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Reports of short sleep are related to incident cardiovascular (CV) disease. Previous data suggest 

that changes in basal autonomic activity may be one pathway through which habitually short 

sleep increases CV risk.  No studies have examined whether chronic, moderate sleep loss is 

related to acute, autonomic responses to stressful stimuli in healthy populations.  This study 

compared CV responses to psychological stressors in a group of undergraduate men reporting 

habitual sleep duration of ≤6 hours per night (n = 37) versus those reporting habitual duration of 

7-8 hours per night (n = 42).  Wrist actigraphy was used to assess total sleep time and sleep 

efficiency based on mobility for one week prior to CV stress testing. Laboratory stress tests 

included two computer tasks (Stroop color-word interference task and a numeric multisource 

interference task) and preparation and delivery of a speech while heart rate (HR) and blood 

pressure (BP) were monitored.  Reactivity and recovery indices of HR, high-frequency heart rate 

variability (HF-HRV), and BP were created by regressing task and post-task values, respectively, 

on baseline values.  Participants reporting ≤6 hours of sleep per night rated stress tasks as more 

arousing, and they had delayed HR recovery, compared to those reporting 7-8 hours of sleep; the 

two groups did not differ in any of the other CV parameters. After adjusting for age, race, body 

mass index, health behaviors, and psychosocial factors, shorter actigraphy-assessed sleep was 

related to greater HF-HRV withdrawal during stress tasks, and delayed HR and diastolic BP 

stress recovery. Decreased actigraphy-assessed sleep efficiency was related to greater HF-HRV 
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withdrawal during stress and delayed HR recovery. Associations between sleep and HF-HRV 

were independent of respiration rate. Links between sleep and delayed HR recovery were no 

longer significant after adjusting for actigraphy-assessed daytime naps.  In sum, healthy young 

men with shorter actigraphy-assessed sleep exhibit less vagal inhibition, and prolonged HR and 

diastolic BP recovery, upon encountering stressful stimuli.  Such responses may have 

pathophysiological CV effects, and, thus, may be one mechanism linking short sleep to CV 

outcomes.  
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1.0 INTRODUCTION 

A growing epidemiological literature suggests that sleep characteristics predict cardiovascular 

outcomes.  Self-reported short sleep is related to incident cardiovascular disease, including 

coronary heart disease, myocardial infarction, and death from cardiovascular causes (Ayas et al., 

2003; Chen et al., 2008; Ferrie et al., 2006; Ikehara et al., 2009; King et al., 2008; Meisinger 

Heier, Lowel, Schneider, & Doring, 2007).  Indices of disrupted sleep continuity, such as 

increased sleep latency and wake after sleep onset, are also predictors of cardiovascular 

morbidity and mortality (Mallon, Broman, & Hetta, 2002; Meisinger, et al., 2007; Nicholson, 

Fuhrer, & Marmot, 2005).  Additionally, short and fragmented sleep are associated with major 

cardiovascular risk factors, including hypertension (Phillips & Mannino, 2007), diabetes 

(Mallon, Broman, & Hetta 2005), obesity (Marshall, Glozier, & Grunstein, 2008), and the 

metabolic syndrome (Hall et al., 2008).   

Changes in autonomic nervous system activity constitute one plausible pathway through 

which sleep may increase cardiovascular risk.  Cardiovascular activation may be a particularly 

relevant mechanism, as the same aspects of cardiovascular activity that are posited to play a 

causal role in the development of cardiovascular disease – namely, increases in heart rate and 

blood pressure, and decreases in high frequency heart rate variability - are also affected by sleep.  

For instance, experimental sleep deprivation leads to increased heart rate and blood pressure, and 

reduced heart rate variability, in some but not all studies (Meier-Ewart et al., 2004; Spiegel, 
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Leproult, & Van Cauter, 1999; Zhong et al., 2005), and short and fragmented sleep are related to 

subsequent daytime increases in cardiovascular activity (Barnett & Cooper, 2008; Tochikubo, 

Ikeda, Miyajima, & Ishii, 1996). In addition to influencing basal autonomic activity, it is also 

possible that sleep loss modulates acute autonomic responses to stressful stimuli.  The 

cardiovascular reactivity hypothesis posits that exaggerated increases of the sympathetic nervous 

system in response to stress leads to cardiovascular disease over time (Krantz & Manuck, 1984; 

Jennings, Kamarck, Everson-Rose, Kaplan, Manuck, & Salonen, 2004; Matthews, Zhu, Tucker, 

& Whooley, 2006; Treiber, Kamarck, Schneiderman, Sheffield, Kapuku, & Taylor, 2003).  

Subsequent theories have suggested that in addition to reactivity, prolonged cardiovascular 

recovery from stressors also may have pathophysiological effects on the cardiovascular system 

(Linden et al., 1997; Schuler & O’Brien, 1997).  Thus, if sleep disturbances are related to 

exaggerated or prolonged cardiovascular reactions to stress, these responses may represent one 

pathway linking sleep to cardiovascular disease. 

The purpose of the proposed project is to examine the hypotheses that cardiovascular 

reactions to psychological stress are indeed more exaggerated and prolonged in individuals with 

short or inefficient sleep.  These questions will be examined in two groups of healthy young men 

who differ on self-reports of habitual sleep duration, with the expectation that those reporting 

short sleep (≤ 6 hours) will have greater cardiovascular responses to stress than those reporting 

average sleep (7 – 8 hours).  Additionally, participants will wear a wrist actigraph for the seven 

nights preceding laboratory stress tasks in order to determine whether cardiovascular stress 

responses are influenced by objective assessments of recent sleep patterns.  Specifically, it is 

hypothesized that those with shorter, less efficient, and more variable sleep will show greater 

cardiovascular stress responses.   
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The proposed project has several important implications.  Positive findings will support a 

potential mechanistic pathway linking sleep disturbance to cardiovascular mortality and 

morbidity.  Studying sleep and stress responses in healthy individuals, in particular, reduces 

some of the potentially confounding factors (i.e., disease status, medication use, obesity) that 

may have influenced previous associations between sleep and clinical cardiovascular outcomes. 

In addition, identifying the specific aspects of sleep (i.e., short vs. fragmented sleep) most 

closely related to cardiovascular reactivity may inform prevention strategies in targeting the most 

relevant risk characteristics early in the disease process.   

1.1 SLEEP AND CARDIOVASCULAR DISEASE 

The current project focuses on short sleep duration and disrupted sleep continuity, as they have 

been related to cardiovascular disease in a multitude of studies, and there are several theoretical 

pathways that may link these sleep characteristics to cardiovascular stress responses.  Although 

long sleep (i.e., > 8 hours) has also been related to cardiovascular morbidity and mortality (Chen 

et al., 2008), there is less evidence of a causal association, with some suggesting that long sleep 

is more likely a marker of unmeasured, confounding factors (i.e., subclinical disease, depression, 

socioeconomic status; Knutson & Turek, 2006).   

With regard to short sleep, reporting a habitual sleep duration of less than five or six 

hours is associated with an elevated risk for hypertension and cardiovascular events in some 

(Amagai et al., 2010; Ayas et al., 2003; Chen et al., 2008; Gangwisch et al., 2006; Gottlieb et al., 

2006; Ikehara et al., 2009), but not all, studies (Lopez-Garcia et al., 2009; van den Berg et al., 

2007).  Two recent meta-analyses concluded that self-reported short sleepers have an elevated 
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mortality risk compared to those sleeping 7-8 hours per night (Cappuccio, D’Elia, Strazzullo, & 

Miller, 2010; Gallicchio & Kalesan, 2009), although the one review that examined 

cardiovascular-related death separately found that the effect for short sleep did not reach 

statistical significance (Galliccio & Kalesan, 2009).  There is some evidence of a decreasing 

trend in self-reported sleep over the past 40 years in the United States (Van Cauter, Knutson, 

Leproult, & Spiegel, 2005), and 20% of adults currently report sleeping less than six hours on 

weeknights (National Sleep Foundation [NSF], 2009).  Thus, studying the cardiovascular 

consequences of self-reported short sleep may have significant public health implications.   

Actigraphy estimates of sleep duration have been used in a smaller number of studies 

than self-report measures.  At least two studies report inverse associations between actigraphy-

measured sleep duration and blood pressure in mid-life (Knutson et al., 2009) or in adolescents 

(Javaheri, Storfer-Isser, Rosen, & Redline, 2008), and actigraphy-assessed short sleep, but not 

self-report, was associated with an increase in coronary artery calcification over five years in the 

Coronary Artery Risk Development in Young Adults (CARDIA) cohort (King, Knutson, 

Rathouz, Sidney, Liu, & Lauderdale, 2008).  Short sleep as measured by PSG has also been 

associated with factors that increase cardiovascular risk, such as the metabolic syndrome (Hall et 

al., in press) and central adiposity (Theorell-Haglöw, Berne, Janson, Sahlin, & Lindberg, 2010).    

In sum, short sleep is associated with incident cardiovascular disease and risk markers in 

a number of studies, although the data are not entirely consistent.  The bulk of the evidence 

linking short sleep to cardiovascular disease is based on self-reports of habitual sleep duration, 

which may suggest that short sleep (or perceptions of short sleep) over an extended period of 

time is associated with the development of disease.  Relationships between actigraphy or PSG 

estimates of sleep duration and cardiovascular disease have been examined in a smaller number 
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of studies; however, those that have investigated this question report an inverse relationship 

between sleep duration and disease outcomes or risk factors.  Although it appears that short sleep 

is becoming more common in the United States, the reasons for this decline are unclear.  A 

number of factors may influence sleep duration, including biological sleep need, environmental 

influences, and unconsolidated sleep (i.e., difficulty falling or staying asleep).  More information 

on the reasons for short sleep may be helpful in refining models of sleep and cardiovascular 

disease risk (Grandner, Patel, Gehrman, Perlis, & Pack, 2009).     

In addition to sleep duration, aspects of sleep continuity, or the ease or difficulty 

associated with initiating and maintaining sleep, are also related to incident cardiovascular 

disease, including hypertension (Phillips & Mannino, 2007), myocardial infarction (Meisinger et 

al., 2007), and death from coronary heart disease (Mallon, Broman, & Hetta, 2002).  The vast 

majority of studies linking disrupted sleep continuity with hypertension or cardiovascular events 

rely on self-reports of difficulty falling or staying asleep.  In contrast, very few studies examine 

objective measures, such as PSG or actigraphy, of sleep continuity in relation to cardiovascular 

disease, and none have combined objective measures with prospective designs.  Knutson et al. 

(2009) demonstrated that lower sleep maintenance, as measured by actigraphy, was associated 

with larger increases in blood pressure over a five-year period; however, actigraphy data were 

collected in the middle of the five years, rather than at the start of the protocol.  In a study by 

Javaheri et al. (2008), adolescents with low weeknight sleep efficiency (defined as ≤85%) as 

assessed by actigraphy were 3.5 times more likely to have pre-hypertensive blood pressure 

levels.  Another recent study reported that PSG sleep efficiency was reduced in those with 

resistant hypertension compared to normotensive adults and those with controlled hypertension, 

independent of sleep apnea (Friedman, Bradley, Ruttanaumpawan, & Logan, 2010).  PSG 
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measures of sleep efficiency or wakefulness after sleep onset have also been related to 

cardiovascular risk factors, such as prothrombotic and inflammatory markers (von Kanel et al., 

2006; von Känel, Loredo, Ancoli-Israel, Mills, Natarajan, & Dimsdale, 2007). Data from several 

studies show that fragmented sleep may be associated with heightened autonomic activation, 

including transitory increases in heart rate and blood pressure (Janackova & Sforza, 2008), 

consistent with autonomic activity being one mechanism between poor sleep continuity and 

cardiovascular outcomes.   

In the aggregate, data show that aspects of sleep continuity are also related to 

cardiovascular risk.  There are some prospective studies showing that self-reports of difficulty 

falling or staying asleep predict the development of cardiovascular disease, while all of the 

studies linking actigraphy or PSG estimates of sleep continuity to cardiovascular disease or risk 

markers are cross-sectional in nature.    

 

1.1.1 Variability in sleep duration 

 

Traditionally, studies of sleep and cardiovascular disease have focused on mean levels of sleep 

duration or continuity over time.   However, it is unlikely that sleep disturbances occur on a 

consistent and regular basis across nights.  For instance, a person with short or fragmented sleep 

one night may have longer or more solid sleep the following night due to the homeostatic process 

of sleep regulation.  Indeed, several studies demonstrate that individuals’ sleep may be 

characterized by a high degree of variability, or instability, across nights (Mezick et al., 2009; 

Knutson, Rathouz, Yan, Liu, & Lauderdale, 2007), with greater variability in sleep 
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characteristics among those with insomnia (Buysse et al., 2010).  Because individuals likely 

differ in their biological need for sleep (Tucker, Dinges, Van Dongen, 2007), consistently short 

sleep patterns may not always be associated with negative health outcomes.  In contrast, a pattern 

of highly variable sleep duration across nights may reflect a state of sleep debt and an attempt to 

“catch up” to one’s required amount of sleep.  Thus, nightly variability in sleep duration may 

also be important to consider in relation to cardiovascular disease.   

One potential reason that persons with a varied sleep pattern may be at increased risk for 

cardiovascular disease is that they may have an inefficient or dysregulated circadian pattern of 

endocrine (e.g., cortisol, catecholamine) and autonomic (e.g., blood pressure) activity compared 

to those who keep regular sleep schedules. For instance, an early intervention study that altered 

sleep-wake schedules of policemen to be more in line with the naturally occurring circadian 

rhythm resulted in a decrease in nocturnal catecholamine activity (Orth-Gomer, 1983).  

Consistent with this finding is work showing that individuals with a high degree of nightly 

variability in their sleep duration and fragmentation (as measured by individual standard 

deviations) have elevated nocturnal norepinephrine levels, especially when they also report high 

levels of negative affect (Mezick et al., 2009).  Few other studies of variability in sleep patterns 

in relation to physiological measures or disease outcomes have been conducted.  However, a 

related literature has shown that rotating shift work confers risk for obesity, diabetes, and heart 

disease (DiLorenzo et al., 2003; Fujino, et al., 2006; Kawachi et al., 1995; Sookoian et al., 2007; 

Morikawa et al., 2007), with some suggesting that a desynchronization of the sleep-wake 

schedule and circadian biological rhythms may be partially responsible. 

In sum, self-reports of short and fragmented sleep are associated with cardiovascular 

morbidity and mortality in a growing number of studies.  Short and fragmented sleep, as 
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measured by actigraphy or PSG, have also been associated with concurrent hypertension and 

other cardiovascular risk markers.  Finally, although there are few data directly linking variable 

sleep patterns to cardiovascular risk, there is some theoretical evidence to support such a 

relationship.  While data on sleep and cardiovascular disease are increasing, the mechanisms 

responsible for this relationship have not yet been delineated.  The current project proposes to 

examine one plausible physiological pathway that may link sleep characteristics to disease: 

cardiovascular responses to psychological stress.  

1.2 CARDIOVASCULAR STRESS RESPONSES 

Treiber and colleagues (2003) define cardiovascular reactivity as the “magnitude or pattern of an 

individual’s hemodynamic responses to behavioral stressors” (p. 46).  Such hemodynamic 

responses appear to be a relatively stable, or trait-like, individual difference characteristic 

(Treiber et al., 2003).  For example, a recent study reported that correlations for heart rate and 

blood pressure responses to a mental arithmetic task ranged from .60 to .70 over an 18-year 

period (Hassellund, Flaa, Sandvik, Kjeldsen, & Rostrup, 2010).  Support for associations 

between psychological attributes and cardiovascular reactivity partly emerged from studies 

showing that individuals with a Type A behavior pattern also showed exaggerated heart rate and 

blood pressure increases during mental stress tasks (Krantz & Manuck, 1984).  Since that time, 

cardiovascular reactivity has often been posited as a pathway linking a variety of psychosocial 

characteristics with coronary heart disease and essential hypertension (Chida & Hamer, 2008; 

Chida & Steptoe, 2010).   
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Early evidence linking cardiovascular reactivity as a possible etiological factor in disease 

came from a series of studies in which cynomolgus monkeys on an atherogenic diet were 

challenged with the threat of capture (Clarkson, Kaplan, Adams, & Manuck, 1987).  These 

experiments showed that monkeys with the greatest heart rate responses to threat of capture also 

had the greatest degree of coronary atherosclerosis.  Since this seminal work, data supporting the 

prognostic value of cardiovascular responses to psychological stress have accumulated in 

humans.  In their review of the literature, Treiber et al. (2003) describe largely consistent 

associations between cardiovascular reactivity to acute stress and incident hypertension, 

moderate evidence linking reactivity to subclinical disease states (ventricular remodeling; carotid 

atherosclerosis), and less consistent data linking reactivity to clinical disease.  However, several 

subsequent studies have shown blood pressure reactivity, in particular, to be a predictor of 

atherosclerosis in relatively healthy adults (Jennings, Kamarck, Everson-Rose, Kaplan, Manuck, 

& Salonen, 2004; Matthews, Zhu, Tucker, & Whooley, 2006).  Exaggerated and repeated 

cardiovascular reactions are thought to be related to the development of cardiovascular disease 

via several pathophysiological mechanisms, including endothelial injury from increased flow 

turbulence, and lipid mobilization and platelet aggregation from corresponding sympathetic 

activation (Dimsdale & Herd, 1982; Manuck, 1994; Markovitz & Matthews, 1991). 

High frequency heart rate variability (HF-HRV) is considered to be an index of 

parasympathetic, or vagal, function.  Low levels of tonic HRV are predictive of clinical coronary 

heart disease and hypertension, as well as risk factors such as diabetes and obesity (Dekker et al., 

2000; Huikuri et al., 1999; Schroeder, Liao, Chambless, Prineas, Evans, & Heiss, 2003; Thayer, 

Yamamoto, & Brosschot, 2009).  In theory, increased vagal influence in response to stress could 

dampen or counteract sympathetically driven increases in heart rate and blood pressure, thus 
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acting as a “buffer” against the consequences of sympathetic stress responses (Jennings, van der 

Molen, Somsen, Graham, & Gianaros, 2002).  However, few studies have looked at changes in 

HRV in response to stress as an index of disease risk.  One study by Gianaros and colleagues 

(2005) showed that greater reductions in HF-HRV during preparation for a laboratory speech 

task were associated with more extensive calcification in the coronary arteries and the aorta, 

suggesting that parasympathetic activity during stress may be implicated in the atherosclerotic 

process.  Matthews, Salomon, Brady, and Allen (2003) also reported that lower mean successive 

differences in interbeat intervals during a battery of laboratory stress tasks predicted increases in 

diastolic blood pressure over a 3-year period in children and adolescents.   

Linden, Earle, Gerin, and Christenfeld (1997) define cardiovascular recovery as the 

degree to which elevations in cardiovascular parameters persist following the termination of a 

stressor, or the length of time until stress-induced cardiovascular activity returns to baseline 

levels. Some have argued that if frequent and intense cardiovascular reactions to stress are 

pathogenic, then prolonged elevations should confer greater risk than reactions that are short-

lived (Pieper & Brosschot, 2005; Schwartz et al., 2003). Early studies showing that aerobic 

fitness was associated with a quicker recovery to baseline following lab challenges, independent 

of reactivity scores, were consistent with the known health-protective effects of exercise 

(Jamieson & Lavoie, 1987, as cited by Linden et al., 1997).  Family history of cardiovascular 

disease (Gerin & Pickering, 1995) and various psychosocial factors, including chronic stress and 

trait negative affect, have since been linked to poorer recovery (Chida & Hamer, 2008).  There is 

some evidence that perseverative cognitive processes such as worry and rumination may play a 

particularly important role in sustaining cardiovascular reactions to stress (Brosschot, Pieper, & 

Thayer, 2005).   
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Slower heart rate and blood pressure recovery from both physical and psychological stress has 

been associated with cardiovascular morbidity and mortality in several samples (Cheng et al., 

2003; Stewart & France, 2001).  Some have suggested that the prognostic value of 

cardiovascular recovery is confounded with reactivity, as those who have the most exaggerated 

increases to stress might also be expected to take the longest time to return to baseline levels; 

however, several studies show that recovery predicts disease independent of cardiovascular 

reactivity.  For instance, slower blood pressure recovery following cognitive stress was related to 

increases in blood pressure over a five-year period in young adults with borderline hypertension, 

whereas blood pressure reactivity was unrelated (Borghi, Costa, Boschi, Mussi, & Ambrosini, 

1986), and similar results were reported more recently in a normotensive, community sample 

(Stewart et al., 2006).  Other studies have shown that both reactivity and recovery are each 

independent indicators of disease risk (Treiber et al., 2001).  As similar physiological 

mechanisms are thought to link both reactivity and recovery with disease, it is also possible that 

these two responses act in a synergistic fashion, with prolonged recovery accelerating the 

pathogenic effects of heightened reactivity (Stewart et al., 2006).   

 

1.3 HOW MIGHT SLEEP RELATE TO CARDIOVASCULAR STRESS RESPONSES? 

 

Sleep may be conceptualized as a resource that aids in regulating emotional responses to stress 

(Hamilton et al., 2007).  Individuals whose sleep is characterized by short duration, poor 

efficiency, or high variability across nights may be more likely to show exaggerated 
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cardiovascular reactivity to and recovery from stress through both central and peripheral 

pathways. 

 

Figure 1.  Model of sleep and cardiovascular reactivity and recovery  

 

Sleep may be conceptualized as a resource for managing stress and regulating emotions.   

Individuals whose “resource bank” has been depleted due to short, discontinuous, or variable 

sleep may be more likely to show exaggerated cardiovascular reactivity and recovery to stress 

through both central and peripheral pathways: A) Short, fragmented, or variable sleep may 

influence responses to stress at the level of the central nervous system.  Disturbed sleep may 

result in stressful stimuli being perceived as more threatening or distressing and, thus, 

accompanied by heightened emotional reactivity.  Heightened emotional reactivity may result in 

greater cardiovascular reactivity and prolonged recovery through corticolimbic influences on 

autonomic activating areas.  Sleep disturbances may also influence neural processes, particularly 

in brain areas that are implicated in regulation of the autonomic stress response (e.g., the 

amygdala), independent of subjective reports of distress. B) Sleep is an anabolic and restorative 

state, with short sleep duration and decreased sleep efficiency resulting in greater cumulative 
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exposure to increased sympathetic and decreased parasympathetic activity over a 24-hour period.  

A greater physiological stress load may in turn alter one’s ability to respond effectively to stress 

at the peripheral level, resulting in exaggerated and prolonged cardiovascular responses to 

stressful stimuli.   

Regarding the former pathway, Lovallo and colleagues (2005) propose a conceptual 

model in which cardiovascular responses to stress result from interactions between cognitive 

appraisal processes (at the corticolimbic level), neuromodulatory systems (at the midbrain and 

brainstem level), and peripheral target organs.  In this model, increased or dysregulated 

corticolimbic activation involved in the evaluative appraisal of stressors is thought to result in 

exaggerated cardiovascular responses.  Although largely preliminary, some evidence suggests 

that sleep loss may influence similar corticolimbic processes in response to affective stimuli.  For 

instance, a recent neuroimaging study shows that total sleep deprivation is linked to increased 

reactivity of the amygdala to negative emotional stimuli, as well as greater functional 

connectivity between the amygdala and autonomic-activating centers of the brainstem (Yoo, 

Gujar, Hu, Jolesz, & Walker, 2007).  Sleep-deprived individuals also show increased pupil 

dilation in response to negatively valenced pictures, a response which is thought to reflect brain 

processes associated with affect regulation and arousal (Franzen, Buysse, Dahl, Thompson, & 

Siegle, 2009). Thus, it is possible that neural regions affected by sleep loss (e.g., amygdala) 

overlap with those regions believed to play a regulatory role in the autonomic stress response 

(Gianaros, Sheu, Matthews, Jennings, Manuck, & Hariri, 2008). 

Sleep may influence appraisals of stressful events at the subjective level as well.  Short 

and poor quality sleep each have been shown to intensify reports of negative emotions in 

response to stressful events (Hamilton, Catley, & Karlson, 2007; Kumari et al., 2009; Zohar et 
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al., 2005), and to reduce positive emotional responses to rewarding or goal-enhancing events 

(Zohar et al., 2005). In a similar vein, sleep loss may affect the ability to emotionally recover 

from stressors. In a sample of women with fibromyalgia, nights characterized by an inadequate 

amount of sleep prevented affective “recovery” from stressful events, as demonstrated by reports 

of elevated negative affect the next day (Hamilton et al., 2008).  If short sleep results in more 

intense and negative emotional reactions to taxing experiences, this may constitute an additional 

pathway leading to greater cardiovascular reactivity (Feldman et al., 1999) and prolonged 

recovery from stress (Pieper & Brosschot, 2005).  In other words, short  or inefficient sleep may 

cause individuals to perceive events as more stressful, thereby amplifying emotional reactions 

and altering the neural regions that orchestrate the cardiovascular stress response. 

Lovallo and Gerin (2003) posit that in addition to neural influences, alterations in 

peripheral mechanisms may influence cardiovascular stress responses.  Specifically, they suggest 

that individuals with altered adrenoreceptor sensitivity or those developing hypertension may 

exhibit greater peripherally-induced physiological responses to stress, independent of central 

input.  Thus, peripheral pathways may be another mechanism linking sleep to cardiovascular 

reactivity/recovery. Sleep is a restorative, anabolic process, typically characterized by decreased 

cardiovascular and increased parasympathetic activity.  For instance, recordings of heart rate and 

blood pressure decline, and HRV increases (during non-rapid eye movement sleep, in particular), 

during sleep relative to daytime in most individuals (Burgess, Trinder, Kim, & Luke, 1997; 

Otzenberger et al., 1998; Hall et al., 2004; Trinder et al., 2001).  Moreover, sleep onset is marked 

by a decline in circulating norepinephrine and epinephrine levels, with both endogenous rhythms 

and sleep itself believed to play a role in this process (Akerstedt, 1979; Irwin et al., 1999). 
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If sleep is a restorative state of lowered cardiovascular activity, then a loss of sleep 

should be accompanied by elevations in cardiovascular parameters.  Indeed, short sleep (Barnett 

& Cooper, 2008; Friedman et al., 2009), poor sleep continuity (Matthews et al., 2008; Mausbach 

et al., 2006), and variable sleep (Mezick et al., 2009) each have been linked to markers of 

increased cardiovascular activity, including elevated blood pressure and heart rate, as well as 

related increases in sympatho-adrenal medullary activity. Support for a causal role of sleep in 

cardiovascular activation comes from sleep restriction experiments resulting in increased heart 

rate and blood pressure, and shifts in sympathovagal balance (Meier-Ewart et al., 2004; Spiegel, 

Leproult, & Van Cauter, 1999; Zhong et al., 2005), although not all studies have reported 

consistent results (Meier-Ewart et al., 2004; Meunter et al., 2000).  Short sleep duration in more 

naturalistic settings is also associated with increased heart rate (Barnett & Cooper, 2008; 

Tochikubo, Ikeda, Miyajima, & Ishii, 1996) and blood pressure the following day (Tochikubo et 

al., 1996).  Although the mechanisms by which sleep loss may increase heart rate and blood 

pressure are unclear, both central and peripheral processes are hypothesized to play a role 

(Ogawa et al., 2003; Sauvet et al., 2010).  For instance, sleep deprivation results in a blunting of 

the arterial baroreflex, as well as increases in markers of vascular dysfunction (microvascular 

reactivity and endothelial cell activation), which are in turn associated with increases in heart 

rate and blood pressure.  Regarding sleep and parasympathetic function, decreased sleep 

maintenance is related to reduced heart rate variability (Hall et al., 2004), and Bonnet and Arand 

(1998) reported that heart rate variability was decreased in individuals with insomnia compared 

to normal sleepers.  

Taken together, these data suggest that persons with short, fragmented, and perhaps 

variable sleep have greater cumulative exposure to increased cardiovascular activity and 
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decreased parasympathetic influence over a 24-hour period.  Such an autonomic balance may 

gradually lead to alterations in peripheral tissue function reflected by exaggerated cardiovascular 

responses to stressful stimuli.  As an example, sleep loss may be associated with pre-clinical 

alterations in vascular resistance, which would in turn cause heightened and prolonged increases 

in blood pressure reactivity.  In this case, exaggerated cardiovascular responses may serve as a 

marker of developing disease rather than a causal factor (Lovallo & Gerin, 2003).  

 

 

1.4 STUDIES OF SLEEP AND CARDIOVASCULAR STRESS RESPONSES 

As noted above, sleep loss is often conceptualized as a physical stressor that results in elevated 

cardiovascular activity.  In addition to lack of sleep being a stressor in and of itself (i.e., leading 

to changes in basal cardiovascular activity), a handful of studies have examined the hypothesis 

that sleep may be related to cardiovascular reactions to or recovery from stressful stimuli.  For 

instance, two previous studies in clinical adult samples provide data linking objective measures 

of sleep and cardiovascular responses during stressful tasks (Palesh et al., 2008; Stepanski et al., 

1994). In the Stepanski et al. (1994) study, adults with insomnia slept for a shorter duration, had 

more wake after sleep onset, and had less Stage 3-4 sleep during an overnight PSG study, and 

they also showed greater increases in heart rate during a morning psychomotor task, than 

individuals without insomnia.  In a study of women with metastatic breast cancer, poorer 

actigraphy-measured sleep continuity over three nights was associated with lower area under the 

curve measures of respiratory sinus arrhythmia during the Trier Social Stress task (Palesh et al., 
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2008).  Regarding non-clinical populations, an increase in self-reports of typical sleep duration 

over a 10-month period was associated with less vagal withdrawal during speech and mental 

arithmetic tasks in 108 healthy adults (Uchino et al 2005).  Thus, in the aggregate, these results 

suggest that short or fragmented sleep may be associated with a cardiovascular stress response 

marked by increased heart rate and reduced parasympathetic activity.   

Regarding sleep deprivation, Zhong et al. (2005) reported that sleep-deprived adults who 

underwent cognitive testing had more consistent increases in low frequency HRV and decreases 

in HF-HRV and baroreflex sensitivity compared to adults who were sleep-deprived but did not 

undergo cognitive testing, and those who performed cognitive tasks but were not sleep-deprived.  

In other words, the combination of sleep deprivation and cognitive stress appeared to cause a 

particularly pronounced sympathovagal shift.  However, another study showed that one night of 

sleep deprivation did not influence heart rate or blood pressure responses to a range of stressful 

stimuli (mental arithmetic, hand grip, cold pressor, maximal forearm ischemic response), despite 

overall elevations in blood pressure (Kato et al., 2000).    

Other studies have failed to show an association between sleep deprivation and 

physiological responses to physical challenges (i.e., exercise).  Specifically, periods of sleep 

deprivation ranging from 24-60 hours were not related to the magnitude of heart rate responses 

to aerobic tasks in at least four studies (Martin & Chen, 1984; Martin, Bender, & Chen, 1986; 

McMurray & Brown, 1984; Symons, VanHelder. & Myles, 1988).  Meerlo, Sgoifo, and Suchecki 

(2008) note that although sleep loss does not appear to affect acute physiological responses to 

physical stressors, sleep may still influence responses to emotional stressors, as these challenges 

may activate different brain regions.  For instance, they argue that responses to emotional and 
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psychological challenges may be more susceptible to corticolimbic input, while physical stress 

may directly activate neuroendocrine control centers (Meerlo, Sgoifo, & Suchecki, 2008).   

El-Sheikh and Buckhalt (2005) examined the association between sleep and vagal 

regulation during a reaction time task in school-aged children.  In this sample, lower vagal 

suppression (indicative of less vagal withdrawal) to the task was associated with increased 

activity during the night and reduced sleep length across four nights as measured by actigraphy, 

as well as children’s reports of sleep disruptions. More recently, Raikkonen et al. (2010) reported 

that 8-year-old children with low actigraphy-assesed sleep efficiency (≤ 77.4%) showed greater 

baseline α-amylase levels (a marker of sympatho-adrenal-medullary activity), as well as greater 

peak levels of α-amylase, after a psychosocial stress test than children with higher sleep 

efficiency.  While the Raikkonen study noted that the sleep and stress test were measured within 

one day of each other in over 90% of the sample, the study by El-Sheikh and Buckhalt does not 

specify the time course of measurements.  Thus, the two studies that examined physiological 

responses to stressful stimuli in children are somewhat inconsistent, although the use of different 

autonomic markers and stress tasks makes direct comparison of results difficult.   

Finally, there is evidence that sleep loss may be associated with altered stress responses 

in animals.  For instance, rats that have been sleep deprived for 48 hours not only show increases 

in overall heart rate and reductions in heart rate variability, but they also exhibit altered 

cardiovascular responses to an acute, novel stressor (Sgoifo, Buwalda, Roos, Costoli, Merati, & 

Meerlo, 2006).  Specifically, rats in the sleep loss condition show a blunted parasympathetic 

antagonism, or larger vagal withdrawal, following sympathetic activation in response to restraint 

stress, which is in turn associated with increased susceptibility to cardiac arrhythmias. The 
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authors conclude that sleep loss may influence phasic responses to stressful stimuli, in addition 

to altering basal levels of cardiovascular activity (Sgoifo et al., 2006). 

 

1.4.1 Sleep and other physiological stress responses 

In addition to cardiovascular reactivity, a small number of studies have examined sleep in 

relation to other physiological stress responses.  Most of these reports focus on activity of the 

hypothalamic pituitary adrenocortical axis.  For example, more actigraphy-measured wake after 

sleep onset predicted blunted cortisol reactivity to the Stroop task the next day in a sample of 

over 50 young-to-middle aged, healthy women (Wright, Valdimarsdottir, Erblich, & Bovbjerg, 

2007).  Similarly, Capaldi, Handwerger, Richardson, and Stroud (2005) demonstrated a blunted 

cortisol response to psychological stress tasks among adolescents reporting more sleep-wake 

behavior problems on a modified version of the Sleep Habits Survey (Carskadon, Seifer, & 

Acebo, 1991).  Sleep restriction and deprivation have also been shown to result in an attenuation 

of adrenocorticotropic hormone release without changes in corticosterone levels, potentially 

suggesting an increased adrenal sensitivity to stress (Meerlo et al., 2002; Sgoifio et al., 2006). 

In sum, there is preliminary evidence to suggest that short and fragmented sleep, as 

assessed by both self-report and objective measures, may be related to altered physiological 

reactions to laboratory-induced cognitive and emotional stress.  Most of the work in this area, 

however, has been in studies of clinical populations (i.e., insomnia, cancer patients), or has 

focused on experimental sleep deprivation.  While it is theoretically plausible that more 

normative variation in sleep may be associated with cardiovascular reactivity to stress, this 

relationship has received little attention in healthy, adult populations, and virtually no studies 
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have investigated whether sleep is associated with cardiovascular recovery from stress.  

Moreover, cardiovascular stress responses have not been examined in individuals reporting 

habitually short sleep, despite the fact that this group shows elevated rates of incident 

cardiovascular disease in a number of studies (Amagai et al., 2010; Ayas et al., 2003; Chen et al., 

2008; Gangwisch et al., 2006; Gottlieb et al., 2006; Ikehara et al., 2009).   

 

1.5 POTENTIAL CONFOUNDERS OF THE RELATIONSHIP BETWEEN SLEEP 

AND CARDIOVASCULAR STRESS RESPONSES 

A number of factors are related to both sleep and cardiovascular stress responses, and, thus, may 

confound observed relationships between these variables.  Some of the most relevant potential 

third factors include psychological attributes, chronic stress, obesity, and health behaviors.   

Sleep and psychological attributes are closely related.  Decreased sleep duration, 

continuity, and quality are associated with depression, anxiety, and hostility, and greater nightly 

variability in sleep patterns is related to negative affect in both adolescents (Fuligni & Hardway, 

2006) and adults (Mezick et al., 2009). Those with short or fragmented sleep also score lower on 

measures of psychological well-being, including purpose in life, self-acceptance, and positive 

affect, independent of negative attributes (Hamilton et al., 2006; Ryff, Singer, & Love, 2004; 

Steptoe, O’Donnell, Marmot, & Wardle, 2008).  Additionally, reports of life stressors are 

associated with sleep characteristics, including changes in sleep duration and consolidation, and 

increased variability across nights (Akerstedt, 2006; Dahlgren, Kecklund, Akerstedt, 2006; 

Mezick et al., 2009; Sadeh, Keinan, & Daon, 2004; von Kanel et al., 2006). Many of the same 
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psychosocial factors, including trait negative affect and chronic stress, are related to 

cardiovascular reactivity to and recovery from stress, although  relationships may differ by task 

type and the cardiovascular parameter in question (Chida & Hamer, 2008).   

Short and fragmented sleep are related to concurrent obesity, and growing data support a 

causal role of sleep disturbance in weight gain (Marshall, Glozier, & Grunstein, 2008; Pearson et 

al., 2006). Obesity may also be associated with cardiovascular stress responses; however, 

previously reported relationships are not entirely consistent.  For instance, a recent study 

demonstrated an inverse link between obesity and heart rate reactivity (Phillips, 2010), while 

other studies have failed to find any association (Steptoe & Wardle, 2005).   

A number of health behaviors, including excessive alcohol use, smoking, low physical 

activity, and caffeine intake are more common among those with short and fragmented sleep, 

most likely in a bi-directional manner (Boutou et al., 2008; Htoo et al., 2004; Krueger & 

Friedman, 2009; Santos et al, 2007; Zhang et al, 2006).  Similarly, each of these behaviors has 

been linked to alterations in cardiovascular responses to psychological stress (Crews & Landers, 

1987; Lane & Williams, 1985; Straneva, Hinderliter, Wells, Lenahan, & Girdler, 2000; Zeichner, 

Edwards, & Cohen, 1985).   

In sum, a number of factors may confound relationships between sleep and 

cardiovascular responses to stress, including psychological attributes, chronic stress, obesity, and 

health behaviors.  It is important for cross-sectional studies to measure and adjust for potential 

third factors, in order to determine whether associations between sleep and cardiovascular 

reactivity and recovery are independent of, or partly due to, their influence.   

 



 22 

1.6 STATEMENT OF PURPOSE 

Although sleep is associated with the development of cardiovascular disease, the mechanisms 

responsible for this relationship are unclear. The proposed project investigates the hypotheses 

that disturbances in sleep duration and continuity (defined below) are associated with 

exaggerated and prolonged cardiovascular responses to stressful stimuli.  Evidence for this 

hypothesis comes from previous research showing that sleep influences reports of distress in 

response to daily challenges, as well as brain areas involved in the modulation of autonomic 

stress responses.  Moreover, sleep loss and fragmentation are related to elevations in 

cardiovascular activity.  If sustained over extended lengths of time, such sleep patterns could 

theoretically affect peripheral tissue function and contribute to pre-clinical disease.  Thus, sleep 

may be associated with increased cardiovascular responses to stress through both central and 

peripheral mechanisms, as outlined in Figure 1.   

The proposed project has several important implications.  Positive findings will be 

consistent with a model in which short or fragmented sleep leads to increased cardiovascular 

responses to stress, and, thus, may improve our understanding of how sleep may be related to 

cardiovascular disease risk.  Although this project cannot rule out reverse causation or control for 

all relevant confounding variables, results may provide a foundation for future studies to 

investigate causal pathways between sleep loss and cardiovascular stress responses using 

experimental (sleep deprivation or extension) paradigms.  Moreover, examining naturalistic sleep 

patterns may offer an advantage, as there are relatively few studies devoted to studying 

psychophysiological correlates of short sleepers (Grandner, et al., 2009), and it is unknown how 

the effects of experimental sleep deprivation generalize to the impact of less severe but more 

habitual sleep loss.  Indeed, some have argued that the physiological effects of sleep disturbances 
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may only accumulate over time via gradual changes to stress response systems (Meerlo, Sgoifo, 

& Suchecki, 2008).  Another important aspect of the current study is the ability to study 

reactivity and recovery (whether they serve as markers or mechanisms) in a relatively healthy 

sample, thus reducing the number of potentially confounding variables.  For instance, it is 

possible that physiological changes associated with the disease process lead to disturbances in 

sleep, or that both sleep and cardiovascular risk are influenced by co-morbid conditions.  Finally, 

identifying the specific sleep characteristics most closely related to cardiovascular responses may 

inform prevention strategies in effectively targeting the most important sleep risk factors. 
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2.0 HYPOTHESES 

Hypothesis One:  Individuals with short sleep (as assessed by self-report and actigraphy) will 

have greater and more prolonged cardiovascular responses to stress than those with longer sleep. 

In many epidemiological studies, individuals reporting habitually short sleep are at 

elevated risk for cardiovascular morbidity and mortality (Eguchi et al., 2008; Gangwisch et al., 

2009; Shankar et al., 2008).  While such data cannot speak to causality, experimental studies in 

humans and animals suggest that sleep loss may lead to overall increases in cardiovascular 

activity, as well as heightened acute cardiovascular reactivity to novel stressors (Franzen et al., 

2011; Sgoifo, et al., 2006).  Moreover, at least one study has demonstrated that decreases in self-

reported sleep duration over a 10-month period predict greater vagal withdrawal during 

laboratory stress tasks (Uchino et al., 2005). Thus, the main hypothesis of the proposed study is 

that short sleep will be related to a cardiovascular stress response characterized by greater 

reactivity and more prolonged recovery.   

Sleep duration will be measured in two ways.  First, two groups of participants will be 

recruited based on self-reports of habitual sleep duration: 1) short sleepers (defined as ≤ 6 

hours/night) and 2) average sleepers (defined as 7-8 hours/night).  It is hypothesized that those 

reporting habitually short sleep will show greater and more prolonged cardiovascular stress 

responses than those reporting average sleep.   
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Second, participants’ sleep will be measured with actigraphy for the week preceding 

laboratory stress tasks.  It is important to examine actigraphy estimates of sleep directly prior to 

the assessment of cardiovascular stress responses for several reasons.  For one, actigraphy 

provides a more behavioral, objective estimate of actual sleep time than self-reports, which may 

reflect time in bed rather than sleep time (Grandner et al., 2010) and vary systematically with 

other cardiovascular risk factors, such as sociodemographics, negative affect, and subjective 

sleep quality (Lauderdale, Knutson, Yan, Liu, & Rathouz, 2008; Owens et al., under review; 

Rotenberg, Indursky, Kayumov, Sirota, Melamed, 2000).  In addition, short sleep on a given 

night has been shown to amplify emotional reactivity to stressful events on subsequent days, 

suggesting that sleep may directly influence stress appraisals (Hamilton et al., 2007; Kumari et 

al., 2009; Zohar et al., 2005), and both normative and experimental sleep loss lead to immediate, 

next-day increases in overall cardiovascular activity in several studies (Barnett & Cooper, 2008; 

Spiegel et al., 1999; Tochikubo et al., 1996).  Thus, it is hypothesized that actigraphy-measured 

sleep duration averaged across the week preceding laboratory stress tasks will be inversely 

related to cardiovascular reactivity and recovery from stress tasks in a linear fashion (i.e., shorter 

sleep will be related to greater reactivity and slower recovery).  In theory, persons describing 

themselves as short sleepers should have lower actigraphy estimates of sleep than those reporting 

average sleep duration. Therefore, differences in cardiovascular responses to stress between self-

reported sleep groups (i.e., short versus average) should be at least partially attenuated in 

statistical models that adjust for actigraphy-measured sleep duration across the week. 
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Hypothesis Two: Lower sleep efficiency, as assessed by actigraphy during the week 

preceding laboratory tasks, will be related to greater and more prolonged cardiovascular 

responses to stress.   

Decreased sleep efficiency, as measured by actigraphy, has also been associated with 

increased blood pressure and cardiovascular risk markers in a small number of studies (Javaheri 

et al., 2008; Knutson et al., 2009; von Kanel et al., 2010).  As described above, sleep duration 

preceding psychological stressors may have an impact on both how stressors are appraised and 

overall cardiovascular activation.  This rationale may not only apply to sleep duration, but sleep 

continuity, as well.  Indeed, both of the two studies that have examined normative variation in 

sleep directly prior to laboratory challenges report that poor sleep continuity, in particular, 

predicts altered stress reactivity (Palesh et al., 2008; Wright et al., 2007).  Thus, it is 

hypothesized that in addition to short sleep, inefficient sleep during the period preceding a 

stressor will also be related to greater and more prolonged cardiovascular stress responses.  Short 

sleep and low efficiency will first be tested in separate analytical models due to their potentially 

high correlation.  However, both predictors can then be included in the same model in order to 

determine whether duration and efficiency are independently related to stress responses.  For 

instance, it is plausible that individuals whose sleep is short due to difficulty falling or staying 

asleep (i.e., unconsolidated sleep) are at particularly high risk for cardiovascular disease 

(Chandola, Ferrie, Perski, Akbaraly, & Marmot, in press).  Measuring sleep efficiency and 

adjusting estimates of sleep duration accordingly can help elucidate whether sleep duration 

confers cardiovascular risk independent of, or partly due to, poor efficiency.   
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Hypothesis Three: Greater variability in sleep duration, as assessed by actigraphy during 

the week preceding laboratory tasks, will be associated with greater and more prolonged 

cardiovascular responses to stress.   

Individuals’ sleep may be characterized by a high degree of variability across nights 

(Buysse et al., 2010; Mezick et al., 2009; Knutson et al., 2007), and collapsing data across 

multiple nights may not accurately reflect sleep patterns.  As individuals appear to differ in their 

biological need for sleep (Tucker et al., 2007), it is possible that a stable pattern of short sleep 

(i.e., 6 hours) may be physiologically sufficient for a subset of individuals, and, thus, not 

associated with physical health consequences.  In contrast, a pattern of highly variable sleep 

duration across nights may reflect a state of sleep debt and may be associated with a dysregulated 

circadian pattern of physiological activity (Mezick et al., 2009).  Therefore, it is hypothesized 

that greater variability in sleep duration, as assessed by actigraphy during the week preceding 

laboratory tasks, will be associated with greater and more prolonged cardiovascular responses to 

stress.  The relationships between variability in sleep duration and cardiovascular stress 

responses are expected to be independent of mean sleep duration across the seven nights 

preceding the laboratory stressors.   
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3.0 METHODS 

3.1 PARTICIPANTS 

 

Undergraduate men between the ages of 18-30 were recruited from a university to participate in 

a study of “Stress and Sleep.” The study aimed to include a group of short sleepers, defined as 

self-reporting a habitual nocturnal sleep duration of ≤ 6 hours, and a comparison group of 

individuals self-reporting a habitual sleep duration of 7 or 8 hours.  These values were based 

upon epidemiological studies linking self-reports of ≤ 6 hours of habitual sleep duration to an 

increased risk of cardiovascular morbidity and mortality (Amagai et al., 2010; Ayas et al., 2006; 

Gottlieb et al., 2006).  Reference groups in such studies are most commonly composed of those 

reporting 7-8 hours of habitual sleep.  Only men were included, as analyses in a previous sample 

showed that sleep parameters were more closely related to perceptions of stress, negative affect, 

and norepinephrine activity in men than in women (Mezick et al., 2009) and to eliminate sex-

specific effects on cardiovascular responses to stress.  Participants were recruited through the 

undergraduate subject pool at the University of Pittsburgh, in which students receive course 

credit for participating in research studies, or through advertisements on campus.  Participants 

underwent telephone screening to determine eligibility and sleep duration group status (short 

versus average sleep duration) before beginning the protocol.  Exclusion criteria included 
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engaging in overnight or shift work, a diagnosed sleep disorder, regular medication use for sleep 

(defined as typically taking sleep medication on ≥ 3 nights/week), binge drinking (≥ 5 drinks at a 

time in the past month), self-reporting a body mass index (BMI) consistent with obesity (BMI > 

30), anti-hypertensive or cardiac medication use, and likelihood of depression as reflected by 

endorsement of one of two critical depression diagnostic criteria (“decreased interest or pleasure” 

or “feeling down, depressed, or hopeless” for more than half of the time over the past two weeks; 

Spitzer, Kroenke, & Williams, 1999) or antidepressant use.  All participants completed informed 

consent and received either $50 or four hours of research credit for study completion.  

 

3.1.1 Power calculation 

There are no previously reported effect sizes for the association between normative sleep and 

cardiovascular reactivity or recovery.  Therefore, two related data sets were used to generate an 

anticipated effect size for the proposed study.  First, the group difference in absolute heart rate 

between chronically poor sleepers and good sleepers during a reaction time task was calculated 

from the Stepanski et al. (1994) study.  Second, the within-person difference in absolute systolic 

blood pressure during a speech stressor following sleep deprivation versus a normal sleep night 

was calculated from a pilot study by Franzen and colleagues (2011).   The two resulting effect 

sizes were averaged and reduced by 30% in order to provide a more conservative sample size 

estimate, based on the rationale that both of the previous studies examined more severe sleep 

disturbance conditions (i.e., total sleep deprivation and chronic insomnia) than those proposed in 

the current study. Based on this adjusted effect size, α = .05, and power = .80, a power analysis 

generated a recommended sample size of 80 participants to detect an effect.   
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3.2 PROCEDURE 

3.2.1 Laboratory testing session 

The start of the laboratory testing session ranged from 8:30 am – 3:00 pm, dependent upon 

participant availability.  Eighty percent of participants started the session before 1:30 pm. 

Participants were asked to abstain from caffeinated beverages,
 
tobacco products, and exercise for 

three hours before testing and
 
to avoid alcohol for 12 hours (night before) before testing.  After 

arriving at the laboratory, participants confirmed that they had followed these instructions.  They 

were then seated in a comfortable chair and instrumented for physiological recording.  This 

included electrocardiogram (EKG) recordings using a modified lead II configuration to measure 

heart rate and HF-HRV, a standard blood pressure cuff with an automated monitor, and a 

respiratory belt.  The blood pressure cuff was placed over the brachial artery on the nondominant 

arm, and the automated monitor was placed in the control room so that readings could not be 

observed by the participant. As described by Egizio, Eddy, Robinson, and Jennings (2012), a 

respiratory belt measuring pressure changes corresponding to thoracic expansion and contraction 

was placed on the chest between the fifth and eighth ribs.  The band was wrapped tightly enough 

to allow only the experimenter's index and middle fingers to fit underneath, and the pressure of 

the belt was adjusted to approximately 100 kPa using an air bladder. 

 Participants sat quietly and watched a nature video for a 10-minute rest period.
 
Baseline 

blood pressure readings were taken at Minutes 4, 6, and 8 of the baseline period, while heart rate 

and respiration were monitored continuously.  After the baseline period, participants completed 

the Positive and Negative Affect Schedule (PANAS; Watson, Clark, Tellegen, 1988) to assess 

mood states.  Participants then completed two blocks of tasks.  The first block included two 
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computer tasks: the Stroop color-word interference task (4 minutes) and the multisource 

interference task (4 minutes), both of which were performance-titrated at a 60% accuracy level in 

order to minimize individual differences in task performance, which may be related to sleep 

(Durmer & Dinges, 2005).  The second block included a speech task in which participants 

wereinstructed to defend themselves from a traffic violation in front of a video camera (4 

minutes of speech preparation + 4 minutes of speech delivery).  Participants were told that the 

speech would be recorded and later evaluated for clarity, persuasiveness, and style, and they 

were instructed to continue talking for the entire 4-minute period.  The two computer tasks 

always occurred first, in a counter-balanced order, followed by the speech task. Each of the 

computer tasks was followed by a 5-minute recovery period, and the speech task was followed 

by a 15-minute recovery period in order to allow extended time for heart rate and blood pressure 

to return to baseline. During each of the three recovery periods, participants appraised the 

previous task on three dimensions (valence, arousal, and control). Blood pressure readings were 

taken at 2-minute intervals during both task and recovery periods.  The final 15-minute recovery 

period included an additional three readings at Minutes 9, 12, and 15, which were taken only if 

blood pressure and heart rate had not yet returned to baseline levels.  After the final recovery 

period, participants completed the PANAS once more to assess changes in mood.  

 

TASK:             _ _ Baseline___  _  Stroop  _  __Recovery 1_ ___MSIT___  

TIME:               -----10 mins-----       ---4 mins---        ----5 mins----    ---4 mins--- 

BP:           4     6    8                      1        3                   1     3      5                  1        3 

 

TASK:  __Recovery 2__  __Speech__  __ Recovery 3____ 

TIME:                ----5 mins----        ----8 mins---      --------15 mins------ 

BP:        1     3      5            1   3    5    7           1  3  5  7…{9, 12,15} 

 

Figure 2.  Laboratory testing protocol 
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3.3 MEASURES 

3.3.1 Physiological data processing 

The ECG signal was digitized (12 bit), sampled (with Vernier software at 500 Hz), and stored for 

off-line processing.  QRS waves were identified using PhysioScripts, a collection of publically 

available scripts used for processing physiological data (Christie & Gianaros, under review), 

implemented in the R computer environment (Ihaka & Gentleman, 1996; R Development Core 

Team, 2010).  The QRS detection algorithm in PhysioScripts uses the amplitude of the digitally 

filtered ECG waveform as well as its first derivative. Estimates of HF-HRV were derived using 

the band-limited variance method, with HF band cut-offs of 0.15 to 0.40 Hz (Allen, Chambers, & 

Towers, 2007). The ECG signal was assessed for artifacts by visual inspection and an artifact 

detection algorithm. Epochs with greater than or equal to 20% artifact were excluded (1% of all 

1-minute epochs). HF-HRV values were natural log transformed before use in analysis. 

Respiration was processed using a custom algorithm. Briefly, the respiratory waveform was 

bandpass filtered (.05 - .5 Hz, 10 sec Hamming window) and local maxima (inspirations) and 

minima (expirations) were identified within a specified time window based on the shortest 

expected respiratory period (2 sec or .5 Hz). Unbalanced inspirations and expirations (e.g., two 

inspirations with no intervening expiration) were then corrected by removing the member of the 

paired values with the lesser absolute magnitude (i.e., the smaller inspiration or the larger 

expiration).  The respiratory variable used as a covariate in analyses of HF-HRV was mean 

respiratory rate, defined as the inverse of the mean of all periods between inspiratory peaks 

(analyses run with peak respiratory frequency as an alternative covariate produced identical 

results).  Mean respiratory rate was averaged across reactivity periods and across recovery 
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periods separately; analyses examining HF-HRV reactivity were adjusted for the former, and 

analyses examining HF-HRV recovery were adjusted for the latter.  

3.3.2 Actigraphy 

An Actiwatch-16 (Philips Respironics, Inc.) was worn on the non-dominant wrist continuously 

for 7 days and nights to measure sleep parameters as inferred from movement and acceleration 

patterns.  A period of seven nights was chosen based on reliability analyses in a previous sample 

showing that a minimum of six nights of actigraphy measurement was necessary to obtain 

adequately reliable estimates of duration.  Data were stored in 1-minute epochs.  Major rest 

intervals were determined by the “tried to go to sleep” and “finally woke” times recorded in 

participant diaries. Validated software algorithms were then used to estimate sleep parameters 

within the designated rest intervals.  The medium threshold was used to detect sleep. The main 

sleep parameters hypothesized to be related to cardiovascular responses to stress were total sleep 

time and sleep efficiency, averaged across the 7 nights preceding laboratory testing.  Total sleep 

time is the actual time scored as sleep within the rest interval, excluding periods of wakefulness 

after sleep onset.  Sleep efficiency, or the percentage of time in bed that is spent sleeping, was 

calculated as: (time spent asleep/time in bed × 100).  Exploratory analyses examining the 

association between variability in sleep and cardiovascular responses to stress were based upon 

the within-person standard deviation (SD) in total sleep time across 7 nights. Actigraphy-

assessed daytime naps were detected using a software algorithm that ‘automatically’ creates 

minor rest intervals based on when the participant appears to be napping (i.e., participants’ 

reports were not used to set rest interval parameters).  A rest interval duration minimum of 15 
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minutes was used to auto-detect naps (i.e., the scoring program searched for sleep only within 

minor rest intervals greater than or equal to 15 minutes).   

 

3.3.3 Sleep diary  

In evening sleep diaries, participants reported daily levels of exercise (length and intensity), daily 

nap minutes, alcohol use, nicotine use, medication use, mood, and perceptions of daytime and 

pre-bedtime stress.  Morning sleep diaries inquired about sleep parameters from the prior night 

(time participant tried to fall asleep, latency, wake after sleep onset, time of final morning wake-

up), and subjective sleep quality upon waking. Morning diaries also inquired about reasons for 

sleep amount and subjective sleep sufficiency in order to learn more about the potential factors 

that may differentiate short and average sleepers.  See Appendix for a sample sleep diary.  

Participants chose between completing paper diaries versus completing the diary on a secure 

internet website.  Seventy-six participants chose to complete the web-based diaries.  The web-

based diary provided time-stamped entries; entries were “flagged” if they were completed more 

than 3 hours before or after the reported bed or wake time, in order to assess participant 

compliance.  Less than 6% of all entries were flagged. 

 

3.3.4 Sleep questionnaires 

Global sleep quality was measured with the Pittsburgh Sleep Quality Index (PSQI; Buysse, 

Reynolds, Monk, Berman, & Kupfer, 1989).  Eighteen individual items on the PSQI are grouped 
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to create seven component scores (e.g., subjective sleep quality, sleep latency, sleep duration, 

etc.).  These component scores are summed to generate a global score between 0 and 21, with 

higher scores indicating worse sleep quality over the past month.  The Epworth Sleepiness Scale 

(ESS; Johns, 1991) is an 8-item questionnaire designed to assess daytime sleepiness by 

determining the propensity of dozing or falling asleep during daytime activities, with responses 

ranging from “never” to “highly likely.” Items were summed to compute a final score ranging 

between 0 and 24, with scores above 10 indicative of significant daytime sleepiness.   The 

Fatigue Severity Scale (FSS; Krupp, LaRocca, Muir-Nash, & Steinberg, 1989) is a 9-item 

questionnaire measuring the behavioral consequences of fatigue.  Participants are asked to 

consider the extent to which fatigue has had an impact on several areas of functioning over the 

past week, with responses indicated on a 1-7 Likert type scale.  The FSS has been shown to 

distinguish individuals with disorders characterized by fatigue (i.e., chronic fatigue syndrome) 

from those with primary depression.  The multivariable apnea index (MAP; Maislin et al., 1995) 

was used to screen for sleep apnea.  The MAP inquires about various symptoms of sleep apnea, 

including snoring, difficulty sleeping, and daytime sleepiness, as well as age, body mass index, 

and gender in order to generate the probability of having an apnea-hypopnea index >= 10 

episode per hour. 

 

3.3.5 Psychological attributes 

The Center for Epidemiological Studies Depression Scale (CES-D; Radloff, 1977), the 

Spielberger Trait Anxiety Inventory (STAI; Spielberger, Gorsuch, & Lushene, 1970), and the 

Cook-Medley Hostility Scale (Ho; Cook & Medley, 1954) were used to measure depressive 
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symptoms, anxiety, and hostility, respectively.  Life stress over the previous six months was 

measured using an original questionnaire created for this study.  The questionnaire was based on 

previous life events and stress questionnaires created for use in university populations (Crandall, 

Preisler, & Aussprung, 1992; Kohn, Lafreniere, Gurevich, 1990).  The questionnaire contained 

29 items, each of which identified a potentially distressing life event (e.g., death of a friend, 

conflict with a roommate, financial difficulty).  Participants were asked to mark a) if they 

experienced the event within the past 6 months, b) how upsetting or stressful the event was from 

0 (not at all stressful or upsetting) to 3 (extremely stressful or upsetting) and c) whether or not 

the event was currently still upsetting.  Participants could also enter up to three additional, 

personal life stressors that had not been listed on the questionnaire.  This measure was used to 

calculate two life stress scores: the first was a sum of distressing events over the past 6 months 

(points on each item were summed for a grand total), and the second was a count of events that 

were endorsed as “still upsetting.”  Sense of life purpose was assessed with the Life Engagement 

Test (Scheier et al., 2006), a scale measuring the extent to which one engages in activities that 

are personally valued. Optimism was assessed using the Revised Life Orientation Test (Scheier, 

Carver, & Bridges, 1994). 

 

 

 



 37 

3.4 ANALYTIC PLAN 

Hypothesis One: Individuals with short sleep (as assessed by self-report and actigraphy) will 

have greater and more prolonged cardiovascular responses to stress than those with longer sleep. 

 Reactivity scores were calculated for heart rate, HF-HRV, and blood pressure by 

averaging values within each task and within each baseline period. Mean task values for heart 

rate, HF-HRV, systolic, and diastolic blood pressure were regressed on the corresponding mean 

baseline value and then standardized.  Standardized residuals were aggregated across the three 

tasks to produce four composite indices of reactivity (one each for heart rate, HF-HRV, systolic, 

and diastolic blood pressure).  Similarly, a mean recovery score was calculated for each of the 

three tasks by averaging the three recovery values following each task.  This average value was 

regressed on the mean baseline level and the mean task level in order to create a residualized 

recovery score.  This score was standardized and aggregated across the three tasks to produce 

four indices of recovery (one each for heart rate, HF-HRV, systolic, and diastolic blood 

pressure).   

Short (≤ 6 hours) versus average (7 – 8 hours) sleep groups were based on self-reports of 

habitual duration as reported on the PSQI.  Analysis of covariance was used to examine 

differences in each index of reactivity between self-reported sleep groups.  Covariates included 

age, race, and body mass index.  Analyses of HF-HRV included mean respiration rate as an 

additional covariate, as interbeat interval waveforms that aggregate within the high frequency 

band are linked to respiration.  There were four participants with a measured BMI above 30 

(BMI = 31 for all four).  Analyses were repeated after excluding these participants to examine if 

obesity was responsible for any significant relationships observed.  
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Secondary analyses adjusted for factors within the following three clusters to determine 

whether group differences were independent of these variables: diary characteristics, 

psychosocial attributes, and laboratory variables.  A variable was considered as a potential 

mediator if 1) it was associated with the sleep parameter under study and 2) inclusion of the 

variable led to a reduction in the association between the independent and dependent variables. 

Once a potential mediator was identified, nonparametric bootstrapping analyses were used to test 

a mediation pathway (i.e., the pathway linking the sleep characteristic to the cardiovascular stress 

response via the potential mediator), as is recommended for small samples (Preacher & Hayes, 

2004; Preacher, Rucker, & Hayes, 2007). In these analyses, mediation is significant if the 95% 

Bias Corrected and accelerated confidence intervals for the indirect effect do not include 0 

(Preacher & Hayes, 2004; Preacher et al., 2007).  Finally, analyses examining whether or not 

associations between sleep parameters and cardiovascular stress responses were independent of 

daytime sleep were conducted.  Both actigraphy-assessed and self-reported naps were considered 

as covariates, calculated in average daily nap minutes (i.e., nap minutes per day/study days). 

In order to examine differences in recovery between self-reported sleep groups, a process 

identical to the one described above was used, with recovery indices replacing reactivity indices 

as the outcome variable.  Potential mediating variables were analyzed as described above.  

The second part of this hypothesis examined actigraphy-measured total sleep time 

(measured continuously) during the week preceding laboratory tasks as a predictor of 

cardiovascular stress reactivity and recovery.  This association was examined in linear regression 

models adjusted for age, race, and body mass index, with additional models adjusting for 

potential mediators as described above.  
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Hypothesis Two: Lower sleep efficiency, as assessed by actigraphy during the week 

preceding laboratory tasks, will be related to greater and more prolonged cardiovascular 

responses to stress.   

 Associations between actigraphy-measured sleep efficiency and cardiovascular 

responses to stress were examined in an identical process to the one described above for 

actigraphy-assessed total sleep time, using efficiency as the independent variable.   

 

Hypothesis Three: Greater variability in sleep duration, as assessed by actigraphy during 

the week preceding laboratory tasks, will be associated with greater and more prolonged 

cardiovascular responses to stress.  This association will be independent of average actigraphy-

measured sleep duration.   

 Linear regression models were used to examine the association between within-

person variability in actigraphy-measured total sleep time and cardiovascular responses to stress.  

Variability was calculated as an individual’s standard deviation in total sleep time across the 

seven nights of the study.  Models were adjusted for covariates (age, race, BMI) and mean total 

sleep time before entering within-person standard deviations in total sleep time as a predictor 

variable. Thus, these analyses examined the association between variable sleep duration and 

cardiovascular responses to stress, independent of mean levels of actual sleep.   
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4.0 RESULTS 

4.1 SAMPLE CHARACTERISTICS 

Eighty male undergraduates completed the protocol. Demographic, physical, and sleep 

characteristics are displayed in Table 1.  

 

 

 

 

 

 

 

 

 

 

 

 

 



 41 

Table 1. Sample characteristics 

Variable Mean Range N % 

Age 19.4 18 - 29  

Body Mass Index 24.0 18.2 – 31.9  

Resting Systolic Blood Pressure (Visit 1) 120.4 104.3 – 141.3  

Resting Diastolic Blood Pressure (Visit 1) 67.2 55.3 – 84.7  

Race    

   White/Caucasian   63 (81.0) 

   Asian/Pacific Islander   9 (11.4) 

   Black/African American    7 (8.9) 

Ethnicity    

   Non-Hispanic / non-Latino   77 (97.5) 

   Hispanic / Latino (White)   2 (2.5) 

Self-Reported Habitual Sleep Duration^    

≤ 6 hours/night   37 (46.8) 

    4 hours/night   2 (2.5) 

    5 hours/night   10 (12.7) 

    6 hours/night   25 (31.6) 

> 6 hours/night   42 (53.2) 
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    7 hours/night   26 (32.9) 

    8 hours/night   16 (20.3) 

^as defined by Question 4 on the PSQI 

 

The average age of participants was 19.4 years and 80% identified their race as “White or 

Caucasian.” Thirty-eight (47.5%) participants reported habitual sleep duration of 6 or fewer 

hours on the PSQI at Visit 1 and, thus, were classified as short sleepers.  Forty-two (52.5%) 

participants reported habitual sleep duration of 7 – 8 hours and were classified as average length 

sleepers.  One participant reporting short sleep was excluded from the main analyses examining 

cardiovascular responses and related laboratory data due to a reported history of heart murmur 

and inability to detect R waves on his ECG.  Thus, the final sample for these analyses included 

79 participants (37 short sleepers and 42 average sleepers).  Seventy-eight of the 79 participants 

had resting blood pressure values below the cut-off for hypertension, and one participant met 

hypertensive criteria (SBP = 141, DBP = 67). 

Sample characteristics by sleep duration group are shown in Table 2.   
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Table 2. Sample characteristics by self-reported sleep duration group 

Variable 

≤ 6 hours/night 

(n=37) 

7-8 hours /night 

(n = 42) p 

Age 19.32 (1.45) 19.36 (2.41) .93 

BMI 24.26 (2.75) 23.75 (3.58) .48 

Resting Systolic BP (Visit 1) 122.14 (8.33) 122.43 (8.44) .88 

Resting Diastolic BP (Visit 1) 67.27 (7.11) 70.00 (8.08) .12 

CES-D total 13.76 (7.82) 10.52 (6.90) .05 

STAI total 11.42 (5.00) 10.38 (4.61) .34 

LOT total 15.18 (3.81) 15.74 (3.81) .52 

LES total 34.95 (2.98) 35.51 (3.06) .41 

Hostility total 13.13 (4.29) 12.64 (4.38) .62 

No. of Current, Upsetting Life Events  3.87 (2.95) 3.45 (2.83) .52 

PSQI total 7.16 (2.24) 5.14 (1.84) <.001 

FSS total 31.74 (8.87) 26.86 (8.51) .01 

LR MAP relative risk .182 (.135) .140 (.091) .11 

Epworth Total 8.71 (3.62) 7.55 (3.91) .17 

 

Participants reporting 6 or fewer hours of sleep per night did not differ from those reporting 

longer sleep in age, BMI, or resting BP measured at baseline (Visit 1). Sleep groups did not 

differ by race/ethnicity (
2
  = .05, p = .82).  Generally, the two sleep duration groups did not 

differ on psychosocial attributes.  The one exception was depressive symptoms; short sleepers 
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had higher CES-D scores compared to average sleepers.  This difference was attenuated when 

Item #11 (“my sleep was restless”) was removed from the overall CES-D score (short sleepers 

mean = 12.63 (SD = 7.54), average sleepers mean = 10.07 (SD = 6.78), p = .10).  With regard to 

subjective sleep quality and daytime energy, short sleepers had elevated PSQI and FSS scores 

relative to average sleepers.  Sleep groups did not differ in reports of daytime sleep propensity as 

measured by the ESS or in likelihood of sleep apnea as calculated by the MAP.   

Daily diary variables, including reports of mood and health behaviors, are shown in Table 

3.   
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Table 3. Means (SDs) of diary characteristics by self-reported sleep duration group 

Variable 

≤ 6 hours/night 

(n=37) 

7-8 hours /night 

(n = 42) 

p 

% Smokers  21.1 14.3 .43 

Avg Daily Caffeinated Beverages 1.00 (.93) 1.46 (1.40) .09 

Avg Daily Alcohol .54 (.88) .32 (.60) .20 

Avg Daily Exercise Minutes 51.00 (27.34) 56.44 (28.74) .39 

Avg Daily Stress Ratings (1-4)  1.90 (.47) 1.71 (.48) .08 

Avg Pre-Bedtime Stress Ratings (1-4) 1.58 (.47) 1.47 (.47) .31 

Avg Daily Positive Mood (1-5) 3.23 (.51) 3.31 (.49) .47 

Avg Daily Negative Mood (1-5) 1.61 (.36) 1.52 (.42) .33 

Total # of Naps Reported During Study 1.84 (1.82) 1.57 (1.77) .50 

Avg Daily Self-Reported Nap Minutes 28.77 (41.86) 14.07 (19.81) .06 

Avg Daily Response to “How much 

longer would you have liked to sleep?” 

(Minutes) 

91.36 (39.70) 56.73 (45.70) .001 

 

Although both sleep duration groups reported napping just under two times throughout the 7-day 

study, short sleepers reported nearly twice as many average daily minutes of napping than 7-8 

hour sleepers. Short sleepers reported that they wanted to sleep for an additional 90 minutes upon 
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waking in the morning, whereas average sleepers desired an additional 56 minutes of sleep.  

Short sleepers also tended to report less caffeine use and more daily stress than average sleepers, 

although these differences were not statistically significant. The two groups did not differ in 

alcohol use, exercise amount or intensity, daily mood ratings, or pre-bedtime stress ratings.  

Seventeen percent of the sample reported smoking at least one cigarette over the course of the 

study period; however, average number of daily cigarettes smoked was low, at 2.85 per day (SD 

= 4.11, range = .14 – 11.6).  Sleep duration groups did not differ in percentage of smokers or 

number of cigarettes smoked (p = .97).  

4.1.1 Actigraphy 

 

Mean actigraphy-assessed sleep duration was 7.05 hours (SD = .84) across the entire sample, and 

mean total sleep time was 6.08 hours (SD = .80).  Mean within-person variability in total sleep 

time across the study was about 1.3 hours (SD = .56).  Mean sleep efficiency was 81.81% (SD = 

4.68).  Actigraphy sleep characteristics by self-reported sleep group are shown in Table 4.   
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Table 4. Means (SDs) of actigraphy sleep characteristics by self-reported sleep duration group 

Variable ≤ 6 hours/night 7-8 hours /night  t p 

Mean Duration 369.17 (50.66) 428.66 (40.67) 5.82 <.001 

Mean Time Spent Asleep 318.23 (46.47) 372.11 (37.30) 5.74 <.001 

Mean Efficiency 76.71 (8.01) 80.22 (5.17) 2.36 .02 

SD Actual Sleep 77.13 (35.57) 64.92 (29.75) -1.67 .10 

Naps (>15 minutes)     

    Mean # of Naps Across Study 2.92 (2.78) 2.64 (2.41) -.48 .63 

    Mean Minutes per Nap 30.91 (33.27) 22.59 (18.69) -1.38 .18 

Mean Bedtime 1:54 AM 1:49 AM -.48 .64 

24-Hour Sleep  

(Night Actual Sleep + Nap Minutes) 

348.69 (43.00) 394.70 (38.81) 5.00 <.001 

Mean Weeknight Time Spent Asleep 310.76 (53.24) 367.73 (41.91) 5.34 <.001 

Mean Weekend Time Spent Asleep 358.98 (77.87) 384.29 (62.22) 1.61 .11 

 

Actigraphy measures of duration and total sleep time were, on average, about one hour longer in 

those reporting 7-8 hours of sleep compared to short sleepers.  The two groups differed in 

weeknight, but not weekend, mean sleep time.  Using a cut-off of ≥ 2 hours discrepancy between 

weekend – weeknight total sleep time, 19% of short sleepers (n = 7) were considered to be in 

“sleep debt,” compared to 5% of those reporting 7-8 hours of sleep per night (n = 2).  This was a 

statistically significant difference (
2
  = 3.91, p = .05).   Sleep efficiency was nearly 4% higher in 

average sleepers relative to short sleepers.   Average sleepers had marginally less within-person 
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nightly variability in their actual sleep time across the study.  Actigraphy-assessed total sleep 

time by self-reported sleep duration group is displayed in Figure 3.  

  

            

 

 

 

Figure 3.  Actigraphy total sleep time by self-reported sleep duration group 

 

Actigraphy sleep parameters did not correlate with start time of the laboratory testing session 

(total sleep time: r = .09, p = .42; sleep efficiency: r = -.14, p = .21; SD in total sleep time: r = 

.002, p = .98).  Correlations among self-report and actigraphy sleep parameters are displayed in 

Table 5.  
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Table 5. Correlations among self-report and actigraphy sleep parameters 

 Habitual 

Sleep 

Duration^ 

Actigraphy 

Time Spent 

Asleep 

Diary Time 

Spent 

Asleep 

Avg Diary 

Nap 

Minutes 

Avg 

Actigraphy 

Nap 

Minutes 

Actigraphy 

Sleep 

Efficiency 

Habitual Sleep 

Duration^ -- .54** .54** -.26* -.26* .30** 

Actigraphy Time 

Spent Asleep 

 

-- .73** -.54** -.39** .62** 

Diary Time Spent 

Asleep 

 

 -- -.32* -.17 .07 

Avg Diary Nap 

Minutes 

 

  -- .61** -.34* 

Avg Actigraphy 

Nap Minutes 

 

   -- -.25* 

Actigraphy Sleep 

Efficiency 

 

    -- 

 

4.1.2 Cardiovascular stress responses 

Heart rate, HF-HRV, and BP values throughout the laboratory testing session and across both 

sleep groups are shown in Figures 4-6.   
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        Asterisks indicate significant change from baseline; *p < .05, **p < .01. 

 

Figure 4.  Mean heart rate throughout laboratory session  
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Asterisks indicate significant change from baseline; #p<.10; **p < .01. 

Figure 5.  Mean HF-HRV throughout the laboratory session 
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         Asterisks indicate significant change from baseline; *p < .05, **p < .01 

Figure 6.  Mean systolic and diastolic BP throughout the laboratory session 

 

 

Mean HR across the 7-minute baseline was 69.49 (SD = 10.09) beats per minute (bpm) and mean 

HF-HRV was 6.33 (SD = .91) ln units. Mean baseline SBP was 113.62 (SD = 8.07) mmHg and 

mean baseline DBP was 62.72 (SD = 5.04) mmHg. Mean change from baseline to stress task was  

7.48 (SD = 5.38) bpm for heart rate, -.27 (SD = .52) ln units for HF-HRV, 12.14 (SD = 6.63) 

mmHg for SBP, and 9.54 (SD = 4.38) mmHg for DBP.  Nearly all reactivity values for HR, HF-

HRV, and BP represented significant changes from baseline; one exception was that HF-HRV 
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did not decrease significantly during the speech preparation period relative to baseline (t (78) = 

1.64, p = .10).  The speech elicited the greatest changes in HR and BP, followed by speech 

preparation, the Stroop task, and finally the MSIT. HF-HRV decreased more during cognitive 

computer tasks (mean = .32, SD = .53 ln units) than during the speech preparation and delivery 

tasks (mean = .23, SD = .54 ln units) (t (78) = 3.58, p =.001).   

Regarding recovery, HR averaged across all three recovery periods was 2.81 (SD = 3.18) 

bpm higher than baseline HR; HR did not return to baseline during any recovery period.  HF-

HRV across all three recovery periods was reduced by .03 (SD = .41) ln units; HF-HRV returned 

to baseline levels during each of the three recovery periods. SBP recovery values were higher 

than baseline by 3.08 (SD = 4.14) mmHg on average; only the speech recovery SBP did not 

return to baseline level.  DBP recovery values were higher than baseline by 1.66 (SD = 2.87) 

mmHg on average; DBP during both the MSIT and speech recovery remained elevated relative 

to baseline.   None of the reactivity or recovery indices correlated with laboratory session start 

time (ps > .10). 

4.1.3 Factor analysis of cardiovascular stress reactivity and recovery  

Correlations among reactivity values are displayed in Appendix A.  Because reactivity values 

were correlated across tasks for each outcome parameter examined (HR, HF-HRV, and BP), the 

factorability of these values was examined using exploratory factor analysis.  Principle 

components analysis was performed separately for HR, HF-HRV, and BP. The Kaiser-Meyer-

Olkin measure of sampling adequacy was above the recommended value of .6, and Bartlett’s test 

of sphericity was significant (p < .05) in all cases.  For HR, all four task reactivity values loaded 

onto one factor at .78 or higher with an eigen value of 3.46; this factor explained 86% of the 
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variance.  For HF-HRV, all four reactivity values loaded onto one factor at .87 or higher with an 

eigen value of 3.44; this factor explained 86% of the variance.  For SBP, all four reactivity 

values loaded onto one factor at .75 or higher with an eigen value of 2.43, explaining 61% of the 

variance.  For DBP, all four reactivity values loaded onto one factor at .72 or higher with an 

eigen value of 2.36, explaining 59% of the variance. Thus, reactivity values were residualized on 

baseline values and then averaged across all four conditions to create a composite reactivity 

variable; this process was performed separately for HR, HF-HRV, SBP, and DBP. 

 Correlations among recovery values are displayed in Appendix A. The factorability of 

these values was examined in a similar matter to reactivity values, as described above. The 

Kaiser-Meyer-Olkin measure of sampling adequacy was above the recommended value of .6, 

and Bartlett’s test of sphericity was significant (p < .05) in all cases.  For HR, all four task 

recovery values loaded onto one factor at .98 or higher with an eigen value of 2.91; this factor 

explained 97% of the variance.  For HF-HRV, all four recovery values loaded onto one factor at 

.97 or higher with an eigen value of 2.83; this factor explained 94% of the variance.  For SBP, all 

four recovery values loaded onto one factor at .79 or higher with an eigen value of 2.01, 

explaining 67% of the variance.  For DBP, all four recovery values loaded onto one factor at .73 

or higher with an eigen value of 1.85, explaining 59% of the variance. Thus, recovery values 

were residualized on baseline and task reactivity values, and then averaged across all four 

conditions to create a composite recovery variable; this process was performed separately for 

HR, HF-HRV, SBP, and DBP. 
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4.1.4 Subjective laboratory ratings 

Paired t-tests showed that participants rated all three tasks similar on valence (ps > .2).  Both 

cognitive tasks were rated as less arousing than the speech (MSIT vs speech: t = -4.94, p < .001; 

Stroop vs. speech: t = -3.04, p =.003), but also less controllable than the speech (MSIT vs. 

speech: t = -3.35, p = .001; Stroop vs. speech: t = -4.94, p < .001). With regard to differences in 

self-reported sleep duration groups, short sleepers reported more arousal following stress tasks 

than average sleepers; this difference was due to short sleepers reporting increased arousal 

following cognitive computer tasks (t (78) = 2.37, p = .02) rather than the speech task (t (78) = 

.75, p = .45) relative to average sleepers (see Table 6).  There were no group differences in 

ratings of task valence or task control.   

Table 6. Means (SDs) of subjective reports throughout laboratory session 

Variable ≤ 6 hours/night 7-8 hours /night  t p 

Task Valence 5.05 (1.46) 5.07 (1.19) .08 .94 

Task Arousal 5.66 (1.37) 4.96 (1.53) 2.16 .03 

Task Control  4.52 (1.28) 4.56 (1.52) .11 .92 

PANAS     

   Change in Negative Affect  .22 (.31) .08 (.21) 2.24 .03 

   Change in Positive Affect  .10 (.52) -.11 (.50) 1.82 .07 

 

Short sleepers reported greater increases in negative affect as measured by the PANAS 

across the laboratory testing session.  Short sleepers also reported marginally greater increases in 
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positive affect, whereas average sleepers reported a slight decrease in positive affect across the 

laboratory session.  Follow-up analyses revealed that the difference between groups in change in 

positive affect was due to greater increases in alertness (t (78) = 1.92, p = .06) and excitement (t 

(78) = 2.12, p = .04) among short sleepers relative to average sleepers.   Correlations among task 

ratings, changes in mood, and cardiovascular responses to stress are shown in Table 25A. 

 

4.2 HYPOTHESIS ONE 

4.2.1 Cardiovascular stress responses by self-reported sleep duration group 

Heart rate reactivity and recovery values by sleep duration group are displayed in Table 7.   

Table 7. HR during baseline, reactivity, and recovery by self-reported sleep duration group 

Variable ≤ 6 hours/night 7-8 hours /night  F* p 

Baseline HR 70.74 (11.08) 68.39 (9.13) 1.42 .23 

Task HR Reactivity  +7.08 (5.52) +7.95 (5.26) .75 .39 

Task HR Recovery  +3.58 (2.81) +2.14 (3.36) 7.44 .008 

* Outcomes are residualized change scores, adjusted for age, race, and BMI 

 

After adjusting for age, race, and BMI, the two sleep duration groups did not differ in HR 

reactivity to laboratory stress tasks. There was a difference in HR recovery between groups, with 

short sleepers showing elevated HR following stress tasks.  Short sleepers had higher HR during 
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both cognitive (F (78) = 5.39, p = .02) and speech recovery periods (F (77) = 7.09, p = .01) 

compared to average length sleepers.  HR is plotted for each sleep duration group in Figure 7.   

 

                  

 

 

Figure 7.  HR across laboratory session in sleep duration groups 

 

Follow-up analyses showed that the difference between sleep groups in HR recovery was 

stronger during the first two minutes of the recovery period (F (78) = 7.67, p = .007) than the 

final two minutes of the recovery period (F (78) = 3.39, p = .07), suggesting delayed HR 

recovery rather than anticipatory arousal.  The difference in HR recovery between sleep duration 

groups remained after removing the four participants with BMI > 30.   

HF-HRV reactivity and recovery values by sleep duration group are displayed in Table 8.   
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Table 8. HF-HRV during baseline, reactivity, and recovery by self-reported sleep duration group 

Variable ≤ 6 hours/night 7-8 hours /night  F* p 

Baseline HF-HRV  6.33 (.90) 6.34 (.92) .001 .98 

HF-HRV Reactivity  - .377 (.540) - .211 (.478) 2.78 .10 

HF-HRV Recovery - .106 (.343)  + .005 (.396) .54  .47 

* adjusted for age, BMI, race, and respiration rate 

 

After adjusting for age, race, BMI, and respiration rate, there were no differences between sleep 

groups in HF-HRV reactivity during stress tasks or HF-HRV recovery following stress tasks.  

Follow-up analyses examining tasks separately showed that short sleepers had marginally lower 

HF-HRV during the speech preparation and delivery periods compared to average sleepers (F 

(77) = 3.12, p = .08).  There was no difference between groups in HF-HRV during cognitive 

tasks (F (78) = 1.55, p = .22).  
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Figure 8.  HF-HRV across laboratory session in sleep duration groups 
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BP reactivity and recovery values by sleep duration group are displayed in Table 9.   

Table 9. BP during baseline, reactivity, and recovery by self-reported sleep duration group 

Variable Systolic Blood Pressure Diastolic Blood Pressure 

 ≤ 6 

hours/night 

7-8 hours 

/night  

F* p ≤ 6 

hours/night 

7-8 hours 

/night  

F* p 

Baseline 113.93 (8.25) 113.33 (8.01) .10 .75 61.81 (5.01) 63.54 (5.00) 2.38 .13 

Task 

Reactivity  

10.98 (5.98) 13.22 (7.09) 2.34 .13 9.50 (4.65) 9.58 (4.16) .09 .76 

Task 

Recovery  

2.44 (3.17) 3.67 (4.85) .76 .39 1.38 (2.90) 1.96 (2.84) .18 .67 

*analyses use residualized change scores as outcomes; adjusted for age, race, and BMI. 

 

After adjusting for age, race, and BMI, there were no differences between sleep groups in 

SBP or DBP reactivity during stress tasks.  Sleep duration groups were also similar in their SBP 

and DBP recovery following stress tasks.   
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Figure 9.  SBP throughout laboratory session in sleep duration groups 

    

                  

 

 

Figure 10.  DBP throughout laboratory session in sleep duration groups 
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4.2.2 Potential mediators of group differences in cardiovascular stress responses 

Short sleepers continued to show higher HR recovery after adjusting for daily stress ratings (F 

(78) = 7.46, p = .008) or caffeine use (F (78) = 8.35, p = .005). Short sleepers continued to show 

higher HR during recovery periods after adjusting for depression (F (78) = 6.08, p =.02) or 

stressful life events (F (78) = 6.08, p =.02). Adjustment for task arousal ratings or change in 

affect on the PANAS did not alter the difference in HR recovery between sleep groups (ps = 

.01). 

4.2.3 Naps 

Adjustment for actigraphy-detected daytime naps did not alter the difference in HR recovery 

between self-reported sleep groups (F (78) = 6.73, p = .01), nor did adjustment for self-reported 

naps (F (78) = 6.74, p = .01).  

4.2.4 Continuous measure of self-reported sleep duration  

Self-reported habitual sleep duration was examined as a continuous predictor of cardiovascular 

stress responses.  Shorter self-reported sleep duration was associated with higher HR recovery ( 

= -.28, p = .02) after adjusting for age, race, and BMI, and with lower HF-HRV during stress 

tasks after adjusting for age, race, BMI, and respiration rate ( = .23, p = .05).  Self-reported 

sleep duration was not associated with HR reactivity ( = -.13, p = .28), SBP reactivity ( = .04, 

p = .74) or recovery ( = .04, p = .75), or DBP reactivity ( = -.03, p = .84) or recovery ( = .02, 

p = .86).  
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4.2.5 Continuous measure of self-reported sleep duration and cardiovascular stress 

responses after adjustment for mediators and naps 

Self-reported sleep duration was no longer associated with HR recovery after adjusting for 

actigraphy-detected nap minutes ( = -.15, p = .22). The association between shorter self-

reported sleep duration and lower HF-HRV during stress tasks remained after adjusting for all 

candidate mediators.  The self-reported sleep duration and HF-HRV link was also independent of 

actigraphy-detected or self-reported nap minutes. 

4.2.6 Cardiovascular stress responses and actigraphy-measured sleep duration  

Results from linear regression models examining the association between actigraphy-assessed 

time spent asleep and cardiovascular reactivity and recovery are displayed in Tables 10 and 11.   

Table 10. Results from linear regression models examining actigraphy total sleep time and CV stress reactivity 

 HR Reactivity HF-HRV 

Reactivity 

Systolic BP 

Reactivity 

Diastolic BP 

Reactivity 

 B p B p B p B p 

Average Time Spent 

Asleep -.09 .49 .29 .02 .10 .42 -.01 .99 

*adjusted for age, race (Asian/Pacific Islander, Black, White), BMI; HF-HRV analyses are also adjusted 

for respiration rate. 

 



 64 

Table 11. Results from linear regression models examining actigraphy total sleep time and CV stress recovery 

 HR Recovery HF-HRV 

Recovery 

Systolic BP 

Recovery 

Diastolic BP 

Recovery 

 B p B p B p B p 

Average Time Spent 

Asleep 

-.26 .03 .12 .34 .08 .51 -.28 .02 

*adjusted for age, race (Asian/Pacific Islander, Black, White), BMI; HF-HRV analyses are also adjusted 

for respiration rate. 

 

Time spent asleep was not associated with HR reactivity. Shorter time spent asleep was 

associated with elevated HR recovery; results were slightly weaker for the cognitive ( = -.23, p 

= .07) than the speech ( = -.25, p = .05) recovery periods.  Total sleep time accounted for about 

5% of the variance in HR recovery.  Follow-up analyses showed that time spent asleep was 

associated with HR during the first two minutes of the recovery period ( = -.26, p = .03) but 

was not associated with HR during the final two minutes of recovery ( = -.20, p = .11).  

Repeating analyses after removing four participants with BMI > 30 produced the same results.   
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Figure 11. HR recovery averaged across task by tertile of time spent asleep 

 

 

                         

 

Figure 12.  Baseline to task HF-HRV reactivity averaged across task by tertile of time spent asleep 
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Shorter actigraphy time spent asleep was related to a greater decline in HF-HRV during stress 

tasks; total sleep time accounted for approximately 7% of the variance in HF-HRV.  Follow-up 

analyses showed that shorter time asleep was associated with a greater reduction in HF-HRV 

during cognitive tasks ( = .33, p = .005) but was not related to change in HF-HRV during the 

speech preparation and delivery tasks ( = .18, p = .15). Repeating analyses after removing four 

participants with BMI > 30 produced the same results.  Time spent asleep was not related to HF-

HRV during recovery periods.     

Actigraphy time spent asleep was not associated with systolic or diastolic BP reactivity, 

nor was it associated with SBP recovery.  Shorter time spent asleep was associated with elevated 

DBP recovery, accounting for approximately 6% of the variance. The association remained after 

removing four participants with BMI > 30.  Shorter time spent asleep was associated with higher 

DBP after cognitive tasks ( = -.29, p = .01) but not after the speech task ( = -.16, p = .20).  

 

 

 

Figure 13. DBP recovery averaged across task by tertile of time spent asleep 
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4.2.7 Potential mediators of relationships between actigraphy-measured total sleep time 

and cardiovascular stress responses 

The associations between shorter actigraphy-measured sleep and greater HF-HRV withdrawal 

during stress tasks, higher HR recovery, and higher diastolic BP recovery remained after 

adjusting for daily stress ratings (HF-HRV:  = .25, p = .05; HR:  = -.26 p = .03; diastolic BP:  

= -.28, p = .02). Shorter actigraphy time spent asleep was marginally associated with higher daily 

diary ratings of negative mood (see table 23A in Appendix 1), and adjusting for diary negative 

mood reduced the association between time spent asleep and stressor-evoked HF-HRV by 18% 

and to marginal significance ( = .22, p = .07); thus, diary negative mood was tested as a 

mediator in bootstrapping analyses. There was a marginally significant direct path from time 

spent asleep to diary negative mood (B = -.002, SE = .0009, p = .08) and a significant direct path 

from diary negative mood to HF-HRV during stress tasks (B = -.45, SE = .22, p = .04). However, 

the bootstrapped confidence interval for the estimate of the indirect effect from time spent asleep 

to HF-HRV through diary reports of negative mood contained 0, indicating that mediation was 

nonsignificant (95% CI = .00 - .03).  Adjusting for diary reports of negative mood did not alter 

any of the other relationships reported above. 

Those with shorter total sleep time continued to show lower HF-HRV during stress tasks, 

and elevated HR and diastolic BP recovery following stress tasks, after adjustment for depression 

(HF-HRV:  = .25, p = .05; HR:  = -.25 p = .05; diastolic BP:  = -.27, p = .03) or ongoing, 

stressful life events (HF-HRV:  = .24, p = .05; HR:  = -.28 p = .03; diastolic BP:  = -.25, p = 

.04). 
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Adjustment for task arousal ratings or change in negative affect as reported on the 

PANAS did not alter links between total sleep time and HF-HRV reactivity, HR recovery, or 

diastolic BP recovery (ps < .05).  Adjustment for change in positive affect resulted in a slight 

decrease in the strength of the association between total sleep time and HR recovery (12% 

reduction;  = -.23 p = .07). Change in positive affect was tested as a mediator in bootstrapping 

analyses.  The direct path from total sleep time to change in positive affect was not significant (B 

= -13.1, SE = 10.5, p = .22), nor was the direct path from positive affect to HR recovery 

significant (B = -.003, SE = .002, p = .09) ; therefore, a mediating pathway through positive 

affect was not supported. 

4.2.8 Naps 

Adjustment for actigraphy-detected daily nap minutes reduced the association between 

actigraphy-assessed total sleep time and HR recovery to non-significance ( = -.22, p = .10).  

This could either suggest that naps acted as a “buffer,” negating the effects of shorter nocturnal 

sleep, or that naps and nocturnal sleep account for common variance in HR recovery (actigraphy 

total sleep time and actigraphy-detected naps were correlated at r = -.4, p < .001).  Thus, the 

relationship between actigraphy-detected naps and HR recovery was examined in linear 

regression models.  Longer daily actigraphy-detected naps were associated with higher HR 

recovery before adjusting for actigraphy nocturnal total sleep time ( = .23, p = .05).  In the 

model that included both daytime naps and nocturnal sleep, naps were no longer associated with 

HR recovery ( = .16, p = .20). Adjusting for self-reported nap minutes did not change the 

association between actigraphy total sleep time and HR recovery ( = -.36, p = .01).   
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The associations of actigraphy-assessed total sleep time with HF-HRV reactivity and 

DBP recovery remained after adjusting for actigraphy-detected nap minutes (HF-HRV:  = .29, 

p = .03; DBP:  = -.26, p = .05) or self-reported nap minutes (HF-HRV:  = .28, p = .05; HR:  

= -.32 p = .02; diastolic BP:  = -.27, p = .05). 

4.3 HYPOTHESIS TWO 

 

Results from linear regression models examining the links between sleep efficiency and 

cardiovascular reactivity and recovery are displayed in tables 12 and 13.   
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Table 12. Results from linear regression models examining actigraphy sleep efficiency and CV stress recovery 

 HR Reactivity HF-HRV 

Reactivity 

Systolic BP 

Reactivity 

Diastolic BP 

Reactivity 

 B p B p B p B p 

Sleep Efficiency -.15 .22 .27 .03 -.11 .37 -.10 .44 

*adjusted for age, race (Asian/Pacific Islander, Black, White), BMI; HF-HRV analyses are also adjusted 

for respiration rate. 

 

Table 13. Results from linear regression models examining actigraphy sleep efficiency and CV stress recovery 

 HR Recovery HF-HRV 

Recovery 

Systolic BP 

Recovery 

Diastolic BP 

Recovery 

 B p B p B p B p 

Sleep Efficiency -.30 .01 .29 .13 -.13 .28 -.17 .16 

*adjusted for age, race (Asian/Pacific Islander, Black, White), BMI; HF-HRV analyses are also adjusted 

for respiration rate. 
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Sleep efficiency was unrelated to HR reactivity averaged across all tasks, but examination of 

separate tasks revealed an association between decreased sleep efficiency and higher HR 

reactivity during cognitive stressors ( = -.26, p = .03).  There was no association between sleep 

efficiency and HR reactivity during speech preparation and delivery ( = -.08, p = .54).  Sleep 

efficiency was related inversely to HR recovery; in follow-up analyses, decreased efficiency was 

related to higher HR during the speech recovery period ( = -.32, p = .01) but not during the 

cognitive task recovery period ( = -.20 p = .11).  When sleep efficiency and total sleep time 

were included in the same model as predictors of HR recovery, both sleep parameters were 

reduced to non-significance (sleep efficiency:  = -.22, p = .15; total sleep time:  = -.15, p = 

.30).  

Decreased sleep efficiency was associated with greater withdrawal in cardiac 

parasympathetic activity as characterized by a greater decrease in HF-HRV during stress tasks. 

Sleep efficiency accounted for approximately 7% of the variance in HF-HRV during stress tasks. 

Follow-up analyses showed that the link between sleep efficiency and lower HF-HRV was due to 

reactivity during cognitive tasks ( = .32, p = .009) rather than during speech preparation and 

delivery ( = .18, p = .18).  When both sleep efficiency and total sleep time were included in the 

same model as predictors of cognitive task HF-HRV, both parameters were reduced to non-

significance (sleep efficiency:  = .18, p = .20; total sleep time:  = .22, p = .11). Sleep 

efficiency was not related to HF-HRV during recovery periods.  

Sleep efficiency was not associated with SBP or DBP reactivity or recovery averaged 

across cognitive and speech tasks.  When tasks were examined separately, one association 

approached significance: decreased sleep efficiency was marginally related to higher SBP 
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reactivity to cognitive tasks ( = -.29, p = .06 after adjusting for covariates and total sleep time). 

All of the above results were identical after removing four participants with BMI > 30. 

 

4.3.1 Potential mediators of relationships between actigraphy-measured sleep efficiency 

and cardiovascular stress responses 

The associations between decreased actigraphy-measured sleep efficiency and greater HF-HRV 

withdrawal during stress tasks and higher HR during recovery remained after adjusting for daily 

stress ratings (HF-HRV:  = .31, p = .01; HR:  = -.26, p = .03).  Decreased sleep efficiency was 

related to higher daily ratings of negative mood in the diary (see Table 17A in Appendix 1), and 

adjusting for negative mood reduced the association between sleep efficiency and stressor-

evoked HF-HRV by 21% and to marginal significance ( = .23, p = .06); thus, negative mood 

was tested as a mediator in bootstrapping analyses.  There was a marginally significant direct 

path from sleep efficiency to diary negative mood (B = -.01, SE = .007, p = .07) and a significant 

direct path from diary negative mood to HF-HRV during stress tasks (B = -.46, SE = .22, p = 

.04). However, the bootstrapped confidence interval for the estimate of the indirect effect from 

sleep efficiency to HF-HRV through diary negative mood contained 0, indicating 

nonsignificance (95% CI = .00 - .02). Adjustment for diary reports of negative mood did not 

affect the link between sleep efficiency and HR recovery ( = -.29, p = .02).   

Less efficient sleepers continued to show greater HF-HRV withdrawal during cognitive 

tasks and higher HR during recovery from tasks after adjustment for depressive symptoms (HF-

HRV:  = .33, p = .01; HR: -.28, p = .03) or ongoing, upsetting stressful life events (HF-HRV:  
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= .36, p = .006; HR:  = -.32, p = .02). Decreased sleep efficiency was also associated with 

higher Cook Medley Hostility scores, but adjusting for hostility did not alter any of the 

relationships reported above. 

Adjustment for task arousal ratings or changes in affect (negative or positive valence) as 

reported on the PANAS did not alter links between sleep efficiency and HF-HRV reactivity or 

HR recovery (ps > .05). 

 

4.3.2 Naps 

The association between sleep efficiency and HR recovery was slightly attenuated after 

adjustment for actigraphy-detected naps ( = -.24, p = .06), but not after adjustment for self-

reported naps ( = -.29, p = .03).  Sleep efficiency and HF-HRV reactivity remained associated 

after adjustment for actigraphy-detected ( = .29, p = .03) or self-reported naps ( = .31, p = .02). 

 

4.4 HYPOTHESIS THREE 

Results from linear regression models examining the link between within-person variability and 

cardiovascular responses to stress are displayed in Tables 14-15.  None of the hypothesized 

associations were supported.  The only relationship observed was that between greater variability 

in actigraphy-assessed total sleep time and lower diastolic BP during recovery periods.  (Mean 

actigraphy total sleep time remained associated with higher diastolic BP during recovery after 
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adjustment for variability in total sleep time,  = -.36, p = .003). The association between 

variability in sleep and diastolic BP was independent of diary characteristics, including daily 

stress, daily negative mood, and self-reported nap minutes; psychosocial attributes, including 

depressive symptoms and stressful life events; laboratory variables, including task appraisals and 

PANAS ratings; and naps.  Removing four participants with BMI > 30 did not alter the results. 

 

Table 14. Results from linear regression models examining variability in actigraphy total sleep time and CV stress 

reactivity 

 HR Reactivity HF-HRV 

Reactivity 

Systolic BP 

Reactivity 

Diastolic BP 

Reactivity 

 B p B p B p B p 

Within-Person Variability 

in Total Sleep Time .09 .47 -.16 .16 .17 .16 .15 .23 

*adjusted for age, race (Asian/Pacific Islander, Black, White), BMI, and mean total sleep time; HF-HRV 

analyses are also adjusted for respiration rate. 

 

Table 15. Results from linear regression models examining variability in actigraphy total sleep time and CV stress 

recovery 

 HR Recovery HF- HRV 

Recovery 

Systolic BP 

Recovery 

Diastolic BP 

Recovery 

 B p B p B p B p 

Within-Person Variability 

in Total Sleep Time -.17 .15 
 

-.02 

 

.88 

 

-.13 

 

.28 

 

-.27 

 

.02 

*adjusted for age, race (Asian/Pacific Islander, Black, White), BMI, and mean total sleep time; HF-HRV 

analyses are also adjusted for respiration rate. 
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4.5 SUPPLEMENTARY ANALYSES 

 

4.5.1 Actigraphy-measured sleep directly prior to the laboratory session  

Total sleep time as assessed by actigraphy on the night before the laboratory session was not 

associated with any of the cardiovascular stress reactivity (HR:  = .08, p =  .64; SBP:  = -.15, p 

=  .40; DBP:  = -.09, p =  .64; HF-HRV:  = -.02, p =  .90) or recovery parameters (HR:  = 

.02, p =  .92; SBP:  = -.01, p =  .97; DBP:  = .18, p =  .28; HF-HRV:  = .03, p =  .86). 

4.5.2 Diary-measured sleep quality 

Poorer sleep quality as reported in the morning diary during the week before the laboratory 

session was related to lower HF-HRV during stress tasks ( = .23, p =  .05), as well as lower HF-

HRV during recovery from stress tasks ( = .24, p =  .04).  These effects were independent of 

total sleep time and sleep efficiency as assessed by actigraphy.  These effects were also 

independent of diary characteristics, psychological attributes, laboratory variables, and naps. 

Diary-reported sleep quality was unrelated to HR reactivity ( = -.09, p =  .46), HR recovery ( = 

-.18, p =  .13), BP reactivity (SBP:  = -.04, p =  .75; DBP:  = .07, p =  .57), or BP recovery 

(SBP:  = -.18, p =  .11; DBP:  = -.02, p =  .89).   
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4.5.3 Weekday versus weekend sleep  

All of the associations between actigraphy-assessed total sleep and cardiovascular stress 

responses were significant when average sleep time was calculated using weeknight sleep only.  

There were no associations between weekend sleep time and cardiovascular stress responses.  

4.5.4 Moderators of the sleep-cardiovascular stress response relationship 

Sleep efficiency was tested as a moderator of the associations between actigraphy-assessed total 

sleep time and cardiovascular stress responses.  The only evidence of moderation was for HF-

HRV recovery (total sleep time X efficiency,  = 3.43, p =  .03).  Plotting the simple slopes at 

one standard deviation above and below the mean of sleep efficiency revealed that the 

relationship between total sleep time and recovery HF-HRV tended to be positive at high levels 

of sleep efficiency and negative at low levels of sleep efficiency; however, the simple slopes 

were not significant (total sleep time and HF-HRV at high levels of sleep efficiency:  = .23, p =  

.20; total sleep time and HF-HRV at low levels of sleep efficiency:  = -.20, p =  .26).   

 Several other variables were tested as potential moderators of the associations 

between actigraphy-assessed total sleep time and cardiovascular stress responses, including 

daytime sleepiness as measured by the Epworth Sleepiness Scale, within-person variability in 

actigraphy total sleep time, negative affect (composite score of depressive symptoms, anxiety, 

and hostility questionnaires), stressful life events, sleep quality, task arousal, and naps.  None of 

the interaction terms were related to cardiovascular stress outcomes. 
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4.5.5 Sleep as a mediator of psychosocial attributes and cardiovascular stress responses 

There was some evidence that actigraphy-assessed time spent asleep mediated links between 

reports of psychological stress and HF-HRV withdrawal during stress.  Results based on 5000 

bootstrapped samples indicated that there were significant direct effects of ongoing, stressful life 

events on actigraphy-assessed time spent asleep (B = -3.74, SE = 1.90, p = .05) and of time spent 

asleep on HF-HRV during stress tasks (B = .004, SE = .002, p = .04).  While the total effect of 

stressful life events on HF-HRV was significant (B = -.06, SE = .03, p = .05), the direct effect 

was not (B = -.05, SE = .03, p  = .13).  The bootstrapped confidence interval for the estimate of 

the indirect effect of stressful life events on HF-HRV through time spent asleep did not contain 

0, indicating significant mediation (95% CI = -.04 - -.002).  

Similarly, there were marginally significant direct effects of daily diary stress reports on 

actigraphy-assessed time spent asleep (B = -19.8, SE = 11.5, p = .09), and there was a significant 

direct effect of time spent asleep on HF-HRV during stress tasks (B = .004, SE = .002, p = .03).  

While the total effect of daily diary stress on HF-HRV was significant (B = -.37, SE = .19, p = 

.05), the direct effect was not (B = -.29, SE = .19, p = .12). The bootstrapped confidence interval 

for the estimate of the indirect effect of daily diary reports on HF-HRV through time spent asleep 

did not contain 0, indicating significant mediation (95% CI = -.25 - -.007). 
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5.0 DISCUSSION 

This study examined the associations between sleep and cardiovascular stress responses in 79 

healthy, undergraduate men.  The primary hypothesis was that men reporting a typical sleep 

duration of 6 or less hours over the past month would have more dramatic and prolonged HR, 

HF-HRV, and BP responses to stressful laboratory tasks than men reporting 7-8 hours of sleep 

per night.  Those reporting fewer than 6 hours of sleep per night, referred to here as short 

sleepers, had higher recovery HR following stress tasks than those reporting longer sleep.  There 

were no group differences in HR reactivity to stressful tasks, nor were there any group 

differences in HF-HRV or BP reactivity or recovery to stressful tasks.  Thus, the primary 

hypothesis of this project was largely unsupported, with self-reported sleep duration groups 

showing mostly similar cardiovascular responses to stress.   

In addition to self-reports of typical sleep, estimates of total sleep time and sleep 

efficiency during the week preceding the laboratory testing session were obtained with 

actigraphy.  Shorter actigraphy-assessed total sleep time over the week was associated with 

greater reductions in HF-HRV during stress tasks, and with elevated DBP following stress tasks. 

Associations were independent of age, race, BMI, respiration, and a variety of health behaviors 

and psychosocial attributes. Shorter actigraphy total sleep also was related to heightened HR 

following stress; however, this association was no longer significant after adjusting for daytime 

naps detected by the actigraph.  Actigraphy-assessed total sleep was not related to HR reactivity 
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or BP reactivity, nor was it related to HF-HRV recovery after tasks.  With regard to actigraphy-

assessed sleep efficiency, less efficient sleep was related to greater reductions in HF-HRV during 

stress, as well as higher HR recovery following stress.  Adjustment for actigraphy naps led to an 

attenuation of the relation between sleep efficiency and HR recovery. Decreased efficiency was 

also related to increased HR reactivity to cognitive tasks only.  Unlike total sleep time, sleep 

efficiency was not associated with DBP recovery.   

Thus, hypothesized relationships among shorter, less efficient actigraphy-assessed sleep 

and exaggerated cardiovascular stress responses were partially supported by the data.  Overall, 

the most consistent relationships were between actigraphy-assessed sleep parameters and 

attenuated HF-HRV during stress tasks, and higher HR after stress tasks.  The strength of several 

of these relationships was reduced after adjusting for actigraphy-assessed daytime naps. 

A secondary aim of this study was to determine if within-person variability in actigraphy 

total sleep time co-varied with cardiovascular stress responses.  This hypothesis was not 

supported, as estimates of individual variability in sleep were unrelated to nearly all of the 

cardiovascular stress responses examined.  The one exception was an inverse relationship 

between within-person variability in total sleep time and DBP following stress tasks. 

 

5.1 CARDIOVASCULAR STRESS RESPONSES BY SELF-REPORTED SLEEP 

DURATION GROUP 

Cut-offs used to determine the sleep groups in this sample were based on epidemiological data 

showing an increased risk of cardiovascular morbidity and mortality among individuals reporting 
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habitually short sleep duration, typically less than 5 or 6 hours per night (Cappuccio, Cooper, 

D’Elia, Strazzullo, & Miller, 2011).  It was expected that short sleepers would show more 

exaggerated cardiovascular responses upon encountering a stressor, and that these responses may 

constitute one physiological pathway by which short sleep increases cardiovascular risk.  

However, self-reported sleep groups in the current study did not differ in most of the 

cardiovascular stress responses examined.  One exception was that short sleepers had elevated 

HR during the recovery periods following stress tasks compared to the 7-8 hour sleepers.  This 

finding may suggest that either the process by which HR is restored after a challenge is 

decelerated among individuals reporting short sleep, or that these individuals have higher levels 

of anticipatory arousal preceding a challenging task.  Follow-up analyses supported the former, 

as the difference in HR between sleep groups was stronger during the two minutes following task 

completion than during the two minutes before an upcoming task.  Furthermore, sleep groups did 

not differ in their HR reactivity during the speech preparation period, a time likely characterized 

by anticipatory arousal.  

The bulk of the literature linking delayed HR recovery to cardiovascular outcomes is 

based on studies of aerobic stress; slower HR decline following exercise tolerance tests predicts 

coronary events (Pitsavos et al., 2004), coronary artery disease (Lipinski, Vetrovec, & 

Froelicher, 2004), and mortality (Cole, Blackstone, Pashkow, Snader, & Lauer, 1999) in 

longitudinal studies.  Fewer studies have examined the cardiovascular consequences of delayed 

HR recovery following psychological stress.  A meta-analysis by Chida and Steptoe (2010) 

based on a small number of studies reported that prolonged HR recovery following mental stress 

predicts subsequent cardiovascular risk status, with outcomes consisting of higher IMT 

(Heponiemi et al., 2004) and higher BP (Steptoe et al., 2005; Stewart et al., 2006) across 2-3 year 
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follow-ups. Therefore, it is plausible that prolonged HR recovery following psychological stress 

is among the pathways linking self-reported short sleep to cardiovascular morbidity.   

It was expected that self-reported short sleepers would perceive challenging tasks as more 

negative or more arousing, and that this appraisal may have a top-down influence on autonomic 

activity. Results showed that short sleepers rated cognitive tasks, but not the speech, as more 

arousing than did average length sleepers, and they also reported larger increases in negative 

mood across the laboratory session, than average length sleepers. Interestingly, shorter sleepers 

also reported greater increases in positive, activated mood states, such as feeling alert and 

excited, across the stress session.  Reports of decreased mood and higher arousal did not mediate 

HR recovery differences between the self-reported sleep groups (although ratings of arousal, in 

particular, co-varied with many of the cardiovascular reactivity indices; see Table 25A).  

Nevertheless, these data complement a larger literature linking sleep disturbances or deficits with 

heightened emotional reactivity (Hamilton, Catley, & Karlson, 2007; Kumari et al., 2009; Morin, 

Rodrigue, & Ivers, 2003; Zohar et al., 2005). Prior work in this area has focused on populations 

with abnormal sleep, such as medical residents or persons with insomnia, or has acknowledged 

the challenge of capturing “objective” stressors independent of subjective appraisal or recall bias.  

Thus, the current results add to the literature by demonstrating a relationship between normative 

variation in subjective sleep duration and emotional reactivity to a controlled set of stressful 

stimuli in healthy young adults.   

Sleep duration groups did not differ in HF-HRV reactivity or recovery, perhaps 

suggesting that changes in vagal cardiac influence may not be a relevant mechanism linking self-

reported short sleep to cardiovascular outcomes. On the other hand, when self-reported sleep 

duration was examined as a continuous predictor, shorter sleep duration was related to lower HF-
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HRV during stress tasks, suggesting that dichotomization of groups may have resulted in loss of 

information about individual differences and decreased power (MacCallum, Zhang, Preacher, & 

Rucker, 2002).  This explanation may be likely given that shorter actigraphy-assessed total sleep 

time was similarly associated with lower HF-HRV during stress.   

Self-reported sleep duration groups did not differ in BP reactivity or recovery, nor was 

there a relation between continuously measured self-reported sleep duration and BP stress 

responses. These results suggest that pressor changes in response to stress are not among the 

mechanisms linking reports of short sleep to cardiovascular outcomes.   Another possibility is 

that BP responses to stress may be a relevant pathway only after short sleep occurs consistently 

over extended periods of time, or in those who sleep less during specific periods of the lifespan.  

For instance, the bulk of the literature reporting elevated cardiovascular risk among self-reported 

short sleepers is based upon samples of middle-aged to older adults. All of the participants in this 

study were in college, a period characterized by dramatic shifts in sleep timing (Carskadon & 

Davis, 1989).  Thus, reported sleep duration may reflect a relatively recent change in behavior, 

with adult sleep patterns not stabilizing for several more years.  On the other hand, Mezick et al. 

(2012) reported a link between shorter actigraphy-assessed sleep and higher BP in a sample of 

high school students, and Franzen et al. (2011) demonstrated that sleep deprivation in healthy 

young adults (mean age = 23 yrs) results in increased SBP reactivity, suggesting that the 

cardiovascular correlates of sleep restriction may indeed be present earlier in the lifespan. 

Longitudinal studies examining sleep duration and BP reactivity over time will be critical in 

determining whether changes in the pressor response system gradually accumulate as a result of 

short sleep. 
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5.2 CARDIOVASCULAR STRESS RESPONSES AND ACTIGRAPHY-ASSESSED 

SLEEP DURATION  

Shorter actigraphy total sleep time during the week preceding the laboratory testing session was 

related to greater HF-HRV withdrawal during stress tasks, as well as higher HR and diastolic BP 

during task recovery.  There may be several reasons why actigraphy total sleep time was related 

to DBP recovery, but self-reported sleep duration was not. Self-reports do not correlate perfectly 

with objective assessments of sleep duration, and individuals typically overestimate their 

habitual sleep length relative to total sleep time as quantified by actigraphy (Lauderdale, 

Knuston, Yan, Liu, & Rathouz, 2008).  Researchers have suggested several explanations for this 

discrepancy, positing that overestimates may be due to variability in sleep duration over time or 

to the misperception of sleep onset and nighttime awakenings.  Others have suggested that 

factors other than actual sleep time, such as sleep quality, daytime fatigue, or psychological 

attributes, may influence subjective reports (Knutson & Turek, 2006; van den Berg et al., 2008).   

In the current study, habitual sleep duration reported on the PSQI correlated with 

actigraphy total sleep time at r = .54.  Similar to previous reports, more than 80% of participants 

over-estimated their habitual sleep duration relative to actigraphy sleep time across one week; 

the mean over-estimation was by 47 minutes. These data suggest that self-reported and 

actigraphy-assessed sleep duration are related but not synonymous constructs, and it is possible 

that the aspects of sleep duration captured by actigraphy (i.e., movement throughout the night) 

are more closely associated with BP regulation than perceptions of duration.  

Additionally, although the two self-reported sleep groups in this study differed by 54 

minutes in actigraphy sleep over one week, visual inspection of the data revealed substantial 

overlap in total sleep time between the two groups (see Figure 3).  Indeed, about 10% of 
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participants would have been classified in a different sleep group if actigraphy total sleep time 

was used to create groups instead of self-report (i.e., four participants reporting a habitual sleep 

duration of fewer than 6 hours got more than 6 hours of sleep as assessed by actigraphy, and five 

participants reporting a habitual sleep duration of 7-8 hours got less than 5.5 hours of sleep as 

assessed by actigraphy). Thus, the two groups in this study may not have been disparate enough 

in their actual sleep to observe a difference in BP stress responses. Another possibility is that the 

week of sleep assessment for this study was not representative of usual patterns as reported on 

the PSQI. If so, this would suggest that acute changes in sleep during the week preceding the 

laboratory tasks were more influential on BP responses to stress than habitual sleep. Although 

this explanation may be less likely given that sleep on the night before the laboratory testing 

session was not related to cardiovascular reactivity or recovery, it cannot be ruled out based on 

the current data.  

Several previous studies examining variation in sleep in relation to physiological stress 

responses, including cardiovascular and neurohormonal activity, observed associations with 

actigraphy-assessed sleep continuity but not with self-reported sleep duration (Palesh et al., 

2008; Wright et al., 2007).  Others have detected associations between sleep parameters and 

physiological stress responses in studies where only self-report sleep measures were used 

(Capaldi et al., 2005; Uchino et al., 2005).  With regard to the larger literature on sleep and CVD, 

relatively few studies have examined actigraphy-assessed sleep in relation to cardiovascular 

morbidity, and even fewer have compared self-reports and actigraphy estimates within the same 

study. An exception is King et al.’s 2008 study demonstrating that actigraphy-assessed short 

sleep, but not self-report, was associated with an increase in coronary artery calcification over 

five years in CARDIA.  Matthews et al. (2011) reported that PSG-assessed sleep duration, but 
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not self-reported sleep duration, was associated with higher blood pressure in a cross-sectional 

study of 224 black and white adults.  Additionally, a small but growing literature has linked 

actigraphy-assessed total sleep time with other cardiovascular risk factors, such as elevated BP 

and obesity (Javaheri et al., 2008; Mezick et al., 2012; Patel et al., 2008). Inclusion and 

comparison of multiple methods of sleep assessment for their associations with cardiovascular 

risk will be helpful in elucidating the mechanisms responsible for the short sleep-CVD link.   

 

5.3 CARDIOVASCULAR STRESS RESPONSES: A CLOSER LOOK 

5.3.1  High-frequency heart rate variability and heart rate 

Shorter actigraphy total sleep time and shorter self-reported sleep duration (when measured 

continuously) were associated with greater reductions in HF-HRV during stress tasks.  This 

finding is largely consistent with the few prior studies on sleep and vagal stress responses that 

have been conducted.  In Uchino et al.’s 2005 study, increases in self-reported sleep over a 7-to-

16 month span were related to less vagal withdrawal during laboratory stressors (mental 

arithmetic and speech tasks). The age range of that sample was 30 to 70 years old, and sleep 

duration was defined as self-reported hours typically obtained in a week.  In a sample of women 

with breast cancer, decreased sleep continuity assessed by actigraphy over three nights was 

related to lower overall HF-HRV during the Trier Social Stress Test.  Studies in humans and 

animals also have shown that experimental sleep deprivation leads to reductions in resting vagal 
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activity, as well as reduced vagal antagonism in response to stress (Zhong et al., 2005; Sgoifo et 

al., 2005). 

One study reported contradictory results, such that actigraphy-assessed shorter sleep and 

increased sleep fragmentation were associated with less vagal withdrawal during a reaction time 

task in 6-to-12-year-olds (El-Sheikh & Buckhalt, 2005). The authors argue that higher levels of 

vagal withdrawal during a challenging situation reflect a heightened, or more efficient, capacity 

to formulate an organized and appropriate physiological response.  This explanation is in line 

with Porges’ polyvagal theory, which posits that increased cardiac vagal control in times of rest 

(vagal tone) and decreased vagal control in times of stress or challenge (vagal reactivity) is due 

to a more flexible and efficient disengagement and reengagement of the vagal brake (Porges 

2003, Porges, Doussard-Roosevelt & Maiti, 1994).  Thus, greater vagal suppression is argued to 

be adaptive in some situations and related to increased emotion regulatory capacity.  The 

polyvagal theory has been examined and supported primarily in infants and children; it has not 

been studied as frequently in adults.  For instance, the literature on vagal reactivity to laboratory 

tasks and psychosocial functioning in adults is small and equivocal, with one study reporting a 

link between increased task vagal suppression and depressive symptoms (Rottenberg, Clift, 

Bolden, & Salomon, 2007), and another reporting that less vagal withdrawal during 

psychological challenge correlates with more positive social functioning (Egizio, Jennings, 

Christie, Sheu, Matthews, & Gianaros, 2008).   

With regard to cardiovascular risk, diminished HF-HRV at rest or during clinic visits is 

associated with the progression of coronary artery calcification, and an increased risk for cardiac 

events and all-cause mortality (Tsuji et al., 1994; Tsuji et al., 1996; Rodrigues, Ehrlich, Hunter, 

Kinney, Rewers, Snell-Bergeon, 2010); however, the cardiovascular implications of vagal 
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withdrawal during stress are less clear. Gianaros et al. (2005) reported that a greater reduction in 

HF-HRV during preparation for a speech task was related to more extensive coronary artery and 

aortic calcification, and Matthews et al. (2003) reported that lower mean successive differences 

in interbeat intervals during a battery of laboratory stress tasks predicted increases in diastolic BP 

over 3 years in children and adolescents. Steptoe and Marmot (2005) also demonstrated that 

lower HRV (as assessed by the root mean square of successive difference in R-R intervals) 

during stress tasks predicted increases in DBP over 3 years in 209 middle-aged men and women 

free from CVD and hypertension.  In contrast, Heponiemi et al. (2007) observed a link between 

greater stressor-evoked RSA reactivity and lower IMT 2 years later. Thus, further study of the 

associations between sleep and task-induced fluctuations in vagal control in the context of 

cardiovascular risk versus emotion regulation may be warranted. 

The fact that actigraphy-assessed sleep parameters were related to a greater reduction in 

HF-HRV during tasks but with attenuated HR recovery after tasks is somewhat surprising, given 

that HF-HRV and HR might be expected to co-vary in an inverse manner.  Examination of HR 

and HF-HRV values throughout the protocol showed that reactivity change scores for these two 

parameters correlated from -.3 to -.5, and recovery change score correlations ranged from -.2 to -

.4. Thus, while HR and HF-HRV moved in a related and inverse fashion, the correlations suggest 

some degree of dissociation, which may relate to differences in autonomic origins.  While HF-

HRV is believed to primarily reflect vagal efferent activity to the heart, increases in HR may be a 

function of increased sympathetic activity, decreased parasympathetic activity, or combinations 

of activation and/or inhibition of both branches (Bernston, Cacioppo, Quigley, & Fabro, 1994).  

Studies of HR decline after moderate exercise have shown that there is an initial, rapid 

decrease in HR upon stopping exercise that is entirely due to a fast-acting increase in cardiac 
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vagal activity, which is followed by a slower and more gradual decline in HR resulting from a 

combination of increasing vagal activation and decreasing sympathoadrenal activity (Imai, Sato, 

Hori, et al., 1994; Rosenwinkel, Bloomfield, Arwady et al., 2001; Savin, Davidson, & Harkell, 

1982). At least one study has suggested that a similar recovery process, (i.e., a rapid increase in 

parasympathetic activity which serves to decelerate HR) may occur following psychological and 

cold pressor challenge (Mezzacappa, Kelsey, Katkin, & Sloan, 2001). Evidence suggests that the 

typical time frame for vagal reactivation is 30 – 60 seconds post-challenge (Imai et al., 1994; 

Mezzacappa et al., 2001).  Using an autonomic blockade design, Imai et al. (1994) showed that 

at two minutes post-exercise, there are both parasympathetic and sympathetic contributions to 

HR. Thus, the fact that self-reported and actigraphy sleep were associated with HR recovery at 

two minutes post-stress, but not with HF-HRV recovery, may suggest that sleep duration is more 

closely linked to a dysregulation of sympathetic recovery. However, this conclusion remains 

speculative, as the study was limited in its ability to assess the degree of sympathetic versus 

parasympathetic influence on the heart.  Moreover, additional work is needed to understand 

whether the mechanisms that restore HR following aerobic exercise are similar to the restorative 

mechanisms following mental or emotional stress.  

Finally, the relationship between actigraphy-assessed total sleep time and HR recovery 

was reduced to non-significance after adjusting for average actigraphy-detected, but not self-

reported, daily nap minutes across the study period.  Similarly, self-reports of sleep duration no 

longer predicted HR recovery after inclusion of actigraphy nap minutes in linear models. 

Nocturnal sleep and daytime naps were inversely correlated, and attenuation was likely due to 

the fact that the two variables accounted for overlapping variance in HR recovery.  Longer naps 

may disrupt nighttime sleep, and shorter nighttime sleep may lead to increased daytime napping 
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(Owens et al., 2010).  Thus, the co-occurrence of shorter nocturnal sleep and increased daytime 

naps may reflect a dysregulated sleep cycle. The literature on napping and cardiovascular risk 

has been mixed, with some studies reporting a protective effect (Kalandidi et al., 1992; Naska et 

al., 2007) and others reporting elevated risk associated with naps (Stone et al., 2009; Tanabe et 

al., 2010). In experimental studies, Vgontzas et al. (2007) showed that a midafternoon nap 

reversed the effects of one night of sleep deprivation on cortisol and interleukin-6 secretion in 

healthy 18-30 year-olds, and Brindle and Conklin (2011) demonstrated that a longer daytime nap 

was associated with accelerated BP recovery following mental stress, relative to a shorter nap. 

Thus, one possibility is that an isolated nap leads to acute physiological benefits, whereas a 

chronic pattern of napping leads to disrupted nighttime sleep and subsequent negative effects on 

health.  Disentangling the potential negative and positive effects of napping on the 

cardiovascular system, especially in the context of inadequate sleep, warrants further 

investigation.   

The fact that associations between nocturnal sleep and HR recovery were attenuated after 

actigraphy-assessed naps, but not after self-reported naps, may be important.  The actigraph 

software algorithm automatically detects naps, or minor rest intervals, on the basis of immobility.  

A recent study showed that an actigraph (of the same brand and using a scoring algorithm similar 

to the one in the current study) detected naps with relatively high sensitivity but less specificity 

compared to PSG sleep (Kanady, Drummond, & Mednick, 2011). In other words, periods of 

quiescence may be misidentified as sleep when using actigraphy alone. Thus, the nap periods  

detected in the current study could possibly reflect either daytime sleep or rest/immobility.   
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5.3.2 Blood pressure 

Total sleep time as assessed by actigraphy was not related to systolic BP responses to stress.  

These findings are in contrast to results recently reported by Franzen and colleagues (2011); in 

that study, one night of experimental sleep deprivation resulted in increased systolic BP 

reactivity to a laboratory speech task in healthy young adults.  Different results may be due to the 

fact that Franzen et al.’s study demonstrated an effect of acute, extreme sleep loss, while the 

present study examined naturally occurring variation in sleep duration that presumably reflects a 

more chronic pattern of behavior.  Although neither self-reported nor actigraphy-assessed sleep 

duration was associated with systolic BP responses to stress in the current study, shorter 

actigraphy sleep time was associated with delayed diastolic BP recovery.  The finding that sleep 

duration may be associated with BP recovery is somewhat consistent with the aforementioned 

study by Brindle and Conklin (2011).  In that study, healthy young adults who obtained at least 

45 minutes of sleep during a daytime nap in the laboratory had lower mean arterial pressure 

following mental stress tasks than those who slept for a shorter duration.  Taken together, these 

results offer preliminary evidence that longer sleep may buffer cardiovascular risk through 

accelerating BP recovery rather than by attenuating BP reactivity.    

It should be noted that the literature linking delayed BP recovery to future CVD 

outcomes is stronger and more consistent for systolic, rather than diastolic, recovery.  The meta-

analysis by Chida and Steptoe (2010), for example, reported that delayed SBP recovery 

following stress, defined as sustained BP activation above baseline during post-task recovery 

periods, predicted poor cardiovascular risk status, while delayed DBP stress recovery was only a 

marginal predictor of subsequent risk status. Thus, while it is theoretically plausible that delayed 
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BP recovery contributes to the development or progression of cardiovascular disease, the degree 

of this contribution, and of diastolic recovery in particular, is unclear. 

Much of the literature examining the contribution of clinic or resting BP to 

cardiovascular disease risk similarly suggests that systolic BP may have more prognostic value 

than resting diastolic BP (Black, 2004; Lloyd-Jones, Evans, Larson, O’Donnell, & Levy, 1999). 

On the other hand, some have suggested that systolic pressure is primarily relevant for those over 

the age of 50, and that both systolic and diastolic clinic BP predict risk in younger populations 

(Franklin et al., 2001; Khattar, Swales, Dore, Senior, & Lahiri , 2001; Neaton et al., 1995). For 

example, Franklin et al. (2001) reported that diastolic BP was the strongest predictor of coronary 

heart disease risk in those under the age of 50, and Khattar et al. (2001) reported that ambulatory 

DBP was the strongest predictor of cardiovascular events in those under 60 years of age in a 

sample of 546 men and women.  Others have shown that DBP is the only hemodynamic correlate 

of arterial stiffness in young, healthy males (Nürnberger, Dammer, Saez, Philip, & Schäfers, 

2003).  It has been proposed that the superior accuracy of DBP versus SBP in the young may be 

due to timing of the reflected pulse wave, which changes with age.  In the young, pulse wave 

augmentation in the aorta occurs during diastole due to high aortic distensibility and low pulse 

wave velocity, which cause the reflected wave to travel more slowly. In contrast, in the 

periphery, where there is a short distance between measurement and reflection sites, pulse wave 

augmentation occurs during systole.  Thus, peripheral diastolic pressure correlates well with 

central values, whereas peripheral pressures may overestimate central systolic pressure 

(Vlachopoulos & O’Rourke, 2000).  As the current study included healthy young men only, it is 

possible that the delayed DBP recovery observed among this sample may have more prognostic 

value than SBP.   
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Finally, prolonged BP recovery may reflect elevations in either cardiac output or total 

peripheral resistance, and a more complete evaluation of these factors would require direct 

assessment of cardiac versus vascular influences.  The relationship between sleep duration and 

stressor-evoked hemodynamic changes has not been examined in prior work; however, acute, 

experimental sleep loss has been shown to lead to increased overall vascular resistance in a 

sample of healthy undergraduates (James & Gregg, 2004; however, not all studies find an effect, 

e.g., Kato, Phillips, Sigurdsson, Narkiewicz, Pesek, & Somers, 2000).  Therefore, the association 

between sleep and stress-induced changes in the overall hemodynamic profile, particularly total 

peripheral resistance, may warrant further attention.  

5.4 WHAT MAY ACCOUNT FOR THE LINKS BETWEEN ACTIGRAPHY-

ASSESSED SLEEP DURATION AND CARDIOVASCULAR STRESS 

RESPONSES? 

It was theorized that individuals getting less sleep might perceive laboratory tasks as more 

challenging due to diminished resources to cope with stressful stimuli.  Actigraphy-assessed 

sleep time, however, was not related to task ratings of arousal, valence, or control in this study, 

nor was actigraphy sleep time related to change in negative mood across the laboratory testing 

session.  Shorter actigraphy sleep was marginally associated with increases in positive mood 

across the testing session, due to reports of increased activation. Adjusting for positive mood led 

to only a slight reduction in the link between sleep time and HR recovery.  Thus, the hypothesis 

that elevated perceptions of stress might lead to heightened cardiovascular responses was largely 

unsupported.   
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Previous work shows that correlations between cognitive task appraisals and HR and 

BP reactivity are weak to moderate (Feldman et al., 1999; Franzen et al., 2011; Gianaros et al., 

2009; Maier, Waldstein, & Synowski, 2003), suggesting that factors other than subjective 

distress influence stressor-evoked responses.  For instance, resting regional cerebral blood flow 

in corticolimbic areas (the cingulate, medial prefrontal, and insular cortices) has been associated 

with BP reactivity, independent of subjective reports of stress (Gianaros, Sheu, Remo, Christie, 

Critchley, & Wang, 2009).  Previous work has also shown that acute sleep deprivation leads to 

increased reactivity of the amygdala to negative emotional stimuli, as well as increased 

functional connectivity between the amygdala and autonomic-activating centers of the brainstem 

(Yoo et al., 2007).  Thus, the possibility that shorter actigraphy-assessed sleep leads to 

heightened cardiovascular stress responses by influencing neural processes at the corticolimbic 

level, independent of perceptions of stress, cannot be ruled out based on the current data.   

Several factors other than task-related distress were tested as potential mediators of the 

relationship between actigraphy total sleep time and cardiovascular stress responses. There was 

some evidence that daily experiences of negative affect may mediate the relationship between 

actigraphy-assessed sleep parameters and vagal withdrawal during stress.  Specifically, adjusting 

for daily diary ratings of negative mood led to a reduction in the links between shorter actigraphy 

total sleep time and poorer actigraphy sleep efficiency, on the one hand, and lower HF-HRV 

during stress tasks on the other, suggesting that recurrent experiences of negative mood may be 

more relevant than acute, task-related changes in mood. It should be noted, however, that more 

formal statistical tests did not support diary-reported negative mood as a mediating pathway. 

With regard to other possible mediators, such as trait negative affect, stressful life events, and 
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daytime napping, statistical adjustment for these variables did not reduce associations between 

actigraphy-asssessed sleep and cardiovascular stress responses. 

One or more underlying factors common to both short, inefficient sleep and 

cardiovascular stress responses may account for the relationships observed in this study. 

Overlapping heritability, for example, may play a role. Studies report moderate heritability 

estimates for sleep duration (Landolt, 2008) and for cardiovascular responses to stress, including 

HR, BP, and HF-HRV reactivity and BP recovery (Roy-Gagnon et al., 2008; Wu, Snieder, & 

Geus, 2009). Interestingly, one study observed a combination of delayed HR and diastolic BP 

recovery – the same pattern observed in the current study - following a serial-subtraction math 

task in young, healthy males with a positive family history of hypertension versus those without 

a family history (Schneider, Jacobs, Gevirtz, & O’Connor, 2003). Group differences in BP 

reactivity were not found, leading the authors to speculate that impairments in HR and diastolic 

BP recovery may be early precursors to, or markers of, development of essential hypertension.  It 

is possible that common variations in genes implicated in both sleep regulation and 

cardiovascular stress responses account for the observed relationships.  Disruptions of the core 

clock genes that regulate endogenous circadian rhythmicity have been linked to vascular function 

(Prasai, George, & Scott, 2008), and a functional genetic variant in the linked polymorphic 

region of the serotonin transporter gene has been implicated in both sleep-wake regulation and 

cardiovascular stress reactions (Landolt, 2008; Wu et al., 2009).  Animal models may be 

particularly helpful in further uncovering molecular mechanisms underlying cardiometabolic 

disease and circadian disruption (Arble, Ramsey, Bass, & Turek, 2010). 
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5.5 CARDIOVASCULAR STRESS RESPONSES AND ACTIGRAPHY-ASSESSED 

SLEEP EFFICIENCY 

Lower actigraphy-assessed sleep efficiency was associated with increased HF-HRV withdrawal 

during stress and elevated HR during recovery periods. The potential interaction between 

actigraphy total sleep time and sleep efficiency was also explored; however, there was little 

evidence that disrupted continuity moderated links between sleep time and stress responses.  

About half of the small literature that has examined sleep and physiological stress responses 

reports that sleep continuity, rather than duration, may be the more critical component (Palesh et 

al., 2008; Stepanski et al., 1994; Wright et al., 2007). Decreased sleep continuity has been 

associated with elevations in nocturnal sympatho-adrenal medullary activity and sympathovagal 

balance in previous studies (Mezick et al., 2008; Hall et al., 2004).  Thus, sleep characterized by 

repeated waking or heightened activity may result in greater cumulative exposure to increased 

sympathetic and/or decreased parasympathetic cardiovascular influence over time, which may 

“prime” the system to exhibit exaggerated sympathetic activity or exaggerated parasympathetic 

withdrawal when faced with challenge.   

Decreased sleep efficiency was associated with reports of increased depression, hostility, 

and daily negative affect recorded in diaries, as well as increases in negative mood across the 

laboratory session, raising the possibility that emotional reactivity might mediate links between 

sleep efficiency and cardiovascular stress responses.  However, bootstrapping analyses did not 

support this model. Another possibility is that underlying autonomic dysregulation leads to 

disrupted sleep continuity, as well as increased and prolonged stress responses.  Studies 

examining whether experimentally manipulating sleep continuity affects autonomic activity will 

help elucidate a causal effect versus an association due to residual confounding. 
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Actigraphy assessments of sleep duration and sleep efficiency often correlate in a positive 

manner.  In the present study, there was considerable overlap between actigraphy assessments of 

total sleep time and efficiency (r = .62). In models where both variables were entered as 

simultaneous predictors, neither was associated with stress responses, likely due to 

multicollinearity.  Despite their correlation, total sleep time and sleep efficiency likely have 

different origins in different individuals.  For example, it is possible that short sleep may result 

from voluntary sleep curtailment, a decreased need for sleep, or an inability to fall and/or stay 

asleep.  Decreased sleep efficiency is likely caused by either difficulty initiating and maintaining 

sleep, or it may result from an individual attempting to sleep for a longer duration than 

physiologically necessary.  As deficits in sleep duration and efficiency may have different 

physiological correlates and consequences, it is important for future studies to examine both 

variables for their independent links with health.  Determining whether sleep duration, sleep 

efficiency, or both, are related to cardiovascular risk may inform behavioral sleep interventions 

that aim to reduce cardiovascular risk.   

 

5.6 CARDIOVASCULAR STRESS RESPONSES AND WITHIN-PERSON 

VARIABILITY IN ACTIGRAPHY-ASSESSED SLEEP DURATION 

Within-person variability in actigraphy-assessed total sleep time was not related to HR or HF-

HRV responses to stress. Greater within-person variability was associated with lower diastolic 

BP recovery, in contrast to the hypothesized relationship.  Such results were not expected, based 

on the rationale that those who are more reactive to stress may also show a more “reactive” sleep 
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pattern as characterized by greater night-to-night variability. Prior work, for example, has shown 

that the degree of variability in sleep correlates with reports of life stressors and negative affect 

in both adolescents (Fuligni & Hardway, 2006) and adults (Mezick et al., 2009), with one 

potential explanation being that a chaotic, stressful environment, along with heightened 

emotional reactions to stressors, disrupts the regularity of sleep timing and/or duration.  In the 

current sample, variability in sleep duration was not associated with reports of current life stress, 

nor was it associated with daily diary reports of stress or negative mood (see tables A7 and A8).  

Thus, nightly variability in sleep among college–aged men may result from factors other than 

emotional reactivity to stress. Several studies also have shown that greater within-person 

variability in sleep duration is related to poorer self-reported sleep quality in university student 

populations (Brown, Buboltz, & Soper, 2002; Kang & Chen, 2009; Manber, Bootzin, Acebo, & 

Carskadon, 1996).  However, this link was not replicated in the current sample. Instead, shorter 

actigraphy-assessed mean sleep duration was associated with poorer sleep quality. 

Unfortunately, the mean or range of within-person variability among college students in 

this study cannot be directly compared to prior work in samples of a similar age due to different 

metrics and definitions of variability.  However, the amount of nightly variability observed in the 

current study was similar to, or slightly greater than, values observed in older samples (Knutson 

et al., 2007; Mezick et al., 2009), which is not surprising given the relative flexibility of college 

students’ schedules.  Thus, it is unlikely that this sample did not display enough variability in 

sleep to allow detection of a relationship with stress responses. It may be that increased nightly 

variability was more common among the current sample compared to previous samples and, 

therefore, did not correlate with other variables in the expected manner due to a restricted range.   
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Another possible explanation for the lack of a relationship between within-person 

variability in sleep and stress responses may be that highly variable sleep duration is related to 

physiological dysregulation at the circadian level rather than a physiological response measured 

on one isolated (and diurnal) occasion.  For instance, repetitive, abrupt shifts in the sleep-wake 

schedule, as would occur in an individual with high nightly variability in sleep duration, may 

lead to a dissociation of autonomic and endocrine 24-hour rhythms. Such an explanation is 

consistent with previous findings of dysregulated nocturnal autonomic activity and altered 24-

hour blood pressure patterns in those with more nightly variability in sleep parameters (Mezick 

et al., 2009; Mezick et al., 2011).    

Results from this study suggesting that more variable actigraphy-assessed total sleep time 

may provide a protective cardiovascular effect via quicker recovery of DBP following stress is 

intriguing but should be interpreted with caution, given that no other studies have observed 

decreased markers of cardiovascular risk among more variable sleepers (Mezick et al., 2009; 

Okun et al., 2010).  Indeed, within-person variability in sleep duration has only recently begun to 

receive attention for its potential links with health, and more work is needed to understand 

whether regularity of sleep contributes to disease risk, over and above mean sleep duration.  

5.7 CARDIOVASCULAR STRESS RESPONSES AND SLEEP QUALITY 

Poorer sleep quality, as reported over the week in the morning diary, was associated with lower 

HF-HRV during stress tasks, as well as lower HF-HRV during stress recovery.  Interestingly, 

this effect was independent of actigraphy-assessed total sleep time and actigraphy-assessed sleep 

efficiency.   The association was also independent of depressive symptoms and reports of 
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negative affect, decreasing the likelihood that underlying mood disruption or biased reporting 

style was responsible.  These results suggest that aspects of sleep other than duration and 

restlessness co-vary with changes in parasympathetic activity during stress.  Prior studies have 

not identified consistent PSG or actigraphy correlates of self-reported sleep quality.  While some 

show that poor sleep quality is related to PSG-assessed sleep continuity or sleep architecture 

(Akerstedt, Hume, Minors, & Waterhouse, 1994; Argyropoulos et al., 2003), others fail to 

observe correlations between subjective and objective indices (Buysse et al., 2008).  It is possible 

that poor sleep quality reflects less commonly studied aspects of the polysomnogram, such as 

indices obtained using spectral EEG analysis (i.e., beta power, which has been found to be 

elevated in those with subjective sleep complaints; Hall et al., 2007; Krystal, Edinger, 

Wohlgemuth, & March, 2002).  It is also likely that the factors that contribute to poor sleep 

quality differ between individuals.  Poor sleep quality and subjective sleep complaints have been 

linked to a variety of health outcomes, including the metabolic syndrome, hypertension, coronary 

artery disease, and cardiac events (Grandner, Jackson, Pak, & Gehrman, 2011; Jennings, 

Muldoon, Hall, Buysse, & Manuck, 2007; Nicholson, Fuhrer, & Marmot, 2005; Phillips & 

Mannino, 2007).  Results from the current study suggest that the parasympathetic stress response 

should be studied as a potential pathway linking sleep quality to cardiometabolic outcomes. 
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5.8 LIMITATIONS 

 

The current study has several limitations.  First, there was some overlap in actigraphy-assessed 

total sleep time between those endorsing ≤ 6 hours of sleep per night and those endorsing 7-8 

hours. Thus, the two groups were not as different in their sleep duration as was intended in the 

original study design. The method of assessing sleep duration was chosen in part to reflect the 

questionnaires used in epidemiological studies linking sleep duration to CVD. However, an 

extreme groups approach to selecting participants, as was used in the current study, has several 

statistical limitations.  Preacher, MacCallum, Rucker, & Nicewander (2005) point out that 

selecting individuals based on extreme scores may result in inflated effect sizes and model 

misspecification.  Thus, future work on self-reported sleep duration would benefit from using a  

thorough and comprehensive assessment of sleep patterns and including participants with a wide 

range of sleep duration values. A detailed interview regarding sleep and wake behaviors on 

weekends versus weekdays may lead to greater accuracy in estimates of sleep duration. 

There were strengths and drawbacks to studying only college students.  College students 

tend to have relatively flexible, self-determined schedules, characterized by daytime naps and 

irregular sleep patterns (Kloss, Nash, Horsey, & Taylor, 2010).  On the one hand, this may have 

allowed for more naturally occurring variation in sleep between individuals and an opportunity 

to study the effects of naps; on the other, it is possible that participants were able to sleep in later 

and minimize sleep debt. Examining a sample that is more likely to be mildly sleep deprived due 

to environmental demands (i.e., working adults) might reveal stronger associations between sleep 

duration and cardiovascular stress responses. The fact that all of the study participants were 
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young and free from cardiovascular disease, and nearly all were free from hypertension, 

decreased the potential of underlying disease influencing cardiovascular stress responses.  

As only undergraduate men participated in this study, results may not generalize to 

women, individuals of different age groups and those of diverse socioeconomic backgrounds.  

Gender differences in sleep exist, such that women report poorer sleep quality than men but have 

longer sleep and increased sleep continuity as assessed by actigraphy and PSG (Collop, Adkins, 

& Phillips, 2004; Goel, Kim, & Lao, 2005; Lauderdale et al., 2006).  Moreover, there are mixed 

data on whether the links between sleep characteristics and cardiovascular outcomes differ by 

gender, with some studies reporting stronger effects in men (Mallon, Broman, & Hetta, 2002; 

Rod et al., 2011) and others reporting stronger effects in women (Cappuccio et al., 2007; 

Meisinger et al., 2007). Thus, it will be important for future studies to examine whether 

relationships between multi-method assessments of short sleep and stressor-evoked 

cardiovascular responses also exist in women.   

The study was cross-sectional, preventing claims about the causality of the observed 

relationships.  The data are consistent with a model in which chronic sleep deprivation influences 

cardiovascular responses to stress, and there is some evidence that experimentally manipulating 

sleep influences stressor-evoked cardiovascular responses (Brindle & Conklin, 2011; Franzen et 

al., 2011).  It is also theoretically possible, however, that heightened cardiovascular stress 

reactivity results in short, inefficient sleep.  Similarly, it is unknown what proportion of 

participants sleeping for shorter durations in this study were “natural” short sleepers versus 

physiologically sleep deprived.  There is evidence that individuals vary in their biological sleep 

need (Aeschbach et al., 2003; Tucker, Dinges, & Van Dongen, 2007; Van Dongen, Baynard, 

Maislin, & Dinges, 2004), and 6 hours of sleep may be sufficient for some. Thus, the current 



 102 

results may have different implications for an individual who needs 8 hours but is sleeping for 6 

hours, than for an individual with a biological sleep need of 6 hours.  Participants reporting 6 or 

fewer hours of sleep per night in this study reported that they wanted to continue sleeping for a 

significantly longer amount of time in morning diary reports than the average length sleepers.  

Self-reported short sleepers were also more likely to show a sleep pattern consistent with sleep 

debt, such that their weekend sleep duration was two or more hours longer than their weeknight 

sleep duration. Therefore, while the data suggest that the shorter sleepers were indeed 

experiencing a greater degree of sleep debt, neither subjective nor physiological sleep need was 

comprehensively assessed in this study.  

Another limitation of the current study was the inability to fully delineate autonomic 

processes underlying cardiovascular stress responses.  Although HF-HRV is believed to reflect 

vagal influence on the heart, sympathetic modulation of cardiovascular responses to stress could 

not be determined.  Therefore, the autonomic mechanisms accounting for delayed HR recovery 

among short sleepers are unknown.   

With regard to the laboratory session, each stress task was rated on valence, arousal, and 

control; however, baseline ratings of these factors were not obtained, preventing analysis of task-

related changes in these dimensions.  The overall laboratory session led to increases in negative 

mood, and, thus, was successful in evoking changes in emotion. However, it cannot be assumed 

that the tasks themselves led to acute increases in negative emotion.  The computer tasks used in 

this study are considered cognitive interference tests of executive attention, while the speech task 

included a social-evaluative component but focused on a relatively impersonal topic.  More 

emotionally laden tasks - for example, those aimed at provoking interpersonal conflict or 

requiring recall of highly personal, emotional material - may be differentially affected by sleep. 
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Finally, obstructive sleep apnea was not measured in this study.  Obstructive sleep apnea 

is an established risk factor for hypertension and cardiovascular disease (Malhotra & Loscalzo, 

2009), and it is possible that sleep apnea contributed to short sleep or decreased sleep efficiency 

in this sample. This study attempted to limit and account for the effects of sleep apnea by 

including a self-report questionnaire of apnea risk (the MAP) and measuring BMI, which 

correlates with the apnea-hypopnea index (Lam et al., 2006). Statistical adjustment for BMI or 

MAP scores did not alter the associations between sleep parameters and cardiovascular stress 

responses. Moreover, all associations between sleep and cardiovascular stress responses were 

similar after excluding four participants who fell above the obesity cut-off. Such data decrease 

the likelihood that apnea was a substantive confounder of the observed relationships.  

 

5.9 FUTURE DIRECTIONS 

 

Continuing work on how self-report, behavioral, and physiological assessments of sleep 

differentially relate to cardiovascular risk factors will improve our understanding of how 

disrupted sleep is related to cardiovascular morbidity and mortality.  Future work should 

combine experimental sleep manipulation, including both sleep extension and partial sleep 

restriction, with more comprehensive measures of cardiovascular reactivity and recovery (i.e, 

pre-ejection period as a measure of sympathetic cardiac influence; cardiac output and total 

peripheral resistance as measures of myocardial versus vascular activation).  Such work will help 

to clarify whether sleep is causally related to stressor-evoked cardiovascular responses, as well as 
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elucidate the autonomic origins of the responses.  Researchers have only recently begun to 

examine how sleep restriction may influence the central pathways that regulate the stress 

response (Meerlo, Sgoifo, & Suchecki, 2008; Yoo et al., 2007).  Additional work focusing on 

whether chronic sleep loss is related to functioning of the neural areas implicated in 

cardiovascular control will provide important data regarding a potential pathway between sleep 

and CVD.  Studies in both animals and humans, and utilization of imaging techniques, will be 

helpful in this regard. 

In addition, it may be interesting to extend this work on sleep and cardiovascular 

responses to other physiological stress responses. Given the observation from the current study 

that sleep co-varies with vagal activity during stress, stress-induced inflammatory activity may 

be a pathway of particular interest. Indeed, a recent study reported that poor sleep quality, as 

assessed by the PSQI, was associated with increased interleukin-6 responses to cognitive stress 

in older adults after adjustment for age, BMI, and a variety of psychosocial attributes (Heffner et 

al., 2012).  Thus, future work may wish to examine if links between actigraphy-assessed sleep 

and inflammatory stress responses exist in younger populations.     

As argued by van Dongen, Vitellaro, & Dinges (2005), there may be wide variability in 

what is considered “normal” for a number of sleep parameters, including sleep duration. Thus, it 

is possible that some individuals are more vulnerable to the cardiovascular consequences of short 

sleep than others. Going forward, it will be important to assess aspects of sleep debt in addition 

to duration alone.  More complex questions include examining whether cardiovascular stress 

responses following sleep deprivation differ between groups with varying physiological sleep 

requirements, using markers that have been proposed in previous work (e.g., indices of sleep 

pressure, sleepiness, or cognitive impairment following sleep deprivation, polymorphisms in 
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genes associated with sleep homeostasis; Vandewalle et al., 2009; Van Dongen, Vitellaro, & 

Dinges, 2005). Those individuals who are more physiologically reactive following sleep 

deprivation may also be more likely to develop cardiovascular morbidity associated with short 

sleep duration.  

Future work should also consider chronobiological factors when studying sleep and 

cardiovascular stress responses.  For one, individuals’ circadian preference, or morningness 

versus eveningness, may affect both sleep duration as well as cardiovascular responses to stress, 

with some recent evidence suggesting evening types may be more reactive (Roeser et al., 2012) 

(i.e., in the current study, it is possible that participants characterized as Evening types had 

shorter sleep and showed more cardiovascular reactivity than Morning type participants). At the 

least, a measure such as the Morning-Eveningness Questionnaire (Horne & Ostberg, 1976) could 

be included as a statistical covariate in future work.  More extensive possibilities include using 

an experimental design to investigate the relationship between sleep characteristics and 

cardiovascular stress responses at different points in the circadian period.  For instance, a 

plausible hypothesis is that those who are more reactive in the evening than in the morning also 

will have the shortest sleep duration.  

It is critical to determine whether links between sleep and cardiovascular stress responses 

are similar in other populations. As previously mentioned, sleep duration and continuity differ 

between sociodemographic groups.  Men have shorter, more fragmented sleep than women, and 

African Americans have shorter, more fragmented sleep than Caucasians (Lauderdale et al., 

2006; Mezick et al., 2007).  Intriguing questions for the future include whether or not sleep 

duration is more or less strongly associated with health outcomes in different sociodemographic 

groups, and whether sleep may partially mediate health disparities that exist between these 
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groups. Finally, there was some evidence that shorter actigraphy-assessed sleep mediates the 

associations between indices of stress and HF-HRV levels during laboratory stressors.  Future 

work may want to investigate disrupted sleep as a pathway linking increased chronic stress to 

cardiovascular and metabolic outcomes. 

 

5.10 SUMMARY 

 

 

Prior data has demonstrated that sleep deprivation has an activating effect on the body’s 

autonomic stress system, as characterized by overall elevations in heart rate and blood pressure, 

and decreases in parasympathetic tone. However, fewer studies have considered how sleep loss 

relates to the dynamic response of the autonomic system when faced with a threat or challenge. 

Given the literature linking short or disrupted sleep to increased perceptions of stress, emotional 

reactivity, and altered brain activity (Hamilton et al., 2007; Kumari et al., 2009; Morin et al, 

2003; Zohar et al., 2005), a cycle in which short sleep leads to heightened stress and heightened 

cardiovascular reactivity, and increased stress reactivity disrupts ensuing sleep, is not difficult to 

imagine. Indeed, two previous studies have demonstrated that disrupted sleep is related to an 

exaggerated cardiovascular stress response in clinical populations (Palesh et al., 2008; Stepanski 

et al., 1994).  The current study sought to determine whether naturally occurring variation in 

sleep duration and continuity were similarly related to exaggerated and prolonged cardiovascular 

stress responses in a healthy, young sample.  



 107 

Results from this study showed that undergraduate men who reported typically sleeping less 

than 6 hours over the past month had higher HR following mental stress than those who reported 

sleeping 7-8 hours.  Other indices of cardiovascular stress reactivity and recovery did not differ 

between self-reported sleep duration groups.  When self-reported sleep duration was examined as 

a continuous variable, however, shorter sleep was also related to decreased parasympathetic 

cardiac influence during stress, as assessed by high-frequency heart rate variability. In terms of 

objectively assessed sleep, shorter actigraphy-assessed total sleep time over the week preceding 

stress tasks was associated with exaggerated reductions in HF-HRV during psychological stress, 

along with higher HR and diastolic BP during stress recovery. Most relationships were 

independent of age, race, body mass index, and respiration rate, as well as a number of 

psychosocial attributes and health behaviors.  The link between actigraphy-assessed total sleep 

time and HR recovery, however, was no longer significant after actigraphy-assessed naps were 

included as a covariate.  Similar associations were observed between actigraphy-assessed sleep 

efficiency and cardiovascular reactions to stress: decreased efficiency was related to exaggerated 

HF-HRV reactivity and elevated HR recovery.  Participants were by and large in good 

cardiovascular health, had no diagnosed sleep disorders, and were not using cardiovascular or 

sleep medications.   

Overall, these results are consistent with a model in which short, inefficient sleep interacts 

with psychological stress to affect cardiovascular activity, particularly HF-HRV and HR. Taken 

together with experimental work in animals and humans showing that sleep deprivation 

influences the cardiovascular stress response (Franzen et al., 2011; Sgoifo et al., 2006), the data 

provide initial support for the hypothesis that daily stress responses may constitute one pathway 

linking short, inefficient, or poor quality sleep to cardiovascular disease. Given that the specific 
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cardiovascular indices related to sleep vary between studies, additional research will be needed 

to identify the most consistent autonomic correlates of disrupted sleep.  Moreover, associations 

between sleep and cardiovascular stress responses, as well as cardiovascular outcomes, vary 

depending on the manner in which sleep is assessed.  Therefore, it is important for future work to 

incorporate multiple methods of sleep assessment, including subjective and objective measures, 

when possible.  

Chronically restricted sleep is an increasingly common occurrence, with 14% of the 

population reporting that they typically sleep less than 6 hours on weeknights and about two-

thirds of the population (63%) reporting that they need more sleep overall (NSF, 2011).  

Moreover, 43% of adults state that they “never” or “rarely” have good sleep on weeknights 

(NSF, 2011).  Thus, the question of how sleep loss and disrupted sleep quality affect physiology 

may have wide-reaching implications.  Associations between short or fragmented sleep and 

cardiovascular outcomes have been supported in multiple studies (Cappuccio et al., 2011; 

Knutson, 2010).  Thus, the next steps for researchers include identifying the mechanisms 

accounting for this relationship and investigating moderators of these links.  Ultimately, it is 

essential to determine whether or not sleep disruption is causally related to cardiovascular 

disease, as this information may lead to more efficacious treatment and preventative strategies 

for heart disease and related disorders.    
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APPENDIX 

Table 16A. Correlations among HR reactivity values 

 MSIT Stroop Speech Prep Speech Delivery 

MSIT --- .69** .39** .39** 

Stroop  -- .63** .53** 

Speech Prep   -- .74** 

Speech Delivery    -- 

 

Table 17A. Correlations among HR recovery values 

 MSIT Stroop Speech Delivery 

MSIT  --- .70** .70** 

Stroop  -- .64** 

Speech Delivery   -- 

**p<.001 
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Table 18A. Correlations among HF-HRV reactivity values 

 MSIT Stroop Speech Prep Speech Delivery 

MSIT  --- .90** .67** .69** 

Stroop  -- .71** .76** 

Speech Prep   -- .81** 

Speech Delivery    -- 

 

Table 19A. Correlations among HF-HRV recovery values 

 MSIT Stroop Speech Delivery 

MSIT  --- .92** .92** 

Stroop  -- .89** 

Speech Delivery   -- 

**p<.001 
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Table 20A. Correlations among BP reactivity values 

 MSIT 

SBP 

Stroop 

SBP 

Prep 

SBP 

Speech 

SBP 

MSIT 

DBP 

Stroop 

DBP 

Prep 

DBP 

Speech 

DBP 

MSIT SBP --- .56** .41** .40** .60** .31* .27* .22
‡
 

Stroop SBP  -- .44** .46** .32* .51** .34* .20
‡
 

Prep SBP    -- .59** .19
‡
 .30* .42** .30* 

Speech SBP    -- .38** .38** .49** .67** 

MSIT DBP     -- .50** .44** .48** 

Stroop DBP      -- .38** .35* 

Prep DBP        -- .57** 

Speech DBP        -- 

**p≤ .001, *p ≤ .05, ‡ p ≤ .10 
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Table 21A. Correlations among BP recovery values 

 MSIT 

SBP 

Stroop 

SBP 

Speech 

SBP 

MSIT 

DBP 

Stroop 

DBP 

Speech 

DBP 

MSIT SBP --- .57** .51** .35* .09 .21
‡
 

Stroop SBP  -- .44** .18
‡
 .14 .13 

Speech SBP   -- .23* .09 .38** 

MSIT DBP    -- .53** .48** 

Stroop DBP     -- .28* 

Speech DBP      -- 

**p≤ .001, *p ≤ .05, ‡ p ≤ .10 
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Table 22A. Correlations between actigraphy sleep variables and psychosocial and self-reported 

sleep 

‡ p < .10, *p ≤ .05, ** p ≤ .01 
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Table 23A. Correlations between actigraphy sleep variables and diary attributes 

 Daily 

Caffeine 

Use  

Daily 

Cigarettes 

Daily 

Alcohol 

Daily 

Activity  

Daily 

Stress 

Ratings 

Pre-

Bedtime 

Stress 

Ratings 

Daily 

Positive 

Mood 

Daily 

Negative 

Mood 

Total Sleep 

Time 

.07 .09 -.11 .07 -.18 -.14 .13 -.18‡ 

Sleep 

Efficiency         

-.01 -.09 -.13 .10 -.03 -.10 .07 -.22* 

Variability 

in Total 

Sleep Time 

.06 .20‡ .07 -.13 .14 .04 -.08 .04 

‡ p < .10, *p ≤ .05, ** p ≤ .01 

 

 

Table 24A. Correlations between actigraphy sleep variables and laboratory task ratings 

 Change in PANAS 

Positive Mood  

Change in 

PANAS Negative 

Mood 

Task Arousal Task Valence  Task Control 

Total Sleep 

Time  

-.19‡ -.11 -.04 -.07 .09 

Sleep 

Efficiency         

-.20‡ -.28** -.06 -.03 .09 

Variability 

in Total 

Sleep Time 

.07 .02 .10 .11 .02 

‡ p < .10, *p ≤ .05, ** p ≤ .01 
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Table 25A. Correlations between laboratory task ratings and cardiovascular stress responses 

 Change in 

PANAS 

Positive Mood  

Change in 

PANAS 

Negative Mood 

Task Arousal Task 

Valence  

Task Control 

HR Reactivity  .13 .07 .33** -.07 -.08 

HR Recovery         .24* .18 .04 .04 .15 

HF-HRV Reactivity -.16 -.08 -.21‡ -.14 -.18 

HF-HRV Recovery -.17 .16 -.04 -.28** -.08 

SBP Reactivity -.02 .04 .23* -.07 -.10 

SBP Recovery -.05 -.02 -.05 -.12 -.10 

DBP Reactivity .15 .20‡ .26* .004 -.06 

DBP Recovery  .20 -.15 .25* -.08 -.07 

‡ p < .10, *p ≤ .05, ** p ≤ .01 
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Sample Sleep Diary: Evening  

 

Please complete this page immediately before going to bed.  

 

Day of the week: _____________________________                                                                                                                           

 

Date: _______________________________________ 

 

      
Today I had: 

# in the morning  
(first ~4 hrs of my day) 

# in the afternoon 
(middle of my day) 

# in the evening 
(last 4 hrs before bed) 

Caffeinated drinks  _______ _______ _______ 

Alcoholic drinks _______ _______ _______ 

Cigarettes or other tobacco products _______ _______ _______ 

How long (in mins) did you nap?  _______  mins       

_______  mins 

 

_______  mins      

_______  mins 

 

_______  mins       

_______  mins 

 

 

I took the following medications: _____________________  Amt. of Dose: ______     

                 _____________________  Amt. of Dose:  ______   

                   

The most vigorous physical activity that I did today was:     None   Light     Medium      Heavy 

Altogether, this activity lasted approximately ________ minutes.  

 

Please use the following scale to rate your mood since you woke up this morning.  Think about 

your general mood throughout the day.  Since waking this morning, I have felt:  

 

happy/cheerful   1 = not at all    2 = a little  3 = moderately     4 = a lot    5 = extremely  

energetic/lively 1 = not at all    2 = a little  3 = moderately     4 = a lot    5 = extremely 

calm/at ease   1 = not at all    2 = a little  3 = moderately     4 = a lot    5 = extremely 

angry/resentful 1 = not at all    2 = a little  3 = moderately     4 = a lot    5 = extremely 

depressed/sad  1 = not at all    2 = a little  3 = moderately     4 = a lot    5 = extremely 

tense/nervous  1 = not at all    2 = a little  3 = moderately     4 = a lot    5 = extremely 

    

Overall, today was:     

   not at all stressful        a little stressful         moderately stressful        extremely stressful  

 

Right now, I feel  

    not at all stressed        a little stressed          moderately stressed         extremely stressed 

 

Did you take off the actiwatch today?   Yes  No  

 

If Yes, please record any times you took off the actiwatch below:   

 

OFF: _______ AM/PM ON: _______ AM/PM OFF: ______ AM/PM ON: _______AM/PM 
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Sample Sleep Diary: Morning 

 

 

Please complete this page immediately upon waking.                                

 

Day of the week: _____________________________                                                                                                                            

 

Date: _______________________________________ 

 

 

Last night I got into bed at:    _____:_____ PM  /  AM  (i.e., reading, watching TV) 

 

I first tried to fall asleep at:   _____:_____ PM  /  AM 

 

I finally fell asleep at:   _____:_____ PM  /  AM 

 

After I first fell asleep, I woke up __________ times 

 

Altogether, these awakenings lasted  __________ minutes 

 

 

 

This morning, I finally woke at:   __________  AM  / PM  

 

I actually got out of bed to start my day at:    __________  AM  / PM 

 

Ideally, I would have liked to sleep for ______ more hours than I did.   

 

 The main reason I slept less than I would have liked is (circle one):  

 

   school/work demands social activity (spending time with friends)   worry/anxiety 

   partner’s sleep schedule couldn’t fall/stay asleep                                 Other: ____________ 

 

 

The quality of my sleep last night was:  

     very bad   somewhat bad    average somewhat good very good  
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