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Abstract. While most knowledge engineers believe that the quality of
results obtained by means of Bayesian networks is not too sensitive to
imprecision in probabilities, this remains a conjecture with only modest
empirical support. We summarize the results of several previously pre-
sented experiments involving Hepar II model, in which we manipulated
the quality of the model’s numerical parameters and checked the impact
of these manipulations on the model’s accuracy. The chief contribution
of this paper are results of replicating our experiments on several medical
diagnostic models derived from data sets available at the Irvine Machine
Learning Repository. We show that the results of our experiments are
qualitatively identical to those obtained earlier with Hepar II.

1 Introduction

Decision-analytic methods provide a coherent framework for modeling and solv-
ing decision problems in decision support systems [12]. A valuable modeling
tool for complex uncertain domains, such as those encountered in medical ap-
plications, is a Bayesian network [19], an acyclic directed graph quantified by
numerical parameters and modeling the structure of a domain and the joint
probability distribution over its variables. There exist algorithms for reasoning
in Bayesian networks that compute the posterior probability distribution over
some variables of interest given a set of observations. As these algorithms are
mathematically correct, the ultimate quality of their results depends directly on
the quality of the underlying models and their parameters. These parameters
are rarely precise, as they are often based on subjective estimates or data that
do not reflect precisely the target population.

The question of sensitivity of Bayesian networks to precision of their param-
eters is of much interest to builders of intelligent systems. If precision does not
matter, rough estimates or even qualitative “order of magnitude” estimates that
are typically obtained in the early phases of model building, should be sufficient
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without the need for their painstaking refinement. Conversely, if network results
are sensitive to the precise values of probabilities, a lot of effort has to be devoted
to obtaining precise estimates.

There is a popular belief, supported by anecdotal evidence, that Bayesian
network models are tolerant to imprecision in their numerical parameters. Prad-
han et al. [20] were the first to describe an experiment in which they studied the
behavior of a large medical diagnostic model, the CPCS network [15, 23]. Their
key experiment, which we will subsequently refer to as the noise propagation ex-
periment, focused on systematic introduction of noise in the original parameters
(assumed to be the gold standard) and measuring the influence of the amount of
noise on the average posterior probability of the true diagnosis. They observed
that this average was insensitive to even very large amounts of noise. The noise
propagation experiment, while ingenious and thought provoking, offers room for
improvements. The first problem, pointed out by Coupé and van der Gaag [7],
is that the experiment focused on the average posterior rather than individual
posterior in each diagnostic case and how it varies with noise, which is of most
interest. The second weakness is that the posterior of the correct diagnosis is by
itself not a sufficient measure of model robustness. Practical model performance
will depend on how these posteriors are used. In order to make a rational di-
agnostic decision, for example, one needs to know at least the probabilities of
rival hypotheses (and typically the joint probability distribution over all disor-
ders). Only this allows for weighting the utility of correct against the dis-utility
of incorrect diagnosis. If the focus of reasoning is differential diagnosis, it is of
importance to observe how the posterior in question compares to the posteriors
of competing disorders. Another problem is that noise introduced in parameters
was assumed to be random, which may not be a reasonable assumption. It is
known, for example, that human experts often tend to be overconfident [16].
Yet another opportunity for improvement is looking at precision of parameters
rather than their random deviations from the true value. Effectively, the results
of the noise propagation experiment are tentative and the question whether ac-
tual performance of Bayesian network models is robust to imprecision in their
numerical parameters remains open.

Search for those parameters whose values are critical for the overall quality
of decisions is known as sensitivity analysis. Sensitivity analysis studies how
much a model output changes as various model parameters vary through the
range of their plausible values. It allows to get insight into the nature of the
problem and its formalization, helps in refining the model so that it is simple
and elegant (containing only those factors that matter), and checks the need
for precision in refining the numbers [16]. Several researchers proposed efficient
algorithms for performing sensitivity analysis in Bayesian networks (e.g., [3, 6, 7,
14]). It is theoretically possible that small variations in a numerical parameter
cause large variations in the posterior probability of interest. Van der Gaag and
Renooij [11] found that practical networks may indeed contain such parameters.
Because practical networks are often constructed with only rough estimates of
probabilities, a question of practical importance is whether overall imprecision
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in network parameters is important. If not, the effort that goes into polishing
network parameters might not be justified, unless it focuses on their small subset
that is shown to be critical.

In this paper, we report the results of a series of experiments in which we
manipulate the quality of parameters of several real or realistic Bayesian network
models and study the impact of this manipulation on the precision of their
results. In addition to looking at symmetric noise, like in the original noise
propagation experiment, we enter noise in the parameters in such a way that
the resulting distributions become biased toward extreme probabilities, hence,
modeling expert overconfidence in probability estimates. Our results show that
the diagnostic accuracy of Bayesian network models is sensitive to imprecision
in probabilities. It appears, however, that it is less sensitive to overconfidence in
probabilities than it is to symmetric noise. We also test the sensitivity of models
to underconfidence in parameters and show that underconfidence in parameters
leads to more error than symmetric noise.

We examine also a related question: “Are Bayesian networks sensitive to
precision of their parameters?” Rather than entering noise into the parameters,
we change their precision, starting with the original values and rounding them
systematically to progressively rougher scales. This models a varying degree of
precision of the parameters. Our results show that the diagnostic accuracy of
Bayesian networks is sensitive to imprecision in probabilities, if these are plainly
rounded. However, the main source of this sensitivity appears to be in rounding
small probabilities to zero. When zeros introduced by rounding are replaced by
very small non-zero values, imprecision resulting from rounding has minimal
impact on diagnostic performance.

Our experiments suggest that Bayesian networks may be less sensitive to the
quality of their numerical parameters than previously believed. While noise in
numerical parameters starts taking its toll almost from the very beginning, there
is a noticeable region of tolerance to small amounts of noise.

The remainder of this paper is structured as follows. Section 2 introduces the
models used in our experiments. Section 3 describes our experiments based on
introducing noise into probabilities. Section 4 describes our experiments based
on progressive rounding of parameters. Finally, Section 5 summarizes our results
and main insights obtained from these results.

2 Models studied

The main model used in our experiments is the Hepar II model [18]. This is one
of the largest practical medical Bayesian network models available to the commu-
nity, carefully developed in collaboration with medical experts and parametrized
using clinical data.4 We would like to note that the results for the Hepar II

network presented in this paper have been presented before [9, 10, 17]. In addi-
tion, we selected three data sets from the Irvine Machine Learning Repository:

4 Readers interested in Hepar II can download it from Decision Systems Laboratory’s
model repository at http://genie.sis.pitt.edu/.
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Table 1. Medical data used in our experiments

data set instances variables variable types classes

Acute Inflammation 120 8 categorial, integer 4

SPECT Heart 267 22 categorial 2

Cardiotocography 2,126 23 categorical, real 3

HEPAR II 699 70 categorial, real 11

(1) Acute inflammation [8], (2) SPECT Heart [4], and (3) Cardiotocography [22].
Table 1 presents basic characteristics of the selected data sets, including Hepar

data. Table 2 presents basic statistics of Bayesian network models that we cre-
ated from the data. All models consist of only discrete nodes with all continuous
variables discretized before the models were learned.

Table 2. Bayesian network models used in our experiments

model nodes arcs states parameters avg in-degree avg outcomes

Acute Inflammation 8 15 17 97 1.88 2.13

SPECT Heart 23 52 46 290 2.26 2.00

Cardiotocography 22 63 64 13,347 2.86 2.91

HEPAR II 70 121 162 2,139 1.73 2.24

Similarly to Pradhan et al. [20], for the purpose of our experiments, we as-
sumed that the model parameters were perfectly accurate and, effectively, the
diagnostic performance achieved was the best possible. Of course, in reality,
the parameters of the model may not be accurate and the performance of the
model can be improved upon. In our experiments, we study how this baseline
performance degrades under the condition of noise and inaccuracy.

We define diagnostic accuracy as the percentage of correct diagnoses on real
patient cases. This is obviously a simplification, as one might want to know the
sensititivity and specificity data for each of the disorder or look at the global
quality of the model in terms of AUC (Area Under the Curve) of the ROC
(Receiver Operating Characteristics) curve, as suggested by a reviewer. This,
however, is complicated in case of models focusing on multiple disorders —
there is no single measure of performance but rather a measure of performance
for every single disorder. We decided thus to focus on the percentage of correct
diagnoses.

Because Bayesian network models operate only on probabilities, we assume
that each model indicates as correct the diagnosis that is most likely given
evidence. When testing the accuracy of models, we were interested in both
(1) whether the most probable diagnosis indicated by the model is indeed the
correct diagnosis, and (2) whether the set of w most probable diagnoses contains
the correct diagnosis for small values of w (we chose a “window” of w=1, 2, 3,
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and 4). The latter focus is of interest in diagnostic settings, where a decision sup-
port system only suggest possible diagnoses to a physician. The physician, who
is the ultimate decision maker, may want to see several top alternative diagnoses
before focusing on one.

3 Noise in parameters

Our first series of experiments focused on sensitivity of accuracy of Bayesian
network models to symmetric noise in their parameters. When introducing noise
into model parameters, we used the approach proposed by Pradhan et al. [20],
which is transforming each original probability into log-odds form, adding sym-
metric Gaussian noise parametrized by a parameter σ, and transforming it back
to probability, i.e.,

p′ = Lo−1[Lo(p) + Normal(0, σ)] , (1)

where

Lo(p) = log10[p/(1− p)] . (2)

This guarantees that the transformed probability lies within the interval (0, 1).

3.1 Symmetric noise

In [17], we performed experiments focusing on how symmetric noise (see the top
two graphs in Figure 2 to get an idea of what this noise amounts to) introduced
into network parameters affects the diagnostic accuracy of Hepar II. Figure 1
presents the diagnostic accuracy of 30 versions of the network (each for a different
standard deviation of the noise σ ∈< 0.0, 3.0 > with 0.1 increments) on the set
of test cases for different values of window size as a function of σ.

Fig. 1. The diagnostic accuracy of the model under symmetric noise as a function of
σ (w=1) [17].
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Diagnostic performance seems to deteriorate for even smallest values of noise,
although it has to be said that the plot shows a small region (for σ smaller than
roughly 0.2) in which performance loss is minimal.

Fig. 2. Scatterplots of the original (horizontal axis) vs. transformed (vertical axis)
probabilities for σ = 0.1 and σ = 0.5. The top two plots show symmetric noise, the
middle two plots show overconfidence, the bottom two plots show underconfidence.

3.2 Biased noise

Symmetric random noise does not seem to be very realistic. It is a known ten-
dency of experts to be overconfident about their probability estimates, i.e., offer
more extreme probability estimates than warranted by objective evidence [13,
16]. One way of simulating bias in expert judgment is to distort the original
parameters so that they become more extreme (this amounts to modeling ex-
pert overconfidence) or more centered, i.e., biased towards uniform probabilities
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(this amounts to modeling expert underconfidence). Our next experiment (re-
ported in [9]) focused on investigating the influence of biased noise in Hepar II’s
probabilities on its diagnostic performance.

We introduced bias into noise in the following way. Given a discrete probabil-
ity distribution Pr, for overconfidence, we identified the smallest probability pS .
We transformed this smallest probability pS into p′S by making it even smaller,
according to the following formula:

p′S = Lo−1[Lo(pS)− |Normal(0, σ)|] .

We made the largest probability in the probability distribution Pr, pL, larger by
precisely the amount by which we decreased pS , i.e.,

p′L = pL + pS − p
′
S .

An alternative way of introducing biased noise suggested to us is by means
of building a logistic regression/IRT model (e.g., [1, 2, 21]) for each conditional
probability table and, subsequently, manipulating the slope parameter. For un-
derconfidence, we identified the highest probability pL. We then transformed pL
into p′L by making it smaller, according to the following formula:

p′L = Lo−1[Lo(pL)− |Normal(0, σ)|] .

We made the smallest probability in the probability distribution Pr, pS , higher
by precisely the amount by which we decreased pL, i.e.,

p′S = pS + pL − p
′
L .

We were by this guaranteed that the transformed parameters of the probability
distribution Pr′ added up to 1.0.

Figure 2 shows the effect of introducing this biased noise. The middle two
plots in the figure show overconfidence transformation and the bottom two show
underconfidence. For overconfidence, in particular, the transformation is such
that small probabilities are likely to become smaller and large probabilities are
likely to become larger. Effectively, the distributions become more biased towards
extreme probabilities.

We tested 30 versions of Hepar II for each of the conditions (each network
for a different standard deviation of the noise σ ∈< 0.0, 3.0 > with 0.1 incre-
ments) on all records of the Hepar data set and computed Hepar II’s diagnostic
accuracy. We plotted this accuracy in Figure 3 as a function of σ for different
values of window size w. The left plot is for the overconfidence and the right
plot is for the underconfidence condition.

It is clear that Hepar II’s diagnostic performance deteriorates with biased
noise as well. The results are qualitatively similar to those in Figure 1, although
performance under overconfidence bias degraded more slowly with the amount
of noise than performance under symmetric noise, which, in turn degraded more
slowly than performance under underconfidence.
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Fig. 3. The diagnostic accuracy of Hepar II for various window sizes as a function of
the amount of biased noise (expressed by σ). Overconfidence (left plot) and undercon-
fidence (right plot) [10].

Fig. 4. The diagnostic accuracy of the four models (clock-wise Hepar II, Acute In-

flammation, Spect Heart and Cardiotography) as a function of the amount of
biased and unbiased noise, window w = 1.

We repeated this experiment for the three networks from the Irvine reposi-
tory. Figure 4 shows the accuracy of Hepar II and the three Irvine models as
a function of the amount of biased and unbiased noise, window w = 1, on the
same plot. The results are qualitatively identical: performance under undercon-
fidence bias in all four cases degrades faster than performance under symmetric
and overconfident noise.

It is interesting to note that here again for small values of σ, there is only a
minimal effect of noise on performance.

4 Imprecision in parameters

Our next step was investigating how progressive rounding of a Bayesian net-
work’s probabilities affects its diagnostic performance. To that effect, we have
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successively created various versions of models with different precision of param-
eters and tested the performance of these models.

For the purpose of our experiment, we used n = 100, 10, 5, 4, 3, 2, and 1, for
the number of intervals in which the probabilities fall. And so, for n = 10, we
divided the probability space into 10 intervals and each probability took one of
11 values, i.e., 0.0, 0.1, 0.2, . . . , 0.9, and 1.0. For n = 5, each probability took one
of six values, i.e., 0.0, 0.2, 0.4, 0.6, 0.8, and 1.0. For n = 2, each probability took
one of only three values, i.e., 0.0, 0.5, and 1.0. Finally, for n = 1, the smallest
possible value of n, each probability was either 0.0 or 1.0. Figure 5 shows scatter
plots of all 2,139 Hepar II’s parameters (horizontal axis) against their rounded
values (vertical axis) for n equal to 10, 5, 2, and 1.

Fig. 5. Rounded vs. original probabilities for various levels of rounding accuracy.

Please note the drastic reduction in precision of the rounded probabilities, as
pictured by the vertical axis. When n = 1, all rounded probabilities are either 0
or 1. Also, note that the horizontal bars in the scatter plot overlap. For example,
in the upper-right plot (n = 5), we can see that an original probability p = 0.5 in
Hepar II got rounded sometimes to 0.4 and sometimes to 0.6. This is a simple
consequence of the surrounding probabilities in the same distribution and the
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necessity to make the sum of rounded probabilities add to 1.0, as guaranteed by
the algorithm that we used for rounding probabilities.

We computed the diagnostic accuracy of various versions of Hepar II, as
produced by the rounding procedure. Figure 6 shows a summary of the results
in both graphical and tabular format. The horizontal axis in the plot corresponds
to the number of intervals n in logarithmic scale, i.e., value 2.0 corresponds to the
rounding n = 100, and value 0 to the rounding n = 1. Intermediate points, for
the other roundings can be identified in-between these extremes. The numerical
accuracy reported in the table corresponds to the lower curve in the plot.

accuracy # zeros % zeros

n=100 0.595 116 5%

n=10 0.295 400 19%

n=5 0.219 605 28%

n=4 0.230 754 35%

n=3 0.136 869 41%

n=2 0.100 1056 49%

n=1 0.161 1453 68%

Fig. 6. Diagnostic performance of Hepar II as a function of logarithm of parameter
accuracy and ε (w=1) [9].

It turns out that the strongly deteriorating accuracy is the effect of zeros in
the probability distributions introduced by rounding. Please note that zero in
probability theory is a special value. Once the probability of an event becomes
zero, it can never change, no matter how strong the evidence for it. We addressed
this problem by replacing all zeros introduced by the rounding algorithm by small
ε probabilities and subtracting the introduced εs from the probabilities of the
most likely outcomes in order to preserve the constraint that the sum should be
equal to 1.0. While this caused a small distortion in the probability distributions
(e.g., a value of 0.997 instead of 1.0 when ε = 0.001 and there were three induced
zeros transformed into ε), it did not introduce sufficient difference to invalidate
the precision loss. To give the reader an idea of what it entailed in practice, we
will reveal the so far hidden information that the plots in Figure 5 were obtained
for data with ε = 0.001.

The result of this modification was dramatic and is pictured by the upper
curves in Figure 6, each line for a different value of ε. As can be seen, the actual
value of ε did not matter too much (we tried three values: 0.0001, 0.001, and
0.01). In each case Hepar II’s performance was barely affected by rounding,
even when there was just one interval, i.e., when all probabilities were either ε
or 1− ε.

Our next experiment focused on the influence of precision in probabilities
on Hepar II’s accuracy for windows of size 1, 2, 3, and 4. Figure 7 shows a
summary of the results in both graphical and tabular format. The meaning of
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w=1 w=2 w=3 w=4

n=100 0.595 0.721 0.785 0.844

n=10 0.582 0.708 0.778 0.823

n=5 0.575 0.688 0.742 0.797

n=4 0.569 0.671 0.741 0.788

n=3 0.546 0.649 0.711 0.765

n=2 0.515 0.618 0.675 0.715

n=1 0.479 0.581 0.674 0.744

Fig. 7. Diagnostic performance of Hepar II as a function of the logarithm of parameter
accuracy and various window sizes [9].

the horizontal and vertical axes is the same as in Figure 6. We can see that the
stability of Hepar II’s performance is similar for all window sizes.

We repeated the rounding experiment for the three networks from the Irvine
repository. Figure 8 shows the accuracy of Hepar II and the three Irvine models
(window w = 1) as a function of the logarithm of parameter accuracy on the
same plot. The results were qualitatively identical to those involving Hepar II.

Fig. 8. The diagnostic accuracy of the four models (clock-wise Hepar II, Acute In-

flammation, Spect Heart and Cardiotography) as a function of the logarithm of
parameter accuracy, window w = 1.
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5 Discussion

We described a series of experiments studying the influence of precision in pa-
rameters on model performance in the context of a practical medical diagnostic
model, Hepar II (these results was previously published in [9, 10, 17]), and three
additional models based on real medical data from the Irvine Machine Learning
Repository. We believe that the study was realistic in the sense of studying real
models and focusing on a practical performance measure.

Our study has shown that the performance of all four models is sensitive
to noise in numerical parameters, i.e., the diagnostic accuracy of the models
decreases after introducing noise into their numerical parameters. For small to
moderate amounts of noise, i.e., σ smaller than say 0.2, the effect of noise on
accuracy was minimal. The effect of rounding the parameters was also minimal,
giving some support to insensitivity of Bayesian network models to precision of
their parameters.

We studied the influence of bias in parameters on model performance. Over-
confidence bias had in our experiments a smaller negative effect on model per-
formance than random noise. Underconfidence bias led to most serious deterio-
ration of performance. While it is only a wild speculation that begs for further
investigation, one might see our results as an explanation why humans tend to
be overconfident rather than underconfident in their probability estimates. An
interesting suggestion on the part of one of the reviewers was the link between
bias, as we formulated it, and entropy. Models with parameters biased toward
underconfidence have higher entropy and, thus, contain less information than
models with symmetric noise or models biased toward overconfidence.

Our study of the influence of precision in parameters on model performance
was inspired by the work of Clancey and Cooper [5], who conducted an experi-
ment probing the sensitivity of MYCIN to the accuracy of its numerical spec-
ifications of degree of belief, certainty factors (CF). They applied a progressive
roughening of CFs by mapping their original values onto a progressively coarser
scale. The CF scale in MYCIN had 1,000 intervals ranging between 0 and 1,000.
If this number was reduced to two, for example, every positive CF was replaced
by the closest of the following three numbers: 0, 500, and 1,000. Roughening
CFs to hundred, ten, five, three, and two intervals showed that MYCIN is fairly
insensitive to their accuracy. Only when the number of intervals was reduced to
three and two, there was a noticeable effect on the system performance.

Our results are somewhat different. It appears that the diagnostic accuracy of
Bayesian network models is sensitive to imprecision in probabilities, if these are
rounded. However, the main source of this sensitivity appears to be in rounding
small probabilities to zero. When zeros introduced by rounding are replaced by
very small non-zero values, imprecision resulting from rounding has minimal
impact on Bayesian network model’s performance.
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