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Parametric methods for identifying laterally transferred genes exploit the directional mutational biases unique to each
genome. Yet the development of new, more robust methods—as well as the evaluation and proper implementation of
existing methods—relies on an arbitrary assessment of performance using real genomes, where the evolutionary
histories of genes are not known. We have used the framework of a generalized hidden Markov model to create
artificial genomes modeled after genuine genomes. To model a genome, ‘‘core’’ genes—those displaying patterns of
mutational biases shared among large numbers of genes—are identified by a novel gene clustering approach based on
the Akaike information criterion. Gene models derived from multiple ‘‘core’’ gene clusters are used to generate an
artificial genome that models the properties of a genuine genome. Chimeric artificial genomes—representing those
having experienced lateral gene transfer—were created by combining genes from multiple artificial genomes, and the
performance of the parametric methods for identifying ‘‘atypical’’ genes was assessed directly. We found that a hidden
Markov model that included multiple gene models, each trained on sets of genes representing the range of genotypic
variability within a genome, could produce artificial genomes that mimicked the properties of genuine genomes.
Moreover, different methods for detecting foreign genes performed differently—i.e., they had different sets of
strengths and weaknesses—when identifying atypical genes within chimeric artificial genomes.
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Introduction

With the number of genome sequences accumulating at a
rapid pace, evidence for rampant lateral gene transfer among
prokaryotes has increased dramatically [1�4]. Significant
advances have been made in understanding this evolutionary
phenomenon, and current research is aimed at understand-
ing the impact of gene transfer rather than at demonstrating
its occurrence [5�8]. Although inferences regarding the scope
and impact of lateral gene transfer rely on the accurate and
consistent identification of putative foreign genes, methods
for objective, robust quantification of the lateral gene
transfer have been difficult to devise. Unlike gene identi-
fication, where experimental validation of predictions is
possible, it is difficult to ascertain the evolutionary history of
a gene. In addition, there has been no platform available to
test the efficacy and performance of methods for the
identification of foreign genes. As a result, classification of
genes as native or laterally transferred uses various sets of
indirect evidence, and the scope and objectivity of each
approach are debatable [9�13].

There are two primary strategies used to detect genes
introduced by lateral gene transfer: parametric methods and
phylogenetic approaches [3,14]. Phylogenetic methods detect
putatively transferred genes by virtue of an unduly large
degree of similarity among genes found in otherwise
unrelated taxa and/or by the absence of orthologs in closely
related taxa. The efficiency and reliability of this approach
thus have a dependence on the depth and breadth of the
sequence database and often rely on interpretation of
discrepancies in relationships reflected by phylogenetic trees,
themselves imperfect summaries of sets of relationships [15].
In contrast, parametric methods use the genome sequence of
an organism to detect the genes that are atypical relative to
the majority of genes in the genome; commonly used

discriminant criteria include single nucleotide composition
(SNC), dinucleotide composition (DNC), and codon usage
bias (CUB).
While these two approaches are often used in concert to

estimate the amount of genetic material transferred into a
genome [3,14], parametric approaches are often invoked to
assess whether particular genes may have been recently
acquired because these analyses use only the information
contained within the target genome and therefore do not
require sister taxa for comparison. In addition, the results
often appear to be more readily interpreted. Yet the efficacy
of parametric methods lies in their ability to discriminate
between typical and atypical genes, and to date no objective
criteria have been offered to measure the robustness of
parametric methods. This is due in part to the lack of
genomes wherein the evolutionary histories of all genes are
known with certainty.
As a result, critical issues remain relating to the discordant

sets of atypical genes found by different methods for any
species [9,10]. Both Ragan [9] and Lawrence and Ochman [14]
speculated that different methods test different null hypoth-
eses, thus leading to nonconvergent results. Moreover, each
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parametric method will necessarily balance the two types of
classification error (failure to identify some foreign genes due
to their similarity to native genes and misclassification of
native genes as foreign due to some unusual character). This
will lead to incongruent sets of putatively foreign genes being
identified due to dissimilar thresholds for detection.
Although these drawbacks could be alleviated by employing
multiple identification methods and standardizing their
classification error rates, the biases and error rates of most
methods are not known.

Here we develop an approach to assess the abilities of
parametric methods to detect atypical genes, thereby
suggesting routes for establishing a unified approach for the
identification of laterally transferred genes using multiple,
complementary parametric approaches. To this end, we have
developed a method for the creation of artificial, chimeric
genomes using a generalized hidden Markov model (HMM)
[16�19].These artificial genomes reproduce the critical
statistical properties of genuine genome sequences and
therefore serve as valid test beds for evaluating both new
and existing methods for the detection of laterally trans-
ferred genes. First, the genes composing the core of a
genome—i.e., those genes likely not to have been introduced
by lateral gene transfer and thus representing the spectrum
of mutational signatures native to that genome—were
obtained by using a novel gene clustering algorithm based
on the Akaike information criterion (AIC) [20,21]; core genes
were classified as ‘‘typical’’ by virtue of their nucleotide
compositions, DNCs, and CUB patterns. Second, native genes
were grouped using a k-means clustering algorithm that used
relative entropy as a distance measure to decide the
convergence of the algorithm [22]. Third, multiple gene
models were derived according to these groups, so that
artificial genomes could be generated by a generalized HMM
using these gene models to represent the variability found
among genuine ‘‘core’’ genes.

A set of artificial genomes modeled after genuine bacterial
genomes was obtained. Chimeric genomes were generated as
the mosaic collection of genes sampled randomly from
different artificial genomes. Therefore, in these genomes,

the evolutionary histories of genes as ‘‘native’’ or ‘‘trans-
ferred’’ were known with certainty. Using these artificial
chimeric genomes, we tested the performance of several
existing parametric methods for the detection of putative
foreign genes, as well as novel methods for atypical gene
identification based on the AIC. We discuss a framework for
integrating multiple approaches, thereby allowing for more
robust identification of foreign genes.

Results

Generating Artificial Genome Sequences
An artificial genome generator was constructed that

produced protein-coding sequences and intergenic sequences
using Markov models trained on genuine bacterial genome
sequences. Protein-coding sequences were created by multi-
ple, fifth-order, inhomogeneous Markov models; noncoding
sequences were created by a homogeneous Markov model of
noncoding sequence accounting for hexamer statistics.
Separate models were derived for genes on leading and
lagging strands. Structural RNAs, promoters, transcription
terminators, and other features not commonly used in the
identification of foreign genes were not included in genome
models. The distributions of lengths of both coding and
noncoding regions corresponded to those of the genome
being modeled.
All gene sequences in a bacterial genome cannot be

accurately described by a single model; the probabilistic
nature of the HMM would necessarily result in artificial
genomes that failed to represent the variability among gene
sequences seen in genuine genomes. For example, the
genuine Escherichia coli genome contains far more variable
genes than are contained in an artificial genome created with
a single model accounting only for variability between genes
encoded on the two DNA strands (Figure 1A and 1B). The

Figure 1. Variability within Genuine and Artificial E. coli Genomes

Created with Variable Numbers of Gene Models

The variability of percent GC at third-codon positions of genes is shown
within the genuine E. coli genome (A), as well as artificial genomes
created using one (B), three (C), and nine (D) gene models. Genes were
clustered according to frame-specific DNC; l and r represent the mean
and standard deviation of the distribution. For comparison between
graphs, colors demarcate corresponding ranges of GC content.
DOI: 10.1371/journal.pcbi.0010056.g001
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Synopsis

Bacterial genomes contain genes that come from two sources;
although most genes are inherited directly from parent cells at cell
division, others may come into the genome from an unrelated
organism. Often, these foreign genes can be detected because their
sequences have compositional properties that differ from those of
other genes in the genome. Methods for detecting atypical genes
are difficult to assess because there are no genuine genomes
wherein the histories of all genes are known. Here, the authors
describe a method for creating artificial genomes that mimic the
properties of genuine genomes, including containing ‘‘foreign’’
genes. The researchers used these constructs (a) to evaluate existing
methods for finding foreign genes based on their atypical properties
and (b) to test a new method for finding atypical genes. The
researchers found that existing methods differ in their abilities to
detect genes from different sources and that combining different
methods can improve overall performance. The new method for
finding atypical genes—which also identified sets of genes that
share their unusual properties—worked very well in identifying
potentially foreign genes in artificial, chimeric genomes.

Construction and Use of Artificial Genomes



spectrum of genes in genuine genomes results from numer-
ous selective regimes acting upon genes in a single genome;
e.g., genes experience a range of selection for CUB [23,24]. To
resolve this problem, Markov models for protein-coding
sequences were trained on sets of genes that reflected distinct
directional mutational biases. To create appropriate training
sets, genes within genuine genomes were grouped by their
similarity in nucleotide composition, DNC, or CUB; segrega-
tion into distinct classes was achieved via the k-means
clustering algorithm described by Hayes and Borodovsky
[22] using relative entropy as a distance measure. As expected,
artificial genomes generated by the HMM begin to recapit-
ulate variability seen within genuine genomes when multiple
gene models are used; e.g., if the E. coli genome was described
by three or nine models, the resulting artificial genomes
contained a more representative assortment of genes (Figure
1C and 1D) than did artificial genomes generated from a
single gene model (Figure 1B).

Optimizing the HMM for Generating a Genome Sequence
While increasing the numbers of models will allow the

variability of genuine genomes to be more accurately
represented, this tactic necessarily provides fewer genes in
the training sets for each model. To optimize the HMM for
number of gene models, we compared the distributions of
nucleotide compositions and CUBs of genes within artificial
genomes generated by the HMM to those in their genuine
counterparts. As artificial genomes became more complex,
the variability of such parameters among genes began to
approximate that seen in their cognate genuine genomes. To
measure the difference between artificial and genuine
genomes, we calculated the cumulative v2 of the differences
of the three frame-specific percent GC distributions, using
the distributions of these values in genuine genomes as the
‘‘expected’’ values. The cumulative v2 values were plotted as a
function of number of gene models; the minimum value in
this curve was used to determine the minimal number of gene
models required to encompass the directional mutational
bias implicit in a genome.

Analysis of artificial E. coli genomes shows that the
cumulative v2 difference decreases sharply as the number of
gene models increases until an optimum number of models is
reached (Figure 2), after which increasing the number of gene
models in the HMM did not result in any significant change.
As very large numbers of gene models are used, the
cumulative v2 difference increases, as apportioning fewer
numbers of genes into each model decreases the accuracy of
the HMM. For the three discriminant criteria—SNC, DNC,
and CUB—tested in the k-means clustering algorithm,
variability of nucleotide composition within the E. coli
genome can be quite closely approximated by using about
10–12 gene models (Figure 2). Closest approximation used
somewhat larger numbers of gene models, but the improve-
ment in fit was only marginal; optimal numbers for the
artificial E. coli genome were 12, 14, and nine models for
clusters formed using the SNC, DNC, and CUB criteria,
respectively.

In artificial genomes constructed with the optimum
number of gene models, the variability in nucleotide
composition at each codon position closely approximated
that seen in the genuine E. coli genome; the plot for percent
GC at third-codon positions is shown in Figure 3, although

clustering using CUB criteria performed less well (see Figures
2 and 3D). To examine variability in CUB, we created factor
maps from the first and second axes of correspondence
analyses using software developed by McInerney [25]. In the
plot for genuine E. coli genes (Figure 4A), the shape of the
now-famous ‘‘rabbit head,’’ as first described by Médigue et al.
[26], is evident. Here, the majority of E. coli genes share a
similar CUB, highly expressed genes form one ‘‘ear,’’ and
laterally transferred genes—bearing more unusual CUBs—
form the other ‘‘ear.’’
This shape is also apparent in the factor maps obtained for

artificial genomes created from genes clustered by either the
DNC and CUB criteria (Figure 4). However, this distribution
is not evident for genes clustered by similarity in nucleotide
composition (Figure 4B), indicating that CUB information is
lost. That is, these sets contain genes with disparate CUBs,
resulting in less-informative models. The factor map for the
genome based on genes clustered by the CUB criterion also
appears to be more fragmented (Figure 4D), likely because
each model was trained on a set of genes with highly similar
CUB profiles. These observations led us to conclude that the
HMM with gene models derived after clustering genes using
DNC as a discriminant criterion is most effective in modeling
the mutational bias patterns specific to a prokaryotic
organism. That is, it captures genic complexity in both
nucleotide composition and structure.

Extracting the Core Genes of a Genome
In developing artificial genomes for evaluating parametric

methods for detecting atypical genes, we wished to create
chimeric genomes with genes ‘‘donated’’ from different
artificial genomes, each modeled after a different genuine
genome. Yet most genuine genomes include both foreign and
native genes [3,27], potentially confounding the training sets
selected to represent the variability of native genes within
genomes. Therefore, we must eliminate from the HMM
training sets any atypical genes likely to have been recently

Figure 2 Goodness-of-Fit between Genuine and Artificial Genomes

Created with Variable Numbers of Gene Models

Genes within the genuine E. coli genome were clustered by nucleotide
composition, frame-specific DNC, or CUB patterns. Correspondence
between genuine and artificial genomes was calculated as the v2 of the
distributions of percent GC for the three-codon positions. Small v2 values
correspond to closer approximations.
DOI: 10.1371/journal.pcbi.0010056.g002
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introduced through lateral gene transfer. While the number
of vertically inherited genes decreases as one compares genes
that are more distantly related [27], the majority of genes in
bacterial genomes have been resident there for sufficient
time to acquire similar sequence characteristics [28�30]. That
is, robust models representing the spectrum of native genic
variation within a genome can be created if the most atypical
genes are first excluded.

We identified genes likely corresponding to the native,
vertically inherited ‘‘core’’ genome using a parametric
clustering method based on the AIC (see Materials and
Methods). As expected, the number of genes in the core
genome depended on the criteria used to cluster them. For
example, by applying the AIC gene clustering algorithm to a
set of 4,255 E. coli protein-coding genes, 3,026, 2,643, and
3,031 genes were identified as native genes when using frame-
specific single nucleotide bias, frame-specific dinucleotide
bias, and CUB as discriminant criteria, respectively. Here we
chose the set of 2,141 genes identified by all three criteria,
representing the high-confidence set of core genes; this AIC-
generated core was used for subsequent analyses.

Correspondence analysis of the core E. coli genome, similar
to that shown in Figure 4, shows that the ‘‘ears’’ of the rabbit
head—representing both atypical genes and highly expressed
native genes—have disappeared (Figure S1). The removal of
very highly expressed genes from the E. coli core genome is
neither unexpected nor unwanted. Because highly conserved
genes are both transferred less frequently [8] and more
readily identifiable as ‘‘native’’ due to their readily identified
functions, refining parametric methods to detect them is
unnecessary. Therefore, the core genome represents a
framework against which all atypical genes can be detected.

Aside from their sequence properties, the identities of
genes included and excluded from the E. coli core follow
predictable patterns. As expected, genes for ‘‘housekeeping’’
metabolism—those directing amino acid biosynthesis and
central metabolism—were included in the core genome.
Three classes of genes were noted to be excluded. First,
mobile genetic elements (transposons and genes within
prophages) were excluded, likely because of their unusual
CUB. Second, other genes of known foreign origin, identified
through either parametric analysis [31] or phylogenetic
analysis [13], were also excluded (e.g., genes of the phn, rhs,
hsd, rfb, and lac operons). Third, highly expressed genes—e.g.,
those encoding ribosomal proteins and elongation factors—
were also excluded, as predicted from the correspondence
analysis. Overall, the number of genes in the core genome is
comparable to the number of protein-coding genes shared
between E. coli and its sister taxon, Salmonella, that are greater
than 300 nucleotides in length. These data indicate that this
approach does provide a reasonable collection of genes that
would reflect the major portion of the spectrum of native
mutational biases. More important, it is against this varia-
bility that atypical genes must be detected; therefore, these
genes represent ideal candidates for the construction of
artificial genomes.

Generating Artificial Core Genomes and Chimeric
Genomes
The core genes of a bacterial genome were obtained as

described above and were segregated into distinct classes by
the k-means gene clustering algorithm using frame-specific
DNC as the discriminant criterion. Given the performance of
the HMM in representing the variability within complete
genomes, we expected even better performance when the
most atypical genes were excluded from the training sets. The
number of gene models was selected using the optimization
technique described above. The gene models derived from
these clusters were used in the HMM to generate artificial
core genomes reflecting the characteristics of the cognate
genuine core genomes; the number of genes created by each
gene model was proportional to the number of genes in its
training set. As was the case when entire genomes were being
modeled, parametric properties such as the frame-specific
nucleotide composition (Figure S2) and CUB (see Figure S1)
of genes in the artificial core genome reflect those of the
genuine core genome being modeled. The variability of genes
within the artificial core genome—reflecting the range of that
seen in genuine core genomes—again justifies the use of
HMM with multiple gene models.
To create artificial genomes that have experienced simu-

lated lateral gene transfer events, the core genomes of several
prokaryotic organisms were modeled by the genome gen-
erator; for each core genome, the optimum number of gene
models was used. Chimeric genomes were then generated as
mosaics of genes taken randomly from several synthetic
genomes in predefined proportions. In this way, artificial
genomes can be created with varying proportions of foreign
genes from a large number of sources. More important, the
history of genes in these artificial genomes—i.e., whether
genes are ‘‘native’’ or ‘‘foreign’’—is known with absolute
certainty. Because each core genome is described by multiple
gene models, several hundred gene models may be used to
create even the most simplistic chimeric genome, thereby

Figure 3. Variability within Genuine and Artificial E. coli Genomes Using

Different Sets of Gene Models

The distribution of percent GC of the third-codon positions of genes
within the genuine E. coli genome (A), as well as artificial E. coli genome
generated from E. coli genes clustered by SNC (B), DNC (C), or CUB (D).
Artificial genomes were constructed using the optimal number of gene
models (see Figure 2); l and r represent the mean and standard
deviation of the distribution. For comparison between graphs, colors
demarcate corresponding ranges of GC content.
DOI: 10.1371/journal.pcbi.0010056.g003
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providing the high degree of variability among genes
observed in genuine genomes.

Evaluating Parametric Methods for Detecting Atypical
Genes

Numerous chimeric genomes were generated and analyzed
by the parametric methods to detect atypical genes (see
Materials and Methods). We present here the results from
analyses of mosaic artificial genomes containing 4,000 genes,
with the majority (85%) generated from the E. coli core gene
models. The ‘‘foreign’’ genes were modeled after core
genomes derived from Archaeoglobus fulgidus (1%), Bacillus
subtilis (1%), Deinococcus radiodurans (2%), Haemophilus influen-
zae Rd (2%), Methanococcus jannaschii (1%), Neisseria gonorrhoeae
(1%), Ralstonia solanacearum (2%), Sinorhizobium meliloti (2%),
Synechocystis PCC6803 (1%), and Thermotoga maritima (2%). We
implemented several methods to identify atypical genes; in
this case, the artificial E. coli core—contributing 85% of the
genome—was considered to be the recipient genome, and the
ten other artificial genomes were considered to be donors for
simulated lateral gene transfer events. To evaluate the
performance of each method, two error rates were consid-
ered. Type I error (false negative) was calculated as 100 –
sensitivity, where sensitivity is the percentage of foreign genes
correctly identified as foreign. Type II error (false positive)
was calculated as 100 – specificity, where specificity is the
percentage of predicted foreign genes that were actual
foreign, i.e., created by a model trained on non�E. coli genes.

As expected, there was a tradeoff between type I and type II

errors, i.e., as methods became more sensitive in detecting
foreign genes (lower type I error), they were also less specific
and misclassified more native genes as putatively foreign
(higher type II error). As an example, Figure 5A shows the
results for Karlin’s dinucleotide method [32], where the
threshold parameter determines which genes are considered
sufficiently atypical to be deemed foreign. This tradeoff is
seen for all methods examined (Figure 5B). As expected, more
conservative thresholds result in lower type II error and
higher type I error. The use of artificial genomes enables
users of these algorithms to evaluate the stringency of their
threshold criteria prior to application of these methods on
genuine genome sequences. Alternatively, one could use the
differential performance of the method to assign confidence
values to atypical gene assignments, i.e., genes declared
‘‘foreign’’ at low threshold values would have higher
confidence than those declared foreign at high threshold
values, where type II error was greater. To compare the
performance of different methods, we established optimal
threshold criteria that minimized the average error rate
(Figure 5A).
The performances of several methods for identifying

foreign genes—each using threshold criteria that minimized
their mean error rate—are compared in Table 1. Several
results are notable. First, it is clear that the efficiency of
detecting foreign genes depends on the source of the gene.
For example, Karlin’s codon usage method performed well in
identifying genes from A. fulgidus, R. solanacearum, and M.
jannaschii but comparatively poorly in identifying genes

Figure 4. Correspondence Analysis of CUB

The first axes—indicating variability in usage among 59 synonymous codons—are plotted for genuine E. coli genes (A) and genes from artificial
genomes (see Figure 2) created from gene models sampling groups of genes clustered by SNC (B), DNC (C), or CUB (D) criteria.
DOI: 10.1371/journal.pcbi.0010056.g004
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donated from B. subtilis, N. gonorrhoeae, or Synechocystis
PCC6803 (Table 1). Second, sets of foreign genes detected
well by some parametric methods were not detected as well by
others. For example, Karlin’s dinucleotide method did well in
identifying foreign genes introduced from Synechocystis
PCC6803 but not from D. radiodurans; Karlin’s CUB method
had the opposite tendency, performing poorly in identifying
foreign genes from Synechocystis PCC6803 and doing fairly well
with those from D. radiodurans. Third, it is clear that—at least
in identifying genes from this test set—some methods are
more robust than others; the average error rates showed
substantial variation. Some methods minimized both type I
and type II errors (visualized on Figure 5B as curves that
approach the intersection of the axes) better than others. As a
point of comparison, identifying foreign genes solely on the
basis of atypical nucleotide composition can show very low
type II error (indicating that few suspected foreign genes are
actually native) but very high type I error (indicating that
many foreign genes were not identified).

The k-Means Clustering Algorithm Fails to Identify Genes
from Variable Sources
The k-means clustering algorithm has been implemented

on genuine genomes to group genes into either two or three
clusters, where one cluster is labeled as foreign [22]. When
applied to chimeric artificial genomes, this method produced
high values of both types of error for k¼2 (two clusters, Table
1). This result is not unexpected, because not all atypical
genes are alike and would not be segregated into a single
cluster. For k ¼ 3, one of the three clusters contained
predominantly (.95%) native genes and one cluster con-
tained predominantly (.95%) foreign genes. The third
cluster typically contained approximately 60% native genes,
and assignment of this third gene cluster as either native or
foreign would produce either a high type I or high type II
error.
If the weakness of the k-means method lay in the high

variability of foreign genes in artificial genomes, then
reducing the complexity of the artificial genome should
improve the performance of this method. Therefore, we
constructed another set of artificial genomes with 75% E.
coli�derived genes and the remaining genes from five other
artificial genomes (modeled after A. fulgidus, M. jannaschii, B.
subtilis, R. solanacearum, and H. influenzae, at 3%–6% abun-
dance per genome). Using these less-complex genomes, the k-
means clustering algorithm performed better, and the mean
error of 13.0% compared favorably with the error rates of
other methods (Table 2). In addition, while Hayes and
Borodovsky [22] initiated their analyses using cluster seeds
derived from the GenMark algorithm, we found that random
cluster seeds were equally effective (Table 2). When the
proportion of E. coli genes was increased to 85%, type II error
remained the same and type I error increased slightly to
24.5% (data not shown). We conclude that when foreign
genes are less diverse, the k-means method performs better.
Similar improvements were not observed for other methods
(Table 2), and the AIC-based approaches remained the most
robust.

Using the AIC to Identify Atypical Genes
We used artificial genomes as a platform to test the

implementation of a novel method for detecting foreign
genes using the AIC [20]. Here, genes within chimeric,
artificial genomes were clustered using either nucleotide
composition, DNC, or CUB as the discriminant criterion (see
Materials and Methods). Initially, genes were assigned to
individual gene clusters (i.e., clusters containing a single
gene). The pairwise distances between clusters were assessed
using the AIC, and the closest clusters were merged if DAIC
was negative, i.e., if the N – 1 cluster model better described
the data than did the N cluster model. This process was
repeated until cluster merger was no longer significant (see
Materials and Methods).
The largest cluster was inferred to contain ‘‘native’’ genes,

because native genes would be the most numerous genes in a
genome; smaller clusters were inferred to contain foreign
genes that failed to be merged with the primary cluster
because of their atypical sequence features. This approach of
assigning a single native gene cluster worked well for the
analysis of artificial genomes, where unusual native genes
have been excluded from the ‘‘core’’ genomes (see Figure S1).
When applied to genuine genomes, additional clusters

Figure 5. Tradeoffs in Error Rates in Methods for Detecting Atypical

Genes

(A) Type I error, type II error, and mean error for predicting foreign genes
according to Karlin’s DNC method [32]; the dashed line indicates the
minimum mean error.
(B) Tradeoffs in error rates for several methods of gene detection.
DOI: 10.1371/journal.pcbi.0010056.g005
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containing highly expressed genes would also be denoted
native; this assignment should not be problematic or
contentious, because the ancestry of these genes is rarely in
doubt [33].

Two features of the AIC-based approach are salient. First,
the number of clusters arrived upon by this method is not
predetermined, as it is with the k-means algorithm [22].
Because the numbers and features of foreign genes cannot be
predicted, the AIC-based clustering method avoids arbitrary
assignment of genes into clusters. Second, clusters may
contain a single gene if they were never merged with other
gene clusters. In this way, foreign genes that are not similar to

other genes are still identified as foreign. That is, the AIC
clustering method does not derive a description of foreign
genes and cluster them together; rather, typical genes are
identified and grouped together, and foreign genes are those
that do not fall into the cluster of native genes. Third, foreign
genes that have similarity with each other are clustered, which
serves as a form of validation. That is, groups of genes with
suspected common foreign origin—e.g., the E. coli phn operon
[34] or the Salmonella cob operon [35]—should fall into the
same cluster.
The error rates produced by the new AIC-based gene

clustering methods show that they perform very well,

Table 1. Error Rates of Parametric Methods for Detecting Atypical Genes in an Artificial E. coli Genome

Parameter Method for Classifying Native or Foreign Genes

Karlin’s Dinucleotidea Karlin’s Codon Usageb k-Meansc AIC Nucleotided AIC Dinucleotidee AIC Codonf

Artificial gene donorg

A. fulgidus 0.1 6 0.5 1.5 6 1.7 1.6 6 3.5 21.8 6 13.5 5.4 6 20.8 2.3 6 2.2

B. subtilis 43.2 6 9.0 74.5 6 5.8 20.8 6 39.6 55.6 6 15.3 72.3 6 13.6 81.0 6 11.6

D. radiodurans 32.0 6 4.3 9.7 6 2.5 80.0 6 40.0 3.5 6 2.7 2.4 6 2.9 3.2 6 2.3

H. influenzae 51.8 6 4.6 3.6 6 2.2 20.1 6 40.0 2.5 6 2.7 1.5 6 1.3 1.8 6 1.6

M. jannaschii 0.0 6 0.0 0.0 6 0.0 20.0 6 40.0 0.1 6 0.4 0.0 6 0.0 0.7 6 1.1

N. gonorrhoeae 21.0 6 7.5 61.2 6 7.8 78.5 6 16.1 45.4 6 14.0 68.9 6 28.5 71.6 6 21.2

R. solanacearum 16.5 6 4.2 4.8 6 1.5 79.9 6 39.9 0.3 6 0.7 0.6 6 0.8 4.2 6 1.5

S. meliloti 2.0 6 1.2 12.6 6 3.7 78.9 6 39.3 3.5 6 1.1 2.6 6 2.0 8.0 6 3.9

Synechocystis 0.2 6 0.6 63.9 6 8.6 24.3 6 37.3 93.6 6 4.4 80.0 6 26.1 37.3 6 28.9

T. maritima 0.0 6 0.0 23.7 6 2.9 3.8 6 7.9 14.7 6 8.0 5.4 6 21.7 6.4 6 3.9

Type I error (100 – sensitivity) 17.9 6 1.0 20.8 6 1.6 44.8 6 3.4 17.8 6 2.5 16.9 6 6.6 15.9 6 3.9

Type II error (100 – specificity) 57.5 6 1.0 31.4 6 1.3 56.3 6 28.1 11.9 6 2.2 6.8 6 8.7 14.5 6 12.6

Mean error rate 37.7 6 0.7 26.1 6 1.2 50.6 6 15.6 14.9 6 1.2 11.8 6 3.4 15.2 6 5.1

aOptimum performance was found at threshold ¼ 0.12.
bOptimum threshold ¼ 0.48.
ck ¼ 2, using random initialization of cluster seeds; mean error rate was 57.4% when initializing cluster seeds using GenMark.
dOptimum threshold ¼ 0.4.
eOptimum threshold ¼ 1.8.
fOptimum threshold ¼ 1.6.
gCore genes from the specified genome were used to train Markov models for the creation of artificial genes donated into an artificial E. coli backbone.

DOI: 10.1371/journal.pcbi.0010056.t001

Table 2. Error Rates of Parametric Methods for Detecting Atypical Genes in an Artificial E. coli Genome

Method Thresholda Error Rate

Type I Error (100 � Sensitivity) Type II Error (100 � Specificity) Mean Error

Karlin’s dinucleotide 0.11 15.0 6 1.1 52.0 6 0.7 33.5 6 0.6

Karlin’s dinucleotide 0.15* 35.5 6 1.0 28.6 6 0.7 32.1 6 0.7

Karlin’s dinucleotide 0.20 62.9 6 1.2 13.4 6 0.9 38.2 6 0.8

Karlin’s codon usage 0.45 16.2 6 0.8 25.5 6 0.7 20.8 6 0.6

Karlin’s codon usage 0.52* 25.2 6 0.8 12.9 6 0.5 19.0 6 0.5

Karlin’s codon usage 0.57 36.5 6 1.4 7.4 6 0.4 22.0 6 0.7

k-means, random seeds N/A 21.1 6 1.1 4.8 6 0.6 13.0 6 0.6

k-means, GenMark seeds N/A 26.9 6 13.1 4.1 6 1.6 15.5 6 5.8

AIC, dinucleotide bias 1.3 13.5 6 5.2 12.8 6 9.7 13.2 6 3.1

AIC, dinucleotide bias 1.8* 17.1 6 4.8 4.5 6 8.2 10.8 6 2.3

AIC, dinucleotide bias 2.1 22.3 6 12.1 3.8 6 8.2 13.0 6 5.3

AIC, codon bias 1.1 17.6 6 3.2 16.0 6 12.4 16.8 6 4.7

AIC, codon bias 1.5* 19.5 6 2.5 8.9 6 8.8 14.2 6 3.3

AIC, codon bias 1.8 22.6 6 6.9 6.8 6 8.3 14.8 6 3.4

Artificial chimeric genomes were generated as follows: 75% E. coli, 7% A. fulgidus, 6% M. jannaschii, 5% B. subtilus, 4% R. solanacearum, and 3% H. influenzae; see Materials and Methods.
aThreshold for Karlin’s methods, or tuning parameter for AIC-based methods. Values noted with asterisks denote ‘‘optimal’’ setting, which minimizes mean error.

N/A, not applicable.

DOI: 10.1371/journal.pcbi.0010056.t002
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outperforming the other methods described (see Figure 5B;
Tables 1 and 2). For example, in examining artificial genomes
with laterally transferred genes from ten sources (Table 1),
the mean error rates for the AIC-based methods (12%�15%)
were far lower than Karlin’s dinucleotide (37%–39%) or CUB
(26%�28%) methods. Overall, the AIC clustering method
using DNC performed the best on these data, minimizing
both type I and type II errors (Figure 5B). Similar results are
seen when analyzing the five-donor genome case (Table 2). In
addition, the overall performance of this method did not rely
heavily on the value of the ‘‘tuning’’ parameter (see Materials
and Methods), which is analogous to threshold parameters of
other methods. As seen in Table 2, all methods show a
tradeoff between type I and type II errors; for the AIC-based
methods, small adjustments in the tuning parameter did not
dramatically alter performance. The performance of the AIC-
based methods does not reflect the composition of the core
genomes, which were generated via an AIC-based clustering
algorithm. When core genomes extracted using Kullback-
Leibler (K-L) distance were used to train Markov models used
to generate artificial genomes, nearly identical results were
obtained (Figure S3).

Performance in Classifying the Short Open Reading
Frames

Short open reading frames are commonly misclassified as
putative foreign genes when parametric methods are applied
[14]. Although short genes may encapsulate useful biological
information in their structure, they may appear as noise in
the statistical analysis. There must be a minimum length
beyond which a gene fails to provide robust data for
statistical analysis, but this threshold is not obvious; in many
analyses, it has been arbitrarily set to 400 nucleotides [14]. In
addition, different methods may have different sensitivities
vis-à-vis short genes. We examined the performance of the
methods used to detect atypical genes as a function of gene
length (Figure 6). For most methods, one can easily conclude
that genes in excess of 250 nucleotides can be easily classified;
therefore, the threshold of 400 nucleotides is valid, although

somewhat more conservative than is necessary. The exception
to this trend is Karlin’s CUB method, which performed
poorly in classifying short genes but improved as gene length
increased (Figure 6). This behavior was not solely the result of
CUB providing insufficient information for identification of
short genes; the AIC-based clustering method that uses CUB
as a discriminant criterion performed well in identifying
short, foreign genes.

Discussion

Artificial Genomes Provide a Useful Evaluation Platform
The performances of several methods were evaluated by a

test system using chimeric artificial genomes, which has
allowed us to critically analyze the limitations of parametric
methods for detecting laterally transferred genes. These
results provide to our knowledge the first comparative
assessment of the abilities of parametric methods. The
tradeoff between type I and type II errors has been evaluated,
and differential performance in detecting genes from differ-
ent source genomes has been demonstrated. In addition,
methods using the same discrimination criterion—e.g., CUB
implemented by both Karlin et al. [36] and the AIC-based
method described here—have shown significantly different
results, suggesting that alternative analytical approaches
using similar data are worth pursuing.
Genomes are enormously complex sequences, and it would

be fair to consider even domains of genes to represent
sequences under unique selective constraints. In addition,
genes are organized into operons and are regulated in
complex networks; each level of complexity imparts charac-
teristic details that could be modeled at the sequence level.
Considering phylogenetic paradigms where the interactions
are at the genome level, thus obviating the need to look at
more obtrusive levels of complexity, genes that have evolved
under similar conditions can be described by a distinct
model. While simple models for artificial genome construc-
tion based on nucleotide or hexamer statistics (e.g., GenR-
GenS [http://www.lri.fr/;denise/GenRGenS/]) are suitable for
examination of regulatory interactions or performance of
artificial life simulations [37,38], more sophisticated models
are required to accurately assess the performance of
algorithms in detecting atypical genes in genuine genomes.
We exploited the directional mutational bias driving

genome evolution to optimize the HMM for a minimal
number of gene models. The artificial genomes we con-
structed represent a simplification of the complexity under-
lying a genome. The factor maps for genes of artificial
genomes show some discontinuity, representing the centers
of clusters as compared to the continuous distribution
observed for real genome (see Figure 4). The finite number
of gene clusters used to train gene models does not reproduce
the subtle complexities of bacterial genomes; rather, the gene
clusters represent the major trends observed among the core
genes. Some apparently unusual (atypical) genes left unfil-
tered by the core extraction method are thus not represented
in an artificial genome. An artificial genome is intended to
model certain characteristic variations among genes that are
exploited in the detection of foreign genes. Other complex-
ities of genome sequences were not modeled but could be
included if they were deemed useful or important.
The performance of atypical gene identification methods

Figure 6. Performance of Parametric Methods in Classifying Short Genes

The error rate in proper classification of genes as native or foreign as a
function of gene length was assessed for genes within chimeric, artificial
genomes.
DOI: 10.1371/journal.pcbi.0010056.g006
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could be examined with or without additional, more complex
information included. For example, strand bias was included
in our artificial genome generator, but artificial genomes can
be generated that lack strand identity (see Figure S4);
therefore, the sensitivity of methods to this aspect of genome
complexity could be assayed directly. This optimized HMM
lies at the core of the test system developed to assess the
performance of parametric methods. The chimeric, artificial
genomes provide a level playing ground for parametric
methods to perform upon and be evaluated, i.e., we expect
methods that perform well in detecting atypical genes in
artificial genomes to perform well in classifying the genes in
genuine genomes.

Comparative assessment of the parametric methods using
the test system that we developed provides several insights.
We observed that Karlin’s dinucleotide method was out-
performed by methods that used codon bias as a discriminant
measure (see Figure 5B). However, we also found that a
frame-specific dinucleotide measure implemented in an AIC-
based clustering algorithm better discriminated the native
and foreign genes than did codon bias measures implemented
by any other algorithm. Therefore, the performance of a
method depends both on the choice of statistic and on the
methodology used. Methods like k-means clustering showed a
significant variation in performance with the number of
donor genomes (see Tables 1 and 2), and setting k ¼ 2 does
not seem to be a suitable choice for discriminating the pool
of foreign genes from the native one. The donor genes
originating from one source genome have distinct variability
with respect to other genes, so the two-cluster approach may
not always be a viable choice; increasing k can allow the
method to create more centers for the genes to cluster
around according to the genotypic variability inherent in a
genome. Indeed, we have seen that an HMM with multiple
gene models derived from gene clusters using the k-means
method generates an artificial genome having characteristic
variations of its genuine counterpart.

Other Approaches for Deducing Gene Ancestry
In theory, comparing an organism’s gene inventory to that

of a close relative would provide one measure as to which
genes were native (those shared between the two genomes)
and which genes were foreign (those unique to the genome of
interest). This approach has been applied to analyses of
foreign gene detection with some success [13]. This phyloge-
netic approach has several weaknesses, which can color
attempts to tune the performance of methods for atypical
gene detection or to validate the analysis of any one genome
sequence. First, there are many organisms for which no close
relatives have been sequenced; in these cases, there are no
suitable genomes to provide a basis for comparison. Second,
the presence of a gene only in the taxon of interest may result
from gain in that lineage or from loss in the sister lineage; the
polarity of this event can be determined only by the analysis
of three or more genomes. Third, there is a large degree of
variability in gene content even among very closely related
taxa—e.g., strains of E. coli share less than half of their species-
wide gene inventories [29,39]—which will confound the
identification of lineage-specific genes.

Last, and most important, genes shared among two
genomes are ‘‘native’’ only from the perspective that they
were present in the common ancestor of those two strains.

That is, one would arrive upon very different inventories of
‘‘foreign’’ genes if the Salmonella typhimurium genome were
compared to the Salmonella typhi genome, the E. coli genome,
or the Yersinia pestis genome. To validate and calibrate
parametric methods for detecting laterally transferred genes,
assignment of genes as being ‘‘foreign’’ or ‘‘native’’ should not
rely upon the designation of a particular outgroup taxon.

Combining Approaches for Detecting Foreign Genes
Different sets of putative foreign genes are identified by

different parametric methods in genuine genomes [9,10],
leading to the conjecture that different methods detect
different subsets of foreign genes. We believe that this
hypothesis is supported by our finding that different methods
for detecting foreign genes performed noticeably different in
detecting genes from different sources (see Table 1). Because
the identities of foreign genes are known with certainty in
artificial genomes, we could test the hypothesis that a
combination of methods that performed differently could,
in tandem, outperform each method when used alone. Two
strategies could then be implemented. One option is to relax
discriminant criteria for the methods of atypical gene
detection, thus identifying more foreign genes, but at the
expense of misclassifying more native genes as potentially
foreign (see Figure 5). The final set of putative foreign genes
would be defined as those genes identified by all methods (the
intersection of all gene sets). We do not favor this approach,
because each method has difficulty in identifying particular
foreign genes, and one would not expect them to appear in all
sets.
Alternatively, one could use more stringent threshold

criteria for atypical gene detection, thus misclassifying fewer
native genes and minimizing type II error. The final set of
putative foreign genes would comprise all atypical genes
detected (the union of all gene sets). We favor this approach,
because one method should identify some foreign genes that
are not identified by the other. In addition, analysis of error
rates (see Figure 5) allows us to choose threshold criteria that
are conservative for each method. To this end, we identified
putative foreign genes in chimeric artificial genomes using
two of Karlin’s methods, those using DNC and CUB as
discriminant criteria. These two methods showed comple-
mentary strengths and weaknesses in identifying genes from
different donor genomes (see Table 1).
To combine results, we selected threshold criteria that were

more conservative than the optimal values, i.e., fewer native
genes were misclassified as foreign at the expense of fewer
foreign genes being correctly identified. However, when the
results of the two methods were combined—i.e., we declared
as foreign any gene that was so identified by either method—
then the results of the combined methodology outperformed
either method alone (Table 3). The mean error rate of the
combined method (22.9%) was also less than the mean error
rate of the component methods at their respective optimal
thresholds (37.7% and 26.1% for Karlin’s dinucleotide and
codon bias methods, respectively). Therefore, we believe the
artificial genome platform has justified the concept of a
combined foreign gene identification approach whereby the
union of sets of genes identified by different methods is
denoted as ‘‘foreign.’’ We believe the strong improvement in
detecting atypical genes reflects a ‘‘complementarity’’ of the
methods, i.e., atypical genes detected well by one method
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were not detected well by the other, and vice versa. The three
AIC-based methods showed less complementarity (see Table
1). When these methods were used together, the most
prominent improvement in performance was observed for
the combination of the AIC nucleotide and AIC codon bias
methods (mean error rate of 13.8 compared to 14.9 and 15.2
at optimal thresholds for the AIC nucleotide and AIC codon
bias methods, respectively; Tables 1 and S1). Understandably,
addition of the AIC dinucleotide method yielded no addi-
tional improvements (Table S1), likely because this method
does not augment detection of classes of genes left
undetected by the combination of the other two methods. A
notable feature of this analysis is that in all cases the type I
error decreased by a large margin while the mean error rate
remained almost same or less than those of the component
methods at optimal thresholds (Tables 3 and S1). The
combination of methods is thus suited for increasing the
sensitivity substantially while keeping the number of false-
positive results to a minimum.

A Novel Method for Detecting Foreign Genes
Novel gene clustering algorithms based on the AIC [20]

have also been proposed. These methods use the AIC to
cluster genes by any parametric measure (e.g., DNC). These
methods compared favorably with the existing parametric
methods of atypical gene detection, clearly outperforming
them in our test sets (see Tables 1 and 2; Figure 5B). Whereas
the k-means clustering algorithm selects an arbitrary number
of clusters (k) into which genes are apportioned, the AIC-
based clustering algorithm segregates the genes into distinct
gene classes reflecting the inherent complexity underlying
the given genome. Unlike the current parametric methods,
which merely detect unusual genes, it has the ability to

distinguish between distinct classes of acquired genes, i.e., it
identifies sets of genes that are atypical in a particular way.
This property may be useful in identifying genes that were
acquired from similar sources and thus bear similar sequence
signatures. In addition, this feature may serve as a validation
technique, where operons of foreign genes would comprise
genes that fall into the same AIC-defined clusters.
The performance of the AIC-based methods was not

influenced by use of the AIC in the method for identifying
‘‘core’’ genes for use in training Markov models to generate
artificial genomes. To ensure the independence of these
methods, we extracted the core genome using a method based
on K-L distance (see Materials and Methods). The core of the
E. coli genome selected by the K-L method contained 2,445
genes, where 1,788 of the genes were shared with the AIC-
generated core. Because the core genomes produced by the
two methods contain many of the same genes, the method
used to select the core does not appear to bias the
composition of the core. Rather, the differences reflect the
relative stringency of the selection method. When methods
for detecting atypical genes were assessed using chimeric
genomes created using models of these core genomes, no
significant differences were detected (see Figure S3; compare
to Figure 5B). These results support the hypothesis that little,
if any, bias remains in the composition of the core genome,
and any bias would have been eliminated upon the creation
of a chimeric artificial genome from genes created by several
hundred Markov models. Therefore, we conclude that this
approach provides a robust platform for evaluating the
performance of parametric methods for the detection of
atypical genes in bacterial genomes.

Conclusions
Identifying the atypical character of a gene is a first step in

identifying and quantifying lateral gene transfer events. Even
though parametric methods have proved to be very effective
in classifying foreign genes, reducing the margin of error is
still a challenge. Our probabilistic approach is a step forward
in assessing the atypical nature of genes through parametric
methods using different null hypotheses and provides a
platform for developing an integrated system of approaches
that can assign a confidence value to a gene to be called
typical or atypical, thus opening a new direction in quantify-
ing lateral gene flow. Use of the HMM allows for artificial
chimeric genomes to be generated given any set of
prokaryotic genomes. This provides an objective test bed
for evaluating the performance of newly proposed methods
for atypical gene detection.

Materials and Methods

Genomes. The complete genome sequences of several prokaryotic
organisms—A. fulgidus DSM4304, B. subtilis 168, D. radiodurans R1
chromosome I, E. coli K12, H. influenzae Rd KW20, M. jannaschii
DSM2661, N. gonorrhoeae FA1090, R. solanacearum GMI1000, S. meliloti
1021, Synechocystis sp. PCC6803, and T. maritime MSB8—were retrieved
from GenBank. Open reading frames were extracted using coor-
dinates provided in the annotation; for assigning genes to leading and
lagging strands, the origins and termini of replication were localized
using cumulative nucleotide skew [40,41].

Generalized HMM as a descriptor of a genome sequence. Markov
models have been successfully applied in deciphering the complex
structural and functional units of a genome [42]. Borodovsky et al.
[43] provided a rigorous mathematical framework in the form of a
codon position�specific inhomogeneous Markov model for describ-

Table 3. Performance of Combined Parametric Methods for
Detecting Atypical Genes in Prokaryotic Genomes

Parameter Method for Detecting Foreign Genes

Karlin’s

Dinucleotidea
Karlin’s

Codon Usageb
Combinedc

Artificial Gene Donord

A. fulgidus 11.9 6 4.2 6.1 6 2.3 2.9 6 2.5

B. subtilis 87.8 6 4.7 81.3 6 6.3 76.6 6 6.5

D. radiodurans 89.0 6 3.6 16.0 6 2.6 14.4 6 2.4

H. influenzae 92.2 6 2.0 11.0 6 3.8 10.9 6 4.0

M. jannaschii 0.5 6 1.1 0.0 6 0.0 0.0 6 0.0

N. gonorrhoeae 78.3 6 4.8 72.6 6 6.7 59.7 6 6.9

R. solanacearum 67.0 6 3.7 6.0 6 2.0 5.8 6 1.9

S. meliloti 31.9 6 2.9 27.3 6 3.4 16.6 6 3.4

Synechocystis 18.8 6 7.0 77.8 6 6.8 16.5 6 5.9

T. maritima 1.4 6 1.1 45.8 6 4.3 0.9 6 0.9

Type I error

(100 – sensitivity)

50.8 6 1.7 30.1 6 1.3 16.7 6 1.1

Type II error

(100 – specificity)

30.6 6 1.4 24.6 6 1.2 29.0 6 1.2

Mean error rate 40.7 6 1.3 27.4 6 1.0 22.9 6 1.0

aThreshold ¼ 0.17, more conservative than optimum (see Table 1).
bThreshold ¼ 0.52, more conservative than optimum (see Table 1).
cGenes were identified as ‘‘foreign’’ if they were identified as atypical by either the dinucleotide analysis or the DNC

analysis.
dCore genes from the specified genome were used to train Markov models for the creation of artificial genes

donated into an artificial E. coli backbone.

DOI: 10.1371/journal.pcbi.0010056.t003
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ing protein-coding sequences and a homogeneous Markov model for
describing noncoding sequences. Markov models have been used
extensively in gene-finding algorithms applied to both prokaryotic
and eukaryotic genomes [19,44�47]. At the heart of such algorithms is
an HMM incorporating models of distinct sequence types. The
problem is formulated as deciphering the sequence of ‘‘hidden’’
states (e.g., protein-coding or noncoding) underlying a DNA
sequence.

Given the model parameters, a generalized HMM can be used to
either predict desired features in a test sequence (e.g., find sequences
that resemble genes) or generate a DNA sequence (e.g., create
sequences that resemble genes). A simple, generalized HMM (Figure
7) can generate a genome sequence by choosing an oligonucleotide O j

i
(O2 A, A¼fA,T,C,Gg, where i and j indicate the start and end positions
of the oligonucleotide in DNA sequence, respectively) according to
output probability distribution Q in state Si. The length of the emitted
sequence is determined by the length distribution of the sequences of
a distinct state type (e.g., the length of genes or the length of
noncoding sequences). Transitions from state Si to Sk (e.g., from a
protein-coding state to a noncoding state) are made according to the
probability distribution of transitions between states; this process is
repeated until a genome sequence of a desired length L is generated.

Training sets were derived using the annotations provided in the
GenBank sequences, and model parameters were obtained as the
maximum likelihood estimate. For a gene model, the initial
probability Pi(O1

m) of observing an oligonucleotide O1
m is estimated as

P iðOm
1 Þ ¼

N iðOm
1 Þ

ððN � mþ 1Þ=3Þ ; ð1Þ

where Ni(O1
m) is the number of occurrences of oligonucleotide O1

m in
phase i in the training data (phase i corresponds to the ith-codon
position of the first base of the oligonucleotide). N – m þ 1 is the
count of all possible oligonucleotides of size m in the training data.
The maximum likelihood estimate of the transition probability
estimate P iðOkjOk�1

k�mÞ is given by

P iðOkjOk�1
k�mÞ ¼

N iðOk�1
k�m;OkÞ

N iðOk�1
k�mÞ

: ð2Þ

Here, N iðOk�1
k�m;OkÞand N iðOk�1

k�mÞ are the counts of the oligonucleo-
tides Ok

k�m and Ok�1
k�m, respectively, in phase i. For noncoding

sequences, the phase consideration is omitted. The values of all other
probabilistic parameters (including the state initial and transition
probabilities) were obtained as maximum likelihood estimates from

the training set. The distribution of the number of genes in the same
orientation, as well as the length distribution of protein-coding and
noncoding sequences, was estimated from the GenBank annotation.

An HMM with a single gene model will fail to represent the
variability of genes within a genome. There are distinct classes of
genes that have evolved under different selective constraints,
including genes encoded on leading and lagging strands, and
variation in selection on codon usage, which requires the HMM to
have multiple gene models. The HMM used for the creation of
artificial genomes includes separate, multiple models of protein-
coding sequence (its reverse complement or the protein-coding
shadow) on both the leading and lagging strands, a model of
noncoding sequence, and a model of gene orientation (see Figure S4).

Gene clustering by a k-means algorithm using K-L divergence. To
build multiple gene models, genes were segregated into distinct gene
classes signifying divergent mutational biases. We adapted the k-
means gene clustering method suggested by Hayes and Borodovsky
[22] to perform this task. The (dis)similarity of two genes can be
quantified in terms of their nucleotide composition or codon usage
pattern. To quantify the difference in nucleotide composition
between two genes or clusters of genes, F and Q, the difference is
defined in the symmetric form of K-L divergence [22] as

DðF jjQÞ ¼ 1
2

X
i

fi log
fi
qi
þ qi log

qi
fi

� �
; ð3Þ

where fi and qi denote the relative frequencies quantitating the
nucleotidepatternsof theDNAsequencesof genesF andQ, respectively.
To quantify the difference in codon usage pattern, D is defined as

DðFjjQÞ ¼ 1
2

X
a

na
X
c2a

fc log
fc
qc
þ qc log

qc
fc

� �
; ð4Þ

where fc and qc are the codon frequencies, c, normalized in the ath
group of synonymous codons to which it belongs, for F and Q,
respectively; and na is the size of the ath group of synonymous codons.
Note that for a cluster of genes, the center of the cluster is
represented by the cumulative frequencies normalized in the
respective groups.

The k-means gene clustering algorithm was initialized by selecting
open reading frame cluster seeds by distributing genes at random
among k clusters and calculating the cluster centers. Genes were
reassigned to the cluster with the closest cluster center (in terms of
D[FjjQ] distance), and cluster centers were recalculated, until all genes
resided within clusters with the closest centers. This process was
repeated for several random realizations of the cluster seeds to
eliminate any bias due to initial cluster assignment; the gene cluster
configuration that minimizes the distance function W,

W ¼
X
C

X
F2C

DðF jjCÞ; ð5Þ

where C denotes cluster of genes, was selected.
Methods to extract the core genes of a genome. We implemented

two alternative approaches to extract the genes forming the ‘‘core’’
genome, those genes experiencing the range of naturally imparted
mutational biases. First, genes were sorted into approximately 25
clusters by the k-means clustering algorithm using K-L divergence as
the distance measure between clusters (see above). The two clusters
whose centers were closest to each other were merged, and this
process was repeated until the relative change in the K-L distance, R,
between closest clusters exceeds the established threshold of

R ¼ jDminðiþ 1Þ � DminðiÞj
DminðiÞ

; ð6Þ

where Dmin(i) is the K-L distance between the two closest clusters at
the ith iteration. The largest cluster was retrieved for each of the
three discriminant criteria—nucleotide composition, DNC, and
CUB—and the genes common to these three sets were taken to
represent the core.

A drawback of using the K-L distance measure for finding gene
clusters is that one begins with a arbitrary number of gene clusters that
are then merged; therefore, the members of the final genome core will
be biased both by the composition of the initial clusters and by the
degree of variation within a genome. We sought to eliminate this bias
by introducing a more rigorous method for cluster formation that did
not begin by arbitrarily assigning genes to a fixed number of clusters.
Rather, we sought to merge genes into clusters if they were similar to
other members of that cluster. Criteria that can be used to select
between models include the AIC [20], the minimum description length
[48], and the Bayesian information criterion [49]. These approaches

Figure 7. The HMM Architecture

The oval represents a hidden state, and the square represents
observation sequence. Each state emits a string of nucleotides and then
makes a transition to another state. The transitions that are allowed
between hidden states are shown by line arrows, and the emission of
observation sequence is shown by block arrows. This HMM generates
one strand of a genome; by including models of reverse complement of
protein-coding sequence (‘‘Shadow’’), the HMM encapsulates the
information of sequences on both strands of DNA helix. The ‘‘Reverse
Start’’ and ‘‘Reverse Stop’’ states correspond to the reverse complement
of start codons and stop codons, respectively.
DOI: 10.1371/journal.pcbi.0010056.g007
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are based on the principle of finding the most parsimonious model,
thus avoiding underfitting or overfitting models. After testing each
criterion of model selection, we converged on the AIC for identi-
fication of core genes, which performed well and showed no bias with
respect to cluster size or composition. The AIC is defined as

AIC ¼ �2lnðL̂Þ þ 2K; ð7Þ

where L̂ is the maximum likelihood and K is the number of free
parameters in the model; the best-fitting model minimizes the AIC.

We used the AIC to determine if a one-gene (cluster) model
significantly improves upon a two-gene (cluster) model. Among all
possible pairings of gene clusters, the one minimizing reduction in
likelihood of the gene cluster set was selected and this process was
repeated to segregate genes into distinct clusters. The AIC provided
the stopping criterion for the clustering procedure. In practice, for N
genes, N single gene clusters were examined, and the pair of clusters
with the least likelihood decrease were merged, resulting in N – 1
clusters. This process was repeated until the AIC for the merged
cluster model was no longer less than the AIC for the separate cluster
model. The largest cluster was retrieved for each of the three
discriminant criteria—SNC, DNC, and CUB—and the genes common
to these three sets were taken to represent the core genome.

To account for base compositional bias, the likelihood function L̂
can be expressed in terms of frequencies of nucleotides (or
oligonucleotides) located at specific codon positions. Considering
single nucleotide statistics, a 12-dimensional frequency vector with
frequencies of elements b 2 fAi , Ti , Ci , Gig, i¼1, 2, 3, which takes into
account both base identity and codon position, was used to calculate
the maximum likelihood L̂; the likelihood for the separate cluster
model was obtained as

L̂1 ¼ P
b2A
fp 1ðbÞgN1ðbÞ P

b2A
fp 2ðbÞgN2ðbÞ: ð8Þ

The likelihood for the merged cluster model was obtained as

L̂2 ¼ P
b2A
fpðbÞgNðbÞ; ð9Þ

where fp(b)g and fp1(b), p2(b)g are the probabilities of base b in merged
cluster and the two component clusters, respectively. N(b) denotes the
count of base b in respective clusters. To allow the merger of the two
clusters, the AIC of the merged cluster model should be less than the
AIC of the two-cluster model. We assessed this difference as

DAIC ¼ �2ln L̂2

L̂1

� �
þ 2ðK2 � K1Þ, 0; ð10Þ

where K1 and K2 are the number of free parameters and L̂1 and L̂2 are
the corresponding likelihoods in the two random cluster model and
one random cluster model, respectively. The likelihood function, and
thus the stopping criterion, can be obtained similarly for oligonu-
cleotide statistics and also for CUB consideration.

Methods for detection of atypical genes. Several widely used,
parametric methods used in lateral gene transfer detection were
implemented as follows. Karlin’s dinucleotide bias [32] was assessed
through use of the odds ratio:

qXY ¼
fXY
fXfY

; ð11Þ

where fXY is the frequency of the dinucleotide XY and fX is the
frequency of the nucleotide X. The dinucleotide average relative
abundance difference between twoDNA sequences f and g is defined as

dð f ; gÞ ¼ 1
16

X
XY

jqXYð f Þ � qXYðgÞj: ð12Þ

If the value of d for a gene compared to average over all genes in a
genome is greater than an established threshold, the gene is classified
as foreign. Karlin’s codon usage difference [36] of the gene family F
relative to gene family C was quantified as

BðF jCÞ ¼
X
a

paðFÞ
X
ðx;y;zÞ¼a

j f ðx; y; zÞ � cðx; y; zÞj

0
@

1
A: ð13Þ

where ff(x,y,z)g is the set of codon frequencies for the gene family F,
fc(x,y,z)g is the set of codon frequencies for the gene family C, and
fpa(F)g is the set of amino acid frequencies of the genes of F.

The codon frequencies were normalized to one in each amino acid
codon family, so that

X
ðx;y;zÞ¼a

f ðx; y; zÞ ¼ 1: ð14Þ

IfC is the set of all genes and F is a single gene,B(FjC)¼B(Fjall)measures
the codon bias of F compared to the average for all genes. If B(Fjall) is
greater than an established threshold, F is classified as a foreign gene.

CUB was used as a discriminant criterion in the k-means gene
clustering algorithm of Hayes and Borodovsky [22], where relative
entropy was used as a distance measure of codon usage difference
between clusters of genes (see equation 4) in a k-means algorithm. We
also implemented base compositional bias and CUB as discriminant
criteria in an AIC-based gene clustering algorithm. We have already
discussed the utility of the AIC in identifying the genes likely to be
forming the native core of a genome. We also tested the performance
of an AIC-based gene clustering algorithm in identifying atypical
genes. Note that we used a generalized version of the AIC, defined as

AIC ¼ �2lnðL̂Þ þ ð1þ n
n0
ÞK; ð15Þ

where n is the sample size and n0 is a positive constant [50]. For n0¼n,
the generalized version takes the form of a standard AIC (see equation
7). The tuning parameter n0 was used to optimize the algorithm.

Supporting Information

Figure S1. Correspondence Analysis of CUB

The first axes—indicating variability in usage among 59 synonymous
codons—are plotted for 4,255 E. coli genes (A), 2,141 E. coli genes
representing the ‘‘core’’ genome (B), and 2,141 genes comprising the
artificial E. coli core genome (C). The artificial genome was created
from genes clustered by frame-specific DNC.

Found at DOI: 10.1371/journal.pcbi.0010056.sg001 (826 KB TIF).

Figure S2. Variability within Genuine and Artificial E. coli Genomes

The percent GC of third-codon positions is plotted for 4,255 E. coli
genes (A), 2,141 ‘‘core’’ E. coli genes (B), and 2,141 genes within the
artificial ‘‘core’’ E. coli genome (C). The artificial core genome was
created from genes clustered by frame-specific DNC; l and r
represent the mean and standard deviation of the distribution.

Found at DOI: 10.1371/journal.pcbi.0010056.sg002 (388 KB TIF).

Figure S3. Tradeoffs in Error Rates for Several Methods of Gene
Detection

Artificial genomesweregenerated fromMarkovmodels trainedoncore
genomes extractedusing aK-Ldistancemethod.Compare toFigure 5B.

Found at DOI: 10.1371/journal.pcbi.0010056.sg003 (142 KB TIF).

Figure S4. Cumulative GC-Skew Plots for Genuine and Artificial E. coli
Genomes

For each gene, GC skew was calculated as (%G – %C)/(%Gþ%C) of
third-codon positions, corrected for direction of transcription.
Beginning with the first gene in a genome sequence, cumulative
skew was obtained as the sum of skew values for the preceding genes.
The genuine E. coli genome comprised 4,255 protein-coding genes,
whereas the artificial genomes comprised 4,000 genes. Cumulative
GC-skew plots are shown for artificial E. coli genomes with and
without gene models accounting for strand bias during training.
Strand bias is evident as large domains of either G-rich or C-rich
genes in the genuine E. coli genome and in the artificial genome with
strand identity incorporated into the model.

Found at DOI: 10.1371/journal.pcbi.0010056.sg004 (273 KB TIF).

Table S1. Performance of Combined Parametric Methods for
Detecting Atypical Genes in Prokaryotic Genomes

Found at DOI: 10.1371/journal.pcbi.0010056.st001 (42 KB DOC).
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