
Advanced Map Matching Technologies and Techniques

for Pedestrian/Wheelchair Navigation

by

Ming Ren

B.E., Shenyang University of Technology, 1993

M.E., Chinese Institute of Academy, 1998

Submitted to the Graduate Faculty of

School of Information Sciences in partial fulfillment

of the requirements for the degree of

Doctor of Philosophy

University of Pittsburgh

2012

 ii

UNIVERSITY OF PITTSBURGH

SCHOOL OF INFORMATION SCIENCES

This dissertation was presented

by

Ming Ren

It was defended on

March. 16, 2012

and approved by

Dr. Daqing He, Associate Professor, School of Information Sciences

Dr. Paul Munro, Associate Professor, School of Information Sciences

Dr. Prashant Krishnamurthy, Associate Professor, School of Information Sciences

Dr. Linda Van Roosmalen, Adjunct Professor, School of Health and Rehabilitation Sciences

Dissertation Advisor: Dr. Hassan Karimi, Associate Professor, School of Information Sciences

 iii

Copyright © by Ming Ren

2012

 iv

Due to the constantly increasing technical advantages of mobile devices (such as smartphones),

pedestrian/wheelchair navigation recently has achieved a high level of interest as one of

smartphones’ potential mobile applications. While vehicle navigation systems have already

reached a certain level of maturity, pedestrian/wheelchair navigation services are still in their

infancy. By comparing vehicle navigation systems, a set of map matching requirements and

challenges unique in pedestrian/wheelchair navigation is identified. To provide navigation

assistance to pedestrians and wheelchair users, there is a need for the design and development of

new map matching techniques.

The main goal of this research is to investigate and develop advanced map matching

technologies and techniques particular for pedestrian/wheelchair navigation services. As the first

step in map matching, an adaptive candidate segment selection algorithm is developed to

efficiently find candidate segments. Furthermore, to narrow down the search for the correct

segment, advanced mathematical models are applied. GPS-based chain-code map matching,

Hidden Markov Model (HMM) map matching, and fuzzy-logic map matching algorithms are

developed to estimate real-time location of users in pedestrian/wheelchair navigation

systems/services. Nevertheless, GPS signal is not always available in areas with high-rise

Advanced Map Matching Technologies and Techniques

for Pedestrian/Wheelchair Navigation

Ming Ren, PhD

University of Pittsburgh, 2012

 v

buildings and even when there is a signal, the accuracy may not be high enough for localization

of pedestrians and wheelchair users on sidewalks. To overcome these shortcomings of GPS,

multi-sensor integrated map matching algorithms are investigated and developed in this research.

These algorithms include a movement pattern recognition algorithm, using accelerometer and

compass data, and a vision-based positioning algorithm to fill in signal gaps in GPS positioning.

Experiments are conducted to evaluate the developed algorithms using real field test data

(GPS coordinates and other sensors data). The experimental results show that the developed

algorithms and the integrated sensors, i.e., a monocular visual odometry, a GPS, an

accelerometer, and a compass, can provide high-quality and uninterrupted localization services

in pedestrian/wheelchair navigation systems/services. The map matching techniques developed

in this work can be applied to various pedestrian/wheelchair navigation applications, such as

tracking senior citizens and children, or tourist service systems, and can be further utilized in

building walking robots and automatic wheelchair navigation systems.

 vi

TABLE OF CONTENTS

TABLE OF CONTENTS ... VI

LIST OF TABLES ... X

LIST OF FIGURES .. XII

PREFACE .. XVII

1.0 INTRODUCTION... 18

1.1 PROBLEM STATEMENT ... 20

1.2 OVERVIEW OF MAP MATCHING IN PEDESTRIAN/WHEELCHAIR

NAVIGATION SYSTEMS/SERVICES ... 23

1.3 MAP MATCHING CHALLENGES FOR PEDESTRIAN/WHEELCHAIR

NAVIGATION .. 25

1.4 GOAL AND OBJECTIVES ... 29

1.5 CONTRIBUTIONS... 30

1.6 ORGANIZATION .. 31

2.0 BACKGROUND AND RELATED WORK ... 32

2.1 SIDEWALK NETWORKS .. 33

2.2 GEO-POSITIONING TECHNOLOGIES AND TECHNIQUES 34

2.3 MAP MATCHING TECHNIQUES IN NAVIGATION SYSTEMS 39

2.4 COMPUTER VISION IN NAVIGATION SYSTEMS 43

 vii

2.5 MOBILE TECHNOLOGY IN NAVIGATION APPLICATIONS 48

3.0 ADAPTIVE CANDIDATE SEGMENTS SELECTION ALGORITHM 49

3.1 RELATED WORKS ... 50

3.2 SPATIAL NETWORK DATA REPRESENTATION................................... 52

3.2.1 Hierarchical Clustering Tree .. 52

3.2.2 Clustering Road Segments .. 53

3.3 ADAPTIVE SEARCHING ALGORITHM ... 56

3.3.1 A Binary Tree Structure from the Clustering Tree 56

3.3.2 Searching Algorithm ... 58

3.3.3 Adaptive Search Window Set ... 59

3.3.4 Adaptive Search Window Update .. 60

3.4 PERFORMANCE ANALYSIS .. 61

3.4.1 Datasets ... 61

3.4.2 Construction Cost ... 61

3.4.3 Searching Cost .. 64

3.5 SUMMARY ... 67

4.0 GPS-BASED MAP MATCHING TECHNIQUES .. 68

4.1 CHAIN-CODE-BASED MAP MATCHING ... 69

4.1.1 Eight-Direction Chain Code ... 70

4.1.2 Chain-Code-based Map Matching Technique ... 73

4.1.3 Map Matching Process ... 78

4.1.4 Validation .. 81

4.2 HMM-BASED MAP MATCHING ALGORITHM 89

 viii

4.2.1 Hidden Markov Model ... 90

4.2.2 A Hidden Markov Model for Map Matching .. 92

4.2.3 HMM-based Map Matching Process.. 98

4.2.4 VALIDATION .. 100

4.3 FUZZY-LOGIC-BASED MAP MATCHING ALGORITHM.................... 105

4.3.1 Fuzzy Logic Map Matching .. 105

4.3.2 Fuzzy Logic Map Matching Process .. 111

4.3.3 Validation .. 115

4.4 COMPARISON... 119

5.0 MULTI-SENSOR INTEGRATED MAP MATCHING ALGORITHMS 124

5.1 CLIENT/SERVER ARCHITECTURES FOR MAP MATCHING............ 125

5.1.1 Lightweight Client/Heavyweight Server Architecture 125

5.1.2 Heavyweight Client/Lightweight Server Architecture 126

5.2 MOVEMENT PATTERN RECOGNITION ASSISTED MAP MATCHING

FOR PEDESTRIAN/WHEELCHAIR NAVIGATION ... 128

5.2.1 Movement Pattern Recognition .. 131

5.2.2 Movement Pattern Recognition Assisted Map Matching 136

5.2.3 Experiments .. 142

5.3 MULTI-SENSOR MAP MATCHING USING MONOCULAR VISUAL

ODOMETRY TECHNIQUE FOR PEDESTRIAN/WHHELCHAIR NAVIGATION

 …………………………………………………………………………………152

5.3.1 Multi-Sensor Map Matching Algorithm Using Monocular Visual

Odometry .. 154

 ix

5.3.2 Accelerometer-Assisted Monocular Visual Odometry for Motion

Estimation ... 156

5.3.3 Integrated Map Matching... 170

5.3.4 Experiments and Analysis .. 172

6.0 SUMMARY, CONCLUSIONS, CONTRIBUTIONS AND FUTURE RESEARCH

 ………………………………………………………………………………………186

6.1 SUMMARY ... 186

6.2 CONCLUSIONS ... 187

6.3 CONTRIBUTION ... 189

6.4 FUTURE RESEARCH ... 191

REFERENCES .. 193

 x

LIST OF TABLES

Table 2.1 Outdoor geo-positioning technologies potential for integration with GPS 35

Table 2.2. Comparison among performances of various map matching algorithms for vehicle

navigation (after table in Quddus, 2007) .. 42

Table 3.1. Tree features of three road networks ... 63

Table 3.2. Statistics of the searching cost .. 66

Table 4.1. RBF neural network structure ... 84

Table 4.2. Map matching evaluation using RBF neural network .. 84

Table 4.3. Linear-model map matching results .. 85

Table 4.4. Comparing the linear model and the non-linear model ... 89

Table 4.5. Performance results .. 104

Table 4.6. Parameters of the fuzzy logic map matching ... 107

Table 4.7. Rules of the fuzzy logic map matching ... 108

Table 4.8. Performances of Experiments ... 119

Table 4.9. Accuracy of GPS-based map matching algorithms for pedestrian/wheelchair

navigation ... 122

Table 4.10. Time performance of GPS-based map matching algorithms for pedestrian/wheelchair

navigation ... 122

Table 4.11. Overall comparison of three GPS-based map matching algorithms........................ 122

 xi

Table 5.1. Selected features ... 135

Table 5.2. Classifier accuracy in identifying four different movement behaviors 145

Table 5.3. Confusion matrix of cross-validation on feature classification of movement behavior

 ... 146

Table 5.4. Map matching performance (efficiency and accuracy) .. 150

Table 5.5. Key points and matched points ... 176

 xii

LIST OF FIGURES

Figure 1.1. Components of a navigation system ... 19

Figure 1.2. Map matching process in pedestrian/wheelchair navigation systems 24

Figure 1.3. Sidewalk network (a) versus road network (b) in the same area 26

Figure 1.4. No path in map database .. 27

Figure 1.5. Poor GPS signals (PDOP between 2.5 and 11.4) .. 28

Figure 1.6. Comparison of GPS data from a professional GPS receiver (green) and a smartphone

(red) .. 29

Figure 2.1. Example image with landmarks (Steinhoff et.al, 2007) .. 44

Figure 3.1. An example of road network.. 54

Figure 3.2. Corresponding matrix (20-by-20) .. 55

Figure 3.3. Corresponding clustering tree .. 55

Figure 3.4. Data structure of a binary tree for segment clustering .. 57

Figure 3.5. A GPS point is located within the range of a Bounding Box 57

Figure 3.6. The clustering tree of Pittsburgh campus ... 63

Figure 3.7. Query results changing with scenarios of moving object’s positions 65

Figure 3.8. A scenario on a large-scale map .. 66

Figure 4.1. Perpendicular distance ... 68

Figure 4.2. 8-Direction chain code .. 70

 xiii

Figure 4.3. Digital map with GPS data .. 71

Figure 4.4. Example of chain-code-based map matching ... 72

Figure 4.5. Linear model ... 74

Figure 4.6. Non-linear model .. 75

Figure 4.7. RBF neural network for map matching evaluation ... 77

Figure 4.8. Flowchart of chain-code-based map-matching algorithm ... 80

Figure 4.9. University of Pittsburgh’s campus ... 82

Figure 4.10. Training with RBF neural network .. 83

Figure 4.11. Route 1 comparing map-matching result with GPS raw data on campus sidewalk

map ... 86

Figure 4.12. Route 2 comparing map-matching result with GPS raw data on campus sidewalk

map ... 87

Figure 4.13. Route 3 comparing map-matching result with GPS raw data on campus sidewalk

map ... 88

Figure 4.14. Architecture of a HMM ... 91

Figure 4.15. The hidden Markov model for map matching .. 93

Figure 4.16. An example of GPS points overlaid on sidewalks on campus 97

Figure 4.17. An abstracted sidewalk network model .. 97

Figure 4.18. State transition matrix .. 97

Figure 4.19. Map matching locations versus GPS positions ... 98

Figure 4.20. Flowchart of HMM-based map matching process .. 99

Figure 4.21. Route 1 comparing map-matching result with GPS raw data on campus sidewalk

map ... 101

 xiv

Figure 4.22. Route 2 comparing map-matching result with GPS raw data on campus sidewalk

map ... 102

Figure 4.23. Route 3 comparing map-matching result with GPS raw data on campus sidewalk

map ... 103

Figure 4.24. Two inputs and the output in the fuzzy logic map matching 107

Figure 4.25. Examples of entering mode ... 113

Figure 4.26. Flowchart of the fuzzy logic map matching process ... 115

Figure 4.27. Route 1 comparing map-matching result with GPS raw data on campus sidewalk

map ... 116

Figure 4.28. Route 2 comparing map-matching result with GPS raw data on campus sidewalk

map ... 117

Figure 4.29. Route 3 comparing map-matching result with GPS raw data on campus sidewalk

map ... 118

Figure 4.30. Comparison among the three GPS-based map matching algorithms on one route . 121

Figure 5.1. Lightweight client/ heavyweight server architecture for map matching 126

Figure 5.2. Heavyweight client/ lightweight server framework for map matching 127

Figure 5.3. An example of GPS error in the scenario in which a user is stopped on a sidewalk.

 ... 129

Figure 5.4. Overview of movement pattern recognition ... 132

Figure 5.5. 3D accelerometer... 133

Figure 5.6. Movement recognition decision tree .. 136

Figure 5.7. Multi-sensor data integrated map matching... 137

 xv

Figure 5.8. Accelerometer Data (acceleration in m
2
/s) Figure 5.9. Orientation Data (angle in

degree) .. 138

Figure 5.10. Timing diagram for synchronization .. 139

Figure 5.11. Flowchart of the movement pattern-recognition-assisted map matching algorithm

 ... 141

Figure 5.12. Motorola Backflip smartphone and the direction of its 3D accelerometer 143

Figure 5.13. A sample of a log file recording GPS, accelerometer, and orientation data 143

Figure 5.14. Route 1 comparing map matching result with GPS raw data 148

Figure 5.15. Route 2 comparing map matching result with GPS raw data 148

Figure 5.16. Route 3 comparing map matching result with GPS raw data 149

Figure 5.17. Flowchart of multi-sensor map matching algorithm using monocular visual

odometry ... 155

Figure 5.18. Overview of visual odometry process .. 156

Figure 5.19. Estimation of rotation matrix Ri−1,i and translational vector Ti−1,i in the motion

between video frame Fri-1 and Fri .. 159

Figure 5.20. Frame-to-frame motion estimation ... 166

Figure 5.21. Flowchart of vision-based positioning algorithm ... 168

Figure 5.22. Scale adjustment ... 169

Figure 5.23. Flowchart of map matching approach .. 171

Figure 5.24. A checkerboard to calibrate camera ... 173

Figure 5.25. A sequence of images extracted from a video .. 174

Figure 5.26. SIFT features of a street view image .. 175

Figure 5.27. Matched SIFT feature points ... 176

 xvi

Figure 5.28. Feature points in image 1 vs. Epipolar lines in image 2 .. 177

Figure 5.29. Geo-positioning results by using visual odometry, top view (left) and street view

(right) .. 178

Figure 5.30. Map matching results overlaid on Google Maps .. 180

Figure 5.31. A sample log file to compare accuracy of GPS positions 181

Figure 5.32. Comparison of GPS-based map matching results with multi-sensor map matching

results ... 184

 xvii

PREFACE

I would like to express my deep gratitude to my advisor, Dr. Hassan Karimi, for all his support

during my study to make my research meaningful. I greatly appreciate all the advice and

suggestions from my dissertation committee members. I also would like to thank the faculty in

the School of Information Sciences for their teaching and support.

I am happy to make friends during my study and thank my former and current colleagues

at the Geoinformatics Laboratory for their help in my research. I specially thank Jon Walker for

his help in my study.

I dedicate this dissertation to my parents to make them proud.

 18

1.0 INTRODUCTION

Over the past two decades, due to the improved accuracy and increased affordability of

the Global Positioning System (GPS), vehicle navigation systems have experienced a

tremendous increase in demand. Vehicle navigation systems assist in keeping track of

vehicles and finding desired paths to destinations. Motivated by the success of vehicle

navigation systems and the ubiquity of GPS, building navigation systems and services for

pedestrians and wheelchair users is the focus of this dissertation.

A navigation system consists of a map database, a user interface and several

navigation functions including geo-positioning, map matching, routing and guidance.

These components are briefly described below.

 Map Database. A map database contains the geometry, topology, and attributes of a

map network (e.g., a road network or a sidewalk network).

 Geo-positioning. Geo-positioning is the process of measuring location updates of

an object in real time. The measurement of positions can be through GPS or other

sensors, such as Dead Reckoning (DR), which are subject to noise, interference

from the environment, and other of errors.

 Map Matching. Map matching is the process of determining the current vehicle’s

location on the road segment, using the geographic coordinates obtained by the

geo-positioning component and the map database component.

 19

 Routing and guidance. Routing computes user-preferred routes and guidance gives

step-by-step instructions on how to travel on routes.

 User interface. A user interface accepts the user’s requests for directions. It

responds with map-matched positions on the map and audible or displayed

directions at the right time.

Figure 1.1 shows the interrelations among the components of a navigation system.

Real-time position data are obtained through geo-positioning sensors, such as a GPS

receiver. To accurately locate a vehicle, map matching determines the road segment on

which the vehicle is and estimates a position on the segment. The user interface shows

matched positions in real time. The routing component provides users with their desired

routes to their destinations, taking user preferences into account.

Figure 1.1. Components of a navigation system

Although vehicle navigation systems are currently the most popular,

pedestrian/wheelchair navigation systems/services are gradually growing in prominence.

With the progress of mobile technology, indoor/outdoor mobile systems (e.g., Nokia) are

Routing, Planning&

Guidance

Map Matching Geo-Positioning

User Interface

Map DB

 20

being developed to provide location-based services, such as tour guidance for pedestrians

(Fritz et al., 2006; Steinhoff et al., 2007). For wheelchair users, research has focused on

developing “smart” wheelchairs that can provide navigation assistance mainly in indoor

environments (Levine et al. 1999; Simpson et al. 2004). Outdoor wheelchair navigation

systems/services are emerging as applications in their own right and are more challenging

to develop than vehicle navigation systems are (Ding et. al. 2007). Inspired by the

increasing demand for pedestrian/wheelchair navigation systems/services, this

dissertation focuses on investigating and developing advanced map matching

technologies and techniques to assist pedestrians and wheelchair users with mobility

while outdoors.

1.1 PROBLEM STATEMENT

Vehicle navigation systems have been widely researched and developed over the past

decades. However, with the rapid growth of the mobile device market, there is an

increasing demand for pedestrian navigation services as mobile applications on mobile

devices. As the populations of both disabled and senior citizens increase, there is a

corresponding need to meet the travel demands of these groups so that they can maintain

their quality of life. As a result, improvements in wheelchair navigation are required in

order to provide wheelchair users with appropriate travel routes that can safely,

accurately, and efficiently guide them to their destination. The backbone of these types of

pedestrian/wheelchair services is a spatial database that represents the underlying

 21

sidewalk network, which is used for tracking, routing, and guiding users to their

destination.

Most of the commercially available pedestrian/wheelchair navigation

systems/services were originally designed as vehicle navigation systems, and are now

sold as with only minor modifications, such as the “Walking Navigation” feature

on Google Maps for Mobile on Android, or extended pedestrian navigation functionality

on some Nokia smartphones. These applications use road networks, like vehicle

navigation systems, to provide navigation assistance to pedestrians and wheelchair users.

However, road networks cannot provide pedestrians and wheelchair users with optimal

services for several reasons. First, road networks typically include paths that are

accessible to vehicles, but pedestrians and wheelchair users usually move or operate on

sidewalks and do not travel on roads. Second, road networks do not contain information

about footpaths, accessible areas for pedestrians, or connecting links to indoor

environments. Third, map matching and routing on road networks do not provide the

localization and routes that are of use for pedestrians and wheelchair users.

To provide appropriate navigation assistance to pedestrians/wheelchair users,

pedestrian/wheelchair navigation services must support sidewalk networks

(Kasemsuppakorn and Karimi, 2008). An analysis of the differences between

pedestrian/wheelchair navigation and vehicle navigation reveals that map matching in

pedestrian/wheelchair navigation services has unique requirements unfound in vehicle

navigation systems.

First, while vehicle navigation systems track cars on roads, requiring road

networks in the map database component, pedestrians/wheelchair navigation

 22

systems/services track movement of users on sidewalks, requiring sidewalk networks. In

general, sidewalk networks are much denser than road networks are in the same area,

compounding the challenge of finding the correct sidewalk segment in the process of map

matching.

Second, different from car driving, pedestrians walk or wheelchair users operate

at lower speeds and their outdoor activities are usually closer to buildings. Under such

circumstances, the Global Navigation Satellite System (GNSS), e.g., GPS, provides less

accurate and reliable positioning information due to noise and multipath problem,

compared to it received in vehicles. Further, in narrow streets (those with widths less than

10 m), GPS receivers (those available on mobile devices) have difficulty in determining

the side of the street on which the user is travelling. Therefore, map matching has to deal

with the positioning problem raised by GPS.

Third, pedestrians or wheelchairs are free to advance, stop and make turns at will on

sidewalks. Since they have more flexibility than vehicles driven under traffic rules,

people can always travel in both directions on sidewalks and in open areas, such as

squares and parks. Rules for cars’ travelling on road that have been utilized as constraints

in map matching for vehicle navigation must be replaced with new rules in map matching

for pedestrian/wheelchair navigation according to pedestrian or wheelchair users

movement behaviors.

Existing map matching techniques based on road networks in vehicle navigation

systems do not take these characteristics unique to pedestrian/wheelchair navigation into

account, thus they are not suitable for pedestrian/wheelchair navigation. For this, to

provide appropriate navigation assistance, special designs and further customization of

 23

map matching are required to meet the specific needs of both pedestrians and wheelchair

users.

1.2 OVERVIEW OF MAP MATCHING IN PEDESTRIAN/WHEELCHAIR

NAVIGATION SYSTEMS/SERVICES

In general, map matching algorithms integrate estimated locations, from positioning

sensors such as GPS and DR, with a road network map to identify the correct link on

which a vehicle is traveling and to determine the location of a vehicle on that link

(Karimi et al. 2006; Quddus 2006; Ochieng et al. 2004). Map matching plays a crucial

role in a navigation system whose logic is heavily dependent upon the characteristics of

the underlying positioning sensors. The success of a navigation application mainly

depends on the suitability of its positioning sensors and the map matching algorithm.

 24

Figure 1.2. Map matching process in pedestrian/wheelchair navigation systems

Figure 1.2 highlights the map matching process in a pedestrian/wheelchair

navigation system/service where a sidewalk map, instead of a road map, is used. The

sidewalk network database includes sidewalk geometries, sidewalk topologies and

relevant information for personal accessibility. Information such as sidewalk conditions

(e.g., grade, steps, smoothness) and building properties (e.g., accessible entrance and

elevators) are also needed. Geo-positioning data come from sensors, such as GPS,

accelerometer, and compass sensors. Prior to map matching, a pre-processing task is

performed on the sidewalk network database to prepare geometrical and topological

information of sidewalk segments with appropriate attributes for map matching. The map

Geo-Positioning

Map

Matching

Analysis and

pre-processing

Historical Data

Link Identification and

Position Estimation of

the user on the Link

Topology,

Links,

Nodes

Link ID and

Estimated

Location

(Longitude, latitude)

Constraints

Sensor Data

Digital

Sidewalk

Network

Database

 25

matching process incorporates geo-positioning data and pre-processed spatial data. Once

a correct sidewalk segment is identified, each new positioning data is projected onto the

segment to estimate a new position. Moreover, a user’s historical trajectory is used as a

means to speed up the map matching process.

1.3 MAP MATCHING CHALLENGES FOR PEDESTRIAN/WHEELCHAIR

NAVIGATION

Existing map matching algorithms are designed for vehicle navigation systems. Utilizing

road networks, instead of sidewalk networks, for map matching does not appropriately

address the navigation needs of pedestrians/wheelchair users. As shown in Figure 1.2, in

addition to map data, geo-positioning techniques also play a role in map matching. Some

existing map matching algorithms for vehicle navigation use other sensors, in addition to

GPS, such as DR and gyroscope. Such sensors are not usually available in

pedestrian/wheelchair navigation services. As a result, map matching algorithms that are

based on the sensors that are only available on vehicles are not directly applicable for

pedestrian/wheelchair navigation. Furthermore, existing solely-GPS-based map matching

algorithms may work for pedestrian/wheelchair navigation only after considering those

specific requirements discussed in Section 1.1. Analyzing the characteristics of

pedestrian/wheelchair navigation and comparing them with those of vehicle navigation

reveal the challenges that must be addressed in developing map matching algorithms for

pedestrian/wheelchair navigation.

 26

First, in a pedestrian/wheelchair navigation system/service, a sidewalk network is

required, which exacerbates the map matching process. Since most roads in an urban area

have sidewalks on both sides, a sidewalk network is much denser than its corresponding

road network is. Determining the side of the road on which the pedestrian/wheelchair is

moving by pedestrian/wheelchair navigation systems/services is a challenging task.

Figure 1.3 compares the density of a sidewalk network and that of its corresponding road

network.

Figure 1.3. Sidewalk network (a) versus road network (b) in the same area

Additionally, pedestrians and wheelchair users sometimes move on a random path

rather than follow the sidewalk. This further compounds the map matching process.

Figure 1.4 shows the trajectory of a user along a route with no corresponding sidewalk in

the area’s map database.

a b

 27

Figure 1.4. No path in map database

Second, GPS errors cause issues with change in location, time or weather,

especially in dense urban areas, where high buildings, among other obstacles, block

satellite signals. Since pedestrians and wheelchair users are on sidewalks close to

buildings, the navigation system/service is more susceptible to GPS signal loss or signal

degradation than vehicle navigation systems are. Figure 1.5 shows the problem caused by

GPS errors in places with high-rise buildings. Position Dilution of Precision (PDOP), as a

measure of overall uncertainty of a GPS position, represents quality of GPS signals. A

PDOP value of 1 indicates a good satellite configuration and high-quality data;

conversely, PDOP values above 8 are considered poor. The quality of the data decreases

as the PDOP value increases. The PDOP of GPS positions, shown in Figure 1.5, ranges

between 2.5 and 11.4 which are considered poor and very poor, respectively.

A user moves on a

random path without

corresponding sidewalk

in the database.

 28

Figure 1.5. Poor GPS signals (PDOP between 2.5 and 11.4)

Moreover, GPS position fixes are less reliable at speeds of less than 3.0 m/s

(Ochieng et al. 2004; Taylor et al. 2001), which are often the case with pedestrians and

wheelchair users. At such a low speed, the uncertainty in positions could impede the

derivation of heading based on displacement (Taylor et al. 2006).

Obviously, since geo-positioning only by GPS is insufficient to support

navigation and tracking, there is a need for advanced map matching techniques and/or

additional data from other sources. An alternative to geo-positioning by GPS is a multi-

sensor map matching approach. Due to recent advances in computing and mobile device

technologies, smartphones, like iPhones and Android phones, are growing in popularity.

Sensors such as cameras, accelerometers, compasses, and gyroscopes in mobile phones

can be employed by navigation systems. With these sensors, a multi-sensor map

matching approach, using a smartphone as the platform, can provide a solution to

seamless tracking in pedestrian/wheelchair navigation systems/services. However,

consumer-grade GPS receivers built on smartphones cannot provide positioning data as

good as professional-grade GPS receivers. Figure 1.6 shows a route collected both

 29

through a professional-grade GPS receiver and through a consumer-grade GPS receiver

on a smartphone. The green points represent data obtained through a professional-grade

GPS receiver, and the red points are GPS data obtained through a smartphone.

Figure 1.6. Comparison of GPS data from a professional GPS receiver (green) and a smartphone (red)

In summary, map matching in pedestrian/wheelchair navigation systems/services

is more complex and challenging than map matching in vehicle navigation systems is,

primarily due to high density of sidewalk networks and poor GPS signals.

1.4 GOAL AND OBJECTIVES

The overall goal of this research is to contribute to the realization of a fully functional

pedestrian/wheelchair navigation system/service, by developing advanced map matching

techniques and testing them on real sidewalk networks to validate their accuracy and

performance. Such a navigation system/service will find applications in many areas

including route guidance, tour guides, pedestrians/wheelchair user tracking and

 30

monitoring, accident and emergency responses, and many more.

To achieve this goal, the following objectives are set forth in this dissertation:

 To develop an efficient candidate segments selection algorithm.

 To develop a number of map matching algorithms based on different techniques such

as fuzzy logic, chain code, temporal probabilistic reasoning, computer vision, and the

integration of motion sensors with vision and GPS.

 To validate the developed map matching algorithms using real-world field data.

1.5 CONTRIBUTIONS

This research contributes the following:

1. An adaptive candidate segments selection algorithm using a clustering technique;

2. A set of advanced GPS-based only map matching algorithms for

pedestrian/wheelchair navigation systems/services;

3. Techniques based on accelerometer and compass data for recognizing a user’s

movement pattern to assist map matching.

4. Advanced map matching techniques based on computer vision;

5. A multi-sensor map matching approach that provides seamless map matching

services in a pedestrian/wheelchair navigation system/service. This is

accomplished by integrating motion sensors, such as an accelerometer and a

compass, with vision and GPS data.

 31

1.6 ORGANIZATION

This dissertation is organized into six chapters. Chapter 1 states the motivation of this

research, gives an overview of the challenges in this study, and states its goal, objectives

and contributions.

Chapter 2 provides a background on pedestrian/wheelchair navigation

systems/services. It also reviews the related literature on existing map matching

techniques, computer vision techniques, relative geo-positioning techniques and mobile

technology for navigation applications.

Chapter 3 presents an adaptive candidate segments selection algorithm to

efficiently find a set of candidate segments as the first step in map matching.

Chapter 4 discusses three advanced map matching algorithms for

pedestrian/wheelchair navigation systems/services: chain-code-based map matching

algorithm, Hidden Markov Model (HMM)-based map matching algorithm, and fuzzy

logic map matching algorithm.

Chapter 5 presents two multi-sensor map matching algorithms based on a

smartphone client/server platform. A movement pattern, recognition assisted, map

matching algorithm for improving efficiency and accuracy of map matching is discussed.

Multi-sensor integrated map matching, using a monocular visual odometry technique to

provide users with seamless positioning services, is presented.

Chapter 6 summarizes the research and its contributions, discusses conclusions,

and provides recommendations for future research.

 32

2.0 BACKGROUND AND RELATED WORK

The first vehicle navigation and positioning system was built by the electronics industry

in 1975 (Krakiwsky, 1993). In the thirty years since then, the number of such systems has

grown rapidly. Today, most of the leading car manufacturers have developed Global

Navigation Satellite Systems (GNSS) based in-car navigation systems.

In general, a vehicle navigation system is a satellite navigation system designed for

use in automobiles. It typically uses a navigation device to acquire position data and to

locate the user on a road based on an embedded map database. Moreover, the system can

provide users directions to other locations along the road network.

Similar to vehicle navigation systems, pedestrian navigation systems aim to provide

continuous positioning and tracking of a mobile user with a certain positional accuracy

and reliability. Not present in vehicle navigation systems, a very challenging task for

pedestrian navigation is to navigate in urban environments with a mixed indoor and

outdoor environment as pedestrians travel in spaces where existing location methods

cannot work continuously in stand-alone mode (Retscher et al., 2006).

Research has also focused on high maneuverability and navigational intelligence for

driving a wheelchair in domestic environments (Pires, 1997; Simpson et al., 2004). These

wheelchairs are usually equipped with sensors to detect obstacles or environmental

http://en.wikipedia.org/wiki/Global_Navigation_Satellite_System
http://en.wikipedia.org/wiki/Automobiles
http://en.wikipedia.org/wiki/GPS_navigation_device
http://en.wikipedia.org/wiki/Road
http://en.wikipedia.org/wiki/Database

 33

markers for localization and navigation. While some work on outdoor wheelchair

navigation using GPS and other sensors has been reported (Imamura et al. 2004, Wu et al.

2005), their contributions are on obstacle detection and autonomous navigation.

2.1 SIDEWALK NETWORKS

Sidewalk networks are required to provide connections among commercial, institutional,

municipal, educational and recreational facilities in any geographic area. The sidewalk

map database consists of geometrical, topological, and attribute information

(Kasemsuppakorn and Karimi, 2007). Geometrical information contains the geospatial

coordinates of sidewalk segments. Topological information represents the connectivity of

sidewalk segments. Finally, attribute information in a sidewalk map contains the

characteristics of sidewalk segments.

Sidewalks along roads normally have two sides. Compared to a road network, the

sidewalk network in the same area must be generated with more geometrical and

topological data; therefore, sidewalk networks are much denser than road networks.

Moreover, since sidewalks are connected to entrances of buildings that pedestrians and

wheelchair users need to access, accurate map matching on the correct side of a road

segment is one of the most important tasks for map matching in pedestrians/wheelchair

navigation. Due to the density of sidewalk networks, this is more complex than map

matching on roads.

In addition to sidewalk segments along roads, any path that can be used by

 34

pedestrians and wheelchair users should be included in the sidewalk map database. With

this increased number of segments, branches and paths in the sidewalk network database,

map matching algorithms have more challenges to overcome.

2.2 GEO-POSITIONING TECHNOLOGIES AND TECHNIQUES

The geo-positioning technologies used in vehicle navigation systems have undergone a

major evolution over the last few years. Several geo-positioning techniques are being

used in vehicle navigation systems or under research worldwide. These include GNSS,

WiFi Positioning System (WPS), Cellular Positioning System (CPS) and Dead

Reckoning (DR) (Rizos et al., 2005, LaMarca et al., 2008). For pedestrian navigation, in

addition to sensors used in vehicle navigation systems, sensors such as a low-cost attitude

sensor (digital compass) providing the orientation and heading of the person being

navigated and a digital step counter or accelerometers for travel distance measurements

can be employed (Retscher et al. 2006). Similarly, wheelchair navigation systems also

use both absolute positioning techniques, like GPS, and relative positioning techniques,

like DR, odometry and Inertial Navigation System (INS) (Anousaki et al., 2007;

Venkatraman et al., 2009). Additionally, other sensors may also be utilized in outdoor

wheelchair navigation, like ultra-sonar and laser, which are mainly used for avoiding

obstacles, not for positioning.

Among all these geo-positioning technologies, satellite-positioning technologies (i.e.,

GNSS) are widely employed for outdoor navigation. GPS is the most popular GNSS. The

achievable positional accuracies of GPS-based navigation systems range from a few

 35

meters to 10 m in stand-alone mode and sub-meter to a few meters in differential mode,

(e.g., Differential GPS or DGPS). However, GPS often suffers from availability and

accuracy issues. Due to obstructions, a sufficient number of satellites may not be

available for a short period of time. In urban areas, especially downtown areas, GPS

signals could be very weak compared with those in rural areas. Accuracy of GPS data

also can be influenced by weather and it may also fluctuate in the same location with over

time.

Therefore, a solution to this problem is the addition of new sensors (i.e., multi-

sensors) to bridge the absence of satellite signals. These additional sensors are critical for

pedestrian/wheelchair navigation to obtain the necessary data for localization.

Possible outdoor geo-positioning technologies (see Rizos et al., 2005; Retscher et al.,

2006), both absolute and relative, include GPS, WPS, CPS, Vision-based Positioning

System (VPS), DR, and INS. The outdoor geo-positioning technologies that can be

integrated with GPS are listed in Table 2.1.

Table 2.1 Outdoor geo-positioning technologies potential for integration with GPS

Outdoor

geo-positioning

Type Accuracy Coverage

WPS

(WiFi)

Absolute High

± 1 – 3 m

limited

CPS

(Cellular)

Absolute Low

± 50-100m

good

VPS

(Vision-based)

Absolute/Relative High middle distance

DR

(Odometry+INS)

Relative Low

± 20 – 50 m per 1 km

–

 36

WPS has grown rapidly in recent years and provides reasonable positional accuracies,

but it suffers from limited signal coverage. WPS cannot locate targets when they are out

of range of Wi-Fi signals. WPS accuracy also depends on Wi-Fi hotspot databases, which

are built by fingerprinting wireless access points and must be constantly updated to keep

up with Wi-Fi hotspot changes (LaMarca et al., 2008). Moreover, only a few commercial

companies build databases of sufficient size to be used for Wi-Fi positioning. To build

and maintain such a database requires considerable effort on the fingerprinting techniques

which are not the focus of this dissertation; therefore, WPS is not chosen in this research.

In contrast to WPS, CPS has good signal coverage in urban areas, but it is less

accurate. Kitching (2000) proposed integrating GPS and CPS at two levels: (a) at the

measurement data level and (b) at the infrastructure level. Although the addition of

cellular network Base Stations (BSs) can improve the horizontal accuracy of GPS

positions, a number of infrastructure modifications are required to enable the cellular

ranging measurements necessary in a positioning solution. Some commercial companies,

like Qualcomm, are currently working on such integrations.

Integrating DR sensors, which are based on relative positioning techniques, is one

alternative to overcome GPS errors in navigation systems/services. DR sensors, e.g.,

gyroscope and accelerometer, obtain the travelled distance from velocity and acceleration

measurements and estimate direction of motion or heading and height difference.

A wheelchair's position can be estimated based on distances measured with odometer

devices mounted on both wheels of the wheelchair. Accelerometers can provide relatively

high position accuracy in a relatively short time. Due to its bias drift, the position error

will grow over time. Another approach to measure a wheelchair’s movement is to use

http://en.wikipedia.org/wiki/Inertial_guidance_system#Vibrating_gyros
http://en.wikipedia.org/wiki/Accelerometer

 37

wheel revolution counters (Lankton et al., 2005), which can determine the distance and

time of travel by using seat occupancy sensor and tilt meter. A seat occupancy sensor

reports when a user is seated in the wheelchair and the tilt meter measures the position of

the wheelchair in angular degrees. However, in practice, problems such as wheel slippage

and sidewalk surface condition contribute to poor accuracy. Also since localization of

pedestrians or wheelchair users is based on horizontal distance, wheel revolution

counters, which measure slope distance, are not considered in this dissertation.

For pedestrians, positioning data can come from accelerometer measurements based

on an INS or from a step-counter and step-length estimator from a typical pedometer.

Accelerometer measurements used for pedestrians have the same problem as in

wheelchairs, i.e., positioning errors would be accumulated over time. Regarding

pedestrian dead reckoning (PDR), the position accuracy in the pedometer/GPS

integration relies mainly on estimations of the number of steps (counted by the

accelerometer) and the length of the steps (calculated by the pedometer). For a pedometer

to measure distance, the average step length of a user must be measured, which requires

users to walk in a consistent pace. As PDR sensors are most effective when they are

mounted on user’s feet, they are not suitable for wheelchair users. Considering these

above issues of DR/INS for pedestrians and wheelchair users, DR/INS techniques are not

chosen for pedestrian/wheelchair navigation in this dissertation.

On the other hand, accelerometers have been used as motion detectors (DeVaul

&Dunn 2001), as well as, for body-position and posture sensing (Foerster, Smeja, &

Fahrenberg 1999). Acceleration measurements from accelerometers can be used for

activity recognition which is usually formulated as a signal processing and classification

 38

problem (Ravi et al., 2005). Researchers in this area mainly focus on the identification of

physical activities, such as walking, jogging, resting, standing, climbing, running, etc.

Modeled from other research studies using accelerometer, compass, barometer,

gyroscope, or combinations of them to identify pedestrian’s activities (i.e., walking,

jogging and going upstairs or downstairs) (He et.al., 2009), this dissertation classifies

user’s movement as patterns including no movement, walking, running and turning in

order to identify the user’s movement behavior .

Computer vision is a growing research field (Koller et al., 1997; Chen and Shibasaki,

1999; Malis et al., 2002). Many “smart” wheelchairs use computer vision to help avoid

obstacles and to explore indoor environments. Computer vision also can be used to

compute distance and to estimate indoor and outdoor locations. Vision-based positioning

(Henlich, 1997) is currently an active research topic (Chen and Shibasaki, 1999; Tardif et

al., 2008). Feature extraction for positioning is not an easy task due to diversity of images

and the wealth of information captured in images. Object recognition is one of the most

difficult tasks in computer vision, which involves feature extraction, object clustering or

classification and location/pose estimation, etc. However, compared to the

aforementioned geo-positioning technologies, vision-based positioning technology has

several advantages. First, vision-based positioning techniques are less influenced by the

environment. This can help geo-positioning in areas without good GPS signals. Second,

feature extraction using computer vision techniques in recent years has advanced and

matured to guarantee high positional accuracy since feature extraction is critical in

estimating motion in vision models. Finally, using a camera as a sensor for vision-based

positioning is relatively inexpensive and practical. Realizing the advantages and

 39

disadvantages of modern geo-positioning technologies and techniques, vision-based

positioning is an attractive and emerging technology and thus, chosen for integration with

GPS for map matching in this dissertation.

2.3 MAP MATCHING TECHNIQUES IN NAVIGATION SYSTEMS

Over the past two decades, many map matching algorithms have been proposed and

evaluated in various scenarios. Most algorithms have been developed for vehicle

navigation, a few for outdoor pedestrian navigation, but very few have focused on map

matching for outdoor wheelchair navigation.

Current map matching algorithms can be divided into three main approaches,

geometric map matching, topological map matching and advanced map matching

(Quddus et al. 2007). Geometric map matching consists of point-to-point map matching,

point-to-curve map matching and curve-to-curve map matching. Topological map

matching utilizes both geometrical and topological data to make matching decisions.

Advanced map matching applies models, such as probability theory, Kalman filter, and

fuzzy logic, to either geometrical map matching or topological map matching, so the

algorithm obtains better matching results with an increase in the complexity of the

computations required.

In point-to-point map matching each newly obtained position is matched to the

closest “node” or “shape point” of a road segment. While point-to-point map matching is

both easy to implement and computationally fast, it is very sensitive to the geometry of

 40

the road network. In point-to-curve map matching, each newly obtained position is

matched to the closest “line segment” (curve) in the road network which is selected as the

segment on which the vehicle is traveling. Although point-to-curve map matching can

identify road segments more accurately than the point-to-point map matching, in dense

networks, such as those for urban areas, it may not be able to produce good solutions. In

curve-to-curve map matching, a vehicle’s trajectory (current travelling curve) is matched

to road segments (network curves). Curve-to-curve map matching finds a matched road

segment in three steps. In the first step, it constructs piecewise linear curves using

candidate nodes through point-to-point map matching. In the second step, it constructs

piecewise linear curves using the vehicle’s trajectory. In the third step, it calculates the

distance between vehicle’s trajectory (step 2) and the curves corresponding to road

segments (step 1). The road segment closest to the vehicle's trajectory is selected as the

solution. Curve-to-curve map matching may not always produce a good solution because

of outlier sensitivity and its reliance on point-to-point map matching (Ochieng et al.

2004).

Topological map matching (Meng et al. 2006; Quddus et al. 2003) takes into account

both geometrical and topological information of the road network, as well as, history of

GPS data. In topological map matching, the vehicle’s trajectory and topological features

of the road (e.g., road turn, road curvature, and road connection) are matched. However,

in some cases, topological map matching resorts to a post-processing mode to identify the

correct road segment, and in other cases it can rely on a global matching strategy. Neither

of these cases is suitable for real-time applications. Modifying the weighting scheme with

additional criteria and parameters (i.e., vehicle’s speed, position relative to candidate road

 41

segments, heading information (directly from GPS data), or position data obtained by

integrating GPS and DR), will improve the performance of topological map matching.

Both geometrical and topological map matching algorithms are used as the basis for

developing other advanced map matching algorithms. These advanced algorithms employ

additional techniques to improve performance, such as a Kalman Filter or an Extended

Kalman Filter, a flexible state-space model and a particle filter, and a fuzzy logic model

(Quddus et al. 2007; Jagadeesh et al. 2004).

Quddus (2006, 2007) reported a comparison of performances of some map matching

algorithms. These algorithms, as well as, two algorithms by Wu et al. (2007) and Liu et

al. (2008) are presented in Table 2.2.

 42

Table 2.2. Comparison among performances of various map matching algorithms for vehicle navigation

(after table in Quddus, 2007)

Authors and year of

publication

Navigation sensors Test Environments Correct Link

Identification (%)

Horizontal Accuracy

(m)

Kim et al. (2000) GPS Suburban – 10.6 (100%)

Kim and Kim (2001) GPS/DR Urban and suburban – 15m (100%)

White et al. (2000) GPS Suburban 85.8 –

Pyo et al. (2001) GPS/DR Urban and suburban 88.8 –

Taylor et al. (2001) GPS + Height Suburban – 11.6 (95%)

Bouju et al. (2002) GPS Suburban 91.7 –

Yang et al. (2003) GPS Suburban 96 –

Quddus et al. (2003) GPS/DR Urban and suburban 88.6 18.1 (95%)

Syed and Cannon

(2004)

GPS/DR Urban and suburban 92.8 –

Ochieng et al. (2004) GPS/DR Urban and suburban 98.1 9.1 (95%)

Quddus et al. (2006b) GPS/DR Urban and suburban 99.2 5.5 (95%)

Wu et al. (2007) GPS Urban 95.14 -

Liu et al. (2008) GPS Urban 99.4 in one case -

The percentage of correct link identification ranges from 86% to 99%. The 2-D

horizontal positional accuracy ranges from 18 m to 5.5 m (95%). It shows that many of

these algorithms are based on utilizing multiple geo-positioning technologies in

combination to obtain results with good accuracy. Quddus (2006) concluded that the

fuzzy-logic map matching algorithm produces best results when GPS and DR are

considered. It should be noted that since those map matching algorithms in Table 2 were

tested on different areas with different road maps, the performance in accuracy is not

 43

only a function of the geo-positioning technologies and the map matching algorithms

they use, but also a function of the road networks used in the tests.

2.4 COMPUTER VISION IN NAVIGATION SYSTEMS

Previous work on vision-based navigation systems mainly consists of research on

automatic driving systems (Castro et.al, 2001) and pedestrian navigation systems (Fritz

et.al, 2006; Steinhoff et.al, 2007). Both systems use vision-based positioning techniques

to provide either absolute or relative positioning. Absolute positioning computes the

absolute position of an object by measuring distances from it to other known objects, like

buildings, on the basis of recognizing known objects from images. Relative positioning

calculates incremental positions by measuring movement or rotation/orientation step by

step.

In pedestrian navigation systems, landmarks are used as references for absolute

positioning. Given known locations of landmarks and estimated distances from users to

those landmarks, pedestrian navigation systems can provide users with their absolute

positions. For all known landmarks, locations of these landmarks are recorded in the

database server in advance. An example scenario follows. A user on a tour captures

pictures and sends them to the server. Once landmarks shown in the pictures are matched

with the known landmarks in the server, the tour system can estimate the user’s location

by retrieving the known landmark’s location in the database server and computing the

distance from the user to the known landmarks. Figure 2.1 shows an example of

user test case in a tour system from Steinhoff et.al (2007).

 44

Figure 2.1. Example image with landmarks (Steinhoff et.al, 2007)

In this figure, the red points on the image are landmarks, which are used as reference

points. When a user travels on a tour, his/her locations are computed and marked on the

image, which are shown as query points. Steinhoff et.al (2007) concluded that the

absolute positions obtained for the waypoints in the tour system were more accurate than

GPS.

However, since mobile devices have limited computation capability and memory

capacity, the tour system has to be built on a client/server network. In the client/server

network, mobile devices communicate with the server using the wireless communication

infrastructure. Using landmarks as distinctive features in the environment, images with

landmarks are collected in advance and the extracted features, such as color or shape

features, are stored in the server. On the client side, mobile users capture pictures and

send them to the server. On the server side, the server responds to clients with their

location by doing image retrieval. If a landmark in an image captured by a user is

recognized, the server then can locate the user on the map near the known landmark’s

 45

location. Further, the tour system can prompt the user through a set of directions to

provide guidance on his/her tour.

By contrast, automatic driving systems are based on more sophisticated computer

vision techniques. Computer vision is not only for positioning but also for avoiding

obstacles and driving without people in control. Automatic driving systems use a relative

positioning approach in their vision-based positioning. By tracking visual features

observed from a moving camera, relative positioning uses the transformation relationship

between an image coordinate system and a world coordinate system to estimate a

vehicle’s location. To accomplish this, correspondence between image pairs or sequences

must be obtained. Once an image set has been matched, bundle adjustment techniques

can be used to compute the camera position, which is a surrogate for the vehicle’s

position.

With the location of a starting point, the automatic driving system can also mark a

vehicle by its absolute positions on a map by adding relative movements, which is called

visual odometry in robotics (Levin et al., 2004, Olson et al., 2001). Tardif et al. (2008)

presented a system for motion estimation of a vehicle using an omnidirectional camera

which successfully performed high precision camera trajectory estimation in urban scenes

with a large amount of clutter. The visual odometry algorithm in their paper mainly

includes feature extraction and tracking, motion estimation, and structure computation.

Other systems prefer to use two cameras as a pair to improve accuracy.

In both automatic driving systems and pedestrian navigation systems, feature

extraction and object recognition are the key techniques. Global features and local

features are two types of image features widely used in object recognition algorithms

 46

(MOBIS 2005). Global features describe an image as a whole. They have the ability to

generalize an entire object with a single feature vector. Local features, on the other hand,

focus on image patches. They are computed at multiple points in an image and are

consequently more robust to problems of occlusion and clutter (MOBIS 2005). Global

features mainly consist of color, texture and shape. Color features capture the

chrominance information in the image. For example, sky, ground, and vegetation can be

classified by colors. Texture and shape represent illuminance. Textures are also often

used as local features. For instance, local region features can be described by their scale

and texture, e.g., the Scale-Invariant Feature Transform (SIFT) approach (Lowe, 1999).

Boundaries of segmented regions or a boundary of an entire object are often used as

shape features. Although global features are widely used in various applications, they are

not suitable for applications with large changes of background, viewpoints, occlusion,

resolution, lightening and environment (MOBIS 2005).

Lowe (2001) defined local features as having intermediate complexity, which means

that they are distinctive enough to determine likely matches in a large database of

features and are sufficiently local to be insensitive to clutter and occlusion. In general,

local features extraction includes four steps:

1. Detect a set of local features in an image

2. Compute a description for each local feature

3. Use descriptors to find similar local structures in images for matching or an image

model for recognition

4. Verify object

 47

Three basic types of local features each with several subtypes were identified in

MOBIS (2005). These include interest points or “corners”, groups of line segments, and

distinguished regions.

An “interest point” (Mikolajczyk et al., 2004) is a point in an image which has a well-

defined position and can be robustly detected. An interest point can be a corner

(Derpanis, 2004), an isolated point of local intensity maximum or minimum, line endings,

or a point on a curve where the curvature is locally maximal. "Corner", "interest point"

and “feature” are used somewhat interchangeably because corners are very stable features

detectable even in the case of substantial viewpoint or photometric changes. They are

also insensitive to clutter and occlusion. However, in order to gain distinctiveness of each

individual corner feature, a small local neighborhood of the corner has to be considered

(Mikolajczyk et al., 2004). Various computer vision algorithms have been proposed for

feature extraction (Tuytelaars et al. 2008), such as Harris corner detector (Harris and

Stephens, 1988), Harris-Affine (Mikolajczyk et.al., 2002, 2004) and Hessian-Affine

detectors (Mikolajczyk et.al., 2002, 2004), SIFT(Lowe, 1999) and SURF(Bay, 2008).

Line segments are also often used as local image features. For example, Bay (2005)

proposed line segments extracted by Canny edge detector. Shapiro (2002) presented a

local feature called Consistent Line Cluster, defined as a collection of line segments

grouped by colors, orientation and spatial features.

Distinguished regions are image elements (subsets of image pixels) that posses some

distinguishing, stable property. Tuytelaars and Van Gool (2001) proposed Intensity

Extrema-based Region Detector (IBR) that utilizes local extrema in the image intensity as

anchor points. To improve the efficiency of this approach, Matas et al. (2002) presented

http://www./

 48

maximally stable extrema regions (MSER). Salient Regions and Scale-invariant Shape

Features are other examples of the distinguished region approach. However,

characteristics of objects in the images will ultimately determine what local features are

chosen for matching or recognition.

Moreover, Deselaers et al. (2007) compared performances of a large variety of visual

descriptors, both global and local features, which include Appearance-based Image

Features, Color Histograms, Tamura Features, Global Texture Descriptor, Gabor

Histogram, Gabor Vector, Invariant Feature Histograms, LF Patches, LF SIFT etc. One

of their conclusions is that the global search of SIFT features extracted at Harris points

performs best on the ZuBuD database (Shao 2003) which supports image-based building

recognition.

2.5 MOBILE TECHNOLOGY IN NAVIGATION APPLICATIONS

Mobile phones have become a compelling platform for location-based services. Most

current smart phones have a built-in global positioning system (GPS) receiver, cameras

and low-cost MEMS motion sensors such as an accelerometer or a gyroscope, and/or a

magnetometer. To achieve the goal that a pedestrian/wheelchair navigation system can

continuously provide position and heading information on a digital map to guide users,

the ubiquity, portability, good connectivity, the trend towards increased performance and

inclusion of multi sensors of smart phones make them an ideal target device in this

dissertation.

 49

3.0 ADAPTIVE CANDIDATE SEGMENTS SELECTION ALGORITHM

Generally speaking, the first and most important step in map matching is to identify the

correct segment on which an object is moving. Once the correct segment is determined,

estimating the location of the object on that segment, though with a degree of uncertainty,

is straightforward. Finding the correct segment requires that map matching algorithms

identify a set of candidate segments based on a received GPS position and compare and

analyze them to decide the most likely segment. Therefore, finding the set of candidate

segments is imperative in map matching algorithms. This involves two types of

situations. One is initializing a search range when the first position data is received and

the other is updating the search window continuously for new positions. If the network is

large, the search process is a time consuming operation. To identify the segment on

which an object is moving not only demands correctness, but demands efficiency as well.

Especially for a real-time navigation, the efficiency of finding the correct segment is even

more important.

At this stage, our goal is to select a set of candidate segments close to the received

GPS position. A widely used approach for determining the search window is to create a

buffer centered at the GPS point and identify segments within this window as candidates.

The search process is often based on an indexing technique which traverses a tree, for

example an R- tree, down to its leaf nodes to find those segments within the coverage of

 50

the search window. Since the topology of segments is very important to match GPS

points, it is appropriate to consider those adjacent segments to GPS points as candidate

segments. However, an indexing technique, like R- tree, does not consider topology of

segments in constructing the tree. It is likely that adjacent segments are stored in different

subtrees because the tree is constructed in a certain order (e.g., Hilbert order to build

Hilbert R- tree). As a result, retrieval of candidate segments in a given network requires

several passes through the R- tree. The searching complexity depends significantly on the

distribution patterns of segments on the network. Furthermore, the same segment may be

indexed more than once in the tree, requiring traversal of multiple paths. To avoid

redundant searching in indexed spatial databases, in this chapter, we address the problem

of efficiently finding candidate segments in spatial networks given GPS points of a

moving object. The algorithm is a bottom-up approach that builds a segment-clustering

tree to achieve both adaptability and efficiency in finding candidate segments.

3.1 RELATED WORKS

Current research on searching objects in spatial networks mainly employ indexing

techniques with the goal of improving the efficiency of queries (Tele Atlas, 2008; Zhao et

al, 2001). Spatial indexing for spatial and spatio-temporal queries has been an active

research topic over the past decades. Since 1984 when R-tree by Guttman (1984) was

presented, several indexing techniques have been developed for efficient spatial queries.

Basic indexing techniques with variant structures such as R-tree, quadtree, B-tree, and

 51

grid (Zhao, 1997) have been employed in different experiments focused on increased

spatial query efficiency (Lin 2008; Chen et al. 2006; Kalashnikov et al. 2002).

R-tree was developed as an index structure for the efficient management of multi-

dimensional and spatial data. Common operations performed on an R-tree include point

location queries, range queries and nearest neighbor queries. In the map matching

context, road or sidewalk segments can be represented as polygon objects and recorded

on the leaf node level in an R-tree. Each leaf node holds two items for each data record.

One is the bounding box of the object, and the other is information to place the object in

the real world. Other nonleaf nodes of R-tree hold two items for each of its children: a

bounding box of the child, and a pointer to the child.

A number of bulk loading approaches were developed to build R-trees (Bercken

and Seeger, 2001). Top-down Greedy Split (TGS) and bottom-up approach are the two

main methods (Alborzi. et al., 2007). A bottom-up approach builds an R-tree from leaf

nodes level to upper level until it reaches the root node. In the lowest level, n data

rectangles are sorted according to a predetermined sort order and m data rectangles are

grouped in the upper level. The construction process is an iterative procedure from the

bottom up to the root of R-tree. By contrast, a top-down approach first builds the higher

levels of R-tree. The data rectangles are sorted according to a predetermined sort order

and then split to build subtrees for the children recursively down to the final leaf nodes.

Both approaches have to predetermine an order of objects stored in the tree. This causes a

problem where the pre-ordered leaf nodes cannot represent adjacent objects in a spatial

space appropriately. There is a lack of efficiency when spatially adjacent objects in R-

tree are queried as a group, but were stored in multiple paths.

 52

3.2 SPATIAL NETWORK DATA REPRESENTATION

3.2.1 Hierarchical Clustering Tree

Unlike indexing techniques, where objects are organized in a certain order, clustering

techniques group objects by their characteristics. One important characteristic of spatial

networks is the connectivity of segments that we use to cluster them.

In the family of clustering algorithms for different types of applications, the two

most common branches are partitioning and hierarchical clustering algorithms (Huang, et

al. 1998; Kotsiantis, 2004). Partitioning algorithms create a “flat” decomposition of a

data set into a set of clusters. Examples of partitioning algorithms include k-means, k-

medoids algorithms and density-based approaches. They generally need some input

parameters that specify either the number of clusters that a user intends to find or a

threshold for point density in clusters. However, it is difficult to determine what

parameters are needed and what values they should have, as the parameters may not even

exist.

In contrast, hierarchical clustering algorithms do not actually partition a data set

into clusters but compute only a hierarchical representation of the data set reflecting its

possible hierarchical clustering structure. Hierarchical clustering algorithms are more

robust and less influenced by cluster shapes. Additionally, they are less sensitive to

largely differing point densities of clusters, and they can represent nested clusters

(Sander, Jörg et al. 2003). Since they partition without knowing the number of clusters

(e.g., distribution of segments in a spatial network) ahead of time, hierarchical clustering

 53

becomes an attractive alternative to spatial indexing techniques. The next section will

describe clustering segments in a hierarchical clustering tree by using the average-linkage

method.

3.2.2 Clustering Road Segments

In graph theory, a graph is formally represented by <V, E>, where V represents vertices

in the graph and E represents edges in the graph. A general adjacency matrix in graph

theory is A={aij}, where aij represents the weight (e.g., distance) between i
th
 vertex and j

th

vertex. Consisting of intersections and segments, a spatial network can be represented as

a graph where intersections are the vertices and segments are the edges. To better

perform map matching for navigation applications, segments are clustered instead of

intersections, because intersections only represent geometric information, whereas

segments represent both geometrical and topological information.

To build the hierarchical-clustering tree of a spatial network, a new matrix A’ is

introduced in this algorithm. Generalizing a spatial network as a non-directional graph

clustered by distance, A’ becomes a symmetric matrix. To define A’, two matrices are

first defined. One matrix represents the topology of a spatial network, denoted by T={ tij

}, where tij is 0 if the i
th
 and the j

th
 vertices are on the same segment (this occurs when i

and j represent the same vertex or i and j are the two vertices of a segment) and t ij is 1

when the i
th
 vertex is not directly connected to the j

th
 vertex. The other matrix is an

adjacency matrix A={aij}, which computes the Euclidian distance between any two

vertices to represent the closeness of the intersections in geometric space. As a result, a

new matrix A’= A.*T = { aij * tij } is defined to combine the two factors, geometrical

 54

distance and topological relationship from matrices A and T. The weight of each element

in the matrix A’ not only considers the distance between the vertices (i.e, intersections),

but also considers the topology of the spatial network. Based on matrix A’, we build a

hierarchical clustering tree from the bottom-up. Segments on the lowest level of this tree,

as the smallest units in the structure, are grouped together based on the distance of each

other and the clustering process is continued until the root of the tree is reached. For

example, Figure 3.1 shows 10 segments, labeled by ID from 0 to 9. Every segment has

two vertices, so 10 segments have twenty vertices, from 1 to 20. Matrix A’ therefore

becomes a 20-by-20 matrix. Since it is symmetric, only it’s upper or lower triangluar (off

diagonal) needs to be stored. The weights in the upper triangular and the lower triangular

are all set as 0s shown in Figure 3.2.

Figure 3.1. An example of road network

 55

Figure 3.2. Corresponding matrix (20-by-20)

Given the matrix A’, a hierarchical clustering tree is built using the average-

linkage clustering method. The average linkage clustering is based on measuring the

proximity between two groups of objects. Here we use the average distance between all

pairs of objects in cluster r and cluster s as the measurement. Its definition is as follows:

 (1)

Where nr is the number of objects in cluster r and ns is the number of objects in

cluster s, and xri is the ith object in cluster r, and xsj is the jth object in cluster s.

Figure 3.3. Corresponding clustering tree

9 1 2 6 0 8 3 7 4 5 Segment Number

 56

After applying the average-linkage clustering method, Figure 3.3 shows how the

hierarchical clustering tree is built from the matrix A’ in Figure 3.2. The clustering

process starts from the bottom where average distances of two vertices on the same

segment as a cluster are set to zero in A’. Segments are grouped together in an order that

clusters those with closer distances until all the clusters are grouped together and the root

is reached. The root of the clustering tree represents the entire spatial network as one

group.

3.3 ADAPTIVE SEARCHING ALGORITHM

Corresponding to the built clustering tree, a binary tree structure is generated and an

adaptive searching algorithm is designed correspondingly. To support map matching,

searching for segment candidates is conducted on the binary tree. The search starts from

the entire spatial network and stops if a group of segments is found with the required

criterion. Given the binary search tree and GPS points, instead of fixing a search window

size for candidate segments, grouped segments are dynamically obtained with changes of

the geometric and topological relationship between the GPS point and segments.

3.3.1 A Binary Tree Structure from the Clustering Tree

Since each group only joins one of the two members (one of which may be compound) in

the clustering tree shown in Figure 3.3, the clustering tree is a binary tree. Therefore, the

map matching process equates to finding the best-matched segment in all the candidate

 57

segments indexed in the binary tree. Considering that segments have different positions,

length and orientation, we use minimum bounding rectangles (MBR) (SAGAYARAJ et

al., 2006) in the nodes of the tree. Similarly, each MBR in upper levels of the tree

represents a group of segments. It is possible that sibling nodes have overlapping areas

due to MBRs. The binary tree is constructed from bottom to top, so its root represents the

bounding box of the entire spatial network. Figure 3.4 displays a small portion of the

binary tree. Figure 3.5 indicates a scenario where a GPS point is located within the range

of the MBR of a group of segments.

Figure 3.4. Data structure of a binary tree for segment clustering

Figure 3.5. A GPS point is located within the range of a Bounding Box

Bounding Box

MBR Coordinate left right

……

……

MBR Coordinate left right MBR Coordinate left right

GPS point

 58

3.3.2 Searching Algorithm

As shown in Figure 3.4, the range of MBR is narrowed down from top to bottom.

Therefore, in order to determine the search window for map matching, the binary tree is

traversed from top to bottom and will stop at a group node when a halt criterion is met.

The halt criterion is very important; it determines the map matching window size. The

searching algorithm is as follows:

1. Input the binary tree and a GPS point.

2. Set a criterion to halt searching.

3. If the GPS point is included in the boundary of the current group node and the halt

criterion is not met, then search its sub-trees. Otherwise, search the sibling node.

4. If the halt criterion is met, then traverse all the leaf nodes of this sub-tree for the

candidate road segments.

Since the candidate segments selection algorithm aims to find corresponding

candidate segments given GPS positions, the halt criterion is determined by the

relationship between the GPS point and the segment groups.

We note a GPS point as p(x, y), and a bounding box as B(minx, miny, maxx,

maxy). Next, c refers to the center of the bounding box. Distance(p, c) calculates the

distance between the GPS point (p) and the center point (c) and Within(p, B) evaluates

whether p is within the bounding box or not. Based on the notation, the criterion is

defined as:

IF Distance(p, c) < threshold and Within(p, B) THEN stop searching.

 59

The threshold is related to the density of grouped road segments. To generalize

the criterion, we set a threshold by testing on actual spatial networks. When the threshold

is set relatively small, it would guarantee that the GPS point is close enough to the center

of a selected group, in order to avoid misidentifying candidate segments by the GPS point

located on the boundary of two clustered sub-groups.

3.3.3 Adaptive Search Window Set

In spatial indexing techniques, a search window for candidate segments is normally a

fixed-size rectangle centered at a given GPS position. In order to retrieve those segments

within the search window, searching algorithms need to go through the indexing tree

several times. In contrast to such indexing techniques, a clustering tree provides an

adaptive search window by clustering spatially closed segments into groups and only

goes through the tree once. The output of the searching algorithm is a list of candidate

segments.

The number of segments included in the list of candidate segments depends on

three factors. One factor is the density of the spatial network. The second factor is the

relevant dynamic position of GPS points in a clustered group. The third factor is the

threshold in the halt criterion, which is set depending on GPS error range.

Similar to indexing techniques, nodes in the clustering tree have overlapping

MBRs. It is possible that a GPS point is located within two overlapping MBRs. To

justify which cluster should be selected based on its MBR, we compare distances

between the GPS point and the center of each MBR. The one with a closer distance has a

 60

higher possibility to be chosen as the selected cluster if the distance is less than the

threshold. If a GPS point is located on the boundary of the two groups, then the search

window will be adaptively adjusted to their parents, which is the higher-level clustered

group. For instance, in Figure 3.5, if a GPS point is located on the corner of segment 2

and segment 6, the search window should cover the higher group that includes segments

9, 1, 2 and 6. In Figure 3.3, this group includes the group corresponding to the MBRs

shown in Figure 3.5 and another group that contains only segment 6. This searching

procedure starts from the root of the tree, as shown in Figure 3.3 and once the halt

criterion is met, it will stop on the level which includes segments 9, 1, 2 and 6, rather than

searching the lower level.

3.3.4 Adaptive Search Window Update

With an object moving, a map matching search window needs to follow its movement.

The decision to update a search window or keep searching in the previous window

depends on both the direction and speed of the object’s movement. With the previous

candidate segments in memory, and by knowing the successive points to estimate the

object’s movement, searching in the same segment group continues. However, with the

object moving out of a known segment group, a new sub-tree has to be initiated. Under

this circumstance, updating the search window just repeats the initial searching procedure.

 61

3.4 PERFORMANCE ANALYSIS

To evaluate the candidate segments selection algorithm, we used two datasets, the

University of Pittsburgh campus road map and the Allegheny County road map and built

two clustering trees based on the maps. By simulating the movement of an object in

different scenarios, the performance of the algorithm is analyzed in this section.

3.4.1 Datasets

We employed road maps in the Pittsburgh area from the US TIGER data files and

collected some GPS positions on the campus of the University of Pittsburgh and tested

our algorithm on different GPS locations, in order to evaluate it in various scenarios

when an object was moving. Our algorithm was implemented using Matlab and tested on

a PC machine with “Intel Core 2 2.13G HZ” CPU and 2GB memory.

3.4.2 Construction Cost

Memory usage and time complexity of constructing a clustering tree depend on the scale

of a digital map. In order to save both space and time, our strategy was to split a large-

scale digital map into a set of sub-maps and then build its corresponding clustering tree

for each sub-map, so the original map corresponds to a forest structure. Indexing each

tree in the forest is straightforward. As shown in Figure 3.4, we need intermediate

memory to build matrices to calculate average distance of clusters, and the matrix before

 62

compression is n by n, so the memory usage is proportional to n
2
, where n is the number

of intersections.

In this algorithm, average-link clustering merges the pair of clusters with the

highest cohesion in each iteration. Based on this recursive computation of cohesion, the

time complexity of average-link clustering is O(n
2
 log n). However, Murtagh (1992)

compared various hierarchical clustering approaches in computational time complexity

and concluded that O(n
2
) time implementations exist for most of the widely known

hierarchical clustering methods, and some methods can perform close to O(n) expected

time for hierarchical clustering. Therefore, the construction cost of our hierarchical

clustering tree can be further reduced by more sophisticated techniques. In the current

implementation, a recursive approach is used to construct the hierarchical clustering tree.

Table 1 provides features of the constructed clustering tree corresponding to two different

map scales. Constrained by memory limitation in Matab, experiments are limited by the

size of spatial networks. In spite of this, our algorithm can be expanded to any large scale

map by splitting it into sub-maps and organizing it as a forest structure rather than a large

tree structure.

A balanced binary tree has depth, log2n, but hierarchical clustering trees that are built

from spatial networks are not guarantee to be balanced. Therefore, maximum and

minimum depths are recorded in analysis. Figure 3.6 shows the result of the tree

construction by using the campus of the University of Pittsburgh as an example, which

has the maximum depth of 14 and minimum depth of 10 as shown in the first row in

Table 3.1.

 63

Table 3.1. Tree features of three road networks

Road

network

Road

segments

(leaf

nodes)

Maximum

depth of

hierarchical

clustering

tree

Minimum

depth of

hierarchical

clustering

tree

Pittsburgh

campus

171 14 10

Oakland

area

1643 20 10

Figure 3.6. The clustering tree of Pittsburgh campus

 64

3.4.3 Searching Cost

In theory, if n is the number of segments, then the time complexity of searching on binary

trees is O(log2n). However, two factors influence query efficiency. One is the density of a

spatial network and the other is changes to a moving object from an intersection to its

linked segments. Because geometry and topology of spatial networks decide the

clustering tree, once a spatial network is built, the structure of a clustering tree

corresponding to the spatial network is fixed based on the clustering method. Therefore,

given a spatial network, we mainly consider the query cost influenced by the position of

GPS points.

As a user moves on the sidewalk, the sidewalk segments change. As the user

approaches an intersection or move on a relatively short segment, a search window will

cover more candidate segments than when the user is moving on a long segment. Query

efficiency is worst when a user moves on a boundary between two large-scale clusters.

Figure 3.7 shows how candidate segments change with different positions when a user is

moving. The red square in each figure shows the received GPS position and the red

points on the map show the intersections of candidate segments as the result of searching

the clustering tree. Furthermore, by testing the same points in a larger area, (e.g., in

Oakland) which covers the University of Pittsburgh campus, it can be seen that the

connectivity of the spatial network determines clustered candidate segments, as shown in

Figure 3.8. Since the average-linkage clustering approach is based on the average

difference of groups, and the same area has a constant spatial network structure, the

searching algorithm produces results with certainty. Given a GPS point, an experiment, in

 65

Figure 3.8, shows that selected candidates in the large-scale map are consistent with the

search results in small-scale map shown in Figure 3.7.

Figure 3.7-1. On a relative long road segment Figure 3.7-2. Approaching to an intersection

Figure 3.7-3 On another intersection Figure 3.7-4 Middle of a segment

Figure 3.7. Query results changing with scenarios of moving object’s positions

 66

Figure 3.8. A scenario on a large-scale map

As discussed previously, in order to evaluate various map matching situations,

experiments were conducted in three scenarios: approaching an intersection; moving

on a relatively long segment; and moving around a boundary of two clusters. Table

3.2 shows the average searching cost for the three situations.

Table 3.2. Statistics of the searching cost

Road

network

Maximum

hierarchical

level

Median

search

depth

Median search

depth

(Intersection)

Median search

depth

(on-segment)

Median search

depth (boundary)

Pittsburgh

campus

14 8 7 10 5

Oakland

area

20 9 6 10 6

 67

3.5 SUMMARY

This chapter presented a new algorithm to search for candidate segments given a GPS

point for map matching. Rather than fixing a search window, this approach can provide

an adaptive window based on obtained GPS positions and a chosen spatial network.

Considering that the clustering technique can well present segment connectivity in a

spatial network, a hierarchical clustering algorithm is developed to cluster segments. A

binary tree is created after building the hierarchical clustering tree. Compared with multi-

pass searching an object in indexing techniques, searching on the clustering tree of road

segments requires only one pass. From the experiments, it is concluded that this approach

can find candidate segments adaptively based on GPS positions and relative changes of

relationship between GPS positions and clustered segments. The binary tree was designed

to group segments and sped up the search time. As shown in Table 3.2, the algorithm can

efficiently find road segments.

 68

4.0 GPS-BASED MAP MATCHING TECHNIQUES

After a set of candidate segments is selected, how to find the correct segment is the key

issue for map matching. Typically two main parameters, distance and direction deviation,

are coupled to solve this problem.

Distance is defined as the length of the projected line from a GPS position to a

link. Let C be the projection of P on a sidewalk segment AB. The distance is defined as

equation 4.1 and visualized in Figure 4.1.

 D (P, C) if C Є [AB]

D (P, AB) = (4.1)

 Min {D (P, A), D (P, B)} elsewhere

Figure 4.1. Perpendicular distance

 69

Direction deviation is to measure the angular difference between user’s trajectory

and orientation of candidate segments. Direction of user’s trajectory is the measurement

of the angle between two or more successive positions.

 Based on these two parameters, three advanced map matching algorithms solely

using GPS data are presented in this chapter.

4.1 CHAIN-CODE-BASED MAP MATCHING

In this section, a chain-code-based map matching algorithm is designed by considering

the unique characteristics in pedestrian/wheelchair navigation. The chain-code-based map

matching approach was chosen because instead of computing the precise angle to

represent a trend of movement, which is traditionally used, a discrete eight-direction

chain code can be considered in order to reduce noise from GPS due to random

movements of pedestrians or wheelchair users. Moreover, when pedestrians or

wheelchair users move on sidewalks at relatively low speed, GPS data is often plagued

with errors that frequently produce inaccurate trajectories. To overcome this problem, the

chain-code-based map matching algorithm considers the trajectory of the data rather than

merely the current position as in the typical map matching algorithms. Coupled with

distance information, map matching decisions are made by comparing the differences

between trajectories representing the road segments and GPS tracking data.

Instead of using precise angular, chain codes are defined to represent the direction

of sidewalk segments and trajectory of user’s movement. A directed straight line segment

connecting two adjacent points is called a link, and a chain is defined as an ordered

 70

sequence of links with possible interspersed codes. Chain encoding in this work is based

on resolution of the direction to the adjacent links at the intersection.

Chain codes (also known as Freeman’s codes) are a common technique to

represent a contour of an object in image processing (Freeman and Saghri 1974, Haron et

al. 2005). The directions of contour boundaries are coded with integer values k = 0,

1, . . . , K − 1 in the counterclockwise direction starting from the direction of the positive

x-axis. A curve or contour is thus a chain of directions. The number of directions K takes

is 2(M+1) where M is a positive integer, such as 4, 8. The chain codes where K > 8 are

called generalized chain codes, like 16 (Freeman 1978).

4.1.1 Eight-Direction Chain Code

Since the angle between any two adjacent links on most intersections is usually greater

than 45°, we use an eight-direction Chain Code 0, 1, 2, 3, 4, 5, 6, 7 to represent eight

direction interval on the counterclockwise direction as shown in Figure 4.2. With this

definition, 0 corresponds to an angle between −22.5° to 22.5°, 1 corresponds to an angle

between 22.5° to 67.5°, and 7 corresponds to angles between −67.5° to −22.5°.

Figure 4.2. 8-Direction chain code

 71

Figure 4.3. Digital map with GPS data

Figure 4.3 shows an example of GPS data and the sidewalk segment on a digital

map. In this example, the GPS tracking route has a chain code of 0, 0, 1, 7, 0, 0, and the

chain code of the sidewalk link C-A-B is 0,0 and F-A-D is 2,2.

Moreover, in order to find the closet segment to GPS tracking points, we use the

difference between sidewalk link chain codes and the trajectory chain code of a user (Dcc)

to show the extent of consistency of direction among them. With this, Dcc is defined as

follows:

Δ = | Chain-Code (movement of a user) – Chain-Code (sidewalk segments) |

Dcc = Δ; if Δ<4

 (|Δ- 8|) mod 4; otherwise (4.2)

With this definition, discrete chain codes take the place of precise angle values; discrete

Dcc takes the place of angle differences. This representation not only eliminates noise

within short-distance moving, but also is computationally fast for real-time navigation.

 72

Furthermore, as mentioned earlier, GPS position fixes are less reliable at a speed

of less than 3.0 m/s. In such cases, in order to reduce the uncertainty of the direction

under wheelchair users’ control, the algorithm invokes a three-step Dcc between a user’s

trajectory and sidewalk segments rather than only taking a one-step Dcc.

In Figure 4, P
1
, P

2
, … , P

7
 show the same GPS trajectory as the one in Figure 3.

With a GPS data such as P
2
, Di (i = 1, 2, 3) could be calculated as the perpendicular

distance to segments. When the first step is complete, the chain code from P
2
 to P

3
 is

calculated, which is 0. Since heading directions are more meaningful than each-step

directions, after two steps, the chain code from P
2
 to P

4
 is calculated, which is 1.

Similarly, after three steps, the chain code from P
2
 to P

5
 is obtained as 0. Therefore, Dcc

between P
2
P

3
 and CA is |0-0|; Dcc between P

2
P

4
 and CA is |1-0|, and Dcc between P

2
P

5

and CA is |0-0|.

Figure 4.4. Example of chain-code-based map matching

 73

4.1.2 Chain-Code-based Map Matching Technique

In this algorithm, distance and direction are coupled to find the best location of the user

on the sidewalk. First, the algorithm uses perpendicular distances from GPS data to each

sidewalk segment candidate and direction difference between user’s trajectory and each

sidewalk segment to select a sidewalk segment. As shown in Figure 4.4, in order to

identify which segment a GPS point, such as P
2
 in Figure 4.4, is most possibly mapped

onto, both distance and direction movement are calculated to be weighted scores. All the

segment candidates, close to P
2
, are a link set {“CA”, “DE”, “AD”}; the distances from

P
2
 to these links are {D1, D2, D3}, three-step Dcc calculations between trajectory and

these segment candidates are taken as described in the previous section. Next, among all

the segment candidates, the sidewalk segment with the highest matching evaluation will

be chosen. In this case, segment “CA” would be considered the best selection based on

map matching evaluation, and as a consequence, P
2
 is determined to be projected to

“CA”. Two approaches are proposed to make map matching decision: linear model and

non-linear model.

4.1.2.1 Linear Model

Distance and difference in direction are two determining factors to calculate matching

results in order to identify correct segment. Linear model is built on the linear

relationship between matching result (M) and evaluation parameters including Dcc and

Distance. Figure 4.5 depicts the linear model.

 74

Figure 4.5. Linear model

The linear evaluation equation used in this work is as follows:

Vij = Wij * Dij + ∑ Wijm * Dcc(Step[i+m], sidewalk segment[j]) (4.3)

Mij=1/Vij (4.4)

where i is the indexing number of GPS points, and j is the indexing number of segment

candidates. Dij is the distance from the ith GPS point to the jth segment; Dcc(Step[i+m],

sidewalk segment[j]) is the three-step Dcc with m going from 1 to 3; Wij is the weight of

Dij , and Wijm is the weight of Dcc. For the ith GPS point, Mij is used to calculate the total

weight assigned to the jth candidate link. The link with the highest Mij is selected as the

correct link for GPS point i. Therefore, the larger Mij, the smaller is Vij. In Equation (4.3),

the total weighting score can then be obtained by summing up the individual scores,

including weighting distance and three-step weighting Dcc as shown in Figure 4.5.

4.1.2.2 Non-Linear Model

Based on its definition in Section 4.1.1, Dcc is a discrete value ranging from 0 to 4;

whereas, the absolute value of distance is a continuous real number from 0 to a large

m=1

3

 75

number. Non-linear model provides an alternative means to fit the non-linear relationship

between the combination of these two input parameters and matching result to make map

matching decision, which is depicted in Figure 4.6.

Figure 4.6. Non-linear model

In this non-linear model, evaluation estimation is a fitting curve procedure

between response variable (matching result) and a list of input parameters (three-step Dcc

and Distance). Among the most common nonlinear models, neural network is a widely

used approach. This approach attempts to find a relationship, i.e., a function, between the

inputs, and the provided output(s), in order for the network to find a correct answer for

the new inputs when network is provided with unseen inputs. As one of various structures

in neural network family, radial basis function (RBF) networks (Howlett et al. 2001) have

static Gaussian function as the nonlinearity for the hidden layer processing elements, so

the network could provide a good non-linear transformation in this map matching

algorithm for each input vector, distance and three-step Dcc, to obtain non-linear map

matching result (M). The Gaussian function responds only to a small region of the input

 76

space where the Gaussian is centered. Therefore, in this map matching algorithm, the link

which provides the highest output of Gaussian function, i.e., Mij, is chosen as the correct

link for that positioning fix.

4.1.2.2.1 Radial Basis Functional Neural Network

The structure of RBF networks usually has three layers. Each hidden unit in the network

has two parameters: a center uj and a width σj associated with it. The output of each

hidden unit depends only on the radial distance between the input vector and the center

parameter for that hidden unit. The response of each hidden unit is scaled by its

connecting weights Wkj to the output units and then summed to produce the overall

network output:

 (4.5)

where the Gaussian activation function for RBF networks is given by:

 (4.6)

and x is the d dimensional input vector with elements xi, and uj is the vector determining

the center of the basis function; yk(x) is the output of RBF neural network.

There are two steps to train a RBF neural network: (1) determine the parameters of the

basis functions through unsupervised training using only the input data set and (2)

determine weights Wkj using both input and output data (hidden units are activated using

an input pattern and the weights to the output layer are then modified to produce the

desired output for the given input). Once all the parameters are produced by training in a

RBF network, the neural network model could be used to compute the output based on

new input data.

 77

4.1.2.2.2 Design of RBF Neural Network

In this research, the RBF Neural Network is designed as a supervised network. The input

data has four features: distance and the three-step Dcc, so the input layer has four

neurons, the output layer has one neuron which is used to evaluate the extent to which a

GPS point is close to candidate segments. The first step is to train the neural network.

The training data consists of many pairs of input and output. Many pairs of Distance and

three-step Dcc are calculated as input vectors, and output values are designated as 0 or 1,

depending on whether the calculated candidate segment is the correct link or not. Next,

the trained neural network is used to perform the non-linear map matching evaluation.

Given a 4-d input vector with distance and three-step Dcc, the segment with the smallest

output value is the selected segment, where the output of evaluation, Mij, obtains the

largest value. Based on the size of sample data in experiments, the hidden layer is

designed as a 132-neuron layer. The structure of the RBF neural network for this map

matching algorithm is shown in Figure 4.7.

Figure 4.7. RBF neural network for map matching evaluation

 78

By definition in Equations (4.5) and (4.6), the corresponding non-linear

evaluation equation used in this work is defined as follows:

where i is the indexing number of GPS points, and j is the indexing number of segment

candidates. Xij is input, in which Dij represents distance from the ith GPS point to the jth

segment, and Dcc(Step[i+m], sidewalk segment[j]) represents three-step Dcc with m

going from 1 to 3. αk is the weight of the kth output value in hidden layer. β is the weight

matrix of input vector in hidden layer. As the output, Mij is used to calculate the total

weight assigned to the jth candidate link for the ith GPS point. The link with the smallest

Vij is viewed as the correct link.

4.1.3 Map Matching Process

There are two main modes in the map matching process: (1) turning mode and (2) normal

moving mode. In turning mode, the algorithm performs map matching for each GPS

tracking point around intersections in order to identify a new segment. Once the user is

located on a segment, the process enters normal moving mode, current and previous

positions can be used as constraints for the next step in map matching based on the

topology of sidewalk networks. Such constraints accelerate the matching process.

(4.7)

(4.8)

 79

Once the correct sidewalk segment is determined, i.e., the first step of map

matching, finding an estimate of the location of the user on that segment is

straightforward.

The flowchart shown in Figure 4.8 describes the process of chain-code-based map

matching, including pre-processing to initialize data structures, evaluation based on three-

step Dcc and distance between sidewalk segments and trajectory made of GPS points,

and a constraint on a selected sidewalk segment.

 80

Figure 4.8. Flowchart of chain-code-based map-matching algorithm

 81

4.1.4 Validation

To validate the chain-code-based map matching algorithm, the process of chain-code-

based map matching is implemented and tested on a sidewalk network.

4.1.4.1 Test Environment

The sidewalk data along with associated parameters on the University of Pittsburgh

campus area were digitized and utilized by scale 1:2500. The sidewalk database,

consisting of the sidewalk network, buildings, landmarks, and accessibility information,

are built for wheelchair navigation in order to assist wheelchair users’ outdoor traveling

(Karimi et. al 2006). In the following testing, GPS points in three routes were collected by

walking and using a stand-alone GPS receiver, Trimble GeoExplorer 3, and map matched

on the established sidewalk network. Fully considering the various types of sidewalks on

the different areas, we used three selected routes to test map matching algorithms. Route

1 covered the most main sidewalks on campus; Route 2 included the sidewalks around

tall buildings; Route 3 included a loop and some small paths.

A snapshot of the digitized sidewalk map overlaid with Google map shows the

campus of the University of Pittsburgh in Figure 4.9. The computing platform used was a

PC machine with “Intel Core 2 1.4G Hz” CPU. The software for the fuzzy logic map

matching algorithm was written in JAVA in an open source GIS tool called Geotools

(www.geotools.org).

http://www.geotools.org/

 82

Figure 4.9. University of Pittsburgh’s campus

4.1.4.2 Evaluation of Linear Map Matching Models

For evaluation purposes, we employed different forms of linear and non-linear models in

matching evaluation.

As discussed in Section 3.3.1, the distance, three Dcc after step one, two, three are

the four influencing factors in matching evaluation equation. Their linear relationship was

formulated as Equation (4.9). After normalization for these four variables, four estimated

weight parameters meet the condition as follows:

 3

Wij + ∑ Wilm = 1 (4.9)

 m=1

After testing different combinations, the four weight parameters are given as:

Wij = 0.5;

Wij1 = 0.1;

Wij2 = 0.2; (4.10)

Wij3 = 0.2;

 83

4.1.4.3 Evaluation of Non-Linear Map Matching Models

We used RBF neural network to build a non-linear evaluation model. As mentioned in

Section 3.3.2, the RBF neural network considered in this work has a three-layer structure,

including 4-d input layer, 132-d hidden layer and 1-d output layer. In the training stage,

132 pairs of parameters, with input vectors and output values, are calculated and

normalized as a sample data set for training RBF neural network. Figure 4.10 shows the

training performance.

Figure 4.10. Training with RBF neural network

The curve in Figure 10 shows that training is completed after several iterations,

when error gets close to 0. This means that we could use this trained model to perform

map matching evaluation.

Table 4.1 shows the trained network structure. Input vector is defined as a 4-d

vector including distance, Dcc (after step1), Dcc (step2), and Dcc (step3). Output of the

 84

trained neural network is the evaluation result. The candidate segment with the minimum

output value is viewed as the matched segment. Table 4.2 shows different output values

according to different input vectors for a GPS point and all relevant segment candidates.

It could be drawn that the first pair of input parameters results in the smallest output

value in the list, which means that the corresponding segment provides the closest match

to the GPS data, and thus will be identified as a selected link for the GPS data.

Table 4.1. RBF neural network structure

Table 4.2. Map matching evaluation using RBF neural network

4.1.4.4 Performance Analysis

Two groups of tests were conducted to evaluate the performance of the chain-code-based

map matching algorithm.

First, linear map matching approaches were performed to compare results with

Inputs hidden layer output layer Weights from input layer to

hidden layer

Weights from hidden

layer to output layer

size: 4 size: 132 Size: 1 4*132 132 *1

Input[0]

Distance

Input[1]

Dcc[step1]

Input[2]

Dcc[step2]

Input[3]

Dcc[step3]

output

0.0116309625 0 0 0 0.0068

0.1534199589 0 0 0 0.3967

0.0482950975 2 2 2 1.3588

0.2902582818 1 2 2 13.221

0.4500096318 3 4 4 542.71

1.0987441382 1 1 1 874.33

 85

constraints and without constraints. The linear model is used to test the map matching

algorithm on three routes. The map matching performances are presented in Table 4.3

where five statistic values are listed on the three chosen routes. The results of map

matching with constraints, compared with GPS raw data, are shown in Figures 4.11 -

4.13.

Table 4.3. Linear-model map matching results

a. GPS data before map matching

 86

b. The result of map matching with constraints using the linear model

Figure 4.11. Route 1 comparing map-matching result with GPS raw data on campus sidewalk map

a. GPS data before map matching

 87

b. The result of map matching with constraints using the linear model

Figure 4.12. Route 2 comparing map-matching result with GPS raw data on campus sidewalk map

a. GPS data before map matching

 88

b. The result of map matching with constraints using the linear model

Figure 4.13. Route 3 comparing map-matching result with GPS raw data on campus sidewalk map

Second, linear models and non-linear models are separately applied to analyze

their performances in making map matching decisions. As Table 4.4 shows, the result

leads to the conclusion that linear evaluation is more advantageous to implement than

non-linear evaluation in terms of time performance. Compared to the linear model, map

matching results in the non-linear model showed slightly lower correct link identification.

Therefore, in order to meet the need of real-time navigation, linear model is preferred

model for map matching decision.

 89

Table 4.4. Comparing the linear model and the non-linear model

In summary, experimental results show that most mismatched points in Route 3

occur when a user moved on paths with no corresponding segments on the digital map. In

the case of Route 2, most mismatched points occur on sidewalks of narrow roads due to

GPS errors, where two sides of some narrow roads cannot be distinguished since their

distances are below GPS error range generally announced as 10m radiuses or over.

4.2 HMM-BASED MAP MATCHING ALGORITHM

The Hidden Markov Model is a statistical model in which the system being modeled is

assumed to be a Markov process with unknown parameters, and the challenge is to

determine the hidden (unknown) parameters from the observable parameters (Wikipedia,

Yariv 2002). The HMM has been used in temporal recognition applications such as text

and speech recognition. We argue that map matching is also a temporal recognition

application susceptible to a Markov process where the aim is to find actual paths and

 90

actual locations, i.e., the hidden information, using GPS data as observed measurements.

Map matching, as a time-series problem, resembles temporal pattern recognition

applications, such as speech, handwriting, gesture recognition and bioinformatics, where

the hidden Markov model is applied. With these characteristics, the HMM-based map

matching approach , where finding the correct sidewalk segment out of all candidate

sidewalk segments given a GPS trajectory, was chosen.

The Viterbi Algorithm (Forney 1973) is a recursive optimal solution to the

problem of estimating the state sequence of a discrete-time finite-state Markov process.

Many problems can be cast in this form. We applied the Viterbi algorithm to estimating

the sidewalk segments based on observed GPS positions. The key innovation using

HMM in this algorithm for wheelchair navigation is matching sidewalk segments based

not only on the geometry of the location readings, but additionally on the topology of the

segments.

4.2.1 Hidden Markov Model

The HMM is represented by a finite set of states, each of which is associated with a

probability distribution. Transitions among the states are governed by a set of

probabilities called transition probabilities. In a particular state an outcome or observation

can be generated, according to the associated probability distribution. It is only the

outcome, not the state, that is visible to an external observer and therefore states are

``hidden'' to the outside; hence the name Hidden Markov Model (Rabiner 1998).

The general architecture of a hidden Markov model is shown as Figure 4.14.

 91

Figure 4.14. Architecture of a HMM

The architecture has two layers: {ot} represents the observable layer and ot

corresponds to an observation value at time t. {qt} represents the hidden layer, and qt, at

time t, comes from one state in a state space.

In order to model a hidden Markov process, the following elements are needed:

 The number of states in the model, n.

 The number of observations, m. If the observations are continuous then m is

infinite.

 A set of state transition probabilities. A={aij}

aij = pr { qt+1 = j | qt = i }, 1≤ i, j ≤ n (4.11)

where qt denotes the state at time t.

 An observation probability distribution in each of the states, B={bj(k)}.

bj (k) = pr { ot = ok | qt = j }, 1≤ j ≤ n, 1≤ k ≤ m (4.12)

where ot is the observation at time t and ok denotes the kth observation.

 The initial state distribution, π = {πi}, where,

πi = pr { q1 = i }, 1≤ i ≤ n (4.13)

With these, λ = (, A, B) can be used to denote an HMM with probability distributions.

 92

4.2.2 A Hidden Markov Model for Map Matching

In a hidden Markov model, the state is not directly visible, but variables influenced by the

state are visible. Each state has a probability distribution over the possible observations.

Therefore, the sequence of observations provides some information about the sequence of

states by means of a HMM (Olivier 2005).

Given the parameters of the model, the Viterbi algorithm can solve the problem of

how to find the most likely sequence of hidden states that could have generated by using

a given observed sequence. The Viterbi algorithm is a dynamic programming algorithm

for finding the most likely sequence of hidden states, called the Viterbi path.

In map matching for wheelchair navigation, observed GPS points are the visible

observation layer and correct sidewalk segments are the invisible state layer.

Let Pt {p1, p2, …, pm} denote the observation (i.e., a GPS data point) obtained

every second t for 1 ≤ t ≤ m.

Let Rt { r1, r2, …, rn } denote the actual location (i.e., the correct sidewalk

segment) at time t.

Suppose we obtain a series of GPS observations within the time period m, so we

could obtain m GPS points as an observation sequence from time t1 to time tm. In the state

space, there are n states, which represent n candidate segments. The transition probability

from any time i to the next time j represents the probability of a user’s moving from one

segment to another segment. The model could be structured as shown in Figure 4.15. The

goal is to find the sidewalk segment sequence that has maximum probability given the

http://en.wikipedia.org/wiki/Likelihood_function

 93

observations. That is finding a sequence of actual locations, R1 . . .Rt, such that Pr(R1R2

. . .Rt|P1P2 . . .Pt) is maximized.

Figure 4.15. The hidden Markov model for map matching

Based on conditional probabilities from basic probability theory, for any sequence

R1 . . .Rt of actual locations we have:

 (4.14)

Given the observations, the denominator of this expression is determined (the

exact value is unknown, but that value only depends on the observations, not on the path

R1 . . .Rt.). So the problem is equivalent to finding R1 . . .Rt such that Pr(R1R2 . . .RtP1P2 . .

.Pt) is maximized.

 94

From the basic identities of probability theory, for any events A,B,C we have,

Pr(ABC) = Pr(A)Pr(B|A)Pr(C|AB). Let’s use this to decompose the complicated event:

R1R2 . . .RtP1P2 . . .Pt as a product ABC. We define A = R1 . . .Rt−1P1 . . .Pt−1, B =

Rt, C = Pt,

By applying the above formula, we obtain:

Pr(R1R2 . . .RtP1P2 . . .Pt)=Pr(R1R2 . . .Rt−1P1P2 . . .Pt−1)Pr(Rt|R1 . . .Rt−1P1 . .

.Pt−1)Pr(Pt|R1 . . .Rt−1P1 . . .Pt−1Rt).

Furthermore, we obtain:

Pr(R1 . . .RtP1 . . .Pt) = Pr(R1 . . .Rt−1P1 . . .Pt−1)Pr(Rt-1 -> Rt)Pr(Rt -> Pt)

 = Pr (R0)

 . (4.15)

We assume each probability in the state transition matrix and in the observation

probability matrix in the HMM is time independent. Therefore, given prior probability

Pr(R0), observation probability Pr(Pt | Rt) and state transition probability Pr(Rt |Rt-1), we

can use the Viterbi algorithm to find the path through the states that maximizes the

probability of a sequence of sidewalk segments. The Viterbi algorithm uses dynamic

programming methods to efficiently accomplish this, so that the actual path consisting of

a sequence of sidewalk segments can be identified.

In Equation (4.15), in order to apply the Viterbi algorithm, we need to know prior

probability, observation probability and state transition probability in the HMM. Prior

probability Pr(R0) is Pr(rj), when j=1,…,n, which is simply computed by 1/n as a uniform

distribution reflecting the fact that we have no known bias about which is the correct

sidewalk segment. Hence, how to compute observation probability and state transition

probability becomes the key point.

 95

First, we compute the observation probability, which is the probability of the

measured location pi given rj. We can compute this with the Bayesian rule:

 i=1,2…,m; j=1,2…,n (4.16)

We presume that , a prior probability in Equation (4.16), follows a uniform

distribution. Therefore, equation (4.16) could be further simplified as:

 i=1,2…,m; j=1,2…,n (4.17)

 is the probability that is the correct sidewalk segment out of the

candidate sidewalk segments given that measured location is Pi. We computed this by

assuming that, for most of the GPS points, the closer a sidewalk segment is to the

observed point, the higher the probabilities that it is the correct segment. This is borne out

by our informal observations of nearest segment matching. Considering the relationship

of distance and observation probability as an inverse proportion, we first compute the

probability of the perpendicular distance from GPS point pi to the segment rj over the

summation of the distances from pi to all the candidate segments, and then use reciprocal

relation of the probability based on distances to approximate observation probability.

This leads to:

 =

=

 (4.18)

In pedestrian/wheelchair navigation, users either move on the same segment, or

they make a turn at a junction such as an intersection, exit, or entrance. Therefore, we

need to compute the transition probability aij, which represents the probability of the user

moving from one sidewalk segment corresponding to a measured point to another

 96

sidewalk segment corresponding to another measured point. For this, in this algorithm we

use topological relationship to compute the transition probability. We only consider three

topological relationships: same segment, connected segment and unconnected segment. It

is impossible for a wheelchair user to move from a segment to an unconnected segment

in consecutive time windows. Therefore, the transition probability from time i to the next

time j=i+1, aij would be zero where the two segments are not connected. If two sidewalk

segments are connected, this transition probability should be higher than if two sidewalk

segments are unconnected, since wheelchair users would travel on the same segment

most of the time except at an intersection or junction. Thus, the transition probability of

moving on the same segment has the highest value. By setting aij = e
-rij

, we create an

exponential curve for this probability distribution, where rij corresponds to the topological

relationship between two segments. By normalization, aij changes between 0 and 1. The

next important step is to build a transition matrix { rij } and set the value for each element

in this matrix. The following set of rules must be followed

(1) If two segments are connected, rij is set to 1;

(2) If they are unconnected, then rij is set to ∞.

(3) Otherwise, rij is 0, when two segments are same segment that is i=j.

Take our measured GPS points on campus as an example, shown in Figure 4.16.

First, we model sidewalk segments as a set {r1, r2, …, r12} as Figure 4.17 shows. Next,

we build a matrix {rij}, based on the topology of the segments in Figure 4.18. Figure

4.19 shows the map matching results by applying the Viterbi algorithm to the entire

sequence of location measurements shown in Figure 4.16.

 97

Figure 4.16. An example of GPS points overlaid on sidewalks on campus

Figure 4.17. An abstracted sidewalk network model

Figure 4.18. State transition matrix

 98

Figure 4.19. Map matching locations versus GPS positions

4.2.3 HMM-based Map Matching Process

For a hidden Markov model, two parameters, n and m, have to be initialized, where m is

the size of an observation sequence and n is the state number in a state space. For map

matching, the size of the observation sequence is the number of measured GPS points,

and the state number is the number of candidate sidewalk segments close to the observed

GPS points. In this algorithm, after setting these two values, we take several steps to

complete the matching process.

First, a set of nearby candidate sidewalk segments is chosen based on the first

GPS data observed in each sequence. Second, the transition matrix on the selected set of

nearby candidate sidewalk segments is built (see Figure 4.18). This matrix not only

shows the topology of segments but implies two moving modes, which are changing

mode and continuing on same segment mode. In the case of continuing on same segment

mode, where rij equals to 0, current and previous positions should be matched on the

 99

same segment. Conversely, if rij is 1, then the wheelchair is moving in a changing mode,

where current and previous positions are on two connected segments. Consequently, we

could compute transition probabilities based on the transition matrix. Third, the

perpendicular distance from each GPS point to each segment in the set of candidate

sidewalk segments is computed, so that observation probabilities for each measured

location are calculated. Last, the Viterbi algorithm to the observation probabilities and

transition probabilities to compute the maximum probability sequence of sidewalk

segments are applied. Once the most likely sidewalk segment is obtained, GPS points are

projected to the segments and the map matching result is shown on the map.

Figure 4.20 is the flowchart of HMM-based map matching.

Figure 4.20. Flowchart of HMM-based map matching process

 100

4.2.4 VALIDATION

To validate the HMM-based map matching algorithm for pedestrian/wheelchair

navigation, the same GPS data collection on three routes, the same sidewalk map and the

testing environment that we described in section 4.1 are applied for evaluation of this

algorithm.

4.2.4.1 Performance Analysis

Three groups of data sets, collected on main campus of University of Pittsburgh by GPS

receiver, were processed to validate the presented algorithm. the HMM-based map

matching algorithm. For contrast, three-route GPS raw data with map matching results

were overlapped on campus sidewalk map, shown in Figures 4.21, 4.22, and 4.23.

a. GPS raw data overlapped on campus sidewalk map

 101

b. Projected result data to the matched sidewalk segments on campus sidewalk map

Figure 4.21. Route 1 comparing map-matching result with GPS raw data on campus sidewalk map

a. GPS raw data overlapped on campus sidewalk map

 102

b. Projected result data to the matched sidewalk segments on campus sidewalk map

Figure 4.22. Route 2 comparing map-matching result with GPS raw data on campus sidewalk map

a. GPS raw data overlapped on campus sidewalk map

 103

b. Projected result data to the matched sidewalk segments on campus sidewalk map

Figure 4.23. Route 3 comparing map-matching result with GPS raw data on campus sidewalk map

Like all map matching algorithms, there are mismatched points due to errors in

geo-positioning systems and the digital map quality, both affect the performance of the

map matching algorithm. We observe that most mismatched points in Route 3 occur

when the data collector moved on paths with no corresponding segments on the digital

map. Meanwhile, in the case of Route 1 and Route 2, we notice that many mismatched

points occur on sidewalks of narrow roads due to GPS errors.

Model parameters, n and m were specified through experiments. Based on the

topology extracted from the campus sidewalk data, the size of the state space, i.e., the

number of segment candidates in one map matching process, notated by n, was set as

twelve. Experiments using 3- to 8-point sequence were conducted to determine the

suitable number of points in one sequence. It was realized that for the real-time

requirement of map matching a 4-point sequence is appropriate for this HMM-based map

matching algorithm. The map matching performances are presented in Table 4.5.

 104

Table 4.5. Performance results

The average time per 4 points represents the average time taken on one sequence’s

matching computation. In the offline matching, the total computation time shows the total

time to complete the matches of all GPS points in one route. Since correct link

identification after applying a map matching algorithm and average computation time are

the most important performance parameters for evaluation, statistical data shows that this

algorithm performs well and satisfies the requirements of real-time map matching in

wheelchair navigation.

 105

4.3 FUZZY-LOGIC-BASED MAP MATCHING ALGORITHM

A Fuzzy-logic map matching algorithm is presented in this section for

pedestrian/wheelchair navigation. Fuzzy logic, based on fuzzy reasoning concepts, is one

of the most widely used computational methods. It is good at solving problems in many

circumstances where uncertainties are difficult to model. Fuzzy logic can take noisy,

imprecise input, to yield crisp (i.e. numerically accurate) output. The fuzzy-logic map

matching was chosen because GPS data used for localization of pedestrians or wheelchair

users contain uncertainties.

4.3.1 Fuzzy Logic Map Matching

Fuzzy logic is a computing approach based on "degrees of truth", a range of values from

“true” to “false” that is used in decision making with imprecise data. Fuzzy logic is not

any less precise than any other form of logic; it is a mathematical method for handling

inherently imprecise concepts.

A typical fuzzy logic inference system starts with the fuzzification of inputs and

outputs, and executes rule-based inference, and ends with the defuzzification to obtain its

output. In the fuzzification step, the values of the input variables are converted into

degrees of membership for the membership functions defined on the variable. The

inference of the fuzzy logic system is built by using rule-based fuzzy reasoning. The last

step is called the defuzzification process. The input to this process is a fuzzy set obtained

 106

from the output of the aggregation method. The output of the defuzzification process is a

single value.

In our fuzzy logic map matching algorithm for pedestrian/wheelchair navigation, we

have two input variables. One is distance from a GPS point to a sidewalk segment. The

other is the angular difference between the movement trajectory, i.e. a line connecting

several GPS points along a segment, and the sidewalk segment. We assign input variable

1 as “distance”, and input variable 2 as “angular difference”. The fuzzy output is the

likelihood value to match a GPS point on a segment.

Consider a simple knowledge-based fuzzy rule: “If the distance is short and angular

difference is small, then the probability of the GPS point matching on the sidewalk

segment is high”. The input variables of this rule are distance and angular difference and

the input fuzzy subsets are short and small, respectively. The output variable is the

probability of this map matching and the output fuzzy subset is high.

Table 4.6 shows the definition of two inputs, one output. Figure 4.24 graphically

presents each parameter defined in the table 4.6. Table 4.7 shows the four rules for this

fuzzy logic map matching algorithm.

 107

Table 4.6. Parameters of the fuzzy logic map matching

Parameter Parameter Name Fuzzy-logic Graph Fuzzy-logic Range

Input 1 Distance Figure 2 (a) {'short', 'long'}

Input 2 Angular difference Figure 2 (b) { 'small', 'large' }

Output Possibility of map

matching

Figure 2 (c) {'high', 'average', 'low' }

a. Distance as input parameter 1 b. Angular difference as input parameter 2

c. Possibility of map matching as the output

Figure 4.24. Two inputs and the output in the fuzzy logic map matching

 108

Table 4.7. Rules of the fuzzy logic map matching

RULE 1 IF distance IS short AND angular difference IS small THEN the probability of

the GPS point matching onto the sidewalk segment IS high.

RULE 2 IF distance IS long AND angular difference IS large THEN the probability of the

GPS point matching onto the sidewalk segment IS low.

RULE 3 IF distance IS short AND angular difference IS large THEN the probability of

the GPS point matching onto the sidewalk segment IS average.

RULE 4 IF distance IS long AND angular difference IS small THEN the probability of

the GPS point matching onto the sidewalk segment IS average.

Step 1: Fuzzification of inputs and outputs

Since fuzzy subsets describe vague concepts, the truth of any proposition, i.e. the

difference is short in fuzzy logic becomes a matter of degree. This is achieved by the

fuzzification of the input variable using a membership function (MF). A MF is a curve

that defines how each point in the input space, e.g. distance in the above rule, is mapped

to a membership value between 0 and 1. Different types of MFs are used, such as

triangular, trapezoidal, Z-shaped, S-shaped, Gaussian, generalized bell, and sigmoidal.

In our fuzzy logic map matching, sigmoidal curve is chosen as a MF to approximate

the feature value with distance changing. The average horizontal error of the standard

positioning service of GPS is 13 m at the 2σ level (ICD-GPS-200C). Therefore, a value

 109

close to this horizontal error can be used as a reference when developing MFs. For

instance, the statement “distance is short” is true if the distance is less than or equal to 10

m. The statement is partially true if the distance is greater than 10 m and less than or

equal to 20 m. The statement is false if the distance is greater than 20 m. The membership

value of the MF for the antecedent “distance is short” can then be defined as

()(, ,) 1/ (1)s x cf x s c e   , where s and c are the slope and center of the curvature.

In pedestrian/wheelchair navigation, the center of the curvature c is almost half of the

width of a road, which is the critical value that differentiates the two sides of a road. In

Table 1, the value of c equals 7 after normalization; the slope s equals -1 when the

distance is short and equals 1 when the distance is long.

Similarly, we use a piecewise function to represent angular difference. The fuzzy

subsets associated with angular difference (Δψ) are small and large. The angular

difference is fuzzified using the equations

1 0 25

1.625 0.25 25 65

0 65 90



  



  


      
   

 (4.19)

when the membership value of the MF for () is small, and

0 0 25

0.25 0.625 25 65

1 65 90



  



  


      
   

 (4.20)

when the membership value is large.

 110

Step 2: Inference

After the fuzzification of all inputs, fuzzy knowledge-based IF-THEN rules are

formulated. In this map matching algorithm we establish four rules connecting input and

output variable, listed in Table 4.6. The output of each rule is also a fuzzy set that is

achieved by a minimum method (the minimum of all degree of membership values

associated with inputs). The output fuzzy sets of each rule are then combined into a single

fuzzy set using the ‘MAX’ aggregation method.

Step 3: Defuzzification

Several methods are available for the defuzzification process, e.g. center of

gravity, the largest of maximum, the smallest of maximum, bisector, and weighted

average. In order to resolve the potential conflict and to consider all recommended output

values based on the strengths of their membership values, this algorithm uses center of

gravity (centroid) defuzzification method where XF represents a combination of the

outputs of our four rules. The center of gravity is given by:

4

1

4

1

()

()

r rr
F

rr

x x
X

x













 (4.21)

where xr is the centroid point in the output range for each rule r, µ(xr) is

membership value of the output distribution for each xr and XF is the final output value.

In summary, the proposed fuzzy logic map matching algorithm performs the

aforementioned three steps. By computing perpendicular distance and angular difference

and applying fuzzy logic rules, we can obtain the probabilities in which a GPS position is

matched onto all the segment candidates. The sidewalk segment that has the highest

probability is confirmed as the map matching result.

 111

4.3.2 Fuzzy Logic Map Matching Process

In this algorithm, a three-stage process was used for finding the correct segment. The

process has the following steps: (1) the initial map-matching process, (2) the subsequent

map-matching process along a segment, and (3) the renewed map matching across an

intersection.

Since we need at least two GPS points to form a line and then to compute the angular

difference between the movement trajectory and a sidewalk segment, we do the initial

map matching after receiving two position fixes. The selected initial link is the link with

the highest likelihood value, which is computed as the output value of the fuzzy logic

map matching decision system described in the previous section. Then, the user’s

movement occurs in two ways, either following along an already identified sidewalk

segment or entering into a new segment through an intersection. These two cases are

defined as two modes: (1) following mode and (2) entering mode.

Once a sidewalk segment is ensured as the correct segment, map matching process

enters into “following mode”, which indicates that users are moving on the same segment

so that consequent matches are turn into simply matching the next GPS points onto the

underlying segment. However, if an incorrect segment is found, the subsequent steps will

continue on the incorrect segment. Therefore, after receiving a few GPS data, we add

historical matching data into this process to reduce the mismatch probability. Both

distance and angle are computed to track the status of a user. First, we can verify whether

the user is on the same segment by comparing the angle between the segment and the line

from a GPS point to the segment’s starting node and the angle between the segment and

 112

the line from a GPS point to the segment’s ending node which must be both less than 90
0
.

Second, the changing distance from the projected GPS location to each end node of a

segment can be used to evaluate whether the user is close to an intersection or not.

In the case of “entering mode”, making a turn into a new segment or going straight

into a new segment presents their own challenges. The change of distance and angle is

the reference to differentiate the two modes. If a wheelchair is traveling straight through

an intersection, one of the angles between a segment and the line either drawn from a

GPS point to the upstream junction segment or drawn from a GPS point to the

downstream junction segment must be exceeding 90
0
. However, the change in angles as a

condition is not necessarily satisfied when the user just makes a turn. Figure 4.25

provides two examples showing their difference. Pt {P1P2P3P4P5} presents the recorded

GPS point at each epoch, MN is a segment and the wheelchair is moving along its path.

Figure 4.25(a) shows the situation where the user entered into a new sidewalk segment at

the last two points, P4 and P5, whereas Figure 4.25(b) shows the situation where the user

made a right turn into a new sidewalk segment starting with point P4. The first example

presents the changes of the angular value of PtNM from less than 90
0
 to greater than 90

0

when passing intersection N from GPS point P2 through point P4. Before passing

intersection N, PtNM was an acute angle, but after that, it became an obtuse angle. This

pattern does not occur in the second case. In Figure 4.25(b), PtNM still remains less

than 90
0
. Therefore, we add distance as an additional reference parameter.

 113

a. An example of going straight

b. An example of making a turn

Figure 4.25. Examples of entering mode

First, we define the angle between segment MN and the line formed by joining GPS

point Pt to one end of this segment as  and define the angle between segment MN and

the line formed by joining GPS point Pt to the other end of this segment as . We also

 114

define the distance from the last matched position fix to the upstream junction along the

link as d1, and define the distance from the last matched position fix to the downstream

junction along the link as d2.

Second, we map match based on the following rules.

1. Following mode:

Match GPS points on to the underlying segment, where the angles  < 90
0
 and the

 < 90
0
 and MIN(d1, d2) is greater than a threshold σ.

2. Entering mode:

Renew map matching process where one of two angles,  or , is greater than 90 ,

or both angles  and angle  are less than 90 but MIN (d1, d2) is smaller than σ.

The map matching process needs to be renewed when user is entering an intersection.

The topological relationship of those segments connecting the same junction help chose

candidate segments in the renewed map matching process. The entire process of fuzzy

logic map matching is described in Figure 4.26. In this process, the rules mentioned

above are to determine whether a user is entering a new segment or not.

 115

Figure 4.26. Flowchart of the fuzzy logic map matching process

4.3.3 Validation

In order to validate the fuzzy logic map matching algorithm, the process of fuzzy logic

map matching is implemented and tested on the same testing environment as shown in

section 4.1. After the fuzzy logic map matching algorithm is performed on three-route

 116

GPS raw data, map matching results overlapped on the sidewalk map are shown in

Figures 4.27 – 4.29.

a. GPS raw data overlapped on campus sidewalk map

b. Projected result data to the matched sidewalk segments on campus sidewalk map

Figure 4.27. Route 1 comparing map-matching result with GPS raw data on campus sidewalk map

 117

a. GPS raw data overlapped on campus sidewalk map

b. Projected result data to the matched sidewalk segments on campus sidewalk map

Figure 4.28. Route 2 comparing map-matching result with GPS raw data on campus sidewalk map

 118

a. GPS raw data overlapped on campus sidewalk map

b. Projected result data to the matched sidewalk segments on campus sidewalk map

Figure 4.29. Route 3 comparing map-matching result with GPS raw data on campus sidewalk map

The map matching performances on three chosen routes are presented in Table 4.8.

 119

Table 4.8. Performances of Experiments

The accuracy in the experiment is mainly influenced by the failure in differentiating

two sides of a road with stand-alone GPS data. We realize that most mismatched points in

our routes occur on sidewalks of narrow roads due to GPS accuracy limitation. With

regard to the time performance, this fuzzy logic map matching algorithm performs

reasonably well to meet the demand of real-time navigation, based on the average

computation time.

4.4 COMPARISON

All the proposed GPS-based map matching algorithms have been developed and

evaluated based on three sets of collected GPS data and the sidewalk network on the

campus sidewalk network.

Figure 4.30 uses one-route GPS data as an example to show the map matching results

after applying each algorithm.

 120

a. GPS raw data overlaid over campus sidewalk map

b. Fuzzy logic map matching result overlaid over campus sidewalk map

c. Chain-code-based map matching result overlaid over campus sidewalk map

 121

d. Hidden Markov Model-based map matching result overlaid over campus sidewalk map

Figure 4.30. Comparison among the three GPS-based map matching algorithms on one route

Experiment results show some issues in common, which are:

1. Poor GPS data lead to mismatching.

2. Many mismatched points occur on sidewalks along the sides of narrow roads, where

algorithms have difficulties in distinguishing the two sides of a road within GPS error

range.

3. GPS-based map matching does not provide a solution when is no GPS signal.

On the other hand, differences in accuracy, computation time cost and

implementation complexity between the three GPS-based map matching algorithms are

summarized. Table 4.9 compares the accuracy of the three map matching algorithms on

three routes. Table 4.10 shows their differences in time performance and Table 4.11 gives

an overall comparison in accuracy, computation time cost and implementation

complexity (mainly measured by requirement to skilled developers, length of

implementation time and risks taken from implementation errors).

 122

Table 4.9. Accuracy of GPS-based map matching algorithms for pedestrian/wheelchair navigation

Testing

Route

Total Number

of GPS Points

Correct Segment Identification Rate After Map Matching

Fuzzy-Logic MM HMM-Based MM Chain-Code-Based MM

Route 1 682 87.5% 92.4% 93.4%

Route 2 1516 94.3% 96% 95.4%

Route 3 933 92.5% 92.7% 89.8%

Table 4.10. Time performance of GPS-based map matching algorithms for pedestrian/wheelchair

navigation

Testing

Route

Total Number

of GPS Points

Average Computation Time per Point in Map Matching (ms)

Fuzzy-Logic MM HMM-Based MM Chain-Code-Based MM

Route 1 682 8.042 3.666 0.0044

Route 2 1516 8.529 3.709 0.0043

Route 3 933 8.390 3.682 0.0046

Table 4.11. Overall comparison of three GPS-based map matching algorithms

GPS-based Map Matching Accuracy Computation Time Cost Implementation Complexity

Fuzzy-Logic MM relative low relative low medium

HMM-Based MM relative high medium relative high

Chain-Code-Based MM relative low relative high relative low

 123

Shown in Table 4.9, the Hidden Markov Model-based map matching algorithm performs

best on the average in terms of correct segment identification. From Table 4.10, it can be

seen that all the three map matching algorithms meet the requirement in terms of time

performance for real-time pedestrian/wheelchair navigation, when location updates for

pedestrian/wheelchair navigation are required to be no longer than 1s, which is normally

required in vehicle navigation systems. Comparing accuracy and time performance of

the three map matching algorithms, HMM-based map matching algorithm performs

better than fuzzy-logic map matching and chain-code-based map matching, but it requires

more effort on implementation. In contrast, the chain-code-based map matching

algorithm performs relatively poorly in terms of accuracy, but it costs the least in

computation with relatively low implementation complexity. Fuzzy-logic map matching

is not as good as HMM-based map matching in accuracy but cost most in computation.

Therefore, in pedestrian/wheelchair navigation services solely based on GPS data, HMM-

based map matching would be the best choice, compared with the other two algorithms, if

accuracy is of the highest priority, chain-code-based map matching would be the best

choice if computation cost was the most important factor.

 124

5.0 MULTI-SENSOR INTEGRATED MAP MATCHING ALGORITHMS

The experimental results in Chapter 4, which are solely based on GPS data, showed that

two major factors influence map matching in pedestrian/wheelchair navigation systems

and services. One major factor is that most mismatching occurs in areas with poor GPS

signals. The other is that low-end GPS receivers (such as those typically found in mobile

devices) do not support a degree of positional accuracy that is high enough to identify the

correct side of a narrow road segment in a sidewalk network. Considering these factors,

two options are available to enhance positioning accuracy, either by using high-end GPS

receivers, adding additional sensors, or both. Since nowadays high-end GPS receivers are

still high-priced (Schiller and Voisard, 2004; Theiss et al., 2005), adding additional

sensors is considered in this thesis. As a consequence, the performance of map matching

can be improved in pedestrian/wheelchair navigation systems and services.

Due to recent advances in computing and mobile device technologies, smartphones,

like iPhone and Android phones, are growing in popularity. Navigation services on

smartphones can be based on common technologies such as GPS, cameras,

accelerometers, compasses, and even gyroscopes. Given the popularity of smartphones

and the availability of technologies for navigation services, smartphones are the platform

of choice for developing multi-sensor positioning and map matching for

pedestrian/wheelchair navigation in this dissertation.

 125

5.1 CLIENT/SERVER ARCHITECTURES FOR MAP MATCHING

There are generally two types of navigation platforms. One works as a standalone system,

while the other works on a network with clients and servers. Standalone platforms are

referred to as “navigation systems” and network-based navigation platforms are referred

to as “navigation services” (Karimi, 2011). Since smartphones have relatively limited

memory and computing capabilities, it is difficult to build standalone

pedestrian/wheelchair navigation systems on them. Therefore, in this paper, a

client/server architecture is discussed to provide multi-sensor map matching for

pedestrian/wheelchair navigation services.

A client/server architecture generally involves multiple clients connecting to a

central server. In our pedestrian/wheelchair navigation service, the clients are

smartphones and the server is responsible for storing large databases, like maps, and

performing complex navigation services, such as map matching.

The client/server architecture for the map matching service can be implemented in

one of the two approaches: a lightweight client with a heavyweight server, and a

heavyweight client with a lightweight server.

5.1.1 Lightweight Client/Heavyweight Server Architecture

In the lightweight client/heavyweight server architecture, the smartphone is

responsible for collecting real-time data (positioning data as well as other types of data

such as heading data), synchronizing multi-sensor data, requesting map-matched results

from the server, and updating the map that is presented to the user. In this approach, the

 126

map data is stored in the server to perform map matching, among other functions. Figure

5.1 illustrates the lightweight client/heavyweight server architecture for map matching.

Figure 5.1. Lightweight client/ heavyweight server architecture for map matching

5.1.2 Heavyweight Client/Lightweight Server Architecture

In the heavyweight client/lightweight server architecture, in addition to real-time data

collection and multi-sensor data synchronization, the client is responsible for performing

map caching and map matching; once a user’s current location is given, the relevant map

data must be downloaded and cached to the client. With the movement of the user, map-

matched locations will be updated and presented to the user in real time. In this approach,

all map data (sidewalks) are managed and maintained in the server. For the client to be

Map matching Services

on Sidewalk Network

Spatial

DB

Map matching request

3D accelerometer

Compass

GPS

User Interface

Synchronization

Network remote call

Map matching results

Web map server

 127

able to perform map matching, the server must retrieve the relevant sidewalks and then

send them to the client as the user’s location changes. Figure 5.2 illustrates the

heavyweight client/lightweight architecture for map matching.

Figure 5.2. Heavyweight client/ lightweight server framework for map matching

Map Database Services

on Sidewalk Network

Map request

Map tiles

Spatial

DB

Web map server

3D accelerometer

3D accelerometer

Compass

Compass GPS

Synchronization

Network

Communication

Remote Call

Map Matching

User Interface

Map Caching

 128

5.2 MOVEMENT PATTERN RECOGNITION ASSISTED MAP MATCHING

FOR PEDESTRIAN/WHEELCHAIR NAVIGATION

iPhone and Android platforms currently represent the cutting edge of mobile technology

and have been widely adopted by people around the world. These two smartphone

platforms come with built-in GPS receivers and integrated motion sensors, such as an

accelerometer, a compass and even a gyroscope, which can be used for orientation

detection, gesture recognition, and image stabilization, among other things.

iPhone and Android platforms are different in terms of GPS location management.

iPhone development platform only provides distance-based user-location updating (Arfe

et al., 2011). On an Android development platform, the user-location updating function

has two modes: distance-based location updating and time-based location updating (Arfe

et al., 2011). The distance-based location updating mode updates user’s location only

when the user travels for a distance that is greater than a pre-determined distance. The

time-based location updating mode updates user’s location each time a given time

interval is reached. Both location updating modes have their own advantages and

disadvantages. In the time-based location updating mode, if the time interval is small,

frequent user-location updates lead to more awareness of the mobile user’s location.

However, transmission of too many updates in short time intervals may overload the

network. On the other hand, in the distance-based location updating mode, infrequent

location updates may cause a lack of awareness about the actual user location but cost

less in terms of data transmission compared to the frequent user-location update mode.

 129

Neither of these location updating modes is suitable for pedestrian/wheelchair

navigation services. Current GPS technology is unable, due to its accuracy range, to

detect movement of pedestrians or wheelchair users who typically move at low speeds.

Pedestrians or wheelchair users may move, stop, or make turns at will, which makes

presetting a time interval for location updates difficult. As a result, updating a

pedestrian’s or wheelchair user’s location based on time is impractical. Figure 5.3 shows

an example of GPS error that can result when a user is stopped at an intersection by a red

traffic light.

Figure 5.3. An example of GPS error in the scenario in which a user is stopped on a sidewalk.

When there is no movement, GPS keeps updating the same location resulting in

multiple positions, circles in Figure 5.3. In this example, with no knowledge about user’s

movement, the map matching algorithm will treat all the received positions as individual

 130

locations and match them onto the sidewalk. Map matching GPS data when there is no

user’s movement will not represent user’s actual location, since every distinct GPS data

within the error circle will be located on a different point of the sidewalk segment.

In order to address the problem of location updating in pedestrian/wheelchair

navigation services, an approach that map matches user’s locations and updates them

based on users’ movement behavior is proposed.

Activity recognition from accelerometer data has been a research topic for many

years, and is usually formulated as a signal processing and classification problem (Mathie

et al. 2004; Ravi, et al., 2005, Sun et al., 2009). Research in activity recognition has

focused on identification of physical activities, such as walking, jogging, resting,

standing, climbing, or running. Accelerometers have been used as motion detectors

(DeVaul &Dunn 2001) as well as for body-position and posture sensing (Foerster, Smeja,

& Fahrenberg 1999). Inspired by the accelerometer-related research on activity

recognition, this dissertation applies signal processing and pattern recognition techniques

to process accelerometer data to recognize user’s movement behavior. The following

section will present a new map matching algorithm that is assisted by the recognition of

user’s movement pattern. The algorithm has two major steps. The first step involves

using accelerometer data to recognize user’s movement behavior and the second step

involves performing map matching by using positioning data from GPS, orientation data

from a compass, and knowledge of user’s movement pattern.

 131

5.2.1 Movement Pattern Recognition

Pedestrian/wheelchair navigation activities that occur outdoors can be grouped into four

movement modes: no movement, walking, running, and turning. To detect these four

modes of movement, four classes corresponding to these modes are defined in a decision

tree classifier. A decision tree classification and recognition was developed and is

described below.

Figure 5.4 shows the process of movement pattern classification and recognition. The

process has two stages: a training stage and a testing stage. Both training stage and testing

stage consist of four steps, three of which are the same in each stage. In the first step, data

are collected from multi-sensors. In the second step, the raw data are pre-processed. In

the third step, features are extracted from pre-processed data and raw data to create

feature vectors. Moreover, the construction process of decision tree is used to feature

selection. In the last step of the training stage, a decision-tree classifier is generated

which will be used for recognition in the testing stage.

 132

Figure 5.4. Overview of movement pattern recognition

5.2.1.1 Signal Pre-processing

Accelerometers are sensitive to shaking and vibration, while digital compasses are

susceptible to noise disturbances in the Earth’s magnetic field. The magnetic distortion

may vary significantly with time and location due to environmental changes. For this,

before accelerations and orientations are measured by an accelerometer and a compass,

they must be calibrated in order to reduce the noise disruption of the environment.

Once calibrated, Discrete Fourier Transform (DFT) is used to convert the

acceleration data from time-domain values to frequency-domain features. In practice,

a Fast Fourier Transform (FFT) algorithm is used to speed up DFT computations. For fast

computation of FFT, a window size of 128 is used; this size was chosen as it can provide

sufficient data for feature extraction in the next step and can meet the demand of

computation in real-time navigation services.

 133

5.2.1.2 Feature Extraction

With noises, if the raw accelerometer data were used directly as inputs to the

decision tree classifier, the activity classification would produce poor results. It is

possible to extract appropriate features by applying preprocessed data to enhance the

quality of classification. In this dissertation, features are extracted from raw

accelerometer signals through a sliding window of 128 samples, 64 of which overlap with

its predecessor. The reason for utilizing sliding windows with 50% overlap to extract

features is explained in the literature (e.g., see Bao and Intille, 2004).

Since a 3D accelerometer, used in most smartphones, can measure acceleration

more accurately than a 2D accelerometer can, this dissertation uses typical 3D

accelerometers available in smartphones. Figure 5.5 shows a sketch map of a 3D

accelerometer, indicating three-axis directions. These three-axis accelerations are

measured as , and .

Figure 5.5. 3D accelerometer

It should be noted that it is unnecessary to recognize all types of activities with high

accuracy, rather it is sufficient to distinguish between the different modes (i.e., no

 134

movement, walking, running, and turning) for the purpose of navigation. To distinguish

between the four modes, four features are extracted from each of the three axes in the

accelerometer, giving a total of twelve attributes. The extracted features are mean,

standard deviation, energy, and correlation.

Possible range of acceleration data varies with different activities. The energy

feature is widely considered in activity measurement and recognition, while correlation is

especially useful for differentiating among activities that involve translation of

dimensions. No translation in dimensions is produced by the sensor when there is no

movement, while walking and running usually involve translation in one dimension.

Finally, turning involves translation in more than one dimension. Turning could be

making a left turn, making a right turn, or making a U turn. It can be identified by

orientation changes measured with a compass.

Taking the x axis of the accelerometer as an example, equations to represent each of

the four features are as follows (features in axis y and axis z are computed in the same

way).

 , where is x-axis acceleration, and is the mean of all x-

axis accelerations values in sample size N.

 =

, where is the standard deviation of x-axis accelerations in

sample size N.

, where Ex is energy, is the component produced by FFT, and N

represents the length of the sliding window.

 135

, where is correlation between each pair of axes as the

ratio of the covariance and the product of the standard deviations.

5.2.1.3 Feature Selection and Classification

After the feature vector is generated, the next step is feature selection and classification.

Of the twelve features computed, only eight are considered to be useful to recognize

user’s movement. For example, when a smartphone is held face-up, its embeded

accelerometer is faced up as shown in Figure 5.5. The x direction indicated in the figure

is perpendicular to the direction of movement and direction of up-and-down vibration in

the movement. Therefore, the features related to the x-axis movement are not useful for

distinguishing between the four movement modes. In this case, the features computed

based on the x-axis acceleration can be removed from the feature list. Table 5.1 shows

the eight features after eliminating the x-axis–related features.

Table 5.1. Selected features

Symbol f1 f2 f3 f4 f5 f6 f7 f8

Feature my mz sy sz Ey Ez corrxy(1,2) corrxz(1,2)

This eight-feature vector is further compressed by employing a decision tree to eliminate

redundant features. In the training stage, a decision tree is constructed based on a training

data set. Figure 5.6 shows the movement pattern recognition decision tree after feature

 136

selection. Eventually the selected features are f1, f3, f4, f6 and f7, which correspond to my,

sy, sz, Ez and corrxy(1,2), respectively.

Figure 5.6. Movement recognition decision tree

In Figure 5.6, the leaf nodes 1, 2, 3, and 4 represent the four movement modes, i.e.,

no movement, walking, running, and turning, respectively. Given the decision tree built

in the training stage, to identify user’s movement pattern in the testing stage,

consecutively collected accelerometer data are processed in real time to compute the five

selected features as feature vectors. Through the decision tree, the extracted feature

vectors are used to determine the mode to which user’s movement belongs. The identified

mode will be used for map matching, as described in the next section.

5.2.2 Movement Pattern Recognition Assisted Map Matching

In the lightweight client/heavyweight server architecture, user’s movement pattern is

recognized in the client by using accelerometer data, where user’s location updates are

 137

sent to the server in preset time intervals that vary with the user’s movement modes. In

the turning mode, with the help of a compass in the smartphone, different turning types,

such as left turns, right turns, and U turns can be further distinguished from one another.

This orientation data can enhance the accuracy of GPS-based map matching. Given the

differences between the three sensors (i.e., accelerometer, compass, GPS), they need to

be synchronized in order to ensure that they work effectively in tandem. Figure 5.7 shows

the relationship between the three sensors’ data, and how they are fused and synchronized

for map matching.

Figure 5.7. Multi-sensor data integrated map matching

In the multi-sensor integration map matching, GPS data are used for absolute

positioning in recognizing user’s movement. Accelerometer data are used for recognizing

four modes of movement, as described earlier. When referring to the North direction, for

example, orientation data, obtained from the compass, indicate the orientation of user’s

movement. This helps in distinguishing between different turning modes. To recognize

movement patterns as accurately as possible, accelerometer data are sampled in the

highest frequency in order to obtain sufficient samples for FFT processing and feature

GPS Data

Accelerometer

Data

Orientation

Data

Map Matching
Movement

Recognition

Synchronization

 138

extraction. Figure 5.8 shows a snapshot of the 3D accelerometer data. Figure 5.9 shows

an example of orientation data relative to the North direction.

Figure 5.8. Accelerometer Data (acceleration in m2/s) Figure 5.9. Orientation Data (angle in degree)

In the multi-sensor data integration map matching, synchronization is essential to

keep all sensor data working in tandem. Data collected from different sensors have

different sampling frequencies. With knowing user’s current movement mode, the

sampling time is determined by the synchronization function. Figure 5.10 shows the user

in a walking mode at time t0 and in a running mode between t1 and t2. Once the change in

movement pattern is detected, the sampling frequency changes to a suitable interval for

sampling data in the running mode. As the user stops between t4 and t5, the sampling

frequency changes again, since no movement is detected.

 139

Figure 5.10. Timing diagram for synchronization

For map matching, using user’s position based only on GPS data, the synchronization

timeline starts from the moment when the smartphone begins receiving GPS data. While

the map matching algorithm waits for the GPS receiver to provide its first position, this is

known as the Time-To-First-Fix (TTFF) problem (Lehtinen et al., 2008), accelerometer

and compass data can be obtained and used to detect user’s movement behavior. As

user’s movement mode changes, the time interval of sending GPS data and updating

user’s location by map matching services will also change. In Figure 5.10, each time

point marked on the timeline indicates when all the sensor data are synchronized, given

user’s movement mode changes.

The flowchart of the movement pattern-recognition-assisted map matching algorithm

is shown in Figure 5.11. First, as GPS data and user’s heading information provided by

the compass are updated in real time, a set of nearest sidewalk segments is chosen as

candidates. By comparing heading values of the user in consecutive time, e.g., heading in

 140

time tc-1 and heading in time tc, heading changes above or below a threshold are used to

judge whether the user is making a turn or not. By comparing the orientation of a

currently map-matched segment with the heading of the user and knowing the current

map-matched location of the user, segment candidates can be further limited under

different circumstances during the movement. Next, map matching decisions are made

by evaluating a weighted combination of distance for positioning data to the candidate

segments, and heading differences of the positioning trajectory and segment orientation.

Once a position data is map matched, the map matching algorithm will wait for the next

set of GPS and orientation data from the client.

 141

Figure 5.11. Flowchart of the movement pattern-recognition-assisted map matching algorithm

 142

5.2.3 Experiments

To validate the movement-pattern-recognition-assisted map matching algorithm, the

sidewalk network of the University of Pittsburgh’s main campus was used and GPS

points for three routes were collected by walking and using an Android phone (Motorola

BackFlip). The server was a PC machine with an “Intel Core 2 2.13G Hz” CPU.

The experiments were performed in two parts. The first part aimed to validate the

movement pattern recognition approach. The experimental data contained both training

data, which were collected for movement pattern classification, and testing data, which

were used to recognize user’s movement on real routes. The second part of the

experiment aimed to evaluate the map matching performance, as assisted by user’s

movement pattern recognition.

5.2.3.1 Data Collection and Data Sampling

This section describes the experimental setup to collect sensor data for user’s movement

pattern recognition and location estimation. All the sensors (GPS, accelerometer, and

compass) used in the experiments are available on the Android smartphone. An image of

this phone and the direction of its 3D accelerometer are shown in Figure 5.12.

 143

Figure 5.12. Motorola Backflip smartphone and the direction of its 3D accelerometer

Figure 5.13 shows a sample of the recorded data in a log file. The log file includes

collected GPS, accelerometer data, and compass data with time stamps. GPS data are

tagged by GPS in the log file, which contain longitude, latitude, altitude, accuracy,

bearing and speed in order. Accelerometer data are tagged by accelerometer, which are

three-axis acceleration data, i.e., acceleration in x-direction, y-direction, and z-direction.

Compass data consist of 3-axis orientation data, orientation in x-direction, y-direction,

and z-direction.

Figure 5.13. A sample of a log file recording GPS, accelerometer, and orientation data

 144

On Android phones, the GPS update frequency is controlled by either setting a

minimum time interval (minTime) or setting a minimum distance interval (minDistance).

If the value of minTime is greater than 0, the Location Manager in smartphones could

stop working for a minTime of milliseconds between location updates to conserve power.

If the value of minDistance is greater than 0, locations will only be updated when the

device (and thus the user) moves by a distance of minDistance meters. Since GPS

receivers on smartphones do provide accurate distance measurement in low-speed

movements, distance-based location updates are not appropriate for

pedestrian/wheelchair navigation. For this reason, minDistance is set to 0.

In order to save energy and minimize computation time (map matching is

potentially a complex task and its response is needed in real time), the following

strategy, based on user’s movement pattern recognition, is executed to update user’s

location.

1. Update GPS position every 3 seconds if the user’s movement mode is recognized

as walking; set minTime to 3s.

2. Update GPS position every 2 seconds if the user is running; set minTime to 2s.

3. Stop updating GPS position if the user is not moving.

The Motorola BackFlip (the smartphone used in these experiments) can provide

sampling frequency of, at most, 110Hz on its accelerometer. A sliding window is set,

including 128 sampling data which is the same amount of data collected within a time

interval of 1.16 s in 110Hz. With 50% overlap between two continuous sliding windows,

a three-second interval covers at least four sets of sampling values and a two-second

interval covers at least two sets of sampling values. Assuming that the user does not

 145

change movement mode very often, continuous movement in a single mode can provide

sufficient sampling data for recognizing pedestrian/wheelchair movement pattern.

5.2.3.2 Training and Testing

To analyze movement pattern, we collected a set of training data by labeling user’s

behavior, such as walking, no movement, running, and turning. The training data set was

used to build a decision tree as the classifier, and is shown in Figure 5.6. We then tested

movement recognition on real routes within the study area. Along the testing routes,

user’s movement pattern in different places is recorded manually as ground truth. By

comparing the ground truth data with results of the movement pattern recognition

algorithm, the accuracy of recognizing different movement behaviors is shown in Table

5.2.

Table 5.2. Classifier accuracy in identifying four different movement behaviors

 Correct Recognition Accuracy Rate (%)

Walking 92.8%

No movement 97.8%

Running 93.4%

Turning 90.6%

In user’s total walking movement, 92.8% were recognized correctly; 1.4% were

recognized incorrectly as no movement; 2.6% were recognized incorrectly as running;

3.2% were recognized incorrectly as turning. 97.8% of no movement were recognized

 146

correctly, but 2.2% were recognized incorrectly as walking. Similarly, 93.4% of running

movement were recognized correctly, but 6.6% were recognized incorrectly as walking.

Turning movement was recognized 90.6% correctly, but 9.4% were recognized

incorrectly as running. The confusion matrix of cross-validation on the feature

classification of movement behaviors is shown in Table 5.3.

Table 5.3. Confusion matrix of cross-validation on feature classification of movement behavior

Recognition

Movement Mode

walking no movement running turning

walking 92.8% 1.4% 2.6% 3.2%

no movement 2.2% 97.8% 0 0

running 6.6% 0 93.4% 0

turning 9.4% 0 0 90.6%

Given that over 90% of all movement modes can be correctly recognized, it is

feasible to use the movement behavior recognition algorithm to determine actual

movement behavior. Based on the movement pattern recognition, map matching is

expected to perform more efficiently, as illustrated in the next section.

 147

5.2.3.3 Map Matching Validation

To evaluate the performance of the movement-pattern-recognition-assisted map matching

algorithm as outlined in Figure 5.11, we tested the algorithm on a set of routes on the

main campus of the University of Pittsburgh. Three routes were chosen in the experiment.

Route 1 was selected to represent a short route, where the map matching algorithm was

validated in a scenario where the user moved close to buildings. The user started walking

along a wide street and then turned into a narrow street. Route 2, as a medium long route,

was selected to validate the map matching algorithm in the area with narrow streets and

dense buildings. Route 3, the longest route in the three routes, was chosen to validate the

map matching algorithm in an area where GPS data are influenced by multipath

reflection due to buildings, grasslands, main streets, and small paths. The user’s

movements on Route 2 and Route 3 include all the four movement modes discussed in

the earlier section.

Figures 5.14–5.16 show the comparison of raw GPS positions and map-matched

locations in the three routes. In Figures 5.14–5.16 (a), black points indicate raw GPS

positions and red points indicate map-matched locations overlapped on the sidewalk

network. Figures 5.14-5.16 (b) show map matching results with ground truth labeled by

movement modes overlaid on a Google satellite map.

 148

Figure 5.14. Route 1 comparing map matching result with GPS raw data

Figure 5.15. Route 2 comparing map matching result with GPS raw data

a. Raw GPS data and map matching locations

overlaid on campus sidewalk map

b. Map matching locations compared with

ground truth overlaid on Google satellite map

a. Raw GPS data and map matching locations

overlaid on campus sidewalk map

b. Map matching locations compared with

ground truth overlaid on Google satellite map

walk
stop walk

turn

stop

walk
walk

walk

walk

stop
turn

turn

turn

run

turn

walk

stop

 149

Figure 5.16. Route 3 comparing map matching result with GPS raw data

Table 5.4 shows the result of analyzing the map matching performance in efficiency

and accuracy. Taking Route 1 as an example, due to correctly recognizing user’s different

movement modes, computation for map matching is reduced; 41 out of 133 GPS data

were sent for map matching to the server. The visualized results in Figure 5.14 also show

that the user’s locations still can be continuously and clearly tracked without any

influences by the reduction of map matching results. By knowing user’s turning behavior,

the map matching algorithm was only performed on the sidewalk connected to the

previously walked-on sidewalk when the user approached an intersection. This improved

the accuracy of the map matching algorithm.

a. Raw GPS data and map matching locations

overlaid on campus sidewalk map

b. Map matching locations compared with ground

truth overlaid on Google satellite map

walk

walk
run

walk

turn

turn

run

stop

stop
turn

walk

 150

Table 5.4. Map matching performance (efficiency and accuracy)

Compared with the high-quality data collected on the campus using a professional-

grade GPS receiver in Chapter 4, the segment identification accuracy in our experiments

is influenced largely by the poor quality of GPS data collected by a consumer-grade GPS

receiver embedded in the smartphone.

Figures 5.14-5.16 show raw GPS data received from the smartphone. It is clear that

the GPS data received from the smartphone can be noisy and inaccurate, especially when

users are on narrow streets and when users move close to tall buildings. Low GPS data

accuracy caused most of the mismatched points in the results. For example, in Route 2,

mismatched points occurred during the time the user was turning to a narrow street at the

intersection. Even though the turning behavior of the user was recognized, the GPS

accuracy is not high enough to distinguish between the two sides of the narrow street.

The mismatched points at the intersection led to mismatched projections on the connected

segment, as shown in Figure 5.15. This is the reason why the map matching accuracy

 151

shown in Table 5.4 is only 82%, mainly due to the smartphone GPS’s inability to

distinguish between the two sides of the narrow street. By recognizing user’s movement

pattern, in Route 2, out of 320 GPS data, 100 were sent to the server for map matching.

In Route 3, the map-matched results also show problems with finding the side of the

street on which the user was actually walking. To distinguish between the two sides of a

street, high positional accuracy data will be needed in future works. Except for the

problem of identifying the side of a street, the experimental results show that the map

matching algorithm can correctly estimate user’s location in majority of the routes as

compared with ground truth shown in Figure 5.16 (b).

Furthermore, the algorithm has low cost of communication and computation. By

recognizing user’s movement on each route, shown in the last column of Table 5.4,

instead of sending user’s location, either based on changes of time or changes of distance,

movement pattern recognition based on location updates can significantly reduce

communication costs between the server and the clients and reduce the calculation costs

of map matching. The results shown in Figures 5.14-5.16 also demonstrated that the

movement pattern recognition based on location updates can provide location estimation

continuously without redundancy. It can be seen that the number of actual GPS data sent

to the server, as shown in the second column, is less than one-third that of the number of

GPS data received per second, as shown in the first column.

 152

5.3 MULTI-SENSOR MAP MATCHING USING MONOCULAR VISUAL

ODOMETRY TECHNIQUE FOR PEDESTRIAN/WHHELCHAIR NAVIGATION

As discussed in Chapter 4, GPS, as the dominant outdoor geo-positioning technology, has

been widely used in navigation systems/services. Despite this trend, however, one of the

shortcomings of GPS is that its accuracy can be degraded or unavailable in areas with

high-rise buildings and obstacles, among other things. Compared to positioning of

vehicles, GPS positioning of pedestrians/wheelchair users is more challenging in that

pedestrians/wheelchair users move in low speeds and often close to buildings, where

multi-path reflections, causing signal degradation, are more frequent.

One possible approach to improve accuracy of geo-positioning, especially in

problematic areas, is to integrate GPS with other types of positioning sensors (Karimi

2011; Ahmed et al., 2009). Such integrations can help track users in areas with poor, or

even without, GPS signals, in order to fill in extant signal gaps in GPS positioning.

Sensor-integrated geo-positioning estimates positions through the sensory fusion of

GPS and other sensors like motion sensors or vision sensors. The additional sensors are

used in the measurement of relative movement distance. For instance, data from inertial

positioning sensors, like an accelerometer or a gyroscope, can be used to estimate change

in position over time; this is called odometry. Odometry is used to interpret data received

from the movement of actuators to determine position replacement over time, such as

through the use of devices like rotary encoders, which are used to measure wheel

rotations (Ohno, et al., 2004). Similarly, visual odometry is the process of estimating

traveled distance using sequential camera images (Hagnelius, 2005). However, as all

http://en.wikipedia.org/wiki/Rotary_encoder

 153

types of odometry suffer from precision problems, visual odometry must also deal with

errors that can occur through the accumulation of data on the continuous motion of

subjects. In spite of this, visual odometry can be more accurate compared to classical

odometry that relies on motion sensors, (Hagnelius, 2005). For this reason, in this

dissertation, visual odometry is explored, by integrating GPS positions with vision-based

positioning results, to estimate relative positions of pedestrian/wheelchair users on the

sidewalk. Advances in mobile computing technologies have resulted in smartphones that

include sensors like GPS, camera, accelerometer, compass, and even gyroscope. GPS

provides absolute positioning; camera can be used to record videos or capture images;

accelerometer measures acceleration data; and compass data can be used to calculate

orientation. Equipped with these sensors, smartphones are seen as suitable platforms for

multi-sensor map matching.

The camera pose estimation in visual odometry has various approaches that differ in

the number and type of cameras used (Davide, 2008; Kitt et al., 2010). If more than one

camera is used, it is possible to recover the scale and scene geometry of the environment

through triangulation of the 3D points. Se et al. (2007) and Nogueira et al. (2008) use the

binocular vision method to build 3D environment in street view. However, since current

smartphones have only one camera, the focus of this dissertation is on the monocular

visual odometry. In this section, a multi-sensor map matching algorithm will be presented

by integrating visual data, accelerometer data, and GPS data to provide continuous

localization of pedestrian/wheelchair navigation.

 154

5.3.1 Multi-Sensor Map Matching Algorithm Using Monocular Visual Odometry

For pedestrian/wheelchair outdoor navigation, map matching decision can be made solely

based on GPS data when high-quality GPS data are available. When

pedestrians/wheelchair users move into areas with poor or no GPS signals, the monocular

visual odometry is one possible approach to continue tracking user’s location movement.

Whether visual odometry is required for map matching or only GPS data are needed is

determined by quality of GPS data. For this reason, the quality of GPS data needs to be

detected in real time as users move in order to provide users with continuous map

matching service. If GPS accuracy, horizontal accuracy measured in meters, is above a

threshold, GPS signals are considered as good quality. In areas with good GPS quality, a

GPS-based map matching algorithm is sufficient to estimate user’s location. Conversely,

in areas with poor GPS quality, when GPS accuracy is above a threshold, vision-based

positioning through a visual odometry technique can be used to calculate the relative

distance in user’s movement. Furthermore, by fusing vision-based positioning results

with GPS-based map matching results user’s absolute locations can be obtained. In

vision-based positioning, image acquisition is required for image matching in motion

estimation; this can be accomplished by extracting video frames to reduce redundancy in

the obtained images. For this, accelerometer data are utilized to decide when video

frames should be extracted by recognizing user’s movement (through camera movement).

To enhance accuracy of map matching, orientation data from a compass are used during

the time the user makes turns. Figure 5.17 shows the flowchart of the algorithm.

 155

Figure 5.17. Flowchart of multi-sensor map matching algorithm using monocular visual odometry

In Figure 5.17, an accelerometer measures acceleration data to detect user’s

movements. The user’s movement mode determines when images need to be captured

from a video stream by following a rule that will be described later. In addition, unlike

using a stereo vision, monocular visual odometry has to deal with the ambiguity

problem of scale factors from a single image in order to reconstruct the 3D structure of

the real world (Hakeem, et al., 2006; Esteban et al., 2010). To address the problem of

scale factors in monocular visual odometry, accelerometer data is considered. The

accelerometer is utilized to measure the distance between a pair of consecutive frames

to calculate the scale factor between them.

 156

5.3.2 Accelerometer-Assisted Monocular Visual Odometry for Motion Estimation

Visual odometry is the process of continuously estimating the position and orientation of

a vehicle in robotics research (Davide, 2008). The process of visual odometry includes

image acquisition, image analysis, feature extraction and matching, and camera pose

recovery from a multiple-view–geometry calculation. Figure 5.18 shows an overview of

the visual odometry process.

Figure 5.18. Overview of visual odometry process

The visual odometry process starts by obtaining image data which could come from

one or more digital cameras. On captured images, image analysis is applied in order to

find interesting points in the images. Interesting points are pixels with distinct intensity

compared to those in their neighborhood, and are most likely found as corners or edges in

the images. Such interesting points can be extracted and tracked on the overlapped

objects captured in consecutive images. Feature vectors are formed after the extraction of

features from these interesting points. Work on extracting these feature vectors is

followed by feature matching to find the same points in multiple images. The key to

measuring distance of movement is the camera pose recovery from multiple view

geometry. Intricate geometric relations exist between multiple views of a 3D scene.

Image

Acquisition

Image

Analysis

Feature

Extraction

Feature

Matching

Camera Pose

recovery

 157

These geometric relations are related to camera motion and calibration, as well as to the

scene structure. The camera pose recovery is to estimate camera positions where images

are taken by computing a rotation matrix and a translation matrix.

Different from previous works on visual odometry (e.g., Davide, 2008; Kitt et al.,

2010), in our work only one camera is available for use in smartphones. To capture

multiple images, a video stream is taken to track the movement of a user. An image

sequence is extracted from the video stream as the input for monocular visual odometry

analysis. The next step is to perform image analysis and feature extraction on each image.

Adjacent images in the sequence are treated as image pairs and are used for feature

matching. The camera pose recovery function takes further responsibility for determining

the position and orientation (pose) of the camera. Finally, a final bundle adjustment,

based on the Levenberg-Marquardt algorithm (Guerrero et al., 2005; Ke and Kanade,

2003), is used to refine the 3D coordinates and camera positions. As a result, it is possible

to estimate the camera trajectory, which corresponds to user’s movement trajectories.

To better understand the relationship between the image plane and the

3D modeling of real world, vision geometry notations are first defined:

(X, Y, Z) are the coordinates of a 3D point in the world coordinate space.

(u, v) are the coordinates of the projection point in pixels.

(x, y, z) are the coordinates of a 3D point in the image coordinate system.

K represents a camera projection matrix, which is a matrix of intrinsic parameters that

do not depend on the scene viewed. The matrix represents the quality of each camera, so

once K is estimated, it can be re-used as long as the same camera is used.

 158

(cx, cy) is a principal point, which is usually at the image center.

(fx, fy) are the focal lengths expressed in pixels.

[R|T] represents a matrix of extrinsic parameters. This is a joint rotation-translation

matrix, where R is the rotation matrix and T is the translation matrix.

Based on the above notations, Equation 5.1 shows the relationship between the image

and the 3D scene in the image coordinate system. Equation 5.2 shows the relationship

between the image coordinate system and the world coordinate system. Given Equations

5.1 and 5.2, Equation 5.3, which shows the relationship between the image pixels on the

image plane and the corresponding 3D points in the world coordinate system, can be

calculated.

 = K

 (5.1)

 +

 =

 (5.2)

 (5.3)

Set P =

 , we have

 .

Given an image represented by

 , if we have

 which are the coordinates of

object points in the real world, it is then possible to calculate matrix P. Matrix P is

 159

mainly made up of two matrices, K and

 . K is the intrinsic matrix and

 the extrinsic matrix. Since all parameters in K are fixed when the same

camera is used, if K is known, then the rotation matrix R and translation matrix T can

be calculated after P is estimated.

The problem of estimating the trajectory of user’s movement can be defined as

the trajectory of both the rotation matrix Ri−1,i and the translational vector Ti−1,i in a

given frame, as well as the characterization of the relative movement between two

consecutive frames, see Figure 5.19.

Figure 5.19. Estimation of rotation matrix Ri−1,i and translational vector Ti−1,i in the motion between video

frame Fri-1 and Fri

Matrix K must be obtained before the camera pose recovery can proceed. In order to

obtain the intrinsic Matrix K, camera calibration must be performed. In this dissertation,

since offline camera calibration is more accurate than online camera calibration, we

estimate K by using offline camera calibration.

 160

5.3.2.1 Camera Calibration

Camera calibration is to find the essential parameters of the camera that affect the

imaging process. Specifically, with the definition of matrix K in Equation 5.1., that is

 camera calibration is to estimate all parameters in matrix K,

which involves calibrating the position of image center, which may not be at the image’s

true center, estimating the focal length, using different scaling factors for row pixels and

column pixels, and accounting for any skew factor and lens distortion (pin-cushion

effect). In camera calibration, by taking pictures of a known object and by knowing the

coordinates of given object points in the real world, it is possible to obtain internal

camera parameters through optimization algorithm.

To implement camera calibration, the camera calibration toolbox

(http://www.vision.caltech.edu/bouguetj/calib_doc/) was used.

5.3.2.2 Video Frames Extraction Based on User’s Movement Pattern Recognition

Before image analysis and position estimation are performed, frames must be extracted

from the video. For extracting frames, the same algorithm discussed in the last section,

i.e., pattern recognition of user’s movement, is used. A major criterion to perform feature

matching between extracted frames is to ensure that there are overlaps between

consecutive images. To obtain precise feature matching, dispersedly distributed

overlapped features in the images are highly preferred. The objective is to select those

frames that will appropriately meet the requirement of image feature extraction and

matching, which is needed in a later step for analysis. Moreover, the overlapped features

http://www.vision.caltech.edu/bouguetj/calib_doc/

 161

extraction and matching in consecutive frames will further impact the camera pose

estimation.

The key to frame extraction is to decide the points in time at which the extraction

should be performed. Recognition of user’s movement patterns can aid in this

determination. For example, there is no need to extract frames if a user is not moving at a

traffic light. Conversely, if a user is making a turn into the next segment of the sidewalk,

more frequent frame extraction is required than would be required in the time period

when a user is moving straight. This is because turning makes adjacent frames more

likely to lose overlapped features. This could cause problems in matching features, and

may eventually decrease the accuracy of geometric calculation for the camera pose

estimation.

Pedestrians/wheelchair users outdoor activities can be classified into four modes: no

movement, walking, running and turning. In the computer vision context, no movement

(operating at zero speed), walking (operating at a low speed), running (operating at a

relatively high speed), and turning (operating with change in viewpoint of images)

require varying frame extraction intervals. In order to extract frames appropriately, with

the changes of speed and changes of viewpoint in the movements, frame extraction

intervals are set up based on different modes of movements.

A study by Knoblauch et al. (1996) indicates that the mean walking speeds are 1.51

m/sec for younger pedestrians and 1.25 m/sec for older pedestrians. Outdoor powered

wheelchairs and mobility scooters have a maximum speed of 1.78 m/sec on paved

surfaces. The 1.51 m/sec average speed for walking is used in this dissertation as a

baseline to set up frame extraction rates that correspond to different movement behaviors.

 162

The number of standard video frames in one second is 30. Taking walking mode as an

example, if the standard pedestrian’s walking distance in 1 second is 1.51 m, the frame

extraction rate for a 2-m distance interval is (2/1.51)*30, which is about one frame per 40

frames. Since frame extraction rate is inversely proportional to movement speed, using

one out of 40 frames as a baseline, the frame-extraction rate in running mode is set as one

frame per 30 frames in this work, which corresponds to the relatively higher running

speed. In turning mode, in order to keep overlapped features in adjacent frames as much

as possible, the frame extraction rate is set as a half of the frame extraction rate in

walking mode. In summary, the following rules, corresponding to the four modes of

movement, are considered for frame extraction:

1. When a user is walking in a straight path, frame extraction rate is one out of 40

frames.

2. When a user is running, frame extraction rate is one out of 30 frames.

3. When a user is making a turn, frame extraction rate is one out of 20 frames.

4. When a user is not moving, there is no need to extract frames.

To summarize, this section proposes an approach to extract image frames from a

video stream by recognizing user’s movement mode. When a user is moving on the

sidewalk, a smartphone has an accelerometer collecting motion data and has camera

taking a live video stream. After matching the user’s movement mode with one of the

four movement modes, appropriate image frames can be extracted by following the rules

described above.

 163

5.3.2.3 Feature Extraction for Map Matching in Wheelchair Navigation

After the images are obtained, feature extraction is the next step in estimating motion.

With a prior knowledge about man-made environments on streets, such as rectangular

objects with dominant planes (Ohnishia and Imiya, 2006) like buildings, objects

matching can make use of some of the special characteristics of street-view images. In a

sequence of street-view images, sky and ground are both viewed as backgrounds due to

their stable and static characteristics, whereas other objects like buildings and cars are

unique or diverse, so they are more helpful in location identification. Unique objects in

urban environments include:

 Buildings

 Vehicles, e.g., cars, bikes, strollers

 Pedestrians

 Vegetation, e.g., trees, flowers, bushes

 Urban furniture, e.g., city lights, telephone poles, parking meters, benches

 Signs and banners

Signs and banners can be used to recognize specific locations only when

Optical Character Recognition (OCR) Technology is applied to recognize characters in

images, while some types of vegetation and urban furniture may appear in multiple

locations and images. Vehicles and pedestrians/wheelchair users are moving objects that

are not stable in locations, thus they are considered unreliable features to use for feature

matching. Buildings are the most stable and distinctive objects for location estimation in

pedestrian/wheelchair navigation. Inspired by human cognitive mechanisms that daily

navigation strongly relies on landmark information, overlapped landmarks in image

sequences are the interesting points (features). As a user moves, viewpoints and objects

http://www.sciencedirect.com/science/article/pii/S0167865505003703#aff1

 164

in image sequences change. Finally, due to its sensitivity to changes in viewpoints,

scales, lighting, and environment, global features, such as color histogram, texture, and

edge, are not suitable for location estimation. With change of distance and viewpoint

during movements, features with rotation-invariance and scale-invariance are needed.

After analyzing various features discussed in the literature (e.g., MOBVIS, 2006; Cipolla,

2004), in this dissertation, local features, both for object recognition and for subsequent

location estimation, are used. Of the existing local feature extraction algorithms, Scale

Invariant Feature Transform (SIFT) is the most effective algorithm for street view images

(Deselaers et al., 2007), described in the next section.

Scale Invariant Feature Transform (SIFT) Descriptor

The SIFT descriptor transforms image data into scale-invariant coordinates that are

relative to local features. The SIFT descriptor is a well-known method in computer vision

for its capabilities in robust matching to the database records, despite viewpoint,

illumination, and scale changes in images. SIFT is suitable for object recognition in urban

environments where illumination and scale changes usually degrade performance (Lowe,

1999; 2004).

The following are the major computations that are used to generate SIFT features:

1. Scale-space extrema detection. This is the initial preparation. Of all scale levels and

their corresponding image locations, a difference-of-Gaussian function is used to identify

potential interest points, which are invariant to scale and orientation.

2. Keypoint localization. At each candidate location, a detailed model is used to

determine location and scale. A technique similar to the Harris Corner Detector (Derpanis,

http://www.aishack.in/2010/04/interesting-windows-in-the-harris-corner-detector/

 165

2004) is used in SIFT. Keypoints are selected by eliminating some instable candidates,

like edges and low contrast regions in terms of their stability.

3. Orientation assignment. One or more orientations are assigned to each keypoint

location, based on local image gradient directions. Image data are processed and

transformed relative to the assigned orientation, scale, and location for each feature. This

effectively cancels out the effect of transformation.

4. Keypoint descriptor. With scale and rotation invariance in place, local image

gradients are measured at the selected scale in the region around each keypoint. This

helps identify unique features, allowing for significant levels of local shape distortion and

changes in illumination.

5.3.2.4 Monocular Visual Odometry Assisted by Accelerometer for Motion

Estimation

Figure 5.20 shows how monocular visual odometry works when a user is moving on a

sidewalk.

 166

Figure 5.20. Frame-to-frame motion estimation

In Figure 5.20, a video stream is obtained from a camera, and a sequence of

images is taken as the user moves. Images are shown on image planes from C0 to C4. A

different set of image features corresponding to 3D objects is used to compute the motion

between consecutive frames. For instance, images of a street scene in the figure are taken

in consecutive frames C0 to C2, which have overlapping objects, like buildings. Some

features of objects are marked as circles on the image planes, and those common features

will be used for camera pose estimation in the motion.

The first step of a frame-to-frame motion estimation is to extract a set of salient

features that are present in each frame. SIFT is employed to extract local features and

build descriptors as feature vectors.

 167

In the second step, the features across consecutive frames are matched using

nearest neighbors search and a minimum distance threshold in the SIFT descriptor space,

obtaining matches between frames Fri and Fri+1.

In the third step, the normalized 8-point algorithm is employed to compute the

frame-to-frame motion, as described by Hartley and Zisserman (2004), due to its

computational simplicity. Outliers are then removed between Fri and Fri+1 frames using

RANdom SAmple Consensus (RANSAC), and the final motion is re-computed using

only the set of inliers. This yields a fundamental matrix F that describes camera motion.

In the next step, given that the camera was calibrated beforehand, we already

know the calibration matrix K. Therefore, the essential matrix can be obtained by E =

K'*F*K.

In the last step, the frame-to-frame rotation matrix Ri−1,i and the translational

vector Ti−1,i are obtained using the method by Horn (1990). This yields four possible

solutions, from which the one with more inliers in front of both cameras is selected.

Furthermore, a scale factor for each translational vector must be calculated to recover the

overall camera pose.

Figure 5.21 shows the visual-based positioning algorithm.

 168

Figure 5.21. Flowchart of vision-based positioning algorithm

Scale Adjustment

With only one camera, the baseline between two instants is unknown and the scale factor

of reconstruction is ambiguous. To address this ambiguity problem, this section discusses

an approach where an accelerometer is used to assist with estimating the scale factor.

Figure 5.22 shows the motion estimation for consecutive frames.

 169

Figure 5.22. Scale adjustment

When the distance between cameras C0 and C1 is normalized to 1, the location of the

third camera C2 can be estimated across the translation direction. All scales between

consecutive images are adjusted based on the normalized distance d(C0, C1). To solve the

ambiguity of the scale factor in translational vector, an accelerometer is used to measure

the distance between the first frame and the second frame, i.e., d(C0, C1).

The integral of acceleration over time from t0 to t1 will yield velocity, and the integral of

velocity over time results in distance. Since accelerometers return data in units of the

gravitational constant, i.e., g, acceleration values need to be multiplied by 9.81 to convert

to m/s
2
. During this process, errors may accumulate in the integral calculation. As a

result, accelerometer is used to only calculate first-step distance, d(C0, C1), which

measures the movement from the first frame to the second one.

Once the distance between C0 and C1 is obtained, the translation is only determined

up to the scale ratio between each pair of consecutive frames. The ratio between these

distances must be calculated before the camera’s pose can be reconstructed.

http://en.wikipedia.org/wiki/Gravitational_constant

 170

To calculate this distance ratio, we first calculate the motion between three

consecutive frames using frame-to-frame feature matches. This produces two different

motion estimations [R|T](i,i+1) and [R|T](i+1,i+2). The quality of this motion estimation

is greater than the motion estimation of [R|T](i,i+2), due in part to the larger number of

matches. These two motions are translated into two different scale factors, s(i,i+1) and

s(i+1,i+2).

Given the motion estimation of the camera and the reconstructed 3D points of 3-

frame matches, the following relation is established:

where si is the scale ratio that relates the translation between cameras i and i+1 and

cameras i+1 and i+2. The ratio si = s(i,i+1)/ s(i+1,i+2) is calculated using matches across

all 3 frames and a linear system of equations as in the P6P DLT algorithm (Sattler et al.,

2011).

5.3.3 Integrated Map Matching

Given the information from the camera pose recovery, the relative displacement

combined with GPS historical positions and orientations in the movement are used to

perform map matching on a sidewalk network. Figure 5.23 shows the overview of the

map matching algorithm, which integrates the camera pose recovery results with the GPS

historical trajectory and orientation data on the sidewalk network.

 171

Figure 5.23. Flowchart of map matching approach

In areas with poor GPS signals, the camera is used to capture images for

measuring continuous user’s movement distance. GPS historical data provides the

starting positions at the time when the camera is to be active. Camera pose estimation is

performed to obtain the relative displacements between consecutive image planes.

Orientation data, as measured by the compass, are integrated with estimated positions to

help map matching as users move about the environment.

5.3.3.1 Coordinate System Conversion for Tracking Data Presentation on Digital

Map

In order to integrate data from different sensors in multi-sensor map matching, four

coordinate systems are involved. These are a 2D image coordinate system, a 3D camera

coordinate system, a world coordinate system, and a map coordinate system. In the

integration process, GPS positions and sidewalk map data exist in the world coordinate

system. They are presented by longitudes and latitudes in the WGS-84 projection system.

In the camera’s pose estimation, image sequences are extracted from real-time video

streams, and image feature extraction and computation are conducted in the 2D plane

coordinate system. Image features are further reconstructed in the 3D camera coordinate

GPS Historical Data

Map Matching

Orientation

Data

Sidewalk Network

Camera Pose Estimation

 172

system. Therefore, 2D image plane coordinates are transformed and presented in the 3D

camera coordinate system by Equation 5.1, and are further translated to a 3D world

coordinate system by Equation 5.3. Finally, all the positioning data and map matching

results are transformed into the map coordinate system. This requires a conversion

between the 3D world coordinate system and the 2D map coordinate system, from WGS-

84 to Universal Transverse Mercator (UTM) (Grewal et al., 2002), in order to track user’s

locations on the 2D map.

5.3.4 Experiments and Analysis

To validate the multi-sensor map matching algorithm, experiments, on the sidewalk

segments of the main campus of the University of Pittsburgh were conducted. Multi-

sensor data including video, accelerometer, compass, and GPS data were collected by an

Android phone. The computing platform was a PC machine with an “Intel Core 2 2.13G

Hz” CPU.

5.3.4.1 Data Collection on Smartphone

GPS, camera, accelerometer, and compass data were collected by a Samsung GT

I9000 Galaxy S smartphone.

The accelerometer in this experiment has two roles. On the one hand, it is used to

identify user’s movement pattern for video frame extraction. On the other hand, the

acceleration data collected between the first extracted frame and the second extracted

frame are used to calculate the distance of movement for scale factor estimation that were

discussed earlier.

 173

5.3.4.2 Camera Calibration

The camera was calibrated beforehand by applying “Camera Calibration Toolbox for

Matlab”. Twenty 720x480 photos of a black and white checkerboard were taken from

different angles by the Samsung phone. Figure 5.24 shows one of these photos, on which

each corner of the grid on the checkerboard is selected as the featured point and is

marked with a red cross.

Figure 5.24. A checkerboard to calibrate camera

Camera internal parameters were estimated in the camera calibration. K is the

intrinsic matrix, as shown in Equation 5.5.

 686.646920000000 0 359.500000000000

K = 0 687.467270000000 239.500000000000 (5.5)

0 0 1

 174

5.3.4.3 Experimental Results

Several video clips were taken on the main campus of the University of Pittsburgh.

Buildings, trees, pedestrians, cars, urban furniture, and signs were the most common

objects captured in these clips.

The video stream was recorded as a user was walking on the sidewalk in front of the

School of Information Sciences at University of Pittsburgh. A sequence of frames was

captured in the video stream. No particular attention was given to the distance between

frames, since frames are automatically extracted based on user’s movement pattern.

These captured frames were saved as images for further image processing and feature

extraction. Figure 5.25 shows a sequence of images extracted from a video that was

collected in motion.

Figure 5.25. A sequence of images extracted from a video

 175

1. SIFT Feature Extraction and Feature Matching

The SIFT algorithm is first applied to extract features from images. Figure 5.26 gives an

example of SIFT feature extraction from one image taken on the campus. In the figure,

the length of the arrow represents the scale of the extracted SIFT features and the arrow’s

direction represents the extracted features’ dominant direction. Figure 5.27 shows two

image frames that were extracted from the video and with their SIFT features extracted.

The lines that link two features in the two images show the correspondences in the

feature matching. Table 5.5 presents the number of feature points extracted from each

image and the number of matched points in both images.

Figure 5.26. SIFT features of a street view image

 176

Figure 5.27. Matched SIFT feature points

Table 5.5. Key points and matched points

Image Sequence Feature Points Matches

Image 1 2575 737

Image 2 2500 737

In Table 5.5, an image pair in one image sequence is taken as an example, 2575 SIFT

feature points are extracted from Image 1 and 2500 SIFT feature points are extracted

from Image 2. After feature matching, both images have 737 feature points in common

corresponding to the same feature points on objects in the real world. Similarly, feature

extraction and feature matching are implemented between all the continuous image pairs

Image at time t Image at time t+1

 177

taken in the experiment. Taking 100 images as samples in the experiment, 87.5% features

in the images are matched correctly. Since images are taken with changing viewpoints,

the high quality of feature extraction and accuracy in feature matching indicate that SIFT

is insensitive to changes of viewpoints, which is appropriate in our vision-based geo-

positioning.

2. Fundamental Matrix Calculation

After SIFT features are extracted, the fundamental matrix F is calculated, given

correspondences in an image sequence. In Figure 5.28, given a calculated matrix F, the

marked corresponding feature points are shown in Image 1, while the epipolar lines going

through the matches are shown in Image 2.

Figure 5.28. Feature points in image 1 vs. Epipolar lines in image 2

 178

3. Monocular Visual Odometry and Vision-Based Map Matching

After the fundamental matrix F is obtained, the essential matrix E can be calculated as

discussed earlier. Therefore, camera positions and poses can be estimated, which provide

user’s locations. The video was taken starting in the front of the School of Information

Sciences building, and Figure 5.29 shows the positioning results, as overlaid on Google

Earth. When compared to the video that was taken and shown in Figure 5.25, the results

show that locations are estimated quite precisely compared to the actual trajectory that

are recorded by the collector.

Figure 5.29. Geo-positioning results by using visual odometry, top view (left) and street view (right)

However, like other odometry techniques, the visual odometry must overcome the

problem of accumulating position errors (Davide, 2008; Kitt et al., 2010). This problem

also occurred in our experiment and errors were accumulated in a relatively long distance

using the monocular visual odometry. Starting from the same origin and continuing the

same route, as shown in Figure 5.29, a video stream is recorded as the user is walking for

332 m in around 4 minute. The experiment is shown in Figure 5.30, where the user

started walking from a point marked as S and stopped walking at another point marked as

 179

E. All the objects listed in Section 1.4.1.3, such as buildings, trees, cars, pedestrians, and

signs, appear on the captured images along roads. Figure 5.30-a shows that the estimated

locations drifted over time when only the monocular visual odometry technique was

applied. To mitigate this problem, we use geometrical and topological information in the

sidewalk map to constrain user’s location in every map matching step on the sidewalk in

order to reduce positional error accumulation. Figure 5.30-b shows the comparison of

location estimation, both before and after map matching. Finally, Figure 5.30-c shows the

map matching results overlaid on Google Maps.

a. Monocular visual odometry results in one route before map matching

b. Estimated locations on one route before map matching and after map matching

E

E

S

S

 180

C. Map matching results overlaid on Google Maps

Figure 5.30. Map matching results overlaid on Google Maps

Since vision-based map matching is only needed in places where GPS signals

either are not available or have poor quality, the accuracy of GPS signals is used as the

criterion to determine when to start vision-based map matching. Figure 5.31 shows a

sample log file from data collection. As described earlier in Section 1.2.3.1, the log file

includes GPS, accelerometer, and orientation data, and each GPS data point has recorded

longitude, latitude, accuracy, bearing, altitude, and speed, in order.

E

S

 181

a. A sample log file recording GPS, accelerometer and orientation data and a highlighted GPS position with

accuracy of 8.94 m

b. A highlighted GPS position with accuracy of 17.89 m

c. A highlighted GPS position with accuracy of 10.0 m

Figure 5.31. A sample log file to compare accuracy of GPS positions

 182

As Figure 5.31 shows, the collected GPS data have different accuracies in

different positions at different times. The accuracies of three GPS positions are 8.94 m,

17.89 m, and 10.0 m. Our tests show that, in the multi-sensor map matching algorithm, if

GPS accuracy is equal to or better than 10 m, then the quality of GPS data is considered

to be acceptable and map matching can be performed by using only GPS data. But if GPS

accuracy is worse than 10 m, vision-based map matching is needed to fill in the

localization gap. In short, the accelerometer and orientation data are used to help video

frame extraction, assist map matching in movement pattern recognition, and improve the

overall efficiency of map matching.

Figure 5.32 shows the experimental results that compare the GPS-based map

matching results with multi-sensor map matching results. In Figures 5.32 a and b, black

points represent a GPS trajectory and red points show the GPS-based map matching

results. Figure 5.32-a shows the map matching results of all the GPS raw data, while

Figure 5.32-b shows the map matching results based on those GPS data with accuracy

<=10 m. In Figure 5.32-b, because a section of sidewalk (along O’Hara St) has GPS

accuracy worse than 10 m due to poor GPS signals, GPS-based map matching is not

appropriate; this is where the vision-based map matching is performed to fill in the signal

gap from GPS. The final map matching results, which are obtained by integrating GPS

and vision data, are shown in Figure 5.32-c. These final results prove that using

monocular visual odometry the multi-sensor map matching algorithm can provide users

with continuous location estimation, regardless of changes in quality of GPS data.

 183

a. GPS-based map matching results, as compared with raw GPS data overlaid on the sidewalk map

b. GPS-based map matching results in GPS accuracy<=10m, compared with raw GPS data overlaid on the

sidewalk map

This area has a GPS

accuracy > 10m, so no

map matching results

are available by using
GPS-based map

matching.

 184

c. Multi-sensor integrated map matching results overlaid on Google Maps

Figure 5.32. Comparison of GPS-based map matching results with multi-sensor map matching results

In terms of time performance, vision-based map matching is computationally-

intensive, which requires high CPU and memory usage. This is one reason why in the

experiments the lightweight client/heavyweight server architecture was used as the

platform to implement the vision-based map matching algorithm. In this architecture, the

server is responsible for major computations in vision-based map matching, including

SIFT feature extraction and feature matching and camera pose estimation. Clients

(smartphones) are responsible for capturing video streams and extracting frames from

captured video streams. Frame extraction from video streams takes about 0.1 second in

average. Since each image is 720*480 pixels and each pixel requires 8 bits of storage,

data size of each image is 720*480*8 bits=2,764,800 bits. To perform feature extraction

and feature matching on the server, each image needs to be uploaded to the server, which

cost about 1.53s with an average of 1.8Mbps data upload speed on the 3G networking.

With this, the total time (computation and communication) is less than 1.7s on the client

side. On the server side, computation of vision-based map matching, which involves

This area has a GPS

accuracy > 10m, so

vision-based map

matching is applied to

get continuous location

estimation.

 185

SIFT feature extraction and feature matching, is the major cost. In the experiments, all

the images extracted from video streams have 720*480 pixels. In Matlab running

environment, our experiments showed that the average time of SIFT feature extraction

and feature matching between two images is about 1 second. Furthermore, the camera

pose estimation process takes about 0.5 second. Therefore, the computation on the server

side cost 1.7 second. After adding the response time, from clients to the server, the total

time is 3.2s. For this, we set up time intervals of 3.2s to update the map matching results.

The average speed of pedestrians is 1.51 m/s, so the distance moved in 3.2 seconds is

below 5 m. For pedestrian/wheelchair navigation, 5 m location updates are reasonable.

The time performances on clients, over networks, and on servers, indicate that the

proposed multi-sensor map matching approach is suitable for pedestrian/wheelchair

navigation applications.

In summary, this section presented a multi-sensor integrated map matching

algorithm using monocular visual odometry. The experiments showed vision as a

complementary sensor making up for the shortfalls of GPS capabilities, and vision-based

map matching is supplemental to GPS-based map matching. The integration of GPS and

vision can provide users with seamless map matching service.

 186

6.0 SUMMARY, CONCLUSIONS, CONTRIBUTIONS AND FUTURE RESEARCH

6.1 SUMMARY

This dissertation first investigated existing map matching algorithms in car navigation

systems. It also discussed the unique characteristics of the pedestrian/wheelchair

navigation application and the challenges in map matching for the pedestrian/wheelchair

navigation. Based on the study, some advanced map matching algorithms for

pedestrian/wheelchair navigation systems/services were designed and developed. A

summary of the algorithms developed in this dissertation is as follows.

 To address the problem of finding the correct segment (road or sidewalk)

efficiently, which is the first step of map matching, an adaptive candidate segment

selection algorithm was developed.

 In the case of using GPS as the only positioning sensor, three GPS-based map

matching algorithms were developed. These are chain-code–based map matching, HMM-

based map matching, and fuzzy-logic–based map matching.

To solve the issue of tracking pedestrians or wheelchair users in places that have

poor or no GPS signals, two multi-sensor integrated map matching algorithms were

developed. In the first algorithm, an accelerometer and a compass were utilized to

recognize the user’s movement pattern in order to integrate with a GPS and help improve

 187

overall map matching. In the second algorithm, a vision-based map matching algorithm

was developed to calculate relative displacement in the movement on the sidewalks in the

absence of GPS data or of high accuracy GPS data. Furthermore, a map matching

algorithm based on the integration of vision, accelerometer, compass, and GPS sensors

can provide users with uninterrupted map matching services. Both multi-sensor-based

map matching algorithms were designed, developed, and tested on a client

(smartphone)/server architecture for pedestrian/wheelchair navigation.

In this dissertation, experiments were conducted to evaluate the developed

algorithms by navigating on the sidewalk network of the main campus of the University

of Pittsburgh. The algorithms were evaluated both for accuracy and time performance.

6.2 CONCLUSIONS

In this dissertation, a set of advanced map matching algorithms were designed and

developed for pedestrian or wheelchair navigation. The following conclusions can be

drawn, based on the results of several experiments using the developed algorithms.

The adaptive candidate segment selection algorithm can perform efficiently by

dynamically selecting candidate segments when given updated GPS positions, as well as

relative changes between GPS positions and clustered segments.

The three advanced GPS-based map matching algorithms can provide users with

high quality of location estimations on sidewalk networks in terms of both accuracy and

computation time. However, GPS-based map matching suffers from two problems: it

cannot provide high quality solutions in places with poor GPS signals and it does not

 188

provide solutions at all in places with fully blocked GPS signals. Another problem in

sidewalk GPS-based map matching is that it cannot distinguish between the two sides of

narrow streets, when the distance between the two sides a street is less than the

positioning accuracy range of the GPS unit.

The visual odometry multi-sensor integrated map matching algorithm presented in

this dissertation supplements some of the drawbacks of GPS-based map matching,

especially providing location estimations in places without GPS signals. The

experimental results showed that the multi-sensor integrated map matching algorithm is

both feasible and practical in providing uninterrupted location estimations when

navigation in outdoors. However, identifying the correct sidewalk from parallel sidewalks

on both sides of a street still remains a challenge because the GPS accuracy on sidewalks

is often not high enough. Additionally, the user movement pattern recognition algorithm,

which integrates accelerometer, compass, and GPS data, can greatly improve the

efficiency of map matching on the smartphone/server architecture.

The experimental results showed that all the developed algorithms perform fairly

well to achieve the goals of the project. Furthermore, these map matching algorithms are

feasibile and practical and they are potential to be utilized in different

pedestrian/wheelchair navigation applications. With the popularity of smartphones and by

building on the smartphone/server architecture, pedestrian/wheelchair navigation services

can be widely and quickly accepted by current smartphone users for their mobility use.

By providing continuous and precise location estimation for tracking people, the multi-

sensor integrated map matching algorithms are particularly beneficial to some groups of

people, such as senior citizens or children, who may require uninterrupted tracking

 189

services in various situations. The results of this dissertation can benefit other research

areas such as automated wheelchair navigation and walking robots, where ensuring

uninterrupted localization by map matching is one of the critical factors necessary to plan

routes and achieve automatic location guidance.

6.3 CONTRIBUTION

Map matching is an essential component of and plays a major role in navigation

systems/services. By analyzing the requirements of pedestrian/wheelchair navigation, this

research concentrated on developing map matching algorithms specifically designed for

pedestrian/wheelchair navigation services. We can summarize the novelty of the

developed algorithms by examining their four distinct contributions.

First, a hierarchical clustering technique was applied to transportation networks

and a binary tree was specially built for indexing segments. This data structure technique

was adopted for handling the first step of map matching algorithms by developing a

segment candidate selection algorithm based on an adaptive searching scheme.

Second, three GPS-based map matching algorithms were developed for

pedestrian/wheelchair navigation. The experimental results demonstrated acceptable map

matching accuracy and time performance.

Third, by using multiple types of sensors, a movement pattern recognition

algorithm was developed for identifying user’s movement behaviors in order to assist

with map matching in pedestrian/wheelchair navigation systems/services.

 190

Fourth, the visual odemetry, another multi-sensor integrated map matching

algorithm, was developed to provide continuous localization services. This algorithm

used the monocular visual odometry technique to estimate the relative displacement in

motion when GPS signals are poor or unavailable. To solve the scale factor problem, the

accelerometer was used for measuring the camera’s displacement between the first two

image frames. Furthermore, in order to reduce positional error accumulation over time,

which is inherent in the visual odometry technique, geometrical and topological

information of sidewalks were used as constraints to match relative displacements onto

the map. Vision, accelerometer, and compass data were integrated with GPS data to

match user’s locations onto sidewalks without interruption.

The multi-sensor-integrated map matching algorithms make significant

contributions to the realization of pedestrian/wheelchair navigation services on

smartphones. With advances in technology of sensor-embedded smartphones, this

research can potentially serve for many user’s mobility applications, such as tourist

guidance, geo-fencing for children, in which parents are notified when a child leaves a

designated area, geo-fencing for senior citizens, look-around navigation systems for the

visually impaired, among others. This research also can potentially impact building future

automatic wheelchair navigation systems and walking robots. The continuity and

accuracy in localization provided by the developed map matching algorithms in this

dissertation paves the way for implementation of such systems.

It is also important to note that although this research has made significant

contributions to the realization of map matching algorithms designed specifically for

 191

pedestrian/wheelchair navigation, further research is still required in the areas discussed

in the next section.

6.4 FUTURE RESEARCH

We suggest the following areas for future research:

 Improve map matching accuracy distinguish between the opposite sides of narrow

streets. To be able to identify the correct side of narrow streets, which is not of

concern in car navigation, is a unique challenge in pedestrian/wheelchair

navigation.

 Investigate heavyweight client/lightweight server architecture for

pedestrian/wheelchair navigation systems and services. The implementation of

multi-sensor integrated map matching algorithms in our experiments were based

on the model of lightweight client/heavyweight server architecture. However, the

heavyweight client/lightweight architecture (the other option proposed in Chapter

5) can speed up location updates by running map matching on clients with

sufficient capabilities to store partial map data and to perform some computations.

Comparing and contrasting the pros and cons of the two architectural approaches

will be invaluable for designing and developing practical pedestrian/wheelchair

navigation systems/services.

 Investigate implementation of the developed multi-sensor integrated map

matching algorithms directly on smartphones.

 192

Android and iPhone are currently the two most popular platforms for mobile

applications development, both in terms of engineering quality and consumer

satisfaction. The proposed multi-sensor integrated map matching algorithms could

be implemented directly on smartphone platforms rather than on a server.

 Incorporate an image database of geo-tagged landmarks with the sidewalk

network database.

The current vision-based map matching algorithm accumulates relative movement

distance to estimate user’s location, which can cause positional error

accumulation in a long distance movement. One solution to reduce such positional

error is to use geo-referenced landmarks in the map matching process. Future

research will be needed to investigate the possibility of using geo-referenced

landmarks to further increase the positional accuracy of the vision-based map

matching algorithm.

 193

REFERENCES

Ahmed Hasan M., Samsudin, Khairulmizam, Ramli, Abd Rahman, Azmir, Raja Syamsul

and Salam A. Ismaeel, A Review of Navigation Systems (Integration and

Algorithms), Australian Journal of Basic and Applied Sciences, 3(2): 943-959,

2009.

Alborzi, Houman, Samet, Hanan. Execution time analysis of a top-down R-tree

construction algorithm, Information Processing Letters 101, 6–12, 2007.

Arfe A., Deguy P., Guillot L., Guilly T. L. and Louge R., Android Application for

Aalborg University, Project report, 2011.

Anousaki, G., Gikas, V. and Kyriakopoulos K., INS-Aided Odometry and Laser

Scanning Data Integration for Real Time Positioning and Map-Building of Skid-

Steered Vehicles, 5th Int. Symposium on Mobile Mapping Technology

Conference, ISPRS , Padua, Italy, May 28-31, 2007.

Badalia, A. P., Zhanga, Y., Carra, P., Thomas, J. P., Hornseya, R. I., Scale factor in

digital camera, Laser Florence 2004.

Bao, Ling and Intille, Stephen S., Activity recognition from user annotated acceleration

data. In Proceedings of the 2
nd

 International Conference on Pervasive Computing,

pages 1–17, 2004

Bay, Herbert, Tuytelaars, Tinne and Gool, Luc Van, SURF: Speeded Up Robust Features,

Computer Vision and Image Understanding (CVIU), Vol. 110, No. 3, pp. 346--

359, 2008.

Bell, D.A., Borenstein, J., Levine, S. P., Koren, Y., Jaros, L., An assistive navigation

system for wheelchairs based upon mobile robot obstacle avoidance, Proceedings

of the IEEE Conference on Robotics and Automation, pp. 2018-2022. 1994.

Bercken, J.V.d., Seeger, B., An evaluation of generic bulk loading techniques, in:

International Conference on Very Large Databases (VLDB), pp. 461–470, 2001.

Bernstein, D. and Kornhauser, A., (1998), Map matching for personal navigation

assistants, 77th Annual meeting, The Transport Research Board, Jan 11-15,

 194

Washington, D.C. Bounding Rectangles. 9th Annual International Conference,

Map India, 2006.

Betke, M, Haritaoglu, E. and Davis, L. S. Multiple vehicle detection and tracking in hard

real time. Technical Report CS-TR-3667, University of Maryland, College Park,

1997.

Bileschi, Stanley M., Leung, Brian and Rifkin, Ryan M., Towards component-based car

detection. In ECCV Workshop on Statistical Learning and Computer Vision,

2004.

Castro, A. P. A., Demisi, J., Silva,S.D., Sim.P.O., Image based autonomous navigation

with fuzzy logic control, Neural Networks, Proceedings. IJCNN '01. International

Joint Conference on, vol.3, pp. 2200-2205, 2001.

C. F. Olson et al. Stereo ego-motion improvements for robust rover navigation. In

ICRA’01, v. 2, pp. 1099–1104, 2001.

Chen, Jidong, Meng, Xiaofeng, Guo, Yanyan and Xiao, Zhen., Update-efficient Indexing

of Moving Objects in Road Networks. In Proceedings of the Third Workshop on

Spatio-Temporal Database Management, Seoul, Korea, September 11, 2006.

Chen, Tianen and Shibasaki, Ryosuke. Development of a Vision-Based Positioning

System for High Density Urban Areas, GISDEVELOPER, 1999.

Chum, Ondrej. Two-View Geometry Estimation by Random Sample and Consensus,

PhD Thesis, 2005.

Cipolla J. W., R., Zha H., Image-based Localization and Pose Recovery Using Scale

Invariant Features, Robotics and Biomimetics, 2004.

Davide, S., Appearance-guided monocular omnidirectional visual odometry for outdoor

ground vehicles, IEEE Transactions on robotics, vol. 24., No.5, Oct, 2008.

Derpanis, K. G., The Harris Corner Detector, 2004.

DeVaul, R., and Dunn, S., Real-time motion classification for wearable computing

applications. Technical report, MIT Media Laboratory, 2001.

Deselaers, Thomas, Keysers, Daniel, and Hermann Ney, Features for Image Retrieval:

An Experimental Comparison, DAGM-Symposium 2004: 228-2362004.

Ding, D., Bambang, P., Karimi, H.A., Roongpiboonsopit, D., Kasemsuppakorn, P.,

Conahan, T., & Pramana, G. Design Considerations for a Personalized

Wheelchair Navigation System. The 29th Annual International Conference of the

IEEE Engineering in Medicine and Biology Society, Lyon, France, August 23-26

(2007).

http://cmp.felk.cvut.cz/~chum/Teze/Chum-PhD.pdf
http://www.cse.yorku.ca/~kosta/CompVis_Notes/harris_detector.pdf
http://www.informatik.uni-trier.de/~ley/db/conf/dagm/dagm2004.html#DeselaersKN04

 195

Esteban, I., Dijk, J and Groen, F. Automatic 3D modeling of the urban landscape,

International congress on ultra telecommunications and control systems and

workshops, 2010.

Foerster, F., Smeja, M., and Fahrenberg, J., Detection of posture and motion by

accelerometry: a validation in ambulatory monitoring. Computers in Human

Behavior 571-583, 1999.

Forney, G. D., The Viterbi algorithm. Proceedings of the IEEE 61(3): 268–278., 1973.

Freeman, H and Saghri, A Generalized chain codes for planar curves. In Proceedings of

the 4th International Joint Conference on Pattern Recognition, Kyoto, Japan,

1978.

Freeman, H, Computer processing of line-drawing images, Computing Surveys 6(1): 57-

97, 1974.

Fritz, G., Seifert, C. and Paletta, L., A mobile vision system for urban detection with

informative local descriptors, Computer Vision Systems, 2006 ICVS '06. 2006.

Garcia, R.G., Sotelo, M.A., Parra, I., Fernandez, D. and Gavilan, M. 2D Visual odometry

method for global positioning measurement, Intelligent Signal Processing, 2007.

Geotools, The Java GIS Toolkit. http://sourceforge.net/projects/geotools, 2007.

Grewal, M. S., Weill, L. R., Andrews A. P., Global positioning systems, inertial

navigation, and integration, Wiley, 2002.

Guerrero, J. J., Martinez-Cantin, R., and Sagues, C., Visual map-less navigation based on

homographies, J. Robot. Syst., vol. 22, no. 10, pp. 569–581, 2005.

Guttman, A. R-tree: A dynamic index structure for spatial searching. In SIGMOD ’84,

Proceedings of the ACM SIGMOD Conference. ACM Press, 1984.

Hagnelius, A., Visual Odometry, Master’s Thesis, 2005.

Hakeem, A., Vezzani, R., Shah, M. Cucchiara, R., Estimating geospatial trajectory of a

moving camera, ICPR, 2006.

Harris, C. and Stephens, M.J. A combined corner and edge detector. In Alvey Vision

Conference, pages 147–152, 1988.

Haron H, Shamsuddin S M and Mohamed D, A new corner detection algorithm for chain

code representation. International Journal of Computer Mathematics 82: 941–950,

2005.

Hartley, R. and Zisserman, A., Multiple view geometry in computer vision, Cambridge

University Press, March 2004.

http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=4447489
http://sourceforge.net/projects/geotools
http://onlinelibrary.wiley.com/doi/10.1002/0471200719.fmatter_indsub/summary
http://onlinelibrary.wiley.com/doi/10.1002/0471200719.fmatter_indsub/summary

 196

He, Z.Y. and Jin, L.W., Activity recognition from acceleration data based on discrete

consine transform and SVM, Proceedings of the 2009 IEEE International

Conference on Systems, Man, and Cybernetics, San Antonio, TX, USA, 2009

Henlich, Oliver. VISION-BASED POSITIONING, 1997.

Hidden Markov model. Wikipedia, the free encyclopedia,

http://en.wikipedia.org/wiki/Hidden_Markov_model.

Horn, B., Relative orientation, International Journal of Computer Vision, vol. 4, no. 1, pp.

59-78, January 1990.

Howlett, R J. and Jain, L C (Eds.) Radial basis function networks 2: new advances in

design series (Studies in Fuzziness and Soft Computing). New York, Springer,

2001.

Huang, Z. Extensions to the k-means algorithm for clustering large datasets with

categorical Values. Data Mining and Knowledge Discovery, 2, p. 283-304. 1998.

Imamura, M., Tomitaka, R., Miyazaki, Y., Kobayashi, K. and Watanabe, K., Outdoor

waypoint navigation for an intelligent wheelchair using differential GPS and

INS," in SICE Annual Conference, pp.2193-2196, 2004.

Jagadeesh, G. R., Srikanthan, T. and Zhang, X. D., A map matching method for GPS

based real-time vehicle location, Journal Of Navigation, 57, 429–440, 2004.

Karimi, Hassan A, Conahan, T. and Roongpiboonsopit, D. A., Methodology for

predicting performances of map-matching algorithms, W2GIS 202-213, 2006.

Karimi, Hassan A. Universal Navigation on Smartphones, Spring 2011.

Kalashnikov, Dmitri V., Prabhakar, Sunil, Hambrusch, Susanne and Aref., Walid,

Efficient evaluation of continuous range queries on moving objects. In DEXA,

2002.

Kasemsuppakorn, P. and Karimi, H. A., Data requirements and spatial database for

personalized wheelchair navigation, 2nd International Convention on

Rehabilitation Engineering & Assistive Technology, 2008.

Ke, Q. and Kanade, T., Transforming camera geometry to a virtual downward-looking

camera: Robust ego-motion estimation and groundlayer detection, in Proc. CVPR

Jun. 18–20, 2003, vol. 1, pp. I-390–I-397.

Kitching, Ian D. GPS and cellular radio measurement integration, Journal of Navigation,

2000.

http://en.wikipedia.org/wiki/Hidden_Markov_model

 197

Kitt, B., Andreas, G. and Lategahn, H., Visual odometry based on stereo image

sequences with RANSAC-based outlier rejection scheme, IEEE Intelligent

Vehicles Symposium, 2010

Knoblauch, Richard, L., Pietrucha, Martin T. and Nitzbur, Marsha, Field studies of

pedestrian walking speed and start-up time, Journal of the Transportation

Research Board, Volume 1538, p.27-38, 1996.

Koller, Dieter, Klinker, Gudrun, Rose, Eric, Breen, David, Whitaker, Ross and Tuceryan,

Mihran, Real-time vision-based camera tracking for augmented reality

applications, In Proceedings of the Symposium on Virtual Reality Software and

Technology (VRST-97)

Kotsiantis, S., Pintelas, P. Recent advances in clustering: a brief survey, WSEAS

Transactions on Information Science and Applications, Vol 1, No 1 (73-81),

2004.

Krakiwsky, E.J, 1993, The diversity among IVHS navigation systems worldwide,

IEEEIEE Vehicle Navigation and Information Systems Conference, Ottawa, 433-

436.

Krumm, John, Letchner, Julie and Horvitz, Eric, Map matching with travel time

constraints, SAE 2007 World Congress, April 16-19, 2007.

Lankton, Shawn , Sonenblum, Sharon Eve , Sprigle, Stephen , Wolf, Jean , Oliveira,

Marcelo, Use of GPS and Sensor-based Instrumentation as a Supplement to Self-

Report in Studies of Activity and Participation, Presented at theRESNA Annual

Meeting. 2005.

LaMarca, Anthony and Lara, Eyal de, Location Systems: An introduction to the

technology behind location awareness, A Publication in the Morgan & Claypool

Publishers series, 2008.

Lehtinen, M., Happonen, A., Ikonen, J., Accuracy and time to first fix using consumer-

grade GPS receivers, Software, Telecommunications and Computer Networks,

2008.

Levin, A. Szeliski, R. Visual odometry and map correlation. In CVPR 2004, v. 1, pp.

611-618, 2004.

Levine, S. P., Bell, D., Jaros, L., Simpson, R., Koren, Y. and Borenstein, J. The navchair

assistive wheelchair navigation system, IEEE Transactionson Rehabilitation

Engineering, vol. 7, pp. 443-451, 1999.

Lin, Hung-Yi, Efficient and compact indexing structure for processing of spatial queries

in line-based databases, Data & Knowledge Engineering Volume 64, Issue 1,

Pages 365-380., January 2008.

http://smartech.gatech.edu/browse?value=Lankton,%20Shawn&type=author
http://smartech.gatech.edu/browse?value=Sonenblum,%20Sharon%20Eve&type=author
http://smartech.gatech.edu/browse?value=Sprigle,%20Stephen&type=author
http://smartech.gatech.edu/browse?value=Wolf,%20Jean&type=author
http://smartech.gatech.edu/browse?value=Oliveira,%20Marcelo&type=author
http://smartech.gatech.edu/browse?value=Oliveira,%20Marcelo&type=author
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=4662489
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=4662489
http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6TYX-4PR3G58-1&_user=10&_rdoc=1&_fmt=&_orig=search&_sort=d&_docanchor=&view=c&_acct=C000050221&_version=1&_urlVersion=0&_userid=10&md5=73ef284919ac40b98e36aaffda7bdcf8#vt1
http://www.sciencedirect.com/science/journal/0169023X
http://www.sciencedirect.com/science?_ob=PublicationURL&_tockey=%23TOC%235630%232008%23999359998%23674100%23FLA%23&_cdi=5630&_pubType=J&view=c&_auth=y&_acct=C000050221&_version=1&_urlVersion=0&_userid=10&md5=26d38aacfce9fa73af815a16b37987ac

 198

Lin, Hung-Yi, Using B+-trees for processing of line segments in large spatial databases,

Journal of Intelligent Information Systems, Volume 31, Pages 35-52, 2008.

Lowe, D. G., “Object recognition from local scale-invariant features”, International

Conference on Computer Vision, Corfu, Greece, September 1999.

 Lowe, D.G., Local feature view clustering for 3D object recognition. IEEE Conference

on Computer Vision and Pattern Recognition,Kauai, Hawaii, 2001, pp. 682-688.

Lowe, David G. Distinctive image features from scale invariant features, International

Journal of Computer Vision, Vol. 60, No. 2, pp. 91-110, 2004.

Luley, Patrick, Paletta, Lucas, Almer, Alexander, Schardt, Mathias, Geo-services and

computer vision for object awareness in mobile system application, Location

Based Services and TeleCartography, Springer Berlin Heidelberg, 2007.

Malis, Ezio. Survey of vision-based robot control, European Naval Ship Design, Captain

Computer IV Forum, ENSIETA, Brest, France, April, 2002.

Matas, J., Chum, O., Urban, M. and Pajdla, T., Robust wide baseline stereo from

maximally stable extremal regions. In Proc. of British Machine Vision

Conference, pages 384–396, 2002.

Mathie, M.J., Celler, B. G., Lovell, N.H. and Coster, A.C.F., Classification of basic daily

movements using a triaxial accelerometer, Medical & Biological Engineering &

Computing, Vol. 42, 2004.

Meng, Y. Improved positioning of land vehicle in ITS using digital map and other

accessory information, PhD Thesis, Department of Land Surveying and

Geoinformatics, Hong Kong Polytechnic University, 2006.

Mikolajczyk, K., Schmid, C., An affine invariant interest point detector, in: Proc. Seventh

European Conference on Computer Vision, vol. 2350 of Lecture Notes in

Computer Science, Springer Verlag, Berlin, Copenhagen, Denmark, 2002.

Mikolajczyk, K. and Schmid C., Scale and affine invariant interest point detectors. IJC V

60(1):63-86, 2004.

Mikolajczyk, K. and Schmid, C., A performance evaluation of local descriptors, IEEE

Transactions on Pattern Analysis and Machine Intelligence, 10, 27, pp 1615-1630,

2005.

Motoko Oe, Tomokazu Sato and Naokazu Yokoya, Estimating camera position and

posture by using feature landmark database, Proc.SCIA,pp. 171–181, 2005.

MOBVIS, Software prototype and report on global and local informative features,

information society technologies, 2006.

http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6TYX-4PR3G58-1&_user=10&_rdoc=1&_fmt=&_orig=search&_sort=d&_docanchor=&view=c&_acct=C000050221&_version=1&_urlVersion=0&_userid=10&md5=73ef284919ac40b98e36aaffda7bdcf8#vt1
http://www.springerlink.com/content/100289/?p=5415cc2d60c446a495837900e96247e5&pi=0
http://www.springerlink.com/content/l885w7302925/?p=5415cc2d60c446a495837900e96247e5&pi=0
http://www.springerlink.com/content/x710v3/?p=4b94329bdb8e407fbd9f305de1dbfac6&pi=0
http://www.springerlink.com/content/x710v3/?p=4b94329bdb8e407fbd9f305de1dbfac6&pi=0
http://www.inrialpes.fr/lear/people/Mikolajczyk
http://www.inrialpes.fr/lear/people/Schmid
http://lear.inrialpes.fr/pubs/2005/MS05/
http://lear.inrialpes.fr/pubs/2005/MS05/
http://lear.inrialpes.fr/pubs/2005/MS05/

 199

Murtagh, Fionn. Comments on “parallel algorithms for hierarchical clustering and cluster

validity”, IEEE Transactions on PA analysis and machine machine intelligence,

VOL. 14, NO. 10, 1992.

Nogueira, S., Ruichek, Y. and Charpillet, F., A Self Navigation Technique using

Stereovision Analysis, in Stereo Vision, pp. 287–298, In Tech Education and

Publishing, 2008.

Ochieng, W. Y., Quddus, M. A. and Noland, R. B., Map-matching in complex urban road

networks, Brazilian Journal of Cartography (Revista Brasileira de Cartografia) 55

(2), 1–18, 2004.

Oe, M., Sato, T. and Yokoya, N. Estimating camera position and posture by using feature

landmark database,

Ohnishia N. and Imiya A., Dominant plane detection from optical flow for robot

navigation, Pattern Recognition Letters, Volume 27, Issue 9, 1 July 2006

Ohno, K., Tsubouchi, T., Shigematsu B. and Yuta, S., Differential GPS and odometry-

based outdoor navigation of a mobile robot, Advanced Robotics, Vol. 18, No. 6,

pp. 611 – 635, 2004.

Olivier, Cappé, Eric Moulines, Tobias Rydén. Inference in hidden markov models,

Published by Springer, 2005.

Parra, I. and Sotelo, M. A., Llorca D. F. and Fernandez, C. and Llamazares, A., Visual

odometry and map fusion for GPS navigation assistance,

Province of Victoria (Australia) Handbook for GPS Data Collection for Integration with

GIS Standards, Specifications and Best Practice Field Guide,

http://www.land.vic.gov.au/CA256F310024B628/0/311F3E48EE0204AFCA2571

10001EFCDE/$File/GPS+Handbook+v7.2.pdf, 2006.

Pires, G., Honório, N., Lopes, C., Nunes, U., Almeida, A. T. Autonomous wheelchair for

disabled people, Proc. IEEE Int. Symposium on Industrial Electronics (ISIE97),

Guimarães, 797-801.

Quddus, M. A., Ochieng, W. Y., Zhao, L., Noland R. B., A general map-matching

algorithm for transport telematics applications, GPS Solutions 7 (3), 157–167,

2003.

Quddus, M. A., Noland, R. B., Ochieng, W. Y., Validation of map-matching algorithm

using high precision positioning with GPS, Journal of Navigation 58, 257–271,

2004.

Quddus, M. A., High integrity map matching algorithms for advanced transport

telematics Applications, A thesis of the University of London, 2006.

http://www.land.vic.gov.au/CA256F310024B628/0/311F3E48EE0204AFCA257110001EFCDE/$File/GPS+Handbook+v7.2.pdf
http://www.land.vic.gov.au/CA256F310024B628/0/311F3E48EE0204AFCA257110001EFCDE/$File/GPS+Handbook+v7.2.pdf

 200

Quddus, M. A., Ochieng, W. Y. and Noland, R. B., Current map-matching algorithms for

transport applications: State-of-the art and future research directions,

Transportation Research Part C 15, pp. 312-328., 2007.

Rabiner, Lawrence R., A Tutorial on Hidden Markov Models and Selected Applications

in Speech Recognition. Proceedings of the IEEE, 77 (2), p. 257–286, 1989.

Ravi, N., Dandekar, N., Mysore, P. and Littman, M. L., Activity recognition from

accelerometer data, Proceedings of the Seventeenth Innovative Applications of

Artificial Intelligence Conference, 11--18, 2005

Ren, Ming, Karimi, H. A. A Chain-code-based map matching algorithm for wheelchair

navigation. Transactions in GIS, 2009.

Ren, M. and Karimi, H. A., A hidden Markov model map matching algorithm for

wheelchair navigation. Journal of Navigation, Vol. 62, No. 3, pp. 383-395, 2009.

Retscher, Günther and Thienelt, Michael. NAVIO - A navigation service for pedestrains,

Journal of Space Communication, Issue No. 9, 2006.

Rizos, C., Trands in Geopositioning for LBS, Navigation and Mapping, 2005.

SagYaraj, F., P.THAMBIDURAI, B.S.BHARADWAJ, G.N.BALAGEI & N.HEMANT,

An Improved and Efficient Storage Technique for GIS Geometric Primitives

Based on Minimum Bounding Rectangles. 9th Annual International Conference,

Map India 2006.

Sander, Jörg, Qin, Xuejie, Lu, Zhiyong, Niu, Nan, Kovarsky, Alex, Automatic extraction

of clusters from hierarchical clustering representations, Advances in Knowledge

Discovery and Data Mining, Vol. 2637, Springer, 2003.

Sattler, T., Leibe, B., Kobbelt, L., Fast image-based localization using direct 2D-to-3D

matching, ICCV 2011.

Se, S. and Jasiobedzki, P., Stereo-vision based 3D modeling for unmanned ground

vehicles, in Unmanned Systems Technology, vol. 6561 of Proceedings of SPIE,

Orlando, Fla, USA, 2007.

Serre, T., Wolf, L. and Poggio, T., Object recognition with features inspired by visual

cortex, in Proc. IEEE Comput. Soc. Conf. Computer Vision Pattern Recognition,

2005, pp. 994–1000.

Steinhoff, U., Omer cevi, D., Perko, R., Schiele, B. and Leonardis, A., How computer

vision can help in outdoor positioning, LNCS 4794, pp. 124–141, 2007.

Shao, H, Svoboda, T, Tuytelaars, T, Gool L V. HPAT indexing for fast object/scene

recognition based on local appearance. In: Conference on Image and Video

http://www.springerlink.com/content/55wm076anm4c/?p=6f5a354abbf945c5a386b27d39b4aff3&pi=0
http://www.springerlink.com/content/55wm076anm4c/?p=6f5a354abbf945c5a386b27d39b4aff3&pi=0
http://dx.doi.org/10.1117/12.718399
http://dx.doi.org/10.1117/12.718399

 201

Retrieval. vol. 2728 of LNCS. Urbana-Champaign, IL: Springer Verlag; p. 71–80.

2003.

Shao, H, Svoboda T, Van-Gool, L. ZuBuD – Zurich buildings database for image based

recognition. Computer Vision Lab, Swiss Federal Institute of Technology,

Switzerland. Zurich, Switzerland; 2003.

Simpson, R., LoPresti, E. Hayashi, S., Nourbakhsh, I. and Miller, D. The smart

wheelchair component system, Journal of Rehabilitation Research &

Development, vol. 41, pp. 429-442, 2004.

Sun, Z., Mao, X., Tian, W. and Zhang, X., Activity classification and dead reckoning for

pedestrian navigation with wearable sensors, Measurement science and

technology, 2009.

Schiller, J. H. and Voisard, A., Location-based services, Elsevier, Apr 30, 2004.

Tao, Y., Skubic, M., Han, T., Xia,Y. and Chi X., Performance Evaluation of SIFT-Based

Descriptors for Object Recognition, Proceedings of the International

MultiConference of Engineers and Computer Scientists, 2010.

Tardif, J., Pavlidis, Y., Daniilidis, K.: Monocular visual odometry in urban environments

using an omnidirectional camera. In: IEEE IROS’08., 2008.

Taylor, G., Blewitt, G., Steup, D., Corbett, S., Car, A., Road reduction filtering for GPS-

GIS navigation, Transactions in GIS, ISSN 1361-1682, 5(3), 193–207, 2001.

Taylor, G., Brunsdon C., Li J., Olden A., Steup D., Winter M., GPS accuracy estimation

using map-matching techniques: Applied to vehicle positioning and odometer

calibration, Computers, Environments, and Urban Systems 30, 757–772, 2006.

Tele Atlas, Tele Atlas Launches Powerful, Feature-rich MultiNav digital map database,

June 2008.

Theiss, A., Yen D. C. and Ku C. Y., Global Positioning Systems: an analysis of

applications, current development and future implementations, Computer

Standards & InterfacesVolume 27, Issue 2, January 2005.

Tolerico, M.L., Ding, D, Cooper R.A., Spaeth, D.M., Fitzgerald, S.G., Cooper,

R., Kelleher, A., Boninger, M.L., Assessing mobility characteristics and activity

levels of manual wheelchair users. J Rehabil Res Dev 44(4): 561-72, 2007.

Tuytelaars T. and Mikolajczyk, K., Local invariant feature detectors - Survey. CVG,

3(1):1-110, 2008.

Wu, Dongdong, Zhu, Tongyu, Lv, Weifeng, Gao, Xin, A Heuristic Map-Matching

Algorithm by Using Vector-Based Recognition, Computing in the Global

Information Technology, 2007. ICCGI 2007.

http://www.sciencedirect.com/science/journal/09205489
http://www.sciencedirect.com/science/journal/09205489
http://www.sciencedirect.com/science/journal/09205489
http://www.ncbi.nlm.nih.gov/sites/entrez?Db=pubmed&Cmd=Search&Term=%22Tolerico%20ML%22%5BAuthor%5D&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DiscoveryPanel.Pubmed_RVAbstractPlus
http://www.ncbi.nlm.nih.gov/sites/entrez?Db=pubmed&Cmd=Search&Term=%22Ding%20D%22%5BAuthor%5D&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DiscoveryPanel.Pubmed_RVAbstractPlus
http://www.ncbi.nlm.nih.gov/sites/entrez?Db=pubmed&Cmd=Search&Term=%22Cooper%20RA%22%5BAuthor%5D&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DiscoveryPanel.Pubmed_RVAbstractPlus
http://www.ncbi.nlm.nih.gov/sites/entrez?Db=pubmed&Cmd=Search&Term=%22Spaeth%20DM%22%5BAuthor%5D&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DiscoveryPanel.Pubmed_RVAbstractPlus
http://www.ncbi.nlm.nih.gov/sites/entrez?Db=pubmed&Cmd=Search&Term=%22Fitzgerald%20SG%22%5BAuthor%5D&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DiscoveryPanel.Pubmed_RVAbstractPlus
http://www.ncbi.nlm.nih.gov/sites/entrez?Db=pubmed&Cmd=Search&Term=%22Cooper%20R%22%5BAuthor%5D&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DiscoveryPanel.Pubmed_RVAbstractPlus
http://www.ncbi.nlm.nih.gov/sites/entrez?Db=pubmed&Cmd=Search&Term=%22Cooper%20R%22%5BAuthor%5D&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DiscoveryPanel.Pubmed_RVAbstractPlus
http://www.ncbi.nlm.nih.gov/sites/entrez?Db=pubmed&Cmd=Search&Term=%22Kelleher%20A%22%5BAuthor%5D&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DiscoveryPanel.Pubmed_RVAbstractPlus
http://www.ncbi.nlm.nih.gov/sites/entrez?Db=pubmed&Cmd=Search&Term=%22Boninger%20ML%22%5BAuthor%5D&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DiscoveryPanel.Pubmed_RVAbstractPlus
http://www./
http://www.inrialpes.fr/lear/people/Mikolajczyk

 202

Wu, Y. H., Lu, B. Y., Chen, H. Y., and Ou-Yang, Y. The development of M3S-Based

GPS NavChair and tele-monitor system, in 2005 IEEE Engineering in Medicine

and Biology 27th Annual Conference, pp.4052-4055, 2005.

White C.E., Bernstein D. and A.L. Kornhauser, Some map matching algorithms for

personal navigation assistants. Transportation Research Part C 8: 91-108, 2000.

Venkatraman, K., Karthick, N., Naren, J., Amutha, B., Sensor-Based Dead Reckoning for

land vehicle navigation system, International Journal of Recent Trends in

Engineering, Vol 2, No. 4, November 2009

Yang, J. S. and Kang, S. P., The map matching algorithm of GPS data with relatively

long polling time intervals, Journal of the Eastern Asia Society for Transportation

Studies, Vol. 6, pp. 2561 -2573, 2005.

Yariv, Ephraim and Neri, Merhav, Hidden Markov processes, IEEE Trans. Inform.

Theory, vol. 48, pp. 1518-1569, 2002.

Zhao, Yilin. Vehicle location and navigation systems, Artech House Inc., 1997.

Zhao, J. Leon, and Cheng, Hsing Kenneth. Graph indexing for spatial data traversal in

road map databases. Computers & Operations Research, Volume 28, Issue 3,

Pages 223-241. March, 2001.

Zhao, Z.T., Chen, Y.Q., Liu, J.F., Shen, Z.Q. and Liu, M.J., Cross-people mobile-phone

based activity recognition, Proceedings of the Twenty-Second International Joint

Conference on Artificial Intelligence, 2011.

http://www.sciencedirect.com/science/journal/03050548
http://www.sciencedirect.com/science?_ob=PublicationURL&_tockey=%23TOC%235945%232001%23999719996%23216210%23FLA%23&_cdi=5945&_pubType=J&view=c&_auth=y&_acct=C000050221&_version=1&_urlVersion=0&_userid=10&md5=71c6bd1a278895c6a4b10d754925e80d

	TITLE PAGE
	COMMITTEE MEMBERSHIP PAGE

	ABSTRACT

	TABLE OF CONTENTS
	LIST OF TABLES

	Table 2.1 Outdoor geo-positioning technologies potential for integration with GPS
	Table 2.2. Comparison among performances of various map matching algorithms for vehicle navigation (after table in Quddus, 2007)
	Table 3.1. Tree features of three road networks
	Table 3.2. Statistics of the searching cost
	Table 4.1. RBF neural network structure
	Table 4.2. Map matching evaluation using RBF neural network
	Table 4.3. Linear-model map matching results
	Table 4.4. Comparing the linear model and the non-linear model
	Table 4.5. Performance results
	Table 4.6. Parameters of the fuzzy logic map matching
	Table 4.7. Rules of the fuzzy logic map matching
	Table 4.8. Performances of Experiments
	Table 4.9. Accuracy of GPS-based map matching algorithms for pedestrian/wheelchair navigation
	Table 4.10. Time performance of GPS-based map matching algorithms for pedestrian/wheelchair navigation
	Table 4.11. Overall comparison of three GPS-based map matching algorithms
	Table 5.1. Selected features
	Table 5.2. Classifier accuracy in identifying four different movement behaviors
	Table 5.3. Confusion matrix of cross-validation on feature classification of movement behavior
	Table 5.4. Map matching performance (efficiency and accuracy)
	Table 5.5. Key points and matched points

	LIST OF FIGURES
	Figure 1.1. Components of a navigation system
	Figure 1.2. Map matching process in pedestrian/wheelchair navigation systems
	Figure 1.3. Sidewalk network (a) versus road network (b) in the same area
	Figure 1.4. No path in map database
	Figure 1.5. Poor GPS signals (PDOP between 2.5 and 11.4)
	Figure 1.6. Comparison of GPS data from a professional GPS receiver (green) and a smartphone (red)
	Figure 2.1. Example image with landmarks (Steinhoff et.al, 2007)
	Figure 3.1. An example of road network
	Figure 3.2. Corresponding matrix (20-by-20)
	Figure 3.3. Corresponding clustering tree
	Figure 3.4. Data structure of a binary tree for segment clustering
	Figure 3.5. A GPS point is located within the range of a Bounding Box
	Figure 3.6. The clustering tree of Pittsburgh campus
	Figure 3.7. Query results changing with scenarios of moving object’s positions
	Figure 3.7-1. On a relative long road segment
	Figure 3.7-2. Approaching to an intersection
	Figure 3.7-3 On another intersection
	Figure 3.7-4 Middle of a segment

	Figure 3.8. A scenario on a large-scale map
	Figure 4.1. Perpendicular distance
	Figure 4.2. 8-Direction chain code
	Figure 4.3. Digital map with GPS data
	Figure 4.4. Example of chain-code-based map matching
	Figure 4.5. Linear model
	Figure 4.6. Non-linear model
	Figure 4.7. RBF neural network for map matching evaluation
	Figure 4.8. Flowchart of chain-code-based map-matching algorithm
	Figure 4.9. University of Pittsburgh’s campus
	Figure 4.10. Training with RBF neural network
	Figure 4.11. Route 1 comparing map-matching result with GPS raw data on campus sidewalk map
	a. GPS data before map matching
	b. The result of map matching with constraints using the linear model

	Figure 4.12. Route 2 comparing map-matching result with GPS raw data on campus sidewalk map
	a. GPS data before map matching
	b. The result of map matching with constraints using the linear model

	Figure 4.13. Route 3 comparing map-matching result with GPS raw data on campus sidewalk map
	a. GPS data before map matching
	b. The result of map matching with constraints using the linear model

	Figure 4.14. Architecture of a HMM
	Figure 4.15. The hidden Markov model for map matching
	Figure 4.16. An example of GPS points overlaid on sidewalks on campus
	Figure 4.17. An abstracted sidewalk network model
	Figure 4.18. State transition matrix
	Figure 4.19. Map matching locations versus GPS positions
	Figure 4.20. Flowchart of HMM-based map matching process
	Figure 4.21. Route 1 comparing map-matching result with GPS raw data on campus sidewalk map
	a. GPS raw data overlapped on campus sidewalk map
	b. Projected result data to the matched sidewalk segments on campus sidewalk map

	Figure 4.22. Route 2 comparing map-matching result with GPS raw data on campus sidewalk map
	a. GPS raw data overlapped on campus sidewalk map
	b. Projected result data to the matched sidewalk segments on campus sidewalk map

	Figure 4.23. Route 3 comparing map-matching result with GPS raw data on campus sidewalk map
	a. GPS raw data overlapped on campus sidewalk map
	b. Projected result data to the matched sidewalk segments on campus sidewalk map

	Figure 4.24. Two inputs and the output in the fuzzy logic map matching
	a. Distance as input parameter 1
	b. Angular difference as input parameter 2
	c. Possibility of map matching as the output

	Figure 4.25. Examples of entering mode
	a. An example of going straight
	b. An example of making a turn

	Figure 4.26. Flowchart of the fuzzy logic map matching process
	Figure 4.27. Route 1 comparing map-matching result with GPS raw data on campus sidewalk map
	a. GPS raw data overlapped on campus sidewalk map
	b. Projected result data to the matched sidewalk segments on campus sidewalk map

	Figure 4.28. Route 2 comparing map-matching result with GPS raw data on campus sidewalk map
	a. GPS raw data overlapped on campus sidewalk map
	b. Projected result data to the matched sidewalk segments on campus sidewalk map

	Figure 4.29. Route 3 comparing map-matching result with GPS raw data on campus sidewalk map
	a. GPS raw data overlapped on campus sidewalk map
	b. Projected result data to the matched sidewalk segments on campus sidewalk map

	Figure 4.30. Comparison among the three GPS-based map matching algorithms on one route
	a. GPS raw data overlaid over campus sidewalk map
	b. Fuzzy logic map matching result overlaid over campus sidewalk map
	c. Chain-code-based map matching result overlaid over campus sidewalk map
	d. Hidden Markov Model-based map matching result overlaid over campus sidewalk map

	Figure 5.1. Lightweight client/ heavyweight server architecture for map matching
	Figure 5.2. Heavyweight client/ lightweight server framework for map matching
	Figure 5.3. An example of GPS error in the scenario in which a user is stopped on a sidewalk
	Figure 5.4. Overview of movement pattern recognition
	Figure 5.5. 3D accelerometer
	Figure 5.6. Movement recognition decision tree
	Figure 5.7. Multi-sensor data integrated map matching
	Figure 5.8. Accelerometer Data (acceleration in m2/s)
	Figure 5.9. Orientation Data (angle in degree)
	Figure 5.10. Timing diagram for synchronization
	Figure 5.11. Flowchart of the movement pattern-recognition-assisted map matching algorithm
	Figure 5.12. Motorola Backflip smartphone and the direction of its 3D accelerometer
	Figure 5.13. A sample of a log file recording GPS, accelerometer, and orientation data
	Figure 5.14. Route 1 comparing map matching result with GPS raw data
	a. Raw GPS data and map matching locations overlaid on campus sidewalk map
	b. Map matching locations compared with ground truth overlaid on Google satellite map

	Figure 5.15. Route 2 comparing map matching result with GPS raw data
	a. Raw GPS data and map matching locations overlaid on campus sidewalk map
	b. Map matching locations compared with ground truth overlaid on Google satellite map

	Figure 5.16. Route 3 comparing map matching result with GPS raw data
	a. Raw GPS data and map matching locations overlaid on campus sidewalk map
	b. Map matching locations compared with ground truth overlaid on Google satellite map

	Figure 5.17. Flowchart of multi-sensor map matching algorithm using monocular visual odometry
	Figure 5.18. Overview of visual odometry process
	Figure 5.19. Estimation of rotation matrix Ri−1,i and translational vector Ti−1,i in the motion between video frame Fri-1 and Fri
	Figure 5.20. Frame-to-frame motion estimation
	Figure 5.21. Flowchart of vision-based positioning algorithm
	Figure 5.22. Scale adjustment
	Figure 5.23. Flowchart of map matching approach
	Figure 5.24. A checkerboard to calibrate camera
	Figure 5.25. A sequence of images extracted from a video
	Figure 5.26. SIFT features of a street view image
	Figure 5.27. Matched SIFT feature points
	Figure 5.28. Feature points in image 1 vs. Epipolar lines in image 2
	Figure 5.29. Geo-positioning results by using visual odometry, top view (left) and street view (right)
	Figure 5.30. Map matching results overlaid on Google Maps
	a. Monocular visual odometry results in one route before map matching
	b. Estimated locations on one route before map matching and after map matching
	c. Map matching results overlaid on Google Maps

	Figure 5.31. A sample log file to compare accuracy of GPS positions
	a. A sample log file recording GPS, accelerometer and orientation data and a highlighted GPS position with accuracy of 8.94 m
	b. A highlighted GPS position with accuracy of 17.89 m
	c. A highlighted GPS position with accuracy of 10.0 m

	Figure 5.32. Comparison of GPS-based map matching results with multi-sensor map matching results
	a. GPS-based map matching results, as compared with raw GPS data overlaid on the sidewalk map
	b. GPS-based map matching results in GPS accuracy<=10m, compared with raw GPS data overlaid on the sidewalk map
	c. Multi-sensor integrated map matching results overlaid on Google Maps

	PREFACE
	1.0 INTRODUCTION

	1.1 PROBLEM STATEMENT
	1.2 OVERVIEW OF MAP MATCHING IN PEDESTRIAN/WHEELCHAIR NAVIGATION SYSTEMS/SERVICES
	1.3 MAP MATCHING CHALLENGES FOR PEDESTRIAN/WHEELCHAIR NAVIGATION
	1.4 GOAL AND OBJECTIVES
	1.5 CONTRIBUTIONS
	1.6 ORGANIZATION

	2.0 BACKGROUND AND RELATED WORK
	2.1 SIDEWALK NETWORKS
	2.2 GEO-POSITIONING TECHNOLOGIES AND TECHNIQUES
	2.3 MAP MATCHING TECHNIQUES IN NAVIGATION SYSTEMS
	2.4 COMPUTER VISION IN NAVIGATION SYSTEMS
	2.5 MOBILE TECHNOLOGY IN NAVIGATION APPLICATIONS

	3.0 ADAPTIVE CANDIDATE SEGMENTS SELECTION ALGORITHM
	3.1 RELATED WORKS
	3.2 SPATIAL NETWORK DATA REPRESENTATION
	3.2.1 Hierarchical Clustering Tree
	3.2.2 Clustering Road Segments

	3.3 ADAPTIVE SEARCHING ALGORITHM
	3.3.1 A Binary Tree Structure from the Clustering Tree
	3.3.2 Searching Algorithm
	3.3.3 Adaptive Search Window Set
	3.3.4 Adaptive Search Window Update

	3.4 PERFORMANCE ANALYSIS
	3.4.1 Datasets
	3.4.2 Construction Cost
	3.4.3 Searching Cost

	3.5 SUMMARY

	4.0 GPS-BASED MAP MATCHING TECHNIQUES
	4.1 CHAIN-CODE-BASED MAP MATCHING
	4.1.1 Eight-Direction Chain Code
	4.1.2 Chain-Code-based Map Matching Technique
	4.1.2.1 Linear Model
	4.1.2.2 Non-Linear Model
	4.1.2.2.1 Radial Basis Functional Neural Network
	4.1.2.2.2 Design of RBF Neural Network

	4.1.3 Map Matching Process
	4.1.4 Validation
	4.1.4.1 Test Environment
	4.1.4.2 Evaluation of Linear Map Matching Models
	4.1.4.3 Evaluation of Non-Linear Map Matching Models
	4.1.4.4 Performance Analysis

	4.2 HMM-BASED MAP MATCHING ALGORITHM
	4.2.1 Hidden Markov Model
	4.2.2 A Hidden Markov Model for Map Matching
	4.2.3 HMM-based Map Matching Process
	4.2.4 Validation

	4.2.4.1 Performance Analysis

	4.3 FUZZY-LOGIC-BASED MAP MATCHING ALGORITHM
	4.3.1 Fuzzy Logic Map Matching
	4.3.2 Fuzzy Logic Map Matching Process
	4.3.3 Validation

	4.4 COMPARISON

	5.0 MULTI-SENSOR INTEGRATED MAP MATCHING ALGORITHMS
	5.1 CLIENT/SERVER ARCHITECTURES FOR MAP MATCHING
	5.1.1 Lightweight Client/Heavyweight Server Architecture
	5.1.2 Heavyweight Client/Lightweight Server Architecture

	5.2 MOVEMENT PATTERN RECOGNITION ASSISTED MAP MATCHING FOR PEDESTRIAN/WHEELCHAIR NAVIGATION
	5.2.1 Movement Pattern Recognition
	5.2.1.1 Signal Pre-processing
	5.2.1.2 Feature Extraction
	5.2.1.3 Feature Selection and Classification

	5.2.2 Movement Pattern Recognition Assisted Map Matching
	5.2.3 Experiments
	5.2.3.1 Data Collection and Data Sampling
	5.2.3.2 Training and Testing
	5.2.3.3 Map Matching Validation

	5.3 MULTI-SENSOR MAP MATCHING USING MONOCULAR VISUAL ODOMETRY TECHNIQUE FOR PEDESTRIAN/WHHELCHAIR NAVIGATION

	5.3.1 Multi-Sensor Map Matching Algorithm Using Monocular Visual Odometry
	5.3.2 Accelerometer-Assisted Monocular Visual Odometry for Motion Estimation
	5.3.2.1 Camera Calibration
	5.3.2.2 Video Frames Extraction Based on User’s Movement Pattern Recognition
	5.3.2.3 Feature Extraction for Map Matching in Wheelchair Navigation
	5.3.2.4 Monocular Visual Odometry Assisted by Accelerometer for Motion Estimation

	5.3.3 Integrated Map Matching
	5.3.3.1 Coordinate System Conversion for Tracking Data Presentation on Digital Map

	5.3.4 Experiments and Analysis
	5.3.4.1 Data Collection on Smartphone
	5.3.4.2 Camera Calibration
	5.3.4.3 Experimental Results

	6.0 SUMMARY, CONCLUSIONS, CONTRIBUTIONS AND FUTURE RESEARCH
	6.1 SUMMARY
	6.2 CONCLUSIONS
	6.3 CONTRIBUTION
	6.4 FUTURE RESEARCH

	REFERENCES

