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Due to the constantly increasing technical advantages of mobile devices (such as smartphones), 

pedestrian/wheelchair navigation recently has achieved a high level of interest as one of 

smartphones’ potential mobile applications. While vehicle navigation systems have already 

reached a certain level of maturity, pedestrian/wheelchair navigation services are still in their 

infancy. By comparing vehicle navigation systems, a set of map matching requirements and 

challenges unique in pedestrian/wheelchair navigation is identified. To provide navigation 

assistance to pedestrians and wheelchair users, there is a need for the design and development of 

new map matching techniques. 

The main goal of this research is to investigate and develop advanced map matching 

technologies and techniques particular for pedestrian/wheelchair navigation services. As the first 

step in map matching, an adaptive candidate segment selection algorithm is developed to 

efficiently find candidate segments. Furthermore, to narrow down the search for the correct 

segment, advanced mathematical models are applied. GPS-based chain-code map matching, 

Hidden Markov Model (HMM) map matching, and fuzzy-logic map matching algorithms are 

developed to estimate real-time location of users in pedestrian/wheelchair navigation 

systems/services. Nevertheless, GPS signal is not always available in areas with high-rise 
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buildings and even when there is a signal, the accuracy may not be high enough for localization 

of pedestrians and wheelchair users on sidewalks. To overcome these shortcomings of GPS, 

multi-sensor integrated map matching algorithms are investigated and developed in this research. 

These algorithms include a movement pattern recognition algorithm, using accelerometer and 

compass data, and a vision-based positioning algorithm to fill in signal gaps in GPS positioning.  

Experiments are conducted to evaluate the developed algorithms using real field test data 

(GPS coordinates and other sensors data). The experimental results show that the developed 

algorithms and the integrated sensors, i.e., a monocular visual odometry, a GPS, an 

accelerometer, and a compass, can provide high-quality and uninterrupted localization services 

in pedestrian/wheelchair navigation systems/services. The map matching techniques developed 

in this work can be applied to various pedestrian/wheelchair navigation applications, such as 

tracking senior citizens and children, or tourist service systems, and can be further utilized in 

building walking robots and automatic wheelchair navigation systems. 
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1.0  INTRODUCTION 

Over the past two decades, due to the improved accuracy and increased affordability of 

the Global Positioning System (GPS), vehicle navigation systems have experienced a 

tremendous increase in demand. Vehicle navigation systems assist in keeping track of 

vehicles and finding desired paths to destinations. Motivated by the success of vehicle 

navigation systems and the ubiquity of GPS, building navigation systems and services for 

pedestrians and wheelchair users is the focus of this dissertation.  

A navigation system consists of a map database, a user interface and several 

navigation functions including geo-positioning, map matching, routing and guidance. 

These components are briefly described below. 

 Map Database. A map database contains the geometry, topology, and attributes of a 

map network (e.g., a road network or a sidewalk network).  

 Geo-positioning. Geo-positioning is the process of measuring location updates of 

an object in real time. The measurement of positions can be through GPS or other 

sensors, such as Dead Reckoning (DR), which are subject to noise, interference 

from the environment, and other of errors.  

 Map Matching. Map matching is the process of determining the current vehicle’s 

location on the road segment, using the geographic coordinates obtained by the 

geo-positioning component and the map database component.  
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 Routing and guidance. Routing computes user-preferred routes and guidance gives 

step-by-step instructions on how to travel on routes.  

 User interface. A user interface accepts the user’s requests for directions. It 

responds with map-matched positions on the map and audible or displayed 

directions at the right time.  

 

Figure 1.1 shows the interrelations among the components of a navigation system. 

Real-time position data are obtained through geo-positioning sensors, such as a GPS 

receiver. To accurately locate a vehicle, map matching determines the road segment on 

which the vehicle is and estimates a position on the segment. The user interface shows 

matched positions in real time. The routing component provides users with their desired 

routes to their destinations, taking user preferences into account. 

 

 

 

 

 

 

Figure 1.1. Components of a navigation system 

 

Although vehicle navigation systems are currently the most popular, 

pedestrian/wheelchair navigation systems/services are gradually growing in prominence. 

With the progress of mobile technology, indoor/outdoor mobile systems (e.g., Nokia) are 

Routing, Planning& 

Guidance 

Map Matching Geo-Positioning 
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Map DB 
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being developed to provide location-based services, such as tour guidance for pedestrians 

(Fritz et al., 2006; Steinhoff et al., 2007). For wheelchair users, research has focused on 

developing “smart” wheelchairs that can provide navigation assistance mainly in indoor 

environments (Levine et al. 1999; Simpson et al. 2004). Outdoor wheelchair navigation 

systems/services are emerging as applications in their own right and are more challenging 

to develop than vehicle navigation systems are (Ding et. al. 2007). Inspired by the 

increasing demand for pedestrian/wheelchair navigation systems/services, this 

dissertation focuses on investigating and developing advanced map matching 

technologies and techniques  to assist pedestrians and wheelchair users with mobility 

while outdoors.   

1.1 PROBLEM STATEMENT 

Vehicle navigation systems have been widely researched and developed over the past 

decades. However, with the rapid growth of the mobile device market, there is an 

increasing demand for pedestrian navigation services as mobile applications on mobile 

devices. As the populations of both disabled and senior citizens increase, there is a 

corresponding need to meet the travel demands of these groups so that they can maintain 

their quality of life. As a result, improvements in wheelchair navigation are required in 

order to provide wheelchair users with appropriate travel routes that can safely, 

accurately, and efficiently guide them to their destination. The backbone of these types of 

pedestrian/wheelchair services is a spatial database that represents the underlying 
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sidewalk network, which is used for tracking, routing, and guiding users to their 

destination.  

Most of the commercially available pedestrian/wheelchair navigation 

systems/services were originally designed as vehicle navigation systems, and are now 

sold as with only minor modifications, such as the “Walking Navigation” feature 

on Google Maps for Mobile on Android, or extended pedestrian navigation functionality 

on some Nokia smartphones. These applications use road networks, like vehicle 

navigation systems, to provide navigation assistance to pedestrians and wheelchair users. 

However, road networks cannot provide pedestrians and wheelchair users with optimal 

services for several reasons. First, road networks typically include paths that are 

accessible to vehicles, but pedestrians and wheelchair users usually move or operate on 

sidewalks and do not travel on roads. Second, road networks do not contain information 

about footpaths, accessible areas for pedestrians, or connecting links to indoor 

environments. Third, map matching and routing on road networks do not provide the 

localization and routes that are of use for pedestrians and wheelchair users. 

To provide appropriate navigation assistance to pedestrians/wheelchair users, 

pedestrian/wheelchair navigation services must support sidewalk networks 

(Kasemsuppakorn and Karimi, 2008). An analysis of the differences between 

pedestrian/wheelchair navigation and vehicle navigation reveals that map matching in 

pedestrian/wheelchair navigation services has unique requirements unfound in vehicle 

navigation systems.  

First, while vehicle navigation systems track cars on roads, requiring road 

networks in the map database component, pedestrians/wheelchair navigation 
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systems/services track movement of users on sidewalks, requiring sidewalk networks. In 

general, sidewalk networks are much denser than road networks are in the same area, 

compounding the challenge of finding the correct sidewalk segment in the process of map 

matching.  

Second, different from car driving, pedestrians walk or wheelchair users operate 

at lower speeds and their outdoor activities are usually closer to buildings. Under such 

circumstances, the Global Navigation Satellite System (GNSS), e.g., GPS, provides less 

accurate and reliable positioning information due to noise and multipath problem, 

compared to it received in vehicles. Further, in narrow streets (those with widths less than 

10 m), GPS receivers (those available on mobile devices) have difficulty in determining 

the side of the street on which the user is travelling. Therefore, map matching has to deal 

with the positioning problem raised by GPS. 

Third, pedestrians or wheelchairs are free to advance, stop and make turns at will on 

sidewalks. Since they have more flexibility than vehicles driven under traffic rules, 

people can always travel in both directions on sidewalks and in open areas, such as 

squares and parks. Rules for cars’ travelling on road that have been utilized as constraints 

in map matching for vehicle navigation must be replaced with new rules in map matching 

for pedestrian/wheelchair navigation according to pedestrian or wheelchair users 

movement behaviors.   

Existing map matching techniques based on road networks in vehicle navigation 

systems do not take these characteristics unique to pedestrian/wheelchair navigation into 

account, thus they are not suitable for pedestrian/wheelchair navigation. For this, to 

provide appropriate navigation assistance, special designs and further customization of 
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map matching are required to meet the specific needs of both pedestrians and wheelchair 

users. 

1.2 OVERVIEW OF MAP MATCHING IN PEDESTRIAN/WHEELCHAIR 

NAVIGATION SYSTEMS/SERVICES 

In general, map matching algorithms integrate estimated locations, from positioning 

sensors such as GPS and DR, with a road network map to identify the correct link on 

which a vehicle is traveling and to determine the location of a vehicle on that link 

(Karimi et al. 2006; Quddus 2006; Ochieng et al. 2004). Map matching plays a crucial 

role in a navigation system whose logic is heavily dependent upon the characteristics of 

the underlying positioning sensors. The success of a navigation application mainly 

depends on the suitability of its positioning sensors and the map matching algorithm. 
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Figure 1.2. Map matching process in pedestrian/wheelchair navigation systems  

 

Figure 1.2 highlights the map matching process in a pedestrian/wheelchair 

navigation system/service where a sidewalk map, instead of a road map, is used. The 

sidewalk network database includes sidewalk geometries, sidewalk topologies and 

relevant information for personal accessibility. Information such as sidewalk conditions 

(e.g., grade, steps, smoothness) and building properties (e.g., accessible entrance and 

elevators) are also needed. Geo-positioning data come from sensors, such as GPS, 

accelerometer, and compass sensors. Prior to map matching, a pre-processing task is 

performed on the sidewalk network database to prepare geometrical and topological 

information of sidewalk segments with appropriate attributes for map matching. The map 
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matching process incorporates geo-positioning data and pre-processed spatial data. Once 

a correct sidewalk segment is identified, each new positioning data is projected onto the 

segment to estimate a new position. Moreover, a user’s historical trajectory is used as a 

means to speed up the map matching process. 

1.3 MAP MATCHING CHALLENGES FOR PEDESTRIAN/WHEELCHAIR 

NAVIGATION 

Existing map matching algorithms are designed for vehicle navigation systems. Utilizing 

road networks, instead of sidewalk networks, for map matching does not appropriately 

address the navigation needs of pedestrians/wheelchair users. As shown in Figure 1.2, in 

addition to map data, geo-positioning techniques also play a role in map matching. Some 

existing map matching algorithms for vehicle navigation use other sensors, in addition to 

GPS, such as DR and gyroscope. Such sensors are not usually available in 

pedestrian/wheelchair navigation services. As a result, map matching algorithms that are 

based on the sensors that are only available on vehicles are not directly applicable for 

pedestrian/wheelchair navigation. Furthermore, existing solely-GPS-based map matching 

algorithms may work for pedestrian/wheelchair navigation only after considering those 

specific requirements discussed in Section 1.1. Analyzing the characteristics of 

pedestrian/wheelchair navigation and comparing them with those of vehicle navigation 

reveal the challenges that must be addressed in developing map matching algorithms for 

pedestrian/wheelchair navigation. 
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First, in a pedestrian/wheelchair navigation system/service, a sidewalk network is 

required, which exacerbates the map matching process. Since most roads in an urban area 

have sidewalks on both sides, a sidewalk network is much denser than its corresponding 

road network is. Determining the side of the road on which the pedestrian/wheelchair is 

moving by pedestrian/wheelchair navigation systems/services is a challenging task. 

Figure 1.3 compares the density of a sidewalk network and that of its corresponding road 

network. 

 

 

Figure 1.3. Sidewalk network (a) versus road network (b) in the same area 

 

Additionally, pedestrians and wheelchair users sometimes move on a random path 

rather than follow the sidewalk. This further compounds the map matching process. 

Figure 1.4 shows the trajectory of a user along a route with no corresponding sidewalk in 

the area’s map database. 

  

a b 
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Figure 1.4. No path in map database  

 

Second, GPS errors cause issues with change in location, time or weather, 

especially in dense urban areas, where high buildings, among other obstacles, block 

satellite signals. Since pedestrians and wheelchair users are on sidewalks close to 

buildings, the navigation system/service is more susceptible to GPS signal loss or signal 

degradation than vehicle navigation systems are. Figure 1.5 shows the problem caused by 

GPS errors in places with high-rise buildings. Position Dilution of Precision (PDOP), as a 

measure of overall uncertainty of a GPS position, represents quality of GPS signals. A 

PDOP value of 1 indicates a good satellite configuration and high-quality data; 

conversely, PDOP values above 8 are considered poor. The quality of the data decreases 

as the PDOP value increases. The PDOP of GPS positions, shown in Figure 1.5, ranges 

between 2.5 and 11.4 which are considered poor and very poor, respectively.  

 

 

 

 

A user moves on a 

random path without 

corresponding sidewalk 

in the database. 
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Figure 1.5. Poor GPS signals (PDOP between 2.5 and 11.4)  

 

Moreover, GPS position fixes are less reliable at speeds of less than 3.0 m/s 

(Ochieng et al. 2004; Taylor et al. 2001), which are often the case with pedestrians and 

wheelchair users. At such a low speed, the uncertainty in positions could impede the 

derivation of heading based on displacement (Taylor et al. 2006). 

Obviously, since geo-positioning only by GPS is insufficient to support 

navigation and tracking, there is a need for advanced map matching techniques and/or 

additional data from other sources. An alternative to geo-positioning by GPS is a multi-

sensor map matching approach. Due to recent advances in computing and mobile device 

technologies, smartphones, like iPhones and Android phones, are growing in popularity. 

Sensors such as cameras, accelerometers, compasses, and gyroscopes in mobile phones 

can be employed by navigation systems. With these sensors, a multi-sensor map 

matching approach, using a smartphone as the platform, can provide a solution to 

seamless tracking in pedestrian/wheelchair navigation systems/services. However, 

consumer-grade GPS receivers built on smartphones cannot provide positioning data as 

good as professional-grade GPS receivers. Figure 1.6 shows a route collected both 
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through a professional-grade GPS receiver and through a consumer-grade GPS receiver 

on a smartphone. The green points represent data obtained through a professional-grade 

GPS receiver, and the red points are GPS data obtained through a smartphone.  

 

 
 

 
Figure 1.6. Comparison of GPS data from a professional GPS receiver (green) and a smartphone (red) 

 

In summary, map matching in pedestrian/wheelchair navigation systems/services 

is more complex and challenging than map matching in vehicle navigation systems is, 

primarily due to high density of sidewalk networks and poor GPS signals. 

1.4 GOAL AND OBJECTIVES  

The overall goal of this research is to contribute to the realization of a fully functional 

pedestrian/wheelchair navigation system/service, by developing advanced map matching 

techniques and testing them on real sidewalk networks to validate their accuracy and 

performance. Such a navigation system/service will find applications in many areas 

including route guidance, tour guides, pedestrians/wheelchair user tracking and 
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monitoring, accident and emergency responses, and many more.  

To achieve this goal, the following objectives are set forth in this dissertation:  

 To develop an efficient candidate segments selection algorithm. 

 To develop a number of map matching algorithms based on different techniques such 

as fuzzy logic, chain code, temporal probabilistic reasoning, computer vision, and the 

integration of motion sensors with vision and GPS. 

 To validate the developed map matching algorithms using real-world field data.  

1.5 CONTRIBUTIONS 

This research contributes the following: 

1. An adaptive candidate segments selection algorithm using a clustering technique; 

2. A set of advanced GPS-based only map matching algorithms for 

pedestrian/wheelchair navigation systems/services; 

3. Techniques based on accelerometer and compass data for recognizing a user’s 

movement pattern to assist map matching. 

4. Advanced map matching techniques based on computer vision; 

5. A multi-sensor map matching approach that provides seamless map matching 

services in a pedestrian/wheelchair navigation system/service. This is 

accomplished by integrating motion sensors, such as an accelerometer and a 

compass, with vision and GPS data. 
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1.6 ORGANIZATION 

This dissertation is organized into six chapters. Chapter 1 states the motivation of this 

research, gives an overview of the challenges in this study, and states its goal, objectives 

and contributions. 

Chapter 2 provides a background on pedestrian/wheelchair navigation 

systems/services. It also reviews the related literature on existing map matching 

techniques, computer vision techniques, relative geo-positioning techniques and mobile 

technology for navigation applications.  

Chapter 3 presents an adaptive candidate segments selection algorithm to 

efficiently find a set of candidate segments as the first step in map matching. 

Chapter 4 discusses three advanced map matching algorithms for 

pedestrian/wheelchair navigation systems/services: chain-code-based map matching 

algorithm, Hidden Markov Model (HMM)-based map matching algorithm, and fuzzy 

logic map matching algorithm. 

Chapter 5 presents two multi-sensor map matching algorithms based on a 

smartphone client/server platform. A movement pattern, recognition assisted, map 

matching algorithm for improving efficiency and accuracy of map matching is discussed. 

Multi-sensor integrated map matching, using a monocular visual odometry technique to 

provide users with seamless positioning services, is presented.  

Chapter 6 summarizes the research and its contributions, discusses conclusions, 

and provides recommendations for future research. 
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2.0  BACKGROUND AND RELATED WORK 

The first vehicle navigation and positioning system was built by the electronics industry 

in 1975 (Krakiwsky, 1993). In the thirty years since then, the number of such systems has 

grown rapidly. Today, most of the leading car manufacturers have developed Global 

Navigation Satellite Systems (GNSS) based in-car navigation systems. 

In general, a vehicle navigation system is a satellite navigation system designed for 

use in automobiles. It typically uses a navigation device to acquire position data and to 

locate the user on a road based on an embedded map database. Moreover, the system can 

provide users directions to other locations along the road network.  

Similar to vehicle navigation systems, pedestrian navigation systems aim to provide 

continuous positioning and tracking of a mobile user with a certain positional accuracy 

and reliability. Not present in vehicle navigation systems, a very challenging task for 

pedestrian navigation is to navigate in urban environments with a mixed indoor and 

outdoor environment as pedestrians travel in spaces where existing location methods 

cannot work continuously in stand-alone mode (Retscher et al., 2006).  

Research has also focused on high maneuverability and navigational intelligence for 

driving a wheelchair in domestic environments (Pires, 1997; Simpson et al., 2004). These 

wheelchairs are usually equipped with sensors to detect obstacles or environmental 

http://en.wikipedia.org/wiki/Global_Navigation_Satellite_System
http://en.wikipedia.org/wiki/Automobiles
http://en.wikipedia.org/wiki/GPS_navigation_device
http://en.wikipedia.org/wiki/Road
http://en.wikipedia.org/wiki/Database
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markers for localization and navigation. While some work on outdoor wheelchair 

navigation using GPS and other sensors has been reported (Imamura et al. 2004, Wu et al. 

2005), their contributions are on obstacle detection and autonomous navigation.  

2.1 SIDEWALK NETWORKS  

Sidewalk networks are required to provide connections among commercial, institutional, 

municipal, educational and recreational facilities in any geographic area. The sidewalk 

map database consists of geometrical, topological, and attribute information 

(Kasemsuppakorn and Karimi, 2007). Geometrical information contains the geospatial 

coordinates of sidewalk segments. Topological information represents the connectivity of 

sidewalk segments. Finally, attribute information in a sidewalk map contains the 

characteristics of sidewalk segments.  

Sidewalks along roads normally have two sides. Compared to a road network, the 

sidewalk network in the same area must be generated with more geometrical and 

topological data; therefore, sidewalk networks are much denser than road networks. 

Moreover, since sidewalks are connected to entrances of buildings that pedestrians and 

wheelchair users need to access, accurate map matching on the correct side of a road 

segment is one of the most important tasks for map matching in pedestrians/wheelchair 

navigation. Due to the density of sidewalk networks, this is more complex than map 

matching on roads.  

In addition to sidewalk segments along roads, any path that can be used by 
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pedestrians and wheelchair users should be included in the sidewalk map database. With 

this increased number of segments, branches and paths in the sidewalk network database, 

map matching algorithms have more challenges to overcome. 

2.2 GEO-POSITIONING TECHNOLOGIES AND TECHNIQUES  

The geo-positioning technologies used in vehicle navigation systems have undergone a 

major evolution over the last few years. Several geo-positioning techniques are being 

used in vehicle navigation systems or under research worldwide. These include GNSS, 

WiFi Positioning System (WPS), Cellular Positioning System (CPS) and Dead 

Reckoning (DR) (Rizos et al., 2005, LaMarca et al., 2008). For pedestrian navigation, in 

addition to sensors used in vehicle navigation systems, sensors such as a low-cost attitude 

sensor (digital compass) providing the orientation and heading of the person being 

navigated and a digital step counter or accelerometers for travel distance measurements 

can be employed (Retscher et al. 2006). Similarly, wheelchair navigation systems also 

use both absolute positioning techniques, like GPS, and relative positioning techniques, 

like DR, odometry and Inertial Navigation System (INS) (Anousaki et al., 2007; 

Venkatraman et al., 2009). Additionally, other sensors may also be utilized in outdoor 

wheelchair navigation, like ultra-sonar and laser, which are mainly used for avoiding 

obstacles, not for positioning. 

Among all these geo-positioning technologies, satellite-positioning technologies (i.e., 

GNSS) are widely employed for outdoor navigation. GPS is the most popular GNSS. The 

achievable positional accuracies of GPS-based navigation systems range from a few 
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meters to 10 m in stand-alone mode and sub-meter to a few meters in differential mode, 

(e.g., Differential GPS or DGPS). However, GPS often suffers from availability and 

accuracy issues. Due to obstructions, a sufficient number of satellites may not be 

available for a short period of time. In urban areas, especially downtown areas, GPS 

signals could be very weak compared with those in rural areas. Accuracy of GPS data 

also can be influenced by weather and it may also fluctuate in the same location with over 

time. 

Therefore, a solution to this problem is the addition of new sensors (i.e., multi-

sensors) to bridge the absence of satellite signals. These additional sensors are critical for 

pedestrian/wheelchair navigation to obtain the necessary data for localization.  

Possible outdoor geo-positioning technologies (see Rizos et al., 2005; Retscher et al., 

2006), both absolute and relative, include GPS, WPS, CPS, Vision-based Positioning 

System (VPS), DR, and INS. The outdoor geo-positioning technologies that can be 

integrated with GPS are listed in Table 2.1. 

 

Table 2.1 Outdoor geo-positioning technologies potential for integration with GPS 

Outdoor 

geo-positioning 

Type Accuracy Coverage 

WPS 

(WiFi) 

Absolute High 

± 1 – 3 m 

limited 

CPS 

(Cellular) 

Absolute Low 

± 50-100m 

good 

VPS 

(Vision-based) 

Absolute/Relative High middle distance 

DR 

(Odometry+INS) 

Relative Low 

± 20 – 50 m per 1 km 

– 
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WPS has grown rapidly in recent years and provides reasonable positional accuracies, 

but it suffers from limited signal coverage. WPS cannot locate targets when they are out 

of range of Wi-Fi signals. WPS accuracy also depends on Wi-Fi hotspot databases, which 

are built by fingerprinting wireless access points and must be constantly updated to keep 

up with Wi-Fi hotspot changes (LaMarca et al., 2008). Moreover, only a few commercial 

companies build databases of sufficient size to be used for Wi-Fi positioning. To build 

and maintain such a database requires considerable effort on the fingerprinting techniques 

which are not the focus of this dissertation; therefore, WPS is not chosen in this research.  

In contrast to WPS, CPS has good signal coverage in urban areas, but it is less 

accurate. Kitching (2000) proposed integrating GPS and CPS at two levels: (a) at the 

measurement data level and (b) at the infrastructure level. Although the addition of 

cellular network Base Stations (BSs) can improve the horizontal accuracy of GPS 

positions, a number of infrastructure modifications are required to enable the cellular 

ranging measurements necessary in a positioning solution. Some commercial companies, 

like Qualcomm, are currently working on such integrations.  

Integrating DR sensors, which are based on relative positioning techniques, is one 

alternative to overcome GPS errors in navigation systems/services. DR sensors, e.g., 

gyroscope and accelerometer, obtain the travelled distance from velocity and acceleration 

measurements and estimate direction of motion or heading and height difference.  

A wheelchair's position can be estimated based on distances measured with odometer 

devices mounted on both wheels of the wheelchair. Accelerometers can provide relatively 

high position accuracy in a relatively short time. Due to its bias drift, the position error 

will grow over time. Another approach to measure a wheelchair’s movement is to use 

http://en.wikipedia.org/wiki/Inertial_guidance_system#Vibrating_gyros
http://en.wikipedia.org/wiki/Accelerometer
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wheel revolution counters (Lankton et al., 2005), which can determine the distance and 

time of travel by using seat occupancy sensor and tilt meter. A seat occupancy sensor 

reports when a user is seated in the wheelchair and the tilt meter measures the position of 

the wheelchair in angular degrees. However, in practice, problems such as wheel slippage 

and sidewalk surface condition contribute to poor accuracy. Also since localization of 

pedestrians or wheelchair users is based on horizontal distance, wheel revolution 

counters, which measure slope distance, are not considered in this dissertation. 

For pedestrians, positioning data can come from accelerometer measurements based 

on an INS or from a step-counter and step-length estimator from a typical pedometer. 

Accelerometer measurements used for pedestrians have the same problem as in 

wheelchairs, i.e., positioning errors would be accumulated over time. Regarding 

pedestrian dead reckoning (PDR), the position accuracy in the pedometer/GPS 

integration relies mainly on estimations of the number of steps (counted by the 

accelerometer) and the length of the steps (calculated by the pedometer). For a pedometer 

to measure distance, the average step length of a user must be measured, which requires 

users to walk in a consistent pace. As PDR sensors are most effective when they are 

mounted on user’s feet, they are not suitable for wheelchair users. Considering these 

above issues of DR/INS for pedestrians and wheelchair users, DR/INS techniques are not 

chosen for pedestrian/wheelchair navigation in this dissertation.  

On the other hand, accelerometers have been used as motion detectors (DeVaul 

&Dunn 2001), as well as, for body-position and posture sensing (Foerster, Smeja, & 

Fahrenberg 1999). Acceleration measurements from accelerometers can be used for 

activity recognition which is usually formulated as a signal processing and classification 
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problem (Ravi et al., 2005). Researchers in this area mainly focus on the identification of 

physical activities, such as walking, jogging, resting, standing, climbing, running, etc. 

Modeled from other research studies using accelerometer, compass, barometer, 

gyroscope, or combinations of them to identify pedestrian’s activities (i.e., walking, 

jogging and going upstairs or downstairs) (He et.al., 2009), this dissertation classifies 

user’s movement as patterns including  no movement, walking, running and turning in 

order to identify the user’s movement behavior . 

Computer vision is a growing research field (Koller et al., 1997; Chen and Shibasaki, 

1999; Malis et al., 2002). Many “smart” wheelchairs use computer vision to help avoid 

obstacles and to explore indoor environments. Computer vision also can be used to 

compute distance and to estimate indoor and outdoor locations. Vision-based positioning 

(Henlich, 1997) is currently an active research topic (Chen and Shibasaki, 1999; Tardif et 

al., 2008). Feature extraction for positioning is not an easy task due to diversity of images 

and the wealth of information captured in images. Object recognition is one of the most 

difficult tasks in computer vision, which involves feature extraction, object clustering or 

classification and location/pose estimation, etc. However, compared to the 

aforementioned geo-positioning technologies, vision-based positioning technology has 

several advantages. First, vision-based positioning techniques are less influenced by the 

environment. This can help geo-positioning in areas without good GPS signals. Second, 

feature extraction using computer vision techniques in recent years has advanced and 

matured to guarantee high positional accuracy since feature extraction is critical in 

estimating motion in vision models. Finally, using a camera as a sensor for vision-based 

positioning is relatively inexpensive and practical. Realizing the advantages and 
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disadvantages of modern geo-positioning technologies and techniques, vision-based 

positioning is an attractive and emerging technology and thus, chosen for integration with 

GPS for map matching in this dissertation. 

2.3 MAP MATCHING TECHNIQUES IN NAVIGATION SYSTEMS 

Over the past two decades, many map matching algorithms have been proposed and 

evaluated in various scenarios. Most algorithms have been developed for vehicle 

navigation, a few for outdoor pedestrian navigation, but very few have focused on map 

matching for outdoor wheelchair navigation.  

Current map matching algorithms can be divided into three main approaches, 

geometric map matching, topological map matching and advanced map matching 

(Quddus et al. 2007). Geometric map matching consists of point-to-point map matching, 

point-to-curve map matching and curve-to-curve map matching. Topological map 

matching utilizes both geometrical and topological data to make matching decisions. 

Advanced map matching applies models, such as probability theory, Kalman filter, and 

fuzzy logic, to either geometrical map matching or topological map matching, so the 

algorithm obtains better matching results with an increase in the complexity of the 

computations required. 

In point-to-point map matching each newly obtained position is matched to the 

closest “node” or “shape point” of a road segment. While point-to-point map matching is 

both easy to implement and computationally fast, it is very sensitive to the geometry of 
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the road network. In point-to-curve map matching, each newly obtained position is 

matched to the closest “line segment” (curve) in the road network which is selected as the 

segment on which the vehicle is traveling. Although point-to-curve map matching can 

identify road segments more accurately than the point-to-point map matching, in dense 

networks, such as those for urban areas, it may not be able to produce good solutions. In 

curve-to-curve map matching, a vehicle’s trajectory (current travelling curve) is matched 

to road segments (network curves). Curve-to-curve map matching finds a matched road 

segment in three steps. In the first step, it constructs piecewise linear curves using 

candidate nodes through point-to-point map matching. In the second step, it constructs 

piecewise linear curves using the vehicle’s trajectory. In the third step, it calculates the 

distance between vehicle’s trajectory (step 2) and the curves corresponding to road 

segments (step 1). The road segment closest to the vehicle's trajectory is selected as the 

solution. Curve-to-curve map matching may not always produce a good solution because 

of outlier sensitivity and its reliance on point-to-point map matching (Ochieng et al. 

2004).  

Topological map matching (Meng et al. 2006; Quddus et al. 2003) takes into account 

both geometrical and topological information of the road network, as well as, history of 

GPS data. In topological map matching, the vehicle’s trajectory and topological features 

of the road (e.g., road turn, road curvature, and road connection) are matched. However, 

in some cases, topological map matching resorts to a post-processing mode to identify the 

correct road segment, and in other cases it can rely on a global matching strategy. Neither 

of these cases is suitable for real-time applications. Modifying the weighting scheme with 

additional criteria and parameters (i.e., vehicle’s speed, position relative to candidate road 
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segments, heading information (directly from GPS data), or position data obtained by 

integrating GPS and DR), will improve the performance of topological map matching.  

Both geometrical and topological map matching algorithms are used as the basis for 

developing other advanced map matching algorithms. These advanced algorithms employ 

additional techniques to improve performance, such as a Kalman Filter or an Extended 

Kalman Filter, a flexible state-space model and a particle filter, and a fuzzy logic model 

(Quddus et al. 2007; Jagadeesh et al. 2004). 

Quddus (2006, 2007) reported a comparison of performances of some map matching 

algorithms. These algorithms, as well as, two algorithms by Wu et al. (2007) and Liu et 

al. (2008) are presented in Table 2.2. 
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Table 2.2. Comparison among performances of various map matching algorithms for vehicle navigation 

(after table in Quddus, 2007) 

 

Authors and year of 

publication 

Navigation sensors Test Environments Correct Link 

Identification (%) 

Horizontal Accuracy 

(m) 

Kim et al. (2000) GPS Suburban – 10.6 (100%) 

Kim and Kim (2001) GPS/DR Urban and suburban – 15m (100%) 

White et al. (2000) GPS Suburban 85.8 – 

Pyo et al. (2001) GPS/DR Urban and suburban 88.8 – 

Taylor et al. (2001) GPS + Height Suburban – 11.6 (95%) 

Bouju et al. (2002) GPS Suburban 91.7 – 

Yang et al. (2003) GPS Suburban 96 – 

Quddus et al. (2003) GPS/DR Urban and suburban 88.6 18.1 (95%) 

Syed and Cannon 

(2004) 

GPS/DR Urban and suburban 92.8 – 

Ochieng et al. (2004) GPS/DR Urban and suburban 98.1 9.1 (95%) 

Quddus et al. (2006b) GPS/DR Urban and suburban 99.2 5.5 (95%) 

Wu et al. (2007) GPS Urban 95.14 - 

Liu et al. (2008) GPS Urban 99.4 in one case - 

 

 

The percentage of correct link identification ranges from 86% to 99%. The 2-D 

horizontal positional accuracy ranges from 18 m to 5.5 m (95%). It shows that many of 

these algorithms are based on utilizing multiple geo-positioning technologies in 

combination to obtain results with good accuracy. Quddus (2006) concluded that the 

fuzzy-logic map matching algorithm produces best results when GPS and DR are 

considered. It should be noted that since those map matching algorithms in Table 2 were 

tested on different areas with different road maps, the performance in accuracy is not 
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only a function of the geo-positioning technologies and the map matching algorithms 

they use, but also a function of the road networks used in the tests.  

2.4 COMPUTER VISION IN NAVIGATION SYSTEMS 

Previous work on vision-based navigation systems mainly consists of research on 

automatic driving systems (Castro et.al, 2001) and pedestrian navigation systems (Fritz 

et.al, 2006; Steinhoff et.al, 2007). Both systems use vision-based positioning techniques 

to provide either absolute or relative positioning. Absolute positioning computes the 

absolute position of an object by measuring distances from it to other known objects, like 

buildings, on the basis of recognizing known objects from images. Relative positioning 

calculates incremental positions by measuring movement or rotation/orientation step by 

step. 

In pedestrian navigation systems, landmarks are used as references for absolute 

positioning. Given known locations of landmarks and estimated distances from users to 

those landmarks, pedestrian navigation systems can provide users with their absolute 

positions. For all known landmarks, locations of these landmarks are recorded in the 

database server in advance. An example scenario follows. A user on a tour captures 

pictures and sends them to the server. Once landmarks shown in the pictures are matched 

with the known landmarks in the server, the tour system can estimate the user’s location 

by retrieving the known landmark’s location in the database server and computing the 

distance from the user to the known landmarks. Figure 2.1 shows an example of 

user test case in a tour system from Steinhoff et.al (2007).  
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Figure 2.1. Example image with landmarks (Steinhoff et.al, 2007)  

 

In this figure, the red points on the image are landmarks, which are used as reference 

points. When a user travels on a tour, his/her locations are computed and marked on the 

image, which are shown as query points. Steinhoff et.al (2007) concluded that the 

absolute positions obtained for the waypoints in the tour system were more accurate than 

GPS.   

However, since mobile devices have limited computation capability and memory 

capacity, the tour system has to be built on a client/server network. In the client/server 

network, mobile devices communicate with the server using the wireless communication 

infrastructure. Using landmarks as distinctive features in the environment, images with 

landmarks are collected in advance and the extracted features, such as color or shape 

features, are stored in the server. On the client side, mobile users capture pictures and 

send them to the server. On the server side, the server responds to clients with their 

location by doing image retrieval. If a landmark in an image captured by a user is 

recognized, the server then can locate the user on the map near the known landmark’s 
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location. Further, the tour system can prompt the user through a set of directions to 

provide guidance on his/her tour.  

By contrast, automatic driving systems are based on more sophisticated computer 

vision techniques. Computer vision is not only for positioning but also for avoiding 

obstacles and driving without people in control. Automatic driving systems use a relative 

positioning approach in their vision-based positioning. By tracking visual features 

observed from a moving camera, relative positioning uses the transformation relationship 

between an image coordinate system and a world coordinate system to estimate a 

vehicle’s location. To accomplish this, correspondence between image pairs or sequences 

must be obtained.  Once an image set has been matched, bundle adjustment techniques 

can be used to compute the camera position, which is a surrogate for the vehicle’s 

position. 

With the location of a starting point, the automatic driving system can also mark a 

vehicle by its absolute positions on a map by adding relative movements, which is called 

visual odometry in robotics (Levin et al., 2004, Olson et al., 2001). Tardif et al. (2008) 

presented a system for motion estimation of a vehicle using an omnidirectional camera 

which successfully performed high precision camera trajectory estimation in urban scenes 

with a large amount of clutter. The visual odometry algorithm in their paper mainly 

includes feature extraction and tracking, motion estimation, and structure computation. 

Other systems prefer to use two cameras as a pair to improve accuracy. 

In both automatic driving systems and pedestrian navigation systems, feature 

extraction and object recognition are the key techniques. Global features and local 

features are two types of image features widely used in object recognition algorithms 
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(MOBIS 2005). Global features describe an image as a whole. They have the ability to 

generalize an entire object with a single feature vector. Local features, on the other hand, 

focus on image patches. They are computed at multiple points in an image and are 

consequently more robust to problems of occlusion and clutter (MOBIS 2005). Global 

features mainly consist of color, texture and shape. Color features capture the 

chrominance information in the image. For example, sky, ground, and vegetation can be 

classified by colors. Texture and shape represent illuminance. Textures are also often 

used as local features. For instance, local region features can be described by their scale 

and texture, e.g., the Scale-Invariant Feature Transform (SIFT) approach (Lowe, 1999). 

Boundaries of segmented regions or a boundary of an entire object are often used as 

shape features. Although global features are widely used in various applications, they are 

not suitable for applications with large changes of background, viewpoints, occlusion, 

resolution, lightening and environment (MOBIS 2005).  

Lowe (2001) defined local features as having intermediate complexity, which means 

that they are distinctive enough to determine likely matches in a large database of 

features and are sufficiently local to be insensitive to clutter and occlusion. In general, 

local features extraction includes four steps: 

1. Detect a set of local features in an image 

2. Compute a description for each local feature 

3. Use descriptors to find similar local structures in images for matching or an image 

model for recognition 

4. Verify object 
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Three basic types of local features each with several subtypes were identified in 

MOBIS (2005). These include interest points or “corners”, groups of line segments, and 

distinguished regions.  

An “interest point” (Mikolajczyk et al., 2004) is a point in an image which has a well-

defined position and can be robustly detected. An interest point can be a corner 

(Derpanis, 2004), an isolated point of local intensity maximum or minimum, line endings, 

or a point on a curve where the curvature is locally maximal. "Corner", "interest point" 

and “feature” are used somewhat interchangeably because corners are very stable features 

detectable even in the case of substantial viewpoint or photometric changes. They are 

also insensitive to clutter and occlusion. However, in order to gain distinctiveness of each 

individual corner feature, a small local neighborhood of the corner has to be considered 

(Mikolajczyk et al., 2004). Various computer vision algorithms have been proposed for 

feature extraction (Tuytelaars et al. 2008), such as Harris corner detector (Harris and 

Stephens, 1988), Harris-Affine (Mikolajczyk et.al., 2002, 2004) and Hessian-Affine 

detectors (Mikolajczyk et.al., 2002, 2004), SIFT(Lowe, 1999) and SURF(Bay, 2008).  

Line segments are also often used as local image features. For example, Bay (2005) 

proposed line segments extracted by Canny edge detector. Shapiro (2002) presented a 

local feature called Consistent Line Cluster, defined as a collection of line segments 

grouped by colors, orientation and spatial features.  

Distinguished regions are image elements (subsets of image pixels) that posses some 

distinguishing, stable property. Tuytelaars and Van Gool (2001) proposed Intensity 

Extrema-based Region Detector (IBR) that utilizes local extrema in the image intensity as 

anchor points. To improve the efficiency of this approach, Matas et al. (2002) presented 

http://www./
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maximally stable extrema regions (MSER). Salient Regions and Scale-invariant Shape 

Features are other examples of the distinguished region approach. However, 

characteristics of objects in the images will ultimately determine what local features are 

chosen for matching or recognition. 

Moreover, Deselaers et al. (2007) compared performances of a large variety of visual 

descriptors, both global and local features, which include Appearance-based Image 

Features, Color Histograms, Tamura Features, Global Texture Descriptor, Gabor 

Histogram, Gabor Vector, Invariant Feature Histograms, LF Patches, LF SIFT etc. One 

of their conclusions is that the global search of SIFT features extracted at Harris points 

performs best on the ZuBuD database (Shao 2003) which supports image-based building 

recognition.  

2.5 MOBILE TECHNOLOGY IN NAVIGATION APPLICATIONS 

Mobile phones have become a compelling platform for location-based services. Most 

current smart phones have a built-in global positioning system (GPS) receiver, cameras 

and low-cost MEMS motion sensors such as an accelerometer or a gyroscope, and/or a 

magnetometer. To achieve the goal that a pedestrian/wheelchair navigation system can 

continuously provide position and heading information on a digital map to guide users, 

the ubiquity, portability, good connectivity, the trend towards increased performance and 

inclusion of multi sensors of smart phones make them an ideal target device in this 

dissertation. 
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3.0  ADAPTIVE CANDIDATE SEGMENTS SELECTION ALGORITHM 

Generally speaking, the first and most important step in map matching is to identify the 

correct segment on which an object is moving. Once the correct segment is determined, 

estimating the location of the object on that segment, though with a degree of uncertainty, 

is straightforward. Finding the correct segment requires that map matching algorithms 

identify a set of candidate segments based on a received GPS position and compare and 

analyze them to decide the most likely segment. Therefore, finding the set of candidate 

segments is imperative in map matching algorithms. This involves two types of 

situations. One is initializing a search range when the first position data is received and 

the other is updating the search window continuously for new positions. If the network is 

large, the search process is a time consuming operation. To identify the segment on 

which an object is moving not only demands correctness, but demands efficiency as well. 

Especially for a real-time navigation, the efficiency of finding the correct segment is even 

more important. 

At this stage, our goal is to select a set of candidate segments close to the received 

GPS position. A widely used approach for determining the search window is to create a 

buffer centered at the GPS point and identify segments within this window as candidates. 

The search process is often based on an indexing technique which traverses a tree, for 

example an R- tree, down to its leaf nodes to find those segments within the coverage of 
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the search window. Since the topology of segments is very important to match GPS 

points, it is appropriate to consider those adjacent segments to GPS points as candidate 

segments. However, an indexing technique, like R- tree, does not consider topology of 

segments in constructing the tree. It is likely that adjacent segments are stored in different 

subtrees because the tree is constructed in a certain order (e.g., Hilbert order to build 

Hilbert R- tree). As a result, retrieval of candidate segments in a given network requires 

several passes through the R- tree. The searching complexity depends significantly on the 

distribution patterns of segments on the network. Furthermore, the same segment may be 

indexed more than once in the tree, requiring traversal of multiple paths. To avoid 

redundant searching in indexed spatial databases, in this chapter, we address the problem 

of efficiently finding candidate segments in spatial networks given GPS points of a 

moving object. The algorithm is a bottom-up approach that builds a segment-clustering 

tree to achieve both adaptability and efficiency in finding candidate segments.  

3.1 RELATED WORKS 

Current research on searching objects in spatial networks mainly employ indexing 

techniques with the goal of improving the efficiency of queries (Tele Atlas, 2008; Zhao et 

al, 2001). Spatial indexing for spatial and spatio-temporal queries has been an active 

research topic over the past decades. Since 1984 when R-tree by Guttman (1984) was 

presented, several indexing techniques have been developed for efficient spatial queries. 

Basic indexing techniques with variant structures such as R-tree, quadtree, B-tree, and 
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grid (Zhao, 1997) have been employed in different experiments focused on increased 

spatial query efficiency (Lin 2008; Chen et al. 2006; Kalashnikov et al. 2002).  

R-tree was developed as an index structure for the efficient management of multi-

dimensional and spatial data. Common operations performed on an R-tree include point 

location queries, range queries and nearest neighbor queries. In the map matching 

context, road or sidewalk segments can be represented as polygon objects and recorded 

on the leaf node level in an R-tree. Each leaf node holds two items for each data record. 

One is the bounding box of the object, and the other is information to place the object in 

the real world. Other nonleaf nodes of R-tree hold two items for each of its children: a 

bounding box of the child, and a pointer to the child.  

A number of bulk loading approaches were developed to build R-trees (Bercken 

and Seeger, 2001). Top-down Greedy Split (TGS) and bottom-up approach are the two 

main methods (Alborzi. et al., 2007). A bottom-up approach builds an R-tree from leaf 

nodes level to upper level until it reaches the root node. In the lowest level, n data 

rectangles are sorted according to a predetermined sort order and m data rectangles are 

grouped in the upper level. The construction process is an iterative procedure from the 

bottom up to the root of R-tree. By contrast, a top-down approach first builds the higher 

levels of R-tree. The data rectangles are sorted according to a predetermined sort order 

and then split to build subtrees for the children recursively down to the final leaf nodes. 

Both approaches have to predetermine an order of objects stored in the tree. This causes a 

problem where the pre-ordered leaf nodes cannot represent adjacent objects in a spatial 

space appropriately. There is a lack of efficiency when spatially adjacent objects in R- 

tree are queried as a group, but were stored in multiple paths. 
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3.2 SPATIAL NETWORK DATA REPRESENTATION 

3.2.1 Hierarchical Clustering Tree 

Unlike indexing techniques, where objects are organized in a certain order, clustering 

techniques group objects by their characteristics. One important characteristic of spatial 

networks is the connectivity of segments that we use to cluster them. 

In the family of clustering algorithms for different types of applications, the two 

most common branches are partitioning and hierarchical clustering algorithms (Huang, et 

al. 1998; Kotsiantis, 2004). Partitioning algorithms create a “flat” decomposition of a 

data set into a set of clusters. Examples of partitioning algorithms include k-means, k-

medoids algorithms and density-based approaches. They generally need some input 

parameters that specify either the number of clusters that a user intends to find or a 

threshold for point density in clusters. However, it is difficult to determine what 

parameters are needed and what values they should have, as the parameters may not even 

exist. 

In contrast, hierarchical clustering algorithms do not actually partition a data set 

into clusters but compute only a hierarchical representation of the data set reflecting its 

possible hierarchical clustering structure. Hierarchical clustering algorithms are more 

robust and less influenced by cluster shapes. Additionally, they are less sensitive to 

largely differing point densities of clusters, and they can represent nested clusters 

(Sander, Jörg et al. 2003). Since they partition without knowing the number of clusters 

(e.g., distribution of segments in a spatial network) ahead of time, hierarchical clustering 
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becomes an attractive alternative to spatial indexing techniques. The next section will 

describe clustering segments in a hierarchical clustering tree by using the average-linkage 

method. 

3.2.2 Clustering Road Segments 

In graph theory, a graph is formally represented by <V, E>, where V represents vertices 

in the graph and E represents edges in the graph. A general adjacency matrix in graph 

theory is A={aij}, where aij represents the weight (e.g., distance) between i
th
 vertex and j

th
 

vertex. Consisting of intersections and segments, a spatial network can be represented as 

a graph where intersections are the vertices and segments are the edges. To better 

perform map matching for navigation applications, segments are clustered instead of 

intersections, because intersections only represent geometric information, whereas 

segments represent both geometrical and topological information. 

To build the hierarchical-clustering tree of a spatial network, a new matrix A’ is 

introduced in this algorithm. Generalizing a spatial network as a non-directional graph 

clustered by distance, A’ becomes a symmetric matrix. To define A’, two matrices are 

first defined. One matrix represents the topology of a spatial network, denoted by T={ tij 

}, where tij is 0 if the i
th
 and the j

th
 vertices are on the same segment (this occurs when i 

and j represent the same vertex or i and j are the two vertices of a segment) and t ij is 1 

when the i
th
 vertex is not directly connected to the j

th
 vertex. The other matrix is an 

adjacency matrix A={aij}, which computes the Euclidian distance between any two 

vertices to represent the closeness of the intersections in geometric space. As a result, a 

new matrix A’= A.*T = { aij * tij } is defined to combine the two factors, geometrical 
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distance and topological relationship from matrices A and T. The weight of each element 

in the matrix A’ not only considers the distance between the vertices (i.e, intersections), 

but also considers the topology of the spatial network.  Based on matrix A’, we build a 

hierarchical clustering tree from the bottom-up. Segments on the lowest level of this tree, 

as the smallest units in the structure, are grouped together based on the distance of each 

other and the clustering process is continued until the root of the tree is reached. For 

example, Figure 3.1 shows 10 segments, labeled by ID from 0 to 9. Every segment has 

two vertices, so 10 segments have twenty vertices, from 1 to 20. Matrix A’ therefore 

becomes a 20-by-20 matrix. Since it is symmetric, only it’s upper or lower triangluar (off 

diagonal) needs to be stored. The weights in the upper triangular and the lower triangular 

are all set as 0s shown in Figure 3.2.  

 

 

 

Figure 3.1. An example of road network  
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Figure 3.2. Corresponding matrix (20-by-20) 

  

Given the matrix A’, a hierarchical clustering tree is built using the average-

linkage clustering method. The average linkage clustering is based on measuring the 

proximity between two groups of objects. Here we use the average distance between all 

pairs of objects in cluster r and cluster s as the measurement. Its definition is as follows:  

      (1) 

Where nr is the number of objects in cluster r and ns is the number of objects in 

cluster s, and xri is the ith object in cluster r, and xsj is the jth object in cluster s.  

 

              
 

 

Figure 3.3. Corresponding clustering tree 

9 1 2 6 0 8 3 7 4 5 Segment Number 
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After applying the average-linkage clustering method, Figure 3.3 shows how the 

hierarchical clustering tree is built from the matrix A’ in Figure 3.2. The clustering 

process starts from the bottom where average distances of two vertices on the same 

segment as a cluster are set to zero in A’. Segments are grouped together in an order that 

clusters those with closer distances until all the clusters are grouped together and the root 

is reached. The root of the clustering tree represents the entire spatial network as one 

group. 

3.3 ADAPTIVE SEARCHING ALGORITHM 

Corresponding to the built clustering tree, a binary tree structure is generated and an 

adaptive searching algorithm is designed correspondingly. To support map matching, 

searching for segment candidates is conducted on the binary tree. The search starts from 

the entire spatial network and stops if a group of segments is found with the required 

criterion. Given the binary search tree and GPS points, instead of fixing a search window 

size for candidate segments, grouped segments are dynamically obtained with changes of 

the geometric and topological relationship between the GPS point and segments.  

3.3.1 A Binary Tree Structure from the Clustering Tree 

Since each group only joins one of the two members (one of which may be compound) in 

the clustering tree shown in Figure 3.3, the clustering tree is a binary tree. Therefore, the 

map matching process equates to finding the best-matched segment in all the candidate 
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segments indexed in the binary tree. Considering that segments have different positions, 

length and orientation, we use minimum bounding rectangles (MBR) (SAGAYARAJ et 

al., 2006) in the nodes of the tree. Similarly, each MBR in upper levels of the tree 

represents a group of segments. It is possible that sibling nodes have overlapping areas 

due to MBRs. The binary tree is constructed from bottom to top, so its root represents the 

bounding box of the entire spatial network. Figure 3.4 displays a small portion of the 

binary tree. Figure 3.5 indicates a scenario where a GPS point is located within the range 

of the MBR of a group of segments. 

 

 

 

 

 

 

 

 

Figure 3.4. Data structure of a binary tree for segment clustering 

 

 

 

Figure 3.5. A GPS point is located within the range of a Bounding Box 

Bounding Box 

MBR Coordinate  left right 

…… 

…… 

MBR Coordinate  left right MBR Coordinate  left right 

GPS point 
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3.3.2 Searching Algorithm 

As shown in Figure 3.4, the range of MBR is narrowed down from top to bottom. 

Therefore, in order to determine the search window for map matching, the binary tree is 

traversed from top to bottom and will stop at a group node when a halt criterion is met. 

The halt criterion is very important; it determines the map matching window size.  The 

searching algorithm is as follows: 

1. Input the binary tree and a GPS point. 

2. Set a criterion to halt searching. 

3. If the GPS point is included in the boundary of the current group node and the halt 

criterion is not met, then search its sub-trees. Otherwise, search the sibling node. 

4. If the halt criterion is met, then traverse all the leaf nodes of this sub-tree for the 

candidate road segments. 

Since the candidate segments selection algorithm aims to find corresponding 

candidate segments given GPS positions, the halt criterion is determined by the 

relationship between the GPS point and the segment groups.  

We note a GPS point as p(x, y), and a bounding box as B(minx, miny, maxx, 

maxy). Next, c refers to the center of the bounding box. Distance(p, c) calculates the 

distance between the GPS point (p) and the center point (c) and Within(p, B) evaluates 

whether p is within the bounding box or not.  Based on the notation, the criterion is 

defined as: 

IF Distance(p, c) < threshold and Within(p, B) THEN stop searching. 
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The threshold is related to the density of grouped road segments. To generalize 

the criterion, we set a threshold by testing on actual spatial networks. When the threshold 

is set relatively small, it would guarantee that the GPS point is close enough to the center 

of a selected group, in order to avoid misidentifying candidate segments by the GPS point 

located on the boundary of two clustered sub-groups. 

3.3.3 Adaptive Search Window Set 

In spatial indexing techniques, a search window for candidate segments is normally a 

fixed-size rectangle centered at a given GPS position. In order to retrieve those segments 

within the search window, searching algorithms need to go through the indexing tree 

several times. In contrast to such indexing techniques, a clustering tree provides an 

adaptive search window by clustering spatially closed segments into groups and only 

goes through the tree once. The output of the searching algorithm is a list of candidate 

segments. 

The number of segments included in the list of candidate segments depends on 

three factors. One factor is the density of the spatial network. The second factor is the 

relevant dynamic position of GPS points in a clustered group.  The third factor is the 

threshold in the halt criterion, which is set depending on GPS error range.  

Similar to indexing techniques, nodes in the clustering tree have overlapping 

MBRs. It is possible that a GPS point is located within two overlapping MBRs.  To 

justify which cluster should be selected based on its MBR, we compare distances 

between the GPS point and the center of each MBR. The one with a closer distance has a 
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higher possibility to be chosen as the selected cluster if the distance is less than the 

threshold. If a GPS point is located on the boundary of the two groups, then the search 

window will be adaptively adjusted to their parents, which is the higher-level clustered 

group. For instance, in Figure 3.5, if a GPS point is located on the corner of segment 2 

and segment 6, the search window should cover the higher group that includes segments 

9, 1, 2 and 6. In Figure 3.3, this group includes the group corresponding to the MBRs 

shown in Figure 3.5 and another group that contains only segment 6. This searching 

procedure starts from the root of the tree, as shown in Figure 3.3 and once the halt 

criterion is met, it will stop on the level which includes segments 9, 1, 2 and 6, rather than 

searching the lower level.  

3.3.4 Adaptive Search Window Update 

With an object moving, a map matching search window needs to follow its movement. 

The decision to update a search window or keep searching in the previous window 

depends on both the direction and speed of the object’s movement. With the previous 

candidate segments in memory, and by knowing the successive points to estimate the 

object’s movement, searching in the same segment group continues. However, with the 

object moving out of a known segment group, a new sub-tree has to be initiated. Under 

this circumstance, updating the search window just repeats the initial searching procedure. 
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3.4 PERFORMANCE ANALYSIS 

To evaluate the candidate segments selection algorithm, we used two datasets, the 

University of Pittsburgh campus road map and the Allegheny County road map and built 

two clustering trees based on the maps. By simulating the movement of an object in 

different scenarios, the performance of the algorithm is analyzed in this section. 

3.4.1 Datasets 

We employed road maps in the Pittsburgh area from the US TIGER data files and 

collected some GPS positions on the campus of the University of Pittsburgh and tested 

our algorithm on different GPS locations, in order to evaluate it in various scenarios 

when an object was moving. Our algorithm was implemented using Matlab and tested on 

a  PC machine with “Intel Core 2 2.13G HZ” CPU and 2GB memory. 

3.4.2 Construction Cost 

Memory usage and time complexity of constructing a clustering tree depend on the scale 

of a digital map. In order to save both space and time, our strategy was to split a large-

scale digital map into a set of sub-maps and then build its corresponding clustering tree 

for each sub-map, so the original map corresponds to a forest structure. Indexing each 

tree in the forest is straightforward. As shown in Figure 3.4, we need intermediate 

memory to build matrices to calculate average distance of clusters, and the matrix before 
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compression is n by n, so the memory usage is proportional to n
2
, where n is the number 

of intersections. 

In this algorithm, average-link clustering merges the pair of clusters with the 

highest cohesion in each iteration. Based on this recursive computation of cohesion, the 

time complexity of average-link clustering is O(n
2
 log n). However, Murtagh (1992) 

compared various hierarchical clustering approaches in computational time complexity 

and concluded that O(n
2
) time implementations exist for most of the widely known 

hierarchical clustering methods, and some methods can perform close to O(n) expected 

time for hierarchical clustering. Therefore, the construction cost of our hierarchical 

clustering tree can be further reduced by more sophisticated techniques. In the current 

implementation, a recursive approach is used to construct the hierarchical clustering tree. 

Table 1 provides features of the constructed clustering tree corresponding to two different 

map scales. Constrained by memory limitation in Matab, experiments are limited by the 

size of spatial networks. In spite of this, our algorithm can be expanded to any large scale 

map by splitting it into sub-maps and organizing it as a forest structure rather than a large 

tree structure. 

A balanced binary tree has depth, log2n, but hierarchical clustering trees that are built 

from spatial networks are not guarantee to be balanced. Therefore, maximum and 

minimum depths are recorded in analysis. Figure 3.6 shows the result of the tree 

construction by using the campus of the University of Pittsburgh as an example, which 

has the maximum depth of 14 and minimum depth of 10 as shown in the first row in 

Table 3.1. 
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Table 3.1. Tree features of three road networks 

 

Road 

network 

Road 

segments 

(leaf 

nodes) 

Maximum 

depth of 

hierarchical 

clustering 

tree 

Minimum 

depth of 

hierarchical 

clustering 

tree 

Pittsburgh 

campus 

171 14 10 

Oakland 

area 

1643 20 10 

 

 

 

 

 
 

 

Figure 3.6. The clustering tree of Pittsburgh campus 
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3.4.3 Searching Cost  

In theory, if n is the number of segments, then the time complexity of searching on binary 

trees is O(log2n). However, two factors influence query efficiency. One is the density of a 

spatial network and the other is changes to a moving object from an intersection to its 

linked segments. Because geometry and topology of spatial networks decide the 

clustering tree, once a spatial network is built, the structure of a clustering tree 

corresponding to the spatial network is fixed based on the clustering method. Therefore, 

given a spatial network, we mainly consider the query cost influenced by the position of 

GPS points.  

As a user moves on the sidewalk, the sidewalk segments change. As the user 

approaches an intersection or move on a relatively short segment, a search window will 

cover more candidate segments than when the user is moving on a long segment. Query 

efficiency is worst when a user moves on a boundary between two large-scale clusters. 

Figure 3.7 shows how candidate segments change with different positions when a user is 

moving. The red square in each figure shows the received GPS position and the red 

points on the map show the intersections of candidate segments as the result of searching 

the clustering tree.  Furthermore, by testing the same points in a larger area, (e.g., in 

Oakland) which covers the University of Pittsburgh campus, it can be seen that the 

connectivity of the spatial network determines clustered candidate segments, as shown in 

Figure 3.8. Since the average-linkage clustering approach is based on the average 

difference of groups, and the same area has a constant spatial network structure, the 

searching algorithm produces results with certainty. Given a GPS point, an experiment, in 
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Figure 3.8, shows that selected candidates in the large-scale map are consistent with the 

search results in small-scale map shown in Figure 3.7.   

   
 

Figure 3.7-1. On a relative long road segment  Figure 3.7-2. Approaching to an intersection 

 

     
 

 
 

Figure 3.7-3 On another intersection  Figure 3.7-4 Middle of a segment 

Figure 3.7. Query results changing with scenarios of moving object’s positions 
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Figure 3.8. A scenario on a large-scale map 

 

As discussed previously, in order to evaluate various map matching situations, 

experiments were conducted in three scenarios: approaching an intersection; moving 

on a relatively long segment; and moving around a boundary of two clusters. Table 

3.2 shows the average searching cost for the three situations. 

 

Table 3.2. Statistics of the searching cost 

 

Road 

network 

Maximum 

hierarchical 

level 

Median 

search 

depth 

Median search 

depth 

(Intersection) 

Median search 

depth         

(on-segment) 

Median search 

depth (boundary) 

Pittsburgh 

campus 

14 8 7 10 5 

Oakland 

area 

20 9 6 10 6 



 67 

3.5 SUMMARY 

This chapter presented a new algorithm to search for candidate segments given a GPS 

point for map matching. Rather than fixing a search window, this approach can provide 

an adaptive window based on obtained GPS positions and a chosen spatial network. 

Considering that the clustering technique can well present segment connectivity in a 

spatial network, a hierarchical clustering algorithm is developed to cluster segments. A 

binary tree is created after building the hierarchical clustering tree. Compared with multi-

pass searching an object in indexing techniques, searching on the clustering tree of road 

segments requires only one pass. From the experiments, it is concluded that this approach 

can find candidate segments adaptively based on GPS positions and relative changes of 

relationship between GPS positions and clustered segments. The binary tree was designed 

to group segments and sped up the search time. As shown in Table 3.2, the algorithm can 

efficiently find road segments. 
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4.0  GPS-BASED MAP MATCHING TECHNIQUES 

After a set of candidate segments is selected, how to find the correct segment is the key 

issue for map matching. Typically two main parameters, distance and direction deviation, 

are coupled to solve this problem.  

Distance is defined as the length of the projected line from a GPS position to a 

link.  Let C be the projection of P on a sidewalk segment AB. The distance is defined as 

equation 4.1 and visualized in Figure 4.1. 

                   D (P, C)              if C Є [AB] 

D (P, AB) =             (4.1) 

   Min {D (P, A), D (P, B)}     elsewhere 

 

 

 

 

 

Figure 4.1. Perpendicular distance 
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Direction deviation is to measure the angular difference between user’s trajectory 

and orientation of candidate segments. Direction of user’s trajectory is the measurement 

of the angle between two or more successive positions. 

 Based on these two parameters, three advanced map matching algorithms solely 

using GPS data are presented in this chapter. 

4.1 CHAIN-CODE-BASED MAP MATCHING  

In this section, a chain-code-based map matching algorithm is designed by considering 

the unique characteristics in pedestrian/wheelchair navigation. The chain-code-based map 

matching approach was chosen because instead of computing the precise angle to 

represent a trend of movement, which is traditionally used, a discrete eight-direction 

chain code can be considered in order to reduce noise from GPS due to random 

movements of pedestrians or wheelchair users. Moreover, when pedestrians or 

wheelchair users move on sidewalks at relatively low speed, GPS data is often plagued 

with errors that frequently produce inaccurate trajectories. To overcome this problem, the 

chain-code-based map matching algorithm considers the trajectory of the data rather than 

merely the current position as in the typical map matching algorithms. Coupled with 

distance information, map matching decisions are made by comparing the differences 

between trajectories representing the road segments and GPS tracking data. 

Instead of using precise angular, chain codes are defined to represent the direction 

of sidewalk segments and trajectory of user’s movement. A directed straight line segment 

connecting two adjacent points is called a link, and a chain is defined as an ordered 
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sequence of links with possible interspersed codes. Chain encoding in this work is based 

on resolution of the direction to the adjacent links at the intersection. 

Chain codes (also known as Freeman’s codes) are a common technique to 

represent a contour of an object in image processing (Freeman and Saghri 1974, Haron et 

al. 2005). The directions of contour boundaries are coded with integer values k = 0, 

1, . . . , K −  1 in the counterclockwise direction starting from the direction of the positive 

x-axis. A curve or contour is thus a chain of directions. The number of directions K takes 

is 2(M+1) where M is a positive integer, such as 4, 8. The chain codes where K > 8 are 

called generalized chain codes, like 16 (Freeman 1978). 

4.1.1 Eight-Direction Chain Code 

Since the angle between any two adjacent links on most intersections is usually greater 

than 45°, we use an eight-direction Chain Code 0, 1, 2, 3, 4, 5, 6, 7 to represent eight 

direction interval on the counterclockwise direction as shown in Figure 4.2. With this 

definition, 0 corresponds to an angle between −22.5° to 22.5°, 1 corresponds to an angle 

between 22.5° to 67.5°, and 7 corresponds to angles between −67.5° to −22.5°.  

 

 

Figure 4.2. 8-Direction chain code 
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Figure 4.3. Digital map with GPS data 

 

Figure 4.3 shows an example of GPS data and the sidewalk segment on a digital 

map. In this example, the GPS tracking route has a chain code of 0, 0, 1, 7, 0, 0, and the 

chain code of the sidewalk link C-A-B is 0,0 and F-A-D is 2,2.  

Moreover, in order to find the closet segment to GPS tracking points, we use the 

difference between sidewalk link chain codes and the trajectory chain code of a user (Dcc) 

to show the extent of consistency of direction among them. With this, Dcc is defined as 

follows: 

Δ = | Chain-Code (movement of a user) – Chain-Code (sidewalk segments) | 

Dcc =        Δ;    if Δ<4 

       (|Δ- 8|) mod 4;  otherwise    (4.2) 

With this definition, discrete chain codes take the place of precise angle values; discrete 

Dcc takes the place of angle differences. This representation not only eliminates noise 

within short-distance moving, but also is computationally fast for real-time navigation. 
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Furthermore, as mentioned earlier, GPS position fixes are less reliable at a speed 

of less than 3.0 m/s. In such cases, in order to reduce the uncertainty of the direction 

under wheelchair users’ control, the algorithm invokes a three-step Dcc between a user’s 

trajectory and sidewalk segments rather than only taking a one-step Dcc.  

In Figure 4, P
1
, P

2
, … , P

7
 show the same GPS trajectory as the one in Figure 3. 

With a GPS data such as P
2
, Di (i = 1, 2, 3) could be calculated as the perpendicular 

distance to segments. When the first step is complete, the chain code from P
2
 to P

3
 is 

calculated, which is 0. Since heading directions are more meaningful than each-step 

directions, after two steps, the chain code from P
2
 to P

4
 is calculated, which is 1. 

Similarly, after three steps, the chain code from P
2
 to P

5
 is obtained as 0. Therefore, Dcc 

between P
2
P

3
 and CA is |0-0|; Dcc between P

2
P

4
 and CA is |1-0|, and Dcc between P

2
P

5
 

and CA is |0-0|. 

 

 

Figure 4.4. Example of chain-code-based map matching 
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4.1.2 Chain-Code-based Map Matching Technique 

In this algorithm, distance and direction are coupled to find the best location of the user 

on the sidewalk. First, the algorithm uses perpendicular distances from GPS data to each 

sidewalk segment candidate and direction difference between user’s trajectory and each 

sidewalk segment to select a sidewalk segment. As shown in Figure 4.4, in order to 

identify which segment a GPS point, such as P
2
 in Figure 4.4, is most possibly mapped 

onto, both distance and direction movement are calculated to be weighted scores. All the 

segment candidates, close to P
2
, are a link set {“CA”, “DE”, “AD”}; the distances from 

P
2
 to these links are {D1, D2, D3}, three-step Dcc calculations between trajectory and 

these segment candidates are taken as described in the previous section. Next, among all 

the segment candidates, the sidewalk segment with the highest matching evaluation will 

be chosen. In this case, segment “CA” would be considered the best selection based on 

map matching evaluation, and as a consequence, P
2
 is determined to be projected to 

“CA”. Two approaches are proposed to make map matching decision: linear model and 

non-linear model. 

4.1.2.1 Linear Model 

Distance and difference in direction are two determining factors to calculate matching 

results in order to identify correct segment. Linear model is built on the linear 

relationship between matching result (M) and evaluation parameters including Dcc and 

Distance. Figure 4.5 depicts the linear model.  
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Figure 4.5. Linear model 

 

The linear evaluation equation used in this work is as follows: 

Vij = Wij * Dij + ∑ Wijm * Dcc(Step[i+m], sidewalk segment[j])       (4.3) 

Mij=1/Vij          (4.4) 

where i is the indexing number of GPS points, and j is the indexing number of segment 

candidates. Dij is the distance from the ith GPS point to the jth segment; Dcc(Step[i+m], 

sidewalk segment[j]) is the three-step Dcc with m going from 1 to 3; Wij is the weight of 

Dij , and Wijm is the weight of Dcc. For the ith GPS point, Mij is used to calculate the total 

weight assigned to the jth candidate link. The link with the highest Mij is selected as the 

correct link for GPS point i. Therefore, the larger Mij, the smaller is Vij. In Equation (4.3), 

the total weighting score can then be obtained by summing up the individual scores, 

including weighting distance and three-step weighting Dcc as shown in Figure 4.5.  

4.1.2.2 Non-Linear Model 

Based on its definition in Section 4.1.1, Dcc is a discrete value ranging from 0 to 4; 

whereas, the absolute value of distance is a continuous real number from 0 to a large 

m=1 

3  
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number. Non-linear model provides an alternative means to fit the non-linear relationship 

between the combination of these two input parameters and matching result to make map 

matching decision, which is depicted in Figure 4.6. 

 

 

Figure 4.6. Non-linear model 

 

In this non-linear model, evaluation estimation is a fitting curve procedure 

between response variable (matching result) and a list of input parameters (three-step Dcc 

and Distance). Among the most common nonlinear models, neural network is a widely 

used approach. This approach attempts to find a relationship, i.e., a function, between the 

inputs, and the provided output(s), in order for the network to find a correct answer for 

the new inputs when network is provided with unseen inputs. As one of various structures 

in neural network family, radial basis function (RBF) networks (Howlett et al. 2001) have 

static Gaussian function as the nonlinearity for the hidden layer processing elements, so 

the network could provide a good non-linear transformation in this map matching 

algorithm for each input vector, distance and three-step Dcc, to obtain non-linear map 

matching result (M). The Gaussian function responds only to a small region of the input 
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space where the Gaussian is centered. Therefore, in this map matching algorithm, the link 

which provides the highest output of Gaussian function, i.e., Mij, is chosen as the correct 

link for that positioning fix. 

4.1.2.2.1 Radial Basis Functional Neural Network 

The structure of RBF networks usually has three layers. Each hidden unit in the network 

has two parameters: a center uj and a width σj associated with it. The output of each 

hidden unit depends only on the radial distance between the input vector and the center 

parameter for that hidden unit. The response of each hidden unit is scaled by its 

connecting weights Wkj to the output units and then summed to produce the overall 

network output:   

 (4.5) 

where the Gaussian activation function for RBF networks is given by: 

  (4.6) 

and x is the d dimensional input vector with elements xi, and uj is the vector determining 

the center of the basis function; yk(x) is the output of RBF neural network. 

There are two steps to train a RBF neural network: (1) determine the parameters of the 

basis functions through unsupervised training using only the input data set and (2) 

determine weights Wkj using both input and output data (hidden units are activated using 

an input pattern and the weights to the output layer are then modified to produce the 

desired output for the given input). Once all the parameters are produced by training in a 

RBF network, the neural network model could be used to compute the output based on 

new input data. 
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4.1.2.2.2 Design of RBF Neural Network 

In this research, the RBF Neural Network is designed as a supervised network. The input 

data has four features: distance and the three-step Dcc, so the input layer has four 

neurons, the output layer has one neuron which is used to evaluate the extent to which a 

GPS point is close to candidate segments. The first step is to train the neural network. 

The training data consists of many pairs of input and output. Many pairs of Distance and 

three-step Dcc are calculated as input vectors, and output values are designated as 0 or 1, 

depending on whether the calculated candidate segment is the correct link or not. Next, 

the trained neural network is used to perform the non-linear map matching evaluation. 

Given a 4-d input vector with distance and three-step Dcc, the segment with the smallest 

output value is the selected segment, where the output of evaluation, Mij, obtains the 

largest value. Based on the size of sample data in experiments, the hidden layer is 

designed as a 132-neuron layer. The structure of the RBF neural network for this map 

matching algorithm is shown in Figure 4.7. 

 

 

Figure 4.7. RBF neural network for map matching evaluation 
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By definition in Equations (4.5) and (4.6), the corresponding non-linear 

evaluation equation used in this work is defined as follows: 

 

where i is the indexing number of GPS points, and j is the indexing number of segment 

candidates. Xij is input, in which Dij represents distance from the ith GPS point to the jth 

segment, and Dcc(Step[i+m], sidewalk segment[j]) represents three-step Dcc with m 

going from 1 to 3. αk is the weight of the kth output value in hidden layer. β is the weight 

matrix of input vector in hidden layer. As the output, Mij is used to calculate the total 

weight assigned to the jth candidate link for the ith GPS point. The link with the smallest 

Vij is viewed as the correct link.
 

4.1.3 Map Matching Process 

There are two main modes in the map matching process: (1) turning mode and (2) normal 

moving mode. In turning mode, the algorithm performs map matching for each GPS 

tracking point around intersections in order to identify a new segment. Once the user is 

located on a segment, the process enters normal moving mode, current and previous 

positions can be used as constraints for the next step in map matching based on the 

topology of sidewalk networks. Such constraints accelerate the matching process. 

(4.7) 

(4.8) 
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Once the correct sidewalk segment is determined, i.e., the first step of map 

matching, finding an estimate of the location of the user on that segment is 

straightforward.  

The flowchart shown in Figure 4.8 describes the process of chain-code-based map 

matching, including pre-processing to initialize data structures, evaluation based on three-

step Dcc and distance between sidewalk segments and trajectory made of GPS points, 

and a constraint on a selected sidewalk segment. 
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Figure 4.8. Flowchart of chain-code-based map-matching algorithm 
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4.1.4 Validation 

To validate the chain-code-based map matching algorithm, the process of chain-code-

based map matching is implemented and tested on a sidewalk network.  

4.1.4.1 Test Environment 

The sidewalk data along with associated parameters on the University of Pittsburgh 

campus area were digitized and utilized by scale 1:2500. The sidewalk database, 

consisting of the sidewalk network, buildings, landmarks, and accessibility information, 

are built for wheelchair navigation in order to assist wheelchair users’ outdoor traveling 

(Karimi et. al 2006). In the following testing, GPS points in three routes were collected by 

walking and using a stand-alone GPS receiver, Trimble GeoExplorer 3, and map matched 

on the established sidewalk network. Fully considering the various types of sidewalks on 

the different areas, we used three selected routes to test map matching algorithms. Route 

1 covered the most main sidewalks on campus; Route 2 included the sidewalks around 

tall buildings; Route 3 included a loop and some small paths.  

A snapshot of the digitized sidewalk map overlaid with Google map shows the 

campus of the University of Pittsburgh in Figure 4.9. The computing platform used was a 

PC machine with “Intel Core 2 1.4G Hz” CPU. The software for the fuzzy logic map 

matching algorithm was written in JAVA in an open source GIS tool called Geotools 

(www.geotools.org). 

http://www.geotools.org/
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Figure 4.9. University of Pittsburgh’s campus 

 

4.1.4.2 Evaluation of Linear Map Matching Models 

For evaluation purposes, we employed different forms of linear and non-linear models in 

matching evaluation.   

As discussed in Section 3.3.1, the distance, three Dcc after step one, two, three are 

the four influencing factors in matching evaluation equation. Their linear relationship was 

formulated as Equation (4.9). After normalization for these four variables, four estimated 

weight parameters meet the condition as follows:   

               3 

Wij   +    ∑    Wilm = 1    (4.9)              

 m=1  

After testing different combinations, the four weight parameters are given as: 

Wij = 0.5;  

Wij1 = 0.1; 

Wij2 = 0.2;     (4.10) 

Wij3 = 0.2; 
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4.1.4.3 Evaluation of Non-Linear Map Matching Models 

We used RBF neural network to build a non-linear evaluation model. As mentioned in 

Section 3.3.2, the RBF neural network considered in this work has a three-layer structure, 

including 4-d input layer, 132-d hidden layer and 1-d output layer. In the training stage, 

132 pairs of parameters, with input vectors and output values, are calculated and 

normalized as a sample data set for training RBF neural network. Figure 4.10 shows the 

training performance.  

 

 

 

Figure 4.10. Training with RBF neural network 

 

The curve in Figure 10 shows that training is completed after several iterations, 

when error gets close to 0. This means that we could use this trained model to perform 

map matching evaluation. 

Table 4.1 shows the trained network structure. Input vector is defined as a 4-d 

vector including distance, Dcc (after step1), Dcc (step2), and Dcc (step3). Output of the 
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trained neural network is the evaluation result. The candidate segment with the minimum 

output value is viewed as the matched segment. Table 4.2 shows different output values 

according to different input vectors for a GPS point and all relevant segment candidates. 

It could be drawn that the first pair of input parameters results in the smallest output 

value in the list, which means that the corresponding segment provides the closest match 

to the GPS data, and thus will be identified as a selected link for the GPS data. 

 

Table 4.1. RBF neural network structure 

 

 

Table 4.2. Map matching evaluation using RBF neural network 

4.1.4.4 Performance Analysis 

Two groups of tests were conducted to evaluate the performance of the chain-code-based 

map matching algorithm.   

First, linear map matching approaches were performed to compare results with 

Inputs hidden layer output layer Weights from input layer to 

hidden layer 

Weights from hidden 

layer to output layer 

size: 4 size: 132 Size: 1 4*132 132 *1 

Input[0] 

Distance 

Input[1] 

Dcc[ step1] 

Input[2] 

Dcc[step2] 

Input[3] 

Dcc[step3] 

output 

0.0116309625 0 0 0 0.0068 

0.1534199589 0 0 0 0.3967 

0.0482950975 2 2 2 1.3588 

0.2902582818 1 2 2 13.221 

0.4500096318 3 4 4 542.71 

1.0987441382 1 1 1 874.33 
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constraints and without constraints. The linear model is used to test the map matching 

algorithm on three routes. The map matching performances are presented in Table 4.3 

where five statistic values are listed on the three chosen routes. The results of map 

matching with constraints, compared with GPS raw data, are shown in Figures 4.11 - 

4.13. 

 

Table 4.3. Linear-model map matching results 

 

 

 

 

a. GPS data before map matching 
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b. The result of map matching with constraints using the linear model 

Figure 4.11. Route 1 comparing map-matching result with GPS raw data on campus sidewalk map 

 

 

 

 

a. GPS data before map matching 
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b. The result of map matching with constraints using the linear model 

Figure 4.12. Route 2 comparing map-matching result with GPS raw data on campus sidewalk map 

 

 

 

a. GPS data before map matching 
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b. The result of map matching with constraints using the linear model 

Figure 4.13. Route 3 comparing map-matching result with GPS raw data on campus sidewalk map 

 

Second, linear models and non-linear models are separately applied to analyze 

their performances in making map matching decisions. As Table 4.4 shows, the result 

leads to the conclusion that linear evaluation is more advantageous to implement than 

non-linear evaluation in terms of time performance. Compared to the linear model, map 

matching results in the non-linear model showed slightly lower correct link identification. 

Therefore, in order to meet the need of real-time navigation, linear model is preferred 

model for map matching decision. 
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Table 4.4.  Comparing the linear model and the non-linear model 

 

 
 

 

 

In summary, experimental results show that most mismatched points in Route 3 

occur when a user moved on paths with no corresponding segments on the digital map. In 

the case of Route 2, most mismatched points occur on sidewalks of narrow roads due to 

GPS errors, where two sides of some narrow roads cannot be distinguished since their 

distances are below GPS error range generally announced as 10m radiuses or over. 

4.2 HMM-BASED MAP MATCHING ALGORITHM  

The Hidden Markov Model is a statistical model in which the system being modeled is 

assumed to be a Markov process with unknown parameters, and the challenge is to 

determine the hidden (unknown) parameters from the observable parameters (Wikipedia, 

Yariv 2002). The HMM has been used in temporal recognition applications such as text 

and speech recognition. We argue that map matching is also a temporal recognition 

application susceptible to a Markov process where the aim is to find actual paths and 
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actual locations, i.e., the hidden information, using GPS data as observed measurements. 

Map matching, as a time-series problem, resembles temporal pattern recognition 

applications, such as speech, handwriting, gesture recognition and bioinformatics, where 

the hidden Markov model is applied.  With these characteristics, the HMM-based map 

matching approach , where  finding the correct sidewalk segment out of all candidate 

sidewalk segments given a GPS trajectory, was chosen.  

The Viterbi Algorithm (Forney 1973) is a recursive optimal solution to the 

problem of estimating the state sequence of a discrete-time finite-state Markov process. 

Many problems can be cast in this form. We applied the Viterbi algorithm to estimating 

the sidewalk segments based on observed GPS positions. The key innovation using 

HMM in this algorithm for wheelchair navigation is matching sidewalk segments based 

not only on the geometry of the location readings, but additionally on the topology of the 

segments.  

4.2.1 Hidden Markov Model  

The HMM is represented by a finite set of states, each of which is associated with a 

probability distribution. Transitions among the states are governed by a set of 

probabilities called transition probabilities. In a particular state an outcome or observation 

can be generated, according to the associated probability distribution. It is only the 

outcome, not the state, that is visible to an external observer and therefore states are 

``hidden'' to the outside; hence the name Hidden Markov Model (Rabiner 1998). 

The general architecture of a hidden Markov model is shown as Figure 4.14. 
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Figure 4.14. Architecture of a HMM 

 

The architecture has two layers: {ot} represents the observable layer and ot 

corresponds to an observation value at time t. {qt} represents the hidden layer, and qt, at 

time t, comes from one state in a state space. 

In order to model a hidden Markov process, the following elements are needed: 

 The number of states in the model, n.  

 The number of observations, m. If the observations are continuous then m is 

infinite.  

 A set of state transition probabilities.  A={aij} 

aij = pr { qt+1 = j | qt = i }, 1≤ i, j ≤ n     (4.11) 

where qt denotes the state at time t. 

 An observation probability distribution in each of the states, B={bj(k)}.  

bj (k) = pr { ot = ok | qt = j }, 1≤ j ≤ n, 1≤ k ≤ m    (4.12) 

where ot is the observation at time t and ok denotes the kth observation. 

 The initial state distribution, π = {πi}, where, 

πi  = pr { q1 = i }, 1≤ i ≤ n       (4.13) 

With these, λ = ( , A, B) can be used to denote an HMM with probability distributions. 
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4.2.2 A Hidden Markov Model for Map Matching  

In a hidden Markov model, the state is not directly visible, but variables influenced by the 

state are visible. Each state has a probability distribution over the possible observations. 

Therefore, the sequence of observations provides some information about the sequence of 

states by means of a HMM (Olivier 2005). 

Given the parameters of the model, the Viterbi algorithm can solve the problem of 

how to find the most likely sequence of hidden states that could have generated by using 

a given observed sequence. The Viterbi algorithm is a dynamic programming algorithm 

for finding the most likely sequence of hidden states, called the Viterbi path.  

In map matching for wheelchair navigation, observed GPS points are the visible 

observation layer and correct sidewalk segments are the invisible state layer.  

Let Pt   {p1, p2, …, pm} denote the observation (i.e., a GPS data point) obtained 

every second t for 1 ≤ t ≤ m.  

Let Rt  { r1, r2, …, rn } denote the actual location (i.e., the correct sidewalk 

segment) at time t.  

Suppose we obtain a series of GPS observations within the time period m, so we 

could obtain m GPS points as an observation sequence from time t1 to time tm. In the state 

space, there are n states, which represent n candidate segments. The transition probability 

from any time i to the next time j represents the probability of a user’s moving from one 

segment to another segment. The model could be structured as shown in Figure 4.15. The 

goal is to find the sidewalk segment sequence that has maximum probability given the 

http://en.wikipedia.org/wiki/Likelihood_function
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observations. That is finding a sequence of actual locations, R1 . . .Rt, such that Pr(R1R2 

. . .Rt|P1P2 . . .Pt) is maximized. 

 

 

 

 

Figure 4.15. The hidden Markov model for map matching 

 

Based on conditional probabilities from basic probability theory, for any sequence 

R1 . . .Rt of actual locations we have: 

                          
                        

              
     

 (4.14) 

Given the observations, the denominator of this expression is determined (the 

exact value is unknown, but that value only depends on the observations, not on the path 

R1 . . .Rt.). So the problem is equivalent to finding R1 . . .Rt such that Pr(R1R2 . . .RtP1P2 . . 

.Pt) is maximized. 
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From the basic identities of probability theory, for any events A,B,C we have, 

Pr(ABC) = Pr(A)Pr(B|A)Pr(C|AB). Let’s use this to decompose the complicated event: 

R1R2 . . .RtP1P2 . . .Pt as a product ABC. We define A = R1 . . .Rt−1P1 . . .Pt−1, B = 

Rt, C = Pt, 

By applying the above formula, we obtain: 

Pr(R1R2 . . .RtP1P2 . . .Pt)=Pr(R1R2 . . .Rt−1P1P2 . . .Pt−1)Pr(Rt|R1 . . .Rt−1P1 . . 

.Pt−1)Pr(Pt|R1 . . .Rt−1P1 . . .Pt−1Rt). 

Furthermore, we obtain: 

Pr(R1 . . .RtP1 . . .Pt) = Pr(R1 . . .Rt−1P1 . . .Pt−1)Pr(Rt-1 -> Rt )Pr(Rt -> Pt )  

       = Pr (R0)                
                 

   .  (4.15) 

We assume each probability in the state transition matrix and in the observation 

probability matrix in the HMM is time independent. Therefore, given prior probability 

Pr(R0), observation probability Pr(Pt | Rt) and state transition probability Pr(Rt |Rt-1), we 

can use the Viterbi algorithm to find the path through the states that maximizes the 

probability of a sequence of sidewalk segments. The Viterbi algorithm uses dynamic 

programming methods to efficiently accomplish this, so that the actual path consisting of 

a sequence of sidewalk segments can be identified. 

In Equation (4.15), in order to apply the Viterbi algorithm, we need to know prior 

probability, observation probability and state transition probability in the HMM. Prior 

probability Pr(R0) is Pr(rj), when j=1,…,n, which is simply computed by 1/n as a uniform 

distribution reflecting the fact that we have no known bias about which is the correct 

sidewalk segment. Hence, how to compute observation probability and state transition 

probability becomes the key point. 
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First, we compute the observation probability, which is the probability of the 

measured location pi given rj. We can compute this with the Bayesian rule: 

           
               

                
 

   

  i=1,2…,m;   j=1,2…,n  (4.16) 

We presume that      , a prior probability in Equation (4.16), follows a uniform 

distribution. Therefore, equation (4.16) could be further simplified as: 

           
         

          
 

   

        i=1,2…,m;   j=1,2…,n  (4.17) 

          is the probability that     is the correct sidewalk segment out of the 

candidate sidewalk segments given that measured location is Pi. We computed this by 

assuming that, for most of the GPS points, the closer a sidewalk segment is to the 

observed point, the higher the probabilities that it is the correct segment. This is borne out 

by our informal observations of nearest segment matching. Considering the relationship 

of distance and observation probability as an inverse proportion, we first compute the 

probability of the perpendicular distance from GPS point pi to the segment rj over the 

summation of the distances from pi to all the candidate segments, and then use reciprocal 

relation of the probability based on distances to approximate observation probability. 

This leads to: 

         = 
                                                                  

                                                                                   
 

=  
                      

                       
 

   

      (4.18) 

In pedestrian/wheelchair navigation, users either move on the same segment, or 

they make a turn at a junction such as an intersection, exit, or entrance.  Therefore, we 

need to compute the transition probability aij, which represents the probability of the user 

moving from one sidewalk segment corresponding to a measured point to another 
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sidewalk segment corresponding to another measured point. For this, in this algorithm we 

use topological relationship to compute the transition probability. We only consider three 

topological relationships: same segment, connected segment and unconnected segment. It 

is impossible for a wheelchair user to move from a segment to an unconnected segment 

in consecutive time windows. Therefore, the transition probability from time i to the next 

time j=i+1, aij would be zero where the two segments are not connected. If two sidewalk 

segments are connected, this transition probability should be higher than if two sidewalk 

segments are unconnected, since wheelchair users would travel on the same segment 

most of the time except at an intersection or junction. Thus, the transition probability of 

moving on the same segment has the highest value. By setting aij = e
-rij

, we create an 

exponential curve for this probability distribution, where rij corresponds to the topological 

relationship between two segments. By normalization, aij changes between 0 and 1. The 

next important step is to build a transition matrix { rij } and set the value for each element 

in this matrix. The following set of rules must be followed  

(1) If two segments are connected, rij is set to 1;  

(2) If they are unconnected, then rij is set to ∞.  

(3) Otherwise, rij is 0, when two segments are same segment that is i=j.  

Take our measured GPS points on campus as an example, shown in Figure 4.16. 

First, we model sidewalk segments as a set {r1, r2, …, r12}  as Figure 4.17 shows. Next, 

we build a matrix {rij}, based on the topology of the segments in Figure 4.18.  Figure 

4.19 shows the map matching results by applying the Viterbi algorithm to the entire 

sequence of location measurements shown in Figure 4.16.  
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Figure 4.16. An example of GPS points overlaid on sidewalks on campus 

 

 

 

Figure 4.17. An abstracted sidewalk network model 

 

 

Figure 4.18. State transition matrix 
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Figure 4.19. Map matching locations versus GPS positions 

 

4.2.3 HMM-based Map Matching Process  

For a hidden Markov model, two parameters, n and m, have to be initialized, where m is 

the size of an observation sequence and n is the state number in a state space. For map 

matching, the size of the observation sequence is the number of measured GPS points, 

and the state number is the number of candidate sidewalk segments close to the observed 

GPS points. In this algorithm, after setting these two values, we take several steps to 

complete the matching process.  

First, a set of nearby candidate sidewalk segments is chosen based on the first 

GPS data observed in each sequence. Second, the transition matrix on the selected set of 

nearby candidate sidewalk segments is built (see Figure 4.18). This matrix not only 

shows the topology of segments but implies two moving modes, which are changing 

mode and continuing on same segment mode. In the case of continuing on same segment 

mode, where rij equals to 0, current and previous positions should be matched on the 
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same segment. Conversely, if rij is 1, then the wheelchair is moving in a changing mode, 

where current and previous positions are on two connected segments. Consequently, we 

could compute transition probabilities based on the transition matrix. Third, the 

perpendicular distance from each GPS point to each segment in the set of candidate 

sidewalk segments is computed, so that observation probabilities for each measured 

location are calculated. Last, the Viterbi algorithm to the observation probabilities and 

transition probabilities to compute the maximum probability sequence of sidewalk 

segments are applied. Once the most likely sidewalk segment is obtained, GPS points are 

projected to the segments and the map matching result is shown on the map. 

Figure 4.20 is the flowchart of HMM-based map matching. 

 

 

 

 

 

 

 

Figure 4.20. Flowchart of HMM-based map matching process 
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4.2.4 VALIDATION  

To validate the HMM-based map matching algorithm for pedestrian/wheelchair 

navigation, the same GPS data collection on three routes, the same sidewalk map and the 

testing environment that we described in section 4.1 are applied for evaluation of this 

algorithm. 

4.2.4.1 Performance Analysis  

Three groups of data sets, collected on main campus of University of Pittsburgh by GPS 

receiver, were processed to validate the presented algorithm. the HMM-based map 

matching algorithm. For contrast, three-route GPS raw data with map matching results 

were overlapped on campus sidewalk map, shown in Figures 4.21, 4.22, and 4.23. 

 

 
 

 

 
a. GPS raw data overlapped on campus sidewalk map 
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b. Projected result data to the matched sidewalk segments on campus sidewalk map 

Figure 4.21. Route 1 comparing map-matching result with GPS raw data on campus sidewalk map 

 

 

 
 

 

 
a. GPS raw data overlapped on campus sidewalk map 
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b. Projected result data to the matched sidewalk segments on campus sidewalk map 

 

Figure 4.22. Route 2 comparing map-matching result with GPS raw data on campus sidewalk map 

 

 

 

 
 

 

 
a. GPS raw data overlapped on campus sidewalk map 
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b. Projected result data to the matched sidewalk segments on campus sidewalk map 

Figure 4.23. Route 3 comparing map-matching result with GPS raw data on campus sidewalk map 

 

 

Like all map matching algorithms, there are mismatched points due to errors in 

geo-positioning systems and the digital map quality, both affect the performance of the 

map matching algorithm. We observe that most mismatched points in Route 3 occur 

when the data collector moved on paths with no corresponding segments on the digital 

map. Meanwhile, in the case of Route 1 and Route 2, we notice that many mismatched 

points occur on sidewalks of narrow roads due to GPS errors. 

Model parameters, n and m were specified through experiments. Based on the 

topology extracted from the campus sidewalk data, the size of the state space, i.e., the 

number of segment candidates in one map matching process, notated by n, was set as 

twelve. Experiments using 3- to 8-point sequence were conducted to determine the 

suitable number of points in one sequence. It was realized that for the real-time 

requirement of map matching a 4-point sequence is appropriate for this HMM-based map 

matching algorithm. The map matching performances are presented in Table 4.5.  
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Table 4.5. Performance results 

 

 

 

The average time per 4 points represents the average time taken on one sequence’s 

matching computation. In the offline matching, the total computation time shows the total 

time to complete the matches of all GPS points in one route. Since correct link 

identification after applying a map matching algorithm and average computation time are 

the most important performance parameters for evaluation, statistical data shows that this 

algorithm performs well and satisfies the requirements of real-time map matching in 

wheelchair navigation. 
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4.3 FUZZY-LOGIC-BASED MAP MATCHING ALGORITHM  

A Fuzzy-logic map matching algorithm is presented in this section for 

pedestrian/wheelchair navigation. Fuzzy logic, based on fuzzy reasoning concepts, is one 

of the most widely used computational methods. It is good at solving problems in many 

circumstances where uncertainties are difficult to model. Fuzzy logic can take noisy, 

imprecise input, to yield crisp (i.e. numerically accurate) output. The fuzzy-logic map 

matching was chosen because GPS data used for localization of pedestrians or wheelchair 

users contain uncertainties.  

4.3.1 Fuzzy Logic Map Matching 

Fuzzy logic is a computing approach based on "degrees of truth", a range of values from 

“true” to “false” that is used in decision making with imprecise data. Fuzzy logic is not 

any less precise than any other form of logic; it is a mathematical method for handling 

inherently imprecise concepts.  

A typical fuzzy logic inference system starts with the fuzzification of inputs and 

outputs, and executes rule-based inference, and ends with the defuzzification to obtain its 

output. In the fuzzification step, the values of the input variables are converted into 

degrees of membership for the membership functions defined on the variable. The 

inference of the fuzzy logic system is built by using rule-based fuzzy reasoning. The last 

step is called the defuzzification process. The input to this process is a fuzzy set obtained 
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from the output of the aggregation method. The output of the defuzzification process is a 

single value. 

In our fuzzy logic map matching algorithm for pedestrian/wheelchair navigation, we 

have two input variables. One is distance from a GPS point to a sidewalk segment. The 

other is the angular difference between the movement trajectory, i.e. a line connecting 

several GPS points along a segment, and the sidewalk segment. We assign input variable 

1 as “distance”, and input variable 2 as “angular difference”. The fuzzy output is the 

likelihood value to match a GPS point on a segment. 

Consider a simple knowledge-based fuzzy rule: “If the distance is short and angular 

difference is small, then the probability of the GPS point matching on the sidewalk 

segment is high”. The input variables of this rule are distance and angular difference and 

the input fuzzy subsets are short and small, respectively. The output variable is the 

probability of this map matching and the output fuzzy subset is high. 

Table 4.6 shows the definition of two inputs, one output. Figure 4.24 graphically 

presents each parameter defined in the table 4.6. Table 4.7 shows the four rules for this 

fuzzy logic map matching algorithm.  
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Table 4.6. Parameters of the fuzzy logic map matching 

 

Parameter Parameter Name Fuzzy-logic Graph Fuzzy-logic Range 

Input 1 Distance Figure 2 (a) {'short', 'long'} 

Input 2 Angular difference Figure 2 (b) { 'small', 'large' } 

Output Possibility of map 

matching 

Figure 2 (c) {'high', 'average', 'low' } 

 

 

 

a. Distance as input parameter 1        b. Angular difference as input parameter 2 

 

 

 

c. Possibility of map matching as the output 

Figure 4.24. Two inputs and the output in the fuzzy logic map matching  
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Table 4.7. Rules of the fuzzy logic map matching 

 

RULE 1 IF distance IS short AND angular difference IS small THEN the probability of 

the GPS point matching onto the sidewalk segment IS high. 

RULE 2 IF distance IS long AND angular difference IS large THEN the probability of the 

GPS point matching onto the sidewalk segment IS low. 

RULE 3 IF distance IS short AND angular difference IS large THEN the probability of 

the GPS point matching onto the sidewalk segment IS average. 

RULE 4 IF distance IS long AND angular difference IS small THEN the probability of 

the GPS point matching onto the sidewalk segment IS average. 

 

Step 1: Fuzzification of inputs and outputs 

Since fuzzy subsets describe vague concepts, the truth of any proposition, i.e. the 

difference is short in fuzzy logic becomes a matter of degree. This is achieved by the 

fuzzification of the input variable using a membership function (MF). A MF is a curve 

that defines how each point in the input space, e.g. distance in the above rule, is mapped 

to a membership value between 0 and 1. Different types of MFs are used, such as 

triangular, trapezoidal, Z-shaped, S-shaped, Gaussian, generalized bell, and sigmoidal. 

In our fuzzy logic map matching, sigmoidal curve is chosen as a MF to approximate 

the feature value with distance changing. The average horizontal error of the standard 

positioning service of GPS is 13 m at the 2σ level (ICD-GPS-200C). Therefore, a value 
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close to this horizontal error can be used as a reference when developing MFs. For 

instance, the statement “distance is short” is true if the distance is less than or equal to 10 

m. The statement is partially true if the distance is greater than 10 m and less than or 

equal to 20 m. The statement is false if the distance is greater than 20 m. The membership 

value of the MF for the antecedent “distance is short” can then be defined as

( )( , , ) 1/ (1 )s x cf x s c e   , where s and c are the slope and center of the curvature.  

In pedestrian/wheelchair navigation, the center of the curvature c is almost half of the 

width of a road, which is the critical value that differentiates the two sides of a road. In 

Table 1, the value of c equals 7 after normalization; the slope s equals -1 when the 

distance is short and equals 1 when the distance is long. 

Similarly, we use a piecewise function to represent angular difference. The fuzzy 

subsets associated with angular difference (Δψ) are small and large. The angular 

difference is fuzzified using the equations 
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when the membership value of the MF for (  ) is small, and 

0          0 25

0.25 0.625         25 65

1        65 90



  



  


      
   

    

 (4.20) 

when the membership value is large. 
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Step 2: Inference 

After the fuzzification of all inputs, fuzzy knowledge-based IF-THEN rules are 

formulated. In this map matching algorithm we establish four rules connecting input and 

output variable, listed in Table 4.6. The output of each rule is also a fuzzy set that is 

achieved by a minimum method (the minimum of all degree of membership values 

associated with inputs). The output fuzzy sets of each rule are then combined into a single 

fuzzy set using the ‘MAX’ aggregation method. 

Step 3: Defuzzification 

Several methods are available for the defuzzification process, e.g. center of 

gravity, the largest of maximum, the smallest of maximum, bisector, and weighted 

average. In order to resolve the potential conflict and to consider all recommended output 

values based on the strengths of their membership values, this algorithm uses center of 

gravity (centroid) defuzzification method where XF represents a combination of the 

outputs of our four rules. The center of gravity is given by:  
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where xr is the centroid point in the output range for each rule r, µ(xr) is 

membership value of the output distribution for each xr and XF is the final output value. 

In summary, the proposed fuzzy logic map matching algorithm performs the 

aforementioned three steps. By computing perpendicular distance and angular difference 

and applying fuzzy logic rules, we can obtain the probabilities in which a GPS position is 

matched onto all the segment candidates. The sidewalk segment that has the highest 

probability is confirmed as the map matching result. 
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4.3.2 Fuzzy Logic Map Matching Process 

In this algorithm, a three-stage process was used for finding the correct segment. The 

process has the following steps: (1) the initial map-matching process, (2) the subsequent 

map-matching process along a segment, and (3) the renewed map matching across an 

intersection.  

Since we need at least two GPS points to form a line and then to compute the angular 

difference between the movement trajectory and a sidewalk segment, we do the initial 

map matching after receiving two position fixes. The selected initial link is the link with 

the highest likelihood value, which is computed as the output value of the fuzzy logic 

map matching decision system described in the previous section.  Then, the user’s 

movement occurs in two ways, either following along an already identified sidewalk 

segment or entering into a new segment through an intersection. These two cases are 

defined as two modes: (1) following mode and (2) entering mode.  

Once a sidewalk segment is ensured as the correct segment, map matching process 

enters into “following mode”, which indicates that users are moving on the same segment 

so that consequent matches are turn into simply matching the next GPS points onto the 

underlying segment. However, if an incorrect segment is found, the subsequent steps will 

continue on the incorrect segment. Therefore, after receiving a few GPS data, we add 

historical matching data into this process to reduce the mismatch probability. Both 

distance and angle are computed to track the status of a user. First, we can verify whether 

the user is on the same segment by comparing the angle between the segment and the line 

from a GPS point to the segment’s starting node and the angle between the segment and 
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the line from a GPS point to the segment’s ending node which must be both less than 90
0
. 

Second, the changing distance from the projected GPS location to each end node of a 

segment can be used to evaluate whether the user is close to an intersection or not.  

In the case of “entering mode”, making a turn into a new segment or going straight 

into a new segment presents their own challenges. The change of distance and angle is 

the reference to differentiate the two modes. If a wheelchair is traveling straight through 

an intersection, one of the angles between a segment and the line either drawn from a 

GPS point to the upstream junction segment or drawn from a GPS point to the 

downstream junction segment must be exceeding 90
0
. However, the change in angles as a 

condition is not necessarily satisfied when the user just makes a turn. Figure 4.25 

provides two examples showing their difference. Pt {P1P2P3P4P5} presents the recorded 

GPS point at each epoch, MN is a segment and the wheelchair is moving along its path. 

Figure 4.25(a) shows the situation where the user entered into a new sidewalk segment at 

the last two points, P4 and P5, whereas Figure 4.25(b) shows the situation where the user 

made a right turn into a new sidewalk segment starting with point P4. The first example 

presents the changes of the angular value of PtNM from less than 90
0
 to greater than 90

0
 

when passing intersection N from GPS point P2 through point P4. Before passing 

intersection N, PtNM was an acute angle, but after that, it became an obtuse angle. This 

pattern does not occur in the second case. In Figure 4.25(b), PtNM still remains less 

than 90
0
. Therefore, we add distance as an additional reference parameter.  
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a. An example of going straight 

 

 

 

 

b. An example of making a turn 

Figure 4.25. Examples of entering mode 

 

First, we define the angle between segment MN and the line formed by joining GPS 

point Pt to one end of this segment as  and define the angle between segment MN and 

the line formed by joining GPS point Pt to the other end of this segment as . We also 
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define the distance from the last matched position fix to the upstream junction along the 

link as d1, and define the distance from the last matched position fix to the downstream 

junction along the link as d2. 

Second, we map match based on the following rules.  

1. Following mode:  

Match GPS points on to the underlying segment, where the angles  < 90
0
 and the 

 < 90
0
 and MIN(d1, d2) is greater than a threshold σ.  

2. Entering mode: 

Renew map matching process where one of two angles,  or , is greater than 90 , 

or both angles  and angle  are less than 90 but MIN (d1, d2) is smaller than σ. 

The map matching process needs to be renewed when user is entering an intersection. 

The topological relationship of those segments connecting the same junction help chose 

candidate segments in the renewed map matching process. The entire process of fuzzy 

logic map matching is described in Figure 4.26. In this process, the rules mentioned 

above are to determine whether a user is entering a new segment or not. 
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Figure 4.26. Flowchart of the fuzzy logic map matching process 

 

4.3.3 Validation 

In order to validate the fuzzy logic map matching algorithm, the process of fuzzy logic 

map matching is implemented and tested on the same testing environment as shown in 

section 4.1. After the fuzzy logic map matching algorithm is performed on three-route 
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GPS raw data, map matching results overlapped on the sidewalk map are shown in 

Figures 4.27 – 4.29. 

 

 

a. GPS raw data overlapped on campus sidewalk map 

 

 

 

 

 

b. Projected result data to the matched sidewalk segments on campus sidewalk map 

 

Figure 4.27. Route 1 comparing map-matching result with GPS raw data on campus sidewalk map 
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a. GPS raw data overlapped on campus sidewalk map 

 
 

 

 

 

 

 

b. Projected result data to the matched sidewalk segments on campus sidewalk map 

 

Figure 4.28. Route 2 comparing map-matching result with GPS raw data on campus sidewalk map 
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a. GPS raw data overlapped on campus sidewalk map 

 

 

 

 

b. Projected result data to the matched sidewalk segments on campus sidewalk map 

Figure 4.29. Route 3 comparing map-matching result with GPS raw data on campus sidewalk map 

 

The map matching performances on three chosen routes are presented in Table 4.8.  
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Table 4.8. Performances of Experiments 

 

 

 

The accuracy in the experiment is mainly influenced by the failure in differentiating 

two sides of a road with stand-alone GPS data. We realize that most mismatched points in 

our routes occur on sidewalks of narrow roads due to GPS accuracy limitation. With 

regard to the time performance, this fuzzy logic map matching algorithm performs 

reasonably well to meet the demand of real-time navigation, based on the average 

computation time. 

4.4 COMPARISON 

All the proposed GPS-based map matching algorithms have been developed and 

evaluated based on three sets of collected GPS data and the sidewalk network on the 

campus sidewalk network.  

Figure 4.30 uses one-route GPS data as an example to show the map matching results 

after applying each algorithm. 
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a. GPS raw data overlaid over campus sidewalk map 

 

 

 

b. Fuzzy logic map matching result overlaid over campus sidewalk map 

 

 

 

c. Chain-code-based map matching result overlaid over campus sidewalk map 
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d. Hidden Markov Model-based map matching result overlaid over campus sidewalk map 

Figure 4.30. Comparison among the three GPS-based map matching algorithms on one route 

 

Experiment results show some issues in common, which are: 

1. Poor GPS data lead to mismatching.   

2. Many mismatched points occur on sidewalks along the sides of narrow roads, where 

algorithms have difficulties in distinguishing the two sides of a road within GPS error 

range. 

3. GPS-based map matching does not provide a solution when is no GPS signal. 

On the other hand, differences in accuracy, computation time cost and 

implementation complexity between the three GPS-based map matching algorithms are 

summarized. Table 4.9 compares the accuracy of the three map matching algorithms on 

three routes. Table 4.10 shows their differences in time performance and Table 4.11 gives 

an overall comparison in accuracy, computation time cost and implementation 

complexity (mainly measured by requirement to skilled developers, length of 

implementation time and risks taken from implementation errors). 
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Table 4.9. Accuracy of GPS-based map matching algorithms for pedestrian/wheelchair navigation 

 

Testing 

Route 

Total Number 

of GPS Points 

Correct Segment Identification Rate After Map Matching 

Fuzzy-Logic MM         HMM-Based MM    Chain-Code-Based MM 

Route 1 682 87.5% 92.4% 93.4% 

Route 2 1516 94.3% 96% 95.4% 

Route 3 933 92.5% 92.7% 89.8% 

 

Table 4.10. Time performance of GPS-based map matching algorithms for pedestrian/wheelchair 

navigation 

 

Testing 

Route 

Total Number 

of GPS Points 

Average Computation Time per Point in Map Matching (ms) 

Fuzzy-Logic MM         HMM-Based MM    Chain-Code-Based MM 

Route 1 682 8.042 3.666 0.0044 

Route 2 1516 8.529 3.709 0.0043 

Route 3 933 8.390 3.682 0.0046 

 

Table 4.11. Overall comparison of three GPS-based map matching algorithms  

 

GPS-based Map Matching Accuracy Computation Time Cost  Implementation Complexity 

Fuzzy-Logic MM relative low relative low medium 

HMM-Based MM relative high medium relative high 

Chain-Code-Based MM relative low relative high relative low 
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Shown in Table 4.9, the Hidden Markov Model-based map matching algorithm performs 

best on the average in terms of correct segment identification. From Table 4.10, it can be 

seen that all the three map matching algorithms meet the requirement in terms of time 

performance for real-time pedestrian/wheelchair navigation, when location updates for 

pedestrian/wheelchair navigation are required to be no longer than 1s, which is normally 

required in vehicle navigation systems.  Comparing accuracy and time performance of 

the three map matching algorithms, HMM-based map matching algorithm performs 

better than fuzzy-logic map matching and chain-code-based map matching, but it requires 

more effort on implementation. In contrast, the chain-code-based map matching 

algorithm performs relatively poorly in terms of accuracy, but it costs the least in 

computation with relatively low implementation complexity. Fuzzy-logic map matching 

is not as good as HMM-based map matching in accuracy but cost most in computation. 

Therefore, in pedestrian/wheelchair navigation services solely based on GPS data, HMM-

based map matching would be the best choice, compared with the other two algorithms, if 

accuracy is of the highest priority, chain-code-based map matching would be the best 

choice if computation cost was the most important factor. 
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5.0  MULTI-SENSOR INTEGRATED MAP MATCHING ALGORITHMS 

The experimental results in Chapter 4, which are solely based on GPS data, showed that 

two major factors influence map matching in pedestrian/wheelchair navigation systems 

and services. One major factor is that most mismatching occurs in areas with poor GPS 

signals. The other is that low-end GPS receivers (such as those typically found in mobile 

devices) do not support a degree of positional accuracy that is high enough to identify the 

correct side of a narrow road segment in a sidewalk network. Considering these factors, 

two options are available to enhance positioning accuracy, either by using high-end GPS 

receivers, adding additional sensors, or both. Since nowadays high-end GPS receivers are 

still high-priced (Schiller and Voisard, 2004; Theiss et al., 2005), adding additional 

sensors is considered in this thesis. As a consequence, the performance of map matching 

can be improved in pedestrian/wheelchair navigation systems and services.  

Due to recent advances in computing and mobile device technologies, smartphones, 

like iPhone and Android phones, are growing in popularity. Navigation services on 

smartphones can be based on common technologies such as GPS, cameras, 

accelerometers, compasses, and even gyroscopes. Given the popularity of smartphones 

and the availability of technologies for navigation services, smartphones are the platform 

of choice for developing multi-sensor positioning and map matching for 

pedestrian/wheelchair navigation in this dissertation. 
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5.1 CLIENT/SERVER ARCHITECTURES FOR MAP MATCHING 

There are generally two types of navigation platforms. One works as a standalone system, 

while the other works on a network with clients and servers. Standalone platforms are 

referred to as “navigation systems” and network-based navigation platforms are referred 

to as “navigation services” (Karimi, 2011). Since smartphones have relatively limited 

memory and computing capabilities, it is difficult to build standalone 

pedestrian/wheelchair navigation systems on them. Therefore, in this paper, a 

client/server architecture is discussed to provide multi-sensor map matching for 

pedestrian/wheelchair navigation services.  

A client/server architecture generally involves multiple clients connecting to a 

central server. In our pedestrian/wheelchair navigation service, the clients are 

smartphones and the server is responsible for storing large databases, like maps, and 

performing complex navigation services, such as map matching. 

The client/server architecture for the map matching service can be implemented in 

one of the two approaches: a lightweight client with a heavyweight server, and a 

heavyweight client with a lightweight server.  

5.1.1 Lightweight Client/Heavyweight Server Architecture 

In the lightweight client/heavyweight server architecture, the smartphone is 

responsible for collecting real-time data (positioning data as well as other types of data 

such as heading data), synchronizing multi-sensor data, requesting map-matched results 

from the server, and updating the map that is presented to the user. In this approach, the 
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map data is stored in the server to perform map matching, among other functions. Figure 

5.1 illustrates the lightweight client/heavyweight server architecture for map matching.  

 

 

 

 

 

 

                                         

 

 

Figure 5.1. Lightweight client/ heavyweight server architecture for map matching 

 

5.1.2 Heavyweight Client/Lightweight Server Architecture 

In the heavyweight client/lightweight server architecture, in addition to real-time data 

collection and multi-sensor data synchronization, the client is responsible for performing 

map caching and map matching; once a user’s current location is given, the relevant map 

data must be downloaded and cached to the client. With the movement of the user, map-

matched locations will be updated and presented to the user in real time. In this approach, 

all map data (sidewalks) are managed and maintained in the server. For the client to be 
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able to perform map matching, the server must retrieve the relevant sidewalks and then 

send them to the client as the user’s location changes. Figure 5.2 illustrates the 

heavyweight client/lightweight architecture for map matching.  

 

 

 

 

 

                              

 

 

       

 

 

Figure 5.2. Heavyweight client/ lightweight server framework for map matching 
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5.2 MOVEMENT PATTERN RECOGNITION ASSISTED MAP MATCHING 

FOR PEDESTRIAN/WHEELCHAIR NAVIGATION  

iPhone and Android platforms currently represent the cutting edge of mobile technology 

and have been widely adopted by people around the world. These two smartphone 

platforms come with built-in GPS receivers and integrated motion sensors, such as an 

accelerometer, a compass and even a gyroscope, which can be used for orientation 

detection, gesture recognition, and image stabilization, among other things.  

iPhone and Android platforms are different in terms of GPS location management. 

iPhone development platform only provides distance-based user-location updating (Arfe 

et al., 2011). On an Android development platform, the user-location updating function 

has two modes: distance-based location updating and time-based location updating (Arfe 

et al., 2011). The distance-based location updating mode updates user’s location only 

when the user travels for a distance that is greater than a pre-determined distance.  The 

time-based location updating mode updates user’s location each time a given time 

interval is reached.  Both location updating modes have their own advantages and 

disadvantages. In the time-based location updating mode, if the time interval is small, 

frequent user-location updates lead to more awareness of the mobile user’s location. 

However, transmission of too many updates in short time intervals may overload the 

network. On the other hand, in the distance-based location updating mode, infrequent 

location updates may cause a lack of awareness about the actual user location but cost 

less in terms of data transmission compared to the frequent user-location update mode. 
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Neither of these location updating modes is suitable for pedestrian/wheelchair 

navigation services. Current GPS technology is unable, due to its accuracy range, to 

detect movement of pedestrians or wheelchair users who typically move at low speeds. 

Pedestrians or wheelchair users may move, stop, or make turns at will, which makes 

presetting a time interval for location updates difficult. As a result, updating a 

pedestrian’s or wheelchair user’s location based on time is impractical. Figure 5.3 shows 

an example of GPS error that can result when a user is stopped at an intersection by a red 

traffic light. 

 

 

 

Figure 5.3. An example of GPS error in the scenario in which a user is stopped on a sidewalk. 

 

When there is no movement, GPS keeps updating the same location resulting in 

multiple positions, circles in Figure 5.3. In this example, with no knowledge about user’s 

movement, the map matching algorithm will treat all the received positions as individual 
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locations and match them onto the sidewalk. Map matching GPS data when there is no 

user’s movement will not represent user’s actual location, since every distinct GPS data 

within the error circle will be located on a different point of the sidewalk segment. 

In order to address the problem of location updating in pedestrian/wheelchair 

navigation services, an approach that map matches user’s locations and updates them 

based on users’ movement behavior is proposed.  

Activity recognition from accelerometer data has been a research topic for many 

years, and is usually formulated as a signal processing and classification problem (Mathie 

et al. 2004; Ravi, et al., 2005, Sun et al., 2009). Research in activity recognition has 

focused on identification of physical activities, such as walking, jogging, resting, 

standing, climbing, or running. Accelerometers have been used as motion detectors 

(DeVaul &Dunn 2001) as well as for body-position and posture sensing (Foerster, Smeja, 

& Fahrenberg 1999). Inspired by the accelerometer-related research on activity 

recognition, this dissertation applies signal processing and pattern recognition techniques 

to process accelerometer data to recognize user’s movement behavior. The following 

section will present a new map matching algorithm that is assisted by the recognition of 

user’s movement pattern. The algorithm has two major steps. The first step involves 

using accelerometer data to recognize user’s movement behavior and the second step 

involves performing map matching by using positioning data from GPS, orientation data 

from a compass, and knowledge of user’s movement pattern. 
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5.2.1 Movement Pattern Recognition  

Pedestrian/wheelchair navigation activities that occur outdoors can be grouped into four 

movement modes: no movement, walking, running, and turning. To detect these four 

modes of movement, four classes corresponding to these modes are defined in a decision 

tree classifier. A decision tree classification and recognition was developed and is 

described below. 

Figure 5.4 shows the process of movement pattern classification and recognition. The 

process has two stages: a training stage and a testing stage. Both training stage and testing 

stage consist of four steps, three of which are the same in each stage. In the first step, data 

are collected from multi-sensors. In the second step, the raw data are pre-processed. In 

the third step, features are extracted from pre-processed data and raw data to create 

feature vectors. Moreover, the construction process of decision tree is used to feature 

selection. In the last step of the training stage, a decision-tree classifier is generated 

which will be used for recognition in the testing stage.  
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Figure 5.4. Overview of movement pattern recognition 

 

5.2.1.1 Signal Pre-processing 

Accelerometers are sensitive to shaking and vibration, while digital compasses are 

susceptible to noise disturbances in the Earth’s magnetic field. The magnetic distortion 

may vary significantly with time and location due to environmental changes. For this, 

before accelerations and orientations are measured by an accelerometer and a compass, 

they must be calibrated in order to reduce the noise disruption of the environment. 

Once calibrated, Discrete Fourier Transform (DFT) is used to convert the 

acceleration data from time-domain values to frequency-domain features. In practice, 

a Fast Fourier Transform (FFT) algorithm is used to speed up DFT computations. For fast 

computation of FFT, a window size of 128 is used; this size was chosen as it can provide 

sufficient data for feature extraction in the next step and can meet the demand of 

computation in real-time navigation services.  
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5.2.1.2 Feature Extraction  

With noises, if the raw accelerometer data were used directly as inputs to the 

decision tree classifier, the activity classification would produce poor results. It is 

possible to extract appropriate features by applying preprocessed data to enhance the 

quality of classification. In this dissertation, features are extracted from raw 

accelerometer signals through a sliding window of 128 samples, 64 of which overlap with 

its predecessor. The reason for utilizing sliding windows with 50% overlap to extract 

features is explained in the literature (e.g., see Bao and Intille, 2004). 

Since a 3D accelerometer, used in most smartphones, can measure acceleration 

more accurately than a 2D accelerometer can, this dissertation uses typical 3D 

accelerometers available in smartphones. Figure 5.5 shows a sketch map of a 3D 

accelerometer, indicating three-axis directions. These three-axis accelerations are 

measured as   ,    and   . 

 

 

 

Figure 5.5. 3D accelerometer 

 

It should be noted that it is unnecessary to recognize all types of activities with high 

accuracy, rather it is sufficient to distinguish between the different modes (i.e., no 
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movement, walking, running, and turning) for the purpose of navigation. To distinguish 

between the four modes, four features are extracted from each of the three axes in the 

accelerometer, giving a total of twelve attributes. The extracted features are mean, 

standard deviation, energy, and correlation.  

Possible range of acceleration data varies with different activities. The energy 

feature is widely considered in activity measurement and recognition, while correlation is 

especially useful for differentiating among activities that involve translation of 

dimensions. No translation in dimensions is produced by the sensor when there is no 

movement, while walking and running usually involve translation in one dimension. 

Finally, turning involves translation in more than one dimension. Turning could be 

making a left turn, making a right turn, or making a U turn. It can be identified by 

orientation changes measured with a compass.  

Taking the x axis of the accelerometer as an example, equations to represent each of 

the four features are as follows (features in axis y and axis z are computed in the same 

way). 

   
 

 
    

 
    , where    is x-axis acceleration, and     is the mean of all x-

axis accelerations values in sample size N. 

   = 
          

 

   
, where    is the standard deviation of x-axis accelerations in 

sample size N. 

   
      

 
   

 
, where Ex is energy,    is the component produced by FFT, and N 

represents the length of the sliding window. 
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, where         is correlation between each pair of axes as the 

ratio of the covariance and the product of the standard deviations. 

5.2.1.3 Feature Selection and Classification 

After the feature vector is generated, the next step is feature selection and classification. 

Of the twelve features computed, only eight are considered to be useful to recognize 

user’s movement. For example, when a smartphone is held face-up, its embeded 

accelerometer is faced up as shown in Figure 5.5. The x direction indicated in the figure 

is perpendicular to the direction of movement and direction of up-and-down vibration in 

the movement. Therefore, the features related to the x-axis movement are not useful for 

distinguishing between the four movement modes. In this case, the features computed 

based on the x-axis acceleration can be removed from the feature list. Table 5.1 shows 

the eight features after eliminating the x-axis–related features. 

 

Table 5.1. Selected features 

 

Symbol f1 f2 f3 f4 f5 f6 f7 f8 

Feature my mz sy sz Ey Ez corrxy(1,2) corrxz(1,2) 

 

 

This eight-feature vector is further compressed by employing a decision tree to eliminate 

redundant features. In the training stage, a decision tree is constructed based on a training 

data set. Figure 5.6 shows the movement pattern recognition decision tree after feature 
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selection. Eventually the selected features are f1, f3, f4, f6 and f7, which correspond to my, 

sy, sz, Ez and corrxy(1,2), respectively. 

 

 
 

Figure 5.6. Movement recognition decision tree 

 

In Figure 5.6, the leaf nodes 1, 2, 3, and 4 represent the four movement modes, i.e., 

no movement, walking, running, and turning, respectively. Given the decision tree built 

in the training stage, to identify user’s movement pattern in the testing stage, 

consecutively collected accelerometer data are processed in real time to compute the five 

selected features as feature vectors. Through the decision tree, the extracted feature 

vectors are used to determine the mode to which user’s movement belongs. The identified 

mode will be used for map matching, as described in the next section. 

5.2.2 Movement Pattern Recognition Assisted Map Matching 

In the lightweight client/heavyweight server architecture, user’s movement pattern is 

recognized in the client by using accelerometer data, where user’s location updates are 
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sent to the server in preset time intervals that vary with the user’s movement modes. In 

the turning mode, with the help of a compass in the smartphone, different turning types, 

such as left turns, right turns, and U turns can be further distinguished from one another. 

This orientation data can enhance the accuracy of GPS-based map matching. Given the 

differences between the three sensors (i.e., accelerometer, compass, GPS), they need to 

be synchronized in order to ensure that they work effectively in tandem. Figure 5.7 shows 

the relationship between the three sensors’ data, and how they are fused and synchronized 

for map matching. 

 

 

 

 

 

 

 

 

 

Figure 5.7.  Multi-sensor data integrated map matching 

 

In the multi-sensor integration map matching, GPS data are used for absolute 

positioning in recognizing user’s movement. Accelerometer data are used for recognizing 

four modes of movement, as described earlier. When referring to the North direction, for 

example, orientation data, obtained from the compass, indicate the orientation of user’s 

movement. This helps in distinguishing between different turning modes. To recognize 

movement patterns as accurately as possible, accelerometer data are sampled in the 

highest frequency in order to obtain sufficient samples for FFT processing and feature 
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extraction. Figure 5.8 shows a snapshot of the 3D accelerometer data. Figure 5.9 shows 

an example of orientation data relative to the North direction.  

 

  

 

Figure 5.8. Accelerometer Data (acceleration in m2/s)  Figure 5.9. Orientation Data (angle in degree) 

 

In the multi-sensor data integration map matching, synchronization is essential to 

keep all sensor data working in tandem. Data collected from different sensors have 

different sampling frequencies. With knowing user’s current movement mode, the 

sampling time is determined by the synchronization function. Figure 5.10 shows the user 

in a walking mode at time t0 and in a running mode between t1 and t2. Once the change in 

movement pattern is detected, the sampling frequency changes to a suitable interval for 

sampling data in the running mode. As the user stops between t4 and t5, the sampling 

frequency changes again, since no movement is detected.   
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Figure 5.10. Timing diagram for synchronization 

 

For map matching, using user’s position based only on GPS data, the synchronization 

timeline starts from the moment when the smartphone begins receiving GPS data. While 

the map matching algorithm waits for the GPS receiver to provide its first position, this is 

known as the Time-To-First-Fix (TTFF) problem (Lehtinen et al., 2008), accelerometer 

and compass data can be obtained and used to detect user’s movement behavior. As 

user’s movement mode changes, the time interval of sending GPS data and updating 

user’s location by map matching services will also change. In Figure 5.10, each time 

point marked on the timeline indicates when all the sensor data are synchronized, given 

user’s movement mode changes.  

The flowchart of the movement pattern-recognition-assisted map matching algorithm 

is shown in Figure 5.11. First, as GPS data and user’s heading information provided by 

the compass are updated in real time, a set of nearest sidewalk segments is chosen as 

candidates. By comparing heading values of the user in consecutive time, e.g., heading in 
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time tc-1 and heading in time tc, heading changes above or below a threshold are used to 

judge whether the user is making a turn or not. By comparing the orientation of a 

currently map-matched segment with the heading of the user and knowing the current 

map-matched location of the user, segment candidates can be further limited under 

different circumstances during the movement.  Next, map matching decisions are made 

by evaluating a weighted combination of distance for positioning data to the candidate 

segments, and heading differences of the positioning trajectory and segment orientation. 

Once a position data is map matched, the map matching algorithm will wait for the next 

set of GPS and orientation data from the client. 
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Figure 5.11. Flowchart of the movement pattern-recognition-assisted map matching algorithm 

 



 142 

5.2.3 Experiments 

To validate the movement-pattern-recognition-assisted map matching algorithm, the 

sidewalk network of the University of Pittsburgh’s main campus was used and GPS 

points for three routes were collected by walking and using an Android phone (Motorola 

BackFlip). The server was a PC machine with an “Intel Core 2 2.13G Hz” CPU. 

The experiments were performed in two parts. The first part aimed to validate the 

movement pattern recognition approach. The experimental data contained both training 

data, which were collected for movement pattern classification, and testing data, which 

were used to recognize user’s movement on real routes. The second part of the 

experiment aimed to evaluate the map matching performance, as assisted by user’s 

movement pattern recognition.  

5.2.3.1 Data Collection and Data Sampling 

This section describes the experimental setup to collect sensor data for user’s movement 

pattern recognition and location estimation. All the sensors (GPS, accelerometer, and 

compass) used in the experiments are available on the Android smartphone. An image of 

this phone and the direction of its 3D accelerometer are shown in Figure 5.12.  
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Figure 5.12. Motorola Backflip smartphone and the direction of its 3D accelerometer 

 

Figure 5.13 shows a sample of the recorded data in a log file. The log file includes 

collected GPS, accelerometer data, and compass data with time stamps. GPS data are 

tagged by GPS in the log file, which contain longitude, latitude, altitude, accuracy, 

bearing and speed in order. Accelerometer data are tagged by accelerometer, which are 

three-axis acceleration data, i.e., acceleration in x-direction, y-direction, and z-direction. 

Compass data consist of 3-axis orientation data, orientation in x-direction, y-direction, 

and z-direction. 

 

Figure 5.13. A sample of a log file recording GPS, accelerometer, and orientation data 
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On Android phones, the GPS update frequency is controlled by either setting a 

minimum time interval (minTime) or setting a minimum distance interval (minDistance). 

If the value of minTime is greater than 0, the Location Manager in smartphones could 

stop working for a minTime of milliseconds between location updates to conserve power. 

If the value of minDistance is greater than 0, locations will only be updated when the 

device (and thus the user) moves by a distance of minDistance meters. Since GPS 

receivers on smartphones do provide accurate distance measurement in low-speed 

movements, distance-based location updates are not appropriate for 

pedestrian/wheelchair navigation. For this reason, minDistance is set to 0. 

In order to save energy and minimize computation time (map matching is 

potentially a complex task and its response is needed in real time), the following 

strategy, based on user’s movement pattern recognition, is executed to update user’s 

location.  

1. Update GPS position every 3 seconds if the user’s movement mode is recognized 

as walking;  set minTime to 3s. 

2. Update GPS position every 2 seconds if the user is running; set minTime to 2s. 

3. Stop updating GPS position if the user is not moving. 

The Motorola BackFlip (the smartphone used in these experiments) can provide 

sampling frequency of, at most, 110Hz on its accelerometer. A sliding window is set, 

including 128 sampling data which is the same amount of data collected within a time 

interval of 1.16 s in 110Hz. With 50% overlap between two continuous sliding windows, 

a three-second interval covers at least four sets of sampling values and a two-second 

interval covers at least two sets of sampling values. Assuming that the user does not 
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change movement mode very often, continuous movement in a single mode can provide 

sufficient sampling data for recognizing pedestrian/wheelchair movement pattern. 

5.2.3.2 Training and Testing 

To analyze movement pattern, we collected a set of training data by labeling user’s 

behavior, such as walking, no movement, running, and turning. The training data set was 

used to build a decision tree as the classifier, and is shown in Figure 5.6. We then tested 

movement recognition on real routes within the study area. Along the testing routes, 

user’s movement pattern in different places is recorded manually as ground truth. By 

comparing the ground truth data with results of the movement pattern recognition 

algorithm, the accuracy of recognizing different movement behaviors is shown in Table 

5.2.  

 

Table 5.2. Classifier accuracy in identifying four different movement behaviors 

 

 Correct Recognition Accuracy Rate (%) 

Walking 92.8% 

No movement 97.8% 

Running 93.4% 

Turning 90.6% 

 

 

In user’s total walking movement, 92.8% were recognized correctly; 1.4% were 

recognized incorrectly as no movement; 2.6% were recognized incorrectly as running; 

3.2% were recognized incorrectly as turning. 97.8% of no movement were recognized 
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correctly, but 2.2% were recognized incorrectly as walking. Similarly, 93.4% of running 

movement were recognized correctly, but 6.6% were recognized incorrectly as walking. 

Turning movement was recognized 90.6% correctly, but 9.4% were recognized 

incorrectly as running. The confusion matrix of cross-validation on the feature 

classification of movement behaviors is shown in Table 5.3.   

 

Table 5.3. Confusion matrix of cross-validation on feature classification of movement behavior 

 

Recognition 

Movement Mode 

walking no movement running turning 

walking 92.8% 1.4% 2.6% 3.2% 

no movement 2.2% 97.8% 0 0 

running 6.6% 0 93.4% 0 

turning 9.4% 0 0 90.6% 

 

 

Given that over 90% of all movement modes can be correctly recognized, it is 

feasible to use the movement behavior recognition algorithm to determine actual 

movement behavior. Based on the movement pattern recognition, map matching is 

expected to perform more efficiently, as illustrated in the next section. 
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5.2.3.3 Map Matching Validation 

To evaluate the performance of the movement-pattern-recognition-assisted map matching 

algorithm as outlined in Figure 5.11, we tested the algorithm on a set of routes on the 

main campus of the University of Pittsburgh. Three routes were chosen in the experiment. 

Route 1 was selected to represent a short route, where the map matching algorithm was 

validated in a scenario where the user moved close to buildings. The user started walking 

along a wide street and then turned into a narrow street. Route 2, as a medium long route, 

was selected to validate the map matching algorithm in the area with narrow streets and 

dense buildings. Route 3, the longest route in the three routes, was chosen to validate the 

map matching algorithm in an area where GPS data are influenced by multipath 

reflection due to buildings, grasslands, main streets, and small paths. The user’s 

movements on Route 2 and Route 3 include all the four movement modes discussed in 

the earlier section. 

Figures 5.14–5.16 show the comparison of raw GPS positions and map-matched 

locations in the three routes. In Figures 5.14–5.16 (a), black points indicate raw GPS 

positions and red points indicate map-matched locations overlapped on the sidewalk 

network. Figures 5.14-5.16 (b) show map matching results with ground truth labeled by 

movement modes overlaid on a Google satellite map.   
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Figure 5.14. Route 1 comparing map matching result with GPS raw data 

 

  

 

 

 

Figure 5.15. Route 2 comparing map matching result with GPS raw data 

a. Raw GPS data and map matching locations 

overlaid on campus sidewalk map 

 

b. Map matching locations compared with 

ground truth overlaid on Google satellite map 

 

a.  Raw GPS data and map matching locations 

overlaid on campus sidewalk map 

b. Map matching locations compared with 

ground truth overlaid on Google satellite map 
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Figure 5.16. Route 3 comparing map matching result with GPS raw data 

 

 

Table 5.4 shows the result of analyzing the map matching performance in efficiency 

and accuracy. Taking Route 1 as an example, due to correctly recognizing user’s different 

movement modes, computation for map matching is reduced; 41 out of 133 GPS data 

were sent for map matching to the server. The visualized results in Figure 5.14 also show 

that the user’s locations still can be continuously and clearly tracked without any 

influences by the reduction of map matching results. By knowing user’s turning behavior, 

the map matching algorithm was only performed on the sidewalk connected to the 

previously walked-on sidewalk when the user approached an intersection. This improved 

the accuracy of the map matching algorithm.  

 

 

 

a. Raw GPS data and map matching locations 

overlaid on campus sidewalk map 

b. Map matching locations compared with ground 

truth overlaid on Google satellite map 

walk 

walk 
run 

walk 

turn 

turn 

run 

stop 

stop 
turn 

walk 



 150 

Table 5.4. Map matching performance (efficiency and accuracy) 

 

 

 

 

Compared with the high-quality data collected on the campus using a professional-

grade GPS receiver in Chapter 4, the segment identification accuracy in our experiments 

is influenced largely by the poor quality of GPS data collected by a consumer-grade GPS 

receiver embedded in the smartphone.  

Figures 5.14-5.16 show raw GPS data received from the smartphone. It is clear that 

the GPS data received from the smartphone can be noisy and inaccurate, especially when 

users are on narrow streets and when users move close to tall buildings. Low GPS data 

accuracy caused most of the mismatched points in the results. For example, in Route 2, 

mismatched points occurred during the time the user was turning to a narrow street at the 

intersection. Even though the turning behavior of the user was recognized, the GPS 

accuracy is not high enough to distinguish between the two sides of the narrow street. 

The mismatched points at the intersection led to mismatched projections on the connected 

segment, as shown in Figure 5.15. This is the reason why the map matching accuracy 
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shown in Table 5.4 is only 82%, mainly due to the smartphone GPS’s inability to 

distinguish between the two sides of the narrow street.  By recognizing user’s movement 

pattern, in Route 2, out of 320 GPS data, 100 were sent to the server for map matching. 

In Route 3, the map-matched results also show problems with finding the side of the 

street on which the user was actually walking. To distinguish between the two sides of a 

street, high positional accuracy data will be needed in future works. Except for the 

problem of identifying the side of a street, the experimental results show that the map 

matching algorithm can correctly estimate user’s location in majority of the routes as 

compared with ground truth shown in Figure 5.16 (b). 

Furthermore, the algorithm has low cost of communication and computation. By 

recognizing user’s movement on each route, shown in the last column of Table 5.4, 

instead of sending user’s location, either based on changes of time or changes of distance, 

movement pattern recognition based on location updates can significantly reduce 

communication costs between the server and the clients and reduce the calculation costs 

of map matching. The results shown in Figures 5.14-5.16 also demonstrated that the 

movement pattern recognition based on location updates can provide location estimation 

continuously without redundancy.  It can be seen that the number of actual GPS data sent 

to the server, as shown in the second column, is less than one-third that of the number of 

GPS data received per second, as shown in the first column.  
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5.3 MULTI-SENSOR MAP MATCHING USING MONOCULAR VISUAL 

ODOMETRY TECHNIQUE FOR PEDESTRIAN/WHHELCHAIR NAVIGATION 

As discussed in Chapter 4, GPS, as the dominant outdoor geo-positioning technology, has 

been widely used in navigation systems/services. Despite this trend, however, one of the 

shortcomings of GPS is that its accuracy can be degraded or unavailable in areas with 

high-rise buildings and obstacles, among other things. Compared to positioning of 

vehicles, GPS positioning of pedestrians/wheelchair users is more challenging in that 

pedestrians/wheelchair users move in low speeds and often close to buildings, where 

multi-path reflections, causing signal degradation, are more frequent.  

One possible approach to improve accuracy of geo-positioning, especially in 

problematic areas, is to integrate GPS with other types of positioning sensors (Karimi 

2011; Ahmed et al., 2009). Such integrations can help track users in areas with poor, or 

even without, GPS signals, in order to fill in extant signal gaps in GPS positioning.  

Sensor-integrated geo-positioning estimates positions through the sensory fusion of 

GPS and other sensors like motion sensors or vision sensors. The additional sensors are 

used in the measurement of relative movement distance. For instance, data from inertial 

positioning sensors, like an accelerometer or a gyroscope, can be used to estimate change 

in position over time; this is called odometry. Odometry is used to interpret data received 

from the movement of actuators to determine position replacement over time, such as 

through the use of devices like rotary encoders, which are used to measure wheel 

rotations (Ohno, et al., 2004). Similarly, visual odometry is the process of estimating 

traveled distance using sequential camera images (Hagnelius, 2005). However, as all 

http://en.wikipedia.org/wiki/Rotary_encoder
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types of odometry suffer from precision problems, visual odometry must also deal with 

errors that can occur through the accumulation of data on the continuous motion of 

subjects. In spite of this, visual odometry can be more accurate compared to classical 

odometry that relies on motion sensors, (Hagnelius, 2005). For this reason, in this 

dissertation, visual odometry is explored, by integrating GPS positions with vision-based 

positioning results, to estimate relative positions of pedestrian/wheelchair users on the 

sidewalk. Advances in mobile computing technologies have resulted in smartphones that 

include sensors like GPS, camera, accelerometer, compass, and even gyroscope. GPS 

provides absolute positioning; camera can be used to record videos or capture images; 

accelerometer measures acceleration data; and compass data can be used to calculate 

orientation. Equipped with these sensors, smartphones are seen as suitable platforms for 

multi-sensor map matching.  

The camera pose estimation in visual odometry has various approaches that differ in 

the number and type of cameras used (Davide, 2008; Kitt et al., 2010). If more than one 

camera is used, it is possible to recover the scale and scene geometry of the environment 

through triangulation of the 3D points. Se et al. (2007) and Nogueira et al. (2008) use the 

binocular vision method to build 3D environment in street view. However, since current 

smartphones have only one camera, the focus of this dissertation is on the monocular 

visual odometry. In this section, a multi-sensor map matching algorithm will be presented 

by integrating visual data, accelerometer data, and GPS data to provide continuous 

localization of pedestrian/wheelchair navigation. 
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5.3.1 Multi-Sensor Map Matching Algorithm Using Monocular Visual Odometry 

For pedestrian/wheelchair outdoor navigation, map matching decision can be made solely 

based on GPS data when high-quality GPS data are available. When 

pedestrians/wheelchair users move into areas with poor or no GPS signals, the monocular 

visual odometry is one possible approach to continue tracking user’s location movement. 

Whether visual odometry is required for map matching or only GPS data are needed is 

determined by quality of GPS data. For this reason, the quality of GPS data needs to be 

detected in real time as users move in order to provide users with continuous map 

matching service. If GPS accuracy, horizontal accuracy measured in meters, is above a 

threshold, GPS signals are considered as good quality. In areas with good GPS quality, a 

GPS-based map matching algorithm is sufficient to estimate user’s location. Conversely, 

in areas with poor GPS quality, when GPS accuracy is above a threshold, vision-based 

positioning through a visual odometry technique can be used to calculate the relative 

distance in user’s movement. Furthermore, by fusing vision-based positioning results 

with GPS-based map matching results user’s absolute locations can be obtained. In 

vision-based positioning, image acquisition is required for image matching in motion 

estimation; this can be accomplished by extracting video frames to reduce redundancy in 

the obtained images. For this, accelerometer data are utilized to decide when video 

frames should be extracted by recognizing user’s movement (through camera movement). 

To enhance accuracy of map matching, orientation data from a compass are used during 

the time the user makes turns. Figure 5.17 shows the flowchart of the algorithm. 
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Figure 5.17. Flowchart of multi-sensor map matching algorithm using monocular visual odometry 

 

In Figure 5.17, an accelerometer measures acceleration data to detect user’s 

movements. The user’s movement mode determines when images need to be captured 

from a video stream by following a rule that will be described later. In addition, unlike 

using a stereo vision, monocular visual odometry has to deal with the ambiguity 

problem of scale factors from a single image in order to reconstruct the 3D structure of 

the real world (Hakeem, et al., 2006; Esteban et al., 2010). To address the problem of 

scale factors in monocular visual odometry, accelerometer data is considered. The 

accelerometer is utilized to measure the distance between a pair of consecutive frames 

to calculate the scale factor between them. 
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5.3.2 Accelerometer-Assisted Monocular Visual Odometry for Motion Estimation  

Visual odometry is the process of continuously estimating the position and orientation of 

a vehicle in robotics research (Davide, 2008). The process of visual odometry includes 

image acquisition, image analysis, feature extraction and matching, and camera pose 

recovery from a multiple-view–geometry calculation. Figure 5.18 shows an overview of 

the visual odometry process.  

 

 

 

 

Figure 5.18. Overview of visual odometry process 

 

The visual odometry process starts by obtaining image data which could come from 

one or more digital cameras. On captured images, image analysis is applied in order to 

find interesting points in the images. Interesting points are pixels with distinct intensity 

compared to those in their neighborhood, and are most likely found as corners or edges in 

the images. Such interesting points can be extracted and tracked on the overlapped 

objects captured in consecutive images. Feature vectors are formed after the extraction of 

features from these interesting points. Work on extracting these feature vectors is 

followed by feature matching to find the same points in multiple images. The key to 

measuring distance of movement is the camera pose recovery from multiple view 

geometry. Intricate geometric relations exist between multiple views of a 3D scene. 
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These geometric relations are related to camera motion and calibration, as well as to the 

scene structure. The camera pose recovery is to estimate camera positions where images 

are taken by computing a rotation matrix and a translation matrix. 

Different from previous works on visual odometry (e.g., Davide, 2008; Kitt et al., 

2010), in our work only one camera is available for use in smartphones. To capture 

multiple images, a video stream is taken to track the movement of a user. An image 

sequence is extracted from the video stream as the input for monocular visual odometry 

analysis. The next step is to perform image analysis and feature extraction on each image. 

Adjacent images in the sequence are treated as image pairs and are used for feature 

matching. The camera pose recovery function takes further responsibility for determining 

the position and orientation (pose) of the camera. Finally, a final bundle adjustment, 

based on the Levenberg-Marquardt algorithm (Guerrero et al., 2005; Ke and Kanade, 

2003), is used to refine the 3D coordinates and camera positions. As a result, it is possible 

to estimate the camera trajectory, which corresponds to user’s movement trajectories.   

To better understand the relationship between the image plane and the 

3D modeling of real world, vision geometry notations are first defined: 

(X, Y, Z) are the coordinates of a 3D point in the world coordinate space. 

(u, v) are the coordinates of the projection point in pixels.  

(x, y, z) are the coordinates of a 3D point in the image coordinate system. 

K represents a camera projection matrix, which is a matrix of intrinsic parameters that 

do not depend on the scene viewed. The matrix represents the quality of each camera, so 

once K is estimated, it can be re-used as long as the same camera is used.  
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(cx, cy) is a principal point, which is usually at the image center. 

(fx, fy) are the focal lengths expressed in pixels.  

[R|T] represents a matrix of extrinsic parameters. This is a joint rotation-translation 

matrix, where R is the rotation matrix and T is the translation matrix.  

Based on the above notations, Equation 5.1 shows the relationship between the image 

and the 3D scene in the image coordinate system. Equation 5.2 shows the relationship 

between the image coordinate system and the world coordinate system. Given Equations 

5.1 and 5.2, Equation 5.3, which shows the relationship between the image pixels on the 

image plane and the corresponding 3D points in the world coordinate system, can be 

calculated.  
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object points in the real world, it is then possible to calculate matrix P. Matrix P is 
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mainly made up of two matrices, K and   
  
  
  

 . K is the intrinsic matrix and 

 
  
  
  

     the extrinsic matrix. Since all parameters in K are fixed when the same 

camera is used, if K is known, then the rotation matrix R and translation matrix T can 

be calculated after P is estimated.  

The problem of estimating the trajectory of user’s movement can be defined as 

the trajectory of both the rotation matrix Ri−1,i and the translational vector Ti−1,i in a 

given frame, as well as the characterization of the relative movement between two 

consecutive frames, see Figure 5.19.  

 

 

 

Figure 5.19. Estimation of rotation matrix Ri−1,i and translational vector Ti−1,i  in the motion between video 

frame Fri-1 and Fri 

 

Matrix K must be obtained before the camera pose recovery can proceed. In order to 

obtain the intrinsic Matrix K, camera calibration must be performed. In this dissertation, 

since offline camera calibration is more accurate than online camera calibration, we 

estimate K by using offline camera calibration. 
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5.3.2.1 Camera Calibration 

Camera calibration is to find the essential parameters of the camera that affect the 

imaging process. Specifically, with the definition of matrix K in Equation 5.1., that is 

   
      
      
    

    camera calibration is to estimate all parameters in matrix K, 

which involves calibrating the position of image center, which may not be at the image’s 

true center, estimating the focal length, using different scaling factors for row pixels and 

column pixels, and accounting for any skew factor and lens distortion (pin-cushion 

effect). In camera calibration, by taking pictures of a known object and by knowing the 

coordinates of given object points in the real world, it is possible to obtain internal 

camera parameters through optimization algorithm.  

To implement camera calibration, the camera calibration toolbox 

(http://www.vision.caltech.edu/bouguetj/calib_doc/) was used. 

5.3.2.2 Video Frames Extraction Based on User’s Movement Pattern Recognition 

Before image analysis and position estimation are performed, frames must be extracted 

from the video. For extracting frames, the same algorithm discussed in the last section, 

i.e., pattern recognition of user’s movement, is used. A major criterion to perform feature 

matching between extracted frames is to ensure that there are overlaps between 

consecutive images. To obtain precise feature matching, dispersedly distributed 

overlapped features in the images are highly preferred. The objective is to select those 

frames that will appropriately meet the requirement of image feature extraction and 

matching, which is needed in a later step for analysis. Moreover, the overlapped features 

http://www.vision.caltech.edu/bouguetj/calib_doc/
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extraction and matching in consecutive frames will further impact the camera pose 

estimation. 

The key to frame extraction is to decide the points in time at which the extraction 

should be performed. Recognition of user’s movement patterns can aid in this 

determination. For example, there is no need to extract frames if a user is not moving at a 

traffic light. Conversely, if a user is making a turn into the next segment of the sidewalk, 

more frequent frame extraction is required than would be required in the time period 

when a user is moving straight. This is because turning makes adjacent frames more 

likely to lose overlapped features. This could cause problems in matching features, and 

may eventually decrease the accuracy of geometric calculation for the camera pose 

estimation. 

Pedestrians/wheelchair users outdoor activities can be classified into four modes: no 

movement, walking, running and turning. In the computer vision context, no movement 

(operating at zero speed), walking (operating at a low speed), running (operating at a 

relatively high speed), and turning (operating with change in viewpoint of images) 

require varying frame extraction intervals. In order to extract frames appropriately, with 

the changes of speed and changes of viewpoint in the movements, frame extraction 

intervals are set up based on different modes of movements.  

A study by Knoblauch et al. (1996) indicates that the mean walking speeds are 1.51 

m/sec for younger pedestrians and 1.25 m/sec for older pedestrians. Outdoor powered 

wheelchairs and mobility scooters have a maximum speed of 1.78 m/sec on paved 

surfaces. The 1.51 m/sec average speed for walking is used in this dissertation as a 

baseline to set up frame extraction rates that correspond to different movement behaviors. 
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The number of standard video frames in one second is 30. Taking walking mode as an 

example, if the standard pedestrian’s walking distance in 1 second is 1.51 m, the frame 

extraction rate for a 2-m distance interval is (2/1.51)*30, which is about one frame per 40 

frames. Since frame extraction rate is inversely proportional to movement speed, using 

one out of 40 frames as a baseline, the frame-extraction rate in running mode is set as one 

frame per 30 frames in this work, which corresponds to the relatively higher running 

speed. In turning mode, in order to keep overlapped features in adjacent frames as much 

as possible, the frame extraction rate is set as a half of the frame extraction rate in 

walking mode. In summary, the following rules, corresponding to the four modes of 

movement, are considered for frame extraction: 

1. When a user is walking in a straight path, frame extraction rate is one out of 40 

frames. 

2. When a user is running, frame extraction rate is one out of 30 frames. 

3. When a user is making a turn, frame extraction rate is one out of 20 frames. 

4. When a user is not moving, there is no need to extract frames. 

To summarize, this section proposes an approach to extract image frames from a 

video stream by recognizing user’s movement mode. When a user is moving on the 

sidewalk, a smartphone has an accelerometer collecting motion data and has camera 

taking a live video stream. After matching the user’s movement mode with one of the 

four movement modes, appropriate image frames can be extracted by following the rules 

described above.  
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5.3.2.3 Feature Extraction for Map Matching in Wheelchair Navigation 

After the images are obtained, feature extraction is the next step in estimating motion. 

With a prior knowledge about man-made environments on streets, such as rectangular 

objects with dominant planes (Ohnishia and Imiya, 2006) like buildings, objects 

matching can make use of some of the special characteristics of street-view images. In a 

sequence of street-view images, sky and ground are both viewed as backgrounds due to 

their stable and static characteristics, whereas other objects like buildings and cars are 

unique or diverse, so they are more helpful in location identification. Unique objects in 

urban environments include:  

 Buildings 

 Vehicles, e.g., cars, bikes, strollers 

 Pedestrians 

 Vegetation, e.g., trees, flowers, bushes 

 Urban furniture, e.g., city lights, telephone poles, parking meters, benches 

 Signs and banners 

Signs and banners can be used to recognize specific locations only when 

Optical Character Recognition (OCR) Technology is applied to recognize characters in 

images, while some types of vegetation and urban furniture may appear in multiple 

locations and images. Vehicles and pedestrians/wheelchair users are moving objects that 

are not stable in locations, thus they are considered unreliable features to use for feature 

matching. Buildings are the most stable and distinctive objects for location estimation in 

pedestrian/wheelchair navigation. Inspired by human cognitive mechanisms that daily 

navigation strongly relies on landmark information, overlapped landmarks in image 

sequences are the interesting points (features). As a user moves, viewpoints and objects 

http://www.sciencedirect.com/science/article/pii/S0167865505003703#aff1
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in image sequences change. Finally, due to its sensitivity to changes in viewpoints, 

scales, lighting, and environment, global features, such as color histogram, texture, and 

edge, are not suitable for location estimation. With change of distance and viewpoint 

during movements, features with rotation-invariance and scale-invariance are needed. 

After analyzing various features discussed in the literature (e.g., MOBVIS, 2006; Cipolla, 

2004), in this dissertation, local features, both for object recognition and for subsequent 

location estimation, are used. Of the existing local feature extraction algorithms, Scale 

Invariant Feature Transform (SIFT) is the most effective algorithm for street view images 

(Deselaers et al., 2007), described in the next section. 

Scale Invariant Feature Transform (SIFT) Descriptor 

The SIFT descriptor transforms image data into scale-invariant coordinates that are 

relative to local features. The SIFT descriptor is a well-known method in computer vision 

for its capabilities in robust matching to the database records, despite viewpoint, 

illumination, and scale changes in images. SIFT is suitable for object recognition in urban 

environments where illumination and scale changes usually degrade performance (Lowe, 

1999; 2004). 

The following are the major computations that are used to generate SIFT features: 

1. Scale-space extrema detection. This is the initial preparation. Of all scale levels and 

their corresponding image locations, a difference-of-Gaussian function is used to identify 

potential interest points, which are invariant to scale and orientation. 

2. Keypoint localization. At each candidate location, a detailed model is used to 

determine location and scale. A technique similar to the Harris Corner Detector (Derpanis, 

http://www.aishack.in/2010/04/interesting-windows-in-the-harris-corner-detector/
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2004) is used in SIFT. Keypoints are selected by eliminating some instable candidates, 

like edges and low contrast regions in terms of their stability. 

3. Orientation assignment. One or more orientations are assigned to each keypoint 

location, based on local image gradient directions. Image data are processed and 

transformed relative to the assigned orientation, scale, and location for each feature. This 

effectively cancels out the effect of transformation. 

4. Keypoint descriptor. With scale and rotation invariance in place, local image 

gradients are measured at the selected scale in the region around each keypoint. This 

helps identify unique features, allowing for significant levels of local shape distortion and 

changes in illumination. 

5.3.2.4 Monocular Visual Odometry Assisted by Accelerometer for Motion 

Estimation 

Figure 5.20 shows how monocular visual odometry works when a user is moving on a 

sidewalk. 
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Figure 5.20. Frame-to-frame motion estimation 

 

In Figure 5.20, a video stream is obtained from a camera, and a sequence of 

images is taken as the user moves. Images are shown on image planes from C0 to C4. A 

different set of image features corresponding to 3D objects is used to compute the motion 

between consecutive frames. For instance, images of a street scene in the figure are taken 

in consecutive frames C0 to C2, which have overlapping objects, like buildings. Some 

features of objects are marked as circles on the image planes, and those common features 

will be used for camera pose estimation in the motion. 

The first step of a frame-to-frame motion estimation is to extract a set of salient 

features that are present in each frame. SIFT is employed to extract local features and 

build descriptors as feature vectors. 
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In the second step, the features across consecutive frames are matched using 

nearest neighbors search and a minimum distance threshold in the SIFT descriptor space, 

obtaining matches between frames Fri and Fri+1. 

In the third step, the normalized 8-point algorithm is employed to compute the 

frame-to-frame motion, as described by Hartley and Zisserman (2004), due to its 

computational simplicity. Outliers are then removed between Fri and Fri+1 frames using 

RANdom SAmple Consensus (RANSAC), and the final motion is re-computed using 

only the set of inliers. This yields a fundamental matrix F that describes camera motion. 

In the next step, given that the camera was calibrated beforehand, we already 

know the calibration matrix K. Therefore, the essential matrix can be obtained by E = 

K'*F*K. 

In the last step, the frame-to-frame rotation matrix Ri−1,i and the translational 

vector Ti−1,i are obtained using the method by Horn (1990). This yields four possible 

solutions, from which the one with more inliers in front of both cameras is selected. 

Furthermore, a scale factor for each translational vector must be calculated to recover the 

overall camera pose. 

Figure 5.21 shows the visual-based positioning algorithm. 
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Figure 5.21. Flowchart of vision-based positioning algorithm 

 

Scale Adjustment 

With only one camera, the baseline between two instants is unknown and the scale factor 

of reconstruction is ambiguous. To address this ambiguity problem, this section discusses 

an approach where an accelerometer is used to assist with estimating the scale factor. 

Figure 5.22 shows the motion estimation for consecutive frames. 
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Figure 5.22.  Scale adjustment 

 

When the distance between cameras C0 and C1 is normalized to 1, the location of the 

third camera C2 can be estimated across the translation direction. All scales between 

consecutive images are adjusted based on the normalized distance d(C0, C1). To solve the 

ambiguity of the scale factor in translational vector, an accelerometer is used to measure 

the distance between the first frame and the second frame, i.e., d(C0, C1). 

The integral of acceleration over time from t0 to t1 will yield velocity, and the integral of 

velocity over time results in distance. Since accelerometers return data in units of the 

gravitational constant, i.e., g, acceleration values need to be multiplied by 9.81 to convert 

to m/s
2
.  During this process, errors may accumulate in the integral calculation. As a 

result, accelerometer is used to only calculate first-step distance, d(C0, C1), which 

measures the movement from the first frame to the second one. 

Once the distance between C0 and C1 is obtained, the translation is only determined 

up to the scale ratio between each pair of consecutive frames. The ratio between these 

distances must be calculated before the camera’s pose can be reconstructed. 

http://en.wikipedia.org/wiki/Gravitational_constant
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To calculate this distance ratio, we first calculate the motion between three 

consecutive frames using frame-to-frame feature matches. This produces two different 

motion estimations [R|T](i,i+1) and [R|T](i+1,i+2). The quality of this motion estimation 

is greater than the motion estimation of [R|T](i,i+2), due in part to the larger number of 

matches. These two motions are translated into two different scale factors, s(i,i+1) and 

s(i+1,i+2). 

Given the motion estimation of the camera and the reconstructed 3D points of 3-

frame matches, the following relation is established: 

    
 
 
 
          

 
 
 
 

          

where si is the scale ratio that relates the translation between cameras i and i+1 and 

cameras i+1 and i+2. The ratio si = s(i,i+1)/ s(i+1,i+2) is calculated using matches across 

all 3 frames and a linear system of equations as in the P6P DLT algorithm (Sattler et al., 

2011). 

5.3.3 Integrated Map Matching 

Given the information from the camera pose recovery, the relative displacement 

combined with GPS historical positions and orientations in the movement are used to 

perform map matching on a sidewalk network. Figure 5.23 shows the overview of the 

map matching algorithm, which integrates the camera pose recovery results with the GPS 

historical trajectory and orientation data on the sidewalk network. 
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Figure 5.23. Flowchart of map matching approach 

 

In areas with poor GPS signals, the camera is used to capture images for 

measuring continuous user’s movement distance. GPS historical data provides the 

starting positions at the time when the camera is to be active. Camera pose estimation is 

performed to obtain the relative displacements between consecutive image planes. 

Orientation data, as measured by the compass, are integrated with estimated positions to 

help map matching as users move about the environment. 

5.3.3.1 Coordinate System Conversion for Tracking Data Presentation on Digital 

Map 

In order to integrate data from different sensors in multi-sensor map matching, four 

coordinate systems are involved. These are a 2D image coordinate system, a 3D camera 

coordinate system, a world coordinate system, and a map coordinate system. In the 

integration process, GPS positions and sidewalk map data exist in the world coordinate 

system. They are presented by longitudes and latitudes in the WGS-84 projection system. 

In the camera’s pose estimation, image sequences are extracted from real-time video 

streams, and image feature extraction and computation are conducted in the 2D plane 

coordinate system. Image features are further reconstructed in the 3D camera coordinate 

GPS Historical Data 

Map Matching 

Orientation 

Data 

 
Sidewalk Network 

Camera Pose Estimation 
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system. Therefore, 2D image plane coordinates are transformed and presented in the 3D 

camera coordinate system by Equation 5.1, and are further translated to a 3D world 

coordinate system by Equation 5.3. Finally, all the positioning data and map matching 

results are transformed into the map coordinate system. This requires a conversion 

between the 3D world coordinate system and the 2D map coordinate system, from WGS-

84 to Universal Transverse Mercator (UTM) (Grewal et al., 2002), in order to track user’s 

locations on the 2D map. 

5.3.4 Experiments and Analysis 

To validate the multi-sensor map matching algorithm, experiments, on the sidewalk 

segments of the main campus of the University of Pittsburgh were conducted. Multi-

sensor data including video, accelerometer, compass, and GPS data were collected by an 

Android phone. The computing platform was a PC machine with an “Intel Core 2 2.13G 

Hz” CPU. 

5.3.4.1 Data Collection on Smartphone 

GPS, camera, accelerometer, and compass data were collected by a Samsung GT 

I9000 Galaxy S smartphone.  

The accelerometer in this experiment has two roles. On the one hand, it is used to 

identify user’s movement pattern for video frame extraction. On the other hand, the 

acceleration data collected between the first extracted frame and the second extracted 

frame are used to calculate the distance of movement for scale factor estimation that were 

discussed earlier. 
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5.3.4.2 Camera Calibration 

The camera was calibrated beforehand by applying “Camera Calibration Toolbox for 

Matlab”. Twenty 720x480 photos of a black and white checkerboard were taken from 

different angles by the Samsung phone. Figure 5.24 shows one of these photos, on which 

each corner of the grid on the checkerboard is selected as the featured point and is 

marked with a red cross. 

 

 

 

Figure 5.24. A checkerboard to calibrate camera 

 

Camera internal parameters were estimated in the camera calibration. K is the 

intrinsic matrix, as shown in Equation 5.5. 

  686.646920000000 0   359.500000000000 

K = 0   687.467270000000 239.500000000000 (5.5) 

0   0   1 
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5.3.4.3 Experimental Results 

Several video clips were taken on the main campus of the University of Pittsburgh. 

Buildings, trees, pedestrians, cars, urban furniture, and signs were the most common 

objects captured in these clips. 

The video stream was recorded as a user was walking on the sidewalk in front of the 

School of Information Sciences at University of Pittsburgh. A sequence of frames was 

captured in the video stream. No particular attention was given to the distance between 

frames, since frames are automatically extracted based on user’s movement pattern. 

These captured frames were saved as images for further image processing and feature 

extraction. Figure 5.25 shows a sequence of images extracted from a video that was 

collected in motion. 

 

    

 

 

Figure 5.25. A sequence of images extracted from a video 
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1. SIFT Feature Extraction and Feature Matching 

The SIFT algorithm is first applied to extract features from images. Figure 5.26 gives an 

example of SIFT feature extraction from one image taken on the campus. In the figure, 

the length of the arrow represents the scale of the extracted SIFT features and the arrow’s 

direction represents the extracted features’ dominant direction. Figure 5.27 shows two 

image frames that were extracted from the video and with their SIFT features extracted. 

The lines that link two features in the two images show the correspondences in the 

feature matching. Table 5.5 presents the number of feature points extracted from each 

image and the number of matched points in both images. 

 

 

 

Figure 5.26. SIFT features of a street view image 
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Figure 5.27. Matched SIFT feature points 

 

 

Table 5.5. Key points and matched points 

 

Image Sequence Feature Points Matches 

Image 1 2575 737 

Image 2 2500 737 

 

In Table 5.5, an image pair in one image sequence is taken as an example, 2575 SIFT 

feature points are extracted from Image 1 and 2500 SIFT feature points are extracted 

from Image 2. After feature matching, both images have 737 feature points in common 

corresponding to the same feature points on objects in the real world. Similarly, feature 

extraction and feature matching are implemented between all the continuous image pairs 

Image at time t Image at time t+1 
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taken in the experiment. Taking 100 images as samples in the experiment, 87.5% features 

in the images are matched correctly. Since images are taken with changing viewpoints, 

the high quality of feature extraction and accuracy in feature matching indicate that SIFT 

is insensitive to changes of viewpoints, which is appropriate in our vision-based geo-

positioning.  

2. Fundamental Matrix Calculation 

After SIFT features are extracted, the fundamental matrix F is calculated, given 

correspondences in an image sequence. In Figure 5.28, given a calculated matrix F, the 

marked corresponding feature points are shown in Image 1, while the epipolar lines going 

through the matches are shown in Image 2. 

 

 

 

Figure 5.28. Feature points in image 1 vs. Epipolar lines in image 2 
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3. Monocular Visual Odometry and Vision-Based Map Matching 

After the fundamental matrix F is obtained, the essential matrix E can be calculated as 

discussed earlier. Therefore, camera positions and poses can be estimated, which provide 

user’s locations. The video was taken starting in the front of the School of Information 

Sciences building, and Figure 5.29 shows the positioning results, as overlaid on Google 

Earth. When compared to the video that was taken and shown in Figure 5.25, the results 

show that locations are estimated quite precisely compared to the actual trajectory that 

are recorded by the collector. 

 

  

 

Figure 5.29. Geo-positioning results by using visual odometry, top view (left) and street view (right) 

 

However, like other odometry techniques, the visual odometry must overcome the 

problem of accumulating position errors (Davide, 2008; Kitt et al., 2010). This problem 

also occurred in our experiment and errors were accumulated in a relatively long distance 

using the monocular visual odometry. Starting from the same origin and continuing the 

same route, as shown in Figure 5.29, a video stream is recorded as the user is walking for 

332 m in around 4 minute. The experiment is shown in Figure 5.30, where the user 

started walking from a point marked as S and stopped walking at another point marked as 
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E. All the objects listed in Section 1.4.1.3, such as buildings, trees, cars, pedestrians, and 

signs, appear on the captured images along roads. Figure 5.30-a shows that the estimated 

locations drifted over time when only the monocular visual odometry technique was 

applied. To mitigate this problem, we use geometrical and topological information in the 

sidewalk map to constrain user’s location in every map matching step on the sidewalk in 

order to reduce positional error accumulation. Figure 5.30-b shows the comparison of 

location estimation, both before and after map matching. Finally, Figure 5.30-c shows the 

map matching results overlaid on Google Maps. 

 

 

 

a. Monocular visual odometry results in one route before map matching 

 

 

 

b. Estimated locations on one route before map matching and after map matching 

E 

E 

S 
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C. Map matching results overlaid on Google Maps 

Figure 5.30. Map matching results overlaid on Google Maps 

 

Since vision-based map matching is only needed in places where GPS signals 

either are not available or have poor quality, the accuracy of GPS signals is used as the 

criterion to determine when to start vision-based map matching. Figure 5.31 shows a 

sample log file from data collection. As described earlier in Section 1.2.3.1, the log file 

includes GPS, accelerometer, and orientation data, and each GPS data point has recorded 

longitude, latitude, accuracy, bearing, altitude, and speed, in order. 

  

E 

S 
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a. A sample log file recording GPS, accelerometer and orientation data and a highlighted GPS position with 

accuracy of 8.94 m 

 

 

 

 

b. A highlighted GPS position with accuracy of 17.89 m 

 

 

 

c. A highlighted GPS position with accuracy of 10.0 m 

 

Figure 5.31. A sample log file to compare accuracy of GPS positions 
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As Figure 5.31 shows, the collected GPS data have different accuracies in 

different positions at different times. The accuracies of three GPS positions are 8.94 m, 

17.89 m, and 10.0 m. Our tests show that, in the multi-sensor map matching algorithm, if 

GPS accuracy is equal to or better than 10 m, then the quality of GPS data is considered 

to be acceptable and map matching can be performed by using only GPS data. But if GPS 

accuracy is worse than 10 m, vision-based map matching is needed to fill in the 

localization gap. In short, the accelerometer and orientation data are used to help video 

frame extraction, assist map matching in movement pattern recognition, and improve the 

overall efficiency of map matching.  

Figure 5.32 shows the experimental results that compare the GPS-based map 

matching results with multi-sensor map matching results. In Figures 5.32 a and b, black 

points represent a GPS trajectory and red points show the GPS-based map matching 

results. Figure 5.32-a shows the map matching results of all the GPS raw data, while 

Figure 5.32-b shows the map matching results based on those GPS data with accuracy 

<=10 m. In Figure 5.32-b, because a section of sidewalk (along O’Hara St) has GPS 

accuracy worse than 10 m due to poor GPS signals, GPS-based map matching is not 

appropriate; this is where the vision-based map matching is performed to fill in the signal 

gap from GPS. The final map matching results, which are obtained by integrating GPS 

and vision data, are shown in Figure 5.32-c. These final results prove that using 

monocular visual odometry the multi-sensor map matching algorithm can provide users 

with continuous location estimation, regardless of changes in quality of GPS data. 
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a. GPS-based map matching results, as compared with raw GPS data overlaid on the sidewalk map 

 

 

 

 

 

b. GPS-based map matching results in GPS accuracy<=10m, compared with raw GPS data overlaid on the 

sidewalk map 

 

This area has a GPS 

accuracy > 10m, so no 

map matching results 

are available by using 
GPS-based map 

matching. 
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c. Multi-sensor integrated map matching results overlaid on Google Maps 

Figure 5.32. Comparison of GPS-based map matching results with multi-sensor map matching results 

 

In terms of time performance, vision-based map matching is computationally-

intensive, which requires high CPU and memory usage. This is one reason why in the 

experiments the lightweight client/heavyweight server architecture was used as the 

platform to implement the vision-based map matching algorithm. In this architecture, the 

server is responsible for major computations in vision-based map matching, including 

SIFT feature extraction and feature matching and camera pose estimation. Clients 

(smartphones) are responsible for capturing video streams and extracting frames from 

captured video streams. Frame extraction from video streams takes about 0.1 second in 

average. Since each image is 720*480 pixels and each pixel requires 8 bits of storage, 

data size of each image is 720*480*8 bits=2,764,800 bits. To perform feature extraction 

and feature matching on the server, each image needs to be uploaded to the server, which 

cost about 1.53s with an average of 1.8Mbps data upload speed on the 3G networking. 

With this, the total time (computation and communication) is less than 1.7s on the client 

side. On the server side, computation of vision-based map matching, which involves 

This area has a GPS 

accuracy > 10m, so 

vision-based map 

matching is applied to 

get continuous location 

estimation. 
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SIFT feature extraction and feature matching, is the major cost. In the experiments, all 

the images extracted from video streams have 720*480 pixels. In Matlab running 

environment, our experiments showed that the average time of SIFT feature extraction 

and feature matching between two images is about 1 second. Furthermore, the camera 

pose estimation process takes about 0.5 second. Therefore, the computation on the server 

side cost 1.7 second. After adding the response time, from clients to the server, the total 

time is 3.2s. For this, we set up time intervals of 3.2s to update the map matching results. 

The average speed of pedestrians is 1.51 m/s, so the distance moved in 3.2 seconds is 

below 5 m. For pedestrian/wheelchair navigation, 5 m location updates are reasonable. 

The time performances on clients, over networks, and on servers, indicate that the 

proposed multi-sensor map matching approach is suitable for pedestrian/wheelchair 

navigation applications.  

In summary, this section presented a multi-sensor integrated map matching 

algorithm using monocular visual odometry. The experiments showed vision as a 

complementary sensor making up for the shortfalls of GPS capabilities, and vision-based 

map matching is supplemental to GPS-based map matching. The integration of GPS and 

vision can provide users with seamless map matching service.  
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6.0  SUMMARY, CONCLUSIONS, CONTRIBUTIONS AND FUTURE RESEARCH 

6.1 SUMMARY 

This dissertation first investigated existing map matching algorithms in car navigation 

systems. It also discussed the unique characteristics of the pedestrian/wheelchair 

navigation application and the challenges in map matching for the pedestrian/wheelchair 

navigation. Based on the study, some advanced map matching algorithms for 

pedestrian/wheelchair navigation systems/services were designed and developed. A 

summary of the algorithms developed in this dissertation is as follows. 

 To address the problem of finding the correct segment (road or sidewalk) 

efficiently, which is the first step of map matching, an adaptive candidate segment 

selection algorithm was developed. 

 In the case of using GPS as the only positioning sensor, three GPS-based map 

matching algorithms were developed. These are chain-code–based map matching, HMM-

based map matching, and fuzzy-logic–based map matching. 

To solve the issue of tracking pedestrians or wheelchair users in places that have 

poor or no GPS signals, two multi-sensor integrated map matching algorithms were 

developed. In the first algorithm, an accelerometer and a compass were utilized to 

recognize the user’s movement pattern in order to integrate with a GPS and help improve 
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overall map matching. In the second algorithm, a vision-based map matching algorithm 

was developed to calculate relative displacement in the movement on the sidewalks in the 

absence of GPS data or of high accuracy GPS data. Furthermore, a map matching 

algorithm based on the integration of vision, accelerometer, compass, and GPS sensors 

can provide users with uninterrupted map matching services. Both multi-sensor-based 

map matching algorithms were designed, developed, and tested on a client 

(smartphone)/server architecture for pedestrian/wheelchair navigation.  

In this dissertation, experiments were conducted to evaluate the developed 

algorithms by navigating on the sidewalk network of the main campus of the University 

of Pittsburgh. The algorithms were evaluated both for accuracy and time performance.  

6.2 CONCLUSIONS 

In this dissertation, a set of advanced map matching algorithms were designed and 

developed for pedestrian or wheelchair navigation. The following conclusions can be 

drawn, based on the results of several experiments using the developed algorithms. 

The adaptive candidate segment selection algorithm can perform efficiently by 

dynamically selecting candidate segments when given updated GPS positions, as well as 

relative changes between GPS positions and clustered segments. 

The three advanced GPS-based map matching algorithms can provide users with 

high quality of location estimations on sidewalk networks in terms of both accuracy and 

computation time. However, GPS-based map matching suffers from two problems: it 

cannot provide high quality solutions in places with poor GPS signals and it does not 
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provide solutions at all in places with fully blocked GPS signals. Another problem in 

sidewalk GPS-based map matching is that it cannot distinguish between the two sides of 

narrow streets, when the distance between the two sides a street is less than the 

positioning accuracy range of the GPS unit.  

The visual odometry multi-sensor integrated map matching algorithm presented in 

this dissertation supplements some of the drawbacks of GPS-based map matching, 

especially providing location estimations in places without GPS signals. The 

experimental results showed that the multi-sensor integrated map matching algorithm is 

both feasible and practical in providing uninterrupted location estimations when 

navigation in outdoors. However, identifying the correct sidewalk from parallel sidewalks 

on both sides of a street still remains a challenge because the GPS accuracy on sidewalks 

is often not high enough. Additionally, the user movement pattern recognition algorithm, 

which integrates accelerometer, compass, and GPS data, can greatly improve the 

efficiency of map matching on the smartphone/server architecture.  

The experimental results showed that all the developed algorithms perform fairly 

well to achieve the goals of the project. Furthermore, these map matching algorithms are 

feasibile and practical and they are potential to be utilized in different 

pedestrian/wheelchair navigation applications. With the popularity of smartphones and by 

building on the smartphone/server architecture, pedestrian/wheelchair navigation services 

can be widely and quickly accepted by current smartphone users for their mobility use. 

By providing continuous and precise location estimation for tracking people, the multi-

sensor integrated map matching algorithms are particularly beneficial to some groups of 

people, such as senior citizens or children, who may require uninterrupted tracking 
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services in various situations. The results of this dissertation can benefit other research 

areas such as automated wheelchair navigation and walking robots, where ensuring 

uninterrupted localization by map matching is one of the critical factors necessary to plan 

routes and achieve automatic location guidance. 

6.3 CONTRIBUTION 

Map matching is an essential component of and plays a major role in navigation 

systems/services. By analyzing the requirements of pedestrian/wheelchair navigation, this 

research concentrated on developing map matching algorithms specifically designed for 

pedestrian/wheelchair navigation services. We can summarize the novelty of the 

developed algorithms by examining their four distinct contributions. 

First, a hierarchical clustering technique was applied to transportation networks 

and a binary tree was specially built for indexing segments. This data structure technique 

was adopted for handling the first step of map matching algorithms by developing a 

segment candidate selection algorithm based on an adaptive searching scheme. 

Second, three GPS-based map matching algorithms were developed for 

pedestrian/wheelchair navigation. The experimental results demonstrated acceptable map 

matching accuracy and time performance. 

Third, by using multiple types of sensors, a movement pattern recognition 

algorithm was developed for identifying user’s movement behaviors in order to assist 

with map matching in pedestrian/wheelchair navigation systems/services. 
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Fourth, the visual odemetry, another multi-sensor integrated map matching 

algorithm, was developed to provide continuous localization services. This algorithm 

used the monocular visual odometry technique to estimate the relative displacement in 

motion when GPS signals are poor or unavailable. To solve the scale factor problem, the 

accelerometer was used for measuring the camera’s displacement between the first two 

image frames. Furthermore, in order to reduce positional error accumulation over time, 

which is inherent in the visual odometry technique, geometrical and topological 

information of sidewalks were used as constraints to match relative displacements onto 

the map. Vision, accelerometer, and compass data were integrated with GPS data to 

match user’s locations onto sidewalks without interruption. 

The multi-sensor-integrated map matching algorithms make significant 

contributions to the realization of pedestrian/wheelchair navigation services on 

smartphones. With advances in technology of sensor-embedded smartphones, this 

research can potentially serve for many user’s mobility applications, such as tourist 

guidance, geo-fencing for children, in which parents are notified when a child leaves a 

designated area, geo-fencing for senior citizens, look-around navigation systems for the 

visually impaired, among others. This research also can potentially impact building future 

automatic wheelchair navigation systems and walking robots. The continuity and 

accuracy in localization provided by the developed map matching algorithms in this 

dissertation paves the way for implementation of such systems.       

It is also important to note that although this research has made significant 

contributions to the realization of map matching algorithms designed specifically for 
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pedestrian/wheelchair navigation, further research is still required in the areas discussed 

in the next section. 

6.4 FUTURE RESEARCH 

We suggest the following areas for future research: 

 Improve map matching accuracy distinguish between the opposite sides of narrow 

streets. To be able to identify the correct side of narrow streets, which is not of 

concern in car navigation, is a unique challenge in pedestrian/wheelchair 

navigation.  

 Investigate heavyweight client/lightweight server architecture for 

pedestrian/wheelchair navigation systems and services. The implementation of 

multi-sensor integrated map matching algorithms in our experiments were based 

on the model of lightweight client/heavyweight server architecture. However, the 

heavyweight client/lightweight architecture (the other option proposed in Chapter 

5) can speed up location updates by running map matching on clients with 

sufficient capabilities to store partial map data and to perform some computations. 

Comparing and contrasting the pros and cons of the two architectural approaches 

will be invaluable for designing and developing practical pedestrian/wheelchair 

navigation systems/services. 

 Investigate implementation of the developed multi-sensor integrated map 

matching algorithms directly on smartphones. 
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Android and iPhone are currently the two most popular platforms for mobile 

applications development, both in terms of engineering quality and consumer 

satisfaction. The proposed multi-sensor integrated map matching algorithms could 

be implemented directly on smartphone platforms rather than on a server.  

 Incorporate an image database of geo-tagged landmarks with the sidewalk 

network database. 

The current vision-based map matching algorithm accumulates relative movement 

distance to estimate user’s location, which can cause positional error 

accumulation in a long distance movement. One solution to reduce such positional 

error is to use geo-referenced landmarks in the map matching process. Future 

research will be needed to investigate the possibility of using geo-referenced 

landmarks to further increase the positional accuracy of the vision-based map 

matching algorithm. 
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