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THE LATENT GROUP-BASED TRAJECTORY MODEL: DEVELOPMENT

OF DISCRIMINATION MEASURES AND JOINT MODELING WITH

SUBDISTRIBUTIONS

Nilesh Shah, PhD

University of Pittsburgh, 2012

In clinical research, patient care decisions are often easier to make if patients are classified

into a manageable number of groups based on homogeneous risk patterns. Investigators

can use latent group-based trajectory models to estimate the posterior probabilities that an

individual will be classified into a particular group of risk patterns. Although this method

is increasingly used in clinical research, there is currently no measure that can be used to

determine whether an individual’s group assignment has a high level of discrimination. We

propose a discrimination index and provide confidence intervals of the probability of the

assigned group for each individual. We also propose a modified form of entropy to measure

discrimination. Additionally, when analyzing research involving disease processes, many

researchers are interested in estimating the effect of longitudinally measured biomarkers

on the event time outcomes in the presence of competing risks. We propose a method to

estimate this effect under the joint modeling framework. The proposed joint model involves

three submodels: the first one models the latent risk trajectory groups; the second one

models the longitudinal pattern of biomarkers conditional on a specific risk group; and the

third one models the subdistribution function conditional on a specific risk group.

These methods are significant to public health research since they enable researchers to

more confidently assign individual patients to risk groups based on their clinical measure-

ments.
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The joint model also enables researchers to discover these distinct risk patterns more ac-

curately by using patients’ longitudinal data together with event time outcomes, while also

adjusting for competing events.
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1.0 INTRODUCTION

The advent of personalized medicine has made statistical techniques like latent group-based

trajectory[1] modeling more popular in recent years. These modeling techniques can sep-

arate populations into distinct risk patterns based on longitudinal data. Once separated,

researchers are then able to evaluate each set of patients according to which group they are

assigned. These modeling techniques are increasingly being implemented, but there are not

many ways to evaluate these models or to determine whether individuals are assigned to their

groups with a high degree of confidence. In this dissertation, we analyzed data from The

Pittsburgh Girls Study. The investigators were interested in examining longitudinal trajecto-

ries of conduct disorder score in pre-adolescent girls. Using group-based trajectory modeling,

we uncovered distinct behavioral groups and identify girls whose conduct gets worse or bet-

ter over time. If individuals are to be evaluated and treated according to which behavioral

group they belong to, investigators should be confident of the individuals’ group assignment.

There was previously no method to determine how confident this group assignment is. In

this dissertation we develop methods to determine individual level discrimination. These

measures serve as both individual patent evaluation and overall model adequacy checks.

Another data issue arises when we wish to uncover distinct behavioral subgroups based

on both longitudinal data and event-time outcomes. Increasingly, medical studies have

collected both longitudinal measurements with survival outcomes. One example of this is the

Biological Markers of Recovery for the Kidney (BioMaRK) study. BioMaRK aims to study

the relationship between inflammatory biomarker levels and recovery from Acute Kidney

Injury (AKI). The investigators were interested in learned if there are distinct behavior

groups in this data. Instead of using the traditional group-based model, our approach to this

problem required modeling both longitudinal and survival data simultaneously. Traditionally
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joint models are used to simultaneously model longitudinal and survival data. However, no

one has accounted for a latent class joint model that simultaneously models longitudinal

trajectories with competing risks subdistributions. One issue in the BioMaRK study is the

fact that investigators wished to study recovery from AKI. During the course of the study,

patients dropped out due to death. This is non-informative dropout that must be taken into

account. Our model discovers latent group behavior based on both longitudinal and survival

data. When examining data from BioMaRK, we modeled recovery from AKI as the main

event of interest and used death as a competing event.

In the next section of this document, we review models and concepts essential to the

dissertation. Then we develop measures of discrimination for latent group-based models.

We also develop a measure called modified entropy to evaluate individual discrimination.

We devise simulations and test these measures, then apply then to the Pittsburgh Girls

Study. Then we develop a latent class joint model based on longitudinal trajectories and

competing risks survival. We devise simulations then apply the model to the BioMaRK

study. We then conclude the dissertation with discussion and mention of future work.
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2.0 REVIEW OF MODELS

2.0.1 Group based modeling of development

The main latent class trajectory models used in this paper are based on Daniel Nagin’s group-

based models[1]. These models are used to model longitudinal data, with the models being

able to separate the population into latent behavioral groups, or developmental trajectories.

The motivation behind developing these models is that oftentimes, investigators believe that

there may be different developmental patterns in a population over time. Using growth

curves to model longitudinal data provides a mean trajectory with variation around that

trajectory, but it cannot uncover these distinct behavioral patters over time. The main

group-based model laid out by Nagin is:

P (Yi) =
J∑
j

πjP
j(Yi) (2.1)

where P (Yi) is the unconditional probability of observing individual i’s longitudinal mea-

surements Y . J represents to total number of behavioral groups, and π represents the prob-

ability of a randomly chosen individual belonging to group j. The group-based model is a

variation of a finite mixture model. The longitudinal measurements, Yi, can be assumed to

follow any distribution the analyst wishes. Bobby Jones, et al. have implemented group-

based modeling in SAS with the procedure PROC TRAJ [2]. Currently, PROC TRAJ

supports modeling longitudinal data as normal (or tobit), binomial, or Poisson [2]. The

model allows the longitudinal trajectories to be modeled as polynomial functions of time.

PROC TRAJ uses the quasi-Newton maximization method to maximize the likelihood

and obtain parameter estimates [1]. Once estimates are obtained, one may calculate posterior

probabilities for each individual. These are conditional probabilities for each individual, and
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they represent the probability that an individual belongs to group j given his longitudinal

measurements. Posterior probability is calculated as:

P̂ (j|Yi) =
P̂ (Yi)π̂j∑J
j P̂ (Yi)|j)π̂j

(2.2)

Model selection is an important issue regarding group-based models. Since the analysts

do not know how many latent groups are truly in the data, they must run multiple mod-

els with a differing number of groups. The Bayesian Information Criteria (BIC) is most

commonly used to asses model performance [3]. BIC is defined as:

log(L)− 0.5 ∗ k ∗ log(N) (2.3)

where L is the likelihood, k is the number of parameters estimated by the model, and N

is the sample size. While the BIC itself can be used as a model selection criteria, Jones

and Nagin also use an approximation of the Bayes Factor for model selection, with criteria

outlined.

2.0.2 Survival analysis with subdistributions

When analyzing time to event outcomes, medical data often contain data with competing

risks. Modeling these competing risks allows investigators to account for non-informative

dropout in the survival process [4]. A main feature of competing risks analysis is that the

model treats observations experiencing the competing event as still at risk to experience

the main event. One standard way to account for competing risks is through the cause

specific hazard function. The drawback of using the cause specific hazard approach is that

it does not provide an interpretation regarding the probability of occurrence for the main

event. Instead, Fine and Gray [4] devised a model to directly model the cumulative incidence

function, or subdistribution of an event. They defined the subdistribution of the main event

as:

F1(t;Z) = 1− exp[−
∫ t

0
λ10(s) expZT (s)β0ds] (2.4)
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where λ10 is the baseline hazard for the main event and Z is a set of covariates. The Fine

and Gray model is a semiparametric approach since they assume the baseline hazard, λ10,

is not specified by a distribution.

The Fine and Gray model allows clinicians to interpret results more easily since they can

directly interpret results as in terms of probabilities of experiencing events.

2.0.3 Parametric cumulative incidence function with subdistributions

Jeong and Fine [5] later developed a parametric from for regression on the cumulative in-

cidence function. The parametric models are more amenable to maximum likelihood and

allow the analyst to further extrapolate the probabilities of longer term events, something

that is not appropriate in the semiparametric approach [5]. The assumed the baseline hazard

follows a Gompertz distribution. The general form of the parametric form of subdistribution

for the main event is:

F1(t;Z) = 1− {1 + αk exp(ZTβk)µk(t)}−1/αk (2.5)

where µk represents the baseline subdistribution hazard.

2.0.4 Joint Modeling

Oftentimes, investigators wish to model both longitudinal data and event-time outcomes.

Previously, it was acceptable to model each of these outcomes separately. However, depend-

ing on the study, it may be entirely reasonable to assume that the longitudinal and survival

processes are associated with each other. If this is the case, then modeling the outcomes

separately will lead to biased parameter estimates. To account for the association between

the longitudinal and survival process, researchers began developing joint models. Typically,

joint models link the longitudinal and survival processes through a shared parameter, usually

modeled as a random effect. These models usually used a mixed model for the longitudinal

process and a proportional hazards survival model.

5



The joint model by Tsiatis and Davidian [6] is:

n∏
i=1

∫ [
λ0(Vi)exp{γXi(Vi) + ηTZi}

]∆i

exp
[
−
∫ Vi

0
λ0(u)exp{γXi(u) + ηTZi}du

]
(2.6)

× 1

(2πσ2)mi/2
exp

[
−

mi∑
j=1

{Wi(tij)−Xi(tij)}2

2σ2

]
p(αi|Zi; δ)dαi (2.7)

which describes a longitudinal process and a survival process linked by random effects.

These joint models can eliminate the bias caused by association between the survival and

longitudinal processes, but model estimation and convergence created new problems. Typi-

cally, researchers would have to use Gaussian quadrature approximate the integral over the

random effects. Latent class joint models can use group-based longitudinal trajectories and

longitudinal data. The latent class joint models link the longitudinal and survival processes

through group membership. Using the conditional independence assumption, we can assume

that the longitudinal and survival processes are independent given group membership. That

is, the longitudinal and survival processes are linked through the groups instead of through

shared random effects. Lin, et al [7] specified a latent class joint model to study longitu-

dinal trajectories of prostate specific antigen with onset of prostate cancer. They modeled

used the conditional independence function to specify a likelihood that is the product of the

multinomial group membership, the longitudinal process, and the survival process. Their

log-likelihood was:

n∑
i=1

log
K∑
k=1

[cik = 1|Xi][yi|Xi, cik = 1][Ni, Yi|Xi, cik = 1] (2.8)

where [cik = 1|Xi] represents the multinomial group membership, ][yi|Xi, cik = 1] represents

the longitudinal process, and [Ni, Yi|Xi, cik = 1] represents the survival process.

6



3.0 MEASURES OF DISCRIMINATION FOR LATENT GROUP-BASED

TRAJECTORY MODELS

3.1 INTRODUCTION

Latent group-based trajectory models[1] have increasing been used to identify distinct tra-

jectory patterns in longitudinal data. One of the main advantages of latent group-based

trajectory models is that they allow for the discovery of subgroup behaviors for a population

with unobserved heterogeneity across time. For example, if a treatment is administered to

a population of patients, there may be distinct response subgroups within that population.

One group may respond favorably to the treatment while another group responds negatively,

and maybe a third group does not respond at all. Discovering these unobserved patterns of

behavior could be extremely useful. Clinicians may target more individual-based therapies

based on a patient’s profile if they believe a patient falls into one of these subgroups. It is

worth noting that a latent group-based trajectory model is a special case of growth mixture

models [8]. Latent group-based trajectory models assume a linear model to fit longitudi-

nal trajectories over time, while growth mixture models assume a linear mixed model with

possibly random intercepts and random slopes to fit the trajectories. These random com-

ponents allow individuals within the same trajectory group to vary around the mean group

trajectory.

To assess how well a model fits with the data, several goodness-of-fit measures have been

proposed for the latent group-based trajectory models. Nagin[1] developed two measures to

assess the model adequacy: use of the average posterior probability of assignment (APPA)

and use of the odds of correct classification (OCC). Berkhof et al.[9] proposed a discrepancy

measure to assess the model fit. Lindsay and Roeder[10] developed gradient-based diagnostic
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measures for continuous outcomes and residual plots for discrete outcomes. Agresti[11]

proposed the use of G2 statistic to measure the absolute model fit.

In the analysis using latent group-based trajectory modeling, we need to first assume a

certain number of latent groups and then estimate the best trajectory curve for each group

via appropriate inference procedures. Several model selection techniques are available to

decide what the number of latent groups should be chosen to best fit the data. Note that the

likelihood ratio test does not have the usual large sample chi-square distribution properties

due to the class probability parameter being at the border of its admissible space[6]. Com-

monly used model selection techniques include Akaike information criteria (AIC), Bayesian

information criteria (BIC), and the bootstrap likelihood ratio test (BLRT). Simulations by

Nylund et al.[8] showed that BIC and BLRT outperformed AIC and suggested that BIC and

BLRT need to be compared together.

Although there are several methods to test the goodness-of-fit for latent group-based

trajectory models, currently, there is no measure of discrimination to check the confidence

of an individual being assigned to a certain group. This can be particularly troubling if

treatment regimens are determined by an individual’s group assignment. For example, in

the two-group scenario, an individual may be in group one with a probability of 0.98 and in

group two with a probability of 0.02. This individual’s group assignment has a high level of

discrimination and is assigned to group one. However, another individual may have a group

one probability of 0.52 and a group two probability of 0.48. This individual is also assigned

to group one even though his or her group membership has a poor level of discrimination.

Recognizing this ambiguity may play a large role in how clinicians decide to treat individuals.

In this paper, we propose two measures to evaluate discrimination, and they can be used

alongside the goodness-of-fit techniques to evaluate latent group-based trajectory models.

In Section 3.2, we introduce the notation and revisit the latent-group trajectory models.

In Section 3.3, we introduce the first discrimination measure by modifying entropy, and

the second discrimination measure and its corresponding variance estimator based on the

posterior probabilities of group membership. In Section 3.4, we conduct simulations to assess

the performance of our discrimination measures.
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In Section 3.5, we apply the proposed measures to a longitudinal study for the development

of conduct disorders among young girls. We present conclusions in Section 3.6.

3.2 NOTATION AND MODEL

The latent group-based trajectory model[1] is a mixture of two components. The group

membership is modeled via a multinomial regression and the longitudinal trajectories con-

ditional on a given group membership are modeled via a linear model. The general form of

the model can be specified as follows:

J∑
j=1

nJ∑
i=1

Pr(πi = j|Zi = zi)Pr(Yi = yi|πi = j,Wi = wi), (3.1)

where Z represents time-independent covariates and W represents time-independent or time-

dependent covariates. For subject i, the first term of (1) represents the probability of be-

longing to group membership j,

Pr(πi = j|Zi = zi) =
exp(θj + λTj zi)∑J
l=1 exp(θl + λTl zi)

. (3.2)

The second term of (1) represents the probability of the longitudinal outcomes Yi given the

group membership j,

Pr(Yi = yi|πi = j,Wi = wi) =
1

(2π)
t
2 |Σj|

1
2

exp
{
−1

2
(yi − µj)TΣ−1

j (yi − µj)
}
. (3.3)

Mean µj can be specified as a polynomial function of time with the form

µj = β0 + βT1 t+ βT2 t
2 + βT3 t

3 + ... (3.4)

The mean trajectories may also depend on covariates W . When there are only two latent

groups involved, the log likelihood can be simplified as the form:

log(L) =
n∑
i=1

log {πiMVN(µ1,Σ1) + (1− πi)MVN(µ2,Σ2)} , (3.5)

where MVN(µ,Σ) is a multivariate normal density with mean vector µ and variance-

covariance matrix Σ. The five parameters that need to be estimated from this model are

9



πi, µ1,Σ1, µ2, and Σ2. Maximization of the log likelihood function can be done by using

the quasi-Newton procedures. The estimated parameters are necessary for calculating the

posterior probability of an individual being in a particular group.

3.3 DISCRIMINATION STATISTICS

Once parameter estimators are obtained, posterior probabilities can be calculated. Using

the Bayes rule, the posterior probability of individual i belonging to group j given his or her

longitudinal trajectory is

P̂ (πi = j|Yi) =
P̂ (Yi|πi = j)π̂j∑J
j P̂ (Yi|πi = j)π̂j

. (3.6)

For example, if there are 2 groups (j = 2), each individual will have a probability of being in

group 1 and a probability of being in group 2. The group assignment depends on the largest

of the two posterior probabilities. As mentioned above, the level of discrimination plays no

part in group assignment. Therefore, individuals whose posterior probabilities are highly

ambiguous are still assigned to groups just as individuals whose posterior probabilities are

highly discriminated are.

Entropy is a statistic used to measure the amount of information or the degree of clas-

sification uncertainty in various fields including latent-class analysis. Individual-level en-

tropy[12] is defined as

EN = −
∑
J

p̂j log(p̂j), (3.7)

where pj is an individual’s posterior probability of being in group j. Larger value of entropy

indicates higher level of uncertainty in discrimination. Therefore, subjects who are poorly

discriminated should have higher values of entropy than subjects who are well discriminated.

One important caveat is that entropy is based on all posterior probabilities, but for group

assignment, we are most interested in the gap between the highest posterior probability and

the second highest posterior probability. For example, in a four group scenario, if a subject’s

posterior probabilities are 0.25 for each group, discrimination will be poor and entropy high.

10



However, if the posterior probabilities are 0.4, 0.2, 0.2, and 0.2, entropy will still be relatively

high even though we may confidently be able to assign the subject to the group with posterior

probability 0.4. Since it is essentially the leading two posterior probabilities that determine

discrimination status, we propose a modification of the entropy measure by considering only

these leading two posterior probabilities. The modified entropy has the form

ENm = −{p̂max log(p̂max) + p̂2 log(p̂2)} , (3.8)

where p̂max and p̂2 are the largest and the second largest posterior probabilities, respectively.

To build up our second discrimination measure, we will first construct a confidence

interval around the maximum posterior probability. An individual’s discrimination will then

be determined by whether the confidence interval of the maximum posterior probability

contains the value of (p̂max + p̂2)/2. Another way to represent this is

p̂max − zα/2
sd√
n
<
pmax + p2

2
< p̂max + zα/2

sd√
n
, (3.9)

where sd represents the standard deviation of the p̂max estimate.

We considered several methods to estimate the variance of posterior probabilities of

group membership. One technique was calculating the distribution of the order statistic of

the posterior probabilities. However, this would necessitate knowing how the probabilities

are distributed. Another method considered was using the bootstrap technique[13], but it

is very computationally intensive. We will adopt the method proposed by Menses et al.[14]

to estimate the variance of the posterior probabilities. They derived the variance estimator

using the delta method,

V ar {P (πi = j|Yi)}≈
{
∂P (πi = j|Yi)

∂y

}T
V ar(Y )

{
∂P (πi = j|Yi)

∂y

}
. (3.10)

For simplicity, we define

Sj =
∂P̂ (πi = j|Yi)

∂y
, (3.11)

and A as the denominator of the posterior probability, A =
∑J
j=1 P̂ (Yi|πi = j)π̂j. There-

fore, Sj can be rewritten as the form Sj =
{
π̂jMVN(µ̂j, Σ̂j)

}{
−Σ̂j(y − µ̂j)

}
. Finally, the

variance estimator of the posterior probability can be simplified as

V ar
{
P̂ (pii = j|Yi)

}
≈

J∑
j

(SjA−
∑J
j Sj)π̂jMVN(µ̂j, Σ̂j)

A2
Σ̂j

 . (3.12)
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3.4 SIMULATIONS

We simulated 500 datasets with a sample size of 500 to test the performance of the parameter

estimates. For each dataset, we assumed three trajectories across three time points. The

longitudinal trajectories are shown in Figure 1.

Figure 1: Three Group Trajectories

Table 1 summarizes the data generated according to simulated parameters along with

the estimates. The results in Table 1 show that the estimated parameters are close to the

generated parameters. The three-group trajectory model also estimated the trajectories close

to the underlying setting. The two group model and four group models were also fit, and

evaluation of the BIC showed that indeed the three group model is optimal.

To demonstrate the performance of our discrimination measures, we generated a single

data set with N=150 and with three distinct groups of longitudinal trajectories (150,150,150),

(145,152,148), and (145,150,155) over three time points.

12



Table 1: Posterior group membership probabilities with longitudinal trajectories.

Simulated Estimated

Group j Probability of

group membership

(πj)

Trajectories at

(t1, t2, t3)

Probability of

group membership

(π̂j)

Trajectories at

(t1, t2, t3)

1 0.333 (150,150,150) 0.335 (150,150,150)

2 0.333 (145,152,148) 0.332 (145,152,148)

3 0.333 (145,150,155) 0.333 (145,150,155)

Once the likelihood was maximized and parameter estimates were obtained, we calculated

the posterior probabilities of group membership for each individual.

The model poorly discriminated 21 out of 150 (14 percent) subjects according to the

discriminant index, our second discrimination measure. Figure 2 depicts the density plots of

entropy by the discrimination status. In fact, well discriminated subjects had a wide range

of entropy, while poorly discriminated subjects tended to be at the upper end of the scale.

Entropy ranged from 0.041 to 1.016 for the well discriminated subjects and from 0.685 to

1.094 for the poorly discriminated subjects. The overlap between discrimination and entropy

takes place mainly when the posterior probability for one group is very low and nearly split

between the two remaining groups. Since entropy is a measure of information, the measure

provides information indicating that a subject most likely did not belong to the group with

very low posterior probability. However, it has no way of discriminating between the other

two groups. Two examples of this are shown in Table 2.

Figure 2 shows how entropy differs by discrimination status. It is evident that subjects

who are poorly discriminated have higher levels of entropy than the well discriminated sub-

jects, even though there is some overlap. Figure 2 also shows the distributions of entropy,

with the solid line representing the density for well discriminated subjects and the dashed

line for poorly discriminated subjects. Our modified entropy measure performs better. As

expected, there is more agreement between discrimination status and modified entropy.

13



Figure 2: Three group entropy and modified entropy. The dashed line represents poorly

discriminated subjects, and the solid line represents acceptably discriminated subjects.

3.5 EXAMPLE: THE PITTSBURGH GIRLS STUDY

The Pittsburgh Girls Study (PGS)[15] is a longitudinal study to follow an urban population

sample of girls in Pittsburgh, Pennsylvania. The first assessment wave consisted of girls

5-8 years old. One objective of the study was to test developmental models for conduct
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Table 2: Entropy and discrimination for two simulated subjects. This shows how entropy

and discrimination can differ.

ID p̂1 p̂2 p̂3 Poor discrimination

(0=no, 1=yes)

Entropy

115 0.26 0.21 0.53 0 1.02

145 0.01 0.47 0.52 1 0.75

disorder (CD). We fit latent group-based trajectory models to uncover distinct longitudinal

trajectories of CD severity scores and then applied the discrimination index to show how

many subjects are well and poorly discriminated into these groups. There were separate

cohorts depending on the starting age of the child. We examined the cohort that entered as

five year olds (Cohort 5). Note that CD severity scores were based on the yearly self-reported

information. Higher scores indicate more severe conduct problems while lower scores indicate

fewer problems.

Cohort 5 consists of 588 subjects followed yearly from age 5-14. We analyze self reported

data, which were collected from age 7 onwards. Only complete data cases are used, which

reduced the dataset to N=471. There was no obvious pattern to the missing observations,

and therefore they are assumed to be missing completely at random. We fit a latent-class

longitudinal trajectory model with three groups, which were depicted in Figure 3. The

number of groups was chosen based on BIC and clinical input to maintain a manageable

number of groups.

Figure 3 shows the model results for the Pittsburgh Girls Study data. The trajectories

showed one group (black, 90%) that made up the majority of the cohort. These girls had a

consistently low CD score over time.

The group most interesting to researchers was denoted by the green line, and they made

up 6.4% of the cohort. This is the group of girls whose conduct got worse over time. This

group consists of girls whose conduct worsens as they age, and may be a signal to researchers

that this group requires early intervention. It may also allow researchers to focus their
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Figure 3: Trajectory plot for The Pittsburgh Girls Study. Group membership and descrip-

tions can be seen in Table 3.

efforts on this particular group to discover why they are getting worse over time. The results

showed overlaps in the trajectories, which may indicate a high level uncertainty in group

assignments. However, application of the discriminant index showed that only 5 of the 471

(1.1%) subjects were poorly discriminated. Overall, the subjects were very well discriminated

into their groups. This may be due to the fact that one group contained a large proportion

of the subjects.
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As Table 3 shows, poor discrimination rates were higher in the green group. Modified entropy

also behaved as expected, with poorly discriminated subjects having higher modified entropy

than acceptably discriminated subjects.

17



Table 3: Pittsburgh Girls Study results. The table shows group membership, percentage of poor discrimination, and the range

of modified entropy.

Group (n, %) Poorly discriminated

(n, %) within the

group

Range of modified entropy

among those not poorly

discriminated

Range of modified entropy

among those poorly

discriminated

Black (423, 89.9%) (3, 0.7%) 0.00-0.61 0.68-0.69

Green (29, 6.1%) (2, 6.7%) 0.00-0.55 0.66-0.67

Red (19, 4.0%) (0, 0.0%) 0.00-0.55 NA
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3.6 CONCLUSIONS

The discrimination index and modified entropy are useful tools for evaluating latent group-

based trajectory models. The discrimination index based on the delta methods can suc-

cessfully identify subjects whose discrimination is too poor to confidently be assigned to a

particular latent group. While entropy or modified entropy can help us measure the amount

of uncertainty in discrimination, this index can place confidence intervals and help us de-

velop cut-off rules in order to identify which subjects are poorly discriminated. This can be

very important, especially if interventions differ by group assignment. The index serves two

purposes: first, to determine which individuals are poorly discriminated into their groups,

and second, as a general test to evaluate the latent group-based trajectory model. Applying

the method to The Pittsburgh Girls study showed that overall, the level of discrimination

is very good. The discrimination index also identified which subjects were poorly discrim-

inated during group assignment. The discriminant index provides a formal statistical test

to determine an individual’s group membership status, and should be used in tandem with

goodness-of-fit methods to evaluate latent group-based trajectory models.
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4.0 JOINT MODELING OF LATENT GROUP-BASED TRAJECTORY

MODELS WITH SUBDISTRIBUTIONS

4.1 INTRODUCTION

Joint modeling can be used to simultaneously model longitudinal and survival data. However,

many joint modeling techniques assume a homogeneous subject trajectory across time. Many

joint modeling techniques also assume that the survival outcome is due to the cause of

interest. There are scenarios where we need to account for latent class trajectories in the

longitudinal data and we also need to account for competing risks in survival analysis. An

example of ICU data by Deslandes and Chevret involved examining SOFA (Sequential Organ

Failure Assessment) scores over time [16]. Their primary endpoint was 28 day survival, and

their secondary endpoint was SOFA score measured over time. The authors used joint

modeling to estimate the treatment effect on SOFA score. There are other applications

where there may be different sub-classes of behavior within the population. A joint modeling

approach has also been used (Lin, et al 2002) to examine diagnosis of prostate cancer with

longitudinal biomarker measurements in a highly heterogeneous population.

Longitudinal data can be analyzed using mixed-effects models, but the analysis can

be complicated due to informed dropout. For example, following people across time when

modeling disease processes will result in some subjects dying or dropping out of the study for

various reasons. A two-stage approach, where one estimated the longitudinal effects and uses

them as covariates in a survival model, had previously been used [17], but this approach leads

to biased estimates. Joint models typically look at longitudinal and survival data, treating

the longitudinal data as a mixed-effects model and the survival data as Cox proportional

hazards. As more researchers started using joint modeling, different applications necessitated
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the modification of the models. Lin, et al [7] used a joint modeling approach to study whether

a biomarker is related to onset of prostate cancer. The particular biomarker was comprised

of highly heterogeneous trajectories, making the usual mixed model approach less than ideal.

The authors used latent class analysis to discover the unobserved heterogeneity in the data,

then fit each longitudinal group individually as a joint model. Other approaches have used

different methods of survival analysis. For example, Deslandes and Chevret [7] used joint

models to look at a treatment effect on SOFA scores over time. However, in ICU data, being

discharged alive can often lead to informative censoring, so they used a competing risks

survival approach to deal with this issue. However, no one has yet to model longitudinal

data as group based trajectories and survival data as competing risks. Here we present a

joint model framework that simultaneously models group based trajectories with competing

risks survival outcomes.

In Section 4.2, we introduce model notation for the latent-group trajectory model, the

competing risks survival model. In Section 4.3, we revisit the conditional independence

assumption and present the latent class joint model. In Section 4.4, we conduct simulations

to assess the performance of the joint model. In Section 4.5, we apply the proposed model

to a study investigating biomarkers that may be associated with recovery from acute renal

failure. We present conclusions in section 4.6.

4.2 NOTATION AND MODEL

4.2.1 Longitudinal Process

The latent group-based trajectory model [1] is a mixture of two components. The group

membership is modeled via a multinomial regression and the longitudinal trajectories con-

ditional on a given group membership are modeled via a linear model. The general form of

the model can be specified as follows:

J∑
j=1

nJ∑
i=1

Pr(πi = j|Zi = zi)Pr(Yi = yi|πi = j,Wi = wi), (4.1)
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where Z represents time-independent covariates for the group membership and W represents

time-independent or time-dependent covariates for the longitudinal trajectory. πi represents

group membership. For subject i in group j, the first term of (4.1) represents the probability

of belonging to group j,

πji = Pr(πi = j|Zi = zi) =
exp(θj + λTj zi)∑J
l=1 exp(θl + λTl zi)

. (4.2)

The second term of (4.1) represents the probability of the longitudinal outcomes Yi given

the group membership j,

P j(Yi) = Pr(Yi = yi|πi = j,Wi = wi) =
1

(2π)
t
2 |Σj|

1
2

exp
{
−1

2
(yi − µj)TΣ−1

j (yi − µj)
}
.

(4.3)

Mean values for the longitudinal outcomes for group j, µj = E[Y ], depend on covariates W

and are specified as a polynomial function of time, (e.g. cubic) with the form

µj = β0 + βTwi + βT1 t+ βT2 t
2 + βT3 t

3. (4.4)

4.2.2 Survival Process

The cumulative incidence function under the proportional subdistribution hazards assump-

tion has the form [4]

Fk(t;Z) = 1− exp{− exp(ZTβk)µk(t)} (4.5)

where µk(t) = logk{
∫ t

0 λk0(s)ds} is the log baseline cumulative subdistribution hazard func-

tion and k is cause of death. This is the Fine and Gray cumulative incidence shown by Jeong

and Fine (2007). With this form, Fine and Gray use a semi-parametric baseline survival,

while Jeong and Fine [5] assume a Gompertz distribution, i.e., µG(t; ρ, τ) = τ{exp(ρt)−1}/ρ.

In this study, we assume a Gompertz parameter form as defined in Jeong and Fine [5].

When ρ < 0 and t→∞, there is a set of subjects who would never experience event k.

This set of subjects is called the ”cured” subjects and the cure fraction can be obtained by

lim
t→∞

F (t;Z) = 1− exp{τk exp(ZTβk)/ρk}. (4.6)
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Jeong and Fine [5] specify a parametric survival model with likelihood:

n∏
i=1

[{ nK∏
k=1

fk(ti, ψk; zi)
δki
}{

1−
nK∑
k=1

Fk(ti, ψk; zi)
}1−

∑nK
k=1

δki

]
(4.7)

where ψk = (βk, ρk, τk), and δ is the censoring indicator.

We define fk(ti, ψk; zi) = dFk(ti, ψk; zi)/dt, therefore:

fk(ti, ψk; zi) = exp{− exp(ZTβk)τk exp(ZTβk){exp(ρkt)− 1}}τk exp(zTβk) exp(ρkt) (4.8)

4.2.3 Joint Model

The formulation of latent class joint model begins with the conditional independence as-

sumption:

[Yi, Ti|Z, j] = [Yi|W, j][Ti|Z, j]. (4.9)

The conditional independence assumption assumes that the longitudinal and survival pro-

cesses (Yi and Ti) are independent given the group membership j. The longitudinal and

survival processes are linked through the latent classes. [Yi, Ti|Z, j] represents the joint lon-

gitudinal and survival process given a set of baseline covariates, Z and the latent group j.

[Yi|Z, j] is the longitudinal process given a set of baseline covariates Z and group j. The

survival process is [Ti|Z, j], given a set of covariates Z and group j.

Extending this, Lin, et al. [7] show the framework for the log-likelihood of the joint

model::
n∑
i

log
J∑
j=1

[
f(j|Z)f(yi|Z, j)f(ti|Z, j)

]
(4.10)

For our joint model, from Equation 4.1 we set the latent group process as:f(j|Z) = Pr(πi =

j|Zi = zi). Then we set:

f(yi|Z, j) = Pr(Yi = yi|πi = j,Wi = wi) (4.11)

where Yi ∼MVN(uj,Σ) for the longitudinal process, also from Equation 4.1.

The survival process, from Equation 4.7, becomes:

f(ti|Z, j) =
{ nK∏
k=1

fk(ti, ψk; zi)
δki|πi = j

}{{
1−

nK∑
k=1

Fk(ti, ψk; zi)
}1−

∑nK
k=1

δki|πi = j
}

(4.12)
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Using the conditional independence assumption, we can combine the group-based longi-

tudinal process and the competing risks survival process in a joint model.

n∏
i

[
J∑
j=1

Pr(πi = j|Zi = zi)Pr(Yi = yi|πi = j,Wi = wi)×

{ nK∏
k=1

fk(ti, ψk; zi)
δki|πi = j

}{
1−

nK∑
k=1

Fk(ti, ψk; zi)
}1−

∑nK
k=1

δki|πi = j

]
(4.13)

Since we model the group membership as a multinomial and the longitudinal data as a

multivariate normal to represent the vector of group means across time, Equation 4.13 is

equivalent to:

n∏
i

[
J∑
j=1

[ exp(θj + λTj zi)∑J
l=1 exp(θl + λTl zi)

{MVN(µ,Σ)|πi = j} ×

{
(
nK∏
k=1

fk(ti, ψjk; zi)
δki)(1−

nK∑
k=1

Fk(ti, ψjk; zi))
1−
∑nK

k=1
δki)|πi = j

}]]
(4.14)

and ψjk = (βk, ρjk, τjk).

4.3 SIMULATIONS

We simulated longitudinal and survival data for one-group, two-group, three-group, and four-

group models. The longitudinal data was created for three time points and generated based

on a multivariate normal distribution for each individual. Survival time was generated from

a Gompertz proportional subdistribution hazards model and the corresponding parameter

values were set based on the Jeong and Fine results. Approximately 75% of the observations

are censored, 15% experience the main event, and 10% experience the competing event.

We generated longitudinal data for each individual based on a multivariate normal dis-

tribution. Each individual’s longitudinal trajectory will follow Yi ∼ MVN(µj,Σ) where µj

is a vector of group means at each time point and Σ is a matrix that represents the variance

at each time point. For the two-group simulations, we generated one group to be flat across

three time points, with each group mean generated with mean 150 and variance 8. Our

second group increased over time. We generated group means of 150, 160, 170 across three
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time points with variance 8. For the two group model, we generated 50% in each group. A

sample of simulated data is shown below in Table 4. Figure 1 depicts these two trajectories

over time.

To generate the proportion of subjects experiencing the main event, we look at the

cumulative incidence function as t→∞ to represent the proportion of subjects experiencing

the event. The proportion of subjects experiencing the main event can be shown[5] as:

F1j(∞;ψkj, Z) = 1− exp{τ1j exp(ZTβ1j)/ρ1j} (4.15)

Where j represents the latent class and k represents the event type. Therefore, we generated

a proportion of subjects to experience the main event with probability F1j(∞;ψ1j, Z) and

competing event with probability F2j = 1 − F1j(∞;ψkj, Z). We denote the main event as

δ = 1 and the competing event as δ = 2.

A treatment variable was generated from a Bernoulli random variable with p = 0.5.

To obtain the survival time using the inverse transformation method, we generate a

random uniform variable and derive survival time T for subject i follows:

U(0, 1) =
Fkj(t, Z)

Fkj(∞, Z)
, (4.16)

where U is a random uniform variable. Expanding the equation yields:

U(0, 1) =
1− exp{− exp(ZTβkj)τkj{exp(ρkjt)− 1}/ρk}

1− exp{−τkj exp(ZTβkj)}
, (4.17)

Solving for t,

Ti =
log[1− ρkj log[1−U∗A]

τkj exp(ZT βkj)

ρkj
, (4.18)

where A = 1− exp{−τkj exp(ZTβkj)/ρkj}.

To generate roughly 75% censoring, we used the following procedure to calculate censor-

ing time:

Ci = − log(U(0, 1))

0.1
. (4.19)

We let Xi = min(Ti, Ci), which indicates the observed event time experienced by subject

i. The censoring indicator, δ, is defined as:

δ = I(C < t) = 0 (4.20)
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Table 4: Simulated longitudinal and competing risks data

Y1 Y2 Y3 treatment event time δ

147.3421 164.2374 169.8981 0 0.041 1

147.3421 164.2374 169.8981 0 1.048 0

150.7401 147.9986 149.0599 1 0.6939 0

145.2746 157.6325 168.6481 1 7.444 2

150.0821 157.3202 172.5691 1 2.837 1

153.6890 161.3567 170.4538 0 57.684 0

148.9496 163.9706 171.9572 1 11.331 0

149.4707 152.2447 148.7789 0 9.790 0

149.0810 147.0524 146.7202 1 7.907 0

150.0501 157.8537 169.5550 1 4.247 0

We present two simulation scenarios.One in which the latent groups are driven by the

longitudinal data, and one where they are driven by the survival process In the first scenario,

the the two groups have different longitudinal processes but the same survival process.If

the estimation method works, we expect the method identifies two subgroups from the

population. We generated survival data similar to the dataset used in Jeong and Fine [6].

Table 5 shows the true and estimated parameter values under scenario 1.
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Table 5: Two group simulation

parameter simulated value estimated value se bias

θ 0 0.002 0.062 0.002

b01 150 150.004 0.114 0.004

b11 0 0.0004 0.09 0.0004

b02 150 150.007 0.11 0.007

b12 10 9.997 0.09 0.003

Σ 8 8.02 0.19 0.02

τ11 0.08 0.081 0.014 0.001

ρ11 -0.25 -0.253 0.04 0.003

β1 -0.54 -0.533 0.15 0.007

τ21 0.01 0.0099 0.002 0.0001

β2 -0.1 -0.066 0.204 0.034

τ12 0.08 0.081 0.014 0.001

ρ12 -0.25 -0.254 0.042 0.004

τ22 0.01 0.01 0.002 0.002

27



Figure 4: Simulation Scenario 1: Cumulative incidence functions.

In Table 5, b01 is the intercept of the longitudinal trajectory for group one and b11 is

the slope. b02 is the intercept and b12 the slope for the longitudinal trajectory of group two.

The model appears to do a good job estimating the group membership, the longitudinal

trajectories, and the survival parameters. Figure 4 shows the cumulative incidence for the

main event, and Figure 5 shows the longitudinal trajectories.

We then created another two group scenario where all subjects had the same longitudinal

trajectory with two different survival patterns. Parameter estimates are shown in Table 6.
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Figure 6 shows the simulated and estimated cumulative incidence functions. Here, the group

membership estimate shows some bias. We generated a 50-50 split in the groups, but we

get a probability of group membership of 58% for group 1 and 42% for group 2. Even

though the membership parameter is a bit biased, we still get a much better picture of the

data than we would with the two staged procedure. The two-stage procedure models the

latent classes based solely on the longitudinal data, then stratifies the survival process by

group membership. The two-stage procedure yields only one longitudinal trajectory. The

two-stage approach then assumes there is only one latent group, and therefore one survival

process instead of two. The results from the two-staged approach are shown in Tables 7

and 8. The two-stage longitudinal plot is shown in Figure 7 and the two-stage cumulative

incidence function is shown in Figure 8.

We then created three and four-group simulations. The three group simulation is shown

in Table 9 and the four-group simulation is shown in Table 10. These simulations assume

most of the variation is from the longitudinal trajectories. Overall, the models perform well

except for the group membership parameter when all of the differing behavior in the groups

is due to the survival process.
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Table 6: Two group simulation, varying survival

parameter simulated value estimated value se bias

θ 0 0.336 0.539 0.336

b01 150 149.99 0.405 0.01

b11 0 -0.0002 0.334 0.0002

b02 150 150.002 0.299 0.002

b12 00 0.001 0.254 0.001

Σ 8 7.89 0.28 0.11

τ11 0.05 0.058 0.069 0.008

ρ11 -0.30 -0.293 0.04 0.007

β1 -0.54 -0.591 0.271 0.051

τ21 0.03 0.035 0.014 0.005

β2 -0.1 -0.12 0.244 0.02

τ12 0.08 0.079 0.05 0.001

ρ12 -0.25 -0.259 0.123 0.009

τ22 0.01 0.009 0.007 0.001
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Figure 5: Simulation Scenario 1: Cumulative incidence.
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Figure 6: Simulation Scenario 2: Cumulative incidence functions Red is group=1 treat-

ment=1. Black is group=1 treatment=0. Blue is group 2 treatment 1. Green is group=2

treatment=0. Solid represents simulated distribution and dotted is estimated.
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Table 7: Two group simulation, varying survival: Two stage results- longitudinal trajectories

parameter simulated value estimated value

b0 150 150

b1 0 -0.0003

Σ 8 7.99

Table 8: Two group simulation, varying survival: Two stage results- survival outcomes

parameter estimated value

τ1 0.658

ρ1 -0.274

β1 -0.541

β2 0.182

τ2 -0.089
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Figure 7: Two stage scenario 2: longitudinal trajectory

Figure 8: Two stage scenario 2: Cumulative incidence functions.
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Table 9: Three group simulation

parameter simulated value estimated value se bias

θ1 0 0.007380429 0.013660083 0.007380429

θ2 0 0.007251138 0.013720109 0.007251138

b01 150 149.995523 0.122708888 0.004477049

b11 0 0.006767094 0.096443233 0.006767094

b02 150 149.9983398 0.123857727 0.001660229

b12 10 10.00891278 0.093364758 0.008912777

b03 150 150.0067443 0.124174321 0.006744286

b13 -10 -9.99833542 0.096617366 0.00166458

Σ 8 7.997340859 0.165837733 0.002659141

τ11 0.08 0.080214294 0.014670442 0.000214294

ρ11 -0.25 -0.252296777 0.047264329 0.002296777

β1 -0.54 -0.51605992 0.130987059 0.02394008

τ21 0.01 0.009877407 0.001933054 0.000122593

β2 -0.10 -0.076655961 0.174349748 0.023344039

τ12 0.08 0.080088833 0.014930994 8.88E-05

ρ12 -0.25 -0.253980648 0.045521539 0.003980648

τ22 0.01 0.010019783 0.002018567 1.98E-05

τ13 0.08 0.080282881 0.015406932 0.000282881

ρ13 -0.25 -0.253726204 0.048262471 0.003726204

τ23 0.01 0.009937464 0.002076849 6.25E-05
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Table 10: Four group simulation

parameter simulated value estimated value se bias

θ1 0 0.014000978 0.020429434 0.014000978

θ2 0 0.014315229 0.020196247 0.014315229

θ3 0 0.013939894 0.020243941 0.013939894

b01 150 150.0046316 0.129163406 0.004631618

b11 0 0.002427609 0.108466652 0.002427609

b02 150 150.0015145 0.123987557 0.001514543

b12 10 10.0044659 0.102332277 0.004465903

b03 150 150.0149517 0.134645141 0.014951692

b13 -10 -10.00776779 0.102705067 0.007767786

b04 150 150.0197878 0.132423656 0.019787751

b14 50 49.99808612 0.103308052 0.001913883

Σ 8 8.018753658 0.163834362 0.018753658

τ11 0.08 0.078639747 0.016839896 0.001360253

ρ11 -0.25 -0.249539219 0.052761025 0.000460781

β1 -0.54 -0.518097768 0.131984547 0.021902232

τ21 0.01 0.009894038 0.002062416 0.000105962

β2 -0.1 -0.086333667 0.17326322 0.013666333

τ12 0.08 0.0815269 0.017099368 0.0015269

ρ12 -0.25 -0.257555018 0.05485795 0.007555018

τ22 0.01 0.009801578 0.002185425 0.000198422

τ13 0.08 0.080739008 0.016922616 0.000739008

ρ13 -0.25 -0.254859542 0.05551281 0.004859542

τ23 0.01 0.010071575 0.002132759 7.16E-05

τ14 0.08 0.080912189 0.016942175 0.000912189

ρ14 -0.25 -0.254893844 0.052001886 0.004893844

τ24 0.01 0.009855543 0.002278104 0.000144457
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We then tested whether the BIC [3] is still a valid criteria for model selection. We

generated 500 datasets, each with sample size 1200. We generated data using the same

parameters from scenario 1 of the two group simulation study. Each data set was truly a two

group data set. We then estimated the parameters and calculated the BIC for one group,

two group, three group, and four group models. Using the BIC Factor[2] criteria, we selected

the best model fit. 94% of the time, the correct two group model was selected by the BIC

Factor. It appears the BIC factor remains a valid model selection tool for the latent class

joint model.

4.4 EXAMPLE: THE BIOMARK STUDY

BioMaRK is a study that aims to test associations between a panel of inflammatory biomark-

ers and recovery from acute renal failure. The entire cohort consists of 819 subjects whose

biomarker measurements were taken at day 1 and day 8. A subset of these patients (n=104)

had daily biomarker measurements taken from day 1 through day 8. The biomarker of

interest in this study is interleukin-6 (IL-6). Our event-time outcome of interest was re-

covery from acute kidney injury, and we treated death as a competing risk. We analyzed

the data and examined if there are distinct behavioral patterns in in these data regarding

both longitudinal and survival data. In the parent trial [18], subjects were randomized to

either high-intensity renal replacement therapy or low-intensity renal replacement therapy.

We included treatment as the only covariate in the model. It is important to model the

subdistributions in this study, since subjects drop out of the study due to death.

4.4.1 The joint model approach

We ran the joint model for 1, 2, and 3 groups, and used the BIC factor to determine that

the two-group model was the best. Table 11 shows the model-fitting results. Using the BIC

Factor criteria laid out by Jones, where a BIC Factor ≤ 2 is not important, we choose the

next lowest group. For our data, the two group model is optimal.
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Table 11: Model fitting for BioMaRK data

groups parameters LL BIC BIC factor

1 8 -1556.99 -1575.66 NA

2 14 -1413.21 -1445.72 259.69

3 20 -1430.88 -1477.32 -63.21

We fit linear longitudinal trajectories for simplicity. Parameter estimates from the two

group model are shown in Table 12 below. The longitudinal trajectories are shown in Figure

9. The cumulative incidence function for the main event, recovery is shown in Figure 11.

The cumulative incidence function for the competing event, death, is shown in Figure 11.

The group membership parameter indicates that 68% of the population is in the black group

and 32% in the red group. The red group has a higher baseline IL-6 and decreases over time,

while the black group remains mostly stable over time. Though the red group decreases over

time, they do not reach IL6 levels of the black group on day 8. The cumulative incidence

function for recovery shows the black group with a higher probability of recovery than the

red group. This result is consistent with what is known about inflammatory markers; higher

inflammatory biomarker levels are typically associated with worse outcomes.The λ parameter

indicates that there is no difference in the treatment assignments across the the two groups

(p=0.11). The treatment effect for recovery is non-significant in the black group (p=0.66)

and the red group (p=0.46), though the low intensity treatment performs better than the

high intensity treatment. The subdistribution for the competing event shows the red group

with higher probabilities of death. Again, this is consistent with higher levels of biomarkers

leading to worse outcomes. The treatment effect for death is also non-significant for the

black group (p=0.50) and the red group (p=0.86).

38



4.4.2 The two-stage approach

We can also analyze the data using the two-stage approach. Here we modeled the longitudinal

trajectories using SAS PROC TRAJ to obtain the trajectories and group memberships. Then

we stratified by groups and calculated the subdistributions for each group.

Modeling the longitudinal trajectories yields similar results to the joint model. From

Figure 10, we see one relatively flat trajectory with group membership of 70% and a de-

creasing group with membership 30%.Figure shows the longitudinal trajectories. Plotting

the subdistributions again gives us similar results to the joint model. Figure 11 shows the

subdistributions for each group. The treatment effect for recovery is non-significant in the

black (p=0.65) and red (p=0.25) groups.
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Table 12: Joint and two-stage BioMaRK results.

Joint Model Two Stage

parameter

estimate

std

error estimate

std

error

λ (treatment across groups) 0.75 0.46 0.76 0.47

θ (Group membership) -0.734 0.246 -0.857 -

b01 (Group 1 intercept) 4.58 0.11 4.61 0.11

b11 (Group 1 slope) -0.05 0.02 -0.05 0.02

b02 (Group 2 intercept) 7.18 0.19 7.25 0.19

b12 (Group 2 slope) -0.23 0.03 -0.24 0.03

Σ 1.01 0.06 1.01 0.03

τ11 0.04 0.01 0.03 0.01

ρ11 -0.04 0.01 -0.04 0.01

β11 (Group 1 treatment effect recovery) -0.15 0.35 0.01 0.33

τ21 0.007 0.002 0.008 0.002

β21 (Group 1 treatment effect death) 0.301 0.451 0.082 0.417

τ12 0.027 0.015 0.03 0.015

ρ12 -0.034 0.018 -0.032 0.018

τ22 0.012 0.005 0.009 0.004

β12 (Group 2 treatment effect recovery ) -0.461 0.611 -0.647 0.567

β22 (Group 2 treatment effect death) 0.104 0.603 0.228 0.574
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Figure 9: BioMaRK: Joint model longitudinal group trajectories

Figure 10: BioMaRK: Two-Stage longitudinal trajectories
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Figure 11: BioMaRK: Cumulative incidence functions for recovery and death.
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4.5 CONCLUSIONS

The latent class joint model allows us to discover distinct behavioral groups and simulta-

neously model the longitudinal process and competing risks survival process. This allows

investigators to uncover behavioral groups based on both longitudinal and survival data. Us-

ing the conditional independence assumption, we can construct a likelihood by multiplying

the multinomial group distribution with the longitudinal and survival processes. We mod-

eled the longitudinal trajectories assuming a multivariate normal, and the survival process

as subdistributions. The simulation studies showed that the group membership parameter

may be biased in the extreme case where all of the group separation is caused by the survival

process. We applied the joint model to data from the BioMaRK study, and showed that in

the data set, there are two distinct behavioral groups. One group has a higher baseline with

decreasing levels of IL6 over time, and another group has fairly constant levels over time.

We found that the group with consistently lower levels of IL6 was more likely to recover and

less likely to die. The main advantage of the latent class joint model is that researchers can

discover latent groups using both longitudinal and survival data. This can give researchers a

more accurate picture of group behavior. If the latent groups are driven by differing survival

processes, a two-stage approach will not reflect this. However, in the BioMaRK data, the

joint model and two-stage approach yield very similar results. Even if the two approaches

produce similar results, the joint model can be used as a sensitivity analysis to show that

the two-stage is not overly biased. The biggest disadvantage is model complexity and com-

putation. Estimation can be quite cumbersome and issues with model convergence can be

problematic. If the latent groups are more driven by the survival process, it is much easier

for the analyst to use existing software, such as PROC TRAJ in SAS, to determine group

membership. The analyst can then stratify by group membership and run different survival

models. Future work in the are could involve studying how the model performs based on if

the group membership is driven more by the longitudinal or survival process. Also, devel-

oping a standard package to run these models could make analysts more likely to use them.

Even if the two-stage analysis does not differ much from the joint model analysis, one can

use the joint model as a sensitivity check.
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5.0 OVERALL CONCLUSIONS

Latent group based modeling can be powerful tool to investigators. If they believe that their

data contains distinct behavioral groups, using group based modeling can give researchers a

better idea of the true nature of their data. These models can be powerful tools in discovering

patterns researchers may not have known about. Group-based modeling not only allows

researchers to separate individuals into a manageable number of risk groups, but can also

identify why the groups are different, leading to potential discoveries. One of the main issues

we addressed is the relative lack of diagnostic statistics for these models. Our discrimination

index gives an indicator of whether an individual is assigned to a group with a high or

low degree of confidence. Modified entropy can also be used as a continuous measure. The

percent of subjects that are well discriminated can also be used as an overall model diagnostic.

If clinicians are interested in treating individuals based on their group assignments, the

overall discrimination rate will tell them whether or not their model is reliable. Researchers

are also becoming more interested in modeling both longitudinal trajectories with survival

outcomes. While much work has been done developing classic joint models, we developed a

latent class joint model that can be used to model latent groups based on both longitudinal

data and competing risks survival data. These models are becoming increasingly useful,

especially with more work being done with biomarker measurements. The competing risks

models are useful especially when researchers use clinical outcomes such as recovery from

a disease. Future work includes developing an R package for latent group based trajectory

modeling with discrimination index. Currently, most group-based longitudinal trajectories

are modeled using Mplus or PROC TRAJ in SAS. Developing more user friendly software

packages can make ensure that these models are more widely used.
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APPENDIX A

GROUP-BASED MODELING R CODE

library(mvtnorm)

data2<-function(n,means1,means2,v) {

library(mvtnorm)

tp<-dim(means1)[1]

tp2<-tp+1

nmeans1<-as.vector(t(means1))

nmeans2<-as.vector(t(means2))

corr<-diag(tp)

va<-v*corr

#x<-matrix(NA,nrow=n,ncol=tp)

x<-matrix(NA,nrow=n,ncol=tp2)

#q1<-rmvnorm(n/2,nmeans1,va)

#q2<-rmvnorm(n/2,nmeans2,va)

#n.2<-n/2

#n.3<-(n/2)+1
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#x[1:n.2,1:tp]<-q1

#x[n.3:n,1:tp]<-q2

z<-rbinom(n,1,0.5)

for(i in 1:n) {

if(z[i]==1) {x[i,1:tp]= rmvnorm(1,nmeans1,va)} else{x[i,1:tp]= rmvnorm(1,nmeans2,va)}

}

x[,tp2]<-rbinom(n,1,0.5)

return(x)

}

data3<-function(n,means1,means2,means3,v) {

library(mvtnorm)

tp<-dim(means1)[1]

nmeans1<-as.vector(t(means1))

nmeans2<-as.vector(t(means2))

nmeans3<-as.vector(t(means3))

corr<-diag(tp)

va<-v*corr

x<-matrix(NA,nrow=n,ncol=tp)

q1<-rmvnorm(n/3,nmeans1,va)

q2<-rmvnorm(n/3,nmeans2,va)

q3<-rmvnorm(n/3,nmeans3,va)

n.2<-n/3

n.3<-(n/3)+1

n.4<-2*n/3

n.5<-(2*n/3)+1

x[1:n.2,1:tp]<-q1
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x[n.3:n.4,1:tp]<-q2

x[n.5:n,1:tp]<-q3

return(x)

}

data4<-function(n,means1,means2,means3,means4,v) {

library(mvtnorm)

tp<-dim(means1)[1]

nmeans1<-as.vector(t(means1))

nmeans2<-as.vector(t(means2))

nmeans3<-as.vector(t(means3))

nmeans4<-as.vector(t(means4))

corr<-diag(tp)

va<-v*corr

x<-matrix(NA,nrow=n,ncol=tp)

q1<-rmvnorm(n/4,nmeans1,va)

q2<-rmvnorm(n/4,nmeans2,va)

q3<-rmvnorm(n/4,nmeans3,va)

q4<-rmvnorm(n/4,nmeans4,va)

n.2<-n/4

n.3<-(n/4)+1

n.4<-2*n.2

n.5<-n.4+1

n.6<-3*n/4

n.7<-n.6+1
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x[1:n.2,1:tp]<-q1

x[n.3:n.4,1:tp]<-q2

x[n.5:n.6,1:tp]<-q3

x[n.7:n,1:tp]<-q4

return(x)

}

# Likelihood functions

#1 grp

fr1<-function(parm,dat)

{

mu<-parm[1:3]

sig<-matrix(c(parm[4],0,0,0,parm[4],0,0,0,parm[4]),nrow=3,ncol=3)

deny<-dmvnorm(dat,mu,sig)

LL<-sum(log(deny))

return(-LL)

}

#2 grps

fr2<-function(parm,dat)

{

t2<-0:2

t<-t(t(t2))

l<-length(t)

tp<-(t-2)/2

# u1<-1+tp

# u2<-u1+1
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# u3<-u2+tp-1

theta<-parm[1]

b01<-parm[2]

b11<-parm[3]

b02<-parm[4]

b12<-parm[5]

iden<-diag(l)

sig<-parm[6]*iden

deny <- (1/(1+exp(theta))*dmvnorm(dat,b01+(b11*t),sig) + exp(theta)/(1+exp(theta))

*dmvnorm(dat,b02+(b12*t),sig))

LL<-sum(log(deny))

return(-LL)

}

#2 grps trt cov

fr2c<-function(parm,dat)

{

t2<-0:2

t<-t(t(t2))

l<-length(t)

tp<-(t-2)/2

# u1<-1+tp

# u2<-u1+1

# u3<-u2+tp-1

theta<-parm[1]

b01<-parm[2]

b11<-parm[3]
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b02<-parm[4]

b12<-parm[5]

iden<-diag(l)

sig<-parm[6]*iden

lambda<-parm[7]

d<-1+exp(theta + lambda*dat[,4])

deny <- (1/d)*(dmvnorm(dat[,1:3],b01+(b11*t),sig)) + (exp(theta +

lambda*dat[,4])/d)*(dmvnorm(dat[,1:3],b02+(b12*t),sig))

LL<-sum(log(deny))

return(-LL)

}

#3 grps

fr3<-function(parm,dat)

{

l<-length(parm)

tp<-(l-3)/3

u1<-2+tp

u2<-u1+1

u3<-u2+tp-1

u4<-u3+1

u5<-u4+tp-1

theta2<-parm[1]

theta3<-parm[2]

mu1<-parm[3:u1]
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mu2<-parm[u2:u3]

mu3<-parm[u4:u5]

iden<-diag(tp)

sig<-parm[l]*iden

d<-1+exp(theta2)+exp(theta3)

deny <- ((1/d)*dmvnorm(dat,mu1,sig) + (exp(theta2)/d)*dmvnorm(dat,mu2,sig)+

(exp(theta3)/d)*dmvnorm(dat,mu3,sig))

LL<-sum(log(deny))

return(-LL)

}

#4 grps

fr4<-function(parm,dat)

{

t2<-0:6

t<-t(t(t2))

l<-length(t)

# tp<-(l-4)/4

u1<-3+tp

u2<-u1+1

u3<-u2+tp-1

u4<-u3+1

u5<-u4+tp-1

u6<-u5+1

u7<-u6+tp-1
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theta2<-parm[1]

theta3<-parm[2]

theta4<-parm[3]

b01<-parm[4]

b11<-parm[5]

b02<-parm[6]

b12<-parm[7]

b03<-parm[8]

b13<-parm[9]

b04<-parm[10]

b14<-parm[11]

iden<-diag(l)

sig<-parm[12]*iden

d<-1+exp(theta2)+exp(theta3)+exp(theta4)

deny <- ((1/d)*dmvnorm(dat,b01+b11*t,sig) + (exp(theta2)/d)*dmvnorm(dat,b02+b12*t,sig)+

(exp(theta3)/d)*dmvnorm(dat,b03+b13*t,sig)+(exp(theta4)/d)*dmvnorm(dat,b04+b14*t,sig)

)

LL<-sum(log(deny))

return(-LL)

}

fr32<-function(parm,dat)

{

t2.1<-dim(dat)[2]

t2<-1:t2.1-1

t<-t(t(t2))

t.2<-t^2

l<-length(t)

52



theta2<-parm[1]

theta3<-parm[2]

b01<-parm[3]

b11<-parm[4]

b21<-parm[5]

b02<-parm[6]

b12<-parm[7]

b22<-parm[8]

b03<-parm[9]

b13<-parm[10]

b23<-parm[11]

iden<-diag(l)

sig<-parm[12]*iden

d<-1+exp(theta2)+exp(theta3)

deny <- ((1/d)*dmvnorm(dat,b01+b11*t+b21*t.2,sig) +

(exp(theta2)/d)*dmvnorm(dat,b02+b12*t+b22*t.2,sig)+

(exp(theta3)/d)*dmvnorm(dat,b03+b13*t+b23*t.2,sig)

)

LL<-sum(log(deny))

return(-LL)

}

#4 grps

fr42<-function(parm,dat)

{
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t2.1<-dim(dat)[2]

t2<-1:t2.1-1

t<-t(t(t2))

t.2<-t^2

l<-length(t)

theta2<-parm[1]

theta3<-parm[2]

theta4<-parm[3]

b01<-parm[4]

b11<-parm[5]

b21<-parm[6]

b02<-parm[7]

b12<-parm[8]

b22<-parm[9]

b03<-parm[10]

b13<-parm[11]

b23<-parm[12]

b04<-parm[13]

b14<-parm[14]

b24<-parm[15]

iden<-diag(l)

sig<-parm[16]*iden

d<-1+exp(theta2)+exp(theta3)+exp(theta4)

deny <- ((1/d)*dmvnorm(dat,b01+b11*t+b21*t.2,sig) +

(exp(theta2)/d)*dmvnorm(dat,b02+b12*t+b22*t.2,sig)+

(exp(theta3)/d)*dmvnorm(dat,b03+b13*t+b23*t.2,sig)+

(exp(theta4)/d)*dmvnorm(dat,b04+b14*t+b24*t.2,sig)

)
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LL<-sum(log(deny))

return(-LL)

}

#______________________________________________________________________

# Posterior probabilites for 2,3,4 groups. x=data,e=parameters,j=groups

post.p<-function(x,e,j) {

if(j==2)

{

tp<-dim(x)[2]

l<-length(e$par)

u1<-1+tp

u2<-u1+1

u3<-u2+tp-1

iden<-diag(tp)

#2 grp

e2.var1<-e$par[l]*iden

py.1.2<-dmvnorm(x,e$par[2:u1],e2.var1)

py.2.2<-dmvnorm(x,e$par[u2:u3],e2.var1)
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p<-1/(1+exp(e$par[1]))

g2p1.y<-py.1.2*p/(py.1.2*p + py.2.2*(1-p))

g2p2.y<-py.2.2*(1-p)/(py.1.2*p + py.2.2*(1-p))

n<-dim(x)[1]

post.x<-matrix(NA,nrow=n,ncol=4)

post.x[,1]<-g2p1.y

post.x[,2]<-g2p2.y

for(i in 1:n)

{

if (post.x[i,1]>post.x[i,2]) post.x[i,3]=1 else post.x[i,3]=2

}

# post.x[1:600,4]=1

# post.x[601:1200,4]=2

}

if(j==3)

{

tp<-dim(x)[2]

l<-length(e$par)

u1<-2+tp

u2<-u1+1

u3<-u2+tp-1

u4<-u3+1

u5<-u4+tp-1

iden<-diag(tp)
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#3 grp

e3.var1<-e$par[l]*iden

mu1<-e$par[3]+e$par[4]*t+e$par[5]*t.2

mu2<-e$par[6]+e$par[7]*t+e$par[8]*t.2

mu3<-e$par[9]+e$par[10]*t+e$par[11]*t.2

py.1.3<-dmvnorm(x,mu1,e3.var1)

py.2.3<-dmvnorm(x,mu2,e3.var1)

py.3.3<-dmvnorm(x,mu3,e3.var1)

p1<-1/(1+exp(opt$par[1])+exp(opt$par[2]))

p2<-exp(e$par[1])/(1+exp(e$par[1])+exp(e$par[2]))

p3<-exp(e$par[2])/(1+exp(e$par[1])+exp(e$par[2]))

g3p1.y<-py.1.3*p1/(py.1.3*p1 + py.2.3*p2 + py.3.3*p3)

g3p2.y<-py.2.3*p2/(py.1.3*p1 + py.2.3*p2 + py.3.3*p3)

g3p3.y<-py.3.3*p3/(py.1.3*p1 + py.2.3*p2 + py.3.3*p3)

n<-dim(x)[1]

post.x<-matrix(NA,nrow=n,ncol=5)

post.x[,1]<-g3p1.y

post.x[,2]<-g3p2.y

post.x[,3]<-g3p3.y

for(i in 1:n)
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{

if (max(post.x[i,1:3])==post.x[i,1]) post.x[i,4]=1

if (max(post.x[i,1:3])==post.x[i,2]) post.x[i,4]=2

if (max(post.x[i,1:3])==post.x[i,3]) post.x[i,4]=3

}

# post.x[1:400,5]=1

# post.x[401:800,5]=2

# post.x[801:1200,5]=3

}

if(j==4)

{

tp<-dim(x)[2]

# l<-length(e$par)

u1<-3+tp

u2<-u1+1

u3<-u2+tp-1

u4<-u3+1

u5<-u4+tp-1

u6<-u5+1

u7<-u6+tp-1

time<-1:tp-1

t<-t(t(time))

t.2<-t^2

mu1<-e$par[4]+e$par[5]*t+e$par[6]*t.2

mu2<-e$par[7]+e$par[8]*t+e$par[9]*t.2

mu3<-e$par[10]+e$par[11]*t+e$par[12]*t.2

mu4<-e$par[13]+e$par[14]*t+e$par[15]*t.2
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iden<-diag(tp)

#4 grp

e4.var1<-e$par[16]*iden

py.1.4<-dmvnorm(x,mu1,e4.var1)

py.2.4<-dmvnorm(x,mu2,e4.var1)

py.3.4<-dmvnorm(x,mu3,e4.var1)

py.4.4<-dmvnorm(x,mu4,e4.var1)

p1<-1/(1+exp(e$par[1])+exp(e$par[2])+exp(e$par[3]))

p2<-exp(e$par[1])/(1+exp(e$par[1])+exp(e$par[2])+exp(e$par[3]))

p3<-exp(e$par[2])/(1+exp(e$par[1])+exp(e$par[2])+exp(e$par[3]))

p4<-exp(e$par[3])/(1+exp(e$par[1])+exp(e$par[2])+exp(e$par[3]))

g4p1.y<-py.1.4*p1/(py.1.4*p1 + py.2.4*p2 + py.3.4*p3 + py.4.4*p4)

g4p2.y<-py.2.4*p2/(py.1.4*p1 + py.2.4*p2 + py.3.4*p3 + py.4.4*p4)

g4p3.y<-py.3.4*p3/(py.1.4*p1 + py.2.4*p2 + py.3.4*p3 + py.4.4*p4)

g4p4.y<-py.4.4*p4/(py.1.4*p1 + py.2.4*p2 + py.3.4*p3 + py.4.4*p4)

n<-dim(x)[1]

post.x<-matrix(NA,nrow=n,ncol=5)

post.x[,1]<-g4p1.y

post.x[,2]<-g4p2.y

post.x[,3]<-g4p3.y
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post.x[,4]<-g4p4.y

for(i in 1:n)

{

if (max(post.x[i,1:4])==post.x[i,1]) post.x[i,5]=1

if (max(post.x[i,1:4])==post.x[i,2]) post.x[i,5]=2

if (max(post.x[i,1:4])==post.x[i,3]) post.x[i,5]=3

if (max(post.x[i,1:4])==post.x[i,4]) post.x[i,5]=4

}

}

return(post.x)

}

#________________________________________________________________________

#BIC

bic<-function(e,num_parm,N)

{

return(-e$value-(.5*num_parm*log(N)))

}

#_______________________________________________________________

mis.rat<-function(post) {

count<-0

n<-dim(post)[1]

n.col<-dim(post)[2]

for(i in 1:n)

{

if(post[i,n.col-1]!=post[i,n.col]) count=count+1
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}

return(c(count, count/n))

}

# 2 group scores

scores<-function(post.mat) {

return(mean(abs(post.mat[,1]-0.5)/0.5))

}

# 3 group scores

scores3<-function(post.mat) {

w1<-.8

w2<-.2

p2<-0

b<-array(dim=3)

d<-dim(post.mat)[1]

s<-array(dim=d)

for(i in 1:d) {

b<-post.mat[i,1:3]

p1<-max(b)

p2<-median(b)

p3<-min(b)

# s[i]<-((w1*(p1-p2) + w2*(p2-p3)))/w1

s[i]<-(p1-(1/3))/(2/3)

}

return(mean(s))

}
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# 4 group scores

scores4<-function(post.mat) {

b<-array(dim=4)

d<-dim(post.mat)[1]

s<-array(dim=d)

for(i in 1:d) {

b<-post.mat[i,1:4]

p1<-max(b)

p2<-median(b)

p3<-min(b)

s[i]<-(p1-(1/4))/(3/4)

}

return(mean(s))

}

# 2 group simulation

msim2<-function(N) {

sdff<-array(1200)

for(i in 1:N)

{

x<-data2(1200,150,150,150,150,150,155,15,13)

opt<-optim(c(0.5,150,150,150,150,150,155,15,13),fr2,dat=x, method="BFGS")

bic<-bic(opt,5,length(x[,1]))

post.mat<-post.p(x,opt,2)

mis<-mis.rat(post.mat)

sdff[i]<-scores(post.mat)

}
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return(sdff)

}

# 3 group simulation

msim3<-function(N) {

sdff<-array(1200)

for(i in 1:N)

{

x<-data3(1200,160,155,150,150,150,150,140,145,150,12,12,12)

opt<-optim(c(0.3,0.3,160,155,150,150,150,150,140,145,150,12,12,12),

fr3,dat=x, method="BFGS")

bic<-bic(opt,8,length(x[,1]))

post.mat<-post.p(x,opt,3)

mis<-mis.rat(post.mat)

sdff[i]<-scores3(post.mat)

}

return(sdff)

}

# 4 group simulation

msim4<-function(N) {

sdff<-array(1200)

for(i in 1:N)

{

x<-data4(1200,150,150,150,145,155,150,140,150,155,155,150,150,12,12,12,12)

opt<-optim(c(0.25,0.25,0.25,150,150,150,145,155,150,140,150,155,155,150,150,12,12,12,12),

fr4,dat=x, method="BFGS")

bic<-bic(opt,11,length(x[,1]))

post.mat<-post.p(x,opt,4)
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mis<-mis.rat(post.mat)

sdff[i]<-scores4(post.mat)

}

return(sdff)

}
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APPENDIX B

DISCRIMINATION INDEX R CODE

var.est2<-function(x,e,j) {

#2 grp

e2.var1<-matrix(c(e$par[8],0,0,0,e$par[8],0,0,0,e$par[8]),nrow=3,ncol=3)

e2.var2<-matrix(c(e$par[9],0,0,0,e$par[9],0,0,0,e$par[9]),nrow=3,ncol=3)

py.1.2<-as.matrix(dmvnorm(x,e$par[2:4],e2.var1))

py.2.2<-as.matrix(dmvnorm(x,e$par[5:7],e2.var2))

n<-dim(x)[1]

x.t<-t(x)

x_mu<-matrix(NA,nrow=3*n,ncol=1)

x_mu2<-matrix(NA,nrow=3*n,ncol=1)

x_mu1.t<-matrix(NA,nrow=3,ncol=n)

mu1_hat<-as.matrix(e$par[2:4])

mu2_hat<-as.matrix(e$par[5:7])

l<-1
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for(i in 1:n)

{

k<-l+2

x_mu[l:k,]<-x[i,]-mu1_hat

l<-l+3

}

l<-1

for(i in 1:n)

{

k<-l+2

x_mu2[l:k,]<-x[i,]-mu2_hat

l<-l+3

}

var.delt<-matrix(NA,nrow=n,ncol=1)

#var.delt1<-matrix(NA,nrow=n,ncol=3)

#var.delt2<-matrix(NA,nrow=n,ncol=3)

l<-1

for(i in 1:n)

{

k<-l+2

Sp1<-(t(solve(e2.var1)))%*%(x_mu[k:l,])

Sp2<-(solve(e2.var1))%*%(x_mu[k:l,])

Sp3<-(t(solve(e2.var2)))%*%(x_mu2[k:l,])
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Sp4<-(solve(e2.var2))%*%(x_mu2[k:l,])

S1<-(e$par[1]*py.1.2[i,])*(-.5*(Sp1+Sp2))

S2<-(1-e$par[1])*py.2.2[i,]*(-.5*(Sp3+Sp4))

A<-(py.1.2[i,]*e$par[1] + py.2.2[i,]*(1-e$par[1]))

var.delt1<-t(((S1*A-((S1+S2)*e$par[1]*py.1.2[i,]))/A^2))

%*%e2.var1%*%((S1*A-((S1+S2)*e$par[1]*py.1.2[i,]))/A^2)

var.delt2<-t(((S2*A-((S1+S2)*(1- e$par[1])*py.2.2[i,]))/A^2))

%*%e2.var2%*%((S2*A-((S1+S2)

*(1e$par[1])*py.2.2[i,]))/A^2)

var.delt[i,]<-var.delt1+var.delt2

l<-l+3

}

return(var.delt)

}

#____________________________________________________________________

n<-200

rat<-array(dim=250)

for(z in 1:250) {

x<-data2(n,150,150,150,145,152,148,15,15)

e<-optim(c(0.5,150,150,150,145,152,148,15,15),fr2,dat=x, method="BFGS")

v<-var.est2(x,e,2)

ci<-1.96*sqrt(v)/sqrt(n)

#____________________________________________
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# Max probability matrix

post.mat<-post.p(x,e,2)

maxmat<-matrix(NA,nrow=n,ncol=5)

maxmat[,1:4]<-post.mat

emat<-matrix(NA,nrow=n,ncol=5)

for(i in 1:n)

{

emat[i,1]<-max(post.mat[i,1],post.mat[i,2])

emat[i,2]<-ci[i,]

emat[i,3]<-emat[i,1]-emat[i,2]

emat[i,4]<-emat[i,1]+emat[i,2]

if(emat[i,3]<.5) {emat[i,5]<-1} else {emat[i,5]<-0}

}

tb1<-table(emat[,5])

emat2<-matrix(NA,nrow=n,ncol=7)

for(i in 1:n)

{

emat2[i,1]<-max(post.mat[i,1],post.mat[i,2])

emat2[i,2]<-min(post.mat[i,1],post.mat[i,2])

emat2[i,3]<-emat2[i,1]-emat[i,2]

emat2[i,4]<-emat2[i,1]+emat[i,2]

emat2[i,5]<-emat2[i,2]-emat[i,2]

emat2[i,6]<-emat2[i,2]+emat[i,2]

if(emat2[i,3]<emat2[i,6]) {emat2[i,7]<-1} else {emat2[i,7]<-0}
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}

tb2<-table(emat2[,7])

rat[z]<-tb1[2]/(tb1[1]+tb1[2])

}

for(i in 1:250)

{

if(is.na(rat[i])==TRUE) {rat[i]<-0}

}

# 3 group delta method

#______________________________________________________________________

var.est3<-function(x,e,j) {

#3 grp

# e2.var1<-matrix(c(e$par[12],0,0,0,e$par[12],0,0,0,e$par[12]),nrow=3,ncol=3)

# e2.var2<-matrix(c(e$par[13],0,0,0,e$par[13],0,0,0,e$par[13]),nrow=3,ncol=3)

# e2.var3<-matrix(c(e$par[14],0,0,0,e$par[14],0,0,0,e$par[14]),nrow=3,ncol=3)

# py.1.2<-as.matrix(dmvnorm(x,e$par[3:5],e2.var1))
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# py.2.2<-as.matrix(dmvnorm(x,e$par[6:8],e2.var2))

# py.3.2<-as.matrix(dmvnorm(x,e$par[9:11],e2.var3))

l<-length(e$par)

tp<-dim(x)[2]

iden<-diag(tp)

e2.var1<-e$par[l]*iden

time<-1:tp-1

t<-t(t(time))

t.2<-t^2

mu1<-e$par[3]+e$par[4]*t+e$par[5]*t.2

mu2<-e$par[6]+e$par[7]*t+e$par[8]*t.2

mu3<-e$par[9]+e$par[10]*t+e$par[11]*t.2

py.1.2<-as.matrix(dmvnorm(x,mu1,e2.var1))

py.2.2<-as.matrix(dmvnorm(x,mu2,e2.var1))

py.3.2<-as.matrix(dmvnorm(x,mu3,e2.var1))

n<-dim(x)[1]

x.t<-t(x)

x_mu<-matrix(NA,nrow=tp*n,ncol=1)

x_mu2<-matrix(NA,nrow=tp*n,ncol=1)

x_mu3<-matrix(NA,nrow=tp*n,ncol=1)
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x_mu1.t<-matrix(NA,nrow=3,ncol=n)

mu1_hat<-mu1

mu2_hat<-mu2

mu3_hat<-mu3

# l<-1

# for(i in 1:n)

# {

# k<-l+2

# x_mu[l:k,]<-x[i,]-mu1_hat

# l<-l+3

# }

# l<-1

# for(i in 1:n)

# {

# k<-l+2

# x_mu2[l:k,]<-x[i,]-mu2_hat

# l<-l+3

# }

# l<-1

# for(i in 1:n)

# {

# k<-l+2

# x_mu3[l:k,]<-x[i,]-mu3_hat
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# l<-l+3

# }

l<-1

for(i in 1:n)

{

k<-tp+l-1

x_mu[l:k,]<-x[i,]-mu1_hat

l<-l+tp

}

l<-1

for(i in 1:n)

{

k<-tp+l-1

x_mu2[l:k,]<-x[i,]-mu2_hat

l<-l+tp

}

l<-1

for(i in 1:n)

{

k<-tp+l-1

x_mu3[l:k,]<-x[i,]-mu3_hat

l<-l+tp

}
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var.delt<-matrix(NA,nrow=n,ncol=1)

#var.delt1<-matrix(NA,nrow=n,ncol=3)

#var.delt2<-matrix(NA,nrow=n,ncol=3)

p1<-1/(1+exp(e$par[1])+exp(e$par[2]))

p2<-exp(e$par[1])/(1+exp(e$par[1])+exp(e$par[2]))

p3<-exp(e$par[2])/(1+exp(e$par[1])+exp(e$par[2]))

l<-1

for(i in 1:n)

{

k<-tp+l-1

Sp1<-(t(solve(e2.var1)))%*%(x_mu[k:l,])

Sp2<-(solve(e2.var1))%*%(x_mu[k:l,])

Sp3<-(t(solve(e2.var1)))%*%(x_mu2[k:l,])

Sp4<-(solve(e2.var1))%*%(x_mu2[k:l,])

Sp5<-(t(solve(e2.var1)))%*%(x_mu3[k:l,])

Sp6<-(solve(e2.var1))%*%(x_mu3[k:l,])

S1<-(p1*py.1.2[i,])*(-.5*(Sp1+Sp2))

S2<-(p2*py.2.2[i,])*(-.5*(Sp3+Sp4))

S3<-(p3*py.3.2[i,])*(-.5*(Sp5+Sp6))

A<-(py.1.2[i,]*p1 + py.2.2[i,]*p2+ py.3.2[i,]*p3)

var.delt1<-t(((S1*A-((S1+S2+S3)*p1*py.1.2[i,]))/A^2))%*%e2.var1%*%
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((S1*A-((S1+S2+S3)*p1*py.1.2[i,]))/A^2)

var.delt2<-t(((S2*A-((S1+S2+S3)*p2*py.2.2[i,]))/A^2))%*%e2.var1%*%

((S2*A-((S1+S2+S3)*p2*py.2.2[i,]))/A^2)

var.delt3<-t(((S3*A-((S1+S2+S3)*p3*py.3.2[i,]))/A^2))%*%e2.var1%*%

((S3*A-((S1+S2+S3)*p3*py.3.2[i,]))/A^2)

var.delt[i,]<-var.delt1+var.delt2+var.delt3

l<-l+tp

}

return(var.delt)

}

n<-150

rat<-array(dim=100)

for(z in 1:100) {

x<-data3(n,150,150,150,155,150,145,145,150,155,8,8,8)

e<-optim(c(0.3,0.3,150,150,150,155,150,145,145,150,155,8,8,8),fr3,dat=x, method="BFGS")

v<-var.est3(c5data,e,3)

ci<-1.96*sqrt(v)/sqrt(n)

# Max probability matrix 3

post.mat1<-post.p(c5data,e,3)

post.mat<-post.mat1[,1:4]

maxmat<-matrix(NA,nrow=n,ncol=5)

maxmat[,1:4]<-post.mat
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emat<-matrix(NA,nrow=n,ncol=5)

for(i in 1:n)

{

emat[i,1]<-max(post.mat[i,1],post.mat[i,2],post.mat[i,3])

emat[i,2]<-ci[i,]

emat[i,3]<-emat[i,1]-emat[i,2]

emat[i,4]<-emat[i,1]+emat[i,2]

if(emat[i,3]<.333) {emat[i,5]<-1} else {emat[i,5]<-0}

}

ent_mat3<-matrix(NA,nrow=n,ncol=2)

emat2<-matrix(NA,nrow=n,ncol=5)

for(i in 1:n)

{

emat2[i,1]<-max(post.mat[i,1],post.mat[i,2],post.mat[i,3])

# emat2[i,2]<-median(post.mat[i,1:3])

med<-median(post.mat[i,1:3])

emat2[i,2]<-(emat2[i,1]+med)/2

emat2[i,3]<-emat2[i,1]-emat[i,2]

emat2[i,4]<-emat2[i,1]+emat[i,2]

# emat2[i,5]<-emat2[i,2]-emat[i,2]

# emat2[i,6]<-emat2[i,2]+emat[i,2]

if(emat2[i,3]<emat2[i,2]) {emat2[i,5]<-1} else {emat2[i,5]<-0}

ent_mat3[i,1]<-emat2[i,1]

ent_mat3[i,2]<-med
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}

# Use a 2 sample proportion test instead of looking at the overlapping CIs.

tb1<-table(emat2[,5])

rat[z]<-tb1[2]/(tb1[1]+tb1[2])

}

# Max probability matrix 3

post.mat1<-post.p(c5data,e,3)

post.mat<-post.mat1[,1:3]

maxmat<-matrix(NA,nrow=n,ncol=4)

maxmat[,1:3]<-post.mat

post.mat2<-data.frame(post.mat)

emat<-matrix(NA,nrow=n,ncol=6)

for(i in 1:n)

{

emat[i,1]<-max(post.mat[i,1],post.mat[i,2],post.mat[i,3])

emat[i,2]<-median(c(post.mat[i,1],post.mat[i,2],post.mat[i,3]))

emat[i,3]<-(emat[i,1]+emat[i,2])/2

emat[i,4]<-emat[i,1]-ci[i]

emat[i,5]<-emat[i,1]+ci[i]

if(emat[i,4]<emat[i,3]) {emat[i,6]<-1} else {emat[i,6]<-0}

}

tb1<-table(emat[,6])
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#___________________________________________________________________________

var.est4<-function(x,e,j) {

#4 grp

tp<-dim(x)[2]

l<-length(e$par)

u1<-3+tp

u2<-u1+1

u3<-u2+tp-1

u4<-u3+1

u5<-u4+tp-1

u6<-u5+1

u7<-u6+tp-1

iden<-diag(tp)

#4 grp

e2.var1<-e$par[l]*iden

time<-1:tp-1

t<-t(t(time))

t.2<-t^2

mu1<-e$par[4]+e$par[5]*t+e$par[6]*t.2

mu2<-e$par[7]+e$par[8]*t+e$par[9]*t.2

mu3<-e$par[10]+e$par[11]*t+e$par[12]*t.2

mu4<-e$par[13]+e$par[14]*t+e$par[15]*t.2
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py.1.2<-as.matrix(dmvnorm(x,mu1,e2.var1))

py.2.2<-as.matrix(dmvnorm(x,mu2,e2.var1))

py.3.2<-as.matrix(dmvnorm(x,mu3,e2.var1))

py.4.2<-as.matrix(dmvnorm(x,mu4,e2.var1))

n<-dim(x)[1]

x.t<-t(x)

x_mu<-matrix(NA,nrow=tp*n,ncol=1)

x_mu2<-matrix(NA,nrow=tp*n,ncol=1)

x_mu3<-matrix(NA,nrow=tp*n,ncol=1)

x_mu4<-matrix(NA,nrow=tp*n,ncol=1)

x_mu1.t<-matrix(NA,nrow=tp,ncol=n)

mu1_hat<-mu1

mu2_hat<-mu2

mu3_hat<-mu3

mu4_hat<-mu4

l<-1

for(i in 1:n)

{

k<-tp+l-1

x_mu[l:k,]<-x[i,]-mu1_hat
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l<-l+tp

}

l<-1

for(i in 1:n)

{

k<-tp+l-1

x_mu2[l:k,]<-x[i,]-mu2_hat

l<-l+tp

}

l<-1

for(i in 1:n)

{

k<-tp+l-1

x_mu3[l:k,]<-x[i,]-mu3_hat

l<-l+tp

}

l<-1

for(i in 1:n)

{

k<-tp+l-1

x_mu4[l:k,]<-x[i,]-mu4_hat

l<-l+tp

}

var.delt<-matrix(NA,nrow=n,ncol=1)

#var.delt1<-matrix(NA,nrow=n,ncol=tp)
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#var.delt2<-matrix(NA,nrow=n,ncol=tp)

p1<-1/(1+exp(e$par[1])+exp(e$par[2])+exp(e$par[3]))

p2<-exp(e$par[1])/(1+exp(e$par[1])+exp(e$par[2])+exp(e$par[3]))

p3<-exp(e$par[2])/(1+exp(e$par[1])+exp(e$par[2])+exp(e$par[3]))

p4<-exp(e$par[3])/(1+exp(e$par[1])+exp(e$par[2])+exp(e$par[3]))

l<-1

for(i in 1:n)

{

k<-tp+l-1

Sp1<-(t(solve(e2.var1)))%*%(x_mu[k:l,])

Sp2<-(solve(e2.var1))%*%(x_mu[k:l,])

Sp3<-(t(solve(e2.var1)))%*%(x_mu2[k:l,])

Sp4<-(solve(e2.var1))%*%(x_mu2[k:l,])

Sp5<-(t(solve(e2.var1)))%*%(x_mu3[k:l,])

Sp6<-(solve(e2.var1))%*%(x_mu3[k:l,])

Sp7<-(t(solve(e2.var1)))%*%(x_mu4[k:l,])

Sp8<-(solve(e2.var1))%*%(x_mu4[k:l,])

S1<-p1*py.1.2[i,]*(-.5*(Sp1+Sp2))

S2<-p2*py.2.2[i,]*(-.5*(Sp3+Sp4))

S3<-p3*py.3.2[i,]*(-.5*(Sp5+Sp6))

S4<-p4*py.4.2[i,]*(-.5*(Sp7+Sp8))
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A<-(py.1.2[i,]*p1 + py.2.2[i,]*p2+ py.3.2[i,]*p3+ py.4.2[i,]*p4)

var.delt1<-

(((S1*A-((S1+S2+S3+S4)*p1*py.1.2[i,]))/A^2))%*%

e2.var1%*%((S1*A-((S1+S2+S3+S4)*p1*py.1.2[i,]))/A^2)

var.delt2<-

(((S2*A-((S1+S2+S3+S4)*p2*py.2.2[i,]))/A^2))%*%

e2.var1%*%((S2*A-((S1+S2+S3+S4)*p2*py.2.2[i,]))/A^2)

var.delt3<-

t(((S3*A-((S1+S2+S3+S4)*p3*py.3.2[i,]))/A^2))%*%

e2.var1%*%((S3*A-((S1+S2+S3+S4)*p3*py.3.2[i,]))/A^2)

var.delt4<-

t(((S4*A-((S1+S2+S3+S4)*p4*py.4.2[i,]))/A^2))%*%

e2.var1%*%((S4*A-((S1+S2+S3+S4)*p4*py.4.2[i,]))/A^2)

var.delt[i,]<-var.delt1+var.delt2+var.delt3+var.delt4

l<-l+tp

}

return(var.delt)

}

n<-200

rat<-array(dim=100)

for(z in 1:100) {

x<-data4(n,150,150,150,150,145,140,140,140,140,140,145,150,12,12,12,12)
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e<-optim(c(0.25,0.25,0.25,150,150,150,150,145,140,140,140,140,140,

145,150,12,12,12,12),fr4,dat=x, method="BFGS")

v<-var.est4(c5data,e,4)

n<-dim(c5data)[1]

ci<-1.96*sqrt(v)/sqrt(n)

# Max probability matrix 4

post.mat1<-post.p(c5data,e,4)

post.mat<-post.mat1[,1:4]

maxmat<-matrix(NA,nrow=n,ncol=5)

maxmat[,1:4]<-post.mat

post.mat2<-data.frame(post.mat)

o_p<-matrix(NA,nrow=n, ncol=4)

for(i in 1:n)

{

o_p[i,]<-rank(post.mat[i,])

}

emat<-matrix(NA,nrow=n,ncol=6)

for(i in 1:n)

{

emat[i,1]<-max(post.mat[i,1],post.mat[i,2],post.mat[i,3],post.mat[i,4])

for(j in 1:4)

{

if(o_p[i,j]==3) {emat[i,2]<-post.mat[i,j]}

}
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emat[i,3]<-(emat[i,1]+emat[i,2])/2

emat[i,4]<-emat[i,1]-ci[i]

emat[i,5]<-emat[i,1]+ci[i]

if(emat[i,4]<emat[i,3]) {emat[i,6]<-1} else {emat[i,6]<-0}

}

tb1<-table(emat[,6])
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APPENDIX C

JOINT MODEL R CODE

bic<-function(e,num_parm,N)

{

return(-e$value-(.5*num_parm*log(N)))

}

#________________________________________________

#2 group longitudinal daata

data2<-function(n,means1,means2,v) {

library(mvtnorm)

tp<-dim(means1)[1]

nmeans1<-as.vector(t(means1))

nmeans2<-as.vector(t(means2))

corr<-diag(tp)

va<-v*corr
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x<-matrix(NA,nrow=n,ncol=tp)

#q1<-rmvnorm(n/2,nmeans1,va)

#q2<-rmvnorm(n/2,nmeans2,va)

#n.2<-n/2

#n.3<-(n/2)+1

#x[1:n.2,1:tp]<-q1

#x[n.3:n,1:tp]<-q2

z<-rbinom(n,1,0.5)

for(i in 1:n) {

if(z[i]==1) {x[i,]= rmvnorm(1,nmeans1,va)} else{x[i,]= rmvnorm(1,nmeans2,va)}

}

return(x)

}

#_______________________________________________________

cdata<- function(n) {

data<-matrix(nrow=n, ncol=6)

for(i in 1:n) {

rho1<- -0.25

tau1<-0.08

rho2<- -0.00772

#rho2<- 0.000152

tau2<-0.01

beta1<- -0.54

beta2<- -0.10

trt<-rbinom(1,1,0.5)

linpred_1<-trt*beta1
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linpred_2<-trt*beta2

f1inf<- 1-exp((tau1/rho1)*exp(linpred_1))

f2inf<-1-f1inf

e<-rbinom(1,1,f1inf)

if(e==1){

u<-runif(1,0,1);

t<-log(1-(log(1-u*f1inf)*rho1)/(tau1*exp(linpred_1)))/rho1}

else {u<-runif(1,0,1);t<-log(max(1e-15,1-(log(1-u*f2inf)*rho2)/

(tau2*exp(linpred_2))))/rho2};

e2<-e

if(e==0) {e2=2}

data[i,1]<-trt

data[i,2]<-t

data[i,3]<-e2

if(data[i,3]==1) {(data[i,4]=1) & (data[i,5]=0)}

else {(data[i,4]=0) & (data[i,5]=1)};

cen<-runif(1,0,1)

C<- -log(cen)/0.1

data[i,2]<-min(t,C)

if(C<t){data[i,3]<-0}
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if(data[i,3]==0) {data[i,6]=1;data[i,5]=0;data[i,4]=0} else{data[i,6]=0};

}

return(data)

}

#_________________________________________________________________

data1<-function(n,nmean,v)

{

tp<-dim(nmean)[1]

nmean1<-as.vector(t(nmean))

corr<-diag(tp)

va<-v*corr

q<-rmvnorm(n,nmean1,va)

return(q)

}

____________________________________________________________________

cdata2gr<- function(n,p) {

data<-matrix(nrow=n, ncol=6)

for(i in 1:n) {

b<-rbinom(1,1,p)

if(b==0) {

rho1<- -0.25

tau1<-0.08

rho2<- -0.00772

#rho2<- 0.000152

tau2<-0.01
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beta1<- -0.54

beta2<- -0.10 }

else {

rho1<- -0.30

tau1<-0.05

#rho2<- 0.000152

tau2<-0.03

rho2<-(tau2)/(log(1-exp(tau1/rho1)))

beta1<- -0.54

beta2<- -0.10 };

trt<-rbinom(1,1,0.5)

linpred_1<-trt*beta1

linpred_2<-trt*beta2

f1inf<- 1-exp((tau1/rho1)*exp(linpred_1))

f2inf<-1-f1inf

e<-rbinom(1,1,f1inf)

if(e==1){

u<-runif(1,0,1);

t<-log(1-(log(1-u*f1inf)*rho1)/(tau1*exp(linpred_1)))/rho1}

else {u<-runif(1,0,1);t<-log(max(1e-15,1-(log(1-u*f2inf)*rho2)/

(tau2*exp(linpred_2))))/rho2};

e2<-e

if(e==0) {e2=2}
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data[i,1]<-trt

data[i,2]<-t

data[i,3]<-e2

if(data[i,3]==1) {(data[i,4]=1) & (data[i,5]=0)}

else {(data[i,4]=0) & (data[i,5]=1)};

cen<-runif(1,0,1)

C<- -log(cen)/0.1

data[i,2]<-min(t,C)

if(C<t){data[i,3]<-0}

if(data[i,3]==0) {data[i,6]=1;data[i,5]=0;data[i,4]=0} else{data[i,6]=0};

}

return(data)

}

#_____________________________________________________________________

#4 grps

frjm4<-function(parm,dat) {

t2<-0:2

t<-t(t(t2))

l<-length(t)

tp<-(t-2)/2

theta1<-parm[1]

theta2<-parm[2]

theta3<-parm[3]
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b01<-parm[4]

b11<-parm[5]

b02<-parm[6]

b12<-parm[7]

b03<-parm[8]

b13<-parm[9]

b04<-parm[10]

b14<-parm[11]

iden<-diag(l)

sig<-parm[12]*iden

minn<-1e-15

rhop21<- -0.00772

taup11<-parm[13]

rhop11<-parm[14]

betap1<-parm[15]

taup21<-parm[16]

betap2<-parm[17]

taup12<-parm[18]

rhop12<-parm[19]

taup22<-parm[20]

rhop22<- -0.00772

taup13<-parm[21]

rhop13<-parm[22]

taup23<-parm[23]

rhop23<- -0.00772

taup14<-parm[24]

rhop14<-parm[25]

taup24<-parm[26]

rhop24<- -0.00772
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f11<- taup11*exp(dat[,4]*betap1)*exp(rhop11*dat[,5])*

exp(-exp(dat[,4]*betap1)*(taup11/rhop11)*(exp(rhop11*dat[,5])-1))

f21<- taup21*exp(dat[,4]*betap2)*exp(rhop21*dat[,5])*

exp(-exp(dat[,4]*betap2)*(taup21/rhop21)*(exp(rhop21*dat[,5])-1))

f12<- taup12*exp(dat[,4]*betap1)*exp(rhop12*dat[,5])*

exp(-exp(dat[,4]*betap1)*(taup12/rhop12)*(exp(rhop12*dat[,5])-1))

f22<- taup22*exp(dat[,4]*betap2)*exp(rhop22*dat[,5])*

exp(-exp(dat[,4]*betap2)*(taup22/rhop22)*(exp(rhop22*dat[,5])-1))

f13<- taup13*exp(dat[,4]*betap1)*exp(rhop13*dat[,5])*

exp(-exp(dat[,4]*betap1)*(taup13/rhop13)*(exp(rhop13*dat[,5])-1))

f23<- taup23*exp(dat[,4]*betap2)*exp(rhop23*dat[,5])*

exp(-exp(dat[,4]*betap2)*(taup23/rhop23)*(exp(rhop23*dat[,5])-1))

f14<- taup14*exp(dat[,4]*betap1)*exp(rhop14*dat[,5])*

exp(-exp(dat[,4]*betap1)*(taup14/rhop14)*(exp(rhop14*dat[,5])-1))

f24<- taup24*exp(dat[,4]*betap2)*exp(rhop24*dat[,5])*

exp(-exp(dat[,4]*betap2)*(taup24/rhop24)*(exp(rhop24*dat[,5])-1))

F11<-1-(exp(-exp(dat[,4]*betap1)*(taup11/rhop11)*(exp(rhop11*dat[,5])-1)))

F21<-1-(exp(-exp(dat[,4]*betap2)*(taup21/rhop21)*(exp(rhop21*dat[,5])-1)))

F12<-1-(exp(-exp(dat[,4]*betap1)*(taup12/rhop12)*(exp(rhop12*dat[,5])-1)))

F22<-1-(exp(-exp(dat[,4]*betap2)*(taup22/rhop22)*(exp(rhop22*dat[,5])-1)))

F13<-1-(exp(-exp(dat[,4]*betap1)*(taup13/rhop13)*(exp(rhop13*dat[,5])-1)))

F23<-1-(exp(-exp(dat[,4]*betap2)*(taup23/rhop23)*(exp(rhop23*dat[,5])-1)))

91



F14<-1-(exp(-exp(dat[,4]*betap1)*(taup14/rhop14)*(exp(rhop14*dat[,5])-1)))

F24<-1-(exp(-exp(dat[,4]*betap2)*(taup24/rhop24)*(exp(rhop24*dat[,5])-1)))

F1<-1-F11-F21

F2<-1-F12-F22

F3<-1-F13-F23

F4<-1-F14-F24

deny<-(1/(1+exp(theta1)+exp(theta2)+exp(theta3))*dmvnorm(dat[,1:3],b01+(b11*t),sig)*

(f11^dat[,7])*(f21^dat[,8])*(F1^dat[,9])+

exp(theta1)/(1+exp(theta1)+exp(theta2)+exp(theta3))*dmvnorm(dat[,1:3],b02+(b12*t),sig)*

(f12^dat[,7])*(f22^dat[,8])*(F2^dat[,9])+

exp(theta2)/(1+exp(theta1)+exp(theta2)+exp(theta3))*dmvnorm(dat[,1:3],b03+(b13*t),sig)*

(f13^dat[,7])*(f23^dat[,8])*(F3^dat[,9])+

exp(theta3)/(1+exp(theta1)+exp(theta2)+exp(theta3))*dmvnorm(dat[,1:3],b04+(b14*t),sig)*

(f14^dat[,7])*(f24^dat[,8])*(F4^dat[,9]))

LL<-sum(log(deny))

return(-LL)

}

#______________________________________________________________________

#3 grps

frjm3<-function(parm,dat) {
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t2<-0:2

t<-t(t(t2))

l<-length(t)

tp<-(t-2)/2

theta1<-parm[1]

theta2<-parm[2]

b01<-parm[3]

b11<-parm[4]

b02<-parm[5]

b12<-parm[6]

b03<-parm[7]

b13<-parm[8]

iden<-diag(l)

sig<-parm[9]*iden

minn<-1e-15

rhop21<- -0.00772

taup11<-parm[10]

rhop11<-parm[11]

betap1<-parm[12]

taup21<-parm[13]

betap2<-parm[14]

taup12<-parm[15]

rhop12<-parm[16]

taup22<-parm[17]

rhop22<- -0.00772

taup13<-parm[18]

rhop13<-parm[19]

taup23<-parm[20]

rhop23<- -0.00772

93



f11<- taup11*exp(dat[,4]*betap1)*exp(rhop11*dat[,5])*

exp(-exp(dat[,4]*betap1)*(taup11/rhop11)*(exp(rhop11*dat[,5])-1))

f21<- taup21*exp(dat[,4]*betap2)*exp(rhop21*dat[,5])*

exp(-exp(dat[,4]*betap2)*(taup21/rhop21)*(exp(rhop21*dat[,5])-1))

f12<- taup12*exp(dat[,4]*betap1)*exp(rhop12*dat[,5])*

exp(-exp(dat[,4]*betap1)*(taup12/rhop12)*(exp(rhop12*dat[,5])-1))

f22<- taup22*exp(dat[,4]*betap2)*exp(rhop22*dat[,5])*

exp(-exp(dat[,4]*betap2)*(taup22/rhop22)*(exp(rhop22*dat[,5])-1))

f13<- taup13*exp(dat[,4]*betap1)*exp(rhop13*dat[,5])*

exp(-exp(dat[,4]*betap1)*(taup13/rhop13)*(exp(rhop13*dat[,5])-1))

f23<- taup23*exp(dat[,4]*betap2)*exp(rhop23*dat[,5])*

exp(-exp(dat[,4]*betap2)*(taup23/rhop23)*(exp(rhop23*dat[,5])-1))

F11<-1-(exp(-exp(dat[,4]*betap1)*(taup11/rhop11)*(exp(rhop11*dat[,5])-1)))

F21<-1-(exp(-exp(dat[,4]*betap2)*(taup21/rhop21)*(exp(rhop21*dat[,5])-1)))

F12<-1-(exp(-exp(dat[,4]*betap1)*(taup12/rhop12)*(exp(rhop12*dat[,5])-1)))

F22<-1-(exp(-exp(dat[,4]*betap2)*(taup22/rhop22)*(exp(rhop22*dat[,5])-1)))

F13<-1-(exp(-exp(dat[,4]*betap1)*(taup13/rhop13)*(exp(rhop13*dat[,5])-1)))

F23<-1-(exp(-exp(dat[,4]*betap2)*(taup23/rhop23)*(exp(rhop23*dat[,5])-1)))

F1<-1-F11-F21

F2<-1-F12-F22

F3<-1-F13-F23
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deny<-(1/(1+exp(theta1)+exp(theta2))*dmvnorm(dat[,1:3],b01+(b11*t),sig)*

(f11^dat[,7])*(f21^dat[,8])*(F1^dat[,9])+

exp(theta1)/(1+exp(theta1)+exp(theta2))*dmvnorm(dat[,1:3],b02+

(b12*t),sig)*(f12^dat[,7])*(f22^dat[,8])*(F2^dat[,9])+ exp(theta2)/(1+exp(theta1)+

exp(theta2))*dmvnorm(dat[,1:3],b03+(b13*t),sig)*

(f13^dat[,7])*(f23^dat[,8])*(F3^dat[,9]))

LL<-sum(log(deny))

return(-LL)

}

#__________________________________________________________________________

#2 grps

frjm2<-function(parm,dat) {

t2<-0:2

t<-t(t(t2))

l<-length(t)

tp<-(t-2)/2

# u1<-1+tp

# u2<-u1+1

# u3<-u2+tp-1

theta<-parm[1]

b01<-parm[2]

b11<-parm[3]

b02<-parm[4]

b12<-parm[5]

iden<-diag(l)
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sig<-parm[6]*iden

minn<-1e-15

rhop21<- -0.00772

taup11<-parm[7]

rhop11<-parm[8]

betap1<-parm[9]

taup21<-parm[10]

# rhop21<-parm[11]

betap2<-parm[11]

taup12<-parm[12]

rhop12<-parm[13]

taup22<-parm[14]

rhop22<- -0.00772

f11<- taup11*exp(dat[,4]*betap1)*exp(rhop11*dat[,5])*

exp(-exp(dat[,4]*betap1)*(taup11/rhop11)*(exp(rhop11*dat[,5])-1))

f21<- taup21*exp(dat[,4]*betap2)*exp(rhop21*dat[,5])*

exp(-exp(dat[,4]*betap2)*(taup21/rhop21)*(exp(rhop21*dat[,5])-1))

f12<- taup12*exp(dat[,4]*betap1)*exp(rhop12*dat[,5])*

exp(-exp(dat[,4]*betap1)*(taup12/rhop12)*(exp(rhop12*dat[,5])-1))

f22<- taup22*exp(dat[,4]*betap2)*exp(rhop22*dat[,5])*

exp(-exp(dat[,4]*betap2)*(taup22/rhop22)*(exp(rhop22*dat[,5])-1))

F11<-1-(exp(-exp(dat[,4]*betap1)*(taup11/rhop11)*(exp(rhop11*dat[,5])-1)))

F21<-1-(exp(-exp(dat[,4]*betap2)*(taup21/rhop21)*(exp(rhop21*dat[,5])-1)))

F12<-1-(exp(-exp(dat[,4]*betap1)*(taup12/rhop12)*(exp(rhop12*dat[,5])-1)))

F22<-1-(exp(-exp(dat[,4]*betap2)*(taup22/rhop22)*(exp(rhop22*dat[,5])-1)))

F1<-1-F11-F21
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F2<-1-F12-F22

# for(i in 1:1000) {

# f11[i]<-max(1e-15, f11[i])

# }

# for(i in 1:1000) {

# f21[i]<-max(1e-15, f21[i])

# }

# for(i in 1:1000) {

# f12[i]<-max(1e-15, f12[i])

# }

# for(i in 1:1000) {

# f22[i]<-max(1e-15, f22[i])

# }

# for(i in 1:1000) {

# F1[i]<-max(1e-15, F1[i])

# }

# for(i in 1:1000) {

# F2[i]<-max(1e-15, F2[i])

# }

deny<-(1/(1+exp(theta))*dmvnorm(dat[,1:3],b01+(b11*t),sig)*

(f11^dat[,7])*(f21^dat[,8])*(F1^dat[,9])+ exp(theta)/(1+exp(theta))*

dmvnorm(dat[,1:3],b02+(b12*t),sig)*
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(f12^dat[,7])*(f22^dat[,8])*(F2^dat[,9]))

LL<-sum(log(deny))

return(-LL)

}

#__________________________________________________________________________

#1 grp

frjm1<-function(parm,dat) {

t2<-0:2

t<-t(t(t2))

l<-length(t)

tp<-(t-2)/2

b01<-parm[1]

b11<-parm[2]

iden<-diag(l)

sig<-parm[3]*iden

minn<-1e-15

rhop2<- -0.00772

taup1<-parm[4]

rhop1<-parm[5]

betap1<-parm[6]

taup2<-parm[7]

betap2<-parm[8]

f1<- taup1*exp(dat[,4]*betap1)*exp(rhop1*dat[,5])*exp(-exp(dat[,4]*betap1)*

(taup1/rhop1)*(exp(rhop1*dat[,5])-1))
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f2<- taup2*exp(dat[,4]*betap2)*exp(rhop2*dat[,5])*exp(-exp(dat[,4]*betap2)*

(taup2/rhop2)*(exp(rhop2*dat[,5])-1))

F1<-1-(exp(-exp(dat[,4]*betap1)*(taup1/rhop1)*(exp(rhop1*dat[,5])-1)))

F2<-1-(exp(-exp(dat[,4]*betap2)*(taup2/rhop2)*(exp(rhop2*dat[,5])-1)))

F<-1-F1-F2

deny<-dmvnorm(dat[,1:3],b01+(b11*t),sig)*(f1^dat[,7])*(f2^dat[,8])*(F^dat[,9])

LL<-sum(log(deny))

return(-LL)

}

#__________________________________________________________________________

res<-matrix(NA,nrow=500,ncol=26)

s<-system.time(

for(i in 1:500) {

long1<-as.matrix(c(150,150,150))

long2<-as.matrix(c(150,160,170))

long3<-as.matrix(c(150,140,130))

long4<-as.matrix(c(150,200,250))

data<-matrix(NA,nrow=1200,ncol=9)

#data[,1:3]<-data2(1000,long1,long2,8)

#data[,1:3]<-data3(1200,long1,long2,long3,8)

#data[,1:3]<-data1(1000,long1,8)
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data[,4:9]<-cdata(1200)

#data[,4:9]<-cdata2gr(1000,.5)

data[,1:3]<-data4(1200,long1,long2,long3,long4,8)

# 2grp

#opt<-optim(c(0,150,0,150,10,8,0.08, -0.25, -0.54, 0.01, -0.10, 0.08, -0.25, 0.01),

frjm2,dat=data, method="Nelder-Mead",control=list(maxit=10000))

#opt<-optim(c(0,150,0,150,0,8,0.05, -0.3, -0.54, 0.03, -0.10, 0.08, -0.25, 0.01),

frjm2,dat=data, method="Nelder-Mead",control=list(maxit=10000))

#opt 1 grp

#opt<-optim(c(150,0,8,0.08, -0.25, -0.54, 0.01, -0.10),frjm1,dat=data,

method="Nelder-Mead",control=list(maxit=10000))

#opt 3 grp

#opt<-optim(c(0,0,150,0,150,10,150,-10,8,0.08, -0.25, -0.54, 0.01, -0.10, 0.08,

-0.25, 0.01, 0.08, -0.25, 0.01),frjm3,dat=data, method="Nelder-Mead",

control=list(maxit=10000))

#opt 4 grp

opt<-optim(c(0,0,0,150,0,150,10,150,-10,150,50,8,0.08, -0.25, -0.54,

0.01, -0.10, 0.08, -0.25, 0.01, 0.08, -0.25, 0.01, 0.08, -0.25, 0.01),frjm4,

dat=data, method="Nelder-Mead",control=list(maxit=10000))

res[i,1:26]<-opt$par

}

)#system time end

100



results<-matrix(NA,nrow=26,ncol=3,dimnames=list(c("theta1","theta2","theta3","b01",

"b11","b02","b12","b03","b13","b04","b14","sigma","tau11","rho11","beta1","tau21",

"beta2","tau12","rho12","tau22","tau13","rho13","tau23","tau14","rho14",

"tau24"),c("estimate","se","bias")) )

sv4<-c(0,0,0,150,0,150,10,150,-10,150,50,8,0.08, -0.25, -0.54, 0.01, -0.10,0.08,-0.25,

0.01,0.08,-0.25,0.01,0.08,-0.25,0.01)

for(i in 1:26) {

results[i,1]<-mean(res[,i],na.rm=TRUE)

results[i,2]<-sd(res[,i],na.rm=TRUE)

results[i,3]<-abs(results[i,1]-sv4[i])

}

write.csv(results, "C:\\Users\\Nilesh\\Desktop\\Nilesh\\Pitt\\Dissertation

\\jeongfineresults\\

jmm1000results4gptry.csv")

#____________________________________

#bic testing

bic.mat<-matrix(NA,nrow=5,ncol=5)

conv.mat<-matrix(NA,nrow=5,ncol=5)

s<-system.time(

for(i in 1:5) {

long1<-as.matrix(c(150,150,150))

long2<-as.matrix(c(150,160,170))

data<-matrix(NA,nrow=1000,ncol=9)

data[,1:3]<-data2(1000,long1,long2,8)

data[,4:9]<-cdata(1000)
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#opt 1 grp

opt<-optim(c(150,0,8,0.08, -0.25, -0.54, 0.01, -0.10),frjm1,dat=data, method=

"Nelder-Mead",control=list(maxit=10000))

bic.mat[i,1]<-bic(opt,8,1000)

conv.mat[i,1]<-opt$convergence

# 2grp

opt<-optim(c(0,150,0,150,10,8,0.08, -0.25, -0.54, 0.01, -0.10, 0.08, -0.25, 0.01),

frjm2,dat=data, method="Nelder-Mead",control=list(maxit=10000))

bic.mat[i,2]<-bic(opt,14,1000)

conv.mat[i,2]<-opt$convergence

#opt 3 grp

opt<-optim(c(0,0,150,0,150,10,150,-10,8,0.08, -0.25, -0.54, 0.01, -0.10, 0.08, -0.25,

0.01, 0.08, -0.25, 0.01),frjm3,dat=data, method="Nelder-Mead",control=

list(maxit=20000))

bic.mat[i,3]<-bic(opt,20,1000)

conv.mat[i,3]<-opt$convergence

#opt 4 grp

opt<-optim(c(0,0,0,150,0,150,10,150,-10,150,5,8,0.08, -0.25, -0.54, 0.01, -0.10,

0.08, -0.25, 0.01, 0.08, -0.25, 0.01, 0.08, -0.25, 0.01),

frjm4,dat=data, method="Nelder-Mead",control=list(maxit=20000))

bic.mat[i,4]<-bic(opt,26,1000)

conv.mat[i,4]<-opt$convergence

bic.mat[i,5]<-0

if(max(bic.mat[i,1:4])==bic.mat[i,1]) {bic.mat[i,5]=1}
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if(max(bic.mat[i,1:4])==bic.mat[i,2]) {bic.mat[i,5]=2}

if(max(bic.mat[i,1:4])==bic.mat[i,3]) {bic.mat[i,5]=3}

if(max(bic.mat[i,1:4])==bic.mat[i,4]) {bic.mat[i,5]=4}

conv.mat[i,5]<-sum(conv.mat[i,1:4])

})
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