be embedded within regions responsible for other functions [44].

Evidence from recordings in both invertebrate and vertebrate systems indicates that in-

dividual interneurons participate in multiple rhythms generated by the same set of muscles

and motoneurons. Some examples include tadpole and zebrafish swimming and struggling,

mollusk withdrawal and escape swimming, cat scratch and walking, and in multiple forms

of scratching in the turtle [51, 8, 33]. These observations posit the concept that a singular

network is capable of generating distinct rhythms under various inputs. However, evidence

from zebrafish larvae, adult turtles, and hatching tadpoles suggest that in addition to mul-

tifunctional neurons, some networks possess specialized interneurons which are selectively

activated during certain behaviors, and silent or inhibited during others. Therefore, net-

works underlying multiple rhythms might be comprised of multifunctional neurons working

in conjunction with specialized interneurons that can be called upon to select and generate

various patterns. For smaller invertebrate networks where complete connectivity diagrams

can be produced (like in the crustacean stomatogastric system), whether networks generat-

ing various rhythms are unitary, distinct, or separate but overlapping can be resolved [32].

In the large vertebrate nervous system, however, the structure of the spinal network cannot

easily be deduced from individual neuron recordings [32].

To test the degree to which networks responsible for distinct rhythms overlap, experi-

mentalists simultaneously provide stimuli responsible for evoking either rhythm in isolation.

If the resultant motor pattern exhibits hybrid dynamics between the patterns, like frequency

increases, rearranged motoneuron firing, or even interruptions, inferences can be drawn indi-

cating shared circuitry underlying the rhythms. In Chapter 2, we will investigate the struc-

ture of the network underlying scratching and swimming rhythms in the adult red-eared

turtle. In previous work [32], our collaborators generated experimental results indicating
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that shared circuitry is involved in producing these rhythms, and we used the performance

of a few simple mathematical models to suggest the potential network architecture capable of

yielding their results. We will extend that preliminary modeling by a thorough investigation

of the capabilities of the proposed models, comparing and contrasting our results with those

published in [32], and indicate some limitations of the modeling, along with future directions

for studying this problem.

While it is imperative to emphasize the fundamental role that CPGs play in rhythm

generation, it is vital that one does not unintentionally neglect the important influence of

sensory feedback. Certainly, the ability to locomote with ease in our environment offers

many evolutionary rewards and in light of differing terrains, various obstacles, and other

perturbations, stable gait could not be achieved without the contribution of sensory feedback.

Despite the fact that flight in the locust was shown to be inherent to the CNS, it was

also shown that the cycle frequency was greatly reduced without sensory input, indicating

that the presence of feedback, while not necessary for the basic alternating pattern, is an

important component to modulate the rhythm [82]. In many other systems, it has been

shown that feedback can set the overall timing of the step cycle by facilitating the switch

between locomotor phases, influence selection or suppression of motor patterns, aide in

proper foot placement in uneven terrain, and countless other considerations [81, 44, 46, 61].

Understanding how rhythm generating units synthesize afferent commands is, therefore,

a key question for scientists investigating problems in locomotion, respiration, and other

rhythmic activities.

One characteristic feature of normal overground locomotion in most mammals is that

an increase in speed is achieved through a shortening of the stance phase, during which

a limb is in contact with the ground, without change in the duration of the swing phase,

during which the limb moves without ground contact [31, 27]. The source of this asymmetry

could potentially lie in the CPG structure, in the set of drives to the CPG from supra-

spinal sources such as the brain stem, or in the afferent feedback to the CPG, and which

possibility is correct remains the subject of scientific debate [39, 26, 35]. The suggestion

that this asymmetric response indicates a CPG that is wired to modulate the step cycle

through changes in extensor burst durations has been contradicted by experimental studies
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of fictive locomotion using decerebrate, immobilized cat preparations [41, 84] and recent

investigations of deletions, or spontaneous errors, during fictive locomotion [41, 64, 65, 48]

which provide evidence for a symmetrical, half-center organization of the spinal locomotor

CPG. In fact, under electrical stimulation of the midbrain locomotor region, variations in

cycle duration were accomplished through modulations of flexor, not extensor, bursts in the

majority of the cases [84], further indicating that the CPG is not inherently biased. In

that same paper, a simple model was produced that could fit data favoring either extensor

controlled or flexor controlled locomotion, provided that an offset factor (input to either half-

center) was asymmetric, suggesting that the CPG might produce an asymmetric response

due to an asymmetric drive signal.

In Chapters 3 and 4, we consider the alternative hypothesis, that the asymmetric re-

sponse could be accomplished via feedback control in spite of symmetries in both the CPG

and top down drive. We focus our attention on a model that Markin et al. [46] recently

proposed, where a locomotor CPG is coupled to a mechanical limb segment. Given a suf-

ficiently strong, constant drive, the CPG oscillates and controls two antagonistic muscles,

whose anti-phase contractions force a pendular limb. Feedback signals, based on muscle

length/velocity and force, are generated and sent back to the CPG, closing the loop. The

model is able to generate periodic oscillations with frequencies that depend on drive strength

over a wide range of values. The CPG is symmetric in the sense that its extensor and flexor

components are identical, and in the absence of feedback, frequency increases occur through

an equivalent shortening of both extensor and flexor phases. When afferent feedback is in-

troduced, however, the model exhibits asymmetric changes in phase durations in response to

drive alterations that match closely with experimental results, providing evidence that CPG

or drive asymmetry is not necessary for this behavior. Our primary goal is to use dynamical

systems analysis to explain the mechanisms underlying the performance of this computa-

tional model, as a step towards establishing general conditions under which the observed

simulation results can be expected to hold, clarifying which model features are essential to

its behaviors, and enhancing the predictive capacity of the model. In Chapter 3, we explain

how the presence of feedback initiates phase transitions in the CPG at a particular relation-

ship between limb position and velocity, overriding the intrinsic mechanism responsible for
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oscillations in the open loop configuration. Mathematical analysis of a model implementing

continuous feedback signals can be particularly complex, so we offer a reduced model whose

performance is qualitatively similar to the original, but tractable for analysis. We show that

this model admits a periodic solution under certain conditions, adapting classical theorems

from dynamical systems theory to apply to our system, which exhibits discontinuities due

to particular model terms. These discontinuities create natural divisions in the locomotor

cycle, and we highlight the different dynamics present in each of these phases in Chapter 4.

Proximity of the limb trajectory to a saddle point in phase space causes one phase in partic-

ular to be sensitive to changes in motoneuron output, and hence, drive strength, explaining

the phase asymmetry and indicating a key relationship that must be supported in order for

the model to generate oscillatory behavior.

In the rest of Chapter 4, our understanding of the model’s operation under baseline

conditions allows us to explain its performance under various perturbations. For instance,

the body regularly responds to adjustments in load, whether they be gradual, due to weight

loss or gain, or instantaneous, such as walking assisted by a hand rail. To determine how load

affects the kinematics of walking, studies have been performed on subjects where a percentage

of body weight is supported by a harness over a range of treadmill speeds. These experiments

indicate that as body weight support is increased, the phase asymmetry characteristic is

reduced, meaning that the stance duration takes up less of the overall cycle duration [36, 63].

We implement a comparative study in this model by reducing the strength of the ground

contact force. This modification affects the relationship between the limb trajectory and the

saddle point at stance onset and significantly reduces the dependence of the stance phase

duration on drive, replicating the reduction in the phase asymmetry characteristic.

Another discussion with far reaching applications is whether the body can regain locomo-

tor function after spinal trauma. Studies have produced evidence that recovery of locomotion

can occur after rehabilitation with regular treadmill training, and/or pharmacology, with the

general consensus being that this occurs in part due to strengthening the feedback connec-

tions to the weakly excited CPG [46]. We can mimic the effects of spinal trauma by setting

the constant drive parameter to zero in this model. The limb does not oscillate under this

modification, but oscillatory behavior can be recovered when the strength of afferent feed-
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back is increased. We show that when drive is absent, motoneuron activity is too weak to

sustain the crucial relationship between the limb trajectory and saddle point. We explain

how increasing the feedback results in restoration of the necessary alignment, indicating pre-

cisely how distinct feedback signals affect the particular components that promote synergy

between the CPG and the limb.

Finally, a limbless locomotor model has suggested that the CPG contains the input-

output relationship of the behavior it controls, and that input to the CPG might be expressed

as the desired speed of movement [83]. Without a limb, input to the CPG in that model

corresponds to supra-spinal drive only, and speed of movement is calculated from CPG cycle

duration based on a relationship generated by experiments [31]. Investigating the relationship

between input to the CPG and output frequency using the neuromechanical model offers two

extensions to this study: input, in this case, corresponds to both descending and sensory

sources, and speed can be determined using both the suggested relationship and separately

using the limb kinetics. We will analyze the crucial role that feedback plays in this topic,

utilizing our analysis to explain, and in some cases suggest alterations to optimize, the linear

relationship that is produced between these two variables.
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2.0 DETERMINING THE SPINAL NETWORK STRUCTURES

UNDERLYING RHYTHMIC MOVEMENT IN TURTLES

In this chapter, we employ mathematical modeling to infer the structure underlying rhythm

generation in the turtle spinal cord. The turtle model is an excellent subject for study

for multiple reasons. First, the turtle is a diving animal that possesses effective hypoxia

defense strategies, allowing it to withstand hypoxia/anoxia much better than other mammals,

allowing preparations to remain healthy up to three times as long [43]. In addition, to

efficiently study the performance of a motor system, a complete description of the behavior in

question must be obtained. This includes a classification of the sequence of muscle activation

responsible for the behavior, identification of the motoneurons controlling those muscles, and

understanding which interneurons participate in the rhythm. Depending on the system to

be studied, some of these tasks can be very difficult, for instance, when certain interneurons

affecting a particular behavior are not active in phase with the behavior [44]. This is not the

case for the adult red-eared turtle, where the behaviors are well described [42, 57, 50, 77].

In addition, a variety of movements can be independently evoked through specific stimuli.

Presenting stimuli responsible for different rhythmic behaviors simultaneously is a method

experimentalists use to reveal network interactions. The resultant motoneuron pattern

evoked from delivering these stimuli together can indicate whether the network(s) responsible

for either rhythm share components. In [32], our collaborators experimentally investigated

the level of interaction between networks responsible for turtle swimming and three forms of

scratching, which are distinct rhythms that can be produced under various forms of stimu-

lation in vivo. These rhythms are characterized by rhythmic alternation between hip flexor

(HF ) and hip extensor (HE) motoneurons, along with activation of knee extensor (KE),

with distinct burst amplitudes and ordering of activation. Experiments regarding these
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rhythms have been performed previously [22, 38], and have indicated that hybrid motor

patterns and rhythm resetting can occur under brief dual stimulation. This newer work ad-

vanced these findings by considering dual scratching and swimming stimulation over several

cycles. Frequency increases and hybrid features exhibited in the patterns generated by dual

stimulation concurred with earlier results and indicated that the circuitry responsible for

these rhythms overlaps.

Mathematical modeling can be used in conjunction with experiments to clarify results

and offer testable predictions for further experiments. Here, we use mathematical models to

explore the compatibility of different network characteristics with the results of our collab-

orators’ experiments. These models represent a simplified version of the neuronal networks

present in the spinal cord. We propose three unique architectures that represent various

degrees of interaction within networks responsible for swimming and scratching. Model neu-

rons in these networks are described by systems of ordinary differential equations where the

variables representing voltage and gating processes operate on different timescales, enabling

us to formalize arguments describing their activity using geometric singular perturbation

theory. Through the models’ ability or inability to produce experimental results regarding

dual stimulation, we aim to mathematically infer the structure of the underlying network in

the turtle spinal cord.

In Section 2.1, we provide a brief overview of the experiments performed by our col-

laborators, streamlining their conclusions into a concise list of benchmarks that guide our

modeling attempts. An introduction to the neuronal dynamics and the various architectures

under consideration is located in Section 2.2, and in Section 2.3, we present an overview of

our preliminary modeling results (published along with experimental results from Section 2.1

in [32]). In that paper, differences in model output under various parameter choices led us

to conclude that a particular structure was more likely to produce the experimental results

than the others. The rest of the chapter is devoted to new work, dedicated to evaluating the

extent to which our initial conclusions are dependent on parameter choices. To do this, we

will randomly generate parameter sets for either modeling framework and ascertain the mod-

els’ ability to support the prescribed benchmarks. In Section 2.4, we automate our search

process by setting up algorithms to randomly generate sets of parameters and to evaluate
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whether, under these choices, the models produce favorable dynamics. The networks we

propose will be comprised of six neurons with various connectivity. In all of the structures,

swim is evoked by a subset of three neurons. In Section 2.5, we will discuss the parameter

sets we generated that produce swim dynamics in a 3-neuron model. We will use these sets to

build the full modeling structures in Sections 2.6 and 2.7, and detail the performance of the

models under these new parameter choices, attempting to deduce key features inherent to

the sets that promote favorable dynamics. Finally, an observation that differentiated these

models in [32] required parameter sets to produce particular dynamics under a certain stim-

ulation. Random searches did not produce sets exhibiting these dynamics, so in Section 2.8

we present an analysis we performed to constrain parameter space. A targeted search in

the regime indicated by this analysis was indeed able to produce sets that promoted desired

results. In the discussion, we summarize our conclusions obtained from this investigation

and indicate its limitations, highlighting our intentions for future work.

We will make ample use of abbreviations throughout this document. Some key terms

used throughout Chapter 2 are listed in the upper portion of Table 1.

2.1 EXPERIMENTAL RESULTS YIELD A LIST OF BENCHMARKS

In an immobilized preparation, electrical stimulation in a particular area of the turtle body

can elicit a swimming motoneuron pattern, and scratching the turtle surface in various lo-

cations elicits scratching motoneuron patterns (Figure 1). Simultaneous delivery of stimuli

generating various behaviors reveals interactions between the networks responsible for these

tasks. In [32], our collaborators investigated dual stimulation of various forms of scratches

paired with forward swim. Their findings indicated that there is most likely a shared circuitry

responsible for these movements, since under dual stimulation, the resulting motoneuron

pattern could be a hybrid of the two rhythms, lead to interruptions, and exhibit a larger fre-

quency than either the original swim or scratch alone. Though our collaborators considered

three different scratch and swim pairings, we choose to focus on only one scratch rhythm,

for simplicity. We selected caudal scratch because it exhibits phase differences that are most

9



Term Description
UCPG Unitary CPG; singular architecture comprised of specialized and multifunctional interneurons
LCPG Linked CPG; architecture comprised of distinct modules with interconnectivity
DCPG Dyadic CPG; architecture comprised of distinct modules without interconnectivity
KE knee extensor motoneuron
HF hip flexor motoneuron
HE hip extensor motoneuron
kej knee extensor interneuron that projects to KE; j ∈ 1, 2 indicates scratch or swim CPG
hfj hip flexor interneuron that projects to HF ; j ∈ 1, 2 indicates scratch or swim CPG
hej hip extensor interneuron that projects to HE; j ∈ 1, 2 indicates scratch or swim CPG
ik scratch-specialized interneurons in UCPG
input/drive to uk αIuk

total input to uk αIuk
−
∑

uj !=uk
bukuj

uj

fT function that calculates the output activity of each neuron, ‘T’ indicates turtle
subswim reduced swim stimulation strength; generates tonic or below threshold firing among swim neurons
UnitaryT, UnitaryS published UCPG parameter sets that generate tonic and below threshold firing under subswim, respectively
LinkedT, LinkedS published LCPG parameter sets that generate tonic and below threshold firing under subswim, respectively
α parameter controlling the strength of the swim stimulus
β parameter controlling the strength of the drive to ke and hf alone
S collection 3-neuron parameter sets that produce below threshold firing when the swim stimulus is reduced
T collection 3-neuron parameter sets that produce tonic activity by at least one neuron when the swim stimulus is reduced
tme time point when the steady state of (w1, w2) shifts away from (1,0) with increasing w2

te time point when nullclines split and (w1, w2) is attracted to (0, 1) in fast time (escape mechanism)
tmr time point when the steady state of (w1, w2) shifts away from (1,0) with decreasing w1

tr time point when nullclines split and (w1, w2) is attracted to (0, 1) in fast time (release mechanism)
d constant supra-spinal drive fed to CPG neurons
Vi voltage drop across the membrane of neuron i
RG - k rhythm generator neuron k; k ∈ {F,E}
In - k inhibitory interneuron k; k ∈ {F,E}
PF - k pattern formation neuron k; k ∈ {F,E}
Mn -k motoneuron k; k ∈ {F,E}
q limb angle with the horizontal
v limb angular velocity
Ia-F , II -F feedback terms to the flexor side
Ia -E, Ib -E feedback terms to the extensor side
FBi summed feedback to neuron i
FBcrit feedback required to excite an inactive In above threshold; independent of drive
TTC Stance Transition Curve; location in limb phase space where flexor activates
WTC Swing Transition Curve; location in limb phase space where extensor activates
eStance portion of the locomotor phase where Mn -E is active and ground reaction is present
fStance portion of the locomotor phase where Mn -F is active and ground reaction is present
eSwing portion of the locomotor phase where Mn -E is active and ground reaction is absent
fSwing portion of the locomotor phase where Mn -F is active and ground reaction is absent
I moment of inertia of limb with respect to suspension point
K coefficient of gravitational moment
b angular viscosity in the hinge joint
MGRmax amplitude of moment of ground reaction force
ME, MF , MGR moment applied to limb from flexor, extensor, or ground reaction
fC function that calculates the output activity of each neuron, ‘C’ indicates cat
H Heaviside function that calculates inhibitory output in the reduced model
mphase fixed, drive-dependent motoneuron output during phase; obtained from time average of original model
{} notation indicating that the constant within is piecewise (phasewise) defined
xε = (qε, vε) saddle point of system ẋ = f(x) + εg(x) for ε ∈ [0, 1]
Wu(xε),W s(xε) unstable, stable manifold from xε

W̃ s(xε) trajectory governed by the eSwing vector field that converges to xε as v ↑ 0
γ0 homoclinic orbit emanating from x0

Σ transversal to the flow
M Melnikov function; sign indicates how the homoclinic perturbs with increasing ε
M∗

phase fixed muscle moment during phase; obtained to produce negative Melnikov sign
hk(ε) = (hk

q (ε), h
k
v(ε)) intersection of the stable and unstable manifolds with Σ; k ∈ {u, s}

Table 1: Key notation for common terms in Chapters 2 and 3.
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Figure 1: Turtle stimulation schematic. Applying electrical or manual stimulation in the colored
portions of the turtle body produce swim or scratch motoneuron patterns. Republished from [9], with
permission from Annals of the New York Academy of Sciences.

distinct from those occurring in forward swim ([23, 42, 57], see the traces in Figure 1). See

Figure 2 for another example of a caudal scratch and forward swim motoneuron pattern,

along with evidence for frequency increases under dual stimulation in two animals. Below,

we summarize our collaborators’ relevant experimental results in a succinct list of modeling

benchmarks.

Any model we propose must:

1. produce a swim and scratch motoneuron pattern under distinct patterns of constant

stimulation to model neurons

2. increase the frequency of the swim rhythm when the strength of the swim drive is in-

creased ([42]);

3. under dual stimulation, output a pattern with a higher frequency than the frequencies

of the swim or scratch rhythms alone;

4. produce swim when reduced swim stimulation is applied with full scratch stimulation.

These benchmarks are the guidelines we will use when evaluating the performance of our

models. In the next section, we provide a rigorous definition of the scratch and swim rhythms,

as well as the mathematical description of neurons in our models and the various architectures

we will analyze.
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Figure 2: Caudal scratch and forward swim dual stimulation produces motoneuron patterns with
an increased frequency than either alone. Application of stimuli is indicated below motoneuron
traces with a line. (A) and (B) motor pattern exhibited during caudal scratch and forward swim
stimulation, respectively. (C) Dual stimulation applied during the shaded region exhibits a pattern
with a larger frequency than in (A) or (B). (D), (E), Summary of two animals’ performance under
dual stimulation experiments. The rhythm exhibited under dual stimulation (gray bars) has a larger
frequency than either swim or scratch frequencies alone (white and black bars). The numbers in
each bar indicate the number of episodes/cycles considered. See [32] for more details.

2.2 INTRODUCTION TO THE DISTINCT NETWORK ARCHITECTURES

To illustrate the ways in which outputs generated by different types of network architectures

could or could not be consistent with our collaborators’ experimental observations, we devise

and test three simple network models, each featuring a particular architecture of connections

among neurons (Figure 3). Each model consists of a small system of ordinary differential

equations representing the activity of the interneurons in the network, with parameters tuned

to produce forward swim and scratch rhythms in response to corresponding levels of constant
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stimulation. Based on the features of rhythms evoked in physiological experiments, we define

a swim rhythm as a periodic network output in which KE and HF are active together in

anti-phase with HE, with active durations that satisfy |KE| ≈ |HF| < |HE|. We define a

scratch rhythm as a periodic network output in which activation proceeds from KE to HF

to HE, with little or no overlap, and active durations satisfying |KE| < |HF| << |HE|, as

seen experimentally in caudal scratch.

It has been suggested that one circuit may be responsible for the timing of cycles (i.e.

rhythm generation), and separate circuits may be responsible for the phase and shape of

each motor nerve burst (i.e. pattern generation) [49]. In each network, we make the simpli-

fying assumption that rhythm and pattern generation are both accomplished by the same

group of cells. The three models differ in terms of their CPG architectures (Figure 3). The

Swim 
Drive!

Scratch 
Drive!

i1!

he1!hf1!ke1!

KE! HF! HE!

1

1 111 1

i2! i3!

Unitary CPG!

A! Swim Drive! Scratch Drive!

ke1!

KE! HF! HE!

he1!hf1! ke2! he2!hf2!

Linked CPG!

B! Swim Drive! Scratch Drive!

ke1!

KE! HF! HE!

he1!hf1! ke2! he2!hf2!

Dyadic CPG!

C!

Figure 3: Schematics for the three architectures considered. (A) In the UCPG, a subset of neu-
rons in the CPG produces the swim rhythm, but scratch can be obtained by exciting the full set.
(B,C) Each of the latter two structures is comprised of two separate CPGs - one that produces the
swim rhythm, the other the scratch rhythm - but the LCPG (B) implements all to all connectiv-
ity between them, allowing output to be integrated prior to the motoneuron level. The DCPG (C)
has no interconnectivity between structures. In all configurations, interneurons {ke, hf, he} project
to motoneurons {KE,HF,HE}, respectively. In the UCPG, additional driver cells i1, i2, i3 are
partnered with ke1, hf1, he1, respectively, and provide additional excitation to these neurons under
scratch stimulation (excitatory connections shown with an arrow). All other connections in the
networks are inhibitory (inhibitory connections indicated with a circle)

dyadic CPG (DCPG) is conceptually the simplest, consisting of two separate CPG modules

– one able to produce a scratch rhythm and another that can generate a swim rhythm –

that do not interact directly (Figure 3C). The linked CPG (LCPG) also includes distinct

scratch and swim CPG modules but features inhibitory interactions between the modules
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(Figure 3B). In each of these configurations, interneurons {ke, hf, he} project to motoneu-

rons {KE,HF,HE}, respectively, with subscripts to differentiate whether interneurons lie

in the swim or scratch modules. The unitary CPG (UCPG) is comprised of a single, fully

connected CPG able to generate both rhythms through the output of a collection of mul-

tifunctional and specialized neurons. Echoing the literature that indicates the existence of

scratch-specialized neurons [9], the UCPG generates the swim rhythm when a subset of neu-

rons is stimulated but produces scratch when that subset and an additional set of specialized

neurons are activated together. We introduce these cells as extra “driver” cells – each spe-

cialized cell has a designated partner cell in the multifunctional network (i1 with ke1, i2

with hf1, and i3 with he1) to which it provides excitatory input (indicated with arrowed

connections in Figure 3A). As in the previous architectures, the output of {ke1, hf1, he1}

in this structure projects to motoneurons {KE,HF,HE}, respectively. The UCPG can be

differentiated from the LCPG by the presence of excitatory connections and existence of mul-

tifunctional neurons. Specifically, in the UCPG, if any neuron from the set {ke1, hf1, he1}

were shut off, the model would be unable to produce either rhythm. In the LCPG, no

such neuron exists; suppressing one neuron from {ke1, hf1, he1, ke2, hf2, he2} would affect

the model’s ability to perform either swim or scratch, but not both. In all three models,

scratch and swim outputs of the CPG interact at the motoneuron level, and motoneuron

activity is used to characterize network output. For simplicity, each network includes just

three motoneurons, one corresponding to each of KE,HF , and HE.

Within each model, neurons are simulated using Wilson-Cowan equations [25] of the

form

u′
k = −uk + fT (αIuk

−
∑

uj "=uk

bukujuj − gauk
)

τuk
a′uk

= −auk
+ uk, (2.1)

where u is an element of the set {ke, hf, he, i}, representing the neuron’s role within the

network (see Figure 3 – in particular, i denotes scratch-specialized neurons within the UCPG

model); Iuk
refers to a constant external drive, and

fT (x) = 1/(1 + exp(−r(x− θ))) (2.2)
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with θ=0.2, g=0.5, and r=10. In later sections, we will refer to a collection of n neurons with

dynamics described by equation (2.1) as an n-neuron (or n-cell) network. The variable uk

represents a measure of the activity of neuron k of type u, whereas auk
denotes adaptation of

the neuron. The parameter bukuj denotes the connection strength from uj to uk; g quantifies

the extent to which changes in adaptation affect activity; and τuk
denotes the time constant

of adaptation, relative to the activity time constant of 1. For simplicity, we allow single

neurons to send excitatory (negative b) outputs to some targets and inhibitory (positive b)

outputs to others; identical results could be obtained by splitting such neurons into excitatory

and inhibitory pairs. When we wish to refer only to the constant stimulus a neuron receives

(αIuk
), we will use the term “drive” or “input.” When we wish to include the effects of

changes in inhibition from other neurons (αIuk
−
∑

uj "=uk
bukujuj), we will use the term “total

input.”

The output of each motoneuron is defined simply by comparing the sum of its total input

with a threshold, θth = 0.6. That is, we compute KE = [
∑

kek − θ]+, HF = [
∑

kek − θ]+,

and HE = [
∑

kek − θ]+, where we define

[x]+ =







h(x) if x > 0;

0 if x ≤ 0.

In the UCPG model, each motoneuron receives input from only one neuron in the CPG. In

the other two structures, input to a motoneuron is the summation of outputs from members

of each module, as indicated in Figure 3. Since we do not model the effects of motoneuron

outputs on muscles, the particular choice of h is irrelevant to this work and will therefore

be left arbitrary. We indicate a specific threshold in order to maintain consistency when

calculating active phase durations.

“Swim stimulation” corresponds to a fixed set of drives {Iuk
} that induces a model

to generate the swim rhythm. “Scratch stimulation” is analogous but with {Iuk
} taking

different values than in the swim case. If a neuron does not participate in a particular

rhythm, it receives a constant value Iuk
= 0 and is inactive. The drive a neuron receives

during “dual stimulation” is chosen to be the sum of the drives it receives during the scratch

and swim rhythms. In some simulations, the strength of the swim stimulation is altered by
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multiplying all swim stimulation parameters by a factor α, the default value of which was

1 (see Table 2). “Subthreshold swim stimulation” refers to a reduced swim drive (α < 1),

which results in either below threshold or tonic (above threshold for the full duration) input

to the motoneurons, both of which are seen experimentally. We refer to the stimulation

given in either of those cases as “subswim.” We will see in later sections that the ability of

one of our models to support Benchmark 4 relies on the output of the swim module under

this reduced stimulation, even though swim stimulation is subthreshold (for this work, we

chose threshold at θth = 0.6).

When τ is large, neurons described by equation (2.1) have dynamics that operate on

different time scales. This system is referred to as a fast-slow system, since auk
evolves

more slowly than uk except where |fT | is small. In this type of system, examining the curves

where the right hand side of equation (2.1) equal zero is particularly helpful in understanding

the neuronal dynamics. These curves are called nullclines. From equation (2.2), the auk
-

nullcline satisfies uk = −auk
and the uk-nullcline satisfies uk = fT (αIuk

−
∑

uj "=uk
bukujuj −

gauk
). Notice that the calculation of the uk-nullcline depends on the choice of drive and

on continuous inhibition from other neurons in the system. Thus, this nullcline shifts in

phase space over time as the neurons interact. See Figure 4 for an example. In this system,

a′uk
< 0 for points in phase space above the auk

nullcline and a′uk
> 0 below it. Similarly,

u′
k < 0 above the uk-nullcline, and u′

k > 0 below the uk-nullcline, as indicated with arrows

in Figure 4 for the inhibited nullcline. A formal discussion of fast-slow dynamics can be

found in Section 3.2.1 (presented for a different neuron model). We note here that due to

the different timescales, the neurons in this system track their uk-nullcline, moving up or

down as directed by the vector field, until decreased/increased inhibition sufficiently shifts

their nullclines and causes the neurons to cross threshold.

To illustrate how dominance switches occur between neurons described by equation (2.1),

consider a symmetric 2-cell model (where both neurons receive the same constant drive and

inhibit each other equally). Assume u1 starts in the silent state (below threshold) at the

point indicated with a red star on the inhibited nullcline in Figure 4 and u2 is initialized in

the active state (above threshold) indicated with a red dot on the uninhibited nullcline in

Figure 4. As u1 travels down the u1-nullcline, its activity level increases, which decreases
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Figure 4: Movement of nullclines in (uk, auk) phase space during an oscillation as time progresses.
Timepoints are indicated with colored stars that correspond to their relevant uk-nullclines (red
indicates the first time point, blue the second time point). Threshold is indicated in cyan. As the
activity level of the inhibited neuron increases, it provides stronger inhibition to the free neuron,
which shifts the uninhibited nullcline down in phase space. Similarly, as the activity level of the
free neuron decreases, it provides less inhibition to the inhibited neuron, which shifts the inhibited
nullcline up in phase space. The direction in which the nullclines shift are indicated with black
arrows. The vector field for the inhibited configuration is indicated with blue arrows.

the overall total input to u2 in equation (2.1). This shifts the u2-nullcline down (indicated

with an arrow), causing u2’s activity level to decrease. A decrease in u2’s activity level

corresponds to an increase in the total input level to neuron u1, which raises the u1-nullcline

and promotes further increases in u1’s activity level. These nullclines continue to shift until

one of the neurons reaches the steep part of its nullcline (note the sigmoidal shape of f in

equation (2.2)), where small changes in the slow variable auk
corresponds to large changes

in the activity level uk. This has a significant effect on the inhibition the neuron provides

to its partner cell, which promotes a large shift in the partner cell’s nullcline. The inhibited

nullcline shifts up rapidly until its critical point lies to the right of threshold, and the free

nullcline shifts down until its critical point lies below threshold, and the neurons track this

activity, jumping between states.

Transitions between neurons have been classified previously [19, 71, 79] by the “escape”

and “release” mechanisms. The escape mechanism occurs when the silent cell is able to

17



overcome the inhibition it receives and enter the active phase. The release mechanism

occurs when the active cell controls the switch by shutting down and releasing the inhibited

cell. In this model, dominance switches are triggered by the escape mechanism, when the

suppressed population exhibits a significant increase in its response to a small change in

total input. Conversely, the release mechanism occurs when the response to a small change

in total input to the active population is significant. This response can be seen from the

shape of the neuron’s fT function, since this is directly related to the neuron’s activity level.

Consider the location of nullclines in phase space under constant levels of inhibition for two

different drives in Figure 5. Under large drive choices (Figure 5A), nullclines are shifted far

up in phase space, so small changes in inhibition significantly affect a silent neuron (see the

position change between the pink and blue curves in that figure). Equivalent changes in

inhibition to an active neuron (red and green curves) have little effect on the nullcline shape

(which remains close to constant for all ak). When a neuronal network exhibits nullclines

in this configuration, oscillations occur via escape, since the suppressed population (and not

the active population) has a large response to changes in total input.

When drive is smaller (Figure 5B), nullclines are shifted far down in phase space, where

small changes in inhibition have little effect on a neuron in the silent configuration (see the

shallow shapes of the blue and magenta curves). Conversely, it is now the active cell that

has a significant response to changes in inhibition (note the drastic shift in the uninhibited

red and green nullclines in Figure 5B). A network generating nullclines in this configuration

produces transitions via the release mechanism.

When transitions occur via escape, drive increases cause an increase in oscillation fre-

quency. Increasing the drive, or shifting the nullclines up in Figure 5A, has little effect on the

active nullclines, but would allow a silent neuron to reach the sloped regime of its nullcline

more easily, which promotes a faster transition. In the next section, we will discuss the choice

of constant drives, time constants, and connections between neurons that we prescribed for

the three configurations in our preliminary modeling, which were chosen so that oscillations

occurred by escape transitions in order to meet one of the benchmarks.
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Figure 5: Nullcline configuration in (uk, auk) phase space under constant levels of inhibition. (A)
Alignment for large drive (Iuk = 1.25). Inhibited nullclines (pink, blue) show a larger response to
small changes in inhibition (uj) than free nullclines (green, red), which remain shallow and close
to 1 for almost all values of auk . (B) Alignment for small drive (Iuk = 0.60). Free nullclines show
a larger response to small changes in inhibition than inhibited nullclines, which remain shallow and
close to 0 for almost all values of auk .

2.3 INITIAL INVESTIGATION OF MODELS’ ABILITY TO SUPPORT

EXPERIMENTAL BENCHMARKS

In [32], we published specifically tuned parameters that could produce forward swim and

caudal scratch rhythms in response to corresponding levels of constant stimulation for each

of the different model structures. These parameter choices are indicated in Tables 2-4, and

an example of the model output for one of the structures is in Figure 6. We first consid-

ered the DCPG model which included two separate rhythmogenic modules that sent signals

to common motoneuron targets but did not interact directly (see Figure 3C). By system-

atic exploration of relevant regions of parameter space, parameters were found that yielded

the forward swim and caudal scratch rhythms separately (Benchmark 1), but for any such

parameter set, this model was unable to reproduce the experimental responses to dual stimu-

lation that we explored (Benchmarks 3-4). Specifically, when subthreshold swim plus scratch
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Inhibition strengths from presynaptic neurons Current Injected
Postsynaptic neurons ke1 hf1 he1 ke2 hf2 he2 Iswim Iscratch τk(ms)

ke1 0.00 0.00 0.95 0.75 0.75 0.75 {1.16*,1.18†}α 0.00 1000
hf1 0.00 0.00 0.95 0.75 0.75 0.75 {1.15*,1.17†}α 0.00 1000
he1 0.50 0.50 0.00 0.75 0.75 0.75 1.24α 0.00 1000
ke2 0.64 0.64 0.64 0.00 0.85 0.75 0.00 0.74 1000
hf2 0.64 0.64 0.64 0.75 0.00 0.85 0.00 0.79 1500
he2 0.64 0.64 0.64 0.85 0.75 0.00 0.00 0.84 2000

Table 2: Linked central pattern generator (LCPG) model parameter values. Each row gives values
associated with a particular neuron, the identity of which is indicated in the leftmost column (see
Figure 3 for notation). The constant α takes the value 1 for baseline rhythm-generating stimulation,
is increased from 1 to represent stronger stimulation, and is decreased sufficiently far from 1 to effect
subthreshold stimulation. ke, knee extensor interneuron; hf, hip flexor interneuron; he, hip extensor
interneuron; Iswim, input inducing a swim rhythm; Iscratch, input inducing a scratch rhythm; τk,
time constant. *Parameters giving a tonic subswim regime for reduced α. †Parameters giving a
subthreshold subswim output for reduced α.

Inhibition strengths from presynaptic neurons Current Injected
Postsynaptic neurons ke1 hf1 he1 i1 i2 i3 Iswim Iscratch τk(ms)

ke1 0.00 0.20 1.07 -0.80 0.90 0.00 1.41α 0.32 1000
hf1 0.20 0.00 1.07 0.50 -0.45 0.00 1.42α 0.30 1000
he1 0.62 0.62 0.00 0.00 0.40 -0.60 1.40α 0.32 1500
i1 0.30 0.87 0.60 0.00 0.00 0.00 0.00 0.70 2000
i2 0.60 0.20 0.85 0.00 0.00 0.00 0.00 0.71 2500
i3 0.80 0.80 0.30 0.00 0.00 0.00 0.00 0.63 2500

Table 3: Unitary CPG (UCPG) model parameters that give a tonic output when α is reduced.
Format and notation are as in Table 2. i1, i2, i3 are additional interneurons.
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Inhibition strengths from presynaptic neurons Current Injected
Postsynaptic neurons ke1 hf1 he1 i1 i2 i3 Iswim Iscratch τk(ms)

ke1 0.00 0.30 0.85 -0.50 0.90 0.00 1.01α 0.52 1000
hf1 0.30 0.00 0.9 0.50 -0.30 0.00 1.05α 0.45 1000
he1 0.60 0.60 0.00 0.00 0.25 -0.30 1.10α 0.50 1000
i1 0.30 0.87 0.60 0.00 0.00 0.00 0.00 0.45 2000
i2 0.60 0.20 0.85 0.00 0.00 0.00 0.00 0.40 2500
i3 0.80 0.80 0.30 0.00 0.00 0.00 0.00 0.75 2500

Table 4: UCPG model parameters that give a subthreshold output when α is reduced. Format and
notation are as in Tables 2-3.

stimulation was provided, a swim rhythm could not be obtained. With this form of dual

stimulation, the input to each motoneuron was above threshold during the time intervals

corresponding to its scratch activity, and these intervals could become prolonged but could

not be converted to a swim rhythm. For some parameter choices, subthreshold swim stimu-

lation could yield tonic activity in one or more motoneurons, as seen experimentally in some

cases; in the resulting dual stimulation simulations, these motoneurons remained tonically

active as well. With full swim and scratch dual stimulation, we found it difficult to produce

any rhythm at all and could never produce a faster swim rhythm as seen experimentally;

since the swim-producing module continued to produce a normal-frequency swim rhythm

under this stronger form of dual stimulation, motoneuron activation at this frequency was

maintained. Since the simple mechanisms underlying these failures represent characteristics

of the DCPG network structure, not specific to any particular parameter choices, we con-

cluded that a network without direct interactions among rhythmogenic modules is unlikely

to produce our experimental results.

We next proceeded to simulate two alternative models, one with separate rhythmogenic

modules linked by reciprocal inhibition (LCPG) and one with a single (unitary) network of

cells that collaborate to produce both rhythms (UCPG) (see Figure 3). Both the LCPG

and UCPG models, each with fixed connection strengths, were able to produce rhythms

corresponding to caudal scratch and swim for particular choices of stimulation constants

(Tables 2-4, see Figure 6 for an example).
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Figure 6: Model simulations of rhythms. A-D: rhythms generated by the UCPG model (specifically,
summed inputs to each motoneuron) with swim stimulation (A), scratch stimulation (B), dual
stimulation (C), and stronger swim stimulation (D, α = 1.1). In each panel, the top trace is
the time course of input to the KE motoneuron,

∑

kek, the middle trace is the input to the HF
motoneuron,

∑

hfk, and the bottom trace is the input to the HE motoneuron
∑

hek. E: HE
duration is plotted against HF duration for the swim (open circle) and dual stimulation (asterisk)
rhythms for each of the models. Two parameter sets were chosen for each model (UCPG, solid
and dashes segments; LCPG, dash-dotted and dotted segments). The swim and dual stimulation
swim rhythms for each parameter set are connected with a line segment. F: rhythm frequencies for
different parameter sets in the LCPG and UCPG models. Frequencies from the LinkedT set are
denoted with circles; LinkedS frequencies are denoted with asterisks. Frequencies produced by the
UnitaryT set are denoted with diamonds; UnitaryS frequencies are denoted with plus signs.
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During the swim rhythm, the activity of KE and HF are in phase, out of phase with

HE. A general feature that we found was that to obtain an increase in swim frequency with

stronger swim stimulation, the dominance switch between ke/hf and he had to operate via

the escape mechanism (for more details, see the discussion in the previous section and [19,

71, 79]). The escape mechanism arises in our models when neurons receive near-saturation

levels of total input while active, such that increasing the stimulus strength has little effect

on active neurons but allows inhibited neurons to activate more easily, resulting in a rhythm

with higher frequency (Figure 6D; see also [19]). Thus, we tuned both models to operate

in the escape regime. See an example of the nullcline configuration in the ke and he phase

spaces for dynamics generated under the parameter set indicated in Table 4 in Figure 7.

Under this tuning, during full dual stimulation, which activated all CPG neurons and

thus evoked all associated interactions, both the LCPG and UCPG structures were able

to produce a faster swim rhythm. Examples of this frequency increase for two parameter

choices for each model are shown in Figure 6F. Interestingly, in the LCPG model, dual

stimulation increased HF duration very slightly, in contrast to experimental results, whereas

in the UCPG model, dual stimulation caused both HE and HF durations to decrease relative

to normal swim (Figure 6E). Furthermore, dual stimulation applied in experiments elicited

accelerated rhythms, and we found that dual stimulation in the UCPG model yielded a larger

frequency increase than occurred with dual stimulation in the LCPG model. Although we

have not fully explored all possible parameter choices in our models, these results describing

changes in phase durations and overall rhythm frequency with dual stimulation represent

evidence in favor of the UCPG model over the LCPG model.

A stronger argument in favor of the UCPG model emerged from our simulations combin-

ing subswim plus full scratch stimulation. Experimentally, subthreshold swim stimulation

could lead either to all motoneurons remaining below threshold or to some motoneurons

firing tonically [32]. We found two parameter sets that represent these dynamics for each

of the LCPG and UCPG models. Both parameter sets elicited escape-based swim rhythms

for each model at full swim stimulation (α = 1). For one set, when the swim stimulation

was maintained but its amplitude reduced (to an α < 1 in the equations for all neurons),

the swim rhythm was lost, but at least one motoneuron exhibited tonic activity (i.e., at
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Figure 7: Relevant curves in he1 and ke1 phase space under swim stimulation (hf1 omitted for
brevity since it displays similar dynamics to ke1). From equation (2.1), the auk -nullcline satisfies
auk = uk (shown in green), and the uk-nullcline satisfies auk = (1/g)(αIuk−

∑

k "=j bukujuj−f−1
T (uk))

(plotted in blue and calculated at the values of (uk, auk) indicated with blue dots), where uk ∈
{ke1, hf1, he1}. The solution trajectory is shown in black, with arrows indicating forward time.
The uk-nullclines shift up or down with changes in activity of other neurons. As the activity level
of he1 increases in (A), the ke1-nullcline in (B) shifts down in phase space. Similarly, as the activity
level of ke1 decreases in (B), the he1-nullcline in (A) shifts up in phase space. In the inhibited state,
neurons move along the “sloped” part of the uk-nullcline (as in A). In the active state, neurons
move along the “shallow” part of the uk-nullcline, where it is relatively constant (as in B). These
nullclines have been configured so that the switch in dominance occurs due to a significant variation
in the activity level of the suppressed neuron, which “escapes” from the inhibited state and forces
the active neuron into the silent phase.
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Figure 8: Bifurcation diagrams for the activity level of he1 against the swim stimulation strength
α for parameter choices in the linked CPG configuration. Threshold (θth = 0.6) is denoted with a
red line. (A) The dynamics exhibited under the LinkedS parameter set yields oscillatory behavior as
α is lowered until the oscillation amplitude decreases below threshold. (B) The dynamics under the
LinkedT set exhibit a regime of steady state activity as the swim stimulus strength is lowered. As
α is decreased from 1, the oscillations lose stability (we expect a complicated cascade of dynamics,
see [16, 17]) until the system exhibits tonic activity near α = 0.9.

least one member of the CPG provided input to a motoneuron that was above the threshold

θ). We denoted these sets as the UnitaryT and LinkedT sets, corresponding to the unified

and linked structures, respectively, where “T” indicates tonic activity. For the other set, a

swim-like rhythm was preserved as swim stimulation amplitude was reduced (α < 1) but

eventually, for small enough α, only subthreshold signals to the motoneurons were produced

and hence no motoneuron activation occurred (see the description of KE, HF , and HE

in the previous section). We denoted these as the UnitaryS and LinkedS sets, where “S”

corresponds to subthreshold activity. Using XPP, we generated the bifurcation diagrams for

the two parameter sets in the LCPG configuration, see Figure 8. Notice that the LinkedT

and LinkedS parameter sets differ only in the strength of the swim drive values to ke1 and

hf1 (see Table 2), yet the dynamics produced by these sets were vastly different as the swim

stimulus strength (α) varied. In Figure 8A, stable oscillations were exhibited for a wide

range of α, continuing past the point when the amplitude of the oscillations were below

threshold. In Figure 8B, however, oscillatory behavior was interrupted as α decreased, and

he1 exhibited tonic activity at a value of stimulus strength less than, but close to 1.
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To obtain the regime of tonic activity, we slightly lowered the drive strength to both ke1

and hf1 (represented by β). Decreasing β to a value less than 1 prevented those neurons

from escaping, and he1 was unable to release. Choosing parameters that strike a balance

of inhibition that promotes these dynamics between neurons can be challenging because

the neurons are directly connected, and thus every change in the activity level of a neuron

updates the activity level of other cells in the network (see the discussion in the previous

section). In some cases, we found it difficult to generate parameters where the three neurons

had settled at stable steady states (where one or more of the neurons were above threshold)

as the stimulus strength was decreased – oscillatory behavior often persisted as transitions

via an escape mechanism were replaced by transitions via release as α was reduced, as in

Figure 8A. Whether a parameter set generated steady state activity as the escape strength

was decreased could be revealed on a two parameter bifurcation diagram. Using XPPAUT,

we determined the locations of the Hopf bifurcations as the swim stimulation strength and

the strength to ke/hf varied, shown in Figure 9. For completeness, we present the entire

trace in Figure 9A, but we zoom in on the relevant regime in Figure 9B. Inside this curve,

parameters generated oscillatory behavior in the network, and outside of this curve, the

network exhibited steady state activity. Indicated with a red line is the choice of β for

the LinkedS parameter set. We slightly decreased this strength for the LinkedT set, the

value of which is represented with a blue line. Notice that the blue line intersects the Hopf

curve at four distinct points, and the red line only two, indicating that the LinkedS set will

have interrupted oscillations within that entire range of stimulus strength, but the LinkedT

parameters will yield a brief region of tonic activity. By altering β, we can control the width

of the respective oscillatory and tonic regimes with respect to swim stimulus strength, if

we wish. However, as we indicated previously, not all parameter choices yield steady state

activity as the stimulus strength is lowered (and hence, produce a two parameter bifurcation

with this “bow tie” shape). The UnitaryS set produced a two parameter bifurcation diagram

where no change in β would result in a four Hopf intersection (see Figure 10). Looking at

the dynamics in this space encouraged us to abandon attempts to modify the UnitaryS

parameters to obtain a regime of tonic activity, as we did in the LCPG case. Instead, we

sufficiently varied other parameters and analyzed the two parameter bifurcation diagrams
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Figure 9: Two parameter Hopf bifurcation diagrams of strength of input to ke1 and hf1 (β) against
the overall swim stimulation strength (α, which controls the strength of drive to all of the neurons)
are plotted in black. The LinkedT β value is indicated in blue and the LinkedS β value in red. The
entire Hopf curve is shown in (A), but zoomed into the relevant area in (B) to highlight that the
LinkedT parameter set yields four Hopf bifurcations as α is varied, and the LinkedS choice yields
only two.

in each case until the shape of the Hopf curve indicated such a regime was attainable. We

note that the UnitaryT parameter set yielded bistability between a steady state with he1

tonic and ke1/hf1 silent and another with he1 silent and ke1/hf1 tonic. When paired with

scratch, both gave the same input to motoneurons.

When subthreshold swim stimulation produced tonic activity of at least one motoneuron

and was applied with a full scratch stimulus, a swim-like rhythm in both models was evoked

(UCPG dynamics shown in Figure 11A, LCPG dynamics shown in Figure 11C). This was not

the case when subthreshold swim stimulation meant below-threshold inputs to motoneurons,

however. To maintain uniformity, we chose the value of α so that the model produced the

largest possible subthreshold motoneuron input (i.e., total input to at least one motoneuron

was exactly at threshold, see Figure 11) in each of the models. When this stimulus was paired

with a full scratch, the UCPG was able to generate a swim-like rhythm (Figure 11B). The

LCPG model could not (Figure 11D). Although the output of the swim CPG neurons was

below threshold, this module could still impact the scratch CPG through the inhibition be-

27



0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

escape

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

swimon

!"

#"

Figure 10: Two parameter Hopf bifurcation diagram of the strength of input to ke/hf against swim
stimulation strength for dynamics generated by the UnitaryS parameter set. Unlike in Figure 9,
changing the strength of the input to ke and hf would not cause the model to exhibit a regime of
steady state activity, due to the shape of the Hopf curve (a horizontal line drawn at any value of β
intersects the curve in at most two points).

tween the two CPG components. However, the inhibition within the scratch component was

already strong enough to prevent co-activation of multiple neurons, and thus the additional

weak inhibition from the subthreshold swim activity could not induce simultaneous firing

of the KE- and HF -driving neurons, as needed for the swim rhythm to arise. Instead, a

below-threshold swim stimulus together with a scratch input yielded a scratch rhythm, sim-

ilar to that observed in the DCPG model under these stimulation conditions (Figure 11D).

As in the DCPG case, this outcome appears to be a general property of the LCPG model,

illustrating that, despite their nonlinearity, the segregated nature of the rhythmogenic cir-

cuits within this model prevents additional inhibition from subthreshold swim stimulation

from overcoming the intrinsic tendency of the scratch CPG to generate scratch rhythms,

in contrast to our experimental observations. These preliminary results favor the UCPG

structure as the most likely to underlie the experimental results produced by our collabo-

rators, a conclusion that was published in [32]. For the rest of this chapter, we will further

investigate the capabilities of these two models by generating additional parameter sets able

to support the benchmarks and compare the results from those sets with the preliminary
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Figure 11: Simulation results for subthreshold swim stimulation applied with scratch stimulation
for 4 different parameter sets. The left column shows the inputs to the motoneurons for the subswim
cases considered; black, red, and blue solid traces denote inputs KE, HF , and HE, respectively, and
black dashed lines denote the motoneuron activation threshold, θth = 0.6. Each case is paired with
corresponding scratch stimulation, and the resultant inputs to the motoneurons are shown at right.
A and B: UCPG model, C and D: LCPG model. A1 and C1: parameters were chosen (α = 0.85)
so that tonic activity in one motoneuron results when swim stimulation is lowered sufficiently. B1
and D1: the swim rhythm persists with decreasing amplitude, as swim stimulation is lowered until
output is below threshold (B1, α = 0.3, D1, α = 0.28). The UCPG is able to produce a swim rhythm
regardless of the type of subswim stimulation used (A2 and B2). The LCPG yields a swim rhythm
when subswim includes tonic activity (C2) but exhibits scratch when parameter choices produce
below-threshold activity in the swim module (D2).

work we outlined above. In the next section we describe the numerical methods we used to

generate parameter sets and evaluate the models’ performance under these sets.
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2.4 ALGORITHMS FOR GENERATING PARAMETER SETS AND

ANALYZING MODEL RESULTS

As we discussed in the previous section, parameter sets for both the UCPG and LCPG

models were found that fully supported Benchmarks 1-3. The final benchmark, regarding

the output of the model under subthreshold swim plus scratch stimulation, differentiated the

models. The LCPG was able to produce a swim rhythm (and hence, satisfy Benchmark 4)

only when subswim produced tonic activity. The UCPG could match the benchmark when

reduced swim stimulation produced either tonic activity or below threshold firing in the swim

component. This result favored the unified structure as the architecture that best matched

the dual stimulation experimental results. In addition, slight increases in HF duration under

dual stimulation in the LCPG configuration contrasted with experimental results, further

indicating that the UCPG would be more likely to produce the results seen experimentally.

We wish to test the validity of that conclusion by generating collections of parameter sets

for the UCPG and the LCPG structures that are able to satisfy the benchmark conditions.

Since a 3-neuron network in both models generates swim, we will begin by producing 3-

cell networks comprised of neurons described by equation (2.1) with randomly generated

connection strengths, drive values, and time constants. Parameter sets able to generate

either the scratch or swim pattern will be retained and used in later sections to form the

foundation upon which we will build our UCPG and LCPG structures. In this section we

will discuss the process we used for randomly generating sets for the 3-neuron network, how

we determined whether the output of a network matched a swim or scratch rhythm, and

how we calculated the duration of a particular rhythm. We present this discussion for the

3-neuron case, but the methods we describe extend naturally in later sections when we will

discuss the generation of parameter sets for larger networks.

In the Wilson-Cowan neuronal model (equation (2.1)), each cell (population) receives

a tonic drive (I), has a time constant associated with its slow feedback process (τ), and

receives and sends signals to other cells (b). We randomly generated these parameters

(explicitly, {bke1hf1 , bke1he1, bhf1ke1, bhf1he1, bhe1ke1, bhe1hf1, τke1, τhf1 , τhe1, Ike1, Ihf1, Ihe1}) for a 3-

neuron network using a process called Latin hypercube sampling (all other parameters were
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fixed at the values indicated in Section 2.2). We first designated a connection weight interval,

time interval, and a drive interval within a neighborhood of the connection, time, and drive

values we chose in our publication [32]. For each parameter, a sample set was generated by

splitting its relevant interval into n bins and then randomly selecting a value from each of

these bins. This ensured coverage of the entire interval. We then formed a parameter set by

randomly selecting a value for each of the parameters from their sample sets. Once a value

was chosen for a particular parameter, it was removed from the parameter’s sample set. We

repeated this process until n parameter sets were generated. We will refer to the collection

of those sets as a simulation. See Figure 12 for an example.
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Figure 12: Schematic of the LHS process on a two parameter toy example. Values for the param-
eters a and b are pulled from the interval [0, 4]. This interval is split into 4 bins and a value is
randomly selected from each bin. In this example, a’s sample set is {0.7, 1.4, 2.2, 3.3} and b’s sample
set is {0.3, 1.2, 2.5, 3.9}. Once the first parameter set (a, b) = (0.7, 1.2) is formed (pairings in the
table are indicated with an “X”), those values are removed from consideration and the process is
repeated. Lines indicate that in future selections, a cannot be selected from row 1 and b cannot be
selected from column 2. The simulation is {(0.7, 1.2), (1.4, 2.5), (2.2, 3.9), (3.3, 0.3)}.

Each parameter set was substituted into the 3-cell configuration and integrated in Matlab.

We a priori identified neurons with those listed in Figure 3, thus, although a set might

produce an output where three cells activated sequentially or two cells were out of phase

with the third (as required for the scratch and swim patterns, respectively), the parameter

set was not considered to have successfully generated scratch or swim unless our prescribed

ordering matched the scheme described in Section 2.2. In addition, requirements on proper
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duration and overlapping of the motoneurons provided more restrictions on whether a set

was deemed successful. We conjecture that both of these conditions significantly reduce the

number of satisfactory results obtained from random parameter generation.

The process for evaluating “successful” swimming or scratching rhythms proceeded as

follows. First, the 3-cell ODE network was integrated with a particular parameter set and

a transient was removed. Two preliminary conditions were checked – that the output of all

neurons passed above and below the threshold, and that no neuronal output remained above

threshold for longer than 90% of the time window. If the neurons passed both of these tests,

we evaluated whether each one fired rhythmically. We identified the times when a neuron

crossed threshold, and generated a vector comprised of the differences between those crossing

times. Thus, entries in this vector indicated a neuron’s active and silent durations. If the

neuron was firing rhythmically, then all active durations should be equivalent to each other,

and the same should be true of all of the silent durations. We checked that all of the odd

entries in the vector were roughly equivalent, and did the same for the even entries. The

period of each neuron could then be obtained by adding two adjacent vector entries. Since

each neuron fired only once during the scratch and swim patterns, the period of each of the

three neurons should be equivalent, and should equal the period of the overall rhythm. We

checked to make sure the three neurons had periods with 100 ms of each other, and if this

was the case, we set the rhythm period equal to the largest of these values.

If the sets satisfied the conditions above, we checked to see if they produced either the

swim or scratch ordering and duration (we will omit the subscripts on ke, hf , and he for

this discussion) In either rhythm, he must have the longest active phase – if that was the

case, then we evaluated for the scratch requirements. First, we checked that ke had a shorter

active phase than hf , and that ke, hf , and he fired sequentially. Next, we calculated the

active overlap between each pair of neurons, and required that each pair was on together

less than 30% of either of their individual active phase durations. For instance, if ke was

active for 1000 ms and hf was active for 2000 ms; ke and hf could not be active together for

longer than 300 ms. If the set fulfilled all of these requirements, we considered it a successful

scratch. Otherwise, we evaluated the set against the swim requirements. First, we checked

that ke and hf were active together longer than any other pair, active together more than
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80% of ke and hf ’s individual active phase durations, and that the overlap between ke and

he (and hf and he) was less than 30% of either of their active phases. If these requirements

held, the set was considered a successful swim. To check the amplified swim condition, the

baseline swim input was increased by 10% and 15% (values that we considered in [32]) and

the set was simulated. If the resulting rhythms were swims with faster periods than the

original, then the parameter set supported Benchmark 2.

Deciding whether the dual stimulation rhythm was a success was more difficult, since

it was only required to be faster than the scratch and swim rhythms, and could have a

pattern that was a hybrid of the two. To evaluate the resulting dual stimulation rhythm,

we implemented the first part of the process described previously, making sure the neuronal

output passed above and below threshold and that the neurons were not active for longer

than 90% of the time window. Next, we checked that they fired rhythmically as described

earlier (where each of their active phases is the same length). We called neurons of this

type uniphasic, meaning that they had a rhythm described by only one active duration and

one silent duration. If this was not the case, we checked a second criterion, which allowed

the neuron to repeat a pattern comprised of two active (and two silent) phases of different

length, which permitted the neuron to fire twice within one cycle of its overall pattern. We

referred to neurons of this type as biphasic. Sets with either of these properties were the only

ones that we further evaluated for a faster rhythm under dual stimulation. We calculated the

phase duration of each neuron, which was either the sum of one active plus one silent phase

if the neuron was uniphasic or the sum of two active plus two silent phases if the neuron

was biphasic. If the neurons were phase locked, the difference in their individual durations

should be small, so we verified that that difference was less than 100 ms, and set the overall

period of the pattern equal to the largest of these. At that point, we checked if the pattern

had a larger frequency than either of the original scratch or swim frequency. We could also

check to see if the resulting dual rhythm was a swim or scratch, using the procedure outlined

earlier.

In this section, we described the method we used to randomly generated parameter

sets for a 3-neuron network and how we automated the process of evaluating the network’s

performance. In the next section, we will discuss the implementation of the techniques we
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have just described and indicate the successful parameter sets we obtained that generate

swim or scratch in a 3-neuron network.

2.5 CLASSIFYING SETS THAT GENERATE FAVORABLE 3-NEURON

NETWORK DYNAMICS

Now that we have introduced methods for producing parameter sets and composed algo-

rithms for evaluating network output, we can test the performance of a 3-cell network for

its ability to produce swim or scratch. A parameter set for a 3-neuron network is com-

prised of 12 parameters – six interconnectivity weights, three drive parameters, and three

time constants. We chose sample sets for the six connection weights from the interval [0,

1], sample sets for the three drive parameters from [0.5, 1.5], and sample sets for the three

time constants from [1000, 3000], values in a neighborhood of our published values. Running

10 simulations comprised of 10000 parameter sets each produced a total of 46 parameter

sets that generated a swim rhythm with a frequency that increased as input was amplified

up to 15% of the baseline. Each of these sets were tested to determine whether decreasing

the swim input produced any tonic output, or if the CPG continued to oscillate until the

neuron output was below threshold. None of these swims exhibited a region of tonic activity

as the input was decreased. We will denote this grouping of 46 randomly generated swim

parameter sets as the S collection (subswim stimulation produced subthreshold activity).

We tried clustering the S collection using the hierarchical toolbox in Matlab (pdist,

linkage, and dendrogram functions), prescribing various numbers of clusters and trying both

euclidean and city block metrics. We also attempted to cluster the sets using the kmeans

toolbox. In either case, the clustering was poor, and we could not deduce any obvious

property or mechanism that segregated the sets in various clusters. This may be because

there are many different factors contributing to compensation in the total input term Iuk
−

∑

bukuiui. For instance, if Iuk
is large, then in order to suppress uk during its silent phase,

∑

bukuiui must be large also, but there are many ways to achieve this, namely that one or

more of the bukui are large or one or more of the ui are saturated close to 1. Similarly, if Iuk
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is small, then in order for uk to remain active,
∑

bukuiui must be small as well, which can

be achieved if bukui are all small, or if the other ui are all close to 0. If Ik is some moderate

value, though, then there are even fewer restrictions on parameters combinations.

Instead, we classified the sets based on a total input-based property, which we now de-

scribe. Recall that during the swim rhythm, ke1 and hf1 are in phase. As discussed in

Section 2.3, in order for the swim rhythm to obtain a frequency increase from stimulation

increases (Benchmark 2), dominance switches must occur via an escape mechanism. Unless

the system was completely symmetric (that is, unless ke1 and hf1 had identical roles in the

network), we presumed one of these neurons would be the first to activate, initiating the

transition between the he1 active phase and the ke1/hf1 active phase. Our classification was

based on whether the parameters suggested that ke1 or hf1 controlled this escape mecha-

nism. To determine this, we compared the relationship of Ike1 − bke1he1 to Ihf1 − bhf1he1 (see

Figure 13A). If he1 was large (close to 1) and ke1 and hf1 were small (close to 0), these two

values approximated the total input to ke1 and hf1, respectively, during their silent phase.

The larger value should indicate which neuron (ke1 or hf1) would reach regions where small

changes in adaptation corresponded to large changes in activity level to initiate the transition

process to the active phase. One cluster was comprised of sets that had Ihf1 − bhf1he1 greater

than Ike1 − bke1he1 + 0.1. Sets in this cluster should have the property that hf1 controls

the escape since the total input to hf1 was sufficiently stronger than the total input to ke1.

We called this cluster the “hf Dominant Cluster.” Another cluster contained sets where

Ihf1 − bhf1he1 was less than Ike1 − bke1he1 − 0.1. In this cluster, the total input to hf1 was suf-

ficiently weaker than the total input to ke1, so ke1 should control the escape. We called this

cluster the “ke Dominant Cluster.” The third cluster, the “Neither Dominant Cluster” was

comprised of sets where Ihf1 − bhf1he1 was between Ike1 − bke1he1 − 0.1 and Ike1 − bke1he1 +0.1.

In this case, the neuron controlling the transition would be harder to distinguish.

Each of the sets were integrated to determine whether comparing these values was a

good method of distinguishing which neuron was responsible for the transition. Almost all

of the sets were “correctly” classified – that is, hf activated first in most of the sets in the hf

Dominant Cluster and ke activated first in most of the sets in the ke Dominant Cluster. The

outliers all had the property that either bke1hf1 or bhf1ke1 was large, and thus the reduction
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Figure 13: Clustering of the 3-neuron parameter sets that generate swim. (A) The S collection
is classified by comparing the total input to the in-phase neurons (ke1, hf1) when he1 is near 1.
The hf1 Dominant Cluster is shown in red, the Neither Dominant Clusters is shown in green, and
the ke1 Dominant Cluster is shown in blue. (B) The T collection was clustered using hierarchical
clustering methods, which formed three distinct groups, shown here on a plot of the drive to ke1
and hf1 against the drive to he1. In those sets, ke1 and hf1 play identical roles in the network, so
they receive the same drive value.

was not a fair evaluation of the total input it received during that time, due to significant

inhibition between ke1 and hf1. We attempted to use the means of each of these clusters

for further study in either of the proposed structures, however, some did not satisfy the

swim/amplified swim requirements. Instead, we hand selected two representatives from each

cluster (choosing swims with different durations to be sure we represented the full range of

possible dynamics) that we will use to produce UCPG and LCPG sets in later sections.

As we discussed in Section 2.2, for some parameter sets, escape-based oscillations were

replaced by release-based oscillations as the swim stimulus was decreased. In random trials,

we only found sets of this type, and were unable to generate parameter sets that produced

tonic activity as the stimulus strength was decreased, despite many attempts. Since our

searches proved fruitless, we employed an analytical argument to guide our search through

parameter space. We simplified the swim network by assuming ke and hf perform identical

roles in the network, which reduced the system to a 2-cell configuration. Replacing fT with
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a piecewise-defined function, we composed arguments that ensured oscillations occurred

via escape, and that as the stimulus strength was lowered, a tonic steady state by one

of the neurons was attained. These arguments led to a collection of inequalities that we

implemented to generate a tailored simulation. This produced parameter sets we denoted as

the T collection, 27 sets where subswim stimulation produced tonic activity. For continuity,

we delay the details of this analysis until Section 2.8.

The T collection was grouped into three clusters using the hierarchical clustering toolbox

and the cityblock metric. These clusters were clearly distinguished (Figure 13). Sets in

cluster 3 exhibited significantly larger drives to he1 than to ke1 and hf1 (green dots in

Figure 13). This caused compensation in other variables, namely the strengths of inhibition

from he1 to ke1 and hf1 was significantly smaller than in the other clusters, and the strength

of inhibition from ke1 and hf1 to he1 tended to be much larger in these sets than in the other

clusters. Cluster 2 contained the sets where the drive to ke1 and hf1 was large (and the

drive to he1 small), and to compensate, the strength of inhibition from he1 to these neurons

was very large, and the strength of inhibition from these neurons to he1 was the smallest

(blue dots in Figure 13). Notice these clusters have opposite dynamics – in cluster 2, the

dominant neurons are ke1 and hf1 versus he1 dominant in cluster 3. Cluster 1 contained sets

were the inhibition parameters and drives were somewhere in between these two extremes

(red dots in Figure 13).

The simulations comprised of randomly generated parameters (described previously)

were also tested to see if they satisfied the scratch rhythm conditions. However, they yielded

only 5 scratch producing parameter sets. By generating sample sets for connection weights

from an interval of [0.5, 1.5] (slightly stronger than the interval designated in the swim

simulations) with the same number of simulations as described above, we found 48 sets

capable of generating scratch. As above, these sets did not cluster nicely using any algorithms

attempted. Unlike in the swim rhythm, which had constraints on the type of mechanism

responsible for dominance switches, transitions in the scratch rhythm could occur due to

many different mechanisms (release or escape). Thus, we did not attempt a classification of

these sets (as we did with the S collection). Instead, we left this collection unclustered and

hand selected four that represented a range of scratch durations to study further.
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In this section, through a random search we found the S collection, sets that generated

a swim rhythm and supported frequency increases as required by Benchmark 2. When

the stimulus strength was lowered in these sets, network output remained oscillatory until

amplitudes decreased below threshold. We clustered this collection by which of the two

phase locked neurons (ke or hf) triggered their transition to the active phase. Using a

random search aided by analysis (see Section 2.8), we found the T collection, more sets that

generated swim and met Benchmark 2. In these sets, tonic activity by one or more neurons

was produced in the network when the stimulus strength was decreased. We clustered this

collection using hierarchical clustering in Matlab. Finally, we found sets that evoked scratch,

but only after searching in a regime of larger connection strengths than what we prescribed

during the swim search.

While the LCPG and the UCPG have differing 6-neuron architectures, their commonality

is that the activity of a 3-neuron subset alone produces swim. Thus, the swim collections we

have generated in this section will form a foundation within the larger parameter sets that are

required for the two models. For the LCPG structure, we will select a 3-neuron swim set and

a 3-neuron scratch set and form the swim and scratch CPGs, respectively. Once we generate

inhibitory connections between the two CPGs, we can immediately test that architecture

for its ability to support the benchmarks regarding dual stimulation experiments. For the

UCPG structure, we will designate a 3-neuron swim parameter set as the shared network

and then supplement the framework with additional driver cells. Connections between the

multifunctional and specialized neurons must be generated, as well as a scratch stimulus,

or a set of constant drives for all 6 neurons (see Figure 3). Before we can test the dual

stimulation benchmarks in that structure, we will need to find parameters that cause the

6-cell network to generate scratch. The following two sections describe this process, and its

results, in detail.
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2.6 LCPG RESULTS

Recall that the LCPG structure is comprised of a 3-cell network capable of swim linked to

a 3-cell network capable of scratch (see Figure 3). In [32], we concluded that this structure

was unlikely to have generated our collaborators’ experimental results because it failed to

support Benchmark 4 when subswim produced subthreshold firing. We conjectured that

this was a general feature of the network structure and not dependent on parameter choices;

that weak output from the swim CPG would be unlikely to disrupt the rhythmic activity

in the scratch CPG, and thus under dual stimulation, the network would likely produce

scratch. In addition, frequency increases under dual stimulation exhibited slight increases

in HF activity, contrary to experimental results. In this section, we test this conjecture by

considering the performance of the LCPG structure using a large collection of parameter

sets.

We can easily construct LCPG parameter sets by choosing a parameter set that generates

swim in a 3-neuron network and another set that generates scratch in a 3-neuron network

(from the previous section) and then creating connectivity between the two networks. Re-

gardless of inter-CPG connectivity, this structure can already support Benchmark 1, since

only one of the networks is stimulated during either of the rhythms. In the published sets,

we minimized complexity by requiring every member from one CPG to inhibit every member

in the other CPG with the same strength. We see no reason why that assumption should

necessarily hold, so we generated a different sample set for each of the 18 connections be-

tween the swim and scratch CPGs over the interval [0,1] and formed parameter sets using the

same Latin hypercube sampling procedure detailed previously. A simulation, in this case,

consisted of 5000 parameter sets each of size 42, where 12 of the parameters comprised the

connections within the swim network, 12 parameters comprised the connections within the

scratch network, and 18 parameters represented interconnectivity between the CPGs.

We tested Benchmarks 3 and 4 using 12 swim sets paired with 4 scratch sets. First,

the networks were simultaneously stimulated (that is, the swim network was given the swim

stimulation and the scratch network was given the scratch stimulation). Those that produced

a faster rhythm under dual stimulation were then tested for their ability to meet the final
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benchmark, i.e. if a subthreshold swim stimulus plus full scratch stimulus yielded a swim

output. In Table 5 we indicate the outcome of these experiments. In each block, the first

entry corresponds to the number of pairings that resulted in LCPG output that was rhythmic

with a larger frequency than either of the swim or scratch network periods alone. In almost

all cases, the faster dual rhythm was either a swim or hybrid pattern (not shown). The

connectivity sets that facilitated a faster dual rhythm were then further evaluated for their

performance against Benchmark 4, under subswim plus scratch stimulation. In the second

entry of each block, we indicate the number of connectivity sets that caused the network

to produce scratch under subswim plus scratch stimulation. The third entry indicates the

number of connectivity sets that caused the network to produce swim under this stimulation.

The upper half of the table exhibits results from pairing swims from the S collection with

various scratches. Recall that under subswim stimulation, these sets evoked below threshold

firing in the swim CPG. The lower half of the table exhibits results from pairing swims from

the T collection with the same 4 scratches. In this case, the swim CPG exhibited some tonic

activity as swim input was lowered. Recall that according to Benchmark 4, the desired output

from subswim plus full scratch stimulation is a swim rhythm. When subswim produced below

threshold firing (results from the S collection), subswim plus scratch stimulation almost

always yielded scratches, and almost never a swim (in each entry L-M-N in the upper half of

the table, N was almost always zero). Conversely, when subswim stimulation was defined as

some tonic activity by one or more of the neurons and was paired with scratch (results from

the T collection), the resulting rhythm was always swim, and never scratch (in each entry

L-M-N in the lower half of the table, M was always zero) These simulations independently

support the results presented in our publication, that the LCPG structure has difficulty

generating a swim output under subswim plus scratch stimulation when subswim produces

weak output in the swim CPG.

Pairings with particular sets produced poorer results than others, for instance, dual

pairings with swim S3 produced fewer faster dual rhythms than pairings with any other

swim in the S collection. Similarly, dual pairings with Scratch 3 were less likely to produce a

dual rhythm with larger frequency than pairings with any other scratch. These two rhythms

had the lowest and highest frequencies, respectively. These results might suggest that more
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Scratch 1 (4325) Scratch 2 (5376) Scratch 3 (832) Scratch 4 (4919)
S collection

hf Dominant Cluster
Swim S1 (3679) 1549—438—0 1987—429—0 719—87—1 2268—889—0
Swim S2 (5422) 1234—373—0 1750—365—0 835—102—0 1622—639—0

ke Dominant Cluster
Swim S3 (7770) 954—376—0 986—289—0 539—73—0 911—449—0
Swim S4 (6009) 1545—442—0 1784—367—0 955—101—0 2003—678—0

Neither Dominant Cluster
Swim S5 (5594) 1136—294—0 1651—332—0 574—53—0 1462—487—0
Swim S6 (3000) 1081—201—0 1417—160—0 863—75—1 1515—331—0

T collection

Cluster 1
Swim T1 (7698) 716—0—29 1114—0—311 374—0—2 850—0—88
Swim T2 (5314) 840—0—33 2188—0—588 255—0—1 1787—0—374

Cluster 2
Swim T3 (5217) 934—0—72 1611—0—453 356—0—1 1667—0—429
Swim T4 (8389) 594—0—9 577—0—11 567—0—0 679—0—3

Cluster 3
Swim T5 (5791) 658—0—40 979—0—86 126—0—1 679—0—54
Swim T6 (5617) 727—0—71 1617—0—183 80—0—0 1382—0—176

Table 5: Linked CPG dual stimulation results. The period generated by each of the swim and
scratch sets is indicated next to its name in parentheses (in ms). For an entry L-M-N, L indi-
cates how many connectivity sets (out of a possible 5000) generate a dual rhythm that has a larger
frequency than either the original swim or the scratch frequency (Benchmark 3). Those sets were
retained and their output under subswim plus full scratch stimulus strength was evaluated (Bench-
mark 4). M indicates the number that produced scratch and N indicates the number that produced
swim under this stimulation. The T collection was able to support Benchmark 4. The S collection
was not.
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desirable pairings result from swim and scratch rhythms with similar frequencies. In the

T collection, pairings with the lowest frequency swims (T1 and T4) produced fewer faster

dual rhythms than other swims, although T5 produced poor results and had a frequency in

the neighborhood of the scratches we were considering. It did not appear that a particular

cluster in either of these collections performed better than the others. Instead, success might

be attributed more to unidentified compatible characteristics within particular pairings.

Two S collection sets paired with one of the scratch sets managed to produce a swim

under subswim plus scratch stimulation. In one of these pairings, mutual inhibition caused

the swim CPG to produce a below threshold scratch-like output that summed with the

scratch-like output from the scratch CPG to project a swim output to the motoneurons. In

another pairing, the swim CPG produced below threshold anti-phase oscillations of ke1 and

hf1, with he1 completely suppressed. The scratch CPG in that case continued to produce

a scratch-like rhythm, and the timing was aligned so that hf1 bursts from the swim CPG

occurred early in the ke2 phase of the scratch CPG, and ke1 bursts from the swim CPG

occurred late in the hf2 active phase, allowing above threshold output to KE and HF to

overlap. In both cases, strategic alignment of bursts in the the swim CPG were crucial to

elongating the input to KE and HF so that their activation was in phase.

We compiled the 3015 successful T pairings that satisfied all of the benchmarks and

looked for significant correlations between the interconnectivity parameters. Many of the

parameters were highly correlated with others (with a p-value less than 0.05). Since dual

stimulation was more likely to yield swim than scratch under both full and reduced swim

stimuli, we assumed that the swim CPG would more strongly inhibit the scratch CPG. This

was true for the means of the inhibition parameters – inhibition from members of the swim

CPG to members of the scratch CPG was larger than the means of the parameters in the re-

verse direction in all cases. Two of these means were particularly large – these corresponded

to the strength of inhibition from he1 in the swim CPG to ke2 and hf2 in the scratch CPG.

Initially, we thought the bifurcation diagrams for the swims in the T collection could explain

this result. In all of the sets we considered, as the swim stimulus decreased and oscillatory

behavior was replaced with steady-state behavior, he1 remained above threshold and ke1/hf1

remained below threshold (see Figure 14A). In some sets, however, as α continued to de-
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crease, he1 exhibited bistable states (both above and below threshold) as well as steady states

solely below threshold (with ke1/hf1 exhibiting tonic steady state activity in those cases, see

Figure 14B). The algorithm we used to determine which value of α produced tonic activity

always chose α as the largest strength that gave steady state activity before oscillations oc-

curred. Thus, in all of the pairings, the subswim strength we chose exhibited tonic activity

from he1 in the swim CPG. Initially, these observations led us to the (incorrect) conclusion
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Figure 14: Bifurcation diagrams for two of the T parameter sets. Stable and unstable oscillatory
behavior indicated with closed and open circles, respectively. Stable and unstable steady states
are indicated with solid and dashed lines, respectively. The threshold is indicated in red. (A) he1
exhibits tonic steady state activity as the swim stimulus is decreases. (B) he1 exhibits tonic activity,
then bistability as the stimulus strength is lowered. As in the LinkedT dynamics, oscillations lost
their stability as α decreased before steady state behavior was observed (see the caption comment in
Figure 8).

that parameter sets that successfully reproduced Benchmark 4 used the tonic activity in the

swim CPG to provide additional inhibition to ke2 and hf2 in the scratch CPG, balancing

the total input to those two cells so that they become active in phase, whereas previously

they were not. We must emphasize, however, that the input to the motoneurons is a sum of

the inputs from both the scratch and swim networks. Thus, no neuron in the swim network

can continue to produce tonic activity under dual stimulation, or else the motoneuron it

projects to will receive above threshold inputs, and will not produce a rhythmic pattern of

any kind. Therefore, it is crucial that under dual stimulation, the scratch network provides
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input to the swim network that is strong enough to perturb it back to something rhythmic

(presumably, to a swim rhythm), in order for subswim plus scratch to yield swim. This

conclusion, while counterintuitive, suggests that our favorable subswim plus scratch dynam-

ics under this collection of swims relies on the fact that the subswim stimulation is close, in

some sense, to the baseline swim stimulation. We tested this hypothesis by varying α farther

from 1, and chose instead the mean value over the range of swim stimulation strength that

produced steady state behavior. This choice of α significantly reduced the number of sets

that produced swim under subswim plus scratch stimulation (and also did not increase the

number of scratches resulting from this stimulus), supporting this hypothesis. We maintain

the conjecture that the stronger inhibition strength to ke1 and hf1 balances the total input

to those cells, but verification of this would need to be done on a case by case basis.

In [32], we noticed that the LCPG produced a faster dual rhythm with a slight increase

in HF duration, in contrast to experimental results. In that paper, the faster dual rhythms

produced in all cases were swims, so it made sense to compare HF and HE duration under

swim stimulation with HF and HE duration under dual stimulation. We will do the same

here, only with the sets that produce a faster swim under dual stimulation and produce

either a scratch rhythm (in the case of the S collection) or a swim rhythm (in the case

of the T collection) under subswim plus scratch stimulation (as we did in [32]). In both

collections, we found sets where frequency increases occurred through decreases in both HF

and HE duration, decreases in HF duration alone, and decreases in just HE duration. The

S collection most often sped up the dual rhythm by decreasing both HF and HE duration

(see Figure 15A). The T collection, however, was equally likely to produce a faster dual swim

by decreasing both HF and HE duration or decreasing HE alone (see Figure 15B). Thus,

in roughly half of the successful T collection LCPGs, slight increases in HF occurred under

dual stimulation, as in [32] and in contrast to experimental results. In the next section, we

will investigate this property in the successful UCPG sets we generate. For now, we conclude

that this property appears to be dependent on parameter choices and may not necessarily

indicate a limitation of the LCPG structure.

Overall, these results support our conjecture in [32], that in the LCPG configuration, a

swim CPG with weak output is unlikely to reliably influence and alter the scratch dynamics
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Figure 15: Frequency increases exhibited under dual stimulation swims occur through decreases
in HF or HE duration, or both. In (A), we considered S collection LCPGs that produced a faster
swim under dual stimulation and a scratch under subswim plus scratch stimulation (as we did
in [32]). The majority of connectivity sets produced a faster dual rhythm by decreasing both HF
and HE durations. In (B), we considered T collection LCPGs that produced a faster swim under
dual stimulation and a swim under subswim plus scratch stimulation (these sets support all of the
benchmarks). Dual stimulation swim frequency increases were obtained through either (a) decreases
in both HF and HE duration or (b) in HE duration alone. Roughly half of the time, frequency
increases occur that cause an increase in HF duration, which contrasts with experimental results.

in the scratch CPG to produce a combined swim output. The results from this section

indicate that in addition, favorable subswim plus scratch dynamics produced by the LCPG

likely occurs since the subswim stimulus strength is large, and close to that of the full swim
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stimulus. In the next section, we will build parameter sets that fit the UCPG architecture

and test those sets for their ability to support the benchmarks. Due to the structure of

that model, we must first generate connections and drives that produce scratch in the full

network before testing the benchmarks regarding dual stimulation. We will see that this

adds significantly complexity to our search.

2.7 UCPG RESULTS

Because the units responsible for generating swim and scratch in the LCPG structure were

distinct, that architecture could support Benchmark 1 regardless of the connectivity between

the CPGs, i.e., we already had drive and connectivity parameters configured within each

CPG so that the network was able to produce swim and scratch under different stimulations.

In the UCPG structure, however, a subset of neurons is integral to both rhythms, producing

swim under a particular stimulation and then generating scratch under a new stimulation

(with contribution from additional neurons in the network). See Figure 16 for a detailed

schematic of this architecture. We will refer to the 3-cell multifunctional network that

participates in both scratch and swim as the “shared” network. We have already built 3-cell

networks that produce swim under a particular stimulation (the S and T collections). To

build a UCPG, then, we attempted to augment a swim-capable network with three additional

neurons, and configure parameters so that the full network generated scratch under a new

stimulation. This required 33 new parameters – 24 interconnectivity parameters (shown

in red in Figure 16B), 6 scratch drive values (shown in blue in Figure 16B), and 3 time

constants.

Recall the results of our 3-cell network trials from Section 2.4 – despite a massive pa-

rameter search, we only found approximately 100 sets that produced either of the rhythms

we desired. This is important to keep in mind in Section 2.7.1, where we indicate our failed

attempts to find parameters that produce scratch in the UCPG network. That discussion

motivates our work in Section 2.7.2, where we step back from random searches to more

closely analyze the dynamics present in the UnitaryS and UnitaryT sets. Observations from
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Figure 16: Schematic of the UCPG under different stimulations. (A) During swim, only the
shared network is activated (ke1, hf1, he1). (B) During scratch, all 6 neurons are activated (the
shared network receives a different set of drives than it does during swim, in (A)).

the performance of the network under those sets suggests a different approach, described in

Section 2.7.3, where we found parameter sets that support the benchmarks.

2.7.1 Preliminary attempts

As we alluded in the introduction, we attempted to find parameters that generated scratch

in the 6-neuron configuration by augmenting a 3-neuron swim-capable network with three

additional neurons, which required new connection, drive, and time constant parameters

(connections and drives indicated in red and blue, respectively in Figure 16B). We kept the

6 connections within the shared network (shown in black in Figure 16B) fixed at values from

the S and T sets and randomly generated the other values using the Latin hypercube sampling

procedure, sampling from the intervals we indicated in Section 2.5. A simulation, in this case,

consisted of 10000 parameter sets each of size 42, 30 parameters comprising the connections

within the network, 6 constant drive parameters, and 6 time constants. Despite many

attempts, we could not generate the other connections, time constants, and drives for the
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network and cause it to produce scratch. We took cues from the published sets (Tables 3, 4)

and chose a smaller drive interval in some simulations (instead of sampling from [0.5, 1.5], we

sampled over [0.25, 0.75]), and in other simulations, we set all interconnectivity between the

scratch-specialized neurons to zero. We also took cues from the randomly generated scratch

sets (Section 2.4) and chose a larger connection interval in some simulations (we sampled

excitatory and inhibitory strengths from [0,1.5]). In all of these trials, we only found a

handful of sets that could produce scratch and swim under differing stimulations. In each

case, some or all of the neuronal outputs were tonically active under dual stimulation.

We conjectured that by starting with a biased shared network (one whose connectivity

facilitated swim dynamics under a particular stimulation), we were potentially hindering the

search for scratch-capable UCPG sets. Abandoning these attempts, then, we attempted to

find parameters that produced scratch from a 6-neuron configuration, instead of augmenting

a 3-neuron swim network with 3 additional neurons. We implemented simulations where

all of the connections shown in Figure 16B (along with 6 time constants) were randomly

generated. In one simulation, we allowed neurons to inhibit or excite any other member of

the CPG, but none of the sets produced scratch. We returned to the constraints shown in

Figure 16B, prescribing excitatory connections from scratch-specialized neurons to partner

neurons in the shared network, and made all other connections inhibitory. In a simulation

of size 10000, we were able to produce three sets that generated scratch in the full network.

We dissected the connectivity within the shared network from these sets (i.e. pulled the

parameters corresponding to black connections in Figure 16B), and randomly generated a

swim stimulation simulation of size 10000 for each of those networks (parameters for the

blue drives indicated in Figure 16A). We found constant drive parameters that generated

swim in the shared network with only one of these sets, but the swims they produced did

not satisfy the amplified swim condition (Benchmark 2).

Instead of continuing to randomly search through parameter space, we generated local-

ized sets around the published UCPG values. We formed parameter sets by pulling from a

normal distribution with means as the parameters’ published values and standard deviations

as 5% of those values (so parameters that were identically 0 remained unchanged over all

trials). A simulation of 5000 parameter sets was run with each of the two published sets,
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UnitaryS UnitaryT
Sets that do scratch 2298 2118
Sets that do scratch and faster swim 541 46
Sets that do scratch, faster swim, and dual is faster 297 40
Sets that do scratch, faster swim, dual is faster, and subswim + scratch is swim 257 23

Table 6: Results from a localized parameter search near the UnitaryS and UnitaryT sets. Sets
were tested against the benchmarks in the order they are listed in the table.

UnitaryS, the unified parameter set that under subswim generated below threshold activ-

ity, and UnitaryT, the unified parameter set that under subswim generated tonic activity.

First we generated parameters around the connection and drive strengths that the neurons

received during scratch. If the output satisfied the scratch criteria, new drives for those

sets were generated in a neighborhood of the stimulation that the neurons received during

swim. The amplified swim condition, dual stimulation, and subswim criteria were all tested

and the results are indicated in Table 6, which shows that we were able to generate other

parameter sets in a neighborhood of our published data that are also capable of meeting the

benchmarks.

It is notable that many sets could not successfully generate swim and satisfy Benchmark 2

regarding swim frequency increases. Since we first varied the parameters and looked for

scratch dynamics produced by the 6-cell network, it may be that the interconnectivity in the

shared network now favored scratch dynamics (where ke1, hf1, and he1 are all in antiphase),

making it difficult for that network to produce swim under drives generated near the original

swim stimulation. In addition, the published swim stimulation drive parameters were large

(particularly in the UnitaryT parameter set), meaning the new randomly generated swim

drives could be pulled from values far from those we published (since σ depended on µ),

which may have affected the network’s ability to produce swim dynamics.

At the very least, the parameter sets published in [32] are sufficiently robust so that the

desired dynamics can be supported under perturbations, but without a better understanding

of the mechanisms underlying rhythm generation in our original sets, it is difficult to identify

why certain parameter sets do or do not produce favorable results. Taking a step back from
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these methods, we will focus our efforts on an analysis of our published UCPG parameter

sets. Through a better understanding of their dynamics, we aim to shed light on the best

way to generate a collection of UCPG parameter sets we can study.

2.7.2 Analysis of the published UCPG sets

A rigorous analysis of how the UCPG network produces different patterns under various

forms of stimulation is a challenging task, given that there are 45 free parameters (30 inter-

connectivity strengths, 6 time constants, 6 scratch drives and 3 swim drives). Specifically, the

large number of neurons in the system creates numerous combinations of possible transitions

occurring in the scratch pattern alone. We will focus on understanding the UCPG’s perfor-

mance during scratch at the “crucial” transition, when he1 leaves the active phase. During

swim, both ke1 and hf1 activate together at this transition. During scratch, however, hf1 is

somehow suppressed and its activation is delayed so that all three neurons activate sequen-

tially. We will reveal how the presence of scratch-specialized neurons alters the output of

the shared network from the swim pattern to the scratch pattern in our published sets, and

use these observations to motivate a new parameter search, detailed in Section 2.7.3.

Plotting the nullclines in phase space over time indicates how either parameter set is able

to maintain inhibition to hf1 during this key transition. In Figure 17, the top frame indicates

the nullclines of ke1, hf1, and he1 in blue, red, and green, respectively. In the bottom frame,

the nullclines of their drivers are plotted in corresponding colors. The value of (uk, ak) for

the neurons at each time point is indicated with a star. Under the UnitaryT parameter

set, neurons in the driver network activate in the order required for the scratch pattern and

excite their partner cell in the shared network, suppressing the other neurons. At the crucial

transition, i1 activates prior to the end of he1’s active phase, providing inhibition to hf1 and

excitation to ke1, which delays the active phase of hf1 relative to that of ke1 (see Figure 17).

Activation of i1 is not responsible for suppression of hf1 at the crucial transition under

the UnitaryS parameter set. In fact, the activity levels of i1 and i2 do not vary far from 0

at any point during the rhythm, as exhibited in the bottom frames in Figure 18. Instead,

transitions occur primarily in the shared layer (see Figure 18, frames and colors configured
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Figure 17: Activation of neurons at five time points during the crucial scratch transition under
the UnitaryT parameter set. In the top plot of each frame, the nullclines of ke1, hf1, and he1
are plotted in phase space in blue, red, and green, respectively. The nullclines for i1, i2, and i3
are plotted in the bottom plot with corresponding colors. In the first two frames, he1 and i3 leave
the active phase, and parameters are configured so that i1 enters the active phase first, exciting
its partner cell ke1 and suppressing hf1 in the third frame. Eventually (transient not shown), i2
recovers from inhibition in the fourth frame, and provides excitation to hf1, which enters the active
phase in frame 5. In this network, the driver cells i1, i2, and i3 control the timing of transitions
and provide excitation to their partner cells to facilitate scratch dynamics.

with the same scheme described previously). As he1 and i3 shut down, ke1 enters the active

phase. hf1 does not immediately activate for two reasons: first, the constant drive to hf1

is smaller than the drive to ke1, and second, he1 provides less inhibition to ke1 than it does

to hf1 (see Table 4). Also, although the activity level of i1 is small, it provides additional

inhibition to hf1 during this transition. Since the overall inhibition to hf1 is larger than the

inhibition to ke1, hf1 remains suppressed at the crucial transition, but is able to gradually

increase its activity level and enter the active phase as inhibition from ke1 and i1 wears

off. These dynamics are facilitated due to the weak strength of the scratch stimulus. Under

swim stimulation, the constant drive to the cells is very large, dominating slight differences in

inhibition strength and allowing activation of hf1 in spite of inhibition from ke1. Under the

weaker scratch stimulation, the strength of inhibition from other neurons have a significant
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Figure 18: Activation of neurons at five time points during the crucial scratch transition under the
UnitaryS parameter set (correspondence between colors and neurons is the same as in Figure 17).
In the first frame, he1 and i3 shut down, allowing ke1 to enter the active phase in frame two (recall
that threshold is at θth = 0.6). Inhibition from ke1 and i1 keeps hf1 suppressed for a transient (not
shown) until hf1 is eventually able to enter the active phase and suppress ke1 over the last three
frames.

influence on the network dynamics, and ke1 and hf1 are able to activate in anti-phase.

Since the activity level of the scratch-specialized neurons was weak, we tested whether

the shared network could act solely as a multifunctional network able to produce both swim

and scratch under different stimulations. We integrated the 3-cell network with the drive it

received during scratch and did not excite the additional scratch-specialized neurons. This

network still maintained a swim-like rhythm under this stimulation (ke1 and hf1 were in

phase together and out of phase with he1), indicating that these scratch-specialized neurons

were indeed necessary for producing scratch, highlighting the fact that a population need

not produce extremely strong output to be important or impactful.

In conjunction with this phase plane discussion, we conducted a sensitivity analysis of

the sets to ascertain the influence that certain parameters have on UCPG performance. We

selected a parameter and generated a normal distribution around it by choosing µ equal to its
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published value and σ as 20% of that value. Fixing all of the other choices at their published

values, we generated a large simulation where we replaced this particular parameter with

choices from the normal distribution. For the UnitaryS set, the scratch rhythm was robust

to changes in most parameters, but fairly sensitive to parameter changes in the strength

from he1 to ke1 and to variations in the scratch drives (with particular sensitivity to changes

in the drive to ke1 and hf1). In fact, sets where the drive to ke1 was smaller than the drive

to hf1 were never able to produce scratch. That is, when we varied either the drive to ke1

or the drive to hf1, only sets that left the relationship where the drive to ke1 was larger

than hf1 intact produced scratches. This was not surprising given our previous discussion

that the scratch dynamics rely on the difference in drive to these two neurons (as well as the

relative strengths of inhibition they receive).

Additionally, varying certain parameters in a particular direction (larger or smaller than

the chosen value) was detrimental in certain cases. Sets were less likely to produce scratch

when the inhibition strength from he1 to ke1 was increased, inhibition from i2 to ke1 was

decreased, excitation from i3 to he1 was decreased, drive to he1 was increased, drive to

i2 was decreased, or drive to i3 was increased. The negative consequences of modifying

parameters in a certain direction seemed clear for some of these cases, for instance, reducing

the inhibition from i2 to ke1 might allow ke1 to remain on during hf1’s active phase (and

thus the system would produce swim, not scratch). Other results appear to be conflicting,

for instance, drive increases to i3 are detrimental, which might lead to the conclusion that

stronger i3 output produces excessive excitation to its partner cell he1. Note, however, that

excitation increases from i3 to its partner cell he1 were more likely to produce scratches than

decreases were. We are led to conclude that increases in drive to i3 would detrimentally

manipulate the inhibitory pathways to ke1 and hf1, potentially interrupting the delicate

balance of total input they receive to promote anti-phase activity.

Unlike the UnitaryS dynamics, scratch behavior with the UnitaryT set was produced

under driving input from the scratch-specialized neurons. Recall that the scratch-specialized

neurons in our published sets were not interconnected, and could only impact each other

through the shared neurons. Thus, the ability of the scratch-specialized neurons to activate

in the scratch ordering was produced in conjunction with the shared network. This caused
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the set to be significantly less robust to changes in parameters, as it was sensitive to variations

in inhibition from he1, i1, and i2 to ke1, excitation from i3 to he1, inhibition to i1 from hf1

and he1, inhibition to i2 from ke1 and he1, and to all of the drive parameters, except for

the input to hf1. In particular, sets were less likely to produce scratch when the drive to

ke1, he1, i2, i3 was increased, drive to i1 was decreased, inhibition from i2 to he1 and ke1

was decreased, inhibition from i1 to he1 and ke1 was increased, excitation from i3 to he

was decreased, excitation from i1 to ke1 was decreased, and inhibition from he1 to ke1 was

increased. Also, see the results from Table 6, which provides further indication that this set

was more sensitive to changes than the UnitaryS choice of parameters.

In this section, we discussed the mechanisms underlying oscillations in our published

UCPG parameter sets and generated a sensitivity analysis that highlighted how changes

in drive strength and interconnectivity affected the network’s performance. The intercon-

nectivity in this structure yields a complex environment where many competing factors are

present, and in light of this discussion, it is perhaps not surprising that completely random

connectivity sets were unlikely to yield favorable results, especially given the requirements

on duration of activation as well as proper ordering. In the UnitaryS parameter set, relative

interconnectivity and stimulus strengths to ke1 and hf1 were crucial to producing scratch.

In the UnitaryT parameter set, the scratch rhythm was generated by the driver network,

but these oscillations were facilitated through mutual inhibition between those cells and

the shared network. In either case, the shared network utilized inhibition/excitation from

neighboring cells to effectively alter its output under different stimulation.

Despite the fact that the UnitaryT set was less robust to parameter changes, the con-

cept underlying its performance provided us with an an idea that suggested a new type of

simulation. We had already unsuccessfully configured UCPGs where the shared network

had inherent connectivity that promoted swim. Perhaps if the scratch-specialized neurons

had an inherent connectivity that promoted scratch, they could drive the shared network

to generate scratch as well. In the next section, we will align a scratch producing three cell

network and a swim producing three cell network in the UCPG framework and attempt to

generate connections between them that will enable the shared network to produce scratch

under a particular stimulation, and meet the other benchmarks as well.
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2.7.3 Scratch network drives a swim network to scratch in the UCPG

In the previous section, we saw that scratch was produced under the UnitaryT parameter set

due to the sequential activation of scratch-specialized neurons, which excited their partner

cells to activate in the proper ordering. This concept provided us with the idea to generate

UCPGs where the shared network is supplemented with scratch-specialized drivers that are

inclined to produce scratch in isolation, in the hopes that the network might produce scratch.

We arranged the 3-neuron scratch and swim sets we generated in Section 2.5 in the UCPG

configuration and randomly generated connections between the two networks (implementing

excitatory connections from the drivers to their partner cells, and inhibitory values for all

other connections). The scratch-specialized network was given the scratch drive it received

when it performed scratch in isolation, and additional drives to the shared network were

randomly generated and applied during scratch. We paired 9 of the swims (S1-S6 from

Table 5 along with 3 additional choices, one from each cluster) with 10 scratches from the

scratch collection (the 4 scratches from Table 5, and 6 more choices with varying durations),

generating 5000 sets of connectivity parameters for each pairing.

These sets were tested for their ability to produce scratch, faster swim, and the dual

requirement (Benchmarks 1-3). Of these, 648 performed the scratch rhythm, which was

already a vast improvement from our previous attempts. 35 of those managed to produce

a dual rhythm that was faster than either of the swim or scratch frequencies alone. Under

subthreshold swim stimulation plus full scratch stimulation, 4 of those sets produced a swim

rhythm. We investigated the mechanisms in these 4 sets, and found that 3 had the property

that i1 became active first relative to i2, ke1, and hf1, which allowed it to excite ke1 and

suppress hf1 at the crucial transition. In the last set, stronger inhibition from i3 to hf1

allowed ke1 to become active first and suppress hf1 briefly to produce the scratch rhythm.

Note the similarity between these two mechanisms and those present in the published sets.

In the UnitaryT dynamics, the driver cells activate first, exciting their partner neurons above

threshold. In the UnitaryS dynamics, a slight difference in the total input to ke1 versus hf1

enabled the scratch rhythm to be produced.

Consider the former condition: assuming that at the crucial transition only he1 and i3
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are active, then i1 will activate first if its total input is greater than the total input to the

other cells, ke1, hf1, and i2. If he1 and i3 are near saturation (close to 1), this presents

a condition we will call Property A, that Ii1 − bi1he1 − bi1i3 > max{Ike1 − bke1he1 − bke1he1,

Ihf1 − bhf1he1 − bhf1i3 , Ii2 − bi2he1 − bi2i3}. The latter condition, that the overall inhibition is

stronger to hf1 than ke1 produces Property B: Ike1 − bke1he1 − bke1i3 > Ihf1 − bhf1he1 − bhf1i3 .

We note that both of the published sets have these two properties, and all of the UCPG sets

generated with the S collection that produced scratch, swim, and a faster dual rhythm had

at least one of these two properties.

We also paired 9 of the swims in the T collection with the same 10 scratches (T1-T6 and

three additional selections, one from each cluster). This generated 360 scratches, 19 of which

produced a faster rhythm under dual stimulation. When the swim stimulus was reduced

and tonic activity was paired with full scratch stimulation, none of these sets produced a

distinguishable rhythm (either a scratch or a swim). Since the majority of the scratches

produced from the S collection had Property A, we tailored a simulation so that we only

tested parameters that satisfied this property. By doing so, we generated 4 sets that met

all 4 benchmarks, including generating a swim when subswim (which in this case, produced

tonic activity in the shared network) plus full scratch stimulus was applied.

In this section, we used ideas underlying the performance of one of our published sets to

motivate a new search for UCPG parameter sets. This search generated 8 UCPG parameter

sets that were able to support all of the benchmarks. 7 of the 8 sets had Property A, indicat-

ing that at the crucial transition, i1 activated first to excite its partner cell and suppressed

hf1, so that ke1 and hf1 activated sequentially, and not in phase. The property is similar to

the dynamics produced by the UnitaryT set. The last set exhibited dynamics similar to those

produced by the UnitaryS set, where scratch was generated because the inhibition to hf1

was slightly stronger than the inhibition to ke1. Unlike the LCPG configuration, the ability

of this structure to meet Benchmark 4 did not depend on the output of the swim network

under subswim, since 4 of these sets produced below threshold activity under subswim and

4 produced tonic activity under subswim.

Further, in all of the sets that produced a faster dual rhythm that was a swim, we

tested whether increases occurred due to decreases in HE, HF , or both, as we did with the
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LCPG configuration. Unlike in that configuration (see Figure 15), all of these sets underwent

frequency increases due to decreases in both HE and HF duration, which concurred with

experimental results. These results support the conclusions we drew in [32], favoring the

UCPG structure as the most likely to have produced our collaborators’ results.

2.8 ANALYSIS OF A SIMPLIFIED MODEL HELPS OBTAIN SETS WITH

DESIRABLE DYNAMICS

As we indicated in section 2.4, our attempts to randomly generate a T collection, parameter

sets that generate a swim rhythm under full stimulation but tonic activity under subthreshold

swim stimulation, were not fruitful. In this section, we describe the analytical arguments we

used to constrain parameter space in such a way that produced 27 sets that meet this swim

criterion. First, since ke1 and hf1 perform identically during the swim rhythm, we reduced

the system and considered a 2-neuron model of the form:

ẇ1 = −w1 + fT (αJ1 − bw2 − ga1)

ẇ2 = −w2 + fT (αJ2 − cw1 − ga2)

τ ȧ1 = −a1 + w1

τ ȧ2 = −a2 + w2. (2.3)

In this system, w1 represented the dynamics of ke1 and hf1 and w2 represented the dynamics

of he1. We sought parameters {b, c, J1, J2, τ} such that at full stimulation strength (α = 1),

the system produced antiphase oscillations and that under reduced stimulation strength (for

some α < 1), the system exhibited tonic activity in either w1 or w2. These sets could then

be recast into the 3-neuron system by setting bke1hf1 = bhf1ke1 = 0, Ike1 = Ihf1 = J1, bke1he1 =

bhf1he1 = b, bhe1ke1 = bhe1hf1 = c/2, and τ1 = τ2 = τ3 = τ . These sets produce swim under

full stimulation and tonic activity under reduced stimulation, which are the dynamics we

desire in order to evaluate the performance of the models’ under different types of subswim

activity. Note that these sets will be of a particular form where ke1 and hf1 do not inhibit
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each other and interact with he1 equivalently. Since τ is large, w1 and w2 will be treated as

fast variables, and a1 and a2 as slow variables (see discussion in Section 2.2).

Analysis on system (2.3) has been done extensively for the case when b = c and J1 = J2

in [18]. In that paper, oscillations can devolve into winner take all activity as α varies,

which are the precise dynamics we are trying to produce. The symmetry in the system

produces oscillations where the active durations of w1 and w2 are equal (and vary identically

with changes in input). Because the swim rhythm requires KE/HF and HE to have unequal

active durations (see the description in Section 2.2), we will not prescribe the conditions that

the neurons inhibit each other equally and receive the same constant input. This drastically

complicates the analysis when fT is smooth.

As in [18], we first analyzed system (2.3) by approximating fT by a Heaviside function.

The parameter constraints developed from this analysis depended strongly on that simplifi-

cation. When we simulated sets constrained by the Heaviside analysis in the full system, we

did not obtain all of the dynamics we were searching for. We omit the details of that analysis

and instead present the arguments in the case where fT is approximated by a piecewise linear

function. This analysis provides constraints on parameter space that yield antiphase oscil-

lations under full input (α = 1) and tonic activity for some α less than 1. These constraints

are then used to produce potential parameter sets that can be evaluated for appropriate

dynamics in the case where fT is smooth.

Consider the case where

fT (x) =



















1 if x > A(m) = 1/(2m) + θ;

m(x− θ) + 1/2 if B(m) ≤ x ≤ A(m);

0 if x < B(m) = −1/(2m) + θ,

where m indicates the slope of the function. See Figure 19.

With this description of fT , the w1-nullcline is defined by

w1 =



















1 if αJ1 − bw2 − ga1 > A;

m(αJ1 − bw2 − ga1 − θ) + 1/2 if B ≤ αJ1 − bw2 − ga1 ≤ A;

0 if αJ1 − bw2 − ga1 < B,
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Figure 19: fT against x. The function is zero when x is less than B, sloped for x values between
B and A, and one when x is larger than A. Values shown for m = 1.8.

or

w1 =



















1 if w2 < wl
2;

m(αJ1 − bw2 − ga1 − θ) + 1/2 if wl
2 ≤ w2 ≤ wu

2 ;

0 if wu
2 < w2,

(2.4)

where wl
2 = wl

2(a1) = (αJ1−A−ga1)/b and wu
2 = wu

2 (a1) = (αJ1−B−ga1)/b. Analogously,

the w2-nullcline is defined by

w2 =



















1 if w1 < wl
1;

m(αJ2 − cw1 − ga2 − θ) + 1/2 if wl
1 ≤ w1 ≤ wu

1 ;

0 if wu
1 < w1,

(2.5)

where wl
1 = wl

1(a2) = (αJ2−A−ga2)/c and wu
1 = wu

1 (a2) = (αJ2−B−ga2)/c. See Figure 20.

Assume that we initialize the system at the state (w1, w2) = (1, 0). In this case, a1

increases and a2 decreases. This causes the w1 nullcline to shift downward in (w1, w2) space,

and the w2 nullcline to shift to the right, as shown in Figure 20. w1 remains in the dominant

state until the nullclines separate, which can occur in one of two ways. These configurations

are shown in Figure 21. In Figure 21A, the w2-nullcline has shifted far to the right, causing
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Figure 21: Potential nullcline configurations plotted in the (w1, w2) plane prior to a transition
in fast time. The w1-nullcline is solid red, the w2-nullcline dotted blue and the state of the fast
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(1,0) with: (A) increasing w2 and (B) with decreasing w1.
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the fast state to move with increasing w2 from (1,0) to (1, wl
2). As a1 and a2 continue to

grow and decay, respectively, this intersection point will vanish and the fast system will be

attracted to (0,1). We call this “escape” because it is the firing rate of the inactive population

that has increased to produce a dominance switch in the system. Alternatively, a1 could

have sufficiently decreased so that the w1-nullcline has shifted as shown in Figure 21B. In

that case, the fast state has moved with decreasing w1 from (1,0) to (wu
1 , 0) prior to the

transition. We call this situation “release” since it is the firing rate of the active population

that decreases to facilitate the jump. In the following, we determine the conditions necessary

for a jump to occur through either of these mechanisms.

Starting with the escape configuration, let tme denote the time when the nullcline in-

tersection point begins to move away from (1, 0) with increasing w2, and te the moment of

separation (when the nullclines are configured as shown in Figure 21A). tme occurs when

the corner of the w2 nullcline meets w1 ≡ 1, or when wu
1 = 1. te occurs when the corner of

the w1-nullcline intersects the sloped part of the w2-nullcline, an intersection described by

wl
2 = m(αJ2−c−ga2(te)−θ)+1/2. Substituting in the definition of wl

2, escape occurs when

a1 and a2 satisfy a relationship described by a2 = −(1/g)(αJ1−A−ga1−b/2
bm −αJ2 + c+ θ). This

curve is plotted with a solid blue line in Figure 22 for parameters chosen near the published

parameters (our published sets do not satisfy all of the assumptions implemented here).

In the release configuration, let tmr denote the time when the nullcline intersection point

begins to move away from (1, 0) with decreasing w1, and tr the moment of separation (as

shown in Figure 21B). tr occurs when the corner of the w2-nullcline intersects the sloped

part of the w1-nullcline, an intersection described by wu
1 = m(αJ1 − ga1(tr) − θ) + 1/2.

Using the definition of wu
1 , release occurs when a1 and a2 satisfy a relationship described by

a2 = (1/g)(αJ2 − B − cm(αJ1 − ga1 − θ) − c/2). This release curve is plotted with a solid

red in Figure 22.

The transition from (0, 1) is completely analogous. In this case, a1 decreases and a2

increases, which causes the w1 nullcline to shift up in the fast subsystem phase plane, and

the w2 nullcline to move to the left. For the escape mechanism, the fast state with w2

dominant moves from (0, 1) to (wl
1, 1) before the nullclines separate. In release, the fast

state with w2 dominant moves from (0, 1) to (0, wu
2 ) before the nullclines separate. Using
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the same line of analysis as in the previous case, the escape curve can be determined and

satisfies a2 = −(1/g)(αJ2−A− cm(αJ1− b−ga1−θ)− c/2). The release curve is defined by

a2 = −(1/g)(αJ1−B−ga1−b/2
bm −αJ2+ θ). These curves are plotted with solid green and purple

lines, respectively, in Figure 22.

Rewritten, the curves satisfy

Escape from (1,0): a2 =
1

bm
a1 +

1

g
(αJ2 − c− θ −

αJ1 − A− b/2

bm
) (2.6)

Release from (1,0): a2 = cma1 +
1

g
(αJ2 − B − cm(αJ1 − θ)− c/2) (2.7)

Escape from (0,1): a2 = cma1 +
1

g
(αJ2 − A− cm(αJ1 − b− θ)− c/2) (2.8)

Release from (0,1): a2 =
1

bm
a1 +

1

g
(αJ2 − θ −

αJ1 − B − b/2

bm
) (2.9)

While these equations do not readily identify optimal parameter choices for each of the

parameters, we can see the effect of varying α. Equations (2.6) and (2.9) contain a factor

of α
g (J2 −

J1
bm). Parameters similar to our published sets cause this factor to be positive, so

decreasing α shifts both of these curves down in phase space (compare the blue/purple solid

curves with the blue/purple dashed curves in Figure 22). The other two equations contain

the term α
g (J2−cmJ1). Our parameter choices cause this factor to be negative, so decreasing

α shifts the green and red curves in Figure 22 upwards. Thus, decreasing α shifts the escape

curves outwards (away from center) and the release curves inwards (towards center). This

indicates that decreasing α promotes transitions via a release mechanism.

Which parameter choices will guarantee escape? Starting from the fast state (w1, w2) =

(1, 0). Assuming tme is reached before tmr, the dynamics of a1 and a2 satisfy

a1(t) = 1− (1− a1(0))e
−t/τ ; t ∈ [0, te]

a2(t) =







a2(0)e−t/τ ; t ∈ [0, tme]

[(−1−mg)a2(tme)+m(αJ2−c−θ)+1/2]e−(1+mg)(t−tme)/τ−m(αJ2−c−θ)−1/2
−1−mg ; t ∈ (tme, te].

(2.10)

The a1 dynamics are simply defined since w1 = 1 until the nullclines separate. The a2

dynamics are piecewise defined since w2 remains at 0 until tme, and then increases according

to the definition of the “sloped” part of the inhibited nullcline, that is w2 = m(αJ2 − c −
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Figure 22: Escape and release curves plotted in (a1, a2) for two values of α (solid, α = 1, dotted,
α = 0.9). The relationship between slow variables that triggers a transition in fast time by an
escape mechanism is shown in green and blue. The relationship between slow variables that triggers
a transition in fast time by a release mechanism is shown in purple and red. The solution trajectory
is plotted in black.

ga2 − θ) + 1/2. In the limit, (a1, a2) approaches (1, ac2) as t → ∞ in slow time, where

ac2 := (m(αJ2− c− θ)+1/2))/(1+mg) (from equation (2.10)). With appropriate parameter

choices, a2 decreases monotonically in a1, and thus escape will occur if ac2 ≤ ae2, where

ae2 := (−1/g)((αJ1−A− g− b/2)/(bm)−αJ2+ c+ θ) is the a2 value where the escape curve

intersects a1 ≡ 1.

We use these arguments to constrain parameter space to ensure the trajectory intersects

the escape, not the release curves. First, transitions by release initiate when wl
2 = 0 in the

(1, 0) case, or when a1 = (J1 − A)/g. By bounding parameters so that (J1 − A)/g > 1, we

can avoid transitions by release (with an analogous condition for the other transition). Next,

we want tme (and the analogous time point in the other transition) to be attained, so we

choose parameters so that wu
1 = 1 can be reached by bounding 0 ≤ (J2 − c−B)/g < 1. We

randomly choose b and c and then pull choices for J1 and J2 within these bounds. Next,

we check to make sure the escape curve can be reached by the trajectory; that is, with

those choices, ac2 ≤ ae2. If all of these conditions are met, we require one final condition.
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Note that if an α exists such that tme, tmr cannot be reached (i.e. if (αJ1 − A)/g > 1 and

(αJ1 − B − b)/g < 0) then a transition cannot occur. We check to make sure an α < 1

exists satisfying these conditions. This will ensure that some value exists such that lowering

the swim stimulation will result in a steady state solution. If all of these conditions hold,

we transform this “informed” candidate set into the full system (we described this process

in the introduction to this section) and test for the swim, faster amplified swim, and tonic

activity conditions, simulating them with the smooth formulation of S. Note that these are

not sufficient conditions but merely guiding constraints for the type of activity we are looking

for. Failure might occur due to the arguments’ dependency on the piecewise nullcline shape,

inability to meet the duration requirements, and so on. In spite of this, we obtain 27 sets

that generate swim in a 3-neuron network. Increases in the drive strength lead to frequency

increases, and decreases in the drive strength lead to steady state activity in one or more

neurons. Thus, we now have sets that satisfy our tonic failure requirement, which proved

elusive in completely random trials.

2.9 DISCUSSION

Computational model simulations support the hypothesis that networks responsible for

scratch and swim rhythmogenesis interact directly. We found that both separate scratch

and swim networks interacting through synaptic coupling (LCPG) and a unitary network

with components that are necessary for both rhythms (UCPG) could match experimental

results, but this performance required parameter tuning so that neurons became active by an

escape mechanism, in which recovery from adaptation allowed them to overcome sustained

inhibition from other neurons [19, 71, 79]. Under such tuning, uniformly increasing the drives

to model neurons in a network accelerates the networks rhythmic activity [68, 73]. Based on

the ability to recover a swim rhythm from combining scratch stimulation with a subthreshold

swim stimulation that did not elicit CPG output, our simulations favor the possibility that

common elements are involved in scratch and swim rhythmogenesis. Moreover, the conjec-

ture that rhythm generation operates in an escape mode leads to a prediction that it should
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be possible to independently modulate particular phase durations within each rhythm by

variation of drives to specific neurons, which would yield maximal behavioral flexibility yet

does not arise with other phase transition mechanisms [19].

We simulated models consisting of Wilson-Cowan equations [25], a rather general rep-

resentation of the activity of interacting neurons. This modeling framework was used pre-

viously in studies of rhythm generation e.g., [68] and includes common features, such as a

saturating function that converts changes in inputs into effects on activity and a simple form

of adaptation. This model choice is appropriate, given the current lack of knowledge about

the rhythmogenic neurons relevant to the activity patterns we investigated. By considering

relatively simple model networks of three fundamentally distinct types, we provided general

arguments for why rhythmic modules lacking direct interactions are unlikely to account for

our experimental results and highlighted qualitative distinctions between the capabilities of

two different forms of interacting rhythmic circuits. We also note that since a common mod-

eling framework was used for scratch and swim CPG components, our results show that a

tendency to shift toward swim-like outputs, away from scratch outputs, can emerge from the

coupling properties of the relevant CPGs, rather than requiring distinct forms of intrinsic

dynamics.

By varying the swim stimulation amplitude and frequency, we found that the type of

dual-stimulation effect depended on the strength of the swim stimulation. Thus the level

of excitation in the swim network may influence whether and how an intermediate motor

pattern is produced. Related results have been obtained combining stimulation for two

forms of scratching. Following a rostral scratch/pocket scratch blend, a sub- threshold pocket

scratch stimulus can initiate pocket scratching; following rostral scratching, a suprathreshold

pocket scratch stimulus can re-initiate rostral scratching [15]. This may also be analogous to

the crayfish choice among feeding, escaping, or some intermediate behavior, which depends

on food size [7]. Also, in the crustacean stomatogastric nervous system, increasing the

robustness of one motor pattern can cause some neurons to switch gradually from one firing

pattern to another through hybrid firing patterns [45]; a similar mechanism might underlie

hybrid and intermediate motor patterns in turtles.

One limitation to this study is the qualitative nature of the benchmarks. The rhythms we
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have considered are described by their ordering and relative durations, which requires that we

also judge model performance according to these stipulations. Without a quantitative cost

function, however, it is difficult to effectively compare the performance of various parameter

sets. As it stands, we have build up a large collection of sets we consider unsuccessful for

producing certain dynamics, but the degree to which they are unsuccessful is completely

uncharacterized. Here, “failure” can mean many things, depending on the dynamics we are

testing them for – the output could be not rhythmic, swim-like but not satisfy the rigid swim

requirements, or scratch-like but not satisfy the rigid scratch requirements. It might be, for

instance, that we have found many sets that produce 3-cell anti-phase activity, but the strict

duration requirements do not consider them scratches.

It might be advantageous to deviate slightly from certain biological restrictions in future

work. Requiring that the cells activate in a certain order, but with any relative duration,

can still address the question of how networks contribute to produce a particular pattern.

Alternatively, aiming to reproduce rhythms of a particular frequency (possibly based on

averaged data from many animals under a certain stimulus strength) would allow quantitative

comparisons of parameter performance based on a desired cost function. Finally, reducing

the complexity of our current models by allowing inhibition to be a Heaviside function of

the neuron activity would greatly facilitate analysis. However, we have seen that certain

dynamics are facilitated by inhibition from weak neurons (recall that inhibition from i1 was

necessary to produce scratch under the UnitaryS parameter set, even though its activity

level was small), so it would be interesting to see how that reduction would affect our work.
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3.0 A DYNAMICAL SYSTEMS ANALYSIS OF A LOCOMOTOR MODEL

A certain network of neurons in the mammalian spinal cord can, in isolation, generate activity

consistent with a locomotor rhythm [12, 28, 58] and has thus been dubbed the locomotor

central pattern generator (CPG). In an intact animal, CPG outputs control limb movements

through the activation of motoneurons that drive muscle activity, with muscle afferent signals

to the spinal circuits forming a feedback control loop. Although this locomotor system has

been the subject of extensive past work, fundamental open questions about its structure

and dynamics remain. In this third chapter, we will introduce a neuromechanical locomotor

model that can be used to study locomotion. Given a constant input, a group of neurons

oscillates and drives the activity of a pendular limb, and afferent feedback from muscles

closes the loop. This system operates through feedback control, exhibiting markedly different

performances under the presence and absence of feedback. Changes in the constant input

parameter (drive) controls the frequency of oscillations, and the model is able to exhibit

stable gait over a wide range of drives. We will present a thorough analysis of this model,

explaining how the presence of feedback influences the dynamics of the CPG, overriding an

intrinsic oscillatory mechanism to produce oscillations at a particular relationship in the limb

cycle. Using insights from this analysis, we reduce the model to a more tractable form and

prove it exhibits a limit cycle, drawing conclusions about its uniqueness from constraints

seen in the phase plane.

As a starting point in this endeavor, we first investigate how the model produces periodic

oscillations. To this end, we use slow-fast decomposition analysis to understand the CPG

dynamics without consideration of its effect on limb segment activity, contrasting its dy-

namics without afferent feedback, which can remain oscillatory given sufficient supra-spinal

drive, to that observed when excitatory feedback from muscle afferents is incorporated, which
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broadens the range of drive values over which oscillations occur (Section 3.2). This analysis

yields different criteria for the existence of oscillations in either case, and illuminates why

the model is more robust when feedback is present. Without feedback, analysis reveals that

the intrinsic structure of a set of rhythm generator (RG) neurons within the CPG allows

oscillations to occur through RG escape for a sufficiently large supra-spinal drive. When

feedback is present, however, oscillations occur through a different mechanism, namely the

escape of CPG inhibitory interneurons (In) from the silent phase, which happens when feed-

back drives In voltage above a certain threshold. We show that this threshold condition is

met when a particular relationship between limb angle and velocity, which is independent of

drive, is realized, and this observation allows us to identify transition curves in limb phase

space that indicate where switches between the extensor and flexor activities produced by

the CPG will occur.

Equipped with insights from this analysis, we propose a reduced model that maintains

key model features and study conditions for the existence of stable periodic orbits in the

reduced model setting (Section 3.3). To complete our existence argument, we use a novel

version of the Melnikov function, adapted for discontinuous systems. Our analytical steps

highlight the mechanism by which the oscillation can be lost if drive is reduced too far and

also reveal the presence of a strong contraction in the phase space associated with the limb

segment, which occurs during a particular phase of each locomotor oscillation. This work

was published in [75] and [76], but has been modified for readability.

3.1 MODEL DESCRIPTION

This study focuses on a simplified neuromechanical model of locomotion originally proposed

by Markin et al. [46], which we now describe. A schematic diagram illustrating model

components and the connections between them is shown in Figure 23A.

The multi-level central pattern generator (CPG) consists of a half-center rhythm gener-

ator (RG) composed of flexor neurons (RG -F ) and extensor neurons (RG -E) projecting

to corresponding pattern formation neurons (PF ), PF -F and PF -E, and to inhibitory
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Figure 23: Components and basic behavior of the neuromechanical model. (A) The two-level spinal
CPG (comprised of RG, In, and PF located in the top shaded rectangle) receives tonic supra-spinal
drive and generates a basic locomotor rhythm providing alternating activation of flexor and extensor
motoneurons (Mn -F and Mn -E). All interneurons are represented by spheres (light: excitatory,
dark: inhibitory) and motoneurons by diamonds. Excitatory and inhibitory synaptic connections are
indicated by arrows and small circles, respectively. The motoneurons activate antagonistic muscles
that drive a single-joint limb, and feedback from muscle afferents closes the loop. (B) Sample model
activity shows the output of the rhythm generator neurons (RG, top), motoneurons (Mn, middle),
and limb angle (bottom). Flexor related activity is plotted with a solid red line, with active phase
duration indicated by the segment labeled FL, and extensor related activity is plotted with a dashed
blue line, with active phase duration indicated by the segment labeled EXT. Note that flexor and
extensor phases are shifted relative to swing and stance phases (SW and ST, bottom). (A) Modified
from Markin et al. [46], with permission from the New York Academy of Sciences.
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interneurons (In), In -F and In -E, which mediate reciprocal inhibition between the flexor

and extensor sides. The RGs and PF s receive a tonic drive (d) that we refer to as supra-

spinal to indicate that biologically this signal originates outside of the spinal cord. Given

sufficient supra-spinal drive to yield CPG oscillations, the PF output induces alternating

activity in flexor and extensor motoneurons (Mn -F and Mn -E), which correspondingly

activate two antagonistic muscles, the flexor (F ) and extensor (E), controlling a simple one-

joint limb and providing continuously time-varying excitatory afferent feedback signals to

the CPG. An additional circuit of interneurons (Int and Inab -E in Figure 23A) provides a

disynaptic pathway from PF -E to Mn -E [1, 2].

Each neuron in the model is intended to represent a synchronized neural population,

with the voltage drop across the membrane denoted as V (voltage) and the synaptic output

of that neuron calculated using the nonlinear transformation

fC(V ) =











1/(1 + exp(−(
V−V1/2

k ))) if V ≥ Vth;

0 otherwise,

where V1/2 = −30 mV, k = 3 mV for Mn and k = 8 mV for all other neurons, and Vth = −50

mV. This smooth gain function fC represents the strength of the output of a neuron or

population, which scales heuristically with V . Based on the relation of its voltage to a

threshold Vth = −50 mV, the state of a neuron is classified as either active (when V ≥ Vth)

or silent (when V < Vth). The RG, PF , and Mn models incorporate some voltage-gated

ionic currents. These currents in RG -F and RG -E, in combination with the reciprocal

inhibition between these neurons (via the inhibitory In -F and In -E), define the rhythm

generation in the CPG [65, 19]. The RG, PF , and Mn dynamics are each described by a

conductance-based system of two first order ordinary differential equations

CV̇i = −INaP (Vi, hi)− IK(Vi)− ILeak(Vi)− ISynE(Vi)− ISynI(Vi),

ḣi =
h∞(Vi)− hi

τh(Vi)
, (3.1)

and the interneurons (In -F , In -E, Int, and Inab -E) are each described by a single first

order equation,

CV̇i = −ILeak(Vi)− ISynE(Vi)− ISynI(Vi). (3.2)
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Vi refers to the voltage drop across the membrane of neuron i, C is the membrane capacitance,

INaP (Vi, hi) = ḡNaPmNaPhi(Vi − ENa) is the persistent sodium current with instantaneous

activationmNaP = 1/(1+exp(−Vi+47.1
3.1 )) and slow inactivation hi, IK(Vi) = ḡKm4

K(Vi−EK) is

the potassium current with instantaneous activation mK = 1/(1+exp(−Vi+44.5
5 )), ILeak(Vi) =

ḡLeak(Vi − ELeak) is the leak current, and ISynE(Vi) and ISynI(Vi) denote excitatory and

inhibitory inputs to neuron i given by

ISynE(Vi) = ḡSynE(Vi − ESynE)(
∑

j

aj,if(Vj) + cid+
∑

k

wk,ifbk), (3.3)

ISynI(Vi) = ḡSynI(Vi − ESynI)
∑

j

bj,if(Vj), (3.4)

respectively. Equations (3.3) and (3.4) incorporate various extracellular inputs: the output

f(Vj) from the neurons presynaptic to neuron i, the constant supra-spinal drive d, and the

sensory feedback terms fbk. aj,i is the weight of the excitatory input from neuron j to neuron

i, bj,i is the weight of the inhibitory input from neuron j to i, ci is a factor scaling the drive

d to neuron i, fbk denotes the kth feedback signal, and wk,i is the weight of feedback k to

neuron i. The values of the weights are provided in Table 7, and details on the feedback

terms are provided at the end of this section. In the current equations above, Ej and ḡj

denote the reversal potential and maximal channel conductance, respectively, of current j.

Parameter choices associated with these currents are: C = 20 pF, ENa = 55 mV, EK = −80

mV, ESynE = −10 mV, ESynI = −80 mV for all neurons; ELeak = −64 mV for the RG,

PF , and Mn and ELeak = −60 mV otherwise; ḡK = 4.5 nS, ḡLeak = 1.6 nS, ḡSynE = 10 nS,

ḡSynI = 10 nS, ḡNaP = 3.5 nS for RG, ḡNaP = 0.5 nS for PF , ḡNaP = 0.3 nS for Mn. The

terms h∞ = 1/(1 + exp(V+51
4 )) and τh = τhmaxcosh(

V+51
8 ) in equation (3.1) are the voltage-

dependent steady state inactivation level and inactivation time constant, respectively, of the

evolution of the persistent sodium inactivation term, where τhmax=600 ms. We note that

Int receives a separate external drive of strength 0.18.

The limb segment controlled by the CPG, which we hereafter refer to simply as the limb,

is tethered at a joint and able to move in an angular direction relative to that joint. The
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Target neurons
RG -F RG -E In -F In -E PF -F PF -E Mn -F Mn -E Int Inab -E

Excitatory Connections, aj,i
RG -F 0.41 0.70
RG -E 0.41 0.70
PF -F 1.95
PF -E 1.30 0.35
Inab -E 0.82
Inhibitory Connections, bj,i
In -F 2.20 6.60
In -E 2.20 6.60 2.80
Int 0.55
Feedback Connections, wk,i
Ia-F 0.06 0.27 0.19
II -F 0.0348 0.1566 0.1102
Ia -E 0.06 0.44 0.10 0.16
Ib -E 0.066 0.484 0.11 0.176
Drive Connections, ci
Supra-spinal drive, d 0.08 0.08 0.40 0.40
External drive, dInt 0.18

Table 7: Synaptic connection weights in the neuromechanical model.

limb motion can be described by a system of two first order equations

q̇ = v

Iv̇ = K cos(q)− bv +MF (q, v, VMn -F , t)−ME(π − q,−v, VMn -E , t) +MGR(q), (3.5)

where q is the angle the limb makes with the horizontal and v is its angular velocity. I is the

moment of inertia of the limb with respect to the suspension point, K cos(q) is the moment

of the gravitational force, b is the angular viscosity in the hinge joint, MF and ME are the

moments of the muscle forces, and MGR(q) is the moment of the ground reaction force, given

by

MGR(q) =







−MGRmax cos(q), v ≥ 0,

0, v < 0.

This term is nonzero only during the stance phase, when the limb is swinging counterclock-

wise (v ≥ 0), and is set to zero during the swing phase, when the limb swings in the clockwise

direction (v < 0). Time traces of the moments is shown in Figure 24. In equation (3.5),

K = 0.5mgls and I = ml2s/3, where m = 300g denotes the mass of the segment, ls = 300mm
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Figure 24: Time courses of muscle moments. Top panel: moment of ground reaction, middle
panel: moment of flexor force, bottom panel: moment of extensor force.

denotes its length, g = 0.0098 mm2/ms2, b = 18000 g·mm2/ms2, and MGRmax = 585N·mm.

The muscle moments are defined as MF = FFhF and ME = −FEhE , where FF and FE

refer to muscle forces and hF and hE denote the moment arms, the subscript indicating the

flexor or extensor muscle. FE and FF are computed by F = fC(V )FmaxFlFv where fC(V ) is

given in equation (3.1) and describes the output ofMn -E orMn -F , and Fmax = 72.5N and

37.7N for the flexor and extensor muscles, respectively. The muscle velocities are calculated

as vm = vhF for the flexor and vm = −vhE for the extensor, where v is the velocity of the

limb and h refers to muscle moment arms. The moment arm h = (a1a2 sin(q))/L for the

flexor muscle, where L =
√

a21 + a22 − 2a1a2 cos(q) describes the muscle length. The same

equations are used for the extensor muscle, with q replaced by π − q. Here, a1 denotes the

distance between the suspension point and the muscle origin and a2 denotes the distance

between the suspension point and the muscle attachment to the segment, where a1 = 60 mm

and a2 = 7 mm. Fl = exp(| l·β−1
ω |ρ) describes the force dependence on muscle length, where

β = 2.3, ω = 1.6, ρ = 1.62 and l is the normalized muscle length corresponding to Fl = 1,
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i.e. l = L/Lopt for Lopt = 68 mm.

Fv =







b1−c1·vm

vm+b1
vm < 0

b2−c2(l)·vm

vm+b2
vm ≥ 0

describes the dependence of force on velocity, where c1 = 0.17, b1 = −0.69, b2 = 0.18, and

c2(l) = −5.34l2 + 8.41l− 4.7.

Muscle afferents provide length/velocity-dependent (type Ia from both muscles and type

II -F from the flexor) and force-dependent (type Ib -E from the extensor) feedback to the

CPG through additional excitation to the homonymous neurons. The nonlinear feedback

from the extensor and flexor muscle afferents provides excitatory inputs to RG, In, PF , and

Inab−E that control the timing of phase transitions at the RG/In level and the excitability

of the PF neurons. Sensory feedback from the extensor muscle also accesses the additional

Int/Inab -E circuit yielding a net excitation of Mn -E during extension (see Figure 23A).

The feedback equations are derived from Prochazka [53, 54] as:

Ia =kIaV v
ρv
norm(q, v) + kdIadnorm(q) + kEMGIafC(VMn) + CIa;

Ib -E =kIbFnorm(VMn -E);

II -F =kdIIdnorm(q) + kEMGIIfC(VMn -F ).

vnorm denotes the normalized muscle velocity (vm/Lth), dnorm is the normalized muscle

lengthening: (L − Lth)/Lth if L ≥ Lth, 0 otherwise, with Lth = 59mm, and Fnorm is the

normalized muscle force: (F − Fth)/Fmax if F ≥ Fth and 0 otherwise, with Fth = 3.38 N.

As mentioned above, the function fC(V ) given in equation (3.1) describes the output of the

motoneurons, while the remaining terms in the feedback functions are constants that take

the values ρv = 0.6, kIav = 6.2, kdIa = 2, kEMGIa = 0.06, CIa = 0.26, kIb = 1, kdII = 1.5,

and kEMGII = 0.06. Linear combinations of feedback terms are fed into each side of the

model: Ia-F and II -F feedbacks to the flexor side and Ia -E and Ib -E to the extensor

side. In equation (3.1), we denote the feedback to neuron i as
∑

k wk,ifbk, which we will

henceforth abbreviate as FBi. For extensor neurons,

FBi = wIa -E,iIa -E + wIb -E,iIb -E (3.6)
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for i ∈ {RG -E, PF -E,In -E, Inab -E}. For flexor neurons,

FBi = wIa -F,iIa -F + wII -F,iII -F (3.7)

for i ∈ {RG -F , PF -F , In -F}.

Figure 23B shows an example of the time course of activity of RG and Mn for both

the flexor and extensor sides, and the corresponding limb angle. Note that a switch in

which side of the CPG is active, and hence a switch between flexor and extensor activation,

does not instantaneously change the direction of motion of the limb. Since the definition of

stance and swing phases is based on the direction of limb motion (and correspondingly the

presence or absence of ground reaction force), these phases are shifted relative to the F and E

phases. Thus, we can define eSwing, eStance, fSwing, and fStance subphases (which will be

important in later sections), where in each subphase name, the first letter denotes the active

motoneuron (‘f’ for flexor, ‘e’ for extensor) and the subsequent string indicates whether the

limb is in the swing or stance phase. One cycle through these phases defines a locomotor

cycle in the model. Without feedback, the limb is considered to be immobilized, so when

feedback is absent, we will define the duration of the “fictive locomotor cycle” by the period

of the CPG oscillations, formed by a single extensor and flexor phase (see Figure 26A).

Figure 25 shows the time course of Ia − E, II − F , and Ib − E feedback along with

RG activity. It is important to note that the feedback to a neuron increases during its

silent phase and decreases during its active phase, with the exception of force-dependent

Ib -E feedback, which is only active when RG -E is. This information will be utilized

in Section 3.2, where the dynamic mechanisms underlying oscillations in the model (e.g.,

Figure 23B) are described. Figure 26 illustrates the dependence that the flexor, extensor,

and overall locomotor cycle phase durations have on supra-spinal drive when feedback is

absent (Figure 26A) and present (Figure 26B). In the absence of afferent feedback (also

known as the fictive locomotion state), frequency increases are obtained by an equivalent

decrease of both flexor and extensor durations. When afferent feedback is present, however,

the limb oscillates and frequency increases occur through a decrease in stance phase duration

only, with the swing phase duration remaining relatively constant. In addition, the presence
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Figure 25: Time courses of RG output (fC(V )) and feedback activity. (A) RG -F , Ia-F , II -F
output (red solid) in top, middle, and bottom panels, respectively. Feedback signals Ia-F and II -F
are fed to flexor neurons, increasing while RG -F is inactive and decreasing while RG -F is active.
(B) RG -E, Ia -E, Ib -E output (blue dashed) in top, middle, and bottom panels, respectively.
Feedback signals Ia -E and Ib -E are fed to extensor neurons. Similarly to the flexor side, Ia -E
increases while RG -E is silent and decreases while RG -E is active. Ib -E is force-dependent and
is only active during the active phase of RG -E.

of feedback increases model robustness, since the CPG oscillates over a wider range of supra-

spinal drive, compared to the case when feedback is absent. In the lower half of Table 1, we

present a list of terms that are commonly used in this chapter.

3.2 CPG MECHANISMS DIFFER IN THE MODEL WITH AND

WITHOUT FEEDBACK

Given sufficient drive, model neurons in this system form a CPG, able to produce rhyth-

mic alternation of extensor and flexor components in absence of feedback. In the open

loop configuration, drive changes vary the CPG output frequency by symmetric changes

in both flexor and extensor durations. When limb feedback is incorporated, however, the

model exhibits an asymmetric output where limb frequency is controlled by changes in
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Figure 26: Control of the locomotor speed by a supra-spinal drive applied identically to both half-
centers in (A) absence and (B) presence of feedback. In the literature, the stance phase is considered
synonymous with the extensor phase (similar for the swing and flexor phases). (A) In the absence
of feedback, extensor (blue circles) and flexor (red plus signs) phase durations sum to the CPG cycle
period (black stars) and change identically as drive varies. (B) In the presence of feedback, step
cycle duration (black stars) instead varies asymmetrically with drive, exhibiting decreases in the
duration of the stance phase (blue circles), at a relatively constant swing duration (red plus signs).
In addition, the CPG oscillates over a wider (particularly lower) range of drives, compared to the
model without feedback.

the stance phase duration only (corresponding to variations in extensor duration alone, see

Figure 26). As a first step towards explaining the asymmetric response to drive changes

exhibited in the closed-loop configuration, we begin by analyzing the activity of the CPG’s

rhythm generator, which is comprised of RGs described by system (3.1) and Ins described

by equation (3.2). Because the persistent sodium inactivation time constant τh(V ) is large

over the relevant voltage range (see Section 3.1 for details), system (3.1) is essentially of

the form V̇ = F (V, h, I(t)), ḣ = εG(V, h), where ε is a small parameter and I(t) denotes

time-dependent excitatory/inhibitory input from other neurons and feedback. A dynamical

system in this form is called a slow-fast system, because h evolves on a much slower timescale

than V due to the size of ε. Before discussing the interactions of two neurons with these dy-

namics, in Section 3.2.1 we will first consider the dynamics of a single neuron described by

slow-fast equations with a fixed input I. We will see that the activity of this neuron can be

completely determined from the location of intersection of its nullclines in the (V, h) phase

plane. Once we understand the dynamics of a single neuron receiving a fixed input, we can
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analyze how our set of connected neurons coordinate their activity to generate a model oscil-

lation when feedback is absent (Section 3.2.2) and when feedback is present (Section 3.2.3),

such that the levels of input to the neurons varies in time. By illustrating the details of these

mechanisms, we can explain how the model is able to oscillate at a wider drive range when

feedback is present, and why strengthening this feedback supports an increase in locomotor

frequency.

3.2.1 Intrinsic dynamics of model RGs

Consider system (3.1) as V̇ = F (V, h, I), ḣ = εG(V, h), where I is some fixed constant and ε

is a small positive parameter. Due to the small size of ε, h is expected to evolve much more

slowly than V except where |F | is small. When such a separation of timescales is present, the

nullclines of the system are particularly helpful for understanding its dynamics, as we will

explain below. The V -nullcline consists of the set of (V, h) that satisfy V̇ = F (V, h, I) = 0.

Given the definition of F , when the V -nullcline is a drawn in the (V, h) phase plane, F > 0

above this curve and F < 0 below this curve (for an example, see Figure 27). Under certain

input strengths, the V -nullcline exhibits a cubic shape (see Figures 27A and 27B), composed

of three (left, middle, and right) branches. The left and middle branches meet at a local

maximum, which we will refer to as the left knee, and the middle and right branches connect

at a local minimum, which we refer to as the right knee. The h-nullcline (the set of (V, h) that

satisfy ḣ = G(V, h) = 0) is also important. When drawn in the phase plane, the h-nullcline

is a non-increasing sigmoid, with G > 0 below and G < 0 above this curve.

When a neuron is described by a model with dynamics on two disparate timescales, we can

simplify the analysis of its behavior by reducing the full system to two subsystems, each on

its own timescale. First we consider the limit where ε goes to 0 and obtain the fast subsystem

(FS): V̇ = F (V, h, I), ḣ = 0. Solutions for the fast subsystem have h fixed as a constant with

flow determined by the dynamics of V . If we instead perform a change of variables and let

τ = εt, and then let ε go to 0, we obtain the slow subsystem (SS): 0 = F (V, h, I), h′ = G(V, h),

by using the chain rule and canceling ε in the h equation (′ denotes differentiation with

respect to τ). Solutions to the slow subsystem lie on the V -nullcline and flow according to
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Figure 27: Neuron activity for three different levels of input. In each panel, the V -nullcline is
shown in red, the sigmoid shaped h-nullcline in green. The location of their intersection deter-
mines the activity of the neuron. The trajectory is shown with a thick black dotted line from an
initial condition indicated by a star. Threshold is indicated with a magenta vertical line, located
at V = Vth=-50 mV. Double arrows indicate motion on the fast timescale, single arrows on the
slow timescale. Blue arrows indicate the direction of the vector field, and the black dot indicates
the critical point for the system in each case. (A) The neuron remains at a silent state for all time
when the nullclines intersect on the left branch of the V -nullcline. (B) When the nullclines meet
on the middle branch of the V -nullcline, periodic activity can occur since both knees are accessible.
(C) Tonic activity results from the configuration in which nullclines intersect on the right branch
of the V -nullcline.

the dynamics of h, with V = V (h) such that F (V (h), h, I) = 0. This evolution occurs on a

much slower timescale than that of the fast subsystem due to the change of time variable.

An approximate solution to the full system is formed as an appropriate concatenation of

solutions of the fast and slow subsystems, where the subsystem to be solved at a particular

time depends on the solution’s location in phase space at that time. Indeed, consider an

initial condition starting away from the V -nullcline. Since F (V, h, I) += 0, i.e. the conditions

of (SS) are not satisfied, the dynamics of the system are described by (FS). According to this

subsystem, h is fixed and V evolves toward a stable critical point of (FS). As can be seen

by examination of the vector field (Figure 27), each point on the left and right branches is

a stable critical point of (FS), since V̇ > 0 for V below the left branch and V̇ switches sign

each time a branch is crossed. In the limit as t → ∞, F (V, h, I) = 0 is satisfied and (SS) can

be solved to obtain the next segment of the solution.

Overall, the activity of each neuron depends completely on the location of the intersection

between the V and h -nullclines, which is a critical point of the full system. Figure 27 shows
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nullcline configurations for input values that cause the nullcline intersection point to lie on:

the left branch of the V -nullcline in Figure 27A, the middle branch in Figure 27B, and the

right branch in Figure 27C. Consider an initial condition in the lower left corner of the

phase plane as shown in Figure 27A. Since F (V, h, I) += 0, the trajectory approaches the

nearest stable critical point of (FS), which lies on the left branch of the V -nullcline. From

this critical point, the dynamics of (SS) yield a trajectory that travels up the left branch of

the V -nullcline, since h′ > 0 in this region. As time increases, this trajectory approaches a

point (Vs, hs) that satisfies F (Vs, hs) = 0, G(Vs, hs) = 0, namely a critical point of the (V, h)

system that lies below the activation threshold. This neuron will remain in this silent state

for all time.

If instead the nullcline is configured as in Figure 27B, the trajectory would again follow

first the (FS) then the (SS) dynamics until it travels slightly above the left knee of the

V -nullcline. At that time, the (SS) conditions are not met (once we leave the V -nullcline,

F (V, h, I) += 0), so V evolves to a stable state with fixed h according to (FS). This point lies on

the right branch of the V -nullcline, so as t increases the trajectory crosses activation threshold

and enters the active state. The trajectory evolves according to (SS) with decreasing h on

the V -nullcline since it now lies to the right of the h-nullcline. An analogous transition to the

silent phase occurs when the trajectory reaches the right knee of the V -nullcline. With this

configuration a neuron is an intrinsic oscillator, since it spends time in both the silent and

active phases. The existence of a relaxation oscillator in this case can be proven rigorously

using the Poincaré-Bendixson theorem.

Finally, Figure 27C shows a nullcline configured with the critical point lying on the

right branch of the V -nullcline. From the starting point shown, the trajectory immediately

jumps across synaptic threshold to the right branch of the V -nullcline according to (FS) and

evolves in a direction of decreasing h according to (SS). In this case, however, the trajectory

encounters a critical point of the full system. This state lies above activation threshold, thus

the neuron remains in an active state for all subsequent time.

This discussion details the possible activity patterns of a single neuron with a fixed

input, but in system (3.1), the neurons receive input from sources that vary in strength over

time, which means that their nullclines are constantly evolving. For instance, a neuron that
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is stuck in the silent regime can become active if it receives sufficiently strong excitation

(or conversely, sufficiently weak inhibition) to lower its V -nullcline and shift the critical

point from the left to the middle branch. Analogously, a neuron with a tonic nullcline

configuration could evolve to the silent phase if its excitatory input decreases sufficiently,

raising the nullcline so that the neuron can access the right knee [62].

When coupled neurons generate a rhythm through a combination of intrinsic dynamics

and coupling-induced nullcline adjustments, we can distinguish different classes of transition

mechanisms by which different neurons become active or silent. For instance, a transition

might occur via an inhibited cell reaching its left knee and “escaping” from the silent phase.

Once it becomes active, it may inhibit previously active cells, possibly forcing them to become

silent. This transition mechanism is denoted as escape. Conversely, if an active cell reaches

its right knee, then it can jump down from the active to the silent phase. Once it crosses

below synaptic threshold, it “releases” the silent cell from inhibition (allowing the inhibited

cell to become active). This transition mechanism is denoted as release [80, 72, 19].

In the following sections, we discuss the different mechanisms causing transitions in the

CPG in the case when feedback is absent and the case when it is present.

3.2.2 Without feedback, CPG transitions occur through RG adaptation and

escape

Our simulations show that oscillations in the CPG without feedback occur via escape con-

trolled by RG. Details of the transition from RG -E silent to RG -E active are shown in

Figure 28, and the F transition is analogous. In the top panel of each figure, the dynam-

ics of RG -F and RG -E are tracked in phase space. In the bottom panel of each figure,

the corresponding voltages of In -F and In -E are indicated. Since feedback is absent, the

voltage of In is completely slaved to the activity of RG; it remains at a silent rest state of

equation (3.2) given by the leak reversal potential when RG is silent but is excited above

threshold after RG becomes active. Also, without feedback, the only time-varying input to

RG comes from inhibition from In.

Starting from its position in Figure 28A, the h variable of RG -F decreases in slow time.
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Figure 28: Frame by frame depiction of the escape mechanism for the model without feedback.
In the top boxes RG -F and RG -E positions are plotted at various timepoints with their relevant
nullclines in (VRG, hNaPRG) space. The corresponding voltages of In -F and In -E are tracked in
the lower boxes. For all neurons and V -nullclines, red indicates flexor and blue indicates extensor,
the h-nullcline is shown in green, and the voltage threshold is indicated in magenta. (A) Inhibition
from In -F decreases over time, lowering RG -E’s V -nullcline until the left knee can be reached.
(B) RG -E hits the knee and jumps across threshold. (C) Excitation from RG -E pushes In -E
across threshold. In -E begins inhibiting RG -F which raises RG -F ’s V -nullcline, causing RG -F
to jump below threshold. This decreases excitation to In -F , which also begins to fall below threshold.
(D) RG -F and RG -E have switched dominance, as have In -F and In -E.

Due to the slope of the V -nullcline, the voltage of RG -F decreases, which weakens the

excitation fromRG -F to In -F and correspondingly reduces the inhibition from In -F to the

RG -E (see equations (3.3),(3.4) for relevant synaptic currents). This reduction in inhibition

is a form of adaptation that facilitates phase transitions (e.g., [19]). During this time, RG -E

travels up its inhibited V -nullcline (which lowers as the output from In -F decreases) until

it reaches the left knee of the relevant V -nullcline. The rest of the dynamics shown in

Figure 28B-28D occur on the fast timescale. In Figure 28B, RG -E escapes and jumps toward

the right branch, exciting its corresponding In -E as it crosses the synaptic threshold. The

newly active In -E provides partial inhibition to the opposing RG -F , causing a change in

its V -nullcline. Due to this change, RG -F ends up below the right knee of the V -nullcline

and jumps to the left branch of its nullcline, crossing below the synaptic threshold as it

does so (Figure 28C). Without excitation from RG -F , In -F falls below threshold as well

and stops inhibiting RG -E. As the fast time t → ∞, RG -F is fully inhibited from In -E

(Figure 28D). This sequence represents one half-cycle, from the onset of RG -F activation to
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the onset of RG -E activation, after which the neurons evolve on the slow timescale again.

We note that with no feedback, for all drives considered [46], the first derivative of the

nullcline of the active RG neuron is always positive, so transitions by pure intrinsic release,

in which an active neuron reaches a right knee and falls silent on its own, cannot occur.

The transitions by adaptation-facilitated escape seen in the absence of feedback lead to

a decrease in phase durations when excitation, i.e. drive, is increased [74, 68]. Since both

transitions, E to F and F to E, occur via this mechanism, we expect both the flexor and

extensor durations to decrease as drive is increased as shown in Figure 26A. Furthermore,

this transition mechanism limits the range of drives that produce oscillations. If drive is too

small, the critical point for the inhibited nullcline will lie on the left branch, and the silent

neuron will be unable to complete a transition to become active. Thus, the observation that

transitions occur by RG escape has allowed us to identify the bifurcation event underlying

the loss of oscillations with reductions in drive in the CPG without feedback.

Given this insight, we can now address the following question: Assuming that one RG

is active and the other silent, for which drives will the system oscillate? As outlined above,

we must determine the equation for the inhibited nullcline, and locate the position of the

critical point for the (V, h) system, to answer this question. To do this, we fix drive, and in

the absence of excitatory feedback, the active RG nullcline is completely determined. We

compute the steady state of this neuron, which corresponds to the minimum inhibition level

that it indirectly provides to the opposing RG. If the inhibited V and h nullclines intersect

on the left branch of the V -nullcline for this inhibition value obtained at this particular drive,

then the neuron will be unable to escape.

Using the implicit function theorem, we find an explicit equation h = hc(V ) for the

inhibited RG nullcline under the drive and inhibition pairing we described above and solve

hc(V ) = h∞(V ) to find an expression for the voltage of the critical point, Vip, where h =

h∞(V ) is the equation for the h-nullcline. Separately, we calculate the voltage of the left

knee, which satisfies h′
c(V ) = 0, h′′

c (V ) < 0, where ′ denotes differentiation with respect to V .

We will denote this as Vlk. Then, if Vip < Vlk, the intersection point lies on the left branch

of the V -nullcline, which prohibits escape. We find that the silent RG can begin to escape

for inhibition and drive pairings larger than d = 1.13, which concurs with Figure 26A, where
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oscillations are seen for d=1.2 and larger.

For very large drives, on the other hand, the oscillations in the CPG break down in a

different manner. As drive is increased, the inhibited RG nullcline can become sufficiently

lowered such that almost the entire nullcline lies to the right of the synaptic threshold, Vth.

Thus, the active periods of RG begin to overlap, which represents the loss of a coordinated

oscillation.

We also note that for relatively large drives, PF can escape prior to the transition at the

RG level, and the PF V -nullclines can move above synaptic threshold, such that PF can

remain active for the entire oscillation cycle. However, this does not affect our definitions of

phase durations, since these are calculated based on RG activity in this no-feedback case,

nor does it affect limb dynamics, since the limb is considered as immobilized in this case.

3.2.3 Presence of feedback induces CPG oscillations through In escape mecha-

nism and defines important system transition curves

The dynamics becomes more complicated when the CPG neurons receive excitatory input

from sensory feedback. This feedback depends nonlinearly on the position and velocity of the

limb as well as the output of the motoneurons, which makes it difficult to pinpoint whether a

transition based on the intrinsic dynamics of an RG may be possible. Further, since feedback

is also fed to In, their states are no longer slaved to RG activity. In fact, we observe that

as feedback increases, each In can cross threshold independently of the RG that excites it,

which results in oscillations featuring a different transition mechanism than in the previous

case. We show details of this mechanism, from RG -E silent to RG -E active, in Figure 29,

and again, the opposite transition is analogous.

Comparing Figure 28A with Figure 29A, we can see that adding excitatory feedback

to the system has the net effect of raising the position of the inhibited V -nullcline. This

outcome may seem counterintuitive, since simply receiving more excitation should lower the

silent neuron’s V -nullcline; however, the strength of the inhibition the silent neuron receives

is also stronger, since increasing excitation to the active neuron allows it to inhibit the silent

neuron more strongly. The effect of this stronger inhibition, despite the stronger excitation
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from feedback signals, is that the V -nullcline for the silent RG -E is higher in the feedback

case than in the case without feedback, for the same drive value. Hence, the RG -E equations

have a critical point in the silent phase, on the left branch of their V -nullcline, while the

RG -F equations have a critical point in the active phase, on the right branch of their V -

nullcline, as illustrated in Figure 29A. Given this situation, without any change in input,

the RG will become deadlocked at steady states, unable to trade dominance, for the same

drive value shown in Figure 28. Crucially, however, In -E integrates sufficient input from

excitatory feedback that it can cross the synaptic threshold and begin to inhibit RG -F on

its own (Figure 29B). This inhibition raises the RG -F ’s V -nullcline, such that its voltage

drops on the fast timescale, which reduces the voltage of In -F (Figure 29C; note that the

rise in In -E inhibitory output is not dependent on a change in RG -E up to this time). This

change updates the RG -E nullcline, since the inhibition it receives from In -F is reduced,

and eventually the nullcline lowers such that RG -E can reach the left knee and jump to the

right branch. As it passes through threshold, RG -E provides additional excitation to the

already active In -E (Figure 29B). During this transition, In -F shuts down completely, so

RG -E converges to the right branch of the uninhibited nullcline, and RG -F settles on the

left branch of the fully inhibited nullcline (Figure 29D).

Note that in this case, the active RG neuron receives more positive input (drive plus

feedback) than in the case without feedback, and hence again, a departure from the active

phase by the active RG neuron and associated release of the silent neuron cannot occur with-

out some other event initiating the transition first. In some cases, the active In may reach

low enough voltages that the inhibitory signal to the silent side may become significantly

sub-maximal. Still, while this reduction in inhibition may facilitate switching, in the end it

is the escape of the silent In that causes the full dominance switch.

Now that we have identified what event is responsible for each transfer of dominance in

the CPG, we can understand the range of drives over which oscillations occur by exploring

how and when that event occurs. For the silent In to become active, it must cross the

activation threshold. Since its corresponding RG is silent when it first escapes, the only

excitation it receives is from feedback, which increases throughout the inactive phase of a

neuron as noted in Section 3.1. The level of excitation required for In to cross threshold can
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Figure 29: Frame by frame depiction of the In escape mechanism when feedback is present in
the model. In the top boxes RG -F and RG -E positions are plotted at various timepoints on their
relevant nullclines in (VRG, hNaPRG) space. The corresponding voltages of In -F and In -E are
tracked in the lower boxes. For all neurons and V -nullclines, red indicates flexor and blue indicates
extensor, the h-nullcline is shown in green, and the voltage threshold is indicated in magenta. (A)
Feedback increases excitation to In -E, allowing it to reach threshold independently from RG -E.
(B) In -E begins to inhibit RG -F , which raises the RG -F ’s V -nullcline(red). This change causes
the voltage of In -F to decrease, yielding less inhibition to RG -E and thus lowering RG -E’s V -
nullcline (blue). (C) RG -E is now able to jump to the right branch, crossing threshold and further
exciting In -E as it does so. (D) RG -F falls below threshold after receiving full inhibition from
In -E. Without excitation from RG -F , In -F falls below threshold as well.

be obtained by solving for the steady state of silent In and setting this value equal to Vth.

The steady state satisfies:

V ss
In - silent = (ḡLeakELeak + ḡsynEEsynEFBIn - silent)/(ḡLeak + ḡsynEFBIn - silent),

where FBIn - silent denotes the summed feedback to the inactive In. A simple calculation

determines that with our model parameter values, V ss
In - silent = Vth when FBIn - silent = 0.04.

We denote this critical value as FBcrit, and we note that although the feedbacks fed to

the extensor and flexor sides differ (and thus, how this value is reached differs), FBcrit is

independent of side. For convenience, equations (3.6),(3.7) are repeated here. For extensor

neurons:

FBi = wIa -E,iIa -E + wIb -E,iIb -E (3.8)

for i ∈ {RG -E, PF -E,In -E, Inab -E}, and for flexor neurons,

FBi = wIa -F,iIa -F + wII -F,iII -F (3.9)
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for i ∈ {RG -F , PF -F , In -F}.

Feedback terms depend on limb angle (q) and velocity (v = q̇), governed by equation

(3.5), as well as motoneuron output. However, FBIn - silent = FBcrit is an equation that

depends only on q and v. Indeed, except during CPG transitions, all flexor neurons (RG -F ,

In -F , PF -F and Mn -F ) are inactive together. Thus, when In -F is silent, Mn -F is

silent, so when calculating the feedback to In -F during its silent phase, the terms in Ia-F

and II -F that depend on Mn -F are zero. The situation is analogous for the extensor side.

Therefore, we can use equations (3.6),(3.7) (repeated above) to construct curves in limb

phase space that indicate where the transitions in the CPG occur. We define the sTance

Transition Curve as

TTC = {(q, v) : v ≥ 0, FBIn -F = FBcrit}. (3.10)

This curve is the collection of points in (q, v) space where the voltage of In -F reaches

threshold and inhibits RG -E, initiating the switch from E to F dominance, which occurs

midway through the stance phase. Similarly, the sWing Transition Curve

WTC = {(q, v) : v ≤ 0, FBIn -E = FBcrit} (3.11)

describes the set of points where the analogous switch from F to E dominance occurs in the

swing phase. These two curves define vital switching manifolds for the system (which will

be discussed in more detail in the next section). They are precisely determined, although

there is a small delay from the time when an In escapes to the time that this transition

is transmitted via the corresponding Mn and manifested in the forces acting on the limb,

which we explain in the following remark.

Remark 1. For each motoneuron voltage variable V , we also define a variable x with x′ =

f(V )− x. Following Markin et al. [46], we use x rather than f(V ) for defining transitions

between eStance and fStance and between fSwing and eSwing (including for plotting transition

curves in Figure 47A), for plotting motoneuron outputs (Figure 23A), and for computing

average Mn outputs. The use of x, which slightly lags f(V ), contributes to the small time

differences between the dominance switches of the In used to define the TTC and WTC and

the times defined for the transitions from eStance to fStance and from fSwing to eSwing, as
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mentioned in Section 3.2. A second factor in this difference is that there is a delay from In

escape to the corresponding RG activation that drives Mn outputs. These time differences

are all small and do not appear to affect the behavior of the model.

Since the CPG and feedback operate in a closed loop, it is difficult to prove rigorously

that phase transitions in the presence of feedback occur via In escape for all drives. For

larger drives, for instance, the inhibited RG might have access to its left knee, but the

inhibited In could cross threshold first (or vice versa). Without knowing the time course of

the feedback, we cannot determine which mechanism occurs first. We observe numerically

that the In always reaches synaptic threshold before the RG can escape. We note that, as

in the case without feedback, oscillations in the CPG persist until drive is very large, and

break down when the active periods of RG begin to overlap.

Since the In escape transition mechanism does not depend on any particular nullcline

configuration, as was needed for RG escape in the case without feedback, feedback broadens

the range of drives over which oscillations can occur, particularly for lower drives. Provided

that the feedback strength to the In is sufficiently large, the system will oscillate. We will

return to the issue of what can cause oscillations to be lost in the presence of feedback, for

example as occurs as drive is reduced, using an analysis of limb dynamics subject to Mn

outputs.

Finally, previous modeling work has proposed that stronger feedback signals should code

for faster locomotor oscillations [34, 83]. The fact that an escape mechanism underlies CPG

phase transitions in the model that we consider suggests that augmenting feedback signals

in this model might speed up its oscillation frequency, by facilitating this escape (as opposed

to models with release-based transitions, in which stronger positive inputs help sustain the

dominant units and delay transitions) [74, 68, 19]. The result of such augmentation is com-

plicated, however, by the fact that feedback signals also affect motoneuron outputs and hence

limb dynamics, particularly transitions between stance and swing, which occur at different

times from extensor/flexor transitions in the full model. It turns out that stronger feedback

signals yield stronger motoneuron outputs, which speed up these stance/swing transitions

and the associated epochs in the limb phase plane, enhancing the frequency increase ex-

pected from the CPG. The mechanisms responsible for these effects will be discussed. The
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upshot of this analysis is that the CPG and limb responses to strengthened feedback pro-

vide complementary increases in the locomotor oscillation frequency in the model that we

consider, as illustrated in Figure 30.
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Figure 30: Control of locomotor speed by supra-spinal drive for different feedback strengths. Green
plus signs indicate step duration at normal strength, black dots and blue stars indicate step durations
where feedback was set at 90 and 110 percent of baseline feedback strength, respectively. Increasing
feedback strength increases limb frequency, most notably at lower drive values.

We make one final note: we again observe that for relatively large drives, the extensor

pattern formation (PF -E) neuron is able to intrinsically escape prior to the switch between

RG -F and RG -E. Its voltage, however, remains just slightly above threshold, so although

it sends signals to Mn -E, they are weak, and full motoneuron activation does not occur

without the In -E escape outlined above. Furthermore, this PF -E escape plays no role

in the phase asymmetry shown in Figure 26; indeed, we have verified numerically that if

we reduce the parameter that controls the strength of the input to PF , we can suppress

this PF -E activity yet retain full anti-phase Mn output, without qualitatively affecting the

asymmetric phase response to changes in supra-spinal drive (Figure 26B).
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3.3 REDUCED MODEL RETAINS KEY MODEL FEATURES AND

EXHIBITS A PERIODIC SOLUTION

In Section 3.2.3, we showed that the model CPG can exhibit half-center oscillations through

different escape mechanisms depending on whether or not feedback is present. These mech-

anisms can be understood in terms of a separation of timescales and the consideration of

nullclines for components of the CPG. We would now like to characterize the conditions

under which stable periodic oscillations can occur in the presence of feedback as well as the

dynamic mechanisms that shape these oscillations, which will be critical in understanding

the asymmetric response to drive.

3.3.1 Rapid transitions can be used to distinguish four locomotor phases

We can visualize behavior of the model limb, governed by equation (3.5), in a phase space

where limb velocity is plotted against angle. A locomotor cycle corresponds to a trajectory

moving clockwise in (q, q̇ = v) phase space. Positive velocity, leading to an increase in

q, corresponds to periods when the ground contact force is present, which is denoted as

the stance phase. A rapid change in which side of the CPG is dominant, and hence in

Mn activity, translates to a rapid change in the right hand side of equation (3.5), based

on the force terms that depend on the motoneuron outputs. Eventually, such a change

can cause the velocity of the limb to change sign, and in the model the ground reaction

force instantaneously activates/deactivates when this happens, to simulate the onset/offset

of ground contact.

Changes in CPG dominance and in ground reaction force partition limb motion into

four distinct phases, such that within each phase, the limb behaves in a continuous manner,

and at each transition, the limb acceleration is discontinuous. We denote each of the four

phases by their dominant muscle (flexor or extensor), and the presence/absence of the ground

reaction force (stance/swing) to obtain the notation eStance, fStance, fSwing, and eSwing.

The eStance phase is characterized by an active Mn -E and positive limb velocity, hence the

additional force from ground contact is present. This phase begins when the limb trajectory
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crosses from below to above the q-axis and is terminated when RG -F turns on. As described

in Section 3.2.3, we can define a curve in the limb phase plane such that when the limb

trajectory hits this curve, the extensor component of the CPG becomes inactive and the

flexor component activates. This definition can be made because the transition within the

CPG occurs through an escape of In -F from its silent phase, causing it to shut down RG -E

and In -E and hence allowing RG -F to activate. This escape occurs when the feedback

to In -F reaches a critical value FBcrit. Thus, the duration of the eStance phase depends

on how quickly the feedback to In -F reaches FBcrit, or how quickly the TTC is reached.

The fStance phase is characterized by an active Mn -F and positive limb velocity, so again,

the ground reaction force is present here. This phase begins when RG -F becomes active

at the TTC and ends when the limb trajectory crosses the q-axis from above to below. The

fSwing phase is characterized by an active Mn -F and negative limb velocity, so the ground

reaction force is absent. This phase begins when the limb trajectory crosses from above to

below the q-axis and ends when RG -E turns on. This transition occurs at another curve in

the (q, v) plane, the sWing Transition Curve or WTC, which is defined analogously to the

TTC, using the feedback to In -E. Thus, the duration of fSwing depends simply on how

long it takes the feedback to In -E to reach FBcrit. The final phase, eSwing, is characterized

by an active Mn -E and negative limb velocity, again with no ground strike force present.

This phase begins when RG -E becomes active at the WTC and ends when the trajectory

crosses from below to above the q-axis.

In Figure 31, we vary the drive and mark the onset of each of the phases in (q, v) space.

Green circles mark the onset of fStance, magenta plus signs the onset of fSwing, black dots

the onset of eSwing, and red stars the onset of eStance. The onset of fStance and eSwing are

slightly delayed relative to the transition curves, as explained in Remark 1. Note that the

amplitude of the orbit increases as drive is increased, despite the fact that the step duration

decreases.
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Figure 31: Transitions between phases are marked over a range of drives. The solid arrows
indicate the direction of increasing drive. Green circles denote the onset of fStance, magenta plus
signs the onset of fSwing, black dots the onset of eSwing, and red stars the onset of eStance (onset
of fStance and eSwing drawn when the relevant motoneuron output increases above 0.2, following
[46]). The right hand side of the limb equation (3.5) changes in a discontinuous manner at each of
these transitions. A sample trajectory (for drive=1.4), which evolves in the clockwise direction as
time advances, is plotted with a blue dashed line for reference, and the transition curves are plotted
in black. Notice that the CPG transitions lie close to the TTC and WTC, respectively, though they
are shifted due to the brief transient the model exhibits between phases (see Remark 1).
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3.3.2 Outline of the model reductions

Now that we have described the phases involved in each oscillation cycle, we would like

to establish conditions under which such oscillations occur and are stable. Indeed, model

simulations suggest that the limb quickly settles to a pattern that appears stable under

perturbations. We next undertake a mathematical analysis of the existence of this solution,

with additional comments on its uniqueness and stability. Constructing a mathematical proof

of the existence of the solution, while somewhat technically involved, can provide a practical

understanding of what dynamic features contribute to the emergence of the rhythm, while

considering the uniqueness and stability of the solution gives information about whether

other rhythms might co-exist with expected locomotor oscillations and how the oscillation

will respond to perturbations, including variations in drive strength. In fact, the complicated

dynamics present in the full model equation (3.5) prohibits us from using dynamical systems

techniques to analytically establish such results about this system, so we first implement

certain simplifications to the model based on our earlier observations in Section 3.2. As

we will discuss, the simplifications we will implement reduce the system to four continuous

subsystems, and which subsystem rules the dynamics at a given time depends on which

region of phase space the limb trajectory lies in. One key reduction is that we replace the

time-dependent motoneuron output with constant values. This completely determines the

right hand side of the pendulum dynamics, reducing the system to just two dimensions (q

and v), which allows us to utilize classical theorems from dynamical systems theory. We

are able to construct an existence argument, which is mostly analytical but also relies on

a few numerical observations, for a periodic oscillatory solution of the resulting reduced

model. This result is attained by applying a version of the the Poincaré-Bendixson Theorem

(generalize for discontinuous systems) to the flow of our hybrid system. Before we can

utilize this theorem, however, we must constrain our trajectory in a compact region, which

we obtained using a Melnikov argument. This argument is itself of mathematical interest, in

that it requires the adaptation of Melnikov theory for a discontinuous system. In this section,

we outline the reductions we implemented before we present the argument for existence.

First, we replace all inhibitory output terms in the model with a multiple of a Heaviside
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step function,

H(V ) =







0.3944 if V ≥ Vth;

0 if V < Vth.
(3.12)

The factor 0.3944 was determined numerically from the original system by computing the

time-average of the f(V ) values over all inhibitory neurons and using the obtained value for

f(V ) in the equations for inhibitory synaptic currents. Second, we include sensory feedback

only to In. Under these changes, the input to RG is completely determined; drive, as always,

is a constant, and each RG neuron either receives inhibition or does not, depending on the

state of the opposing In. Thus, unlike the full model in which the time-dependent inputs

move the nullclines of each RG around in its two-dimensional phase space, the nullclines for

each RG are now fixed in phase space except for abrupt jumps that occur when inhibition

turns on or off. Maintaining the feedback to the In preserves the escape transition mechanism

discussed in Section 3.2.3, provided that the parameter that scales the drive to PF is slightly

reduced (to prevent these neurons from becoming active independently from RG for large

drives). Finally, we alter the outputs of the motoneurons so that for a fixed drive, they

are of a constant value, namely the time-averaged motoneuron output from the full model

oscillation, within each phase. We denote these constant values by meSt, mfSt, mfSw, and

meSw, respectively. Although we do not explicitly include it in our notation, these values

increase with drive strength, reflecting the fact that in the full model, RG activation increases

with drive, leading to a larger motoneuron output.

By fixing the motoneuron outputs, the right hand side of equation (3.5) is completely

determined, and thus, from an initial condition, the position of the limb can be obtained at

any time. Figure 32 shows a comparison of motoneuron output for the original and reduced

models for drive strength d = 1.4.

We call the model that results from these alterations the reduced model and note that

it preserves the important phase asymmetry feature seen in the original model (Figure 33).

For each fixed drive, the limb dynamics of the reduced model is governed by four continuous
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Figure 32: Motoneuron output generated by the original model (A) and reduced model (B) for
drive strength d = 1.4. Red solid curves correspond to Mn -F , blue dashed to Mn -E. In the
reduced model, motoneuron output is fixed at a different value in each phase, for each drive.

subsystems, one per phase,

Iq̈ = K cos(q)− bq̇ +ME(q, q̇, meSt)−MGRmax cos(q), (eStance)

Iq̈ = K cos(q)− bq̇ +MF (q, q̇, mfSt)−MGRmax cos(q), (fStance)

Iq̈ = K cos(q)− bq̇ +MF (q, q̇, mfSw), (fSwing)

Iq̈ = K cos(q)− bq̇ +ME(q, q̇, meSw), (eSwing) (3.13)

where we recall that MGRmax denotes the amplitude of the moment of the ground reaction

force, MGR(q).

We now introduce notation to encode the discontinuities in system (3.13). Define

{A} =







K/I if swing;

(K −MGRmax)/I if stance,
(3.14)

{m} =































meSt if eStance;

mfSt if fStance;

mfSw if fSwing;

meSw if eSwing,

(3.15)
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Figure 33: Reduced model preserves phase asymmetry as drive is increased. Stance and swing
phase durations for the original model are shown in blue and red stars, respectively. Stance and
swing phase durations for the reduced model are plotted in analogous colors with plus signs.

and

{M} =







ME/I if Mn -E is active;

MF/I if Mn -F is active.
(3.16)

With these definitions, we will use the shorthand

q̈ = {A} cos(q)− bq̇/I + {M}(q, q̇, {m}) (3.17)

to denote the drive-dependent system of equations in (3.13). The brackets indicate that the

function/constant within takes a value that depends on the limb’s location in phase space.

When we work within a certain phase, however, we will specify those terms explicitly for

clarity.
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3.3.3 Oscillations in the CPG component

We showed that in the absence of feedback, switching between flexor and extensor activation

within the CPG occurs through the escape of the suppressed RG. In contrast, when feedback

is present, each dominance switch is initiated when excitatory feedback sufficiently increases

the voltage of the silent In so that it can activate by escape and shut down the active RG on

the opposite side of the CPG (Section 3.2). For our reduced model to be consistent with the

assumptions made in defining it, it is important that the transitions still occur through In

escape, so we next verify that this is the case. Given that the system is in a state with one side

active and the other suppressed, we first determine whether or not the silent RG could escape

and initiate a phase transition. We can apply the approach used in Section 3.2.2; however,

in the reduced model, inhibition from the active In takes the same value regardless of drive.

Thus, in this case, there exists a unique drive value that causes the V and h-nullclines for

the inhibited RG to intersect precisely at the left knee of the V -nullcline. For drive values

smaller than this value, the intersection point lies on the left branch, and an escape transition

initiated by the RG is not possible. Therefore, if we restrict our drive set to drives below this

level, the transitions for the reduced system cannot occur through an RGmechanism, and are

guaranteed to occur via In escape. As we did in Section 3.2.2, we find an explicit equation

hc(V, d) for the RG V -nullcline inhibited with the strength indicated in equation (3.12), and

we solve hc(V, d) = h∞(V ) to find a drive-dependent expression for the voltage of the silent

critical point, Vip(d). Separately, we calculate the drive-dependent voltage of the left knee,

which satisfies h′
c(V, d) = 0, h′′

c (V, d) < 0, where ′ denotes differentiation with respect to V .

We will denote this voltage as Vlk(d). Then, the drive that satisfies Vip(d) = Vlk(d) is the

unique value where the left knee intersects the sigmoid. This value exceeds the largest drive

value considered for the original model, which is the range of drives that we also use for our

reduced model.

Next, it is easy to see that the transition cannot occur via RG release, in which the

active RG reaches the right knee of its V -nullcline. Indeed, in the reduced model, the active

RG receives no inhibition or feedback, and these conditions cause it to have a stable critical

point on the right branch of its V -nullcline, preventing release. In theory, the active In could
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release the silent neurons and cause a transition, but this mechanism was never observed

in the full model, and the input from RG to In and feedback strength are similar in the

reduced model, again preventing this mechanism from arising. Thus, in the reduced model,

the CPG switch always occurs through the In escape mechanism.

3.3.4 Existence and stability of a periodic solution for the reduced model

In this subsection, we give a dynamical systems argument to explain the mechanisms through

which the existence of a periodic solution comes about in the reduced model, if the supra-

spinal drive is sufficiently large. We will consider what happens for smaller drives in Sec-

tion 4.1. From a mathematical point of view, rigorously establishing existence and stability

of physically observed solutions is an important check of the validity of a model and may con-

tribute to an understanding of the constraints on model parameters needed to maintain this

validity. Moreover, as discussed earlier, these steps will allow us to better understand how

oscillations may be altered or even lost under perturbations such as changes in drive strength

and will also yield insights that will help us to explain the asymmetric phase response to

changes in drive, as presented in Section 4.1.

If we can constrain our flow in a compact region without critical points, a generalization

of the Poincaré-Bendixson Theorem (applied to discontinuous systems) will establish the

existence of a periodic orbit. To form this compact region, we will replace the moments

of the muscle forces with constant values that generate a special closed orbit. We will

then perturb the system away from these values and show that the closed orbit breaks in

such a way so that the flow of the system is constrained within a compact region. The

latter step uses a dynamical systems technique known as Melnikov theory. We must adapt

this theory in a novel way, however, to handle the discontinuity present in model system

(3.17). Finally, since this method only applies under small perturbations, we implement

a homotopy argument that ensures this alignment is maintained up until the true reduced

model is recovered. The use of Melnikov theory requires that certain assumptions hold. We

will first review these assumptions and then show that system (3.17) can be molded to fit

them.
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Let us assume that x = (q, v) satisfies a system of equations of the form ẋ = f(x) +

εg(x, t), where f, g are continuous functions and g is θ-periodic in t, such that when ε = 0,

a homoclinic orbit γ0 of this system originates from a saddle point x0 = (q0, v0). Denote the

unstable manifold of x0 as W u(x0) = {p ∈ D| limt→−∞ p · t = x0} and the stable manifold as

W s(x0) = {p ∈ D| limt→+∞ p · t = x0}, where D = {(q, v)|q ≥ q0}. By this choice of D, we

select the manifold branches that lie in a particular half-plane relative to the critical point

(later, it will become clear that this half-plane is the domain we care about for our system).

Assume that γ0 = W u(x0)∩W s(x0). Fix a point p∗ ∈ γ0 and consider a transversal Σ to the

flow that passes through this point, at time t0. Suppose that x0 perturbs to a saddle point xε

for ε sufficiently small, and let hu(ε) = W u(xε)∩Σ and hs(ε) = W s(xε)∩Σ, where xε denotes

the critical point of the system for a fixed value of ε. Although hu(0) = hs(0) = p∗, we do

not expect this intersection to persist as ε is increased. See Figure 34 for an illustration.
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Figure 34: A general schematic of the set-up for the existence argument. We wish to show that as
ε is increased from 0, the homoclinic perturbs as indicated in red, so that trajectories are trapped in
forward time within the region bounded by the unstable and stable manifolds of xε. Arrows indicate
flow in the forward direction.

The Melnikov function

M(t0) =

∫ T

−∞

e−
∫ t
t0

∇f(γ0(s))dsf(γ0(t)) ∧ g(γ0(t), t + t0) dt (3.18)

99



provides an expression that indicates how hu(ε) and hs(ε) perturb for ε sufficiently small;

traditionally, T = ∞ [30], but we will discuss T for our model below. If this expression is

negative, then as ε is increased from 0, the homoclinic orbit splits such that W u(xε) lies on

the inside of W s(xε), as shown in Figure 34. If the expression is positive, then the opposite

holds. Ultimately, we would like to prove that the flow for our reduced system (3.17) from an

appropriate set of initial conditions is trapped in a compact region in phase space in forward

time and hence, with some additional arguments, yields a periodic orbit. We intend to verify

this by showing that an appropriate Melnikov function (3.18) is negative, but first, we need

to cast our reduced system in the form described above and adapt some of the definitions

involved to apply to our discontinuous system.

We introduce the new system

q̇ = v

v̇ = {A} cos(q) + {M∗} − bv/I + ε({M}(q, v, {m})− {M∗}), (3.19)

where {A}, {M}, and {m} were previously defined when we introduced the reduced system

(3.17), and

{M∗} =































M∗
eSt/I if eStance,

M∗
fSt/I if fStance,

M∗
fSw/I if fSwing,

M∗
eSw/I if eSwing

(3.20)

is another piecewise constant function that is chosen to approximate {M}(q, v, {m}) in each

of the four phases. System (3.19) is equivalent to system (3.17) for ε = 1. The following

arguments will require drive d to be sufficiently large, as we shall discuss. For associated

numerical illustrations, we chose the {m} values corresponding to d=1.4.

System (3.19) is of the form ẋ = f(x)+εg(x), where f(x) = (v, {A} cos(q)+{M∗}−bv/I)

and g(x) = (0, {M}(q, v, {m})−{M∗}). While the reduced system is recovered when ε = 1,

for ε = 0, we have a system where the entire muscle moment is replaced by a fixed value in

each phase. However, the functions f and g in system (3.19) are not continuous, whereas

the Melnikov function is defined for continuous systems. Fortunately, the construction and
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interpretation of the Melnikov function generalize immediately to the piecewise continu-

ous system (3.17) that we consider, once we adapt the definition of the Melnikov function

accordingly, as we now explain.

Let x0 be the saddle critical point where the v-nullcline corresponding to the eStance

phase intersects the q-nullcline (q-axis) in the ε = 0 system. Note that x0 is not a critical

point for the other phases. By choosing an appropriate {M∗}, we can construct a closed

orbit of system (3.19) that begins with the unstable manifold W u(x0), which is of interest

because the limb trajectory of the full model is in close proximity to this manifold in the

eStance phase for small drives (see Section 4.1).

Once we choose M∗
eSt,M

∗
fSt, and M∗

fSw, the value of M∗
eSw is fully determined as the

unique value that returns the orbit to x0. Interestingly, because x0 is not a critical point of

system (3.19) in the eSwing phase, the orbit that we are following reaches x0 in finite time,

at a time that we denote by T . We will assume that values of {M∗} can be found such that

this closed loop orbit exists, and this is the major assumption of our argument. In practice,

this value can be found if drive is not too small. The violation of this assumption for smaller

drive is discussed in Section 4.1.

Denote the orbit formed from this choice of {M∗} as γ0 and choose a vertical segment near

the WTC, which we call Σ, to which the flow of (3.19) is transverse (i.e., a local transversal).

In this case, since our argument will depend on very small changes in the right hand side

of equation (3.19), we do not ignore the transient between the time the trajectory hits the

WTC and the time when the eSwing phase actually begins, as we indicate in Remark 1. We

account for this transient by marking the place on γ0 where the eSwing phase begins and

using the vertical line through this point as our transversal Σ. For ε = 0, we can refer to

the segment of γ0 from Σ to x0 as W̃ s(x0), although it does not fit the definition of a stable

manifold.

To establish results for system (3.17), which is recovered for ε = 1, we next wish to check

how γ0 perturbs as ε is increased from 0. First, we verify that for each ε ∈ (0, 1], system

(3.19) has a critical point xε = (qε, 0) that is a saddle, converging to x0 as ε → 0+, in the
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eStance phase. For each ε, such a critical point exists if there is a solution q to

ε =
−(K −MGRmax) cos(q)−M∗

eSt

ME(q, 0, meSt)−M∗
eSt

. (3.21)

Since the critical point x0 = (q0, 0) exists with ε = 0, we can write M∗
eSt = −(K −

MGRmax) cos(q0). Substituting this expression back into equation (3.21) and dividing on

top and bottom by (K −MGRmax), we obtain

ε =
cos(q0)− cos(q)

cos(q0) +N(q)
(3.22)

for N(q) = ME(q, 0, meSt)/(K − MGRmax). The quantity in the denominator of (3.22) is

positive for ε = 0 and q = q0, but N(q0) is itself negative, since K−MGRmax is negative while

ME is positive. If we increase q from q0, which lies between 0 and π/2, then the numerator

of (3.22) grows from 0 while ME(q) is observed numerically to grow as well. Hence, the

denominator of the right side of equation (3.22) becomes less positive as q increases toward

π/2. Thus, the right hand side expression increases past 1, which implies that there is a

solution qε to equation (3.21) for each ε ∈ (0, 1], as desired.

Next, we check that xε = (qε, 0) is a saddle point for all ε ∈ (0, 1]. For a two dimen-

sional system of ordinary differential equations, a critical point is a saddle provided that the

determinant of the linearization at that point is negative. Linearizing system (3.19) yields

a matrix with determinant (K − MGRmax) sin(qε) − ε
dME(qε,0,m∗

eSt)
dq . The coefficient of the

sine term is always negative and, as we just used to establish the existence of the critical

points, numerical results show that
dME(qε,0,m∗

eSt)
dq is positive for q ≤ π/2, which holds for xε

for ε ∈ (0, 1). Thus, the critical points xε are indeed saddle points.

Now, fix ε > 0 small. Since xε is a saddle point, it has an unstable manifold, defined

with respect to the eStance component of the flow of (3.19). Since the v-component of xε

is zero, we can define W̃ s(xε) as the trajectory of the eSwing component of (3.19), taken in

backwards time, connecting from xε to Σ. We aim to show thatW u(xε) perturbs to the inside

of W̃ s(xε) when ε is increased from zero, similarly to what is shown for W u(xε) and W s(xε)

in the schematic illustration in Figure 34. If we denote the intersections of W u(xε), W̃ s(xε)

with the transversal Σ by hk(ε) = (hk
q(ε), h

k
v(ε)), k ∈ {u, s}, then this means that we require

hu
v(ε) ≥ hs

v(ε), since Σ is vertical. In our notation, this relationship occurs if the function
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M(t0) in (3.18) is negative, where T − t0 denotes the time of passage of W̃ s(xε) from Σ to

xε.

For system (3.19), M(t0) =
∫ T

−∞
e−(b/I)(t−t0)v({M}(q, v, {m})−{M∗})dt. This expression

splits into four integrals, and since the limb trajectory γ0 actually reaches x0 at a finite

forward time T due to the discontinuous nature of the system, only the eStance integral is

evaluated over an infinite time interval. Until this point, we have assumed that we have

chosen {M∗} such that a closed orbit γ0 exists with ε = 0. We now place an additional

constraint on our choice of {M∗}: we wish to choose {M∗} such that the integrand in

each of these integrals is strictly negative. The existence of such a choice is a sufficient,

although not necessary, condition for the splitting to occur as desired. Next, we show that

we can select values of M∗
eSt,M

∗
fSt, M

∗
fSw, and M∗

eSw that achieve this condition, such that

M(t0) < 0 indeed holds. During the stance phase, v is positive, so we wish to choose

M∗
eSt larger than ME(q, v,meSt) in eStance and M∗

fSt larger than MF (q, v,mfSt) in fStance.

During eSwing and fSwing, we would like to make the opposite choice, setting M∗
eSw smaller

than ME(q, v,meSw) in eSwing and M∗
fSw smaller than MF (q, v,mfSw) in fSwing, since v is

negative during these phases.

To determine whether making such a choice is possible, we require knowledge of the

values that MF and ME take in phase space. Specifically, we need to find the maximum of

ME in eStance and MF in fStance, and the minimum of MF in fSwing and ME in eSwing.

We could run into a circular argument here, because the values of ME and MF for ε ∈ (0, 1)

depend on the system trajectory, which depends on {M∗}. However, by differentiating the

relevant equations, one can show directly that dME/dv ≤ 0 in eStance and eSwing, and

dMF/dv ≤ 0 in fStance and fSwing. Thus, the maximum value of ME in eStance and MF in

fStance, and the minimum value of MF in fSwing and ME in eSwing, all occur when v = 0.

Therefore, to obtain bounds on their possible values, we only need to evaluate ME and

MF over q values between 0 and π, which are constraints built into the model, with v = 0.

Numerically, we observe that the maximum of ME for the eStance vector field occurs near

π/2 and is equal to 58.11, the maximum of MF for fStance occurs at the upper boundary at

π and is equal to 0, the minimum of MF for fSwing occurs near π/2 and is equal to -101.67,

and the minimum of ME for eSwing occurs at 0 and is equal to 0.
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In light of these results, we choose M∗
eSt ≥ 59 and M∗

fSw ≤ −102, and we restrict our

possible range of M∗
eSw to consist of negative values. The bound in fStance is poor since MF

needs to be sufficiently negative in order for the trajectory to reach the q-axis to complete the

fStance phase. That is, while M∗
fSt > 0 would be needed to satisfy M∗

fSt ≥ MF (q, v,mfSt),

this choice would prevent us from constructing the homoclinic we desire in system (3.19)

with ε = 0. We show in our analysis that any trajectory that completes the fStance phase

and intersects the q-axis must remain at angles below the angle associated with the critical

point of system (3.19) during its passage through fStance. Thus, we would like to use the

angle of the fStance critical point for system (3.19) to provide a better bound for MF . Note,

however, that the fStance critical point satisfies

ε(qε) =
−(K −MGRmax) cos(qε)−M∗

fSt

MF (qε, 0, mfSt)−M∗
fSt

, (3.23)

a relationship that depends on the choice of M∗
fSt.

To avoid circularity, we proceed in the following way. We fix an angle q̂ and determine

MF (q̂, 0, mfSt). We choose this value, call it M̂F , and use it in place of M∗
fSt in the fStance

form of system (3.19) to compute the q-value of the fStance critical point as ε varies between

0 and 1. We check that the angle associated with each of these critical points is less than

q̂, and thus we conclude that the trajectories of (3.19) with M∗
fSt = M̂F maintain q < q̂

throughout fStance. Since MF (q, v) attains its maximum at v = 0 for each fixed q, and since

MF (q, 0) is a increasing function of q, we can use M̂F as an upper bound for MF (q, q̇, mfSt)

in system (3.19) for all ε. The particular q̂ we chose satisfied MF (q̂, 0, mfSt) = −94.7, which

allows us to choose any M∗
fSt > M̂F = −94.7. See Figure 35 for an illustration of these

relationships.

Figure 36 shows the homoclinic for the ε = 0 case along with W u(xε) and W̃ s(xε) for

ε = 0.01 and ε = 0.1 with the indicated choices of {M∗}. Notice that for ε > 0 sufficiently

small, the unstable manifold W u(xε) is trapped inside of the invariant curve W̃ s(xε), as

desired. While this alignment of manifolds holds for small ε, recall that our reduced model

is equivalent to system (3.19) with ε=1. As ε grows, higher order terms not accounted for

in the Melnikov function could become significant. Thus, we use an alternative comparison

approach to consider the effect of increasing ε and show that the direction of splitting is
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Figure 35: Relationship between the critical points for system (3.19) and the angle upper bound,
q̂. The critical points are plotted as blue asterisks on {v = 0} with an arrow indicating the trend
in their location as ε increases, and the line {q = q̂} is indicated in red. The q and v-nullclines
are plotted as black solid lines, and the stable manifold is a green dashed line for the ε = 1 system;
these intersect in the rightmost critical point. For reference, the limit cycle for the ε = 1 system is
plotted. In order to transition to the fSwing phase, the q-values on the limit cycle in fStance must
be bounded above by the q-coordinates of the fStance critical point. q̂ was chosen as an upper bound
of these bounds, so that M̂F is an upper bound of MF (q, v,mfSt).

maintained for all ε up to 1. The desired manifold alignment corresponds to the inequality

hu
v(ε) > hs

v(ε), which refers to the relative positions of the intersections of these manifolds

with the transversal Σ. We would like to show that this alignment is preserved as ε ↑ 1. A

sufficient condition for this result is that that for ε1 ≤ ε2, hu
v(ε2) ≥ hu

v(ε1) and hs
v(ε2) ≤ hs

v(ε1)

both hold, so we now try to establish these inequalities.

We have already established that the q-coordinates of the critical points xε2 and xε1

satisfy qε2 > qε1 for ε2 > ε1, so that W u(xε2) lies to the right of W u(xε1) in a neighborhood

of xε1 and xε2 for ε2 > ε1. Moreover, we can see that this orientation is preserved for the

duration of the eStance phase. Indeed, if the two manifolds were ever to touch, as would

have to occur to allow qε2(t) < qε1(t) to result, then q̇2 = q̇1, and then 0 ≤ v̇2 ≤ v̇1, since

v̇2 − v̇1 = (ε2 − ε1)(ME(q, v,meSt) − M∗
eSt)/I. Because we have chosen M∗

eSt to exceed the

largest possible value that ME(q, v,meSt) could take along a relevant trajectory of system

(3.19) in eStance, we know that this expression is negative. Thus, v̇2 < v̇1 at the intersection
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Figure 36: Key structures for the Melnikov argument for ε = 0.01 and 0.1 with
{M∗

eSt,M
∗
fSt,M

∗
fSw,M

∗
eSw} = {67,−90,−100,−2.25}. (A) The closed orbit γ0 for system (3.19)

with ε = 0 is plotted with a blue dotted line, along with the manifolds W u(xε) {red, black} and
W̃ s(xε) {pink, green} for system (3.19) with ε ∈ {0.01, 0.1}. The transversal Σ is chosen as a
vertical line (blue) through the point where eSwing begins on γ0 (indicated with a blue star), and the
saddle point is indicated with a black dot. (B) Zoomed view of (A) near the intersection of γ0 and
invariant manifolds with Σ, showing that W u(xε) perturbs to the inside of W̃ s(xε) in both cases.
For ε sufficiently close to 0, W̃ s(xε) remains close to γ0, and it perturbs below γ0 as ε increases.
In (B), labeled manifolds and points indicate the ε = 0.1 case.

point, and W u(xε2) remains on the inside of W u(xε1).

Assuming that the trajectories do not cross during the brief transient between the crossing

of the TTC and the switch to the fStance phase (which we observe numerically), thenW u(xε1)

is above W u(xε2) at the onset of fStance. This initial alignment in fact ensures that the

manifolds do not cross in the fStance phase. Again, if they were ever to touch, then q̇2 = q̇1,

and thus v̇2 ≤ v̇1 ≤ 0, since v̇2 − v̇1 = (ε2 − ε1)(MF (q, v,mfSt) − M∗
fSt)/I ≤ 0. Therefore,

W u(xε1) lies to the right of W u(xε2) at the end of fStance and, equivalently, at the start of

the fSwing phase. Now, if the manifolds were ever to touch in this phase, then 0 ≥ v̇2 ≥ v̇1

since v̇2 − v̇1 = (ε2 − ε1)(MF (q, v,mfSw)−M∗
fSw)/I ≥ 0. Thus, W u(xε1) remains outside of

W u(xε2) until Σ is reached, i.e. hu
v(ε2) ≥ hu

v(ε1), and we have obtained the first condition

that we seek.

We next consider the backward flow in eSwing. W̃ s(xε1) lies to the left of W̃ s(xε2) in a

neighborhood of xε1 and xε2 for ε1, ε2 sufficiently close to each other with ε2 > ε1. If W̃ s(xε2)

and W̃ s(xε1) intersect, then q̇1 = q̇2 and v̇1 − v̇2 = −(ε1 − ε2)(ME(q1, v1, meSw) −M∗
eSw)/I,
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which is greater than 0 since ε1− ε2 is negative and (ME(q1, v1, meSw)−M∗
eSw) is positive by

construction. Thus, they move through each other and cannot cross each other again, and

therefore hs
v(ε2) ≤ hs

v(ε1), as desired.

If they do not cross, then they still must traverse an interval of common q values to reach

Σ. For each fixed q obtained by both W̃ s(xε2) and W̃ s(xε1), in the absence of a crossing,

0 > v2 > v1. For system (3.19),

dv

dq
=

(K/I) cos(q) + (M∗
eSw/I)

v
+

−b

I
+
ε(MeSw(q, v,meSw)−M∗

eSw)/I

v
, (3.24)

which is the sum of three negative terms over the range of q values traversed in eSwing and

hence is negative. Moreover, the only v-dependence in the right hand side of equation (3.24)

occurs in the denominators of the first and third terms and in MeSw. Thus, if we compare

the right hand side of equation (3.24) at (q, v2) with ε = ε2 versus a baseline of (q, v1) with

ε = ε1, we see that the first term becomes more negative, the second term does not change,

and the third term also becomes more negative (using a calculation based on the form of

MeSw, for which we omit details). Thus, while W̃ s(xε2) lies above W̃ s(xε1), the distance

between these curves shrinks over the entire range of q values that both traverse, since the

former exhibits a larger decrease in v for each such q.

In summary, for any ε1, ε2 ∈ (0, 1] with ε2 > ε1, we have hu
v(ε2) > hu

v(ε1). If ε1 is

sufficiently small, then hu
v(ε1) > hs

v(ε1), by our Melnikov calculation. Thus, we have shown

analytically that hu
v(ε) stays above hs

v(ε) for some range of small ε. We have also shown

rigorously that for any ε1, ε2 ∈ (0, 1] with ε2 > ε1, hs
v(ε1) > hs

v(ε2) if W̃ s(ε2) and W̃ s(ε1)

cross during the backwards flow of eSwing. Finally, we have an argument indicating why

|hs
v(ε1) − hs

v(ε2)| ends up being small, even if no crossing occurs. While we do not have a

rigorous bound on |hs
v(ε)|, these arguments explain why the ordering of hu

v(ε) and hs
v(ε) is

preserved as ε increases up to 1, as desired.

The results of this analysis show that for the reduced model, namely system (3.19) with

ε = 1, there exists a compact region in phase space in which limb trajectories emerging

from initial conditions at the onset of the eStance phase will be trapped in forward time.

Indeed, the eStance critical point x1 = (q1, 0) of the reduced system has an unstable manifold

W u(x1), which evolves away from x1 in forward time, crosses through the q-axis from the
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positive v half-plane to the negative v half-plane, and then returns to the q-axis again, say

at xu = (qu, 0). From the analysis above, we know that drive can be chosen such that γ0

exists, and we have q1 < qu for such drive. Let R denote the compact region bounded by the

segment of the q-axis with q values between q1 and qu, x1 itself, and W u(x1). Any trajectory

starting from an eStance initial condition between x1 and xu in eStance is trapped in the

interior of R for all time. There are no true critical points in the interior of R, nor could the

flow of any of the continuous subsystems in the reduced model (3.13) reach any critical points

inside R without first causing a phase transition that causes the point to become nonsingular.

Thus, a stable periodic orbit must exist in R by a generalization of the Poincaré-Bendixson

Theorem applied to discontinuous systems [69, 47]. The reduced model, which fixes the

motoneuron output at constant values and updates the system at the switching manifolds,

allows us to apply this theorem because it is a two-dimensional reduction of the full system.

While this argument establishes that there exists at least one stable periodic orbit in

region R, it does not prove uniqueness. In theory, other solutions could co-exist with the

periodic one that we have analyzed, which could either compromise the relevance of the model

or point to some unexpected locomotor phenomenon. A strong contraction exhibited in the

eStance phase, however, indicates numerically that this periodic orbit is unique. Figure 37

shows that trajectories starting from a range of initial conditions on the q-axis are quickly

attracted to the unstable manifold of the eStance saddle point, which is tangent to the

unstable eigenvector of the eStance critical point x1 on the q-axis. In Section 4.1.2, we will

see that the locations of this manifold and eStance v-nullcline are centrally important to the

step phase asymmetry.

3.3.5 Duration of eStance but not of other phases depends on trajectory loca-

tion and motoneuron strength in reduced model

While the analysis in the previous section yields the existence of a periodic orbit, it does not

indicate why the stance portion of the orbit alone varies with d. We will use the reduced

model to understand this drive dependency, since unlike in the full model, the timing of

trajectories produced by the reduced model can be precisely determined (since the motoneu-
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Figure 37: Strong contraction to the unstable manifold of the eStance critical point suggests that
the periodic orbit resulting from the Melnikov calculation is unique. The eStance limb nullclines are
shown in red and the unstable eigenvector with a black dotted line. A set of eStance initial conditions
on the q-axis quickly converge toward the unstable eigenvector of the critical point located where the
v-nullcline intersects the q-axis.

ron output to the limb in each phase is fixed). Recall that drive changes increase both the

strength of the motoneuron output and the amplitude of the limb orbit. We will find it

useful to vary both the trajectory’s position in phase space and the motoneuron output in

each of the four phases to analyze which of the four phases are affected by drive changes.

We choose a wide range of initial conditions on the starting manifold for each phase

in a neighborhood of where we see these transitions occurring in the original model (see

Figure 31). Given an initial condition located on a starting manifold for a phase (either

the TTC, the WTC, or a segment on the q-axis), system (3.17) can be integrated up to the

time when the solution reaches that phase’s ending manifold. For instance, the duration

of the eSwing trajectory for a fixed drive can be found by setting the output of Mn -E

equal to meSw and forward integrating from an initial condition lying on the WTC up

until the time when the solution hits the q-axis. Then, we increase the drive strength (in

our reduced model, this means we update the value of {m}) and record the duration that

a trajectory with given initial condition took from beginning to end of that phase. The

difference in duration over the range of initial conditions and input strengths in fStance,

fSwing, and eSwing is relatively small, with durations ranging over at most a few hundreds
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of milliseconds, compared to the eStance durations, which varied from roughly 200 ms to

2200 ms (see Figure 38). In particular, the eStance trajectories with the longest durations
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Figure 38: Phase durations are plotted against drive for a range of relevant initial conditions in
each of the four phases. (A)-(D) show results for the eStance, fStance, fSwing, and eSwing phases,
respectively. The durations of fStance, fSwing, and eSwing change relatively little compared to the
eStance duration.

occurred for small drive values, where the initial conditions chosen lie close to the eStance

critical point. In some cases, trajectories starting from certain initial conditions failed to

enter the region of positive velocity entirely. The results of these simulations show that

eStance phase duration depends strongly on drive. In the next section, we will return to the

full model to analyze the source of this asymmetric dependence of phase duration on drive.
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3.4 DISCUSSION

Given a model consisting of a system of differential equations, simulations can be used to

explore model behavior. Dynamical systems analysis can yield insights about which model

features are responsible for which aspects of the observed model outputs, what conditions

are needed for particular model behavior to occur, and what other sorts of activity might be

observed from a model. In this chapter, we have used dynamical systems techniques to ana-

lyze important aspects of the behavior of a simplified neuromechanical model of locomotion,

a study that we will continue in Chapter 4. These findings were published in [75] and [76].

In Section 3.2, we investigated the difference in the transition mechanisms within the

CPG between the case of fictive locomotion, without afferent feedback, and normal locomo-

tion, with feedback. In the latter case, phase transitions occur when excitatory feedback

signals allow interneurons within the CPG to escape from cross-inhibition. Thus, we would

predict, for example, that providing a small boost in feedback to a suppressed interneuron

would be a more effective way to promote a phase change than providing a small boost to a

suppressed rhythm generating neuron would be and that decreasing feedback to interneurons

would compromise locomotion more drastically than would diminishing feedback to rhythm

generators. Since this transition mechanism is driven by the limb component of the system

that generates the feedback, we could define transition curves in the phase plane associated

with this component, which will be particularly useful in subsequent analysis of model dy-

namics [76]. Without feedback, the interneurons cannot escape, and hence oscillations can

only occur through escape of suppressed rhythm generator neurons in the CPG, which in

turn requires a sufficiently large supra-spinal drive. Thus, we explained the simulation result

[46] that the range of supra-spinal drives yielding fictive locomotion is more limited than

those supporting normal locomotion.

In a half-center type model that generates oscillations, increases in feedback strength can

increase the period, by prolonging the activity of the dominant component, or decrease the

period, by promoting the onset of activity in the suppressed component. The former effect

occurs with transitions through release, while the latter occurs with escape-based transitions

[74, 68, 19]. Thus, our identification of escape-based transitions in the neuromechanical
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model in both the fictive and normal cases explains simulation results that show a speed-up

in oscillations with increased feedback.

The relatively complicated nature of the model led us to reduce the model into a quali-

tatively consistent form more amenable to dynamical systems analysis (Section 3.3), which

required us to determine which model features could be simplified, and in what way, without

compromising model dynamics (see also [75]). Given the reduced model, the construction

of an existence proof required a detailed exploration of how various model components af-

fect its dynamics. In particular, this investigation led us to an appreciation of the central

importance of the limb phase plane, and especially of the differences in nullcline structure

within this phase plane across different locomotor phases, for understanding solution be-

havior. More generally, mathematical analysis of existence, stability, and uniqueness for a

biologically observed solution helps verify the relevance of the model that generates this so-

lution, establish the constraints on parameters under which the model is valid, and identify

other solutions or changes in solution features that may be expected under certain condi-

tions. Our particular existence and stability argument relied on Melnikov’s method and the

Poincaré-Bendixson theorem, adapted for the discontinuities occurring at phase transitions

in the model, combined with a few numerical calculations. Our existence result required the

assumption that a certain closed orbit could be constructed when the motoneuron output

function was assumed to be piecewise constant, with values satisfying certain constraints

that are discussed in detail within the thesis, and we observed that this assumption holds

as long as the supra-spinal drive in the model is not too small. We also found a strong

contraction among trajectories within the eStance phase, which appears to yield uniqueness

of the periodic solution.

Previously, many models of locomotion have focused on understanding the mechanisms

regarding the neurophysiology and the biomechanics separately, but only recently has con-

sideration been given to how the synergy between these elements are generated, including

the roles of feedforward CPG outputs and movement-related feedback to the CPG (see e.g.

[20] and references therein). Several studies have analyzed resonance and entrainment in

relatively simple models, considering the CPG and limb as having intrinsic frequencies (as-

sociated with damped oscillations to rest in the latter case) and investigating how the two
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interact to set a frequency for oscillations in the full network [34, 37, 81, 70]. Our analysis

breaks the network oscillation into four phases. Within stance or swing, transitions between

extensor and flexor control occur at the CPG level, depending on the time course of afferent

feedback. These CPG transitions cause jumps in the vector field for the limb dynamics,

which in turn enable limb velocity to switch sign and lead to transitions between stance and

swing phases, with associated alterations in feedback signals. Thus, we see that control of

each phase transition is directly impacted by one particular component of the model, the

CPG or the muscle-driven limb, yet that component is influenced by the activity of the

other. In another closed loop model [55], a simple CPG comprised of two half center oscil-

lators drove the activity of a simple mechanical limb. Phase switching rules (reminiscent of

Cruse’s behavioral rules for limb coordination [14]) generated by the limb produced sensory

signals that overrode switching in the CPG, shortening phase durations to promote locomo-

tor stability when CPG durations were too long. Our model analysis also emphasizes phase

transitions driven by limb dynamics, and yields insights into why oscillations exist in the

model, how they can be lost as parameters vary, and how phase durations are determined.

In the next chapter, we will reveal how the proximity of the limb trajectory to a saddle

point in phase space can be indirectly modulated by drive, creating the dependency of stance

phase durations on this parameter. The model’s performance after spinal cord injury, under

body weight support, and under modulations of feedback strength will be considered. We

will utilize our understanding of the mechanisms contributing to model dynamics to explain

how various behaviors are produced under these modifications, and, where possible, suggest

perturbations that could be implemented to optimize desired dynamics.

113



4.0 MODEL APPLICATIONS

In the previous chapter, we introduced a neuromechanical locomotor model and used dynam-

ical systems tools to analyze its performance under the presence and absence of feedback.

Using insights from that analysis, we were able to propose a tractable reduced model and

prove existence of a locomotor cycle in that configuration. In this chapter, we will use the

framework we have developed to explain how the model captures a few experimentally ob-

served phenomena. First, we will explain how the model responds asymmetrically to changes

in drive, replicating an important feature of mammalian locomotion. The reduced model

suggests that the drive dependence is constrained to one particular phase of the locomotor

cycle (Figure 38), so we will focus our attention on how the pendular dynamics differ in each

of the four phases. This analysis will reveal a key relationship between the limb trajectory

and a saddle point in the eStance phase that must be maintained in order for oscillations

to be supported. Furthermore, the duration of that phase is controlled by the proximity

of these two components, which is influenced by drive. These insights enable us to explain

the model’s response to parameter changes that evoke various applications. For instance,

setting the drive parameter equal to zero represents loss of supra-spinal input after spinal

cord injury, ceasing oscillations. However, locomotor activity can be recovered by increasing

the feedback strength, in part because it restores this key relationship between components

at the onset of eStance. This enables us to provide predictions for which feedback channels

and muscular structures should be strengthened to promote stable walking after injury. In

another application, we vary the strength of the ground reaction force, which decreases the

duty cycle by altering this important alignment. This result replicates observations from

body weight support experiments that test locomotion under reduced load. Finally, a limb-

less model which was fit to the same data as the neuromechanical model provides predictions
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on how input to the CPG is encoded to produce a desired velocity. We will analyze that

relationship in this model, expanding the discussion by utilizing the limb system to calculate

a different representation of speed.

4.1 FAST TRANSITIONS IN SEGMENT DYNAMICS REVEAL SOURCE

OF PHASE ASYMMETRY

A key feature of mammalian locomotion regards the way frequency increases occur. As

treadmill speed is increased, the step cycle duration decreases, but it does so through changes

to stance duration only. In a reduced model where the locomotor phase was naturally

separated into four components, dependence of step duration on changes in drive was confined

to only one phase in particular. Taking cues from that reduction, we look for differences in

the dynamics in each of the four phases in the full model and reveal how the asymmetric

response to changes in drive occurs due to a proximity between a saddle point and the limb

trajectory in one phase, and why the other phases are insensitive to drive strength.

4.1.1 Limb nullclines are oriented differently in each phase

As noted in Section 3.3.1, four important transitions occur in each step cycle that drastically

change the limb dynamics. In the previous chapter, we saw that in the reduced model, the

eStance dynamics play a critical role in promoting uniqueness of a periodic orbit (Figure 37)

and that that phase is particularly sensitive to changes in initial conditions and drives (Fig-

ure 38). Building on these observations, we can now characterize the source of the phase

asymmetry.

Consider the location of the q-nullcline, defined by the set of all (q, v) such that q̇ = v = 0,

and the v-nullcline, the set of all (q, v) satisfying v̇ = 0, of equation (3.5), in the (q, v) plane.

Figure 39 shows a segment of the limb trajectory selected within each of the four phases. In

each phase, sample points on the trajectory are chosen and the corresponding v-nullclines

at the associated timepoints are plotted, with colors used to indicate which points and
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nullclines go together. The eStance phase, illustrated in Figure 39A, features positively

sloped v-nullclines, such that the trajectory is in close proximity to the nullcline at the onset

of this phase. After the CPG changes dominance from E to F , the segment trajectory enters

fStance (Figure 39B). Notice that the position of the v-nullcline is significantly altered due to

the drastic change in motoneuron outputs, and hence in the right hand side of equation (3.5)

at the transition from eStance to fStance. When the trajectory crosses the q-axis, the velocity

of the segment changes sign and the segment enters the swing phase. The ground reaction

force terminates at this transition, and the nullcline position in fSwing (Figure 39C) reflects

this loss of force; the slope of the v-nullcline switches from positive to negative between

these two phases. The final plot in Figure 39D exhibits the trajectory and nullclines in

the eSwing phase. When the CPG changes dominance between these phases, the extensor

motoneuron force term is activated (and the flexor motoneuron force term is deactivated),

which is reflected in the altered nullcline position. In the following sections, we discuss in

further detail the different dynamics in each phase and use these observations to explain how

limb feedback creates the phase asymmetry evident in Figure 26B.

4.1.2 Discussion of eStance Dynamics

At the start of eStance, the ground reaction force initiates, which causes the v-nullcline to

assume the orientation seen in Figure 39A. This configuration has a crucial effect on the

activity of the system. We note that increased drive corresponds to larger Mn -E output,

which raises the v-nullcline. For smaller drives, and hence smaller Mn -E output, the v-

nullcline is lower, and the critical point it forms with the q-nullcline lies extremely close

to where the trajectory enters this phase. Furthermore, initially v̇ > 0 and the v-nullcline

moves down because Mn -E output decreases over the course of eStance (the output of

Mn -E controls the strength of ME in equation (3.5)).

This relationship is important for three reasons. The first involves the ability of the

model to produce oscillations. If a trajectory enters the eStance phase to the left of the

v-nullcline, the dynamics in that region will prevent it from completing the eStance phase.

Indeed, to the left of the eStance v-nullcline, the eStance direction field points down towards
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Figure 39: The alignment of the limb trajectory relative to the v-nullcline depends on phase. (A),
(B), (C), and (D) display structures in (q, v) phase space in the eStance, fStance, fSwing, and
eSwing phase, respectively, with panel ordering selected to reflect the order in which the phases
occur, progressing clockwise. In each, the q-nullcline, which is the q-axis, is shown in black. A
portion of the trajectory is plotted in blue, with different colored time points highlighted, and the
same color is used for each corresponding v-nullcline, since the v-nullcline changes position over
time as the output of the active motoneuron changes. Note that the v-nullcline positions differ
drastically between phases, due to dominance switching in the CPG and the influence of ground
contact.
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Figure 40: Schematic illustration of the possible relationships the eStance v-nullcline can have
with the limb trajectory at the onset of eStance. (A) The limb trajectory moves up and to the right
through phase space when it enters eStance to the right of the eStance v-nullcline. (B) To the left
of the v-nullcline, the vector field points down and to the right. Thus, the limb cannot proceed if it
tries to enter eStance to the left of the eStance v-nullcline.

the q-axis (Figure 39A, and the eSwing direction field points up towards it (Figure 39D).

Thus, the limb remains pinned at the q-axis, which interrupts oscillations. This effect is

the reason why both the original and reduced models fail to produce oscillations for small

drives. If we track a limb trajectory generated by the full model with sufficiently small

drive and corresponding small Mn -E output, from an initial condition on the q-axis to the

right of the v-nullcline at the start of eStance, the trajectory will progress through eStance,

fStance, fSwing and eSwing and then will leave eSwing and return to eStance to the left of

the v-nullcline. In terms of the calculations in the previous section, the Melnikov function

would be positive for such drive values. A schematic illustration of this oscillation failure

mechanism is shown in Figure 40.

The second reason that this positioning is important is that it is the key feature in estab-

lishing the phase asymmetry. The time of passage for a trajectory to exit the neighborhood

of a saddle point from an initial condition within that neighborhood becomes arbitrarily

large as the initial condition approaches the saddle point. Furthermore, the position of the
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v-nullcline bounds the growth in v even when the trajectory moves away from the critical

point, slowing the rate at which the limb can access higher velocities, reach the TTC, and

exit the eStance phase. As drive is increased, however, the nullcline is lifted away from the

location of eStance onset, and thus the influence it has on the timing of this phase will be

minimal. Therefore, the duration of eStance can vary significantly with changes in drive.

This crucial relationship of the orientations of the trajectory and the v-nullcline does not

exist in the other phases (Figure 39B-39C). The presence of ground reaction force creates

a unique trajectory/nullcline alignment that opposes an increase of acceleration, which is

essential to the asymmetric phase response to changes in drive. We note that changing the

strength of the feedback in the model, particularly the Ib -E feedback term, can also scale

the extent of the asymmetry in phase durations, again by altering the trajectory/nullcline

alignment.

The third role played by the configuration of the trajectory relative to the v-nullcline

at the onset of the eStance phase is that this configuration yields the strong contraction

of trajectories from different initial conditions on the q-axis observed in eStance in Section

3.3.4; see Figure 37. This contraction results because near eStance onset, but away from

the v-nullcline, dv/dq = v̇/q̇ = v̇/v is very large, since v is near 0 and v̇ is not. Thus,

trajectories entering eStance away from the eStance critical point are all funneled strongly

upward, toward the v-nullcline, until v̇ and v become closer in size.

One final observation, which we exhibited for the reduced system in Section 3.3.4, involves

the presence of an unstable manifold that lies in the eStance domain. Linearizing around

the critical point of system 3.5 at fixed values of Mn -E indicates that the critical point in

eStance is a saddle. The unstable eigenvector has a positive slope and lies between the q-axis

and the v-nullcline, and near the critical point, it lies tangent to the unstable manifold. For

simplicity, and because we saw how the unstable eigenvector remains a good approximation

of the manifold throughout the eStance phase in the reduced case, we use the unstable

eigenvector, rather than the actual unstable manifold, in the following figures. As Mn -E

changes, the v-nullcline and critical point shift, and hence, so does the location of the unstable

eigenvector. Figure 41 exhibits a family of eigenvector and limb trajectory locations in (q, v)

space with corresponding colors for various timepoints throughout this phase. For small
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Figure 41: The location of the unstable eStance eigenvector determines the position where the
limb trajectory crosses the TTC. Colored dots on the limb trajectory are plotted at various time
points with their corresponding unstable eigenvector. The TTC is shown in magenta. (A) For a
small drive value, hence, small Mn -E output, the unstable eigenvector lies at low velocities, and
the trajectory lies very close to these eigenvectors until it crosses through the TTC. (B) For a large
drive value, hence, large Mn -E output, the unstable eigenvector is far from the initial position
the trajectory takes in eStance. The trajectory is pulled upwards toward the eigenvector and thus
crosses the TTC at a higher velocity than in the small drive case.

drives (Figure 41A), since the trajectory enters the eStance phase close to the critical point,

the trajectory quickly converges to the unstable eigenvector, as discussed above. For larger

drives (Figure 41B), the eigenvector, like the nullcline, is lifted away from the trajectory at

eStance onset. The trajectory flows toward this manifold as it travels through eStance, until

it crosses the TTC at higher velocities than were reached in the small drive case. Thus the

location of intersection between the unstable eigenvector and the TTC plays a role in where

the limb will begin the fStance phase. We will see in the next subsection that this entry

location plays a important role in the limb’s ability to reach the swing phase.

4.1.3 Discussion of fStance Dynamics

As in the eStance phase, critical points computed at specific time points in fStance are

saddle points. In fStance, however, the critical point is on the exit manifold (the q-axis) of

the phase, not the entrance manifold (the TTC), and thus there is no risk that the trajectory
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will be delayed at the onset of the fStance phase. The stable eigenvector corresponding to

the fStance saddle point for each Mn -F output slices through the fStance region of (q, v)

phase space. Figure 42 shows a collection of these eigenvectors, signifying their movement

over time as changing Mn -F output alters the position of the critical point and v-nullcline.

If a trajectory entered fStance above the stable manifold, it would continue to travel above

and along the manifold toward the q-axis. Before it could reach the axis, however, it would

have to cross the fStance v-nullcline, and v̇ would change from negative to positive. Thus,

the trajectory would move in a direction of increasing v and increasing q, remaining forever

bounded away from the q-axis and hence unable to complete a transition to the fSwing phase.

In addition, if the trajectory entered the fStance below, but sufficiently close to the stable

manifold, that trajectory could still complete the fStance phase, but be significantly slowed

before reaching the q-axis, yielding a very long fStance duration.

However, as discussed in the previous subsection, the limb trajectory travels throughout

the eStance phase tracking close to, but below, the unstable manifold, which lies well below

the fStance stable manifold. Indeed, although the eStance unstable eigenvector crosses the

TTC with larger v for larger drives, the stable eigenvectors in fStance in the large drive case

(Figure 42B) are also shifted farther upward than the eigenvectors in the small drive case

(Figure 42A), allowing completion of the fStance phase despite larger initial velocities. Thus,

the limb is bounded away from the fStance stable manifold, and hence is able to complete

the fStance phase with timing that is not influenced by the saddle point.

In Section 4.1.6, we shall verify numerically that the fStance initial conditions, influ-

enced by the contraction in the eStance phase, keeps the fStance phase durations relatively

independent of drive strength despite these possible complications.

4.1.4 Discussion of fSwing Dynamics

Unlike the stance phases, the critical point for the fSwing vector field is a stable spiral. In

this case, v-nullcline proximity to the trajectory does not greatly impact the trajectory of the

limb. Indeed, if Mn -F output is sufficiently weak, the trajectory could cross through the

v-nullcline, which would change the dynamics from decreasing to increasing velocity. Even
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Figure 42: The positions of the stable eigenvectors and the limb trajectory change with drive
strength. (A) Small drive leads to small Mn -F output and stable eigenvectors that lie in a region
of small positive velocity, but the limb trajectory enters this phase far below them. (B) Large drive,
with large Mn -F output, yields stable eigenvectors shifted farther upward than in (A), such that tra-
jectories with larger initial fStance velocities still lie below them. Time points on the limb trajectory
are shown with dots, while the color-coordinated lines are the corresponding stable eigenvectors.

with such a change, however, the trajectory would continue to approach the WTC and make

the transition to the eSwing phase, and oscillatory activity would not be compromised.

To investigate why the duration of the fSwing phase remains independent of drive

changes, we evaluated v̇ over a range of q and v values for two choices of Mn -F , shown

in Figure 43. Figure 31 exhibits the range of initial conditions for this phase obtained by

model simulations as drive is increased, which lie on the q-axis between 1.8 and 1.95. As

exhibited in that figure, we have argued that as drive increases, the oscillation trajectory

enters fSwing at a larger q, and thus larger Mn -F corresponds to oscillations with larger

amplitudes than those resulting from small drive simulations. Thus, the trajectory must

travel a farther distance to the WTC than would a smaller drive trajectory. But, since the

larger drive trajectory initial condition has a larger q-component and hence yields a larger

value of K cos(q), as well as a larger Mn -F , |v̇| becomes larger as drive is increased, and the

necessary distance in q can be covered more quickly. On the other hand, the velocity that

a large drive trajectory can achieve cannot become extremely large relative to the velocity
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of a small drive trajectory. Suppose that the muscle force is relatively constant, say with

a value M̂ , and consider the function L̂ = v2/2 −K/I sin(q) − M̂/Iq. The level curves of

this function (L̂ = constant) are curves in phase space that have a curvature that is similar

to the shape of the trajectories in this phase (see Figure 43). As this constant decreases,

the level curves lie closer to the q-axis. Notice that the function L̂ has a time derivative

dL̂/dt = vv̇−K/I cos(q)q̇−M̂ q̇ = −bv2/I. Since dL̂/dt is negative, solutions to system (3.5)

travel in the direction of lower L̂, i.e. toward the q-axis. Thus, the level curve on which a

trajectory begins the fSwing phase provides a lower bound for the path of that trajectory

in phase space, under the assumption that MF remains relatively constant during fSwing,

which holds as long as the right branch of the Mn -F voltage nullcline is not strongly sloped.

Even for a very negative M̂ , corresponding to a large drive and Mn -F output, the trajectory

enters fSwing on a level set that crosses the WTC with velocity larger than -0.005, and thus

is bounded away from very negative velocities (Figure 43). Hence, large drive trajectories

cannot move significantly faster than slowly driven trajectories.
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Figure 43: v̇ values at sample (q, v) points and level sets of L̂ in the fSwing phase for small
Mn -F (A) and large Mn -F (B). In both plots, black diamonds, green plus signs, magenta stars,
blue circles, and red arrows correspond to v̇ values within (+/-) 5e-6 of -5e-5, -4e-5, -3e-5, -2e-5,
and -1e-5, respectively. Level curves of L̂ are plotted in black, and smaller L̂ values correspond to
level curves with smaller radii. The WTC is plotted in magenta. Initial conditions for this phase
lie on the q-axis with varying angles. For the drive shown in (A), the oscillation trajectory would
begin fSwing closer to the WTC but travel more slowly than in (B), where the trajectory would
enter fSwing at a larger angle but travel faster. For constant Mn -F output, trajectories move in
the direction of decreasing L̂.
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4.1.5 Discussion of eSwing Dynamics

As in fSwing, the critical point in the eSwing system is a stable spiral. Analogous to the

discussion we presented in the previous section, an investigation of the strength of v̇ over

the eSwing domain can be performed. Figure 31 exhibits the initial entrance conditions to

this phase, which are shifted slightly from the WTC. The vector field varies very little as

Mn -E is increased, and again, the larger amplitude oscillations that occur for larger drives

need to travel a larger distance to complete the phase (from a more negative v up to v = 0)

but do so faster because they travel through regions with larger v̇; see Figure 44. Recall that

the relationship between where the trajectory exits eSwing and the location of the eStance

critical point is crucial for the allowing limb motion to continue. There are two factors that

ensure that these points maintain the necessary relationship for oscillatory behavior to be

continued as drive is increased. The first is that for larger drives, the motoneuron output is

larger, and thus the eStance v-nullcline is higher, with a critical point whose angle is much

smaller. In addition, for larger drives, the eSwing trajectory travels on level sets of a function

that have a steeper slope than in the small drive case. Again, if the muscle force is relatively

constant, corresponding to little change in Mn -E output while it is active, say with a value

M̄ , then the function L̄ = v2/2 −K/I sin(q) − M̄/Iq has time derivative dL̄/dt = −bv2/I.

So limb trajectories travel in the direction of lower L̄, curves that have smaller radii. Thus,

the curve that the eSwing entrance point lies on forms a lower bound in phase space for the

solution trajectory, and if the level curve it lies on intersects the q-axis to the left of the

eStance critical point, we can guarantee that the trajectory will have that relationship as

well (which is necessary for oscillations, see the discussion in Section 4.1.2).

For larger M̄ , the slope of these levels sets is much steeper, so although trajectories start

farther from the q-axis (and hence, could travel to very low q values since q̇ = v), they are

constrained by steeper level sets of L̄, which ensures that trajectories exit the eSwing phase

to the right of the eStance critical point.
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Figure 44: v̇ values for a sample of (q, v) points and level curves in the eSwing phase for small
Mn -E (A) and large Mn -E (B). Magenta plus signs, green stars, blue circles, and red diamonds
correspond to v̇ values within (+/-) 5e-6 of 1e-5, 2e-5, 3e-5, 4e-5, and 5e-5, respectively. Level
curves of L̄ are plotted in black and the WTC is plotted in magenta. Ignoring the transient,
trajectories enter this phase on the WTC. In (A), trajectories begin closer to the q-axis but travel
more slowly than in (B), where trajectories begin farther from the q axis, but travel faster. The
slope of the level curves becomes steeper as drive increases; thus, there is a bound on how small the
q values reached by large drive trajectories can be.

4.1.6 eStance is the sole contributor to the phase asymmetry

Now that we have fully described the dynamics in each phase, we verify that the asymmetry

is almost completely confined to the eStance phase, not to the stance phase in its entirety,

as shown numerically in Figure 45.

In these sections, we considered the dynamics in four separate phases – eStance, fStance,

fSwing, and eSwing – of the locomotor cycle. In all cases, changes in drive corresponded to

changes in motoneuron output, which influenced the position of the limb’s v-nullcline. This

position was crucial in eStance, since the relationship between the limb trajectory and the

saddle point in that phase controlled phase timing and prevented oscillations if a certain

configuration was not supported. The alignment was less crucial in the other three phases.

In fStance, we showed that the trajectory remained far from its stable manifold and hence

could complete that phase due to entry constraints, produced by the unstable manifold in

eStance. In fSwing and eSwing, critical points corresponded to stable spirals, and we used

level curve arguments in those cases to bound the growth of the trajectory away from regimes
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Figure 45: Durations of each of the four subphases are plotted against drive strength. The duration
of eStance is shown in blue, fStance in black, fSwing in green, and eSwing in red. The phase
asymmetry shown in Figure 26B is almost entirely restricted to the eStance phase, due to the
unique nullcline/trajectory alignment that occurs for small drive values.

where v was sufficiently large. These three phases were insensitive to drive changes due to

compensation between distance and speed – large drive orbits had larger amplitudes than

orbits corresponding to small drives, but the trajectories traveled through regimes where v

was larger.

4.2 INCREASED BODY WEIGHT SUPPORT DECREASES DUTY CYCLE

Load plays a role in shaping motoneuron output during stepping, and changes in load can

occur instantaneously, such as in assisted walking, or gradually, due to weight loss [36].

Experiments where various percentages of body weight are unloaded using support from

an apparatus can be performed on human subjects to investigate how the body adapts to

load changes. Data from these studies indicate that the duty cycle, that is, the ratio of

stance duration to cycle duration, decreases as body weight support is increased [36, 63],
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and in air stepping, when the body is 100% supported, the stance duration does not change

significantly with increases in speed [36].

We tested the Markin model to verify whether it supported these results. Figure 46 shows

results of the dynamics of the system with full, half, and no ground reaction force over a range

of drives to see how load changes affect the durations of the swing and stance phases. As

the magnitude of the ground reaction force term is decreased, the v-nullcline in the eStance

phase loses its positive slope and becomes oriented similarly to the eSwing v-nullcline. By

reducing the size of the ground reaction force, we eliminate the nullcline-trajectory alignment

at the start of eStance. This alteration removes the drive-dependence of the stance duration,

with no effect on swing duration. Thus the model replicates experimental observations,

and verifies our claim that the presence of ground reaction force opposes an increase in

acceleration at the onset of stance, and is essential to set up conditions under which the

presence of feedback can generate the asymmetric phase response to changes in drive.
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Figure 46: Stance and swing durations for various ground reaction force magnitudes (MGRmax)
are plotted against drive. The stance durations for full, half, and no GRF are plotted in blue,
green, and black, respectively. The swing durations are plotted in red, cyan, and magenta and the
resulting curves lie on top of each other. By reducing the impact of the ground strike force, the
dependence of stance duration on drive (upper curves) is lost. The swing durations (lower curves)
remain unaffected by this change.
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4.3 RECOVERY OF RHYTHMICITY AFTER SIMULATED SPINAL

CORD INJURY (SCI)

Another open question about mammalian locomotion relates to the recovery of locomotor

rhythmicity after spinal cord injury (SCI). A complete spinal transection removes supra-

spinal inputs to the CPG, which, it is believed, leaves the CPG too weakly excited to maintain

its rhythmic output. Locomotor training, a combination of training and pharmacology, or

applied spinal cord or afferent stimulation can partly restore locomotor function in cats

[58, 4, 60, 24, 59, 61, 78]. While this recovery likely involves potentiation of afferent feedback

signals, the details of the mechanism underlying this recovery remain to be elucidated.

Whether augmented feedback could reestablish oscillations after SCI was considered in

this neuromechanical model in [46]. In that paper, they emulated injury by setting the

drive parameter to zero, which ceased oscillations. They then proportionally increased the

weights of feedback to all model neurons, and found that although this could reestablish

rhythm generation in the CPG, the limb “fell” within the first few steps. Only when the

weight of Ib strength was increased five-fold and the weights of Ia and II were increased

by 31% did the model demonstrate stable movement. A comparison of the limb orbits in

the normal case (d=1.4 under baseline feedback) and after SCI (d=0 with disproportionally

increased feedback strengths) is shown in Figure 47A. The limb orbit in the SCI case has

a significantly smaller amplitude than in normal locomotion, and exhibits a “dip” in the

trajectory in the stance phase. We wish to address how the feedback increase accomplishes

this goal and to clarify the role of specific feedback components in this recovery. In Section

4.3.1, we propose an argument that reveals the mechanism responsible for oscillations under

this adjustment to the system. In Section 4.3.2, we show how this feedback increase alters

the qualitative form of the oscillation and the location of the transition curves defined in the

previous chapter.
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4.3.1 CPG transition mechanisms under SCI

When descending input is removed and feedback is increased, how do CPG neurons coordi-

nate their activity to generate an oscillation? Does this adjustment recover the In escape

mechanism present in the full system? Or, since removing drive reduces the excitation from

the active RG to the corresponding In and hence the inhibition to the silent RG, perhaps

the mechanism controlling SCI oscillations is through RG escape, which we observed when

we reduced excitation in a different way, through removing the feedback. It is also possible

that the oscillations are due to an entirely different, hybrid mechanism. In this subsection,

we explain why, after removing the drive, increasing the feedback strength to a sufficiently

large value in fact recovers oscillations controlled by the In escape mechanism.

First, suppose we set d = 0 and initialize the limb with initial conditions corresponding

to a point on a normal locomotor oscillation, existing for some d > 0, in either the eStance

or fSwing phase (recall that eStance refers to the part of the stance phase with extensor

neurons active, with similar definitions for other phases, as introduced in Section 3.3.1). A

phase transition, to fStance or eSwing respectively, requires a change in which Mn is active,

which in turn must follow from a switch of active and silent neurons in the CPG. Letting

d = 0 raises the RG V -nullclines, such that fixed points move to more negative V values

relative to the d > 0 case, for each fixed feedback value. Since the RG could not escape from

the silent phase with the original drive, this change in nullcline position implies that they

certainly cannot do so with d = 0. Moreover, the nullcline change weakens the output of the

active RG and hence of the active Mn. The weaker Mn output reduces the magnitude of

the limb velocity and correspondingly of the feedback signals to the CPG, making it harder

still for the silent RG to escape and become active. For these weaker feedback signals, the

only two possibilities are that the silent In escapes and causes a phase transition or limb

velocity v → 0 before a phase transition occurs, since the weaker feedback also may prevent

In escape.

We observe both of these events in simulations, depending on initial conditions. In the

former case, although the CPG makes a transition due to In escape, we still cannot guarantee

that an oscillation will occur, because the fStance to fSwing or eSwing to eStance phase
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transitions may be compromised, as we explore in the next subsection. For the remainder

of this subsection, we focus on the latter case, supposing that in the absence of supra-spinal

drive, no phase transition can occur. We now explain why, if feedback strengths are increased

enough to restore CPG phase transitions, these transitions will still occur through In escape.

To do so, we suppose that we increase proportionally the weights wi,j of all feedback terms in

the model and consider the same initial condition as previously. The stronger feedback results

in lowered RG V -nullclines with less negative V values at fixed points and also increases V̇

for the Ins. At the larger voltage associated with its new nullcline, the active RG provides

a stronger output to its Mn, which results in an increased limb speed and helps push the

feedback amplitudes fbi back toward their d > 0 values. If the feedback Σiwi,jfbi to a silent

In becomes as strong as it was with d > 0, then the In can escape (recall that the Ins do

not receive supra-spinal drive). However, in this case the total input to the silent RG would

be given by this d > 0 feedback signal alone (and no drive), and hence would be smaller than

the original case where it received d > 0 as well. Since the RG could not escape even with

the original signal (drive plus feedback), it certainly will not be able to do so given this new,

weaker signal present with drive removed. While this argument is not precise, because the

limb and feedback signals will undergo altered time courses with d = 0 relative to the d > 0

case, the main idea should nonetheless be clear: even when the feedback signal to the silent

In is increased enough to allow it to escape, the loss of drive results in a weaker feedback

signal to the silent RG, relative to that with drive present, which maintains its suppressed

status, and hence CPG phase transitions remain under In control when increased feedback

weights restore locomotor oscillations in the model.

In summary, there is a positive minimal feedback strength that is required for one or

more CPG phase transitions to take place in the absence of supra-spinal drive. While the

strength needed depends on initial conditions, those transitions that occur will do so via In

escape. In the next subsection, we consider the possibility of sustained oscillations in the

absence of supra-spinal drive.
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4.3.2 Limb phase plane dynamics under SCI

By plotting the dynamics in limb phase space, we can recast the concept of In escape

in a different light. Provided that the trajectory transitions through each phase, that

is, hits each switching manifold in succession, the system will perform a successful os-

cillation. By increasing the feedback after SCI, we alter the position of the transition

curves from the normal case. In the full system, the TTC is calculated by the equation

FBIn -F = FBcrit, where specifically, FBIn -F = wIa -F,In -F Ia -F + wII -F,In -F II -F. In-

creasing the strength of the feedback after SCI means changing wIa -F,In -F and wII -F,In -F

to larger values, wSCI
Ia -F,In -F and wSCI

II -F,In -F . Thus, the TTC satisfies a new equation,

FBcrit = wSCI
Ia -F,In -F Ia -F + wSCI

II -F,In -F II -F, the right hand side of which is still just a

function of (q, v), but with updated coefficients. The WTC is analogously affected. Fig-

ure 47A shows the location of these curves after SCI, which have a closer proximity to one

another than in the normal case, shrinking the range of q values over which the limb oscil-

lates. By identifying this compression of transition curves, our analysis has revealed that it

is the change in the source driving the In escape mechanism in SCI that results in a smaller

amplitude oscillation.

By turning next to the relationship between the trajectory and the v-nullcline in phase

space, we can identify an important mechanism through why oscillations can fail and can also

explain why velocity decreases slightly during part of the eStance phase in SCI. Figure 47B

shows the v-nullcline positions at a sequence of time points during the eStance phase, along

with color coordinated dots indicating the position of the trajectory when each nullcline is

defined. In the eStance phase, Mn -E is active while Mn -F is not; increasing (decreasing)

the Mn -E output shifts the v-nullcline upward (downward) in phase space. To the left of a

particular v-nullcline, v̇ is negative, and to the right of a particular v-nullcline, v̇ is positive.

Thus, if a trajectory enters the eStance phase to the left of this nullcline, it immediately exits

the phase, and the system will not produce an oscillation (see the discussion in Section 4.1.2).

To prevent this phenomenon from occurring, the output of Mn -E has to be sufficiently

strong at the transition from eSwing to eStance to allow the limb trajectory to enter on the

right side of the v-nullcline and accelerate away from the q-axis. In SCI, the output ofMn -E
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Figure 47: Limb dynamics changes quantitatively and qualitatively after SCI. (A) Limb trajectory
and transition curves under normal conditions (blue dashed) and SCI (red solid). By increasing
the feedback strength, the transition curves shift, producing an oscillation of smaller amplitude as
well as a qualitatively different velocity profile during eStance. (B) eStance v-nullclines and limb
position in phase space at different timepoints are indicated with corresponding colors. The earliest
time points and nullclines are the farther to the left and are colored green, red, and cyan. A quick
drop in the v-nullcline near the onset of eStance, between the red time point and the cyan time
point, causes the convex orbit shape seen after SCI.

is weaker than in normal walking, since the CPG receives no drive in the former case, as

discussed in subsection 4.3.1. Increasing the feedback strength, however, increases excitatory

input to the CPG and to Inab -E, which results in strongerMn -E output. Hence, increasing

the feedback terms shifts the v-nullcline upwards, so that the trajectory and v-nullcline have

a relationship that allows the limb to proceed through the eStance phase. In summary, for

the recovery of oscillations under SCI, feedback must be strong enough to achieve two effects:

it must allow In escape to occur and it must, via effects on Mn -E output, allow the limb

to achieve a positive velocity at the onset of the stance phase.

In Figure 47B at eStance phase onset, Mn -E output is sufficiently strong such that the

v-nullcline (indicated in green) is high enough to allow the trajectory to enter the eStance

phase. Shortly after this event, however, feedback Ib -E shuts down (due to decreased input

from Mn -E) which causes the v-nullcline to drop significantly. The nullcline does stabilize,

because of the saturating form of theMn -E output function, as is also evident in Figure 47B.

By the time this occurs, the limb trajectory lies to the left of the nullcline (e.g., light blue
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dot and curve), but it has been able to accelerate to sufficiently large v values before this

reversal occurs. Thus, although the limb must travel with decreasing velocity, since v̇ < 0

in this region, it is able to cross to the right of the v-nullcline where v̇ > 0 and avoid hitting

the q-axis, which would have prevented it from completing the rest of the phase. Once the

trajectory crosses the v-nullcline, it maintains an increasing velocity until it reaches the TTC

to complete the eStance phase. This transient switch to v̇ < 0 causes the concave shape of

the trajectory in the case without supra-spinal drive, displayed in red in Figure 47A.

Markin et. al. noted that increasing the feedback weights quickly reestablished oscilla-

tions, but that the movement of the limb remained unstable until Ib -E was increased more

strongly (five fold) than Ia and II -F (which were increased by 31%) [46]. Our analysis elu-

cidates why Ib -E is the optimal feedback to increase. Recall that force-dependent Ib -E is

active only when the extensor neurons are. Thus, it does not contribute to the location of the

WTC, since this curve is defined by the feedback to In -E when In -E is silent. It also does

not affect the location of the TTC, which is a function of Ia-F and II -F . However, since

it is active while RG -E is, Ib -E provides additional excitatory input to RG -E, PF -E,

and Inab -E and therefore indirectly to Mn -E. Thus, strongly increasing Ib -E retains the

qualitative structure of the transition curves (Figure 47A) but sufficiently raises the eStance

v-nullcline position to allow the limb to transition from the eSwing to the eStance phase.

To our knowledge, this locomotor recovery, although observed experimentally with loco-

motor training of various types [58, 4, 60, 24, 59, 61], has not been analyzed using dynamical

systems methods in previous models. Our analysis predicts that restored oscillations will

be particularly susceptible to perturbations near the onset of stance and that modulation of

Ib -E feedback signals would be particularly effective for restoring or speeding up oscillations

under SCI. For the restored oscillations, we also observe that velocity can decrease during

part of the eStance phase, due to a rapid change in Mn -E output strength resulting from

the cessation of the Ib -E feedback signal, but that because this output saturates, velocity

subsequently increases and the eStance phase can be completed. Interestingly, this analysis

generalizes to imply that there will exist a critical curve in the space of feedback strengths

and drive levels, such that parameter values above this curve are required to sustain oscil-

lations, with more feedback needed as drive decreases. For example, partial restoration of
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drive effects via electrical stimulation or other manipulations could reduce the amount of

training-induced feedback strength enhancement required for locomotion. A dip in the limb

velocity profile during eStance may signify that the system is near this critical curve and

hence lies in a state where it is particularly susceptible to lose its rhythmicity via alterations

in Ib -E feedback and Mn -E output.

4.4 CONTROL SIGNALS EXPRESSED AS THE DESIRED SPEED OF

MOVEMENT

We saw in the previous section that feedback contributes to recovery after spinal cord injury

because it promotes a necessary alignment between the limb trajectory and the limb nullcline

at the onset of eStance. In this section, we analyze the contribution of feedback to another

open question, regarding the signals produced to control locomotion. In a simpler, limbless

model of an open loop half-center CPG, parameters were obtained that fit the output of the

CPG to the phase asymmetry seen in the Halbertsma data [31] as a constant input varied

[83]. Given a fixed input d, the CPG generated a rhythm of a particular duration (T (d)).

In absence of a limb, the period of the CPG represented the duration of the step cycle,

with the stance phase considered to be synonymous with the extensor phase and the swing

phase synonymous with the flexor phase. In that model, as d increased, T (d) decreased due

to changes in the extensor duration only (the flexor duration remained relatively constant).

Thus, the period of the CPG exhibited an asymmetric response to changes in drive. This

period could then be translated into forward velocity (VG) using an equation based on a

previously described power function [27],

T (d) = 0.5445V −0.5925
G . (4.1)

We will refer to this calculation of velocity as the Goslow velocity. The CPG input (d) was

plotted against Goslow velocity (VG) and the resulting relationship was highly linear (with

an r2 value of 0.9978). This finding supported the idea that the CPG could be configured

to receive drive signals which encode the desired speed of the animal [83].
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In the original limbed neuromechanical Markin model, supra-spinal input (drive) gener-

ates a rhythm of a particular duration, and the relationship between input and velocity can

be obtained using equation (4.1). Not surprisingly, the relationship is again fairly linear due

to the quality of fit that the model exhibits with the Halbertsma data (Figure 48). Up to
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Figure 48: Velocity of limb versus drive strength for a large drive range. Goslow velocity is plotted
in blue against drive. Red and green linear regression are computed over the entire range and over
the normal range of drives, with correlation coefficients of 0.9164 and 0.889, respectively.

this point we have only considered the performance of the model over the range of drives for

which it was fit (d ∈ [0.7, 3.6]). In Figure 48, we extend our consideration to a much larger

input range to verify that under this calculation the model can reach the same range of

speeds represented by the limbless model. The preferred speed of cats is around 0.4-0.5m/s

(though cats can walk at much faster speeds), and this data indicates the Markin model

is indeed capable of reaching sufficient speeds before breakdown. Over the normal and the

wider drive range, the relationship between V and d is fairly linear, with a slightly larger

r2 value over the longer range of drives. These results indicate further support that control

signals driving this network are expressed in the desired locomotor speed.

How robust is this linearity to changes in feedback? We calculate the relationship be-

tween drive and Goslow velocity as the strength of the feedback varies from its baseline in

Figure 49. Over the normal range, r2 values indicate that both increasing and decreasing
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Figure 49: Drive vs. velocity shown for various feedback strengths in each of the velocity calcu-
lations. Red, blue, green, yellow, magenta, and black stars indicate the model output at 70, 80,
90, 110, 120, 130% of normal feedback strength, respectively. Linear regression lines are plotted
with corresponding colors. (A) r2 values were computed over a large range of drives with values
of 0.9243, 0.9751, 0.9842, 0.6716, 0.2575, and 0.0205 corresponding to the strength of feedbacks
previously indicated. (B) Linear fit was only calculated over the range of normal drives, with values
of 0.9747, 0.9629, 0.9351, 0.9316, 0.9523, and 0.9458.

the feedback would improve the linearity of the relationship between drive and velocity.

Decreased feedback strength, however, reduces the range of drives over which the model

oscillates, in particular the lower range (the crucial regime that generates the asymmetry).

Increasing the feedback, while increasing the linearity over the normal range, significantly

decreases linearity over the full range (Figure 49). This leads us to conclude that the baseline

feedback appears to be configured at an optimal level with respect to producing linearity

over the widest range of drive values.

Note that for large feedback strengths, the model produces the counterintuitive result

that increases in drive lead to decreases in velocity. Since V and T are inversely related

(equation 4.1), this is equivalent to the result that step durations begin to increase with
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drive when drive is sufficiently large (see Figure 51A). Intuitively, stronger feedback should

lead to a speed up in step duration – the mechanism of oscillations under presence of feedback

occurs through escape of the silent In, which is controlled entirely by feedback. Thus when

feedback strength is increased, the voltage of the silent In should be able to reach threshold

more quickly than in the normal case (see the discussion in section 3.2.3 and Figure 30).

In this case, however, that event does not immediately initiate the transition in the CPG.

Since the excitation to the cells is very large, active neurons can access much larger voltages

than in the normal case, and thus can provide much stronger inhibition to an RG in the

silent phase, which will delay that neuron from entering the active phase. Figure 50 shows

the difference between nullclines under normal feedback strength and increased feedback

strength. Under baseline feedback, once the silent In hits threshold, inhibition to the silent

RG is sufficiently reduced so that the nullcline immediately drops (left and middle plot) and

RG is able to jump to the active phase. Under increased feedback, notice that the silent In

has already crosses threshold, but the silent nullcline is still raised in phase space, since the

voltage of the active In is very large. Thus at large feedback values, the limb sends a signal

to the CPG to make a switch at a time when it is not equipped to do so.

The model analysis indicates two particular pathways in the CPG that could be mod-

ulated to reduce this delay and promote frequency increases even under strong feedback.

The first method would be to reduce the excitation from RG to In, which would counteract

the flood of excitation present in the CPG. Alternatively, if the strength of inhibition from

In to RG was lowered, then the silent RG would lie on a less inhibited nullcline, and thus

able to hit the knee sooner. Figure 51 shows that altering the connections within the CPG

in either of these ways reduces the increase in step speed for large drives. Interestingly,

both decreasing excitation and inhibition within the CPG can produce qualitatively similar

results, suggesting that entrainment can occur through various system modifications. This

also provides additional support for the benefits of model analysis, since counterintuitive

changes in parameter values can yield favorable results.

Note that the Goslow velocity is calculated from the data through which the models are

fit. An advantage of the Markin model over the limbless model is that the limb dynamics

can produce a different velocity calculation, as the ratio of distance and time. Distance
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Figure 50: Transition from RG-F to RG-E’s active phase under (A) normal feedback and (B) at
130% of baseline. In each plot, top frame shows the nullclines in RG phase space and the bottom
frame tracks the activity of In (blue corresponds to extensor and red corresponds to flexor). (A)
Under normal feedback strength, In -E crosses threshold and the nullcline immediately drops, so
that RG -E is above the knee and can jump to the active phase. (B) Under increased feedback
strength, when In -E escapes, strong inhibition from In -F delays RG -E from entering the active
phase.

is an organic result of the modeling, which makes this description of velocity particularly

interesting to study. We can calculate the total distance traveled by the animal as the

distance between the end of the rigid limb at stance onset and swing onset. Given that

the length of the limb is 0.3 meters, the total distance traveled is 0.3(cos(qmin) + cos(π −

qmax)) = 0.3(cos(qmin)− cos(qmax)). Here, qmin corresponds to the angle the hip makes with

the horizontal at touch down and qmax the angle at lift. Thus the joint velocity can be

calculated as

VJ = (0.3(cos(qmin)− cos(qmax)))/T. (4.2)

We plot the relationship between VJ and drive in Figure 52. Over the normal range, this

relationship is even more linear than the Goslow relationship, producing an r2 value of 0.9698.

Outside of this range, however, the joint velocity peaks at a top speed of roughly 0.3 m/s

and begins to decrease with increases in drive, contrary to what we might expect.

What contributes to this velocity decrease? Simulations show that outside of the normal
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Figure 51: Step, stance, and swing phase durations under (A) baseline excitation/inhibition, (B)
decreased excitation from RG to In, (C) decreased inhibition from In to RG. Under large feedback
strength, increases in drive lead to counterintuitive increases in phase duration (A), but various
modifications to connectivity in the CPG can promote frequency increases with increase in drive
(B), (C).
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Figure 52: Joint velocity of limb versus drive strength over a large drive range. This calculation
indicates that at relatively high drive values, increases in drive correspond to decreases in velocity.
This relationship is linear, however, over the normal range of drives with an r2 value of 0.9698.
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drive range, velocity dips because the distance traveled by the animal eventually begins to

decrease with drive, due to an increasing touch down angle qmin (recall that q indicates the

angle the limb has with the horizontal, so larger touch down angles indicate stepping down

with an orientation closer to upright). This is counterintuitive, as faster walking should

accommodate farther distances and wider deviations from vertical, exhibiting a limitation of

the model when we consider its performance outside of the normal drive range.

To conclude, this model agrees with findings produced by the limbless model, which

suggest that input signals to the CPG may be expressed as the desired speed of movement.

Our result is particularly significant, since we verify this finding in a different representation

of speed which is based on an observable not directly fit to experimental data (at least over

the normal range of drives we have considered).

4.5 DISCUSSION

In normal overground locomotion, frequency increases occur due to decreases in stance phase

duration only. Many past works support the hypothesis that the spinal locomotor CPG

features a symmetric organization [41, 84, 64, 39, 48], such that the asymmetric response

would require other sources such as feedback asymmetries. However, other authors argue that

the CPG itself is a source of asymmetry [26]. Asymmetry within a model CPG emerged from

a numerical optimization procedure tuned to fit parameters to the asymmetric phase response

data [31, 83], and asymmetries allowed a model CPG to fit disordered limb coordination

data from Parkinson’s disease patient [3], but these results were inevitable, since the models

involved did not include possible sources of asymmetry outside of the CPG, such as feedback

[3, 83]. An interesting future direction would be to repeat these studies in a neuromechanical

model, such that the relative capabilities of different possible asymmetry sources could be

compared. Biologically, sources of locomotor asymmetry may vary across species or even

across behavioral or environmental contexts, and in fact there may be multiple asymmetries

within a single locomotor network.

In Section 4.1, we elucidated the crucial role of the limb dynamics in generating the
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phase asymmetry exhibited by the full model, and used an array of arguments to explain

why only the eStance phase duration depended on the value of the supra-spinal drive to

the CPG. More specifically, we found that the inclusion of the ground reaction force, which

was present during stance but not during swing, imposed an intrinsic asymmetry on the

mechanical component of the system, which we found to be crucial in constraining the range

of drives over which oscillations could occur and in eliciting the phase response asymmetry

(Section 4.1.6). The strength of the feedback (particularly the Ib -E feedback term) in

the model scaled the intensity of this asymmetry. Interestingly, the same mechanisms that

yielded contraction in the eStance phase were identified as being responsible for the sensitivity

of the phase duration to the drive strength there. Decreasing the amplitude of the ground

reaction force reduced this asymmetry and decreased the duty cycle, replicating conclusions

obtained from reduced load experiments (Section 4.2).

In Section 4.3, we investigated the effect of increased feedback strength on the system

after the removal of supra-spinal drive, which simulated SCI. We showed how strengthening

the feedback could restore the conditions needed for limb oscillations and how the resulting

oscillations differed from model rhythms present under baseline conditions. Analysis of this

recovery revealed that sufficiently weak CPG output could render the limb unable to oscillate

by failing to allow the limb to assume a positive velocity at the onset of the stance phase.

The model exhibited an interesting dependence on the degrees to which different feedback

signals were strengthened, which we were able to explain by elucidating the contribution of

particular feedbacks to the shape of the transition curves and the position of the v-nullcline

at eStance onset.

After SCI, restored oscillations maintained transitions by escape, the same mechanism

responsible for oscillations in the normal case. The consistency in transition mechanisms, and

hence in frequency responses to input variations, across these different oscillation regimes is in

agreement with the general idea that top-down and feedback sensory signals to a locomotor

CPG can together synergistically encode a targeted locomotor speed. This concept was

explored with top-down input only to the CPG in a limbless model in [83]. In Section 4.4,

we extended this discussion by showing that inputs to the CPG from both supra-spinal drive

and limb feedback were expressed in the desired frequency of limb movement, using various
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definitions of speed.

Our results are consistent with past work in which a genetic algorithm was applied

to evolve a set of model CPG networks, each composed of three, four, or five recurrently-

connected neurons, controlling the activity of a simulated leg of an insect-like body [6, 13, 5].

The passage of a solution trajectory close to a fold of a steady state input-output curve was

found to elongate the duration of the stance phase, resembling the dynamics exhibited at the

onset of the eStance phase in our model. Interestingly, the model correspondingly exhibited

a high sensitivity to perturbations near this region [13], similar to the dynamics exhibited

at the onset of the eStance phase in our model. Indeed, the dynamic mechanisms that we

have uncovered also predict such a sensitivity, along with several other expected outcomes

relating to step failure and responses to disturbances, especially at relatively low drive levels.

Specifically, a kick that slightly decreased limb angle late in the eSwing phase, when the limb

speed is small, could terminate oscillations if it caused the trajectory to enter the eStance

phase to the left of the eStance critical point. Similarly, a perturbation in the direction of

larger limb velocity arriving in the fStance phase might push the trajectory above the stable

manifold of the fStance critical point, which would prevent it from completing that phase,

or might lead to very long fStance durations, if it pushed the trajectory very close to the

stable manifold. Swing phase durations should be less sensitive to perturbations, on the

other hand. These ideas are also related to past numerical simulations of a qualitatively

similar but more simplified model, which showed that combined feedforward and feedback

signaling yields an overall improved robustness to unexpected disturbances and imperfect

sensory information, relative to pure feedback or feedforward control, although differences

across phases were not emphasized there [40].

The analysis that we have done stands apart from past mathematical work on related

models in that the model that we consider was generated to reproduce a variety of quali-

tative and quantitative experimental observations, and as such was not tailored to provide

ease in analysis. Indeed, we saw that despite the relative simplicity of the model, its dy-

namic inhibition, excitation, and nonlinear feedback components presented challenges that

complicated our analysis, and these features also prevented the application of additional

analytical techniques, such as phase response curves (e.g., [56]). However, we were able to
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utilize variations of many familiar arguments from the realm of dynamical systems, in spite

of this complexity.

143



5.0 CONCLUSION

In this thesis, we used simplified mathematical models to investigate how network struc-

ture and sensory inputs contributed to rhythmic movements. In Chapter 2, we proposed

various structures that were capable of producing distinct swim and scratch patterns under

different levels of stimulation. We found that in order to reproduce an experimental bench-

mark regarding swim frequency increases, transitions in the swim network must occur via

the escape mechanism, where recovery from adaption allows inhibited neurons to overcome

suppression from other neurons. We generated collections of parameters sets that were able

to produce swim and scratch in the various modeling structures, and tested those sets for

their performance under dual stimulation. Random parameter generation was not able to

produce sets exhibiting dynamics that we desired, which corresponded to tonic steady state

activity by one or more neurons as the stimulus strength was decreased. We used analysis

on a simplified system to generate inequalities that constrained parameter space, such that

a targeted search in this regime generated sets that produced desired dynamics. We con-

cluded that a network structure comprised of multifunctional and specialized neurons was

most likely to have generated experimental observations, given its ability to reproduce all of

the experimental benchmarks we were considering. This corroborates with conclusions from

our collaborators, who deduced that distinct rhythms produced by the same motoneurons

and muscles likely share key circuitry [32].

In Chapters 3 and 4, we analyzed the performance of a neuromechanical model that

operated under feedback control. Though the CPG was able to oscillate in the open loop

configuration, we found that when feedback was present, CPG switches occurred at a par-

ticular relationship between limb angle and velocity, reminiscent of if-then rules suggested

by Cruse, and more recently, Prochazka. We proved the existence of the separate mecha-
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nisms present when feedback was absent and present, and used these observations to proffer

a reduced model that was tractable for rigorous discussion. Discontinuities in the dynamics

required us to adapt theorems from classical dynamic systems theory before applying them

to our analysis. This analysis also highlighted the existence of a key relationship in the

limb dynamics, where the proximity between components allowed the model to replicate a

key feature of locomotion, constrained limb activity to promote a unique periodic orbit, and

inhibited oscillations when the CPG was too weakly excited. We then utilized our under-

standing of the model to explain its response to changes in load and after spinal cord injury.

Finally, we considered the relationship between input to the CPG and locomotor speed,

extending conclusions made in [83].

The capability of CPG circuits to generate locomotor oscillations has received extensive

attention in recent review papers with various perspectives [29, 10, 52]. Many authors

have worked on models of locomotor CPGs or, of particular relevance to this work, on

models of combined CPG and limb dynamics. Several of these works have treated highly

simplified closed loop neuromechanical systems, focusing on resonance between the CPG

and the limb or CPG entrainment by the limb [34, 37, 81, 70]. Perhaps the most relevant to

our approach, in which we analyze transition mechanisms within the CPG under different

feedback conditions, is work by Sekerli and Butera [66]. These authors distinguish multiple

possible phase transition mechanisms in their neuromechanical model, but these all involve

the effects of feedback inhibition from the mechanical component to a half-center CPG,

treated in as a synaptic current. In the model that we consider, all feedback signals are

excitatory and the signals are more complicated, derived based on muscle stretch and velocity

and motoneuron outputs [46]. Indeed, while dynamical systems methods have been used to

understand CPG gait rhythm generation or closed loop neuromechanical model dynamics

with perturbative feedback signals (e.g. [21, 56]), dynamical systems analysis of a closed

loop neuromechanical locomotor model with excitatory, continuous or piecewise continuous

afferent feedback signals (see especially [76]) still represents a frontier in this area.

While the neuromechanical model that we analyzed in Chapters 3 and 4 is complex

from a mathematical point of view, it is undoubtedly extremely simplified relative to the

actual spinal/limb interactions that occur in vivo. The CPG component of this model is
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minimal, comprised of extensor and flexor rhythm generator neurons, interneurons, and

pattern formation neurons, each represented by a single model neuron. Furthermore, the

limb in the model is a simple, single-joint segment, able to move with only one degree of

freedom through the actions of only two antagonistic muscles, and the interaction of the

limb and ground is incorporated in a very basic way that neglects many possible effects.

Future work to address these limitations will be important, as will additional modeling to

incorporate the control and interaction of multiple limbs and corresponding CPG units.

We are currently considering extensions to this model. We aim to implement specific

forcing terms that represent the interaction between the limb and the treadmill during tread-

mill locomotion. We intend to investigate how this modification affects the mechanisms

responsible for rhythm generation, and how changes in drive and feedback levels affect the

performance of the model in this case.
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