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Abstract

Background: During the 2009 influenza pandemic, individuals over the age of 60 had the lowest incidence of infection with
approximately 25% of these people having pre-existing, cross-reactive antibodies to novel 2009 H1N1 influenza isolates. It
was proposed that older people had pre-existing antibodies induced by previous 1918-like virus infection(s) that cross-
reacted to novel H1N1 strains.

Methodology/Principal Findings: Using antisera collected from a cohort of individuals collected before the second wave of
novel H1N1 infections, only a minority of individuals with 1918 influenza specific antibodies also demonstrated
hemagglutination-inhibition activity against the novel H1N1 influenza. In this study, we examined human antisera collected
from individuals that ranged between the ages of 1 month and 90 years to determine the profile of seropositive influenza
immunity to viruses representing H1N1 antigenic eras over the past 100 years. Even though HAI titers to novel 2009 H1N1
and the 1918 H1N1 influenza viruses were positively associated, the association was far from perfect, particularly for the
older and younger age groups.

Conclusions/Significance: Therefore, there may be a complex set of immune responses that are retained in people infected
with seasonal H1N1 that can contribute to the reduced rates of H1N1 influenza infection in older populations.
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Introduction

The influenza antigens hemagglutinin (HA) and neuraminidase

(NA) are the major surface glycoproteins of the virus and thus

immune protective targets. Changes (antigenic drift and shift) in

these HA and NA proteins can result in evasion of pre-existing

neutralizing antibodies within a host. Antigenic shifts led to 3

influenza pandemics over the last century resulting in significant

morbidity and mortality. The 1918 pandemic was the most severe,

killing up to 50 million people worldwide. The 1918 influenza

virus was recently reconstructed from preserved patient specimens

[1,2,3] and is similar in sequence to the swine H1N1 viruses from

that era [1]. Human H1N1 serotypes persisted as seasonal

influenza until 1957, when they were replaced by the H2N2 virus

[4]. In 1968, the H2N2 isolates were replaced in the human

population by viruses of the H3N2 subtype. In 1977, the H1N1

virus reappeared in human populations. Since then, H1N1 and

H3N2 influenza have been circulating together with influenza B

viruses among humans.

In April 2009, the first cases of novel influenza H1N1 were

identified in North America. Our group and others demonstrated

that of the ,65 million people that were infected in the United

States by the end of 2009, infection and disease were highest in

school-age children, and severe cases were underrepresented in

elderly adults [5,6,7,8,9]. Structural analysis of the HA shows

a conservation within antigenic regions of 1918 and 2009

pandemic HA proteins that is not present in contemporary

seasonal H1N1 viruses [10,11]. Antigenic similarities, together

with the abnormal protection from severe disease in the elderly

population, led to the hypothesis that exposure to 1918-like viruses

confers cross-protective immune responses to novel H1N1 isolates

[12,13]. Several studies have indicated cross-reactive antibodies to

the 2009 pandemic H1N1 viruses in elderly human populations

[14] with monoclonal antibodies derived from survivors of the

1918 pandemic able to cross-neutralize 2009 pandemic viruses

[15]. Additionally, direct evidence of the cross-protective efficacy

elicited by exposure to 1918-like viruses has been demonstrated in

small animal models [16,17]. Therefore, the view emerged that the
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2009 HA differed little from its 1918 ancestor with respect to the

antibody responses, and that exposure to seasonal H1N1 in the

early twentieth century could explain the observed protection of

older adults from the 2009 pandemic.

However, serological data collected between 2009 and 2011

shows that only a minority of individuals with 1918 influenza-

specific antibodies also recognized the novel H1N1 influenza [9].

Our group examined human sera from individuals ranging

between 1 month and 90 years of age [9]. Although antibody

reactivity toward the novel 2009 H1N1 viruses and the 1918

influenza viruses are correlated, this correlation is not extraordi-

narily strong. Furthermore, the age-dependences of particular

antibody reactivity and their relationships to each other are not

readily explained by simple models. These results do not support

the notion that the novel 2009 H1N1 influenza viruses are nearly

antigenically equivalent to the 1918 influenza viruses and suggest

a complex relationship between a life-long history of infection and

the resulting antibody profile. These results presented in this

report also have implications for pre-pandemic vaccine priming

for emerging influenza subtypes.

Results

Antibodies to Novel H1N1 Influenza
In late November, 2009, approximately 2–4 weeks after the

peak of the fall wave in Allegheny County, Pennsylvania, serum

samples were collected anonymously from 846 persons that ranged

in age from 1 month to 90 years of age [14]. As previously

described, the HAI titer was determined for each serum sample

collected ($1:40 HAI titer as positive) for the novel H1N1 isolate

A/California/7/2009 [9] or A/Mexico/4108/2009 (Fig. 1). The

percentage of HAI positive samples was highest for the very young

(10–19 year-olds and 0–9 year-olds) and very old (80–90 year-

olds). The test for trend demonstrated increasing seropositivity for

novel H1N1 among younger cohorts (p = 0.001). Examination of

sera with HAI high titers $1:320 reveals that the fraction of

individuals with high titers (orange and red regions in Fig. 1) is

highest among people born in the 1950s and 1960s and lowest

among the oldest age groups (1920s and 1930s).

1918 Influenza Antibody Cross-reactivity with Novel
H1N1 Influenza

If the novel 2009 virus and the 1918 virus are antigenically very

similar, as required by some explanations of pre-existing immunity

to the 2009 virus, we would expect a strong association between

serum positivity for one and positivity for the other. As previously

described [9], HAI titers ($1:40 HAI titer as positive) were

determined for 1918 and novel H1N1 viruses for each serum

sample collected from a cohort of people representing ages 1

month to 90 years of age for the novel H1N1 isolate A/California/

7/2009 [9] or A/Mexico/4108/2009 (Fig. 1). The relationship

between positivity for a novel H1N1 and for the 1918 virus (A/

South Carolina/1/1918) is presented in Fig. 2. The odds ratio is

greater than 1 (with p,0.05) for all birth decades other than the

1930s and 2000s (Fig. 2C), indicating that sera positive for one

virus are more likely to be positive for the other. Nonetheless, only

a fraction of the people with HAI antibodies against 1918 also had

antibodies that recognized novel H1N1 and vice versa. For

example, in sera collected from individuals born in the 1920s that

recognized the 1918 virus, only 38% of the sera also recognized

novel H1N1 (Fig. 2A). Although the two viruses are clearly related,

many serum samples are positive for one virus, but negative for the

other across all age groups. For the older cohorts, more than half

of those positive for the 1918 virus are negative for the 2009 virus,

suggesting that infection with 1918-like influenza need not elicit

antibodies that react with the 2009 virus. The association between

HAI positive titers is strongest for middle aged groups, whose

earliest H1N1 exposure would likely have been to a virus (or

vaccine) quite different from the 1918-like viruses.

Hemagglutinin-inhibition Antibody Profiles Against
H1N1 Influenza

These and other results suggest that an individual’s history of

exposure to influenza viruses bears a complex relationship to

protection from novel viruses. To explore this relationship, we

tested each serum sample for HAI activity against a panel of

human H1N1 influenza strains isolated during the past 100 years

in the context of the history of human influenza infections since

1918 (Fig. 3). Previously, our group tested this cohort for

seroprevalence against two seasonal H1N1 viruses [9] and

included those results in an expanded panel seasonal H1N1

isolates for analysis. Four of the H1N1 strains were isolated

between 1918 and 1957 and represent historical strains, whereas

four of the strains were isolated between 1986 and 2007 and

represent contemporary strains after the reintroduction of an

H1N1 that is co-circulating with H3N2, but before the novel 2009

H1N1 pandemic.

As indicated previously [14], high HAI activity against A/South

Carolina/1/1918 was rare except in the sample sets from the

1920s and 1930s. Sera with HAI activity against seasonal isolates

from 1991 to 2007 were generally most prominent in the youngest

(1990s and 2000s) cohorts (Fig. 4A). HAI activity against the 1986

virus was highest for those born in the 1980s and quite low for

those born in the 2000s. These observations are broadly

compatible with a simple model in which HAI activity toward

a virus reflects exposure to a fairly closely related virus.

Other aspects of HAI activity against the H1N1 virus panel are

not so simply explained. Few samples collected from any age

group recognized A/Puerto Rico/8/1934. HAI activity against

A/Fort Monmouth/1/1947 was low in those born in the 1980s

and later. Interestingly however, sera collected from those born in

the 1960s and 1970s have high titers to the 1947 isolate, while

these same individuals generally have low HAI activity against the

more recent A/Denver/1/1957 isolate (Fig. 4B). Furthermore,

many serum samples collected from individuals born in the 1980s

and 1990s had high antibody activity against this 1957 isolate.

There was no correlation between HAI titers against H3N2

viruses and H1N1 viruses (Fig. 4C). Approximately half of the

people born between 1920 and 1979 had HAI antibodies against

three contemporary H3N2 isolates tested. Younger people born in

the 1980s and 1990s had higher numbers of H3N2 HAI positive

samples (35–75%), with a decline in the number of positive

samples from people born in the 2000s, although ,55% of the

samples were H3N2 positive. Few individuals had cross-reactive

antibodies to A/Perth/16/2009 virus, which began circulating in

late 2010.

Relationships between Antibody Titers to Different
Viruses

To assess relationships between HAI reactivity against different

viruses, we computed rank-order correlations of antibody titers for

pairs of viruses in our panel. Correlations of the CA/07/09 titers

with the HAI titers for the other H1N1 viruses are shown in

Figure 5. For most age groups, the strongest correlation was to the

other novel 2009 H1N1 virus, MX/4108/09 titer (for the 1970s

the 1918 virus correlation is higher by a small amount). This is to

be expected because the two 2009 viruses, though not identical,

Complex Patterns of Antisera Reactivity to H1N1
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are very similar (two amino acid differences in the HA1

sequences). Not unexpectedly, the next highest correlation was

to the HAI titer against the 1918 virus. However, for many age

groups, the novel 2009/1918 HAI titer correlation is only

moderate or weak, and for most cohorts, one or more seasonal

isolates have comparable or stronger correlations. Among the

weakest novel 2009/1918 HAI titer correlations were sera

collected from individuals born in the 1990s (0.38) and 2000s

(0.33), suggesting that a naı̈ve human immune system does not

produce strong cross-reactivity to the 1918 virus in response to the

novel 2009 H1N1 virus. For all cohorts, the novel H1N1

2009 HAI titer correlates with titers of isolates separated from

each other by decades of evolution. Correlations for all pairs of

isolates are presented for each age cohort in the Fig. S1 and S2.

These results exhibit additional moderate and strong correlations

for pairs of isolates separated by significant antigenic drift. Many

of these correlations are comparable to or stronger than the novel

2009/1918 HAI titer correlation for the same age group.

Discussion

The novel 2009 H1N1 influenza virus emerged in March, 2009

and rapidly spread around the world resulting in the first influenza

pandemic of the 21st century. Unlike the 1957 or 1968 influenza

pandemics, the 2009 pandemic was caused by a subtype of

influenza (H1N1) that was already circulating in the human

population. However, the sequence of the antigenically important

hemagglutinin protein of the novel 2009 H1N1 virus was quite

different from that of the circulating seasonal H1N1 strains,

reflecting decades of independent evolution in the two lineages,

since their divergence from a common ancestor. Thus, it might

seem surprising that substantial pre-existing immunity to the novel

H1N1 2009 virus was observed in older (though not necessarily

elderly) adults, and that many such individuals carried pre-existing

HAI antibodies that recognized the novel 2009 H1N1 virus. These

observations raised questions about cross-reactivity of human

antibodies and the relationship between the history of exposure to

viral variants and the resulting profile of antibody reactivity.

Our group has measured the HAI reactivity of human sera to

a panel of H1N1 isolates that includes the novel 2009 pandemic

virus, the 1918 virus, and representative seasonal isolates from

various eras ([9] and Fig. 3). Some aspects of these age-

dependencies appear straightforward. Reactivity toward the

1918 virus is strongest in the elderly, as might be expected. HAI

titers against the seasonal 2007 H1N1 isolate are highest for the

young, who are the most likely infected with recent H1N1 isolates,

and fairly low for other age groups. Titers against the 1986 isolate

are low for those in the youngest cohort, who were born too late to

be exposed to a similar virus, and antibodies to the 1947 isolate are

highest at middle age groups and low in those born in the 1980s

and later.

Other aspects of the pattern are more puzzling. Titers for the

1986 and 2007 isolates are low in those individuals born prior to

each of those years, but high HAI titers against the 1991 and 1999

isolates are commonly found among older people. High titers for

the 1947 virus can be found in sera collected from people born in

the 1960s and 1970s, yet these same individuals have low HAI

titers against the 1957 isolate (Fig. 3), which is similar to the post-

1977 seasonal H1N1 that these individuals would have been

exposed [18]. Furthermore, HAI titers for the 1957 isolate are

high among those born in the 1980s and 1990s that are low HAI

titers against the 1947 isolate.

There was a greater frequency of high HAI titers in the middle

age groups compared to those individuals born in the 1920s,

despite the somewhat higher frequency of HAI positive titers in the

older age group. This may reflect the higher incidence of novel

2009 H1N1 virus infection in the middle age groups: positivity due

to actual infection is likely associated with a higher HAI titer than

Figure 1. Fraction of sera positive for A/Mexico/4108/2009 (novel H1N1) influenza by HAI titer by decade of birth. The number of
serum samples was categorized by HAI titer per age group. Dark blue= 1:20; Light blue = 1:40; Green= 1:80; Yellow= 1:160; Orange= 1:320;
Red = 1:640.
doi:10.1371/journal.pone.0039435.g001
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Figure 2. Seropositivity (HAI$1:40) for both novel H1N1 and 1918 influenza by decade of birth. Panel (A): The percentage of serum
samples positive for A/California/07/2009 (novel H1N1) among those that were positive (red) or negative (blue) for 1918 influenza. Panel (B): The
percentage of serum samples positive for 1918 influenza among those that were positive (red) or negative (blue) for A/California/07/2009 (novel
H1N1) influenza. Panel (C): Odds ratio for seropositivity for the two antigens. In all three panels the error bars indicate 95% confidence intervals.
doi:10.1371/journal.pone.0039435.g002

Figure 3. Schematic representation of influenza A subtypes circulating in the human population since 1918. Each subtype (colored
boxes) and specific H1N1 strains used for analysis in this study are depicted chronologically.
doi:10.1371/journal.pone.0039435.g003

Complex Patterns of Antisera Reactivity to H1N1
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positivity due to pre-existing antibodies. However, in addition to

natural exposure, vaccination might contribute to this effect.

Interestingly, approximately twice as many serum samples that

were positive for novel 2009 H1N1 were more likely to be positive

to $4 H1N1 tested in this study (Fig. 6). These factors, however,

do not explain why high titers are more common in the

intermediate groups than in the young. In fact, the higher rate

of infection among the young makes this difference more difficult

to explain. Presumably the few among the middle age groups who

were infected developed a more potent antibody response than

younger people who were infected, perhaps because of their

greater prior exposure to influenza viruses. These observations

hint at a complex relationship between viral exposures and

antibody profile.

It has been proposed that pre-existing antibodies to the novel

2009 H1N1 virus in older adults can be explained by their

exposure to 1918-like viruses in the early twentieth century [19].

Reports based on diverse lines of evidence have emphasized the

similarity of the 1918 and novel 2009 HA molecules from the

point of view of the immune system [10,11], perhaps leaving the

impression that they are practically equivalent. The results

presented in this report indicate a more complex picture. HAI

titers to the two antigens are undoubtedly positively associated

(Figs. 2 and 5). However, the association is far from perfect,

particularly for the older and younger cohorts. For most cohorts

the relationship appears even less impressive when compared to

the correlations between titers for the novel 2009 virus and later

seasonal viruses (Fig. 5). Overall, comparison of the HAI reactivity

against the HA antigens reveals additional moderate correlations

between viruses that would not be considered antigenically close

(Fig. S1 and S2). Many of these correlations are comparable to or

higher than the novel 2009/1918 correlation by age group, further

suggesting that the 1918 and novel 2009 hemagglutinin proteins

should not be regarded as nearly equivalent. Also, only the very

old would have been exposed to a close relative of the 1918 virus;

whereas individuals in other age groups would only have

experienced seasonal H1N1 viruses divergent from novel 2009

H1N1.

Both pre-existing antibodies to the novel 2009 H1N1 viruses

and some puzzling patterns in the results presented here may

reflect complex interactions between sequential exposures to

different, but related, viruses. The antibody response to an

influenza exposure may involve the activation of memory B cells

that are present because of an earlier exposure to a somewhat

different virus. Thus, earlier exposures can shape the antibody

response to later exposures. One manifestation of this phenom-

enon is ‘‘original antigenic sin’’: after an individual’s first exposure

to a subtype, subsequent exposures to variants tend to elicit

Figure 4. Seropositive samples for influenza A strains. The percentage of serum samples that were HAI positive per decade of birth were
identified for (A) historical Human H1N1 strains; 1934–1957, (B) contemporary Human H1N1 strains; 1986–2007, (C) Human H3N2 strains.
doi:10.1371/journal.pone.0039435.g004
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antibodies that react with the original virus, possibly at the expense

of reactivity toward the novel variant [20,21,22,23]. A beneficial

consequence of the phenomenon may be that sequential exposures

to drift variants lead to production of broadly protective

antibodies. Therefore, MBCs with broader specificities will be

disproportionately activated by drift variants and subsequent

somatic mutation and selection may increase breadth. Since older

individuals would have been exposed to a larger number of

influenza variants, this might explain the age-dependent occur-

rence of pre-existing antibodies to novel H1N1 and the relation-

ship between age and disease severity.

Materials and Methods

Viruses
Prototype strains chosen for this study were representative of

antigenically distinct human seasonal influenza A H1N1 viruses in

circulation during separate periods spanning nearly nine decades.

Allantoic fluid antigens from influenza A/Brisbane/59/2007, A/

New Caledonia/20/1999, A/Texas/36/1991, A/Singapore/6/

1986, A/Denver/1/1957, A/Fort Monmouth/l/1947, A/Puerto

Rico/8/1934, as well as the sequences based upon A/South

Carolina/1/1918 isolate to generate virus-like particles (VLP)

[9,24]. Novel H1N1 isolates, A/California/7/2009 and A/

Mexico/4108/2009, were used as representative isolates, as well

as three H3N2 viruses, A/Wyoming/3/2003 and A/Sydney/5/

1997. Influenza viruses were prepared by propagating virus in

embryonated eggs as previously described.

Sample Cohorts and Collections
Serum specimens used for this analysis have been previously

described [14]. Briefly, serum samples were collected anony-

mously from extra laboratory specimens from mid-November to

early December 2009. Anonymous blood samples were obtained

from clinical laboratories and categorized by decade of birth

from 1920–2009. Using hemagglutination-inhibition assays,

approximately 100 samples per decade (n = 846) were tested

from blood samples drawn on hospital and clinic patients.

University of Pittsburgh IRB approval [(exempt)

#PRO09110164] was obtained. Blood samples were collected

using the honest broker system at the University of Pittsburgh

Medical Center and Children’s Hospital of Pittsburgh labora-

tories and given to investigators organized by decade of birth

without other identifying information. The human serum

Figure 5. Correlations of CA/07/09 antibody titers with titers for other H1N1 isolates. The rank-order correlation coefficient between the
CA/07/09 HAI titer and each other H1N1 titer is displayed for each decade of birth. As indicated at the right of the figure, warmer colors correspond
to higher correlation coefficients.
doi:10.1371/journal.pone.0039435.g005

Complex Patterns of Antisera Reactivity to H1N1
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samples were obtained from discarded blood collections at the

following primary care medical visits. The samples had no

identifying information, except decade of birth, and no other

information was obtained. Each serum sample was tested in

hemagglutination-inhibition assay (HAI) against two pandemic

H1N1 (A/California/7/2009 and A/Mexico/4108/2009), as

well as a panel of seasonal H1N1 isolates. Reference sera from

individuals vaccinated with either inactivated trivalent seasonal

Fluzone vaccine or pandemic H1N1 FluMist (GSK) vaccines

were used as positive controls.

Hemagglutination Inhibition Assay
The hemagglutination inhibition (HAI) assay was used to assess

functional antibodies to the HA able to inhibit agglutination of

turkey erythrocytes. The protocol was adapted from the CDC

laboratory-based influenza surveillance manual as previously

described [25]. To inactivate non-specific inhibitors, sera were

treated with receptor destroying enzyme (RDE) prior to being

tested [26,27,28,29,30]. The HAI titer was determined by the

reciprocal dilution of the last well which contained non-

agglutinated RBC. Positive and negative serum controls were

included for each plate. HAI titers per group reflect appropriate

estimates with 95% confidence intervals shown (by Clopper-

Pearson method), along with plots showing odds ratios with 95%

confidence limits (calculated using the ‘‘fisher.test’’ function of the

R statistical package). For the correlations, Spearman’s rank-order

correlation coefficient were calculated.

Supporting Information

Figure S1 Heat Map of antibody positivity by decade of
birth for each H1N1 isolate listed. Lighter colors indicate

positive antibody titer per sample.

(TIF)

Figure 6. Seropositivity (HAI$1:40) for multiple seasonal H1N1 influenza viruses by decade of birth. Panel (A): The percentage of serum
samples positive for A/California/07/2009 (novel H1N1) among those that were positive for $4 seasonal H1N1 (red) or positive for ,4 seasonal H1N1
(blue). Panel (B): The percentage of serum samples positive for $4 seasonal H1N1 influenza viruses among those that were positive (red) or negative
(blue) for A/California/07/2009 (novel H1N1) influenza. Panel (C): Odds ratio for seropositivity for A/California/07/2009 and seropositivity for $4
seasonal H1N1 influenza viruses. In all three panels the error bars indicate 95% confidence intervals.
doi:10.1371/journal.pone.0039435.g006

Complex Patterns of Antisera Reactivity to H1N1
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Figure S2 Correlations of CA/07/09 antibody titers
with titers for other H1N1 isolates. The rank-order

correlation coefficient between the CA/07/09 HAI titer and each

other H1N1 titer is displayed for each decade of birth. As

indicated at the right of the figure, warmer colors correspond to

higher correlation coefficients.

(TIF)
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