
Differences in Document Retrieval and Entity Retrieval: 

Finding Support Documents with a Learning to Rank 

Approach 
Qi Li, Daqing He 

School of Information Sciences 
University of Pittsburgh 

{qil14, dah44}@pitt.edu 
 

ABSTRACT 

Entity retrieval finds the relevant results for a user’s information 

needs at a finer unit called ―entity‖. In the entity retrieval, people 

usually work in this way: find a small set of support documents 

which contain answer entities, and then further detect the answer 

entities in this set. In most cases, people treat the support 

document findings as the conventional document retrieval 

problem. That is, support documents are relevant documents. In 

this work, we indicate support documents and relevant 

documents, although similar, have important differences. Further, 

we propose a learning to rank approach to find support 

documents. The results show that the learning to rank method 

runs significantly better than the baseline systems which treat the 

support document finding as a conventional document retrieval 

problem. 

Categories and Subject Descriptors: 
H.3 Information Storage and Retrieval;  

General Terms 

Algorithm, Features, Experimentation 

Keywords 

Entity retrieval, Learning to Rank, Logistic Regression, 

Evaluation 

1 INTRODUCTION 
Traditional search engines return a sequentially ranked list of 

documents as results according to a user’s information needs. 

However, in some cases, people would like to know the exact 

entity answer for a query, like ―what is the product of 

Medimmune Inc.‖, instead of a document containing the answers. 

This scenario enforces the study of entity retrieval. The difference 

of retrieval unit between conventional document retrieval and 

entity retrieval not only causes the variations of the results, but 

also causes divergences on assumptions and relevant judgments. 

Although search engines analyze hyperlinks and anchor texts, they 

are still based on the assumption of the ―bag of words‖ model in 

the document units. Moreover, the relevance judgments are also 

on the document level. If any piece of the document is relevant 

(regardless of how small that piece is in relation to the rest of the 

document), retrieval systems will mark it as some sort of 

relevancy. This kind of search engine eschews analyses on answer 

entities with a user’s information needs, since the identification of 

entities has not occurred yet. Entity retrieval, on the other hand, 

assumes the answer entities have some kinds of relationships with 

the topic entities, and is evaluated with a different unit, which will 

be a useful alternative for document retrieval on a large and 

diversity Web environments.  

Entity retrieval systems, as conventional information retrieval 

tasks, require the effective and efficient return of the entity 

answers from a large unstructured corpus (e.g., the Web) or a 

semi-structured corpus (e.g., Wikipedia). In order to effectively 

and efficiently search entities, word-independent factors and 

word-dependent factors should be separated into two stages. In 

the word-independent stage, the assumption of the ―bag-of-

words‖ is applied to efficiently find the support documents on the 

assumption of word co-occurrence. In the word-independent 

stage, further complicated analyses are applied to the small set of 

support documents to effectively detect answer entities.  

 

Figure 1. A Two-Layer Retrieval and Extraction Probability 

Model (TREPM). 

With this consideration, we propose a Two-layer Retrieval and 

Extraction Probability Model (TREPM) to decouple entity 

retrieval tasks into two layers: support document finding and 

answer entity extraction, as seen in Figure 1 [1]. The inputs of the 

system include documents—HTML pages or plain texts—and 

users’ information needs—the search task description with 

required entity type. The output answers are ranked lists of 

entities. The first layer, support document finding, is to retrieve a 

very small subset of the support document collection which 

contains the answer entities for further extractions; and the second 

layer, answer entity extraction, extracts the answer entities from 

the documents. The support document finding only deals with 

word-independency factors and considers the term co-occurrences 

(i.e. the independence of the terms in the document) in order to 

Permission to make digital or hard copies of all or part of this work for 

personal or classroom use is granted without fee provided that copies are 

not made or distributed for profit or commercial advantage and that 

copies bear this notice and the full citation on the first page. To copy 

otherwise, or republish, to post on servers or to redistribute to lists, 

requires prior specific permission and/or a fee. 

SIGIR Workshop on the Entity-Oriented Search, July 23, 2011, Beijing, 

P.R. China. 

Copyright 2011 ACM 1-58113-000-0/00/0010…$10.00. 

 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by D-Scholarship@Pitt

https://core.ac.uk/display/12211316?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


efficiently find support documents. All the semantic related 

analyses, therefore, should be postponed into answer entity 

extraction. It is easy to understand that it should contain as many 

answer entities as possible. Moreover, its size should be as small 

as possible since the answer entity extraction is to detect the 

answer entities with complicated analysis which will be a time-

consuming task. The smaller the support document set, the more 

efficient the retrieval process is. 

With the probability model, we describe the entity retrieval 

problem in the TREPM model as ),|( tqep , that is, the probability 

of an entity e  to be the answer entity given the query q  and the 

target entity type t . If we consider all documents, then the 

formula changes to 

 

dd

tqdeptqdptqdeptqep ),,|(),|(),|,(),|(  

However, it is not efficient to calculate all document similarities, 

and detect the answer entities from all documents. Therefore, we 

choose support documents portdsup  to estimate this probability. 



portd

portport tqdeptqdptqep

sup

),,|(),|(),|( supsup
 

The first part, in fact, is the support document finding, and the 

second part is the answer entity extraction from the support 

documents. 

Support documents are slightly different from the conventional 

relevant documents because support documents need to meet two 

criteria: being as small as possible, and containing as many 

answer entities as possible. I use ―support‖ documents instead of 

―relevant‖ documents to distinguish them. For example, if we treat 

―Products of Medimmune, Inc.‖ as a document retrieval problem, 

the expected answer lists ranked in the decreasing relevant scores 

are http://www.ethyol.com/, http://www.Flumist. com/, and http:// 

www.medimmune.com/about_us_products.aspx because we 

expect the documents which directly answer the query ranking 

higher than the pages with miscellaneous information. In support 

document finding task, however, the expected rank list is reversed 

because a small set of support documents are preferred for further 

detection tasks, instead of exploring a huge number of documents.  

In this study, we propose a learning to rank method for the 

support document finding. That is, with the model learned from 

the training data sets, the system can predict the probability of a 

document to be the support document. This method can combine 

pre-defined features from various considerations for the ranking 

task. The machine learning method—logistic regression—is 

applied to predict the probability. Experiments on the TREC 

Entity Extraction Task (2009 and 2010) data sets evaluate whether 

the learning to rank method can improve support document 

finding. 

2 RELATED WORKS 
The main goal of this work is to investigate the methods 

efficiently finding the support documents in the entity retrieval 

tasks under the TREPM model. Previous work treats support 

document finding as a conventional document retrieval problem. 

For example, Fang et al applied the structured retrieval on 

document, passage and entity level to find the relevant documents 

[2]. McCreadie et al applied the similar idea of structure language 

models on webpage title and body level for document findings 

[3]. Zheng et al applied the language model but only on document 

and snippet (50-word window size) level [4]. Some other teams 

consider the query constructions to refine the queries issued to 

search engines. For example, Vydiswaran et al tried to identify the 

information needs (the narrative part of the topic) as a structured 

query which was represented as a relation including the relation 

description, the entity of focus, and the entity of interest [5]. 

Yang, Jiang, Zhang, & Niu, 2009 also did some query re-

constructions by adding the synonym of topic entities into the 

query for searches [6].  

Most systems treat support document finding as a conventional 

document retrieval problem: generate the various queries from 

information needs to collect support documents. However, this 

approach has the following limitations. Firstly, it is hard for a 

system to decide how to generate a proper query for a topic. For 

example, it is hard to decide whether it is better using topic 

entities as queries (e.g., ―Claire Cardie‖) or it is better using 

descriptions as queries (e.g., ―students of Claire Cardie‖) for a 

particular topic, especially when the topic is tricky. The query 

such as ―organizations that award Nobel prizes‖ is easily confused 

with the query like ―organizations awarded Nobel prizes‖. 

Secondly, the conventional document retrieval approach highly 

relies on the ranking, so that a proper threshold is required for 

cutting out the support documents. However, how to find the 

proper number for the threshold is hard. If the threshold is too 

high, it will bring a big support document set; if the threshold is 

too low, it will miss the low ranked support documents. 

Furthermore, the entity type is also important factor for finding 

support document, and how to integrate the type information in 

the retrieval, especially in the documents without category 

information, is also a problem. To tackle the problems of 

conventional document retrievals mentioned above, this work 

proposes a learning to rank method for support document 

findings.  

3 FINDING SUPPORT DOCUMENTS 

WITH THE LEARNING TO RANK 

APPROACH 
Learning to rank or machine learned ranking is a type of 

supervised machine learning method to automatically construct a 

ranking model from training data, such that the model can sort 

new objects according to their degrees of relevance, preference, or 

importance [7]. In this work, we interpret the support document 

finding task as a learning to rank problem. That is, a learning task 

predicts the probability of a document to be the support document 

according to the training data.  

 



Figure 2. the Learning to Rank Framework 

In recent years, more and more machine learning technologies 

have been used in information retrieval tasks for training the 

ranking model, such as the work on relevance feedback and 

automatically tuning the parameters of existing IR models. Most 

of the state-of-the-art learning to rank methods operates on the 

combining features extracted from query-document pairs through 

discriminative training, as seen in Figure 2. 

3.1 Learning to rank framework 
The approach for support document finding in this study adapts 

the same structures of the general learning to rank method. We 

summarize the framework as follows: 

 The input space is composed of feature vectors for each 

single document, represented as ),...,,...,( 21 mi xxxx , and the 

corresponding labels y , which indicate whether a document 

is a support document or. Therefore, the input training space 

is denoted as: 

 ),,...,,...(),...,,,...,,...),...(,,...,,...( 11
1111

1
nn

m
n
i

njj
m

j
i

j
mi yxxxyxxxyxxx

.
  

 The output space contains the prediction of the degree of 

each single document to be the support document according 

to the query, that is, ))...,,(|1( ,21 mxxxyp   

 The hypothesis space contains functions that take the feature 

vectors as inputs and predict the probability of a document to 

be a support document. The function will be learned from the 

training data set. Logistic regression is a generalized linear 

model used for the probability estimation. It was first used in 

the TREC-2 conference by Berkeley researchers [8], and 

then it was extended into the medical and social science 

fields. In this study, we also use logistic regression for 

support document finding for the probability estimation. 

Logistic regression uses a sigmoid linear function. That is, 

)exp(1

1
)),...,(|1(

0

1




i

ii

m
xww

xxyp
 

 The optimal function examines the accurate prediction of the 

ground truth label for each single document. With the 

logistic regression model, the prediction function directly 

predicts the probability of a document to be the support 

document with the given features. Therefore, The training 

data are used to estimate the parameters of iw . It will be 

calculated as following: 

 

j

j
m

jjjtt wxxypyww )],,...,|1([ 10
1

0   

For mi ,...,1  

 

j

j
m

jjjj

i
t
i

t
i wxxypyxww )],,...,|1([ 1

1   

Here,  is the step size. The iteration step will be continuous 

until the parameter converges.  

3.2 Features for the learning-to-rank method 
Applying the learning to rank method to support document 

finding raises the question: what types of information should be 

used in the learning process? Two principles are followed in the 

process of feature selections: the feature should not be limited by 

the instances; and the feature should be general enough and 

domain independent so that the model could be generalized to 

other topics regardless of the domain. According to the above two 

principles, four types of features are generated for support 

document finding: query features, document features, rank 

features, and similarity features. 

3.2.1 Query features 
Query features or linguistic features are selected according to the 

principle described in Jones’ studies [9]. They are the isolated 

characteristics of elements in queries (e.g., the length of query and 

the length of narrative) and hits (e.g., the percentage of overlap 

terms between the query and the document title). This study used 

the following features: 

EntityNarrative is the feature that indicates if the query is 

generated from the topic entity or the narrative of information 

needs. In the pilot study, we find that both query generations are 

useful for some topics. Therefore, in the learning to rank method, 

we choose both methods to generate queries: the topic entities as 

queries and the narratives as queries. 

EntityType is the target entity types required by each topic. Its 

value can be persons, locations, products, and organizations. 

LengthEntity is the character length of topic entities without stop 

words. 

LengthNarrative is the character length of narratives without 

stop words. 

LengthRelation is the absolute character length difference 

between the topic entity and the narrative without stop words, i.e., 

LengthRelation = |LengthNarrative-LengthEntity|. 

TokenLengthEntity is the token length of topic entities without 

stop words. 

TokenLengthNarrative is the token length of narratives without 

stop words. 

TokenLengthRelation is the absolute token length difference 

between the topic entities and the narratives without stop words, 

i.e., TokenLengthRelation = |TokenLengthNarrative -

TokenLengthEntity| 

IsSameEntity is to indicate whether topic entity has different 

entity surfaces in topic descriptions. If it is different, then the 

score is 1, otherwise it is 0. For example, the query described as 

―Journals published by the AVMA‖ has the topic entity of 

―American Veterinary Medical Associations‖ for the acronym 

term ―AVMA‖ in the narrative part. 

Hits is the numbers of relevant documents retrieved by the search 

engine.  

Hitstrend is a binary feature with the value of (1, -1). It compares 

the hits of the topic-entities-as-queries and the narratives-as-

queries for the same topic. If the number of hits from the topic-

entities-as-queries is larger than the number of hits from the 

narratives-as-queries, then Histrend = 1. Otherwise, Histrend = -1.  

3.2.2 Document features 
Document features describe the characteristics of documents. The 

Wikipedia pages are supposed to have more authoritative 

information, so they are more likely to be the support. In this 

work, we especially detect Wikipedia as an important source for 

support documents. In the future, other sources with high quality 

pages as support documents can be included, such as the entity’s 

homepage. We define the following features: 



IsWikipedia is a binary feature (1 or 0) to indicate whether this 

hit is from Wikipedia. 

IsEntityWikipedia is a binary feature (0 or 1) to indicate whether 

this hit refers to a Wikipedia page, whose entry name is the same 

as the topic entity itself. For example, for the topic of 

―Medimmune, Inc.‖, the value of IsEntityWikipedia is equal to 1 

for the hit of ―http://en.wikipedia.org/wiki/MedImmune‖. 

3.2.3 Rank features 
Rank related features are based on the rank information to 

indicate the popularity of the documents. These features can also 

give useful hints for support document findings. For example, we 

assume that the higher rank of a document, the more possible it is 

to be the support documents. We list the following features: 

DocRank is the rank of the returned URLs from the search 

engines for each query. 

RankScore is the normalized ranking score for each hit. It is 

calculated by summing up the reverse of rank for the same URL in 

the same topic. This score will merge the results on both the 

entities as queries and the narratives as queries. It is denoted as 

follows: 


URL

urlrank
URLRankScore

1
)( . 

NewRank is the new rank list ranked according to the RankScore, 

which considers the same URL in the same topic but retrieved by 

different queries. 

3.2.4 Similarity features 
Similarity features measure the similarity between the query and 

its retrieved document. We assumes that the shorter of the 

semantic distances (measured by the semantic similarity) between 

a query and a document, the higher chance it is a document to be 

the support document. For example, for the query of ―products of 

Medimmune Inc.", if the document title is also ―products of 

Medimmune Inc.", then it is highly probable to be a support 

document for this query. We design some term distance measures 

to estimate the similarity. However, term distance measures suffer 

some drawbacks, such as missing the corresponding synonym sets 

or abbreviation forms. For example, ―AVMA‖ is the acronym of 

―American Veterinary Medical Association‖. Therefore, semantic 

measurements are introduced. Some systems use a thesaurus to 

map the synonyms or abbreviations, e.g., WordNet or Wikipedia. 

Because it is hard to find the corresponding entries in the 

thesaurus for all queries narrated in sentences, an alternative, the 

WebDice coefficient, is introduced to the problem of word 

distances. They are defined as follows: 

TitlePrecision is the rate of the overlapping terms between a 

query and its retrieved document’s title to the number of terms in 

the query. This feature represents the similarity between a query 

and its hit. The terms exclude the stop words. For example, the 

TitlePrecision score of the topic ―Products of Medimmune, Inc.‖ 

is 0.667 for the document http://www.medimmune. com/ with the 

title of ―Medimmune, Inc.‖ The number of the overlapping terms 

in the query and the title is 2 (only the terms of ―Medimmune‖ 

and ―Inc‖ are counted), and the number of the terms in the query 

is 3 (only the terms of ―products‖, ―Medimmune‖ and ―Inc‖ are 

counted). 

.
)(___

)(___
sionTitlePreci

queryintermsofnum

titlequeryintermsofnum 
  

TitleRecall is the rate of the overlapping terms in the query and in 

the returned documents’ titles to the number of terms in the title 

which represents the similarity between a query and its hits. Here, 

the terms exclude the stop words. For example, the TitleRecall 

score of the topic ―Products of Medimmune, Inc.‖ is 1 for the 

document http://www.medimmune.com/ with the title of 

―Medimmune, Inc.‖. The number of the overlapping terms 

between the query and the document is 2 (only the terms of 

―Medimmune‖ and ―Inc‖ are counted), and the number of the 

terms in the query is 2 (only the terms of ―Medimmune‖ and ―Inc‖ 

are counted). 

.
)(___

)(___
lTitleRecal

titleintermsofnum

titlequeryintermsofnum 
   

TitleDistance is the feature to measure whether the query terms 

are close to each other in the title part. We assume that a 

document with its title containing all query phrases close to each 

other is more relevant than one with the title containing the query 

keywords in a large window size. TitleDistance is the rate of 

query length to the scope of query terms in the title, as follows: 

)_____(___

)(___
nceTitleDista

titleintermsqueryofscopeintermsofnum

queryintermsofnum


 
ContentPrecision is similar to TitlePrecision, but replaces the 

title part for the hit’s content. 

ContentRecall is similar to TitleRecall but replaces the title part 

for the hit’s content part. 

ContentDistance is similar to TitleDistance, which measures the 

query terms in the content part.  

.
)_____(___

)(___

tanceContentDis

Contentintermsqueryofscopeintermsofnum

queryintermsofnum


 

WebDiceOrg is to define the similarity between two queries by 

measuring the Web space similarity of two relevant documents 

retrieved by the two queries for the same topic. It is the 

approximation of F-measure in the web. Page counts of the query 

―P AND Q‖ can be considered as the co-occurrence of two words 

―P‖ and ―Q‖ on the web. For example, the page count of the query 

of ―Journals published by the AVMA" is 145,000. The page count 

for the document of ―AVMA Journals" is 245,000. The page 

count for the document of ―AVMA Journals - Reprints, ePrints, 

Permissions" is 159. From the page count similarity, ―Journals 

published by the AVMA" is closer to ―AVMA Journals" than 

―AVMA Journals - Reprints, ePrints, Permissions". The 

WebDiceOrg coefficient is to measure this similarity. Moreover, 

this coefficient has been demonstrated to outperform the other 

three modified co-occurrences (i.e. WebJaccard, WebOverlap, and 

WebPMI) in [10]. Therefore, in this study, we only use 

WedDiceOrg. The WebDiceOrg is defined as follows:  
















otherwise

titleHqueryH

titlequeryH

ctitlequeryHif

titlequeryWebDiceOrg

)()(

)(2

)((0

),(

 

where H(query) denotes the page counts for the query of ―query" 

in a search engine, and d denotes the page counts for the query of 

―query and title". c is a predefined threshold (e.g., c=5) to reduce 

the adverse effects caused by the random co-occurrence. 

WebDice is the normalized WebDiceOrg score with the maximum 

value of WebDiceOrg, so that its value is between 0 and 1: 



,*))(max(

),(
),(

queryWebDiceOrg

titlequeryWebDiceOrg
titlequeryWebDice   

4 EVALUATION 
Seventy topics from the TREC entity retrieval 2009 and 2010 are 

used for the evaluation. The evaluation measurements are 

precision, recall and F-measure. Two experts were involved in 

assessing the ground truth of support documents for each topic. 

The requirement for the support document markup is to find at 

least one support document, which can provide the answers, for 

each topic. Moreover, the requirement for Wikipedia articles is to 

find corresponding Wikipedia articles for each topic if they exist. 

There are total 74 supporting documents annotated. The steps for 

support document annotations are as follows: firstly, experts 

generate proper queries to a search engine to find the possible 

support documents. Then according to the rank hits returned by 

the search engine, two annotators evaluate whether the hit is the 

support document for further answer entity extracting. For every 

topic, at least one support document must be found, and if there 

are more than ten support documents found, annotators only judge 

the first ten hits. 

The experiment was designed to investigate whether the learning 

to rank approach can improve the performance of support 

document finding compared to the baseline systems.  

 Baseline System I: the topic entities as queries for support 

document findings. In the experiment, we use the Google 

search engine and only consider the top 16 documents as 

support documents for the evaluation. 

 Baseline System II: the narrative as queries for support 

document findings. The Google search engine is used to 

collect the support documents, and only top the 16 

documents are considered as support documents for the 

evaluation.  

 Baseline System III: the mixture support document rank list 

from the topic entities as queries and the narrative as queries. 

The mixture support document list ranks the documents from 

Baseline System I and Baseline System II with the following 

score: 


query rank querydocOrignal

docds
),(

1
)(  

 Experiment system: the learning to rank algorithm trains a 

model based on the features mentioned above and then 

applies this model to estimate the support document finding. 

The support documents are the documents from Baseline 

System I and Baseline System II. The document information 

includes their rankings, hits’ URLs, hits’ titles, hits’ 

summaries, and query’s page counts. For each hit, we mark 

down whether it is the support document according to the 

reference standard, i.e., whether this page contains the 

answer entities (ground truth). If this page contains the 

answer, it will be labeled as 1; otherwise, it will be labeled as 

0. For the learning to rank algorithm, a ten-fold cross 

validation will be conducted. Firstly, the corpus is randomly 

divided into 10 folds. Every time, we train on the 9 folds and 

test on the last fold. The logistic regression can estimate the 

probability of a document to be the support document. We 

rank the documents according to the probabilities and choose 

the top 16 documents as support documents for the 

evaluation. With the 16 documents, precision, recall, and f-

measure are calculated. The final precision, recall, and f-

measure are the average results of the 10-fold evaluation. 

4.1 Results 
Figure 2 shows the results of the baseline systems and the learning 

to rank method for the support document findings. Precision, 

recall, and f-measure at rank 1 to 16 are reported. The logistic 

regression method is applied to learning based method, and the 

results are the average score of the 10-fold cross validation. 

Comparing the two baseline systems, Baseline System II (the 

narratives as queries) is significantly better than Baseline System I 

(the entities as queries) (for the two-tail t-test, p<0.0001). This 

indicates that in most cases, the narrative parts still are the better 

sources for the support document finding. There are no significant 

differences between Baseline System II (the narratives as queries) 

and Baseline System III (the mixture model) for the precision, 

recall, and the f-measure. The precision and f-measure of the 

learning to rank method are significantly better than the three base 

systems (for two-tail t-test, p<0.0001). However, there is no 

significant difference in recall.  

 

 

 

Figure 2. Precision, Recall, and F-measure for the Baseline 

Systems and the Learning to Rank method 

With Figure 2 of the error rates on four topic types, we found that 

for the learning to rank method for the support document finding, 

the topics about products are the hardest. We can see that the 

errors from products are higher than the other three. One reason is 

that the type of products usually is general category names, which 

need to be clarified in the special retrieval task. For example, CDs 



and software are assigned as products. Another reason is that the 

training sets for the products are too small. 

Table 2: The Error Rates of Four Topic Types 

Topic Types All Numbers Error 

Numbers 

Percentage 

locations 224 3 0.013393 

organizations 1408 55 0.039063 

persons 480 20 0.041667 

products 96 9 0.09375 

 

Furthermore, the co-efficiency study for all features used in the 

learning to rank method is conducted. The higher score of the 

feature, the more important it is in the model. We discuss the 

results as follows: The Wikipedia entity page is one of the most 

important features. When a document from a Wikipedia page with 

the same entry as the entity name, it is more valuable than the 

other Wikipedia pages, according to the weight scores of 

isWikipedia and isEntityWikipedia. The rank of the document in a 

ranked list is also another factor in the learning method, especially 

the normalized ranking score which merges the multiple query 

results. If a document keeps appearing in the returned lists from 

different queries for the same topic, it has a higher probability be 

a support document. Except for the type of products, entity types 

have low effects on the learning. It is a hint that the more 

complicated entity type (e.g., products), the more important it is in 

the support document finding. Term length measures are better 

than the character length measures, which can be concluded from 

the weights of NarrativeTermLength vs NarrativeLength and 

EntityTermLength vs EntityLength. The document title part is 

more important than the hit’s abstract part for the similarity 

measure between the query and the document. The ―recall‖ of the 

query in the hit’s title and abstract is more important than the 

―precision‖. It can be concluded from that ContentRecall, 

TitlePrecision, and TitleRecall are more important than 

ContentPrecision. Webdice does help to recognize the support 

documents, but the various hit measurements, such as query hits, 

have no effects. 

5 CONCLUSION AND FUTURE WORKS 
The task of support document finding is to find the documents 

containing the answer entities effectively and efficiently. In 

previous work, the conventional document retrieval is the most 

popular method for the support document finding. However, this 

method is threatened by some limitations. The learning to rank 

method is applied for this task, and the various features are 

discussed. Although in most cases the narrative part is the best 

source for query generation, in some cases it will destroy the 

support document findings. For example, when the answer entities 

are only part of the Web pages (e.g., ―students of Claire Cardie‖), 

the topic entity is a better choice for the query generation. The 

direction of relation between the topic entities and the answer 

entities is another difficulty for query generation. For example, 

the query of ―organizations that award Nobel prizes‖ presents the 

relation between answer entity (organization) and topic entity 

(Nobel prizes) as ―award‖, which is the same as the query of 

―organizations that were awarded Nobel prizes‖ in the retrieval 

task with the assumption of the bag-of-words. It is also hard to 

find the support documents for topics using some terms never 

appearing in the corpus, such as ―What are some of the spin-off 

companies from the University of Michigan?‖ With the above 

considerations, the lists of candidate support documents from 

different query generation strategies are generated. We propose a 

logistic regression method to estimate the probability of each 

document to be the support document by considering the above 

features. There are a total of 28 features used for the task, and they 

cover query features, hits features, and linguistic features. The 

results indicate that the learning to rank method is significantly 

better than the three baseline systems which treat the support 

document finding as a conventional document retrieval problem. 

Although the learning to rank method can improve the precision 

of the support document finding, the recall is still low. In future 

studies, we will investigate methods to improve the discovery of 

the more support documents. 

REFERENCES 
[1] Li, Q. and He, D. 2010. Searching for Entities: When 

Retrieval Meets Extraction. The Nineteenth Text Retrieval 

Conference (TREC 2010). Gaithersburg, MD. 

[2] Fang, Y., Si, L.; Yu, Z.; Xian, Y.; Xu, Y. 2009. Entity 

Retrieval with Hierarchical Relevance Model,Exploiting the 

Structure of Tables and Learning Homepage Classiers. .the 

Eighteenth Text REtrieval Conference (TREC 2009). 

Gaithersburg, MD. 

[3] McCreadie, R., et al. University of Glasgow at TREC 2009: 

Experiments with Terrier. 2009. the Eighteenth Text 

Retrieval Conference (TREC 2009). Gaithersburg, MD. 

[4] Zheng, W. et al. UDEL/SMU at TREC, 2009, the Eighteenth 

Text Retrieval Conference (TREC 2009). Gaithersburg, MD. 

[5] Vydiswaran, V., Ganesan, K., Lv, Y., He, J., and Zhai, C. 

(2009). Finding Related Entities by Retrieving Relations: 

UIUC at TREC 2009 Entity Track. In Proceedings of the 

Eighteenth Text REtrieval Conference (TREC 2009). 

[6] Yang, Q., Jiang, P., Zhang, C., and  Niu, Z. (2009). 

Experiments on Related Entity Finding Track at TREC 2009. 

In Proceedings of the Eighteenth Text Retrieval Conference 

(TREC 2009). 

[7] Liu, T.-Y. (2009). Learning to Rank for Information 

Retrieval. Foundation Trends of Information Retrieval. 

[8] William S. Cooper, Fredric C. Gey, and Daniel P. Dabney. 

Probabilistic retrieval based on staged logistic regression. 

In 15th Annual International ACM SIGIR Conference on 

Research and Development in Information Retrieval, 

Copenhagen, Denmark, June 21-24, pages 198–210, New 

York, 1992. ACM. 

[9] Jones, R., Rey, B., Madani, O., and Greiner, W. (2006). 

Generating query substitutions. In Proceedings of the 15th 

international conference on World Wide Web, WWW’06, 

page 387-396, New York, USA.  

[10] Bollegala, D., Matsuo, Y., and Ishizuka, M. (2007). 

Measuring semantic similarity between words using web 

search engines. In Proceedings of the 16th international 

conference on World Wide Web, WWW '07, pages 757{766, 

New York, NY, USA. 

 




