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Aim. Glycolysis is a cell metabolic process by which glucose is converted to pyruvate. Under 

aerobic conditions, pyruvate is further oxidized by the citric acid cycle and oxidative 

phosphorylation (OXPHOS) to CO2 and water. Under anaerobic conditions pyruvate is converted 

to lactate. Warburg first noted that cancer cells take up and metabolize glucose in excess of their 

bioenergetics and biosynthetic needs and produce more lactic acid in aerobic condition than 

normal cells. Our hypothesis was that cell lines originated from breast tumors have lower levels 

of oxidative phosphorylation compared to cell lines that originated from normal tissue. 

Moreover, we expected that tumor cell lines originated from highly aggressive tumors would 

have lower oxidative phosphorylation than the cell lines originated from less aggressive tumors 

and normal tissues.  

Method. The change in cellular oxygen consumption rate (OCR) in the presence of 

pharmacological modulators is the most suitable measure of oxidative phosphorylation. The 

OCR was measured on basal-like, claudin-low, HER-2, luminal and normal cell types, each 

represented by different number of cell lines. OCR were measured first at base level and then 

after successive treatments with different pharmacological modulators. Basal OCR, total reserve 

capacity OCR and ATP-linked OCR were calculated for each cell line. The linear mixed effect 
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regression was used to define the model that described the best association between each of these 

dependent variables and the cell types, controlling for other variables.  

Conclusion. We found that there is no significant difference in oxidative phosphorylation among 

basal-like, claudin-low and normal cell types. However, HER-2 and luminal cell types, 

originated from less aggressive tumors with better clinical outcome, did show statistically 

significant higher levels of oxidative phosphorylation than other types (basal-like, claudin-low). 

Public health significance. It has been shown that breast cancer is the most common cancer 

among women of almost all races and it had been recognized as a major public health problem. 

Understanding metabolic differences between breast cancer cells and normal cells and among 

different type of breast cancer cells might have significance in designing appropriate chemo-

therapeutics and treatment procedures for patients with different types of breast cancers.    



 vi 

TABLE OF CONTENTS 

1.0 INTRODUCTION ........................................................................................................ 1 

2.0 STUDY METHODS ..................................................................................................... 5 

2.1 EXPERIMENTAL METHODS ......................................................................... 5 

2.2 LINEAR MIXED EFFECT MODELS .............................................................. 7 

2.3 STATISTICAL ANALYSIS ............................................................................. 10 

3.0 RESULTS ................................................................................................................... 12 

4.0 DISCUSSION ............................................................................................................. 16 

5.0 CONCLUSION ........................................................................................................... 20 

APPENDIX A : FIGURES AND TABLES .............................................................................. 21 

APPENDIX B : STATA CODE ................................................................................................. 34 

BIBLIOGRAPHY ....................................................................................................................... 37 



 vii 

 LIST OF TABLES 

 

Table 1. The number of replicates of cell lines in the study.. ....................................................... 23 

Table 2. The frequency and percentage of cell types per experiment. ......................................... 24 

Table 3. Means and standard deviations (sd) of oxygen consumption rate (OCR) over the cell 

types for different treatment conditions ........................................................................................ 25 

Table 4. Regression parameter estimates, standard errors and p-values using linear mixed effect 

model............................................................................................................................................. 25 

Table 5. Comparison of oxygen consuption rate (OCR) between pairs of analyzed cell types 

using Wald test on linear mixed effect model. ............................................................................. 27 

Table 6. Means and standard deviation (sd) of basal OCR, total reserve capacity and ATP- linked 

OCR by cell types. ........................................................................................................................ 29 

Table 7. Regression parameter estimates, standard errors (se) and p-values (p), using linear 

mixed effect model for basal OCR, total reserve capacity and ATP linked OCR and likelihood 

ration test statistics (LRT) ............................................................................................................. 30 

Table 8. Comparisons basal OCR, total reserve capacity and ATP-linked OCR between pairs of 

analyzed cell types. ....................................................................................................................... 33 



 viii 

LIST OF FIGURES 

 

Figure 1. Box plot of oxygen consumption rate (OCR) over cell lines. ....................................... 21 

Figure 2. Box plot of oxygen consumption rate (OCR) of basal-like, claudin-low, luminal, HER-

2 and normal cell types. ................................................................................................................ 22 

Figure 3. Box plot of oxygen consumption rate over experiment number. .................................. 22 

Figure 4. Linear mixed effect model diagnostic plots .................................................................. 26 

Figure 5. Box plots of basal OCR A) total reserve capacity B) and ATP-linked OCR C), over the 

cell types ....................................................................................................................................... 29 

Figure 6. Linear mixed effect model diagnostics of basal OCR I), total reserve capacity II) and 

ATP-linked OCR III) .................................................................................................................... 32 



 1 

1.0  INTRODUCTION 

The most important catabolic reactions that generate free energy in any kind of eukaryotic cells 

are glycolysis and oxidative phosphorylation (OXPHOS).  Glycolysis is the process that occurs 

in cytosol while oxidative phosphorylation occurs in mitochondrion. The released energy is 

conserved in the form of ATP and reduced coenzymes NADPH and FADH2. These molecules 

are the major energy sources in the cell [1, 2]. 

During the process of glycolysis, a molecule of glucose is converted via fructose 1,6-

bisphosphate to pyruvate. Under anaerobic conditions, pyruvate is converted to lactate, a reduced 

end product [1]. Under aerobic conditions pyruvate is further oxidized by the citric acid cycle 

and oxidative phosphorylation to CO2 and water. This process occurs in mitochondrion [3, 4]. 

The mitochondrion is the site of eukaryotic oxidative metabolism, including citric acid 

cycle, electron transport and oxidative phosphorylation, fatty acid oxidation and amino acid 

breakdown. It contains all necessary enzymes that mediate these processes.  Mitochondrial 

oxygen consumption reflects both the activities of the electron transport chain (ETC) and the 

tricarboxylate (TCA) cycle within mitochondria. The rate at which O2 is consumed by 

mitochondria is a sensitive measure of the functioning of electron transport chain [5]. 

In normally differentiated cells, mitochondrial respiration uses pyruvate, fatty acids and 

amino acids to produce energy in the form of ATP through oxidative phosphorylation 

(OXPHOS). In this process protons are expelled from mitochondrion and the free energy stored 

in the resulting pH gradient drives the synthesis of ATP from ADP and Pi through electron 

transport chain (ETC). The process of complete oxidation of one molecules of glucose to CO2 
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and H2O generates a total of 10 molecules of reduced NADH and two molecules of reduced 

FADH2. In the process of ETC, each molecule of NADH and FADH2 generates  about three and 

two molecules of ATP, respectively. Including two ATP generated in glycolysis in cytosol and 

two ATP generated in citric acid cycle, each molecule of glucose generates ~38 molecules of 

ATP [5-7] 

In the sequence of electron transport in ETC, electrons are carried from NADH and 

FADH2 to Complexes I and II, respectively and further to coenzyme Q (CoQ). From CoQ 

electrons are carried to complex III and from complex III to complex IV by the peripheral 

membrane protein cytochrome c. During the electron transport, H+ is pumped out the 

mitochondrial matric by complex I, III and IV, thereby generating an electrochemical gradient 

across the inner mitochondrial membrane. The exergonic return of these protons to the matrix 

powers the synthesis of ATP [8, 9]. 

Otto Warburg first described the high rate of glucose conversion to lactate in cancer cells 

compared to their normal cells, despite the presence of ample oxygen. This is well known as the 

Warburg effect [10, 11]. The altered cellular metabolism is a result of oncogenic transformation 

to a cancer phenotype [12, 13]. Genetic alterations in multiple signal pathways allow cancer cells 

to constitutively take up and metabolize glucose and glutamine in excess of their bioenergetics 

and biosynthetic needs [13-15]. Cellular oxygen consumption rate (OCR) was used to monitor 

oxidative phosphorylation in real time when appropriate pharmacological modulators were added 

to assay medium [16]. This parameter reflects qualitatively the rate of mitochondrial respiration. 

These studies demonstrated that some tumor cell lines displayed a dependency on glycolysis 

while their respiration was inhibited. The observed mitochondrial impairment was linked to the 
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increased dependency on glycolysis and might provide a mechanistic explanation for the growth 

advantage and apoptotic resistance of tumor cells [16]. 

In this study, OCR was measured in breast cancer tumor cell lines and normal cell lines, 

exposed to each of four well defined modulators of mitochondrial glycolytic energy metabolism 

(olygomicin, carbonyl cyanide p-[rifluorometoxyl]-phenyl-hydrazine (FCCP), 2-deoxyglycose 

(2-DG) and rotenone) using the XF24 Extracellular Flux Analyzer (Seahorse Biosciences, 

Bilerica, MA), a fully integrated 24-well instrument capable of measuring in real time the uptake 

and excretion of metabolic end products. (16).  

Oligomycin, an antibiotic, acts by blocking ATP synthesis at complex V, causing proton 

build up on the outside of the inner mitochondrial membrane and loss of electron transport. This 

process is followed by decrease in oxygen consumption rate (OCR) [17]. Carbonyl cyanide p-

trifluorometoxyl-phenyl-hydrazine (FCCP) is an uncoupler. It acts as an ionophore, completely 

dissipating the chemiosmotic gradient, uncoupling mitochondrial respiration from ATP synthesis 

leaving the electron transport system uninhibited. This invokes an increase in OCR [17]. Two-

deoxyglucose (2-DG) is a glucose analog that inhibits hexokinase, the first enzyme glycolytic 

pathway, which converts glucose to glucose-6-phosphate, causing inhibition of glucose uptake. 

Addition of 2-DG after FCCP treatment causes an increase or no change in OCR[15]. Under this 

condition, fatty acids might be utilized as the major fuel for oxidative metabolism [17-19]. 

Finally, the addition of rotenone (an inhibitor of mitochondrial NADH dehydrogenase/complex 

I) completely blocks electron transport and OCR [16]. 

The aim of this study was to show that breast cancer cells have lower levels of oxidative 

phosphorylation than normal cells as a result of mitochondrial impairment in tumor cells. Within 

tumor cell lines, we wanted to show that tumor cells that are estrogen receptor positive (ER+) 
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(luminal cell type), and human epidermal growth factor receptor 2 positive (HER2+) (HER2 cell 

type) had higher levels of oxidative phosphorylation than triple negative (estrogen receptor 

negative (ER-), progesterone receptor negative (PR-) and HER2-) (basal-like and claudin-low), 

which have worse clinical prognosis and further oncogenic transformation resulting in additional 

mitochondrial impairment [16, 20].  

Based on OCR obtained over the treatment with metabolic modulators, the additional 

OCR measures (basal OCR, total reserve capacity and ATP-linked OCR) were calculated and 

used for better understanding bioenergetics differences between normal and tumor cell types and 

among different tumor cells types [16, 17]. Basal OCR was defined as the difference of the mean 

OCR of untreated cells and the mean OCR caused by non-mitochondrial respiration (OCR after 

the rotenone treatment) and represents the base level of oxidative phosphorylation of untreated 

cells. Total reserve capacity was defined as the difference of the mean of OCR after 2-

deoxyglucose treatment and the mean OCR caused by non-mitochondrial respiration and 

represents the state where the cell approaches its maximum respiratory rate and depletes its 

reserve capacity. This parameter can be used as indicator how well the cell might deal with 

stress. ATP-linked OCR was defined as the difference of the mean basal level OCR and the 

mean of OCR after oligomycin treatment (caused by proton leak) and represents the respiration 

rate directly related to ATP synthesis [1, 17, 18]. 
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2.0  STUDY METHODS 

2.1 EXPERIMENTAL METHODS 

Tumor cell lines used in the study were grouped into to four cell types, basal-like, claudin-low, 

luminal and HER-2, based on their clinical, pathological and biological features of the tumor 

type from which they were generated. Based on the expression of estrogen receptors (ER), 

progesterone receptor (PR) and epidermal growth factor receptor-2 (HER-2), the majority of 

triple-negative tumors, considered as the most aggressive, were either basal like or claudin-low, 

followed by HER-2 enriched and luminal [20].  

The bioenergetic properties of four different tumor cells types (basal-like, claudin-low, 

luminal and Her-2) and one normal cell type were analyzed after the treatment with different 

metabolic modulators. Basal-like tumor cell type was represented by two cell lines (BT-20 and 

HCC1143), claudin-low by four tumor cell lines (BT549, MDA-MB 231, MDA-MB 157 and 

Hs578T), luminal by five tumor cell lines (MCF7, BT474, ZR 75 1, CAMA-1 and MDA-MB 

361), HER-2 cell type by two tumor cell lines (MDA-MB 453 and SK-BR 3) and normal cell 

type by four cell lines (HMEC, BRL36,  BRL11 and BRL23). 

The cells were seeded in XF 24-well cell culture microplates (Seahorse, Bioscience) at 

40,000 cells/well in 500 ul growth media and incubated at 37oC, 5% CO2 for 20-24h. After the 

baseline measurement, the testing agent was prepared in assay medium that was injected into 
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each well to reach the desired final working concentration and the oxygen consumption rate 

(OCR) was measured. Multiple measurements as well as compound injections were made at the 

indicated time points by the following procedure: after estimating the basal level of OCR on 

untreated cells, oligomycin, FCCP, 2-DG and rotenone were sequentially injected through ports 

to final concentrations of 1uM, 300nM, 100mM and 1uM, respectively. Four baseline rates and 

three response rates for each metabolic modulator were measured, for a total of 16 measurements 

during the time 0-132 minutes.  At the end of each assay, cells were detached by incubating with 

0.25% trypsin (Invitrogen), and the number and percentage of viable cells was determined by 

Trypan blue exclusion assay. The OCR level was normalized to the same number of cells and 

expressed as pMoles/min/103 cells [15]. For each cell type, basal OCR, total reserve capacity and 

ATP-linked OCR values were calculated.  
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2.2 LINEAR MIXED EFFECT MODELS 

Linear mixed effect modeling is an approach for analyzing longitudinal data. In linear mixed 

effect models the mean response is a combination of population characteristics, named fixed 

effects, shared by all individuals and subject-specific effects, named random effects, unique to a 

particular individual. The term mixed denotes the presence of both fixed and random effects in a 

single model [21]. 

These models allow the analysis of between-subject and within-subject source of 

variability in the longitudinal response. Using this model, it is possible to describe not only how 

the mean responses changes in the population of interest, but also how individual response 

change over time. 

In general form, linear mixed effect model can be expressed, using vector and matrix 

notation, as: 

Yi = Xi β + Zibi + ei 

Where i represents the subject number,  β is a (p x 1) vector of fixed effect, bi is a (q x 1) vector 

of random effects, Xi is a (ni x p) matric of covariates and Zi is a (ni x q) matrix of covariates, 

with q≤p 

In this case, the conditional or subject specific mean for given bi in this case would be: 

E(Yi|bi)= Xi β + Zibi 

while the marginal or population-averaged mean of Yi, averaged over the random effect bi, would 

be: 

E(Yi)= Xi β, since E(bi)=0 

The regression parameters β are the same for all individuals, while bi, combined with the 

corresponding fixed effects, are subject specific regression coefficients.  
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In the simplest linear mixed effect model, it has been assumed that intercept randomly 

varies from one individual to another and the model can be presented as following: 

E(Yij) = Xijβj + bi + eij 

where Xij  are covariates, β’s are regression parameters, bi is the random subject effect and eij are 

the sampling errors. The models describes the difference of the response for the ith subject at the 

jth measuring occasion from the population mean, Xijβj, by a subject effect bi, within-subject 

measurement error, eij [23]. Both the subject effect and the residual variation are assumed to be 

random, with mean zero and variance Var(bi) = σb
2 and Var(eij)=σ2. Based on this, the model 

describes the conditional mean response of Yij for any individual, with the given subject-specific 

effect:  

E(Yij|bi) = Xijβ + bi 

The marginal mean of Yij, averaged over the distribution of the subject-specific effect, bi, is given 

by: 

E(Yij) = Xijβ 

In this model the regression parameter β describes the change of the response over time in the 

population, while bi describes how the trend of ith individual deviates from the population’s 

intercept after accounting for the effect of covariates [21, 22]. 

 In case when intercepts and slopes vary randomly among individuals, a linear effect model 

for ith subjects and jth measurements is given by: 

 

Yij = β0 + β1tij + b0i + b1itij + eij, j=1,…, ni, 
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where β0 and β1 are population regression parameters, while b0i and b1i are random effect 

regression parameters. 

After making the assumption that the response vector Yi arose from a multivariate normal 

distribution with the covariance matrix Cov(Yi) = Ʃi = Ʃi(θ), we use maximum likelihood 

estimate (MLE) as a general estimation approach for the estimate of β and θ values, which 

estimates these values as most likely for the observed data [23]. 

To test the significance of regression parameters and significance of the difference 

between levels of the main effect categorical variable, the likelihood ratio test (LRT) and Wald 

test were used, respectively. It has been shown that the -2log ratio between the likelihood 

function over the null hypothesis and the likelihood function over the model follows a Chi-

square distribution  with the degrees-of-freedom (df) equal to the difference in the number of 

parameters in the model and null hypothesis [21]. The Wald test is an approximation of 

likelihood ratio test and is defined as the squared ratio between an estimate and its corresponding 

standard deviation: 

W=(estimate/ SD(estimate))2  

 

In the situation where the central limit theorem (CLT) applies, the estimate will have an 

approximate normal distribution and, therefore, the quantity of Wald statistics will have 

approximately Chi-square distribution with one degree of freedom and thus large values will lead 

to a rejection of the null hypothesis. If the test statistics fails to reject the null hypothesis, 

removing the variables from the model will not substantially harm the fit of that model [21, 24]. 
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2.3 STATISTICAL ANALYSIS 

Descriptive statistics were computed to show the distribution and potential outliers of oxygen 

consumption rate (OCR) which is the dependent variable in the mixed models. OCR was 

analyzed over the lines (CLINE), cell types (CTYPE), and experiment number (EXPDATE). 

We compared oxygen consumption rate among different cell types (CTYPE) using linear 

mixed effect models, with a random effects for each well of 24 well plates seeded with cells of 

the specific cell line used in experiments.  This model was fit controlling for treatment 

(TREATM), cell lines (CLINE), experiment number (EXPDATE) and time (TIME). Possible 

interactions of statistically significant variables were assessed. All independent variables 

(treatment, cell line, experiment number, and time) were treated as fixed effect variables, where 

the treatment variable represented the untreated and 4 levels of successive treatments with 

different metabolic modulators (oligomycin, FCCP, 2-DG and rotenone) and cell line (CLINE) 

variable represented 17 different cell lines used in the study, belonging to five different cell types 

(CTYPE). Experiment number (DATAEXP) represented the experiment number variable with 

15 levels, where each level is the set of experiments involving different cell lines coming from 

different cell types, performed at the same day. Time (TIME) was a variable with 16 levels, 

which represented the period from 0 to 132 minutes when the measures of OCR were taken. 

First, a univariate analysis of each separate variable was performed. Variables were kept 

in the multivariate model if statistically significant at p<0.05 in the univariate analysis. After 

establishing the appropriate multivariable regression model, model diagnostics were performed 

by checking for heteroscedasticity and departure from normality of the dependent variable using 

scatter plots of combined fixed and random effect residuals over the predicted values of OCR, 



 11 

standardized normal probability plots, quantile plots and univariate kernel density plots of the 

residuals. 

Basal OCR, total reserve capacity and ATP-linked OCR were calculated for each cell line 

used in the study. Descriptive statistics for each of these OCR measures were calculated over cell 

type (CTYPE). Linear mixed effect models was fit to assess differences in basal OCR, total 

reserve capacity and ATP-linked OCR between the cell types (CTYPE), using cell line (CLINE) 

and experiment number (EXPDATE) as a random effects. Model diagnostics were performed on 

the final models. P values < 0.05 were defined as statistically significant.  

Data analyses were performed using MS Excel 2010 (Microsoft, Redmond, WA) and 

Stata SE/12 (StataCorp LP, College Station, TX).  
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3.0  RESULTS 

As shown in Table 1, oxygen consumption rate (OCR) was measured for normal and tumor cell 

types, represented by total of 17 cell lines. Different number of replicates was used for each of 

the cell lines. Over the time period from 0-132 minutes, 16 successive measures of OCR were 

taken: four on untreated cells after 1, 10, 19 and 28 minutes of incubation, three measures on 

oligomycin treated cells after 36, 45, and 54 minutes, three measures for FCCP treated cells, 

after 64, 73 and 82 minutes, three measures for 2-DG treatment, after 91, 99 and 108 minutes 

and three measures after rotenone treatment, at 115, 124 and 132 minutes of incubation. The 

experiments were repeated from two to five times and the number of replicates for each cell line 

per experiment was in the range from two to seven (Tables 1 and 2). Basal-like cell type was 

represented by two cell lines BT20 and HCC1143 (17.04%), Claudine-low was represented by 

four cell lines BT549, Hs578T, MDA-MB 157 and MDA-MB 231 (22.73%), Luminal cell type 

was represented by five cell lines, MCF-7, MT474, ZR-75, CAMA-1 and MDA-MB 361 

(30.68%), (Table 1). Oxygen consumption rate was measured for each cell line separately at 

different treatment levels (without treatment and oligomycin, FCCP, 2-DG and rotenone 

treatment). The mean, standard deviation of OCR were calculated for each cell type (CTYPE), as 

given in table 3. 

The base level of OCR for untreated cells had a mean range from 3.079 pmol/min/103 

cells for claudin-low cell lines to 7.626 pmol/min/103 cells for luminal cell lines. Oligomycin 
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treatment decreased the OCR in all cell lines from 1.182 pmol/min/103 cells for basal-like to 

2.701 pmol/min/103 cells for luminal cell lines. After FCCP treatment, the range of OCR was 

4.277 pmol/min/103 cells for basal-like cell lines to 13.259 pmol/min/103 cells for luminal cell 

lines while subsequent treatment with 2-DG reduced the OCR down from 5.129 pmol/min/103 

cells for basal-like cell lines to 15.205 pmol/min/103 cells for luminal cell lines. Finally, rotenone 

treatment dropped the OCR from 0.836 pmol/min/103 cells for basal-like cell lines to 2.284 

pmol/min/103 cells for luminal cell lines (Table 3). 

Summary statistics for the OCR values over 17 analyzed cell lines, five cell types, 

treatments and experiment number are presented in figures 1, 2 and 3, respectively. Figure 1 

showed the distribution and outliers of OCR over analyzed cell lines. It can be observed higher 

interquartile range in luminal tumor cells lines (ZR 75 1, MDA-MB 361 and SKBR-3 compared 

to all other cells lines.        

As seen in figure 2, there were a large number of outliers for OCR in the luminal cell 

type. Figure 3 showed that experiment number 4 had the highest interquartile range and the most 

outliers compared to all other experiments.   

The difference in means and standard deviations among different cell types, untreated 

and treated with metabolic modulators are shown in table 3. As shown, luminal and HER-2 cell 

types had higher oxygen consumption rates than basal-like, claudin-low and normal cell types in 

all treatment conditions.   

Linear mixed effect model was used to assess the association between the OCR and the 

cell types (CTYPE) as the main effect variable, having the experiment number (EXPDATE) as 

control variable (Table 4). There was no statistically significant interaction between the cell type 

and experiment number variables. Model diagnostics based on scatter plot of combined fixed and 
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random effect residuals over fitted values of OCR, normal and quantiles of residuals and a kernel 

density plot of the residuals showed small deviation from normality (Figure 4).  

Wald test statistics showed statistically significant differences in OCR levels between  

normal and luminal tumor cell types (p<0.00001), normal and HER-2 (p<0.00001), basal-like 

and luminal cell types (p<0.00001), basal-like and HER-2 (p<0.00001), claudin-low and luminal 

(p<0.00001), claudin-low and HER-2 cell lines (p<0.00001) and luminal and HER-2 cell types 

(p<0.00001) (Table 5).  

The descriptive statistics for basal OCR, total reserve capacity and ATP-linked OCR are 

shown in table 6. The range of values for basal OCR went from 2.112 pMol/min/103 for claudin- 

low cell lines to 5.341 pMol/min/103 for luminal cell type. total reserve capacity range had 

values from 4.293 to 12.920 pMol/min/103 for luminal cell lines, while ATP-linked OCR had a 

range from 2.722 to 7.210 pMol/min/103 for luminal cell lines. The distribution and outliers of 

basal OCR, total reserve capacity and ATP-linked OCR over the cell types are shown in figure 5. 

As shown, luminal and Her-2 tumor cell types showed the highest levels of basal OCR, total 

reserve capacity and ATP-linked OCR, while their levels are similar among basal-like, claudin-

low and normal cell types. Luminal cell type showed higher variation of dependent variable in all 

three OCR measures and higher number of outliers than other analyzed cell types. 

The linear mixed effect models for basal OCR, total reserve capacity and ATP-linked 

OCR included “cell type” as the main effect variable and the “experiment number” as the control 

variable. There was no statistically significant interaction between these two independent 

variables in either model. The regression parameter estimates and corresponding standard errors 

and p-value are shown in table 7. The model diagnostics for each of these three models, using 
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scatter plots of residuals versus fitted values, normal probability and quantiles of residuals and 

kernel density plots showed no significant departure from normality (Figure 6). 

Statistically significant differences for basal OCR were found between normal and 

luminal cell types (p<0.00001), normal and HER-2 cell types (p=0.051), basal-like and luminal 

(p<0.00001), basal-like and HER-2 (p=0.0112), claudin-low and luminal (p<0.00001), claudin-

low and HER-2 (p=0.0030) and luminal and HER-2 (p=0.0001). Statistically significant 

differences for total reserve capacity were found between normal and luminal cell types 

(p=0.0010), basal-like and luminal cell types (p<0.00001), basal-like and HER-2 (p<0.0467), 

claudin-low and luminal (p<0.00001), claudin-low and HER-2 (p=0.0301), luminal and HER-2 

(p=0.0044). Statistically significant differences for ATP-linked OCR were found between normal 

and luminal cell types (p=0.0002), basal-like and luminal (p=0.0001), claudin-low and luminal  

(p<0.00001), luminal and HER-2 (p<0.0010) (Table 8). 
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4.0  DISCUSSION 

Otto Warburg (1956) postulated that cancer cells, compared to normal cells, have an increased 

rate of glycolysis and decreased oxidative phosphorylation due to impairment of mitochondrial 

respiration, [10]. In this study we investigated the bioenergetics profile of four breast cancer cell 

types (basal-like, claudin-low, luminal and HER-2) classified by their gene profile and clinical 

outcome [19]. We compared the level of oxidative phosphorylation of tumor and normal cell 

lines by measuring oxygen consumption rates during the treatment with metabolic modulators, 

using XF24 Extracellular Flux Analyzer. This is a non-destructive method that does not require 

cell destruction and mitochondria isolation. It enables the analysis of the cell oxidative 

phosphorylation under physiological conditions [25]. We postulated that tumor cells originated 

from breast tumors have lower oxidative phosphorylation than normal cells. We also postulated 

that tumor cells originated from triple negative (ER-, PR- and HER-2-)  tumors have lower level 

of oxidative phosphorylation then tumor cells originated from clinically less aggressive tumors 

due to advanced stage of mitochondrial impairment caused by advanced stage of oncogenic 

transformation.  

OCR of normal and tumor cells lines was measured in 15 experiments. The frequency of 

tumor cell lines and tumor cell types and number of repetitions in each experiment was 

heterogenic in order to prevent random error, as observed in table 1 and table 2. The mean OCR 

was calculated for each treatment condition and plotted over the experiment number. As shown, 
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the highest number of outliers was present in experiment 4, while the distribution of OCR over 

all other experiments was homogeneous (Figure 3). Plotting OCR over cell lines showed that cell 

lines from luminal cell type have higher interquartile range compared to all other cell lines 

(Figure 1) with the extreme values of ZR-75 1 cell line (Figure 1). Twelve out of 21 observations 

in experiment 4 were from luminal cell type and 6 out of these 12 observations were made on 

ZR-75 1 cell line (Table 2). This excluded random error as a source of variation and high number 

of outliers. 

Comparing OCR between tumor and normal cell types, we found that normal cells did 

not have significantly higher oxidative phosphorylation than tumor cells (Figure 1). Moreover, 

analyzed normal cell lines showed similar or lower level of oxidative phosphorylation than most 

of tumor cell lines (Figure 2). Using linear mixed effect model and Wald test we showed that 

there were no significant differences in oxidative phosphorylation levels among normal, basal-

like and claudin-low cell types. Luminal and HER-2 cell types showed significantly higher OCR 

than normal cell type. These findings were opposite to published data claiming that tumor cells 

have lower level of oxidative phosphorylation than normal cells [10].  

Our findings indicated that tumor cell types represented by cell lines generated from 

triple negative (ER-, PR-, HER-2-) tumors with worse clinical prognosis (basal-like and claudin-

low) showed significantly lower level of oxidative phosphorylation than cell lines generated 

from tumors with clinically better prognosis (luminal, HER-2), which correspond to our 

assumption (Figure 2, Table 3). 

Additional measures of oxygen consumption rate (basal OCR, total residual capacity and 

ATP-linked OCR) showed similar trend among analyzed cell types. Basal OCR is a measure of 

oxidative phosphorylation at the base level, without any treatment. There were no significant 
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differences in the level of oxidative phosphorylation among normal, basal-like and claudin-low 

cell types [Figure 5, Table 6].  Luminal and HER-2 cell type showed significantly higher 

oxidative phosphorylation level than basal-like, claudin-low and normal cell types. Total reserve 

capacity is a measure of maximum respiratory rate of the cell. There were no significant 

differences in total residual capacity among basal like, claudin-low and normal cell types. 

Luminal and HER-2 cell types showed significantly higher total reserve capacity from basal-like 

and claudin-low cell line, while no statistically significant difference between HER-2 and normal 

cell type. ATP-linked OCR was a measure of oxygen consumption rate directly linked to ATP 

synthesis in electron transport chain (ETC). It was proposed that tumor cells would have lower 

OCR due to lower mitochondrial respiration. We showed that there were no statistically 

significant differences in ATP-linked OCR among basal-like, claudin-low and normal cell types.  

As shown in table 1 the number of experimental replicates per cell line varies from nine 

(BRL11) to 30 for (MCF-7). In most of the experiments MCF-7 has been used as a control cell 

line in the study, to monitor the consistency of the experimental conditions and the measuring 

equipment performance. MCF-7 cell line showed some variability in OCR values, but this seems 

rather the property of luminal cell type than problem with the experimental conditions and 

measuring equipment (figure 1).  A total of 15 experiments were performed and number of 

different cell types analyzed per each experiment was from one (experiment 14 and 15, when 

only cell lines from normal cell types were used) to five (experiment 3, when the cell lines from 

all five cell types were analyzed) (Table 2). To avoid potential random error it would be 

preferable to run more than one cell type per experiment and at least one cell type with already 

know bioenergetics profile through the whole set of experiments, especially cell type of 

significant interest for was used (normal cell type).  



 19 

To account for possible variability among different experiments, the “experiment 

number” variable was used as random effect and control variable in each model.  

Although the interaction was not statistically significant, we assess its effect by 

comparing all models with and without the interaction parameter in, trying to address the 

possible differences among experiments. The results from these analyses were similar in terms of 

variance and normality of residuals and comparison of OCR measures between pairs of cell 

types. 

As shown in table 2, normal and tumor cell types were paired in the experiments 2, 3 and 

5, while in the experiments 14 and 15 only normal cell types were assessed, without using any 

cell line of known bioenergetics profile as control. This might prevent detection of possible 

random error in these two experiments. To address possible error, a model without data from 

experiment 14 and 15 should be compared with the full model, containing all data points. This 

comparison was not performed because triplicates of only one cell line (HMEC) were used in 

experiments 2, 3 and 5, while all other normal cell lines were included in experiments 14 and 15.   

As shown in table 8, no statistically significant differences in ATP-linked OCR were 

found between HER-2 and basal-like, HER-2 and claudin-low, and HER-2 and normal cell types 

while the differences among these three pairs of cell types were obvious (figure 5). The reason 

for not being able to show the significant statistical difference (p<0.05) might be low power of 

the test statistics due to low sample number, since both basal-like and HER-2 cell types were 

represented by two cell lines each. Adding more additional cell lines would probably improve 

the power of the statistical analysis.  
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5.0  CONCLUSION 

Analysed breast cancer tumor cell types (basal-like, claudin-low, luminal and HER-2) did not 

show lower level of oxidative phosphorylation than normal cell types. Within analysed tumor 

cell types, tumor cells originated from more aggressive, triple negative (ER-, PR- and HER-2-) 

tumors (basal-like and claudin-low) showed significantly lower level of oxidative 

phosphorylation than tumor cells originated from less aggressive tumors (luminal and HER-2).  
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APPENDIX A: FIGURES AND TABLES 
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Figure 1. Box plot of oxygen consumption rate (OCR) over cell lines. Interquartile range, 
median, minimum, maximum, outliers and overall distribution of data points are shown for each 
cell line. 
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Figure 2. Box plot of oxygen consumption rate (OCR) of basal-like, claudin-low, luminal, 
HER-2 and normal cell types. Observed outliers in luminal cell type originated from ZR 75 1 
cell line. 
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Figure 3. Box plot of oxygen consumption rate over experiment number. High number of 
outlier in experiment 4 originated from ZR 75 1 tumor cell line that showed the highest OCR 
among analyzed cell lines. 
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Table 1. The number of replicates of cell lines in the study. MCF-7 tumor cell line has the 
highest number of replicates (30, 11.36%) since it was used as internal control to monitor the 
consistency of experimental conditions and instrument performance.   
   

 Cell lines Total (%) 

B
as

al
-li

ke
 BT-20 23 (8.71%) 

HCC1143 22 (8.33%) 

C
la

ud
in

-lo
w

 BT-549 12 (4.55%) 

Hs578T 9 (3.41%) 

MDA-MB 157 16 (6.06%) 

MDA-MB 231 23 (8.71%) 

Lu
m

in
al

 

MCF-7 30 (11.36%) 

BT-474 21 (7.95%) 

ZR-75 1 9 (3.41%) 

CAMA-1 12 (4.55%) 

MDA-MB 361 9 (3.41%) 

H
er

-2
 SK-BR 3 21 (7.95%) 

MDA-MB 453 12 (4.55%) 

N
or

m
al

 

HMEC 9 (3.41%) 

BRL36 14 (5.30%) 

BRL11 8 (3.03%) 

BRL23 14 (5.30%) 

 Total 264 
(100.00%) 
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Table 2. The frequency and percentage of cell types per experiment. Different cell types 
were used in each experiment to prevent random error due to potential variations in experimental 
conditions among different experiments.  
 

 Basal-
like 

Claudin-
low 

Luminal  Her-2 Normal Total 

Exp 1  3 
 5.00% 

3  
3.70% 

3 
 9.09% 

 9  
3.41% 

Exp 2 3  
6.67% 

 6  
7.41% 

 3  
6.67% 

12  
4.55% 

Exp 3 3  
6.67% 

3  
5.00% 

6 
 7.41% 

3 
 9.09% 

3  
6.67% 

18  
6.82% 

Exp 4 3  
6.67% 

3  
5.00% 

12 
14.81% 

3 
 9.09% 

 21  
7.95% 

Exp 5 7  
15.56% 

5 
 8.33% 

7  
8.64% 

 3  
6.67% 

22  
8.33% 

Exp 6 7 
15.56% 

5  
8.33% 

7 
 8.64% 

  19  
7.20% 

Exp 7 6  
13.33% 

6 
 10.00% 

6  
7.41% 

  18  
6.82% 

Exp 8 6  
13.33% 

6 
 10.00% 

6 
 7.41% 

  18  
6.82% 

Exp 9   6  
7.41% 

12  
36.36% 

 18  
6.82% 

Exp 10   6  
7.41% 

12  
36.36% 

 18  
6.82% 

Exp 11 5  
11.11% 

11  
18.33% 

6  
7.41% 

  22  
8.33% 

Exp 12 5  
11.11% 

9 
 15.00% 

5  
6.17% 

  19  
7.20% 

Exp 13  9  
15.00% 

5  
6.17% 

  14  
5.30% 

Exp 14     16 
35.56% 

16 
 6.06% 

Exp 15     20 
44.44% 

20  
7.58% 

Total 45 
100% 

60 
 100% 

81 
 100% 

33  
100% 

45  
100% 

264 
100% 
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Table 3. Means and standard deviations (sd) of oxygen consumption rate (OCR) over the 
cell types for different treatment conditions. untreated, oligomycin, FCCP, 2-DG and rotenone treated. 

 

OCR Treatment 
Untreated Oligomycin FCCP 2-DG Rotenone 

Cell types mean sd Mean sd mean sd mean sd mean sd 

Basal-like 3.233 1.928 1.182 0.747 4.277 3.174 5.129 2.883 0.836 0.659 

Claudin-low 3.079 1.290 1.325 0.711 4.828 2.437 5.728 2.540 0.967 0.593 

Luminal 7.626 3.404 2.701 1.426 13.259 6.110 15.205 7.117 2.284 1.439 

Her-2 6.383 1.326 2.485 0.664 10.797 2.827 12.944 3.689 1.710 0.736 

Normal 3.509 1.623 1.197 0.736 6.456 3.481 7.208 3.959 1.127 0.806 

   

Table 4. Regression parameter estimates, standard errors and p-values using linear mixed 
effect model. The main effect variable “cell type” was treated as categorical variable. “Normal” 
cell type was omitted in the model and used as reference class. 

 Oxygen consumption rate (OCR) 
Independent 
variable 

Estimate Standard 
error 

P-value 

Basal-like -0.908 0.560 0.105 
Claudin-low -0.673 0.503 0.181 
Luminal 4.376 0.506 <0.0001 
Her2 3.016 0.589 <0.0001 
Experiment number  0.011 0.041 0.790 

Variances of random effect variables and residuals  
Subject 0.832  
Experiment number 0.831 
Residuals 21.160 
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Figure 4. Linear mixed effect model diagnostic plots. A) Scatter plot of residuals over fitted 
values, B) Standardized normal probability plot of residuals, C) Quantile plot of residuals, D) 
Kernel density plot of residuals over normal distribution. The residuals showed small deviation 
from normality, but not enough to declare non-normality. 
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Table 5. Comparison of oxygen consumption rate (OCR) between pairs of analyzed cell 
types using Wald test on linear mixed effect model. 

 

Cell type comparison OCR 
(p-value ) 

Normal       vs.       Basal-like 0.1048 
Normal       vs.       Claudin-low 0.1813 
Normal       vs.       Luminal <0.00001* 
Normal       vs.       Her-2 <0.00001* 
Basal-like   vs.       Claudin-low 0.2401 
Basal-like   vs.       Luminal <0.00001* 
Basal-like   vs.       Her-2 <0.00001* 
Claudin-low vs.     Luminal <0.00001* 
Claudin-low vs.     Her-2 <0.00001* 
Luminal       vs.     Her-2 <0.00001* 

                 * statistically significant values at the significance level p<0.05   
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Figure 5. Box plots of basal OCR A) total reserve capacity B) and ATP-linked OCR C), 
over the cell types. Oxygen consumption rates were normalized per 1000 cells.  

 

Table 6. Means and standard deviation (sd) of basal OCR, total reserve capacity and ATP- 
linked OCR by cell types. 

 

 OCR measures 
Basal OCR Total reserve 

Capacity 
ATP-linked OCR 

Cell types Mean SD Mean SD Mean SD 
Basal-like 2.397 1.347 4.293 2.334 2.886 1.839 
Claudin-low 2.112 0.959 4.761 2.265 2.722 1.165 
Luminal 5.341 2.461 12.920 6.106 7.210 3.365 
Her-2 4.673 1.363 11.234 3.711 5.608 1.408 
Normal 2.382 1.206 6.081 3.470 3.439 1.709 
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Table 7. Regression parameter estimates, standard errors (se) and p-values (p), variance of 
random effect variables and residuals, using linear mixed effect model for basal OCR, total 
reserve capacity and ATP linked OCR. “Normal” cell type was omitted in the model and used 
as a reference class. “Cell line” and “experiment number” were used as random effect variables. 

 
 Basal OCR Total reserve capacity ATP-linked OCR 

Estimate SE p Estimate SE p 
 

Estimate SE p 

Basal-like 0.216 0.882 0.806 -0.2398 2.453 0.328 -0.199 1.482 0.893 
Claudin-
low 

-0.267 0.758 0.724 -2.146 2.076 0.301 -0.612 1.240 0.621 

Luminal 3.152 0.756 <0.0001 6.768 2.057 0.001 4.541 1.219 <0.0001 
Her-2 2.558 0.914 0.005 4.221 2.511 0.093 2.592 1.504 0.085 
Expnum. 0.054 0.052 0.302 -0.108 0.130 0.405 0.069 0.069 0.315 

Variances of random effect variables (“cell line” and “experiment number” ) and residuals 
Cell line 0.522  5.299  2.247  
Expnum.  1.237 5.904 1.374 
Residuals 0.986 6.617 1.783 
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Figure 6. Linear mixed effect model diagnostics of basal OCR I), total reserve capacity II) 
and ATP-linked OCR III). A) Scatter plot of residuals over the fitted values, B) Standardized 
normal probability plot of residuals, C) Quantile plot of residuals, D) Kernel density plot of 
residuals over normal distribution. No significant departure from normality of residuals can be 
observed in all three linear mixed effect models. 
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Table 8. Comparisons of basal OCR, total reserve capacity and ATP-linked OCR between 
pairs of analyzed cell types. The comparison of each pair of different cell type was perform 
using Wald test. 

 

Cell type Basal OCR 
 
 

(p-value) 

Total Reserve 
Capacity 

 
(p-value) 

ATP-linked 
OCR 

 
(p-value) 

Normal      vs.       Basal-like 0.8064 0.3283 0.8390 
Normal      vs.       Claudin-low 0.7243 0.3011 0.6213 
Normal      vs.       Luminal <0.00001* 0.0010* 0.0002* 
Normal      vs.       Her-2 0.0051* 0.0927 0.0848 
Basal-like   vs.      Claudin-low 0.8333 0.5042 0.8802 
Basal-like   vs.      Luminal <0.00001* <0.00001* 0.0001* 
Basal-like   vs.      Her-2 0.0112* 0.0467* 0.1555 
Claudin-low vs.    Luminal <0.00001* <0.00001* <0.00001* 
Claudin-low vs.    Her-2 0.0030* 0.0301* 0.0829 
Luminal       vs.    Her-2 0.0001* 0.0044* 0.0010* 

      *statistically significant values at the significance level p<0.05   
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APPENDIX B: STATA CODE 

Stata/SE 12 code for linear mixed effect model: 

 

I Variable labeling, recoding and exploratory analysis: 
 
 

label variable mOCR " Mean oxygen consumption rate" 
label variable CTYPE "Cell Types" 
label values TREATM treatment 
label variable TIME "Read out time (min)" 
label variable TREATM "Treatment" 
label variable CLINE "Cell Lines" 
label define Cell_Line 1 "BT-20" 2 "HCC1143" 3 "BT-549" 4 "Hs578T" 5 "MDA-MB 157" 6 "MDA-
MB 231" 7 "MCF-7" 8 "BT-474" 9 "ZR-75 1" 10 "CAMA-1" 11 "MDA-MB 361" 12 "SK-BR 3" 13 
"MDA-MB 453" 14 "HMEC" 15 "BRL36" 16 "BRL11" 17 "BRL23" 
label values CLINE Cell_Line 
label define Cell_Type 1 "Basal-like" 2 "Claudine-low" 3 "Luminal" 4 "Her-2" 5 "Normal" 
label values CTYPE Cell_Type 
label variable EXPDATE "Experiment number (by date)" 
label define expdate 1 "exp 1" 2 "exp 2" 3 "exp 3" 4 "exp 4" 5 "exp 5" 6 "exp 6" 7 "exp 7" 8 "exp 8" 9 
"exp 9" 10 "exp 10" 11 "exp 11" 12 "exp 12 13 "exp 13" 14 "exp 14" 15 "exp 15" 
label values EXPDATE expdate 

 
tabulate CLINE CTYPE 
tabulate SUBJECT CLINE 

 
graph box  mOCR, over(CLINE) title("OCR over cell line") 
graph box  mOCR, over(CTYPE) title("OCR over cell type") 
graph box  mOCR, over(EXPDATE) title("OCR over experiment number") 

 
separate mOCR, by(TREATM) 
tabstat mOCR0 , by(CTYPE) statistics (n mean SD min max) 
tabstat mOCR1 , by(CTYPE) statistics (n mean SD min max) 
tabstat mOCR2 , by(CTYPE) statistics (n mean SD min max) 
tabstat mOCR3 , by(CTYPE) statistics (n mean SD min max) 
tabstat mOCR4 , by(CTYPE) statistics (n mean SD min max) 
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II linear mixed effect modeling and model diagnostics using two random variables in the 
model (“cell line” and “experiment number”) and the “experiment number” as control variable. 
 
xi: xtmixed mOCR ib5.CTYPE EXPDATE || SUBJECT : || EXPDATE:, mle var 
predict yhat_mOCR_2rnd, xb 
predict res_mOCR_2rnd, r 
 
scatter res_mOCR_2rnd yhat_mOCR_2rnd, yline(0) title("OCR: residuals over fitted values") 
pnorm res_mOCR_2rnd, title(“OCR: normal probability plot of residuals”) 
qnorm res_mOCR_2rnd, title(“OCR: quintile plot of residuals”) 
kdensity res_mOCR_2rnd, normal title(“OCR: kernel density plot of residuals”) 
 

testparm 1.CTYPE 
testparm 2.CTYPE 
testparm 3.CTYPE 
testparm 4.CTYPE 
testparm 1.CTYPE 2.CTYPE 
testparm 1.CTYPE 3.CTYPE 
testparm 1.CTYPE 4.CTYPE 
testparm 2.CTYPE 3.CTYPE 
testparm 2.CTYPE 4.CTYPE 
testparm 3.CTYPE 4.CTYPE 
 
 
xi: xtmixed BasalOCR ib5.CTYPE EXPDATE|| CLINE : || EXPDATE:, mle var 
predict yhat_BOCR_2rnd, xb 
predict res_BOCR_2rnd, r 
 
scatter res_BOCR_2rnd yhat_BOCR_2rnd, yline(0) title("Basal OCR: residuals over fitted values") 
pnorm res_BOCR_2rnd, title(“Basal OCR: normal probability plot of residuals”) 
qnorm res_BOCR_2rnd, title(“Basal OCR: quintile plot of residuals”) 
kdensity res_BOCR_2rnd, normal title(“Basal OCR: kernel density plot of residuals”) 
 
testparm 1.CTYPE 
testparm 2.CTYPE 
testparm 3.CTYPE 
testparm 4.CTYPE 
testparm 1.CTYPE 2.CTYPE 
testparm 1.CTYPE 3.CTYPE 
testparm 1.CTYPE 4.CTYPE 
testparm 2.CTYPE 3.CTYPE 
testparm 2.CTYPE 4.CTYPE 
testparm 3.CTYPE 4.CTYPE 
 
 
xi: xtmixed TotalResOCR ib5.CTYPE EXPDATE|| CLINE : || EXPDATE:, mle var 
predict yhat_TotRCap_2rnd, xb 
predict res_TotRCap_2rnd, r 
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scatter res_TotRCap_2rnd yhat_TotRCap_2rnd, yline(0) title("Total reserve capacity: residuals over fitted 
values") 
pnorm res_TotRCap_2rnd, title(“Total reserve capacity: normal probability plot of residuals”) 
qnorm res_TotRCap_2rnd, title(“Total reserve capacity: quintile plot of residuals”) 
kdensity res_TotRCap_2rnd, normal title(“Total reserve capacity: kernel density plot of residuals”) 
 
testparm 1.CTYPE 
testparm 2.CTYPE 
testparm 3.CTYPE 
testparm 4.CTYPE 
testparm 1.CTYPE 2.CTYPE 
testparm 1.CTYPE 3.CTYPE 
testparm 1.CTYPE 4.CTYPE 
testparm 2.CTYPE 3.CTYPE 
testparm 2.CTYPE 4.CTYPE 
testparm 3.CTYPE 4.CTYPE 
 
xi: xtmixed ATPLinkedOCR ib5.CTYPE EXPDATE || CLINE : || EXPDATE:, mle var 
predict yhat_ATPlnk_2rnd, xb 
predict res_ ATPlnk_2rnd, r 
 
scatter res_ATPlnk_2rnd yhat_ATPlnk_2rnd, yline(0) title("ATP-linked OCR: residuals over fitted 
values") 
pnorm res_ATPlnk_2rnd, title(“ATP-linked OCR: normal probability plot of residuals”) 
qnorm res_ATPlnk_2rnd, title(“ATP-linked OCR: quintile plot of residuals”) 
kdensity res_ATP-linked_2rnd, normal title(“ATP-linked OCR: kernel density plot of residuals”) 
 
testparm 1.CTYPE 
testparm 2.CTYPE 
testparm 3.CTYPE 
testparm 4.CTYPE 
testparm 1.CTYPE 2.CTYPE 
testparm 1.CTYPE 3.CTYPE 
testparm 1.CTYPE 4.CTYPE 
testparm 2.CTYPE 3.CTYPE 
testparm 2.CTYPE 4.CTYPE 
testparm 3.CTYPE 4.CTYPE 
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