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APPLICATION OF ADVANCE STATISTICAL METHODS 
IN AN AGING DATASET 

 
Karina Nelly Alvarez, M.S. 

University of Pittsburgh, 2012 

 

The focus of this thesis was to explore the application of advanced statistical methods in 

the Ginkgo Evaluation of Memory (GEM) Study. GEMS enrolled 3,069 participants age 75 or 

older with normal cognition or mild cognitive impairment. Those with dementia were excluded 

from participation. After extensive medical and neuropsychological screening, participants were 

randomly assigned to receive twice-daily doses of either 120 milligrams of ginkgo extract or an 

identical-appearing placebo. The 240 milligrams daily dose of ginkgo was selected based on 

current dosage recommendations and prior clinical studies indicating possible effectiveness at 

this dosage. The products used in the study were supplied by Schwabe Pharmaceuticals, a 

German company. We focused on two methods, a flexible Cox model (Gray’s model) and a 

trajectory procedure based on a mixture model that is implemented in the SAS procedure PROC 

TRAJ. The spline-based extension of the Cox model was applied to biomarker data; specifically: 

Cystatin-C, Beta Amyloid 40, Beta Amyloid 42, and a ratio of Beta Amyloid 42 over Beta 

Amyloid 40. We wanted to determine if the estimate of the log-hazard ratio changed over time 

for each of the biological measures. The trajectory analysis was used to determine if a patient’s 

illness trajectory continued on the same path towards demented or non-demented before 

experiencing a pneumonia event. The trajectory analysis was applied to the longitudinal 

trajectories of activities of daily living (ADL), independent activities of daily living (IADL) and 

modified mini-mental status exam (3MSE). The Cox Spline analysis resulted in no statistically 

significant information added to the models using the spline analysis. Trajectory analysis 
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concluded that patients on a downward trajectory at baseline only escalated before the 

pneumonia event. As the average life expectancy continues in increase in humans, it is important 

to evaluate statistical methods in the elderly population to identify subpopulations that need more 

medical attention than the population at large. Thus, the public health significance of this thesis 

is that by identifying these subgroups that are distinctly different from the overall population, we 

can provide preventative care where needed more efficiently.  



 vi 

TABLE OF CONTENTS 

1.0 INTRODUCTION ........................................................................................................ 1 

1.1 RCT DESIGN ....................................................................................................... 2 

1.2 OBJECTIVES ...................................................................................................... 3 

1.2.1 Pneumonia ........................................................................................................ 3 

1.2.2 Dementia ........................................................................................................... 3 

2.0 METHODOLOGY ....................................................................................................... 4 

2.1 PARTICIPANTS ................................................................................................. 4 

2.2 MEASURES ......................................................................................................... 4 

2.3 EXPERIMENTAL DESIGN .............................................................................. 5 

2.4 MEDICATION ADMINISTRATION ............................................................... 5 

2.5 DATA ANALYSIS ............................................................................................... 6 

2.5.1 Trajectory Models ........................................................................................... 6 

2.5.2 Trajectory Criteria .......................................................................................... 9 

2.5.3 Cox Spline Models ......................................................................................... 10 

2.5.4 Cox Spline Assumptions & Diagnostics ....................................................... 11 

2.5.5 Missing Data ................................................................................................... 11 

3.0 RESULTS ................................................................................................................... 13 

3.1 DEMOGRAPHIC CHARACTERISTICS ...................................................... 13 



 vii 

3.2 TRAJECTORY ANALYSIS ............................................................................. 13 

3.2.1 ADL/IADL ...................................................................................................... 14 

3.2.2 3MSE............................................................................................................... 18 

3.3 COX SPLINE ANALYSIS ................................................................................ 20 

3.3.1 Beta Amyloid 40 ............................................................................................. 21 

3.3.2 Beta Amyloid 42 ............................................................................................. 22 

3.3.3 Beta Amyloid (40/42) ..................................................................................... 23 

3.3.4 Cystatin-C....................................................................................................... 24 

3.3.5 Biomarker Comparison ................................................................................ 25 

4.0 DISCUSSION ............................................................................................................. 26 

4.1 CONCLUSIONS ................................................................................................ 26 

4.1.1 Trajectory Analysis ....................................................................................... 26 

4.1.2 Flexible Cox Model ........................................................................................ 26 

4.2 PUBLIC HEALTH ASPECT ........................................................................... 27 

APPENDIX A: SUMMARY VARIABLES .............................................................................. 28 

APPENDIX B: GLOSSARY OF ACRONYMS ....................................................................... 32 

APPENDIX C: SAS SOURCE CODE ...................................................................................... 33 

APPENDIX D: R SOURCE CODE .......................................................................................... 37 

BIBLIOGRAPHY ....................................................................................................................... 39 



 viii 

 LIST OF TABLES 

 

Table 1. Group Membership for ADL .......................................................................................... 15 

Table 2. Group Membership for IADL ......................................................................................... 17 

Table 3. Group Membership for 3MSE ........................................................................................ 19 

Table 4. Biomarker Comparison ................................................................................................... 25 

Table 5. Comparison of dementia cases to non-cases at baseline from 2000 to 2008 .................. 29 

Table 6. Log – Hazard Ratio for Beta-40 over time ..................................................................... 30 

Table 7. Log – Hazard Ratio for Beta-42 over time ..................................................................... 30 

Table 8. Log – Hazard Ratio for Beta ratio (40/42) over time ..................................................... 31 

Table 9. Log – Hazard Ratio for Cystatin-C over time ................................................................. 31 



 ix 

LIST OF FIGURES 

 

Figure 1. Adapted from Jones’s Graphical Representation of the Independence Assumption in 

Trajectories (Jones, Nagin and Roeder) .......................................................................................... 8 

Figure 2. ADL Trajectory ............................................................................................................. 16 

Figure 3. IADL Trajectory ............................................................................................................ 18 

Figure 4. 3MSE Trajectory ........................................................................................................... 20 

Figure 5. Beta-40 Log – Hazard Ratio over time with 95% CI .................................................... 22 

Figure 6. Beta-42 Log – Hazard Ratio over time with 95% CI .................................................... 22 

Figure 7. Beta ratio (42/40) Log – Hazard Ratio over time with 95% CI .................................... 23 

Figure 8. Cystatin-C Log – Hazard Ratio over time with 95% CI ............................................... 24 



 1 

1.0  INTRODUCTION 

Ginkgo biloba is among the most extensively studied herbs in use today. There have been claims 

that the herb helps to treat blood disorders and enhance memory. Some scientific studies have 

found evidence that supports these claims, others have found no association. Regardless of the 

conflicting findings, it is still believed by many that ginkgo may be help treat dementia, 

including Alzheimer's disease, and intermittent poor circulation in the legs and shows promise 

for enhancing memory in older adults (University of Maryland Medical Center).  

In an attempt to formally answer questions about Ginkgo biloba’s effectiveness as a 

treatment for a variety of illnesses, a randomized, double-blind clinical trial was created. The 

trial is known as the Ginkgo Evaluation of Memory Study (GEMS).  The primary focus of the 

study was to determine the effect of 240mg/day Ginkgo biloba in decreasing the incidence of 

dementia and specifically Alzheimer's disease (AD).  Secondary outcomes included: number of 

participants with the indicated cardiovascular disease or mortality and the progression of 

cognitive decline in standardized z-score scale (Steven T. DeKosky). More information about the 

trial can be found at clinicaltrials.gov, using identifier NCT00010803.  

From this trial, came a rich dataset. The dataset was filled with years and years of 

measures from the same 3,069 participants that included everything from age, gender and BMI to 

information on cardiovascular illnesses. Our analysis focused on the cognitive measures 

collected from the subjects. We wanted to utilize the advanced statistical methods of trajectory 

analysis and the flexible Cox Model, also known as Gray’s model, to determine the relationship 

between dementia, pneumonia, biomarkers and time.  
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In order to analyze the relationship between dementia and pneumonia, understanding 

cognitive function and functional status prior to hospitalization for pneumonia is important. 

Pneumonia could merely be a marker for those with rapidly declining cognitive function, and the 

relationship between pneumonia and dementia may not be causal. Therefore, longitudinal 

measures of cognition and functional status prior to pneumonia could be an important 

confounding factor. Using trajectory analysis, we estimated the probability of group membership 

for different trajectories for GEMS participants.  

Similarly, although the exact cause if AD is still unknown, the consensus is that the 

accumulation of beta amyloid (Abeta) peptides in the senile plaques is one of the hallmarks of 

the progression of the disease (Rajendran L). Using the flexible Cox model, we were able to 

calculate the varying log-hazard ratios of biomarkers, like Abeta, over time to determine if there 

was an increased hazard of developing dementia associated with time.  

1.1 RCT DESIGN 

The Ginkgo biloba trial was designed to be a randomized, double-blind, placebo controlled 

clinical trial. By randomizing the subjects, we eliminated the potential bias due to differences in 

subject characteristics, both known and unknown. Double blinding ensures that neither the 

subjects nor the administrators know who is receiving the active treatment (G. Biloba) or the 

placebo treatment. The study was conducted in five academic medical centers in the United 

States between 2000 and 2008 (Steven T. DeKosky and al.) 
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1.2 OBJECTIVES 

1.2.1 Pneumonia 

 Determine if pneumonia hospitalization increases the risk of dementia in older adults. Using 

trajectory analysis, we examined: functional status, activities of daily (ADL) and independent 

ADL (IADL); for cognitive function, we used the Teng’s modified mini-mental status 

examination (3MSE).  

1.2.2 Dementia 

Using flexible Cox regression models, we wish to determine if the amount of biomarker fluid 

(Cystatin-C, beta amyloid 40 (Beta-40), beta amyloid 42 (Beta-42)) found in the body are stable 

from the start of the clinical trial to when subject developed dementia.  
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2.0  METHODOLOGY 

2.1 PARTICIPANTS  

The Ginkgo Evaluation of Memory (GEM) Study enrolled 3,069 community volunteers aged 75 

or older with normal cognition or mild cognitive impairment. Starting in September 2000 to June 

2002, subjects were recruited using voter registration and other purchased mailing lists from 4 

US communities with academic medical centers: Hagerstown, Maryland (Johns Hopkins); 

Pittsburgh, Pennsylvania (University of Pittsburgh); Sacramento, California (University of 

California–Davis); and Winston-Salem and Greensboro, North Carolina (Wake Forest 

University). Participants were required to identify a proxy willing to be interviewed every 6 

months at the time of each study visit. Signed informed consent was obtained from participants 

(Steven T. DeKosky and al.). Those with dementia were excluded from participation. An 

exhaustive exclusionary list and criteria for dementia and mild cognitive impairment can be 

found elsewhere (Steven T. DeKosky and al.) 

2.2 MEASURES 

Diagnosis of dementia was a primary endpoint of GEM study and was determined using DSM-

IV criteria and included full neuropsychological evaluation, neurological exam, and magnetic 
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resonance imaging when participants when they showed decline on cognitive testing battery, had 

memory problems, or were prescribed medications to improve memory. Pneumonia was 

identified from hospitalization records of adverse events. ADL, IADL, and 3MSE measurements 

were obtained every 6 months. Cystatin-C, Beta-40 and Beta-42 were taken only at baseline and 

in the 9th year of the study. 

2.3 EXPERIMENTAL DESIGN 

Participants were randomly assigned to receive twice-daily doses of either ginkgo extract or an 

identical-appearing placebo. Assignment to treatments G biloba or placebo was determined by 

permuted-block design by site to ensure balanced allocation between groups. All clinical, 

coordinating personnel and participants were blinded to treatment assignment. The only 

exceptions were site personnel responsible for monitoring serious adverse events and reporting to 

the study’s data and safety monitoring board and the study pharmacist, who allocated the 

medication into batches, knew which medication was active. All of these personnel were 

unaware of participant information and had no contact with participant (Beth E. Snitz and al.). 

2.4 MEDICATION ADMINISTRATION 

For participants receiving the active treatment, they received twice-daily doses of either 120 

milligrams of ginkgo extract. Controls were given an identical-appearing placebo. The 240 

milligrams daily dose of ginkgo was selected based on current dosage recommendations and 
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prior clinical studies indicating possible effectiveness at this dose. The products used in the study 

were supplied by Schwabe Pharmaceuticals, a German company. Subjects were given 6-month 

supplies of treatment in blister packs upon every visit. They were asked to return the blister 

packs during the next 6-month visit.  

2.5 DATA ANALYSIS 

2.5.1 Trajectory Models  

The first was a trajectory modeling technique that created clusters of similar trajectories. The 

trajectory model is based on a discrete mixture model. This model allows for data grouping using 

different parameter values for each group distribution. This allows us to identify distinct 

subpopulations in the data that would not be seen if the data were to be analyzed assuming the 

same parameter values.  Three types of distributions are offered within the trajectory method:  

censored (or regular) normal (CNORM), zero inflated (or regular) Poisson (ZIP), and Bernoulli 

distributions (logistic model). The method can also handle data with average values changing 

smoothly as a function of a dependent variable such as time; some sharp changes can be handled 

through the inclusion of time dependent covariates. We adapted the ZIP and CNORM model in 

particular to our dataset.  

Zero-inflated Poisson regression is used to model count data that has an excess of zero 

counts. It assumes that with probability p, the only possible observation is 0 and with probability 

1 – p, a Poisson (λ) random variable is observed.  From a regression model, p is calculated from 

the coefficients as follows: 
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p(x) = � 0
𝑃𝑜𝑖𝑠𝑠𝑜𝑛 (λ)

�  𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝜌
𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 1 −  𝜌 

 
ln(λ) = 𝛽0 + 𝛽1𝑋1 +  𝛽2𝑋2 +  … . . + 𝛽𝑥𝑥𝑥 

 

𝜌 =  
𝑒𝛽0+ 𝛽1𝑋1+ 𝛽2𝑋2+⋯+ 𝛽𝑥𝑥𝑥

1 + 𝑒𝛽0+ 𝛽1𝑋1+ 𝛽2𝑋2+⋯+ 𝛽𝑥𝑥𝑥
 

 

Here, lambda (λ) is the mean of the Poisson distribution. The regression coefficients can also be 

combined to calculate the lambda of the distribution. Due to the exponential feature of the 

passion distribution, one must take the log of the sum of the coefficients to calculate lambda as 

shown above. 

The second model used in the dataset was the CNORM. The CNORM distribution 

follows all the requirement of the normal distribution along with user defined minimum (a) and 

maximum (b) values. The function is definite as P(Yi = yi|Ci = k, Wi = wi) = : 

 

� Φ �
Min −  µijk

σ �
𝑦𝑖𝑗=𝑀𝑖𝑛

�
1
𝜎
𝜑 �

𝑦𝑖𝑗 −  𝜇𝑖𝑗
𝜎

�
𝑀𝑖𝑛<𝑦𝑖𝑗 <𝑀𝑎𝑥

� �1 −  Φ �
Max −  µijk

𝜎 ��
𝑦𝑖𝑗=𝑀𝑎𝑥

 

𝜇𝑖𝑗𝑘 =  𝛽0𝑘 + X1𝑖𝑗𝛽1,𝑘 + X2𝑖𝑗𝛽2𝑘 +  … +  𝑤𝑖𝑗𝛿𝑘 

 

where Φ denotes the cumulative distribution function of the standard normal distribution and ϕ 

denotes the probability density function of the standard normal. The mean of the CNORM 

distribution is the sum of the beta coefficients from the regression model.  



 8 

We assume the risk factors for each subject, Z’ and the data trajectory for each subject 

consisting of the repeated measurements over T measurement periods, Y’, are independent given 

the grouping, Ci.  

 

 

Figure 1. Adapted from Jones’s Graphical Representation of the Independence Assumption in Trajectories 

(Jones, Nagin and Roeder) 

 

The conditional distribution of the observable data for subject i, given risk factors and a time-

dependent covariate, W’, given K groups equals: 

 

𝑓(𝒚𝑖|𝐳𝑖 ,𝐰𝑖) =  �𝑃(𝐶𝑖 = 𝑘|𝒁𝑖 =  𝒛𝑖)𝑃(𝒀𝑖 =  𝒚𝑖|𝐶𝑖 = 𝑘,𝑾𝒊 =  𝒘𝑖)
𝐾

𝑘=1
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The time-stable covariate effect on group membership is modeled, with a generalized logit 

function: 

 

𝑃(𝐶𝑖 = 𝑘 |𝑍𝑖 =  𝑧𝑖  ) =  
𝑒𝑥𝑝(𝜃𝑘 +  𝛌𝒌𝒛𝒊)

∑ exp (𝜃𝑙 +  𝛌𝒍𝒛𝒊)𝑘
𝑙=1

 

 

Here Pr(Yi = yi | Ci = k,Wi = wi) is the section of the modeling that the user chooses; it is here 

where Proc Traj allows us the option of modeling three different distributions (Jones, Nagin and 

Roeder).   

2.5.2 Trajectory Criteria 

The best model will be selected using two important factors: convergence and Bayesian 

Information Criterion (BIC). A sequence of numbers, Yn, converges in law to Y if and only if 

E[f(Yn)] → E[f(Y)] for every bounded continuous real-valued function f (E.L. Lehmann).  Within 

the trajectory macro, convergence is assessed and its status is given along with the output. 

Because the function, f, and order of degree are determined by the user and not the program, it is 

important to check the convergence for every model run. From here, we will determine the best 

model via significance levels of coefficients. Model adjustment will be done by increasing or 

decreasing the degree of the models and/or by removing or adding a group.  
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2.5.3 Cox Spline Models 

The flexible Cox spline model, more commonly known as Gray’s model, consists of a flexible 

approach to using fixed knot splines with a small number of knots to model aspects of the data.  

The penalized partial likelihood was used to estimate the parameters of the model and determine 

significance. The models allow both linear terms and flexible spline functions of covariates. Let 

x be the linear terms and z be the covariates for the spline terms, for subject i. The covariates can 

be fixed or time-varying. The hazards model for the hazard for the ith subject then becomes: 

 

λ(t|𝑥𝑖 , 𝑧𝑖) =  λ0(t)exp�x′iβ +  ∑ fj�zij�s
j=1 �  

 

Where λ0(t) the unspecified underlying hazard function and β is is a (column) vector of 

unknown parameters. M is the number of interior knots in each of the splines. Knot locations are 

roughly equal numbers of data points apart. The spline parameterization is as follow: 

 

𝑓𝑗(𝑧) = 𝜃𝑗0𝑧 +  � 𝜃𝑗𝑘𝐵𝑗𝑘(𝑧)
𝑀+2

𝑘=1
 

 

Here, Bjk is equal to the standard cubic B-spline basis functions (Gray). The fully penalized log-

likelihood function is calculated with: 

 

𝐿𝑝(η) = 𝐿(η) −  
1
2

 � λ𝑗𝜃′𝑗𝑃𝑗𝜃𝑗
𝑠

𝑗=1
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where λj controls the amount of smoothing applied, with λj = 0 corresponding to no penalty and 

λj → ∞ forcing fj(z) = θjoz. This creates the vector θj. L(η) is equal to Cox’s log partial-

likelihood and Pj is a nonnegative definite matrix . Explanation of the creation of the fully 

penalized log-likelihood function goes outside the scope of this paper.  

2.5.4 Cox Spline Assumptions & Diagnostics  

One of the most important assumptions of the proportional hazard model is that the effects of the 

covariates on the hazard do not change with time (Gray). The flexible spline analysis allows for 

this type of modeling. The final model will be selected through a trial and error approach that 

will determine the minimum number of knots needed to adequately represent the changes in the 

log-hazard ratio. Diagnostics will take the form of comparing log-likelihoods as outputted from 

the R package.  

2.5.5 Missing Data 

Data will be assumed missing at random (MAR). Some of the missingness is monotonic, 

meaning that once a subject does not have their information recorded for visit(i), all visits 

proceeding it, visit(i+1) are likely to also be missing. This is not always the case.  There is no 

missingness in dementia outcome or pneumonia outcome. The two methods were conducted on 

two different subsets of the data. The Cox Spline analysis is based on a subset containing n = 

2491. This subset was created by dropping subjects whose endpoint was anything other than end 

of study or dementia. The amount of missingness in this subset is ~1%. For the pneumonia 
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dataset, we were able to use data from all subjects. Missingness in the total dataset for our 

variables is ~0.2%. 
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3.0  RESULTS 

3.1 DEMOGRAPHIC CHARACTERISTICS 

The models created in this analysis were unadjusted; no demographic information was used nor 

multivariable analysis conducted. We summarized some of the characteristics of the participants 

for both datasets in Appendix A.  

3.2 TRAJECTORY ANALYSIS 

Pneumonia hospitalizations information was collected from the subjects from record of adverse 

events. Of the 3,069 subjects, 221 cases of pneumonia were identified. The trajectory analysis 

was used to determine if functional status and cognitive abilities were affected after a pneumonia 

event. Cognitive abilities were measured using the 3MSE. Functional status was determined by 

self-reported difficulty with at least one activity of daily living (ADL) or one independent 

activity of daily living (IADL).   

To create the pre-pneumonia and post-pneumonia event values, two different censoring 

variables were created from the patient data.  A censoring variable was created for each variable. 

The pre-pneumonia variables (pre-3MSE, pre-adl, pre-iadl) were created by censoring out values 

of the respective variables by replacing any measure taken after the pneumonia event with a 
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missing value (“.” in SAS). The post-pneumonia variables (post-3MSE, post-adl, post-iadl) were 

created in a similar but opposite fashion; all values taken before the pneumonia event were 

replaced by a missing value. For subjects that did not experience a pneumonia event, their values 

were all contained in the pre-pneumonia variables.  

3.2.1 ADL/IADL 

Subjects’ ADL/IADL values are considered to be worse as the values increase over time. This 

indicates an increasing number of daily functions a subject has trouble with.  

 

ADL 

The final model for ADL consists of three groups; the three groups have different 

estimates representing each one. For members in group one, it required a linear model to 

represent their illness trajectory. Of the cohort, 60.95% of the subjects were selected to be in this 

group. Group 1 members represent a subset of the population that experiences very little change 

in their ADL over time. In addition, Group 1 members were also the “most functional” subset in 

that their ADL scores were all around zero. All coefficients were statistically different from zero, 

p-value < 0.05.  

Group 2 members have a very similar model. The main difference between the two 

groups is that the intercept for group 2 was higher, β0(ADL, G1) = -3.34 vs. β0(ADL, G2) = -0.85, 

indicating that group 2 members started worse in daily functions than group 1 members. Group 2 

members also experienced little change over time; 32.39% of the cohort was selected to be in 

group 2. All coefficients were statistically different from zero, p-value < 0.05. 
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In contrast to the previous ADL group, group 3 members required a cubic model to 

represent their change in ADL over time. First off, their intercept was β0(ADL, G3) =  0.16, the only 

positive intercept. Group 3 members started with the highest value of ADL and only continued to 

increase over time. All coefficients were statistically different from zero, p-value < 0.05. Group 3 

represented 6.66% of the cohort.  

 

Table 1. Group Membership for ADL 

Group 

Membership 
Parameter Type Estimate 

Standard 

Error 
Prob > |t| 

Percent of 

Cohort 

1 
Intercept -3.34 0.11 0.0000 

60.95 % 
TIME 0.0004 0.00007 0.0000 

2 
Intercept -0.85 0.45 0.0000 

32.39 % 
TIME 0.0002 0.00003 0.0000 

3 

Intercept 0.16 0.07 0.0162 

6.66 % TIME 0.0006 0.0001 0.0000 

TIME2 -0.000* 0.000* 0.0022 

*Number too small, not reported by macro; BIC = -14310.32 
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Figure 2. ADL Trajectory 

IADL 

The final model for IADL also consists of three groups.  For members in group one, it 

required a quadratic model to represent their illness trajectory. Of the cohort, 46.99% of the 

subjects were selected to be in this group. Group 1 members represent a subset of the population 

that experiences very little change in their IADL over time. Similar to Group 1 in ADL, Group 1 

members were also the “most functional” subset. The coefficient for squared variable was 

statistically different from zero, p-value < 0.05. The linear variable was marginally statistically 

different from zero, p-value < 0.10. This was enough significance for us to allow the addition of 

a higher order variable.  

Group 2 members have a similar quadratic model. Again, the main difference between 

the two groups is that the intercept for group 2 was higher, β0(IADL, G1) = -2.64 vs. β0(IADL, G2) = -
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0.67. Group 2 members also experienced little change over time; this represented 43.21% of the 

cohort. Only the coefficient for the linear variable was statistically different from zero, p-value < 

0.05. Group 2 was given a second order IADL variable because convergence could not be 

reached without it.  

Group 3 members required a cubic model to represent their change in IADL over time. 

Their intercept was β0(IADL, G3) = 0.18, also the only positive intercept. Group 3 members started 

with the highest value of ADL and only continued to increase over time. All coefficients were 

statistically different from zero, p-value < 0.05. Group 3 represented 9.80% of the cohort.  

 

Table 2. Group Membership for IADL 

Group 

Membership 
Parameter Type Estimate 

Standard 

Error 
Prob > |t| 

Percent of 

Cohort 

1 

Intercept -2.64 0.11 0.0000 

46.99 % TIME -0.0003 0.0002 0.0819 

TIME2 0.000* 0.000* 0.0004 

2 

Intercept -0.67 0.04 0.0000 

43.21 % TIME 0.0002 0.00007 0.0005 

TIME2 0.000* 0.000* 0.6906 

3 

Intercept 0.18 0.05 0.0004 

9.80 % 
TIME 0.0008 0.0001 0.0000 

TIME2 -0.000* 0.000* 0.0000 

TIME3 0.000* 0.000* 0.0000 

*Number too small, not reported by macro; BIC = -18879.88 
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Figure 3. IADL Trajectory 

3.2.2 3MSE 

In contrast to the ADL/IADL scoring system, the higher the 3MSE value is, the better the 

subjects is doing cognitively. A score of 70 or below is considered demented. Three groups were 

selected to represent the subjects. All groups required cubic models. All coefficients in all groups 

were statistically different from zero, p-value < 0.05. The main different between the groups is 

their intercepts: β0(3MSE, G1) = 87.57 vs. β0(3MSE, G2) = 92.22 vs. β0(3MSE, G3) = 96.47. In this 

framework, the most cognitively functioning group is group 3. In contrast, group 1 approaches 
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lower measures, but nothing that would imply a demented status. The breakdown of the groups is 

as follows: Group 1 – 13.64%, Group 2 – 34.97%, and Group 3 – 51.40%.  

 

Table 3. Group Membership for 3MSE 

Group 

Membership 
Parameter Type Estimate 

Standard 

Error 
Prob > |t| 

Percent of 

Cohort 

1 

Intercept 87.57 0.160 0.0000 

13.64 % TIME -0.003 0.0004 0.0000 

TIME2 0.000* 0.0000 0.0004 

2 

Intercept 92.22 0.105 0.0000 

34.97 % TIME 0.003 0.0002 0.0000 

TIME2 -0.000* 0.0000 0.0000 

3 

Intercept 96.47 0.079 0.0000 

51.40 % TIME 0.002 0.0001 0.0000 

TIME 2 -0.000* 0.0000 0.0000 

*Number too small, not reported by macro; BIC = -87595.18 
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Figure 4. 3MSE Trajectory 

 

3.3 COX SPLINE ANALYSIS 

There were 523 cases of dementia developed over the 7 year period. Application of Gray’s 

model was used to measure changes in beta amyloid fluid and Cystatin-C over time relative to 

when a patient developed dementia. It is believed that Cystatin-C, Aβ1-40 amyloid, and Aβ1-42 

amyloid are most closely associated with the risk of developing dementia and therefore the focus 

of this part of the analysis. Cystatin-C, Aβ1-40 amyloid, and Aβ1-42 amyloid were measure at 
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baseline and in the 9th year of the study. Subjects were measured at different times; giving us a 

range of beta-amyloid and Cystatin-C measures with corresponding times.  We also explored the 

composite variable ratio (Aβ1-42/Aβ1-40) to determine if it better explained the behavior and 

relationship of beta amyloid and dementia. After several model runs to determine the number of 

knots to use, we decided that each of the variables could not be measured accurately with the 

same number of knots.  

Because of the difference in knot numbers, the variables were plotted separately.  The 

log-hazard ratio is the primary output of Gray’s model. This is interpreted the same as a standard 

hazard ratio where an increasing value indicates an increasing risk of hazard. 

3.3.1 Beta Amyloid 40 

 

jpegher
Typewritten Text
Figure 5. Beta-40 Log -- Hazard Ratio over time with 95% CI
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The estimates for the log hazard ratio for Beta-40 ranged from -0.0003 to 0.0003. This indicates 

that during the study, Beta-40 was both protective and increased the risk of harm of dementia. 

The final model required 10 knots to completely describe the movement of the log-hazard 

estimated. The final model had a fully penalized log-likelihood of -3869.37.  

3.3.2 Beta Amyloid 42 

 

Figure 6. Beta-42 Log – Hazard Ratio over time with 95% CI 

 

The estimates for the log hazard ratio for Beta-42 ranged from -0.01329 to -0.00396. This 

indicates that during the study, Beta-42 decreased the risk of harm of dementia. The final model 
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required 7 knots to completely describe the movement of the log-hazard estimated. The final 

model had a fully penalized log-likelihood of -3807.47.  

 

3.3.3 Beta Amyloid (42/40) 

 

Figure 7. Beta ratio (42/40) Log – Hazard Ratio over time with 95% CI 

 

The estimates for the log hazard ratio for the ratio Beta (42/40) ranged from -3.727 to -1.108. 

This indicates that during the study, Beta (42/40) decreased the risk of harm of dementia. The 

final model required 8 knots to completely describe the movement of the log-hazard estimated. 

The final model had a fully penalized log-likelihood of -3805.24.   
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3.3.4 Cystatin-C 

 

Figure 8. Cystatin-C Log – Hazard Ratio over time with 95% CI 

 

The estimates for the log hazard ratio for Cystatin-C ranged from 0.732 to 1.273. This indicates 

that during the study, Cystatin-C increased the risk of harm of dementia. The final model 

required 5 knots to completely describe the movement of the log-hazard estimated. The final 

model had a fully penalized log-likelihood of -3850.79.    
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3.3.5 Biomarker Comparison 

The range of values for each of the biological measures is shown in the table below. The table 

also includes the log-likelihood when parameters were set to zero, fully penalized log-likelihood 

and the difference between the minimum and maximum values (∆): 

Table 4. Biomarker Comparison 

Variable Minimum Maximum ∆ (Max – Min) L(η) Lp (η) 

Cystatin-C 0.7316 1.2730 0.5414 -3862.232 -3850.790 

Aβ1-40 -0.0002901 0.0002785 0.000569 -3869.370 -3869.102 

Aβ1-42 -0.013290 -0.003959 0.009331 -3812.614 -3807.471 

Ratio (Aβ1-42/ Aβ1-40) -3.727 -1.108 2.619 -3812.393 -3805.237 

 

The largest change in value occurred in the ratio between the beta amyloid values.  
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4.0  DISCUSSION 

4.1 CONCLUSIONS 

4.1.1 Trajectory Analysis 

The trajectory analyses resulted in each of the variables, ADL, IADL and 3MSE, breaking into 

three subgroups. For all variables, the three groups provided unique models and coefficients for 

each group. All coefficients were statistically significant, with the exception of the quadratic 

variable in IADL in group 2. That variable was kept in the model in order to reach convergence. 

The graphs portray three types of subjects: the healthy group, the intermediate group, and the 

group with the highest risk.  

4.1.2 Flexible Cox Model 

The flexible Cox model provided us with a range of log-hazard estimates for each of the 

variables of interest but when comparing the final, fully penalized log-likelihood for each of the 

models, there was little evidence to suggest that the additional information was statistically 

significant. In the beta ratio (42/40), which had the largest change in values, the initial log-

likelihood was -3812.39 and the final model produced a log-likelihood of -3805.24. Even though 

there is no formal way to test the two log-likelihoods due the initial model not being nested in the 
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final model, by looking at the two values, it can be seen that there was not a significant decrease 

in the final log-likelihood. Therefore, there was a minimal amount of information gained when 

allowing the hazard to vary over time when looking at biomarker data for dementia.  

4.2 PUBLIC HEALTH ASPECT 

As the population in the US continues to live longer, it is important to know how to analyze this 

subset of the population correctly. This thesis showcases two methods that can be used to address 

the issue of analyzing elderly Americans.  

Trajectory analysis can be used to locate subgroups in the elderly population. Assuming 

that everyone ages the same way and run the same age-risks is naïve. By identifying the 

subgroups in the elderly population, we can target important medical treatments to people that 

really need them, improve longer-term health through preventative measures using the same 

identification process, and help create an overall, healthier older population.  

Flexible spline analysis can be used to determine if the hazard of a disease changes over 

time. By identifying the times where hazard is at its highest, we can create time sensitive 

interventions that can help prevent or delay the disease from occurring. This again helps in 

creating a healthier elderly population. 
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APPENDIX A 

VARIABLE SUMMARIES 
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Table 5. Comparison of dementia cases to non-cases at baseline from 2000 to 2008 

 Remained non-demented Incident dementia χ2/t-test p-value 

Number of subjects N = 1966 N = 523   

Age 78.07 (2.97) 79.94 (3.63) -10.89 <.0001 

Education level 14.44 (2.88) 14.19 (3.23) 1.63 0.1041 

Race, Whites 1886 (95.93%) 491 (93.88%) 4.35 0.0445 

Gender, Female 897 (45.63%) 256 (48.95%) 1.83 0.1756 

3MSE scores 94.12 (4.25) 90.67 (5.34) 13.69 <.0001 

CES-D 3.25 (3.22) 4.58 (4.02) -7.03 <.0001 

APOE-4 allele 335 (20.44%) 145 (36.62%) 46.31 <.0001 

Cerebrovascular risk factors 

Hypertension 818 (41.99%) 222 (42.94%) 0.1535 0.9261 

Heart disease 519 (25.40%) 181 (34.61%) 13.77 0.0002 

Diabetes mellitus 157 (8.09%) 49 (9.57%) 1.156 0.2822 

Laboratory tests 

Cystatin-C 0.80 (0.19) 0.85 (0.22) -4.15 <.0001 

Creatinine 0.98 (0.23) 1.00 (0.26) -1.15 0.2486 

Vitamin B12 503.77 (251.35) 503.59 (243.55) 0.02 0.9880 

TSH 2.26 (1.80) 2.16 (1.61) 1.23 0.2187 

Plasma amyloid 

Aβ1-40 188.19 (97.79) 190.29 (67.04) -0.97 0.5681 

Aβ1-42 15.79 (28.40) 12.87 (15.84) 3.07 0.0022 

Aβ1-42/Aβ1-40   0.08 (0.11) 0.07 (0.06) 2.74 <.0001 
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Table 6. Log – Hazard Ratio for Beta-40 over time 

Time Log – Hazard Ratio Variance Time Log – Hazard Ratio Variance 

90 -0.0003 5.29e-07 1673 0.0002 2.80e-07 

661 -0.0003 5.29e-07 1673 0.0003 2.87e-07 

661 -0.00004 4.40e-07 1857 0.0003 2.87e-07 

983 -0.00004 4.40e-07 1857 0.0001 3.09e-07 

983 0.0002 3.63e-07 2021 0.0001 3.09e-07 

1156 0.0002 3.630e-07 2021 -0.00002 3.55e-07 

1156 0.0001 3.14e-07 2212 -0.00002 3.55e-07 

1309 0.0001 3.14e-07 2212 -0.0002 4.34e-07 

1309 0.00002 2.87e-07 2416 -0.0002 4.34e-07 

1490 0.00002 2.87e-07 2416 -0.0002 5.24e-07 

1490 0.0002 2.80e-07 2728 -0.0002 5.24e-07 

 

Table 7. Log – Hazard Ratio for Beta-42 over time 

Time Log – Hazard Ratio Variance Time Log – Hazard Ratio Variance 

90 -0.013 2.98e-05 1548 -0.010 1.43e-05 

791 -0.013 2.98e-05 1837 -0.010 1.43e-05 

791 -0.009 2.34e-05 1837 -0.007 1.38e-05 

1132 -0.009 2.34e-05 2057 -0.007 1.38e-05 

1132 -0.008 1.86e-05 2057 -0.004 1.47e-05 

1314 -0.008 1.86e-05 2366 -0.004 1.47e-05 

1314 -0.008 1.60e-05 2366 -0.004 1.93e-05 

1548 -0.008 1.60e-05 2728 -0.004 1.93e-05 
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Table 8. Log – Hazard Ratio for Beta ratio (42/40) over time 

Time Log – Hazard Ratio Variance Time Log – Hazard Ratio Variance 

90 -3.726734 1.8266167 1679 -2.318040 0.9265520 

759 -3.726734 1.8266167 1679 -2.862105 0.9338653 

759 -3.044987 1.4369813 1882 -2.862105 0.9338653 

1112 -3.044987 1.4369813 1882 -2.532740 0.9974097 

1112 -2.453121 1.1300149 2124 -2.532740 0.9974097 

1289 -2.453121 1.1300149 2124 -1.173355 1.1894872 

1289 -1.108119 0.9967553 2386 -1.173355 1.1894872 

1481 -1.108119 0.9967553 2386 -1.643314 1.5120233 

1481 -2.318040 0.9265520 2728 -1.643314 1.5120233 

 

Table 9. Log – Hazard Ratio for Cystatin-C over time 

Time Log Hazard Ratio Variance Time Log Hazard Ratio Variance 

90 0.7558062 0.10229205 1548 0.8115762 0.06836820 

952 0.7558062 0.10229205 1881 0.8115762 0.06836820 

952 1.2729696 0.07190890 1881 0.7315651 0.08059763 

1291 1.2729696 0.07190890 2233 0.7315651 0.08059763 

1291 1.1979169 0.06542322 2333 0.8443062 0.11362867 

1548 1.1979169 0.06542322 2728 0.8443062 0.11362867 
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APPENDIX B 

GLOSSARY OF ACRONYMS 

3MSE – Modified Mini–Mental State Examination 

ADL – Activities of Daily Living  

IADL – Independent Activities of Daily Living 

Beta-40 – plasma Amyloid Aβ1-40 

Beta-42 - plasma Aβ1-42 

BIC - Bayesian Information Criterion 

CI – Confidence Interval 

GEMS - Ginkgo Evaluation of Memory Study 

MAR – Missing at Random 

PROC TRAJ – Procedure Trajectory 
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APPENDIX C 

SAS SOURCE CODE 

data adl2;  
set gems_p.adl_1;  
keep IDNO visitno dldt dlsiadl dlsadl;  
run;  
 
data end2;  
set gems_p.gemsend;  
keep IDNO SSTATUSC VDT;  
run;  
  
proc sort data = adl2; by IDNO; run;  
proc sort data = end2; by IDNO; run;  
 
data measures;  
merge adl2 end2;  
by IDNO;  
run;  
 
data measures2;  
set measures; 
time_adl = dldt - VDT;  
time_iadl = dldt - VDT;  
run;  
 
data Gems_Pneu;  
set gems_p.Gems_pneu_time;  
keep IDNO PNEUMONIA DAYSTOPNEUMONIA PNEUMONIATOENDPOINT;  
run;  
 
proc freq data = gems_pneu;  
tables PNEUMONIA;  
run;  
 
proc sort data = gems_pneu; by idno; run;  
proc sort data = gems_p.measures2; by idno; run;  
 
data measures3;  
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merge gems_pneu gems_p.measures2;  
by idno;  
run;  
 
data ADL_long_p2; *** Saved ***;  
set  measures3;  
mark = 2;  
if PNEUMONIA = 1 and time_adl < DAYSTOPNEUMONIA then mark = 1; 
if mark = 1 then adl_cen = DLSADL;  
if mark = 2 then adl_cen = . ;  
if mark = 1 then iadl_cen = DLSIADL;  
if mark = 2 then iadl_cen = . ;  
if time_adl < 0 and time_adl ne . then  time_adl = 0;  
if time_iadl < 0 and time_iadl ne . then  time_iadl = 0; 
if PNEUMONIA = 1 and mark = 2 then adl_cen_1 = DLSADL;  
if PNEUMONIA = 1 and mark = 2 then iadl_cen_1 = DLSiADL; 
if PNEUMONIA = 0 then adl_cen = DLSADL;  
if PNEUMONIA = 0 then iadl_cen = DLSIADL; 
run;  
 
proc sort data = ADL_LONG_P2; by pneumonia; run;  
 
proc means data= gems_p.Adl_long_p2 N nmiss mean std min max;  
var dlsadl DLSIADL time_adl time_iadl;  
run;  
 
 
*** Wide form is ADL_wide_p2 ***;  
 
** IADL **;  
 
PROC TRAJ DATA=gems_p.Adl_wide_p2 OUT=OF OUTPLOT=OP OUTSTAT=OS CI95M; 
VAR iadl_cen1 iadl_cen4 iadl_cen5 iadl_cen6 iadl_cen7 iadl_cen8 iadl_cen9 
iadl_cen10 iadl_cen11 iadl_cen12 
 iadl_cen13 iadl_cen14 iadl_cen15 iadl_cen16;  
INDEP time_iadl1 time_iadl4 time_iadl5 time_iadl6 time_iadl7 time_iadl8 
time_iadl9 time_iadl10 time_iadl11 
 time_iadl12 time_iadl13 time_iadl14 time_iadl15 time_iadl16; 
MODEL ZIP; 
ORDER 2 2 3;  
RUN; 
 
%TRAJPLOTNEW (OP, OS,,,"IADL","Study Time"); 
 
** ADL **;  
 
PROC TRAJ DATA=gems_p.Adl_wide_p2 OUT=OF OUTPLOT=OP OUTSTAT=OS CI95M; 
VAR adl_cen1 adl_cen4 adl_cen5 adl_cen6 adl_cen7 adl_cen8 adl_cen9 adl_cen10 
adl_cen11 adl_cen12 
 adl_cen13 adl_cen14 adl_cen15 adl_cen16;  
INDEP time_iadl1 time_iadl4 time_iadl5 time_iadl6 time_iadl7 time_iadl8 
time_iadl9 time_iadl10 time_iadl11 
 time_iadl12 time_iadl13 time_iadl14 time_iadl15 time_iadl16; 
MODEL ZIP; 
ORDER 1 1 2;  
RUN; 
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%TRAJPLOTNEW (OP, OS,,,"ADL","Study Time"); 
 
proc means data = gems_p.adl_long_p2 N nmiss mean std min max;  
var adl_cen iadl_cen time_iadl time_adl;  
run;  
 
*** MSE, starting with MSE3 ***;  
 
proc means data = gems_p.mse3 N nmiss mean std min max;  
var cfscore cfdt;  
run;  
 
data Gems_Pneu;  
set gems_p.Gems_pneu_time;  
keep IDNO PNEUMONIA DAYSTOPNEUMONIA PNEUMONIATOENDPOINT;  
run;  
 
proc sort data = gems_p.mse3; by idno; run;  
proc sort data = Gems_Pneu; by idno; run;  
 
*** Saved ***; 
data mse4;  
merge gems_pneu gems_p.mse3;  
by idno;  
run;  
 
proc means data = gems_p.mse4 N nmiss mean std min max;  
var cfscore cfdt DAYSTOPNEUMONIA;  
run;  
 
proc freq data = gems_p.mse4;  
tables PNEUMONIA;  
run;  
 
*** Censored at Pneumonia ***;  
data gems_p.mse4;  
set  gems_p.mse4;  
mark = 2;  
if PNEUMONIA = 1 and time_mse < DAYSTOPNEUMONIA then mark = 1; 
if mark = 1 then mse_cen = cfscore;  
if mark = 2 then mse_cen = . ;  
if PNEUMONIA = 1 and mark = 2 then mse_cen_1 = cfscore;  
if PNEUMONIA = 0 then mse_cen = cfscore;  
run;  
 
proc sort data = gems_p.mse4; by PNEUMONIA; run;  
 
*** Brought back in wide form as mse5_wide ***;  
 
proc means data = gems_p.mse5_wide n nmiss mean std min max;  
var time_mse1 time_mse3-time_mse10 time_mse11 - time_mse16 mse_cen1 mse_cen3 
- mse_cen16 mse_cen_11 mse_cen_13 mse_cen_14 mse_cen_15 
 mse_cen_16 mse_cen_17 mse_cen_18 mse_cen_19 mse_cen_110 mse_cen_111 
mse_cen_112 mse_cen_113 mse_cen_114 mse_cen_115 mse_cen_116;  
run;  
 
*** Minimum of Time will be set to zero ***;  
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data gems_p.mse5_wide;  
set gems_p.mse5_wide;  
if time_mse1 < 0 and time_mse1 ne . then time_mse1 = 0;  
run;  
 
proc means data = gems_p.mse5_wide n nmiss mean std min max;  
var time_mse1;  
run; 
 
PROC TRAJ DATA=gems_p.mse5_wide OUT=OF OUTPLOT=OP OUTSTAT=OS CI95M; 
VAR mse_cen1 mse_cen3 - mse_cen16;  
INDEP time_mse1 time_mse3-time_mse10 time_mse11 - time_mse16; 
MODEL CNORM; min 0; max 100;  
ORDER 2 2 2; 
RUN; 
 
%TRAJPLOTNEW (OP, OS,,,"3MSE","Study Time"); 
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APPENDIX D 

R SOURCE CODE 

Code: 
oscar1 <- read.csv(file="oscar6.csv",head=TRUE,sep=",") 
sub1_oscar1 <- oscar1[, c(1, 10, 15, 29, 154, 157, 153)] 
## ID, censor time, dementia status, Cystatin-C, Beta-40, Beta-42, ratio ## 
 
u2 <- cox.spline("t",sub1_oscar1$CENSOR_T,sub1_oscar1$DEMENTI2 ,sub1_oscar1 
[,4],nknot=5) 
 
u2$est 
summary(u2$est[,2]) 
plot(u2$est[,1], u2$est[,2], type="b", xlim = (c(0, 3000)), ylim = (c(0, 1.5)),  
xlab="Time", ylab = "Spline Estimates", main="Spline Estimates Over Time for C- 
cystatin") 
 
### Summary for Cystatin-C ### 
> summary(u2$est[,2]) 
   Min. 1st Qu.  Median    Mean 3rd Qu.    Max.  
 0.7316  0.7558  0.8279  0.9357  1.1980  1.2730  
 
u2 <- cox.spline("t",sub1_oscar1$CENSOR_T,sub1_oscar1$DEMENTI2 ,sub1_oscar1 
[,5],nknot=10) 
summary(u2$est[,2]) 
plot(u2$est[,1], u2$est[,2], type="b", xlim = (c(0, 3000)), xlab="Time", ylab =  
 
"Spline Estimates", main="Spline Estimates Over Time for Beta-40") 
abline(h=0) 
 
### Summary for Beta-40 ### 
> summary(u2$est[,2]) 
      Min.    1st Qu.     Median       Mean    3rd Qu.       Max.  
-2.901e-04 -1.300e-04  2.471e-05  2.247e-05  1.566e-04  2.785e-04 
 
u2 <- cox.spline("t",sub1_oscar1$CENSOR_T,sub1_oscar1$DEMENTI2 ,sub1_oscar1 
 
[,6],nknot=7) 
summary(u2$est[,2]) 
plot(u2$est[,1], u2$est[,2], type="b", xlim = (c(0, 3000)), ylim = (c(-0.02, 0)), 
xlab="Time", ylab = "Spline Estimates", main="Spline Estimates Over Time for Beta-42") 
 
### Summary for Beta-42 ### 
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> summary(u2$est[,2]) 
     Min.   1st Qu.    Median      Mean   3rd Qu.      Max.  
-0.013290 -0.009335 -0.008207 -0.007953 -0.006272 -0.003959  
 
u2 <- cox.spline("t",sub1_oscar1$CENSOR_T,sub1_oscar1$DEMENTI2 ,sub1_oscar1 
 
[,7],nknot=8) 
summary(u2$est[,2]) 
plot(u2$est[,1], u2$est[,2], type="b", xlim = (c(0, 3000)), xlab="Time", ylab =  
 
"Spline Estimates", main="Spline Estimates Over Time for Beta Ratio (42/40)") 
 
### Summary for Ratio ### 
 
> summary(u2$est[,2]) 
   Min. 1st Qu.  Median    Mean 3rd Qu.    Max.  
 -3.727  -2.862  -2.453  -2.318  -1.643  -1.108  
 
> u2$loglik 
[1] -3862.232 -3850.790 -3849.823 
> u3$loglik 
[1] -3869.370 -3869.102 -3868.933 
> u4$loglik 
[1] -3812.614 -3807.471 -3807.059 
> u5$loglik 
[1] -3812.393 -3805.237 -3804.016 
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