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Maps of more than 500 abandoned iron mines, 350 early iron furnaces, and numerous clay mines 

in the central part of the Appalachian region reveal the distribution and close association of 

siderite-limonite bearing ores and clay deposits. The deposits crop out from Lancaster County, 

Pennsylvania to Scioto County, Ohio, a distance of more than 300 miles. The geologic settings of 

the deposits are diverse. In the Valley and Ridge Province and Piedmont Province, 

mineralization follows structures such as major sub-horizontal thrust faults (e.g. Martic) and 

steep thrust faults, (e. g. Path Valley), that juxtapose carbonate units against other rocks. 

Carbonate units within the Plateau Province also contain economic deposits of iron ores and 

clay. The ores are commonly siderite and limonite principally in the form of nodules and other 

irregular masses in clayey, calcareous beds. Illite and kaolinite are the main clay minerals. Silica 

is a common constituent of the clayey rocks and in some of the iron-rich, ore horizons (e.g. 

Buhrstone). The working hypothesis for the formation of the iron ore and clay is that reactive 

fluids probably moved westward along structural and stratigraphic horizons in response to 

tectonic events and where they encounter carbonate rocks, clay formed and iron precipitated 

under favorable geochemical conditions. This hypothesis differs from other ideas such as 

weathering and consequent development of leached paleosols, and bog iron formation. Modern 

models of iron deposition are based on shallow groundwater transporting iron to the precipitation 
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site. The possible outflow of basinal fluids along deep thrust faults and cross strike 

discontinuities was considered as an alternative process for iron deposition and clay formation. 
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1.0  INTRODUCTION AND PURPOSE 

This thesis assesses the distribution of associated, and presumably, co-genetic, economic iron 

and clay deposits as indicated by locations of historic iron mines, early iron furnaces and clay 

mines (Figure 1). The purpose of the research is to study the association of the iron oxides and 

clay with the objective of understanding the conditions and processes responsible for the 

distribution of sedimentary iron ore and clay across the central Appalachians. In order to assess 

the conditions under which the iron ore and clay is formed, a map was produced using GIS 

mapping techniques and employing historical references. The ultimate goal is to assess whether 

iron mineralization is indicative of basinal fluid movement across the orogenic belt through 

preferred fluid pathways. 

The maps demonstrate that iron and clay have a geographic relationship to faults, cross-

strike discontinuities and/or to porous and permeable stratigraphic units and that the deposits 

commonly are hosted in the same calcareous beds (Figure 2). In the Piedmont, Blue Ridge and 

Valley and Ridge Provinces, iron ore and clay commonly crop out along thrust faults. In the 

Plateau Province the deposits lie within calcareous units, among sub-horizontal coal, shale, 

carbonate and sandstone strata (Figure 3). These settings record the importance of carbonate beds 

and porous, permeable structural and stratigraphic conditions in the formation of iron ores and 

clay deposits. The distribution of ore and clay that record permeable pathways along thrust 

faults, cross-strike structural discontinuities, and permeable sandstone are postulated to have 
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conducted warm reactive fluids rich in iron and silica probably from east to west. Where the 

fluids interacted with carbonate rocks, some of which are folded, iron precipitated as iron 

carbonate (siderite) which is commonly oxidized to limonite and other oxides, in clay-rich and 

locally siliceous horizons hosted within strongly altered carbonate beds. The deposits reveal the 

fluid pathways of the central Appalachian Mountains that extended from the Blue Ridge 

Province of Pennsylvania to the western edge of the foreland basin in Ohio, a distance of about 

300 miles.  

 

Figure 1: Iron furnaces, iron mines, clay mines and iron ore outcrops in Ohio and Pennsylvania 
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Figure 2: Iron and clay mines in relation to carbonate and crystalline rocks of Pennsylvania 
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Figure 3: Iron and clay mines relative to cross strike structural discontinuities and faults in Pennsylvania 
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1.1 PREVIOUS WORK 

Iron and clay 

White clay, composed chiefly of kaolinite and illite, has been mined in Pennsylvania since about 

1890 for use in the paper industry. Although most clay is light gray to white, some is stained 

yellow, pink, or brown by iron oxides. Kaolinite is the predominate clay mineral but illite is 

abundant in some deposits (Hosterman, 1984). Quartz is the only non-clay mineral in the whitest 

clay and reaches 50 per cent in some deposits. Goethite is present in some samples high in iron  

(Hosterman, 1984). 

  The source of the clay is believed to be residual clay from the chemical erosion of the 

carbonate bedrock or from weathering of feldspars in local sandstones (Slingerland, 1995).  

Since the surface of the white clay pocket is covered with sand and quartzite fragments, the clay 

deposits were discovered when prospecting for iron ore (Leighton, 1941). 

Iron ore is defined as a mineral or group of minerals containing sufficient iron to be 

economically used in iron production (Eckel, 1914). Iron ore was mined within the Appalachian 

region until production shifted to the Lake Superior region in the 1870’s. Iron mining for the first 

charcoal furnace began in 1720 for the Colebrookdale Furnace, Berks County, Pennsylvania 

(Bining, 1938). In Pennsylvania magnetite was the principle ore mined along with brown ore 

(limonite). In 1910, 632,409 tons of magnetite compared to 106,544 tons of brown ore was 

produced (Eckel, 1914). 

Iron ore in Pennsylvania is found in igneous, metamorphic and sedimentary rocks. In 

sedimentary rocks ore is present as iron oxides (limonite, goethite, or hematite), iron carbonate 

(siderite), and iron silicates (chamosite, glauconite, and greenalite) (James, 1966).  
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 Igneous and metamorphic rocks, mainly in eastern Pennsylvania host magnetite and 

hematite ore (Inners, 1999). Hematite was mined at Durham, Bucks County, in the Reading 

Prong from within metasedimentary rock (Inners, 1999). The magnetite generally is present in 

quartz-oligoclase gneiss, amphibolite, pyroxene gneiss, quartz-potassium feldspar gneiss and 

marble skarn  (Puffer, 1980; Eckel, 1914). Magnetite also is found as a replacement of carbonate 

rocks adjacent to Jurassic diabase intrusions in southeastern Pennsylvania. This ore is referred to 

as the Cornwall-type, named after the first known deposit in Cornwall, Pennsylvania where an 

estimated 153 million tons of magnetite ore have been produced from the Cornwall mine (Gray, 

1999; Smith, 1988). 

In Pennsylvania, sedimentary strata host some distinctive ores. The ores, which may be 

primary or secondary, include many compounds, mainly oxides.  The ores discussed herein are 

associated with sedimentary rocks especially carbonate rocks.  The minerals generally associated 

with sedimentary iron deposits within the Appalachian region include: limonite, siderite, 

magnetite, and hematite.  

Multiple mechanisms account for the accumulation of these minerals as a potential ore. 

Iron may be incorporated into a sedimentary deposit at the time of deposition or may form later 

as a result of weathering or interaction with groundwater, a process known as secondary 

enrichment. Chemical sedimentation is the precipitation of an iron mineral out of the iron-

bearing water. Clastic sedimentation is the physical accumulation of iron mineral grains within 

the sediment. Weathering is the physical degradation of a sedimentary rock, and the subsequent 

oxidation of an iron mineral. Solution–remobilization occurs when iron is chemically scavenged 

from adjacent lithologies, transported to another location and deposited (Guilbert, 1986). 
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Examples of iron deposits formed by chemical precipitation are the Clinton-type ore, the 

bog iron ore, the siderite ores and metallic sulfide deposits. Iron can be deposited within the pore 

space of sedimentary rocks by circulating iron-bearing water when changes in the geochemical 

environment favors the precipitation of iron minerals such as iron sulfide (pyrite, marcasite), iron 

carbonate (siderite) or an iron oxide/hydroxide (hematite, limonite, goethite). The geochemical 

factors include temperature, pressure, oxidation state Eh, pH, iron concentration, available sulfur 

and organic material. Precipitation of iron can occur prior to lithification of the sediments or at a 

later time during diagenesis. Additional iron minerals that may form during diagenesis are 

chamosite and glauconite. The exposure of sedimentary rocks to weathering can change the 

mineral form of the iron. For example, siderite beneath overburden changes to limonite at the 

outcrop.   

 

Clinton-type Deposits 

Oolitic ferruginous strata known as Clinton ores are included among sedimentary iron 

deposits (Guilbert, 1986). The Clinton ore deposit is an extensive deposit which crops out in the 

Appalachian region from New York to Alabama. The deposit is fossiliferous with fossils 

replaced by hematite (Guilbert, 1986). The Clinton Formation accumulated in shallow marine 

environment. CastaHo (1950) suggests that when ferrous iron is carried into a marine 

environment where solid calcium carbonate is in equilibrium with the sea water, iron will 

precipitate. The ferrous iron precipitates as ferric iron in the water and as a replacement of the 

calcium carbonate(CastaHo, 1950). 
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Pyrite Precipitation  

Iron can combine with sulfur to form iron sulfides. Biochemical processes influence the 

precipitation of sulfide deposits (Guilbert, 1986). Reducing or anaerobic environments where 

sulfur is available favor pyrite formation as described in the phase diagrams by Garrels (1960). 

Rocks with high pyrite content are black shales or their equivalents with a large organic content 

(James, 1966). The presence of organic material and anaerobic sulfate-reducing bacteria in the 

sediment allows the development of pyrite because of the creation of a reducing geochemical 

environment with low oxidation potential necessary for sulfide formation (James, 1966). This 

association of organic material to pyrite formation is found in marine influenced, organic–rich 

horizons in the Mississippi delta sediments (Bailey, 1998).   

Mississippi Valley-type (MVT) deposits are massive sulfide deposits of lead, zinc or iron 

and the gangue minerals of calcite, quartz, dolomite, jasperoid, fluorite and barite that 

precipitated from moderate temperature brines, typically 110 to 150 degrees Centigrade (Cathles, 

1983; Ohle, 1959). Most deposits are hosted in limestone and dolomite with some deposits in 

sandstone (Ohle, 1952). The zinc, lead, and iron sulfide occur as replacements of the country 

rock and in open space fillings (Ohle, 1959). These deposits formed from brines expelled  from 

sedimentary basins (Cathles, 1983). A recognized MVT deposit in Pennsylvania is the 

Friedensville deposit in Lehigh County which is a zinc and iron sulfide deposit.  

Bog iron deposits are found in northwestern Pennsylvania. Bog iron forms where 

groundwater carrying dissolved iron enters an oxygenated zone and precipitates the iron as 

hydrous ferric oxide. Bog iron was utilized for the production in colonial iron furnaces in 

northwestern and northeastern Pennsylvania.  
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Bog iron deposits are found in northwestern Pennsylvania in bogs, marshes, meadows, 

etc. (Corbin, 1922). Bog ore is a soft, spongy deposit of limonite that forms as a precipitate from 

iron-bearing water (Inners, 1999). Bog ores are found within sedimentary rocks in which iron 

formed as the result of chemical precipitation. Bog ore style of precipitation occurs when the 

ground water carries dissolved ferrous iron until the iron is oxidized at the top of the water table 

or as it emerges into a marsh. Oxidized iron precipitates and forms ferruginous cement around 

the grains of the sand, silt and clay to form a hard crust. Repeated fluctuations in the water table 

level add to the thickness of the iron crust (Langmuir, personal communication). Bog ore is iron-

red in color, and has a tabular, pisolithic, nodular, laminated or irregular aggregate form (Inners, 

1999). 

The deposition model for limonite ore above the Gatesburg Formation in central 

Pennsylvania is that iron is mobilized under anaerobic, acidic conditions and subsequently 

precipitated along the top of the Gatesburg. Iron may be mobilized into solution in a swamp in 

which decaying organic material creates a low Eh (reducing), low pH (acidic) condition (Rose, 

1995). As the swamp water percolates downward the iron is transported to the bedrock-soil 

interface and comes into contact with an alkaline carbonate surface where the iron precipitates 

along joints to build up into massive, irregular limonite forms. If the iron-carrying groundwater 

enters a cave, the iron can deposit on the surface of stalactites and become incorporated into the 

limestone as an iron carbonate mineral. Continued dissolution of the carbonate results in the 

limonite masses remaining behind in the residual clay soil.  
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Siderite 

Siderite (iron carbonate) is an iron ore mineral that composes beds or nodules that form 

during precipitation or as an alteration of preexisting carbonate concretions, respectively. Factors 

influencing the formation of iron sulfide or iron carbonate precipitation include the action of 

bacteria, the amount of marine sulfate in the sediment and a source of carbon.  Iron carbonate 

nodules or concretions form in deltaic or brackish water (Pye, 1990). 

Siderite has been found in bogs, marshes (Postma, 1977) and recent, unconsolidated mud 

in the Mississippi Delta in a sulfate-deficient system where terrigenous, siliclastic sediments 

have prograded into lacustrine environments (Aslan, 1999). Siderite forms around fragments of 

wood of metal or may form without a nucleus (Pye, 1990) where there is a deficit of sulfate in 

the porewater  (Bailey, 1998). Siderite precipitates in the interstices of sediment incorporating 

the silt/clay particles within the concretion (Bailey, 1998). 

Siderite layer adjacent to a bed is called blackband ore.  The siderite layer is postulated to 

have formed contemporaneously with peat accumulation (Stout, 1944). The blackband siderite 

deposits require a low-sulfate, anoxic water chemistry (Olsen, 1991; Berner, 1981).  

 

Weathering Processes 

The association of iron and clay ores in Paleozoic rocks, attributed to the passage of 

reactive fluids contrasts with the idea that iron was mobilized and transported during deposition 

or during later weathering of late Paleozoic rocks (e.g. Rose, 1995). The weathering process or 

leaching of paleosols commonly was considered to be an important process in the formation of 

clay deposits (e.g.Williams, 1985b). Weathering of feldspathic sandstone, argillaceous and 

cherty limestone and phyllite was considered the source of the clay (Stose, 1907; Peck, 1922 
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Leighton, 1934).  Iron ore in sedimentary rocks has been considered a product of shallow 

groundwater mobilizing and transporting iron during deposition or during later weathering of the 

rock (Rose, 1995). Ore may form laterite, a supergene enrichment deposit, in response to 

weathering.  Weathering occurs when meteoric water attacks the minerals within the bedrock. 

Meteoric water is slightly acidic and contains humic acids as well as carbonic acid so that the pH 

can be as low as 4.0 or 5.0 (Guilbert, 1986). Meteoric water also is oxidized and can oxidize, 

hydrate and carbonatize rock-forming silicate minerals (Guilbert, 1986). The interaction of 

meteoric water and carbonate rocks leads to the dissolution of limestone and dolomite, leaving 

behind residual minerals that were incorporated into the carbonate rock at the time of deposition.  

During normal weathering conditions, exposure to meteoric water leads to the removal of 

alkalies and alkali earths, sodium, potassium, calcium, and magnesium from the residual soil 

developed on the bedrock (Guilbert, 1986). Oxides of iron, aluminum, chromium and titanium 

that are relatively immobile are concentrated in the residuum. The relative mobility of the 

alkalies, alkali earths, and oxides are shown in Table 1.  

 

Table 1: Mobilities of oxides during weathering processes (taken from Guilbert, 1986) 

Group Oxides Relative Mobility  

Sesquioxides Cr2O3 60 
1-100 = Low  Al2O3 2 

 Fe2O3 30 
Dioxides TiO2 10-100 

100-500 = Moderate 
 SiO2 300 
Alkalies, alkali earths Na2O 1000 

500-10,000 = High  K2O 100-1000 

 CaO 500-2000 

 MgO 300-2000 
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Laterite forms during intense weathering of rocks exposed to tropical conditions and 

subject to high rainfall. The resulting soil is enriched in iron and aluminum oxides, 

oxyhydroxides or hydroxides, kaolinite and quartz (Tardy, 1992). Laterite iron deposits form as 

the siliceous components of the soil dissolve without eroding the soil with the iron and aluminum 

oxides remaining in the soil (Guilbert, 1986).  Iron laterites are formed over iron-rich, silica-poor 

rocks such as serpentine (Guilbert, 1986). In areas where the bedrock is rich in aluminum and 

low in iron and silica (such as syenites and nepheline syenites), bauxite is likely to form 

(Guilbert, 1986). Bauxites are a mixture of boehmite, gibbsite, diaspore and other hydrous 

aluminum oxides (Guilbert, 1986). Bauxites also form over argillaceous carbonate rocks along 

with terra rossa, a residual, ferruginous clay (Guilbert, 1986). Whether the weathering process 

leaches silica, iron or aluminum is dependent on the ph and Eh soil water conditions (Guilbert, 

1986). Figure 4 shows that under acid, oxidizing conditions, iron and silica are relatively 

immobile and aluminum is leached from the soil. Under neutral pH and moderate oxidizing 

conditions, bauxite is created because the iron and silica are leached, leaving behind the 

aluminum oxides (Guilbert, 1986). In an iron-rich laterite, iron oxides are found as pellets of 

limonite. Most laterites have pisolitic, concretionary structures, or pisolitic crusts formed around 

grassroots (Guilbert, 1986).   
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Figure 4: Laterite formation relative to pH and Eh conditions (taken from Guilbert, 1986), zone 1 is laterite field, 

zone 2 is bauxite field, zone 3 is podzol soil field and zone 4 is high-iron laterite field 

 

Limonite ores are abundant in the Cambrian and Ordovician limestones in the Valley and 

Ridge and Piedmont Provinces where limonite is found as irregular chunks and stalactitic and 

botryoidal masses within variegated clays overlying carbonate rocks (e.g. the Gatesburg 

Formation (Sternagle, 1986). In addition to limonite, limonite ore may include hydrous ferric 

oxides, and hematite.   Hydrous ferric oxides that differ in the amount of water held within the 

mineral.  Chemical formulas for this group of minerals along with hematite are listed in Table 2. 

The mixture of compounds may lead to confusion about the mineral makeup of limonite ore 

deposit (Eckel, 1914). Limonite ore is used in this manuscript to describe the group of ferric 

oxides.   
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Table 2: Chemical formulae of ferric oxide minerals (taken from Eckels, 1914) 

Mineral name Chemical formula 

hematite 2 Fe2O3, 0 H2O 

turgite 2 Fe2O3, 1 H2O 

goethite 2 Fe2O3, 2 H2O 

limonite 2 Fe2O3, 3 H2O 

xanthosiderite 2 Fe2O3, 4 H2O 

limnite 2 Fe2O3, 5 H2O 

 

Over the Gatesburg Formation in central Pennsylvania, limonite ore is associated with 

massive kaolinite clay deposits (Hosterman, 1984). Mined limonite ore occurs as irregular 

masses of varying size, in three forms: wash ore, lump ore and pipe ore. Wash ore consists of 

small fragments of limonite and limonite-impregnated sandstone and chert found interspersed 

within a clay and sand layer five to fifteen meters thick (Rose, 1995). The limonite fragments are 

soft, weathered and vary in size up to ten centimeters in diameter (Rose, 1995). The wash ore 

layer generally lacks internal structure, although layers of stiff white to pink clay may extend 

through the deposit (Rose, 1995). Lump ore are larger pieces of limonite ore up to fifty 

centimeters in size found at the base of the weathered zone above the Gatesburg (Rose, 1999). 

Lump and wash ore have breccia textures with angular fragments of chert or sandstone cemented 

with limonite (Rose, 1995). The term pipe ore was used for masses of limonite ore that had a 

linear or pipe-like shape. Pipe ore was recorded within limestone bedrock (D'Invilliers, 1884). 

In Centre and Huntingdon Counties, weathering that leads to the dissolution of the 

carbonate component of the limestone leaving residual clays and iron is the commonly the 

accepted model for limonite formation. Another model of limonite formation in deposits situated 

along mountain slopes is that slightly acidic precipitation running off and through clastics near 

the top of the mountain will pick up small amounts of iron. The iron-bearing water as 
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precipitation runoff encounters a carbonate unit further down the slope and dissolves the 

carbonate, leaving behind limestone residuum. Iron precipitates along the limestone surface as 

limonite. Continued dissolution of the carbonate leaves behind the limonite ore (Nichelsen, 

1963). 

 

Cornwall-type Iron Deposits or Metasomatic Carbonate Replacement Ore 

Deposits of magnetite cropped out along the Mesozoic border faults in the Piedmont 

Province. These are contact metasomatic deposits that formed as replacements of carbonate 

rocks adjacent to the diabase intrusions (Rose, 1985). Traditional theory of ore implacement was 

that aqueous fluids from diabase magma flowed from the diabase into the surrounding limestone 

(Rose et al, 1985). Later, (Rose, 1985) proposed that circulating meteoric, connate and possibly 

some magmatic water became heated by the diabase intrusion, mobilized iron, and exchanged 

´ 18O with the adjacent shales, argillaceous sandstones and limestones at high temperature.  This 

heated fluid came into contact with the carbonate rock at the contact zone of the diabase and 

replaced the carbonate with magnetite and silicates (Rose, 1985).   

 

Clay Deposits 

 Deposits of clay are widespread in the central Appalachians and are known from 

each of the principal geologic provinces containing carbonate rocks from eastern Pennsylvania to 

eastern Ohio.  In the Piedmont, clay deposits have been mined in the Cambrian Harpers phyllite, 

Antietam quartzite and Chickies quartzite. The source of the clay was feldspar minerals within 

the quartzites and phyllites which altered to clay (Leighton, 1941). Around South Mountain, the 

Cambrian quartzites and quartz schists are reduced to siliceous white clay (Leighton, 1941).  A 
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large clay mine at Toland was initially an iron mine (Way, 1986). The mine sits at the 

southeastern slope of South Mountain with the northern boundary is comprised of a fault so the 

clay is in contact with the Montalto Member of the Harpers Formation (Way, 1986).  The south 

boundary of the clay pit grades into a grayish green to light gray phyllite, the Tomstown 

Formation which is thought to be the parent material of the clay (Way, 1986).  Important 

commercial horizons of white clay were mined in Centre, Blair, Huntingdon, Cumberland and 

Monroe Counties. These clay deposits are found in the Gatesburg Formation and the Oriskany 

sandstone. Clay deposits in the Valley and Ridge were found in the Cambrian Gatesburg and 

Devonian Oriskany Formations. The clay is associated with limonite iron deposits (Hopkins, 

1900). The clays vary from pure white to light gray in color and may be stained yellow, red, or 

black (Hopkins, 1900) The deposits are predominantly kaolinite with varying amounts of illite 

and quartz or chert (Hosterman, 1984).  

Perhaps the best known clay deposits comprise numerous “underclays” that are 

commonly found adjacent to Pennsylvanian coal beds in the Appalachian Plateau.   Underclay is 

non-laminated, non-bedded, and consists of kaolinite, illite, chlorite, vermiculite, as well as 

accessory minerals such as iron and quartz. Underclay can be composed of plastic clay and/or 

flint clay. Flint clay breaks with a conchoidal fracture and does not become plastic when mixed 

with water but will become plastic after grinding (Hopkins, 1897). Plastic clays are commonly 

hard enough to require drilling and blasting during mining and will crumble to soft, plastic clay 

when exposed to the weather (Hopkins, 1897). Flint clay and plastic clay may both occur under 

the coal or only one type may be present. Normally an underclay is directly beneath a coal seam; 

however, underclay may be separated from the coal by shale or sandstone (Hopkins, 1897).  
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Western Pennsylvania contains high-quality fire-clays in the Pennsylvanian Pottsville and 

Allegheny Formations (Leighton, 1941). An underclay of the Lower Kittanning coal, four to nine 

feet thick, was used commercially in the Beaver Valley, Pennsylvania and in East Liverpool, 

Ohio. The lower part of the bed is plastic clay that imperceptibly grades into a flaggy sandstone 

(Hopkins, 1897), therefore the thickness of usable clay is variable. The Lower Freeport clay is 

very plastic, and light-colored but in most places contains iron oxide fragments (Hopkins, 1897). 

At Bolivar, Westmoreland County, Pennsylvania, the Bolivar clay horizon below the Lower 

Freeport underclay and limestone was known to contain iron ore balls which exhibited 

concentric weathering (Hopkins, 1897).  

 

Origin of underclay 

The origin of the underclay has been debated and several origins have been proposed. 

Hopkins (1897) wrote that the origin of the underclay was linked with the coal bed and that the 

underclay formed in the bottom of a swamp or bog. The growth and decay of vegetation 

extracted iron and alkalies from the sediment (Hopkins, 1897); therefore, underclays contain less 

sodium, and potassium than ordinary clay soils.  

Another early theory has it that underclay is a fossil soil which grew coal-forming plants 

(Rimmer, 1982). (Wanless, 1931) indicated that the underclay is similar to a poorly drained soil 

(Rimmer, 1982). Huddle and Patterson (1961) suggested that the underclay underwent in situ 

leaching before, during or after peat accumulation (Huddle, 1961) . Other theories included the 

alteration of volcanic ash, (Patterson, 1962; Seiders, 1965), and the deposition of colloidal clay 

from lateritic weathering in swamps (Patterson, 1962; Bolger, 1952; Burst, 1952).  
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Modern studies have involved mineral analysis of the clays and accessory minerals to 

understand the geochemical environment of the underclay as it evolved from sediment into 

current form.  Williams and Holbrook (1985) used the mineralogical makeup of underclay in the 

Lower Kittanning underclay with respect to the amount of kaolinite and illite and the presence or 

absence of chlorite, iron and silica in the clay bed as a basis for his hypothesis for clay formation. 

The mineral content variations may reflect post-depositional changes in fine-grained, 

argillaceous sediment. For example, underclay which does not contain chlorite and is rich in 

kaolinite relative to illite and mica are believed to have been exposed on a topographic high 

(Williams, 1985b). Also, a vertical increase in the kaolinite/illite ratio and the kaolinite/mica 

ratio indicates that the sediment was exposed to leaching. Similarly, a vertical decrease in quartz 

and an increase in vermiculite also suggest leaching (Williams, 1985b). By mapping the 

kaolinite, illite, chlorite, vermiculite, and mica content in the Lower Kittanning underclay, 

Williams concluded that the underclay with more intense leaching covers paleotopographic 

highs.  

In underclays that were considered not to have undergone such intense leaching, chlorite 

was present through the whole section, the kaolinite/mica ratio did not increase to the same 

degree, quartz content did not decrease toward the top and siderite nodules were present in the 

bottom of the section. In conclusion, leaching of soils above the water table results in the 

removal of chlorite, an increase in the kaolinite/illite ratio, and removal of quartz.   

Underclays do not have iron oxide zonation seen in modern, well-drained soils and 

another process is needed to account for the removal of iron (Gardner, 1988).  A possible process 

is gleying during which the clay is submerged. Gleying lowers the amount of oxygen in the soil, 

thereby producing an anaerobic environment (Gardner, 1988). Peat deposited over the clay 
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would increase the amount of organic acids and lower the pH, creating an acidic condition. In 

this manner, gleying produces a reduced, acidic environment that is conducive to the 

mobilization of iron from the clay into the groundwater (Gardner, 1988). Williams (1985) 

concludes that underclay was soil that had been exposed to precipitation long enough to strongly 

leach the alkalies and silica, and then submerged long enough to reduce the amount of iron while 

coal swamps grew. 

Williams (1985) applied his idea of leaching along paleotopographic highs to the origin 

of high-alumina deposits of the Mercer clay in Clearfield, Centre and Clinton Counties. High-

alumina clays contain diaspore (AlO(OH), boehmite (AlO(OH), and gibbsite (Al(OH)3) in 

addition to kaolinite (Al2Si2O5(OH)4 ) and are valuable for refractory brick manufacture 

(Williams, 1985a). These deposits are found on top of the sandstones and redbeds of the 

Mississippian Mauch Chunk Formation and below the Mercer coal. This clay assemblage is 

known in only one other area in the United States, the Cheltenham fire clays of Missouri 

(Williams, 1985a).  

 

Origin of flint clay 

The origin of flint clay has also been debated and few theories exist to explain its origin. 

Flint clay is chemically similar to plastic clay and becomes plastic by grinding. Hodson (1927) 

suggested that fire clays were deposited in swamps and the iron and alkalis were leached out by 

water containing carbonic and organic acid (Hodson, 1927). Another theory is that flint clay may 

be derived from alteration of volcanic ash. Support for this theory comes from a flint clay parting 

that was identified within the Fire Clay coal bed in the eastern Kentucky coal field as altered 

volcanic ash (Rice, 1994) (Rice, 1994). Flint clay can also be the result of hydrothermally altered 
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calcareous shale. Hanson and Keller (1971) studied a flint clay deposit in Estola, Guerrero, 

Mexico, that is an alteration of calcareous, silty shale into a well-ordered kaolinite (Hanson, 

1970). Calcareous, silty shale could be seen grading into homogeneous, fine-grained, slightly 

off-white clay that fractures conchoidally. The color variations in the clay are due to iron 

mobilization and partial redeposition in the transition zone along the margin of hydrothermal 

refractory clay deposit in contact with limestone rocks (Keller, 1969). 

 

Valley and Ridge 

The clay deposits are considered to be residual deposits derived from argillaceous and 

cherty limestones and phyllites (Hosterman, 1984). Clay deposits are traditionally believed to 

have been formed by chemical weathering (Hosterman, 1984). The clay deposit at Toland near 

Mount Holly Springs has indications of hydrothermal action in addition to normal weathering. 

Hosterman (1984) conclusion is based on trace amounts of alunite and vertical variation in the 

white clay section in particle size, clay-mineral ratio, silica and iron oxide content. With normal 

weathering by precipitation, kaolinite increases at the upper zone while quartz decreases, iron 

decreases, and alkali content decreases (Williams, 1985b).  

In samples taken from an auger hole at the Toland clay pit, alunite was seen in X-ray 

diffraction patterns between 4 to 24 meters. Hosterman (1984) concluded that the silica (SiO2) 

content decreasing and Al2O3 content increasing with depth was not because of lithologic 

differences but was due to hydrothermal alteration (Hosterman, 1984). In the Silurian Clinton 

Formation Clinton-type ores consist of fossiliferous, oolitic sandstone and siltstone with hematite 

coated grains. Another sedimentary ore is Hamilton ore mined in Perry County (Inners, 1999). 

This hematitic ore was mined from oolitic, sandy, silt shale in the Middle Devonian Mahantango 
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Formation (Inners, 1999). Brown limonite ores are closely associated with extensive clay 

deposits and carbonate rocks. Two important formations hosting brown limonite ore are the 

Cambrian Gatesburg Formation and the Devonian Oriskany Formation in which brown limonite 

ore is imbedded in masses of clay. Sedimentary iron ore also includes limonite/siderite deposits, 

mostly nodules associated with the carbonate beds of Pennsylvanian age rocks.  

 

1.2 METHODS 

The location of early iron production sites (charcoal furnaces) was mapped in order to identify 

the geographic locations where iron ore was mined (Figure 1).  Iron furnace locations in 

Pennsylvania were acquired from Lesley (1859) who provided a summary of working and 

abandoned furnaces throughout the Appalachian region.  Additional western Pennsylvania 

furnace locations were acquired from works by Sharp (1964), Pearse (1876) and Parks (2011). 

These early maps were used to locate the early mines in eastern and central Pennsylvania. The 

locations of iron furnaces, presumably close to the ore source, were plotted in order to determine 

the iron ore localities.  

In the 1800’s, iron deposits were actively being sought for economic development by the 

state geologists of Pennsylvania and Ohio. Historical records of iron mining activity in the 

Pennsylvania Geological Survey Second Series reports and Geological Survey of Ohio Fourth 

Series documented the location of early iron mines. The reports used for locating iron mines are 

listed in Appendix A.  References for locating clay mines are listed in Appendix B. 
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Ohio iron ore locations were researched in Geological Survey of Ohio Fourth Series, 

Bulletin 45 (Stout, 1944). Early county maps in the 1876 Historical Atlas of Berks County 

showed the furnace and mine locations in Berks County.  

Mapping of the known iron and clay mines was performed on GIS database software so 

that the mine sites may be superimposed against the bedrock units as mapped in the Geologic 

Map of Pennsylvania (Berg, 1980).  This process enabled the classification of the mines 

according to geologic settings and fault locations. Although some faults were mapped on the 

Geologic Map of Pennsylvania, additional mapping for faults was performed based on the 

geology maps published for 7.5 minute quadrangles, Map 61 (Berg, 1981). Faults identified in 

reports of Root (1968, 1971, 1977), Freedman (1967), Brown (2006), Faill (1989), and Jonas 

(1926) of the Pennsylvania Geologic Survey were also added to the GIS database.  

Two modern databases of mine locations and activity prepared by the US Bureau of 

Mines (USBM) and the USGS were also used. The USBM Mineral Availability System and 

Mineral Industry Location Files (MAS/MILS) were compiled between 1975 to 1984 

(http://research.archives.gov/description/628175). The accuracy of the locations of the mines 

within the database varies by commodities and by state (Shields, 1995). The MAS/MILS 

contains records compiled from sources dated from 1908 to 1984. Pennsylvania iron mines were 

selected from the database and then imported as a GIS layer.  

A USGS database of metallogenic deposits, Open File Report 01-136, Lithochronologic 

Units and Mineral Deposits of the Appalachian Orogen from Maine to Alabama, was queried for 

Pennsylvania iron mines and imported as a GIS layer. U.S. Geological Survey mine information 

is published in USGS Open File Report 01-136, titled “Lithochronologic Units and Mineral 

Deposits of the Appalachian Orogen from Maine to Alabama” by J.D. Peper, J.E. Gair, M.P. 
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Foose, T.H. Kress, and C.L. Dicken (2001). This map was compiled in the 1980’s to show the 

metallogenic character of the Appalachians. Both large and small deposits were included. The 

data was published in 2001 in GIS vector format. Because of the inaccuracy of the mine location 

and duplication among different databases, one mine may show as two or three mines in close 

proximity to each other. 
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2.0  STRUCTURE OF THE APPALACHIAN REGION 

In Pennsylvania, five main tectono-physiographic provinces, are distinguished principally by 

their structural, stratigraphic and morphologic characteristics. They include: the Appalachian 

Plateaus Province, and, Valley and Ridge Province, underlain by Paleozoic strata, and the Blue 

Ridge Province, Reading Prong, and Piedmont Province, underlain mostly by Paleozoic as well 

as Precambrian crystalline units (Figure 5). 

 

 

Figure 5: Physiographic provinces of Pennsylvania and Ohio (adapted from Pennsylvania Geological 

Survey Map 13 and Ohio Division of Geological Survey, 1998, Physiographic Regions of Ohio) 
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The Appalachian orogenic belt is composed mainly of sedimentary rocks that record 

three main episodes of contraction, - Taconic, Acadian, and Alleghenian - and one of extension 

since the Precambrian. The earliest sediments are clastics and overlying carbonate strata 

deposited on the continental margin of Laurentia during Cambrian and Ordovician time.  

Appalachian Plateau 

In the Appalachian Plateaus, the sub-horizontal geologic units record broad gentle folds 

that trend northeasterly, parallel to the Valley and Ridge structures. The folds are open with 

wavelengths between of 8 to 32 kilometers and amplitudes that range from less than 15 meters to 

more than 200 meters (Piper, 1933). The Plateau has rare thrust faults of local extent and small 

throw (2 to 5 meters) (Johnson, 1928). 

At depth, the interval from the Silurian Salina to the Middle Devonian Onondaga 

Formations is faulted extensively (Beardsley, 1999). High-angle reverse thrust faults in the 

Devonian Tully to the Devonian Ridgeley units flatten at depth into a décollement surface within 

the Salina Group (Beardsley, 1999). In southwestern Pennsylvania, Tonoloway Formation and 

the Upper Ordovician Reedsville shale also accommodated detachment that resulted in faulting 

in the overlying Oriskany Sandstone (Wiltschko, 1977). 

Valley and Ridge Province 

In the Valley and Ridge Province, where long, limestone valleys are bounded by ridges 

capped with erosion resistant sandstone formations that coincide with fold limbs, folds and deep 

thrust faults are common. The ridges strike northeast as shown by the shaded relief map of the 

Ridge and Valley Province (Figure 6).   The thrust faults generally dip southeast extend a 

regional décollement within the Lower Cambrian Waynesboro shale (Figure 7) (Faill, 1999).  

The décollement extends from the Allegheny Front southeastward beneath  the Valley and Ridge 
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at a depth of four to seven miles (Faill, 1999). West of the Allegheny Front, the deep 

décollement ramps upward to salt in the Silurian Salina Group that serves as the basal 

detachment beneath the Plateau (Laughrey, 2004; Gwinn, 1964 ; Frey, 1973); Gwinn, 1964.  

Detachment faults and blind thrust faults accommodated much contraction in the Valley 

and Ridge (Faill, 1999). Short strike-slip faults or wrench faults cut across the major folds (Faill, 

1999) and rare, small, normal faults, restricted to the vertical and over-turned beds in the 

northwest limbs of anticlines, may be present (Laughrey, 2004).  

 

Figure 6: Orientation of folds in Valley and Ridge Province, Pennsylvania (based on Map 65, 

Pennsylvania Geological Survey Fourth Series) 
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Figure 7: Valley and Ridge cross section (adapted from Faill and Nickelsen, 1999) showing the southeast-dipping 

thrust faults which extend to a décollement surface above the Precambrian basement  

 

 

Blue Ridge 

The Blue Ridge comprises a largely allochthonous mass of mainly Precambrian 

crystalline rocks that extends from Georgia to southern Pennsylvania, east of the Valley and 

Ridge Province. In Pennsylvania, it is characterized by the highland known as South Mountain in 

Franklin County, Pennsylvania, an anticlinorium of clastic, and carbonate rocks overlying 

volcanic units and a Precambrian granite and gneiss (Fauth, 1967) (Figure 8). East dipping thrust 

faults underlie the South Mountain area (Figure 9). Figure 10 shows that orientation of thrust 

faults roughly parallel to the Gettysburg Basin. An additional thrust fault has been mapped along 

the base of the Tomstown not shown in the Figure 10 which detached the overlying carbonate 

sequence from the underlying Chilhowee Group (Brezinski, 1996). Seismic reflection studies by 

(Harris, 1982) in Virginia, suggest that Blue Ridge metamorphic and crystalline rocks moved 

westward above a gently dipping thrust fault that cut Paleozoic carbonate strata. Because South 

Mountain is an extension of the Blue Ridge in Virginia, it is reasonable to consider that South 

Mountain in Pennsylvania is the result of a hanging–wall anticlinorium above a major, non-
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emergent thrust fault (Drake, 1999a). The base of the anticlinorium rests upon the Keedysville 

mylonite, derived from folded limestone  at the base of the Tomstown Formation (Brezinski, 

1996) at several locations from Pennsylvania to central Virginia (Brezinski, 1996). The presence 

of the mylonite indicates that much of the Blue ridge is allochthonous as suggested by earlier 

works (Freedman, 1967) and reached its position after multiple contractional events.  

Younger, mainly normal faults, related to Mesozoic rifting, are evident at the northwest 

margin of the Gettysburg Basin on the eastern side of South Mountain (Root, 1991). Across the 

Gettysburg basin to the southeast, rocks in the Vintage formation, correlative with the 

Tomstown, again serve as the footwall of a major regional thrust fault, the Martic.  
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Figure 8: Geologic map of South Mountain (adapted from Berg, 1980) 

 

 

 

Figure 9: Geologic cross section of South Mountain (adapted from Way, J. H., 1986) 
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Figure 10: Tectonic sketch map of Blue Ridge and Great Valley (adapted from Root, 1971) 

 

Reading Prong (New England Province) 

 The Reading Prong comprises crystalline rocks, perhaps comparable to the core of the 

Blue Ridge, that also are allochthonous although different tectonic histories have been proposed.  

Originally, the southwestern Reading Prong was considered to be a large anticlinorium 

and autochthonous (Miller, 1925; Dallmeyer, 1974). Stose and Jonas (1935) proposed that the 

crystalline rocks were transported into place as a large thrust sheet over the Paleozoic carbonate 

rocks of the Great Valley as indicated by tectonic windows within the crystalline rocks in which 

carbonate rocks crop out (Stose, 1935). Isachsen (1964) proposed that the Reading Prong was a 

klippe composed of rocks older than Middle Ordovician emplaced during the Taconic orogeny. 
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(Drake, 1969) postulated the existence of a giant nappe (Musconetcong nappe) of crystalline 

rocks within which synclinal troughs preserving Cambro-Ordovician carbonate formed antiforms 

over the nappes. Refolding the nappe resulted in breaching the nappe core, thrusting the 

Precambrian rocks over the carbonates (Dallmeyer, 1974). 

Drake amended Isachsen’s theory in that the northeast Reading Prong along the Delaware 

River is a thrust system in a duplex or schuppen structure (Drake, 1999b). 

In the northeastern part of the Reading Prong an early theory was that high angle reverse 

faults accommodated the upward vertical movement of the crystalline core (Dallmeyer, 1974).  

Mesozoic basin 

Within the Piedmont Province, a Late Triassic to Early Jurassic rift basin cuts across 

southeastern Pennsylvania, from Adams County in south central Pennsylvania to Bucks County 

along the Delaware River. The rift basin is a half graben, bounded by normal faults on the 

northwest side (Root, 1999). The basin is divided into the Gettysburg Basin in Adams, York and 

Dauphin Counties and the Newark Basin in Berks, Bucks, and Montgomery Counties. The rift 

basin narrows in width between the two basins and this narrow interval is referred to as the 

“neck” (Root, 1999). Clastic sediments filled the basins with layers dipping to the northwest 

from five to forty degrees (Root, 1999).  The rift basin separates the Cambrian and Ordovician 

carbonate rocks in York and Lancaster Counties from Cambrian and Ordovician carbonates in 

the Great Valley Province to the northwest. 
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Piedmont Province 

Southeast of the Blue Ridge and across the Mesozoic fault basins, the Piedmont 

encompasses deformed Precambrian and Cambrian metamorphic rocks and Cambrian and 

Ordovician carbonates and clastic rocks. 

The Martic fault is a major fault along which phyllite and schist of the Wissahickon and 

other Piedmont units have moved northwest onto carbonate beds.  The Martic thrust fault 

extends northeast from the Maryland-Pennsylvania state line south of Hanover, York County to 

Morrisville, Bucks County, Pennsylvania (Hall, 1934).  In places the Martic thrust comprises a 

zone in which several imbricates have been mapped (Wise, 2010).  The imbricate slices record 

folds indicating multiple periods of contraction. 

North of the Martic thrust zone, in the Hanover-York area, west of the Susquehanna 

River, Cambrian clastic and carbonate rocks have been thrust northwestward over early 

Ordovician Conestoga along the Stoner thrust fault, the Gnatstown thrust fault, the Ore Valley 

thrust fault, and the Chickies thrust fault. Stose (1944) mapped the Stoner thrust fault located in 

the valley between Hanover and York, which carried the Cambrian Harpers phyllite over the 

Vintage, Ledger, and Conestoga Formations. Northeast of Hanover, several small klippen of 

Harpers phyllite now lie on carbonate rocks (Stose, 1944). The thrust faults terminate at the 

Mesozoic basin to the west and extend eastward into Lancaster County. 

East of the Susquehanna River, carbonate beds have been folded into recumbent 

structures in northern Lancaster Valley (Scharnberger, 1990). To the south, the folds are nearly 
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upright with gently east and west plunging axes (Valentino, 1990). In places, irregular 

stratigraphic contacts record shallowly dipping limbs of potentially recumbent folds. Locally, 

limbs of folds with uniform thickness suggest upright, symmetric folds are overprinted upon the 

nappes.    

The Martic thrust fault has brought the Octoraro Formation, a fine grained schist, into 

contact with the Conestoga Formation in Lancaster and Chester Counties. The fault dips to the 

southeast. The Conestoga Formation, a limestone, overlies the Antietam/Harpers quartzite and 

schist.  The Chickies quartzite is situated below the Antietam/Harpers and is unconformably 

underlain by the Grenvillian basement Mine Ridge Gneiss which forms a topographically 

elevated area named Mine Ridge (Bosbyshell, 2007). Mine Ridge is in line with the Tucquan 

Anticline structure visible along the Susquehanna River. Aeromagnetic studies of Mine Ridge 

and the Honey Brook Upland suggest that Mine Ridge is not rooted and may only be one 

kilometer thick (Crawford, 1999). South of the Martic thrust fault are additional thrust faults 

such as the Embreeville fault in Parkesburg Quadrangle (Blackmer, 2006). Dextral shear zones 

have been mapped in the Piedmont. Thrust faults and shear zones are a result of multiple 

episodes of contraction and deformation during the Taconic and post-Taconic orogeny (Wise, 

2010). 

 

Lineaments and Cross Strike Discontinuities 

In a broad sense, a lineament is a mappable linear feature that can be seen on the surface 

of the earth when viewed from a distance, such as an air photo or satellite image, and presumably 

reflects subsurface phenomena. Lineaments are depressions or lines of depressions and range in 

length from 1 mile to 300 miles (O’Leary, 1976).  Cross-strike structural discontinuities (CSD) 
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are lineal features commonly perpendicular to the trend of the major folds of the Plateau 

Province and the Valley and Ridge Province. CSDs may be defined by disturbed patterns of 

strike-parallel of folds and faults (Wheeler, 1980). A CSD commonly reflects high fracture 

density in the bedrock (Gold, 1999). Some CSDs of the Valley and Ridge Province traverse the 

entire width of the province and extend into an adjoining province. For example, the Everett 

lineament runs eastward from the eastern edge of the Allegheny Plateau through the Great Valley 

Section into the Blue Ridge Province of the Piedmont (Kowalik, 1976). Another major CSD is 

the Tyrone-Mt. Union lineament. This lineament traverses the Valley and Ridge (Kowalik, 1976) 

and has been extended into the Allegheny Plateau by Rodgers and Anderson (1981) (Figure 3). 

Other major lineaments are the Lawrenceville-Attica lineament, and the Pittsburgh-Washington 

lineament. Fracture traces are similar to lineaments but are shorter in length and vary from 300 

feet to 1 mile.    

The study and utilization of lineaments has been proven to be useful in fields concerning 

fluid flow though bedrock. Recognizing lineaments led to improved water well locations 

(Lattman, 1964) and gas wells (O’Neil, 1984), an indication that there is increased fluid flow in 

the subsurface in the vicinity of lineaments.  
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3.0  STRATIGRAPHY OF THE APPALACHIAN REGION 

In a broad sense the Appalachian region extends from the Cincinnati Arch in central Ohio to the 

Piedmont of eastern Pennsylvania (Anonymous, 1984). The Region comprises the central 

Appalachian Basin (which includes the Dunkard Basin), the Allegheny Plateau, the Valley and 

Ridge with the Great Valley Section, the Blue Ridge, the New England/Reading Prong Province, 

and the adjacent part of the Piedmont.   

 

3.1 ALLEGHENY PLATEAU PROVINCE  

The Appalachian Plateau Province extends from central Ohio to eastern Pennsylvania. The 

Dunkard Basin is an elliptical, elongated depression within the Appalachian Plateau Province 

(Figure 5). 

The Appalachian Plateau encompasses stratigraphic units of cyclical clastic, limestone 

and coal beds of mainly Silurian, Devonian, Mississippian and Pennsylvanian age. The Silurian 

rocks are approximately 1200 ft thick in northwestern Pennsylvania to about 4,000 ft in 

southeastern Pennsylvania (Laughrey, 1999). The Devonian deposits vary in thickness from 

2,400 ft in northwestern Pennsylvania to over 12,000 ft in eastern Pennsylvania (Harper, 1999). 

The Mississippian deposits are about 300 ft thick in northeast Pennsylvania and increase in 
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thickness to 5,000 ft or more in southeastern Pennsylvania (Colton, 1970; Brezinski, 1999). The 

thickness of Pennsylvanian deposits in the Basin is a maximum of 1,300 to 1,500 ft thick 

(Edmunds, 1999). In general, the thickness of the Pennsylvanian strata decreases to the north. 

Each exposed rock unit within the Appalachian Plateau is discussed below. 

 

3.1.1 Silurian in Ohio 

In the Allegheny Plateau Province of Ohio, the oldest rocks exposed at the surface hosting iron 

ore are the Silurian. 

The Silurian Brassfield limestone crops out in southwest Ohio. The Brassfield limestone 

is the oldest Silurian Formation in Ohio and rests unconformably over the Ordovician age rocks 

(Camp, 2006). The thickness of the Brassfield is 20 to 60 feet in Adams, Clinton and Highland 

Counties where the Brassfield contains iron-rich zones near the top (Figure 11) (Camp, 2006). 

Silurian Niagara dolomite crops out in Adams, Highland, Pike, and Ross Counties, Ohio.  

Niagara iron ore was mined chiefly in Adams and Highland Counties where the surface of the 

Niagara dolomite has been exposed (Stout, 1944). The iron deposits are found as irregular 

masses in depressions and may vary in thickness from a few inches to ten feet. The lateral extent 

of the ore deposits may reach hundreds of feet (Stout, 1944). The Niagara ore is a soft limonite 

along its outcrop and under shallow overburden (Stout, 1944). 
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Figure 11: Outcrop area of iron ore deposits in Ohio (Stout, 1944) 

 

 

3.1.2 Devonian in Ohio and Pennsylvania   

Devonian and Mississippian strata in the Allegheny Plateau Province of Ohio and Pennsylvania 

are mainly clastic. In Ohio, Devonian and Mississippian rocks crop from Trumbull County, 

Ohio, south to Scioto County, Ohio.  

The Devonian Bedford Shale is the oldest exposed Devonian rock in the Plateau of Ohio. 

It is approximately 95 feet thick and contains siltstone and sandstone (Camp, 2006). Devonian 
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Berea Sandstone that overlies the Bedford Shale, fills channels cut into the underlying shale and 

therefore has a variable thickness that reaches about 250 feet in Lorain County (Camp, 2006).  

In Pennsylvania, Devonian units crop out along the margins of the Appalachian basin. A 

summary of the stratigraphic units found in the Devonian is given in Table 3.  
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Table 3: General stratigraphic chart for Devonian rocks in Central, South-Central and East-Central Pennsylvania  

(adapted from Harper, 1999) 
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Scotland 
ls. 

Port Ewen sh. 

Corriganville ls. Corriganville 
ls. 
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New Scotland 
ls. 

New Creek ls. New Creek ls. Coeymans Fm. 

Keyser Fm (part) Keyser Fm (part) Rondout Fm. 
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Lower and middle Devonian stratigraphy 

Some rock units have been grouped. The New Creek, Corriganville, Mandata, Shriver 

and Ridgeley have been grouped together and referred to as the Old Port Formation in central 

Pennsylvania. In eastern Pennsylvania, the Coeymans Formation and New Scotland limestone 

are grouped and called the Helderberg Group. Also in eastern Pennsylvania, the Shriver Chert 

and Ridgeley Sandstone are together called the Oriskany Group (Table 3).  

Early Devonian strata are generally calcareous whereas younger units are clastic.  The 

calcareous Keyser Formation yields ages from the late Silurian to the early Devonian. The 

Keyser is medium gray, fossiliferous limestone which is 75 to 202 feet thick (Harper, 1999). 

Chert nodules are present in the upper part of the formation and a distinct chert bed is developed 

at the top of the formation (Harper, 1999). The lower boundary with the Silurian Tonoloway 

Formation is conformable and sharp (Harper, 1999). The upper contact is conformable and 

grades into the cherty limestone and shale.  The New Creek above the Keyser is a thin (3 to 10 

feet thick), coarse-grained limestone that grades into the overlying Corriganville limestone. The 

Coeymans Formation is equivalent to the New Creek limestone in the east (Harper, 1999). The 

Corriganville is 10 to 30 feet thick, fossiliferous, and may be difficult to distinguish from the 

New Creek (Harper, 1999).  The Corriganville correlates to the New Scotland Formation in 

eastern Pennsylvania (Harper, 1999).  

The dark gray, siliceous Mandata Shale overlies the Corriganville in western to central 

Pennsylvania. Thickness ranges from 20 to 100 feet thick in central Pennsylvania (Harper, 1999). 

The Mandata is not present in eastern Pennsylvania (Harper, 1999). 
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The Mandata Shale is overlain by the Shriver Chert. The Shriver is composed of silty, 

cherty, mudstones and calcareous, siliceous siltstones (Harper, 1999). The Shriver is thin-bedded 

and ranges from 80 to 170 feet thick (Harper, 1999).  

The Shriver Chert grades laterally into the Licking Creek limestone in southwestern and 

central Pennsylvania. In Franklin County, Licking Creek is roughly 90 feet thick (Harper, 1999).   

Overlying the Shriver Chert is the Ridgeley Sandstone which is found throughout the 

state except in northwest Pennsylvania. The underlying Shriver Chert and Licking Creek 

limestone grade upward into the Ridgeley. The Ridgeley varies from 8 to 150 feet thick at 

outcrop (Harper, 1999). The interval between the Shriver/Licking Creek and Ridgeley can be a 

cherty, calcareous siltstone or medium-grained calcareous sandstone or arenaceous limestone. 

The composition of the Ridgeley is predominantly a white to light–gray, medium-grained, silica-

cemented, quartzose sandstone. The Ridgeley also may be a calcareous, fine-grained sandstone 

to a noncalcareous conglomerate (Harper, 1999).   

The Needmore Shale is a gray to black, calcareous, fossiliferous shale that lies 

unconformably above the Ridgeley Sandstone and marks the beginning of the Middle Devonian 

Series. The Esopus and the Schoharie Formations are equivalent to the Needmore in eastern part 

of the state (Harper, 1999).  The Needmore ranges from 100 to 150 feet thick (Harper, 1999).  

In the subsurface of western Pennsylvania, Needmore grades into a dark-gray, slightly 

calcareous and locally glauconitic Huntersville that reaches a thickness of 250 feet in Fayette and 

Westmoreland Counties (Harper, 1999 ; Jones, 1957). Toward northwestern Pennsylvania, the 

Huntersville grades into dark brownish gray, somewhat argillaceous and cherty limestone of the 

Onondaga Formation  (Harper, 1999; Fettke, 1961). 
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Above the Needmore Shale lies the Selinsgrove limestone. The Selinsgrove correlates to 

Buttermilk Falls limestone in the east. The Buttermilk Falls can be up to 200 feet thick in 

Monroe County (Harper, 1999; Epstein, 1967).   

Overlying the Selinsgrove/Buttermilk Falls limestones is the Marcellus Formation. The 

Marcellus is 75 to 800 feet thick and consists of dark gray to black, carbonaceous shale. The 

Marcellus is highly fissile with abundant pyrite (Harper, 1999).  The Tioga Ash Beds, present at 

the base of the Marcellus, are a series of thin, micaceous shales. The ash may contain up to 45 

percent biotite (Harper, 1999; Roen, 1982).  

The Mahantango Formation rests above the Marcellus Formation. A thick complex of 

interbedded shales, siltstone, and sandstone which ranges from 1,200 to 2,200 feet thick 

comprises the overlying Mahantango (Harper, 1999). The Tully limestone, which overlies the 

clastic Mahantango Formation, may be considered to be the upper member of the Mahantango 

(Harper, 1999).  The Tully is a fossiliferous, shaly limestone or calcareous shale that may reach a 

thickness greater than 200 feet (Harper, 1999; Faill, 1974). The Tully marks the top of the 

Middle Devonian and the last unit prior to the Catskill delta deposition. 

West of the Allegheny Front, the Mahantango grades into mostly shale interbedded with 

limestone, siltstone and sandstone comprising the Hamilton Group (Harper, 1999).   

 

Upper Devonian stratigraphy 

The Upper Devonian rocks were formed by the Catskill deltaic system prograding into 

the Appalachian Basin from the east. This has resulted in a complex series of contiguous deltas 

derived from the erosion of an active tectonic source (Harper, 1999). Therefore, the Upper 

Devonian consists mainly of clastic sediments: shale, siltstone, sandstone and conglomerate. In 
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order to organize the individual rock units across the Appalachian Basin, the depositional 

environment has been used as a basis for grouping the formations into five facies. 

The base of the Upper Devonian is the dark-colored, carboniferous shale facies. This 

facies consists of shale interbedded with lighter colored shale and siltstone. These shales may be 

sparsely fossiliferous and pyritic. The Harrell, Genesee, Sonyea, and West Falls Formations are 

examples of this facies (Harper, 1999). 

The Brallier Formation is an example of the second facies.  The Brallier is a fine to 

coarse grained, thinly-bedded siltstone. The Brallier has been described as a series of turbidites 

with sharp planar bases and undulatory upper contacts (Harper, 1999; Lundegard, 1980). The 

thickness of this facies can be as much as 2,500 feet in the Brallier or only a few hundred feet in 

the Trimmers Rock Formation (Harper, 1999; Frakes, 1967). 

The next facies deposited represents shallow marine, open shelf, detrital sediments. These 

rocks are light to dark colored, greenish, brownish, purplish or red, fossiliferous shale, siltstone 

or fine-grained sandstone. The Chadokin, Riceville, and Oswayo Formations are examples of the 

facies (Harper, 1999). 

The Lock Haven Formation, Scherr Formation, Foreknobs Formation, Elk Group, 

Venango Group, and Bradford Group are examples of the fourth facies seen in the Upper 

Devonian. This facies consists of deltaic sediments mixed with open marine carbonates. They are 

composed of interbedded silty, micaceous mudrock, siltstone, sandstone and conglomerate with 

occasional beds of highly fossiliferous limestone. Thickness of the facies can reach several 

thousand feet (Harper, 1999). 

The fifth facies consists of gray to red mudstone, claystone, siltstone, sandstone, and 

conglomerate. The facies is a mixture of continental, deltaic and marine margin environments. 
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The Catskill and Hampshire Formations are examples of this facies. The Catskill and Hampshire 

are red, green or gray nonmarine rocks which can be as much as 8,600 feet thick in central 

Pennsylvania (Harper, 1999). 

The Rockwell, Spechty Kopf, and Huntley Mountain Formations overlie the Catskill 

deltaic complex and are the transition into Mississippian rocks. These formations are nonmarine, 

non-red sandstones and mudrocks. The Spechty Kopf is a gray, fine to medium grained 

sandstone and dark gray argillaceous siltstone which is 435 feet thick in central Pennsylvania 

(Harper, 1999). 

 

3.1.3 Mississippian in Ohio and Pennsylvania 

Ohio Mississippian stratigraphy 

In Ohio, Sunbury Shale rests upon the Devonian Berea Sandstone or Bedford Shale and  forms 

the basal bed for the Mississippian age rocks. The shale ranges in thickness from 20 to 40 feet 

(Camp, 2006). Overlying the Sunbury is the Cuyahoga formation which is a fine-grained shale in 

the north that grades to a sandstone to the south. The Black Hand Sandstone member of the 

Cuyahoga reaches a thickness of 300 feet in Hocking Valley.  The Cuyahoga Formation has a 

thickness of about 625 feet (Camp, 2006). 

Overlying the Cuyahoga Formation is the Logan Formation made up of the Berne 

Conglomerate, Byer Sandstone, Allensville Conglomerate and Vinton Sandstone. The formation 

is 200 feet thick in central and southern Ohio (Camp, 2006).  

The Mississippian Maxville limestone unconformably overlies the Logan Formation. The 

Maxville is discontinuous and averages 50 feet in thickness (Camp, 2006). The top of the 
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Maxville is the Mississippian – Pennsylvanian unconformity. In some areas, erosion of the 

Maxville limestone extends down into the Logan Formation, so that the upper Mississippian 

boundary in southeastern Ohio can be either the Logan Formation or the Maxville limestone. 

There can be as much as 400 feet of erosional relief (Slucher, 1994; Hyde, 1953). The Maxville 

limestone can be fossiliferous with bryozoan, brachiopod, clam and gastropod fossils (Camp, 

2006). 

 

Pennsylvania Mississippian stratigraphy 

In Pennsylvania, Mississippian rocks crop out in northwestern and north central 

Pennsylvania, along the Allegheny Front, in the Broad Top coal basin, in the Anthracite Coal 

Fields, and in western Pennsylvania along Chestnut Ridge, Laurel Hill and Negro Mountain.  

In Pennsylvania, the Mississippian rocks consist of the Mauch Chunk Formation, 

Burgoon Formation, Shenango/Rockwell/Huntley Mountain Formation, and the Cuyahoga 

Group/Riddlesburg Shale/Spechty Kopf Formation (Table 4). 

The Mauch Chunk is a red to reddish-brown clastic unit comprised of mudstone and 

siltstone, brown to red and greenish-gray sandstone and conglomerate (Brezinski, 1999). The 

Mauch Chunk is thickest in the Anthracite Coal Fields where the estimated thickness is 3,000 to 

4,000 feet and thins to the north and west (Brezinski, 1999). In the southwestern corner of 

Pennsylvania, the Mauch Chunk is interbedded with limestones such as the Loyalhanna, Wymps 

Gap, Reynolds and Deer Valley (Brezinski, 1999). In Washington and Greene Counties, the 

Loyalhanna, Wymps Gap and perhaps Reynolds are only separated by an unconformity and 

together are known as the Greenbrier Formation (Brezinski, 1999). The Greenbrier Formation is 
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equivalent in part to the Greenbrier Group of West Virginia and to the Maxville Group of Ohio 

(Brezinski, 1999). 

In southwestern Pennsylvania, the lower part of the Mauch Chunk Formation has marine 

sandstone, shale and limestone units (Brezinski, 1999).  The Loyalhanna limestone as well as the 

Deer Valley, Wymps Gap, and Reynolds limestones are found within the Mauch Chunk. 

Loyalhanna, Wymps Gap and perhaps Reynolds form a continuous limestone bed known as the 

Greenbrier limestone in Washington and Greene Counties, Pennsylvania (Brezinski, 1999). The 

Greenbrier is correlated to the Mississippian Maxville Group of Ohio (Brezinski, 1999). 

In the Anthracite Region, the Pocono Formation underlies the Mauch Chunk Formation. 

Earlier stratigraphic mapping applied the term ‘Pocono’ to non-red, coarse, clastic sediments 

between the predominantly red Devonian Catskill Formation and the Mississippian Mauch 

Chunk Formation. Today the term Pocono Formation is only used in the Anthracite Region 

(Brezinski, 1999). 

Lying below the Mauch Chunk is the Burgoon Sandstone. The Burgoon is predominantly 

non-red, cross-bedded, medium to coarse grained sandstone. The Logan Sandstone of Ohio is 

equivalent to the Burgoon Sandstone (Brezinski, 1999). Locally, it can contain thin, 

discontinuous coal beds (Brezinski, 1999; Brezinski, 1987).  

Below the Burgoon Sandstone lies the Rockwell Formation (south-central Pennsylvania), 

and its equivalents, the Huntley Mountain Formation (north-central Pennsylvania), Shenango 

Formation (western Pennsylvania) and Beckville Member (northeastern Pennsylvania). The 

Rockwell Formation consists of lenses of sandstone interbedded with reddish-brown siltstone 

and mudstone (Brezinski, 1999). The Huntley Mountain Formation is greenish-gray to tan, 

flaggy sandstone, sandy siltstone and reddish-brown silty shale (Brezinski, 1999). The Shenango 
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Formation is an interbedded sandstone, siltstone and shale approximately 150 to 180 feet thick 

(Brezinski, 1999). 

The Loyalhanna limestone is exposed along Loyalhanna Creek in Westmoreland County, 

in the Broad Top basin in Fulton and Huntingdon Counties and along the ridges in 

Westmoreland and Somerset Counties. The Loyalhanna is a cross-bedded, sandy limestone or 

calcareous sandstone(Brezinski, 1999). In southwestern Westmoreland and Fayette Counties the 

Loyalhanna has a thickness of about 85 feet and thins to the north and east (Brezinski, 1999). 

Toward the east the Loyalhanna is interbedded with the Mauch Chunk Formation (Brezinski, 

1999). 
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Table 4: General stratigraphic chart for the Mississippian in Pennsylvania (adapted from Brezinski, 1999) 
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Mbr. 

Cuyahoga 
Gp. Cuyahoga Gp. Riddlesburg sh. Riddlesb
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At the base of the Mississippian is the Cuyahoga Group. The Cuyahoga is about 200 to 

240 feet thick and is made up of clastics. In northwestern Pennsylvania, it is subdivided into the 

Orangeville Shale, Sharpsville Sandstone, and the Meadville Shale (Brezinski, 1999). 

3.1.4 Pennsylvanian in Ohio 

Pennsylvanian age rocks are made up of four groups or formations: Pottsville, Allegheny, 

Conemaugh, and Monongahela. A listing of the members in each group or formation is shown in 

Table 5. 
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Table 5: Generalized geologic column of Pennsylvanian and Permian age rocks within the Allegheny Plateau of 

Ohio (adapted from Hull, 1990; Larsen, 2000; Slucher, 2004) 

 

System Ohio Allegheny Plateau  
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n
 

D
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r
d
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Greene Fm  

Washington Fm 

Upper Marietta sandstone 
Creston-Reds Shale 
Lower Marietta sandstone 
Washington coal 
Mannington sandstone 

Waynesburg sandstone 
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Monongahela Gp 

Waynesburg coal 
Uniontown coal 
Benwood limestone 
Upper Sewickley sandstone 
Meigs Creek coal 
Fishpot limestone 
Redstone-Pomeroy coal 
Pittsburgh coal 
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p
 

Casselman Fm 
Summerfield limestone 
Connellsville limestone 
Morgantown sandstone 
Skelley limestone 

Glenshaw Fm 

Ames limestone 
Harlem coal 
Saltsburg sandstone 
Noble limestone 
Cow Run sandstone 
Portersville shale 
Cambridge limestone 
Buffalo sandstone 
Brush Creek limestone 
Rock Camp shale 
Mahoning coal 
Mahoning sandstone 

Allegheny Fm 

Upper Freeport coal 
Upper Freeport sandstone 
Lower Freeport coal 
Washingtonville shale/limestone 
Middle Kittanning coal 
Obryan-Columbiana shale 
Hamden limestone 
Lower Kittanning coal 
Vanport limestone 
Clarion coal 
Zaleski flint/limestone 
Putnam Hill limestone 
Newland-Brookville coal 

Pottsville Fm 

Homewood sandstone 
Upper Mercer limestone 
Lower Mercer limestone 
Lower Mercer coal 
Boggs limestone 
Massillon sandstone 
Quakertown coal 
Poverty-Lowellville limestone 
Sharon coal 
Sharon sandstone/conglomerate 
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3.1.5 Pennsylvanian Pottsville Formation in Pennsylvania 

Erosion occurred between the Mississippian and Pennsylvanian time in most of Pennsylvania 

and eastern Ohio as shown by channels filled with Pottsville Sandstone scoured into the Mauch 

Chunk. The basal Pottsville Formation is predominantly sandstone and shale with beds of coal, 

clay, limestone, and iron-rich horizons. Coal beds within the Pottsville are the Sharon, 

Quakertown, and Lower Mercer coals which have no economic value. Sandstone beds in the 

Pottsville are the Sharon Sandstone/Conglomerate, Massillon (Ohio) and Homewood 

Sandstones. The Pottsville Formation varies from 100 to 350 feet in thickness. The Lower 

Pennsylvanian rocks are absent from the Dunkard Basin and the Appalachian Plateau (Edmunds, 

1999). Only in the Middle and Southern Anthracite Coal Fields does the basal Pennsylvanian 

Pottsville Formation intertongue conformably with the Mississippian Mauch Chunk (Brezinski, 

1999; Meckel, 1970). 

The Pennsylvanian System is predominantly composed of clastics and includes 

economically valuable coal and limestone units. The Pennsylvanian is broken into the Lower, 

Middle and Upper Pennsylvanian Series. The Lower Pennsylvanian to Middle Pennsylvanian 

Series contains the Pottsville Formation.  The Allegheny Formation overlies the Pottsville in the 

upper Middle Pennsylvanian Series. In ascending order the Glenshaw Formation, Casselman 

Formation, and Monongahela Group lie above the Allegheny Formation in the Upper 

Pennsylvanian Series. A summary of the formations within the Pennsylvanian is shown in Table 

6. 
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Table 6: General stratigraphic chart for the Pennsylvanian in Pennsylvania (adapted from Edmunds, Skema, and 

Flint, 1999) 
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The Pottsville is predominantly massive, cross-bedded sandstone that unconformably 

overlies the Mississippian Mauch Chunk.  The Pottsville also contains coal, clay, shale and 

marine limestone. It ranges from 20 to 250+ feet in thickness (Edmunds, 1999). 
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Figure 12: General stratigraphic column for the Pottsville Formation, Western Pennsylvania (adapted from Marks, 

W. J., and Pennsylvania Geologic Survey for Bureau of Abandoned Mine Reclamation, 1999) 
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The limestone and shale in the Pottsville are of marine origin based on the presence of 

Lingula fossils. The base of the Pottsville contains the Sharon coal and Sharon Sandstone and 

can be conglomeratic. The Sharon Sandstone fills channels in the Mississippian erosion surface 

(Edmunds, 1999).  The Sharon coal is a lenticular, discontinuous channel coal which can be 

absent (Marks, 1999). Three massive sandstones and conglomeratic sandstones are found in the 

Pottsville above the Sharon, the Lower and Upper Connoquenessing Sandstone and the 

Homewood Sandstone. Between the Lower and the Upper Connoquenessing is the Quakertown 

coal with its underclay.  In the interval between the Upper Connoquenessing and the Homewood  

are two sequences of marine shale, underclay, coal, marine limestone and shale. The lower 

sequence is the Lower Mercer limestone and coal and the higher sequence is the Upper Mercer 

limestone and coal (Figure 12).   

The base of the Brookville coal marks the upper boundary of the Pottsville Formation. In 

descending order, the Pottsville is divided into the following members: 

Brookville underclay 

Homewood sandstone 

Upper Mercer coal, limestone, and underclay 

Lower Mercer coal, limestone, and underclay 

Upper Connoquenessing sandstone 

Quakertown coal and underclay 

Lower Connoquenessing sandstone 

Sharon coal  

Sharon conglomerate  

 

In Ohio, the Pottsville also overlies the Mississippian age rocks with an unconformity. 

The Pottsville is dominated by massive sandstones such as the Sharon Sandstone/Conglomerate, 
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the Upper and Lower Connoquenessing Sandstone and the Homewood Sandstone as shown in 

Figure 12. 

3.1.6 Pennsylvanian Allegheny Formation in Pennsylvania 

The Allegheny Formation begins at the base of the Brookville coal and extends to the top of the 

Upper Freeport coal. The thickness in Pennsylvania ranges from 270 to 330 feet (Edmunds, 

1999). The Allegheny is a repeating succession of coal, shale, sandstone, underclay, and, locally, 

limestone associated with the underclay (Figure 13). Some coal beds, marine shale and limestone 

are continuous over thousands of square miles (Edmunds, 1999). Within the Allegheny are six 

major coal units. Each unit locally may comprise closely-spaced lenses, or splits, or as multiple 

splays that merge into one bed, or as a continuous sheet (Edmunds, 1999). From bottom to top 

the main coal beds are: 

Upper Freeport coal (“E” coal) 

Lower Freeport coal (“D” coal) 

Upper Kittanning coal (“C” coal) 

Middle Kittanning coal (“C” coal) 

Lower Kittanning coal (“B” coal) 

Clarion coal (“A” coal) 

Brookville coal (“A” coal) 

 

Marine units in the Allegheny Formation are present only below the Upper Kittanning 

underclay (Edmunds, 1999). Limestone below the Lower and Upper Freeport coals and the 

Johnstown limestone are freshwater limestones.   
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Figure 13: General stratigraphic column for the Allegheny Formation, Western Pennsylvania (adapted from Marks, 

W. J., and Pennsylvania Geologic Survey for Bureau of Abandoned Mine Reclamation, 1999) 
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3.1.7 Pennsylvanian Conemaugh Group in Pennsylvania 

The Conemaugh Group includes the lower Glenshaw Formation and the upper Casselman 

Formation (Figure 14). The Conemaugh is defined by the interval between the Upper Freeport 

coal and the Pittsburgh coal. Overall the Conemaugh may vary from 520 feet in western 

Washington County to 890 feet in Somerset County (Edmunds, 1999). The Conemaugh is 

stratigraphically equivalent to the middle of the Llewellyn Formation of the Anthracite Region 

(Edmunds, 1999). The Conemaugh is known as the Barren Measures because of the lack of 

economic coal beds with local exceptions (Edmunds, 1999).   
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Figure 14: General stratigraphic column of the Conemaugh Group, Western Pennsylvania (adapted from Marks, W. 

J., and Pennsylvania Geologic Survey for Bureau of Abandoned Mine Reclamation, 1999) 
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The Glenshaw Formation ranges from 280 ft at the Ohio-Pennsylvania state line to 420 

feet in Somerset County and southern Cambria County (Edmunds, 1999). The Glenshaw 

Formation is defined by the strata between the Upper Freeport coal and the top of the Ames 

limestone.  The Glenshaw is known for several marine limestones: Brush Creek, Pine Creek, 

Woods Run, and Ames. Other marine horizons within the Glenshaw are the Nadine, Carnahan, 

and Noble. The fossiliferous and persistent Ames, which may be up to two feet thick, is a 

valuable marker bed in the Pittsburgh area where it crops out. The Ames marine zone is traceable 

over much of the Appalachian Plateau Province (Edmunds, 1999).  Beneath the Ames is a thick 

bed of red claystone, siltstone, and shale known as the Pittsburgh red beds. Red beds are variable 

in thickness and discontinuous throughout the Conemaugh section (Edmunds, 1999).   

The Casselman Formation ranges in thickness from 230 ft in western Pennsylvania to 485 

feet in southern Somerset County (Edmunds, 1999).  The Casselman extends from the top of the 

Ames up to the base of the Pittsburgh coal. Except for the Gaysport and Skelley marine zones, 

the Casselman consists of freshwater claystone, limestone, sandstone, shale, and coal with 

discontinuous red beds (Edmunds, 1999).   

Two thick, prominent, massive sandstone units distinguish the Casselman, Morgantown 

and Connellsville. The sandstone beds range from 50 to 60 feet thick. Much of the Casselman is 

massive, silty to sandy, commonly calcareous claystone of gray to red to green color (Edmunds, 

1999).   

3.1.8 Pennsylvanian Monongahela Group in Pennsylvania 

The base of the Pittsburgh coal defines the base of the Monongahela Group. The Monongahela 

Group ranges from 270 to 400 feet thick and extends up to the Permian Waynesburg coal. The 
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Monongahela is subdivided into the lower Pittsburgh Formation and the upper Uniontown 

Formation with the dividing line being the Uniontown coal (Figure 15). Four minor coals, the 

Pittsburgh rider, Redstone, Fishpot, and Sewickley are in the Monongahela. A thick section of 

freshwater limestone and dolomitic limestone, the Benwood limestone, along with calcareous 

mudstones, shales, and thin-bedded siltstones and laminites are also in the Monongahela. 

Economically important Pittsburgh coal is generally 4 to 10 feet thick and is a useful marker bed 

throughout the basin.   
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Figure 15: General stratigraphic column for the Monongahela Group, Western Pennsylvania (adapted from Marks, 

W. J., and Pennsylvania Geologic Survey for Bureau of Abandoned Mine Reclamation, 1999) 
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3.1.9 Permian in Pennsylvania 

The Permian Dunkard Group consists of the Waynesburg Formation, Washington Formation, 

and Greene Formation (Figure 16). As with the underlying Pennsylvanian units, the Dunkard 

Group comprises of interbedded sandstone, siltstone, claystone, shale, limestone and coal 

(Edmunds, 1999).  The Waynesburg coal and Upper Washington limestone are persistent 

throughout the area. The entire group is nonmarine. Maximum thickness of the Dunkard is 

estimated to be 1,190 feet beneath Fairview Ridge near Wileyville, Wetzel County, West 

Virginia (Fedorko, 2011).  
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Figure 16: General stratigraphic column of the Dunkard Group in Western Pennsylvania (adapted from Edmunds, 

1999) 
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3.2 SELECTED UNITS OF THE VALLEY AND RIDGE PROVINCE AND THE 

GREAT VALLEY  

The Valley and Ridge Province characterized by long, limestone and shale valleys bounded by 

ridges underlain resistant sandstone that generally distinguish limbs of folds. Bordering the 

easternmost ridge of the Valley and Ridge is the Great Valley Section, generally underlain by 

folded Cambrian and Ordovician carbonate and shale. The Great Valley comprises a long, 

continuous series of lowland valleys that begin in Quebec and extends south to Alabama. 

Cambrian rocks are summarized in Table 7. 
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3.2.1 Cambrian 

 

Table 7: Generalized Cambrian stratigraphic chart (adapted from Kauffman, 1999) 
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The lowest unit exposed in the Valley and Ridge is the Cambrian Warrior Formation. 

The Warrior Formation in central Pennsylvania is a dark, argillaceous or platy, fine-grained 

limestone interbedded with a dark, finely crystalline, silty dolomite.  The Warrior contains 

oolites, stromatolites and other fossils. The thickness of the Warrior Formation is approximately 

400 feet in northwest Pennsylvania to 1,340 feet in north-central Pennsylvania (Kauffman, 
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1999). Above the Warrior Formation is the Gatesburg Formation. This unit is a sandy 

dolomite/limestone and has silicified oolitic chert which is a useful marker bed in the field. It 

contains five members, two thick interbedded sandstones and dolomite units, and three thinner 

dolomites with little or no sandstone (Kauffman, 1999). The members of the Gatesburg 

Formation in ascending order are:  

-Lower Sandy member, a sandy dolomite and quartzose sandstone  

-Upper Sandy member, containing some limestone beds in central Pennsylvania.  

-Stacey Member is a dark, crystalline, massive dolomite. 

-Ore Hill Member is a non-sandy, carbonate unit. 

-Mines Member is a dolomite with chert and siliceous oolites.  

3.2.2 Ordovician 

Ordovician rocks outcrop in the Ridge and Valley Province, the Great Valley Section, the 

Piedmont of Lancaster County and along the Martic thrust fault in southeastern Pennsylvania. 

The lower and middle Ordovician is predominated by dolomite and limestone units (Table 8). 

The Upper Ordovician contains clastic formations, namely the Cocalico, Martinsburg, Antes, 

Reedsville, Bald Eagle, Juniata and Queenston. 

Along the foothills of Blue Mountain, the easternmost fold in the Valley and Ridge, a 

thick bed of Ordovician clastics, the Martinsburg Formation, overlies carbonates. The 

Martinsburg is a brown to black shale.  
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Table 8: Generalized Ordovician stratigraphic chart (adapted from Thompson, 1999) 
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3.2.3 Silurian 

The Silurian rocks are exposed in central and northeastern Pennsylvania in the Valley and Ridge 

Province and along the northwestern edge of the Great Valley. The stratigraphic units within the 

Silurian System are summarized in Table 9. 
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Table 9: Generalized stratigraphic chart of the Silurian in Pennsylvania (adapted from Briggs, R. P., 1999)  
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The base of the Silurian is the Tuscarora Formation, a quartzose sandstone that forms the 

tops of ridges in central Pennsylvania. The Tuscarora is a massive, white sandstone with 

argillaceous sandstones and shales. The Tuscarora has a conformable contact with the underlying 

Juniata Formation and the overlying Rose Hill Shale in central Pennsylvania (Laughrey, 1999). 

The Tuscarora grades into the Shawangunk Formation in eastern Pennsylvania where it is 

exposed in the Delaware Water Gap. In western Pennsylvania, it grades into the Medina 

Formation 

Overlying the Tuscarora in central Pennsylvania are the Rose Hill, Keefer and 

Mifflintown Formations. The Rose Hill Formation is mainly shale and mudrock with thin beds of 

hematitic sandstone and limestone near the top (Laughrey, 1999). The Rose Hill has two layers 
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of grayish red to reddish black, very fine to coarse grained, siliceous, thin to medium bedded, 

hematitic sandstone and siltstone (Wells, 1973). The Keefer Formation, with a thickness of 40 

feet (Wells, 1973), is comprised of locally hematitic, quartzose sandstone, oolitic sandstone, and 

small amount of mudrock (Laughrey, 1999). The Keefer is light to dark gray, fossiliferous, thin 

to thick bedded and locally conglomeratic (Wells, 1973). The Mifflintown Formation is 

comprised of interbedded dark gray, silty, calcareous shale and limestone (Wells, 1973). The 

limestone is medium to dark gray, medium to thin bedded, planar bedded limestone (Wells, 

1973). To the west, the Rose Hill, Keefer and Mifflintown grade into the Clinton Group which is 

dominated by Rochester Shale. The lower part of the Clinton Group is equivalent to the 

Brassfield limestone in Ohio.  

The Upper Silurian is comprised of the McKenzie Formation, Bloomsburg Formation, 

Wills Creek Formation, Salina Group, Tonoloway Formation, Keyser Formation, Decker 

Formation and the Bass Island Dolomite (Table 9). Overlying the Mifflintown is the locally 

fossiliferous, grayish-red Bloomsburg Formation comprised of claystone and shale with grayish 

red, very fine to fine grained, hematitic sandstone at the base and top in central Pennsylvania 

(Wells, 1973). The McKenzie Formation underlies and interfingers with the Bloomsburg 

Formation in central Pennsylvania (Laughrey, 1999). The McKenzie is a dark-olive to gray 

marine shale interbedded with marine limestone and minor siltstone (Laughrey, 1999; Patchen, 

1975). The Wills Creek conformably lies above the Bloomsburg. The Wills Creek Formation is 

gray or variegated calcareous shale with interbedded calcareous sandstone, medium gray 

limestone and grayish red silty claystone (Wells, 1973). The Tonoloway Formation conformably 

overlies the Wills Creek and is medium gray, laminated to thin-bedded limestone with thin beds 

of calcareous shale. The uppermost Silurian unit is the Keyser Formation, which is mainly a 
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limestone. In eastern Pennsylvania, the Keyser is about 125 feet thick and consists of gray, 

argillaceous, fossiliferous, nodular limestone with interbedded calcareous shales (Laughrey, 

1999 ; Inners, 1981). In central Pennsylvania, the Keyser is a gray, fossiliferous limestone with 

laminated and thin bedded gray chert nodules in the upper part (Laughrey, 1999).  

 

3.2.4 Devonian 

The stratigraphy of the Devonian in the Valley and Ridge Province has been covered in 

Section 3.1.2, Devonian in Ohio and Pennsylvania. 

 

 

The Blue Ridge Province 

The Blue Ridge Province is the northernmost extension of the Appalachian Blue Ridge 

into Adams and Franklin Counties, Pennsylvania.  The Blue Ridge Province has the structure of 

an anticlinorium (Drake, 1999a) and is characterized by a core of Middle Proterozoic crystalline 

rock overlain by early Cambrian clastic beds which are listed in Table 10 (Drake, 1999a).  
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Table 10: Generalized stratigraphic chart for South Mountain and Reading Prong, Pennsylvania (adapted from 

Drake, A. A., Jr., 1999) 
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The core of the mountain is the Middle Proterozoic basement rocks of granodiorite and 

biotite granite gneiss. The Swift Run Formation is a sequence of tuffaceous slates, detrital 

quartzite and locally some marble which lies above the basement rocks and not exposed in 

Pennsylvania (Drake, 1999a; Stose, 1946).  

Lying over the Swift Run Formation is a thick sequence of Late Proterozoic volcanic 

rock, the Catoctin Formation. The Catoctin is overlain by the Late Proterozoic to Cambrian 

sedimentary rock, the Chilhowee Group. Overlying the Chilhowee Group is the Cambrian 

Tomstown Dolomite. Only the Catoctin, Chilhowee and Tomstown outcrop at the surface.  
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The Catoctin Formation consists of metabasalt and metarhyolite (Drake, 1999a); Stose, 

1932 ; Fauth, 1968, 1978). These metamorphosed basalts and rhyolites occur in alternating layers 

and were metamorphosed to the greenschist facies (Drake, 1999a; Reed, 1971). The thickness of 

the Catoctin Formation is approximately 2,500 feet (Drake, 1999a).  

Above the Catoctin is the Chilhowee Group composed of Loudon, Weverton, Harpers, 

Chickies, and Antietam Formations in which clastic rocks predominate. At the base of the 

Group, the Loudon Formation is approximately 200 feet thick and a phyllite interbedded with a 

laminated, very fine-grained greywacke at the bottom and polymict conglomerate near the top 

(Drake, 1999a). The Loudon is a sericitic slate and purple-gray, poorly consolidated and poorly 

sorted, arkosic sandstone and conglomerate (Kauffman, 1999). The Weverton Formation which 

overlies the Loudoun is laminated and cross-bedded quartzose greywacke, conglomeratic at the 

base with a minimum thickness of 900 feet (Drake, 1999a). The Weverton is exposed at 

Hammond’s Rocks along Ridge Road, 4.5 miles south of Mount Holly Springs as a resistant, 

ridge-forming, quartz sandstone and conglomerate. Above the Weverton is the Harpers 

Formation, a dark, greenish-gray phyllite and schist with a 2,500 feet minimum thickness 

(Kauffman, 1999). Montalto Member of the Harpers is a  massive, white to gray metaquartzite 

which crops out along the west and north side of South Mountain (Kauffman, 1999).  In the 

Lancaster and Lebanon Valleys, the Chickies Formation underlies the Harpers and is a thick-

bedded, light colored, metaquartzite (Kauffman, 1999).  The Antietam Formation is above the 

Harpers. The Antietam is a gray to blue-gray to white metaquartzite and weathers to a brownish 

tan (Kauffman, 1999). Antietam contains beds of very pure quartzose sandstones with many 

Skolithos tubes and ranges from 500 to 800 feet in thickness (Kauffman, 1999).  
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Above the Chilhowee Group carbonate strata predominate with the Tomstown, 

Waynesboro, Elbrook, Pleasant Hill, Ledger, and Zooks Corner Formations. In the South 

Mountain area, the Tomstown Formation is a massive, blue magnesium limestone with some 

black chert at the top, a dark blue limestone in the middle and a dolomite interbedded with shale 

at the base (Fauth, 1967). Throughout the Tomstown are thin, shaly interbeds (Kauffman, 1999). 

The Tomstown thickness is estimated at 1,000 to 2,000 feet (Kauffman, 1999). 

 The Waynesboro Formation overlies the Tomstown Formation. The Waynesboro 

comprises 1000 feet or more of interbedded red to purple shale and sandstone in the lower part 

and upper parts separated by a middle unit of dolomite and blue, impure limestone (Kauffman, 

1999). In central Pennsylvania, the Waynesboro is a coarse-to medium-grained brown sandstone 

interbedded with red and green shales (Kauffman, 1999). In central and eastern Pennsylvania, the 

Pleasant Hill Formation or the Elbrook Formation overlies the Waynesboro. The Ledger 

Formation and Zooks Corner Formation also overlay the Waynesboro. The Pleasant Hill is a 

thinly layered, argillaceous, sandy, and micaceous limestone with some calcareous shale. The 

upper part can be a thick-bedded, fine-grained, dark-gray limestone (Kauffman, 1999; Butts, 

1945).  

3.3 READING PRONG 

The Reading Prong is an upland area located in Berks, Lehigh and Northampton Counties which 

is underlain by metamorphosed igneous rocks and Early Cambrian sandstone. The Reading 

Prong is situated between the Triassic rift valley on the southeast and the Great Valley on the 

northwest. The structure of the Reading Prong has been debated, but current theory (Drake, 
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1999a) is that the crystalline rocks are largely allochthonous, underlain by thrust faults that may  

have been  active during the Taconic and Alleghenian orogenies. A stratigraphic chart of the 

units found in the Reading Prong is in Table 10. 

The Chestnut Hill Formation exposed along the northern border of the Reading Prong 

near the Delaware River is a sequence of arkose, ferruginous quartzite, quartzite conglomerate, 

metarhyolite and metasaprolite rocks (Drake, 1999a) . The formation contains biotite and thought 

to be of Late Proterozoic age (Drake, 1999a). 

The Hardyston Formation is the basal Cambrian sedimentary unit overlying the Reading 

Prong. The Hardyston is an arkosic conglomerate at the base, changing upsection to arkosic 

sandstone, orthoquarzite, carbonate-cemented sandstone, silty shale and jasper. At one exposure 

the Hardyston grades into the overlying Leithsville Formation (Drake, 1999a). 

3.4 NEWARK AND GETTYSBURG BASIN OF THE PIEDMONT PROVINCE 

The sedimentary rocks within the Newark and Gettysburg Basin represent fluvial and lacustrine 

clastic sediments of Late Triassic age (Smoot, 1999). Both marine and freshwater fossil 

assemblages are found in the sediments. Pyrite has been seen in the dark shales in the Newark 

Basin in New Jersey by this author. The red color reflects the occurrence of hematite within the 

rock. 
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4.0  GEOLOGIC SETTINGS OF IRON ORE AND CLAY DEPOSITS 

The extent of iron ore that was of economical importance at one time in Ohio and Pennsylvania 

is shown Figure 1. The economic deposits of iron ore and clay shown by mines and pits and iron 

furnaces are widely distributed throughout Pennsylvania and Ohio. The map reveals the 

association of the deposits with stratigraphic horizons and faults and fractures.  The presence of 

calcareous rocks is common to all deposits.   

Today, local iron deposits in sedimentary rock are not economically viable because they 

are too thin, varying from a few inches to less than 2 feet in thickness. This thesis will refer to 

the early iron deposits as ore or ironstone. The geologic setting for associated iron and clay 

deposits in each of the five physiographic provinces is described below. 

  

4.1 APPALACHIAN PLATEAU AND DUNKARD BASIN 

Pennsylvanian and underlying uppermost Mississippian rocks host most of the iron and clay 

deposits in the subhorizontal sedimentary rock in the Appalachian Plateau. In Ohio local ore was 

used in Ohio over a period of 119 years from 1804 to 1923 (Stout, 1944). In Pennsylvania, local 

iron from sedimentary and limestone replacement deposits were utilized from about 1720 to 

1972, ending the period of iron production when Hurricane Agnes closed the Grace Mine, a 
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magnetite deposit in Berks County. Significant production of limonite ore ended in the period of 

1910 to 1915 (Inners, 1999). 

The principal ores used for iron production in the eighteenth and nineteenth centuries are 

found in multiple horizons mainly in the Pottsville and Allegheny Formations of Ohio and 

Pennsylvania, Tables 11 and 12 (Stout, 1944; Inners, 1999).  The geologic setting of iron 

deposits are described by location. 
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Table 11: Iron ore horizons in the Allegheny Formation and Conemaugh Group, western Pennsylvania and eastern 

Ohio (based on Stout, 1944), blue shaded blocks are limestone rock units, red shaded blocks are iron ore horizons, 

yellow shaded blocks are clay units 
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Stratigraphic unit In Ohio 
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Ore name Stratigraphic unit In Pennsylvania 
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Pittsburgh coal   Pittsburgh coal 
  Pittsburgh ores  
Connellsville ls   Connellsville ls 
Morgantown ss   Morgantown ss 
  Blacklick ore  
 Big Red shales ore  Barton coal 
Skelly ls   Skelly ls 
Ames ls   Ames ls 
Noble ls   Noble ls 
Saltsburg ss   Saltsburg ss 

G
le

ns
ha

w
 F

m
 

 Fulton ore on Round Knob sh   
Ewing ls    
Cambridge ls   Pine Creek ls 
Buffalo ss   Buffalo ss 

  Brush Creek ore Brush Creek ls 
Mahoning coal   Mahoning coal 

Mahoning ls Mountain ore   
Mahoning ss  Johnstown ore Mahoning ss 
 Blackband ores, Buchtel, 

 

  

A
ll
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ny
 F

m
 

Upper Freeport coal   Upper Freeport coal 
Upper Freeport underclay   Upper Freeport underclay 
  Upper Freeport ore  

Upper Freeport ls   Upper Freeport ls 
Bolivar clay Little Yellow Kidney  Bolivar flint clay 
   Lower Freeport coal 
   Lower Freeport underclay 
  Lower Freeport ore  

Lower Freeport ls   Lower Freeport ls 
Upper Kittanning ls Straitsville ore  Upper Kittanning ls 
Upper Kittanning coal   Upper Kittanning coal 
Upper Kittanning underclay   Upper Kittanning underclay 
    
Johnstown ls  Kittanning ore Johnstown ls 
   fireclay 
Washingtonville sh   Washingtonville sh 
 Red kidney   

Middle Kittanning coal   Middle Kittanning coal 
Middle Kittanning/underclay   Middle Kittanning underclay 
    
Obryan lm/Columbiana sh Hamden ore  Columbiana ls/sh 
Lower Kittanning coal   Lower Kittanning coal 
Lower Kittanning underclay   Lower Kittanning underclay 

  Kittanning ore  

Vanport lm/sh Buhrstone ore Buhrstone ore Vanport lm/sh 

Scrubgrass coal   Scubgrass coal 

Clarion coal   Clarion coal 

Zaleski flint horizon   Zaleski 

 Canary ore   

Putnam Hill lm/sh  Brookville ore Putnam Hill ls/sh 

Brookville coal   Brookville coal 

Brookville underclay   Brookville underclay 
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Table 12: Iron ore horizons in the Pottsville Formation, western Pennsylvania and eastern Ohio (based on Stout, 

1944)  
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Homewood ss   Homewood ss 

Tionesta coal   Tionesta coal 

Upper Mercer lm Upper Mercer ore  Upper Mercer lm 
Bedford coal    

 Sand block ore Mercer ore  

Upper Mercer coal   Upper Mercer coal 

   Upper Mercer underclay 

Upper Mercer lm Upper Mercer ore   
    

Lower Mercer lm Lower Mercer ore   
Middle Mercer coal    

Flint Ridge coal    

Boggs lm Boggs ore Mercer ore  
Lower Mercer coal   Lower Mercer coal 

   Lower Mercer underclay 

  Mercer ore  

Lowelville lm Lowellville ore  Lowelville ls horizon 
Massillon ss   Upper Connequenessing ss 

  Quakertown ore  

Quakertown coal   Quakertown coal 

Quakertown underclay   Quakertown underclay 

   Lower Connequenessing ss 

 Guinea Fowl ore   

Anthony coal    

Sciotoville clay    

 Sharon ore Sharon ore  

Sharon coal   Sharon coal 

Sharon sandstone/conglomerate   Pottsville ss 

 Harrison ore   

M
is

si
ss

- 
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 Maxville lm    

Logan Fm  Mauch Chunk ore Mauch Chunk 

 

 

 

Silurian  

Iron ore was mined for the early charcoal furnaces in Adams, Highland and Clinton 

Counties from the Silurian Brassfield limestone and the Niagara dolomite. The ore layer in the 
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middle of the Brassfield is a hematitic, oolitic, and resembles the Clinton-type ore (Stout, 1944). 

The hematite bearing layers are four inches to one foot eight inches thick. Results of an analysis 

of the ore indicate that the main mineral components are 3.31 percent kaolinite, 8.43 percent 

limonite, 5.82 percent hematite and 77.54 percent limestone (Stout, 1944). Limonite ore was 

developed on the Silurian Niagara dolomite. The iron deposits are found as irregular masses of 

limonite in depressions on the top of the dolomite and may vary in thickness from a few inches 

to ten feet. The lateral extent of the ore deposits may reach hundreds of feet (Stout, 1944).  

Devonian 

Ohio Devonian rocks contain iron concretions in the lower part of the Ohio shale, but the 

amount of iron was not enough to mine as ore (Stout, 1944). This is not the case in Pennsylvania, 

where the Devonian contains iron ore in the base of the Marcellus Formation and within the 

Ridgeley (Oriskany) sandstone which crop out in the Valley and Ridge Province.  

Mississippian 

In Scioto County, Ohio, thin lenses (2 to 6 inches thick) of iron ore in the Mississippian 

Waverly Group near the Allensville horizon (a conglomerate) was smelted for ore at the Harrison 

furnace. The ore is sheet-like and fossiliferous (Stout, 1944). The Waverly rocks were not used 

extensively for iron (Stout, 1944). However, in Pennsylvania, the Mississippian Mauch Chunk 

Formation contains iron ore that was mined on the western slope of Chestnut Ridge. The Mauch 

Chunk ore was the most important ore to the furnaces on Chestnut Ridge (Stevenson, 1877). 
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Mississippian – Pennsylvanian Unconformity 

In Ohio, ironstone was mined at the unconformity between the Mississippian and 

Pennsylvanian strata. Iron-cemented angular siliceous fragments and/or well-rounded quartz 

pebbles are present at the base of the Pottsville below the Sharon Conglomerate. The 

conglomerate overlies the Mississippian Maxville limestone or Logan shale where the Maxville 

has been eroded away. The ore, known as, the Harrison, was mined in Scioto and Licking 

Counties, southern Ohio (Stout, 1944). The ore is variable. In Scioto County, the thickness may 

be as much as four feet. The ore is composed of angular, siliceous fragments, well-rounded 

quartz pebbles, chert (flint), sandstone fragments, boulders, shale and ferruginous clay (Stout, 

1944). The siliceous fragments may contain marine fossils, therefore, it is believed that the 

fragments were originally angular limestone pieces replaced by silica prior to iron cementation 

(Stout, 1944). Harrison ore was used in the Harrison furnace in Scioto County and the Granville 

and Mary Ann furnaces in Licking County. Harrison ore is known from the Ohio River in Scioto 

County to the Ohio-Pennsylvania line in Mahoning and Trumbull counties.   

Pennsylvanian 

Most of the marine limestone horizons in the Pottsville and Allegheny Formations 

contain iron ore (Stout, 1944).  In general, the ore mined from Pennsylvanian strata exposed on 

the Plateau was the mineral siderite and its weathering products, limonite and goethite.  Thin to 

thick, continuous siderite layers referred to as block ore, are found associated with limestones. 

The Big Red Block and Little Red Block ores are found with the Mercer limestone in the 

Pottsville Formation in Ohio. The Big Red Block ore, 4 inches to 18 inches thick, forms laterally 

continuous layers that rest directly upon the Upper Mercer limestone in Scioto County, Ohio 
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(Stout, 1944). The Little Red Block ore lies on or a few feet above the Lower Mercer limestone 

when the both are present (Stout, 1944). This ore weathers red and is commonly fractured along 

vertical joints producing a block-like appearance.  

Ferruginous beds are found above several marine limestones in Perry County, Ohio 

(Flint, 1951). In the Pottsville and Allegheny Formations, the marine limestones which are 

associated with ironstone are the Lowellville, Boggs, Lower Mercer, Zaleski, Vanport, Hamden 

and Washingtonville (Stout, 1944).  The ironstone is found overlying the limestone or as a 

replacement of the limestone. For example, in Vinton County, Ohio, the Zaleski horizon may be 

composed of calcareous flint, siliceous limestone, calcareous shale or siderite (Stout, 1944).  

Iron nodules may replace or accompanied the limestone layer as in the case of the Yellow 

Kidney ore and the Lower Freeport limestone (Stout, 1944). Another ore associated with 

calcareous shale or nodular limestone is the Hamden ore immediately above the Lower 

Kittanning Coal (Stout, 1944) which is the horizon of the Columbiana limestone/shale. The ore is 

found with clay as reported in stratigraphic logs for the Hamden ore in Vinton County, Ohio.  

The Hamden ore is at the base of the Oak Hill clay which also has scattered nodules. The 

Hamden is two feet above the Lower Kittanning coal (Stout, 1944).  

Siderite in layer form has been found in or immediately overlying the Upper Freeport 

coal. A siderite layer within a coal bed is carbonaceous and referred to as “blackband”. Clay is 

found beneath the coal horizons as underclay.  

Iron ore may be also intermingled with silica and limestone such as the Buhrstone iron 

ore found at the top of the Vanport limestone in Armstrong, and parts of Beaver, Lawrence, 

Butler and Clarion Counties, Pennsylvania. The amount of silica and siderite contained within 
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the Buhrstone ore in Ohio ranges 0.62 to 26.32 percent and 40.91 to 68.44 percent respectively 

(Table 13). 

 

Table 13: Chemical analysis of Buhrstone ore, Ohio   (adapted from Stout, 1944) 

 

 

In Pennsylvania, well-developed siderite beds were mined along Chestnut Ridge in 

Fayette County on the west limb of the regional Uniontown syncline.  Siderite was mined from 

five calcareous layers between the Pittsburgh coal and the lower Pittsburgh limestone, within 25 

feet below the bottom of the coal (Stevenson, 1877).  Small amounts of ore are seen north of the 

Youghiogheny River, with minor amounts of ore as far north as Westmoreland County 

(Stevenson, 1877). 

A generalized section shows the order and distance below the Pittsburgh coal (Table 14). 
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Table 14: Generalized stratigraphic section for the Pittsburgh ore (Stevenson, 1877). 

Rock unit Thickness, ft 

Pittsburgh coal ----- 

clay 2’ – 8’ 

Blue Lump Ore 0” to 1’ 6” 

clay 4” – 1’ 6” 

Condemned Flag ore 0” – 1’ 

clay 4” – 2’ 6” 

Big Bottom 1’ – 1’8” 

clay 10” – 5’ 

Red Flag ore 2” – 6’ 

clay 1’ – 3’ 

Yellow Flag 4” 

Pittsburgh limestone ----- 

 

The five siderite layers were given the names: “Blue Lump”, “Condemned Flag”, “Big 

Bottom”, “Red Flag”, and Yellow Flag” (Stevenson, 1877). The “Blue Lump” was a layer of 

flattened siderite nodules, closely packed in a continuous layer with an average one inch 

thickness (Stevenson, 1878). The Blue Lump was reported along the Monongahela River and in 

the area between the Cheat and the Monongahela River. The ore was mined at Fairchance and 

South Union. The quality diminished on the western side of the Uniontown Syncline and was 

missing in Brownsville, Fairmont, Clarksburg (Stevenson, 1877). It is known in Morgantown, 

West Virginia (Stevenson, 1877). 
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The Condemned Flag is a fine-grained, blue carbonate ore that can be in the form of a 

layer or as lenticular nodules four to seven inches thick (Stevenson, 1877). This layer is not 

persistent. 

Big Bottom, ten to eighteen inches thick, was mined at Fairchance, Oliphant’s, Fuller’s 

and Beatties’s furnaces at the base of the base of Chestnut Ridge. The surface color is yellow-

brown and is bluish-gray on a fracture surface.  

 

Siderite nodules  

 Siderite nodules and concretions that were used for ore can be seen within the shales 

associated with coals of Pennsylvanian age. They can be distributed randomly or in distinct 

layers in the shale above coal units. Concretions can be internally fractured and the fractures 

filled with quartz, barite, or calcite (Skema, 2005). 

  Nodules and concretions can be also concentrated as a placer deposit in streams. This 

type of deposit was mined in Columbiana County, Ohio where gravel beds in the Middle Fork of 

the Little Beaver were dug for the iron nodules (Stout, 1944). Where the iron ore is protected by 

thick overburden, the ore is siderite. The ore is a limonite near the surface (Stout, 1944).  

Nodular or kidney ore is found in shale between the Middle and Lower Kittanning coal 

seams. The crust of the nodules has been converted to limonite (Stout, 1944).  

 Another nodular iron ore is embedded in the white Bolivar clay about 15 ft above the 

Lower Freeport coal in Perry County, Ohio (Stout, 1944). This is the Sour Apple or Straitsville 

ore. It is 10 to 30 ft below the Upper Freeport coal and 60 to 70 ft above the Middle Kittanning 

coal (Stout, 1944). 
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Dark, carbonaceous, siderite layer(s), blackbands, associated with coal seams, may be 

present either within the coal seam, or just above the coal seam. The blackband normally looks 

like black shale with slightly higher density (Stout, 1944).  The test for a blackband ore was to 

burn a heap of suspected black shale outdoors. If there is enough iron, the shale will agglutinate 

and form a dense, scoriaceous mass (Stout, 1944).The Sharon blackband ore found in the Sharon 

coal from Trumbull and Mahoning Counties was important to the development of the iron 

industry in the Mahoning Valley of Ohio. 

Other mined blackband ores in Ohio are known from the Lower Kittanning coal, and the 

Freeport coal (Stout, 1944). The black, bituminous shale ore above the Upper Freeport coal in 

Tuscarawas County, although not extensive and of variable thickness, contains 25 to 40 percent 

iron (Stout, 1944). The largest blackband deposit described by W. Stout (1944) had an average 

thickness of eight feet and the geographical extent of mainly Tuscarawas County (Stout, 1944). 

Iron found in clay beneath coal layers 

Iron nodules have been reported in the clays beneath the Upper Freeport coal in the 

Bolivar clay in Bolivar, Westmoreland County, Pennsylvania (Leighton, 1932).  At the town of 

Bolivar extensive mining for clay took place and nodules of iron carbonate called “iron balls” 

were found in the Bolivar clay, eleven feet below the Upper Freeport coal (Leighton, 1932).  

 

4.2 VALLEY AND RIDGE PROVINCE AND THE GREAT VALLEY SECTION 

Iron and clay ore mined in the Valley and Ridge Province is hosted by Cambrian through 

Devonian age carbonate rocks. As described above, four types of iron ore are known from 
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sedimentary rocks in the Valley and Ridge Province and the Great Valley Section. The ore types 

include: brown limonite iron ore found embedded in massive clay above carbonate bedrock, 

hematitic fossil ore in the Silurian Clinton Group, a sideritic layer at the base of the Devonian 

Marcellus Shale and a hematitic cemented sandstone and limonite nodules in the Ridgely 

Formation in association with the Oriskany Sandstone and its underlying limestone and chert 

beds. The association of iron and clay deposits is present along calcareous horizons and along 

faults where calcareous rocks are present either in the footwall or hanging wall. 

 

4.2.1 Limonite ore present in Cambrian and Ordovician Age rocks 

A map of the historical mine locations indicate where iron ore and white clay mines were mined 

from rocks of Cambrian and Ordovician age (Figure 2). In central Pennsylvania iron commonly 

has been mined from saprolitic, residual clay soil overlying the Cambrian Gatesburg Formation.  

Residual ferric oxide ores were mined in Centre, Bedford, Blair and Huntingdon Counties in 

central Pennsylvania (Inners, 1999). In Centre County alone 93 limonite ore bank mines or tracts 

were listed in 1884 (D'Invilliers, 1884) The limonite ore was found in the form of nodular, 

botryoidal, cellular and stalactitic masses of limonite or goethite embedded in clay (Inners 1999; 

Foose, 1945). Surface pits called “banks” were dug into deep kaolinitic clay pockets (Inners, 

1999; Foose, 1945) within limestone and dolostone to mine for ore. The percentage of iron in the 

deposit varies from 10 to 50 percent (Lesley, 1892). The brown ore was washed free of clay and 

then used in charcoal furnaces. For example, the Pennsylvania Furnace ore bank was 1400 feet 

long by 600 feet wide and 65 feet deep (Lesley, 1892).  
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In central Pennsylvania, many limonite and clay mines were operated in the residual clay 

soil overlying the Gatesburg Formation. The Gatesburg subcrops in Centre, Huntingdon, Blair 

and Bedford Counties. The distribution iron and clay mines are shown on Figure 17. 

 

 

Figure 17: White clay mines and limonite iron ore mines along the Gatesburg subcrop, central 

Pennsylvania (adapted from Berg, 1980) 
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In the Valley and Ridge, the ore banks mined along the northern side of the Nittany 

Valley, Centre County, on the Gatesburg exposure are close to a major thrust fault, the 

Birmingham fault. In Huntingdon, Blair and Centre Counties, the Birmingham fault runs parallel 

to a line of limonite mines which are 1.5 to 0.5 miles southeast from the fault (Figure 18). The 

Birmingham fault is a thrust fault seen at the surface along the base of the eastern slope of Bald 

Eagle Mountain. The fault dips southeast at a low angle beneath Sinking Valley. Two fensters, 

Birmingham and Knarr, along the south boundary of Huntingdon County reveal the rock units 

beneath the Birmingham fault. The older rocks of the Gatesburg Formation overlie the younger 

rocks seen in the fensters.  Within the fensters are exposed thrust faults (Tormey, 1996) which 

are aligned with the Birmingham thrust fault. The iron ore banks are within a thick, weathered 

soil above the Gatesburg which could hide a fault. On the map by Moebs and Hoy (1959), the 

southwest extension of the Birmingham fault extends to the zinc sulfide mine shown on the 

Figure 18. A second line of limonite ore banks which includes the Pennsylvania Furnace ore 

bank, is situated on the southeast side of the Nittany Valley. 
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Figure 18: Iron, lead-zinc and clay mines in Sinking Valley, Centre County, Pennsylvania (adapted from Berg, 

1980) 
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In addition to finding iron above the Gatesburg Formation, iron mines have also been 

recorded in the lower Ordovician carbonates, in the Julian, State College, Bellefonte and 

Mingoville quadrangles, northeast of State College, Centre County. A line of mines marks the 

southeast side of the Nittany Valley from which ore was mined from pits in Ordovician 

Stonehenge limestone, Nittany dolomite and Axemann limestone (Rose, 1995). These 

Ordovician limestones are not generally known for being ferruginous. The typical iron content of 

the limestone is 0.5 % +/- 0.2 % (Rose, 1995).  

Near the town of Metal, south of Fannettsburg, Franklin County, Pennsylvania, iron 

mines developed on the southeast side of Tuscarora Mountain comprise a linear array along the 

Path Valley thrust fault (Figure 19).  
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Figure 19: Path Valley historic iron mines in Western Franklin County along red shaded region (adapted 

from D’Invilliers, 1886)  

 

The mines and sinkholes coincide with the Path Valley thrust fault (Nichelsen, 1996) along 

which Ordovician Martinsburg or Silurian Tuscarora Formation (Figure 20), and (Figure 21), 

Cross Section A – A’, has been emplaced above Middle Ordovician Bellefonte dolomite and St. 

Paul Group limestone.  The hanging wall rocks comprise the Ordovician Juniata/Bald Eagle 

Formation (Ojb) or the Ordovician Martinsburg Shale (Om), whereas the footwall is composed  

of carbonate rocks of Ordovician Bellefonte Formation (Obf) or the St. Paul Group (Osp).   
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Figure 20: Iron mines aligned along Path Valley fault near Metal, Pennsylvania and cross section A-A’ location 

(adapted from Nichelsen, 1996) 
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Figure 21: Cross section A-A' through Path Valley fault (adapted from Nichelsen, 1996), rock unit 

abbreviations are: St – Tuscarora Fm., Ojb – Juniata/Bald Eagle Fm., Or – Reedsville Fm. 

 

Nickelsen (1996) suggests that the presence of the Hanover ore bank along the Cove fault 

(Figure 22) on the eastern slope of Dickeys Mountain is a similar circumstance of carbonate 

rocks thrust over clastic rocks. Along this fault Cambrian carbonate rocks of the 

Nittany/Stonehenge/Larke Formations, have been thrust over clastic units of the Ordovician 

Reedsville Formation as shown in cross section B-B’ (Figure 23).  Nickelsen (1996) suggests 

that the Cove fault extends down to the decollement at the base of the Cambrian carbonates 

(Figure 24). 
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Figure 22: Cove Fault iron mine (adapted from Nickelsen, 1996 and Berg, 1980) 
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Figure 23: Cross section B – B’ through Hanover ore bank, Cove fault and Lowery Knob (adapted from 

Nickelsen, 1996), rock unit abbreviations are: Dh – Hamilton Gp., Doo – Onondaga and Old Port Fms., Dskm – 

Kinzer through Mifflintown Fms. undivided, Sc – Clinton Gp.,  St – Tuscarora Fm., Ojb – Juniata/Bald Eagle Fms., 

Or – Reedsville Fm., Ons – Nittany, Stonehenge/Larke Fms. 
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Figure 24: Cross section through Lowery’s Knob and Cove fault showing fault extending to decollement 

(adapted from Nickelsen, 1996), rock unit abbreviations are: Dck – Catskill Fm., Dciv– Irish Valley Member of 

Catskill Fm., St – Tuscarora Fm., Or – Reedsville Fm. 

 

 

 

South of Cowens Gap, no mines were reported by D’Invilliers (1886) when he conducted 

a survey of iron mines and limestone quarries for the Second Pennsylvania Survey. In this area 

the Path Valley fault separates Ordovician Martinsburg Shale from Silurian Tuscarora quartzite. 

The absence of deposits may be attributed to the lack of carbonates that generally host the iron 
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ore. Farther south D’Invilliers (1886) mapped one iron mine, the Bowers furnace bank, near the 

town of Sylvan close to the Pennsylvania state line. However, the mine is not along the Path 

Valley fault, and its location on Devonian Hamilton and Onondaga Formations probably 

indicates the source was Hamilton iron ore. 

Iron mines cluster around the intersection of structural cross strike discontinuities and the 

Path Valley fault (Figure 20). No mines were reported north of Fannettsburg where the 

Bellefonte carbonates are in contact with clastic beds, the Juniata/Bald Eagle sandstone and the 

Martinsburg Shale. The absence of iron deposits in this area may be attributed to the lack of 

carbonate rocks adjacent to the Path Valley fault. Therefore, the cross strike structural 

discontinuities are a possible factor in formation of limonite deposits along with thrust faults and 

carbonate host rocks in mountain settings. 

 

4.2.2 Silurian Clinton-type Ore Beds 

The Middle Silurian Clinton Group hosts as many as six hematite ore beds in central 

Pennsylvania within the Rose Hill and Keefer Formation (Inners, J., 1999). The Rose Hill is an 

olive shale with thin hematitic sandstone layers. Above the Rose Hill is the Keefer Formation 

which includes an oolitic, fossiliferous, hematitic sandstone member. 

This ore is found throughout the Appalachians, from New York to Alabama, and is 

known as the Clinton-type ore. In Pennsylvania, the ore occurs in the Rose Hill Formation, the 

overlying Keefer Formation, and the Wills Creek Formation, (Table 9). It can occasionally occur 

in the Mifflintown Formation overlying the Keefer Formation (Cotter, 1993).  
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The lower part of the Clinton Group correlates to the Silurian Brassfield limestone of 

southern Ohio, which was locally mined (Stout, 1944).  

 

4.2.3 Ore hosted in Devonian Strata 

Iron ore has been mined from the Oriskany Sandstone and Marcellus Formation adjacent to 

calcareous rock units. Approximately 100 feet below the Marcellus is the Oriskany (Ridgeley) 

sandstone. The Lower Devonian Oriskany Sandstone may consist of calcareous, fine-grained 

sandstone to noncalcareous conglomerate Harper, 1999) and vary in thickness from 25 to 160 

feet (Dewees, 1878). When the sandstone is well-cemented, it is a ridge former and resists 

erosion as individual rocks as in the case of Pulpit Rocks of Huntingdon County. The Oriskany 

can be composed of an upper laminated shale bed and a soft, argillaceous sandstone, 30 to 40 

feet thick (Dewees, 1878). At its base, the Oriskany grades vertically to a cherty, calcareous 

sandstone or arenaceous limestone (Harper, 1999).  

In Hill Valley, Huntingdon County, brown hematite ore five to ten feet thick can be 

found within soft, argillaceous beds along the Oriskany outcrop (DeWees, 1878). The 

argillaceous beds are colored red, purple and white (Dewees, 1878). The ore is found in seams 

and cracks which cut through the sandstone. Erosion of the sandstone leaves behind the ore 

scattered on the slope below the Oriskany outcrop (Dewees, 1878). Iron ore was also mined in a 

soft, argillaceous or clay zone associated with the Oriskany Formation in Saylorsburg, Monroe 

County (Dewees, 1878; Peck, 1922). Iron ore is found in pockets within the sandstone over the 

Oriskany in the Orbisonia area of Huntingdon County (Dewees, 1878). 
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White clay was also formed in association with the Oriskany Formation; examples are at 

Alexandria, Petersburg and Shirleysburg (Figure 26). Another Oriskany Formation associated 

clay deposit occurs at Saylorsburg, Monroe County, Pennsylvania. The Oriskany Formation 

consists of an upper, coarse, thick-bedded sandstone, the Ridgely member, and a lower, thin-

bedded, siliceous limestone, the Shriver member (Butts, 1918). The Shriver member weathers to 

a white to gray, siliceous clay (Leighton, 1941). In central Pennsylvania, the Ridgely member is 

about 100 ft thick overlying the layer of chert, Shriver Chert and a bed of shale.  The clays 

develop in the cherty and shaly beds below the sandstone (Hosterman, 1984). 

At the Alexandria white clay pit three miles southeast of Alexandria, Huntingdon County, 

the clay occurs between two steeply dipping ridges of Ridgely Sandstone and Shriver shale.  The 

upper ridge of sandstone steeply dips to the west and the lower ridge is shale that has not 

weathered to clay. Between the two ridges is siliceous clay with impressions of trilobites and 

brachiopods.  This clay interval is about 50 feet wide (Leighton, 1941).  

At Shirleysburg, Huntingdon County, the clay has weathered in the lower shale member. 

Here the clay is darker, has no grit or chert fragments, and shows distinct shale laminations. The 

clay bed has a steep west dip and the coarse upper Oriskany crops out nearby (Leighton, 1941). 

The Saylorsburg white clay deposit occurs on the north side of Cherry Ridge and 

Chestnut Ridge near the town of Saylorsburg, Monroe County (Peck, 1922) (Figure 25). Cherry 

Ridge is a syncline with the Ridgely (Oriskany Sandstone) forming the ridge. The elevation of 

the ridges is 870 to 900 feet. Beneath the Ridgely is over 200 ft of impure limestone and shale 

which in turn overlies the Bossardsville limestone (Peck, 1922). The clay is mined by the caving 

system. The clay is reached by shafts sunk into the north side of the ridge at about elevation 800 

ft which extend down to 116 to 100 ft. Horizontal crosscuts are driven 40 to 100 ft to the south 
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until the hard sandstone (Ridgely Member) is encountered in the hanging wall. The sandstone 

dips 70 degrees to the south and strikes 65 to 70 degrees east. The clays are believed to be a 

result of altering the impure clayey limestones beneath the Ridgely Sandstone based on the fine 

sand and chert found in the clay (Peck, 1922).  

 

Figure 25: Location of clay mines in Saylorsburg, Monroe County, Pennsylvania, marked as yellow squares on 

Wind Gap 15 minute quadrangle, 1916, U.S. Geological Survey topographic map 

 

The Shriver Member of the Oriskany Formation has been observed to produce a whitish, 

‘unctous’ clay in Bedford County (unctous meaning that the clay has a soapy or greasy feel) 

(Knowles, 1966). In Bedford County, the Ridgely Member is a 111 to 122 ft thick unit composed 

of 3 to 10 ft thick layers of whitish to light gray, medium-grained calcareous and siliceous 

orthoquartzites (Knowles, 1966). The Ridgely may have siliceous or calcareous cement. 
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Calcareous cement is usually leached leaving crumbly sandstone (Knowles, 1966). The Oriskany 

is also noted to have ferruginous cement in Bedford County (Knowles, 1966). 

 

4.2.4 Marcellus Ore Bed 

The Marcellus iron ore bed is an iron oxide deposit of brown hematite which underlies the black 

Marcellus Shale and overlies Selinsgrove limestone/calcareous shale (Dewees, 1878), which 

comprises  the upper member of the Onondaga Formation (Harper, 1999). The ore is continuous 

but the thickness of the ore bed can vary from a trace to ten or twelve feet thick (Dewees, 1878).  

The ore bed is brown hematite ore down to a depth of 60 to 150 feet, where it becomes an 

impure earthy carbonate or dirty clay ironstone. Still deeper, the bed is pyritic clay (Dewees, 

1878). Claypoole (1885) reported that near the surface, the ore is embedded in clay but that at 

depth, the ore is an iron carbonate. The Marcellus iron ore has been mined in Perry, Carbon, 

Mifflin and Bedford Counties. The stratigraphic section description in Perry County was given 

by Claypoole (1885) (Table 15): 

 

Table 15: Marcellus ore stratigraphic section, Perry County, Pennsylvania (adapted from Claypoole, 1885) 

 
 

Rock unit Rock description Thickness, ft Total 
thickness, ft 

Hamilton upper shale 200’ – 300’ 
1200’ +/- Hamilton middle sandstone 500’ – 800’ 

Hamilton lower gray shale 300’ – 500’ 
Marcellus black shale 80’ – 120’ 

100’ +/- Marcellus iron ore bed 2’ – 14’ 
Marcellus limestone 10’ – 30’ 
Onondaga limestone 10’ – 30’ 

100’ +/- Onondaga lime shale 20’ – 40’ 
Onondaga iron ore 2’ – 3’ 
Oriskany(Ridgeley) sandstone 0’ – 20’ 20’ 
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In 1839, in Perry County, Oliver Township, south of Newport, an iron mine for the Juniata 

furnace reported a 8 to 10 ft thick bed of hematite ore at 100 ft above the Oriskany, lying 

between black slates, a few feet above the limestone and dipping 45 degrees north west (Lesley, 

1892; Rogers, 1858).  

Additional mines were opened by 1858 in Perry County, the Reeder mine and the 

Clauder mine. Here is how the ore was described by Lesley (1892): “Two or three distinct, 

regular (ore) beds run through a mass of white clay; irregular strings of ore also penetrate the 

clay. The ore being in forms of wash, lump, honeycomb and pipe ore.”  The miners recognized 

that if the ore was thick, the underlying limestone would be missing; correspondingly, if the 

underlying limestone was thick, then there would be little or no ore (Lesley, 1892). 

Lesley reported that there was often confusion whether the iron ore in clay was developed 

within the limestone at the base of the Marcellus or was in the clay developed at the top of the 

Oriskany (Ridgeley) which is about 100 ft below the Marcellus ore (Lesley, 1892). 

Near the Lehigh Gap in Carbon County, Pennsylvania, an impure iron carbonate (“paint-

ore deposit”)  containing clay and calcium carbonate underlies Marcellus black slates (shale) and 

above 2 to 20 ft of clay above the Oriskany Sandstone (Eckel, 1907). Grains and nodules of iron 

pyrite are scattered through the ore (Eckel, 1907). It was thought that this “paint-ore” deposit 

was a replacement of the underlying limestone. The ore is thickest when it occupies the thickness 

between the Marcellus black shale and the underlying Oriskany Sandstone (upper member in the 

Ridgely Formation). Where the ore bed has not been altered, the ore is a siderite (Claypole, 

1885). 
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The Marcellus ore was mined along the Juniata River in Mifflin County and along 

Yellow Creek in Bedford County (Claypole, 1885). Other Marcellus mining activity took place 

in Perry County (Claypole, 1885).  

4.2.5 Devonian Hamilton oolitic ore 

The Middle Devonian Mahantango Formation contains a hematitic, oolitic iron ore bed referred 

to as the Hamilton oolitic ores (Inners, 1999). This ore was only mined in Perry County 

(Claypole, 1885). The ore lies at the top of the Hamilton sandstone and is generally 2 feet thick 

in Perry County (Claypole, 1885). 

4.2.6 Iron ore hosted in the Mississippian Mauch Chunk Formation 

Along Chestnut Ridge in Fayette County, Pennsylvania, Mauch Chunk ore was found from 0 to 

20 feet below the Pottsville conglomerate in as many as five separate layers (Stevenson, 

1877).within upper shale beds of the Mauch Chunk Formation (Stone, 1908). The ore is 

comprises siderite layers that vary from 27 to 80 feet thick. The ore bodies extend roughly 50 

miles (Stevenson, 1877). 

In Broad Top Township, Bedford County, in the Broad Top Synclinorium brown 

hematite ore (aka limonite) is present a few feet thick above the base of the Mauch Chunk 

Formation (Stevenson, 1882).  

In the vicinity of Scranton, Pennsylvania, (Rogers, 1858) described iron ore beds in the 

Umbral (Mauch Chunk) Formation that were used at the Scranton furnaces. The ore bed is 

situated near the bottom of the Mauch Chunk and is conformal with the dip of the shales. The ore 
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is embedded in a six foot thick layer of fireclay or clay-shale as an 18 inch thick, continuous 

band or as flattened balls 12 inches in diameter or less (Rogers, 1858). Thirty feet above the ore 

layer is another one foot thick layer of fireclay containing scattered balls of iron ore. The ore is a 

concretionary deposit composed of iron oxide and iron carbonate (Rogers, 1858). 

 

4.2.7 Clay 

Clay mines are widely distributed across Pennsylvania (Figure 2). Associated with the iron is 

extensive clay development. Fourteen commercial clay pits were identified and located (Figure 

26) (Hosterman, 1984). According to Hosterman (1984), the clay pits are mostly distributed on 

the northwest side of the Gatesburg outcrop near faults. 
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Figure 26: Clay pits in the Gatesburg Formation (adapted from Hosterman, 1984). 

 

J. P. Lesley (1874), reported on the geologic setting and character of the brown limonite 

ore in Centre, Huntingdon and other Counties. He reports that he saw lumps of pyrite in 

bombshell ore in the sides of a funnel shaped hole which were coated with white sulfates in 

fields north of Pine Grove Mills on the property of John Ross (Lesley, 1874). Lesley describes 

the iron ore deposit at Pennsylvania Furnace: 
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“At first sight of the bank the ore deposit looks as if it were a grand wash or swash of 

mingled clay and fine and coarse ore grains and balls, occupying hollows, caverns and crevices 

in the surface of the earth and between the solid limestone rock ; and some of it undoubtedly has 

been thus carried down into the enlarged cleavage partings of the limestones; and into sink holes 

and caverns formed by water courses; where it now lies, or lay when excavated, banked up 

against walls or faces of the undecomposed lime rocks. But as a whole the ore streaks and "main 

vein" of ore must occupy nearly the same position originally occupied by the more ferruginous 

strata after they had got their dip and strike. The ore is taken out with the clay, and hauled up an 

incline, by means of a stationary steam engine at its head, and dumped into a large washing 

machine, with revolving screens; whence after the flints and sand stones have been picked out, it 

is carried on an ironed tramway, to the bridge house of the Furnace. The ore forms from 10 to 50 

per cent of the mass excavated, and the small amount of handling makes the ore cheap. The floor 

of the excavation is about sixty (60) feet below the level of the wash machine. Shafts sunk from 

30 to 35 feet deeper, in the floor, to a permanent water level, have shown that other and even 

better ore deposits underlie the workings, covered by the slanting undecomposed lime rocks. 

This is an additional demonstration of the correctness of the theory above stated.” (Lesley, 

1874). 

Moore (1922), then Dean of the School of Mines, Pennsylvania State College, observed 

that: 

 “The bulk of the clay comes from the borders of abandoned iron mines and a great deal 

of it was taken out in the past, while the iron was being worked. It has been found as lenses, 

seams, and irregular masses associated with the limonite ore but as a rule outside the ore body. 

The clay within the area worked for ore is usually stained with iron. There are all gradations 
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from clay carrying considerable iron and of no use in the ceramic industries through red and pink 

to pure white clay, just as there are all gradations between the pure clay and clay high in sand. 

The association of the clay and iron is believed to be due to the fact that the iron has been carried 

in solution by underground water and concentrated where beds of argillaceous dolomite in the 

sandstone have weathered out, permitting the sandstone to break down and thus create an area 

through which the water very readily circulates. The circulating waters remove the soluble 

constituents, depositing the iron oxide through replacement of the dolomite, and leaving the 

insoluble argillaceous materials as clay. The tendency would be to carry all soluble materials 

toward the centre of this area, where the downward circulation of the water is good, and to leave 

the insoluble materials around the border of what in time develops into a sort of basin. In the 

basin there will be more resistant masses which will not crumble down and these may be 

comparatively free from iron and contain some white clay. The waters entering the basin are, of 

course, carried away by good circulation underground, in some places being directed and aided 

by fractures in the strata. It is probable that faults have often directed the course of the circulating 

waters producing these iron and clay deposits.” 

There are other clay producing areas developed on the Gatesburg, the Woodbury clay pit 

near the Oreminea area, six miles south of Williamsburg in Blair County (Moore, 1922). This pit 

was 275 meters long and as much as 12 meters deep. The color of the clay varies from white to 

dirty gray, but weathers to white (Moore, 1922). The clay grades into a sand and is seen filling 

cracks and pores in the weathered.  

Leighton (1934) describes the stratigraphic relationship between the white clay and the 

overlying beds. The bottom of the clay pit contains about 40 feet of white or tinted clay in 

irregular pockets. Above the clay is 10 feet of chert followed by 50 feet of yellowish stony soil 
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and chert. There are chimneys of white clay extending from the bottom white clay strata upward 

into the yellowish soil (Leighton, 1934). 

 

 

4.3 BLUE RIDGE PROVINCE 

In Pennsylvania the topographically distinct Blue Ridge Mountains, comprising clastic and 

volcanic rocks, rise above a low, subdued terrain underlain principally by carbonate rocks 

comprising the Tomstown Formation.  However, a colluvial apron of Antietam Quartzite west of 

the Blue Ridge front commonly obscures the carbonate and the poor exposure requires that the 

outcrop be inferred from stratigraphic position (beneath the Waynesboro and above the 

Antietam) and the presence of iron ore pits and solution features (Fauth, 1967). Residual iron ore 

was mined from shallow pits along the west and north side of South Mountain.  As mining 

activities progressed it became clear that Tomstown is the source of iron, mainly limonite, and 

clay that were mined extensively.   

Tomstown runs along the entire length of the western flank of South Mountain and was 

the locus of iron mining.  Limonite ore commonly was mined along the slopes of South 

Mountain as limonite lumps embedded in clay and from thick clay deposits along the northwest 

foot of South Mountain and Piney Mountain of Franklin, Adams and Cumberland Counties 

(Figure 27) (Way, 1986). 
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Figure 27: South Mountain geology with iron and clay mine locations (adapted from Berg, 1980) 

 

Fuller Lake now occupies the pit where a large ore body was dug for use in the Pine 

Grove Furnace (Way, 1986).   

The Toland Clay mine is situated at the southeast slope between South Mountain and 

Piney Mountain, (Figure 28) and some geologic relationships of the iron ore, clay and faults are 

demonstrated. Where the clay is exposed at Toland clay mine, it underlies the Antietam Quartzite 

that has been thrust over the Tomstown Formation (Freedman, 1967).  
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The Toland clay pit was originally an iron mine which uncovered the clay (Way, 1986). 

The extent to which the clay has developed beneath the ore deposits is illustrated by a 435 foot 

deep boring taken at the Leland bank northeast of the Toland Clay Mine, reported by Lesley 

(1891): 

“Lehman bank, opposite the Grove bank, idle in Oct. 1886 for want of water; a bore hole went 

down through the ore for 340’; then through blue clay, 40’; then white clay, 30’; then “mountain 

clay,” 25’ to “Potsdam sandstone” (Mt. Holly quartzite) = 435’ “ (Lesley, 1891).  

This boring log indicates that the ore deposit is 340 feet deep and the clay beneath the ore 

is 95 feet. The bottom of the boring is interpreted to be Weverton quartzite (Figure 29). The 

cross section A – A’ (Figure 29) doesn’t reflect the allochthonous nature of the Blue Ridge. An 

inferred thrust fault along the top of the Tomstown would separate the Mont Alto Harpers 

Member from the Tomstown Formation. 
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Figure 28: Geology at Toland clay mine and cross section location A-A', (adapted from USGS Mount 

Holly Springs 7.5 minute quadrangle, PA Topographic and Geologic Survey Map 61, and D’Invilliers, 

1886) 
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Figure 29: Cross section A-A' at Toland, Pennsylvania (adapted from Way, 1986). Inferred fault based upon 

Freedman (1967) 

 

Iron and clay deposits in the Virginia Blue Ridge area 

The distribution of limonite ores along the margin of the Virginia Blue Ridge resembles 

that of Pennsylvania (Figure 30) in that the ore is present along the contact of the Paleozoic 

sediments and the crystalline rocks.    
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Figure 30: Distribution of iron ore deposits in Virginia (adapted from (Eckel, 1914; Harder, 1909) 

 

Elkton area, Virginia 

A well-known iron producing district at Elkton, Frederick County, Virginia (Figure 31) 

produced iron from 1836 to the end of World War I (King, 1950) and provides insight into 

relevant geologic relationships between the Tomstown and Antietam Formations and the iron ore 

deposits along the western border of the Blue Ridge Province. 
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Figure 31: Location of the Elkton mining district, Virginia   (adapted from King, P. B., 1950) 

 

 

The tectonic setting of the Blue Ridge has been controversial for several decades. Stose et 

al, (1919) and Butts (1933) mapped a thrust fault on the west flank of the Blue Ridge either (1) 

above the Chilhowee Group (containing the Antietam Formation) and below the Precambrian or 

(2) below the Chilhowee Group, between the Tomstown and the Chilhowee. An alternate theory 

by Bucher (1933) and later King (1950) suggested that Blue Ridge-Catoctin Mountain 
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anticlinorium is a great “welt” which is the result of overfolding and faulting against the Great 

Valley Paleozoic sediments, not the clean break within the basement rock along a thrust fault. 

According to seismic studies in central Virginia, the western flank has been interpreted to 

be the front edge of the Blue Ridge thrust fault which emplaced the Precambrian Catoctin 

volcanic over the Paleozoic rocks in the Great Valley to the west (Harris, 1982).  

At Elkton, the iron ore is within the Tomstown Formation and its residual soil where the 

Tomstown carbonate is in contact with the Antietam Quartzite. A general geology view of the 

mining district is in Figure 32.  

 

 

Figure 32: Geology Elkton area, Virginia, as interpreted by C. Butts, 1933 (adapted from King, P. B. 1950) 
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At Elkton, an incline 540 feet long was driven into Grindstone Mountain at the Watson 

tract to assess the amount of manganese ore present along the base of the Tomstown dolomite. 

Manganese ore was present along the incline with iron ore, clays of various colors, quartzite 

breccias and quartzite beds but there was no ore body of large size. The ore was found in layers 

within clays and scattered within white sand and quartz breccia. Clay was seen throughout the 

incline and the opening had to be timbered to keep it open. Similar to the Toland mine, the 

thickness of clay derived from Tomstown dolomite is remarkable. The slope of the incline was 

20 ft rise over ~55 ft run or 33 percent to a depth of 80 ft after which the slope was 20 ft rise over 

~165 ft run or 12 percent. At its deepest, the incline was about 190 feet below ground. Location 

of the incline is shown on cross section R-R’, Figure 33. 

Cross section R-R’, Figure 33, and T-T’, Figure 34, reveals the ore within the residual 

clay, where the Tomstown limestone/dolomite is in contact with the Antietam Formation. The 

Bureau of Mines extended an incline into the clay overlying the Tomstown to prospect for 

manganese deposits. The clay above the Tomstown contains iron and manganese in narrow 

veins, nodules, or irregular massive lenses (King, 1950). This relationship is comparable with 

Tomstown and Antietam in the South Mountain area of Franklin County, Pennsylvania. 
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Figure 33: Cross section R-R’ through Bureau of Mines incline into Tomstown residual soil. Note inferred thrust 

fault over Tomstown Fm (Ct) (adapted from King, 1950). Cch = Chilhowee Group, Ct = Tomstown Fm. 

 

Figure 34: East-west cross sections T-T’ along the western flank of Blue Ridge, Elkton, Virginia  (adapted from 

King, 1951). Note inferred thrust fault above Tomstown dolomite, cf. Figure 33. Ct = Tomstown Fm., Cch = 

Chilhowee Group 
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Great Valley – Cumberland, Lebanon, Berks, Lehigh Counties, Pennsylvania 

Ordovician limestone is host to numerous pits of iron ore deposits in the Cumberland 

Valley (Figure 35).  The iron occurs as residual limonite, similar to that in the Tomstown. 

 

Figure 35: Distribution of iron ore pits in Cumberland Valley between Shippensburg and Carlisle, Cumberland 

County, Pennsylvania (taken from Lesley, 1873) 

 

Ore is present as concentrations along the top of the limestone or imbedded within the 

overlying clay soil (Figure 35). If the distribution is similar to Tomstown then it may be possible 

that the ore may have formed beneath a hanging wall of Cambrian clastic rocks and older 

crystalline units overlying the carbonates. Iron mineralized along the thrust fault was preserved 

in the underlying carbonate residuum. An example of an ore bank in the Great Valley Section is 

the Moselem mine in Berks County. At the Moselem iron ore bank, five miles west-southwest of 
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Kutztown, the ore is developed within the soils overlying the carbonate bedrock of the Great 

Valley. The ore is twenty to forty feet below the surface and is found in irregular layers  and 

“nests” from one to eight feet thick (Lesley, 1859). Some of the ore is bluish and dolomitic and 

white clay is found within the mining pit (Lesley, 1859).  

 

4.4 PIEDMONT PROVINCE 

 

Limonite ores were mined in York and Lancaster Counties in the area north of the Martic thrust 

fault, Figure 36 and Figure 37. In Lancaster County, many thrust faults are found in the vicinity 

of the area known as the Chestnut Hill ore banks (Frazer, 1880). The ore banks contained 

limonite embedded in clay and at one mine a layer of limestone was found in the clay (Frazer, 

1880). Frazer (1880) describes a typical ore as a limonite, concretionary, and testudinous 

(resembling the shell of a tortoise) (Frazer, 1880). The ore occurs in layers between a bed of clay 

and decayed, sandy schist (Frazer, 1880). The clay is white to variegated in color.  

Along the Martic thrust fault, Stose (1944) recorded numerous iron mines in York 

County in the Hanover and York area (Stose, 1944). Stose (1944) postulated that  the mines were 

located in the Cambrian Antietam Quartzite, a white, ferruginous, granular quartzite and the ore 

accumulated as float within the soil over the Cambrian Vintage dolomite at the foot of dip slopes 

below hills underlain by the Antietam (Stose, 1944). Stratigraphically, the Vintage overlies the 

Antietam and is equivalent to the Tomstown dolomite in the South Mountain area.  Figure 36 
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shows the location of the mines relative to the thrust faults. The following numbered locations 

are shown in Figure 36.  Mines northwest of the Stoner thrust fault were located: 

1. along the southeast side of Pigeon Hills from Mt. Carmel School 

northeast to Nashville 

2.  at Jacobs Mills 

3. 1.5 miles north and 1.5 miles west of Spring Grove 

4. 1 mile northwest of Stonybrook 

Other iron mines also located in the Antietam were developed where the Antietam was in 

contact with the younger Conestoga limestone (Stose, 1944).  A contact between the Antietam 

and the Conestoga implies a thrust fault contact since the intervening beds of Vintage dolomite, 

Kinzers formation and Ledger dolomite are absent. These mines were located along the Martic 

thrust from (Stose, 1944):  

5.  Jefferson northeastward to Seven Valleys,  

6. in the syncline south of Margarette Furnace, 

Mines within the Conestoga near the Antietam contact along the Ore Valley thrust fault are at 

(Stose, 1944): 

7. in the syncline at Ore Valley  

8.  west of Margarette Furnace 

9.  south of Delroy, north of the Ore Valley thrust 

The mines west of East Prospect and southwest of Klein School are in the Conestoga 

limestone near the Antietam contact but not in the vicinity of a mapped fault: 

10. west of East Prospect 

11. southwest of Klein School 
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Mines within the Conestoga along the Stoner thrust fault are at (Stose, 1944): 

12. east of York Road 

13. in the valley at Penn grove 

14 south of Iron Ridge 

 

 

Figure 36: Geologic map showing iron mine locations in York County, Pennsylvania 
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In Lancaster County, Frazer recorded the location of thirty two ore banks which are mostly in the 

Conestoga Formation, close to the contact with the Antietam/Harpers Formations, undivided 

(Figure 37).  The Antietam Harpers has the lithology of a quartzite, phyllite or schist and the 

Conestoga is a limestone.  Magnetite disseminated through the schists of the Antietam Formation 

was mined at an ore bank 1.25 miles southeast of Conestoga, Lancaster County, Pennsylvania 

(Inners, 1999).  Frazer reports that at the Peacock mine the ore is a ferruginous mica schist or 

gneiss (Frazer, 1880). 
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Figure 37: Location of Martic ore mines, Lancaster County, Pennsylvania based on iron mines mapped by Frazer, 

1878 
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4.5 READING PRONG 

In the Reading Prong area iron ore was found as limonite deposits in the soil above the carbonate 

rocks in the valley and along the northern base of the Precambrian crystalline highlands (Figure 

38).  

 

Figure 38: Distribution of iron mines in the Reading Prong area of Lehigh and Northampton Counties, Pennsylvania 

(adapted from Berg, 1980) 

 

Mines were concentrated along a thrust fault at the base of South Mountain 2.5 miles 

south of Allentown northeast of Emmaus, Lehigh County. Mines clustered along the contact of 
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crystalline rocks of South Mountain (perhaps because the ore has not been disseminated by 

erosion following removal of the hanging wall rocks). Similarly, one and third miles south of 

Easton, Northampton County, mines define a linear array between the Cambrian Hardyston 

Formation near the contact with the Cambrian Leithsville Formation along the northern border of 

Morgan Hill. The northern base of South Mountain and Morgan Hill are defined by a thrust fault 

which extends southwest. Other mines can be seen along this thrust fault. 

On Figure 38, a cluster of iron deposits are in thick soils overlying Cambrian and 

Ordovician limestones five miles northeast of Allentown (Lesley, 1859). Another cluster of 

mines can be seen one to five miles west of Emmaus, Lehigh County.  In all likelihood these ore 

deposits were developed in the carbonate beds beneath the now eroded clastic and crystalline 

rocks (Figure 38). 
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5.0  CONCLUSIONS  

The manner of mineralization and the distribution of the ore suggest multiple modes of ore 

genesis within carbonate rocks across the entire basin. In the Piedmont, the Blue Ridge and 

Valley and Ridge Provinces, thrust faults are the foci of mineralization especially where 

intersected by cross strike structural discontinuities. Maps of economic deposits of iron 

associated with clay may reveal pathways of reactive fluids across the Appalachian mountains 

over a distance of 450 miles. 

In the topographically high region of the Allegheny Plateau and the adjacent Dunkard 

Basin into Ohio, almost every carbonate horizon in the Pennsylvanian section contains iron and 

clay mineralization. Abundant iron staining within sandstone units suggest that reactive iron 

carrying fluids followed permeable layers, joints and bedding planes. Along mineralized faults, 

limonite is the principal ore mineral. In the subhorizontal rocks of the Plateau and Dunkard 

Basin, some limonite was mined but the main ore consisted of siderite in nodular or layer form in 

clayey carbonates. In some deposits, silica may be present in clay as well as with iron ore, e.g. 

Buhrstone ore above the Vanport limestone. 

Siderite is widely distributed as nodules and concretions in fine-grained, Paleozoic clastic 

rocks suggesting that iron-bearing fluids had access to carbonate-rich concretions. 

The distribution and association of iron and clay deposits mainly in the carbonate rocks 

suggests a co-genetic origin. The development chiefly in carbonate rocks is inamicable to the 
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idea that this type of ‘limonite in clay’ deposit is related to the development of paleosols and 

weathering. Other iron bearing deposits, Cornwall-type and Clinton-type, do not show an 

association with clay. 

Residual ores such as those found along the flanks of the Blue Ridge are principally 

distributed along the erosion surface of the Cambrian Tomstown Formation in which the iron 

deposits were hosted. The iron-rich clasts were released from the clayey Tomstown, during 

weathering and concentrated along the flanks as colluviums. In the Blue Ridge area, map 

relations indicate that iron and clay formed along thrust faults separating crystalline rocks from 

structurally underlying Cambrian and Ordovician rocks.  

Pipe ore and stalactitic forms of limonite are probably the result of remobilizing 

previously formed ore deposits in response to weathering and redeposition in limestone caves 

and within solution-enlarged joints. 

The mapped relations of iron and clay deposits to stratigraphic and structural settings in 

which carbonate rocks serve as hosts support the model of alteration of carbonate and 

penecontemporaneous precipitation of iron in response to interaction with a reactive iron-, and to  

a lesser degree, silica-bearing fluid.  This process contrasts strongly with processes related to 

weathering and related formation of paleosoils or formation in bogs.  Although bogs and 

paleosoils exist, they fit within the mapped relations documented in this thesis.  Where erosion 

exposed iron and clay deposits to surficial processes, weathering took place and iron ore was 

locally incorporated  into clay-rich colluvial deposits.  
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APPENDIX A 

LITERATURE REFERENCES FOR IRON MINES AND OUTCROP LOCATIONS 

The reference sources used to locate historic iron mines and outcrops are listed below: 

1.          D’Invilliers, E. V., 1884, The Geology of Center County, Appendix A, Appendix 

B, Report of Progress, T4, with Geological Map l, Second Geological 

Survey of Pennsylvania 

2.         Claypoole, E. W. , 1885, A Preliminary Report on the Paleontology of Perry 

County, Second Geological Survey of Pennsylvania 

3.          Fraser, Jr., Persifor, 1880, The Geology of Lancaster County, Report of Progress, 

CCC, with Geological Map of York County, Lancaster County, 

Second Geological Survey of Pennsylvania 

4.         D’Invilliers, E. V.,  1883, The Geology of the South Mountain Belt of Berks 

County,  Report of Progress, D3, Vol. II Part I., Second Geological 

Survey of Pennsylvania 

5.         Lesley , J.P., Chance, H. M., Prime, F., Sanders, R. H., Hall, C. E., 1883, Geology 

of Lehigh and Northampton Counties, Report of Progress, D3, Vol. II 

Part I., Second Geological Survey of Pennsylvania 
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6.        Dewees, John H. , 1878, Juniata District of the Fossil Iron Ore Beds of Middle 

Pennsylvania, 1874-75, Report of Progress, Plate II, Geological Map 

of the Environs of Orbisonia at Rockhill Gap, Huntingdon County, 

Geological Survey of Pennsylvania 

7.       Lesley, J. P., 1874, The Brown Hematite Iron Ore Bank of that part of Nittany 

Valley Called Warrior’s Mark Valley, Half Moon Valley, and Spruce 

Creek Valley in Huntingdon and Centre Counties, Pennsylvania, 

Geological Survey of Pennsylvania 

8.         McCreath, A. S., Laboratory of the Survey at Harrisburg, 1876-8, MM, Second 

Report of Progress, 1879, Geological Survey of Pennsylvania 

9.        Stevenson, J. J., 1882, The Geology of Bedford and Fulton Counties, Second 

Report of Progress, T2, Geological Survey of Pennsylvania 

10. Stevenson, J.  J., 1876,1877, Report of Progress in the Fayette and Westmoreland 

District of the Bituminous Coal-Fields of Western Pennsylvania, J. J. 

Stevenson, Part 1, Second Geological Survey of Pennsylvania 

11. White, I. C., 1885, Geology of Huntingdon County, Report of Progress, T3, 

Second Geological Survey of Pennsylvania 

12. D’Invilliers, E. V. , 1886,  Annual Report of the Pennsylvania Geological Survey, 

Part IV, Sheet 7 Reference Map to the Iron Ore Mines and Limestone 

Quarries of Franklin County,  Sheet 8 Reference Map to the Ore Mines 

and Limestone Quarries of Cumberland County, Pennsylvania 

Geological Survey 
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13. D’Invilliers, E. V., 1888, Report on the Geology of Four Counties: Union, 

Sawyer, Mifflin and Juniata, F3, Geological Map of Union and Snyder 

Counties, Geological Map of Mifflin and Juniata Counties,  Second 

Geological Survey of Pennsylvania 

14. Lesley, J. P., Frederick Prime, Jr., 1876, Geological and Topological Map 

showing the Limestone of Lehigh County including the Ranges of 

Brown Hematite Ore Banks, Second Geological Survey of 

Pennsylvania  

15.  Lesley, J. P., 1883, Geological Index Map to the Topographical Map of the 

Durham and Reading Hills or South Mountains of Northampton, 

Lehigh, Bucks, and Berks Counties, Second Geological Survey of 

Pennsylvania  

16. Lesley, J. P. , Platt, Franklin,  1883, Index to the Topographical and Geological 

Map of that part of Blair, Bedford, and Huntingdon Counties south of 

the Little Juniata River between Tussey and Alleghany Mountains 

including Morrisons Cove, Canoe, Sinking and Scotch Valleys, 

Second Geological Survey of Pennsylvania  

17. Hill, Frank A., 1886, Map Showing the Outcrop and Mine Operations of the 

Lehigh Paint Bed in East Penn and Lower Towamensing Townships, 

Carbon County, Annual Report, Sheet 6. Geological Survey of 

Pennsylvania 
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18. Miller, B.L. Fraser, D.M. , Willard, B.,  Miller, R.L.  and Wherry, E.T. , 1942, 

Geological  Map of Lehigh County, Bulletin C39, Plate 1, 

Pennsylvania Topographic and Geological Survey 

19. Miller, B.L. Fraser, D.M., Willard, B., Miller, R.L. ,  Behre, Jr., C.H.  and 

Wherry, E. T., 1942, Topographic  Map of Lehigh County, 

Pennsylvania Showing Mines and Quarries, Bulletin C39, Plate 2, 

Pennsylvania Topographic and Geological Survey 

20. Miller, B.L. Fraser, D.M., Behre, Jr., C.H.,  Miller, R.L. , and Wherry, E. T., 

1939, Geologic Map of Northampton County, Pennsylvania 

Topographic and Geological Survey Bulletin C39, Plate 2  

21. Stout, W., 1944,  The Iron Ore Bearing Formations of Ohio, Fourth Series, 

Bulletin 45, Geological Survey of Ohio 
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APPENDIX B 

LITERATURE REFERENCES FOR LOCATION OF CLAY MINES 

The reference sources used to locate historic iron mines and outcrops are listed below: 

1. Pennsylvania Geological Survey, 1964, Map12, Map of the Mercer Clay and 

Adjacent Units in Clearfield, Centre, and Clinton Counties, Pennsylvania 

Geological Survey 

2. Rose, A., 1970, Atlas of Pennsylvania Mineral Resources - Part 3, Metal Mines 

and occurrences in Pennsylvania, Mineral Resources Report 50  

3. Hosterman, J. W.,  1984, White clays of Pennsylvania,  U.S. Geological Survey 

Bulletin 1558-D, U. S. Geological Survey 

4. Leighton, H., 1934, The white clays of Pennsylvania, Bulletin M23, Pennsylvania  

    Geological Survey Fourth Series 
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