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Hearing loss and dementia are conditions that impact similar populations. Many adults do not 

seek audiologic care for their hearing loss and thus are seen in the primary care physician’s 

office with an undiagnosed hearing loss. This study sought to determine the impact of 

undiagnosed hearing loss and thus decreased audibility on the items of the Mini Mental State 

Examination (MMSE) commonly used to diagnose dementia. Many physicians use the MMSE 

along with self-report of cognitive decline to diagnose dementia. Previous studies have suggested 

that self-report of cognitive decline is impacted by hearing loss. This study suggests that a 

decrease in audibility that would be associated with an undiagnosed hearing loss significantly 

impacts performance on the MMSE. Physicians should be cautious when using the MMSE and 

self-report of cognitive impairment to diagnose dementia without accounting for hearing loss as 

both may be significantly impacted by undiagnosed hearing loss.  
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INTRODUCTION 

The United States Administration on Aging (2004) reports that the group of individuals aged 85 

and older is the fastest growing section of the US population. With increasing age, the likelihood 

of living with a disability increases. In a US Census Bureau report, it was estimated that 71.1% 

of individuals over the age of 80 live with a disability (Steinmetz, 2004).  This includes sensory 

disorders, such as hearing loss, as well as cognitive disorders including dementia and Alzheimer 

Disease. As these disorders often progress slowly, the awareness and subsequent diagnosis of 

these disorders is often delayed by the person and their family. This delay in diagnosis and the 

decrease in the use of treatment/assistive devices may lead to these disorders impacting one 

another or even confounding diagnosis and treatment.  

Hearing loss is the third most prevalent chronic condition in elderly adults after 

hypertension and arthritis (Cruickshanks et al., 1998).  Hearing loss is under-diagnosed in the 

elderly population due to the gradual progression of the hearing loss and the view that it may be 

seen as an inevitable part of aging (Yueh, Shapiro, MacLean, & Shekelle, 2003). Beyond the 

lack of identification, hearing loss is often undertreated. Only 25% of patients with aidable 

hearing loss acquire hearing aids (Kochkin, 2005). Poor audibility of sound corresponds to a lack 

of a person’s ability to understand speech (Humes, 1991, 2007; Kamm, Dirks, & Mickey, 1978; 

Otto & McCandlis, 1982). This diminished understanding ability can impact conversations with 

family members and with medical professionals.  
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Dementia is characterized by acquired, persistent and progressive deterioration of 

multiple cognitive functions: language, memory, attention and executive function (American 

Psychiatric Association, 1994). Correct clinical identification of dementia is fundamental to 

pharmacological management and long term care.  The diagnosis of dementia by a physician is 

dependent on self-report, report from family and in office testing. Doctors rely heavily on family 

report for an accurate diagnosis. Several surveys of healthcare professionals have reported the 

most frequently applied cognitive test used for dementia is the orally administered MMSE, used 

by approximately 9 out of 10 professionals (Davey & Jamieson, 2004; Reilly, Challis, Burns, & 

Hughes, 2004; Shulman et al., 2006).  Family report and the orally administered Mini Mental 

State Exam may be significantly impacted by many factors including an undiagnosed hearing 

loss.  

 

Statement of the Problem 

Based on the premise that the most common criteria for a diagnosis of dementia consists of 

family report and MMSE criteria and recognizing that many of the symptoms of untreated 

hearing loss (e.g., repeating questions, withdrawal from social situations) may be reported by 

family members as an example of demented behavior and further recognizing that undiagnosed 

hearing loss can impact correct speech perception on an orally presented examination, it is 

hypothesized that an undiagnosed/untreated hearing loss could impact the diagnosis of dementia.  
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1.0  BACKGROUND 

1.1 DEMENTIA 

The word dementia is derived from the Latin word demens which means madness or insanity; it 

is also the root word of demon. While most with dementia are not insane or act in a demonic 

manner, the causes of dementia are broad as well as are the symptoms and the effects on the 

persona and their family. Dementia is a loss of brain function that occurs with certain diseases. It 

affects memory, thinking, language, judgment, and behavior. Dementia usually starts with 

forgetfulness that is often overlooked as typical cognitive aging or “having too much on my 

mind”. As dementia becomes worse, symptoms become more obvious and start to interfere with 

daily activities. In previous centuries, dementia had a much broader symptomology, diagnosis 

protocol and treatment regimen (Wallin, 1996). Dementia is a non-specific illness syndrome that 

normally has to be present for at least 6 months to be diagnosed; it differs from mental 

retardation in that it is a change from the baseline otherwise described as a change in thinking 

abilities from the previous mental state (Wallin, 1996). In all types of cognitive dysfunction, 

higher mental functions are first affected. In later stages of dementia, the person may appear 

disoriented and may be unable to have an appropriate conversation. While dementia is typically 

thought of as an aging disorder, it may occur at any stage of life. For this discussion, the primary 
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focus will be on those with typical age-related dementia and not those with atypical dementia, 

alcohol-induced early-age dementia or any other type of early onset dementia. 

1.1.1 Prevalence 

Approximately 3.4 million Americans have been diagnosed with dementia; this number is 

expected to double by 2025. The majority of these patients are over the age of 85. Although the 

incidence rate of men to women is equal up to age 85, the lifetime risk for dementia in women is 

twice as high due to increased life expectancy and the accompanying higher dementia rates in 

extremely old age (Ott, Brenteler, van Harskamp, Stijnen, & Hofman, 1998; Plassman, 2007). 

The range from normal cognitive changes to severe dementia is used to describe the cognitive 

difficulties of the geriatric population (see Figure 1). Although these categories are not 

specifically defined, they are generally accepted as categories.  

 

 

 
Figure 1: Range of Cognitive Difficulties 
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Many elderly individuals fear imminent dementia, yet few can imagine the actual risk of 

the disease. Ott et al (1998) reported on the incidence of dementia among elderly adults in the 

Netherlands. As part of a nationwide cross-sectional study, they reported that dementia incidence 

rates of men and women up to age 85 were similar; however, the overall risk of a woman aged 

55 getting dementia is twice as high as a man (0.33 vs. 0.16). They attributed this to higher life 

expectancy of women and the high risk of dementia at very old age. Dementia is a major 

disabling disease in the elderly population, primarily affecting those over the age of 65. In 

addition to the suffering of the patient, the disease may induce increased distress, anxiety and 

depression among family members and caretakers (Downs, Cook, Rae, & Collins, 2000).  

1.1.2 Subtypes of Dementia 

Clinicians and researchers often split dementia into two different subtypes: cortical dementia and 

sub-cortical dementia (refer to Table 1). Cortical dementias arise from a disorder that affects the 

cerebral cortex. These are the outer most layers of the brain and are critical to memory and 

language. People with cortical dementias, such as Alzheimer Disease and Creutzfeldt-Jakob 

disease often present with severe memory impairment and aphasia. Subcortical dementias result 

from a dysfunction in the area below the cortex. Usually memory loss and language difficulties 

that are found with cortical dementias are not found with subcortical dementias; instead these 

people, such as those with Parkinson’s disease, HIV/AIDS dementia complex, and Huntington’s 

disease, tend to present with changes in their attention, motivation and emotionality. There are 

cases, such as vascular dementia, that can affect the person in both areas of the brain.  
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Table 1: Cortical vs. Subcortical Dementias 

Feature Cortical Dementia Subcortical Dementia 

Onset Insidious Insidious 

Duration Months to years Months to years 

Course Progressive Progressive or constant 

Attention Normal Normal (slow response time) 

Speech Normal Hypophonic, dysarthric, mute 

Language Aphasic Normal or anomic 

Memory Learning deficit (Alzheimer) Retrieval deficit 

Cognition 
Acalculia,   

concrete (Alzheimer) 
Slow, dilapidated 

Awareness Impaired Usually preserved 

Demeanor Unconcerned, disinhibited Apathetic, abulic 

Psychosis 

May be present  

(visual hallucinations in 

Lewy-Body dementia) 

May be present 

Motor signs None Tremor, chorea, rigidity, dystonia 

EEG Mild diffuse slowing 
Normal/mild slowing (diffuse or 

focal) 
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The most commonly recognized form of dementia is Alzheimer Disease (AD). This is 

also thought to be the most prevalent. AD was first described in 1907 and for the first half of the 

century was regarded as the most common cause of dementia. AD is now recognized as the most 

common form of non-reversible dementia. AD is a neurological disorder that can be traced to 

widening of the sulci and gyri, neurofibrillary tangles and senile plaques; however these can only 

truly be examined post-mortem (Tomlison, Blessed, & Roth, 1970). The etiology of AD is 

unknown but it has been hypothesized that it could be related to aluminum exposure, prior brain 

injury or may have a genetic component (Hardy, 1997). This disease first attacks the 

hippocampus presenting with the stereotypical memory loss associated with AD. AD most often 

presents with the insidious onset of memory disturbances, specifically short-term memory, and 

sometimes psychiatric disturbances such as severe paranoia. In the early stages, sensory, motor 

and visual systems are spared. On autopsy, the brain of a patient with AD may appear grossly 

normal or may show atrophy with the widening of the sulci and the shrinkage or atrophy of the 

gyri. On histologic examination, the brain of a person with AD will show significant neuronal 

death and synapse loss. The loss of cognitive abilities associated with AD is likely due to the 

breakdown in the complex communication system among neocortical regions provided by the 

corticocortical circuits that leads to a global neocortical disconnection syndrome that presents 

clinically as dementia (Morrison & Hof, 2007). 

The most recognizable subcortical type dementia is associated with Parkinson’s disease. 

Parkinson’s disease is usually classified as a motor disorder. It is most often associated with 

muscular weakness, rigidity and tremors. Currently, it is believed that these symptoms are 

associated with cellular death in the substantia nigra, the area of the brain that provides dopamine 

to the other parts of the brain. Twenty to forty percent of patients with Parkinson’s disease also 



 8 

develop subcortical dementia, although, to date, there is not a way to predict which people with 

Parkinson’s disease will progress with dementia as well (Camicioli & Fisher, 2004).  

Vascular dementia is a degenerative disease of the cardiovascular system that leads to a 

progressive decline in memory and cognitive function. It occurs when the blood supply to the 

brain is interrupted by a diseased vascular system. Vascular dementia tends to affect people 

between the ages of 60-75 and affects more men than women. This is likely because men are 

more affected by the most common cause of vascular dementia which is multiple infarcts. These 

are a series of small strokes, or “mini-strokes,” that often go unnoticed and cause damage to the 

cortex of the brain—the area associated with learning, memory, and language. These mini-

strokes are sometimes referred to as transient ischemic attacks (TIAs), which result in only 

temporary, partial blockages of blood supply and brief impairments in consciousness or sight. 

Over time, however, the damage caused to brain tissue interferes with basic cognitive functions 

and disrupts everyday functioning.  

Beyond these specific or disease-related non-reversible dementias are the general 

dementias. These people are diagnosed with dementia or significant memory problems. These 

patients do not fit into any other category, but are presenting with significant memory problems. 

These people range from presenting with symptoms associated with mild cognitive impairment 

to severe dementia (Figure 1).  

Mild cognitive impairment (MCI) represents the transition between normal cognitive 

aging and mild dementia. Studies suggest that individuals with MCI progress to dementia at a 

rate of 10-15% per year (Bowen et al., 1997; Peterson et al., 1999). The general criteria for MCI 

have been modified and no one uniform definition exists in research or clinical practice. Most 

studies include: a cognitive complaint, preserved basic activities of daily living, cognitive 
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impairment or decline from previous function, and absence of dementia. Researchers tend to 

agree that MCI represents the area that exists between when a person feels there is a problem and 

a change in function on a standardized test. It is likely that the current tests are not sensitive 

enough to verify these more subtle changes.  

The prevalence of these milder forms of non-reversible dementia, such as MCI and mild 

dementia, is difficult to estimate as they are more difficult to diagnose (Eccles, Clarke, 

Livingstone, Freemantle, & Mason, 1998). Furthermore, as dementia does not present with the 

same symptomology in all patients, the diagnosis of dementia is not a simple one. 

1.1.3 Diagnosis of Dementia 

Unlike its predecessor, the Diagnosis and Statistical Manual of Mental Disorders Fourth Edition 

(DSM-IV) (American Psychiatric Association, 1994) does not specify a criterion for the 

diagnosis of dementia. The diagnosis, however, can be inferred from the common elements of 

the DSM-IV criteria for the dementia sub-type diagnosis.  According to the DMS-IV, the 

diagnosis of dementia is made by a physician through a two-step process (refer to Table 2). First 

the person must present with memory impairment, this is usually described by the family 

members that accompany the patient to the appointment. Along with this, they also must have 

one of the following: aphasia, agnosia, apraxia, or loss of executive function.  Also, these 

problems must not be able to be explained by any other diagnosis for example schizophrenia or 

other mental disorders.  
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Table 2: The Criteria for Diagnosis of Dementia – A-C must all be satisfied 

A. The development of multiple cognitive deficits manifested by both: 

1. Memory impairment  

2. One or more of the following cognitive disturbances:  

a) Aphasia 

b) Apraxia 

c) Agnosia 

d) Disturbances in executive function 

B. The cognitive deficits in section A: 

1. Cause significant impairment  

2. Represent decline from previous level of functioning 

C. The disturbance is not better explained by another axis 1 disorder  

 

It was recommended in the Evidence Based Guidelines for Diagnosing Dementia (Eccles 

et al., 1998), that a subjective complaint of  memory impairment is not a good indicator of 

dementia; altered functioning is more important. This altered function may be reported by either 

the patient or their family member. This criterion is open for interpretation, as the definition of 

altered functioning or loss of executive function is not clearly defined in the DSM-IV. It was 

reported by Prince, et al (2008) that often the question of altered state is asked to patients or 

family as “do you notice a change in the ability to remember?” The presentation of the question 

is vague and thus may not give the specific information needed to meet the DSM-IV criteria, but 

could be accepted as altered function. The criterion has been widely used in both clinical and 
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epidemiological research. While this seems to be a way to directly assess a person’s cognitive 

status, without clearly defined parameters, the validity of the diagnosis of dementia through these 

means is questionable as it is a subjective diagnostic test.  

In general, most medical experts conclude that the earlier a disorder or disease is 

diagnosed, the better. Dementia can be diagnosed as early as 65 years of age; below this age the 

diagnosis would be early-onset dementia (American Psychiatric Association, 1994). Evidence 

from the UK suggests that the majority of people with the diagnosis of dementia can live 

independently (Eccles et al., 1998). The primary care team is therefore the initial point of contact 

for patients and their families. There is a dichotomy in attitudes among general practitioners in 

relation to early diagnosis of dementia. Some feel that early diagnosis will reduce uncertainty, 

support awareness of prognosis, allow for resource planning and stabilize the family dynamics. 

Others feel that an early diagnosis will negatively affect the person and their family by creating 

anxiety, shame and stigma thus leading toward an increase in isolation and anxiety (Holroyd, 

Snustad, & Chalifoux, 1996). Increased emphasis has been placed on the value of early diagnosis 

for those with dementia. This is likely due to the perceived potential benefit from medications 

and gene based medical treatment (Iliffe, Walters, & Rait, 2000; Wilkson & Milne, 2003). With 

the desire for a fast and early diagnosis, a physician may be more likely to produce the diagnosis 

of dementia based on weak DSM-IV data. Even within structured assessments, the lack of clarity 

in the areas for diagnosis introduces a broad range in the diagnosis.   

1.1.3.1 Self-Report 

Complaints about declining memory or general cognitive ability are quite common in elderly 

persons (Jorm et al., 1994; National Insitutes on Aging, 2007; Poitrenaud, Mzlbezin, & Guez, 
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1989). The ability for older persons to estimate their own memory is often referred to as 

“metamemory”.  Metamemory, derived from metacognition, is an individual’s knowledge 

perceptions and beliefs about functioning, development and capacities of one’s own memory and 

the human memory system. Some studies have suggested that metamemory is mostly accurate, 

while others have demonstrated little relationship between memory complaints and actual 

impairment; the association between objective test performance and complaints is weak 

(Folstein, Folstein, & McHugh, 1975; Jorm et al., 1994; National Insitutes on Aging, 2007). 

Metamemory is correlative with depression, anxiety and neuroticism (Cutler & Grams, 1998; 

Folstein et al., 1975; Jorm, Christensen, Korten, Jacomb, & Henderson, 2001; Jorm et al., 1994; 

Kahn, Zarit, Hilbert, & Niederehe, 1975; Ohenham & Plack, 1997). 

One study found that the majority of the memory complaints were with those with mild 

dementia, with the non-demented and severely demented reporting few memory complaints 

(Grut et al., 1993); this study, however, is a cross-sectional study and did not follow people for 

an extended period of time. A number of longitudinal studies have followed those reporting 

memory impairment to see if they developed dementia or some objective cognitive decline; 

results suggested by some authors are that there is a positive predictive value to subjective 

memory complaints while others show little or no correlation (Flicker, Ferris, & Reisberg, 1993; 

O'Brien et al., 2004; Taylor, Miller, & Tinklenberg, 1992).  These studies did not include a 

control group of those who did not complain of memory problems.  Data from a follow-up of a 

community sample over three and a half years found that cognitive and memory complaints did 

not predict objective cognitive decline, dementia or mortality (Geerlings, Jonker, Bouter, Ader, 

& Schmand, 1999).  If an incorrect prediction of one’s performance is portrayed, one’s 

metamemory would be considered inaccurate. Two types of inaccuracy could be reported: (1) 
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failure to perceive memory decline when it occurs and (2) perceived impairment in the presence 

of intact cognition. Failure to perceive a problem when one exists would likely be contributed to 

the onset of dementia. On the other hand, there are several ways to conceptualize why some 

people may report memory difficulties in the absence of any true impairment. It is possible that 

they may be sensitive to subtle memory changes and the tests given are not sensitive enough to 

quantify these changes. Schmand et al (1990) suggested that a subgroup of older individuals may 

be sensitive to manifestations of cognitive decline that are not reflected using current testing. 

With this information, physicians often ask patients if they have a subjective memory complaint, 

but may not base their diagnosis on the metamemory of the patient.  

1.1.3.2 Family Report 

Recently there has been an increase in television advertisements by pharmaceutical companies 

about medications for dementia (BBC, 2010). As the population continues to age and baby 

boomers find they are becoming primary caregivers for their aging parents, these types of 

advertisements and general worries about the health of their parents may influence adult children 

to question the mental status of their parents. With these concerns, people may start to look at the 

actions and reactions of their family member. They may start to see changes in behavior that are 

cause for concern. Family members are often the initiator of gathering medical information and 

making the appointment for the family member for a medical opinion.  

When making a determination of dementia, physicians often rely on family report to help 

determine the diagnosis of dementia. Families are asked about changes in mental status. 

Symptoms of dementia that are reported by family members include (Finkel, Costa e Silva, 

Cohen, Miller, & Satrtoruis, 1997; Mega, Cummings, Fiorello, & Gornbein, 1996; Small et al., 

1997):   
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- Having difficulty recalling recent events  

- Not recognizing familiar people and places  

- Having trouble finding the right words to express thoughts or name objects  

- Having difficulty performing calculations  

- Having problems planning and carrying out tasks 

o e.g.: balancing a checkbook, following a recipe, or writing a letter  

- Having trouble exercising judgment 

o e.g.: knowing what to do in an emergency  

- Having difficulty controlling moods or behaviors 

o depression  

o agitation  

o aggression  

- Not keeping up personal care such as grooming or bathing  

- Poor judgment  

These signs will likely influence a family member to make an appointment with a family care 

physician. This primary care physician will take the family report into account when making the 

diagnosis of dementia.  

1.1.3.3 Mini Mental State Exam 

There is no one procedure for diagnosing a person with dementia. There are many screeners 

available for memory impairment, but none are used uniformly. Shulman and colleagues (2006) 

surveyed 334 psychiatrists about the tests that are routinely used to diagnose dementia. By far the 

most common was the Mini Mental State Exam reported as being used routinely by 77.1% of the 
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respondents to the survey. This is likely due to the high rating the respondents gave it on ease of 

use, ease of scoring and ease of administration. These results have been reported on several other 

surveys of physicians (Davey & Jamieson, 2004; Reilly et al., 2004); about 9/10 respondents 

report using the Mini Mental State Exam (MMSE) (Folstein et al., 1975) to diagnose dementia. 

See Appendix A for a copy of the MMSE. While there are many tests that could be used for 

dementia screening, most screeners have been evaluated in studies with small sample sizes, and 

the populations of patients on whom screening instruments have been tested have varied greatly, 

making it difficult to determine the overall performance of screening tests for dementia. 

Jorgensen et al. (2012 - submitted) reported that the most commonly used measure for the 

diagnosis of dementia in a large University Medical Center was the MMSE.  

Specifically, the MMSE is a brief measure of cognitive function. It includes items that 

assess orientation, short term recall, long term recall, follow three step directions, calculation, 

language (naming, repetition, reading and writing) and  visual-constructional tasks designed to 

determine whether or not cognitive impairment is present.  The test is given on a 30 point scale. 

Opinion is divided about cut-offs and the diagnosis of dementia; however, the authors of the 

MMSE (Folstein et al., 1975) reported that a score of greater than or equal to 27 is considered 

normal.  Below this, 20-26 indicates mild dementia; 10-19 moderate dementia, and below 10 

severe dementia. The test is also biased by educational level – age and educational level adjusted 

norms are available (See Table 3). 

  

  

 

 



 16 

Table 3: Median Scores on MMSE by Age/Education (adapted from Crum et al, 1993) 

                     Education Level    

Age  4th       8th            12th           College 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

18-24 22 24 29 29 

25-29 25 27 29 29 

30-34 25 26 29 29 

35-39 23 26 28 29 

40-44 23 27 28 29 

45-49 23 26 28 29 

50-54 23 27 28 29 

55-59 23 26 28 29 

60-64 23 26 28 29 

65-69 22 26 28 29 

70-74 22 25 27 28 

75-79 21 25 27 28 

80-84 20 25 25 27 

>84 19 23 26 27 
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Nineteen out of the total thirty points for the MMSE, more than 60%, are directly related 

to orientation to person/place or have a heavy emphasis on language. This significantly impacts 

the scoring of the MMSE for those who miss minor components of the instrument or whose 

language ability is compromised. In contrast, the more elaborate copy design derived from the 

Bender-Gestalt which measures visual construction task, contributes only 1 point (See Table 4). 
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Table 4: Example Items from the MMSE designed for specific test areas 

 

 

  

Orientation “What is the year?” 

Short-term recall “Name these three items…” 

Long-term recall Recall later the same three items 

Calculation “Count backward from 100 by 7s” 

Language – naming Point to pencil and watch and ask for the 

name of the item. 

Language – repetition Repeat “No ifs, ands or buts” 

Language – reading Give a paper that says “close your eyes” and 

ask to follow the instructions 

 

Language – writing Give blank paper and ask patient to write a 

sentence 

Visual – constructional “Please copy this picture” 
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Two of the authors of the MMSE were concerned about the lack of diagnosis of a score 

of 28-30 as dementia. This is because the true degree of cognitive function may have been 

incorrectly identified.  One of the authors of the MMSE and colleagues noted several pitfalls 

including too many cutoff points and low reliability (Anthony, Le Resche, Niaz, Von-Korff, & 

Folstein, 1982). In a response to a Letter to the Editor, the authors of the MMSE, Folstein, 

Folstein, and McHugh (2007) responded by stating that the problems of the MMSE include: use 

of a modified version of the test, substitution of spelling “world” backwards rather than serial 7s 

(Table 4 – Calculation problem), and they stressed that the MMSE cannot and should not be used 

to substitute for systematic evaluation. Practicing physicians do not appear to heed this warning 

as 9/10 physicians report solely using the MMSE for diagnosis (Davey & Jamieson, 2004; Reilly 

et al., 2004).  

Sensitivity and Specificity of MMSE 

One of the ways to determine if a test is valid and reliable is by the sensitivity and specificity of 

the test. The sensitivity of a test is how well it gives a true positive measure. Many authors have 

reported on the sensitivity of the MMSE for dementia, ranging from 8 to 92 percent. Specificity, 

the probability that a test will give a true negative measure, ranges from 56 to 96 percent 

(Anthony et al., 1982; Black et al., 1999; Brayne & Calloway, 1990; Crinelli R., 2008; Rajji et 

al., 2009). This broad range gives even more doubt to the screening. Furthermore, Flicker, 

Loguidice, Carlin and Ames (1998) reported findings of a sensitivity of 78%, a specificity of 

88%, and a positive predictive value of 43% for the MMSE in the general population. The test’s 

primary predictive ability is to differentiate between normal age-associated cognitive decline and 

the pathological decline associated with dementia. These results question the MMSE on its 

ability to differentiate normal cognitive decline from dementia.  
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Attempts to determine changes over time have been done primarily within a short period 

of time (6 months) and with normal cognitively aging adults. The reliability estimates of this test 

generally fall between .80 and .95 (Tombaugh, 1992). However, when preformed clinically, the 

test is often given at longer intervals. Most often this test is given at the patient’s yearly checkup, 

and the reliability drops to less than 0.50 when given in one year intervals (Escobar, 1986). The 

poor reliability of the score could cause some individuals to be classified as mildly impaired 

when in reality they are cognitively intact or those that were mildly impaired might be classified 

as cognitively intact. The test has a practice effect merely because the person has prior 

experience with the testing materials. Patients remember the questions and rehearse the answers 

given previously (Keeting, 1987).  

Drawbacks of the MMSE 

Major drawbacks of MMSE are that its accuracy depends on age, education, ethnicity and socio-

economic status of the individual. It is most accurate for whites under the age of 80, with at least 

a high school education, who live in a moderate to high-income household (Brayne & Calloway, 

1990; Espino, 2001; Jjorn, 1988; Murden, 1991). This raises questions to the efficacy of the 

MMSE when given to an elderly patient in a primary care clinic. It is unlikely that a patient will 

be asked their education level and/or income level even though this information is needed to 

accurately score the MMSE.  Without this information, the validity of the MMSE is likely 

compromised. Furthermore, two studies have reported that the specificity of the MMSE is 

significantly lower for individuals whose age is over 65. Specificity of the MMSE was 0.64 for 

Participants 65 years of age or older compared to 0.92 for younger participants (Marshall, 

Mungas, Weldon, Reed, & Haan, 1997). Anthony et al (1982) also reported that those with less 

than an eighth-grade education had a mean specificity of 0.63 compared to 1.0 for those with 
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higher education levels. It is likely that the MMSE would be used on those over the age of 65. 

For the majority of patients in a primary care clinic, this was the only measure used to determine 

diagnosis of dementia (Jorgensen et al., 2012 - submitted). The medical charts reviewed did not 

include education level or socioeconomic status that are needed for accurate scoring purposes; it 

is unclear as to which norms they used.  

 It was noted in the original article by Folstein et al (1975), that the normative data for the 

MMSE is based on white patients.  Anthony et al (1982) reported that the specificity of the 

MMSE was lower for blacks than it was for whites (.78 vs .94); however, it is suspected that this 

discrepancy is an artifact of education levels rather than race. Significant differences have been 

reported between males and females; however, these usually occur in the oldest-age categories 

where there are few men and even fewer with AD, making estimates unreliable. 

The Psychological Assessment Resource (Psychological Assessment Resources 2008), 

owners of the patent on the MMSE, advise that the screening is to be interpreted differently if the 

patient has less than 9 years of schooling or is more than 80 years of age.  Furthermore, there are 

no corrections available for ethnicity and socio-economic status. Because of all the limitations of 

this test, it was recommended by the manufacturers that the MMSE should not be seen as a tool 

for measuring overall cognitive status and its use as a screening tool is limited (Crinelli, 2008). 

Despite this, physicians continue to use this test as their primary means of diagnosis for 

dementia. Concern for false diagnosis of dementia is recognized by the authors of the MMSE as 

well as the manufacturer, but does not appear to be taken into account by physicians who 

continue to use the MMSE beyond the stated recommendations.  When considering potential 

interventions for community patients, it would seem most crucial to have a measure of good 

sensitivity and specificity to achieve accurate diagnoses.  
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Escobar et al. (1986), using a mathematical program, analyzed each question of the 

MMSE as a function of age, ethnicity, language and education. For each item, proportion of 

correct responses, incorrect response and no answers were calculated and items were analyzed to 

see if age, ethnicity, language, and education could be used as significant predictors (See Table 

5). They determined that some items were significantly impacted by age of the patient while 

others were impacted by ethnicity or education. This causes great concern about use of this test 

as it has too many confounding variables which could impact the score.  
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Table 5: Significant Variables on Items of the MMSE (adapted from Escobar et al, 1986) 

Item       Significant Variable 

Orientation Items:  

A. What is the: 

1. Year? 

2. Season? 

3. Month? 

4. Date? 

5. Day? 

B. Where are we? 

1. State 

2. County 

3. Town 

4. Address/Hospital 

5. Floor 

 

 

1.  Age 

2.  Education, ethnicity/language 

3. None 

4. None 

5. None 

 

1. Ethnicity/language 

2. Education, ethnicity/language 

3. None 

4. None 

5. Age 

Memory Items 

A. Repeat 3 items 

B. Count backward from 100 by 7s OR spell 

WORLD backward 

C. Recall previous 3 items 

 

None 

Language Items 

A. Name – pencil, watch 

B. Repeat: No ifs, ands, or buts, 

C. Follow 3 stage command 

D. Read and obey sentence: close your eyes 

E. Write a spontaneous sentence 

 

A. None 

B. Education, ethnicity, language 

C. None 

D. Education 

E. Education 

Visual Construction Item: 

A. Copy design 

 

A. Age, Education 
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False Diagnosis 

The false diagnosis of any disorder is reason for concern. This may be especially true when the 

diagnosis affects a person’s long-term prognosis. If a patient was diagnosed with dementia due to 

their complaints of impaired thinking and using only the MMSE as a diagnostic tool, it is 

plausible that the diagnosis might be incorrect. Yesavage (1979) published an editorial defining 8 

subtypes of dementia that are reversible. These include: drug toxicity, emotional and psychiatric 

disorders, metabolic and endocrine disorders, visual and hearing impairments, nutritional state, 

intracranial masses, and infection arteriosclerotic complications. Table 6 shows the results in 

reviews of nine studies that reported findings of reversible dementia. Twelve plausible causes for 

diagnostic confusion were identified (Fox, Topel, & Huckman, 1975; Freemon, 1976; Harrison, 

1977; Marsden & Harrison, 1972; McDaniel, Lukovits, & McDaniel, 1993; O'Boyle & Amadeo, 

1989; Rabins, 1981; Ryan, 1994; Smith & Kiloh, 1981).  
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Table 6: Causes of Diagnostic Confusion 

 

  
Causes Number of Patients 

Depression  56 

Normal pressure or communicating hydrocephalus 33 

Subdural hematoma 19 

Other psychiatric disorder 16 

Drugs 9 

Thyroid disease 8 

Creutzfeldt-Jakob  2 

Pernicious anemia 1 

Liver disease 1 

Parkinson’s disease 1 

CNS syphilis 1 

Other or unspecified 9 
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 In these nine studies, 156 people were misdiagnosed. Unfortunately, the diagnosis of 

dementia is difficult to remove from the medical record and could have a long-standing impact 

on a patient. If another physician or medical worker sees the diagnosis of dementia, they may 

treat the patient differently. Communication may be more directed toward family members rather 

than the patient, making them feel removed from their health care decisions. In addition, survey 

data suggest that nearly 70% of general practitioners feel inadequately trained to respond to the 

needs of people with dementia and their families (Downs et al., 2000; Wolff, Woods, & Reid, 

1995).  

Dementia is often diagnosed using a combination of self-report, which has varied 

reliability; family report; which can be inaccurate and impacted by a variety of confounding 

factors; and the MMSE, which has poor sensitivity and specificity. This wide variability of 

subjective complaints and a weak test leaves room for false diagnosis. Even with these 

limitations, currently this is the standard for dementia diagnosis. Wherever possible, one would 

want to reduce or eliminate confounds that might further put the diagnosis of dementia (or the 

severity category) into question.  

1.2 HEARING LOSS 

Hearing impairment is one of the most prevalent chronic disabilities in the U.S. Approximately 

34.25 million Americans have hearing impairments (Schum, Matthews, & Lee, 1991). 

Wallhagen, Strawbridge, Cohen and Kaplan (1996) demonstrated over a series of studies that the 

prevalence of hearing loss nearly doubled from 1965 to 1994 and predicted the growth to 
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continue. Hearing loss in the aging person is most commonly presbycusis, but the person may 

have hearing loss due to noise exposure, medications or other factors that combine to contribute 

to hearing loss. The most obvious and documented peripheral deficit in elderly individuals is the 

presence of high frequency sensorineural hearing loss (Cranston, 1986); this is called 

presbycusis. The word presbycusis is from the Greek words “presby” or “presybo” meaning old 

or in relation to old age and “akoustikos” meaning to hear or to listen. While presbycusis does 

not account for all of the hearing loss in elderly listeners, it does count for the majority of change 

in thresholds as we age. Cruishanks (1998) demonstrated through epidemiologic studies that the 

average hearing thresholds in Beaver Dam, Wisconsin decrease with increased age; the higher 

the age of the person, the more steeply sloping their high frequency hearing loss.  

Changes in cochlear histopathology due to age were classified by Schuknecht (1955, 

1964) into four types of presbycusis: sensory, neural, metabolic, mechanical. Sensory 

presbycusis is the degeneration of the organ of Corti. The loss of hair cells and supporting 

structures typically presents as a high frequency hearing loss. Schuknecht observed, with enough 

damage, that the supporting cells were involved and there also is secondary degeneration of the 

auditory neuron. He reported that the degenerative changes usually begins in the middle ages, but 

the progression is slow; thus it is limited to the most basal end of the cochlea and has less impact 

on the speech frequencies. If the loss of the auditory neuron is beyond that which can be 

explained by degeneration of the organ of Corti, Schuknecht described this as neural presbycusis. 

This type of presbycusis often occurs later in life when the number of functional neurons falls 

below that which is necessary for effective transmission. Metabolic presbycusis is visible in 

histopathology as damage to the stria vascularis. The stria vascularis is probably the source of the 

positive 80 mv DC potential of the scala media and has been characterized as the site of 
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endolymph creation. Thus damage to the stria vascularis would affect the entire scala media, 

explaining the characteristic flat hearing loss associated with metabolic presbycusis. If no 

pathological correlates can be found in the organ of Corti, auditory neuron or strial tissue, 

Schuknecht characterized this hearing loss as mechanical presbycusis. He postulated that the 

slowly progressive descending audiometric curve could be caused by an abnormality in the 

structures that have to do with the motion of the cochlea, possibly the basilar membrane or the 

spiral ligament. As the differentiation of these four types of presbycusis cannot be defined while 

a person is still living, for the purposes of this discussion, presbycusis will be discussed in 

general.  

When classifying hearing loss associated with aging, Otto and McCandlis’ seminal article 

(1982) concluded that there is both behavioral and electrophysiological evidence of central and 

peripheral auditory disorder frequently accompanying senescence. They noted that there were 

changes due to peripheral hearing loss, but also changes on the electrophysiologic responses 

(auditory brainstem response) that were affected by age. The three participant groups: young 

normal hearing, young sensorineural hearing loss and hearing loss matched elderly sensorineural 

hearing loss groups had different ABR responses that could not be explained by only hearing 

loss. They concluded that peripheral hearing loss and central changes due to age both affected 

the responses. Humes and his colleagues at the University of Indiana also have conducted 

extensive research on the aging auditory system and have reported on the negative impact of 

hearing loss on the speech-understanding performance of older adults separating the different 

components of the peripheral auditory system (Humes, 1991, 1996; Humes, 2002, 2005; Humes 

& Christopherson, 1991; Humes & Roberts, 1990; Humes et al., 1994).  
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It is proposed that there are three components that affect an older person’s ability to 

accurately perceive the intended auditory signal. Foremost, the signal may not be audible, 

meaning the sound is not loud enough to cause adequate movement of the auditory structures 

necessary to hear the signal. Second, in those with a sensorineural hearing loss, such as 

presbycusis, there is likely a cochlear pathology that contributes to the hearing loss beyond the 

audibility of the signal; for example reduced frequency discrimination, temporal encoding errors, 

etc. Finally, once the signal is transmitted beyond the peripheral structures, there could be a 

neuronal or cortex auditory processing problem contributing to the inability to hear, decode and 

understand the signal. While it is likely that these features overlap and contribute to one other, 

they will be described initially as separate components of hearing. 

1.2.1 Diagnosis of Hearing Loss 

To be able to discuss the components of the auditory system that contribute to hearing and 

hearing loss, it is important first to describe how a hearing loss is identified. In 1991, the 

National Institutes of Health set as a goal for the year 2010 that there would be a dramatic 

increase in the number of primary care providers that refer adults over age 65 for evaluation and 

treatment of hearing impairment; as of the interim update in 2000, this section of the Healthy 

People 2010 initiative was still developmental (National Institutes of Health, 2000).  

Hearing tests are conducted by audiologists in a sound proof booth in order to ensure that 

noise does not impact the threshold determination. The assessment includes both obtaining 

thresholds using pure tones as well as speech understanding testing at enhanced signal levels. 

While this is currently the most accurate way of determining hearing status, very few physicians 

refer patients for a diagnostic hearing evaluation prior to the diagnosis of dementia (Jorgensen et 
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al., 2012 - submitted).  Jorgensen, et al (2012) reported that only one medical text book out of the 

84 reviewed mentioned hearing loss potentially impacting the diagnosis of dementia.  These texts 

reported that self-report of hearing loss is a good measure of hearing ability as well as using 

bedside hearing tests. Yet data indicate that these tests are not an accurate reflection of the 

person’s hearing ability as they have a 5-60% accuracy in the  diagnosis of hearing loss 

(Boatman, Miglioretti, Eberwein, Alidoost, & Reich, 2007).  

1.2.1.1 Self-Report  

It is often thought that, as with many disorders, asking the patient if they have hearing loss will 

suffice in the diagnosis of hearing loss. Many physicians feel that by asking their patients “do 

you have a hearing loss” the answer is an accurate reflection of their hearing status as this is what 

is recommended by the American Academy of Family Physicians (2010) and the US 

Preventative Task Force (1996). Several studies have been completed comparing audiometric 

thresholds with patient report of hearing status. Many of these studies are not controlled as they 

were clinical retrospective studies and take the pure tone average to determine audiometric 

status. Clark, Sowers, Wallace, and Anderson (1991) reported that in a group of 267 women in 

rural Iowa, the positive predictive values of hearing loss were low; however this was comparing 

the self-response to the pure tone average of either 1000 and 2000 or 1000-4000 Hz. As this 

gives a general number and does not always accurately reflect the configuration of the hearing 

loss, it is likely that two people with very different hearing losses could present with similar pure 

tone averages. It is difficult to compare self-responses to such varying audiometric 

configurations. Similar results were reported by  Gomez, Hwang, Sovotva, and Stark (2001) who 

divided the audiometric information from their 376 participants into 5 groups: binaural low 

frequency, better ear mid frequency, worse ear mid frequency, binaural mid frequency, binaural 
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high frequency. They found the best positive predictive value for reporting hearing loss when 

one existed is for those with low frequency hearing loss and the least predictive was for those 

with high frequency hearing loss. This means that for those with high frequency hearing loss, 

they are less likely to notice the effects of hearing loss on their daily lives and are less likely to 

report it when asked if they have hearing loss. This high frequency hearing loss is also the 

audiometric configuration most common in the elderly population. On a self-diagnostic 

questionnaire, Boatmann, Miglioretti, Eberwein, Aldoost, and Reich (2007) reported that the 

questions had a sensitivity of 0.01 to 0.51 in predicting hearing loss on an audiometric test. The 

best questions included questions about hearing in noisy situations such as a party; while the 

poorest questions were about hearing specific types of voices. Directly asking if the person feels 

they had a hearing loss had a sensitivity of 0.27 and a positive predictive value of 0.29. Overall, 

asking a patient if they feel that they have a hearing loss does not accurately assess their ability 

to hear. Using this as the only predictor of hearing ability will lead to missing more than 2/3 of 

people with hearing loss. Self-report of hearing loss is not an accurate or reliable assessment of 

hearing ability. 

1.2.1.2 Non-Audiometric Hearing Testing 

It is often thought by neurologists and primary care doctors that they are conducting an accurate 

hearing test with whispered speech, finger rub, watch tick, and the Rinne and Weber tuning fork 

tests or assessing their abilities when speaking to the patient (Bagai, Thavendiranathan, & 

Detsky, 2006). Use of these measures was the only recommended standard procedure in many of 

the clinical procedures textbooks used by physicians (Jorgensen, et al, 2012). The quality or 

intensity of the finger rub test is not standardized among physicians and thus is difficult to 

categorize. Watch ticks are low intensity click-like sounds that cover a wide range of 
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frequencies; conversely whispered speech testing has attenuated low frequency information due 

to the lack of vibration of the vocal folds and is further impacted by distance. It would appear, 

based on this psychoacoustic information, that these tests would be good at detecting high 

frequency hearing loss such as presbycusis. However, Boatman et al (2007) reported that the 

sensitivity of the finger rub is 0.35, watch tick is 0.60 and whispered speech is 0.46 for those 

with a pure tone average above 40 dB HL. While the watch tick’s broad-band signal is the most 

sensitive to hearing loss, it is still not accurate for true measurement of hearing sensitivity. The 

poor diagnostic accuracy of the tuning fork tests such as Rinne and Weber has been reported in 

several studies (Bagai et al., 2006; Boatman et al., 2007; Yueh et al., 2003). These tests were 

designed to identify unilateral hearing losses of less than 512 Hz using the Weber or conductive 

hearing losses using Rinne. These tests miss most people with high frequency, bilateral and 

sensorineural hearing losses like presbycusis and have very low sensitivity (Boatman et al., 

2007). While many physicians believe that using non-audiometric hearing screenings will allow 

them to have an accurate assessment of hearing status, this is not the case and the only way to 

truly quantify a person’s current audiologic status is by a referral for full audiometric testing. 

1.2.1.3 Audiologic Evaluation  

An audiologic evaluation is the most accurate way to quantify hearing status. Mild to moderate 

hearing losses are commonly overlooked without an audiologic evaluation (Corbin, Reed, 

Nobbs, Eastwood, & Eastwood, 1984; Powers & Powers, 1978; Williamson, Stokeoe, & Gray, 

1964). The current audiologic test battery for adults includes behavioral testing using pure tones 

and speech testing including Speech Reception Threshold and Word Recognition (Katz, 2002). 

The speech testing is completed in quiet, which does not tax the central auditory system and 

older adults perform similarly to younger adults with similar hearing losses (Dubno, Lee, 
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Matthews & Mills, 1997). While this is good for audiologic testing to determine hearing 

sensitivity, it does not reveal how a person performs in the “real world”. Patients often report “I 

can hear alright if it is just you and me, but in a crowd, or if there is any other noise, I don’t do 

very well”. This problem seems to be more evident in the 70 and 80 year olds than in the 20 and 

30 year olds. The idea that there is something that is different about the elderly population was 

first postulated by John Gaeth (1949). In his dissertation, he studied word recognition ability in 

elderly adults with varying degrees of hearing loss and suggested that the differences in young 

and older adults may be due to central as well as peripheral changes in the auditory system.  

1.2.2 Audibility 

Audibility is the initial confound for signal perception for those with hearing loss. Signals are not 

loud enough to be accurately perceived by the system. The most important factor for speech 

understanding is an audible signal (Humes, 1991, 2007; Kamm et al., 1978; Otto & McCandlis, 

1982). Speech consists of a succession of sounds that vary rapidly in intensity and frequency 

from instant to instant. The overall decrease in intensity caused by a hearing loss is a 

disadvantage, but also it is this variability in intensity that makes parts of speech inaudible and 

thus makes understanding difficult.  

With the assumption that the desired speech signal reaches the ear without any acoustic 

distortion such as phase distortion, echoes and reverberation (Grose, 1996; Wingfield, 1996), the 

success of the listener in recognizing and interpreting these sounds depends on the intensity of 

the signal to their ear, the intensity of other interfering acoustic signals and the hearing loss.  In 

1947, French and Steinberg described the relationship between fundamental characteristics of 

speech and hearing and the capability of the ear in recognizing these sounds. The frequency 
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analysis of idealized conversational speech recorded at 1 meter from the speaker’s mouth peaks 

around 500 Hz then slopes downward giving less acoustic information at higher frequencies. The 

information from French and Steinberg (1947) as well as Dunn and White’s (1996) conclusions 

about intensity differences along the speech spectrum, lead one to believe that even for normal 

hearing people, listening is a difficult task; this is even more so for higher frequencies. However, 

some of the discrepancy across frequency is overcome by the natural resonance of the ear which 

provides increased amplitude at higher frequencies (Humes & Roberts, 1990; Ohenham & Plack, 

1997; Plack, Drga, & Lopez-Poveda, 2004). This, however, does not provide enough 

amplification to overcome the lack of audibility in the high frequencies experienced by those 

with presbycusis.  

The development of the Articulation Index was a way to predict the effects of hearing 

loss on audibility. Kryter (1991) validated the Articulation Index and demonstrated that with 

decreased audibility there is a significant decrease in the ability to understand phonetically 

balanced words as well as nonsense syllables. This would lead one to believe that with decreased 

audibility one would not be able to understand normal speech. Pavlovic (2007) demonstrated 

similar findings as Kryter for those with normal hearing and for those with a moderate high 

frequency hearing loss. The prediction did not hold true for those with a severe or precipitous 

high frequency hearing loss; these people did worse than the Articulation Index predicted. 

However, these findings do support the theory that those with a hearing loss will be highly 

affected by their inability to have audibility of the desired speech signal.  

Figure 2 illustrates the prominent role of high frequency hearing loss on unamplified 

speech. The portion of the dashed lines (hearing thresholds) which are above the 60 dB SPL long 

term average speech spectrum line, the level of average speech (Pearson, Bennett, & Fidell, 
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1977), would not be audible. This would indicate that those speech sounds which are above 

approximately 3000 Hz for people aged 70 and above approximately 2000 Hz for those who are 

80 would not be heard. Comparing Figure 2 to Figure 3, the high frequency sounds, such as f, s 

and th would be inaudible for those with high frequency hearing loss. This lack of audibility 

would be expected to significantly impact speech understanding for these people.  
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Figure 2: Hearing Loss Compared to Speech (adapted from Humes, 2007) – 

reprinted with permission 

Solid lines: Lowest solid line is normal hearing sensitivity converted from HL to 

SPL. The other three solid lines are the long-term average speech signal (LTASS) at 

different intensity levels. Dotted lines: The average hearing thresholds for different ages 

converted from HL to SPL.  
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Figure 3: English Speech Sounds (adapted from Humes, 1991) – reprinted with 

permission 

The solid horizontal line is the RMS for speech at 65 dB SPL. The dashed lines 

represent the fluctuation about the RMS for normal speech. The orthographic 

representations of speech sounds have been superimposed on the audiogram. The right 

most vertical line represents the approximate line at which the 70-79 year olds will not hear 

sounds to the right at 65 dB SPL. The left most vertical line represents the approximate 

line at which 80 and older year olds will not hear the sounds to the right at 65 dB SPL. 
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Humes and Roberts (1990) attempted to determine the role of audibility on speech in 

noise as well as high-frequency dependent nonsense syllables. They determined that using 

spectrally shaped noise caused normal-hearing people to perform similarly to the elderly people 

with high frequency sensorineural hearing loss. As those young normal-hearing people had 

normal cochleae and just had difficulty with audibility, it could be concluded that audibility is 

the primary determiner of speech recognition ability in this elderly group with high frequency 

hearing loss.  

Recent research suggests that cerumen removal, thus improving audibility by removing 

the cause of the conductive hearing loss, improves performance on cognitive tests (Moore, 

Voytask, Kowalski, & Maddens, 2002; Oron, Zwecker-Lazar, Levy, Kereitler, & Roth, 2011). 

While both of these articles looked at the influence cerumen impaction, which leads to a 

conductive hearing loss, has on cognitive performance, neither of them accurately measured 

hearing loss/acuity or used tests that are widely used in general practice. It was most likely the 

return of audibility produced by cerumen removal that produced the positive results on the 

cognitive tests.  

The difficulty with audibility is the first disruption to an auditory signal for those with a 

hearing loss. However, studies from Fletcher and Galt (1950), Wilber (1964), and Dugal, et al 

(1980) suggest that individuals with sensorineural hearing loss exhibit disproportionately poor 

understanding of speech compared to the prediction based on the Audibility Index. While they 

all had different theories on why this was the case, they all inferred that it could be due to an 

underlying cochlear pathology that caused those with a sensorineural hearing loss to do poorer 

than the Articulation Index had predicted. 
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1.2.3 Cochlear Pathology 

1.2.3.1 Frequency Issues 

Pavlovic (2007) noted that beyond audibility, hearing impairment is also impacted based on 

some cochlear pathology that affected the high frequencies more than low frequencies. He noted 

that the Articulation Index was a good predictor at those thresholds with mild to moderate 

hearing impairment. However, for those with significant cochlear damage, prediction of 

performance according to the AI is much less accurate. It can be inferred from these data that 

hearing impairment is affected beyond audibility by cochlear pathology. And while the case for 

inability to hear high frequency sounds has been shown with Figure 2, it also could be the case 

that the hearing thresholds in sensorineural hearing loss could serve as an initial marker for an 

underlying cochlear pathology. The decreased understanding ability of those with high frequency 

hearing loss could be due to lack of audibility or underlying cochlear damage because as there is 

more high frequency sensorineural hearing loss, there is a greater amount of damage to the hair 

cells at the base of the cochlea (Bredberg, 1968 as cited in Moore, 1995) 

With loss of outer hair cell function in sensorineural hearing loss, there is a disruption in 

the non-linearity of the cochlea. In normal cochlear function, the movement of the basilar 

membrane is distinctly non-linear and compressive (Humes, 1991, 2007; Kamm et al., 1978). 

With sensorineural hearing loss, the damage to the outer hair cells, results in loss of this normal 

non-linear functionality of the basilar membrane (Otto & McCandlis, 1982). This loss of non-

linearity explains the abnormally rapid growth in loudness resulting in reduced dynamic range 

(Grose, 1996), the abnormal nonlinear growth of masking (Wingfield, 1996), and reduced 

frequency selectivity (Glasberg & Moore, 1986; Grose, 1996). These changes in the cochlea 

impact speech recognition of those with sensorineural hearing loss such as elderly individuals 
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with presbycusis. However, as indicated by Humes and Roberts (1990), primarily these listeners 

need an increased signal to achieve audibility.  

In 1958, Zwicker (1990) proposed that loudness summation could be estimated from 

excitation patterns based on masking patterns. This model was successful in predicting loudness 

summation of both normally-hearing individuals (Hellman & Zwicker, 1987; Scharf, 1967) and 

those with high frequency hearing loss (Florentine & Zwicker, 1979). The excitation pattern of 

tones widens as the level of the tone increases. The spread of excitation for those with 

sensorineural hearing loss is broader and expands more quickly. This would lead to an abnormal 

growth in loudness for those with sensorineural hearing loss.  

In the normally functioning basilar membrane, when a masking level is well below the 

signal in frequency, the response is linear to a tone with a frequency below the characteristic 

frequency (Baer & Moore, 1993; Humes, 1991). An increase in the masking level will be 

reflected by a proportional increase in basilar membrane motion at the signal frequency. The 

basilar membrane at the characteristic frequency is compressive, so the signal level must be 

increased by more than the masker level to produce the same change at the characteristic 

frequency. This phenomenon is known as nonlinear growth of masking (Oxenham & Plack, 

1997). In a normally functioning system, the masker becomes relatively less effective as the level 

increases because a given increase in the masker requires a proportionally smaller increase in the 

signal. Therefore, the loss in compression experienced by those with sensorineural hearing loss 

would affect the growth of masking. This results in a proportional growth of masking level to the 

signal level; people with sensorineural hearing loss are more affected by noise than those who 

have a normal functioning cochlea.  
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 A common complaint by those with sensorineural hearing loss is a problem with speech 

discrimination and increased difficulty in noise. It is postulated that this is due to reduced 

frequency resolution or selectivity of the damaged ear. Frequency selectivity is the ability to 

differentiate frequency components of a complex sound – such as speech in the presence of 

background noise. Florentine, Buus, Scharf, and Zwicker (1980) demonstrated that there is 

reduced frequency selectivity for those with sensorineural hearing loss. This would suggest that 

sounds that would normally be heard as distinct sounds would not be distinguishable. This would 

significantly decrease speech perception. Baer and Moore (1993) indicate that reduced frequency 

selectivity contributes significantly to the speech communication difficulties of hearing-impaired 

individuals.  

1.2.3.2 Spectral and Temporal Issues 

Speech has additional spectral and temporal cues that are necessary to decode for speech to be 

accurately understood. Recently, it has been suggested that those with cochlear hearing loss have 

a reduced ability to process temporal fine structure (TFS) information. Temporal resolution 

refers to the ability to detect changes in acoustic stimuli over time. Classically, the measure used 

to determine temporal resolution is gap detection threshold (GDT). This is completed by 

measuring the smallest silent interval a person can detect. Additionally, other tests of temporal 

resolution include amplitude modulation distortion, duration discrimination, temporal order 

judgment and temporal masking. Many studies have been conducted to evaluate the patterns of 

temporal resolution in persons with hearing loss (Fitzgibbons & Gordon-Salant, 1987; Maddens 

& Feth, 1992; Tyler, Summerfield, Wood, & Fernandes, 1982). Hearing-impaired listeners 

perform more poorly than normal hearing listeners at tasks that are thought to depend heavily on 

TFS information such as inter-aural phase difference discrimination (Lacher-Fougere & 
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Demany, 2005) and low-rate frequency modulation (Lacher-Fougere & Demany, 1998). 

Fitzgibbons & Gordon-Salant (1987) reported those with hearing loss had difficulty with TFS by 

looking at gap detection. They reported that the gap resolution in listeners with hearing loss was 

significantly poorer than in listeners with normal hearing.  

There are several mechanisms that could account for those with cochlear hearing loss’ 

inability to process TFS information. Those with hearing loss have poorer frequency selectivity 

(Florentine et al., 1980), if this is true than the information sent to the central system could be 

distorted and therefore un-interpretable by the central auditory system. Rose, et al (1967) 

investigated phase locking of a single nerve of the squirrel monkey; several authors have cited 

this article suggesting that a deficit in phase-locking and, therefore, TFS information cannot be 

coded. However, it is not clear if this same mechanism is used in live animals. Other research has 

yielded conflicting results from the Rose, et al results (Woolf, Ryan, & Bone, 1981). Those with 

hearing loss have a reduction in the number of auditory nerve fibers (Spoendlin, 1971). If this is 

true, this could affect the ability for information to be phase locked as the auditory fiber 

information must be compiled in order to obtain accurate information and a decrease in auditory 

fibers would degrade this representation.  

TFS information may be extracted by the cross-correlation of information collected along 

different points of the basilar membrane (Shamma & Klein, 2000). Those with cochlear hearing 

loss have an abnormal basilar membrane (Ruggero, Rich, Robles, & Recio, 1996) and therefore 

may have difficulty coding an accurate TFS. Temporal fine structure information is important in 

understanding speech and is vital to understand speech in the presence of background noise. 

Additionally, spectral cues are impacted by cochlear hearing loss, but not to the extent that TFS 

has been demonstrated. Spectral cues, such as formant frequencies and formant transitions, are 
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related to the spectrum of the sound energy in a particular phoneme. Spectral information is an 

important cue for the identification of segmental phonemes and leads to effective frequency 

resolution of the auditory mechanism. The accurate perception and identification of these cues is 

essential to accurate speech perception. As described earlier, studies have shown that cochlear 

hearing loss is strongly associated with widened auditory filters, resulting in poor frequency 

resolution. Thus, listeners with cochlear damage will not be able to effectively use some of the 

spectral cues in speech (Turner & Robb, 1987). Several authors have reported that listeners with 

hearing loss have poorer than normal speech recognition when compared to listeners with normal 

hearing (Godfrey & Millay, 1977; Leek & Dorman, 1987; Turner & Robb, 1987). Some 

investigators suggest that poor frequency resolution and spectral smearing underlie this deficit 

(Turner & Henn, 1989).  

For accurate perception of sound, it is necessary for the distinct frequency cues of speech 

sounds to be accurately perceived. Additionally, the spectral and temporal cues are essential for 

accurate discrimination of the speech cues. Although accurate auditory perception information is 

important to accurate speech perception, listening is a cognitive task and requires processing by a 

central system for speech perception and translation.  

  

1.2.4 Auditory Processing 

Evaluation of the speech understanding problem in elderly listeners is difficult because speech 

recognition itself is a complex process. Most models of speech perception maintain similar 

underlying mechanisms that rely on a central system for cognitive processing of speech 

(Fitzgibbons & Gordon-Salant, 1996; Ohenham & Plack, 1997; Plack et al., 2004).  
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While audibility and cochlear pathology both impact speech perception, it is also 

important that a person understands the message that is received and processed by the peripheral 

system. Most people from the United States do not understand Sinhala (language from Shri 

Lanka); this would mean that even with proper audibility and no cochlear pathology there would 

be a lack of speech understanding for someone who was speaking Sinhala to a person who does 

not speak the language. This is because proper auditory processing is necessary for proper 

speech perception. Although pure-tone thresholds are frequently used to define auditory 

handicap, this ignores the fact that speech discrimination ability is dependent on supra-threshold 

auditory processing. What was discussed previously was how sound is processed by the ear. 

These sounds then need to be transmitted to the brain via the auditory nerve, through the 

brainstem to the brain where they can be processed. Without a central auditory nervous system 

and a central cognitive system, these are just sounds. Speech is usually the intended signal in 

communication. Speech requires decoding and cognitive effort to process these sounds into a 

meaningful message. It is “what we do with what we hear” (Katz, Stecker, & Henderson, 1992, 

p. 5)  that matters. 

There is a need for a distinction between central as referring to the central auditory 

nervous system (e.g., binaural hearing) and cognitive factors that are more central than the 

brainstem. These distinctions are not explicit in the literature and therefore difficult to 

discriminate. Furthermore, the impact of peripheral factors such as audibility and cochlear 

pathology on the central system are unknown and undefined in the literature. These impacts have 

not been systematically investigated and are often overlooked when reviewing the central system 

in the aging auditory system. For the purposes of this review, “central” will refer to cortical 

portions of the auditory system.  
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Examination of the auditory nervous system in the elderly population has shown 

degenerative anatomical changes on post-mortem inspection, although a majority of studies have 

analyzed a small sample of the brain (Brody, 1955; Ellis, 1920; Hansen & Reske-Nielsen, 1965; 

Kirikae, Sato, & Shitara, 1964; Konigsmark & Murphy, 1974). Brody (1955) sampled the 

cerebral cortex and concluded that there was a decrease in neurons with age particularly in the 

superior temporal gyri, precentral gyri and area striata. Ellis (1920) studied the Purkinje cells of 

the cerebellum and demonstrated that there was loss with age. Although it was initially 

concluded by Koningmark and Murphy (1970) that there was not a significant change in the 

ventral cochlear nucleus in terms of the number of neurons, in 1974 they published a paper 

demonstrating that there was a significant decrease in volume of the ventral cochlear nucleus 

beyond the fifth decade of life. This decrease in volume was not due to a decrease in neurons, but 

is likely due to decreased size of the neurons, decreased number of glial cells, loss of axis 

cylinders, loss of neuronal processes including dendrites, decrease in the size or number of blood 

vessels or decrease in the extracellular space. They noted the axons in middle age were robust 

and well myelinated however, in old age there was a decrease in these fibers. They concluded 

that their previous work from 1970 was not incorrect but was slightly misinformed. This 

decrease in the overall volume of the ventral cochlear nucleus would likely decrease the 

efficiency or accuracy of the transmission of auditory signals to and within the central auditory 

system. Histological and quantitative changes were reported by Brody (1955) who reported that 

there are significant changes in the human cerebral cortex due to aging.  These changes in the 

anatomical structure with age could lead one to believe that there also are changes in the ability 

of elderly adults in the processing of signals, such as speech. 
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As reported in the previous discussion of cochlear hearing loss, temporal fine structure 

cues (TFS) are essential to the accurate perception of speech. Changes in the ability to process 

TFS has been shown in the aging population. However, unlike with hearing loss, the impact of 

aging on spectral cues has not been shown. An age-related decline in temporal resolution ability 

has been observed in studies conducted by numerous investigators (Fitzgibbons & Gordon-

Salant, 1994; Lister, Besing, & Koehnke, 2002; Snell, 1997; Strouse, Ashmead, Ohde, & 

Grantham, 1998). In attempts to determine whether temporal resolution deteriorates with age 

alone, many studies control for hearing loss by recruiting older participants with normal pure 

tone thresholds. Carefully matching young and old participants with normal hearing, Snell 

(1997) measured gap thresholds in noise bursts. She found that gap thresholds were larger for the 

older participants across a variety of listening conditions. Fitzgibbons and Gordon-Salant (1994) 

found poorer overall duration discrimination and gap discrimination in older listeners (ages 65-

70 years) as compared to young listeners (ages 20-40 years), regardless of hearing sensitivity. 

These studies have been replicated by multiple investigators and evidence suggests a strong 

effect of age for TFS processing. (Bertoli, Smurzynski, & Probst, 2002; Grose & Mamo, 2010; 

Strouse et al., 1998) 

Age related changes are evident in the processing of speech such as during difficult 

listening situations. The odds of demonstrating an auditory processing deficit in average older 

adults increases by 4-9% per year of age over the age of 55 (Golding, Taylor, Cupples, & 

Mitchell, 2006). In a sample of 232 patients with no signs of cognitive deficit, 64 with mild 

memory impairment and 17 with Alzheimer Disease, Gates et al (2008) found that performance 

on three central auditory processing tests were significantly poorer for those with mild memory 

impairment when compared to normally aging individuals; those with Alzheimer Disease had 
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even poorer performance. Gates et al (2008) did attempt to control for audibility and cochlear 

pathology by excluding those potential participants with asymmetric hearing loss, word 

recognition score below 70% for either ear, evidence of middle ear disease or those with greater 

than 48 dB HL thresholds. Due to these factors, tests were presented at 50 dB SL. Two out of the 

three tests used for assessing central auditory function are resistant to a moderate hearing loss. 

Fifer, Jerger, Berlin, Tobey and Campbell (1983), demonstrated that the Dichotic Sentence Test 

is relatively resistant to the effects of hearing loss below 50 dB HL. The Dichotic Digits Test is 

relatively immune to the effects of hearing loss for those with a mild to moderate hearing loss 

when the test is presented at an elevated level (Strouse, Hall, & Burger, 1995). Scores on the 

Synthetic Sentence Identification with Ipsilateral Competing Message do decrease with hearing 

loss (Strouse et al., 1995). Recognition of undistorted speech in quiet listening situations with 

proper audibility does not show a decline with age (Dubno et al., 1997). In tests of speech in 

noise with favorable speech to noise ratios, results show age related changes were negligible 

(Dubno et al., 1997; Gordon-Salant & Fitzgibbons, 1995); however, in less favorable signal to 

noise ratios there were significant age related changes. Dubno, Dirks and Morgan (1984) 

reported in their study of young and elderly adults that there were differences in performance of 

normal-hearing and hearing-impaired individuals on the test of the Speech In Noise Test (SPIN). 

The elderly participants did not perform as well as the young participants independent of hearing 

loss when tested on both high and low context sentences.  These data would suggest that the 

elderly participants had a more difficult time with separating the speech from the noise. This task 

is demanding on the central auditory system as it asks the listener to distinguish the most 

important or desirable signal from the unimportant information, an ability that Dubno, Dirks and 

Morgan (1984) show decreases with age. Furthermore, elderly listeners have difficulty with 
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time-compressed speech and reverberant speech even when the speech is presented in quiet 

(Gordon-Salant & Fitzgibbons, 1993; Vaughan & Letowski, 1997).  

All of these findings point to a general effect of aging on central auditory processing 

ability.  The elderly individual, however, has preserved linguistic knowledge that they are able to 

use to their benefit. Older adults are skilled in using phonologic and syntactic structure, prosodic 

cues and knowledge of pragmatics to help cue them into speech and follow conversations in 

highly contextual situations of social interactions (M. Pichora-Fuller & G. Singh, 2006). So 

while elderly adults struggle with central auditory processing their ability to use additional cues 

in the presence of highly contextual situations may help them. This could help explain why 

central auditory processing in elderly patients is often overlooked.  

Cognitive changes may occur with normal aging that may affect working memory. Even 

if a person is accurately hearing the intended signal, they are required to then process the 

information; this is done in their working memory. Working memory describes the processes 

used for temporarily storing and manipulating information. Working memory has been described 

as a dual-function system where information is temporarily stored and processed with existing 

information until new information is either forgotten or consolidated into long term memory 

(Baddeley, 1986, 2010).  Speech is a complex signal that requires an increased demand on the 

brain for processing. When an adult has a hearing loss, they depend even more on their stored 

knowledge, top-down processing, as a supporting context to compensate for the degraded signal; 

the energy required to do this leaves less space in the working memory for processing of 

incoming information (Pichora-Fuller, 2006). Because of this demand on the working memory to 

fill in the missing auditory information, it is proposed that this is another reason hearing loss may 
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masquerade as dementia, including problems remembering or comprehending spoken language 

(Pichora-Fuller, 2003).  

Gordon-Salant & Fitzgibbons (1997) reported that elderly listeners have a longer 

response time to recall tasks compared to younger listeners with similar hearing abilities. This 

could be due to a longer processing time within the working memory resulting in cognitive 

slowing. Babcock and Salthouse (1990) suggested that this cognitive slowing may be due to a 

decrease in the ability to perform dual tasks as it is a stress on the working memory functions due 

to decrease in storage capacity. Free recall lists have often been used in assessing aging 

differences in working memory. Participants are given auditory and sometimes visual lists of 

words and asked to recall as many of them as possible after hearing or seeing the list. Erber 

(1974) presented a list of 24 words to remember for later recall to young and elderly women and 

reported that young women recalled significantly more words than the elderly women. 

Schonfield (1965) examined age differences in the ability to recall and recognize word lists. He 

determined that there is not an age related change in recognition memory, but there is a 

consistent decline associated with age in the ability to freely recall these words. Results of these 

studies are consistent with other studies that demonstrate declines in recall performance but little 

or no changes in the recognition ability (Ardenberg, 1976; Hulsch, 1975; Taub, 1977). Similar 

testing has been conducted using sentences and, once again, elderly participants  demonstrated 

more difficulty than the young adults in the recall of sentence information (Davis & Ball, 1989; 

Emery, 1985; Feier & Gerstman, 1980) 

These studies demonstrate that there is a significant difference in the auditory processing 

ability in the elderly population as compared with younger adults. They have a changed anatomy, 

decreased working memory capacity, and decreased ability to sort out information in difficult 
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listening situations. These difficulties affect their ability to understand speech especially if it is 

something that is unfamiliar. It is unclear if auditory processing alone accounts for changes in the 

processing or if there are compounding effects of the auditory periphery. The difficulty in 

auditory processing is likely compounded by any lack of audibility. Ability also is likely 

compounded by the cochlear pathology associated with sensorineural hearing loss. The 

combination of these factors may influence understanding. This lack of the ability to process 

intended messages could have an impact on communication between a physician and their 

patient.  

Processing of acoustic information relies on the passing of information through a 

complex series of steps. First is the speaker produces a potentially audible signal.  Factors 

including intensity, clarity and whether or not they are looking at the communication partner all 

impact the signal. The signal then travels through the environment to the intended signal 

recipient. Environmental impacts such as noise, reverberation and distance between the 

communication partners can alter the signal. Then, the auditory periphery must accurately 

transmit the sound to the cochlea which must accurately send the sound through the nervous 

system to the cortex for processing. At this point, there must be accurate attention and effort 

allocated for the person to process the sound. The sound must be comprehended requiring 

interpretation of context, linguistics and grammar. Finally the person must react to the signal 

requiring sorting of the information and then developing a reaction or responding appropriately 

to the signal. All these steps must be in proper working order for accurate and appropriate 

reactions to the intended signals. If any of these steps are missed or distorted, the signal may not 

be processed correctly, the message may not be understood correctly, and the subsequent 

response may be inaccurate or inappropriate. For an aging adult being assessed with oral 
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questions and instructions, untreated hearing loss may confound an appropriate diagnosis and 

subsequent treatment.   

1.2.5 Simulations of Hearing loss 

One approach to estimating the effects of hearing loss in a particular condition is to conduct the 

experimental procedure with a group of individuals with hearing loss of a specified type and 

degree.  The problem with this methodology is the lack of homogeneity of participants, and 

difficulty in finding participants with specified hearing losses.  Another popular approach is to 

simulate hearing loss. This gives researchers the ability to control for hearing sensitivity in their 

studies. There are two primary ways of manipulating stimuli to simulate hearing loss: frequency 

specific attenuation and masking.  

1.2.5.1 Frequency Specific Attenuation 

Frequency specific attenuation, also known as filtering, simulates hearing loss by passing the 

stimuli through a pass or notch filter. This method of low pass filtering speech to simulate high 

frequency hearing loss has been used by a number of researchers to simulate loss of audibility 

(Humes, Dirks, Bell, Ahlstrom, & Kincaid, 1986; Kumar & Yathiraj, 2009).  This method uses 

software which allows for frequency specific attenuation of the signal. The signal is attenuated at 

each frequency by an amount desired. The signal is thereby changed so that the longterm average 

sensation level of speech is decreased so to simulate the reduction in audibility perceived by a 

person with hearing loss. Additionally, this method allows for frequency specific attenuation.   

Wang, Reed and Bilger (1978) and Bilger and Wang (1976) used this method of simulating 

hearing loss. They used the method of filtering the speech and reported that the responses of the 
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participants with simulated hearing loss very closely represented the responses of those with 

hearing loss. They were thereby able to determine that this method of simulation produces a 

good approximation of the effects of hearing loss on consonant feature recognition. As these are 

the features of speech that are most important for speech recognition, it can be assumed that the 

spectral smearing that occurs with filtering does not further compromise the signal further 

beyond limiting the audibility. Additionally, if the stimuli used in the study uses additional 

background noise to simulate other noises, this along with the desired stimuli can be sent through 

the filter (just as it would be filtered by the hearing loss). This is the only method available if a 

researcher desires to use not only the desired stimuli, but also additional noise; the other method 

of simulating hearing loss uses noise to create hearing loss.  

1.2.5.2 Masking 

Addition of narrow band masking noise represents another method that can be used to shift 

thresholds in selected spectral regions. It has been suggested that it also simulates loudness 

recruitment experienced by those with sensorineural hearing loss (Stevens & Guirao, 1967); 

however, Fabry and VanTasell (1986) showed no altered loudness effect of simulation using 

masking on supra-threshold speech.  Villchur (1974) used spectrally shaped noise to simulate 

sensorineural hearing loss for two people with unilateral sensorineural hearing loss. They 

reported that the masking noise impacted the presented speech stimuli in a similar way as their 

hearing loss. He concluded that masking noise was an accurate way to simulate sensorineural 

hearing loss. Humes, Espinoza-Veras and Watson (1988) suggested that masking of speech using 

masking noise is a combination of Lufti’s spectrally separated masking model (Lufti, 1983, 

1985) and Penner’s temporally separated masking model (Penner, 1980; Penner & Shiffrin, 

1980). Both of these previous models conclude that the combined masking effect of the two 
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maskers is simply the sum of the masked thresholds and this follows a non-linear transform 

likely caused by the effects of the cochlea. As the previous studies used non-speech stimuli, 

Humes and colleagues (Humes, Esponoza-Veras, & Watson, 1988) described that for speech, it 

would be impossible to temporally or spectrally separate the intended signal from the masker. 

They developed a new model for masking of speech for simulating sensorineural hearing loss. 

Using this model, they determined that masking closely approximates sensorineural hearing loss. 

However, these previous models that use masking seek to simulate sensorineural hearing loss 

and do not separate out audibility from cochlear pathology. Additionally, the use of masking as a 

simulation of hearing loss has been suggested to produce questionable results with the use of 

speech stimuli (Milner, 1982 as cited by Fabry and VanTasell, 1986).  

Fabry and VanTasell (1986) sought to compare these two methods of simulation of 

hearing loss. They suggested that frequency specific attenuation (filtering) is generally a good 

simulation of hearing loss, although it has limitations. There is some spectral smearing and the 

inability to reproduce all effects of hearing loss such as poor frequency and/or temporal 

resolution. One suggested limitation also could be seen as a positive aspect of filtering; filtering 

does not simulate loudness recruitment while simulation using masking does; however, this 

could suggest that filtering is preferred if specifically the impact of audibility is the desired focus 

of the research study. Additionally, Fabry and VanTasell (1986) suggested that masking does not 

work as effectively as frequency specific attenuation (filtering) and that filtering provided a 

better simulation of the hearing loss than did masking. Although simulation of hearing loss 

through these methods is not always an accurate representation of sensorineural hearing loss, 

they reported that the use of masking for simulating hearing loss was never a successful 

simulation when attenuation was not. Filtering is more accurate than masking and that use of 
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frequency specific attenuation (filtering) is an effective and accurate way of simulating hearing 

loss. Furthermore, noise is part of the signal that should be subjected to simulated hearing loss, 

filtering would be the necessary choice for hearing loss simulation. A comparison of these 

methods is in Table 7. 
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Table 7: Simulation of Hearing Loss: Filtering versus Masking 

Frequency specific attenuation (filtering)  

Pros Cons 

Closely represents error patterns of actual 

hearing loss 

Cannot simulate abnormal loudness growth 

(recruitment) 

Can incorporate additional noise along with 

stimuli 

 

Masking  

Pros Cons 

Simulates recruitment Not always effective representation of hearing 

loss  

 Cannot separate out cochlear pathology and 

audibility  

 Questionable with use of speech stimuli 

 Cannot incorporate additional noise into 

stimuli 
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1.3 PREDICTIONS OF SPEECH INTELLIBILITY 

1.3.1 Long Term Average Speech Spectrum 

Throughout the 20th and now 21st century, speech intelligibility has been the focus of many 

researchers as it is the foundation of communication. The long term average speech spectrum 

(LTASS) is the underpinning of our understanding of speech transmission and for analyzing 

speech signals. The first significant effort to understand the impact of various distortions on 

speech intelligibility was made by AT&T's Western Electric Research which was renamed Bell 

Telephone Laboratories (BTL or Bell Labs) in 1925. The telephone company supported a 

comprehensive internal research program during most of the twentieth century whose original 

goal was to improve the clarity of telephone speech.  These experiments were intended to 

determine which frequencies and intensities were necessary for transmission through the phone 

for proper understanding.   

Dunn and White (1953) asked eleven participants to read a short passage while filters 

were applied to the recordings. These were then analyzed and graphically represented by 

frequency in Hertz versus intensity in decibels (frequency on x axis and intensity on y axis). This 

graphical representation is still used today when analyzing speech signals, although now digital 

filters allow for a much quicker analysis. The graphic representation of the speech signal is used 

to demonstrate for which frequencies the intensity is the strongest; this may help provide clues as 

to the impact of noise or other interferences on the speech signal and thus the intelligibility. 

Other studies also were conducted to characterize the effects of noise, filtering, and channel 

distortion on the LTASS in order to predict their impact on intelligibility (Fletcher & Galt, 1950; 

French & Steinberg, 1947; Kryter, 1968).  More recent literature (Byrne et al., 1994; Humes et 
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al., 1986) provided a LTASS for multiple languages. They attempted to quantify multiple speech 

samples concluding the LTASS is similar across the speech samples. While the measurement of 

LTASS is important to understanding speech, it does not allow for a prediction of the speech 

understanding once the signal reaches the intended listener. 

1.3.2 Audibility Index 

French and Steinberg (1947) provided a review of the experiments and potential problems with 

speech intelligibility research up to World War II. They further identified the Audibility Index 

(AI), the next generation in prediction of intelligibility of speech. The AI’s foundation is in 

LTASS, but it is able to predict understanding ability based on factors other than strictly the 

acoustic characteristics of the signal. The original AI was developed by Fletcher in the Bell 

Laboratories in the 1920s based on the initial ideas of Crandall. Nearly three decades after the 

initial idea, Fletcher and Galt published the Articulation Index (Fletcher & Galt, 1950). 

Articulation index research was discontinued when Fletcher retired from Bell Labs and 

consequently the Fletcher and Galt 1950 version of the AI was never used in practice. The first 

American National Standards Institute 1969 version, (American National Standards Institute, 

1969), was actually derived from a simpler AI calculation provided by Bell Labs to the Harvard's 

Psycho-acoustic and Electro-acoustic Laboratories in 1942 (French, 1942) to help WWII 

communications research. 

 
The ANSI S3.5-1969 AI is an index between 0 and 1 that describes the effectiveness of a 

speech communication channel. The frequency range is divided into twenty bands whose 

frequency limits are chosen based on the importance of that frequency to the LTASS (French and 
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Steinberg, 1946). The frequency bands range between 0.15 and 8 kHz, with the width of each 

band adjusted to make the bands equal in importance. These adjustments were made on the basis 

of intelligibility tests with low-pass and high-pass filtered speech, which revealed a maximum 

contribution from the frequency region around 2.5 kHz. Furthermore, the effect of masking from 

a lower frequency band upon a higher frequency band occurring in the hearing organ is 

considered. The auditory masking is accounted within each octave band within the AI.  

The AI has two key assumptions. First, the contribution of any individual frequency band 

is independent of the contribution of other bands. Second, the contribution of each frequency 

band depends on the signal-to-noise ratio within that band. Under optimal conditions, each 

frequency band would contribute 0.05 to the AI resulting in an AI of 1.0. When conditions are 

not optimal, only part of the signal at each frequency would be transmitted. Thus 0.05 would be 

multiplied by the proportion of the signal that is transmitted in each frequency. These are then 

summed to get the AI for the less audible signal.  To accurately calculate the AI, the speech and 

noise signals must be defined. An AI of 1.0 is not required for 100% understanding (Killion, 

Mueller, Pavlovic, & Humes, 1993). An “articulation-to-intelligibility” transfer function can be 

applied to convert the AI to predicted intelligibility in terms of percent correct. This assumes that 

the predicted intelligibility depends on the proportion of time the speech signal, especially the 

spectrum, exceeds the threshold of audibility or the noise.  

There have been few corrections to the actual AI calculation since its inception. Many 

have made suggestions to make the AI easier to calculate and easier for clinicians and 

practitioners to use. One of these was developed by Mueller and Killion (1990). Their “count the 

dots” method of determining AI used 100 dots on an audiogram (see Figure 4). A clinician could 

overlay a patient’s thresholds onto the audiogram, count the dots that were audible to the patient 
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and approximate their AI (See Figure 4). Then using the graph presented in the 1990 article, the 

clinician could use the calculated AI to determine the percent intelligibility. While this method is 

simple for the clinician to use, the actual formula AI calculation is a more accurate predictor of 

understanding ability. However, for clinical use, the “count the dots” method is more practical.  

 
 

 
 
 
Figure 4: Count the Dots (Mueller & Killion, 1990)– reprinted with permission  

 

The AI generates accurate predictions of average speech intelligibility over a wide range 

of conditions. These include broadband noises (Egan & Weiner, 1949; G. Miller, 1947), high- 

and low-pass filtering (Fletcher & Galt, 1950; French & Steinberg, 1947), and distortions of the 

communication (Beranek, 1947). It also has been used to model the loss of speech intelligibility 

resulting from sensorineural hearing impairments (Fletcher, 1952, 1953; Humes et al., 1986; 
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Ludvigsen, 1987).  Most studies of the AI have found that it overestimates the performance of 

those with hearing loss (Egan & Weiner, 1949; Fletcher & Galt, 1950; Hulsch, 1975). The AI 

model is founded with the idea that speech intelligibility under adverse conditions is strongly 

affected by the audibility of the speech spectrum. However, the AI was designed to 

accommodate linear distortions and additive noises with continuous spectra. It is less effective 

for predicting the effects of nonlinear or time varying distortions, transmission channels with 

sharp peaks and valleys, and time-domain distortions, such as those created by echoes and 

reverberation. Some of these difficulties are overcome by reformulations of AI theory such as the 

speech intelligibility index (SII).  

1.3.3 Speech Intelligibility Index 

The primary differences between the SII and AI are that the SII provides a more general 

framework for making the calculations than the AI. This framework was designed to allow 

flexibility in defining the basic input variables (e.g., speech and noise levels, auditory threshold) 

needed for the calculation. The general framework also allows for flexibility in determining the 

reference point for your measurements (e.g., free-field or eardrum). Additionally, differences 

include corrections for upward spread of masking and high presentation levels.  Finally, the SII 

is calculated using 1/3 octave bands rather than the AIs 20 bands of differing sizes. One-third 

octave bands were used as they are the critical bandwidth of perception. As each band is of equal 

width, the SII provides frequency importance functions (FIFs). These FIFs are used to determine  

the weighting of each frequency band on the contribution to understanding of a signal. For 

American Standard English, the FIF is show in Figure 5.  Note that nearly 50% of speech cues 

for English derive from 1000 to 2000 Hz.  



 61 

 

 

 
 
Figure 5: Frequency Importance Function (Comprised from information within 

ANSI, 1997 (R-2007)) 

 

The American National Standard’s Methods for the Calculation of the Speech 

Intelligibility Index was published in 1997 (ANSI, 1997 (R-2007); Dugal et al., 1980). It defined 

the method for calculation of what was described as the physical measure that is highly 

correlated with the intelligibility of speech for a group of talkers and listeners. Like the AI, the 

SII is calculated from acoustical measurements of speech and noise.  
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The general formula for SII is:  

SII = � Ii Ai
𝑛

𝑖=1

 

 

Where the n refers to the number of individual frequency bands used. The current SII standard 

(Dugal et al., 1980) is flexible in that the user can choose how specific they would like the 

measurements to be. This ranges from 6 bands (octave bandwidth) to 21 bands (critical 

bandwidth). The more frequencies used, the more accurate the calculation of the SII. The Ii refers 

to the importance of a given frequency band (i) to speech understanding. Ai is the band audibility 

function associated with the frequency. The values for Ii, also known as the frequency 

importance function (FIF), are based on specific speech stimuli, and when summed across all 

bands are equal to approximately 1.0 (Dugal et al., 1980). 

The SII is calculated with the following assumptions: the listener is facing the speech 

source and the source is otherwise free field, and the speech and any noise are independent and 

can be independently measured. To calculate the SII, the calculation method needs to be 

selected. This means choosing the critical frequency band width (21 bands), one-third octave 

frequency band width (18 bands), equally-contributing band width (17 bands), or the octave 

frequency band width (8 bands). Based on the selection, the chart in ANSI 3.5 (1997) provides 

the frequency importance functions by frequency. To calculate the SII, the equivalent speech 

spectrum level, equivalent noise spectrum level and the equivalent hearing threshold level is 

needed. The accurate calculation of these require the equipment for measurements of the 

modulation transfer function for intensity (MTFI) and the combined speech noise spectrum level 

at the tympanic membrane (CSNSL) as well as a human head manikin such as KEMAR. The 
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exact calculations of these are available in the ANSI 3.5 – 1997, however, current technology 

allows for computer calculation rather than hand calculation of the speech and noise spectrum. 

Once these have been calculated, the Ai, or band audibility, will be calculated. The determination 

of the Ai variable is based simply on the level of the speech, in a given frequency band, relative 

to the level of noise in that same band. If the question is actually how a person may do with a 

hearing loss in quiet, the ANSI 3.5 -1997 has a conversion factor that is used to convert 

thresholds (in dB HL) to a hypothetical internal noise that would give rise to the measured 

threshold in quiet. So this number is used for the noise spectrum number. When determining Ai, a 

dynamic range of speech of 30 dB is assumed. Using the formula for calculating Ai, (E’i – Di 

+15)/30, subtract the spectrum level of noise from the spectrum level of the speech (in dB) in a 

given band, add 15 dB (the assumed speech peaks), and divide by 30. If the results are greater 

than one or less than zero, the numbers one and zero are used. This value is equivalent to the 

proportion of the 30 dB dynamic range of speech that is audible to the listener. This value, the Ai, 

is finally multiplied by the FIF to determine the contribution that each frequency band provides 

to the signal received by the listener. Finally, summing these values across the frequency bands 

leads to an SII number between 0.0 and 1.0. This should not be considered the understanding 

function. Instead it should be interpreted as 1.0 meaning that the entire speech signal is reaching 

the listener, while 0.0 can be interpreted as none of the speech signal is reaching the listener.  

The SII model predicts the average speech intelligibility; it does not attempt to predict the 

intelligibility of the utterance. For estimating speech understanding, another conversion is 

needed. The shape of the appropriate transfer function (Sherbecoe & Studebaker, 2002; 

Studebaker & Sherbecoe, 1991, 1993; Studebaker, Sherbecoe, McDaniel, & Gwaltney, 1999) 

depends on speech material (words/sentences) and the measurement method (word score, 
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sentences score, up/down method, fixed levels). This transfer function can be used to predict 

speech intelligibility as a function of speech level in quiet or in noise or to describe observed 

performance. For most conversational speech stimuli an SII of 0.5 would correspond to close to 

100% intelligibility.  

Many researchers have used the SII to determine the impact of audibility on a signal. The 

predictive value of the SII can be used to determine if lack of audibility is the primary reason for 

lack of intelligibility. Using the SII as a measure of audibility, if hearing loss impacts 

performance on the orally presented test, it can be concluded that audibility is the primary feature 

that decreases the intelligibility of the stimuli used in the study.  Hargus and Gordon-Salant 

(1968) used the SII with a range of speech material redundancy to determine the impact of 

audibility on these stimuli. If audibility impacts the participants’ performance, this would mean 

that audibility was the primary factor in the performance on these stimuli. If it did not, then some 

other factor, such as cochlear pathology or central processing, also influences the speech 

understanding. The authors reported that audibility as demonstrated using the SII did not 

influence the performance of the elderly hearing-impaired participants as well as it did the young 

noise-masked normal hearing participants. They concluded that the speech recognition 

difficulties experienced by the elderly hearing-impaired individuals are not likely solely due to 

reduced audibility.   

In the attempts to make the SII faster to calculate,  Killion and Mueller (2010) updated 

their count the “count the dots” method. While this method adapts the SII to be more clinically 

applicable, like the “count the dots” method of the AI, the updated SII version is not as accurate 

as the true calculation of the SII, but it is clinically friendly.  
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1.3.4 Extended Speech Intelligibility Index 

An extension of the SII was proposed by Rhenbergen and Versfeld (2005). They suggested that 

the SII does not take into account any fluctuation of the masking noise as the SII uses the LTASS 

and noise. Therefore, any fluctuations in the noise would not be accounted for in the SII. The 

authors created an Extended SII (ESII) in the attempt to capture modulations in the noise. This 

could help explain why some researchers who have used modulated noise did not find a strong 

correlation with the SII predicted value (Dubno, Horwitz, & Ahlstrom, 2002). They suggested a 

slight change in the model of the SII to create a small critical band filter to capture the modulated 

noise and use this as the noise factor. Their change did slightly increase the SII predictive value. 

Although this change was introduced in 2005, it has not been readily used in the general 

literature. It is likely due to the lack of real world application for the modulated noise. Other 

publications using the ESII are primarily from the same authors (Rhenbergen, Versfeld, de Laat, 

& Drescher, 2010; Rhenbergen, Versfeld, & Drescher, 2006). 

1.3.5 Speech Transmission Index 

A similar model to the SII, the Speech Transmission Index (STI) (Steeneken & Houtgast, 1980), 

is used primarily by acoustic consultants and engineers. The primary difference between the SII 

and the STI is that the STI is based on the generation and analysis of an artificial test signal that 

replaces the speech signal. In the STI concept, the intelligibility of speech is related to the 

preservation of the spectral differences between consecutive speech elements; the phonemes. 

This can be described by the envelope function. Rather than the speech signal in the SII, this 

envelope spectrum is used to derive the STI. Like the SII, STI has frequency importance 
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functions. The signal is divided into octave bands, like the 8 band SII. There is then a 

transmission index value (TI value) applied to each band which represents the contribution of 

each octave band to the final STI. However, the SII algorithm is more complex than STI with 

respect to its mechanisms to account for the upward spread of masking and hearing acuity (van 

Wingaarden & Drullman, 2008).  As the STI, like the SII, is primarily a monaural model there 

has been a proposed correction for binaural presentations (van Wingaarden & Drullman, 2008). 

The authors suggest their changes could likely be used for the SII.  

 

The AI, SII, ESII and STI are the primary models used to describe speech intelligibility. 

These are outlined in Table 8. Other methods for calculating speech intelligibility have been 

proposed such as the Rectangular Passband Intelligibilities (Taub, 1977). However, these have 

not been widely used or verified. The reliability of these for performance prediction is limited.   

As the Speech Intelligibility Index is more commonly used and has been validated for judging 

the impact of audibility on speech intelligibility for those with normal hearing and hearing 

impairment, it is the suggested model. The SII may provide a useful tool for assessing whether 

audibility is a factor in the accurate diagnosis of dementia via a verbally/orally administered test 

(MMSE) and further whether audibility is the primary factor given the complex nature of the 

auditory system.  
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            Table 8: Models of Speech Intelligibility 

Model Methods described by: Primary Components 

AI French and Steinberg (1947) Equal Bandwidths, Frequency Importance 

Functions 

SII – 21 band ANSI (1997) Critical Bandwidths, Frequency Importance 

Functions, Noise (HL is internal noise) 

SII – 18 band ANSI (1997) 1/3 octave Bandwidths, Frequency 

Importance Functions, Noise (HL in internal) 

SII – 17 band ANSI (1997) Equal Bandwidths, Frequency Importance 

Function, Noise (HL is internal noise) 

SII – 8 band ANSI (1997) Octave Bandwidths, Frequency Importance 

Function, Noise (HL is internal noise) 

ESII Rhenbergen and Versfeld (2005) Critical bandwidths, Frequency Importance 

Function, Modulated Noise 

STI  Steeneken and Houtgast (1980) Octave Bandwidths, Transmission Index 

Value, Noise Bands 
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1.4 OTHER FACTORS THAT IMPACT AUDIBILITY AND 

COMMUNICATION 

As discussed previously, audibility is the most important factor for accurate speech perception 

(Humes, 1991, 2007; Kamm et al., 1978; Otto & McCandlis, 1982). However, other factors, such 

as background noise, reverberation, rate of speech and visual cues can have an impact on 

audibility and speech perception.  

1.4.1 Background noise 

Background noise refers to any auditory disturbance that interferes with the intended auditory 

signal (Crandell, Smaldino, & Flexer, 1995). The guidelines from the World Health Organization 

state that background noise in medical facilities should be no louder than 35 dB SPL (1998). 

However, many studies have reported much louder levels ranging from 45 dB to 68 dB SPL, 

with 45 dB being the most common (Allaouchiche, Duflo, Debon, Bergeret, & Chassard, 2002; 

Blomkvist, Eriksen, Theorell, Ulrich, & Rasmanis, 2005; Falk & Woods, 1973; Hilton, 1985; 

McLaughlin, McLaughlin, Elliott, & Campalani, 1996). Most measurements of background 

noise are obtained using a sound level meter with an A weighting which is designed to simulate 

the average human ear under conditions of low sound loudness.  

A study of a variety of medical units including a geriatric internal medicine unit was 

conducted to determine the intensity and spectral shape of the noise in medical units (Busch-

Vishniac et al., 2005). They determined a significant variability between units, rooms and times 

of the day the noise was recorded. In the geriatric internal medicine unit the average RMS across 
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all frequencies for the entire 24-hour collection period was 43.51 dB SPL (Busch-Vishniac, 

2011). The spectral shape is shown in Figure 6. 

 
 

 

 
 
Figure 6: Sound Spectra Unit Nelson 7 - Johns Hopkins Hospital (Busch-Vishniac, 

2011) 

 

Background noise compromises an acoustic signal by masking some of the acoustic and 

linguistic cues. Generally background noises mask the weaker consonants more than the vowels 

and causes a significant reduction in speech perception because nearly 90% of the important 

acoustic information in speech is provided by consonants (French & Steinberg, 1947; Wang et 

al., 1978).  
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Common noises in a medical examination room would be white noise from the venting 

system. Noises such as air conditioning units have predominately low frequency energy and are 

often more effective maskers of high-frequency speech sounds due to the upward spread of 

masking. This phenomenon involves noise producing greater masking for signals that are higher 

in frequency than the noise. Continuous noises, such as those emitted by a fan, are generally 

more effective maskers than impulse or interrupted noises because continuous noises more 

effectively reduce the spectral-temporal information available in the speech signal (Crandell & 

Smaldino, 2002). These cues, as discussed previously, are critical to accurate speech perception.  

1.4.2 Reverberation 

While noise is one of the most obvious distortions of a speech signal, reverberation is also 

common; most listening situations have some noise and some degree of reverberation. Both of 

these distortions significantly alter the speech signal. While noise obscures the less intense 

portions of a stimulus, reverberation causes masking of adjacent phonemes, smears elements in 

the time domain, and smooths the temporal envelope (Houtgast & Steeneken, 1973). As 

discussed previously, these elements are more difficult for elderly persons to process without any 

distortions, with reverberation causing a distortion; this is even more detrimental to speech 

perception. Several studies have reported that elderly people perform more poorly on speech 

perception tasks when the signal is distorted with reverberation (Harris & Reitz, 1985; Nabeleck, 

1988; Nabeleck & Letowski, 1985).  

 One of the ways reverberation of a room is determined is reverberation time (RT). RT is 

the time in seconds required for sound pressure at a specific frequency to decay 60 dB after the 

sound source has stopped (Kreisman, 2003). Long RTs reduce the clarity of the speech and 



 71 

thereby intelligibility. This is because the speech signals reaching a listener are a mixture of 

direct energy and time-delayed reflections. In addition, when RTs are too long, undesired sounds 

remain longer in the room and consequently, noise levels increase, which as discussed previously 

is detrimental to speech perception.   

The critical distance of a room is the distance at which the sound pressure wave 

spreading out from a sound source becomes equal to the reflected sound due to reverberation 

(Mijic & Masovic, 2010). This distance depends greatly on the geometry and absorption 

materials within the space. For the most accurate perception of sound information the listener 

must be inside the critical distance around the sound source. Although no average critical 

distance measurements could be found related to medical examination rooms, information can be 

extrapolated from calculations of critical distances in a classroom. Although a classroom is much 

larger, it likely has the similar geometry and absorption.  Crandell and Smaldino (1994) suggest 

that in an average sized room (6 x 6 x 3 meters) with a commonly measured reverberation time 

of 0.8 seconds, the critical distance would be approximately 3.6 meters. Based on this, it could 

be suggested that a medical examination room is ½ the size of an average classroom therefore 

the critical distance would be 1.8 meters or about 6 feet. It is likely that due to the small size of 

typical exam rooms, the physician and patient are within the critical distance necessary for 

reduced impact of reverberation. 

1.4.3 Rate of speech 

On a daily basis most communication is spoken in a conversational manner; this is in contrast to 

the deliberately slow and accurately articulated speech that occurs when material is read out 

loud. Picheny, Durlach and Braida (1986) reported that conversational speech is twice as fast as 
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read speech and other authors have reported that conversational speech affects many of the cues 

of speech (Ferguson & Kewley-Port, 2002; Klatt, 1975; Krause & Braida, 2004). With fast 

conversational speech, as the rate increases the cues of speech are lost. Acoustic information, 

such as intensity, spectral and temporal cues, are distorted and often lost in conversational speech 

(Picheny et al., 1986).  

Alternatively, read speech, also known as clear speech, is much slower and articulation is 

much clearer. This slower speaking rate is something that many talkers adopt in difficult 

communication situations. Picheny et al (1985) suggested that clear speech is significantly more 

intelligible than conversational speech for both normal-hearing and hearing-impaired listeners, 

nearly 17% more intelligible. Read speech is typically spoken more slowly than conversational 

speech (Picheny et al., 1986), it has more acoustic energy at the high frequencies (Krause & 

Braida, 2004; Picheny et al., 1986) and typically it has larger temporal envelope modulations 

(Krause & Braida, 2004). All of these acoustic differences factor into the increased intelligibility 

of the intended signal when clear speech is used. 

There is likely a third category that has not been studied. It is likely somewhere between 

conversational speech and read speech. It is more like the rate of speech an instructor would use. 

It is slow enough to foster auditory processing, but as the material is familiar to the lecturer, it is 

delivered faster than read speech. As physicians are using the same questionnaires over and over 

again, this rated of instructed speech is likely the rate that they would use.  

1.4.4 Visual Cues 

Under ideal listening situations, a person with normal hearing does not require any visual 

information for mostly accurate speech perception. However, in the presence of background 
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noise, reverberation or for those with hearing loss, there is substantial improvement in speech 

perception when the person is able to see the talker’s face (MacLeod & Summerfield, 1987). 

MacLeod and Summerfield (1987) suggested that in the presence of hearing loss or background 

noise, adding a visual cue to speech as compared to auditory alone improved the signal-to-noise 

ratio by as much as 11 dB. This is not insignificant as recent evidence suggests that improving 

the signal-to-noise ratio decreases listener effort (Fraser, Gagne, Alepins, & Dubois, 2010).  

However, as a person ages, their ability to use these speech cues significantly decreases. 

Beginning at 65 – 70 years, older adults with normal, or corrected normal vision, are unable to 

use visual cues as effectively as younger adults on tasks involving visual recognition of words 

and sentences (Cienkowski & Carney, 2002; Lyxell & Ronnberg, 1991; Middleweerd & Plomp, 

1987).  

1.5 IMPACT OF HEARING LOSS ON DIAGNOSIS OF DEMENTIA 

Little research has been conducted on the relationship between reduced hearing acuity and 

assessment of cognitive functioning. There are, however, a few studies that suggest a degree of 

association between hearing loss and dementia. These studies are primarily field studies not 

laboratory or controlled studies. There are several studies that have reported that hearing loss is 

generally twice as likely in individuals with dementia or other mental disorders as those with 

normally aging cognitive function (Hodkinson, 1973; Kay, Beamish, & Roth, 1964; Uhlmann, 

Larson, Rees, Koepsell, & Duckert, 1989). There are examples of instances where the behavior 

of hearing-impaired individuals who appeared “confused” and were labeled as “senile” improved 

after the use of hearing aids (Ronholt, 1986). Palmer et al (1998) showed that the difficult 
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behaviors associated with Alzheimer Dementia were reduced after treatment with amplification. 

These studies have focused on the population diagnosed with dementia and the rate of hearing 

loss. While this and other studies provide evidence that hearing loss can impact those with 

dementia, research on the effects of undiagnosed hearing loss on the diagnosis of dementia is 

sparse. Currently, there are three articles that discuss the association between hearing loss and 

the diagnosis of dementia; these are summarized in Table 9. 

 Uhlmann et al. (1989) reported that patients with mild to moderate hearing losses have a 

diminished performance on the verbally presented MMSE. Their justification for including 

participants with mild to moderate hearing was that more significant hearing losses would be 

clinically obvious and that mild to moderate hearing losses are frequently unrecognized.  Their 

description of hearing loss was based on average hearing loss and did not define configuration or 

type of hearing loss. The conclusions were based on auditory sensitivity as measured by 

soundfield audiometry, not frequency specific threshold information. However, Durrant, et al. 

(1991) reported that accurate frequency-specific audiometric information can be obtained, even 

in those with advancing Alzheimer Disease; this was replicated by Palmer, et al (1998).  

Uhlmann et al. (1989) participants were given the MMSE after completing a medical 

evaluation; they did not provide a description of how the MMSE was administered other than it 

was completed in the clinic. As this test does not have a standardized administration, it is 

unknown who conducted the MMSE testing and/or if it was one of the investigators; this could 

have confounded their results if the testing was completed by an unblinded investigator. Study 

participants were people who had a diagnosis of dementia. They reported that those with mild to 

moderate hearing loss did not do as well on the MMSE as those with normal hearing. While this 

answered their question of whether hearing loss would worsen the cognitive scores, they were 
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unable to accurately report the effects of the different components of hearing loss or auditory 

processing on the diagnosis of dementia. The study concluded that hearing loss did not confound 

the results of the verbally administered MMSE. They based this conclusion on the fact that there 

was not a significantly different result on the verbally administered MMSE and the written 

MMSE they were trying to develop. These results are in question because of the potentially 

unblinded nature of the study and the inclusion of a non-standardized measure that was under 

development. It is difficult to draw conclusions based on a measure that was being developed. It 

could be that the visually administered test was more difficult as visual information has been 

shown to be more difficult to process than verbal information in the elderly population 

(Cummings, Benson, Hill, & Read, 1985). If the verbal administration actually produced poorer 

results than agreement with the orally derived scores does not mean hearing loss had no impact, 

it would mean that the hearing loss had an equal impact to the difficulty produced by a written 

test. Given the details provided by the study, it is impossible to draw conclusions about the 

impact of untreated hearing loss on this measure.    The authors noted that these were preliminary 

findings, but no follow-up publications were produced.  

Weinstein and Amsel (1986) attempted to quantify the prevalence of hearing impairment 

for those diagnosed with dementia and to determine the effect of amplification on performance 

on the Mental Status Questionnaire (MSQ) (Kahn, Goldfarb, Pollack, & Peck, 1960). The MSQ 

is a brief 10 item questionnaire asking about recent memory and orientation to person, place, and 

time (Verwoerdt, 1976). Weinstin and Amsel (1986) recruited a study group of 30 individuals 

with a clinical diagnosis of dementia from a Veteran’s Affairs physician. Participants with a 

negative history of functional hearing loss or previous hearing aid use were given an audiologic 

evaluation; a majority, 83%, had a significant hearing loss. They did not report how the diagnosis 
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was determined by the physician. They were then given the MSQ under both unamplified and 

amplified conditions. They concluded that hearing loss is more prevalent in the population 

diagnosed with dementia, 83% as compared to 70% of a random sample of institutionalized non-

demented persons. They also determined that there was a significant decline in the MSQ score 

for the unamplified condition, suggesting that the person would appear to be more demented if a 

physician were to use the MSQ as their primary measure for diagnosing dementia without 

ensuring audibility. These results suggest that there could be a significant effect of hearing loss 

on mental status testing. However, this study used the MSQ, a test which is not used often in 

current protocols for diagnosing dementia (Jorgensen et al., 2012 - submitted; Shulman et al., 

2006).  

Raiha et al. (2001) attempted to quantify false diagnoses using the MMSE. They stated 

that the most common causes for difficulty on the test performance of the MMSE was likely 

related to hearing loss or poor vision. They stated that out of the total participants, 1196 

participants, that testing results were confounded by other factors with the most common being 

vision and hearing impairment. They reported that 36 were likely affected by vision impairment 

and 20 were affected by hearing loss. This is significantly lower than previous estimations of 

people with hearing loss in this population. The study reported that hearing was examined, but 

did not state how this was completed. A research nurse conducted the MMSE screening; if a 

participant was unable to complete a portion of the MMSE, the examining nurse recorded what 

they felt was the cause that had interfered with performance. This study was conducted in a 

clinic and has a great deal of possible researcher bias. In the discussion of the study results, the 

researchers conceded that the criteria for poor performance were not agreed upon in advance of 

the study and the research nurse had to use his/her own experience to determine a participant’s 
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difficulty on the testing. While the results support that there is a likely connection between 

undiagnosed hearing loss and the diagnosis of dementia, the foundation for these statements is 

weak.  

 

  



 78 

           Table 9: Hearing Loss and Diagnosis of Dementia 

Citation Study Question Population Materials Findings Problems 

Raiha, et al 
2001 

The extent to 
which causes 
other than 
dementia will 
contribute to 
poor 
performance on 
MMSE 

People born 
before 1926 
residing in 
Lieto, 
Finland - 408 
men and 708 
women 
interviewed 

MMSE 
administered 
by nurse; 
when 
participant 
missed item 
nurse 
recorded 
reason (ex: 
vision, 
hearing, 
functional, 
cognition) 
Nurse rated 
whether 
performance 
on MMSE 
was due to 
other factors 

10% of those 
tested did not 
do well on 
MMSE but 
were 
contributed to 
other factors; 
Most common 
causes for 
difficulty were 
vision and 
hearing; most 
had problems 
on writing of 
sentence or 
drawing 
pentagons 

Subjective 
ratings of 
nurses; use of 
just MMSE; 
did not test 
other things 
that were 
reported as 
cause (ex: 
hearing, 
vision, etc) 
just took 
word of nurse 
or participant 
self-report; 
not blinded; 
criteria not 
agreed upon 
prior to 
completion of 
the study 

Uhlmann, et 
al, 1989 

1 – does mild to 
moderate 
hearing loss 
artificially 
lower the 
MMSE  
2 – to develop a 
comparable 
version of a 
written form of 
the MMSE  

71 patients 
enrolled in 
AD research 
with: >14 on 
MMSE, 
diagnosis of 
AD, English 
speaking, 
20/200 
vision, 
audiometric 
reliability 

MMSE Those with 
mild to 
moderate 
hearing loss 
did worse on 
the MMSE 
than those with 
normal 
hearing, 
written version 
of the MMSE 
was not 
significantly 
higher than the 
verbally 
administered 
MMSE for 
either group 

Done in clinic 
– not blinded; 
made 
conclusions 
based on 
written 
version of 
MMSE that 
was not 
validated, 
used just the 
MMSE, used 
those with 
prior dx of 
dementia – 
influence of 
central 
processing 
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           Table 9 (continued): Hearing Loss and Diagnosis of Dementia 

Citation Study Question Population Materials Findings Problems 

Weinstein & 
Amsel, 1986 

1 – determine 
the prevalence 
of hearing 
impairment in 
dementia  
2 – determine 
association of 
hearing loss to 
MSQ  
3 – determine 
performance of 
MSQ amplified 
and unamplified 

30 VA long 
term residents 
with 
diagnosis of 
dementia; 
control group 
of no 
diagnosis of 
dementia 

MSQ 
without 
amplification 
and with 
auditory 
trainer to 
most 
comfortable 
loudness 
level of 
participant 

1 – higher 
incidence of 
HL in dementia 
population  
2 – those with 
poorer MSQ 
(more 
dementia) had 
higher PTA 
3 – when 
amplified, the 
distribution of 
amount of HL 
equalized 
across MSQ 
score (not 
statistically 
significant)  
Able to 
reclassify 
10/30 
participants to 
less severe 
dementia  

No power 
analysis as to 
why 30 
participants; 
used those 
with 
diagnosis of 
dementia; did 
not take in 
consideration 
normal 
cognitive 
aging; used 
PTA for 
hearing loss 
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While there is some evidence that hearing loss correlates with diminished performance on 

verbally administered cognitive tests for dementia, it is unclear what component of the aging 

hearing loss may be the significant contributor to their findings. Most studies, such as previously 

discussed Uhlmann et al. (1989) and  Weistein and Amsel (1986), focused on patients already 

diagnosed with dementia. Studies also were conducted in the clinic and were not controlled or 

blinded. Furthermore, the criteria for dementia diagnosis are unclear.  

Hearing loss is often under diagnosed in the general population and this is even more 

evident in the population with memory impairment (Yueh et al., 2003). Neurologists and primary 

care doctors conduct unreliable hearing tests with a bedside type hearing test such as finger rub, 

whispered speech, watch tick, and the Rinne and Weber tuning fork tests or assessing their 

abilities when speaking to the patient. Patient self-identification of hearing loss is also unreliable, 

1-51% correct (Boatman et al., 2007). Lack of accurate diagnosis and treatment of hearing loss 

may contribute to the misdiagnosis of people with dementia. Many of the symptoms of dementia 

and hearing loss are similar. Similarities between the symptoms of hearing loss and dementia are 

described in Table 10. Patients are often brought to their primary care doctor or neurologist with 

concerns of dementia by their caregivers, usually family.  
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Table 10: Similarities between Dementia & Untreated Hearing Loss           
(Jorgensen, et al 2012) 
 

 
Dementia Untreated Hearing loss 

Social Isolation (Holmen, Ericsson, & Winblad, 

2000) 

Social Isolation (Weinstein & Ventry, 1982) 

Decreased Comprehension (Pogacar & Williams, 

1984)                            
Decreased Understanding/Discrimination  

(Dubno et al., 1984) 

Repeating Questions (Nyatsanza et al., 2003) Repeating Questions (Katz, 2002) 

Short-term memory problem (E. Miller, 1973)     Working memory problem (Salthouse, 1996) 

Stereotyped/inappropriate word use  (Nyatsanza 

et al., 2003) 

Stereotyped/inappropriate word use (Tesch-

Romer, 1997) 

Difficulty following conversation (Bozat, 

Gregory, Lambon Ralph, & Hodges, 2000)                                         
Difficulty following conversation (Dalton et al., 

2003) 
 
 
 

The question remains as to whether hearing loss alone can make someone with normal 

cognitive function appear to be demented or make someone appear to have a more advanced 

stage of dementia then they truly have. Lopes, Magaldi, Gandara, Reis and Jacob-Filho (2007) 

investigated two groups of people who had mild cognitive impairment. These two groups 

performed similarly on tests of cognitive function. They questioned the participants about their 

cognitive status and two groups immerged – those that reported normal cognitive function and 

those that reported cognitive impairment. The authors assessed the hearing status of these two 

groups and determined that those that reported cognitive impairment had significantly worse 

hearing than those who reported normal cognitive function. These results put further into 

question the protocols used to diagnose dementia as they generally rely on self-report of 

cognitive impairment.  

 



 82 

1.5.1 Possible Negative Consequences of Inaccurate Diagnosis 

Implications of proper diagnosis are broad for both people with and without dementia. The 

diagnosis of dementia could affect the person’s autonomy, independence and the way others 

view this person. It is also a question of disclosure of the diagnosis. It could lead to difficulty 

obtaining insurance or being accepted into assisted living facilities. Holroyd, Snustad and 

Chalifoux (1996) reported 79.5% of patients stated they would prefer to know of the diagnosis of 

Alzheimer Disease. That is significantly lower than the percent that would like to know if they 

had terminal cancer, which was 91.7%. Furthermore, 65.7% of people reported they would want 

their spouse to know of the diagnosis of dementia whereas 80.2% said they would want their 

family to know if they had cancer. There are several case studies that report incidents of suicide 

in patients newly diagnosed with Alzheimer Disease; however, the extent of this concern  is 

unknown in the more general dementia population (Conwell & Caine, 1991; Rohde, Peskind, & 

Raskind, 1995). The implications of a false diagnosis are broad and, while speculative, could 

affect a person’s lifestyle and have detrimental effects on the rest of their life and on their family. 

1.6 SUMMARY 

Dementia and hearing loss have very similar presentations in a clinical setting. Depending on the 

person that they present to, audiologist or geriatrician, the clinical course could be very different. 

It is of concern that someone who has an undiagnosed hearing loss could be diagnosed with 

dementia. While there are many different types of dementia, most physicians report using only 
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the MMSE when diagnosing dementia; although the authors of the MMSE suggest not using 

solely this method for diagnosis.  

Hearing loss has many different components in the aging population. The most important 

aspect of hearing is that the sound is audible although the sound then has to be coded effectively 

by the cochlea, an organ that is often damaged by sensorineural hearing loss. Additionally, the 

signal has to be processed by the central auditory system; which in aging adults may be 

compromised. Additionally, other factors, such as background noise, reverberation, access to 

visual cues and rate of speech can make speech more difficult to effectively decode for an aging 

adult. 

In summary, there are several unanswered questions about the effects of the aging 

auditory system on verbally given tests for dementia like the MMSE.  

(1) Does decreased audibility caused by hearing loss, such as presbycusis, have an effect 

on the intended auditory signal of the MMSE subsequently impacting the outcome of the 

assessment? 

(2) Does cochlear pathology caused by sensorineural hearing loss, such as presbycusis, 

have an effect on the intended auditory signal of the MMSE subsequently impacting the outcome 

of the assessment? 

(3)  Do aging listeners have increased problem processing the MMSE due to changes in 

their auditory processing system subsequently impacting the outcome of the assessment? 

(4) Does age related decline in the ability to process speech in difficult listening 

situations, such as speech in clinic and hospital-related noise, have an effect on the MMSE 

evaluation? 

(5) Are there interactions of any/all of these factors? 
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Any or all of these processes in the auditory system, could affect the diagnosis of 

dementia as determined by an orally presented evaluation. As the auditory system compounds as 

it travels to the cortex, to effectively test these hypotheses, the initial step is to answer the 

question on the effect of audibility on a test such as the MMSE. Would lack of audibility make 

someone who is not demented appear demented or someone who is demented to appear to have 

more difficulties? The Speech Intelligibility Index is a model that could be used to demonstrate 

whether audibility impacts performance on the MMSE by being able to determine what 

proportion of poor performance on the MMSE is due strictly to audibility.  
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2.0  REARCH METHODS 

2.1 RESEARCH PROBLEM AND OBJECTIVES 

This study investigated whether audibility impacts the score obtained on an orally presented test 

such as the Mini-Mental State Exam (MMSE). As noted by Humes and Roberts (1990) audibility 

is the primary predictor in performance on spoken communication. The MMSE evaluation was 

presented at different levels of audibility, as calculated by the SII, to a group of participants. 

Based on the gaps in the literature and lack of our understanding of the impact of hearing loss on 

orally presented tests, the following research questions were addressed: Does audibility as 

represented by differing SII’s influence performance on the MMSE? Further, does decreasing 

audibility produce significantly worse scores on the MMSE or is this evaluation immune to the 

impact of audibility?  

H0: Audibility does not have an impact on the orally presented MMSE.  

H1: Audibility does have an impact on the orally presented MMSE and furthermore 

incremental decreases in audibility will have a greater impact on the performance.  
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2.2 STUDY METHODS 

2.2.1 General Research Design 

This study used an across-group design. Participants were randomly assigned to one of five 

groups; participants were blinded as to group assigned. To protect from researcher bias, 

participant responses were recorded and scored by an independent, blinded researcher. These 

were compared to the primary researcher’s transcriptions of responses. If there was disagreement 

between the first two reviewers, a third reviewer was elicited to review these responses and a 

consensus was reached between the three reviewers. Data were collected for each group and 

comparisons were made across groups.  

2.2.2 Stimuli 

2.2.2.1 MMSE Recording 

The study sought to determine the impact of audibility on the score obtained on the MMSE while 

controlling other presentation variables. As discussed previously, there is not a uniform or 

directed method of administering the MMSE to patients. Therefore, an observation was 

conducted in a representative Internal Medicine Clinic to determine how physicians administer 

the test. Information was collected about how physicians speak when administering the 

evaluation and observations were made about the environmental conditions in which the 

evaluation is conducted. The factors that were observed and the methods for controlling these 

factors are described in Table 11. 
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           Table 11: Factors for Consideration for Simulation of Real World Environment 

Factor Observation Simulation Control Justification/Citation 

Hearing Loss Physicians generally do 

not take hearing loss into 

account when assessing 

dementia 

Simulating 4 hearing 

losses 

These 5 hearing 

conditions will 

represent 

progressively 

decreasing audibility 

and thus progressively 

decreasing access to 

the acoustic 

information. (Humes 

& Roberts, 1990; 

Jorgensen, et al 2012) 

Loudness 

Level 

Loud conversational 

level 

70 dB SPL (Olsen, 1998) 

Background 

noise 

45-83 dB SPL A white 

noise from fan using 

sound level meter phone 

application measured at 

position of patient 

45 dB RMS white noise 

(average per published 

research) using published 

spectral shaping 

combined with original 

stimuli  

(Allaouchiche et al., 

2002; Blomkvist et 

al., 2005; Busch-

Vishniac, 2011; Falk 

& Woods, 1973; 

Hilton, 1985; 

McLaughlin et al., 

1996) 

Reverberation The rooms were small 

and thus it is likely that 

the physician was within 

the critical distance 

No reverberation will be 

added  

(Crandell & 

Smaldino, 1994; Mijic 

& Masovic, 2010) 
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 Table 11 (Continued): Factors for Consideration for Simulation of Real World       
 Environment 
 

Factor Observation Simulation Control Justification/Citation 

Rate of speech Not as fast as 

conversational speech, 

not as slow as read 

speech – instructional 

rate 

Recording of experienced 

physician 

giving/instructing on 

MMSE 

This rate most closely 

simulates real world 

rate as physicians are 

very comfortable and 

familiar with this task 

and thus speak more 

quickly than read 

speech but slower 

than conversational.  

Visual Cues Physician inconsistently 

faced the patient directly 

No visual cues will be 

given 

Audibility only is the 

desired task to be 

evaluated. 

Additionally, want to 

err on the side of 

difficulty.  
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In an attempt to control for the manner in which the MMSE is administered, one 

recording was obtained and manipulated for this experiment. In geriatrics, more physicians are 

male than female, therefore in order to be most realistic, a male voice was used (Tu & O'Malley, 

2007). As discussed before, physicians are very familiar with the MMSE and present it to their 

patients often. As observed clinically, the physicians do not speak as slowly as read speech or as 

quickly as conversational speech, it is more like instructional speech. A recording of a male 

physician giving the MMSE was used as the material for this test; this was obtained from online 

teaching recordings (Internet Archives, 2012). Conversational speech ranges between 160 and 

200 words per minute while the speaking rate for read speech decreases by an average of 50-100 

words per minute (Picheny et al., 1986). The recording of the physician’s speech was 123 words 

per minute. As loud normal conversation is 70 dB (Olsen, 1998) the stimuli were analyzed and 

RMS was increased to 70 dB SPL to simulate loud normal conversational level as was observed 

in clinical settings.  

2.2.2.2 Simulation of hearing loss 

Simulations of five hearing conditions were used in the study along with stimuli that were not 

modified and represented normal hearing. Together, these created five hearing conditions. The 

five hearing condition groups were as follows: 1) Normal hearing (NH) 2) mild to moderately-

severe sloping hearing loss (MI-MS) 3) mild to severe sloping hearing loss (MI-S) 4) moderate 

to severe sloping hearing loss (MO-S) 5) severe to profound sloping hearing loss (S-P). Group 1 

used the persons’ normal hearing sensitivity and no modifications were made to the recorded 

MMSE. Groups 2, 3, 4 and 5 were based on Cruikshanks et al. (1998) data and are described 

below.  
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 Cruickshanks et al (1998) described hearing loss by age and reported in dB HL. They 

grouped their participants into 4 age categories: 48-59, 60-69, 70-79, 80-92 years of age. As 

discussed previously, people are not typically diagnosed with dementia until the age of 65. As 

half of the people in the study in the 60-69 group were under the age of 65, only 70-79 and 80-92 

were considered. The two audiograms for ages 70-79 and 80-92 are not clinically or statistically 

significantly different. Cruikshanks et al (1998) also separated hearing loss by gender. As the 

hearing loss for males is worse than females, the average for males was the average used. It is of 

interest to use the “worst case scenario” to see if audibility has an impact on the MMSE 

evaluation. Therefore, the 80-92 year old male hearing loss was chosen as this group has more 

variability than the 70-79 group for mild to moderately-severe hearing loss (Group 2). One-half, 

one and two standard deviation decreases in threshold were used to create mild to severe 

simulated hearing loss (Group 3), moderate to severe simulated hearing loss (Group 4) and 

severe to profound simulated hearing loss (Group 5) groups, respectively. This led to four 

different hearing loss simulations. The hearing losses have been plotted below on an audiogram, 

rounded to the nearest 5 dB, (see Figure 7) and listed in the table below in dB HL (see Table 12) 

and dB SPL as converted using ANSI S3.6 (1996) (see Table 13).  
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Figure 7: Simulated Hearing Losses 
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           Table 12: Simulated Hearing Loss (dB HL) 

 250 Hz 500 Hz 1000 Hz 2000 Hz 3000 Hz 4000 Hz 6000 Hz 8000 Hz 
80-92  R 30.6 31.8 38.2 52.3 63.5 70.5 77 81.3 
 L 27.4 27.8 34.8 50.4 63.4 71.3 77 79.7 
0.5 SD R 38.3 43.3 49.6 62.3 72.1 79.2 85.5 89.1 
 L 35.8 41.3 47.9 61.3 72 77.6 85.5 88.3 
1 SD R 45.9 54.7 60.9 72.2 80.6 87.8 93.9 96.8 
 L 44.2 45.9 54.3 68.1 79.8 88.1 94.3 95.2 
2SD R 71.2 77.6 83.6 92.1 97.7 105.1 110.8 112.3 
 L 61 64 73.8 85.8 96.2 104.9 111.6 110.7 

 

 
           Table 13: Simulated Hearing Loss (dB SPL) 

 250 Hz 500 Hz 1000 Hz 2000 Hz 3000 Hz 4000 Hz 6000 Hz 8000 Hz 
80-92 R 65.1 45.3 45.7 61.3 75 82.5 93 96.8 
 L 54.4 41.3 42.3 59.4 74.9 83.3 93 95.2 
0.5 SD R 65.3 56.8 57.1 71.3 83.6 91.2 101.5 104.6 
 L 62.8 54.8 55.4 70.3 83.5 89.6 101.5 103.8 
1 SD R 72.9 68.2 68.4 81.2 92.1 99.8 109.9 112.3 
 L 71.2 59.4 61.8 77.1 91.3 100.1 110.3 110.7 
2SD R 98.2 91.1 91.1 101.1 109.2 117.1 126.8 127.8 
 L 88 77.5 81.3 94.8 107.7 116.9 127.6 126.2 

 

 
Hearing losses were simulated using Adobe Audition 3 graphic equalizer (10 bands). 

Information below 250 Hz and above 8000 Hz was not manipulated. When listening in the 

soundfield, a person hears with their better hearing ear; therefore, the better threshold at each 

frequency was used to simulate hearing loss. Hearing losses (from audiogram dB HL) were 

converted for each frequency and ear in dB SPL (ANSI, 1996) and were subtracted from the 

sound file previously recorded using frequency specific attenuation. The use of frequency 

specific attenuation (filtering) was necessary as the impact of audibility was desired as well as 

the use of filtering allowed for the addition of white noise along with the MMSE recording. It 
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should be noted that although the 80-92 age range hearing loss was used to simulate hearing loss, 

once the results were obtained, the impact of audibility can be generalized to all ages as it 

demonstrates the impact of audibility and has no association with age.  

2.2.2.3 Simulated Noise 

As discussed previously, white noise is common in the rooms where the MMSE is given. The 

range of noise in an examination room is 45 dB SPL to 68 dB SPL, with 45 dB SPL being most 

common. Previous research demonstrated the spectral shape of the noise in hospital rooms 

(Busch-Vishniac et al., 2005).  Personal communication with the lead author allowed for 

acquisition of recorded values from this publication (see Table 14 and Figure 8). In the attempt 

to replicate the actual environment, white noise was spectrally shaped and RMS was adjusted to 

45 dB SPL. This was then added to the original sound file prior to creation of the hearing loss. 

This is because the noise also would have been “heard” through the person’s hearing loss.  

A calibration tone was created at original stimuli RMS. This was to ensure that the 

original stimuli would have been at 70 dB SPL at the participant’s ear. 

 
Table 14: Room Sound Spectra 

Frequency (Hz) 16 31.5 63 125 250 500 1000 2000 4000 8000 16000 
Intensity (dB SPL) 57.44 57.58 54.07 51.76 46.03 43.34 39.02 36.08 29.11 23.65 19.57 
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Figure 8: Room Sound Spectra 

2.2.2.4 Stimuli Creation 

MMSE Stimuli Creation 

Using the methods described above, the MMSE recording at 70 dB SPL and the 45 dB SPL noise 

combination were attenuated. This created five (one unaltered and four altered) recordings of the 

MMSE. See Figure 9 for flowchart of stimuli creation. 
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Figure 9: Flowchart of Stimuli Creation 
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Northwestern University Test Number 6 Stimuli Creation 

Additionally, the Northwestern University Word Recognition Test Number 6 (NU-6, 

Northwestern University; Tillman & Carhart, 1966) male voice 50-word lists were attenuated 

with the same four hearing losses listed above. The purpose of including the NU-6 recording was 

to ensure that the attenuation was impacting audibility and to replicate previously published data 

on the impact of audibility on these tests. The male speaker 50 words version of the NU-6 test 

was used.  As the lists are phonetically balanced, two lists were chosen. This resulted in ten 

recordings of the NU-6 test – two 50 word lists for each of the five listening conditions. The NU-

6 test was chosen because of its known sensitivity to changes in audibility and its wide clinical 

use. Using the same hearing condition group as the MMSE, one 50 word list was presented to 

each ear for each participant.  
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2.2.3 Participants 

2.2.3.1 Power Analysis 

Using G-power (Faul, Erdfelder, Lang, & Buchner, 2011), a power analysis was conducted to 

calculate the number of participants needed.  The power analysis was based on one-way, fixed 

effects, omnibus ANOVA with a power of 0.80 and alpha of 0.05.  As no previous studies were 

available where the MMSE was given to young normal hearing participants, an effect size was 

unknown. Therefore, a large effect size for an ANOVA was assumed (0.40, Cohen, 1988, 1992) 

as this would be most clinically significant. A total of 125 participants were needed with 25 

participants in each of the 5 groups.  

2.2.3.2 Inclusion criteria 

In the attempt to control for audibility, cochlear pathology and central processing, this study 

included young adults with normal hearing. This was needed to control for factors (i.e., cochlear 

pathology and central processing and cognitive status) not being investigated in this study. 

Participants must have met all of the inclusion criteria to be considered a research study 

participant. The inclusion criteria are listed in Table 15. 
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Table 15: Participant Inclusion Criteria 

Test Inclusion Criteria 

Age 18 – 39 years of age 

Language English as first language 

Pure Tone 
Audiometry 

Normal hearing sensitivity (thresholds less than 20 dB) 
No more than 10 dB difference between ears 
 

Word 
Recognition 
Ability 

Miss no more than 1 word of the 10 hardest words 
presented at 40 dB SL 

Tympanometry Ear canal volume: 0.8 – 2.1 cm3 
Peak Pressure: 0.2 – 1.8 mmhos 

Random 
Dichotic Digits 

Within 95% confidence interval – See table 15 

Familiarity 
with MMSE 

Not high knowledge of the MMSE 

 

 
After obtaining informed consent, as approved by the University of Pittsburgh 

Institutional Review Board (IRB), participants were asked a series of case history questions and 

an inclusion screening followed to ensure eligibility. Please see Appendix B for the screening 

forms.  

In order to remove the impact of aging central processing, young adult participant were 

recruited for this study; this included people aged 18 – 39. Several studies, (Humes & 

Christopherson, 1991; Humes & Roberts, 1990) have noted age-related changes in central 

processing for those over the age of 60. Koningsmark and Murphy (1974) noted anatomical 

changes in the central auditory system for participants over the age of 50. They further noted that 

as organ systems do not age uniformly within or across people, this study included participants 

younger than 40 to control for any aging effects on the central auditory system.  
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To control for the effects of cochlear pathology, participants had normal hearing. Normal 

hearing was defined as air conduction thresholds better than 20 dB HL at all audiometric octave 

frequencies (250, 500, 1000, 2000, 4000, 8000 Hz) (Katz, 2002). The NU-6 word recognition 

score screening was completed at 40 dB SL using the 10 hardest words procedure (Hurley & 

Sells, 2003). Participants were only included if they missed no more than 1 word of the 10 

hardest words in each ear. This combination of testing ensured that cochlear pathology did not 

distort the signal presented to the participants. 

Additionally, participants did not have evidence of middle ear disease as defined by 

normal tympanometry using 226 Hz probe tone. Normal tympanometry was defined as: Peak 

pressure (mmhos) 0.2-1.8 and ear canal volume (cm3) 0.8-2.1 (Roup, Wiley, Safady, & 

Stoppenbach, 1998; Wiley et al., 1996). A screening tympanometer was used for this study.  

Accurate central auditory processing was necessary to ensure that central effects did not 

impact the proposed study. Participants were assessed using the Randomized Dichotic Digits 

Test (Strouse & Wilson, 1999). Participants were presented a ½ list in the directed mode 

(Moncrieff, 2011) at 40 dB SL. To be included, participants were able to perform within normal 

limits for their age as described by Strouse and Wilson (1999).  See Table 16 for normative 

values. 
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Table 16: Random Dichotic Digits Normative Values (Strouse & Wilson, 1999) 

Age Ear One Pair Two Pairs Three Pairs 

18-29 Right 99% 96% 87% 

18-29 Left 99% 95% 87% 

30-39 Right 96% 93% 82% 

30-39 Left 93% 81% 70% 

 

 
As the testing used the MMSE, it was imperative that the participants not have intimate 

knowledge of the test. In an attempt to control for this, a list of five cognitive tests were given to 

the participants for them to rate their familiarity with these tests (Appendix C). Four of these five 

were tests that are not in existence, only the MMSE was a real test. The purpose of this was to 

determine participant’s familiarity with the MMSE without cueing them as to this being part of 

the examination. Participants that rated their familiarity with the MMSE as high familiarity were 

excluded from participation – none of the participants recruited were highly familiar with the 

MMSE. 

Additionally, as understanding English is imperative to the understanding of the MMSE, 

only participants whose first language was English were included in this study. 
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2.2.4 Procedure 

Once participants qualified for the study based on the previously described inclusion criteria, 

they were randomly assigned to one of the five hearing condition groups: no alteration (normal 

hearing – Group 1), mild to moderately-severe simulated hearing loss (Group 2), mild to severe 

simulated hearing loss (Group 3), moderate to severe simulated hearing loss (Group 4) and 

severe to profound simulated hearing loss (Group 5). Participants were not informed as to the 

hearing condition to which they were assigned – See Appendix E for instructions. Participants 

were seated in a single-walled sound treated booth at the University of Pittsburgh, Forbes Tower 

room 5057.  

To ensure that the frequency specific attenuation impacted audibility and therefore 

speech perception, group specific NU-6 (Northwestern University) monosyllabic materials were 

presented to each participant via insert earphones (ER3). Participants were randomly assigned 1 

list of 50 words presented into each ear. The recording states “say the word ___” and asks for 

repetition of the word. The results were recorded and percent correct was scored.  

Listening condition specific MMSE recordings were routed through the single left 

speaker with the research participant facing the speaker at 0o azimuth as if the person were facing 

the practitioner.  

To ensure appropriate bandwidth, speaker response was measured using a pure tone 

sweep of 100-10100 Hz at a rate of 25 Hz per second. Dayton Audio ½ inch EMM-6 

Measurement Microphone (omnidirectional, bandwidth 18Hz -20 kHz) was used to record the 

frequency response in the booth; equipment specific technical data can be viewed in Appendix 

D. The microphone was routed to a Marantz digital recorder with settings for a mono recording 

at a 44.1 kHz sampling rate and 16 bit depth. Results demonstrate that the speaker response was 
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flat out to 9000 Hz which should ensure important speech sounds were not lost (see Figure 10). 

Additionally, as some of the MMSE instructions require visual cues, the researcher was seated in 

the test booth with the participant. The response of the test booth as well as the test booth with 

the researcher seated in the booth is in Figure 10; there was little impact to the acoustic response 

when the researcher was seated in the booth to the right of the speaker. See Figure 11 for a 

schematic of the set-up.  
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Figure 10: Booth Response  

The black line represents the booth when the booth is empty. The grey line is when the 

researcher was seated the right of the speaker. Each vertical line represents 10 dB SPL. 
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Figure 11: Schematic of Booth Set-up 

 

With the participant facing the left speaker, a calibration tone was played to ensure that 

70 dB SPL reached the participant’s ear. This was measured using a hand-held sound level meter 

set to A weighting. Participants were instructed to keep their back against the chair so that they 

did not change the SPL at ear level. 

The hearing condition group specific recorded MMSE was played via the speaker with 

the participant listening in the soundfield. Recordings were played only once and were not 

repeated as per instructions on the MMSE with the exception of the initial repetition of the three 

items asked in the Repetition Section (Folstein et al., 1975). Recordings were paused between 

each item to give participants adequate time to respond. Responses to the MMSE questions were 

recorded by the researcher.  
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To ensure accuracy and to protect for researcher bias, participant responses on the NU-6 

and the MMSE were digitally recorded. These recordings were reviewed by a researcher blinded 

to the participant groups. The second researcher documented responses. The participant 

responses documented by both researchers were compared for accuracy. If any discrepancies 

existed, these recordings were reviewed by a third researcher and a consensus was reached as to 

the participant response.  

2.3 SPEECH INTELLIGIBILITY INDEX CALCULATION 

The Speech Intelligibility Index (SII) was calculated for each of the five hearing condition 

groups listed above (normal hearing – Group 1, mild to moderately-severe simulated hearing loss 

– Group 2, mild to severe simulated hearing loss – Group 3, moderate to severe simulated 

hearing loss – Group 4, and severe to profound simulated hearing loss – Group 5). As described 

previously, the SII can be calculated with 6 bands (octave bandwidth) to 21 bands (critical 

bandwidth). The 21 band method was selected for the most possible accuracy. The original 

sound files were analyzed using Adobe Audition 3 in order to input the sound energy for 70 dB 

SPL output at each of the critical bands. This information was then entered into the software 

available for calculating the SII from the Acoustical Society of America Workgroup S3-79 

(2010). The hearing loss was then entered along with information about the background noise 

(45 dB SPL spectrally shaped white noise). Using this, the SII was calculated for each of the five 

hearing conditions. The SII calculation results in a number between 0.0 and 1.0. This resulted in 

four SII audibility scores (see Table 17). The group with no changes to audibility had an SII of 

close to 1.0; although it is nearly 100% audible, due the addition of the 45 dB SPL noise, some 
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audibility was reduced. The other four hearing condition groups had a less audible signal and, 

therefore, received a significantly lower SII.  

 

Table 17: SII Calculations by Group 

Group SII Calculation 

Normal hearing (G1) 0.998 

MI-MS (G2) 0.3868 

MI-S (G3) 0.2351 

MO-S (G4) 0.1088 

S-P (G5) 0.022 

 

 Previous researchers have used the SII to determine speech intelligibility for syllables, 

words and sentences. These researchers suggest that for sentences, such as those presented in the 

SII, near 100% intelligibility is reached by an SII of 0.40 (see figure 12). This illustrates that the 

chosen levels of audibility as represented by the SII should result in different MMSE scores 

because they are known to result in different speech intelligibility scores in similar types of 

material. However, there are two distinct differences between the data presented here and those 

previously published data – (1) previous data used the same participants over and over to 

determine the impact of audibility whereas this study used five distinct groups at varying levels 

of audibility and (2) the previously published data are repetition tasks but the MMSE includes 

“answer the question” or “follow the instruction” tasks.   
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Figure 12: SII related to Speech Intelligibility for Different Stimuli (Killion, & 

Mueller, 2010) –  reprinted with permission  
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3.0  RESULTS 

3.1 STATISTICAL ANALYSIS 

After all participant data were collected, the following analyses were conducted to evaluate the 

two research questions.   

1) Does audibility as represented by differing SII’s influence performance on the MMSE?  

2) Further, does decreasing audibility produce significantly worse scores on the MMSE 

or is this evaluation immune to the impact of audibility?  

An ANOVA was used to answer the initial question as to whether audibility impacts the MMSE. 

Post-hoc multiple t-tests were conducted to investigate significant differences. Each group was 

compared to each other (G1 to G2, G1 to G3, G1 to G4, G1 to G5, G2 to G3, G2 to G4, G2 to 

G5, G3 to G4, G3 to G5, and G4 to G5).  

The ANOVA was calculated without use of the traditional correction of alpha. It may be 

of concern that by doing this there was an inflation of the Type I error rate and that a correction 

method, such as Bonferoni, should be used. This method without correction is justified in two 

ways. Each group is independent thereby reducing the error associated with multiple 

comparisons. Additionally, methods which hold the alpha constant for family wise comparisons 

are most often done to decrease the chance of a Type I error; however, by decreasing the Type I 
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error rate, the Type II error rate is increased. It is necessary to look at which error, Type I or 

Type II, is more detrimental to determine if adjustment is necessary (see table 18).  

 

           Table 18: Type I and Type II error analysis 

Error Type What it means in this study 

Type I error Conclusion is that hearing loss does impact the diagnosis of dementia and 

therefore needs to be considered when the diagnosis is given; however 

hearing loss does not, in fact, impact the diagnosis.  

Type II error Conclusion is that hearing loss does not impact the diagnosis of dementia and 

therefore does not need to be considered; however hearing loss does, in fact, 

impact the diagnosis of dementia. 

 

 
In the case of this study, a Type II error would be more detrimental. A Type I error would 

cause a physician to be more careful when they do not need to be. This would mean that they 

may check for hearing loss before diagnosing dementia; however, it does not have an impact on 

their diagnosis. This would not be detrimental to the care of people as having a hearing test 

should be part of their routine care. A Type II error would cause the physician to potentially 

ignore hearing loss when diagnosing dementia, when, in fact, they should consider it. This would 

be a much more serious error. Therefore, a correction was not made.  
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3.2 RESULTS 

3.2.1 Descriptive  

Average age of the participants was 18.83 (+/- 1.46) years of age. All participants had 

symmetrical normal hearing sensitivity across all frequencies as shown in Figure 13 with error 

bars to show 1 standard deviation.  
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Figure 13: Participant Audiometric Data 
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3.2.2 Northwestern University Test 6 (NU-6) 

The SII was calculated for each of the five hearing condition groups for the NU-6. As the stimuli 

are different than the MMSE, the SII numbers are slightly different. Comparisons were made for 

the NU-6 Scores by varying audibility. As expected, decreasing audibility significantly impacts 

the percent correct score – see Table 19 and Figure 14 for average data and one standard 

deviation. Although the right and left ear scores were statistically significant from each other in a 

pairwise comparison (t=-3.506, df = 124, p = .001), they were not clinically significantly 

different for any participant (Thorton & Raffin, 1978).  

 

Table 19: Impact of Audibility on NU-6 

SII Right ear Right SD Left ear Left SD 

0.988 (G1) 100% 1.2% 99% 2.1% 

0.4262 (G2) 89% 7% 93% 3.8% 

0.2735 (G3) 67% 13.1% 70% 12% 

0.158 (G4) 33% 15.2% 39% 14% 

0.022 (G5) 10% 6.3% 13% 7% 
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Figure 14: Impact of Audibility on NU-6 

3.2.3 Mini Mental State Exam (MMSE) Total Score 

An ANOVA revealed a significant difference between groups with respect to audibility on the 

total score of the MMSE – out of 30 possible points (F = 19.0849, df = 4, p < .001,ŋ2= .864).  

The mean and standard deviation for each group is in Table 20.  
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Table 20: MMSE performance by Audibility 

SII (Audibility) Mean Standard Deviation 

0.998 
28.72 1.37 

0.3868 
27.64 2.885 

0.2351 
16.84 4.888 

0.1088 
10.36 5.715 

0.022 
4.20 2.843 

 
 

 Comparisons were made between each group and as described above, this was conducted 

without an alpha correction. Group 1 (normal hearing) and Group 2 (mild to moderately-severe 

simulated hearing loss) were not significantly different from each other, but all other groups 

were significantly different from one another as denoted by asterisk (*) in Table 21.  
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Table 21: MMSE Total Group Comparisons 

Comparison t df p 

Group 1 vs. Group 2 1.691 48 .097 

Group 1 vs. Group 3 11.702 48 < .001* 

Group 1 vs. Group 4 15.622 48 < .001* 

Group 1 vs. Group 5 38.847 48 < .001* 

Group 2 vs. Group 3 9.514 48 < .001* 

Group 2 vs. Group 4 13.497 48 < .001* 

Group 2 vs. Group 5 28.935 48 < .001* 

Group 3 vs. Group 4 4.309 48 < .001* 

Group 3 vs. Group 5 11.177 48 < .001* 

Group 4 vs. Group 5 4.825 48 < .001* 

 

To visually demonstrate the impact of audibility (as represented by SII) and its predictive value 

on the MMSE a line graph was constructed to illustrate the data (see Figure 15).  
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Figure 15: Impact of Audibility on Overall MMSE Score with standard deviation 

 

A linear regression line can be used to predict points between the given data. It was 

determined that a linear regression line was appropriate for these data (p < .001 for line of best 
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removed. As Group 1 was not significantly different from Group 2, this was appropriate. This 

yielded a formula of  𝑤� =  3.146 +  0.62537(Audibility − SII), where 1 unit was equal to 1% 

SII. This was consistent with a 3 point decrease in MMSE score for every 5% decrease below 

40% audibility or 0.4 on the SII. The plot of observed versus expected probability much more 

closely represented a linear function with Group 1 removed (See Figure 16). 
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Figure 16: Observed vs. Expected Regression Plot 

 

Each participant’s MMSE score was calculated and a determination of dementia status 

was made. The classification of cognitive status was adjusted for college experience or higher 

degree (Crum, Anthony, Bassett, & Folstein, 1993); if a lower education level was used, the 

MMSE would need to be adjusted for age, however Crum et al (1993) found no significant 

difference across all ages with this level of education. See Table 22 for classification of 

dementia. 
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Table 22: Dementia Classification for Persons with College Experience or Higher 

Dementia Classification MMSE Score 

Normal Cognitive Function 25-30 

Mild Dementia 21-24 

Moderate Dementia 10-20 

Severe Dementia 0-9 

 

 
The participants were then labeled with what would have been their assigned cognitive 

status based on their MMSE score: normal cognitive status, mild dementia, moderate dementia, 

severe dementia (Mungas, 1991). This directly demonstrates the impact of hearing loss on the 

cognitive status diagnosis. This information about the diagnosis of dementia was graphed on a 

bar graph for each participant group and shown in Figure 17. 
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Figure 17: Diagnosis of Dementia Based on MMSE Score 
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participants responded to the item incorrectly (more difficult items). The items were then put into 

order by difficulty across all items – see Table 23.  

 
 
           Table 23: MMSE Items by Difficulty (Most Difficult to Easiest) 

Rank Item Correct  Rank Item Correct 

1 Tree (2nd) 32%  16 Dog (1st) 59.2% 
2 Tree (1st) 33.6%  17/18 Month 60% 
3/4 R 39.2%  17/18 Fold Paper 60% 
3/4 O 39.2%  19/20 Day of Week 63.2% 
5 L 43.2%  19/20 State 63.2% 
6/7 D 44%  21 Write Sentence 68% 
6/7 W 44%  22 City 68.8% 
8 Baseball (2nd) 44.8%  23 Copy Picture 73.6% 
9 County 45.6%  24 Repeat Phrase 76% 
10 Dog (2nd) 46.4%  25 Season 76.8% 
11 Floor (place) 47.2%  26 Year 77.6% 
12 Hospital 51.2%  27 Take Paper 81.6% 
13/14 Baseball (1st) 54.4%  28 Name Pencil 82.4% 
13/14 Floor (action) 54.4%  29 Name Watch 84% 
15 Date 56.8%  30 Close eyes 

(written) 
84.8% 

 

 
Item difficulty was determined for each item at each of the five audibility levels (Table 24). This 

was to determine the impact of audibility on each item. Items that are more resistant to hearing 

loss reach maximum performance with less audibility. These items were separated into 6 graphs 

by item difficulty – see Figures 18-23. 
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Table 24: MMSE Item Difficulty by Audibility (in same order as previous table) 

 Item 0.022 0.1088 0.2351 0.3868 0.998 
1 Tree (2nd) 0 8 8 60 84 
2 Tree (1st) 0 8 4 68 100 
3 R 0 4 16 84 100 
4 O 0 4 16 84 100 
5 L 0 4 20 92 100 
6 D 0 4 20 96 88 
7 W 0 4 20 96 92 
8 Baseball (2nd) 0 12 36 84 92 
9 County 0 20 60 76 72 
10 Dog (2nd) 4 12 28 92 96 
11 Floor (action) 4 24 44 100 100 
12 Hospital 0 32 56 80 72 
13 Baseball (1st) 4 24 56 88 88 
14 Floor 0 20 20 96 100 
15 Date 4 32 72 96 80 
16 Dog (1st) 16 28 56 96 100 
17 Month 0 32 68 100 100 
18 Fold Paper 12 32 56 100 100 
19 Day of the Week 0 44 76 100 96 
20 State 4 48 68 100 96 
21 Write Sentence 12 40 88 100 100 
22 City 0 60 84 100 100 
23 Copy Picture 20 68 80 100 100 
24 Repeat Phrase 24 72 88 96 100 
25 Season 16 72 96 100 100 
26 Year 20 76 92 100 100 
27 Take Paper 25 64 92 100 100 
28 Pencil 76 60 88 88 100 
29 Watch 76 64 92 92 96 
30 Close eyes (written) 76 64 84 100 100 
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Figure 18: Item Difficulty 1-5 
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Figure 19: Item Difficulty 6-10 
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Figure 20: Item Difficulty 11-15 
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Figure 21: Item Difficulty 16-20 
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Figure 22: Item Difficulty 21-25 
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Figure 23: Item Difficulty 26-30 
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3 was highly variable between the items and by Group 2 most items reach peak performance (see 

Table 25). The mean and standard deviation of the slopes were then calculated (mean: 2.3686, 

standard deviation: 1.691). Those numbers that are greater than one standard deviation above the 
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Table 25: Item Analysis - Slope between Group 2 and 3 (steepest to least steep) 

 

 

  

Rank Item Slope G2-G3 
1 W 5.101* 

2 Floor (place) 5.01* 

3 D 5.01* 

4 L 4.746* 

5 R 4.483* 

6 O 4.486* 

7 Tree (1st) 4.219* 

8 Dog (2nd) 4.291* 

9 Floor (action) 3.391 

10 Tree (2nd) 3.428 

11 Baseball (2nd) 3.164 

12 Fold Paper 2.9 

13 Dog (1st) 2.637 

14 Month 2.109 

15 State 2.109 

16 Baseball (1st) 2.109 

17 Date 1.582 

18 Day of the Week 1.582 

19 Hospital 1.582 

20 Draw Picture 1.318 
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Table 25 (continued): Item Analysis - Slope Between Group 2 and 3 (steepest to least 

steep) 

 
 

 

3.3.2 Comparison to Known Speech Intelligibility Data 

Each participant’s score was converted to percent correct using a linear conversion where the 30-

point scale was converted to percent correct. It is assumed that percent correct is correlated with 

percent intelligibility; this statement is guarded, however, as it is not necessary to hear the entire 

sentence to be able to correctly answer the question/follow the command in the MMSE. 

However, as the participants were young normal hearing participants without dementia, it can be 

assumed if the items are intelligible they would have gotten the item correct. Using this, the data 

were superimposed onto previously known data about speech intelligibility by audibility. The 

21 County 1.055 

22 City 1.055 

23 Close Eyes (written) 1.055 

24 Write Sentence 0.791 

25 Year 0.527 

26 Repeat Phrase 0.527 

27 Take Paper 0.527 

28 Season 0.264 

29 Name Pencil 0 

30 Name Watch 0 
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data from this study are different from these data on two points: 1) these data are 

question/answer and the published data are repetition and 2) the data that comprises the lines in 

the published data are from the same participants at varying degrees of audibility while the 

current data are from five different groups with varying audibility between groups. However, this 

transform allows inferences to be made about the impact of audibility on the MMSE and to 

determine how similar the current data are to known/published data (See Figure 24).  
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Figure 24: SII Related to Percent Intelligibility (adapted from Killion & Mueller, 

2010) 
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4.0  DISCUSSION 

This study sought to determine the impact of audibility on the diagnosis of dementia when the 

Mini Mental State Exam (MMSE) is used for diagnosis. As demonstrated previously, the MMSE 

is the most commonly used test to diagnose dementia. The results of this study suggest that 

audibility does impact the score obtained on this test and therefore could impact the diagnosis of 

dementia. Although the participants in this study were young normal hearing participants with 

normal cognitive status, based on their MMSE score, many of them would have been falsely 

diagnosed with dementia based on this test alone.  

4.1 NORTHWESTERN UNIVERSITY TEST 6 (NU-6) SCORE 

The replication of the NU-6 with impaired audibility fell in line with previously published data 

on the impact of audibility on the NU-6 words (Martin, 1950). This demonstrates that the 

simulated hearing losses did, in fact, impact audibility as expected. Additionally, in his 

dissertation, Ryan McCreery (2011) proposed a non-linear regression model to predict the 

impact of audibility on many different speech tests including the NU-6 word recognition test. His 

stated formula is 𝑆 = �1 − 10−𝑆𝐼𝐼/𝑄�
𝑁

 where S is the proportion of correct speech recognition 

scores; and Q and N are fitting constants that are defined in his dissertation by age. Using 
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McCreery’s (2011) formula and data for adults, Q = .352 and N = -1.83, the predicted speech 

recognition scores were calculated. These were compared to the observed scores from this study 

(see Table 26). This illustrates that the simulated hearing conditions chosen impact audibility 

accurately and is consistent with previously published audibility research. 

 

Table 26: NU-6 Predicted Score vs. Observed Score 

SII Predicted based on McCreery (2011) Observed (Right/Left) 

0.988 100% 100% / 99% 

0.4262 88% 89% / 93% 

0.2735 60% 67% / 70% 

0.158 24% 33% / 39% 

0.022 4% 10% / 13% 

 

4.2 MINI MENTAL STATE EXAM (MMSE) TOTAL SCORE  

 
The data presented for the impact of audibility on the MMSE overall score also agree with 

currently published data on the impact of audibility on speech perception tests as was shown in 

Figure 15. This test is different from the published data on three factors – 1) the published data 

use stimuli that are repetition tasks while this study used a comprehension task;  2) the published 

studies used the same participants for each of the groups of altered audibility while this study 

used different populations for each of the five data points; and 3) this test is comprised of 30 
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different points while published data are acoustically and linguistically similar items. While 

these differences are significant, the results are similar in the pattern of the impact of audibility 

which demonstrate that for a young normal hearing person, about 40% audibility is necessary for 

accurate speech perception. Below this 40% cut-off, top-down processing is necessary to 

accurately understand the stimuli; the amount of acoustically available information determines 

the slope of the curve. In this study, this is demonstrated by Groups 1 and 2 not being different 

from one another but that all other groups were different from one another forming a steep slope 

below 38% audibility.  A steeper sloping transfer function and asymptote at a lower SII value is 

consistent with a person’s ability to use linguistic and contextual information to fill in the 

missing or limited acoustic cues (Akeroyd, 2008; Lunner, 2003; Pavlovic, 1987; M. K. Pichora-

Fuller & G. Singh, 2006). This means that the listener is able to fill in some, but not all, of the 

information using top-down processing. The more linguistic information provided, such as in 

sentences, the less acoustic information is needed as the adult listener uses their knowledge of 

linguistic structure and other information to parse the acoustic cues into meaningful utterances. 

In this study, the MMSE scores are consistent with with previously published data regarding 

steepness of the slope and decrement in performance below approximately 40% audibility 

(Killion & Mueller, 2010). This is consistent with the prediction that the participants were able to 

fill in some, but not all, of the missing information and the more information that was missing, 

the worse the overall score.  

There are a significant number of older people with a mild to moderate hearing loss as 

described above and these mild to moderately-severe hearing losses are commonly overlooked 

without an audiologic evaluation (Corbin et al., 1984; Powers & Powers, 1978; Williamson et 

al., 1964). The results of this study suggest that 16% of participants with a mild to moderately-
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severe simulated hearing loss (Group 2) were misdiagnosed as having dementia. Below this level 

of audibility the rate of misdiagnosis of dementia only becomes higher and more concerning.  

4.3 MMSE ITEM ANALYSIS 

The MMSE overall score is comprised of different items to determine the overall score. The test 

items were plotted by percent of correct within each SII group (number of people who got the 

item correct divided by the 25 within each group). This resulted in functions which are able to be 

compared for the impact of audibility by item. Items such as labeling a watch and identifying the 

year are easier items as they reach high performance at lower audibility. Items such as repeating 

the word tree and naming the county are more difficult items. When comparing two functions, 

such as those in Figure 20, identifying the date is less impacted by audibility than putting the 

paper on the floor as it reaches maximum performance at a lower audibility. Those items that 

rely on visual stimuli, closing your eyes and naming watch/pencil, are the most resistant to 

hearing loss as they provide additional information beyond acoustic information. Using these 

results, physicians could identify if a hearing loss is masking as dementia if the MMSE score is 

lowered by a patient only missing those items most impacted by audibility.  

Ranking of difficulty of items on the MMSE were compared to previously published data 

on item difficulty. Jones and Gallo (2002) analyzed items of the MMSE comparing the effects of 

age and sex on performance of the MMSE for those who were involved in the National Institute 

of Mental Health Epidemiologic Catchment Area study. This large multi-site study had 20,861 

participants who were residential and community dwelling adults. For this study, Jones and 

Gallo selected the 8,556 participants who were over the age of 50 with complete reported data. 
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Table 27 is the rank order item difficulty as described in their publication as well as the current 

study ranking. An additional note to consider that they used the words apple, penny and table 

rather than baseball, tree and dog for the immediate and delayed word recall and they had the 

person put the paper on their lap rather than the floor so these items were marked as not 

applicable (N/A).  
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Table 27: Item-Level Ranking (Most Difficult to Easiest) - adapted from Jones & 
Gallo, 2002 
 

 
Rank Item Current Study Rank Rank Item Current Study Rank 

1 Copy picture 23 16 Fold paper  17/18 

2 R 3/4 17 Year 26 

3 O 3/4 18 Season 25 

4 L 5 19/20 County 9 

5 D 6 19/20 Day of week 19/20 

6 W 7 21 Year 26 

7 Penny #2 N/A 22 Month 17/18 

8 Table #2 N/A 23/24 State 19/20 

9 No ifs, ands or 

buts 

24 23/24 Table N/A 

10 Write sentence 21 25 Penny N/A 

11 Date 15 26 City 22 

12 Take paper 27 27 Watch 29 

13 Apple #2 N/A 28 Pencil 28 

14 Lap (action) N/A 29 Floor 13/14 

15 Close Eyes 

(written) 

30 30 Apple N/A 
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The item analysis conducted in the Jones and Gallo study (Jones & Gallo, 2002) is similar to the 

analysis presented in this study. Currently, there are corrections for the MMSE for age and 

education, this suggests that similar items also are impacted by audibility and thus audibility 

should be considered in the scoring for this test or the test should not have be used with older 

adults most of which have a hearing loss.  

4.4 POTENTIAL MIS-DIAGNOSIS OF DEMENTIA  

In this study, participants were young adults with normal hearing. This was done to control for 

hearing loss and aging effects on the auditory system. Results from this study suggest that 

audibility impacts the diagnosis of dementia; however, it cannot be concluded that those older 

adults with hearing loss would act the same way as predicted in this study. With a slowly 

progressive hearing loss, those with undiagnosed hearing loss may use more top-down central 

processing to fill in the missing auditory information – information that the research study 

participants were not able to use. Adults who have experience with the language are able to fill in 

missing information using their linguistic knowledge. If they have had a hearing loss for a long 

time, they have more consistently used this skill to fill in the acoustic information they miss. 

Additionally, they may use visual cues to help with missing acoustic information; visual cues 

were not provided to the research participants.  

The accuracy of tests of dementia is imperative to accurate diagnosis. This study 

demonstrates that the most commonly used test to diagnose dementia, the MMSE, is highly 

impacted by changes in audibility. This can significantly impact the diagnosis of dementia as 
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many older patients have undiagnosed hearing loss. The data from this study support the need for 

identification and remediation of hearing loss prior to the evaluation of dementia.  

 

4.5 FUTURE QUESTIONS 

1. Does cochlear pathology impact the diagnosis of dementia beyond the impact of 

audibility? 

2. Does central auditory processing associated with aging impact the diagnosis of 

dementia beyond the impact of audibility and cochlear pathology?  

3. How does rate at which the test is presented impact the individual’s score on the 

MMSE and subsequent diagnosis?  

4. Do these findings hold true for other orally presented tests?  

 

 

 

 



 140 

APPENDIX A. MMSE………………………………… 

MMSE 
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APPENDIX B. DATA COLLECTION FORM……… 

DATA COLLECTION FORM 

 

Participant Number: __________________   Date: ___________ 

Case History 

1. What is your age?        ________ 
2. Do you have hearing loss?      Yes  No 
3. Do you feel one ear is better than the other?  Yes  No 
4. Within the past 3 months, any ear infections?  Yes  No 
5. Is English your first language?    Yes  No 

Inclusion: 18-40, no hearing loss, no middle ear disease 

 

Pure Tone (Air conduction) 

250  500  1000  2000  4000  8000 

Right  ___  ___  ____  ____  ____  ____ 

Left  ___  ___  ____  ____  ____  ____ 

Inclusion Criteria: must be better than 20 dB in both ears, no more than 10 dB 

difference 
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NU-6 Testing – at 40 dB SL (10 hardest words) 

Ear    Death    Knock    Laud    Puff    Keen    Burn    Take    Third    Met    Pool 

__           ___        ___       ____     ___    ____     ___     ____    ___      ___    ____ 

Ear   Gin      Pike    Keg     Pick    Keep    Turn    Dab      Gaze   Learn    Ton          

___   ___    ___     ____     ___    ____     ___     ____     ___      ____    ____ 

Inclusion Criteria: must not miss more than 1/10 

 

Tympanometry 

Right ear:  Ear canal volume: ______   Peak Pressure: ______ Gradient: ______ 

Left ear:  Ear canal volume: ______   Peak Pressure: ______ Gradient: ______ 

Inclusion criteria:  Ear canal volume: 0.8 – 2.1 cm3   Peak Pressure: 0.2 – 1.8 mmhos 
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Randomized Dichotic Digits at 40 dB SL: only give List 1 or List 2 

List 1:  

  One Pair Two Pairs Three Pairs 
Response  #  L   R  L   R  L   R  L   R  L   R  L   R 

1     1,3 4,9         
2 8 6             
3 3 9             
4         6,1,3 5,10,2     
5         5,9,4 6,8,1     
6     2,8 10,3         
7 3 1             
8         2,6,1 5,10,8     
9         9,4,1 6,3,10     

10 4 1             
11     3,5 2,8         
12     1,3 6,5         
13         8,10,6 3,2,1     
14     6,1 5,10         
15 9 6             
16         1,9,4 3,2,5     
17     9,4 6,3         
18         6,9,8 4,5,10     
19     8,3 10,4         
20         9,4,6 3,2,5     
21 8 4             
22     9,1 10,2         
23     5,9 8,10         
24         1,5,8 10,9,6     
25 4 9             
26 9 2             
27 9 5             
  L   R  L   R  L   R  L   R  L   R  L   R   
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List 2:  
 
  One Pair Two Pairs Three Pairs 

Response    L   R  L   R  L   R  L   R  L   R  L   R 
28         8,2,1 5,10,9     
29     2,1 6,3         
30 4 8             
31 6 2             
32     2,5 8,3         
33         1,3,8 4,9,5     
34     10,2 1,9         
35 9 10             
36         3,1,9 6,5,10     
37 10 8             
38     5,2 10,3         
39         6,8,2 10,1,4     
40 9 3             
41     3,5 4,10         
42         10,6,8 3,4,9     
43 5 3             
44         1,9,3 2,6,5     
45     6,8 10,1         
46 6 9             
47 1 4             
48     10,2 5,1         
49         10,3,6 9,8,2     
50         8,1,5 6,9,2     
51     5,2 4,6         
52 8 1             
53     3,4 9,8         
54         2,10,1 3,9,6     
  L   R  L   R  L   R  L   R  L   R  L   R   
               

 
TOTALS One Pair  Two Pairs  Three Pairs 

 Right Ear                 

 
 

Left Ear                 
 

Inclusion criteria: minimum of 95% confidence interval  (Strouse & Wilson, 1999):  
  
Age   Ear   One Pair Two Pair Three Pair 
18-29:   Right     99%    96%     90% 
  Left     99%     95%     87% 
30-39:   Right     96%    93%     82% 
  Left     93%    81%     70% 
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APPENDIX C. FAMILIARITY QUESTIONNAIRE 

FAMILIARITY QUESTIONNAIRE 

 

How familiar are you with the following Tests:  

 

Arizona Test of Cognitive Status 

Not Familiar    Heard of it, but not able to describe   Highly Familiar 

 

Brief Exam of Mental Health 

Not Familiar    Heard of it, but not able to describe   Highly Familiar 

 

Mental Acuity and Dexterity  

Not Familiar    Heard of it, but not able to describe   Highly Familiar 

 

Mini Mental State Exam 

Not Familiar    Heard of it, but not able to describe   Highly Familiar 

 

Test of Cognitive Ability 

Not Familiar    Heard of it, but not able to describe   Highly Familiar 

 



 146 

APPENDIX D. MICROPHONE SPECIFICATIONS 

MICROPHONE SPECIFICATIONS 
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APPENDIX E. PARTICIPANT INSTRUCTIONS…. 

PARTICIPANT INSTRUCTIONS 

 

Tympanometry: You will feel some pressure going into and out of your ear. Please sit quietly for 

this test; it should not hurt.  

Pure-tone Audiometry: You will hear a series of beeps, please raise your hand when you hear the 

beeps, even if they are very soft.  

Word Recognition: You will now hear a woman talking. She will say something like “say the 

word boy” or “say the word match”. Please say the last word of each phrase. 

Random Dichotic Digits: You will now hear a series of numbers. They will be different numbers 

into each ear. Please repeat back as many of the numbers as you can. Try to repeat all of 

the numbers.  
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Experimental Stimuli: (NU-6) You will now hear a man talking he will instruct you to say a 

word, please say the word that you hear. It may be difficult for you to hear the word, do 

the best you can. (MMSE) You will now hear a series of questions and instructions. They 

may be very difficult to hear. Please answer the questions or follow the instructions as 

best as you can. Please do not ask for repetitions, you may not get all the questions 

correct 
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