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A common goal of longitudinal studies is to relate a set of repeated observations to a time-to-

event endpoint. One example of such a design is in the area of a late-life depression research 

where repeated measurement of cognitive and functional outcomes can contribute to one's ability 

to predict whether or not an individual will have a major depressive episode over a period of 

time. This research proposes a novel model for the relationship between multivariate longitudinal 

measurements and a time-to-event outcome. The goal of this model is to improve prediction for 

the time-to-event outcome by considering all longitudinal measurements simultaneously. 

In this dissertation, we investigate a joint modeling approach for mixed types of 

multivariate longitudinal outcomes and a time-to-event outcome using a Bayesian paradigm. For 

the longitudinal model of continuous and binary outcomes, we formulate multivariate 

generalized linear mixed models with two types of random effects structures: shared random 

effects and correlated random effects. For the joint model, the longitudinal outcomes and the 

time-to-event outcome are assumed to be independent conditional on available covariates and the 

shared parameters, which are associated with the random effects of the longitudinal outcome 

processes. A Bayesian method using Markov chain Monte Carlo (MCMC) computed in 

OpenBUGS is implemented for parameter estimation.  

PREDICTION IN THE JOINT MODELING OF MIXED TYPES OF MULTIVARIATE 
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We illustrate the prediction of future event probabilities within a fixed time interval for 

patients based on our joint model, utilizing baseline data, post-baseline longitudinal 

measurements, and the time-to-event outcome. Prediction of event or mortality probabilities 

allows one to intervene clinically when appropriate. Hence, such methods provide a useful public 

health tool at both the individual and the population levels. 

The proposed joint model is applied to data sets on the maintenance therapies in a late-

life depression study and the mortality in idiopathic pulmonary fibrosis. The performance of the 

method is also evaluated in extensive simulation studies.  
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1.0  INTRODUCTION 

In recent years, a common goal of longitudinal studies is to relate a set of repeated observations 

to a time-to-event endpoint. In such studies, the longitudinal measurements are considered as an 

outcome variable or a time-dependent covariate measured with error in the time-to-event 

outcome process. For example, in a late-life depression research repeated measurement of 

cognitive and functional outcomes can contribute to one's ability to predict whether an individual 

will have a major depressive episode over a period of time. A further example in chronic lung 

disease research is a study of the mortality in idiopathic pulmonary fibrosis (IPF) where 

longitudinally measured pulmonary function tests (PFT) are considered as a predictor for the 

time-to-event.  

Several authors have proposed joint models in which a single quantitative longitudinal 

outcome is related to a time-to-event outcome. However, longitudinal studies typically have 

more than one repeated response variable which can be related to a time-to-event outcome. In 

particular, there can be different types of longitudinal outcomes, both the quantitative and the 

dichotomous outcomes. We focus on the joint model with mixed types of the longitudinal 

continuous and binary outcomes and a time-to-event outcome.  

This dissertation was motivated by a study of cognitive impairment in a late-life 

depression. This longitudinal study consisted of two phases of treatment. In the first phase, 

participants responded to an open antidepressant treatment and completed assessment for the pre-
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randomized controlled trial to establish eligibility. The duration of the first phase was 12 to 16 

weeks. In the second phase, 130 eligible patients were randomized to receive either to Donepezil 

hydrochloride or Placebo. The duration of second phase was two years. The primary outcome for 

each patient was recurrence of major depression. Also of importance were a global measure of 

neuropsychological functioning, and a composite measure of cognitive instrumental activities of 

daily living (C-IADL) each of which, were measured longitudinally. One interest in this research 

is to relate the longitudinal measurements to the depression recurrence outcome. We want to 

improve prediction for the time to recurrence of depression by considering all longitudinal 

measurements simultaneously.  

We formulate multivariate correlated logistic models for a combination of longitudinal 

continuous and binary outcomes. For the longitudinal process, we consider random effects mixed 

models for both the longitudinal continuous and binary outcomes. We consider two types of 

structure for the random effects of longitudinal outcomes. One is shared random effects model. 

Another is correlated random effects model. This model falls within the general class of 

generalized linear mixed models. To build a joint model of mixed types of multivariate 

longitudinal outcomes and a time-to-event outcome, we assume shared parameters in the time-to-

event outcome process, which are associated with the random effects of the longitudinal 

outcomes. The longitudinal outcomes and the time-to-event outcome are assumed independent 

conditional on the shared parameters and available covariates. The Bayesian method through 

Markov chain Monte Carlo (MCMC) approach computed in OpenBUGS software is used for 

parameter estimation and simulations. We illustrate the dynamic prediction of an event occurring 

probabilities within a fixed time when a subject still does not fail at just before time t. The 
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survival function is based on the joint modeling of baseline data, post-baseline longitudinal 

measurements, and a time-to-event outcome.  

This dissertation is organized as follows. In chapter 2, we present a literature review of 

statistical models with key properties in the analysis of joint models for the longitudinal and the 

time-to-event outcomes and predictive modeling of an event probability. In chapter 3, we 

propose our joint models with the shared parameters assuming the shared random effects and the 

correlated random effects for both the longitudinal outcomes. We illustrate the dynamic 

prediction of event probabilities within a fixed time. In Chapters 4 and 5, we present the 

application of the proposed joint models to maintenance therapies in a late-life depression and 

mortality in idiopathic pulmonary fibrosis outcomes study, respectively. In Chapter 6, simulation 

studies are performed using the proposed method in the joint model with shared random effects 

and also with correlated random effects. Chapter 7 concludes with a discussion. 
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2.0  REVIEW OF LITERATURE 

In this chapter, an extensive literature review is presented. In section 2.1, we review key 

literature on statistical models and methods in the analysis of joint models for multivariate 

longitudinal data with different types of outcomes. In section 2.2, we review models that include 

longitudinal and time-to-event data. Finally, in section 2.3, we review methods for predictive 

modeling of time-to-event probabilities. 

2.1 MODELS FOR MULTIVARIATE LONGITUDINAL DATA WITH DIFFERENT 

TYPES OF OUTCOMES 

Longitudinal studies typically involve following one or more cohorts of subjects or experimental 

units repeatedly over two or more time points. Multivariate longitudinal studies are comprised of 

repeated responses each of which consists of two or more elements. In a multivariate 

longitudinal model, there are two types of correlations. One, called serial correlation, is between 

observations at different time points within a subject and the other, called cross correlation, is 

between observations on different response variables at each time point. If different types of 

outcomes are measured at each time point, the correlation structure is more complicated and 

hence, more difficult for drawing inference. Separate analyses of the different types of outcomes 

can lead to biased inferences because of those correlations. Therefore, it is more desirable to 
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jointly model multivariate outcome variables of different types together. As many studies 

measure multiple response outcomes of different types for each subject repeatedly, there are 

many approaches to model the different outcomes jointly (Olkin and Tate, 1961; Zeger and 

Liang, 1986; Lauritzen and Wermuth, 1989; Liu, Daniels, and Marcus, 2010; Molenberghs et al., 

2010).  

There are two general approaches for modeling multivariate longitudinal observations 

with differing outcome types. One proposed method for formulating the joint distribution of 

different types of outcomes is to model the relationship between the different outcomes using 

random effects. In this approach, different mixed models for each outcome are joined by 

imposing a common distribution for their random effects. It allows their model-specific random 

effects to be correlated, and this model allows for flexible correlation patterns. This model has a 

disadvantage of the high-dimensionality of the vector of random effects as the number of 

outcome variables gets large. 

Another approach is using the product of the marginal distribution of one of the responses 

and the conditional distribution of the remaining response given the other response, that is,  

 (                     )   (           ) (                     ) 

                                          (         ) (                     )  

Here,  ( )  denotes the probability density functions associated with the outcomes. In the 

conditional model, one has to choose an outcome to condition on which plays the role of a time-

varying covariate. Thus, two possible types of models can lead to very different results 

depending on whether the conditioning variable is a discrete or a continuous outcome. The main 

disadvantages with conditional modeling approach are that it is hard to get easy expressions for 
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the association between both continuous and discrete outcomes, and that it does not directly lead 

to marginal inference. Also, if we have more than two outcomes, there will be many more 

possible factorizations instead of only the two associated with two outcomes. Hence, a 

conditional model is often not the preferred choice for an analysis of high-dimensional 

multivariate longitudinal data.  

Catalano and Ryan (1992) described a joint distribution for bivariate clustered binary and 

continuous outcomes by factorizing the marginal distribution of a continuous outcome and a 

conditional distribution of a binary outcome given the continuous outcome. They used the 

concept of a latent variable. The type of latent variable used by Catalano and Ryan supposed that 

an unobserved continuous variable underlies the observed binary variable. Hence, they assume 

that a binary outcome results from dichotomizing the continuous latent variable. Latent variable 

models are useful to derive the distribution of a discrete outcome using a known CDF (Roeder, 

Lynch, and Nagin, 1999). Accordingly, they used a linear link function for the marginal 

distribution of the continuous outcome and used a correlated probit model for the conditional 

distribution of the binary outcome. They considered the following bivariate model: 

                  

    
               

where      and     
  denote the continuous variable and the unobserved latent variable 

corresponding to a binary variable for the subject   at time point  , respectively;    and    are 

the intercepts,   and    are effects of the covariate  , and      and      are correlated error terms 
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assumed to be mean-zero normally distributed. Let      be the corresponding observed binary 

variable determined by the latent variable     
 , such that 

     {
                 

   

                     

 

Catalano and Ryan represented the joint distribution of      and      as a product of the marginal 

and conditional distributions, 

          
(     )       

(  )          
(     )  

The continuous outcome,     , is normally distributed. For the conditional distribution of      

given     , they used probit link function,  

 (              )   (
  

√  
 (    )

)  

where  

           (
  

  
)        

          (       )  

  
  and   

  are variances of      and     , respectively, and   is the correlation between      and 

    . They reparameterized the probit model to the more parsimonious and fully estimable form:  

 (              )   (  
    

      
     )  
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These formulas are based on the assumption of independence for all subjects   and times  . They 

generalized the covariance to allow for separate within-subject correlations for each outcome 

variable (serial correlations) and the correlation between two outcome variables for different 

observations in the same subject (cross correlation). They used a generalized estimating equation 

(GEE) method to fit the marginal and conditional distributions. Catalano (1997) extended this 

joint model for ordered categorical and continuous outcomes.  

Fitzmaurice and Laird (1995) also considered a similar approach for modeling the joint 

distribution for continuous and discrete outcomes but reversed the conditioning order so that 

conditioning was now on the discrete outcome. In their model, the marginal distribution of the 

binary outcome was related to covariates using a logit link function, while the conditional 

distribution of the continuous outcome was related to covariates using a linear link function. In 

contrast to the model of Catalano and Ryan (1992), the regression parameters have marginal 

interpretations of the Fitzmaurice and Laird model for both the binary and continuous outcomes. 

The regression parameters can have a marginal interpretation only if the conditional mean of the 

binary outcome is related to the covariates by a linear link function (Cox and Wermuth, 1992). 

Also, in this latter model, maximum likelihood estimates of the regression parameters are 

consistent regardless of whether the model for the association between the binary and continuous 

outcomes has been correctly specified. By reversing the conditioning variable they evade both 

the lack of a marginal interpretation and the lack of robustness to misspecification.  

To develop the Fitzmaurice and Laird model, we first consider a simplified model 

without repeated measurements. Let     and     denote a continuous and a binary outcome, 

respectively. In addition,    will denote a     covariate vector for each subject  . Fitzmaurice 

and Laird made the assumption that the marginal distribution of     is Bernoulli, that is, 
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 (      )     [         {     (  )}]  

where  

      {
   

(     )
}       

and      [   ]     (           )is the probability of success and    is a     vector of 

marginal parameters. They wrote the joint distribution of (       ) as 

        
(       )      

(   )        
(       )  

They also assumed that the distribution of     given     is normal, i.e., the pdf is given by 

        
(       )  (    )        [ 

 

   
{         (       )}

 ]  

where      [   ]       and   is a parameter for the regression of     on    . Thus,  

 [       ]         (       )  

Hence, both    and    are regression parameter that have marginal interpretations. 

Now, let us consider the model of interest, that is, one with repeated measurements. Let 

    (            
)  and     (            

) denote the vectors of longitudinal continuous 

and binary outcomes, respectively. Let    (          
)  be a      matrix of covariates for 

each subject   assuming each element,    , also is a     vector. The model for the mean is  

     ( [   ])        

 [        ]          (         
)        
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where    ∑ (         
)

  
   . In this model, the parameters    and    induce a correlation 

between     and    . Fitzmaurice and Laird used a generalized estimating equation (GEE) 

method for the estimation of           and   . Their particular focus was on the regression 

parameters for the marginal expectation of the outcomes rather than the association between the 

outcomes which was considered to be a nuisance characteristic of the model. 

Both probit and logistic link functions have symmetric s-shaped cumulative distribution 

functions. However, the logistic places more probability in the tails of the distribution than does 

the normal, because the variance of the standard normal is equal to 1, the standard logistic has 

variance equal to     . Thus, the scale of the logistic is greater than the normal. The logistic link 

function is popular in many fields and interpretation is easier for logistic version. 

Fieuws and Verbeke (2004) were interested in the questions of how the evolution of one 

outcome is related to the evolution of another outcome (‘association of evolutions’) and how the 

association between outcomes evolves over time (‘evolution of the association’) for longitudinal 

multivariate data. To get flexible solutions to such questions, they investigated a joint model 

using a random effects approach. In this approach, random effects were assumed for each 

outcome and by adopting a joint multivariate distribution for the random effects, the different 

outcomes were associated. They applied their linear mixed-effects model to the hearing 

thresholds of two frequencies,    ( ) and    ( ) measured over time in subject  . Hence, for 

subject   taken at time  , their model was 

   ( )    ( )              ( ) 

 

                ( )    ( )              ( ) 

(2.1.1) 
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where   ( ) and   ( ) indicate the mean responses. The    are random intercepts, the    are 

random slopes for time. A joint distribution for the random effects can tie both outcome 

trajectories together assuming that    ,    ,    , and     follow a 4-dimensional multivariate 

normal distribution with mean zero and variance-covariance matrix  . The error terms were 

uncorrelated and not associated with the random effects 

(
   

   
)     ((

 

 
)  [

  
  

   
 ])  

Fieuws and Verbeke obtained the parameters of the model using likelihood based inference. The 

above mentioned questions can be answered from the covariance matrix of the random effects.   

In later work, they developed the joint random effects model given in equation (2.1.1) so that 

outcomes of higher dimension can be accommodated by proposing a pairwise modeling 

approach. This is obtained by first fitting all possible pairwise bivariate models separately, 

instead of maximizing the likelihood of the full joint model. Then they obtained estimates for all 

pair-specific parameters by maximizing each of the likelihoods separately. For some parameters 

which have multiple estimates, for example, the covariance between random effects from the 

same outcome, a single estimate is obtained by averaging all corresponding pair-specific 

maximum likelihood estimates (Fieuws and Verbeke 2005, 2006).  

Gueorguieva and Agresti (2001) used an approach similar to Catalano and Ryan (1992) 

for joint model. They studied a correlated probit model that applies an underlying latent normal 

variable for the binary outcomes but use a random effects model instead of a conditional model. 

The focus of their work was on the joint, subject-specific effects on the models. They used a 

modified Monte Carlo expectation-conditional maximization (ECM) algorithm for finding 
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maximum likelihood estimates for the multivariate correlated probit model. Later, this method 

was extended to continuous and ordinal variables (Gueorguieva and Sanacora 2006). 

2.2 JOINT MODELING OF LONGITUDINAL AND TIME-TO-EVENT DATA          

Phase II and III clinical trials usually use time-to-event as the primary study outcome. In many 

such trials, patients are also observed longitudinally with respect to potential biomarkers and 

clinical measurements throughout the follow-up period. Hence, joint modeling of longitudinal 

and time-to-event data has increasingly been developed for use in clinical trials (Hogan and 

Laird, 1997a, 1997b; Wang and Taylor, 2001; Xu and Zeger, 2001; Ibrahim, Chen, and Sinha, 

2004; Tsiatis and Davidian, 2004; Chi and Ibrahim, 2006; Ding and Wang, 2008; Rizopoulos 

and Ghosh, 2011). Two areas where both longitudinal and time-to-event outcomes have been 

modeled jointly are in AIDS and cancer.  

Tsiatis, DeGruttola, and Wulfsohn (1995) examined the relationship between the CD4 

count and survival time in patients with acquired immune deficiency syndrome (AIDS). They 

proposed a two-stage procedure by plugging the estimates from longitudinal models into a Cox 

proportional hazards model. In the first stage, the longitudinal CD4 counts are modeled using a 

repeated measures random effects model with normal errors for true CD4 counts. In the second 

stage, the model value is substituted into a proportional hazard model and used Cox regression 

with CD4 counts as a time-dependent covariate to obtain estimates of the survival parameters. In 

the two-stage model, only longitudinal data is used to find the parameters for the longitudinal 

process and then the hazard is a function of this modeled longitudinal process. They gave 
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considerable thought to how the measurement error and nonrandom missingness of CD4 counts 

affected the model.  

For describing the joint longitudinal and survival data we introduce the following 

notation. Let    denote the survival time for subject   (       )    be the censoring time, and  

    (     ) be the event indicator. Let   
     (     ) be the observed event time for the 

subject  . The CD4 counts    (         ) are measured at times    (           
 ), where 

    is the time from randomization for measurement   on subject  ,         . Let    
  denote 

the true value of the CD4 count for subject   at time    . The log transformed longitudinal 

outcome CD4 counts were modeled using a linear growth curve model with a random intercept 

and slope; 

       
                     

 

                                         

where     is measurement error assumed to be independent and normally distributed with mean 

zero, and variance   
 . The measurement error terms and the random effects were assumed to be 

independent of each other. It is also assumed that the individual intercepts and slopes followed a 

bivariate normal distribution, i.e.,  

(
   

   
)     ((

  

  
)  [

      

      
])  

Let   ( )  and   
 ( )  denote the history of observed and true CD4 counts up to time  , 

respectively, that is,   ( )  {  (   )     (   )      } and   
 ( )  {  

 (   )     
 (   )    

 } . For the survival data, the hazard of death is modeled as a function of the conditional 

(2.2.1) 
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expectation of true CD4 counts given the history of observed CD4 counts through the 

proportional hazards model and a partial likelihood approach is used to obtain estimates of the 

survival parameters. Hence, the model relating the hazard to time-varying covariates can be 

written as 

 (    ( ))    ( ) [ (  
 ( )  )     (   )     (   )   

   ]  

where  (  
 ( )  ) is a function of the covariate history specified up to an unknown parameter  . 

Let the conditional expectation part,  [ (  
 ( )  )     (   )     (   )   

   ], be shortened to 

 (   ). Thus, the partial likelihood is 

∏[  (  
   )  ∑   (  

   ) (  
   )

 

   

⁄ ]

   

   

  

Wulfsohn and Tsiatis (1997) later developed this method by joint maximization of the 

likelihood from both the longitudinal CD4 counts and the survival data. Because their method 

used data from both the longitudinal and the survival data, it made more efficient use of the data. 

They implemented an EM algorithm to fit this model. Song, Davidian, and Tsiatis (2002a, 2002b) 

proposed relaxations of the normality assumption for latent process expressed by a set of random 

effects. 

Faucett and Thomas (1996) also assumed a proportional hazards model for survival 

conditional on a random effects model with normal errors for the CD4 counts similar to that 

proposed by Tsiatis, DeGruttola, and Wulfsohn (1995), which are defined by (2.2.1). But they 

assumed a proportional hazards model with the parametric assumption of piecewise constant 
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baseline hazard and adopted a different estimation procedure using a Bayesian Markov chain 

Monte Carlo (MCMC) technique of Gibbs sampling to do the estimation.  

Henderson, Diggle, and Dobson (2000) proposed a flexible joint model that avoids 

specifying the class variable. They modeled the longitudinal data including fixed effects, random 

effects, serial correlation, and pure measurement error. For survival data, they used a 

proportional hazard model with or without frailty terms. A key feature of their strategy is to 

connect the longitudinal and survival model with two correlated latent Gaussian processes 

allowing the trend to vary with time. They assumed that longitudinal and survival data are 

conditionally independent given the linking latent process and covariates.  

There are   subjects with longitudinal measurements {            }  at times 

{            }. When the interval of follow-up is [   ), let {  ( )       } denote a 

counting process for the events and {  ( )       } denote an indicator for whether the 

subject is at risk of an event at time  . Let   ( )  {   ( )     ( )} denote a latent zero-mean 

bivariate Gaussian process, which is realized independently in different subjects. They 

considered the following for longitudinal model: 

      (   )     (   )       

where     is a measurement error term assumed to be mean-zero normally distributed with 

   (   )    
  and   (   ) is the mean response assumed by a linear model 

  ( )     ( )
    



 16 

in which the vectors    ( )  and    represent possibly time-varying covariate and their 

corresponding regression coefficients, respectively. For the survival model, they considered a 

semi-parametric multiplicative model: 

  ( )    ( )  ( )   {   ( )
       ( )}  

with the form of   ( ) left unspecified. To colligate both the longitudinal and survival models, 

they introduced the following flexible model for    ( ): 

   ( )     ( )
        ( )  

where    ( ) is a vector of covariate values,     is a corresponding vector of random effects 

follows a multivariate normal distribution with mean zero and variance-covariance matrix    and 

   ( ) is a stationary Gaussian process with mean zero, variance    
  and correlation function 

  ( )     {   ( )     (   )}    
 ⁄ . Tsiatis, DeGruttola, and Wulfsohn (1995), Faucett and 

Thomas (1996), and Wulfsohn and Tsiatis (1997) all assume a Laird and Ware (1982) linear 

random effects model,    ( )          , and assume    ( ) is proportional to    ( ). In 

contrast, Henderson, Diggle, and Dobson (2000) proposed that    ( ) be specified as 

   ( )                (        )       

where the frailty term      (     
 ) is independent of the (        ). The parameters        and 

   in this model measure the association between the longitudinal and survival models induced 

through the random intercepts, slopes, and current value of     at time  , respectively. They used 

an EM algorithm proposed by Wulfsohn and Tsiatis (1997) for estimation. In later work, they 

focused on the use of longitudinal outcome trends as individual-level surrogates for survival time. 
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They developed a score test for association between longitudinal outcome and survival time 

(Henderson, Diggle, and Dobson 2002). 

Guo and Carlin (2004) used the flexible joint model proposed by Henderson, Diggle, and 

Dobson (2000). Consequently, the longitudinal and survival outcomes were assumed to be 

independent given a linking latent bivariate Gaussian process and available covariates.         

Their joint model avoids specification of a class variable. They developed this model using a 

fully Bayesian approach through MCMC methods using the WinBUGS software. They 

compared their results to those obtained from the traditional maximum likelihood approach for 

this joint model. Also they compared the results from a joint model to separate models.  

Rizopoulos, Verbeke, and Molenberghs (2008) developed a shared parameter model for 

the joint distribution of longitudinal data and time-to-event data. Shared parameter models 

assume that the longitudinal and survival processes are conditionally independent, given the 

random effects. This assumption implies that all associations between the longitudinal and 

survival processes are induced by the random effects. They proposed two separate sets of 

random effects for the longitudinal and survival processes, linking them using a copula function 

which was specified as a cumulative multivariate distribution function with a uniform marginal. 

Again, let    denote the true event time for subject   (       )    be the censoring 

time, and   
     (     )  be the observed event time for the subject  . Define the event 

indicator as     (     ). Let    {  (   )         }  denote the observed longitudinal 

outcome for a subject   taken at time    . Denote the time invariant random effects underlying 

both the longitudinal and survival model by   . The shared parameter model is 
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 (     
        )  ∫ (          ) (  

            ) (       )     

where    (  
    

    
 ) is the vector containing the parameters of each one of the submodel. 

Both the longitudinal and survival processes are assumed noninformative, i.e. independent of   . 

They proposed that the conditional submodel for longitudinal outcome    has the form  

         (                 
    

)  

where     and     are known fixed and random effects design matrices, respectively. For the 

conditional submodel of survival outcome   
 , they assumed that      

     follows a parametric 

distribution with  [     
    ]     

       where     is a vector of covariates for the survival 

outcoem. To connect the two separate sets of random effects for the longitudinal and survival 

processes they used a copula function of the general form: 

 (       )   {  (   )   (   )    } (   ) (   )  

where   is a parameter of the copula function and   ( ) and   ( ) are the marginal cumulative 

distribution functions for     and     respectively. They investigated the impact of misspecifying 

random-effects but also how affected the estimation of standard errors would be under the 

misspecified model. Rizopoulos (2010) developed an R package JM that fits a variety of joint 

models for normal longitudinal outcome and time-to-event data under maximum likelihood 

based on the shared parameter model. 
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2.3 PREDICTIVE MODELING OF TIME-TO-EVENT PROBABILITY 

The major purpose of prediction is to provide estimates, either point or interval, for future 

measurements based on the results obtained from previous observations (Dunsmore 1974). 

Predictive models are particularly useful in a clinical setting (Putter et al., 2006). A number of 

authors have proposed the prediction of future event probabilities for subjects based on the joint 

modeling of longitudinal measurements, time-to-event outcome, and other covariates (Taylor, 

Yu, and Sandler, 2004; Garre et al., 2008; Proust-Lima and Taylor, 2009).  

Rizopoulos (2011) provided individualized prediction models of survival in AIDS 

patients who also had longitudinal CD4 cell count measurements. He specified the joint model of 

longitudinal and survival processes by  

  ( )    
 ( )     

 ( )     ( )               ( )  (    )    

  ( )    ( )   [  
    {  

 ( )     
 ( )  }]                      

where    ( ) and   ( ) denote column vectors of time-varying covariates corresponding to fixed 

and random effects, respectively,    is a vector of baseline covariates, and    is the vector of 

random effects. In this model, longitudinal measurements on a variable represent an endogenous 

time-dependent covariate (Kalbfleisch and Prentice 2002). The model implies that longitudinal 

measurements are directly related to the survival process. Hence, longitudinal measurements on 

patients up to time   implies the patients’ survival up to time  . Thus, he focused on the 

conditional probability of surviving time      given survival up to  , that is  

  ( 
   )     (             ( )       ), 
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where    ( )  {  ( )      } denotes a set of longitudinal measurements and   ( ) denotes 

the value of the longitudinal outcome at time point   for subject  , and    {  
           

     } denotes the sample on which the joint model is fitted and on which the prediction model 

is based. As before,   
  is observed event time,    is true event time, and    is the event indicator. 

Rizopoulos derived a first-order estimate of   ( 
   ) using the empirical Bayes estimate for   . 

To produce valid standard errors for the estimate of   ( 
   ), a standard asymptotic Bayesian 

formulation (Cox and Hinkley, 1974, Section 10.6) was used. Accordingly, he obtained a Monte 

Carlo estimate of   ( 
   ) . To assess the predictive performance of time-to-event models, 

estimates of sensitivity and specificity measures were derived under the joint modeling 

framework. Based on these estimates they presented ROC curves and AUC estimates of 

prediction performance.  

Fieuws et al. (2008) investigated predicting renal graft failure using multiple longitudinal 

outcomes of biochemical and physiological markers. To handle prediction from multiple 

correlated longitudinal outcomes, they used multivariate mixed model (MMM). They obtained a 

probability function of the risk that the graft will fail within a 10-year period after transplantation 

using Bayes rule as  

  ( )    (        |  ( )) 

            
  (  ( )         ) (           )

  (  ( )         ) (           )    (  ( )       ) (           )
 

where   is time expressed in months and ranges from 12 to 120,    denotes the time of failure, 

and   ( )  is a vector containing the outcome information collected since 1 year after the 

transplantation up to and including time,  , for subject  . These probabilities are computed using 
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the MMM used for the markers. Because of the computational complexity of MMM, they used 

all possible pairwise mixed models as proposed in their earlier paper (Fieuws and Verbeke, 

2006). All pairwise mixed models were fit instead and results averaged across fits. A pattern-

mixture approach (Little 1993; Molenberghs and Verbeke 2005) was used to factorize the joint 

model for the longitudinal outcomes and the time-to-event outcome.  

Pauler and Finkelstein (2002) specified a parametric marginal model for longitudinal 

prostate-specific antigen (PSA) outcomes using a subject-specific change point that allowed for 

PSA slopes to change and hence, jointly model the data. For the time-to-event outcome, 

recurrence of prostate cancer, a Bayesian version of Cox proportional hazard model was 

assumed. The posterior predictive distribution of the time-to-event based on the joint probability 

model was calculated as  

                           (       ̅)    (       ̅)  

 ∫ (            ̅)       

 ∫ (       ) (       ) (     ) (   ̅)       

where   denotes the time-to-event for the patient under consideration with an additional (or new) 

vector of longitudinal outcomes   ,   ̅  denotes data from all previous patients for which 

posterior distributions are available,   denotes the patient-specific random effects vector, and    

denotes the new random effects vector for the additional subject. To estimate prediction 

probabilities Markov chain Monte Carlo method was used.  

Yu, Taylor, and Sandler (2004) performed individual prediction using a longitudinal-

survival-cure model (Law, Taylor, and Sandler 2002; Yu, Law, Taylor, and Sandler 2004). They 
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divided the patients into “cured” or “susceptible” groups depending on whether the patients have 

their tumor completely killed by the treatment or not. This aspect of the study was incorporated 

into the joint modeling by using mixture cure models (Farewell 1982; Kuk and Chen 1992; 

Taylor 1995). The cured fraction was modeled as a logistic function of baseline covariates, 

measured before the end of the radiation therapy period. The longitudinal outcome was modeled 

using non-linear hierarchical mixed models with different models for the cured and susceptible 

groups. The time-to-event outcome was modeled using a time-dependent proportional hazards 

model for those in the susceptible group where the time dependent covariate include both the 

current value and the slope of post-treatment longitudinal outcome profile. Estimates of the 

parameters in the model were obtained by using MCMC method (Lockwood, and Schervish, 

2005). The posterior distributions for all the parameters were obtained from the product of full 

complete data likelihood and prior distributions. Model predictions were approximated using 

posterior distribution based on the observed data. This model has the disadvantage that it is 

highly parameterized. With such complicated modeling, interpretation of the parameters can be 

difficult. The number of parameters to be estimated in such cure models can lead to 

identifiability problems (Farewell 1986; Li, Taylor, and Sy 2001).  
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3.0  JOINT MODELING APPROACH 

3.1 MODEL DEFINITIONS FOR MULTIVARIATE LONGITUDINAL DATA WITH 

DIFFERENT TYPES OF OUTCOMES 

In this chapter, we first describe the bivariate longitudinal setting with a single continuous 

response and a single binary response which is used to model a time-to-event outcome. The 

generalization to higher dimensions and other members of the exponential family of distributions 

is conceptually straightforward. Let      and      denote the     outcome which consists of 

continuous and binary components for subject  , respectively. Further, let    (       )
  denote 

the complete bivariate longitudinal outcome vector for the subject  , where 

    (           )
 
                 is a vector of     longitudinal outcome at time 

point  . For the longitudinal bivariate outcome vector,   , with different data types, we assume 

an underlying generalized linear mixed effects model which can be written as 

                                       

 

  (        )     

where  ( )  denotes a known one-to-one link function that is allowed to change with the 

characteristics of the different types of outcomes in   , and    and   represent a design matrix of 

known covariate values and a vector of their corresponding regression coefficients, respectively. 

(3.1.1) 
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Also, the    are random effects that are assumed to follow a normal distribution with mean zero 

and variance-covariance matrix  , and the    are design matrices for the random effects. It is 

assumed that the elements in each outcome in    are independent conditional on   . Finally,    is 

a vector of measurement error terms. More specifically, by choosing the identity link for 

continuous outcome and the logit link for the binary outcome, the generalized linear mixed 

effects model (3.1.1) can be written in the form 

              
                

                 

 

     
   (    

        
    )

     (    
        

    )
       

where      and      are independent (Fitzmaurice, Laird, and Ware, 2004; Fitzmaurice, Davidian, 

Verbeke, and Molenberghs, 2009). We consider two types of structures for the random effects 

    and    . First, we assume that     follows a normal distribution with a mean vector of zeros 

and variance-covariance matrix  , and that     is proportional to    , i.e.,          , where    

is a diagonal matrix of unknown constants. We call a joint model with this assumption a shared 

random effects joint model. Second, we assume a joint distribution that     and     follow 

multivariate normal distribution as; 

(
   

   
)     ( (

 
 
)       [ 

      

   
    

] )  

We call a joint model with the second assumption a correlated random effects joint model. The 

relationship between the continuous and binary outcomes can be investigated through the 

correlation among the random effects     and    .  

(3.1.2) 
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3.2 PROPOSED JOINT MODEL: RELATING A TIME-TO-EVENT OUTCOME TO 

MULTIVARIATE LONGITUDINAL DATA OF DIFFERENT TYPES 

As introduced in section 2.2, Henderson, Diggle, and Dobson (2000) proposed a joint model of 

longitudinal measurements and event time data through a latent zero-mean bivariate Gaussian 

process, using an EM algorithm for estimation. Guo and Carlin (2004) applied Bayesian version 

of this joint modeling strategy. They used only a single longitudinal continuous outcome in the 

joint model. We developed their methods to multivariate longitudinal data of different types and 

a time-to-event outcome. As mentioned in section 2.2, let    denote the true event time for 

subject   (       )    be the censoring time, and     (     ) be the event indicator. Let 

  
     (     ) be the observed event time for the subject  . We assume that censoring is non-

informative. A proportional hazard model is assumed, that is, 

  ( )     
    

   {                }

  
  

                                                  ( )   {   
      }         

where     is a vector of covariates,    is regression coefficients of covariates, and   ( )  is 

baseline hazard function, which can be assumed to be of a parametric form or left unspecified. 

To express the effects of longitudinal outcomes on the time-to-event, we assume that shared 

parameters,   , is associated with the random effects of longitudinal outcomes     and    . There 

are three submodels of the longitudinal continuous outcome process, the longitudinal binary 

outcome process, and the time-to-event outcome process presented as (3.1.2) and (3.2.1). 

 

(3.2.1) 
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 Our proposed joint model connects (3.1.2) and (3.2.1) by taking  

     
       

          

where   (  
    

 ) is a set of unknown constants and     is a normally distributed frailty term 

with mean zero and variance   
 , independent of the    (   

     
 ) . The hazard function of the 

time-to-event depends on the longitudinal outcomes through the shared     and    . Thus, the 

parameter   in the survival model (3.2.2) measures a degree of association explained by the 

random effects in (3.1.2). The components of        and    may not all the same, which allows 

that the longitudinal continuous and binary outcomes, and the time-to-event outcome to depend 

on different and/or overlapping covariate information. We assume that the longitudinal outcome 

vector,   , and the time-to-event outcome,  , are independent conditional on covariates      and 

the random effects,  . The observed data for the      subject with     repeated measurements for 

the     outcome are denoted by  

{   (   )  (   )  (   )   
                                    }. 

Based on a full conditional independence assumption, we can express the joint distribution of the 

observed data as 

 (     
         )   (   |          

 ) (          ) (  
               

 ) 

where   denotes the complete parameter vector and  ( ) denotes a probability density function. 

 

 

(3.2.2) 
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Thus, we can derive the log-likelihood for the observed data as 

    ∑    ∫ ∏
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}                     

                    (    )    

where  (    ) is the density function of    conditional on the covariance parameters  . 

3.3 ESTIMATION AND MODEL SELECTION 

We used a Bayesian approach for estimating parameters of the proposed joint model through 

MCMC methods. The methods here are programmed in the R interface called ‘rbugs’ which 

accessed the software ‘OpenBUGS’. BUGS is an acronym for ‘Bayesian inference Using Gibbs 

Sampling’. Among the two most common versions of BUGS, namely WinBUGS and 

OpenBUGS, we used the more recent version, namely, OpenBUGS. This is the version that has 

been designated as that for which future versions will be based on.  

We considered many different forms of the random effects terms in the joint model 

ranging from the simplest model with no random effects to the largest model with random 

intercepts and random slopes in both the longitudinal outcomes and the time-to-event outcome. 
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Historically, there have been two well-known information criteria for model selection, namely, 

the Akaike Information Criterion (AIC) and the Bayesian Information Criterion (BIC). 

Spiegelhalter, et al. (2002) proposed the Deviance Information Criterion (DIC) which can be 

viewed as the Bayesian version of the AIC. The DIC is a generalization of the AIC for 

hierarchical models based on the deviance of the posterior distribution. For the parameter vector, 

 , and observed data vector,  , let   ( ) be the deviance,  

 ( )          (   )         ( )  

where  (   ) is the likelihood function and  ( ) is a standardizing function of the data alone 

(Carlin and Louis, 2009). We define  ( ) to be  ( )     ∑     (     
      ) 

    in our joint 

model.  ( )̅̅ ̅̅ ̅̅ ̅      [ ( )]  denotes the posterior expected deviance and  ̅      [ ]  denotes 

the posterior means of the parameters. The effective number of parameters,   , which can 

capture the complexity of a model is defined as  

    ( )̅̅ ̅̅ ̅̅ ̅   ( ̅)  

Then, the DIC is defined as  

     ( ̅)       

       ( )̅̅ ̅̅ ̅̅ ̅      

Smaller values of the DIC indicate better fitting models. As with the AIC, differences of the DIC 

between models are a tool used for model selection. Differences of 3 to 5 are considered to be 

meaningful. Conveniently, OpenBUGS provides the DIC values after running an MCMC. In this 

dissertation, we use the DIC for model selection criterion.  
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3.4 PREDICTION OF AN EVENT PROBABILITY 

In this section, we illustrate how predicted future event probabilities are calculated based on our 

proposed joint model of the longitudinal outcomes and the time-to-event outcome. We applied 

the dynamic prediction of a clinical event occurring within a fixed window for a subject still at 

risk just before time   as proposed by van Houwelingen and Putter (2011). Specifically, we 

considered the conditional survival function of time     given that one survives up to time  : 

                (   )   (                      )  
 (               )

 (            )
             (     ) 

Equation (3.4.1) can also be expressed using a hazard function as 

 (   )     [ { (           )   (           )}] 

                                                     ( ∫  (           )  
 

 

)                                                 (     ) 

where  ( ) denotes the cumulative hazard function and  ( ) denotes the instantaneous hazard 

function. Equation (3.4.2) implies that only the hazard on the interval [   ] is necessary to 

predict the probability of event up to time   for a subject at risk just before time  . Let       

be a fixed window of width  . We can relate the survival function to the cumulative distribution 

function (c.d.f.) as follows: 

  ( )     (     )  

This function is called the fixed width failure function. It is evaluated at all-time points   where 

the estimates change value.  
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The variance of this function is based on the Nelson-Aalen estimate of that cumulative hazard 

that is given as 

   [  { ̂ ( )}]  ∑
 

 (  )
 

        
    

 

where   denotes the set of event times and  ( ) denotes the size of the risk set, i.e., the number 

of subjects with no event and still being followed just before time  .  

The dynamic prediction of probabilities of event occurring within a fixed window given 

all baseline covariates and longitudinal measurements is applied to IPF data in chapter 5 with 

survival function obtained from our proposed joint models. 
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4.0  APPLICATION TO MAINTENANCE THERAPIES IN A LATE-LIFE 

DEPRESSION STUDY 

4.1 DESCRIPTION OF DATASET 

 

In this chapter, we present the analysis of the maintenance therapies in a late-life depression 

study, introduced in Chapter 1, using the proposed joint model for mixed multivariate 

longitudinal responses and time-to-event. We are mainly interested in associating recurrence of 

major depression with the longitudinal outcomes of neuropsychological functioning and C-

IADL. From the 130 patients considered in the study, 30 patients relapsed with major depression 

that corresponds to a 23% recurrence rate. For full details regarding the conduct of the trial the 

reader is referred to Reynolds et al. (2011). Patient characteristics are summarized in Table 1.   

Of the 130 patients, 77% of the patients were female and 44% were adjudicated to have mild 

cognitive impairment (MCI) with or without amnesia. Almost 90% of the patients were white. 

Roughly, 51% of patients were assigned to maintenance antidepressant pharmacotherapy and 

donepezil, and 49% were assigned to maintenance antidepressant pharmacotherapy and placebo. 

The average age of the cohort was 73.5 ± 6.15 years.  
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Table 1. Patient characteristics of MTLD data. 

    N(=130) % 

Gender 
  

  Male 30 23.1 

  Female 100 76.9 

Race 
  

  White 117 90.0 

  Black 13 10.0 

Base Diagnosis 
  

  MCI Amnestic - Multiple Domain 30 23.1 

  MCI Amnestic - Single Domain 5 3.8 

  MCI Non-Amnestic - Multiple Domain 11 8.5 

  MCI Non-Amnestic - Single Domain 11 8.5 

  No Cognitive Disorder 73 56.2 

Treatment 
  

  Donepezil Hydrochloride 67 51.5 

  Placebo 63 48.5 

    Mean SD 

Age (years) 
  

  Overall 73.5 6.15 

      Male 74.2 6.56 

      Female 73.3 6.04 

     Donepezil Hydrochloride 73.1 6.50 

     Placebo 73.9 5.82 

4.2 DATA STRUCTURE 

In measuring cognitive impairment in the late-life depression example, there are five domains 

with 17 individual tests to assess neuropsychological functioning: language, delayed memory, 

executive, visuospatial, and speed of information processing domain. A global performance 

score is calculated by averaging over all 17 tests. Each subject had baseline scores of 

neuropsychological functioning and C-IADL at time 0. Then, subjects were randomized to 

treatment of donepezil or placebo and had repeated measurements of neuropsychological 

functioning and C-IADL at one and two years.  Individual profiles for the global score and five 
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domains of neuropsychological functioning are shown in Figure 1 and Figure 2. We observed 

that in both treatment groups subjects show similar variability in their longitudinal profiles. 

   

 

 

 

      

 

 

 

   

 

 

 

Figure 1. Subject-specific evolutions in time of the Neuropsychological Functioning, showing global 

score (A), the language domain (B), the memory domain (C), the executive domain (D), the visuospatial 

domain (E), and speed of information processing domain (F). 

(A) (B) 

(C) (D) 

(E) (F) 
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Figure 2. Subject-specific evolutions in time of the Neuropsychological Functioning, separately for 

Donepezil and Placebo groups, showing global score (A), the language domain (B), the memory domain 

(C), the executive domain (D), the visuospatial domain (E), and speed of information processing domain 

(F). 

(A) (B) 

(C) (D) 

(E) (F) 
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The composite measure of C-IADL was dichotomized. The included covariates are age, years of 

education, baseline MCI, and follow-up time in years, which were chosen because they were 

significant variables from the preliminary analyses fitting the separate outcomes. Although no 

significant effect was observed, treatment is included because the treatment effect was the 

primary interest in the study. The time to recurrence of major depression was used as time-to-

event outcome. The Kaplan-Meier plot of recurrence of major depression by treatment is shown 

in Figure 3. From the Kaplan-Meier estimates in Figure 3 and the associated log-rank test, the 

Donepezil treatment group has a marginally significant higher recurrence of major depression 

than the Placebo group. 

 

 

Figure 3. The Kaplan-Meier plot of recurrence of major depression for Donepezil (solid red curve) and 

Placebo (broken black curve) groups. 
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4.3 MODEL DEFINITIONS  

4.3.1 Shared Random Effects Joint Model 

The subject-specific random intercepts and slopes,      and     , of the continuous longitudinal 

outcome, are shared in the joint model. We assume     follow normal distribution with mean 

vector zero and variance-covariance matrix  , and that     is proportional to    , i.e.,     

     , where    is a diagonal matrix of unknown constants as introduced in section 3.1. The 

model entities are defined as follows: 

     - global scores of neuropsychological functioning for the ith subject at time j(continuous). 

     - composite measure of C-IADL for the ith subject at time j (binary). 

   - time to recurrence of major depression for the ith subject. 
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For the continuous longitudinal outcome, we included the covariates of age, years of education, 

baseline MCI, time in years, and treatment. For the binary longitudinal outcome, the same 

covariates are included except years of education. Only treatment is included in the model for 

time-to-event outcome as other covariates did not reach statistical significance. The longitudinal 

continuous and binary outcomes and survival outcome are associated through shared random 

effects of longitudinal continuous outcome. Thus, the association between both longitudinal 

outcomes and time-to-event outcome can be explained by    and   . 
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4.3.2 Correlated Random Effects Joint Model 

We assume that the subject-specific random effects of continuous and binary longitudinal 

outcomes,     and    , are multinormally distributed as 

(
   

   
)     ( (

 
 
)    [ 

      

   
    

] )  

The model assumptions are same with section 4.3.1, while the random effects terms now take the 

form 

-    (   )                   

-    (   )                  

-       
       

                                         

In this case, the association between both longitudinal outcomes and time-to-event outcome can 

be explained by   (           ). 

4.3.3 Assumptions About The Prior Distributions 

We selected non-informative priors for all parameters, that is, priors that had very large variance 

components. For the coefficients of the fixed effects   ,   , and   , we use multivariate normal 

distributions with mean zero and variance-covariance matrices 100I6, 100I5, and 100I2, 

respectively, where Ik indicates an     identity matrix. For error variance    
 , we take an 

inverse gamma(0.1, 0.1), for frailty term variance   
 , we take an inverse gamma(20, 5), for the 

association coefficients  , we use a normal distribution N(0, 100). For the parameters of random 

effects, we use an inverse Wishart which is a conjugate prior for the variance-covariance matrix 
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in the multivariate normal likelihood (Carlin and Louis 2009). The methods are programed in the 

R interface called ‘rbugs’ to access the software OpenBUGS. As was previously mentioned, in 

our analyses, a total of 20,000 MCMC iterations were used. We discarded the first 10,000 

iterations for the burn-in period. 

4.4 RESULTS  

4.4.1 Shared Random Effects Joint Model 

We applied various models with all possible combinations of forms of subject-specific random 

effects for the three processes as the longitudinal continuous and binary outcomes, and time-to-

event outcome. We considered 37 differently expressed shared random effects joint models. 

First, we assumed Weibull distribution for the time to recurrence of major depression outcome. 

But the estimated values of shape parameter in Weibull distribution were not significantly 

different with one in all 37 models. Thus, we fit the models assuming exponential distribution for 

the time to recurrence of major depression.  

Table 2 summarizes DICs for each submodel, the posterior expected deviance,  ̅, the 

effective number of parameters,   , and total DIC scores,  DICtotal, for each joint model. Note 

that DICy1, DICy2, and DICT denote DIC from the longitudinal continuous outcome submodel, 

from the longitudinal binary outcome submodel, and from the time-to-event outcome submodel, 

respectively. These scores show relative contributions to the overall model DIC. The total DIC 

score, DICtotal, was used to choose the best model. The joint models with subject-specific random 

intercepts in both the longitudinal continuous outcome submodel and binary outcome submodel 
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(Model 7 ~ Model 9) show the decreased DICs in both the longitudinal outcome submodels, and 

hence the DICtotal of the overall model. When subject-specific random slopes were included in 

the longitudinal continuous submodel (Model 11 further), DICy1 for the longitudinal continuous 

submodel increased. Although there were reductions in DICy2 for the longitudinal binary 

submodel when subject-specific random slopes were allowed in the longitudinal binary 

submodel (Model 29 ~ Model 37), it could not cover the increasing amount of DICy1 to improve 

in DICtotal. The model with the smallest DICtotal is Model 8. Unfortunately, this model did not 

assume any association between the longitudinal outcomes and the time-to-event outcome. We 

investigated the associations between the longitudinal outcomes and the time-to-event outcome 

comparing the Model 37 assumed that the longitudinal binary outcome shares the random 

intercept and slope of the longitudinal continuous outcome and the time-to-event outcome is 

related to both the subject-specific random intercept and slope of the longitudinal continuous 

outcome and has frailty term.  

Table 3 reported the posterior estimates of fixed effects, random effects, and the 

association of the longitudinal outcomes and the time-to-event outcome, the standard errors, and 

their 95% credibility intervals for both Model 8 and Model 37. The results from the Model 8 and 

Model 37 are similar in the longitudinal continuous submodel. It seems that even though the 

subject-specific random slope of the longitudinal continuous outcome caused the longitudinal 

continuous submodel to increase in DICy1, it does not effect on the posterior estimates of 

longitudinal continuous outcome. In the longitudinal binary submodel, the estimates of Model 37 

are slightly smaller than Model 8. The association parameters between the longitudinal outcomes 

are significant in both the subject-specific random intercept and slope showing positive 

relationship between the both longitudinal outcomes.  
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Table 2. Bayesian Model Selection of shared random effects joint model – MTLD data. 

Model   ( )   ( )    DICy1 DICy2 DICT  ̅ pD DICtotal 

no random effects  
  

 
   

1 0 0 0 570.1 339.7 169.1 1065 14.0 1079 

2 0 0    569.9 339.7 166.7 1056 20.3 1076 

random intercepts        

3     0 0 224.1 339.7 169.1 609.6 123.3 732.9 

4     0    225.8 339.9 166.6 602.0 130.3 732.3 

5     0       224.9 339.7 170.4 610.7 124.3 735.0 

6     0          225.1 339.8 167.7 602.0 130.5 732.6 

7           0 225.4 310.7 169.1 579.9 125.3 705.2 

8              224.3 310.8 166.8 570.1 131.7 701.8 

9                 224.8 310.7 170.3 580.2 125.7 705.9 

10                    225.0 310.6 167.9 571.3 132.2 703.5 

             random intercepts and random slopes       

11          0 0 256.7 339.9 169.3 604.2 161.6 765.8 

12          0    258.1 339.8 166.7 596.5 168.1 764.6 

13          0       259.9 339.8 169.6 607.3 161.9 769.2 

14          0       256.5 339.6 165.5 600.2 161.4 761.6 

15          0          260.3 339.6 167.0 599.5 167.5 767.0 

16          0          259.1 339.6 162.0 594.1 166.6 760.7 

17          0             262.0 339.8 159.8 597.5 164.2 761.7 

18          0   (       ) 257.1 339.7 170.2 605.1 161.9 767.0 

19          0                263.0 339.8 155.3 591.2 166.9 758.1 

20                0 264.2 306.2 169.2 574.6 165.1 739.7 

21                   263.0 306.5 166.6 564.4 171.8 736.2 

22                      263.0 307.4 170.1 574.2 166.4 740.6 

23                      263.4 307.0 166.1 572.6 163.9 736.6 

24                         264.7 306.5 167.1 566.3 172.0 738.3 

25                         263.9 306.8 163.7 563.9 170.4 734.4 

26                            267.1 308.0 159.7 569.6 165.2 734.8 

27                  (       ) 264.8 306.8 170.3 576.0 165.8 741.9 

28                               267.4 307.7 157.9 563.1 169.9 733.0 

29                       0 259.3 298.7 169.2 563.1 164.1 727.2 

30                          260.6 298.1 166.6 554.8 170.6 725.4 

31                             258.4 299.2 169.7 561.6 165.7 727.3 

32                             261.0 298.1 164.4 558.3 165.3 723.6 

33                                260.5 297.2 167.1 554.7 170.1 724.8 

34                                262.7 299.2 162.4 553.5 170.8 724.3 

35                                   263.1 299.8 160.2 551.7 171.4 723.1 

36                         (       ) 261.1 297.6 170.5 565.1 164.1 729.2 

37                                      264.8 298.6 156.0 545.6 173.8 719.4 
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Table 3. Joint Bayesian analysis results for shared random effects joint model – MTLD data. 

 Model 8  Model 37 

Parameter 
Posterior 

Mean 

Std. 

Error 
95% CI 

 Posterior 

Mean 

Std. 

Error 
95% CI 

Longitudinal continuous submodel 
 

 
 

 
 

 
 

Intercept (   ) 1.994 0.638 (0.741, 3.259)  1.722 0.487 (0.789, 2.671) 

Age (   ) -0.045 0.008 (-0.061, -0.029)  -0.041 0.006 (-0.054, -0.030) 

Education (   ) 0.088 0.017 (0.054, 0.122)  0.088 0.014 (0.060, 0.116) 

Baseline MCI (   ) -0.839 0.103 (-1.040, -0.638)  -0.842 0.081 (-0.993, -0.679) 

Time (   ) -0.062 0.021 (-0.103, -0.022)  -0.064 0.033 (-0.129, 0.002) 

Treatment (   ) 0.043 0.098 (-0.147, 0.232)  0.043 0.077 (-0.104, 0.202) 

    

  0.266 0.040 (0.197, 0.352)  0.115 0.014 (0.090, 0.145) 

    

  - - -  0.064 0.007 (0.052, 0.078) 

   
 - - -  0.094 0.076 (-0.054, 0.240) 

  
  0.083 0.009 (0.068, 0.103)  0.088 0.012 (0.067, 0.114) 

        

Longitudinal binary submodel        

Intercept (   ) 9.359 2.198 (5.165, 13.920)  9.255 2.205 (5.065, 13.680) 

Age (   ) -0.112 0.029 (-0.173, -0.057)  -0.110 0.029 (-0.168, -0.053) 

Baseline MCI (   ) -0.791 0.353 (-1.507, -0.115)  -0.935 0.365 (-1.662, -0.235) 

Time (   ) -0.559 0.183 (-0.919, -0.210)  -0.709 0.255 (-1.248, -0.238) 

Treatment (   ) -0.381 0.336 (-1.065, 0.275)  -0.420 0.346 (-1.113, 0.254) 

   1.815 0.382 (1.097, 2.596)  1.707 0.676 (0.483, 3.138) 

   - - -  4.869 2.214 (1.305, 9.783) 

 
       

Time-to-event submodel        

Intercept (   ) -2.354 0.323 (-3.035, -1.768)  -2.659 0.438 (-3.655, -1.908) 

Treatment (   ) 0.794 0.400 (0.028, 1.586)  0.844 0.437 (0.002, 1.735) 

   - - -  -1.388 0.835 (-3.108, 0.226) 

   - - -  3.856 2.051 (0.209, 8.139) 

   

  0.272 0.067 (0.172, 0.428)  0.268 0.064 (0.170, 0.417) 

The treatment covariate is significant only in the time-to-event submodel. We observe that the 

hazard of the recurrence of major depression is significantly higher for Donepezil treatment 

group as we showed in Figure 3. The association between the longitudinal outcomes and the 

time-to-event outcome can be explained by parameter    and   . We observe the negative 

association between the subject-specific random intercept of the global performance score of 
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neuropsychological functioning and the time to recurrence of major depression although    is not 

significant in level 0.05. And the subject-specific random slope of the global score is positively 

associated with the risk of for a recurrence of major depression significantly. 

4.4.2 Correlated Random Effects Joint Model 

We considered all possible combinations of differently expressed correlated random effects joint 

models. Because we showed there is no gain in the DICs by including the subject-specific 

random slope in the longitudinal continuous outcome in the section 4.4.1, we reported here only 

the models allowed the subject-specific random intercept in the longitudinal continuous 

submodel in Table 4. We observe that there is great decrease in the DICT with the association 

between the subject-specific random intercepts and slopes of the longitudinal binary outcome 

and the time-to-event outcome in the time-to-event submodel. But inconclusive results emerge 

for the correlated random effects joint modeling for this data set. The sub-components of    

estimates for the time-to-event submodel were negative in some models, particularly in the 

model included the association between the subject-specific random intercept of the longitudinal 

binary outcome and the time-to-event outcome in the time-to-event submodel. Also the sub-

components of    estimates for the longitudinal binary submodel were strangely small in all 

models. The small numbers of repeated measurements (one, two, or three) of binary outcome 

appears to be causing problems with the estimation. In such cases, we cannot trust the 

improvement of total DIC obtained for these models (Carlin and Louis 2009).  Thus, we cannot 

choose the best model for the correlated random effects joint models nor report the results of the 

estimates. 
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Table 4. Bayesian Model Selection of Correlated random effects joint model – MTLD data. 

Mode

l 

  ( )   ( )    DICy1 DICy2 DICT  ̅ pD DICtotal 

random intercepts        

1           232.1 330.6 169.0 610.1 121.6 731.7 

2            232.9 330.7 166.6 601.8 128.4 730.2 

3               232.8 330.7 170.3 611.5 122.3 733.8 

4                  232.3 330.4 167.7 601.7 128.7 730.3 

5               233.5 334.1 122.3 585.4 104.5 689.9 

6                  236.1 332.4 141.6 587.1 123.0 710.0 

7                     233.9 331.1 130.2 572.3 122.8 695.2 

8                        232.1 330.9 123.4 574.3 112.1 686.4 

9                232.2 323.6 169.0 596.4 128.5 724.9 

10                 231.7 323.7 166.6 586.8 135.3 722.1 

11                    231.4 323.4 170.2 595.7 129.2 724.9 

12                       231.8 324.1 167.9 588.4 135.4 723.8 

13                    231.8 326.1 120.9 572.5 106.4 678.9 

14                       232.9 325.8 129.5 568.8 119.4 688.2 

15                    232.8 326.0 131.0 573.4 116.3 689.7 

16                       232.0 325.3 140.2 566.1 131.3 697.4 

17                          230.9 322.7 145.6 553.9 145.3 699.2 

18                             233.5 324.3 139.7 560.2 137.2 697.5 

19                          231.0 322.0 146.4 547.8 151.6 699.4 

20                             230.0 323.9 133.6 552.6 134.9 687.5 

21                          232.6 325.9 88.4 552.1 94.8 646.9 

22                             232.6 325.1 102.4 554.1 105.9 660.0 

23                                233.2 323.5 104.6 552.4 108.9 661.3 

24                                   232.4 323.9 100.7 544.5 112.4 657.0 
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5.0  APPLICATION TO MORTALITY IN IDIOPATHIC PULMONARY FIBROSIS 

OUTCOMES STUDY 

5.1 DESCRIPTION OF DATASET 

 

In this chapter, we present the analysis of mortality in the idiopathic pulmonary fibrosis (IPF) 

outcomes study. IPF is a chronic, progressive lung disease characterized by fibrosis of unknown 

etiology (Richards et al, 2012). Our primary concern is to model the relationship between 

longitudinally measured pulmonary function tests (PFT) and a time-to-event outcome which 

included two survival time random variables, overall survival and transplant-free survival. For 

overall survival analysis, only death without lung transplantation is treated as an event. For the 

transplant-free survival outcome, lung transplants were counted as events in addition to death. 

Among PFTs, forced vital capacity (FVC) measurement was used as a longitudinal continuous 

outcome. A disease progression indicator variable defined as a decline of 5% or more in FVC 

from the baseline FVC measurement was used as a longitudinal binary outcome. From the 125 

patients considered in the study, 64 (51.2%) patients died or were transplanted. Patient 

characteristics are summarized in Table 5. Of the 125 patients, 67.2% of patients were male. 

Almost (97.6%) patients were white, 29.6% of patients had never smoked, 50.4% of patients had 

a clinically confirmed diagnosis, and 18.4% were transplanted. The average age at diagnosis was 
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65.2 ± 9.34 years. This data set was comprised of irregular follow-up times across patients. Thus, 

the number and timing of longitudinal measurements are different for each patient. The PFTs of 

each patient were repeatedly measured about 11 times on average, up to 43 times. The average 

follow-up time is 3.7 years among all patients and 4.1 years among patients who do not die nor 

were transplanted. In the data analysis, age was mean-centered.  

Table 5. Patient characteristics of IPF outcome data. 

    N(=125) % 

Gender 
  

  Male 84 67.2 

  Female 41 32.8 

Race 
  

  White 122 97.6 

 Black 1 0.8 

 American Indian 1 0.8 

  Oriental 1 0.8 

Smoking 
  

  Ever 88 70.4 

  Never 37 29.6 

 Diagnosis made    

  Clinically 63 50.4 

  Historically 62 49.6 

Transplant    

 Yes 23 18.4 

 No 102 81.6 

    Mean SD 

Age (years)   

  Overall 65.2 9.34 

      Male 65.7 9.00 

     Female 64.2 10.04 

Follow-up (years)    

 All patients 3.7 2.32 

 Alive and not transplanted 4.1 2.35 

Baseline PFTs    

 FVC 2.7 0.85 

 FEV1 2.2 0.65 

 DLCO 12.7 4.36 

   Definition of abbreviations: PFT = pulmonary function tests; FVC = forced vital capacity; FEV1 = forced 

expiratory volume in 1 second; DLCO = diffusing capacity of carbon monoxide. 
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Individual profiles for the pulmonary function assessed by FVC are shown in Figure 4. With 

higher baseline FVC, the FVC measurement trajectory seems to decline in time but with 

moderate baseline FVC, it tends to maintain the degree or to decrease only slightly. In contrast, 

FVC shows to increase in time with lower baseline FVC for some patients. We can see subject-

specific random intercepts and slopes. Covariates included in the model are centered age at 

diagnosis, baseline FVC, smoking, gender, and time in years. The stepAIC approach for variable 

selection was applied in the preliminary analyses fitting separate outcomes. 

 

 

Figure 4. Subject-specific evolutions in time of FVC measurements. 
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Survival curves were estimated using the Kaplan-Meier method and fitted survival curves of the 

Weibull model and exponential model are shown in Figure 5.  The survival curves of the Weibull 

model and exponential model are almost indistinguishable and both models show a good fit to 

the marginal survival function. The estimated median mortality from the initial visit date was 7.9 

years (Figure 5, red line); the median transplant-free survival time was 4.4 years (Figure 5, blue 

line). All IPF patients were evaluated at the University of Pittsburgh Medical Center and clinical 

data were obtained from the Simmons Center for Interstitial Lung Disease. 

 

 

 

Figure 5. The Kaplan-Meier plot of overall survival (red curve) and transplant-free survival (blue curve); 

Weibull survival curve (green curve) and exponential survival curve (black broken curve). 

Mortality 

Transplant-free survival 
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5.2 MODEL DEFINITIONS 

5.2.1 Shared Random Effects Joint Model 

The subject-specific random intercepts and slopes,      and     , of the continuous longitudinal 

outcome are shared in the joint model. We assume     follow normal distribution with mean 

vector zero and variance-covariance matrix  , and     is proportional to    , i.e.,          , 

where    is a diagonal matrix of unknown constants same with section 4.2.1. The model is 

defined as follows: 

     – FVC measurement of PFT for the ith subject at time j (continuous). 

     – Disease progression indicator of decline of at least 5 % in FVC from the baseline FVC 

measurement for the ith subject at time j (binary). 

   – time to transplant or death for the ith subject. 
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For the continuous longitudinal outcome, we included the covariates of baseline FVC and time in 

years. For the binary longitudinal outcome, age and time in years were found to be significant 

covariates. Gender, smoking, and baseline FVC were significant in the model for transplant-free 

survival and exponential model was assumed. Because the Weibull regression model and the 

exponential regression model are almost identical for this data set (Figure 5), we assumed the 

exponential model for the transplant-free survival. The longitudinal continuous and binary 

outcomes and survival outcome are associated through the shared random effects of the 

continuous longitudinal outcome.  
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5.2.2 Correlated Random Effects Joint Model 

The subject-specific random effects of continuous and binary longitudinal outcomes,     and 

   , are assumed to follow multivariate normal distribution as 

(
   

   
)     ( (

 
 
)    [ 

      

   
    

] )  

The model assumptions are same with section 5.2.1, while the random effects terms now take the 

form 

-    (   )                   

-    (   )                  

-       
       

                                         

The association between both longitudinal outcomes and time-to-event outcome can be 

explained by the parameter   (           ). 

5.2.3 Assumptions About The Prior Distributions 

The prior assumptions for IPF data set are similar with MTLD data set in section 4.3.3. For the 

coefficients of the fixed effects   ,   , and   , we assume a multivariate normal distribution 

with mean zero and variance-covariance matrices 100I3, 100I3, and 100I4, respectively, where Ik 

indicates an identity matrix with dimension k. For error variance,    
 , and frailty term variance, 

  
 , we take an inverse gamma distribution. For the association coefficients  , we take a normal 

distribution with mean zero and variance equal to    . For the parameters of random effects, we 

take invers Wishart distribution. A total of 15,000 MCMC iterations were used discarding the 

first 5,000 iterations for the burn-in period. 
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5.3 RESULTS  

5.3.1 Shared Random Effects Joint Model 

As with the application of MTLD data set in the chapter 4, we applied various models for IPF 

data set. We considered 37 differently expressed shared random effects joint models. Table 6 

summarizes the DICs of each submodel, the resulting fit,  ̅, complexity,   , and the total DIC 

for each joint model. The joint models with both subject-specific random intercepts and slopes in 

both the longitudinal continuous outcome submodel and binary outcome submodel (Models 29 ~ 

37) have the smallest DICs for both the longitudinal outcome submodels, and hence the DICtotal 

of the overall model compared with other joint models with different structures of random 

effects. In the time-to-event submodel, adding a frailty term leads to a slight decrease in the 

DICT. The joint model connecting the time-to-event submodel to only the longitudinal 

submodels through the random intercepts does not improve the DICs at all. When both the 

random intercept and slopes, and frailty term were included to the association between the 

longitudinal submodels and the time-to-event submodel, there is the biggest decrease in DICT. 

However, there is no gain in the DICT or the DICtotal by including only the subject-specific 

random intercept of the longitudinal continuous outcome to   . Also there is miniscule loss in 

the DICT in removing the frailty term from the time-to-event submodel. On the basis of model 

comparisons, Model 32 with the smallest DICtotal was selected as our best model. Under Model 

32, it seems that the longitudinal binary outcome shares the subject-specific random intercept 

and slope of the longitudinal continuous outcome and the time-to-event outcome is related to the 

subject-specific random slope of the longitudinal continuous outcome. 
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Table 6. Bayesian Model Selection of shared random effects joint model – IPF data. 

Model   ( )   ( )    DICy1 DICy2 DICT  ̅ pD DICtotal 

no random effects  
  

 
   

1 0 0 0 1795 1715 356.2 3856 11.02 3867 

2 0 0    1795 1715 354.3 3842 23.11 3865 

random intercepts        

3     0 0 763.8 1715 356.1 2719 115.7 2835 

4     0    763.9 1715 354.5 2706 127.9 2833 

5     0       763.6 1715 357.3 2720 116.3 2836 

6     0          763.6 1715 355.2 2706 128.2 2834 

7           0 719.5 1189 356.2 2143 122.5 2265 

8              718.8 1189 354.5 2128 134.3 2263 

9                 719.4 1189 357.8 2143 122.9 2266 

10                    718.8 1189 355.3 2128 134.7 2263 

             random intercepts and random slopes       

11          0 0 241.8 1715 356.2 2113 200.4 2313 

12          0    241.9 1715 354.2 2099 212.5 2311 

13          0       241.7 1715 355.2 2111 200.8 2312 

14          0       241.9 1715 350.4 2104 203.1 2307 

15          0          241.9 1715 353.0 2098 212.2 2310 

16          0          241.0 1715 351.5 2095 212.1 2307 

17          0             242.3 1715 351.1 2106 202.1 2308 

18          0   (       ) 238.9 1715 352.7 2106 200.7 2307 

19          0                238.9 1715 349.7 2092 211.4 2304 

20                0 374.3 1227 355.9 1742 215.1 1957 

21                   373.7 1227 354.6 1728 227.3 1955 

22                      374.4 1226 357.5 1743 215.8 1958 

23                      372.6 1226 346.6 1727 217.7 1945 

24                         375.0 1228 355.1 1729 228.6 1958 

25                         372.6 1227 348.0 1719 228.6 1947 

26                            372.8 1225 347.0 1726 218.9 1945 

27                  (       ) 373.8 1227 356.2 1741 216.2 1957 

28                               373.6 1226 348.9 1719 229.4 1949 

29                       0 167.2 923.2 356.1 1235 211.6 1447 

30                          167.0 923.2 354.4 1221 223.9 1445 

31                             168.6 922.4 356.3 1235 211.9 1447 

32                             164.1 923.0 352.9 1229 210.6 1440 

33                                166.0 923.1 353.4 1218 224.0 1442 

34                                167.2 924.0 351.8 1219 224.3 1443 

35                                   166.2 923.8 352.8 1230 212.7 1443 

36                         (       ) 165.3 922.5 354.8 1232 211.0 1443 

37                                      167.6 924.3 351.0 1218 224.5 1443 
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Table 7. Joint Bayesian analysis results for shared random effects joint model – Model 32. 

Parameter Posterior Mean Std. Error 95% CI 

Longitudinal continuous submodel    

Intercept (   ) 0.167 0.048 (0.072, 0.263) 

BaselineFVC (   ) 0.933 0.014 (0.906, 0.961) 

Time (   ) -0.094 0.016 (-0.122, -0.061) 

    

  0.081 0.008 (0.066, 0.098) 

    

  0.068 0.007 (0.056, 0.084) 

   
 -0.068 0.069 (-0.200, 0.067) 

  
  0.060 0.002 (0.055, 0.064) 

    

Longitudinal binary submodel    

Intercept (   ) -1.424 0.325 (-2.043, -0.796) 

Age (   ) -0.015 0.014 (-0.044, 0.012) 

Time (   ) 1.019 0.180 (0.6513, 1.341) 

   -10.67 0.835 (-12.38, -9.145) 

   -10.31 0.727 (-11.82, -8.961) 
 

   

Time-to-event submodel    

Intercept (   ) -1.967 0.530 (-3.003, -0.939) 

Male (   ) 0.903 0.360 (0.214, 1.648) 

Smoking (   ) 0.719 0.341 (0.087, 1.422) 

BaselineFVC (   ) -0.405 0.203 (-0.807, -0.013) 

   -1.613 0.810 (-3.201, -0.025) 

In Table 7, we present the posterior estimates for Model 32 of the fixed effects, random 

effects, and the association of the longitudinal outcomes and the time-to-event outcome along 

with their standard errors and 95% credibility intervals. For the longitudinal outcome, both the 

baseline FVC and time are statistically significant. Hence, patients with high values of baseline 

FVC have high FVC measurements and FVC measurements tend to decrease as time progresses. 

For the longitudinal binary outcome, we see that there is a significant time effect and it 

negatively shares both random intercept and slope of longitudinal continuous outcome. For the 

time-to-event outcome, male smokers with lower baseline FVC have a higher risk of death or 

transplant. The value of the association parameter,    indicates that there is a negative 

association between the subject-specific random slopes of FVC measurements and the hazard of 

the transplant-free survival outcome significantly. 
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5.3.2 Correlated Random Effects Joint Model 

We fit joint models similar to the shared random effects models. However, we excluded the 

frailty term in the time-to-event submodel because there was no improvement in adding this 

parameter in the shared random effects joint models. As with shared random effects joint models, 

the joint models with both subject-specific random intercepts and slopes in both longitudinal 

submodels (Models 21 ~ 36) have the smallest DICs, and the smallest DICtotal of the overall 

model (Table 8). The biggest decrease in DICT occurs when both the random intercepts and 

slopes in both longitudinal responses were included in the association between the longitudinal 

submodels and the time-to-event submodel. However, in this model, the parameter    was not 

significant. Thus, we selected Model 33 with the second smallest DICtotal and all significant 

association parameters as our best model. Under Model 33, the time-to-event outcome is related 

to both the subject-specific random intercepts and slopes of the longitudinal continuous outcome 

and to the subject-specific random slope of the longitudinal binary outcome.  

In Table 9 we present the posterior estimates, the standard errors, and their 95% 

credibility intervals for Model 33. We observe similar results with best shared random effects 

joint model for estimates of the fixed covariate effects although intercepts show lower estimates 

for all three submodels. For the time-to-event outcome submodel, focusing on the association 

parameters, we can see negative associations between the hazard of the transplant-free survival 

and the subject-specific random intercepts, and slopes of FVC measurements, respectively. From 

this model we also see the subject-specific random slopes of the disease progression indicator are 

associated with a higher hazard for the transplant-free survival.   
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Table 8. Bayesian Model Selection of Correlated random effects joint model – IPF data. 

Model   ( )   ( )    DICy1 DICy2 DICT  ̅ pD DICtotal 

random intercepts        

1           756.5 1266 356.0 2210 168.3 2379 

2               756.0 1267 357.3 2212 168.4 2380 

3               756.4 1268 357.4 2213 168.9 2382 

4                     755.7 1269 351.8 2206 170.3 2377 

5                756.9 1176 356.3 2111 178.4 2290 

6                    757.4 1176 357.4 2112 179.3 2291 

7                    757.0 1177 353.3 2109 175.5 2288 

8                    756.9 1178 356.9 2113 179.0 2292 

9                          757.9 1177 345.9 2105 176.1 2281 

10                          755.8 1180 350.0 2105 180.5 2286 

11                          757.7 1178 347.7 2095 188.4 2283 

12                                757.0 1178 344.2 2094 185.2 2280 

           random intercepts and random slopes       

13                240.3 1288 356.1 1627 257.1 1884 

14                    239.4 1289 355.6 1626 257.8 1884 

15                    239.8 1289 350.9 1621 258.3 1880 

16                    239.0 1290 357.1 1630 256.8 1886 

17                          242.0 1288 351.7 1623 258.6 1881 

18                          241.0 1292 354.7 1629 258.4 1888 

19                          238.9 1292 349.0 1620 259.7 1880 

20                                239.6 1290 344.2 1613 261.3 1874 

21                     239.8 1188 356.2 1517 267.0 1784 

22                         240.4 1190 355.3 1518 267.1 1785 

23                         239.4 1190 351.1 1513 267.4 1780 

24                         243.0 1190 352.4 1517 268.4 1785 

25                         239.7 1190 356.6 1519 267.2 1787 

26                               239.1 1190 351.3 1512 268.2 1780 

27                               239.7 1192 347.1 1515 263.6 1779 

28                               238.6 1190 355.4 1516 268.4 1784 

29                               239.9 1191 348.5 1512 267.4 1780 

30                               236.0 1191 347.9 1504 270.2 1775 

31                               239.5 1191 348.4 1504 275.1 1779 

32                                     241.2 1191 344.3 1506 270.4 1776 

33                                     238.8 1189 343.2 1497 273.6 1771 

34                                     242.0 1190 340.5 1507 265.7 1772 

35                                     240.6 1188 343.2 1494 278.3 1772 

36                                           238.2 1190 338.1 1495 271.0 1766 
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Table 9. Joint Bayesian analysis results correlated random effects joint model – Model 33. 

Parameter Posterior Mean Std. Error 95% CI 

Longitudinal continuous submodel 
  

Intercept (   ) 0.045 0.101 (-0.151, 0.254) 

BaselineFVC (   ) 0.976 0.035 (0.904, 1.045) 

Time (   ) -0.091 0.020 (-0.132, -0.052) 

  
  0.061 0.002 (0.056, 0.065) 

    

Longitudinal binary submodel    

Intercept (   ) -0.810 0.144 (-1.093, -0.53) 

Age (   ) 0.015 0.012 (-0.009 0.039) 

Time (   ) 0.466 0.084 (0.306, 0.633) 

 
   

Time-to-event submodel    

Intercept (   ) -2.111 0.576 (-3.276, -1.004) 

Male (   ) 0.989 0.390 (0.233, 1.752) 

Smoking (   ) 0.741 0.357 (0.062, 1.476) 

BaselineFVC (   ) -0.398 0.215 (-0.813, 0.024) 

   -1.409 0.651 (-2.701, -0.125) 

   -3.866 1.195 (-6.227, -1.498) 

   -1.121 0.456 (-2.004, -0.223) 

    

Variance components of Random effect   

    

  0.079 0.008 (0.064, 0.097) 

    

  0.068 0.007 (0.055, 0.083) 

    

  0.171 0.036 (0.114, 0.258) 

    

  0.197 0.034 (0.139, 0.273) 

    -0.044 0.070 (-0.183, 0.093) 

    -0.230 0.079 (-0.382, -0.069) 

    -0.113 0.078 (-0.264, 0.044) 

    -0.109 0.080 (-0.264, 0.050) 

    -0.231 0.073 (-0.371, -0.082) 

    0.310 0.107 (0.085, 0.511) 
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5.4 COMPARISON OF THE RANDOM EFFECT STRUCTURE 

We directly compare the random effect structures of the shared random effects joint models and 

the correlated random effects joint models from the results of DIC and estimations. The Model 7 

of the shared random effects joint models named as ‘shared_Model 7’ and the Model 1 of the 

correlated random effects joint model named as ‘corr_Model 1’ allowed only subject-specific 

random intercept in both the longitudinal submodels.  

Table 10 reports the estimation results for both shared_Model 7 and corr_Model 1. We 

observed consistent estimation results in all three submodels. In shared_Model 7, the association 

parameter,   , is negative and significant at        indicating that the disease progression 

indicator shares the subject-specific random intercept of longitudinal FVC measurements 

negatively. The correlation between subject-specific random intercepts of both the longitudinal 

continuous and binary outcome shows a negative value in the corr_Model 1. The shared_Model 

7 has smaller DICs in both the longitudinal continuous and binary submodels, and the total DIC. 

This difference is caused by complexity of the correlated random effects joint model. Similar 

comparisons exist between shared_Model 9 and corr_Model 2, both of which include association 

between the longitudinal outcomes and the time-to-event outcome in the time-to-event submodel 

(not shown).  

When we considered models that allow both the subject-specific random intercept and 

slope in both the longitudinal continuous and binary outcome, we were able to investigate 

comparisons between shared_Model 29 and corr_Model 21, between shared_Model 31 and 

corr_Model 22, between shared_Model 32 and corr_Model 23, and between shared_Model 35 

and corr_Model 26 which depended on the shared parameter in the time-to-event submodel. In 

all four pairs of models, the shared random effects joint models have smaller DICs than the 
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correlated random effects joint models. However, there is a restriction using the shared random 

effects joint model. We cannot use the shared random effects models that allow subject-specific 

random slopes in the longitudinal binary submodel without subject-specific random slopes in the 

longitudinal continuous submodel. Thus, if one considers the longitudinal continuous outcome 

with only subject-specific random intercept and longitudinal binary outcome with both the 

subject-specific random intercept and slope, it should be used with the correlated random effects 

joint model. A disadvantage of the correlated random effects joint model is that convergence 

issues may arise due to the large number of parameters. It is hard to control convergences for all 

parameters simultaneously.  
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Table 10. Joint Bayesian analysis results for the shared random effects joint model 7 and the 

correlated random effects model 1 – IPF data. 

 Shared_Model 7 
 

Corr_Model 1 

Parameter 
Posterior 

Mean 

Std. 

Error 
95% CI 

 Posterior 

Mean 

Std. 

Error 
95% CI 

Longitudinal continuous submodel 
 

 
 

 
 

 
 

Intercept (   ) 0.134 0.056 (0.023, 0.241)  0.112 0.101 (-0.090, 0.307) 

BaselineFVC (   ) 0.923 0.017 (0.891, 0.955)  0.933 0.034 (0.865, 0.999) 

Time (   ) -0.039 0.004 (-0.048, -0.030)  -0.041 0.005 (-0.051, -0.031) 

    

  0.096 0.013 (0.0723, 0.125)  0.099 0.010 (0.081, 0.121) 

  
  0.093 0.003 (0.086, 0.100)  0.093 0.003 (0.086, 0.101) 

        

Longitudinal binary submodel        

Intercept (   ) -0.424 0.259 (-0.934, 0.085)  -0.409 0.147 (-0.702, -0.125) 

Age (   ) -0.006 0.012 (-0.030, 0.017)  0.033 0.012 (0.010, 0.056) 

Time (   ) 0.253 0.041 (0.175, 0.333)  0.204 0.038 (0.130, 0.280) 

   -7.27 0.517 (-8.324, -6.304)  - - - 

    

  - - -  0.793 0.151 (0.540, 1.128) 

       
 - - -  -0.537 0.055 (-0.638, -0.421) 

 
       

Time-to-event submodel        

Intercept (   ) -2.028 0.512 (-3.057, -1.040)  -2.018 0.450 (-3.006, -1.072) 

Male (   ) 0.964 0.345 (0.288, 1.653)  0.959 0.347 (0.315, 1.672) 

Smoking (   ) 0.725 0.345 (0.078, 1.431)  0.737 0.330 (0.115, 1.405) 

BaselineFVC (   ) -0.387 0.196 (-0.771, -0.0005)  -0.391 0.194 (-0.785, -0.018) 
        

Information of DIC        

DICy1 719.5 - -  756.5 - - 

DICy2 1189 - -  1266 - - 

DICT 356.2 - -  356.0 - - 

 ̅ 2143 16.55 (1941, 2177)  2210 27.34 (2160, 2266) 

pD 122.5 - -  168.3 - - 

DICtotal 2265 - -  2379 - - 

 

 



 61 

5.5 PREDICTION OF PROBABILITIES OF EVENT OCCURING WITHIN A FIXED 

WINDOW 

As discussed in section 3.4, Figure 6 shows the estimated fixed width failure probabilities with 

four year width for the IPF data set. We used estimated survival functions obtained from the best 

models selected in section 5.3 for both the shared random effects joint model and the correlated 

random effects joint model. For comparison, we also show the curves of two Cox models with or 

without the longitudinal measurements as a time-dependent covariate.  

The two proposed-joint models show similar trends in the dynamic predictions of death 

or transplant within a window of four years. In general, the probability of event within the next 

four years decreases slowly. However, if a patient is still surviving and transplant-free after 5.25 

years, the probability of event occurring within next four years rises higher by approximately ten 

percent. This reflects the very low ten-year IPF survival probability and the high likelihood of 

disease progression and therefore lung transplant after five years of follow-up in patients with a 

disease for which no FDA-approved therapy yet exists. The shared random effects joint model 

predicts a somewhat higher probability of transplant or death within the next four years than the 

correlated random effects joint model.  

The dynamic predictions using Cox models show little differences. The curves oscillate 

and increase until four years, and then drop to zero after a steep rise at four years. When we used 

a time-dependent Cox model, the probability of transplant or death within the next four years 

was lower than the fixed Cox model not taking into account longitudinal measurements. 

Furthermore, the Cox model with the time-dependent covariates is also closer to those of our 

joint models. 
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Figure 6. Probability of transplant or death within the next four years using shared random effects joint 

model 32 (red solid curve); the correlated random effects joint model 33 (blue dashed curve); 

Cox model with both the FVC measurements and disease progression indicator as a time-

dependent covariate (green dotted curve); Cox model not taking into account longitudinal 

measurements at all (black dot-dashed curve). 
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6.0  SIMULATION STUDY 

6.1 DESCRIPTION OF SIMULATED DATA 

 

We conducted simulation studies to investigate the validity and comparison of the proposed joint 

models with the longitudinal continuous and binary outcomes and the time-to-event outcome. 

We considered two sets of simulation studies corresponding to the two random effects structures 

(shared random effects and correlated random effects) presented in section 3.1. The simulated 

longitudinal data consists of a quantitative outcome and of a dichotomous outcome with seven 

repeated measurements at fixed times 0, 0.5, 1, 1.5, 2, 2.5, and 3 years. We considered two 

sample sizes, N = 200 and N = 500. For both longitudinal outcomes, we considered the same 

fixed covariates. In particular, a quantitative covariate centered age(  )  generated from the 

normal distribution,     (    ) , a dichotomous covariate treatment(  )  sampled from the 

Bernoulli distribution with the equal probability of 0.5,             (   ) , and time ( ) , 

  {                   }, were included as fixed covariates and the subject-specific random 

intercept and random slope were assumed. For the longitudinal continuous outcome, the 

measurement error term is assumed to be normally distributed with mean zero and variance 

   
   .  
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The continuous longitudinal outcome was generated from the model 

  ( )                                  ( ) 

and the time-to-event outcome was generated from an exponential distribution,        (  ( ))  

where   ( )     (                        ) and     (     

 ) with    

       for 

both the shared random effects joint model and the correlated random effects model. The binary 

longitudinal outcome was generated differently for the shared random effects joint model and the 

correlated random effects model. First, for the shared random effects joint model, the binary 

longitudinal outcome was generated from the model  

     (  (  ( )   ))                                    

and the random effects were assumed as,  

(
   

   
)   ( (

 
 
)       [

    

        
    

    
    

    

 ] )  

This shared random effects joint model has the same form with Model 37 in Table 2 and Table 6. 

Second, for the correlated random effects joint model, the binary longitudinal outcome was 

generated from the model  

     (  (  ( )   ))                                

and the random effects were assumed as,  
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This correlated random effects joint model has similar form with Model 26 in Table 8 adding a 

frailty term in the time-to-event submodel. A non-informative censoring time   was generated 

from a uniform distribution on [0.2, 2] which resulted in roughly 35% censoring on average. The 

true parameter values for simulated data are presented in Table 11. For each random effect 

simulation study, 200 replications were conducted. In each analysis, a total of 15,000 MCMC 

iterations were used. However, we discarded the first 5,000 iterations as a burn-in period for each 

simulated sample. 

Table 11. True parameter values for simulated data. 

Continuous 

longitudinal outcome 

 Binary 

longitudinal outcome 

 Time-to-event 

outcome 

 
Random effects 

Parameter True  Parameter True  Parameter True  Parameter True 

    5.0      0.3      0.2      

  0.2 

    0.8      0.3      1.0      

  0.25 

    -0.2      -0.2     1.6      

  0.2 

    -0.2      -0.25     1.2      

  0.25 

   
  1.0        2.0      0.5 

         3.5      0.5 

         

  0.25      0.5 

             0.5 

             0.5 

             0.5 

6.2 RESULTS OF SIMULATED DATA 

The results of simulation study for the two random effects joint model are presented in Table 12 

and Table 13, respectively, for N = 200 and N = 500. The results include the true parameters, the 

bias defined as the true parameters minus the estimated parameters, the standard errors of the 
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parameter estimates, the mean squared error, and the coverage probability of the estimated 95% 

credibility intervals. Comparing the estimates of the correlated random effects joint model, the 

estimates of shared random effects joint model are in general less biased and have the smaller 

standard errors and hence the mean squared errors. The shared random effects joint model shows 

better empirical coverage probability. In the simulation with large sample size (500),                  

as expected, better results are obtained as indicated by the smaller Bias, SE, MSE, and CP.         

In particular, the coverage probabilities of variance of random effects are in a reasonable range.  

 

Table 12. Simulation results of the shared random effect joint model. 

   N = 200  N = 500 

Parameter True  Bias SE MSE CP  Bias SE MSE CP 

    5.0  -0.015 0.078 0.014 0.915  0.003 0.051 0.005 0.935 

    0.8  0.008 0.107 0.029 0.880  -0.010 0.071 0.010 0.955 

    -0.2  0.001 0.009 0.000 0.925  0.000 0.006 0.000 0.950 

    -0.2  -0.005 0.044 0.004 0.910  -0.004 0.028 0.002 0.945 
            

    0.3  -0.009 0.164 0.054 0.945  -0.003 0.103 0.022 0.960 

    0.3  0.013 0.198 0.084 0.930  0.001 0.125 0.029 0.965 

    -0.2  -0.001 0.020 0.001 0.970  -0.001 0.012 0.000 0.940 

    -0.25  -0.015 0.083 0.015 0.920  -0.004 0.052 0.006 0.925 
            

    0.2  -0.074 0.266 0.156 0.940  -0.021 0.171 0.059 0.950 

    1.0  0.031 0.307 0.216 0.915  -0.002 0.194 0.072 0.985 
            

   1.6  0.280 0.331 0.296 0.890  0.147 0.198 0.098 0.870 

   1.2  0.040 0.161 0.055 0.935  -0.012 0.100 0.022 0.930 

   2.0  0.164 0.585 0.595 0.980  0.052 0.344 0.211 0.995 

   3.5  0.153 0.457 0.379 0.985  0.087 0.291 0.158 0.960 
            

   
  1.0  0.023 0.043 0.004 0.940  0.008 0.027 0.001 0.975 

   

  0.25  0.001 0.055 0.003 1.000  -0.011 0.049 0.003 1.000 
            

    

  0.2  -0.024 0.026 0.002 0.865  0.019 0.026 0.001 0.955 

    

  0.25  -0.016 0.025 0.001 0.895  0.013 0.021 0.001 0.950 

    0.5  -0.027 0.067 0.007 0.995  0.043 0.052 0.006 0.945 
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Table 13. Simulation results of correlated random effect joint model. 

   N = 200  N = 500 

Parameter True  Bias SE MSE CP  Bias SE MSE CP 

    5.0  0.011 0.080 0.015 0.895  -0.006 0.052 0.006 0.915 

    0.8  -0.018 0.110 0.026 0.930  0.003 0.073 0.011 0.945 

    -0.2  0.000 0.004 0.000 0.960  0.000 0.003 0.000 0.930 

    -0.2  -0.006 0.043 0.004 0.915  0.003 0.028 0.002 0.920 
            

    0.3  -0.014 0.155 0.054 0.910  -0.001 0.101 0.022 0.920 

    0.3  -0.026 0.176 0.071 0.905  -0.010 0.117 0.031 0.925 

    -0.2  0.014 0.012 0.000 0.775  0.008 0.008 0.000 0.790 

    -0.25  0.020 0.078 0.014 0.910  0.006 0.051 0.005 0.960 
            

    0.2  -0.014 0.268 0.173 0.910  -0.008 0.172 0.059 0.955 

    1.0  -0.012 0.315 0.211 0.950  0.011 0.200 0.076 0.975 
            

   2.0  0.086 0.650 0.741 0.970  0.071 0.390 0.272 0.985 

   3.5  0.163 0.505 0.469 0.965  0.045 0.325 0.190 0.970 
            

   
  1.0  0.010 0.043 0.004 0.955  0.012 0.027 0.002 0.930 

   

  0.25  0.003 0.056 0.003 1.000  -0.009 0.050 0.003 1.000 
            

    

  0.2  -0.015 0.028 0.002 0.910  0.026 0.027 0.002 0.930 

    

  0.25  -0.015 0.026 0.001 0.895  0.013 0.021 0.001 0.940 

    

  0.2  -0.064 0.026 0.005 0.250  -0.032 0.033 0.003 0.885 

    

  0.25  -0.077 0.030 0.007 0.230  -0.030 0.033 0.003 0.880 
            

    0.5  -0.022 0.068 0.007 1.000  0.052 0.054 0.007 0.925 

    0.5  -0.218 0.114 0.064 0.540  -0.087 0.094 0.020 0.985 

    0.5  -0.116 0.088 0.025 0.855  -0.007 0.067 0.007 0.995 

    0.5  -0.179 0.116 0.049 0.850  -0.068 0.092 0.017 0.990 

    0.5  -0.066 0.079 0.014 0.955  0.011 0.059 0.005 0.995 

    0.5  -0.226 0.107 0.066 0.385  -0.077 0.087 0.016 0.985 
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7.0  CONCLUSIONS 

7.1 SUMMARY 

 

In this dissertation, we proposed a joint model of mixed types of multivariate longitudinal 

continuous and binary outcomes and a time-to-event outcome. We assume that the longitudinal 

outcomes and the time-to-event outcome depend on shared parameters induced from the subject-

specific random effects of the longitudinal outcomes. We considered two types of random effects 

structure, that is, shared random effects and correlated random effects to characterize the 

relationship between the longitudinal continuous and binary outcomes. We used a Bayesian 

approach for estimating parameters of the proposed joint model through MCMC methods. 

Through various model comparisons, we selected a “best” model using the DIC for model 

selection criterion. Our joint models were illustrated by application on the MTLD data set and 

IPF data set. Although we could not get satisfying results for the correlated random effects joint 

model in the MTLD data set analysis, we observed that both the shared random effects joint 

model and the correlated random effects model provided consistent results for the IPF data 

application. A disadvantage of the shared random effects joint model is that the structure of the 

random effects for both the longitudinal outcomes is limited. However, we can gain efficiency by 

using a smaller number of random effects parameters. In contrast, the correlated random effects 
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joint model can characterize the dependency between the longitudinal continuous and binary 

outcome more freely. We illustrated the dynamic prediction of the probabilities of events 

occurring within a fixed window of time. Given a subject is at risk just before time  , the 

probability of an event occurring within the next fixed window of time is predicted using the 

survival function obtained from our proposed joint models. From two sets of simulation studies 

of differing sample sizes, we found that the proposed joint models performed reasonably under 

both the random effects structures and larger sample size.   

7.2 FUTURE RESEARCH 

One future research direction of this research is assessing the predictive accuracy of the joint 

models and the prediction of event probability. There are two main approaches. One is focused 

on calibration measures (Schemper and Henderson, 2000; Henderson et al., 2002). Another 

approach is focused on discrimination measures (Heagerty et al., 2000; Heagerty and Zheng, 

2005). To assess the predictive accuracy, we will derive the estimates of time-dependent 

sensitivity and specificity measures and the time-dependent receiver operating characteristic 

(ROC) curves and area under the curve (AUC) estimates of prediction performance under the 

joint modeling framework.  

A further direction of this research would be to evaluate the adequacy of the DIC used as 

the model selection criterion. As we presented in section 4.4.2, there were inconclusive results 

where negative estimates of effective numbers of parameters were obtained in sub-components 

of DIC. Thus, to check the adequacy of the DIC for testing model fits would be useful to further 

develop the Bayesian paradigm for addressing joint modeling problems. 
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APPENDIX 

POSTERIOR ESTIMATION R CODE INTERFACE TO OPENBUGS 

## Model_33 : correlated random effects joint model 

##           ( b10+b11*t / b21+b22*t / a1b10+a2b11+a4b22 ) 

model.name <- paste("Model_33.txt",sep="") 

  write("model{ 

    for (j in 1:NJ) { 

     # Continuous outcome 

         Y[j] ~ dnorm(muy[j], tauz) 

         muy[j] <- beta1[1]+beta1[2]*blFvc[j]+beta1[3]*time[j] 

                  +U[u[j],1]+U[u[j],2]*time[j] 

     # Binary outcome 

         Y_b[j] ~ dbern(b[j]) 

         logit(b[j]) <- beta2[1]+beta2[2]*Age_at_Dx_ct[j]+beta2[3]*time[j] 

                       +U[u[j],3]+U[u[j],4]*time[j] 

    } # end of j loop 

 

    for (i in 1:N) {   

    # Survival Model 

         surt[i] ~ dweib(p,mut[i]) I(surt.cen[i],) 

         log(mut[i]) <- beta3[1]+beta3[2]*SEX[i]+beta3[3]*SMOKING[i]+beta3[4]*BLFVC[i] 

                       +a1*U[i,1]+a2*U[i,2]+a4*U[i,4] 

 

     # Subject-specific parameters   

      U[i,1:4]  ~ dmnorm(U0[],tau[,]) 

    }  # end of i loop 

 

p <- 1 

 

sigmaz <- 1/tauz 

 

sigma[1:4,1:4]<-inverse(tau[,]) 

sigma1<-sigma[1,1] 

sigma2<-sigma[2,2] 

sigma3<-sigma[3,3] 

sigma4<-sigma[4,4] 

sigma12<-sigma[1,2] 

sigma13<-sigma[1,3] 

sigma14<-sigma[1,4] 

sigma23<-sigma[2,3] 

sigma24<-sigma[2,4] 

sigma34<-sigma[3,4] 
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cor12<-sigma12/(sqrt(sigma1*sigma2)) 

cor13<-sigma13/(sqrt(sigma1*sigma3)) 

cor14<-sigma14/(sqrt(sigma1*sigma4)) 

cor23<-sigma23/(sqrt(sigma2*sigma3)) 

cor24<-sigma24/(sqrt(sigma2*sigma4)) 

cor34<-sigma34/(sqrt(sigma3*sigma4)) 

 

#priors 

tauz~dgamma(0.1, 0.1) 

tau[1:4,1:4] ~ dwish(R[,], 100) 

beta1[1:3]~dmnorm(betamu1[],Sigma1[,]) 

beta2[1:3]~dmnorm(betamu2[],Sigma2[,]) 

beta3[1:4]~dmnorm(betamu3[],Sigma3[,]) 

a1~dnorm(0, 0.01) 

a2~dnorm(0, 0.01) 

a4~dnorm(0, 0.01) 

  } # end of BUGS code",file=model.name) 

 

  ## data set 

DATA <- list(NJ=nrow(PA_PFT),N=nrow(PA), 

betamu1=c(0,0,0), 

betamu2=c(0,0,0), 

betamu3=c(0,0,0,0), 

Sigma1=diag(0.01,3,3), 

Sigma2=diag(0.01,3,3), 

Sigma3=diag(0.01,4,4), 

U0=c(0,0,0,0), 

R=diag(10,4,4), 

Y=PA_PFT$PFT_FVC, 

Y_b=PA_PFT$FvcEvent05, 

u=PA_PFT$PTnum, 

Age_at_Dx_ct=PA_PFT$Age_at_Dx_ct, 

blFvc=PA_PFT$blFvc, 

time=PA_PFT$time,  

SEX=as.integer(PA$Sex=="M"), 

surt=surt, 

surt.cen=surt.cen, 

SMOKING=PA$Smoking, BLFVC=PA$blFvc 

) 

 

INT1 <- list(beta1=c(0,0,0),beta2=c(0,0,0),beta3=c(0,0,0,0),tauz=1, 

             a1=1,a2=1,a4=1,U=matrix(0,nrow=nrow(PA),ncol=4)) 

 

params <- c("beta1","beta2","beta3","sigmaz","tauz","sigma1","sigma2","sigma3", 

            "sigma4","cor12","cor13","cor14","cor23","cor24","cor34","a1","a2","a4") 

 

library(rbugs) 

Corr_Model_33 <- rbugs(data=DATA,inits=list(INT1),paramSet=params, 

                       model='Model_33.txt',n.chains=1, 

                       n.iter=15000,n.burnin=5000,n.thin=1,dic=TRUE,seed=0, 

                       bugs=OpenBUGS,OpenBugs=T,bugsWorkingDir=getwd()) 
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