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SURVIVAL ANALYSIS OF SHARED-PATH ADAPTIVE TREATMENT

STRATEGIES

Kelley M. Kidwell, PhD

University of Pittsburgh, 2012

Adaptive treatment strategies closely mimic the reality of a physician’s prescription process

where the physician prescribes a medication to his/her patient and based on that patient’s

response to the medication, modifies the treatment. Two-stage randomization designs, more

generally, sequential multiple assignment randomization trial (SMART) designs, are useful

to assess adaptive treatment strategies where the interest is in comparing the entire sequence

of treatments, including the patient’s intermediate response. In this dissertation, we intro-

duce the notion of shared-path and separate-path adaptive treatment strategies and propose

weighted log-rank statistics to compare overall survival distributions of two shared-path or

multiple two-stage adaptive treatment strategies. Large sample properties of the statistics

are derived and the type I error rate and power of the tests are compared to standard

statistics through simulation. We also propose a sample size equation to power a two-stage

SMART comparing the overall survival of multiple adaptive treatment strategies.

Public health significance: The treatment of many diseases and illnesses, especially those

which are chronic (cancer, AIDS, depression, substance abuse, ADHD), includes sequences

of treatments based on the individual’s characteristics, behaviors, and responses. Treatment

is inherently dynamic, but often, clinical trials are not designed or analyzed to take this

dynamic feature into account. We present methods to adequately power and analyze clinical

trials with time-to-event data which aim to compare these individualized sequences of treat-

ments or adaptive treatment strategies. Through these methods and by comparing adaptive

treatment strategies, patient outcomes can be operationalized and improved over time.
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1.0 INTRODUCTION

Adaptive treatment strategies are at the forefront of clinical trials and statistical methodology

literature. As this area develops, new terminology and concepts abound. This chapter

introduces the central concepts which provide the backdrop for this dissertation. We will

introduce the topics listed below and culminate with the motivation and objectives of this

work. If you are familiar with the following concepts, please feel free to jump to Section 1.5.

• Adaptive treatment strategies (ATS)

• Sequential multiple assignment randomized trial (SMART)

• Counterfactual framework

• Naive methods of analysis

1.1 ADAPTIVE TREATMENT STRATEGIES (ATS)

Adaptive treatment strategies (or dynamic treatment regimes), notably introduced and de-

scribed in statistical literature by Lavori et al. (2000), Lavori and Dawson (2000), Lavori

et al. (2004), Murphy and McKay (2004) and Collins et al. (2004), among others, consist

of a sequence of treatments and decision rules that guide the choice of these treatments for

a given individual. These strategies are dynamic/adaptive since the strategies allow per-

sonalizing/adapting treatments based on the patient’s response to earlier treatments. They,

therefore, closely mimic a physician’s prescription process. Adaptive treatment strategies are

currently a driving force in the biomedical field updating the way treatment and prevention

trials are designed, implemented, and analyzed.
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With increasing scientific knowledge and technology, as well as people’s increasing lifes-

pan, many illnesses and diseases require more than just one therapy during the course of

treatment. Cancer usually requires a maintenance therapy in order to illicit the desired

result, while AIDS, depression and substance abuse often require multiple treatments which

are taken sequentially to enhance their effects, or require treatment routines which differ

substantially between people and depend on personal intermediate outcomes. Thus, adap-

tive treatment strategies are especially relevant in clinical trials for chronic diseases. The

objective in a clinical trial utilizing adaptive treatment strategies is to develop multi-stage

decision-making strategies that improve patient outcomes over time. Note that the term

‘adaptive’ here refers to time-varying sequences of treatments for a given patient which are

presumably chosen based on that patient’s status (characteristics, response), and not ther-

apy for the present patient which depends on past patients or where design parameters are

altered mid-trial.

An adaptive treatment strategy generally begins with an initial treatment, followed by

intermediate outcomes which are input into decision rules that then define the subsequent

stages of treatment. The decision rules take patient characteristics and outcomes, such as

patient history, health risk factors, patient response, and patient adherence, into account

to provide a personalized therapy sequence. Explicitly, let us define a two-stage adaptive

treatment strategy AjBk to be ‘Treat initially with Aj, and then by second-line treatment

Bk if the patient is eligible and consents to subsequent second-line therapy.’ The eligibility

of the patient would depend on the decision rule. An adaptive treatment strategy could

consist of several stages with several treatment options at each stage.

We further define a more specific, two-stage adaptive treatment strategy with two treat-

ment options at each stage. Here, patients are first treated with either A1 or A2, and patients

who respond to the initial treatment and consent to further treatment, can receive either B1

or B2. Therefore, in this setting, we can have the set of strategies {A1B1, A1B2, A2B1, A2B2},

where, strategy A1B1, for example, dictates that the patient be treated with therapy A1 and

upon response and consent, be treated with B1 (Figure 1.1). Notice from the definition of

adaptive treatment strategies, as illustrated in Figure 1.1, that patients who do not respond

to therapy A1 are consistent with both strategies A1B1 and A1B2. Thus, a patient following

2



Response

No Response

A1

B1

(a)   Strategy A1 B1

Response

No Response

A1

B2

(b)   Strategy A1 B2

Response

No Response

A2

B1

(c)   Strategy A2 B1

Response

No Response

A2

B2

(d)   Strategy A2 B2

Figure 1.1: Example of two-stage adaptive treatment strategies
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ATS A1B1 who did not respond to A1 shares the same treatment path as a patient following

A1B2, but did not respond to A1. Similarly, patients who do not respond to therapy A2

are consistent with both strategies A2B1 and A2B2. On the other hand, patients who fol-

low A1B1 or A1B2 are not consistent with either strategies A2B1 or A2B2. This distinction

motivates the classification of adaptive treatment strategies into strategies which do or do

not share treatment paths. Sets of strategies such as {A1B1, A1B2} and {A2B1, A2B2} are

shared-path adaptive treatment strategies. Two two-stage adaptive treatment strategies are

shared-path if individuals treated with one strategy share a common path of treatment with

individuals treated by the other strategy. Strategies which do not share a common path of

treatment will be referred to as separate-path adaptive treatment strategies. For explicit

definitions, please refer to Section 2.2.

1.2 SEQUENTIAL MULTIPLE ASSIGNMENT RANDOMIZED TRIAL

(SMART)

To develop decision rules and inform the construction of adaptive treatment strategies, Mur-

phy (2005) introduced the concept of the sequential multiple assignment randomized trial

(SMART), which had previously been studied under different terminology in Lavori and

Dawson (2000), Lavori et al. (2004). In a SMART, individuals may be randomized several

times, receiving multiple treatments sequentially over time. The design allows for the as-

sessment and comparison of adaptive treatment strategies. Many trials over the past decade

have assessed adaptive treatment strategies using the SMART design including Stone et al.

(2001), Stroup et al. (2003), Rush et al. (2004), Winter et al. (2006), Marlowe et al. (2007)

and Matthay et al. (2009).

SMART designs may include any number of randomization stages, but this dissertation

will focus on two-stage randomization designs. Figure 1.2 depicts a two-stage SMART design

where patients are initially randomized to treatments Aj, j = 1, . . . , J , and then depending

on response to these initial treatments, are randomized to treatments Bk, k = 1, . . . , K, for

responders, and B′l, l = 1, . . . , L for non-responders. The investigator may be interested

4



Patients

Stage I 
Randomization

A1

AJ

Aj

Responders

Non- 
Responders

B1

BK

Bk

B’1

B’L

B’l

Time

Stage II 
Randomization

Figure 1.2: A general two-stage SMART design

in comparing adaptive treatment strategies AjBkB
′
l for any j = 1, . . . , J , k = 1, . . . , K,

l = 1, . . . , L, where AjBkB
′
l stands for ‘Treat with Aj followed by Bk if the patient re-

sponds, or by B′l if the patient does not’. Figure 1.2 illustrates a general two-stage design

where every patient receives some therapy at each stage, but there may be cases where the

therapy is stopped. For example, in older, terminally ill, leukemia patients, if the initial

chemotherapy fails to achieve remission, usually no further therapy is given. In Chapters 2

and 3, the two-stage design is set up such that the non-responders are not randomized in

the second stage, eliminating the branches involving B′l, l = 1, 2, . . . , L. Methods introduced

in this dissertation, however, can adapt to other two-stage designs by re-defining response

or altering the weighting equations presented in Section 2.6. When there are more than two

randomization stages, intermediate outcomes dictate subsequent treatment randomization

and the sequence of treatments continues.

The SMART design allows for the assessment and comparison of adaptive treatment

strategies in an efficient manner. If strategies were predetermined and patients randomized

upfront to all possible strategies, the trial would require a large number of patients, even

5



with few stages and few treatments at each stage. The SMART design allows for only the

patients who meet predetermined criteria to be randomized into further treatment, specifying

the adaptive treatment strategies. SMART designs still often require a larger number of

subjects than most clinical trials comparing only two or more treatments at one stage, but

these designs allow us to mimic the process of prescription and answer different questions

about sequences of treatment to find the optimal sequence based on individual’s response

and/or characteristics.

1.3 COUNTERFACTUAL FRAMEWORK

To quantify the treatment effects of adaptive treatment strategies and construct estimands

of interest from a population, the counterfactual (or potential) outcomes framework (Rubin,

1974, Holland, 1986) is often very useful. We introduce this concept by presenting a simple

example. Suppose you had a headache. There are many different treatment options for a

headache, but suppose this time, you take Excedrin. On this occasion, your outcome is that

your headache disappears within 30 minutes. But, what would the outcome have been if

you had taken Tylenol or Advil or perhaps did nothing? We only observed the outcome

from Excedrin, but you would have had an outcome for each of those treatments, had you

taken them and you would have had an outcome for any possible treatment. All of the

possible outcomes, including those that we can and can not observe, establish the set of

your counterfactual outcomes. If we knew every outcome from every treatment, observed

and unobserved, we would compare each of them to each other and report back the optimal

treatment to eliminate your headache as quickly as possible.

The concept has been simplified here, but it can be extended to the realm of adaptive

treatment strategies. Patients following an ATS only receive one sequence of treatments

based on their characteristics, behaviors, or response and randomization probability and we

observe only one outcome. But, the patient could have received a different set of treatments

and had a different outcome for each set. Throughout this dissertation, the counterfactual

outcomes of interest are potential survival times and these outcomes will help us identify the

6



variables whose distributions are compared across treatment strategies. We will relate the

set of counterfactual survival times to the observed survival time.

In order to operate within the counterfactual framework and make valid inference, we

need to verify three assumptions (Rubin, 1974, Robins et al., 1994). The assumptions in-

clude the consistency assumption (or SUTVA, stable unit treatment value assumption) which

connects the counterfactuals to the observed data, the sequential randomization assumption

(a.k.a. no unmeasured confounding or conditional exchangeability) which requires the values

of the counterfactuals to be missing at random given data on baseline covariates, and posi-

tivity (or experimental treatment assumption) which insists the probability of being assigned

to each possible treatment is greater than zero. These assumptions are elaborated on below

in a simplified setting.

To further explain how counterfactual outcomes help develop estimands while assessing

treatment effects, suppose there are two competing treatments A and B whose effect on

an outcome Y is of interest. Suppose Y A
i and Y B

i denote the counterfactual outcomes for

treatments A and B for patient i. One would like to draw inference about the counterfactual

mean difference E(Y A
i − Y B

i ). For a given patient i, both Y A
i and Y B

i are not observed, so

we cannot estimate the average treatment difference by the marginal mean of the difference,∑N
i=1 {Y A

i −Y B
i }

N
. If we satisfy the assumptions above, however, we can estimate the average

treatment difference from the observed data.

Under the consistency assumption and letting Xi denote treatment received, the observed

outcome values can be defined as Yi = I(Xi = A)Y A
i +I(Xi = B)Y B

i . Then for an individual

who received treatment A, Yi = Y A
i and likewise, for an individual who received treatment

B, Yi = Y B
i . The second assumption, sequential randomization, states that the probability

of receiving treatment A or B does not depend on the counterfactual outcomes, Y A
i or

Y B
i , given baseline predictors. This is guaranteed in conditionally randomized studies. In

observational studies, however, investigators need to collect as many predictors as feasibly

possible to approximately satisfy this assumption.

Under these two assumptions, E(Y A
i − Y B

i ) = E(Ȳ A − Ȳ B), where we define Ȳ A =∑N
i=1 I(Xi = A)Yi/

∑N
i=1 I(Xi = A) and Ȳ B =

∑N
i=1 I(Xi = B)Yi/

∑N
i=1 I(Xi = B). Thus,

when these two assumptions are satisfied, E(Y A
i − Y B

i ) can be unbiasedly estimated by

7



Ȳ A− Ȳ B. Finally, we assume positivity holds such that investigators have assigned subjects

into all the treatments of interest, here A and B. In the adaptive treatment strategies

survival analysis setting, counterfactual outcomes will be developed in Section 2.3 and the

assumptions will be verified in Section 2.4.

1.4 NAIVE METHODS OF ANALYSIS AND RELATED WORK

As the use of adaptive treatment strategies gains momentum in clinical and behavioral

research, statisticians bear the responsibility to produce methodology that analyzes the

findings accurately and efficiently. Prior to the invention of the term ‘adaptive treatment

strategies’, survival data from SMART designs had been analyzed separately for each stage

ignoring past or future treatment phases or analyzed conditionally on previous stages (for

example, only analyzing the outcomes from the responders of the initial treatment). Both of

these methods ignore the sequence of treatments and answer a different question than that

of comparing adaptive treatment strategies. Conditional analysis also ignores information

from another, potentially large, set of patients (for example, the non-responders to the initial

treatment). In attempt to account for all of the patients, another method groups patients

into the strategy which they followed and then compares the survival outcomes by group

using the standard (unweighted) log-rank statistic. This method ignores the second-stage

(or further stage) randomization(s) and assumes independence between the groups following

each strategy. As we have seen in Section 1.1, this independence is not guaranteed since some

groups of individuals share the same treatment paths. For example, referring to Figure 1.1

and assuming the two-stage strategy AjBk, j, k = 1, 2, which dictates ‘Treat with Aj, j = 1, 2,

followed by Bk, k = 1, 2, if the patient responds and is eligible,’ we see that if we grouped all

those who follow A1B1 and all those who follow A1B2, the set of non-responders to A1 would

be in both groups. This violates the independence assumption of the standard (unweighted)

log-rank statistic.

In more recent years, methods have been developed to take into account both the se-

quence of treatments and the two-stage randomization in survival analysis of adaptive treat-

8



ment strategies. Guo (2005) proposed an inverse-probability weighted version of the log-rank

test for comparing two adaptive treatment strategies in his unpublished PhD thesis. He de-

veloped weights to account for the second-stage randomization which we use and discuss in

detail in Section 2.6. Li and Murphy (2011) formally presented the weighted log-rank statistic

proposed in Guo (2005) with both time-dependent and time-independent weights. Lokhny-

gina and Helterbrand (2007) proposed a weighted version of the score equation and score

test of the Cox proportional hazards model. Feng and Wahed (2008) utilized the weights

developed by Guo and lessened the assumptions made by Lokhnygina and Helterbrand to

present a supremum weighted log-rank statistic. Each of these methods, however, were

created only to compare two separate-path adaptive treatment strategies. Li and Murphy

(2011) presented a weighted Kaplan-Meier estimator to compare two shared-path adaptive

treatment strategies, but only to compare point-wise survival estimates for two strategies.

Thus, to compare overall survival between shared-path strategies, one could use a weighted

log-rank statistic similar to that from Guo’s thesis, assuming independence. This inde-

pendent weighted log-rank statistic ignores the covariance between the groups which share

treatment paths in its variance calculation. Thus, the naive methods of analysis of adaptive

treatment strategies either ignore second-stage randomization or assume independence be-

tween groups. We consider both of these issues in the development of a weighted log-rank

statistic to compare two or more shared-path adaptive treatment strategies.

1.5 MOTIVATION AND OBJECTIVES

Medicine has been practiced in a personalized manner throughout history, but only in the

past decade has this concept been explored and enhanced in both medical and statistical

literature. Developing innovative trial designs to compare adaptive treatment strategies will

increase their efficiency and practicality, allowing for a more realistic and personalized treat-

ment process. Generating the appropriate statistical techniques for analysis will allow us

to benefit from this improved efficacy and effectiveness. This promising area offers many

openings to develop and strengthen statistical methods. Specifically, the distinction between

9



shared-path and separate-path adaptive treatment strategies and the lack of methods to an-

alyze two shared-path or multiple strategies motivated the methodology in this dissertation.

This dissertation aims to compare the overall survival distributions from two or more

two-stage adaptive treatment strategies which may share the same treatment paths. The pre-

sented weighted log-rank tests comparing the overall survival distribution of two shared-path

or multiple adaptive treatment strategies include covariance terms to account for patients

who are consistent with more than one treatment strategy. These tests, therefore, are more

efficient than naive methods for comparing shared-path adaptive treatment strategies (Sec-

tion 1.4).

To facilitate the implementation of adaptive treatment strategies in clinical trials, we

also present a sample size equation. This equation will allow statisticians and clinicians

to adequately power a SMART when the interest is in comparing survival distributions of

multiple adaptive treatment strategies, some of which may be shared-path. The sample size

formula asks for inputs that the physician could easily approximate given prior knowledge or

pilot studies. Using this information and given sample size, clinics can design and implement

SMARTs, leading to the construction of effective adaptive treatment strategies.

10



2.0 LOG-RANK STATISTICS TO COMPARE TWO SHARED-PATH

ADAPTIVE TREATMENT STRATEGIES

2.1 INTRODUCTION

Physicians rarely choose treatment for a patient randomly from competing treatments, but

rather they prescribe treatments based on their clinical experience in treating patients with

similar characteristics and those patients’ individual history of response and adverse reactions

to prior treatments. Thus, physicians inherently practice personalized medicine, yet many

clinical trials continue to compare two or more treatments at specific time points using

randomized, independent groups. These randomized controlled trial designs lack the dynamic

aspect of assessing patients’ intermediate outcomes and possibly modifying therapies in order

to elicit a desired response. Sequential multiple assignment randomized trials, SMART,

(Murphy, 2005) have been developed to investigate a sequence of time-varying treatments

subject to modification based on the individual’s response, more alike treatment strategies

that are adopted by physicians in practice. The SMART design allows for the assessment

and comparison of adaptive treatment strategies (also known as dynamic treatment regimes),

which consist of a sequence of individually tailored therapies during the course of treatment.

In a SMART design, a patient’s intermediate outcome is measured at specific time points

whereupon the treatment or its dosage is adjusted accordingly. Biomedical studies, especially

clinical trials for chronic diseases such as cancer, AIDS, depression, and substance abuse,

are utilizing the SMART design to reach conclusions about personalized adaptive treatment

strategies.

To better illustrate the emerging paradigm of adaptive treatment strategies, consider the

following examples for treating moderate depression. One adaptive strategy for moderate

11



depression treatment is, “First treat the patient with Sertraline for 8 weeks, if the patient

does not respond (Beck Depression Inventory, BDI, score over 12), treat the patient with

Sertraline as well as with cognitive behavioral therapy (CBT); if the patient responds (BDI

score of 12 or under), continue Sertraline.” Similarly, other adaptive strategies could be

considered where alternative treatment options are prescribed at one or more stages. Another

example of an adaptive treatment strategy is, “First treat the patient with Escitalopram for

8 weeks, if the patient does not respond, treat the patient additionally with Bupropion;

if the patient responds, continue Escitalopram.” At the end, one would be interested to

compare not just Sertraline to Escitalopram, but rather, the entire sequence of Sertraline

alone or Sertraline followed by CBT and Escitalopram alone or Escitalopram followed by

the addition of Bupropion. Thus, strategies consisting of initial treatment, intermediate

response and maintenance or second-line treatment are compared to find an optimal course

of treatment for an individual.

Individualized medicine has been one of the major concentrations of the medical commu-

nity in recent years and thus, the last decade has brought about a surge in the application of

SMART designs for comparing adaptive strategies in clinical and behavioral research (Stone

et al., 1995, 2001, Stroup et al., 2003, Rush et al., 2004, Winter et al., 2006, Marlowe et al.,

2007, Matthay et al., 2009), although not all of these studies had comparisons of adaptive

strategies as their main aim. As a consequence of the increased use of SMART designs,

statistical literature experienced a similar surge in the development of statistical methods

for analyzing data arising from such trials (Thall et al., 2000, Murphy, 2003, 2005, Daw-

son and Lavori, 2004, Wahed and Tsiatis, 2004, Wahed, 2010, Orellana et al., 2010). This

dissertation focuses on time-to-event outcome data and hence the review of literature will

emphasize statistical methods for survival analysis in SMART designs.

Prior to the invention of the terms ‘adaptive treatment strategies’ or ‘dynamic treatment

regimes’ survival data from SMART designs had been analyzed separately for each stage ig-

noring past or future treatment phases. Lunceford et al. (2002) first showed how to estimate

point-wise survival probabilities or overall mean survival for adaptive treatment strategies

arising from two-stage SMART designs. Methods proposed therein basically used marginal

models employing inverse-probability-of-treatment-weighting for estimation. Their analy-
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sis, while improving upon stage-specific analysis, was not applicable for comparing overall

survival curves under different treatment strategies.

The first valid attempt in developing a test comparing overall survival curves under

two adaptive treatment strategies was taken by Guo in his 2005 dissertation. He provided

an inverse-weighted version of the log-rank test for comparing two separate-path adaptive

treatment strategies (strategies that do not share the same treatment paths, see Section 2.2).

Lokhnygina and Helterbrand (2007) extended the idea of Lunceford et al. (2002) to the Cox

proportional hazards model and proposed a weighted version of the score equation and score

test to compare induction strategies for a fixed second-stage treatment. Generalizing the pro-

portional hazards assumption and creating a more robust statistic, Feng and Wahed (2008)

utilized the inverse-probability-of-treatment-weighting method developed in Guo (2005) to

present a supremum weighted log-rank statistic, but again only to compare two separate-path

adaptive strategies.

Comparison of shared-path adaptive treatment strategies is challenging since the correla-

tion between survival curves needs to be accounted for in the estimation process. Accounting

for this correlation, for example, allows us to compare treatment strategies that share the

same initial treatment. The goal of this chapter is to present methods for comparing two

shared-path adaptive treatment strategies (strategies that share some of the same treatment

paths, see Section 2.2).

2.2 DEFINITIONS

Consider a two-stage SMART design in which patients are first randomized to receive treat-

ment A, level A1 or A2, and those who respond to the initial treatment A and consent to

another randomization, receive maintenance treatment B, randomly allocated to the levels

B1 or B2 (see Figure 2.1). For simplicity, we will use response to indicate ‘response to the

previous treatment and consent to the following treatment’. We are interested in the out-

comes of patients who follow the various treatment strategies AjBk, j, k = 1, 2, where the

strategy AjBk is defined as follows.
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Patients

Responders

Non-
Responders

Non-
Responders

Responders

A1

A2

B1

B2

B1

B2

Stage 1 
Randomization

Stage 2 
Randomization

Figure 2.1: An example of a two-stage SMART design where only responders receive main-

tenance therapy

Definition 1. Adaptive Treatment Strategy AjBk: ‘Treat with Aj followed by Bk if the

patient is eligible and consents to subsequent second-line therapy’.

Furthermore, we classify strategies into shared-path and separate-path adaptive treat-

ment strategies as follows:

Definition 2. Shared-Path Adaptive Treatment Strategies: Two-stage adaptive treatment

strategies are shared-path if individuals treated with one strategy share a common path of

treatment with individuals treated with the other strategy.

For example, consider strategies A1B1 and A1B2. Strategy A1B1 dictates that a patient

be treated with A1 and then by B1 only if the patient responds to A1. Similarly, strategy

A1B2 dictates that a patient be treated with A1 and then by B2 only if the patient responds

to A1. Thus, a patient who is treated under strategy A1B1 but did not respond to A1 will

receive exactly the same sequence of treatment as a patient who is treated under strategy

A1B2 but did not respond. Therefore, strategies A1B1 and A1B2 are shared-path adaptive

treatment strategies. Similarly, the pair (A2B1, A2B2) are shared-path.
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Strategies that do not share a common path of treatment will be referred to as separate-

path treatment strategies. As an example, strategies A1B1 and A2B1 are separate-path

adaptive treatment strategies since patients treated with A1B1 can not receive a treatment se-

quence received by patients treated with A2B1. Similarly, pairs (A1B1, A2B2), (A1B2, A2B1),

and (A1B2, A2B2) are also separate-path.

2.3 COUNTERFACTUALS

Counterfactual (or potential) outcomes (Rubin, 1974, Holland, 1986) are often used to con-

struct estimands of interest from a population. In reality, every individual follows one specific

treatment strategy, therefore for each individual, we observe only one outcome for the specific

treatment strategy he/she followed. In theory, however, individuals in the population could

follow any treatment strategy AjBk, and for each individual, one can envision one outcome

for each possible strategy, hence every individual has his/her own set of imaginary (poten-

tial) outcomes for every possible treatment strategy. The entire set of possible outcomes for

an individual is referred to as his/her counterfactual outcomes. These outcomes will help us

identify the variables whose distributions are compared across treatment strategies.

In order to define patients’ counterfactual outcomes, which in this setting are poten-

tial survival times, we introduce the following notation. For patient i, let Rji = 1 if the

ith patient responded to the initial treatment Aj and Rji = 0 if the ith patient did not

respond to initial treatment Aj. Let TNRji be the survival time for patient i if he/she re-

ceived but did not respond to therapy Aj. Further, let TRjki denote the the survival time

for patient i if he/she responded to treatment Aj and received treatment Bk. For treat-

ment strategy AjBk, patient i receives one induction treatment, A1 or A2, either responds

or does not respond to that particular induction treatment, and at the second stage, based

on the response from the first stage, either receives B1, B2, or no further treatment. Thus,

every patient only follows one path within a treatment strategy and we cannot observe

(R1i, R2i, T
NR
1i , TNR2i , TR11i, T

R
12i, T

R
21i, T

R
22i) for each patient i. Consequently, these variables are

the counterfactuals or potential random variables; those variables which could potentially
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occur under any possible treatment strategy. For patient i following strategy AjBk, the

potential survival time, Tjki, can be expressed in terms of his/her counterfactual outcomes

as

Tjki = (1−Rji)T
NR
ji +RjiT

R
jki.

We will use these potential survival times to construct a weighted log-rank statistic to

compare two or more separate-path or shared-path adaptive treatment strategies. First we

will focus on comparing two shared-path adaptive treatment strategies, A1B1 and A1B2 or,

equivalently, the distributions of T11 and T12, and then generalize our statistic to compare

more than two strategies with a specific extension to compare all four adaptive treatment

strategies, A1B1, A1B2, A2B1 and A2B2 in Chapter 3.

2.4 OBSERVED DATA & ASSUMPTIONS

The observed data for a two-stage design described in Figure 2.1 can be represented as

a set of random vectors {Xi, Ri, RiT
R
i , RiZi, Ui, δi}, for i = 1, . . . , n, where Xi = 2 − j

if the ith patient is randomized to induction treatment Aj (j = 1, 2), Ri is the observed

response indicator such that Ri = 1 if the ith patient is a responder to Aj and Ri = 0

otherwise, Zi = 2 − k if patient i is assigned to treatment Bk (k = 1, 2), the event time is

Ui = min(Ti, Ci), where Ci is the potential censoring time and Ti is the survival time for

patient i, and δi = I(Ti ≤ Ci). If TRi denotes the time to response for patient i who has

responded to initial treatment, then the observed response Ri can be expressed as Ri =

XiR1iI(Ci > TRi ) + (1−Xi)R2iI(Ci > TRi ), where Rji is the counterfactual response defined

in Section 2.3.

First we make the stable unit treatment value assumption or consistency (Rubin, 1974)

to relate the uncensored survival time Ti to the counterfactual outcomes. Explicitly, this

assumption states that under the treatment assignment consistent with the counterfactual

outcome, the observed outcome is equal to the counterfactual (Ti =
∑2

j=1 Xji[(1−Rji)T
NR
ji +

Rji{ZiTRj1i + (1 − Zi)T
R
j2i}], where X1i = Xi and X2i = 1 − Xi). Other frequently made
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assumptions such as ‘no unmeasured confounders’ and positivity (all treatment strategies

have positive probability of being observed) follow from random assignment of treatments

(Orellana et al., 2010). Since most clinical trials have limited follow-up, the survival time

here is restricted to time L, where L is some value less than the maximum follow-up time

for all patients in the sample.

2.5 STANDARD UNWEIGHTED LOG-RANK STATISTIC

The standard unweighted log-rank test statistic is well known, well documented and com-

monly used to compare survival curves for independent groups following a specified strategy.

If there were no second randomization and each patient was set to follow either A1B1 or

A1B2, data from patients receiving A1B1 would be considered independent of the data from

patients receiving A1B2. To compare the two independent groups of patients following prede-

termined strategies A1B1 and A1B2 (to test the null hypothesis of no difference between the

two survival distributions) based on the observed data {U1ki = min(T1ki, Ci), δ1ki = I(T1ki ≤

Ci), k = 1, 2; i = 1, . . . , n}, we would use the standard unweighted log-rank test statistic

Zn(t) =

∫ t

0

Y11(s)Y12(s)

Y11(s) + Y12(s)

{
dN11(s)

Y11(s)
− dN12(s)

Y12(s)

}
, (2.1)

where N1ki(s) = I(U1ki ≤ s, δ1ki = 1), Y1ki(s) = I(U1ki ≥ s), N1k(s) =
∑n

i=1N1ki(s), and

Y1k(s) =
∑n

i=1 Y1ki(s) for k = 1, 2. Under the null hypothesis, n−1/2Zn(t) is asymptotically

normally distributed with mean zero and a variance that can be consistently estimated from

the observed event times. For details of the properties of the standard unweighted log-rank

statistic, we refer the readers to Fleming and Harrington (1991).

The standard unweighted log-rank statistic is inadequate, however, to test survival curves

in a two-stage randomized design. First, the standard unweighted log-rank statistic does not

account for the second randomization in a two-stage SMART design. In such design, U11i is

not observed for patient i who responded to A1, but is randomized to maintenance treatment

B2 and likewise, U12i is not observed for patient i who responded to A1, but is randomized

to maintenance treatment B1. Second, since non-responders to A1 are consistent with both
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adaptive treatment strategies A1B1 and A1B2, the non-responders to A1 are common to both

groups. Hence, the two groups of patients following adaptive treatment strategies A1B1 and

A1B2 are not statistically independent.

The first inadequacy of the standard unweighted log-rank statistic has been addressed

by Guo in his unpublished 2005 PhD thesis from North Carolina State University (Guo,

2005), where a weighted version of the log-rank statistic was proposed to account for the

second randomization. This statistic weights the at-risk and event processes according to the

response status and randomization probability for each individual. This weighted log-rank

statistic and the corresponding supremum version (Feng and Wahed, 2008), however, are

only applicable to testing separate-path strategies (e.g. A1B1 vs. A2B1). Since the second

inadequacy of the standard unweighted log-rank statistic remains even with the weighted

log-rank statistic, we will address it in this chapter. Specifically, we propose a weighted

log-rank statistic to test the hypothesis H0 : Λ11(t) = Λ12(t), where Λjk(t) is the cumulative

hazard at time t of those following strategy AjBk, accounting for the fact that patients

following A1B1 includes a group of patients who also follow A1B2.

2.6 WEIGHTED LOG-RANK STATISTIC

We present the notation for time-dependent weights which is adapted from Guo and Tsiatis

(2005). Explicitly, let

W11i(s) =
Xi

φ

{
1−Ri(s) +

Ri(s)Zi
π

}
(2.2)

be the weight assigned to the ith patient at time s for the purpose of estimating quantities

related to the strategy A1B1, where Ri(s) = RiI(TRi ≤ s), such that Ri(s) = 1 if the ith

patient responded to A1 by time s, 0, otherwise, π is the known probability of a patient

being assigned to maintenance therapy B1, and φ is the known probability of a patient being

assigned to first-line therapy A1. Similarly,

W12i(s) =
Xi

φ

{
1−Ri(s) +

Ri(s)(1− Zi)
1− π

}
(2.3)
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for estimating quantities related to the strategy A1B2. Note that if a patient has not re-

sponded by time s, W11i(s) = W12i(s) = 1
φ
, confirming that the non-responders are consistent

with both strategies and the only weight is due to the randomization probability to A1; if

the patient has responded and is randomized to B1 by time s, W11i(s) = 1
φπ

and W12i(s) = 0;

if the patient has responded and is randomized to B2 by time s, however, W11i(s) = 0 and

W12i(s) = 1
φ(1−π)

. This construction of weights is based on the fundamental principle of

inverse-probability-of-treatment-weighting (Robins et al., 1994).

Table 2.1: At-risk process notation

Term Definition Description

Yi(s) I(Ui ≥ s) Yi(s)=1 when individual i is at-risk at time
s regardless of what treatment he/she re-
ceives, 0 otherwise

Yjki(s) I(Ujki ≥ s,Xi = 2− j, Zi = 2− k) Yjki(s)=1 when individual i following
treatment strategy AjBk is at-risk at time
s, 0 otherwise

Ȳjk(s)
∑n

i=1Wjki(s)Yi(s) The weighted number of individuals at-
risk at time s following treatment strategy
AjBk

Y NR
j (s)

∑n
i=1 I(Xi = 2− j){1−Ri(s)}Yi(s) The number of individuals who have yet to

respond to treatment Aj and are at-risk at
time s

Yj.(s)
∑n

i=1 I(Xi = 2− j)Yi(s) The number of individuals with initial
treatment Aj and are at-risk at time s

Y (s)
∑n

i=1 Yi(s) The number of all individuals at risk at
time s regardless of what treatment they
receive

To facilitate the derivation of the desired test statistic to compare shared-path adap-

tive treatment strategies and its asymptotic properties, we introduce further notation. For

quick reference, we included these in Tables 2.1 and 2.2. The general at-risk process for

all patients regardless of the strategy that they follow is Yi(s) = I(Ui ≥ s), the weighted

at-risk process is Ȳjk(s) =
∑n

i=1Wjki(s)Yi(s), the at-risk process for only those who are

non-responders to Aj is Y NR
j (s) =

∑n
i=1 I(Xi = 2− j){1−Ri(s)}Yi(s), the overall at-risk

process for patients treated with Aj is Yj.(s) =
∑n

i=1 I(Xi = 2− j)Yi(s) and the overall

at risk-process for all patients is Y (s) =
∑n

i=1 Yi(s). Likewise, the general event process
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Table 2.2: Event process notation

Term Definition Description

Ni(s) I(Ui ≤ s, δ = 1) Ni(s)=1 when individual i has an
event at or before time s regardless
of what treatment he/she receives,
0 otherwise

Njki(s) I(Ujki ≤ s, δi = 1, Xi = 2− j, Zi = 2− k) Njki(s)=1 when individual i follow-
ing treatment strategy AjBk has an
event at or before time s, 0 other-
wise

N̄jk(s)
∑n

i=1 Wjki(s)Ni(s) The weighted number of events at
or before time s for individuals fol-
lowing treatment strategy AjBk

NNR
j (s)

∑n
i=1 I(Xi = 2− j){1−Ri(s)}Ni(s) The number of individuals who are

yet to respond to treatment Aj and
have an event at or before time s

Nj.(s)
∑n

i=1 I(Xi = 2− j)Ni(s) The number of individuals with ini-
tial treatment Aj and have an event
at or before time s

N(s)
∑n

i=1Ni(s) The number of all individuals with
an event at or before time s regard-
less of what treatment they receive

for any patient i is Ni(s) = I(Ui ≤ s, δi = 1), the weighted event process is N̄jk(s) =∑n
i=1Wjki(s)Ni(s), the event process for those who are non-responders to Aj is NNR

j (s) =∑n
i=1 I(Xi = 2− j){1−Ri(s)}Ni(s), the overall event process for patients treated with Aj

is Nj.(s) =
∑n

i=1 I(Xi = 2− j)Ni(s), and the overall event process for all patients is N(s) =∑n
i=1 Ni(s). Based on these weighted processes, the inverse-probability-of-randomization

weighted-log-rank statistic for testing H0: Λ11(t) = Λ12(t), where Λjk(t) is the cumulative

hazard at time t for those following strategy AjBk, is defined as

ZW
n (t) =

∫ t

0

Ȳ11(s)Ȳ12(s)

Ȳ11(s) + Ȳ12(s)

{
dN̄11(s)

Ȳ11(s)
− dN̄12(s)

Ȳ12(s)

}
. (2.4)

The rationale behind this formulation of the test statistic is given in Feng and Wahed

(2008). In short, the quantity dN̄1k(s)/Ȳ1k(s) is an unbiased estimator of the instantaneous
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event rate at time s, dΛ1k(s). Therefore, it serves the same purpose of dN1k(s)/Y1k(s) in

the standard unweighted log-rank test defined in equation (2.1). Under the null hypothesis

Λ11(t) = Λ12(t), since the term {Ȳ11(s)Ȳ12(s)}/{Ȳ11(s) + Ȳ12(s)} is predictable (with respect

to the filtration F(t) = σ{Xi, Ri(s), Ri(s)Zi, I(Ci ≤ s), Ni(s), i = 1, . . . , n; j = 1, 2; 0 ≤ s ≤

t}), the weighted log-rank statistic in equation (2.4) has expectation zero (see Section 2.7).

While the weighted log-rank statistic looks almost identical to that of the standard

unweighted log-rank statistic, note that the terms dN̄11(s)/Ȳ11(s) and dN̄12(s)/Ȳ12(s) are

correlated unlike the unweighted versions from the predetermined strategies in the standard

log-rank statistic. The variance calculation will change substantially in order to account for

this correlation between these two terms. The variance calculation presented in the next

section addresses the second and remaining inadequacy of the standard log-rank and supre-

mum log-rank tests. We will use a standardized version of the statistic from equation (2.4)

to test the null hypothesis H0: Λ11(t) = Λ12(t).

2.7 ASYMPTOTIC PROPERTIES

First we note that n−1/2ZW
n (t) in equation (2.4) can be expressed as a sum of two terms

using the definition of martingale increments. Explicitly,

n−1/2ZW
n (t) = Gn(t) +Rn(t) (2.5)

where

Gn(t) = n−1/2

∫ t

0

Ȳ11(s)Ȳ12(s)

Ȳ11(s) + Ȳ12(s)

{
dM̄11(s)

Ȳ11(s)
− dM̄12(s)

Ȳ12(s)

}
(2.6)

and

Rn(t) = n−1/2

∫ t

0

Ȳ11(s)Ȳ12(s)

Ȳ11(s) + Ȳ12(s)
{dΛ11(s)− dΛ12(s)}, (2.7)

since M̄jk(t) = N̄jk(t)−
∫ t

0
Ȳjk(s)dΛjk(s).

We must show the following two results regarding the weighted martingale to derive

the asymptotic properties of the weighted log-rank statistic, n−1/2ZW
n (t): (i) dM̄jk(s) =
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∑n
i=1Wjki(s)dMjki(s) and (ii) E{dM̄jk(s)|F(s−)} = 0, where Mjki(s) is the ith patient spe-

cific martingale, corresponding to Mjk(s) = Njk(s)−
∫ s

0
Yjk(u)dΛjk(u), the usual martingale

process for strategy AjBk, had there been no second randomization and each patient fol-

lowed a pre-specified (perhaps randomized) treatment strategy. The first result directly

follows from the argument laid out in Feng and Wahed (2008, p. 699). For the second result,

arbitrarily setting j = k = 1,

E{dM̄11(s)|F(s−)}

= E

{
n∑
i=1

W11i(s)dM11i(s)|F(s−)

}

= E

[
n∑
i=1

Xi

φ

{
1−Ri(s) +Ri(s)

Zi
π

}
{dN11i(s)− Y11i(s)dΛ11(s)} | F(s−)

]

=
n∑
i=1

Xi

φ

{
1−Ri(s) +Ri(s)

Zi
π

}
[E{dN11i(s)|F(s−)} − Y11i(s)dΛ11(s)]

=
n∑
i=1

Xi

φ

{
1−Ri(s) +Ri(s)

Zi
π

}
{Y11i(s)dΛ11(s)− Y11i(s)dΛ11(s)}

= 0.

We have used the fact that the expected value of the increment of the event process corre-

sponding to the patients who followed the treatment strategy of interest, here A1B1, given

the history, is zero. That is, E{dN11i(s)|F(s−)} = Y11i(s)dΛ11(s). Likewise, the results

follow for any j, k = 1, 2.

Then, under the null hypothesis, Λ11(t) = Λ12(t), so n−1/2ZW
n (t) = Gn(t) in equa-

tion (2.6). Since we have just shown that martingale increments have mean zero, E{ZW
n (t)} =

0. Thus, ZW
n (t) has mean zero under the null hypothesis of no difference in hazards between

two strategies. To derive the variance of n−1/2ZW
n (t), we can further expand Gn(t) in equa-

tion (2.6). Using the first result of weighted martingales (dM̄jk(s) =
∑n

i=1Wjki(s)dMjki(s)),

Gn(t) can be expressed as a difference of two martingale processes, Gn(t) = G11
n (t)−G12

n (t):

n−1/2

{
n∑
i=1

∫ t

0

Ȳ12(s)W11i(s)

Ȳ11(s) + Ȳ12(s)
dM11i(s)−

n∑
i=1

∫ t

0

Ȳ11(s)W12i(s)

Ȳ11(s) + Ȳ12(s)
dM12i(s)

}
. (2.8)
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By the martingale central limit theorem (Fleming and Harrington, 1991, Ch. 5), G1k
n (t)

converges to a Gaussian process with mean zero. Therefore, Gn(t) converges to a Gaussian

process with mean zero and variance equal to var{G11
n (t)}+var{G12

n (t)}−2cov{G11
n (t), G12

n (t)}.

The variances of G11
n (t) and G12

n (t) can be calculated the same way as the variance for the

weighted log-rank statistic in Feng and Wahed (2008). More explicitly, var{G1k
n (t)} is the

limit of n−1
∑n

i=1

∫ t
0

Ȳ 2
1(3−k)

(s)W 2
1ki(s)

{Ȳ11(s)+Ȳ12(s)}2 Yi(s)dΛ1k(s), k = 1, 2. To find the covariance between

two martingale processes, cov{G11
n (t), G12

n (t)}, we use the formula from Fleming and Har-

rington (1991, p. 70). Explicitly, if H1 and H2 are locally-bounded, predictable processes

and M1 and M2 are local martingales then the covariance between
∫
H1dM1 and

∫
H2dM2

is
∫
H1H2cov(dM1, dM2). Then, the asymptotic variance of Gn(t) can be expressed as the

limiting value of

n−1

2∑
k=1

n∑
i=1

∫ t

0

Ȳ 2
1(3−k)(s)W

2
1ki(s)

{Ȳ11(s) + Ȳ12(s)}2
Yi(s)dΛ1k(s) (2.9)

− 2n−1

∫ t

0

Ȳ11(s)Ȳ12(s)

{Ȳ11(s) + Ȳ12(s)}2

n∑
i=1

W11i(s)W12i(s)cov{dM11i(s), dM12i(s)}. (2.10)

First, note that W11i(s)W12i(s) = Xi{1 − Ri(s)}/φ2. Subsequently, under the null hy-

pothesis, H0 : Λ11(t) = Λ12(t) = Λ0(t), the term inside the summation in the second line of

equation (2.9) can be shown to be equal to

n∑
i=1

Xi{1−Ri(s)}{Yi(s)dΛNR
1 (s)}/φ2 = Y NR

1 (s)dΛNR
1 (s)/φ2.

Thus the variance of Gn(t) can now be expressed as the limiting value of

n−1

∫ t

0

dΛ0(s)

{Ȳ11(s) + Ȳ12(s)}2

{
Ȳ 2

12(s)
n∑
i=1

W 2
11i(s)Yi(s) + Ȳ 2

11(s)
n∑
i=1

W 2
12i(s)Yi(s)

}

− 2(nφ2)−1

∫ t

0

Ȳ11(s)Ȳ12(s){
Ȳ11(s) + Ȳ12(s)

}2

n∑
i=1

Xi{1−Ri(s)}Yi(s)dΛNR
1 (s).

(2.11)

A consistent variance estimator of n−1/2ZW
n (t) is then given by

σ̂2(t) = n−1

∫ t

0

Ȳ 2
12(s)

∑n
i=1W

2
11i(s)Yi(s) + Ȳ 2

11(s)
∑n

i=1 W
2
12i(s)Yi(s)

{Ȳ11(s) + Ȳ12(s)}2

{
dN1.(s)

Y1.(s)

}
− 2(nφ2)−1

∫ t

0

Ȳ11(s)Ȳ12(s){
Ȳ11(s) + Ȳ12(s)

}2

{
Y NR

1 (s)
dNNR

1 (s)

Y NR
1 (s)

}
.

(2.12)
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The notation used in the above equation or elsewhere in this chapter can be reviewed in

Tables 2.1 and 2.2. The corresponding standardized weighted log-rank test statistic is given

by TWn (L), where

TWn (L) = n−1/2ZW
n (L)/σ̂(L), (2.13)

and L, as noted before, is less than the maximum follow-up time. The level α weighted log-

rank test rejects the equality of two shared-path adaptive treatment strategies’ cumulative

hazards when |TWn (L)| ≥ Z1−α/2 where Z1−α/2 is the (1 − α/2)th quantile of a standard

normal distribution.

2.8 SIMULATION STUDIES

2.8.1 Data Generation

To evaluate the performance of the weighted log-rank statistics for comparing two shared-

path adaptive treatment strategies, we conducted a series of Monte Carlo simulations. We

were interested in assessing the type I error rate under the null hypothesis of no difference in

overall survival and in assessing the power of the weighted log-rank statistics under various

alternative scenarios. As stated in the introduction, often, shared-path adaptive treatment

strategies are compared either by turning them into independent groups by using only those

patients who responded to the first-line treatment or pretending as if all those who follow each

strategy form independent groups. Since the first comparison addresses a different question

by comparing the second-stage treatments conditional on response (instead of comparing

entire adaptive treatment strategies), we have not included this statistic for comparison

in our simulation studies. Instead, in our simulation studies, to test the equality of two

shared-path adaptive treatment strategies, we have compared the proposed weighted log-

rank statistic, TWn (L) from equation (2.13) referred to as WLR, to a similar weighted log-

rank statistic that treats the two groups independently such that the variance ignores the

covariance term, hence referred to as the independent weighted log-rank test (IWLR), and
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to the standard unweighted log-rank (SLR) statistic applied to two groups of patients who

followed each strategy. The groups for the standard unweighted log-rank statistic were

formed by combining those who did not respond to Aj to those who responded to Aj and

received treatment Bk. For example, the group representing adaptive treatment strategy

A1B1 consists of all the non-responders to A1 and all those who responded to A1 and were

subsequently assigned to receive B1 and the group representing adaptive treatment strategy

A1B2 consists of all the non-responders to A1 and all those who responded to A1 and were

subsequently assigned to receive B2.

We outline the general data generation process to compare two or more ATS here and

provide specific parameters for each simulation in Sections 2.8.2 and 2.8.3 for comparing two

shared-path ATS and in Sections 3.4.1 and 3.4.2 for comparing multiple ATS. The initial

treatment indicator, Xi, was generated from a Bernoulli distribution with pr(Xi = 1) = 0.5

so that there were about an equal number of patients initially treated with A1 and A2. We

took Ri, the response indicator, to be Bernoulli with pr(Ri = 1) = πR, πR ∈ (0.4, 0.6),

so that there were 40% or 60% of patients who responded to the initial treatment. When

Ri = 0, a survival time TNRji , j = 1, 2, was generated from an exponential distribution

with mean µNRj . When Ri = 1, the treatment B1 indicator, Zi, was generated from a

Bernoulli(0.5) distribution. Also when Ri = 1, time to response, TRji , j = 1, 2, was generated

from an exponential distribution with mean θRj and time from response to an event, TREjki ,

j, k = 1, 2, was generated from an exponential distribution with mean θREjk . The total

survival time for those who responded to Aj and were randomized to Bk is thus, T ∗jki =

TRji + TREjki , for j, k = 1, 2. The variables of interest here are the time-to-events, Tjki, where

Tjki = (1 − Ri)T
NR
ji + RiT

∗
jki, j, k = 1, 2. These variables reflect the overall survival time

under strategy AjBk, (j, k = 1, 2). The observed survival time for the ith individual in the

absence of censoring is defined as Ti = Xi[Ri{ZiT ∗11i + (1 − Z)T ∗12i} + (1 − Ri)T
NR
1i ] + (1 −

Xi)[Ri{ZiT ∗21i + (1 − Zi)T ∗22i} + (1 − Ri)T
NR
2i ]. Additionally, a right censored time, Ci, was

generated from a uniform distribution from zero to v, such that 30% or 50% of the population

were censored. Censoring was independent and uninformative of response and survival time.

The final observed time was then defined as Ui = min(Ti, Ci) with corresponding complete

case indicator, δi = I(Ti ≤ Ci).
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Figure 2.2: Survival curves under the null distribution that all adaptive treatment strategies’

cumulative hazards are equal for 40% response rates (left panel) and 60% response rate (right

panel)

For each generated dataset we conducted the weighted log-rank test described in Sec-

tion 2.7 to test the hypotheses H0 : Λ11(t) = Λ12(t) = Λ0(t). We report the estimated type

I error (proportion of samples for which the hypothesis was falsely rejected) for all tests in

Tables 2.3 when H0was true, and the estimated power (proportion of samples for which the

hypothesis was correctly rejected) for all tests in Tables 2.4-2.6.

2.8.2 Simulation from the Null Distribution

To investigate the performance of the weighted log-rank statistic under the null hypotheses,

we generated 5000 datasets with the following parameters: θR1 = 0.5 and θRE11 = θRE12 = 1.

With a 40% response rate, µNR1 = 0.91 and the censoring paramter v was set to 3.80 and

2.00, and with a 60% response rate, µNR1 = 0.56, v was set to 3.60 and 1.85 to produce about

30% and 50% censoring, respectively.

Table 2.3 presents the estimated type I error rates for testing the null hypothesis H0 :

Λ11(t) = Λ12(t) = Λ0(t) under several combinations of sample size, response rates and
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Table 2.3: Type I error rate under null hypotheses H0 : Λ11(t) = Λ12(t)

Response 30% censoring 50% censoring
Rate (%) n WLR IWLR SLR WLR IWLR SLR

40 250 0.057 0.006 <0.001 0.060 0.004 <0.001
500 0.052 0.005 <0.001 0.056 0.002 <0.001
1000 0.049 0.006 <0.001 0.053 0.004 <0.001

50 250 0.055 0.010 0.002 0.058 0.009 <0.001
500 0.061 0.014 0.003 0.055 0.008 <0.001
1000 0.054 0.013 0.003 0.054 0.009 <0.001

60 250 0.052 0.017 0.008 0.053 0.010 0.002
500 0.053 0.018 0.006 0.053 0.013 0.002
1000 0.054 0.017 0.008 0.051 0.009 0.001

The target type I error rate is α = 0.05. WLR is the weighted log-
rank statistic in equation (2.13). IWLR is the independent weighted
log-rank statistic. SLR denotes the standard unweighted log-rank
statistic.

censoring for the WLR, IWLR, and SLR tests. For a sample size of 500, a response rate

of 40% and censoring of 30%, the type I error for the WLR test was very close to the

nominal level of 0.05. The IWLR statistic does not subtract the covariance term between

the shared-path strategies and therefore rejects the null hypothesis less often leading to a

more conservative test with an approximate error rate of 0.005 for a nominal level of 0.05. The

SLR test, which combines and equally weights all patients who follow a strategy regardless

of their response status, also yielded very conservative type I error rates with an estimate, in

this case, of less than 0.001. Preserving the response rate at 40%, but increasing censoring

led to a similar type I error rate, such that the WLR test had an estimated type I error

rate of 0.056, the IWLR test and the SLR test had estimated error rates less than 0.001. In

general, increasing censoring did not affect the estimated type I error rate for the WLR test

as it maintained the nominal level of 0.05 in all scenarios with greater than 250 individuals.

Preserving censoring at 30% or at 50% and increasing the response rate from 40% to 60%

led to about the same estimated type I error rates for the WLR test and slightly higher rates

for the IWLR test and the SLR test, but these two tests remained overly conservative.
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2.8.3 Simulation from Alternative Distributions

Since the type I error rates were generally upheld, we explored a variety of scenarios per-

forming 5000 iterations to test the power of the weighted log-rank test at a sample size of

250, 500, and 1000. Data were generated from populations under alternative hypotheses

where the cumulative hazards of the adaptive treatment strategies were not equal. The true

survival distributions under the alternative hypotheses, designated as scenarios (a)-(d), are

plotted in Figure 2.3 when 60% of the population respond to A1. The strategies A1B1 and

A1B2 here, are the same as those used for comparison of alternative distributions of four

ATS in Section 3.4.2. The parameters for scenario (a) were set as follows: µNR1 = θR1 = 1,

θRE11 = 2, and θRE12 = 3.33. The parameters for scenario (b) the parameters were set as

follows: µNR1 = θR1 = θRE11 = 1, and θRE12 = 3.33. The parameters for scenario (c) were set as

follows: µNR1 = 1, θR1 = 2, θRE11 = 0.67, and θRE12 = 0.5. Finally, the parameters for scenario

(d) were set as follows: µNR1 = 1.43, θR1 = 0.2, θRE11 = 1, and θRE12 = 1.67. The censoring

parameter v was set to 5 for scenarios (a) and (b), 6 for scenario (c) and 5.5 for scenario (d).

Table 2.4 presents the results for testing the null hypothesis H0 : Λ11(t) = Λ12(t) =

Λ0(t) versus the alternative hypothesis that the cumulative hazards for the two shared-path

adaptive treatment strategies differ for a sample size of 250. The WLR test had much

greater power to correctly reject the null hypothesis than the IWLR test and especially

when compared to the SLR test. In all cases, increasing the response rate from 40% to 60%

increased the power of all tests, but the WLR test always maintained the greatest power. In

particular, note the large difference in power in scenario (b). The WLR test maintained very

high power in this situation, 0.848 for 40% responders, while the IWLR test had about half

the power at 0.458, and the SLR test failed to pick up the difference in the survival curves

in most of the iterations with power of 0.088.

Tables 2.5 and 2.6 present the results for testing the null hypothesis H0 : Λ11(t) =

Λ12(t) = Λ0(t) for a sample size of 500 and 1000, respectively. Since the sample size increased

from 250 to 500 to 1000, the power for all statistics in Table 2.6 is higher than the power in

Table 2.5 which is higher than the power in Table 2.4. For scenario (b), the power for both

the WLR and IWLR is very high, with the power of the SLR reaching to above 80% with
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60% responders for a sample size of 500 and 50% responders for a sample size of 1000. The

pattern of increased power for all tests with an increasing percentage of responders remains

the same. The survival curves for those following strategies A1B1 and A1B2 are very similar

in scenario (c) and thus it would take a very large sample size with any amount of responders

to find this difference.

In conclusion, the WLR test statistic generally maintained the type I error rates for

sample sizes greater than 250, whereas the IWLR and SLR were overly conservative for all

sample sizes. The power to detect differences in two shared-path ATS was highest for the

WLR test statistic in all scenarios tested.
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Figure 2.3: Survival curves for treatment strategies A1B1 (solid), A1B2 (dashes), under

different alternative hypotheses scenarios for 60% responders.

30



Table 2.4: Power against alternative survival curves under H0 : Λ11(t) = Λ12(t) for sample

size n=250

Response Censoring Power
Scenario Rate (%) Rate (%) WLR IWLR SLR

(a) 40 36 0.128 0.020 0.006
50 40 0.138 0.036 0.020
60 44 0.135 0.059 0.035

(b) 40 33 0.848 0.458 0.088
50 36 0.899 0.676 0.228
60 39 0.942 0.823 0.424

(c) 40 26 0.077 0.002 <0.001
50 29 0.090 0.007 <0.001
60 31 0.094 0.019 <0.001

(d) 40 26 0.210 0.077 0.006
50 26 0.331 0.179 0.039
60 26 0.419 0.300 0.098

See Figure 2.3 and Section 2.8.3 for a description of alt-
ernative survival scenarios (a)-(d). WLR is the weighted
log-rank statistic in equation (2.13). IWLR is the inde-
pendent weighted log-rank statistic. SLR denotes the
standard unweighted log-rank statistic.
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Table 2.5: Power against alternative survival curves under H0 : Λ11(t) = Λ12(t) for sample

size n=500

Response Censoring Power
Scenario Rate (%) Rate (%) WLR IWLR SLR

(a) 40 36 0.230 0.055 0.021
50 40 0.271 0.100 0.048
60 44 0.304 0.155 0.088

(b) 40 33 0.987 0.865 0.331
50 36 0.997 0.970 0.620
60 39 0.999 0.993 0.841

(c) 40 26 0.099 0.004 <0.001
50 29 0.113 0.012 <0.001
60 31 0.119 0.036 <0.001

(d) 40 26 0.443 0.213 0.024
50 26 0.605 0.419 0.121
60 27 0.723 0.607 0.295

See Figure 2.3 and Section 2.8.3 for a description of alt-
ernative survival scenarios (a)-(d). WLR is the weighted
log-rank statistic in equation (2.13). IWLR is the inde-
pendent weighted log-rank statistic. SLR denotes the
standard unweighted log-rank statistic.
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Table 2.6: Power against alternative survival curves under H0 : Λ11(t) = Λ12(t) for sample

size n=1000

Response Censoring Power
Scenario Rate (%) Rate (%) WLR IWLR SLR

(a) 40 36 0.468 0.169 0.056
50 40 0.546 0.289 0.133
60 44 0.628 0.435 0.258

(b) 40 33 1.000 0.997 0.786
50 36 1.000 1.000 0.962
60 39 1.000 1.000 0.996

(c) 40 26 0.155 0.012 <0.001
50 29 0.168 0.036 <0.001
60 31 0.201 0.068 <0.001

(d) 40 26 0.772 0.543 0.136
50 26 0.902 0.801 0.423
60 36 0.962 0.924 0.714

See Figure 2.3 and Section 2.8.3 for a description of alt-
ernative survival scenarios (a)-(d). WLR is the weighted
log-rank statistic in equation (2.13). IWLR is the inde-
pendent weighted log-rank statistic. SLR denotes the
standard unweighted log-rank statistic.
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3.0 LOG-RANK STATISTICS FOR MULTIPLE ADAPTIVE TREATMENT

STRATEGIES

3.1 INTRODUCTION

In addition to comparing two shared-path adaptive treatment strategies, we would like to

compare more than two ATS which may share the same treatment paths using test statistics

similar to k-sample log-rank tests (Harrington and Fleming, 1982). Naive approaches to com-

paring the overall survival distributions of two shared-path or multiple adaptive treatment

strategies include those mentioned in Section 1.4. Specifically, (i) ignoring the induction

treatments, comparing second-line therapies conditioning on patients who were eligible to

receive second-stage treatments, or (ii) using the statistics provided in Lokhnygina and Hel-

terbrand (2007), Feng and Wahed (2008), or Li and Murphy (2011) but ignoring that these

statistics were created for comparing separate-path adaptive treatment strategies, or (iii)

forming groups where each group includes all of the patients who follow each adaptive treat-

ment strategy and applying the standard unweighted log-rank test. The first option ignores

the two-stage design and answers a different question than that is intended, the second op-

tion inflates the variance of the stated statistics, and the third option forms groups which

contain some of the same patients violating the standard log-rank assumption that groups

are statistically independent. The goal of this chapter is to address both the second-stage

randomization as well as account for the covariance between shared-path ATS by extend-

ing the results from Chapter 2 and presenting the weighted log-rank statistic to compare

multiple adaptive treatment strategies, some of which may be shared-path.
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3.2 WEIGHTED LOG-RANK STATISTIC

In the setting described in Chapter 2, we would now like to extend the comparison to

all four adaptive strategies, AjBk, j, k = 1, 2, and test the overall null hypothesis of no

treatment effect. The null hypothesis that all cumulative hazards of those following ATS

AjBk, j, k = 1, 2 are equal is stated as H0 : Λ11(t) = Λ12(t) = Λ21(t) = Λ22(t) = Λ0(t)

against the alternative hypothesis, H1: at least one cumulative hazard differs.

To derive the multivariate weighted log-rank statistic, we first notice that H0 can be

cast as a vectorized differences of cumulative hazards such that H0 : ζ(t) = 0 where ζ(t) =

{Λ11(t) − Λ12(t), Λ11(t) − Λ21(t), Λ11(t) − Λ22(t)}T . Following Section 2.6, an unbiased

estimator of ζ(t) is given by ζ̂(t) =
∫ t

0
{dN̄11(s)

Ȳ11(s)
− dN̄12(s)

Ȳ12(s)
, dN̄11(s)

Ȳ11(s)
− dN̄21(s)

Ȳ21(s)
, dN̄11(s)

Ȳ11(s)
− dN̄22(s)

Ȳ22(s)
}T .

The corresponding weighted log-rank statistic for testing H0 is defined as the vector of

the weighted martingale differences, ZMW
n (t) = {Z11.12

n (t), Z11.21
n (t), Z11.22

n (t)}T where

Zjk.j′k′

n (t) =

∫ t

0

Ȳjk(s)Ȳj′k′(s)

Ȳjk(s) + Ȳj′k′(s)

{
dN̄jk(s)

Ȳjk(s)
− dN̄j′k′(s)

Ȳj′k′(s)

}
. (3.1)

Under the null hypothesis, the statistic ZMW
n (t) has expectation zero. Since ZMW

n (t) is a

linear combination of weighted ZW−statistics defined in equation (2.4), by the multivariate

central limit theorem for martingales (Fleming and Harrington, 1991), n−1/2ZMW
n (t) follows

a mean zero Gaussian process with asymptotic variance covariance matrix, Σ(t), that can

be estimated by

Σ̂(t) =


s11(t) s12(t) s13(t)

s12(t) s22(t) s23(t)

s13(t) s23(t) s33(t)

 , (3.2)

where the elements of Σ̂(t) are defined as follows.
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3.3 ASYMPTOTIC PROPERTIES

The estimated variance of the first component of ZMW
n (t), s11(t), is given in equation (2.12),

except that the induction-treatment-specific processes, N1.(s) and Y1.(s), have been substi-

tuted with the overall processes N(s) and Y (s) to reflect that under the null hypothesis, all

strategies have equal hazards. Explicitly,

s11(t) =n−1

∫ t

0

Ȳ 2
12(s)

∑n
i=0 W

2
11i(s)Yi(s) + Ȳ 2

11(s)
∑n

i=0W
2
12i(s)Yi(s)

{Ȳ11(s) + Ȳ12(s)}2

{
dN(s)

Y (s)

}
− 2(nφ2)−1

∫ t

0

Ȳ11(s)Ȳ12(s)

{Ȳ11(s) + Ȳ12(s)}2

{
Y NR

1 (s)
dNNR

1 (s)

Y NR
1 (s)

}
. (3.3)

Similarly, the estimated variances of the second and third components of ZMW
n (t), s22(t) and

s33(t), are given as,

s22(t) =n−1

∫ t

0

Ȳ 2
21(s)

∑n
i=0 W

2
11i(s)Yi(s) + Ȳ 2

11(s)
∑n

i=0W
2
21i(s)Yi(s)

{Ȳ11(s) + Ȳ21(s)}2

{
dN(s)

Y (s)

}
(3.4)

s33(t) =n−1

∫ t

0

Ȳ 2
22(s)

∑n
i=0 W

2
11i(s)Yi(s) + Ȳ 2

11(s)
∑n

i=0W
2
22i(s)Yi(s)

{Ȳ11(s) + Ȳ22(s)}2

{
dN(s)

Y (s)

}
. (3.5)

Note that equations (3.4) and (3.5) do not contain covariance terms since dN̄jk(s)/Ȳjk(s)

and dN̄j′k′(s)/Ȳj′k′(s), j 6= j′, in Z11.21
n (t) and Z11.22

n (t), are conditionally independent given

F(s−).

To obtain an expression for the estimated covariance terms in equation (3.2), we first give

the expressions for the asymptotic covariances and then present the corresponding estimates.

We derive the covariance specifically for σ12(t) = n−1cov{Z11.12
n (t), Z11.21

n (t)} corresponding

to the estimated covariance s12(t); the derivations of σ13(t) = n−1cov{Z11.12
n (t), Z11.22

n (t)}

and σ23(t) = n−1cov{Z11.21
n (t), Z11.22

n (t)} follow similarly. To begin, we define the covariance

under the null hypothesis,

σ12(t) = n−1cov{Z11.12
n (t), Z11.21

n (t)}

= n−1cov

[ ∫ t

0

Ȳ11(s)Ȳ12(s)

Ȳ11(s) + Ȳ12(s)

{
dN̄11(s)

Ȳ11(s)
− dN̄12(s)

Ȳ12(s)

}
,∫ t

0

Ȳ11(s)Ȳ21(s)

Ȳ11(s) + Ȳ21(s)

{
dN̄11(s)

Ȳ11(s)
− dN̄21(s)

Ȳ21(s)

} ]
= n−1cov

[ ∫ t

0

Ȳ11(s)Ȳ12(s)

Ȳ11(s) + Ȳ12(s)

{
dM̄11(s)

Ȳ11(s)
− dM̄12(s)

Ȳ12(s)

}
,
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∫ t

0

Ȳ11(s)Ȳ21(s)

Ȳ11(s) + Ȳ21(s)

{
dM̄11(s)

Ȳ11(s)
− dM̄21(s)

Ȳ21(s)

} ]
. (3.6)

Distributing the terms and further simplifying equation (3.6) using martingale properties,

σ12(t) = n−1cov

{ ∫ t

0

Ȳ12(s)dM̄11(s)

Ȳ11(s) + Ȳ12(s)
−
∫ t

0

Ȳ11(s)dM̄12(s)

Ȳ11(s) + Ȳ12(s)
,∫ t

0

Ȳ21(s)dM̄11(s)

Ȳ11(s) + Ȳ21(s)
−
∫ t

0

Ȳ11(s)dM̄21(s)

Ȳ11(s) + Ȳ21(s)

}
= n−1cov

{ ∫ t

0

Ȳ12(s)dM̄11(s)

Ȳ11(s) + Ȳ12(s)
,

∫ t

0

Ȳ21(s)dM̄11(s)

Ȳ11(s) + Ȳ21(s)

}
−n−1cov

{∫ t

0

Ȳ12(s)dM̄11(s)

Ȳ11(s) + Ȳ12(s)
,

∫ t

0

Ȳ11(s)dM̄21(s)

Ȳ11(s) + Ȳ21(s)

}
−n−1cov

{ ∫ t

0

Ȳ11(s)dM̄12(s)

Ȳ11(s) + Ȳ12(s)
,

∫ t

0

Ȳ21(s)dM̄11(s)

Ȳ11(s) + Ȳ21(s)

}
+n−1cov

{ ∫ t

0

Ȳ11(s)dM̄12(s)

Ȳ11(s) + Ȳ12(s)
,

∫ t

0

Ȳ11(s)dM̄21(s)

Ȳ11(s) + Ȳ21(s)

}
= n−1E

∫ t

0

Ȳ12(s)Ȳ21(s)cov{dM̄11(s), dM̄11(s) | F(s−)}
{Ȳ11(s) + Ȳ12(s)}{Ȳ11(s) + Ȳ21(s)}

−n−1E

∫ t

0

Ȳ11(s)Ȳ21(s)cov{dM̄12(s), dM̄11(s) | F(s−)}
{Ȳ11(s) + Ȳ12(s)}{Ȳ11(s) + Ȳ21(s)}

. (3.7)

In the intermediate steps to reach equation (3.7), we have used the fact that the pairs of

strategies (A1B1, A2B1) and (A1B2, A2B1) are separate path, or that cov{dM̄11(s), dM̄21(s)} =

cov{dM̄12(s), dM̄21(s)} = 0. By expanding the weighted martingales using dM̄jk(t) =∑n
i=1Wjki(t)dMjki(t), the covariances of interest can be expressed as expectations of in-

tegrals with respect to the filtration, or history up to time s defined in Section 2.6, such that

cov{dM̄11i(s), dM̄11i(s)|F(s−)} =
∑n

i=1W
2
11i(s)Yi(s)dΛ0(s) and cov{dM̄12i(s), dM̄11i(s)|F(s−)} =∑n

i=1Xi{1−Ri(s)}Yi(s)dΛNR
1 (s)/φ2. Using derivations similar to the one used to derive the

covariance between the increments of the martingales for strategies A1B1 and A1B2 (Sec-

tion 2.7), we find

σ12(t) = n−1E

[ ∫ t

0

Ȳ12(s)Ȳ21(s)

ω12.21(s)

n∑
i=1

W 2
11i(s)Yi(s)dΛ0(s)

−
∫ t

0

Ȳ11(s)Ȳ21(s)

ω12.21(s)

1

φ2

n∑
i=1

Xi{1−Ri(s)}Yi(s)dΛNR
1 (s)

]

= n−1E

[ ∫ t

0

Ȳ21(s)

ω12.21(s)

{
Ȳ12(s)

n∑
i=1

W 2
11i(s)Yi(s)dΛ0(s)− 1

φ2
Ȳ11(s)Y NR

1 (s)dΛNR
1 (s)

} ]
,
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where ω12.21(s) = {Ȳ11(s) + Ȳ12(s)}{Ȳ11(s) + Ȳ21(s)}. Similarly,

σ13(t) = n−1E

[ ∫ t

0

Ȳ22(s)

ω12.22(s)

{
Ȳ12(s)

n∑
i=1

W 2
11i(s)Yi(s)dΛ0(s)− 1

φ2
Ȳ11(s)Y NR

1 (s)dΛNR
1 (s)

} ]
(3.8)

σ23(t) = n−1E

[ ∫ t

0

1

ω21.22(s)

{
Ȳ21(s)Ȳ22(s)

n∑
i=1

W 2
11i(s)Yi(s)dΛ0(s)

+
1

(1− φ)2
Ȳ 2

11(s)Y NR
2 (s)dΛNR

2 (s)

} ]
, (3.9)

where ωjk.j′k′(s) = {Ȳ11(s) + Ȳjk(s)}{Ȳ11(s) + Ȳj′k′(s)}.

By substituting dΛ0(s) and dΛNR
j (s) with their estimates dΛ̂0(s) = dN(s)/Y (s) and

dΛ̂NR
j (s) = dNNR

j (s)/Y NR
j (s), we have the consistent estimators s12, s13, s23 given below:

s12(t) = n−1

∫ t

0

Ȳ21(s)

ω12.21(s)

{
Ȳ12(s)

n∑
i=1

W 2
11i(s)Yi(s)dΛ̂0(s)− 1

φ2
Ȳ11(s)Y NR

1 (s)dΛ̂NR
1 (s)

}
(3.10)

s13(t) = n−1

∫ t

0

Ȳ22(s)

ω12.22(s)

{
Ȳ12(s)

n∑
i=1

W 2
11i(s)Yi(s)dΛ̂0(s)− 1

φ2
Ȳ11(s)Y NR

1 (s)dΛ̂NR
1 (s)

}
(3.11)

s23(t) = n−1

∫ t

0

1

ω21.22(s)

{
Ȳ21(s)Ȳ22(s)

n∑
i=1

W 2
11i(s)Yi(s)dΛ̂0(s)

+
1

(1− φ)2
Ȳ 2

11(s)Y NR
2 (s)dΛ̂NR

2 (s)

}
, (3.12)

where ωjk.j′k′(s) = {Ȳ11(s) + Ȳjk(s)}{Ȳ11(s) + Ȳj′k′(s)}.

The vector of weighted log-rank statistics, n−1/2ZMW
n (t), presented in Section 3.2, con-

verges in distribution under the null hypothesis to a trivariate normal distribution with mean

zero and variance covariance matrix Σ(t), where Σ(t) is estimated by equation (3.2). Us-

ing the unbiased and consistent estimators of Σ(t), by multivariate Slutsky’s theorem, we

have n−1ZMW
n (t)T Σ̂−1(t)ZMW

n (t) converges in distribution under the null hypothesis to a

chi-square distribution with three degrees of freedom.
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The weighted log-rank test statistic comparing overall survival distributions for adaptive

treatment strategies AjBk, j, k = 1, 2, is then expressed in the form

TMW
n (L) = n−1ZMW

n (L)T Σ̂−1(L)ZMW
n (L), (3.13)

where L is some time less than the maximum follow-up time. The level α weighted log-rank

test rejects the overall equality of adaptive treatment strategies’ cumulative hazards when

TMW
n (L) ≥ χ2

α; 3 where χ2
α; 3 is the (1− α)th quantile of a chi-square distribution with three

degrees of freedom.

3.4 SIMULATION STUDIES

Please refer to Section 2.8.1 for details on the data generation process. For each generated

dataset we conducted the weighted log-rank test described in Section 3.2 to test the hy-

pothesis H0 : Λ11(t) = Λ12(t) = Λ21(t) = Λ22(t) = Λ0(t). We report the estimated type I

error (proportion of samples for which the hypothesis was falsely rejected) for all tests in

Table 3.1 when H0 was true, and the estimated power (proportion of samples for which the

hypothesis was correctly rejected) for all tests in Table 3.3. We have compared the pro-

posed weighted log-rank statistic (WLR), TMW
n (L) from equation (3.13), to the standard

unweighted log-rank statistic (SLR).

3.4.1 Simulation from Null Distribution

To investigate the performance of the weighted log-rank statistic under the null hypotheses,

we generated 5000 datasets with the following parameters: θR1 = θR2 = 0.5 and θRE11 = θRE12 =

θRE21 = θRE22 = 1. With a 40% response rate, µNR1 = µNR2 = 0.91 and the censoring paramter

v was set to 3.80 and 2.00 and with a 60% response rate, µNR1 = µNR2 = 0.56, v was set to

3.60 and 1.85 to produce about 30% and 50% censoring, respectively.

Table 3.1 presents the estimated type I error rates for testing the null hypothesis H0 :

Λ11(t) = Λ12(t) = Λ21(t) = Λ22(t) = Λ0(t) under several combinations of sample size,
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Table 3.1: Type I error rate under the null hypothesis H0 : Λ11(t) = Λ12(t) = Λ21(t) = Λ22(t)

Response 30% censoring 50% censoring
Rate (%) n WLR SLR WLR SLR

40 250 0.056 0.045 0.060 0.044
500 0.052 0.042 0.053 0.047
1000 0.053 0.039 0.055 0.042

50 250 0.057 0.038 0.058 0.040
500 0.056 0.042 0.053 0.044
1000 0.055 0.039 0.052 0.039

60 250 0.059 0.040 0.057 0.042
500 0.049 0.040 0.062 0.043
1000 0.053 0.035 0.051 0.039

The target type I error rate is α = 0.05. WLR is
the weighted log-rank statistic in equation (3.13).
SLR denotes the standard unweighted log-rank
statistic.

response rates and censoring for the proposed weighted log-rank test and the standard un-

weighted log-rank test. The type I error rates for both statistics were similar across all

combinations and around the 0.05 nominal level. Specifically, for a sample size of 500, the

WLR test for 40% responders and 30% censoring produced an estimated type I error rate of

0.052 while the SLR test produced an estimated error rate of 0.042. We note that the SLR

test was not as conservative when comparing four adaptive treatment strategies as when

comparing only two. When censoring was increased to 50%, the WLR test produced an

estimated type I error rate of 0.053 and the SLR test yielded 0.047. Increasing the response

rate to 60% produced acceptable type I error rates for all sample sizes of greater than 250,

but with similar results of about equal estimated type I error rates for all sample sizes and

censoring combinations for both the WLR and the SLR tests.

3.4.1.1 Comparison of Estimated Variance-Covariance with Monte Carlo Re-

sults Under the null hypothesis, we have compared the mean estimated variance-covariance

matrix to the Monte Carlo variance-covariance matrix for response rates of 40% and 60%
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Table 3.2: Mean of the estimated variance-covariance matrix versus the Monte Carlo esti-

mated variance-covariance matrix
Censoring Response Estimated Monte Carlo

Rate Rate n Var-Cov Var-Cov

30 40 250 0.447 0.217 0.217 0.447 0.199 0.207
0.894 0.669 0.892 0.669

0.895 0.886
500 0.456 0.225 0.225 0.452 0.227 0.218

0.910 0.681 0.971 0.706
0.910 0.898

1000 0.462 0.229 0.229 0.455 0.243 0.238
0.918 0.686 0.942 0.710

0.917 0.938
60 250 0.653 0.318 0.318 0.658 0.320 0.320

0.985 0.653 0.995 0.683
0.985 1.040

500 0.668 0.329 0.329 0.663 0.344 0.342
1.004 0.665 1.044 0.694

1.004 1.031
1000 0.675 0.335 0.335 0.674 0.313 0.312

1.014 0.674 1.000 0.666
1.014 1.021

50 40 250 0.275 0.134 0.134 0.273 0.127 0.126
0.625 0.488 0.630 0.491

0.626 0.622
500 0.278 0.138 0.138 0.284 0.146 0.141

0.634 0.494 0.678 0.522
0.633 0.645

1000 0.281 0.140 0.140 0.285 0.146 0.143
0.637 0.496 0.645 0.505

0.637 0.643
60 250 0.385 0.189 0.189 0.387 0.192 0.195

0.664 0.470 0.684 0.493
0.664 0.704

500 0.391 0.193 0.193 0.397 0.200 0.201
0.674 0.476 0.703 0.497

0.673 0.698
1000 0.393 0.196 0.196 0.388 0.185 0.179

0.677 0.479 0.675 0.475
0.677 0.673

Var-Cov denotes Variance-Covariance.
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with censoring of 30% and 50% for sample sizes 250, 500, and 1000 in Table 3.2. The

variance-covariance matrices in Table 3.2 are as follows:
var(n−1/2Z11.12) cov(n−1/2Z11.12, n

−1/2Z11.21) cov(n−1/2Z11.12, n
−1/2Z11.22)

var(n−1/2Z11.21) cov(n−1/2Z11.21, n
−1/2Z11.22)

var(n−1/2Z11.22)


From this table we can see that the under the null hypothesis, the mean estimates of s12

and s13 are the same and the mean estimates of s22 and s33 are almost identical as expected.

The largest absolute difference occurs when there are 40% responders, 30% censoring, and a

sample size of 500. This difference in the mean estimated variance, s22, as compared to the

Monte Carlo variance is 0.061. Interestingly, the biggest differences (all less than 0.061) in

the variance-covariance estimates occur in the variance calculations, not in the covariance

calculations. This is strong evidence to support our covariance derivation and the use of the

weighted log-rank statistic to compare two shared-path or multiple ATS.

3.4.2 Simulation from Alternative Distributions

Since the type I error rates were upheld, we explored a variety of scenarios performing 5000

iterations to test the power of the weighted log-rank test at a sample size of 250. Data

were generated from populations under the alternative hypotheses where at least one of the

cumulative hazards of the four adaptive treatment strategies was not equal to the others. The

four true survival distributions under alternative hypotheses, designated as scenarios (a)-(d),

are plotted in Figure 3.1 when 60% of the population respond to Aj, j = 1, 2. Scenario (a)

represents a typical alternative distribution of survival curves where all four curves differ

(µNR1 = θR1 = 1, µNR2 = 1.25, θR2 = 0.5, θRE11 = 2, θRE12 = 3.33, θRE21 = 1.11, θRE22 = 0.67).

Scenario (b) represents four survival curves where the shared-path strategies have vastly

different survival (µNR1 = θR1 = θRE11 = 1, µNR2 = 1.11, θR2 = 1.67, θRE12 = θRE21 = 3.33,

θRE22 = 0.5). Scenario (c) respresents survival curves where one strategy, A2B1, dominates

the other strategies (µNR1 = µNR2 =1, θR1 = θR2 = θRE21 = 2, θRE11 = 0.67, θRE12 = 0.5, θRE22 =

0.4). Finally, scenario (d) represents intersecting survival curves violating the proportional

hazards assumption under which the log-rank statistic is optimal (µNR1 = θR2 = θRE22 = 1.43,
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µNR2 = 0.33, θR1 = 0.2, θRE11 = 1, θRE12 = 1.67, θRE21 = 0.2). The censoring parameter v was set

to 5 for scenarios (a) and (b), 6 for scenario (c), and 5.5 for scenario (d) so that censoring

ranged from 23-41%.

Table 3.3 presents the power for comparing the survival distributions of the four adaptive

treatment strategies. The WLR was compared to the SLR test. Again, in all cases, increasing

the response rate from 40% to 60% increased the power of both statistics. In almost all of

the scenarios tested, the WLR test had greater power to correctly reject the null hypothesis.

Specifically, in scenario (b) where there is a pairing of curves, we see that for a 40% response

rate and about 34% censoring, the WLR test had a high power at 0.985 unlike the SLR

test which had power of 0.311, even though the survival distributions of A1B1 and A2B2

were very similar and so were the survival distributions of A1B2 and A2B1. µNR1 = 0.1,

µNR2 = θR2 = θRE11 = θRE22 = 1, θR1 = 2.5, θRE12 = 0.5, θRE21 = 0.33, and v = 4, the WLR test had

less power than the SLR test for 40% and 45% responders. This may be due to the unequal

percentage of responders being censored compared to non-responders. For this and similar

scenarios, as the percentage of responders increased above 50%, the WLR test almost always

performed better with higher power than the SLR test.

In conclusion, the proposed weighted log-rank statistic maintained type I error in sample

sizes as small as 250 with 30-50% patients censored. It also exhibited greater power when

comparing multiple adaptive treatment strategies in most situations, including cases where

the proportional hazards assumption was violated.
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Figure 3.1: Survival curves for treatment strategiesA1B1 (solid), A1B2 (dashes), A2B1 (dots),

A2B2 (dot-dash), under different alternative hypotheses scenarios for 60% responders.
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Table 3.3: Power against alternatives under H0 : Λ11(t) = Λ12(t) = Λ21(t) = Λ22(t) for a

sample size of n=250

Response Censoring Power
Scenario Rate (%) Rate (%) WLR SLR

(a) 40 31 0.613 0.197
50 33 0.857 0.457
60 35 0.973 0.770

(b) 40 34 0.985 0.311
50 38 0.995 0.516
60 41 0.999 0.752

(c) 40 28 0.663 0.085
50 30 0.764 0.118
60 33 0.833 0.178

(d) 40 23 0.993 0.980
50 24 0.987 0.855
60 26 0.980 0.614

See Figure 3.1 and Section 3.4.2 for a description
of alternative survival scenarios (a)-(d). WLR is
the weighted log-rank statistic in equation (3.13).
SLR denotes the standard unweighted log-rank
statistic.
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4.0 DATA ANALYSIS

We applied the weighted log-rank test statistic to compare overall survival of the adap-

tive treatment strategies from the Children’s Cancer Group high-risk neuroblastoma study

reported by Matthay et al. (1999, 2009). This two-stage randomized trial began in 1991

and ended in 1996 with 539 eligible children ages 1-18 years with newly diagnosed high-

risk neuroblastoma (the most common extracranial solid tumor of childhood). All of the

patients were initially treated with chemotherapy and 379 patients without progressive dis-

ease participated in the first-stage randomization. Patients were assigned to chemotherapy

(n=190) or to ABMT, a combination of myeloablative chemotherapy, total-body irradiation,

and transplantation of autologous bone marrow purged of cancer cells (n=189). Patients

without disease progression (and who consented to further treatment) participated in the

second-stage randomization. Of the 203 patients who were eligible for the second-stage ran-

domization, 102 were assigned to receive treatment of 13-cis-retinoic acid (cis-RA) and the

other 101 patients were assigned not to receive any further treatment.

To clarify the treatment strategies and SMART design utilized in this trial, refer to

Figure 4.1. We are interested in comparing the following four treatment strategies: (i) CR:

Treat with chemotherapy followed by cis-RA if there is no disease progression; (ii) CN: Treat

with chemotherapy and if there is no disease progression, do not continue treatment; (iii) AR:

Treat with ABMT followed by cis-RA if there is no disease progression; (iv) AN: Treat with

ABMT and if there is no disease progression, do not continue treatment. Notice that there are

85 patients who do not respond to the first-stage treatment of chemotherapy and are therefore

consistent with shared-path adaptive treatment strategies CR and CN and 91 patients who do

not respond to first-stage treatment of ABMT and are therefore consistent with shared-path
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Figure 4.1: Diagram of the SMART design in the Children’s Cancer Group high-risk neu-

roblastoma study

adaptive treatment strategies AR and AN. The goal was to compare survival distributions

under these four adaptive treatment strategies. Survival distributions in Figure 4.2 were

created using the weighted risk set estimator for the survival function from Guo and Tsiatis

(2005).

In the main findings of the study, separate analyses for the first- and second-stage treat-

ments were reported, ignoring the induction or maintenance treatments while conditioning on

patients who were eligible to receive second-stage treatments. Initially, for three-year event-

free survival, Matthay et al. (1999) reported the superiority of ABMT over chemotherapy for

the first stage treatment and the superiority of cis-RA over no further treatment in the sec-

ond stage. In 2009, Matthay et al. reported that ABMT significantly improved the five year

event-free and overall survival compared to non-myeloablative chemotherapy, and cis-RA or

transplantation improved overall survival compared to no further therapy. Analyzing this

data by considering second-stage randomization and using adaptive treatment strategies,

however, demonstrated no significant improvements in overall survival.
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Figure 4.2: Weighted survival curves under four treatment strategies in the neuroblas-

toma study with the number of patients at-risk for each strategy. CR (solid): ‘Treat with

chemotherapy followed by cis-RA if there is no disease progression’; CN (dashes): ‘Treat with

chemotherapy and if there is no disease progression, do not continue treatment’; AR (dots):

‘Treat with ABMT followed by cis-RA if there is no disease progression’; AN (dot-dash):

‘Treat with ABMT and if there is no disease progression, do not continue treatment’
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First we note that there was an overall response rate of 53.6%, where 55.3% of patients

who received chemotherapy responded and 51.9% of patients who received ABMT responded.

Overall, 31.4% of patients were censored, 27.4% of patients randomized to chemotherapy

and 35.4% of patients randomized to ABMT. While censoring was similar among the groups

by induction treatment, it differed substantially between non-responders and responders.

Only 19.9% of non-responders to chemotherapy or ABMT were censored, whereas 41.4% of

responders to chemotherapy or ABMT were censored.

To test if there was a significant difference in the hazards of treatment strategies which

share the same initial treatment of chemotherapy (shared-path treatment strategies CR to

CN), the WLR statistic was 0.12 with p = 0.90. This results agrees with Figure 4.2 as the

weighted survival curves for those following CR and CN appear to be almost exactly the

same. For comparing treatment strategies which share the same initial treatment of ABMT

(shared-path treatment strategies AR to AN) the WLR statistic was −1.07 with p = 0.29,

showing that the two strategies that start on ABMT are not significantly different. Figure 4.2

shows separation between these two curves; this separation, however, occurs after five years,

where the number of patients following each strategy has dropped to less than 36 (14 or

almost 50% of the patients in AR and AN were non-responders to ABMT). Thus, if there is

a true difference in those treated with ABMT followed by cis-RA as compared to those only

treated with ABMT, this study did not have enough patients (high enough power) to find

this difference. To test if there was a difference in overall survival across the four strategies

(CR, CN, AR, AN), the weighted log-rank statistic from equation (3.13) was computed.

There was no significant difference in the overall survival of the four adaptive treatment

strategies as the WLR test produced a chi-square statistic of 2.00 with p = 0.57. We note

that the difference in censoring between those who responded to the first-line treatment and

those who did not is a case of informative censoring. Alike many other survival methods,

the weighted log-rank test may not be valid when censoring is informative.
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5.0 SAMPLE SIZE

5.1 INTRODUCTION

Treatment is inherently a dynamic process, a conversation between the physician and patient,

adapting to the patient’s needs. Treatment often changes due to the patient’s adherence,

response, or side effects such that a patient often receives a string of treatments or dosages

based on his or her individual behaviors and/or characteristics. Sequences of individually tai-

lored treatments are referred to as adaptive treatment strategies (ATS) or dynamic treatment

regimes. ATS are especially relevant in the treatment of chronic diseases where treatment

goals include decreasing symptoms, preventing progression, and improving function. These

diseases, such as cancer, AIDS, substance abuse, depression, and other mental health dis-

orders, are generally complicated and heterogeneous, where a single treatment that “cures”

all patients does not exist. Instead, conversations between physicians and their patients are

imperative to find the best series of individualized treatments.

In order to advance treatment options for patients with chronic diseases and find opti-

mal ATS, we must operationalize the construction and comparison of ATS. Strategies can

be constructed and compared using observational data, but in order to more easily control

for confounding and evaluate ATS, randomized trials are necessary. The sequential multi-

ple assignment randomized trial (SMART) (Lavori et al., 2000, 2004, Murphy, 2005) was

developed to include the dynamic aspect of treatment prescription into randomized trials

investigating sequences of time-varying treatments subject to modification based on individ-

uals’ intermediate behaviors, characteristics, or responses. In this dissertation, we focus on

two-stage SMART designs.
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SMARTs have been implemented throughout the recent past (Strecher et al., 2008, Pel-

ham and Fabiano, 2008, Auyeung et al., 2009, Kasari, 2009, Jones, 2010, Tannir, 2010,

Mitchell et al., 2011, Wang et al., 2011), especially in areas of substance abuse, chronic

diseases, and mental health disorders. Earlier trials were not equipped with the statistical

techniques to compare adaptive treatment strategies and instead compared stage-specific

treatments. More recent trials have been designed and analyzed with the goal of comparing

ATS since statistical literature has increased in this area to address issues related to the

design, comparison, and estimation of ATS (Thall et al., 2000, Murphy, 2003, 2005, Dawson

and Lavori, 2004, Wahed and Tsiatis, 2006, Wahed, 2010, Orellana et al., 2010, Zhao et al.,

2011, Almirall et al., 2012). Such trials and statistical theory have focused on analyzing con-

tinuous, binary, and/or time-to-event outcomes, with most statistical tests comparing two

two-stage ATS with different initial treatments (allowing the groups to be independent). We

refer to these independent strategies, as separate-path ATS. On the contrary, strategies are

shared-path if patients following one strategy share a common path of treatment with pa-

tients following another strategy and, hence, the groups share the same first-stage treatment

and are not statistically independent (for detailed definitions, please refer to Section 2.2).

Many have focused on the analysis aspect of ATS in observational and randomized set-

tings, yet, we have previously noted a gap in statistical analysis literature focusing on the

overall survival comparison of shared-path ATS (Section 1.4). Comparatively, relatively less

development occurred in the design aspect of SMARTs, and thus, we find such a gap also

existing in the statistical design literature. Specifically, there does not exist sample size

determination techniques for trial designs interested in the overall survival comparison of

multiple ATS. As SMARTs are increasingly implemented, it is essential that the necessary

methods for designing these trials are developed. Chakraborty (2011, p. 42) declares the

importance of sample size research, “As is the case with any study, sample size calculation

is a crucial part of SMART design,” and notes that “there are still open questions relating

to sample size issues in a SMART design that warrant further research.” Therefore, the goal

of this section is to address an open sample size question in SMART design. Explicitly, we

will present a sample size formula to adequately power a two-stage SMART with the aim of

comparing the overall survival of multiple ATS, including shared-path ATS.
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5.2 RELATED WORK

Most sample size formulations (Murphy, 2005, Feng and Wahed, 2008, Wolbers and Hel-

terbrand, 2008, Dawson and Lavori, 2010, Oetting et al., 2011, Li and Murphy, 2011) have

focused on the comparison of two two-stage separate-path ATS since most analyses have fo-

cused on this comparison. Apart from these comparisons, Feng and Wahed (2009), Dawson

and Lavori (2010) and Li and Murphy (2011), have addressed methods for the comparison

of two shared-path ATS in the presence of continuous and time-to-event outcomes. These

methods, however, did not address the overall survival comparison for multiple ATS, includ-

ing those which are shared-path. We provide a brief overview of sample size methods to

power SMARTs. First, we introduce sample size methods for trials with binary outcomes,

followed by trials with continuous outcomes, and finally, trials with time-to-event outcomes.

Our interest lies in the latter trials; to extend the methodology to power SMARTs with

time-to-event outcomes to compare multiple ATS.

Often, mental health trials will have binary outcomes such that the patient responds

successfully or unsuccessfully to the treatment or treatment strategy. For example, the

outcome for a depression trial may be dichotomous such that a successful outcome is defined

by a depression score on the Beck Depression Inventory (BDI) of 12 or under, whereas, an

unsuccessful outcome is defined by a BDI score over 12. Dawson and Lavori (2004) focused

on these binary outcomes in psychopharmacology trials and developed sample size equations

to compare the outcomes from patients following an adaptive treatment strategy to patients

who only received a single treatment (the single treatment corresponding to a treatment

chosen from a single stage of the adaptive treatment strategy). This comparison is similar

to equivalence testing of two treatments.

Alternatively, outcomes could be continuous, e.g., using the depression score itself, CD4

counts for AIDS, or school performance scores for children with ADHD. Murphy (2005)

focused on such outcomes, powering SMARTs primarily to develop ATS, not to confirm

the superiority of one strategy over another. Murphy introduced a sample size formula

to compare two separate-path ATS. Simple upper bounds of the variance calculation were

given, so that the user could input this bound, the desired type I and II error, and effect
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size (signal to noise ratio) to calculate the necessary sample size. Oetting et al. (2011)

expanded on Murphy’s work focusing on hypothesis testing and the estimation of stage-

specific and conditional treatment effects. Among the methods in this paper were two

sample size equations for comparing two separate-path ATS based on Z-statistics. For both

equations the user must provide the desired effect size, but one also demands the initial

treatment response rate, whereas the other does not.

Dawson and Lavori (2010) developed sample size methods for pairwise comparisons of

both separate-path and shared-path ATS with continuous outcomes. For separate-path ATS,

the method utilized a variance inflation factor to account for the loss of precision due to miss-

ingness created by the sequential randomization in a SMART design. Dawson and Lavori

(2010) denoted shared-path ATS as “overlapping strategies,” explaining that “any over-

lap between a pair of ATS (created by sequential treatment assignment) not only diminishes

causal difference but also introduces positive between-strategy covariance.” They recognized

that a “significant challenge is the development of methods for sample size determination

because of the sequential and adaptive nature of both the strategies under study and treat-

ment assignment mechanism used to assign subjects to the adaptive treatment strategy.” To

address this challenge, they provided sample size formulae for multi-stage or k-stage designs

using a version of the G-Computational Algorithm (Robins et al., 1994). For a multi-stage

design, they suggest that the required sample size be set to the maximum sample size needed

from any pairwise comparison.

Other sample size methodologies for ATS have focused on time-to-event outcomes, for

example, time to death, time to a certain number of alcoholic drinks, or time to a first

school disciplinary event. Wolbers and Helterbrand (2008) attempted to make methods

as simple and applicable as possible, providing sample size equations to analyze two-stage

designs based on comparisons using Cox regressions or log-rank tests. Instead of analyzing

the overall survival of the entire ATS, they suggested comparing second-stage treatments

directly applying Schoenfeld’s formula, and then modified the formula by using simulation

results to compare independent induction treatments for those who responded and received

the same second-stage treatment.
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In order to compare entire ATS with time-to-event outcomes, Li and Murphy (2011)

proposed sample size formulae, focusing on the comparison of two separate-path ATS in both

point-wise and overall survival settings. Their comparisons used the weighted Kaplan Meier

and weighted log-rank tests. Conservative sample size calculations replaced the variance

calculations with upper bounds to lessen distributional assumptions. The user must provide

the first- and second-stage randomization probabilities, the probability of observing an event

before the end of the study for patients following the first (reference) ATS, the hazard

ratio of survival times for those following the second, independent ATS compared to the

first (reference) ATS, the type I error, and power. An applet is available to calculate the

sample size to power SMART with the goal of comparing two separate-path ATS at http:

//methodologymedia.psu.edu/logranktest/samplesize. In the supplementary material

for this article, Li and Murphy also provide sample size formulae for more general two-stage

randomized trials, including the test statistic to test the equality of survival probabilities

at one time point using the weighted Kaplan-Meier estimator of two shared-path ATS. The

covariance term in this statistic is based on the joint asymptotic distribution of the weighted

Kaplan-Meier estimators of the shared-path ATS’ survival functions, and it is estimated

using an empirical estimator.

Feng and Wahed (2009) also provided a sample size equation to compare point-wise

survival of two shared-path ATS using a weighted sample proportion estimator. This formula

required parametric specifications of the survival times for non-responders and responders,

as well as, the censoring distribution. While addressing the comparison of shared-path

ATS, Li and Murphy (2011) and Feng and Wahed (2009) did not provide methods for

the overall survival comparison of shared-path ATS. Feng and Wahed (2008) addressed the

overall survival comparison, but for two separate-path ATS. They provided a sample size

equation based on the supremum weighted log-rank test. This formula did not include

parametric working assumptions, but rather depended on the expected proportions of death

among responders and non-responders at the end of the study and the hazard ratio between

independent strategies.

While methodological research is focused mostly on the analysis aspect of SMARTs,

several methods exist for the design aspect of these trials. Specifically, there are sample
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size formulae to power SMARTs with binary, continuous, or time-to-event outcomes, but

most methods focus on comparing two ATS, usually separate-path strategies. Thus, besides

simulation, a method does not exist to calculate the sample size of a SMART with the goal

of comparing overall survival of multiple ATS, some of which may be shared-path, in the

time-to-event outcome setting.

In order to derive such a sample size equation, not only are methods from ATS literature

relevant, but so are methods comparing overall survival by using multivariate log-rank tests

from multi-arm randomized trial literature. A pivotal paper by Ahnn and Anderson (1995)

presented sample size equations based on the Tarone-Ware and Harrington and Fleming test

statistics comparing k ≥ 2 survival distributions. The follow-up paper (Ahnn and Anderson,

1998) provided extensions to more complex designs, including non-proportional hazards,

time-dependent loss to follow-up, non-compliance, drop-in, and varying accrual, drop-in

and drop-out rates, using Markov models. Jung and Hui (2002) improved upon Ahnn and

Anderson’s formula showing that it underestimated sample size. Generalizing Ahnn and

Anderson’s sample size formula for unequal allocation, Halabi and Singh (2004) presented

sample size calculations for stratified and unstratified log-rank tests. Here assumptions

included the contiguous time-varying proportional hazards alternative, hazard ratios which

do not depend on time, and equal censoring among treatment groups. They also used

power series approximations to the non-central chi-square distribution of the log-rank test.

Barthel et al. (2006) presented a general framework for sample size calculation, including

staggered entry and loss to follow-up, implemented in the freely available program ART for

STATA. The sample size calculation assumed local alternatives, but supplementary material

approximated the formula for more distant alternatives using iterative methods.

Borrowing the local alternative framework and non-central chi-square distribution from

the multi-arm randomized trial literature, and combining it with the sequential and adaptive

nature of methods from ATS literature, we develop a sample size formula to compare multiple

ATS, some of which may be shared-path, in simple two-stage SMART designs. We derive the

sample size formula based on the statistic presented in Section 3. We then present simulation

studies employing the sample size formula testing its empirical power and discuss the results,

limitations, and planned work.
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5.3 SAMPLE SIZE CALCULATION

We develop the sample size equation under the scenario discussed in Section 1.1 to design

a trial similar to that shown in Figure 2.1. Thus, we are interested in constructing a trial

with enough power to find a difference in the overall survival distributions of four adap-

tive treatment strategies A1B1, A1B2, A2B1, and A2B2. We have shown in Section 3.2 that

under the null hypothesis of four equal cumulative hazards, the weighted log-rank test is

asymptotically chi-square distributed with three degrees of freedom.

We define the alternative hypothesis H1 to be a sequence of alternatives converging

toward the null hypothesis as n→∞. We base the sample size equation on this contiguous

time-varying proportional hazards alternative (Kosorok and Lin, 1999) wherein the hazard

functions for the four ATS are

λn11(t) = λ0(t)eγ
∗
11/n

1/2

,

λn12(t) = λ0(t)eγ
∗
12/n

1/2

,

λn21(t) = λ0(t)eγ
∗
21/n

1/2

,

and λn22(t) = λ0(t)eγ
∗
22/n

1/2

.

Note that λ0(t) is a continuous baseline hazard and γ∗jk is a scalar constant.

We express the z-statistics, Z11.jk
n (t), j, k = 1, 2, in terms of weighted martingales as

follows:

Z11.jk
n (t) =Gn(t) +Rn(t)

=n−1/2

∫ t

0

Ȳ11(s)Ȳjk(s)

Ȳ11(s) + Ȳjk(s)

{
dM̄11(s)

Ȳ11(s)
− dM̄jk(s)

Ȳjk(s)

}
(5.1)

+ n−1/2

∫ t

0

Ȳ11(s)Ȳjk(s)

Ȳ11(s) + Ȳjk(s)
{dΛ11(s)− dΛjk(s)}, (5.2)

since M̄jk(s) = N̄jk(s) −
∫ s

0
Ȳjk(u)dΛjk(u). From the martingale central limit theorem, the

difference in weighted martingales, Gn(t), shown in equation (5.1), converges to mean 0.

Then, under the alternative hypothesis, Z11.jk
n (t) reduces to Rn(t) in equation (5.2). Under
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the contiguous alternative hypothesis and using a Taylor’s series expansion of n1/2{dΛn
11(s)−

dΛn
jk(s)}, j, k = 1, 2, we have:

n1/2{dΛn
11(s)− dΛn

jk(s)}

= n1/2{eγ∗11/(n1/2) − eγ∗jk/(n1/2)}λ0(s)ds

= (γ∗11 − γ∗jk)λ0(s)ds{1 + o(1/
√
n)}, (5.3)

where o(1) is an error term that converges uniformly in s to 0 as n→∞.

Let Xji be the first-stage treatment indicator such that X1i = 1 if individual i receives

treatment A1 with probability φ1, 0 otherwise, and X2i = (1−X1i) = 1 if individual i receives

treatment A2 with probability φ2 = (1 − φ1), 0 otherwise. Let πzk be the randomization

probability to second-stage treatment, πz1 = πz and πz2 = 1−πz and let πRj be the expected

proportion of individuals who have responded to Aj by the end of the trial (time L). Then,

the limiting values of the weighted at-risk process for strategy AjBk, Ȳjk(s), found in the Z-

statistics in equation (3.1) and variance equations (3.3)-(3.5), as well as,
∑n

i=1W
2
jki(s)Yi(s)

and Y NR
j (s) found in the variance equations (3.3)-(3.5) and covariance equations (3.10)-

(3.12) can be approximated by their population counterparts. We define ψNRj (s) to be

the limiting distribution of
∑n

i=1Xji{1−Ri(s)}Yi(s)/{nφj(1− πRj )} and ψRjk(s) to be the

limiting distribution of
∑n

i=1 XjiRi(s)ZkiYi(s)/(nφjπ
R
j πzk). Then, we have

E[Ȳjk(s)/n] =E

[
n∑
i=1

WjkiYi(s)/n

]

=E

[
1

nφj

n∑
i=1

Xji{1−Ri(s)}Yi(s) +
1

nφjπzk

n∑
i=1

XjiRi(s)ZkiYi(s)

]
≈(1− πRj )ψNRj (s) + πRj ψ

R
jk(s).

Similarly, we have

E

[
n∑
i=1

W 2
jki(s)Yi(s)/n

]
=E

[
1

nφ2
j

n∑
i=1

Xji{1−Ri(s)}Yi(s) +
1

nφ2
jπ

2
zk

n∑
i=1

XjiRi(s)ZkiYi(s)

]

≈ 1

φj

[
(1− πRj )ψNRj (s) +

πRj
πzk

ψRjk(s)

]
,
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and

E
[
Y NR
j (s)/n

]
=E

[
n∑
i=1

Xji{1−Ri(s)}Yi(s)/n

]
≈φj(1− πRj )ψNRj (s).

For simplicity, we assume that response rates and censoring are similar in all strategies,

such that πR1 = πR2 = πR0 , and ψNR1 (s) = ψNR2 (s) = ψNR0 (s) and ψR11(s) = ψR12(s) = ψR21(s) =

ψR22(s) = ψR0 (s). We also assume that randomization probabilities to A1 and A2 and to B1

and B2 are equal, such that φ = φ1 = φ2 = 0.5 and πz = πz1 = πz2 = 0.5, respectively.

Under these simplified assumptions,

E[Ȳjk(s)/n] ≈(1− πR0 )ψNR0 (s) + πR0 ψ
R
0 (s),

E
[∑

W 2
jki(s)Yi(s)/n

]
≈2{(1− πR0 )ψNR0 (s) + 2πR0 ψ

R
0 (s)},

and E
[
Y NR
j (s)/n

]
≈0.5(1− πR0 )ψNR0 (s).

Then, using equation (5.3), Rn(t) in equation (5.2) can be written as

Rn(t) =n−1

∫ t

0

Ȳ11(s)Ȳjk(s)

Ȳ11(s) + Ȳjk(s)
n1/2 {dΛ11(s)− dΛjk(s)}

≈n−1

∫ t

0

Ȳ11(s)Ȳjk(s)

Ȳ11(s) + Ȳjk(s)
(γ∗11 − γ∗jk)λ0(s)ds,

which converges in probability to∫ t

0

0.5{πR0 ψR0 (s) + (1− πR0 )ψNR0 (s)}(γ∗11 − γ∗jk)λ0(s)ds

= 0.5(γ∗11 − γ∗jk){πR0 DR(t) + (1− πR0 )DNR(t)}

where

DR(t) =

∫ t

0

dDR(s) =

∫ t

0

ψR0 (s)λ0(s)ds,

and DNR(t) =

∫ t

0

dDNR(s) =

∫ t

0

ψNR0 (s)λ0(s)ds.

Here, under the null distribution, DR(t) is the probability of observing an event by time t

from individuals who have responded to Aj and received Bk and DNR(t) is the probability

of observing an event by time t from individuals who have not responded to Aj.
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We assume that the asymptotic arguments apply for reasonably large sample size n

and fixed alternative, γ11.jk, when comparing strategy A1B1 with strategy AjBk, so like

many sample size formulas, power is based on a fixed alternative. We approximate power

calculations under the contiguous alternative using γ∗11 − γ∗jk = n1/2γ11.jk. Then, our vector

of Z-statistics, n−1/2ZWLR
n (t) = n−1/2{Z11.12

n (t), Z11.21
n (t), Z11.22

n (t)}T , each with expressions

from equation (3.1), can be approximated as n1/2µ = n1/2{µ11.12(t), µ11.21(t), µ11.22(t)}

µ11.12(t) = 0.5γ11.12{πR0 DR(t) + (1− πR0 )DNR(t)} (5.4)

µ11.21(t) = 0.5γ11.21{πR0 DR(t) + (1− πR0 )DNR(t)} (5.5)

and µ11.22(t) = 0.5γ11.22{πR0 DR(t) + (1− πR0 )DNR(t)}. (5.6)

Note that we can also express this fixed alternative as the negative log hazard ratio of the

strategy AjBk to A1B1. Here, −n1/2log{λjk/λ11} = γ∗11 − γ∗jk, thus we can approximate the

Z-statistics from the user inputs of the hazard ratio of strategies AjBk as compared to A1B1,

the expected proportion of responders, and the expected proportions of death among the

non-responders and responders by the end of the study.

The variance equations from Σ̂(t) = {spq(t)}3x3, where the elements are defined in equa-

tions (3.3)-(3.5) and (3.10)-(3.12), are similarly estimated by the matrix ξ = {ξpq(t)}3x3 with

elements estimated as follows:

ξ11(t) = 2πR0 D
R(t) + (1− πR0 )πR0 D

NR(t), (5.7)

ξ22(t) = 2πR0 D
R(t) + (1− πR0 )DNR(t), (5.8)

ξ33(t) = 2πR0 D
R(t) + (1− πR0 )DNR(t), (5.9)

ξ12(t) = πR0 D
R(t) + 0.5(1− πR0 )πR0 D

NR(t), (5.10)

ξ13(t) = πR0 D
R(t) + 0.5(1− πR0 )πR0 D

NR(t), (5.11)

and ξ23(t) = πR0 D
R(t) + 0.5(1− πR0 )(2− πR0 )DNR(t). (5.12)

Note that we have approximated dΛNR
j (s), j = 1, 2, from the covariance estimations, with

(1− πR0 )dΛ0(s).
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Assuming the above conditions, it can be shown that under a sequence of alternatives

converging toward the null hypothesis, the weighted log-rank statistic has an asymptotic chi-

square distribution with 3 degrees of freedom and non-centrality parameter v = nµξ−1µT .

Approximations of µ and ξ depend on equal censoring and randomization probabilities. Users

must provide parameter inputs using a priori knowledge. Specifically, users of this sample

size calculation must provide:

• The desired type I error: α

• The desired power level: 1− β

• The expected proportion of responders by the end of the study (time L): πR0

• The expected proportion of death in non-responders by the end of the study: DNR(L)

• The expected proportion of death in responders by the end of the study: DR(L)

• The hazard ratios between strategies: λjk/λ11

Using this information, µξ−1µT is calculated to obtain the non-centrality parameter of

the corresponding chi-square distribution with specified type I error and power. Then, the

sample size n is solved for, where n = v/(µξ−1µT ). This sample size, n, is the total number

of patients in all strategies. Using the randomization probabilities to Aj and Bk (assumed

to be 0.5), we can find the strategy-specific sample sizes.

5.4 NUMERICAL STUDY

To verify the utility of our sample size formula, we have calculated sample sizes for various

alternative hypotheses defined by the user-specified input as described in the previous section.

We present the results from the sample size calculation in Table 5.1. This table presents the

total sample sizes for comparing all four ATS, AjBk, j, k = 1, 2 under different alternatives.

The desired type I error rate was set to be 0.05 and power to be 0.80. We have specified the

hazard ratio between strategies A1B2 and A1B1 to be 1.1, between A2B1 and A1B1 to be

1.3, and we have varied the hazard ratio between A2B2 and A1B1 to be 1.2, 1.3, and 1.5. We

have varied the response rate such that either 40% or 60% of patients respond to the initial
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Table 5.1: Results from Sample Size Calculation

Response n

Rate DR(L) DNR(L) λ22/λ11 = 1.2 λ22/λ11 = 1.5 λ22/λ11 = 1.7

40% 0.2 0.3 3178 1308 723
0.5 2005 836 451
0.7 1447 608 324

0.4 0.3 1849 758 422
0.5 1589 654 362
0.7 1390 575 316

60% 0.2 0.3 3801 1526 885
0.5 2656 1072 615
0.7 2026 822 467

0.4 0.3 2123 851 495
0.5 1901 763 443
0.7 1718 691 400

n is the total sample size for all strategies. Desired type I error was set to
0.05 and power set to 0.80. λjk/λ11 is the hazard ratio of strategy AjBk

to A1B1. λ12/λ11 = 1.1 and λ21/λ11 = 1.3. DR(L) and DNR(L) are the
expected proportions of events among the responders and non-responders
respectively, by the end of the study.

treatment Aj, j = 1, 2 and we’ve varied the proportions of events among the responders

(DR(L)) and non-responders (DNR(L)).

The sample size formula does behave as expected such that the closer the hazard ratios

are to each other and to the null, the larger the sample size. As the expected proportions

of events among responders and non-responders increases, the sample size decreases. Also,

as the difference between the expected proportions of events among the responders and

non-responders increases, the sample size decreases. Finally, we see that as the response

rate increases from 40% to 60%, the sample size increases. At first glance, this may seem

counterintuitive, however, we can illustrate this easily as follows. Consider a total sample

size of 200 where 50% are randomized to A1 and the other 50% are randomized to A2. Thus,

there are 100 patients in each initial treatment arm. If the response rate is 40%, 40 patients

from each Aj, j = 1, 2, are randomized among B1 and B2 and the other 120 patients, split

equally among A1 and A2, are non-responders. Then each strategy has a working sample
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size of 20+60=80. If, however, the response rate to the first-stage treatment is 60%, keeping

all randomization probabilities equal at 0.5, the working sample size for each strategy drops

to 30+40=70. Thus, when there are more responders, the strategy-specific working sample

size decreases, so more patients are needed overall to achieve the same power. Since the

weighted log-rank test takes all of the non-responders into consideration, utilizing this group

of patients who share common treatment paths, it is advantageous and leads to a smaller

sample size when there are fewer responders. This test statistic lends itself to trials for

chronic diseases, especially, late-stage or late-onset diseases where a high response rate is

not expected, but rather, the goal is to find any measure to elongate survival.

5.5 SIMULATION STUDIES

Since the sample size equation produces appropriate sample sizes and behaves as expected,

we generated data based on the sample sizes calculated under different alternatives and

tested the empirical power using the weighted log-rank statistic presented in Section 3.3.

In order to satisfy the proportional hazards assumption given the user provided inputs, we

generated the population survival data from exponential distributions with rates given by

λ12/λ11, λ21/λ11, and λ22/λ11, setting λ11 = 1. We used a trial and error method to find the

end of the study time L and the censoring parameter v, such that the user-specified values

of DR(L) and DNR(L) were upheld (we could not solve for these parameters in closed form).

Details of the data generating process is shown in the algorithm provided in the appendix.

We had varying degrees of success employing our sample size calculation. Results are

presented in Table 5.2. Most notably, we see that five of these cases reach 80% power, and

several other cases come close, however, not all of the alternatives shown in Table 5.2 reach

this desired level of power. In the first block of results, where λ12/λ11 = 1.4, λ21/λ11 =

1.5, λ22/λ11 = 1.2, all of the cases reach or are very close to 80% power, except for one case.

When πR0 = 0.6 and v = 2, we exceed our desired power with an empirical power of 83%, but

when v = 4, the empirical power of 74% is 6% lower than the desired level. The highest power

reached in the second block of results, where λ12/λ11 = 1.1, λ21/λ11 = 1.3, λ22/λ11 = 1.5,
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is 0.78, but the other alternatives in this block underestimate the power by 4-9%. In the

third block of results, where λ12/λ11 = 1.2, λ21/λ11 = 1.3, λ22/λ11 = 1.4, the sample size of

1322 delivers 80% power, but the other sample sizes underestimate power, again, by 4-9%.

It remains unclear why some alternatives lead to underestimating the power, while other

alteratives achieve the desired power.

While some alternatives achieve the desired power level, it appears that most simulations

underestimate power. We believe this is due to underestimating the variance-covariance pa-

rameters in equations (5.7)-(5.12). We have approximated the instantaneous hazard rate of

the non-responders, dΛNR
j , j = 1, 2, using (1− πR0 )dΛ0(s). Such an approximation is appro-

priate for survival (proportions), however, this does not hold for hazard rates. Currently, we

are thinking of considering some variance inflation factor.

We suggest further simulations to explore the discrepancy between the empirical and

expected power levels from the sample size equation. It is ideal to find situations with

uninformative censoring, however, given the user inputs, it is difficult to find the L and v

to satisfy this and even more difficult to expect that these parameters be the ones followed

for the trial. Ideally, we would like the sample size formula to remain robust to the inputs.

It appears, however, that the sample size equation is quite sensitive to the specifications

of DR(L) and DNR(L) which then determine L and v. Therefore, more studies are needed

to assess the power and robustness of this statistic and perhaps modifications to ensure

the formula not only behaves as expected, but produces robust results which will allow the

SMARTs designed using this formula to have the desired power.
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Table 5.2: Testing the Empirical Power of the Sample Size Formula

λ12/λ11 λ21/λ11 λ22/λ11 πR0 DR(L) DNR(L) L v n Power

1.4 1.5 1.2 0.5 0.30 0.43 0.4 1 727 0.808
0.5 0.42 0.60 0.6 2 521 0.808
0.6 0.43 0.61 0.6 2 612 0.826
0.6 0.46 0.65 0.6 4 574 0.737
0.7 0.34 0.47 0.4 2 916 0.803
0.7 0.44 0.65 0.6 4 682 0.782

1.1 1.3 1.5 0.5 0.31 0.56 0.5 5 795 0.707
0.5 0.22 0.37 0.3 5 1182 0.755
0.6 0.36 0.57 0.6 2 819 0.761
0.6 0.41 0.66 0.7 3 712 0.761
0.7 0.32 0.44 0.4 2 1078 0.733
0.7 0.29 0.40 0.4 1 1188 0.780

1.2 1.3 1.4 0.5 0.28 0.47 0.4 4 1322 0.803
0.5 0.37 0.62 0.6 4 1022 0.711
0.6 0.30 0.46 0.4 3 1134 0.761
0.6 0.39 0.60 0.6 3 1478 0.764
0.7 0.33 0.44 0.4 2 1601 0.759
0.7 0.40 0.54 0.5 3 1313 0.745

n is the total sample size for all strategies. Desired type I error was set to 0.05.
λjk/λ11 is the hazard ratio of strategy AjBk to A1B1. πR0 is the expected pro-
portion of responders by the end of the study. DR(L) and DNR(L) are the
expected proportions of events among the responders and non-responders, re-
spectively, by the end of the study. L denotes the end of the study in years
and v is the censoring parameter.
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6.0 DISCUSSION AND FUTURE WORK

Adaptive treatment strategies have become more prevalent in clinical research, especially in

the treatment of chronic diseases, where management of the disease is more important than

a cure. Two-stage randomization designs (or more generally SMART designs) are, therefore,

commonly being used in clinical trials to compare adaptive treatment strategies with two

decision points. Since many clinical trials focus on a time-to-event endpoint, the development

of statistical methods for survival analysis in two-stage randomized designs is essential. While

others have developed statistics to estimate point-wise survival or compare overall survival

distributions of separate-path adaptive treatment strategies, methods for comparing the

overall survival distributions of adaptive treatment strategies that share common paths are

not available in current literature.

These shared-path adaptive treatment strategies share a common path of treatment such

that there is a common group of patients who could be considered as treated with more than

one adaptive treatment strategy in the data collected through SMART designs. To address

this, we have proposed a weighted log-rank statistic which takes into account both the two-

stage randomized design and the statistical dependence among groups of patients who follow

each strategy. We have provided the asymptotic properties of these tests and we have shown

that the proposed weighted log-rank statistic comparing two or more adaptive treatment

strategies which may share common treatment paths generally maintains type I error rates

and has greater power than naive methods of analysis in most cases. Our derivation of

the asymptotic properties of the statistic is based on the assumption that the censoring is

non-informative. Like many other survival methods, this method may not be valid when

the censoring is informative, e.g., when the censoring rate differs by response status. More

research is needed to incorporate informative censoring into the weighted log-rank statistic.
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Future research in the area of adaptive treatment strategies also includes the extension of

the weighted log-rank statistic to compare survival distributions of patients who follow adap-

tive treatment strategies in general (multi-stage) SMART designs and further verification

of the sample size equation. Increasing the number of stages in a SMART design, increases

the number of dependent groups as more patients follow a common path and therefore are

shared-path strategies. While most practical SMART designs include only two-stages, we

expect SMART designs to include more stages and treatments in the future as the usage of

SMARTs and the statistical techniques to design and analyze these trials increase. Thus,

extending the WLR test could prove very useful to compare the overall survival of multiple

ATS in multi-stage designs.

To encourage the use of SMARTs and their analysis using the weighted log-rank test,

practical sample size equations are needed. We have presented the sample size formulation

with the goal of comparing the overall survival of multiple ATS, some of which may be

shared-path. More work is needed, however, to validate this formula and test its robustness

to assumptions. Specifically, simulation studies are needed to continue to test the empirical

power of the formula, especially the effect of informative censoring and assuming exponen-

tial survival distributions. Simulations are also needed to test the formulation’s robustness

to assuming equal randomization probabilities to first- and second-stage treatments, equal

proportions of responders to each of the initial treatments, and equal censoring rates in all

strategies.

Methods for the design and analysis of SMARTs are on the rise as patients and doctors

demand personalized medicine. By employing our sample size formula, clinics can set up

a SMART to compare multiple ATS using information from pilot or previous studies. Uti-

lizing the SMART design allows prospective clinical trials to study sequences of treatments

dependent on patient’s characteristics and/or behaviors. Analyzing the data from these

trials provides evidence for the best treatment strategy for patients suffering from chronic

diseases. In the treatment of chronic diseases, such as cancer or AIDS, we’re interested in

elongating the patients’ survival, thus we must be able to compare patients’ overall survival

between different adaptive treatment strategies. The weighted log-rank test compares the

overall survival of two shared-path or multiple ATS, allowing SMARTs to find an overall
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difference in ATS which can lead to confirmatory trials of treatment sequences and optimal

adaptive treatment strategies.
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APPENDIX

ALGORITHM TO GENERATE DATA FOR SAMPLE SIZE SIMULATIONS

1. Generate a large number (we used 50,000) of observations from an exponential distribu-

tion with parameter λ11 (we took λ11 = 1) to represent the population of failure times

for those following A1B1.

2. For the given hazard ratios, λjk/λ11, j, k = 1, 2, generate similar population observations

for the other three strategies.

3. Create responder and non-responder populations within each of these 4 populations.

Specifically,

a. Choose a cut-off t0 for non-responders survival time in the A1B1 population (we chose

75th percentile of the distribution) such that at least 100(1− πR0 )% observations are

below the cut-off.

b. Randomly designate 100(1 − πR0 )% of this population with survival less than t0

to be non-responders (call this subpopulation Ω10), and remaining observations as

responders (call them Ω11).

c. Find failure times in the A1B2 population that closely match the observations of

non-responders in the A1B1 population (Ω10) and designate them as non-responders.

Replace these failure times from non-responders in A1B2 with those identified as non-

responders in A1B1 population. The remaining observations will be responders in

the A1B2 population (Ω12).

d. Follow similar procedures (Steps 3a-3c) to create a common group of non-responders

between strategies A2B1 and A2B2 (Ω20), and corresponding responders (Ω21,Ω22).
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4. Combine the two non-responders population (ΩNR = Ω10 ∪Ω20) and the four responders

population (ΩR = Ω11 ∪ Ω12 ∪ Ω21 ∪ Ω22).

5. Determine the maximum follow-up time L and the censoring parameter v to match the

desired proportion of events (DR(L) and DNR(L)) using the observations in ΩNR and

ΩNR.

6. Given the overall sample size n, sample 0.5n(1−πR0 ) observations from Ω10 as observations

not responding to A1, and sample 0.5n(1 − πR0 ) observations from Ω20 as observations

not responding to A2, rounding up to the largest integer.

7. Given the overall sample size n, sample 0.25nπR0 observations from each Ω11, Ω12, and

Ω21. To ensure the sample size n and to account for the rounding, set one of the group

sizes, we have chosen those from Ω22, equal to the difference between n and the other

group sizes.

8. Assign the response and treatment indicators. Assign the response indicator such that

R = 1 for all those sampled from ΩR and R = 0 for all those from ΩNR, the initial

treatment indicator such that X = 1 for those sampled from Ω10, Ω11, and Ω12, and X = 0

for those sampled from Ω20, Ω21, and Ω22, and the second-stage treatment indicator such

that Z = 1 for those sampled from Ω11, and Ω21, and Z = 0 for those sampled from Ω12,

and Ω22.

9. Apply censoring to the survival times. We have applied uniform censoring from zero to

v. Define the observed survival time to be the minimum of the sampled failure time and

censoring time with complete-case indicator equal to 1 if the sampled time is less than

the censoring time.
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