

 Int. J. Information Privacy, Security and Integrity, Vol. 1, No. 1, 2011 59

 Copyright © 2011 Inderscience Enterprises Ltd.

Ontology-based access control for social network
systems

Amirreza Masoumzadeh* and James Joshi
School of Information Sciences,
University of Pittsburgh,
135 North Bellefield Avenue,
Pittsburgh, PA 15260, USA
Fax: (412)-624-2788
E-mail: amirreza@sis.pitt.edu
E-mail: jjoshi@sis.pitt.edu
*Corresponding author

Abstract: As the information flowing around in social network systems is
mainly related or can be attributed to their users, controlling access to such
information by individual users becomes a crucial requirement. The intricate
semantic relations among data objects, different users, and between data objects
and users further add to the complexity of access control needs. In this paper,
we propose an access control model based on semantic web technologies
that takes into account the above mentioned complex relations. The proposed
model enables expressing much more fine-grained access control policies on a
social network knowledge base than the existing models. We demonstrate the
applicability of our approach by implementing a proof-of-concept prototype of
the proposed access control framework and evaluating its performance.

Keywords: social network systems; SNSs; privacy; access control; semantic
web.

Reference to this paper should be made as follows: Masoumzadeh, A. and
Joshi, J. (2011) ‘Ontology-based access control for social network systems’,
Int. J. Information Privacy, Security and Integrity, Vol. 1, No. 1, pp.59–78.

Biographical notes: Amirreza Masoumzadeh is currently working toward his
PhD at the School of Information Sciences, University of Pittsburgh. He is a
member of the Laboratory of Education and Research on Security Assured
Information Systems (LERSAIS). He received his Master and Bachelor in
Computer Engineering (Software) from Sharif University of Technology, Iran
and Ferdowsi University, Iran in 2007 and 2004, respectively. His research
interests include information security, mainly access control models, privacy,
and trust in modern information systems. He is a student member of IEEE and
ACM.

James Joshi is an Associate Professor and the Director of the Laboratory for
Education and Research on Security Assured Information Systems (LERSAIS)
in the School of Information Sciences at the University of Pittsburgh.
He received his MS in Computer Science and PhD in Computer Engineering
from Purdue University in 1998 and 2003, respectively. His research
interests include role-based access control, trust management, and secure
interoperability. He is a member of IEEE and ACM.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by D-Scholarship@Pitt

https://core.ac.uk/display/12212074?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

 60 A. Masoumzadeh and J. Joshi

1 Introduction

Social network(ing) systems (SNSs) are increasingly becoming a major type of
online applications that facilitate online social interactions and information sharing
among a large number of users. The scale of active entities, interactions, and digital
content in these complex environments brings about new security and privacy
challenges. Users constantly provide contents and information to these systems, either
explicitly, such as by uploading a photo, or implicitly by leaving behind interaction
traces, such as by responding to an invitation. Because they are related to the users,
such contents may include privacy-sensitive information. Besides data protection
challenges for such contents from a system perspective, protecting users privacy from
other users of the system is a unique requirement in SNSs. As per a general goal of SNSs,
users are motivated to expand their social connectivity and awareness through
interactions and content sharing with each other. However, as the social connections
of a user grows, so does the complexity of privacy implications for him. The increased
variety of social connections requires more fine-grained control on privacy-sensitive
information.

Current major SNSs such as Facebook and MySpace provide some privacy control
settings to their users. However, the access and privacy control features provided by these
systems are usually limited, and not so flexible and robust. Moreover, they seem to be
implemented incrementally without detailed formal modelling, which is not appropriate
for such systems with huge user base and high volume of privacy-sensitive content.
Several desirable control features are missing and there exists no basis of verifying
consistency in policy enforcement. For instance in Facebook, a user can choose to hide
her status of relationship with a second party. But one can learn about that relationship if
the second party happens to not hide it. In other words, users cannot control disclosure of
some intuitively privacy-sensitive information. As an example of inconsistency in policy
enforcement, even if a user chooses not to be publicly listed in Facebook she will be still
listed in the public listings of the groups she has joined.

Early access control models for social networks focus on computing trust values for
users based on which they make access decisions (Kruk, 2004; Kruk et al., 2006;
Carminati et al., 2006; Villegas et al., 2008). However, they do not consider complexities
of the protected resources in SNSs. Digital resources in SNSs are comprised of various
data types. Also, different annotation methods such as tagging and commenting are
common in these systems. These all introduce a variety of semantic relations among
objects. In particular, it is important to ensure the protection of not only the basic data
entities and values, but also their relations. For instance, a person tagged in a photo might
not be only concerned about being tagged, but also about who else has been tagged in the
same photo, and who actually owns the photo. In order to truly capture the fine-grained
protection requirements in SNSs, it is important to have an appropriate data model. We
rely on ontology modelling of knowledge using Semantic Web technologies. Some recent
work also propose to use ontologies (Carminati et al., 2009; Ryutov et al., 2009), but fail
to provide protection for relations, which is central to our approach. Moreover, unlike in
traditional systems where security administrators are in charge of access control policy,
in an SNS, users should be recognised as the main authority over access control policies
regarding the information related to them. A flexible authority model is required to
determine each user’s authority over different resources. This feature has not been
addressed in existing work.

 Ontology-based access control for social network systems 61

In this paper, we propose an access control model that takes into account the intricate
semantics of the privacy-sensitive knowledge base, and also respects the individual users’
right to have a flexible control over access control policy on contents related to them. The
access control model is designed to be as close as possible to knowledge ontology level
and neutral in terms of application-level semantics in order to be suitable for generic
social information systems. We leverage the semantic web technologies, i.e., OWL,
SWRL, and SPARQL in particular, to model SNS knowledge and express and enforce
access control policies, which can ensure practicality of our approach. Our contributions
in this work can be summarised as follows.

• We propose social network systems ontology (SNO) to capture the information
semantics in an SNS. We elaborate and discuss various scenarios regarding our
proposed access control model based on SNO.

• We propose an ontology-based social network access control (OSNAC) model which
addresses the protection of semantics-rich information in a knowledge base ontology
such as SNO by using an access control ontology (ACO) and access control policy
rules. It supports both user-defined authorisation rules and a system-level policy. The
model also supports advanced user-level rules to provide more flexible control,
including delegation of authority, dependent authorisations, and the ability to enable
multiple authorities to enforce a composite policy regarding a protected resource.
The model can also provide support for negative authorisation for an SNS.

• We provide an architecture and the prototype implementation of an OSNAC engine
that automatically enforces access control policies on queries submitted to an SNS
knowledge base. Our results show acceptable performance of our prototype and
demonstrates the applicability of our approach.

The rest of the paper is organised as follows. In Section 2, we provide a brief introduction
to the standards used, and propose an ontology for representing knowledge in an SNS. In
Section 3, we present our proposed access control model, including the ACO, various
supported policies, the enforcement model, and support for negative authorisation. We
provide details about our prototype implementation and results in Section 4. In Section 5,
we review related literature, and subsequently conclude the paper in Section 6.

2 Preliminaries

2.1 Semantic web languages, notations, and terminology

We leverage several semantic web languages in this work. In particular, we use web
ontology language (OWL) to express the protected knowledge in an SNS and some
access control decision information, semantic web rule language (SWRL) to specify
access control policy rules, and SPARQL protocol and RDF query language (SPARQL)
for access control enforcement.

OWL (W3C, 2004a) is a W3C recommendation to express meanings and semantics,
which builds on RDF/RDFS. There are three main concepts in OWL. A class is a
collection of objects, which are also called individuals/instances of the class. A property
is a directed binary relation (predicate). An object property relates instances of two
classes, and a datatype property relates individuals to data values (e.g., string values). A

 62 A. Masoumzadeh and J. Joshi

class or a property can be defined as subclass or subproperty of another. OWL also
supports various operators on classes such as union, intersection, and complement and
restrictions such as cardinality constraints on properties. Depending on support for
different operators/concepts, OWL has three sublanguages. For the purpose of this work,
we have chosen OWL DL as it provides semantic features adequate for expressing
knowledge in an SNS, does not have intractability issues, and there exist various
tools and packages that support it. As customary to XML-based languages, we use
namespace prefixes to distinguish different ontologies. For instance, owl:Class
represents the type Class in the OWL namespace. We use a function-like notation for
representing OWL property instances. For example, rdf:type(Person, owl:Class) defines
Person as a new OWL class using property rdf:type in the context of RDF ontology.
Instances of a property are called triples in the context of RDF. In a triple such as
owns(Alice, book1), owns is the property, Alice is the subject of the property, and book1
is the object of the property. We use this terminology for describing reification of
ontology properties.

SWRL (W3C, 2004b) allows combining horn-like rules with an OWL knowledge
base, thereby enabling new knowledge reasoning tools. We encode access control policy
rules using SWRL to reason on top of access decision information stored in an
OWL-based knowledge base and infer access decision. SWRL rules have a very detailed
syntax (W3C, 2004b). For the purpose of our work, we represent them simply as
antecedent ⇒ consequent, where antecedent (body) is a conjunction of multiple
predicates and consequent (head) is a single predicate. Predicates can be either unary or
binary, representing either a class or a property, respectively. A notation such as ?x is
used to declare variable x in the body/head of a rule, which can be bound to class
instances. For example, the following rule expresses that if someone is a tenure-track
faculty he/she has a PhD degree.

(?) (? ," ")x x⇒TenureTrackFaculty hasDegree PhD

SPARQL (W3C, 2008) is a syntactically SQL-like language for querying RDF graphs via
pattern matching. We augment SPARQL queries with access control predicates to
automatically enforce access control policies when a query is evaluated.

2.2 Social network system ontology

We propose SNO that models key entities and their relationships typically found in SNSs.
This is partly because we could not find an appropriate ontology in the literature that can
capture the details of objects in an SNS. Based on this, we elaborate and discuss various
scenarios regarding our proposed access control model. Note, however, that our access
control model is not tied or limited to this specific ontology. The current version of the
ontology comprises of 14 concepts and ten object properties. Figure 1(a) depicts an
overview of SNO.

The Entity concept is the root to all concepts in SNO, with three immediate
descendants: DigitalObject, Person, and Event. The DigitalObject concept models any
object with digital, usually presentable content. The Person concept models human users
in the context of SNSs. The DigitalObject concept is specialised by subconcepts such as
Note, Photo, Wall, and Annotation. The Note concept represents a textual content. The

 Ontology-based access control for social network systems 63

actual content is linked to a Note object using hasContent datatype property. The
Wall concept models the posting board on the homepage of a person in an SNS, such
as the one Facebook provides. The Annotation concept represents special digital
objects that instead of directly representing a content, annotate one object (e.g., a wall, a
photo, etc.) using another object (e.g., a note, a person, etc.). The two objects are
related to an annotation object, using properties Annotates and AnnotatesWith,
respectively. Annotation itself is specialised by Comment, Tag, and WallPost.
Comment annotates an object with a note. PhotoPersonTag is a specialised tag that
annotates a photo with a person. WallPost annotates a wall with an object, e.g., a photo.
We choose to represent annotation as a concept, rather than a relation, in order to be able
to capture more semantics regarding it. For instance, it is usually important to know who
has tagged a person in a photo; that might be different from the owner and the tagged
person.

Figure 1 SNO, (a) SNO ontology (b) sample instantiation of SNO (see online version
for colours)

Entity

Digital
Object Person Event

Annotation Photo VideoClip

Tag Comment WallPost

PersonTag

PhotoPersonTag

Wall Note

xsd:string xsd:hexBinary

xsd:time

xsd:string

isFriendOf

hasFullName

residesIn

attends owns

hasContent

createdAt

annotates

annotatesWith
italic

Class

Individual

rdfs:subClassOf

Property

Instance of

Datatype/value

annotates

annotates

Person

Alice

Bob

David

Carol

isFriendOf

Pittsburgh

isFriendOf

isFriendOf

Event

conf-X

attends

pPersonTag1

PhotoPersonTag

photo1

Photo

owns

annotates

annotatesWith

created

Alice Smith
residesIn

hasFullName

IMG DATA

hasContent
BobWall

wallPost1

annotates

annotatesWith

Wall WallPost

owns

(a) (b)

Figure 1(b) shows a small, sample instantiation of SNO. The knowledge describes
Alice’s name, where she resides, her friendship with Bob, Carol, and David, and an event
she attends. Alice also owns photo photo1, in which Bob is tagged (pPersonTag1
annotates photo1 with Bob). This tag has been created by Carol. Moreover,
this photo tag has been posted on Bob’s wall, i.e., wallPost1 annotates Bob’s wall,
BobWall, with pPersonTag1. Using SNO concepts and relations, more complex
semantics can be represented, which is not shown in the simple scenario described above.
For instance, David may make a comment about Bob’s wall post mentioned earlier.
This can be represented by comment comment1 which annotates wallPost1 (i.e.,
annotates(comment1, wallPost1)) with a note. Throughout the paper, we use
namespace prefix sn to refer to SNO concepts and relations.

 64 A. Masoumzadeh and J. Joshi

3 Ontology-based social network access control model

We propose OSNAC, a rule-based access control policy model for SNSs based on
semantic web standards. OSNAC is a fine-grained semantics-aware model that captures
relations between ontological concepts of knowledge as protected resources. For this
purpose, the model relies on an ontology such as SNO (introduced in Section 2.2) that
models the SNS knowledge. It also uses an ACO (described in Section 3.1) to model the
policies. We assume a closed-world policy model where an access is denied unless it is
allowed according to access control policy rules.

Figure 2 shows the overall OSNAC policy framework. Access control rules are
specified at two levels: user and system. At the user level, every user can express
personal authorisation rules regarding protected resources. For more flexible
authorisations, users can leverage dependent authorisation, delegative authorisation as
well as multi-authority specification rules. At the system level, the rules govern the
overall privacy policy of the system. Basic authority specification rules determine which
users have authority over which protected resources. They empower users by recognising
the authorisations defined at user-level as permissions. In other words, they aggregate
user-level authorisations by determining the appropriate authority for protected resources.
In contrast, direct permission rules indicate permissions that are valid independently of
users’ policies. System- level policies are specified by administrators according to
application semantics of a particular SNS, which are naturally less frequently updated
than the user-level policies. Note that a higher-level policy component in Figure 2 can be
considered performing aggregation of its lower-level components. We elaborate on
various components of the framework in the rest of the section.

Figure 2 OSNAC policy framework (see online version for colours)

Sy
st

em
-

le
ve

l
U

se
r-

le
ve

l

Personal Authorisation

Dependent
Authorisation

Delegative
Authorisation n

Multi-Authority
Specification

Direct
Permission Basic Authority Specification

3.1 Policy expression at ontology level

Since knowledge resources are captured in an ontology, such as SNO, the access control
policies need to express them using ontology concepts. In order to facilitate an efficient
and semantics-rich access control decision, we choose to capture information related to
access control policy in a separate ontology, which we call the ACO. We use namespace
prefix ac to refer to ACO concepts and relations, which are depicted in Figure 3. ACO is
used to model and store any knowledge solely needed for access control purpose
including inferences based on access control policy rules. We categorise the concepts and
relations in ACO as follows.

 Ontology-based access control for social network systems 65

• Access subject: class ac:Subject is used to specify the access subject (an instance of
sn:Person) of a given access request that is evaluated.

• Reified properties: we consider instances of SNO properties as the protected
resources. However, since current semantic web languages such as OWL do not
support expressions about property instances, which is needed for expressing
authorisations, we reify SNO properties in ACO as follows. Class ac:p_property
serves as an abstract reification of an SNO property. Properties ac:pSbj and ac:pObj
relate class ac:p_property to its corresponding subject and object of the property in
SNO, respectively. Corresponding to each property sn:x, there exists class ac:p_x,
which is a subclass of ac:p_property. Thus, a relation such as sn:isFriendOf(Alice,
Bob) in SNO is correspondingly represented in ACO using an instance of class ac:p
isFriendOf; its subject and object are related using relations ac:pSbj(Alice) and
ac:pObj(Bob), respectively.

• Authorisations: an authorisation is issued by a user to authorise the subject to access
a property instance. Property ac:authorizes abstractly relates the user who issues the
authorisation (an instance of sn:Person) to the reified property instance that is to be
accessed (an instance of a ac:p_property descendant). Depending on the mode of
access, one of the descendants of ac:authorizes will be used, which include
ac:authorizesRead, ac:authorizesDelete, and ac:authorizesInsert.

• Permissions: a permission specifies an access granted by the SNS to a subject. Note
that this is usually inferred based on user-level authorisations. Class ac:Permitted
represents an abstract notion of such a permission. A reified property instance
becomes also an instance of ac:Permitted if access to it is inferred to be granted by
the SNS. Depending on the mode of access, one of the descendants of ac:Permitted
will be used, which include ac:PermittedRead, ac:PermittedDelete, and
ac:PermittedInsert.

• Principal authority: We assume a unique principal authority is assigned for every
SNO class individual using property ac:hasPrincipalAuthority. The principal
authority is most probably the originator of the object, and is determined by the
system. In practice, principal authorities can be inferred based on other properties
captured in SNO such as sn:owns or sn:created, that may be defined between an
sn:Person instance and an sn:Entity instance. We elaborate more on how this
concept is used in our model in Section 3.2.2.

The access control policy rules in our model follow the syntax mentioned in Section 2.1.
In order to efficiently express reified properties as protected resource in the rules we
introduce the following shorthand.

Definition 1: (Reified property shorthand) Expression [?rsc ← sn:p(s, o)] represents ?rsc
as the protected reified property instance of type sn:p that relates property subject s to
property object o, i.e., [?rsc ← sn:p(s, o)] ≡ ac:p_p(?x) ∧ ac:pSbj(?x, s) ∧ ac:pObj(?x, o).

To define rules, we only use abstract authorisation and permission predicates. For
instance, we use ac:authorizes in the format of personal authorisations. However, an
actual rule needs to use one of its descendants as mentioned in Section 3.1.

 66 A. Masoumzadeh and J. Joshi

Figure 3 Access control ontology (see online version for colours)

pSbj /pObj p_property sn:Entity

sn:Person

authorizes
(authorizesRead/…)

p_isFriendOf

pSbj
/pObj

p_annotates sn:Annotation

pSbj

pObj

sn:DigitalObject

…

Subject

Permitted

PermittedRead

PermittedInsert

PermittedDelete

hasPrincipalAuthority

3.2 System-level policy rules

System-level access control policy rules are specified by SNS administrators. Table 1
shows the format of system-level policy rules. In these rules, [?rsc ← sn:p(s, o)] specifies
the protected resource according to the reified property shorthand. P is a conjunction of
zero or more of either SNO predicates, ac:Subject, or ac:hasPrincipalAuthority, which is
used to express more specifically where a rule applies. We call P a rule extension
sentence.
Table 1 System-level access control policy rules

Direct permission:

 [? : (,)] (?)rsc p s o rsc∧ ← ⇒P sn ac : Permitted

Basic authority specification:

 1

1
[? : (,)] (,?) (?)

n

i
i

rsc p s o u rsc rsc
≥

=
∧ ← ∧ ⇒P sn ac : authorizes ac : Permitted∧

3.2.1 Direct permission

Direct permissions allow the system to grant permissions to users without the
involvement of user authorities. As shown in Table 1, a direct permission rule includes a
rule extension sentence and a property resource specification in the antecedent, and an
ac:Permitted descendant as the consequent.

Example 1: The following two direct permission rules entitle everyone to read the
relations that are defined about the objects for which he/she is the principal authority.

[]

[]

(?) (? ,?)
 ? (? ,?) (?).

(?) (? ,?)
 ? (? ,?) (?).

s sbj
rsc s o rsc

o sbj
rsc s o rsc

∧

∧ ← ⇒

∧

∧ ← ⇒

ac : Subject sbj ac : hasPrincipalAuthority

sn : property ac : PermittedRead

ac : Subject sbj ac : hasPrincipalAuthority

sn : property ac : PermittedRead

 Ontology-based access control for social network systems 67

In the first rule in the above example, the first two predicates in the body constitute the
rule extension sentence, and the third predicate specifies the protected property instance.
Note that ac:p_property is considered as the superclass of any reified SNO property;
therefore, the reified property shorthand applies to any property with bound variables s
and o for its subject and object. The first predicate of the rule extension sentence
indicates sbj to be the access subject, and the second one indicates sbj to be the principal
authority for a protected property’s subject. Finally, the consequent predicate allows read
access to such a property for the access subject. The second rule is only different in
considering access subject to be the principal authority for a protected property’s object.

3.2.2 Basic authority specification

Most of the access control decisions in a SNS are desirable to be mediated using policies
determined by the relevant users, instead of direct permissions by the SNS itself. In this
respect, the role of system-level rules is to determine policy authorities for resources.
According to Table 1, authority specification rules follow a format similar to that
of direct permissions, i.e., having a rule extension sentence P and reified resource
specification in antecedent and ac:Permitted descendent in consequent. But they also
include a conjunction of ac:authorizes predicates, which indicates users whose
authorisations matter in granting permissions on the specific protected resources. This
means that permissions are granted based on user-level authorisations. Although an SNS
may define a set of authority specification rules customised for its own application
semantics, here, we propose a generic, basic authority model for an ontology-based
knowledge base system. Assuming there is a principal authority for every SNO
individual, as described in Section 3.1, it is safe to consider the same authority to be
effective for any property instances associated with that individual. Hence, the authority
over an object property instance can be determined based on the principal authorities of
the related individuals. For instance, access to sn:isFriendOf(Alice,Bob) is under the
authority of both Alice and Bob. The authority over a datatype property instance is also
the principal authority of the only related object. The basic authority model for read
access can be expressed using the following rule.

() ()
[]

()

1 2

2

? ,? ? ,?

 ? (? ,?)

 (?) ? ,?
(?)

s u o u

rsc s o

rsc u rsc
rsc

∧⎤ ⎤⎦ ⎦
∧ ←

∧ ∧

⇒

ac : hasPrincipalAuthority ac : hasPrincipalAuthority

sn : property

ac : authorizesRead ac : authorizesRead

ac : PermittedRead

 (1)

The above rule grants a read permission on a property instance only if both the principal
authorities of the individuals associated with the property instance authorise that access.

3.3 User-level policy rules

User-level access control policy rules are specified by SNS users regarding the protected
resources that they have authority over. The actual effectiveness of such a rule is
determined according to system authority policies. Table 2 shows the format of user-level
policy rules. Similar to system-level policy rules, user-level policy rules include a rule
extension sentence R, which is a conjunction of zero or more of either SNO predicates or

 68 A. Masoumzadeh and J. Joshi

ac:Subject, and a reified property shorthand for specifying protected resource in
antecedent. Also, all user-level policy rules have an ac:authorizes descendant in
consequent. The first argument of this predicate has to be the user who specifies the
authorisation. Otherwise, user authorities may be misused. We assume that SNSs enforce
this requirement.
Table 2 User-level access control policy rules

Personal authorisation:
 [? : (,)] (,?)rsc p s o u rsc∧ ← ⇒R sn ac : authorizes
Dependent authorisation:
 () () ()

()
1 1 1 1 2 2 2 2 1

2

? : , ? : , ,?

,?

rsc p s o rsc p s o u rsc

u rsc

∧ ⎡ ← ⎤ ∧ ⎡ ← ⎤ ∧⎣ ⎦ ⎣ ⎦
⇒

R sn sn ac : authorizes

ac : authorizes

Delegative authorisation:
 () ()2 1[? : (,)] ,? ,?rsc p s o u rsc u rsc∧ ← ⇒ ⇒R sn ac : authorizes ac : authorizes
Disjunctive multi-authority specification:
 { }

[? : (,)] (,?) (,?)
i

i i i

R R
R rsc p s o u rsc pa rsc
=

= ∧ ← ∧ ⇒sn ac : authorizes ac : authorizesR

Conjunctive multi-authority specification:

1
[? : (,)] (,?) (,?)

n

i
i

rsc p s o u rsc pa rsc
=

∧ ← ∧ ⇒R sn ac : authorizes ac : authorizes∧

3.3.1 Personal authorisation

A personal authorisation rule expresses a permission granted by an individual user to
others. According to the rule format shown in Table 2, a personal authorisation rule uses
a rule extension sentence and a reified property shorthand in antecedent and an
ac:authorizes descendant in consequent.

Example 2: The following rule, expressed by Alice, authorises her friends to read the
photo-tags she has been marked with

[]
(? , (? ,) (?)

 ? (? ,) (,?)
sbj sbj pTag

rsc pTag rsc
∧

∧ ← ⇒

ac : Subject sn : isFriendOf Alice sn : PhotoPersonTag

sn :anonatesWith Alice ac : authorizesRead Alice

In the above example, the first three antecedent predicates compose the rule extension
sentence. The first and second predicates specify the access subject to be Alice’s friend,
and the third predicate declares variable pTag to be of type sn:PhotoPersonTag.
The forth predicate specifies the protected resource to be an sn:annotatesWith relation
that relates PhotoPersonTag ptag to Alice. The consequent predicate indicates that Alice
authorise such an access request.

3.3.2 Dependent authorisation

Dependent authorisation rules allow one authorisation to be inferred based on another
authorisation. This is often useful in scenarios where authorisations need to be derived for
related protected resources. As the format shown in Table 2, dependent authorisation
rules include a rule extension sentence, two protected property specifications, and an

 Ontology-based access control for social network systems 69

ac:authorizes descendent for the first protected property in antecedent, and an
ac:authorizes descendent for the second protected property in consequent. In other
words, dependent authorisation allows for authorisation propagation from protected
resource rsc1 to protected resource rsc2 under specific condition determined by rule
extension sentence R.

Example 3: In the scenario depicted in Figure 1(b), suppose Alice has specified detailed
authorisation rules for different types of annotations on her photo. Then she can make
sure whoever gets to access the annotations can also access the photo content using the
following rule, without redefining all the restrictions.

[] []
() ()

1 2

1 2

? (? , 1) ? (1, ?)

 ,? ,?

rsc x rsc c

rsc rsc

← ∧ ←

∧ ⇒

sn : anonates photo sn :hasContent photo

ac : authorizesRead Alice ac : authorizesRead Alice

3.3.3 Delegative authorisation

Delegation has been shown to be useful in conjunction with access control models (Barka
and Sandhu, 2000). In the context of the proposed model, we observe that delegating
authority improves the flexibility of policies. Based on a delegative authorisation, a user
delegates its authority over a specific resource to another user. According to the rule
format shown in Table 2 user u1 delegates authorisation on a specific resource to user u2.
In other words, user u1 respects the authorisations made by user u2 on that resource.
Delagative authorisations may be used to relax authority on the protected relations. The
basic authority specification rule stated in Section 3.2.2 [rule (1)] requires both the end
authorities of a relation to authorise a permission, in order for it to be granted. However,
such a mutual agreement might be too restrictive for some users and resources. The two
end authorities can use delegative authorisations to respect one another’s decisions on the
specific permission(s) of choice, without a change in system-level rules.

Delegative authorisations are very flexible and secure in terms of delegation power.
First, an authority can flexibly customise the permission. For instance, it can restrict the
target subjects to have certain characteristics, or the resource/operation to be of certain
type. Second, subsequent updates to the delegative authorisation rule will be applied
seamlessly, without a need to worry about grant/revoke propagation issues that delegation
models usually deal with. This is because unlike traditional delegation models, the
permissions are not explicitly transferred; the authorisation rule is the sole means of
delegation. Third, since delagative authorisations are at the user level, there is no need to
assure that the delegator actually has the authority on the permission. Only the valid
delegations will be effective based on the system-level authority specification rules.

3.3.4 Multi-authority specification

There are scenarios in SNSs where more authorities are desired to weigh in on an access
control decision than just the directly related authorities. We support multi-authority
specification in two ways. A principal authority may use multiple delegative
authorisation rules to enable a disjunctive multi-authority. Such a multi-authority is
disjunctive in the sense that a permission authorisation by any corresponding authority in
the set is a sufficient condition for that permission to be considered authorised
by the principal authority. Alternatively, a principal authority may create a conjunctive

 70 A. Masoumzadeh and J. Joshi

multi-authority, in which every involved authority is required to authorise a permission in
order that it would be considered authorised by the principal authority. Table 2 shows the
formats of a rule set and a single rule that establish disjunctive and conjunctive
multi-authority, respectively, where principal authority user pa shares the authority with
users u1, u2, …, and un.

3.4 Access control enforcement

A basic access request is a triple 〈sbj, rsc, opr〉, where sbj is the user who requests the
access (instance of sn:Person), rsc = p(s, o) refers to the property instance to be accessed
(instance of ac:p_property), and opr is the mode of access requested (read/delete/insert).

Definition 2: (Access authorisation) Given an access request 〈sbj, p(s, o), opr〉, the access
is granted if and only if the following sentence is satisfied in the knowledge base, given
the fact Subject(sbj):

[]? (,) (?)rsc p s o rsc← ∧ ac : Permitted

where predicate ac:Permitted is substituted with its proper descendant corresponding to
opr. The access is denied otherwise.

We note that in the case of information retrieval from an SNS knowledge base
multiple relations may be queried and evaluated simultaneously in order to retrieve a
result set of interest. Conceptually, for each valid variable assignment in a query, every
bound relation needs to be considered as one basic access query. However, an access
authorisation per such relations is not efficient, and needs modification of the retrieval
engine. Alternatively, we augment a query with access check primitives and evaluate that
in order to retrieve only the authorised results.

Definition 3: (Query access authorisation) Let 〈sbj, Q〉 be a query access request by

subject sbj, where ()
1

: ,
n

W i i i
i

Q p s o
=

=∧sn represents the conjunctive WHERE clause of

query Q. A retrieval engine automatically enforces the access control policy and retrieves
the authorised result by evaluating:

() () (){ }
1

: , ? : , ?
n

W i i i i i i i i
i

Q p s o rsc p s o rsc
=

′ ⎡ ⎤= ∧ ← ∧⎣ ⎦∧ sn sn ac : PermittedRead

given the fact Subject(sbj).

Each relation predicate in the original query is followed by two predicates for access
control purpose: the first predicate bounds the relation to a resource variable, and the
second predicate checks if the subject has permission to access the resource. A query that
is augmented with access primitives can be directly processed by a query retrieval engine
on the ontology, while access control policy rules are enforced seamlessly using an
ontology reasoner.

Example 4: Suppose Bob requests access to the list of Alice’s friends who reside in
Pittsburgh. This is a complex query that involves accessing the list of Alice’s friends,
where they live, and their names. The following is a SPARQL-like syntax for this query.

 Ontology-based access control for social network systems 71

? ?
{ (, ?)

 (? ,)
 (? ,?)}

x
x

x
x

∧
∧

SELECT fname
WHERE sn : friendOf Alice

sn : residesln Pittsburgh
sn : hasFullname fname

Its access-augmented WHERE clause will be as follows.

[]

[]

(, ?)
 ? 1 (, ?) (? 1)
 (? ,)
 ? 2 (? ,) (? 2)
 (? ,?)
 ? 3

x
rsc x rsc

x
rsc x rsc

x
rsc

∧ ← ∧

∧

∧ ← ∧

∧

∧ ←

sn : friendOf Alice

sn : friendOf Alice ac : PermittedRead

sn : residesln Pittsburgh

sn : residesln Pittsburgh ac : PermittedRead

sn : hasFullname fname

[](? ,?) (? 3)x rsc∧sn : hasFullname fname ac : PermittedRead

When executing the augmented query in Example 4, if Bob does not have access to even
one of the relations in the query corresponding to a specific Alice’s friend, that person’s
information will not be retrieved. Thus, the result set reflects the authorised information
according to the access control policies.

3.5 Supporting negative authorisation

The OSNAC policy model relies on positive authorisations. If the system cannot
resolve a corresponding positive permission (i.e., descendants of ac:Permitted) for
an access request, then the request is denied. Although positive authorisation can be
used to express security policies in general, it is sometimes desirable to express
intended policies using a mixture of positive and negative authorisations.
Unfortunately, OWL and SWRL do not support negation-as-failure due to open-world
assumption of the Semantic Web. This prevents us from reasoning collectively on
positive and negative authorisations. To be more specific, if an authorisation cannot
be inferred its negation cannot be inferred either. Our proposed workaround to
support negative authorisation is to introduce separate predicates for negative
authorisations and resolve the conflicts at the query processing time using SPARQL,
once the inference is done. For this purpose we extend ACO, that was described in
Section 3.1, as follows. Analogous to property ac:Permitted and its descendants, we
define property ac:Prohibitted and its corresponding descendants (i.e.,
ac:ProhibittedRead, ac:ProhibittedInsert, and ac:ProhibittedDelete), that represent
negative permissions. Also, we define property ac:deny and its corresponding
descendants for negative user-level authorisation. In order to fully enable negative
authorisations, we need to also specify corresponding basic authority specification rules
for negative authorisations, in a manner similar to what is described in Section 3.2.2 but
for negative permissions.

This approach satisfies the need for the common use of negative authorisations. Users
will be able to express negative exceptions to positive authorisations, and any conflict are
resolved at the retrieval time. We follow a denial-takes-precedence approach, when both
ac:Permitted and ac:Prohibitted predicates are resolved for a specific access.

 72 A. Masoumzadeh and J. Joshi

Definition 4: (Query access authorisation with negation) Let 〈sbj, Q〉 be a query access

request by subject sbj, where ()
1

: ,
n

W i i i
i

Q p s o
=

=∧sn represents the conjunctive WHERE

clause of query Q. A retrieval engine automatically enforces the access control policy
with negative authorisations and retrieves the authorised result by evaluating the
following, given the fact Subject(sbj):

()
() ()

(){ }
()()

1

: ,

 ? : , ?

 ?

 ! ?

i i i

n i i i i i

W
i j

j

p s o

rsc p s o rsc
Q

rsc

rsc

=

⎛ ⎞
⎜ ⎟

⎡ ⎤∧ ← ∧⎜ ⎟⎣ ⎦
⎜ ⎟′ =
∧⎜ ⎟
⎜ ⎟
⎜ ⎟∧⎝ ⎠

∧

sn

sn ac : PermittedRead

OPTIONAL ac : ProhibittedRead

FILTER bound

4 Implementation

4.1 Design and architecture

We have developed a prototype implementation of an SNS knowledge-base
that is protected based on the proposed OSNAC model. The implementation
has been done in Java language based on the Jena semantic web framework
(http://jena. sourceforge.net).We leverage Jena’s TDB for persistent storage of SNO and
ACO. In an initialisation phase, based on the SNS knowledge captured in SNO, ACO is
populated with the corresponding reified properties as described in Section 3.1.

Figure 4 illustrates the architecture of the prototype implementation. Access control
policy rules are provided by users and system administrators, using separate interfaces,
and are stored in the policy rule-base. Rules are expressed using SWRL as explained in
Section 3. However, since SWRL is not directly supported in Jena, we programmatically
convert rules to Jena’s own rule language in a policy compilation phase. Note that there is
no loss of expressiveness in this process. At run time, the user request processor accepts
the requests from a user (in fact, from the SNS on behalf of a user), and passes it to the
query modifier module, where it is augmented with access control primitives (refer to
Section 3.4). The modified query is then sent to the SPARQL engine. Before execution of
the query by engine, a fact is inserted in the knowledge base asserting the user to be the
access subject. The SPARQL engine then interacts with the SNO and ACO to retrieve the
query results. In the retrieval process, the access inference engine employs Jena general
purpose rule engine to infer access primitive predicates (i.e., ac:authorizes and
ac:Permitted) based on the knowledge stored in the ontologies and according to the
access control policy rules. The access subject assertion is removed from knowledge base
after query has been executed. Finally, the authorised query results are returned to the
user request processor.

 Ontology-based access control for social network systems 73

Figure 4 Architecture of the prototype implementation (see online version for colours)

Query Execution

SNS Policy Administration Interface

Rule APIsRule APIs

User-level
rules

System-level
rules

Ontology APIs

ACO
(Access Control Ont.)

Access Inference Engine

Q

SPARQL Engine

Query Modifier

User Request
Processor

SNS Application Interface

SNS User (Interacting with App.) SNS User (As Authority) System Admin

request

results

SPARQL Query

Access-Augmented
SPARQL Query

results

SNO
(SNS Ontology)

4.2 Access control enforcement

We have conducted tests on the access control engine by submitting SPARQL queries on
a sample populated SNO [extended version of Figure 1(b)]. The engine successfully
returns only the authorised information that is expected according to the sample access
control policy rules. We also developed a data generator that randomly populates an SNO
ontology with users, friendship links, photos, and photo tags. For the purpose of
performance evaluation, we decided to focus on a limited scenario where users want to
control their friendship links. It is much more easier to evaluate the effects of change in
the number of users and their protected resources (i.e., friendship links here) on access
control performance, without complicating the problem. We run the prototype on a
standard desktop PC, and each measurement is the average result of ten runs.

We measure three performance parameters of the prototype access control engine.
Initialisation time is the time it takes to load the ontologies and populate ACO with
reified properties. Inference time is the time it takes to load access policy rules and build
an inference model in Jena for reasoning on the ontologies. Finally, access check time is
the time it takes for the engine to answer a simple predicate query involving an access
check. Figure 5 shows the performance results of the access control engine for different
data sizes. In each data point, we consider on average 60 friends per user. The first two
steps, i.e., initialisation and inference, need to be performed once when the system starts.
Therefore, it can be acceptable to spend about 36 seconds for completing these two steps
with 2,500 users. The most important parameter here is the access check time, which is
about two seconds for 2,500 users in our experiment. Although, this seems a little
expensive, the performance can be improved by employing better software and hardware
tools. Moreover, the access check time seems to be linear with the number of users (note
that the scale is not linear in the horizontal axis). Since the ratio of friends per user is an

 74 A. Masoumzadeh and J. Joshi

important parameter in the generated dataset and performance of the system, we also
evaluated our model under different ratios of friends per user. Note that this ratio is
currently about 130 for Facebook. The results are shown in Figure 6. All the performance
increase at a linear rate, which is lower up to 60 and gets higher after that.

Figure 5 Performance of the prototype engine for different number of users (with avg.
60 friends), (a) initialisation time (ms) (b) inference time (ms) (c) access check
time (ms) (see online version for colours)

0

20000

40000

60000

80000

100000

120000

140000

160000

180000

1000 2500 5000 10000

0

5000

10000

15000

20000

25000

1000 2500 5000 10000

(a) (b)

0

5000

10000

15000

20000

25000

30000

1000 2500 5000 10000

(c)

Figure 6 Performance of the prototype engine for different number of friends per user
(2,500 users), (a) initialisation time (ms) (b) inference time (ms) (c) access check
time (ms) (see online version for colours)

0

20000

40000

60000

80000

100000

120000

20 40 60 80 100 120

0

2000

4000

6000

8000

10000

12000

20 40 60 80 100 120

(a) (b)

 Ontology-based access control for social network systems 75

Figure 6 Performance of the prototype engine for different number of friends per user
(2,500 users), (a) initialisation time (ms) (b) inference time (ms) (c) access check
time (ms) (continued) (see online version for colours)

0

2000

4000

6000

8000

10000

12000

14000

20 40 60 80 100 120

(c)

5 Related work

Access control research in social network area is still in its early stages. Initial access
control solutions for SNSs propose trust-based access control policies that are inspired by
research developments in trust and reputation computation in social networks. Friend of a
friend (FOAF)-realm (Kruk, 2004; Kruk et al., 2006) is one of the earliest approaches
that quantifies the knows relations in the context of FOAF ontology as a trust metric, and
support rules that control accesses of friends to resources in a social network by stating
the maximum distance and minimal friendship level. Carminati et al. (2006) propose a
conceptually-similar but more complete trust-based access control model. Villegas et al.
(2008) propose to use a slightly different trust measure by automatically classifying
nodes in zones. A general drawback of trust-based access control models is the usability
issues, as it could be very hard to comprehend and specify appropriate trust thresholds,
and hence be left with even less protection than simple, conventional access control
approaches. While these approaches focus mainly on subject specification based on
distance and trust measures, we take a more abstract approach and focus instead on
accurately capturing the information semantics using an ontology-based access control
policy. Trust information can be straightforwardly used in our approach if captured
in the ontology, independently from underlying trust computation mechanism.

The closest work to this paper is probably the semantic web-based access control
framework (Carminati et al., 2009), which also leverages OWL and SWRL. The authors
define three type of policies, namely, access control policy, filtering policy, and admin
policy. Access control policies are positive authorisation rules; filtering policies can limit
someone’s access to information by herself (not conceptually a security issue); and admin
policies can express who are authorised to define those policies. Although they outline an
access control framework, lack of formal descriptions and implementation leaves behind
many ambiguities. In comparison, we propose a more detailed and semi-formal semantics
for our model, and show the applicability by implementing a proof-of-concept
framework. Also, our model captures the notion of individual authorities, and provide
access control policies to protect the relations in the knowledge ontology as a more
expressive and flexible alternative to entity protection. Ryutov et al. (2009) propose a

 76 A. Masoumzadeh and J. Joshi

rule-based access control model for semantic networks, based on a constrained first order
logic. The authors have implemented this model in a RDF-like framework. While the
model is based on logic rules similar to our approach, notions such as attaching policies
and separating policy at subject and object level are introduced but inadequately
elaborated and justified in their work. Also, relations are mainly used in the access
control rules, but not as of the protection objects; it seems that their approach only
protects the objects at entity level. There are also other access control approaches for
social networks that go beyond our focus in this work, such as protection against
third-party applications (Shehab et al., 2008).

In the area of semantic web, Rei (Kagal et al., 2004) is a prominent policy language
based on RDFS. Although Rei leverages semantic web languages it mainly provides a
generic framework to support different deontic concepts in the policy (i.e., permission,
prohibition, obligation, and dispensation), and distributed policy management. However,
in terms of specifying subjects and protection objects it uses generic conditions, not
specific to semantic web. In contrast, our model is more focused on how to specify
fine-grained policy rules on a knowledge base that is specified using OWL. More closer
to our work, there exist access control solutions for RDF stores, although not in the
context of SNSs. Reddivari et al. (2005) propose RAP, a rule-based model and
architecture. In RAP, access control policy is written using Jena framework rules, and
supports both permit and prohibit predicates, similar to OSNAC features. Although no
experimental results are reported, RAP does not seem to be a very efficient access control
method. For a given query to the RDF store, the result set is retrieved first. Then the
access control inference is performed separately for every triple in the result in order to
decide to include it in the final result. Our query augmentation approach performs more
efficiently. The use of access primitive predicates in the query avoids excessive overhead
of access checks leveraging the query engine itself. There are other approaches to access
control on RDF stores that are comparatively less grounded (Dietzold and Auer, 2006;
Dersingh et al., n.d.; Liu, Xie, Li et al., 2009), or support a specific policy such as
multi-level security (Jain and Farkas, 2006).

6 Conclusions

In this paper, we proposed OSNAC, an ontology-based access control model based on
semantic web standards that empowers the individual users of a SNS to express
fine-grained access control policies on their related information. We proposed an
ontology for SNSs to further demonstrate our approach. The key idea in OSNAC is to
express the policies on the relations among concepts in the social network ontology. We
also provide policy means for the system to define an authority model, that decides which
users’ policies are effective on what protected resources. Moreover, the advanced policy
rules provide more flexibility to the users, in delegating their power, and sharing the
authority over specific objects, i.e., enabling multi-authority specification. We also
implemented a framework prototype of the proposed model, evaluated its performance,
and showed the applicability of our approach.

OSNAC provides powerful access control features for the users of SNSs. Existence of
privacy options such as “share a tagged post with friends of the friend I tag” in Facebook
shows the need for such expressive policies. However, even savvy users of SNSs do not
have to be able to compose access control policy rules manually. An SNS employing

 Ontology-based access control for social network systems 77

OSNAC may simply provide a user interface similar to the current practices, but with
more flexible options to its user; then, provide the access control engine with policy rules
corresponding to the user choices. Investigating user-friendly interfaces to enable users to
fully benefit from OSNAC features will be our future work.

Acknowledgements

This research has been supported by the US National Science Foundation award
IIS-0545912.

References
Barka, E. and Sandhu, R.S. (2000) ‘Framework for role-based delegation models’, Proc. 16th

Annual Computer Security Applications Conference, IEEE Computer Society, pp.168–176,
available at http://dx.doi.org/10.1109/ACSAC.2000.898870.

Carminati, B., Ferrari, E. and Perego, A. (2006) ‘Rule-based access control for social networks’,
in R. Meersman, Z. Tari and P. Herrero (Eds.): Proc. OTM 2006 Workshops (On the Move to
Meaningful Internet Systems), pp.1734–1744, Vol. 4278 of LNCS, Springer, available at
http://dx.doi.org/10.1007/11915072_80

Carminati, B., Ferrari, E., Heatherly, R., Kantarcioglu, M. and Thuraisingham, B. (2009)
‘A semantic web based framework for social network access control’, Proc. 14th ACM
Symposium on Access Control Models and Technologies, ACM, pp.177–186, available at
http://dx.doi.org/10.1145/1542207.1542237

Dersingh, A., Liscano, R., Jost, A., Finnson, J. and Senthilnathan, R. (n.d.) ‘Utilizing semantic
knowledge for access control in pervasive and ubiquitous systems, mobile networks and
applications’, available at http://dx.doi.org/10.1007/s11036-009-0180-7.

Dietzold, S. and Auer, S. (2006) ‘Access control on RDF triple stores from a semantic wiki
perspective’, Scripting for the Semantic Web Workshop at 3rd European Semantic Web
Conference (ESWC), available at http://semanticscripting.org/SFSW2006/Paper3.pdf.

Jain, A. and Farkas, C. (2006) ‘Secure resource description framework: an access control model’,
SACMAT ‘06: Proceedings of the Eleventh ACM Symposium on Access Control Models and
Technologies, ACM, New York, NY, USA, pp.121–129, available at
http://dx.doi.org/10.1145/1133058.1133076

Kagal, L., Finin, T., Paolucci, M., Srinivasan, N., Sycara, K. and Denker, G. (2004) ‘Authorization
and privacy for semantic web services’, IEEE Intelligent Systems, Vol. 19, No. 4, pp.50–56,
available at http://dx.doi.org/10.1109/MIS.2004.23.

Kruk, S.R. (2004) ‘FOAF-realm: control your friends access to the resource’, Proc. FOAF
Workshop.

Kruk, S.R., Grzonkowski, S., Gzella, A., Woroniecki, T. and Choi, H.C. (2006) ‘D-FOAF:
distributed identity management with access rights delegation’, Proc. 1st Asian Semantic Web
Conference, Springer, pp.140–154, available at http://dx.doi.org/10.1007/11836025_15.

Liu, M., Xie, D., Li, P., Zhang, X. and Tang, C. (2009) ‘Semantic access control for web services’,
Vol. 2, pp.55–58, available at http://dx.doi.org/10.1109/NSWCTC.2009.389.

Reddivari, P., Finin, T. and Joshi, A. (2005) ‘Policy-based access control for an RDF store’,
Workshop on Policy Management for the Web, pp.78–81, available at
http://ebiquity.umbc.edu/get/a/publication/323.pdf.

Ryutov, T., Kichkaylo, T. and Neches, R. (2009) ‘Access control policies for semantic networks’,
pp.150–157, available at http://dx.doi.org/10.1109/POLICY.2009.11.

 78 A. Masoumzadeh and J. Joshi

Shehab, M., Squicciarini, A. and Ahn, G-J. (2008) ‘Beyond user-to-user access control for online
social networks’, ICICS ‘08: Proceedings of the 10th International Conference on Information
and Communications Security, Springer-Verlag, Berlin, Heidelberg, pp.174–189, available at
http://dx.doi.org/10.1007/978-3-540-88625-9_12.

Villegas, W., Ali, B. and Maheswaran, M. (2008) ‘An access control scheme for protecting
personal data’, Proc. 6th Annual Conference on Privacy, Security and Trust, pp.24–35.

W3C (2004a) OWL Web Ontology Language – Overview, Recommendation ed.,. available at
http://www.w3.org/TR/owl-ref/.

W3C (2004b) SWRL: A Semantic Web Rule Language – Combining OWL and RuleML, Submission
ed., available at http://www.w3.org/Submission/SWRL/.

W3C (2008) SPARQL Query Language for RDF, Recommendation ed., available at
http://www.w3.org/TR/rdf-sparql-query/.

