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SOCIAL AND TRANSMISSION CONTACT NETWORK ANALYSIS OF

EPIDEMIC DYNAMICS IN AGENT-BASED MODELS

Jiawei Huang, M.S.

University of Pittsburgh, 2012

This thesis aims to make social network analysis on synthetic population that is used in

FRED system and develop transmission network analysis tools to analyze disease epidemic

dynamics in agent-based models of infectious diseases.

The social network of synthetic Allegheny County population consists 1.2M agents. The

synthetic population is proved to be an integrated component with average shortest path is

6.91. The risks of being infected for age groups are positively related to the average degree

of each group. Although degree distribution has a bifurcating pattern, it is still reasonable

to use the synthetic population for modeling disease transmission.

Tools are developed to analyze the transmission network, which generated by FRED

simulations. Three tools, TraceAnalysis, StatisticalAnalysis and EpidemicDynamic-

Plot, were developed to calculate statistics of transmission networks, to make inference on

statistics from different simulation scenarios and to plot epidemic curves. The tools are used

to analyze the effectiveness of interventions. School closure and vaccination policies were

chosen from FRED to be compared with the baseline FRED, which is run with no interven-

tion policy. The results from network analysis tools indicate the dependency between agents’

infection location. Special contact tracing motifs can be found by comparing the discrepancy

between the number and expected number of contact tracing motifs. The results show that

the schools play important roles in disease transmission.
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The public health importance of network analysis tools is to find out the contact tracing

motifs, to reveal the strong dependency of locations where infection events happened and to

compare the effectiveness of different public intervention policies in agent-based models.
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1.0 INTRODUCTION

Infectious disease has been a threat to human societies for a long time. The notorious

pandemics of infectious diseases in history include black death of 1347 to 1352, which killed

25 million in Europe, and the smallpox, which killed an estimated 60 million Europeans

during the 18th century1. The influenza Pandemic of 1918 killed 25-50 million people2.

Today influenza kills about 250,000 to 500,000 worldwide each year.

In recent years, the emerging diseases, which is when existing parasites become pathogenic

or when new pathogenic parasites enter a new host, arouse the nerve of people. Because the

spread of disease is fast and it takes time for medical scientists to have vaccine or effective

antiviral drugs to control emerging diseases. Under the condition that there is no effec-

tive pharmaceutical interventions, non-pharmaceutical interventions, such as school closure

[2], are considered to be effective in delaying the peak and mitigate the spread of disease.

Efficiency and economical cost of many mitigation strategies have already been intensively

investigated by different models.

The modeling of infectious disease is a tool which has been used to study the mecha-

nisms by which diseases spread, to predict the future course of an outbreak and to evaluate

strategies to control an epidemic [3]. Compartmental models are first used to investigate

epidemics [4]. They are being more and more used, because they are more flexible to incor-

porate heterogeneity of population in the model. Also they have more realistic assumptions.

The assumption that population in subgroups are perfectly mixed in compartmental model

is very strong. In computational models, the behavior and social network of every one in

the population can be differentiated from each other. The compartmental models, which

1http://www.learnnc.org/lp/editions/nchist-twoworlds/1696
2http://www.history.navy.mil/library/online/influenza_main.htm
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take advantage of the power of super computers, may be more powerful tools for epidemic

researches.

FRED is the most recently developed computational model and it is still under devel-

opment. It built up a synthetic society with synthetic populations and locations. Synthetic

is generated based on the actual distribution of demographic characters. Every one of the

synthetic population in the system are defined by sex, age, profession, social connection with

community and behavior characteristics. Simulation s of how infectious diseases are spread

among synthetic population enable us to predict the spread of disease and give the guidelines

of how to protect the society.

Although there are many computational models, and many intervention strategies are

already discussed using those models, the most commonly used way to indicate the severity

of infectious disease are descriptive statistics, such as overall attack rate and the dynamic

curves of number of infected people. More useful information of social structure or social

network can be extracted by using network analysis. The social network of a person may

have significant impact on one’s probability of being infected. Also the transmission network,

which describes all infection events, can be more informative than the overall attack rate,

which is calculated by the number of infected people divided by total number of people in the

simulation system. In this thesis, methods from network analysis were applied to develop

tools to analyze the social structure of population and the paths of spread of disease in

FRED simulation system.

In this chapter, a brief background of agent-based models(ABMs) will be given and

followed by the mechanism of FRED. Literature review will cover three fields of studies: the

formal studies and models of ABM, the methods of network analysis that have already been

used in epidemics research and the motif finding in networks. In the end, there will be an

outline of the thesis.
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1.1 BACKGROUND

1.1.1 Agent-Based Models

Computer modeling is the process by which a computer is used to develop a mathematical

model of a complex system or process. Computer modeling is an efficient way to take into

account many different factors and to simplify and organize real-world processes3.

Computers serve as virtual laboratories where researchers can study problems not easily

examined in real life. The experiments consist of computer simulations — representations

of actual communities based on demographic and transportation information. In these sim-

ulated environments, the researchers can introduce an infectious agent with certain charac-

teristics and then watch it spread.

Agent-based models (ABMs) are dynamic models that simulate the behavior of a system

over time. However, they take a bottom-up, or individual-level approach, specifying the

rules that govern the behavior of individuals and allowing the overall behavior of the system

to emerge from the interactions of those individuals. ABMs are often useful when the input

data are focused on an individual rather than a group level or when a small change in the

behavior of a few individuals could have a large impact on the system. Because of the

heterogeneity of behavior of human beings, it’s reasonable to use use ABM to differentiate

virtual persons by assigning different demography and behavior patterns. All the individuals

are divided into groups, for example, pre-school children, students, adult workers and retired

people. Individuals in the same group share similar characteristics. During an epidemic, each

individual has a chance of catching or spreading an infection through encounters with others

at home, work, school, and elsewhere. How the disease spreads through the population

depends on whether and when particular individuals encounter each other, as well as what

their particular characteristics are at the time of the encounter.

Framework for Research on Epidemic Dynamics (FRED) is an agent-based model that

consists large heterogeneous population. The mechanism of FRED will be introduced in the

following section.

3https://www.epimodels.org/midasdocs/infoMaterials/MIDAS_101_Comp_Modeling_web.pdf and
https://www.epimodels.org/midasdocs/infoMaterials/MIDAS_101_Model_Types_flyer_web.pdf
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1.1.2 FRED System

Framework for Research on Epidemic Dynamics (FRED) is a framework designed to flexibly

and rapidly allow researchers to build agent based models for simulation of disease spread

through populations. FRED was developed by the Public Health Dynamics Laboratory

under the direction of Dr. John Grefenstette, Dr. Shawn Brown of University of Pittsburgh

and Dr. Roni Rosenfeld of Carnegie Mellon University. I was a Graduate Student Researcher

(GSR) in the laboratory to do network analysis of synthetic population and the transmission

among the synthetic population.

Figure 1 shows an overview of the FRED system. It is an agent based model for sim-

ulation of infectious disease. Synthetic populations which are able to carry and transmit

infectious disease are created. The behavior of each synthetic person in the system is defined

by demographic parameters, social contacts parameter, etc. By initially assigning agents

with certain types of infectious disease, we are able to simulate the process of the spread of

diseases and test effectiveness of various kinds of mitigation strategies.

In the rest of this section, I will introduce individual level model in FRED, the synthetic

population, disease transmission process and mitigation strategies.

1.1.2.1 Individual Influenza Model Figure 2 shows the individual influenza model.

At the beginning of each simulation run, FRED randomly pick random number of persons

to be infected and all the other people are at the stage of “susceptible”. Susceptible people

could be infected by contact with infected people and moved to “exposed” stage. “Exposed”

people are not infectious unless they enter into the “infectious” stage after incubation period.

Finally, they will be in “Recovered” stage, which they will be immune to future infection.

1.1.2.2 Daily Movement of Agents Just like people in the real world, people with

different occupation have different daily schedules. Students in the FRED system will go to

classrooms and schools during daytime in weekdays, attend social activities in neighborhood

after school and go back to household at the end of the day. Accordingly, the adult workers

will go to office and workplace, then neighborhood and household. The link between school

4



and office shows the daily routine of school teachers whose offices are in the schools. Retired

and unemployed are also considered in FRED system.

1.1.2.3 Synthetic Population The synthetic population is generated from US Cen-

sus Bureau’s Public Use Microdata files, and Census aggregated data. In FRED, persons

are represented by a virtual agent with demographic and behavior characteristics informa-

tion. The construction of the synthetic population used the processing method developed by

Wheaton et al in the paper Synthesized Population Databases: A US Geospatial Database for

Agent-Based Models [5]. The overall process includes four steps: (1) generating synthesized

households and virtual residents; (2) generating synthesized virtual schools and assigning

school-age agents into schools; (3) assigning adult agents to workplaces and (4) generating

additional agents to live in group quarters housing. Overall, each agent has information of

age, sex, employment status, occupation, household location, household membership, school

assignment of students and teachers, work location assignment of employed adults, work

status as employed or unemployed, and disease status.

In this thesis, the synthetic population is the population in Allegheny County, Pennsyl-

vania, which is extracted from the U.S. synthetic population. There are totally 1,242,755

people. Figure 5 shows the distribution of age of this synthetic population.

Each individual in synthetic population is scheduled to go to several locations everyday.

All the synthetic locations in Allegheny County are plotted by longitude and latitude in

Figure 6. Rivers can be seen clearly. The colors are used to differentiate the neighborhood

that each location belong to.

There are 657947 locations and each of them is categorized into one of the three categories

(Household, Workplace and School), which end up with 537,405 households or H, 52,535

workplaces or W and 476 schools or S.

1.1.2.4 Social Networks and Disease Transmission Process Agents can be infected

by contacting infectious agents in the places where they go during the day. For example,

a student in household have a chance to be infected by infectious family member. When

he or she goes to the school building, he or she has a probability to contact anyone in the

5



building, some of those may be infectious people. So the student have chance to be infected

by them. Accordingly, during the weekends when the students do not need to come to the

school building, they may attend social activities in neighborhood and contact infectious

people who they may not be able to contact during weekday. Thus, the transmission can

happen in different places where people have a chance to contact an infectious person.

Disease transmission probability depends on where transmission occurs, susceptibility of

infectee, infectivity of infector and who infects whom [6, 7].

1.1.2.5 Intervention Strategies Public health policies are designed to efficiently and

effectively control the spread of disease. Intervention strategies such as vaccination, antivi-

rals, school closure and combination of them can be discussed under ABM models. The

severity of disease will be reduced by incorporating mitigation strategies. For example, if

vaccination is available to the public, and high percent of agents in the model can be vacci-

nated, herd immunity may prevent infectious disease to become an outbreak.

The effectiveness of various mitigation strategies have been investigated by many agent-

based models, such as vaccination [8, 9, 7], antiviral drugs [10] and social distancing measures

[2, 10]. And FRED has implement all of those strategies.

1.1.2.6 Results of FRED To cover a whole epidemic season, FRED needs to simulate

all the movements and contacts between 1.2 million synthetic persons or agents for 240

days. It is really time consuming. The implementation of mitigation strategies will even

add more calculation time. For each simulation scenario with specific intervention strategies

implemented, FRED will run multiple times to evaluate the effectiveness of the strategy

because of the randomness of the simulation. It takes 2 hours to do 20 runs of baseline

scenario in an Mac OS operating system with two 3.06GHz Intel cores.

After running, FRED will save the records of simulation process into local files for further

analysis. For each run, error file, log file, infection file, out file, trace file and vaccine file will

be generated. Their contents and functions are listed below:

• Error file: empty if there is no error in the sumulation. It keeps the records of all running

errors.

6



• Log file: size ≤1MB. It stores all output from standard output.

• Infection file: size ≤ 100MB. It stores information for all infection events. The more

infection events, the larger the file would be. A typical line in this file would be

day 2 dis 0 host 125597 age 14.751 from 753726 inf age 14.929 at S.

A 14.7 years old child with id 125,597 was infected at School by the agent with id 753,726

and age 14.9 on day 2.

• Out file: size ∼50 KB. It stores the number of people in each subgroup of S, E, I and R

by each day and other statistics by days. A typical line would be

Day 7 Str 0 S 1242156 E 103 I 345 I s 244 R 151 M 0 C 74 N 1242755 AR

0.05 CI 100 V 746461 RR 0.00 NR 74 CAR 0.03 Sat 2011-01-08 Year 2011

Week 1.

It means that at the end of day 7 after the outbreak, number of susceptibles is 1242156.

103 agents are exposed, 345 agents are infectious, 151 agents are in the recovered state.

The total number of agents is 1,242,775 and the overall attack rate is 5%.

• Trace file: size ∼170 MB. It stores the information of health status of each agent. It will

be described in section 3.1.1.

• Vaccine file: ∼20MB. It stores all vaccination injection events. A typical line would be

id 74082 vaccid 0 vaccday 0 age 70 iseff 1 effday 14 currentdose 0.

This line means the agent No. 74082 received vaccination on the beginning of outbreak

season. The vaccine will be effective on two weeks later.

The typical way of seeing the severity of an outbreak is using the information in “out

file” to plot the epidemic curves of exposed agents or infectious agents as Figure 8 shows.

The three lines represent the number of infectious agents by days of outbreak under three

running scenarios. Red is for school closure policy, green is for vaccination policy and black

is for baseline, which does not include any intervention policies.

The input, output files and simulation process of FRED are introduced above. Although

the comparison made in Figure 8 can explain the relative severity of infectious disease un-

der different intervention policies, there are still many questions cannot be answered. For

7



example, what is the risk of agents in different subgroups? Will any intervention policy may

increase the risk of agents in other subgroups while reduce the risk of the target subgroup?

Will there be any relationship between the places where infectors got infected and the places

where infectors transmitted to others? And is there any special group that play important

role in spreading disease? The transmission process can be mined by taking advantages of

information stored in FRED output files, such as infection files and trace files. So that the

comparison of different scenarios can go much further than merely the comparison of number

of infected agents.

1.2 LITERATURE REVIEW

As computers become faster and faster, ABM have has more and more used to solve a

variety of business and technology problems. Examples of the applications include consumer

behavior [11], supply chain optimization [12], population dynamics [13], language choice

dynamics [14] and epidemics. The modeling of infectious diseases using ABM is an emerging

new method to develop computational models of the interactions between infectious agents

and their hosts, disease spread and response strategies. Section 1.2.1 will give more detailed

review of application of ABM in epidemic studies.

Network analysis is a method to study the relations between discrete objects. It is closely

related into the study of infectious disease, since each person can be seen as an object and

the relation between objects can be the social contact relationship, which represents the two

objects have probability to contact each other, or the infection relationship, which means

one person infect another. Network analysis can be easily integrated into epidemiological

research, especially infectious disease studies. More detailed review of network analysis and

epidemics studies will be given in section 1.2.2.

The more nodes and edges a network have, the higher level of complexity it will have. In

order to make any sense of complexity present, a large variety of measurable properties that

can be used to characterize networks [15]. Section 1.2.3 will give brief review of properties

of network and their applications.
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1.2.1 Agent Based Models and FRED

Before 2000, many models for the spread of infectious disease in population were analyzed

mathematically and applied to different diseases. Starting from the very basic “SIR” model

[4], mathematical models are becoming more and more complex and can incorporate more

features. The recent models that have been developed involve aspects such as immunity,

gradual loss of immunity, vertical transmission, disease vectors, quarantine, age-structured

infectivity and so on. Specific models are formulated for diseases like measles, rabies and

syphilis [16]. But mathematical models have their limitations to evaluate the effectiveness

of the complex public intervention policies.

As the computers becoming faster and faster, the power of computer is more and more

used by scientists to answer questions that are too complex for mathematical models. Model-

ing of infectious diseases using agent-based models is more realistic and powerful to examine

how an outbreak could spread in a variety of scenarios.

An agent-based model (ABM) (also sometimes related to the term multi-agent system

or multi-agent simulation) is a class of computational models for simulating the actions and

interactions of autonomous agents (both individual or collective entities such as organizations

or groups) with a view to assess their effects on the system as a whole. The models simulate

the simultaneous operations and interactions of multiple agents, in an attempt to re-create

and predict the appearance of complex phenomena. The process is an emergence from the

lower (micro) level of systems to a higher (macro) level. As such, a key notion is that simple

behavioral rules generate complex behavior.

ABM has been applied to the study of infectious diseases since early 2000s when one of

the first large scale ABMs of infectious disease, Episims [9], was developed by Los Alamos

National Laboratory. Physical contact patterns are based on actual census, land-use and

population-mobility data. The Episims simulate the spread of smallpox and can be run

by different mitigation strategies. Two more ABMs [17, 10] were developed to address the

effective strategies to contain H5N1 in Southeast Asian. Synthetic population consists of

hundreds of thousands to millions of agents in Southeast Asian was generated for simula-

tions. The interventions strategies include targeted antiviral prophylaxis, pre-vaccination
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and social distance measures. The comparison of effectiveness of intervention strategeies are

mainly based on the overall attack rates and epidemic dynamic curves. During the develop-

ment of ABMs, more realistic assumptions are implemented into them to allow simulation

to have more eloquent guidance on contaminating the real outbreak situation. Since the

vaccination and antiviral drugs may not be available or sufficient for all people who need

them, the prioritization of limited vaccination [8] and logistic plans of drug distribution are

added into system. Multi-dose vaccinations are also implemented to be more realistic. More

complex situations like multiple outbreaks and evolution of virus are also implemented or

being implemented into one or more ABMs of infectious disease.

FRED is an ABM that has being developed by Public Health Dynamics Lab since 2009.

It’s a framework of multi-strain simulation system for epidemics that is based on the real-

istic U.S. population. Besides the features already present in other ABMs, FRED supports

complex vaccination availability schedule, studies of human health behaviors and viral evo-

lutions. The first utilization of FRED happened during 2009 H1N1 influenza pandemic. The

problems addressed by FRED simulation on H1N1 influenza are listed below:

• School Closure: When strictly maintained for at least 8 weeks, school closure could

delay the epidemic peak by up to 1 week, allowing additional time to develop and im-

plement other interventions. A school closure lasting less than 2 weeks could actually

facilitate a faster flu spread, because susceptible students return to their schools in the

middle of an outbreak [2]. Nevertheless, because closing schools could have resulted in

substantial costs to society as the potential costs of lost productivity and childcare could

have far outweighted the cost savings in preventing influenza cases [18].

• Vaccine Prioritization and Availability Schedule: The Advisory Committee on

Immunization Practice (ACIP)-recommended prioritizing at-risk individuals, rather than

only high-transmitters (e.g., children) may increase attack rate, but it reduced serious

disease and death, overall economic cost and resulted in the largest savings [8]. However,

vaccinating all remaining workers captured additional savings and reduced healthcare

worker’s and critical infrastructure workers chance of infection. And once 20% compliance

was achieved, marginal benefit will be less [6]. Poor counties should have the same

access to influenza vaccines as wealthier ones, because they tend to have high-density

10



populations with more children and other higher-risk people per household, resulting in

more interactions. Both increased transmission of influenza and greater risk for worse

outcomes [19].

FRED is an outstanding ABM that can be easily adapted to a wide range of infectious

disease outbreaks. It can give quick responses by evaluating a variety of public intervention

strategies and offer evidence for policy makers. FRED is till in the development stage as of

writing this thesis, more new features are being added into simulations system to make it

more powerful for predicting future outbreaks and giving scientific evidence for policy maker.

1.2.2 Network Analysis and Infectious Disease Studies

Network analysis is heavily used in the epidemiological studies especially infectious disease

studies. This is because the connections between persons that allow infection propagate from

person to person naturally formulate a social contact network. The social contact network

potentially defines transmission paths, so analyzing its structure and the effect of this struc-

ture on disease transmission process are helpful for disease control. Derived from the social

contact network, a transmission network can be defined by eliminating all uninfected individ-

uals and link all individuals by infector-infectee relationship. Understanding the structure of

transmission network allows us to improve predictions of the likely distribution of infection

and interactive waves of spread between subgroups.

Generally, three kinds of network are integrated into infectious disease studies in order

to find out the mechanism of spread of infectious diseases and the effective way to control

the spread. They are real network, simulated network, idealized network.

1.2.2.1 Idealized Networks A class of idealized networks are proposed to reveal the

features of network structures that determine the epidemic dynamics. Models for random

networks, lattices, small-world networks, spatial networks, scale-free networks and exponen-

tial random networks and their implication for epidemic spread were discussed [20].

Effectiveness of interventions were also discussed in idealized networks [21]. In the lit-

erature, idealized networks are built by network generating algorithms, then various inter-
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ventions are tested on them. The effectiveness of antiviral treatment, reactive vaccination,

school closure and their combinations were compared by overall attack rates. The idealized

networks address the determinant of dynamics directly, but its generalization to the real

work social network is suspicious.

1.2.2.2 Realized Contact Networks Realized contact networks are used to delineate

the transmission routes within infected populations. They are constructed by using snow-ball

sampling method.

For the situations when the number of people involved in a disease outbreak is not large

and the transmission routes are clear, it is possible to use snow-ball sampling to rebuild the

contact networks and transmission routes. For example, the HIV and other STDs give very

obvious transmission routes. The contact network of a disease can be formulated by asking

every individual to name all their sexual partners over a given period. Many researchers

used this method to build realized contact network to study the spread mechanism of the

disease, such as HIV [22, 23, 24] and Tuberculosis [25]. The spread of obesity, even though

it is a non-infectious disease, can also be investigated by friendship/kinship networks [26], as

well as psychological phenomenon, such as happiness [27] and loneliness [28]. This approach

has significant limitations under the condition when the infectivity of a disease is high and

lots of people are infected or when the transmission routes of the disease are vague, such as

air-born diseases.

1.2.2.3 Simulated networks Given the tremendous difficulties of rebuild the whole

contact network or transmission network, a variety of methods have been developed to

generate synthetic populations and networks from Census or large survey of egocentric data.

Egocentric data consists of demographic and behavioral information on a number of

individuals (the egos) and their contacts (the alters). The egocentric data, though cannot

infer connections between egos, has valuable information on heterogeneities of the real social

network. The NASTAL [29], which studies the sexual contacts, and the POLYMOD [30],

which studies the social interactions within 8 European countries, gathers such egocentric

data. Algorithms are then used to generate network of egos by probabilistically assigning
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each ego a set of contacts drawn in the information available from egocentric data. The

algorithms are case-by-case based on different egocentric data that the network is formulated

from [31, 32]. The synthetic population used in FRED system is in U.S. census data with

algorithms developed by Geospatial Science and Technology Program in Research Triangle

Institute. The details can be found in a technical report [5].

1.2.3 The Properties of the Contact Network

The contact network of the synthetic population in FRED system, which include over 1.2

million individuals, is an undirected network that is very complex. The number of edges

between the individuals are over 2.6 billion. The transmission network is a directed network

and have much smaller individuals and fewer edges, but it is different for each simulation

run, while the contact network is static. The more people get infected, the more complex

the transmission network will be. For example, an outbreak, which cause n(n ≪ 1.2M)

individuals infected, will have number of edges less than n, or specifically n − ni, where

ni is the number of people initially selected as infectious. Even though, the complexity of

the transmission network prevents us from getting any clear knowledge by visualizing the

network. Proper network statistics are needed to represent the characteristics of the contact

network and to compare the differences between different transmission networks.

A few widely-used used statistics as well as their definitions and applications will be intro-

duced in Table 1.2.3. They will be used to analyze the contact network and the transmission

network in FRED.

1.2.3.1 Contact Tracing Motifs Finding network motifs is another powerful tool that

is widely used in genomic studies.

Network motifs are connectivity-patterns (sub-graphs) that occur much more often than

they do in random networks. Network studies in biology, ecology and other fields show

that the network is largely composed of these network motifs. These motifs can be consid-

ered as simple building blocks from which the network is composed, so the network can be

characterized by the motifs.
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Motifs were first observed in gene regulatory networks in transcription of bacteria E.

coli [33]. Later they were also found in other bacteria’s transcription networks [34] such as

yeast [35] and other higher organisms [36]. Many of the motifs are found to have important

functions in biological mechanisms. One of the most abundant network motif in E. coli, for

example, is negative auto-regulation in which a transcription factor(TF) represses its own

transcription. These motifs are shown to have functions of response acceleration [37] and

increased stability of the auto-regulated gene product concentration against stochastic noise,

thus reducing variations in protein levels between cells [38].

In this thesis, study of transmission network analysis focus on developing tools to find

out the connectivity-patterns (sub-graphs) are much more often than they do in random

networks. They are called “contact tracing motifs”. More details would be discussed in

section 3.1.4.

1.3 OBJECTIVES OF THE THESIS

The objectives of this thesis are (1) to analyze the social network in the synthetic population

used in the FRED agent-based based model and (2) to develop network analysis tools to

analyze disease epidemic dynamics in the FRED system. The specific aims of network

analysis is to

• Analyze social contact network by finding components, the distribution of degrees and

the average shortest path;

• Build transmission networks by using output files of FRED;

• Perform statistical inference on the infection locations to dentify contact tracing motifs.

1.4 OUTLINE OF THE THESIS

In Chapter 2, the social network of synthetic Allegheny County population will be investi-

gated. The format of the file that containing the information of Allegheny County’s synthetic
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population used in FRED will be introduced first, followed by the method of building social

network based on the file. Several important network attributes related to social network

will then be introduced.

In Chapter 3, tools are developed to analyze the results of FRED simulation, so that

we can have more information about how disease is transmitted among synthetic population

and how different intervention strategies change the transmission process.

Final discussions are given in the last section.
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Figure 1: FRED system overview

Figure 2: Individual influenza model. The raw figure is in [1] and the usage is under per-

mission of the author.
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Figure 3: Daily Movement of Agents

Figure 4: The construction of synthetic population. The raw figure is in [1] and the usage is

under permission of the author.
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Figure 5: Age distribution of synthetic population

Figure 6: Geographical information of synthetic locations
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Figure 7: Social networks of synthetic population

Figure 8: Epidemic curves of infectious agents under three scenarios
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Table 1: Definition and application of measurements in network analysis

Properties Definitions Applications

Components A component is a subset of

the nodes in a network in

which each node is reach-

able from others in the same

component but not reach-

able from other nodes in

other components.

The severity of disease spread is limited by

the number of nodes in the component at the

early stage of outbreak. Isolated component

will not be affected by the disease if no one

is infectious in the component.

Degrees the number of neighbors

that a node is connected to.

In directed network (trans-

mission network), the de-

gree has two versions, the

incoming degree kin and the

outgoing degree kout.

It captures the heterogeneity in individuals’

potential to become infected and cause fur-

ther infection. Intuitively, the higher the

number of contacts a node has, the more

likely it is to be a neighbor of an infectious

node.

Distance The distance between any

pair of nodes di,j is the min-

imum number of steps re-

quired to reach j from i,

that is, the number of steps

in the shortest path.

Real networks frequently display the small-

world property that is, the vast majority of

nodes are reachable in a small number of

steps. If it only takes a short number of steps

to reach everyone in the component, diseases

can rapidly spread.
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2.0 SOCIAL NETWORKS FOR EPIDEMICS

In this chapter, the social network of synthetic Allegheny County population will be inves-

tigated for the purpose of validation.

In the introduction section, the format of the file that contains the information of Al-

legheny County’s synthetic population used in FRED will be introduced first, followed by the

method of building social network based on the file. Several important network attributes

related to social network will then be introduced.

In the results and discussion section, the attributes of the social network of synthetic

population will be presented and their implication on simulation of diseases will be discussed.

2.1 INTRODUCTION

2.1.1 Format of the Synthetic Population

The synthetic population was generated according to U.S. census data by applying the

algorithms designed by RTI. The synthetic population files, namely the population and

location files, are first read into FRED to initiate the agents and locations before simulation.

The first line in population file is

Population = 1242755

which indicates the number of agents in the synthetic population.

The rest of the lines are

420034508001_303_1 67 F 0 570 420034508001_303 -1 -1
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420034508001_710_1 67 F 0 570 420034508001_710 -1 -1

420034511011_234_1 67 F 0 570 420034511011_234 -1 4200760460000055

...

Columns of each line represent the characteristics (e.g. ID, age, sex, marriage status, occupa-

tion code, household, school and workplace ids) of each agents. A location id of -1 indicates

that the agent is not assigned to a location of that type.

The synthetic population file will be modified so that it is compatible to be read by our

social network analysis tool Network Workbench to perform network measurements, such as

number and size of components, average shortest path, degrees, etc.

2.1.2 Social Network in FRED

There are over 1.2 million agents in Allegheny County synthetic population, each of whom has

several places to go routinely, such as household, neighborhood, workplaces and/or schools,

depending on the profession of the agent. Consider the social contact network formed by

drawing an edge between two agents if they share a place. A school-age agent may have

contacts with its schoolmates, household members and neighborhood friends and a working

age agent may have social contacts with its coworkers, household members and neighborhood

friends. Thus, an agent would have number of connections as small as 0, if it is isolated from

the community, and as big as over a thousand, if it goes to the places that many other people

also go. By using this method, a large social network which consists of 1.2 million agents

and millions of edges between them is formed.

2.1.3 Components of social network

Components of a graph are sub-graphs that are connected within, but disconnected between

sub-graphs. If a graph contains one or more “isolates”, namely uncorrected nodes, these

nodes themselves are components.

Under the perspective of epidemiology, the infectious disease can only be transmitted

within a component if no travel model is implemented. If none of the agents in a component

is initially selected as infectious agent, the whole component would be unaffected by the
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disease. Thus, the knowledge of components in FRED social network would help us predict

the spread of disease.

2.1.4 Average Shortest Path

Average path length is one of the measures of network topology, along with its clustering

coefficient and its degree distribution. Some examples are: the average number of clicks

which will lead you from one website to another, or the number of people you will have to

communicate through, on average, to contact a complete stranger. Most real networks have

a very short average path length leading to the concept of small world where everyone is

connected to everyone else through very short paths.

The average shortest path can help predict the speed of disease spread among a group of

people. The less average shortest path of a social network, the faster the disease can spread

among the network, because people in the network have fewer steps to be reached by infected

people.

2.1.5 Type of Network

Most social, biological, and technological networks display substantial non-trivial topological

features, with patterns of connection between their elements that are neither purely regular

nor purely random. Such features include a heavy tail in the degree distribution. A few

well-known classes of networks are scale-free networks and small-world networks.

A scale-free network is a network whose degree distribution follows a power law, at least

asymptotically. That is, the fraction P (k) of nodes in the network having k connections to

other nodes goes for large values of k as

P (k) = ck−λ

where c is a normalization constant and λ is a parameter whose value is typically in the

range 2 < λ < 3, although occasionally it may lie outside these bounds.

A small-world network is a type of network in which most nodes are not neighbors of

one another, but most nodes can be reached from every other by a small number of steps.
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Specifically, a small-world network is defined to be a network where the typical distance L

between two randomly chosen nodes (the number of steps required) grows proportionally to

the logarithm of the number of nodes N in the network, that is:

L = c · log(N)

where c is a normalization constant. Types of network implicate the way diseases are spread

in the network.

2.1.6 Risks of Subgroups

The social network significantly determines the spread of infectious disease in synthetic

population of FRED. It is reasonable to believe that the agent with more connections will

have more possibilities to be infected, because it has a higher chance to meet an infected

agent in its own social network.

Agents are categorized into subgroups by their age. Agents with age of 0 to 4 are pre-

school children. Agents with age of 5 to 17 are school students; 18 to 55 are adult workers;

agents will gradually retire after age 55 and become retired people. Agents at different ages

have different places to go, so the social network of school students and adult workers are

very different from each other in terms of number of connections. So it is expected that the

groups with higher average number of connections would have higher attack rate.

In the following section, the Allegheny County’s synthetic population will be used to build

a social contact network. The properties of the network, e.g. components, average shortest

path, and the types of networks are analyzed to give a snapshot of the synthetic population.

2.2 RESULTS AND DISCUSSIONS

Components of Network

If only location types of workplaces, schools and households are considered, the social

network of Allegheny County synthetic population consists of a giant component, which
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consists of the majority of population, and many small components, which have very few

number of agents. Naturally, most of the small components consist of old retired people,

who have no workplace or school to go.

In order to avoid those isolated components, neighborhoods are defined on a grid with 1

km square cells. The agents home neighborhood is the cell in which its household is located.

However, an agent may visit another neighborhood in the community in a given day. The

decision about where to spend the neighborhood activity period is made independently each

day, with the highest probability to visit the home neighborhood, and a lesser probability to

visit one of the surrounding neighborhoods, and a small probability of visiting a randomly

selected neighborhood within a given community radius. After taking neighborhoods into

consideration, there is only one component, which consists of all agents in the synthetic

population. The neighborhood mechanism makes the simulation more realistic, because the

synthetic population can only model the locations that have physical structure, and some

non-physical social connection between people can be modeled by neighborhood mechanism,

so that retired people can have contacts to others in the society and have possibility to get

infected and spread the disease.

Average Shortest Path

The average shortest path is 6.91, which means the average shortest path between any

two agents is approximately seven steps. The disease is very easy to be transmitted because

it takes very few steps from initial infected agents to all other agents in the society. For

a small-world network with 1,242,755 agents, the estimated average shortest path is L =

c · log(1242755) = 14.03c.

Degree Distribution

The degree distribution of social network of synthetic population can be shown in differ-

ent ways. In Figure 9, the degree distribution is shown in linear-linear, log-linear and log-log

scale. The figure shows a bifurcating pattern, which is not commonly seen. The reason for

this special phenomenon may come from the mechanism of generation of synthetic popu-

lation, which is out of scope of this thesis. The degree distribution can also be plotted as

a histogram as shown in Figure 10. The average number of degree is 2137.6, which means

on average an agent may possibly contact other 2,138 agents, which consist of household
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members, coworkers, schoolmates and neighbors. There are very few agents who have more

than 7,000 contacts (2.3%), whose distribution of age is shown in Figure 11.

Risk of Subgroups

Risk of each age subgroups can be measured by the attack rate of the group, which is

the number of infected agents in that age group divided by the number of all agents in the

age group. Intuitively, the attack rate of age group is positively related to the degree of each

age group. The degree distribution of each age group is shown in Figure 12 and descriptive

statistics of degree distribution by each group is listed in Table 2.2. Youth group have highest

average degree followed by adult group and pre-school children and retired agents have fewer

average degree, which all make sense.

Two scenarios of baseline scenario and vaccination scenario are selected to run simulation

and for calculation the attack rate of subgroups. The implementation details for two sce-

narios will be described in section 3.1.8 where we will investigate the transmission network

under different scenarios. The attack rates of each subgroup by two scenarios are also listed

in Table 2.2. The relationship between subgroups’ attack rates and their mean degrees is

plotted in Figure 13. The youth group suffers from the highest attack rate and the pre-school

children and retired group have much lower values. In baseline scenario, the youth group

suffers over 80% attack rate, because the youth group consists of school students, who have

more active and intimate interaction. So, a reasonable hypothesis is that the the infection

between school students are the propeller of disease transmission. As Figure 14 illustrates,

the school students can bring disease back to family and infect households (step 1), e.g. other

children and adults in the family. Students can again bring disease back to school and infect

schoolmates(1), while adults can bring disease to workplace (step 2). Neighborhood, which

consists of multiple households, allows transmissions between households(step 3). In vacci-

nation scenario, all subgroups have lower attack rates when compared to baseline scenario,

because agents from all subgroups have access to influenza vaccination, which can reduce

the probability getting infected by influenza. The vaccination reduced attack rate of youth

group much more than other groups.

The hypothesis of the transmission mechanism and the reason why youth group can

benefit much more than other groups, however, cannot be justified based on the descriptive
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Figure 9: Degree distributions of social network in linear-linear scale (up left), log-linear

scale (up right) and log-log scale (down left)
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Figure 10: Density of degree of contact for whole population

Figure 11: Age distribution for agents with more than 7000 degrees
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statistics above. So more comprehensive tools are needed to inquire into the transmission

path of disease among all agents, which will be discussed in the next chapter.

2.3 CONCLUSION

Social network analysis of a synthetic population investigates fundamental questions about

synthetic population. The synthetic population is shown to be an integrated component with

average shortest path is 6.91. The risks of being infected for age groups are positively related

to the average degree of each group. Although degree distribution has bifurcating pattern,

it is still reasonable to use the synthetic population for modeling disease transmission.

Agents are categorized into four age subgroups and agents in different subgroups have

different behavior patterns. Agents with age 0 to 4 are pre-school children and do not need

to go to school. Youth group are the agents from 5 to 18 and all have to go to school. After

18, agents leave school and be one of adult worker group, which are aged 18 to 55. They

have to go to workplaces if employed and will gradually retire after age 55. So the agents in

different age groups have different types of locations to go and possibilities to meet different

agents, which may result the different attack rates for subgroups, e.g. the youth group have

more than 80% attack rate, twice as much the other groups. The vaccination also have

different effect on subgroups, the youth group has the most benefit.

The Transmission mechanism among subgroups, how vaccination prevent agents from

disease and why it has different effect, can not be justified based on the descriptive analysis

in this chapter.

In the next chapter, transmission network, which comes from the results of disease spread

simulations and includes all infected agents and infection events happened between them,

will be investigated. Trace file and statistical analysis tools are developed in order to analyze

the how disease is spread between schools, households and workplaces.
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Figure 12: PDF of degree of contact for four age subgroups

Table 2: Descriptive statistics of degrees by each subgroup and the whole population (AR1:

averaged attack rate for baseline scenario; AR2: averaged attack rate for vaccination sce-

nario)

Subgroup Mean Median Standard Deviation AR1 AR2

Whole Population 2138 1686 1810 0.500 0.304

Pre-school Children 1752 1444 1255 0.363 0.177

Youth 2513 2248 1484 0.858 0.536

Adults 2082 1560 1898 0.430 0.261

Retired 1847 1458 1526 0.241 0.197
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Figure 13: Attack rates for groups vs mean degrees. ”Kids” in the figure represents ”pre-

school children”
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Figure 14: The interaction between different types of locations. In baseline scenario, the

youth group suffers over 80% attack rate, because the youth group consists of school students,

who have more active and intimate interactions. So a reasonable hypothesis is that the

infection between school students are the propeller of disease transmission.
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3.0 TRANSMISSION NETWORK OF EPIDEMICS

3.1 INTRODUCTION

In this chapter, tools are developed to analyze the results of FRED simulation, so that we

can have more information about how disease is transmitted among synthetic population

and how different intervention strategies change the transmission process. In particular, we

will apply three different intervention strategies in FRED, and analyze how the transmission

network change as a result of each intervention strategy.

In Introduction section, the format of files that were used as input for network anal-

ysis will be described and definitions of important terms that are commonly used will be

introduced, e.g. trace file, transmission network, type of infection locations, contact tracing

motifs, conditional probability, expected value of contact tracing motif, z score, and three

simulation scenarios.

In methodology section, the tools for transmission analysis, which are the trace file

analysis tool and the statistical analysis tools, and their functions and workflow will be

introduced. The transmission analysis tools can help to know in what way the intervention

strategies can impact transmission process.

The tools for transmission analysis will be used to analyze the simulation scenarios under

three intervention strategies. The results and discussions will at the end of the chapter.
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3.1.1 Trace File

Trace files are generated by FRED simulation runs. They contain the demographic and

health status records of each agent in FRED system and all infection events for a single run

simulation.

It is a text file and each line represent the status of an agent. The format of a line is as

follows.

Line1: 0 R id 14 a 22 s M 1 exp: 62 inf: 63 rem: 67 places 6 \\

infected_at H 377 infector 16 infectees 2 antivirals: 0

Line2: 0 S id 19733 a 15 s M 5 exp: -1 inf: -1 rem: -1 places 6 \\

infected_at X -1 infector -1 infectees 0 antivirals: 0

Line1 represents an agent whose id is 14; age is 22; a male. He was exposed to disease

at day 62, became infectious at day 63 and got recovered at day 67. He was infected by

another agent whose id is 16, at location No. 377, which is a household. During infection

period, it infected two other agents. After infection period, it became recovered. So the R

at the beginning of line represents the final health status of the agent.

Line2 denotes an agent who never got infected during the disease outbreak. So the

exposed day, infectious day, and recovery day are all -1, and it got infected at nowhere and

its infector does not exist. Therefore, the number of infectees are zero. This kind of agents

are called Susceptible.

For each run of the FRED system, we will get a single well formatted trace file. Using

trace file, we can build transmission network.

3.1.2 Transmission Network

The transmission network includes all infected individuals. The nodes are infected agents

and each individual is connected to its infector by an arrow.

At the beginning of each simulation run, a certain number of agents are randomly selected

as infected agents. So they are the only nodes without an incoming arrow in the transmission

network. All the other agents who were infected during the outbreak have incoming arrows.
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Figure 15: Social Network of a small community, agents are labeled by infection location

For those who got infected but never infected other agents, there will be no outgoing

arrow from them. The number of outgoing arrows from an agent is the number of susceptibles

it infected. Figure 15 shows an small transmission network. The transmission network starts

from one node, and extend as a tree. It will stop expanding until nobody else was infected

by the agents who are already in the tree.

3.1.3 Type of Infection Locations

The infection location is where agents got infected. For every infection event, there would

be an infection location associated with it. So, for every infected agent, there must be a

record to show where it was infected.

There are four regular types of infection locations and one special infection in FRED

system. Regular types of infection location are Household(H), Neighborhood(N), School(S),

Workplace(W). Office (O) is contained by workplace and Classroom(C) by school, so they

are represented by their containers’ location type. Symbols in parenthesis are abbreviations.
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If an agent was infected at H, it means it was infected by its family members. The special

type is X. It is used under two situations. One is for those who never infected. Another is

for those who randomly selected as infectious agents at beginning of each simulation run.

Figure 15 shows a small transmission network, which can help us understand the disease

transmission among different types of locations. The transmission network starts from a

node labelled by X, which means it was randomly selected infectious agent. And it infected

another agent at office. Afterwards, the infectee bring disease to household and infect another

one at H.

3.1.4 Contact Tracing Motifs

Contact tracing motifs are connectivity-patterns of transmission that occur much more often

than they do in random networks. Contact tracing motifs of location types are defined to

represent the relationship between the places where infectors got infected and the places

where infectors transmitted to others.

• Dicon contact tracing motifs: Dicon means two contacts. If an agent was infected at

a type A location and it transmitted to another agent at a type B location, then it is

called a dicon contact tracing motif AB where A and B can be any of {H,N,S,W}.

Number of AB is represented by N(AB). There are 16 dicon contact tracing motifs.

• Tricon contact tracing motifs: Tricon means three contacts. It is defined the same way

as dicon contact tracing motifs, represented by ABC, where A, B, C can be any of

{H,N,S,W}. There are 64 tricon contact tracing motifs.

• Tetcon contact tracing motifs: Tetcon means four contacts. It is defined the same way

as tricon contact tracing motifs, represented by ABCD, where A, B, C, D can be any

of {H,N,S,W}. There are 256 tetcon contact tracing motifs.

For the transmission network observed in Figure 15, the number of all dicon, tricon and

tetcon contact tracing motifs can be counted. For example, some of the contact tracing

motifs are counted in Table 3.1.4.
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Table 3: Number of selected contact tracing motif in the transmission network observed in

Figure 15

dicon Motif counts tricon Motif counts tetcon Motifs counts

WH 3 NWW 2 NWWH 1

NH 2 WWW 1 HNNN 1

WW 3 WWH 2 HNNW 1

3.1.5 Conditional Probability

Given that an infectious agent is infected at typeA place, the conditional probability P (B|A)

gives the probability that this agent will transmit disease to another agent in type B location,

A, B can be any one of {H,N,S,W}.

For example, P (B|A) represents the probability of one agent being infected in neighbor-

hood, who then infects another agent in household.

P (H|N) can be calculated by formula

P (B|A) = N(AB)
4∑

i=1

N(AXi)

,whereXi ∈ {H,N, S,W} (3.1)

3.1.6 Expected Value of Contact Tracing Motif

The observed number of contact tracing motifs can be counted by traversing the whole

observed transmission network. However, the expected value of each contact tracing motif

also can be calculated by using conditional probabilities.

The infection locations for infectees are not random. In this thesis, a null model is

defined in which the sequence of contact tracing motifs is Markovian, which means the

infection location of an agent is assumed only conditioned on the agent’s infector’s infection

location. Given a transmission chain X1, X2, · · · , Xn, Xi represents the type of location,

Pr(Xn|X1, X2, · · · , Xn−1) = Pr(Xn|Xn−1) (3.2)
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Then the expected value of a dicon contact tracing motif AB depends on the number of

agents whose infection location is type A, and the conditional probability of P (B|A). We

define the expected value of AB as EV (AB), which is short for EV (N(AB)). It can be

calculated as

EV (AB) = N(A)× P (B|A) (3.3)

3.1.7 Z score of Contact Tracing Motif

By comparing the observed number and the expected number of a given contact tracing

motif, we can identify contact tracing motifs with unexpected frequency in the observed

transmission network.

We run n realizations of the simulations, and each run gives a transmission network. If

the observed number of a contact tracing motif is more than its expected value, the contact

tracing motif is up represented. Otherwise, it is down represented. Z score is used to

quantitatively measure the discrepancy between observed number and its expectation.

The z score for dicon contact tracing motif AB is calculated as

zAB =
µ̂N(AB) − µ̂EV (AB)√

σ̂2
N(AB)

n
+

σ̂2
EV (AB)

n

(3.4)

where µ̂N(AB) and µ̂EV (AB) are the estimated mean of number and expected number of

contact tracing motif AB in one simulation scenario. σ̂2
N(AB) and σ̂2

EV (AB) are the estimated

standard deviation of number and expected number of Contact Tracing Motif AB in one

scenario. n is the number of runs of one simulation scenario. Simulation scenario will be

introduced in the following section.

3.1.8 Simulation Scenarios

Because FRED supports multiple mitigation strategies, it can be run with different mitiga-

tion strategies that will change the transmission process significantly. The conditional prob-

abilities, contact tracing motifs and overall attack rates would change considerably across

different mitigation strategies.
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In this thesis, three scenarios with different mitigation settings were used. They are

baseline scenario, school closure scenario and vaccination scenario.

• Baseline Scenario

In the baseline scenarios, there will be no intervention strategy no matter how severe

the outbreak is. The behavior and daily movement of agents will not be changed by

outbreak severity. It is reasonable to believe that the baseline scenario should be the

worst scenario with highest overall attack rate and longest outbreak length.

• School Closure Scenario

School is a major place for influenza transmission, since students are more susceptible

to influenza and they have intimate contacts with each other. Thus it is reasonable to

close schools to reduce the severity of disease.

In school closure scenario, if the overall attack rate of influenza is over 1 percent, the

decision of closing school will be made, so that all schools will be closed for 8 weeks (56

days) after one day delay. Compared to the baseline scenario, the number of agents who

got infected in school is supposed to be reduced and so as for the contact tracing motifs

that include ’S’.

• Vaccination Scenario

Vaccination is also proved to be an effective way to control disease spread. However, many

other issues also come with vaccination. For example, the vaccine may need several doses

to have full production; not all agents are willing to receive vaccination; the vaccine may

not be effective for some of agents; the protection of the vaccine may be delayed for

a period of time and the priority of agents are always debatable when the supply of

vaccination is limited and not all can get vaccinated.

In vaccination scenario, the simplest condition is assumed that the 60% of all agents are

willing to accept vaccination; number of dose for vaccine is only one; vaccine is effective

for 70% of agents; the delay of efficacy is two weeks (14 days); and it is available unlimited

to all agents who are willing to receive vaccination.
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3.2 METHODOLOGY

Trace file analysis tool, TraceAnalysis, is used to analyze the trace files generated by FRED

system, which consist of all transmission information to build transmission network, and to

make network analysis. Then statistical analysis tool, StatisticalAnalysis is used to do

statistical inference on statistics from network analysis. The functions and workflow of all

programs will be discussed in this section.

3.2.1 Trace File Analysis Tool

Tool #1: TraceAnalysis

The trace file analysis tools are the combination of a C++ program called TraceAnal-

ysis and some running scripts called information extraction scripts. They designed to inves-

tigate the epidemic dynamics in the perspective of network analysis.

The following is the description of the trace file analysis tools’ components and component

interactions. Figure 16 shows step 1 to 5, using program TraceAnalysis to analyze single

trace file. Figure 17 shows Step 6 to 10, using information extraction scripts to collect mean

and standard deviation of all statistics from multiple trace files.

1. Run FRED system by setting different scenarios. For each scenario, the FRED will run

multiple times and generate trace file for each run. The trace files which are generated

by the same running scenario will be put under the same directory.

2. As illustrated in Figure 16, TraceAnalysis uses single trace file as well as the location

file as input file. Each line of location file is stored as “Place” objects and each line of

trace file is stored as “Agent” objects. Each agent has pointers which point to its infector

and its infectees. The transmission network is built here.

3. Dicon, tricon and tetcon contact tracing motifs are found by searching the whole trans-

mission network. The number of contact tracing motifs are stored in “Pattern” Objects.

4. Conditional probabilities and expected value of all contact tracing motifs are then cal-

culated.
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5. The results are printed out after all statistics of transmission network have been cal-

culated in separated files. The results of distribution of infection locations, the total

number of infections and overall attack rate are stored in “Distribution” file. The values

of all conditional probabilities are stored in “Conditional Probability” file. The number

and expected number of contact tracing motifs are stored in “Patterns” file. The “Prob”

field of each contact tracing motif is the probability of the contact tracing motif. It is

calculated by dividing the number of contact tracing motif by the number of all contact

tracing motifs of the same type. For example, the “Prob” of contact tracing motif HH

is calculated by dividing the number of HH contact tracing motif by the number of all

dicon contact tracing motifs. All those files are stored in the same directory.

6. For those trace files that are generated by FRED with same scenario settings, they

can be analyzed by TraceAnalysis individually with results being stored in different

directories. Information extraction scripts are then used to extract the mean and variance

of statistics.

7. The mean and standard deviation of statistics are stored in different output files. For

example, the file “AR” stores the mean and standard deviation of overall attack rate of

one scenario. The script will go through all directories which store the overall attack

rate of each trace file, collect all values of each directory, then calculate the mean and

standard deviation and write them into file “AR”.

The software TraceAnalysis is able to analyze each individual trace file of one scenario

and gather the mean and standard deviation of each statistics across all runs of the scenario.

The results of statistics can be used to make comparison between scenarios. The program

“statistical analysis tools” is then developed to make comparison of the statistics of different

scenarios.

3.2.2 Statistical Analysis Tools

The statistical analysis tools are written in R programming language [39], and consists of

two independent programs EpidemicDynamicPlot and StatisticalAnalysis. They are

dedicated to compare statistics across different scenarios and make statistical inferences.
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It aims to gather the same statistic from multiple scenarios, visualize and test equality of

statistics.

Tool #2: EpidemicDynamicPlot

The usual way to make comparison between scenarios is to compare the overall attack

rate and the epidemic dynamic curves. EpidemicDynamicPlot is to plot epidemic curves

of susceptible (S), exposed (E), infectious (I) and/or recovered (R) of one or several scenarios.

On each day of outbreak, the numbers of S, E, I and R keeps the records of the severity of

the infectious disease. FRED will keep the records of those information in a separate file for

each run. For multiple runs of the same scenario, the numbers of S, E, I and R are different

due to randomness. EpidemicDynamicPlot will plot the mean and confidence interval of

S, E, I and/or R as a function of days of outbreak for selected scenarios.

Tool #3: StatisticalAnalysis

The program StatisticalAnalysis aims to compare different scenarios of FRED simu-

lations. It uses the results generated from TraceAnalysis to make comparison of statistics

across scenarios and to make figures for visualization. It gathers mean and standard devia-

tion of all statistics from different scenarios, plots and compares them.

Figure 18 demonstrates the workflow as follows:

1. Load necessary R libraries and standard functions.

2. Load self-defined functions for reading data from files, manipulating data into specific

format, customizing standard function error bar plot and etc.

3. Read global parameters from an independent file. The parameters include the paths to

the scenarios’ results of TraceAnalysis.

4. Plot error bar of mean and confidence interval of number and probability of dicon, tricon

and tetcon contact tracing motifs for three scenarios. Store the figures in local directory.

5. Plot error bars of conditional probabilities of three scenarios.

6. Plot error bars of the number and expected number of dicon, tricon and tetcon con-

tact tracing motifs for baseline scenario, school closure scenario and vaccine scenario

respectively.

7. Calculate z scores for contact tracing motifs. Sort them and plot them.
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The output files of StatisticalAnalysis are the figures of all error bar plots. All the

figures will be kept in a subdirectory of StatisticalAnalysis for further discussion.

3.2.3 Work Flow of Transmission Network Analysis Tools

In previous sections, work flow of individual tools have be introduced. Figure 19 shows the

work flow of all the tools and interdependency of components.

For each simulation scenario setting, FRED will run multiple times and get multiple trace

files for each scenario. TraceAnalysis then analyzes each trace file, calculate statistics of

transmission network, store values into files. The information extraction scripts then used to

gather mean and standard deviation of all statistics for one scenario, store results for further

statistical analysis. After analyzing each scenario individually, StatisticalAnalysis then is

used to make comparison of statistics across all scenarios.

3.3 RESULTS

In previous chapter, network analysis tools and their workflow were introduced. In this chap-

ter, I will use network analysis tools to analyze the effectiveness of public health policies in

FRED system and how the transmission network is changed by implementing these policies.

FRED is able to investigate a wide and flexible range of both pharmaceutical and non

pharmaceutical public policies. School closure policy and vaccination policy were chosen

to run with FRED. The implementation of those policies are described in chapter 3.1.8.

Running FRED with no intervention policy is baseline scenario. It is used to simulate the

spread of disease without any intervention strategies. The results of baseline scenario can be

used to compare to the results from other scenarios, which implementing certain interventions

strategies. Running FRED with school closure policy is called school closure scenario and

running with vaccination policy is vaccination scenario. In this example, each scenario is

run 20 times.
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After running FRED with three scenarios, the trace files for three scenarios are generated.

The trace file processing and analysis is then conducted as the workflow shown in Figure 19.

TraceAnalysis is used to analyze the 20 trace files for each scenario and store the statistics

in separate file directories. Then StatisticalAnalysis is applied to make comparison of

statistics and draw conclusions of the differences between three scenarios.

At the beginning, the commonly used methods such as overall attack rate and dynamic

curves are applied to make comparison of scenarios. The overall attack rates as well as their

standard deviations and coefficient of variation(CV) of three scenarios are listed in Table

4. Then the results generated by StatisticalAnalysis are shown as figures in Figure 22 to

Figure 27.

EpidemicDynamicPlot plots the epidemic curves of susceptible(S), exposed(E), infec-

tious(I) and recovered(R) agents in Figure 20 and Figure 21. The axis represents the days

of outbreak. The day 0 is the first day of simulation when 100 agents was chosen to be

infected by the infectious disease. The numbers of S, E, I and R are calculated at the end

of each simulation day. The dot for each day is the estimated mean µ̂ of 20 runs. The error

bars are the confident intervals [µ̂− 1.96 ∗ σ̂, µ̂+ 1.96 ∗ σ̂]. Baseline scenarios are all plotted

in black, school closure scenario in red and vaccination scenario in green.

The comparison of statistics from network analysis are shown in the following figures.

Figure 22 compares the distribution of types of location and conditional probabilities. Com-

parison of observed numbers of dicon, tricon and tetcon contact tracing motifs are shown

in Figure 23. The tetcon contact tracing motifs are too many to be visualized, so only 20

percent of them with largest differences between scenarios are plotted.

The comparisons above are made between three different scenarios. Figure 24 and 25

investigate the probabilities and the expected probabilities of contact tracing motifs within

each of three scenarios. The z scores of dicon and tricon contact tracing motifs are sorted

and plotted in Figure 27 and Figure 27.
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3.4 DISCUSSIONS

The traditional way to compare simulation scenarios are to compare the overall attack rates

and dynamics of infection.

The school closure reduce the overall attack rate by 9.86%([9.62%−10.11%]). Vaccination

reduce the rate by 20.95%([20.60%− 21.3%]). And vaccination was more effectiveness than

school closure (p < 0.001). The variances of overall attack rates are small related to mean

according to small values of coefficient of variance in Table 4. So the overall attack rates for

each scenario is quite stable.

The epidemic curves of the exposed and infectious agents of school closure and vaccination

are significantly lower than the baseline scenario. At the beginning of dynamic curves for

baseline and school closure scenarios are almost overlapping, because the trigger for the

school closure policy is that the overall attack rate must be higher than 1 percent of all

population. So the policy won’t be executed until about 30 days of outbreak, when the

number of infected agents are in considerably large. The periodicity of curves for infectious

agents and exposed agents are due to the behavior difference of weekdays and weekends.

The number of newly exposed agents in weekends is lower than that in weekdays, because

agents would stay at household or neighborhood during the weekends, the infectivity for the

contacts happened in household and neighborhood are lower than the contacts in classroom

and workplace.

Thus, the traditional comparison shows that both mitigation strategies significantly mit-

igate disease outbreak. The results from TraceAnalysis enable us to know the difference

of contact tracing motifs.

In Figure 22, the distribution of infection locations are similar for baseline scenario and

vaccination scenario, since in vaccination scenario, the vaccine is available to all groups of

agents. However, the school closure scenario is different from the other two scenarios. The

probability that an infection happened in school for school closure scenario is about 8% of

all infections, which is much lower than that of baseline scenario (14.6%) and vaccination

scenario (12.2%), because school closure policy impacts schools the most significantly. The

schools are the main source of infection and they are shut down for eight weeks. So it’s

45



reasonable that the probability of being infected in school for school closure scenario is

nearly half of that in baseline scenario.

Figure 22 also verify the assumption that the conditional probabilities of infection prob-

ability depends on the infector’s infection location. For example, if an agent is infected at a

household (H), it is more likely to transmit another agent in Neighborhood(N, P (N |H) ∈

[0.38, 0.42]) and less likely in School(S, P (S|H) ∈ [0.08, 0.16]). The conditional probabilities

of P (S|H), P (S|N), P (S|S) and P (S|W ) for school closure scenario are much lower than

that of other two scenarios. However, the conditional probability of P (H|H), P (N |H) and

P (H|N) for school closure scenario are higher than that of other scenarios. Because the

activities in household and neighborhood are more active during school closure period.

Figure 23 shows the observed number of all contact tracing motifs. It’s clear that the

vaccination policy can reduce the observed number of all contact tracing motifs, but the

school closure policy only reduce the contact tracing motifs with ’S’, such as HS, NS, SH,

SN, while observed number of the other contact tracing motifs are almost the same as baseline

scenario. So as for tricon and tetcon contact tracing motifs. So school closure policy blocks

the transmission paths only involve S. So it is effective in controlling disease transmission

in schools, while the disease spread in other locations are nearly as bad as baseline scenario.

The vaccination policy is able to reduce the transmission happened in all locations, reduce

observed number of all contact tracing motifs.

Another phenomenon worths mention is that the observed numbers of some tetcon con-

tact tracing motifs related to Workplace W and Neighborhood N for school closure scenario

are higher than baseline scenario. Although the school closure policy reduce overall attack

rates, it does not necessarily reduce all contact tracing motifs. An hypothesis for this phe-

nomenon is that the closure of schools increase the interaction between students outside the

school. Students can get infected through interactions in neighborhood and make the adults

in neighborhood more vulnerable and easier to bring disease to workplace. The verification

of this hypothesis is out of the scope of this thesis which requires more deliberately designed

tools.

Figure 24 and 25 display the observed number and expected number of each dicon and

tricon contact tracing motifs for each scenario. The black dots are observed numbers and

46



red dots are expected numbers. When black dot is higher than corresponding red dot, such

as dicon contact tracing motif SS in baseline scenario (upper figure in Figure 24), it means

the dicon contact tracing motif SS is over represented than its expected number. For dicon

contact tracing motif HW in baseline scenario, the observed number is under represented

than its expected number.

Z score is used to quantify the discrepancy (Chapter 3.2.2) between observed number

and expected number of contact tracing motifs. The contact tracing motifs with positive z

scores are those over represented in transmission process. And those with negative z scores

are under represented.

The z score of dicon and tricon contact tracing motifs are sorted and plotted in Figure 27

and 27. The top contact tracing motifs with largest z scores for dicon contact tracing motif

and tricon contact tracing motif are listed in Table 5 and 6. Those contact tracing motifs

are most over represented contact tracing motifs that may have greatest impact on disease

transmission. By observing the figures and lists, a few rules can be concluded as follows:

• Contact tracing motif SS, SN, SH and SW are all most over represented contact tracing

motifs in baseline and vaccination scenarios. Thus schools play very important role in

spreading disease to other locations such as household, neighborhood and workplace,

which support the hypothesis in the end of last chapter that the school students are the

propeller of disease transmission.

• Contact tracing motif SS is not over represented in school closure. Its observed number

is very close to its expected number. The school closure policy significantly reduce the

interaction between students which results reduction of infection between students.

• All over represented tricon contact tracing motifs in baselines include at least one S,

which confirms that the schools are the center of disease transmission. So both school

closure and vaccination policy can both significantly reduce the overall attack rates and

the influence of schools on the disease spread process.

In conclusion, the tools developed in this chapter help to understand how disease is trans-

mitted among synthetic population and how intervention strategies change the transmission

process. Three different intervention strategies in FRED, e.g. baseline, school closure and
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vaccination, are analyzed by tools. Contact tracing motifs of all scenarios, especially those

with largest z scores, are examined. The results confirm the hypothesis that the schools play

important roles in disease transmission.
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Figure 16: Work flow of TraceAnalysis
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Figure 17: workflow of Information Extraction Scripts
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Figure 18: workflow of StatisticalAnalysis
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Figure 19: Workflow of All Network Analysis Tools
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Table 4: Overall attack rates as well as their standard deviation and coefficient of variation

of three scenarios

Scenario µ̂ σ̂ CV

baseline 0.53 0.028 0.053

school closure 0.42 0.022 0.052

vaccination 0.30 0.01 0.03
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Figure 20: The dynamic of susceptible and recovered agents for three scenarios as well as

their standard deviation
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Figure 21: The dynamic of infectious and exposed agents for three scenarios as well as their

standard deviation
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Figure 22: The upper figure is the comparison of distribution of types of location under three

scenarios. The black line represent baseline scenario, red school closure scenario and green

vaccination scenario. The dots of the line are the percent of agent infected in corresponding

type of location.

The lower figure is conditional probabilities of three scenarios. It verifies the assumption

that agents are not randomly infected in locations. For example, if an agent is infected in

Household, it is more likely to infect another one in Neighborhood and less likely in School.
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Figure 23: It shows the observed number of all contact tracing motifs. Vaccination policy

can reduce the observed number of all contact tracing motifs, but the school closure policy

only reduce the contact tracing motifs with ’S’.

57



Figure 24: The comparison between observed number and expected number of dicon contact

tracing motifs of three scenarios. The black dots are observed numbers and red dots are

expected numbers. 58



Figure 25: The comparison between observed number and expected number of tricon contact

tracing motifs of three scenarios
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Figure 26: Z scores for dicon contact tracing motifs in three scenarios
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Figure 27: Z scores for tricon contact tracing motifs in three scenarios
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Table 5: Dicon contact tracing motifs with largest z scores

Baseline School Closure Vaccination

1 SH WS SS

2 SS WN SN

3 SN WW WH

4 SW SH SW

5 WH SW SH

6 WN SN WS

Table 6: Tricon contact tracing motifs with largest z scores

Baseline School Closure Vaccination

1 SSH SNN WWN

2 SSS SNW SNS

3 HSS SHN WHH

4 SSN WHN SSS

5 HSH WWN HNW

6 HSN WWS NHH

7 SHS HSH WSH

8 NSS NWH HWW

9 WSW SHW NNN

10 SHH HHS HSW

11 NSH HWS SWS

12 NSN WWH SHS

13 SNS WNW WNS
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4.0 FINAL DISCUSSIONS

Network analysis can be easily applied into the epidemiological studies, especially the spread

of infectious disease. Because the connections between individuals that make disease spread

happen naturally define a network. The network that is generated by contact tracing or

infection relationship allows us to investigate the epidemiological dynamics. Particularly, an

understanding of the properties of transmission networks can be used to devise intervention

strategies to control disease spread. For example, identification of likely Contact Tracing

Motifs and hence devising intervention strategies reduce the spread of infection.

The most significant problem for epidemiological studies to incorporate network analysis

is the lack of information about tracing all infection events and rebuild the transmission

network. Gardy and et al [40] investigate a Turberculosis outbreak in Canada, which involved

36 cases. The transmission network was constructed by means of interviews with all patients

and complete genome sequencing of patients. It is costly and time consuming to build a

transmission network even for a small network with tens of agents. When the number of

individuals involved in network grows, the dense social network among individuals will make

it harder to correctly identify the transmission relationships.

The simulations of infectious disease using ABMs offer opportunities to incorporate net-

work analysis into infectious disease studies. The computational simulation will keep all

records of infection events, so it is much easier to trace the infection relationships and build

the transmission networks. The infected individuals in the transmission network is theo-

retically unlimited. There are lots of network analysis tools that have been developed and

widely used, for example, the Network Workbench and Pajek1. They are able to calculate

1Many tools and download links can be found in webpage http://en.wikipedia.org/wiki/Social_

network_analysis_software
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the metrics in the networks such as betweenness, centrality, closeness, degree, average short-

est path and etc2. But there are not many articles about network analysis of transmission

networks and few transmission network analysis tools are available for ABMs.

The first part of the thesis investigated the social contact network of synthetic population

and its validity. The synthetic population is reasonable after examining the components

of the social network, average shortest path, degree distribution, and risks of subgroups.

However, the descriptive analysis in this part can not answer the question of how disease is

transmitted among different subgroups and different types of locations and how mitigation

interventions changed the transmission of disease, which gives the reasons to develop the

tools to analyze the transmission process in the second part.

In the second part of the thesis, network analysis tools for analyzing transmission pro-

cesses in ABMs of infectious disease as well as information extraction scripts and tools were

explained.

The analysis focused on the types of infection locations aims at finding special Con-

tact Tracing Motifs and comparing Contact Tracing Motifs between simulation scenarios.

TraceAnalysis is used to build transmission network from text-based trace files, then to

calculate various statistics of infection locations from transmission networks. EpidemicDy-

namicPlot is developed to plot the epidemic curves of susceptible, exposed, infectious and

recovered agents during transmission. StatisticalAnalysis performs statistical inference on

the statistics of infection locations and contact tracing motifs. The results from tools allow

us to have a better understanding of the transmission processes. They can provide guidance

on making intervention policies.

The current tools are able to investigate the infection locations of transmission network

and find out special contact tracing motifs with large z scores in FRED system. For future

work, more work need to be done to investigate those special contact tracing motifs, their

roles in disease spread process and how to reduce number of contact tracing motifs. Statistical

analysis of other attributes of agents other than infection locations can be easily performed

using the framework of TraceAnalysis. Analysis of attributes like age, sex, day of being

2The definitions and formulas for metrics can be found in webpage http://en.wikipedia.org/wiki/

Social_network#Social_network_analysis
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Figure 28: Social Network of a small community, agents are labeled by sex

exposed, becoming infectious and getting recover may reveal more contact tracing motifs.

They will be useful for calibration of the model, comparison of simulation scenarios and

mitigation policies. For example, Figure 28 gives the same infection network as in Figure 15,

but labels are changed to show sex instead of place of infection. contact tracing motifs like

MF and MMM can be defined accordingly and the same analysis methods (e.g. computing

z-score and finding motifs) could apply to the age analysis of transmission networks as well.
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APPENDIX

A.1 SOURCE CODE OF TRACEANALYSIS

A.1.1 Place Object

1 /∗
2 ∗ Place . h
3 ∗
4 ∗ Created on : Aug 16 , 2010
5 ∗ Author : j i h 49
6 ∗/
7
8 #ifndef PLACE H
9 #define PLACE H

10 #include <iostream>
11 #include <vector>
12 //#inc l ude ”Agent . h”
13 class Agent ;
14 using namespace std ;
15
16 class Place {
17 public :
18 Place ( ){ in = 0 ; out = 0 ; }
19 virtual ˜Place ( ) { } ;
20 void Setup ( int ID , char∗ LABEL, char TYPE, double LAT, double LON, int CONTAINER) ;
21 void Add(Agent∗ agent ) ;
22 void Add containee ( Place ∗ p lace ) ;
23 void Se t c on ta i n e r ( ) ;
24 void Update ( ) ;
25 void Pr int out ( ) ;
26 void P r i n t s o c i a l a c t i o n ( ) ;
27 // acces s f unc t i on s
28 int g e t i d ( ) { return id ;}
29 char ∗ g e t l a b e l ( ) { return l a b e l ; }
30 char ge t type ( ) { return type ; }
31 double g e t l a t i t u d e ( ) { return l a t i t u d e ; }
32 double g e t l ong i t ud e ( ) { return l ong i tude ; }
33 int get num ( ) { return l i s t . s i z e ( ) ; }
34 Place ∗ g e t c on t a i n e r ( ) { return conta ine r ; }
35 int g e t i n ( ) { return in ; }
36 int ge t out ( ) { return out ; }
37
38 private :
39 int id ; // p lace id
40 char l a b e l [ 3 2 ] ; // e x t e rna l id
41 char type ; // HOME, WORK, SCHOOL, COMMUNITY
42 int c on t a i n e r i d ; // id o f con ta iner p l ace
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43 Place ∗ conta ine r ;
44 vector<Place∗> conta inee ;
45 double l a t i t u d e ; // geo l o c a t i o n
46 double l ong i tude ;
47 vector<Agent∗> l i s t ;
48
49 // s t a t i s t i c s
50 int in ;
51 int out ;
52 } ;
53
54 #endif /∗ PLACE H ∗/

1 /∗
2 ∗ Place . cpp
3 ∗
4 ∗ Created on : Aug 16 , 2010
5 ∗ Author : j i h 49
6 ∗/
7
8 #include ”Place . h”
9 #include ”Global . h”

10
11
12 void Place : : Setup ( int ID , char∗ LABEL, char TYPE, double LAT, double LON, int CONTAINER) {
13 id = ID ; // p lace id
14 s t r cpy ( l abe l , LABEL) ; // e x t e rna l id
15 type = TYPE; // HOME, WORK, SCHOOL, COMMUNITY
16 l a t i t u d e = LAT; // geo l o c a t i o n
17 l ong i tude = LON;
18 c on t a i n e r i d = CONTAINER; // id o f conta iner p l ace
19 }
20
21 void Place : : S e t c on ta i n e r ( ){
22 i f (−1 == con t a i n e r i d ){
23 conta ine r = this ;
24 } else {
25 conta ine r = &pla [ c on t a i n e r i d ] ;
26 i f (NULL == conta ine r ){
27 p r i n t f ( ”Place [%d ] cannot f i nd i t s conta ine r Place [%d ]\n” , id , c on t a i n e r i d ) ;
28 abort ( ) ;
29 }
30 pla [ c on t a i n e r i d ] . Add containee ( this ) ;
31 }
32 }
33
34 void Place : : Add(Agent∗ agent ){
35 l i s t . push back ( agent ) ;
36
37 i f ( g e t c on t a i n e r ( ) != this ){
38 g e t c on t a i n e r ()−>Add( agent ) ;
39 }
40
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41 }
42
43 void Place : : Add containee ( Place ∗ p lace ){
44 conta inee . push back ( p lace ) ;
45 }
46
47 void Place : : Update ( ){
48 vec to r <Agent ∗> : : i t e r a t o r i t r ;
49 for ( i t r = l i s t . begin ( ) ; i t r < l i s t . end ( ) ; i t r ++){
50 Agent∗ i n f e c t o r = (∗ i t r )−>g e t I n f e c t o r ( ) ;
51 i f ( i s i n ( i n f e c t o r , l i s t ) ){
52 in++;
53 // in f e c t o r−>p r i n t o u t ( ) ;
54 } else {
55 out++;
56 // in f e c t o r−>p r i n t o u t ( ) ;
57 }
58 }
59 }
60
61 void Place : : Pr in t out ( ){
62 // S t a t u s f p = fopen (” SchoolRecords ” ,”w”) ;// i f debugg ing use s t dou t
63 Status fp = stdout ;
64 i f (0 == conta inee . s i z e ( ) ){
65 f p r i n t f ( Status fp , ”Place [%d ] has no conta inee \n” , id ) ;
66 } else {
67 i f (V){
68 i f ( out != 0){
69 f p r i n t f ( Status fp , ”Place [%d ] has %d conta ine e s %d i n f e c t e d ” , id ,
70 ( int ) conta inee . s i z e ( ) , ( int ) l i s t . s i z e ( ) ) ;
71 f p r i n t f ( Status fp , ” In %3d , Out %3d , In/Out %5.4 f \n” , in , out , (double ) in /(double ) out ) ;
72 }
73 }
74
75 i f (V > 2){
76 f p r i n t f ( Status fp , ”Place [%d ] has con ta ine e s :\n” , id ) ;
77 vector<Place ∗> : : i t e r a t o r i t r ;
78 for ( i t r = conta inee . begin ( ) ; i t r < conta inee . end ( ) ; i t r ++){
79 f p r i n t f ( Status fp , ”\ tP lace [%d ]\n” , (∗ i t r )−>g e t i d ( ) ) ;
80 }
81 }
82
83 i f (V > 1){
84 vec to r <Place ∗> : : i t e r a t o r i t r ;
85 for ( i t r = conta inee . begin ( ) ; i t r < conta inee . end ( ) ; i t r ++){
86 f p r i n t f ( Status fp , ”\ t con ta ine e %d , %d i n f e c t e d \n” , (∗ i t r )−>g e t i d ( ) ,
87 (∗ i t r )−>get num ( ) ) ;
88 }
89 }
90
91 // p r i n t i n f e c t e d ’ s in fomat ion
92 i f (V > 1){
93 vector<Agent ∗> : : i t e r a t o r i t r ;
94 for ( i t r = l i s t . begin ( ) ; i t r < l i s t . end ( ) ; i t r ++){
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95 (∗ i t r )−>pr i n t ou t ( ) ;
96 }
97 }
98
99 }
100 // f c l o s e ( S t a t u s f p ) ;
101 }
102
103 void Place : : P r i n t s o c i a l a c t i o n ( ){
104 char n od e f i l e [ 5 0 ] ;
105 s p r i n t f ( node f i l e , ” . / s o c i a l a c t i o n / Soc ia lAct ion−Node−Place−%d . txt ” , id ) ;
106 Outfp = fopen ( node f i l e , ”w” ) ; // i f debugg ing use s t dou t
107 i f (NULL == Outfp ){
108 p r i n t f ( ”Help ! Cannot open %s \n” , n o d e f i l e ) ;
109 abort ( ) ;
110 }
111 //Outfp = s tdou t ;
112 vector<Agent ∗> : : i t e r a t o r i t r ;
113 f p r i n t f (Outfp , ” id \ t i n f e c t o r \ t i n f e c t e e \ t i n f e c t e d a t \ t in f e c t ed at number \ texp\n” ) ;
114 f p r i n t f (Outfp , ”INTEGER\tINTEGER\tINTEGER\tSTRING\tINTEGER\tINTEGER\n” ) ;
115 for ( i t r = l i s t . begin ( ) ; i t r < l i s t . end ( ) ; i t r ++){
116 // (∗ i t r )−>p r i n t s o c i a l a c t i o n ( ) ;
117 f p r i n t f (Outfp , ”%d\ t%d\ t%d\ t%c\ t%d\ t%d\n” , (∗ i t r )−>g e t i d ( ) ,
118 (∗ i t r )−>g e t i n f e c t o r ( ) , (∗ i t r )−>g e t i n f e c t e e s ( ) , (∗ i t r )−>g e t i n f e c t e d a t ( ) , (∗ i t r )−>g e t i n f e c t e d a t p l a c e ()−> g e t c on t a i n e r ()−> g e t i d ( ) , (∗ i t r )−>get exp ( ) ) ;
119 }
120 f c l o s e (Outfp ) ;
121
122 char e d g e f i l e [ 5 0 ] ;
123 s p r i n t f ( e d g e f i l e , ” . / s o c i a l a c t i o n / Soc ia lAct ion−Edge−Place−%d . txt ” , id ) ;
124 Outfp = fopen ( e d g e f i l e , ”w” ) ;
125 i f (NULL == Outfp ){
126 p r i n t f ( ”Help ! Cannot open %s \n” , e d g e f i l e ) ;
127 abort ( ) ;
128 }
129
130 f p r i n t f (Outfp , ” i n f e c t o r \ t i n f e c t e e \n” ) ;
131 f p r i n t f (Outfp , ”INTEGER\tINTEGER\n” ) ;
132 for ( i t r = l i s t . begin ( ) ; i t r < l i s t . end ( ) ; i t r ++){
133 Agent∗ to r = (∗ i t r )−>g e t I n f e c t o r ( ) ;
134 i f ( i s i n ( tor , l i s t ) ){
135 f p r i n t f (Outfp , ”%d\ t%d\n” , tor−>g e t i d ( ) , (∗ i t r )−>g e t i d ( ) ) ;
136 }
137 }
138 f c l o s e (Outfp ) ;
139 }

A.1.2 Agent Object

1 /∗
2 ∗ Agent . h
3 ∗
4 ∗ Created on : Jun 23 , 2010
5 ∗ Author : j i h 49
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6 ∗/
7
8 #ifndef AGENT H
9 #define AGENT H

10
11 using namespace std ;
12
13 class Place ;
14
15 class Agent {
16 public :
17 Agent ( ) ;
18 ˜Agent ( ) ;
19
20 void s e tup agent ( int id , int age , char sex , int pro f e s s i on , int exp ,
21 int i n f , int rem , char i n f e c t e d a t ,
22 int i n f ec ted at number , int i n f e c o t r , int i n f e c t e e s , int a n t i v i r a l s ) ;
23 void s e tup p l a c e ( ) ;
24 void pr i n t ou t ( ) ;
25 void p r i n t i n f e c t e e ( ) ;
26 void p r i n t s o c i a l a c t i o n ( ) ;
27 void add i n f e c t e e (Agent ∗Pop ) ;
28 void s e t u p i n f e c t o r ( ) ;
29 int Count des ( ) ;
30
31 int g e t i d ( ) {return id ;}
32 int get exp ( ) { return exp ;}
33 int g e t i n f e c t o r ( ) {return i n f e c t o r ;}
34 int ge t in f e c t ed a t number ( ) {return i n f e c t ed at number ;}
35 int g e t i n f e c t e e s ( ) {return i n f e c t e e s ;}
36 int g e t i n f e c t e e r ( ) {return i n f e c t e e r ;}
37 int ge t de s ( ) {return descendents ;}
38 char g e t i n f e c t e d a t ( ) {return i n f e c t e d a t ;}
39 Place ∗ g e t i n f e c t e d a t p l a c e ( ) { return i n f e c t e d a t p l a c e ;}
40 Agent∗ g e t I n f e c t o r ( ) {return I n f e c t o r ;}
41
42 private :
43 int id , age , p r o f e s s i on , exp , in f , rem , in fected at number , i n f e c t o r , i n f e c t e e s , a n t i v i r a l s ;
44 char sex , i n f e c t e d a t ;
45 Place ∗ i n f e c t e d a t p l a c e ;
46 Agent ∗∗ i n f e c t e e ; // r e f e r ence to each i n f e c t e e s
47 Agent ∗ I n f e c t o r ;
48 int i n f e c t e e r ; // read number o f i n f e c t e e s
49 int descendents ;
50 } ;
51
52 #endif /∗ AGENT H ∗/

1 /∗
2 ∗ Agent . cpp
3 ∗
4 ∗ Created on : Jun 23 , 2010
5 ∗ Author : j i h 49
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6 ∗/
7
8 #include ”Agent . h”
9 #include ”Place . h”

10 #include <s t d i o . h>
11
12 extern Place ∗ pla ;
13 extern Agent∗∗ pop ptr ;
14 extern int p l a c e s i z e ;
15 Agent : : Agent ( ){
16 id = −1;
17 i n f e c t o r = −1;
18 in f e c ted at number = −1;
19 i n f e c t e e s = −1;
20 i n f e c t e d a t = ’U ’ ;
21 age = −1;
22 i n f e c t e e r = −1;
23 i n f e c t e e = NULL;
24 i n f e c t o r = NULL;
25 exp = −1;
26 i n f = −1;
27 rem = −1;
28 a n t i v i r a l s = −1;
29 }
30
31 Agent : : ˜ Agent ( ) {
32 delete i n f e c t e e ;
33 }
34
35 void Agent : : s e tup agent ( int id , int age , char sex , int p r o f e s s i o n ,
36 int exp , int i n f , int rem , char i n f e c t e d a t ,
37 int i n f ec ted at number , int i n f e c t o r , int i n f e c t e e s , int a n t i v i r a l s ){
38 id = id ;
39 age = age ;
40 sex = sex ;
41 p r o f e s s i o n = p r o f e s s i o n ;
42 exp = exp ;
43 i n f = i n f ;
44 rem = rem ;
45 i n f e c t e d a t = i n f e c t e d a t ;
46 in f e c ted at number = in f e c t ed a t number ;
47 i n f e c t o r = i n f e c t o r ;
48 i n f e c t e e s = i n f e c t e e s ;
49 a n t i v i r a l s = a n t i v i r a l s ;
50 i n f e c t e e r = 0 ;
51 i n f e c t e e = new Agent ∗ [ i n f e c t e e s ] ;
52
53 i n f e c t e d a t p l a c e = &pla [ in f ec t ed at number ] ;
54 i f (NULL == i n f e c t e d a t p l a c e ){
55 p r i n t f ( ”Cannot f i nd Place [%d ]\n” , in f ec t ed at number ) ;
56 abort ( ) ;
57 }
58 }
59
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60 void Agent : : s e tup p l a c e ( ){
61 i f ( in f ec t ed at number > 0){
62 i f ( in f e c t ed at number < p l a c e s i z e ){
63 pla [ in f e c t ed at number ] . Add( this ) ;
64 } else {
65 p r i n t f ( ”Place [%d ] cannot be found\n” , in f ec t ed at number ) ;
66 }
67 }
68 }
69
70 void Agent : : p r i n t ou t ( ) {
71 int c on t a i n e r i d = i n f e c t e d a t p l a c e−>g e t c on t a i n e r ()−> g e t i d ( ) ;
72 p r i n t f ( ”Agent %7d age %3d p r o f e s s i o n %d i n f e c t o r i s %7d i n f e c t e e i s %d
73 i n f e c t e d a t %c %6d %6d\n” ,
74 id , age , p r o f e s s i on , i n f e c t o r , i n f e c t e e s , i n f e c t e d a t ,
75 in fected at number , c on t a i n e r i d ) ;
76 }
77
78 void Agent : : p r i n t s o c i a l a c t i o n ( ){
79 // p r i n t f (”%d %7d %2d %c %3d\n” , id , i n f e c t o r , i n f e c t e e , i n f e c t e d a t , exp ) ;
80 p r i n t f ( ”%d %d %d %c %d\n” , id , i n f e c t o r , i n f e c t e e s , i n f e c t e d a t , exp ) ;
81 }
82
83 void Agent : : p r i n t i n f e c t e e ( ){
84 i f ( i n f e c t e e s == 0)
85 return ;
86 i f ( i n f e c t e e r != i n f e c t e e s )
87 p r i n t f ( ”Not i d e n t i c a l \n” ) ;
88
89 p r i n t f ( ”Agent %d , num = %d\n” , id , i n f e c t e e s ) ;
90 for ( int i = 0 ; i < i n f e c t e e r ; i++){
91 p r i n t f ( ”\ t i n f e c t e e %d i s No . %d\n” , i , i n f e c t e e [ i ]−>g e t i d ( ) ) ;
92 }
93 }
94
95 void Agent : : a dd i n f e c t e e (Agent ∗Pop){
96 i n f e c t e e [ i n f e c t e e r ] = Pop ;
97 i n f e c t e e r++;
98 }
99
100 void Agent : : s e t u p i n f e c t o r ( ){
101 I n f e c t o r = pop ptr [ i n f e c t o r ] ;
102 pop ptr [ i n f e c t o r ]−>add i n f e c t e e ( this ) ;
103
104 }
105
106 int Agent : : Count des ( ){
107 i f ( i n f e c t e e r == 0){
108 return 1 ;
109 } else {
110 int des = 0 ;
111 for ( int p = 0 ; p < i n f e c t e e r ; p++){
112 des += i n f e c t e e [ p]−>Count des ( ) ;
113 }
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114 return des+1;
115 }
116 }

A.1.3 Function Location Pattern Object

1 /∗
2 ∗ Functions . h
3 ∗
4 ∗ Created on : Ju l 26 , 2010
5 ∗ Author : j i h 49
6 ∗/
7
8 #ifndef FUNCTIONS H
9 #define FUNCTIONS H

10
11 void ppt (void ) ;
12 void Place p r epa ra t i on ( ) ;
13 void Agent preparat ion (char ∗ f i l ename ) ;
14 void Search pat t e rn s ( ) ;
15 void Coun t i n i t i a l d i s t r i b u t i o n ( ) ;
16 void Set pat t e rn prob ( ) ;
17 void Count pattern expected prob ( ) ;
18 void Ch i squa r e t e s t ( ) ;
19 void Pr int out ( ) ;
20 void inout ( ) ;
21 #endif /∗ FUNCTIONS H ∗/

1 /∗ Functions . cpp
2 ∗
3 ∗ Created on : Ju l 26 , 2010
4 ∗
5 ∗ Author : j i h 49
6 ∗/
7 #include <s t d i o . h>
8
9 #include ” Funct ions Locat ion Patte rn . h”

10 #include ”Global . h”
11 #include ” iostream”
12 #include ” fst ream”
13 #include ” s t r i n g ”
14
15 extern Pattern2 pattern2 [ cat ] [ cat ] ;
16 extern Pattern3 pattern3 [ cat ] [ cat ] [ cat ] ;
17 extern Pattern4 pattern4 [ cat ] [ cat ] [ cat ] [ cat ] ;
18
19
20 void Place p r epa ra t i on ( ){
21 FILE ∗ p l a c e f i l e ;
22
23 p l a c e f i l e = fopen ( ” a l l e g l o c . txt ” , ” r ” ) ;
24
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25 i f ( p l a c e f i l e == NULL){
26 p r i n t f ( ” f i l e a l l e g l o c not found\n” ) ;
27 e x i t ( 1 ) ;
28 }
29
30 p l a c e s i z e = 0 ;
31 f s c a n f ( p l a c e f i l e , ” Locat ions = %d” , &p l a c e s i z e ) ;
32
33 i f (V){
34 p r i n t f ( ” P l a c e s i z e i s %d\n” , p l a c e s i z e ) ;
35 }
36 pla = new ( nothrow ) Place [ p l a c e s i z e ] ;
37
38 for ( int l o c = 0 ; l o c < p l a c e s i z e ; l o c++){
39 int id ;
40 char s [ 3 2 ] ;
41 char l o c type ;
42 double lon , l a t ;
43 int conta ine r ;
44 i f ( f s c a n f ( p l a c e f i l e , ”%d %s %c %l f %l f %d” ,
45 &id , s , &loctype , &lat , &lon , &conta ine r ) != 6) {
46 f p r i n t f ( stdout , ”Help ! Read f a i l u r e f o r l o c a t i o n %d\n” , l o c ) ;
47 abort ( ) ;
48 }
49 i f ( id != l o c ) {
50 f p r i n t f ( stdout , ”Help ! Read index %d f o r l o c a t i o n %d\n” , id , l o c ) ;
51 abort ( ) ;
52 }
53
54 pla [ l o c ] . Setup ( id , s , loctype , l a t , lon , con ta ine r ) ;
55 }
56
57 for ( int l o c = 0 ; l o c < p l a c e s i z e ; l o c++){
58 pla [ l o c ] . S e t c on t a i n e r ( ) ;
59 }
60 p r i n t f ( ”Place a l l s e t \n” ) ;
61 }
62
63 void Agent preparat ion (char ∗ f i l ename ){
64
65 i f s t r e am inData ;
66 inData . open ( f i l ename , i o s : : in ) ;
67
68 i f ( ! inData . i s open ( ) ){
69 cout << ” F i l e don ’ t e x i s t ” << ”\n” ;
70 abort ( ) ;
71 }
72
73 pop s i z e = 0 ;
74 s t r i n g l i n e ;
75 while ( ! inData . e o f ( ) ){
76 g e t l i n e ( inData , l i n e ) ;
77 i f ( l i n e != ”” && l i n e . subs t r (2 , 1) == ”R” ){
78 pop s i z e++;
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79 }
80 }
81 inData . c l o s e ( ) ;
82
83 FILE ∗ t r a c e f i l e ;
84
85 t r a c e f i l e = fopen ( f i l ename , ” r ” ) ;
86
87 i f ( t r a c e f i l e == NULL){
88 p r i n t f ( ” f i l e %s not found\n” , f i l ename ) ;
89 e x i t ( 1 ) ;
90 }
91
92 i f (V){
93 p r i n t f ( ”pop−s i z e i s %d\n” , pop s i z e ) ;
94 }
95
96 pop = new ( nothrow ) Agent [ pop s i z e ] ;
97 i f ( pop == NULL){
98 p r i n t f ( ”Help ! Pop a l l o c a t i o n f a i l u r e \n” ) ;
99 abort ( ) ;
100 }
101
102 int max id = 0 ;
103 for ( int p = 0 ; p < pop s i z e ; ) {
104 int id , age , p r o f e s s i on , exp , in f , rem , in fected at number , i n f e c t o r ,
105 i n f e c t o r 2 , i n f e c t e e s , a n t i v i r a l s ;
106 char sex , i n f e c t e d a t , s t a tu s ;
107 // Input format , 12 v a r i a b l e s
108 i f ( f s c a n f ( t r a c e f i l e , ”0 %c id %d a %d s %c %d exp : %d
109 i n f : %d rem : %d p l a c e s 6 i n f e c t e d a t %c %d i n f e c t o r %d
110 i n f e c t o r %d i n f e c t e e s %d a n t i v i r a l s : %d ” ,
111 &status , &id , &age , &sex , &pro f e s s i on , &exp ,
112 &in f , &rem , &in f e c t e d a t , &in fected at number ,
113 &in f e c t o r , &i n f e c t o r 2 , &i n f e c t e e s , &a n t i v i r a l s ) != 14){
114 p r i n t f ( ”Help ! Read f a i l u r e f o r person id = %d\n” , id ) ;
115 p r i n t f ( ”0 %c id %d a %d s %c %d exp : %d i n f : %d rem : %d p l a c e s 6
116 i n f e c t e d a t %c %d i n f e c t o r %d i n f e c t o r %d i n f e c t e e s %d a n t i v i r a l s : %d” ,
117 status , id , age , sex , p r o f e s s i on , exp , in f , rem , i n f e c t e d a t ,
118 in fected at number , i n f e c t o r , i n f e c t o r 2 , i n f e c t e e s , a n t i v i r a l s ) ;
119 abort ( ) ;
120 }
121
122 i f ( s t a tu s == ’R ’ ){
123 pop [ p ] . s e tup agent ( id , age , sex , p r o f e s s i on , exp , in f , rem , i n f e c t e d a t ,
124 in fected at number , i n f e c t o r , i n f e c t e e s , a n t i v i r a l s ) ;
125 p++;
126 }
127
128 i f ( id > max id ){
129 max id = id ; // count the maximum id
130 }
131 }
132
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133 f c l o s e ( t r a c e f i l e ) ;
134 i f (V){
135 p r i n t f ( ”max id = %d\n” , max id ) ;
136 }
137 // as s i gn an array o f po in t e r
138 pop ptr = new Agent ∗ [ max id ] ;
139 for ( int p = 0 ; p < pop s i z e ; p++){
140 pop ptr [ pop [ p ] . g e t i d ( ) ] = &pop [ p ] ;
141 }
142
143 p r i n t f ( ”================================\n In t e g r i t y \n” ) ;
144
145 for ( int p = 0 ; p < pop s i z e ; p++){
146 i f ( pop ptr [ pop [ p ] . g e t i n f e c t o r ( ) ] != NULL){
147 pop [ p ] . s e t u p i n f e c t o r ( ) ;
148 } else {
149 i f (V && (pop [ p ] . g e t i n f e c t o r ( ) != −1)){
150 p r i n t f ( ”%d cannot f i nd i n f e c t o r %d\n” , pop [ p ] . g e t i d ( ) , pop [ p ] . g e t i n f e c t o r ( ) ) ;
151 }
152 }
153 pop [ p ] . s e tup p l a c e ( ) ;
154 }
155 }
156
157
158 void Search pat t e rn s ( ){
159 // p r i n t f(”==============================\nSearching Pattern2 \n” ) ;
160 Agent ∗temp ;
161
162 for ( int i = 0 ; i < cat ; i++){
163 for ( int j = 0 ; j < cat ; j++){
164 pattern2 [ i ] [ j ] . setup ( Categ [ i ] , Categ [ j ] ) ;
165 }
166 }
167
168 for ( int p = 0 ; p < pop s i z e ; p++){
169 temp = pop [ p ] . g e t I n f e c t o r ( ) ;
170 i f (NULL != pop [ p ] . g e t I n f e c t o r ( ) ){
171 char i n f e c t e d t yp e = pop [ p ] . g e t i n f e c t e d a t ( ) ;
172 char i n f e c t o r t y p e = temp−>g e t i n f e c t e d a t ( ) ;
173 pattern2 [ get type number ( i n f e c t o r t y p e ) ] [ get type number ( i n f e c t e d t yp e ) ] . add pattern ( temp , &pop [ p ] ) ;
174 }
175 }
176
177 // p r i n t f(”==============================\nSearching Pattern3 \n” ) ;
178
179 for ( int i = 0 ; i < cat ; i++){
180 for ( int j = 0 ; j < cat ; j++){
181 for ( int k = 0 ; k < cat ; k++){
182 pattern3 [ i ] [ j ] [ k ] . setup ( Categ [ i ] , Categ [ j ] , Categ [ k ] ) ;
183 }
184 }
185 }
186
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187
188 for ( int i = 0 ; i < cat ; i++){
189 for ( int j = 0 ; j < cat ; j++){
190 vector<AddressType2∗>∗ r e l a t i o n = pattern2 [ i ] [ j ] . g e t r e l a t i o n ( ) ;
191 for ( vector<AddressType2 ∗> : : i t e r a t o r i t r = (∗ r e l a t i o n ) . begin ( ) ;
192 i t r < (∗ r e l a t i o n ) . end ( ) ;
193 i t r ++){
194 temp = (∗ i t r )−>g e t i n f e c t o r ()−> g e t I n f e c t o r ( ) ;
195 i f (NULL != temp){
196 char f i r s t t y p e = temp−>g e t i n f e c t e d a t ( ) ;
197 Agent∗ f i r s t = temp ;
198 Agent∗ second = (∗ i t r )−>g e t i n f e c t o r ( ) ;
199 Agent∗ th i rd = (∗ i t r )−>g e t i n f e c t e e ( ) ;
200 pattern3 [ get type number ( f i r s t t y p e ) ] [ i ] [ j ] . add pattern ( f i r s t , second , th i rd ) ;
201 }
202 }
203 }
204 }
205
206 // p r i n t f(”==============================\nSearching Pattern4 \n” ) ;
207
208 for ( int i = 0 ; i < cat ; i++){
209 for ( int j = 0 ; j < cat ; j++){
210 for ( int k = 0 ; k < cat ; k++){
211 for ( int l = 0 ; l < cat ; l++){
212 pattern4 [ i ] [ j ] [ k ] [ l ] . setup ( Categ [ i ] , Categ [ j ] , Categ [ k ] , Categ [ l ] ) ;
213 }
214 }
215 }
216 }
217
218
219 for ( int i = 0 ; i < cat ; i++){
220 for ( int j = 0 ; j < cat ; j++){
221 for ( int k = 0 ; k < cat ; k++){
222 vector<AddressType3∗>∗ r e l a t i o n = pattern3 [ i ] [ j ] [ k ] . g e t r e l a t i o n ( ) ;
223 for ( vector<AddressType3 ∗> : : i t e r a t o r i t r = (∗ r e l a t i o n ) . begin ( ) ;
224 i t r < (∗ r e l a t i o n ) . end ( ) ;
225 i t r ++){
226 temp = (∗ i t r )−> g e t f i r s t ()−> g e t I n f e c t o r ( ) ;
227 i f (NULL != temp){
228 char f i r s t t y p e = temp−>g e t i n f e c t e d a t ( ) ;
229 Agent∗ f i r s t = temp ;
230 Agent∗ second = (∗ i t r )−> g e t f i r s t ( ) ;
231 Agent∗ th i rd = (∗ i t r )−>get second ( ) ;
232 Agent∗ f o r t h = (∗ i t r )−>g e t t h i r d ( ) ;
233 pattern4 [ get type number ( f i r s t t y p e ) ] [ i ] [ j ] [ k ] . add pattern ( f i r s t ,
234 second ,
235 th i rd ,
236 f o r th ) ;
237 }
238 }
239 }
240 }
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241 }
242 }
243
244
245 void Coun t i n i t i a l d i s t r i b u t i o n ( ){
246 p r i n t f ( ”==============================\n I n i t i a l D i s t r i bu t i on \n” ) ;
247 int count [ cat ] ;
248 for ( int i = 0 ; i < cat ; i++){
249 count [ i ] = 0 ;
250 }
251
252 for ( int p = 0 ; p < pop s i z e ; p++){
253 count [ get type number ( pop [ p ] . g e t i n f e c t e d a t ()) ]++;
254 }
255
256 int sum = 0 ;
257 for ( int i = 0 ; i < cat ; i++){
258 sum += count [ i ] ;
259 }
260 for ( int i = 0 ; i < cat ; i++){
261 i n i t i a l d i s t r i b u t i o n [ i ] = (double ) count [ i ] / ( double )sum ;
262 i f (V){
263 p r i n t f ( ”%c %f %d\n” , Categ [ i ] , i n i t i a l d i s t r i b u t i o n [ i ] , count [ i ] ) ;
264 }
265 }
266 p r i n t f ( ”SUM %d\n” ,sum ) ;
267 }
268
269 void Set pat t e rn prob ( ){
270 // p r i n t f(”==============================\nSet Pattern Prob\n”) ;
271 sum 2 = 0 ;
272 for ( int i = 0 ; i < cat ; i++){
273 for ( int j = 0 ; j < cat ; j++){
274 sum 2 += pattern2 [ i ] [ j ] . get num ( ) ;
275 }
276 }
277 i f (V > 1){
278 p r i n t f ( ”Order 2 has %d members\n” , sum 2 ) ;
279 }
280 for ( int i = 0 ; i < cat ; i++){
281 for ( int j = 0 ; j < cat ; j++){
282 pattern2 [ i ] [ j ] . s e t r e a l p r o b ( sum 2 ) ;
283 }
284 }
285
286 sum 3 = 0 ;
287 for ( int i = 0 ; i < cat ; i++){
288 for ( int j = 0 ; j < cat ; j++){
289 for ( int k = 0 ; k < cat ; k++){
290 sum 3 += pattern3 [ i ] [ j ] [ k ] . get num ( ) ;
291 }
292 }
293 }
294 i f (V > 1){
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295 p r i n t f ( ”Order 3 has %d members\n” , sum 3 ) ;
296 }
297 for ( int i = 0 ; i < cat ; i++){
298 for ( int j = 0 ; j < cat ; j++){
299 for ( int k = 0 ; k < cat ; k++){
300 pattern3 [ i ] [ j ] [ k ] . s e t r e a l p r o b ( sum 3 ) ;
301 }
302 }
303 }
304
305 sum 4 = 0 ;
306 for ( int i = 0 ; i < cat ; i++){
307 for ( int j = 0 ; j < cat ; j++){
308 for ( int k = 0 ; k < cat ; k++){
309 for ( int l = 0 ; l < cat ; l++){
310 sum 4 += pattern4 [ i ] [ j ] [ k ] [ l ] . get num ( ) ;
311 }
312 }
313 }
314 }
315 i f (V > 1){
316 p r i n t f ( ”Order 4 has %d members\n” , sum 4 ) ;
317 }
318 for ( int i = 0 ; i < cat ; i++){
319 for ( int j = 0 ; j < cat ; j++){
320 for ( int k = 0 ; k < cat ; k++){
321 for ( int l = 0 ; l < cat ; l++){
322 pattern4 [ i ] [ j ] [ k ] [ l ] . s e t r e a l p r o b ( sum 4 ) ;
323 }
324 }
325 }
326 }
327 }
328
329
330 void Count pattern expected prob ( ){
331 p r i n t f ( ”==============================\nCondit iona l Probab i l i t y \n” ) ;
332 for ( int i = 0 ; i < cat ; i++){
333 int sum = 0 ;
334 for ( int j = 0 ; j < cat ; j++){
335 Condi t iona l prob [ i ] [ j ] = 0 ;
336 sum += pattern2 [ i ] [ j ] . get num ( ) ;
337 }
338 for ( int j = 0 ; j < cat ; j++){
339 Condi t iona l prob [ i ] [ j ] = (double ) pattern2 [ i ] [ j ] . get num ( ) / (double )sum ;
340 p r i n t f ( ”%c | %c = %f \n” , Categ [ j ] , Categ [ i ] , Cond i t iona l prob [ i ] [ j ] ) ;
341 }
342 }
343
344 for ( int i = 0 ; i < cat ; i++){
345 for ( int j = 0 ; j < cat ; j++){
346 pattern2 [ i ] [ j ] . c a l c u l a t e e xp e c t e d va l u e (new Pattern , i n i t i a l d i s t r i b u t i o n ) ;
347 }
348 }
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349
350 for ( int i = 0 ; i < cat ; i++){
351 for ( int j = 0 ; j < cat ; j++){
352 for ( int k = 0 ; k < cat ; k++){
353 pattern3 [ i ] [ j ] [ k ] . c a l c u l a t e e xp e c t e d va l u e (&(Pattern ) pattern2 [ i ] [ j ] ,
354 i n i t i a l d i s t r i b u t i o n ) ;
355 }
356 }
357 }
358
359 for ( int i = 0 ; i < cat ; i++){
360 for ( int j = 0 ; j < cat ; j++){
361 for ( int k = 0 ; k < cat ; k++){
362 for ( int l = 0 ; l < cat ; l++){
363 pattern4 [ i ] [ j ] [ k ] [ l ] . c a l c u l a t e e xp e c t e d va l u e (&(Pattern ) pattern3 [ i ] [ j ] [ k ] ,
364 i n i t i a l d i s t r i b u t i o n ) ;
365 }
366 }
367 }
368 }
369 }
370
371 void Ch i squa r e t e s t ( ){
372 for ( int i = 0 ; i < cat ; i++){
373 for ( int j = 0 ; j < cat ; j++){
374 pattern2 [ i ] [ j ] . c h i s q u a r e t e s t ( ) ;
375 }
376 }
377
378 for ( int i = 0 ; i < cat ; i++){
379 for ( int j = 0 ; j < cat ; j++){
380 for ( int k = 0 ; k < cat ; k++){
381 pattern3 [ i ] [ j ] [ k ] . c h i s q u a r e t e s t ( ) ;
382 }
383 }
384 }
385 for ( int i = 0 ; i < cat ; i++){
386 for ( int j = 0 ; j < cat ; j++){
387 for ( int k = 0 ; k < cat ; k++){
388 for ( int l = 0 ; l < cat ; l++){
389 pattern4 [ i ] [ j ] [ k ] [ l ] . c h i s q u a r e t e s t ( ) ;
390 }
391 }
392 }
393 }
394 }
395
396
397 void Pr int out ( ){
398 p r i n t f ( ”==============================\nPattern2\n” ) ;
399 for ( int i = 0 ; i < cat −1; i++){
400 for ( int j = 0 ; j < cat − 1 ; j++){
401 pattern2 [ i ] [ j ] . p r i n t ou t ( ) ;
402 }
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403 }
404
405 p r i n t f ( ”==============================\nPattern3\n” ) ;
406 for ( int i = 0 ; i < cat − 1 ; i++){
407 for ( int j = 0 ; j < cat − 1 ; j++){
408 for ( int k = 0 ; k < cat − 1 ; k++){
409 pattern3 [ j ] [ k ] [ i ] . p r i n t ou t ( ) ;
410 }
411 }
412 }
413
414 i f (V){
415 p r i n t f ( ”==============================\nPattern4\n” ) ;
416 for ( int i = 0 ; i < cat − 1 ; i++){
417 for ( int j = 0 ; j < cat − 1 ; j++){
418 for ( int k = 0 ; k < cat − 1 ; k++){
419 for ( int l = 0 ; l < cat − 1 ; l++){
420 // i f ( pa t t e rn4 [ k ] [ l ] [ j ] [ i ] . get num () ){
421 pattern4 [ k ] [ l ] [ j ] [ i ] . p r i n t ou t ( ) ;
422 //}
423 }
424 }
425 }
426 }
427 }
428 }
429
430 void inout ( ){
431 p r i n t f ( ”================================\nInOutRatio\n” ) ;
432 int s i z e = s izeof (Type )/ s izeof (char ) ;
433 for ( int i = 0 ; i < s i z e − 1 ; i++){
434 int in = 0 ;
435 int out = 0 ;
436 int num = 0 ;
437
438 for ( int l o c = 0 ; l o c < p l a c e s i z e ; l o c++){
439 i f ( p la [ l o c ] . g e t type ( ) == Type [ i ] ) {
440 in += pla [ l o c ] . g e t i n ( ) ;
441 out += pla [ l o c ] . g e t out ( ) ;
442 // p la [ l o c ] . Pr in t ou t ( ) ;
443 num++;
444 }
445 }
446 f p r i n t f ( stdout , ”Type %c TOTAL i s %6d In %6d Out %5.4d In/Out %f \n” ,
447 Type [ i ] , num, in , out , (double ) in /(double ) out ) ;
448 }
449 }

A.1.4 Global Object

1 /∗
2 ∗ f u n c i on t e s t . h
3 ∗
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4 ∗ Created on : Ju l 7 , 2010
5 ∗ Author : j i h 49
6 ∗/
7
8 #ifndef FUNCIONTEST H
9 #define FUNCIONTEST H

10 #include ”Pattern2 . h”
11 #include ”Pattern3 . h”
12 #include ”Pattern4 . h”
13 #include ”Place . h”
14
15
16 #include ”Params . h”
17
18 const int cat = 5 ;
19 extern int t e s s ;
20 extern int pop s i z e ;
21 extern int p l a c e s i z e ;
22 extern int V;
23 extern int D;
24 extern int sum 2 , sum 3 , sum 4 ;
25 extern double th r e sho ld ;
26 extern double i n i t i a l d i s t r i b u t i o n [ cat ] ;
27 extern char Categ [ cat ] ;
28 extern char Type [ 7 ] ;
29 extern char∗ f i l ename ;
30 extern double Condi t iona l prob [ cat ] [ cat ] ;
31 extern Agent∗ pop ;
32 extern Agent∗∗ pop ptr ;
33 extern Place ∗ pla ;
34 extern FILE∗ Status fp ;
35 extern FILE∗ Outfp ;
36 /∗
37 ex te rn Pattern2 pa t t e rn2 [ ca t ] [ ca t ] ;
38
39 ex te rn Pattern3 pa t t e rn3 [ ca t ] [ ca t ] [ ca t ] ;
40
41 ex te rn Pattern4 pa t t e rn4 [ ca t ] [ ca t ] [ ca t ] [ ca t ] ;
42 ∗/
43 void ge t g l oba l pa r amet e r s ( ) ;
44 int get type number (char type ) ;
45 bool i s i n (Agent∗ ag , vector<Agent∗> l i s t ) ;
46 #endif /∗ FUNCIONTEST H ∗/

1 /∗
2 ∗ f u n c i on t e s t . cpp
3 ∗
4 ∗ Created on : Ju l 7 , 2010
5 ∗ Author : j i h 49
6 ∗/
7
8 #include ”Global . h”
9
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10 int t e s s = 5 ;
11 int pop s i z e ;
12 int p l a c e s i z e ;
13 int V;
14 int D;
15
16 Agent∗ pop ;
17 Agent∗∗ pop ptr ;
18 Place ∗ pla ;
19
20 Pattern2 pattern2 [ cat ] [ cat ] ;
21 Pattern3 pattern3 [ cat ] [ cat ] [ cat ] ;
22 Pattern4 pattern4 [ cat ] [ cat ] [ cat ] [ cat ] ;
23
24 int sum 2 , sum 3 , sum 4 ;
25 double th r e sho ld ;
26 double i n i t i a l d i s t r i b u t i o n [ cat ] ;
27 char Categ [ cat ] = { ’H ’ , ’N ’ , ’ S ’ , ’W’ , ’X ’ } ;
28 char Type [ 7 ] = { ’H ’ , ’N ’ , ’ S ’ , ’C ’ , ’W’ , ’O ’ , ’X ’ } ;
29
30 char∗ f i l ename ;
31
32 double Condi t iona l prob [ cat ] [ cat ] ;
33
34 FILE∗ Status fp ;
35 FILE∗ Outfp ;
36
37 void ge t g l oba l pa r amet e r s ( ) {
38 read parameters ( ” ” ) ;
39 get param ( ( char ∗) ”V” , &V) ;
40 get param ( ( char ∗) ” th r e sho ld ” , &thre sho ld ) ;
41 }
42
43 int get type number (char type ){
44 i f ( type == ’H ’ ){
45 return 0 ;
46 } else i f ( type == ’N ’ ){
47 return 1 ;
48 } else i f ( type == ’S ’ | | type == ’C ’ ){
49 return 2 ;
50 } else i f ( type == ’W’ | | type == ’O’ ){
51 return 3 ;
52 } else i f ( type == ’X ’ ){
53 return 4 ;
54 } else {
55 p r i n t f ( ”not a good type\n” ) ;
56 return −1;
57 }
58 }
59
60 bool i s i n (Agent∗ ag , vector<Agent∗> l i s t ){
61 for (unsigned int i = 0 ; i < l i s t . s i z e ( ) ; i++){
62 i f ( ag == l i s t [ i ] ) {
63 return true ;
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64 }
65 }
66 return fa l se ;
67 }

A.1.5 Params Object

1 /∗
2 Copyright 2009 by the Un i v e r s i t y o f P i t t s bu r gh
3 Licensed under the Academic Free License ve r s i on 3.0
4 See the f i l e ”LICENSE” fo r more in format ion
5 ∗/
6
7 //
8 //
9 // F i l e Params . h

10 //
11 #ifndef FRED PARAMS H
12 #define FRED PARAMS H
13
14 #include <s t d l i b . h>
15 #include <s t d i o . h>
16 #include <s t r i n g . h>
17 #include <s t r i ng>
18 #include <vector>
19
20 using namespace std ;
21
22 int get param (char ∗ s , int ∗p ) ;
23 int get param (char ∗ s , unsigned long ∗p ) ;
24 int get param (char ∗ s , double ∗p ) ;
25 int get param (char ∗ s , f loat ∗p ) ;
26 int get param (char ∗ s , char ∗p ) ;
27 int get param (char ∗ s , s t r i n g &p ) ;
28 int read parameters (char ∗ paramf i l e ) ;
29 int get param vector (char ∗s , vec to r < int > &p ) ;
30 int get param vector (char ∗s , vec to r < double > &p ) ;
31 int get param vector (char ∗s , double ∗p ) ;
32 int get param matrix (char ∗s , double ∗∗∗p ) ;
33 bool does param ex i s t (char ∗ s ) ;
34 #endif // FRED PARAMS H

1 /∗
2 Copyright 2009 by the Un i v e r s i t y o f P i t t s bu r gh
3 Licensed under the Academic Free License ve r s i on 3.0
4 See the f i l e ”LICENSE” fo r more in format ion
5 ∗/
6
7 //
8 //
9 // F i l e Params . cc

10 //
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11
12 #include ”Params . h”
13 #include <math . h>
14 #include <s t r i ng>
15 #include <sstream>
16
17 using namespace std ;
18
19 #define MAXPARAMS 1000
20 #define MAX PARAM SIZE 1024
21
22 char Param name [MAXPARAMS] [MAX PARAM SIZE ] ;
23 char Param value [MAXPARAMS] [MAX PARAM SIZE ] ;
24 int Params ;
25 int Param verbose = 1 ;
26
27 int read parameters (char ∗ paramf i l e ) {
28 FILE ∗ fp ;
29 char name [MAX PARAM SIZE ] ;
30 Params = 0 ;
31
32 fp = fopen ( ”params . de f ” , ” r ” ) ;
33 i f ( fp != NULL) {
34 while ( f s c a n f ( fp , ”%s” , name) == 1) {
35 i f (name [ 0 ] == ’#’ ) {
36 int ch = 1 ;
37 while ( ch != ’ \n ’ )
38 ch = f g e t c ( fp ) ;
39 continue ;
40 } else {
41 i f ( f s c a n f ( fp , ” = %[ˆ\n ] ” , Param value [ Params ] ) == 1) {
42
43 //Remove end o f l i n e comments i f they are t he r e
44 s t r i n g temp str ( Param value [ Params ] ) ;
45 s i z e t pos ;
46 s t r i n g whi tespaces ( ” \ t \ f \v\n\ r ” ) ;
47
48 pos = temp str . f i nd ( ”#” ) ;
49 i f ( pos != s t r i n g : : npos )
50 temp str = temp str . subs t r (0 , pos ) ;
51
52 // trim t r a i l i n g whi te space
53 pos = temp str . f i n d l a s t n o t o f ( whi te spaces ) ;
54 i f ( pos != s t r i n g : : npos ) {
55 i f ( pos != ( temp str . l ength ( ) − 1) )
56 temp str . e r a s e ( pos + 1 ) ;
57 }
58 else
59 temp str . c l e a r ( ) ; // s t r i s a l l wh i t e space
60
61 s t r cpy ( Param value [ Params ] , temp str . c s t r ( ) ) ;
62
63 s t r cpy (Param name [ Params ] , name ) ;
64 i f ( Param verbose > 2) {
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65 p r i n t f ( ”READPARAMS: %s = %s \n” , Param name [ Params ] ,
66 Param value [ Params ] ) ;
67 }
68 Params++;
69 } else {
70 p r i n t f (
71 ”Help ! Bad format in params . de f f i l e on l i n e s t a r t i n g with %s \n” ,
72 name ) ;
73 abort ( ) ;
74 }
75 }
76 }
77 } else {
78 p r i n t f ( ”Help ! Can ’ t read paramf i l e %s \n” , ”params . de f ” ) ;
79 abort ( ) ;
80 }
81 f c l o s e ( fp ) ;
82
83 i f ( Param verbose > 1) {
84 for ( int i = 0 ; i < Params ; i++) {
85 p r i n t f ( ”READPARAMS: %s = %s \n” , Param name [ i ] , Param value [ i ] ) ;
86 }
87 }
88
89 return Params ;
90 }
91
92 int get param (char ∗ s , int ∗p) {
93 int found = 0 ;
94 for ( int i = 0 ; i < Params ; i++) {
95 i f ( strcmp (Param name [ i ] , s ) == 0) {
96 i f ( s s c an f ( Param value [ i ] , ”%d” , p ) ) {
97 found = 1 ;
98 }
99 }
100 }
101 i f ( found ) {
102 i f ( Param verbose ) {
103 p r i n t f ( ”PARAMS: %s = %d\n” , s , ∗p ) ;
104 f f l u s h ( stdout ) ;
105 }
106 return 1 ;
107 } else {
108 i f ( Param verbose ) {
109 p r i n t f ( ”PARAMS: %s not found\n” , s ) ;
110 f f l u s h ( stdout ) ;
111 }
112 abort ( ) ;
113 }
114 return 0 ;
115 }
116
117 int get param (char ∗ s , unsigned long ∗p) {
118 int found = 0 ;
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119 for ( int i = 0 ; i < Params ; i++) {
120 i f ( strcmp (Param name [ i ] , s ) == 0) {
121 i f ( s s c an f ( Param value [ i ] , ”%lu ” , p ) ) {
122 found = 1 ;
123 }
124 }
125 }
126 i f ( found ) {
127 i f ( Param verbose ) {
128 p r i n t f ( ”PARAMS: %s = %lu \n” , s , ∗p ) ;
129 f f l u s h ( stdout ) ;
130 }
131 return 1 ;
132 } else {
133 i f ( Param verbose ) {
134 p r i n t f ( ”PARAMS: %s not found\n” , s ) ;
135 f f l u s h ( stdout ) ;
136 }
137 abort ( ) ;
138 }
139 return 0 ;
140 }
141
142 int get param (char ∗ s , double ∗p) {
143 int found = 0 ;
144 for ( int i = 0 ; i < Params ; i++) {
145 i f ( strcmp (Param name [ i ] , s ) == 0) {
146 i f ( s s c an f ( Param value [ i ] , ”%l f ” , p ) ) {
147 found = 1 ;
148 }
149 }
150 }
151 i f ( found ) {
152 i f ( Param verbose ) {
153 p r i n t f ( ”PARAMS: %s = %f \n” , s , ∗p ) ;
154 f f l u s h ( stdout ) ;
155 }
156 return 1 ;
157 } else {
158 i f ( Param verbose ) {
159 p r i n t f ( ”PARAMS: %s not found\n” , s ) ;
160 f f l u s h ( stdout ) ;
161 }
162 abort ( ) ;
163 }
164 return 0 ;
165 }
166
167 int get param (char ∗ s , f loat ∗p) {
168 int found = 0 ;
169 for ( int i = 0 ; i < Params ; i++) {
170 i f ( strcmp (Param name [ i ] , s ) == 0) {
171 i f ( s s c an f ( Param value [ i ] , ”%f ” , p ) ) {
172 found = 1 ;
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173 }
174 }
175 }
176 i f ( found ) {
177 i f ( Param verbose ) {
178 p r i n t f ( ”PARAMS: %s = %f \n” , s , ∗p ) ;
179 f f l u s h ( stdout ) ;
180 }
181 return 1 ;
182 } else {
183 i f ( Param verbose ) {
184 p r i n t f ( ”PARAMS: %s not found\n” , s ) ;
185 f f l u s h ( stdout ) ;
186 }
187 abort ( ) ;
188 }
189 return 0 ;
190 }
191
192 int get param (char ∗ s , s t r i n g &p){
193 int found = 0 ;
194 for ( int i = 0 ; i < Params ; i++) {
195 i f ( strcmp (Param name [ i ] , s ) == 0) {
196 s t r ing s t r eam ss ;
197 s s << Param value [ i ] ;
198 i f ( s s . s t r ( ) . s i z e ( ) > 0){
199 p = ss . s t r ( ) ;
200 found = 1 ;
201 }
202 }
203 }
204 i f ( found ) {
205 i f ( Param verbose ) {
206 p r i n t f ( ”PARAMS: %s = %s \n” , s , p . c s t r ( ) ) ;
207 f f l u s h ( stdout ) ;
208 }
209 return 1 ;
210 } else {
211 i f ( Param verbose ) {
212 p r i n t f ( ”PARAMS: %s not found\n” , s ) ;
213 f f l u s h ( stdout ) ;
214 }
215 abort ( ) ;
216 }
217 return 0 ;
218 }
219
220 int get param (char ∗ s , char ∗p) {
221 int found = 0 ;
222 for ( int i = 0 ; i < Params ; i++) {
223 i f ( strcmp (Param name [ i ] , s ) == 0) {
224 i f ( s t r cpy (p , Param value [ i ] ) ) {
225 found = 1 ;
226 }
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227 }
228 }
229 i f ( found ) {
230 i f ( Param verbose ) {
231 p r i n t f ( ”PARAMS: %s = %s \n” , s , p ) ;
232 f f l u s h ( stdout ) ;
233 }
234 return 1 ;
235 } else {
236 i f ( Param verbose ) {
237 p r i n t f ( ”PARAMS: %s not found\n” , s ) ;
238 f f l u s h ( stdout ) ;
239 }
240 abort ( ) ;
241 }
242 return 0 ;
243 }
244
245 int get param vector (char ∗s , vec to r < int > &p){
246 char s t r [ 1 0 2 4 ] ;
247 int n ;
248 char ∗pch ;
249 int v ;
250 get param ( s , s t r ) ;
251 pch = s t r t ok ( s t r , ” ” ) ;
252 i f ( s s c an f ( pch , ”%d”,&n) == 1){
253 for ( int i =0; i<n ; i++){
254 pch = s t r t ok (NULL, ” ” ) ;
255 i f ( pch == NULL) {
256 p r i n t f ( ”Help ! bad param vecto r : %s \n” , s ) ;
257 abort ( ) ;
258 }
259 s s c an f ( pch , ”%d”,&v ) ;
260 p . push back (v ) ;
261 }
262 }
263 else {
264 p r i n t f ( ” I n c o r r e c t format f o r vec to r %s \n” , s ) ;
265 abort ( ) ;
266 }
267 return n ;
268 }
269
270 int get param vector (char ∗s , vec to r < double > &p){
271 char s t r [ 1 0 2 4 ] ;
272 int n ;
273 char ∗pch ;
274 double v ;
275 get param ( s , s t r ) ;
276 pch = s t r t ok ( s t r , ” ” ) ;
277 i f ( s s c an f ( pch , ”%d” , &n) == 1) {
278 for ( int i = 0 ; i < n ; i++) {
279 pch = s t r t ok (NULL, ” ” ) ;
280 i f ( pch == NULL) {
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281 p r i n t f ( ”Help ! bad param vecto r : %s \n” , s ) ;
282 abort ( ) ;
283 }
284 s s c an f ( pch , ”%l f ” , &v ) ;
285 p . push back (v ) ;
286 }
287 }
288 else {
289 p r i n t f ( ” I n c o r r e c t format f o r vec to r %s \n” , s ) ;
290 abort ( ) ;
291 }
292 return n ;
293 }
294
295 int get param vector (char ∗s , double ∗p) {
296 char s t r [ 1 0 2 4 ] ;
297 int n ;
298 char ∗pch ;
299 get param ( s , s t r ) ;
300 pch = s t r t ok ( s t r , ” ” ) ;
301 i f ( s s c an f ( pch , ”%d” , &n) == 1) {
302 for ( int i = 0 ; i < n ; i++) {
303 pch = s t r t ok (NULL, ” ” ) ;
304 i f ( pch == NULL) {
305 p r i n t f ( ”Help ! bad param vecto r : %s \n” , s ) ;
306 abort ( ) ;
307 }
308 s s c an f ( pch , ”%l f ” , &p [ i ] ) ;
309 }
310 } else {
311 abort ( ) ;
312 }
313 return n ;
314 }
315
316 int get param matrix (char ∗s , double ∗∗∗p) {
317 int n = 0 ;
318 get param ( ( char ∗) s , &n ) ;
319 i f (n) {
320 double ∗tmp ;
321 tmp = new double [ n ] ;
322 get param vector ( ( char ∗) s , tmp ) ;
323 int temp n = ( int ) s q r t ( (double ) n ) ;
324 i f (n != temp n ∗ temp n ) {
325 p r i n t f ( ” Improper matrix dimensions : ma t r i c i e s must be square , ”
326 ” found dimension %i \n” , n ) ;
327 abort ( ) ;
328 }
329 n = temp n ;
330 (∗p) = new double ∗ [ n ] ;
331 for ( int i = 0 ; i < n ; i++)
332 (∗p ) [ i ] = new double [ n ] ;
333 for ( int i = 0 ; i < n ; i++) {
334 for ( int j = 0 ; j < n ; j++) {
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335 (∗p ) [ i ] [ j ] = tmp [ i ∗ n + j ] ;
336 }
337 }
338 delete [ ] tmp ;
339 return n ;
340 }
341 return −1;
342 }
343
344 bool does param ex i s t (char ∗ s ) {
345
346 bool found = fa l se ;
347 for ( int i = 0 ; i < Params && ! found ; i++) {
348 i f ( strcmp (Param name [ i ] , s ) == 0) {
349 found = true ;
350 }
351 }
352
353 return found ;
354 }

A.1.6 Pattern/Pattern2/Pattern3/Pattern4 Objects

1 /∗
2 ∗ Pattern . h
3 ∗
4 ∗ Created on : Jun 25 , 2010
5 ∗ Author : j i h 49
6 ∗/
7
8 #ifndef PATTERN H
9 #define PATTERN H

10
11 #include <vector>
12 #include <math . h>
13 #include ”Agent . h”
14
15 class Pattern {
16 public :
17 Pattern ( ) { num = 0 ; expected prob = 0 . 0 ; expected prob ind = 0 ; r e a l p r ob = 0 ; }
18 ˜Pattern ( ){}
19 virtual void c a l c u l a t e e xp e c t e d va l u e ( Pattern ∗ ,double∗ i n i t i a l d i s t r i b u t i o n )
20 { expected prob = 0 ; }
21
22 int get num (void ) { return num; }
23 char∗ ge t pa t t e rn ( ) { return t r an sm i s s i on pa t t e rn ; }
24 double ge t expec ted prob ( ) { return expected prob ; }
25 double g e t r e a l p r ob ( ) { return r e a l p r ob ; }
26
27 void s e t r e a l p r o b ( int Sum) ;
28 void c h i s q u a r e t e s t ( ) ;
29 void pr i n t ou t ( ) ;
30 protected :
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31 int num;
32 double r e a l p r ob ;
33 double expected prob ;
34 double expected prob ind ;
35 char∗ t r an sm i s s i on pa t t e rn ;
36 double c h i t e s t , c h i t e s t 2 ;
37 char index , index2 ;
38 int sum ;
39 } ;
40
41 #endif /∗ PATTERN H ∗/

1 /∗
2 ∗ Pattern . cpp
3 ∗
4 ∗ Created on : Jun 25 , 2010
5 ∗ Author : j i h 49
6 ∗/
7
8 #include ”Pattern . h”
9

10 extern int V;
11 extern double th r e sho ld ;
12 void Pattern : : s e t r e a l p r o b ( int Sum){
13 sum = Sum;
14 r e a l p r ob = (double )num/(double )sum ;
15 i f (V > 1)
16 p r i n t f ( ” r e a l p r ob o f %s i s %f \n” , t ransmi s s i on pat t e rn , r e a l p r ob ) ;
17 }
18
19 void Pattern : : c h i s q u a r e t e s t ( ){
20 c h i t e s t = pow( ( r ea l p rob−expected prob ) , 2 )
21 ∗sum/ expected prob /(1− expected prob ) ;
22 i f ( c h i t e s t < th r e sho ld ){
23 index = ’N ’ ;
24 } else i f (num < sum∗ expected prob ){
25 index = ’D’ ;
26 } else i f (num > sum∗ expected prob ){
27 index = ’U ’ ;
28 } else {
29 index = ’X ’ ;
30 }
31
32 c h i t e s t 2 = pow( ( rea l prob−expected prob ind ) , 2 )
33 ∗sum/ expected prob ind /(1− expected prob ind ) ;
34 i f ( c h i t e s t 2 < th r e sho ld ){
35 index2 = ’N ’ ;
36 } else i f (num < sum∗ expected prob ind ){
37 index2 = ’D’ ;
38 } else i f (num > sum∗ expected prob ind ){
39 index2 = ’U ’ ;
40 } else {
41 index2 = ’X ’ ;
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42 }
43 }
44
45 void Pattern : : p r i n t ou t ( ){
46
47 // p r i n t f (” Pattern %s : %5d %5.4 f \n” , t ransmi s s i on pa t t e rn , num, r e a l p r o b ) ;
48
49 p r i n t f ( ”%s r e a l %6.4 f expected %6.4 f expected ind
50 %6.4 f Chi1 %8.2 f %c Chi2 %8.2 f %c\n” ,
51 t ransmi s s i on pat t e rn , r ea l p rob , expected prob ,
52 expected prob ind , c h i t e s t , index , c h i t e s t 2 , index2 ) ;
53
54 }

1 /∗
2 ∗ Pattern2 . h
3 ∗
4 ∗ Created on : Jun 29 , 2010
5 ∗ Author : j i h 49
6 ∗/
7
8 #ifndef PATTERN2 H
9 #define PATTERN2 H

10 #include ”AddressType2 . h”
11 #include ”Pattern . h”
12 #include ”Global . h”
13
14 class Pattern2 : public Pattern {
15 public :
16 Pattern2 ( ) ;
17 ˜Pattern2 ( ){}
18
19 void setup (char i n f e c t o r , char i n f e c t e e ) ;
20 void add pattern (Agent∗ i n f e c t o r , Agent ∗ i n f e c t e e ) ;
21 void c a l c u l a t e e xp e c t e d va l u e ( Pattern ∗ pattern , double∗ i n i t i a l d i s t r i b u t i o n ) ;
22 vector<AddressType2∗>∗ g e t r e l a t i o n ( ) { return &Relat ion ; }
23 private :
24 vector<AddressType2∗> Relat ion ;
25 } ;
26
27 #endif /∗ PATTERN2 H ∗/

1 /∗
2 ∗ Pattern2 . cpp
3 ∗
4 ∗ Created on : Jun 29 , 2010
5 ∗ Author : j i h 49
6 ∗/
7
8 #include ”Pattern2 . h”
9

10 Pattern2 : : Pattern2 ( ) : Pattern ( ){
11 t r an sm i s s i on pa t t e rn = new char [ 2 ] ;
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12 }
13
14 void Pattern2 : : setup (char i n f e c t o r , char i n f e c t e e ){
15 num = 0 ; expected prob = 0 . 0 ; r e a l p r ob = 0 ;
16 Re lat ion . c l e a r ( ) ;
17 t r an sm i s s i on pa t t e rn [ 0 ] = i n f e c t o r ;
18 t r an sm i s s i on pa t t e rn [ 1 ] = i n f e c t e e ;
19 }
20
21 void Pattern2 : : add pattern (Agent∗ i n f e c t o r , Agent ∗ i n f e c t e e ){
22 num++;
23 AddressType2 ∗add = new AddressType2 ( i n f e c t o r , i n f e c t e e ) ;
24 Re lat ion . push back ( add ) ;
25 }
26
27 /∗
28 vo id Pattern2 : : p r i n t o u t (){
29 p r i n t f (” Pattern %s : r e a l %6d (%10.9 f ) , expec ted %8.2 f (%10.9 f ) , Chi %8.2 f , %c\n” ,
30 t r ansmi s s i on pa t t e rn , num, rea l p rob , sum 2∗ expec ted prob , expec ted prob , c h i t e s t , index ) ;
31 i f (V > 2){
32 vec tor<AddressType2 ∗>:: i t e r a t o r i t r ;
33 f o r ( i t r = Re la t ion . beg in ( ) ; i t r != Re la t ion . end ( ) ; i t r ++){
34 p r i n t f (” i n f e c t o r %8d −> i n f e c t e e %8d\n” , (∗ i t r )−> g e t i n f e c t o r ()−> g e t i d ( ) , (∗ i t r )−> g e t i n f e c t e e ()−> g e t i d ( ) ) ;
35 }
36 }
37 }
38 ∗/
39
40 void Pattern2 : : c a l c u l a t e e xp e c t e d va l u e ( Pattern ∗ pattern , double∗ i n i t i a l d i s t r i b u t i o n ){
41 expected prob = i n i t i a l d i s t r i b u t i o n [ get type number ( t r an sm i s s i on pa t t e rn [ 0 ] ) ]
42 ∗Condi t iona l prob [ get type number ( t r an sm i s s i on pa t t e rn [ 0 ] ) ] [ get type number ( t r an sm i s s i on pa t t e rn [ 1 ] ) ] ;
43 expected prob ind = i n i t i a l d i s t r i b u t i o n [ get type number ( t r an sm i s s i on pa t t e rn [ 0 ] ) ]
44 ∗ i n i t i a l d i s t r i b u t i o n [ get type number ( t r an sm i s s i on pa t t e rn [ 1 ] ) ] ;
45 }

1 /∗
2 ∗ Pattern3 . h
3 ∗
4 ∗ Created on : Jun 28 , 2010
5 ∗ Author : j i h 49
6 ∗/
7
8 #ifndef PATTERN3 H
9 #define PATTERN3 H

10
11 #include ”AddressType3 . h”
12 #include ”Pattern . h”
13 #include ”Global . h”
14 class Pattern3 : public Pattern {
15 public :
16 Pattern3 ( ) ;
17 ˜Pattern3 ( ){}
18 void setup (char f i r s t , char secon , char th i rd ) ;

94



19 void add pattern (Agent∗ f i r s t , Agent ∗ second , Agent∗ th i rd ) ;
20 void c a l c u l a t e e xp e c t e d va l u e ( Pattern ∗ pattern , double∗ i n i t i a l d i s t r i b u t i o n ) ;
21 vector<AddressType3∗>∗ g e t r e l a t i o n ( ) { return &Relat ion ;}
22 private :
23 vector<AddressType3∗> Relat ion ;
24 } ;
25
26 #endif /∗ PATTERN3 H ∗/

1 /∗
2 ∗ Pattern3 . cpp
3 ∗
4 ∗ Created on : Jun 28 , 2010
5 ∗ Author : j i h 49
6 ∗/
7
8 #include ”Pattern3 . h”
9

10 Pattern3 : : Pattern3 ( ) : Pattern ( ) {
11 t r an sm i s s i on pa t t e rn = new char [ 3 ] ;
12 }
13
14 void Pattern3 : : setup (char f i r s t , char second , char th i rd ){
15 num = 0 ; expected prob = 0 . 0 ; r e a l p r ob = 0 ;
16 Re lat ion . c l e a r ( ) ;
17 t r an sm i s s i on pa t t e rn [ 0 ] = f i r s t ;
18 t r an sm i s s i on pa t t e rn [ 1 ] = second ;
19 t r an sm i s s i on pa t t e rn [ 2 ] = th i rd ;
20 }
21
22 void Pattern3 : : add pattern (Agent∗ f i r s t , Agent∗ second , Agent∗ th i rd ){
23 num++;
24 AddressType3 ∗add = new AddressType3 ( f i r s t , second , th i rd ) ;
25 Re lat ion . push back ( add ) ;
26 }
27 /∗
28 vo id Pattern3 : : p r i n t o u t (){
29 p r i n t f (” Pattern %s : r e a l %6d (%10.9 f ) , expec ted %8.2 f (%10.9 f ) , Chi %8.2 f , %c\n” ,
30 t r ansmi s s i on pa t t e rn , num, rea l p rob , sum 3∗ expec ted prob , expec ted prob , c h i t e s t , index ) ;
31 i f (V > 2){
32 vec tor<AddressType3 ∗>:: i t e r a t o r i t r ;
33 f o r ( i t r = Re la t ion . beg in ( ) ; i t r != Re la t ion . end ( ) ; i t r ++){
34 p r i n t f (” f i r s t %7d %c −> second %7d %c −> t h i r d %7d %c\n” ,
35 (∗ i t r )−> g e t f i r s t ()−> g e t i d ( ) , (∗ i t r )−> g e t f i r s t ()−> g e t i n f e c t e d a t ( ) ,
36 (∗ i t r )−>ge t s econd()−> g e t i d ( ) , (∗ i t r )−>ge t s econd()−> g e t i n f e c t e d a t ( ) ,
37 (∗ i t r )−> g e t t h i r d ()−> g e t i d ( ) , (∗ i t r )−> g e t t h i r d ()−> g e t i n f e c t e d a t ( ) ) ;
38 }
39 }
40 }
41 ∗/
42 void Pattern3 : : c a l c u l a t e e xp e c t e d va l u e ( Pattern ∗ pattern , double ∗ i n i t i a l d i s t r i b u t i o n ){
43 expected prob = pattern−>g e t r e a l p r ob ( )
44 ∗Condi t iona l prob [ get type number ( t r an sm i s s i on pa t t e rn [ 1 ] ) ] [ get type number ( t r an sm i s s i on pa t t e rn [ 2 ] ) ] ;
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45 expected prob ind = pattern−>g e t r e a l p r ob ( )
46 ∗ i n i t i a l d i s t r i b u t i o n [ get type number ( t r an sm i s s i on pa t t e rn [ 2 ] ) ] ;
47
48 }

1 /∗
2 ∗ Pattern4 . h
3 ∗
4 ∗ Created on : Jun 28 , 2010
5 ∗ Author : j i h 49
6 ∗/
7
8 #ifndef PATTERN4 H
9 #define PATTERN4 H

10
11 #include ”AddressType4 . h”
12 #include ”Pattern . h”
13 #include ”Global . h”
14 class Pattern4 : public Pattern {
15 public :
16 Pattern4 ( ) ;
17 ˜Pattern4 ( ){}
18 void setup (char f i r s t , char second , char th i rd , char f o r t h ) ;
19 void add pattern (Agent∗ f i r s t , Agent ∗ second , Agent∗ th i rd , Agent∗ f o r t h ) ;
20 void c a l c u l a t e e xp e c t e d va l u e ( Pattern ∗ pattern , double∗ i n i t i a l d i s t r i b u t i o n ) ;
21 private :
22 vector<AddressType4∗> Relat ion ;
23 } ;
24
25 #endif /∗ PATTERN4 H ∗/

1 /∗
2 ∗ Pattern4 . cpp
3 ∗
4 ∗ Created on : Jun 28 , 2010
5 ∗ Author : j i h 49
6 ∗/
7
8 #include ”Pattern4 . h”
9

10 Pattern4 : : Pattern4 ( ) : Pattern ( ) {
11 t r an sm i s s i on pa t t e rn = new char [ 4 ] ;
12 }
13 void Pattern4 : : setup (char f i r s t , char second , char th i rd , char f o r t h ){
14 num = 0 ; expected prob = 0 . 0 ; r e a l p r ob = 0 ;
15 Re lat ion . c l e a r ( ) ;
16 t r an sm i s s i on pa t t e rn [ 0 ] = f i r s t ;
17 t r an sm i s s i on pa t t e rn [ 1 ] = second ;
18 t r an sm i s s i on pa t t e rn [ 2 ] = th i rd ;
19 t r an sm i s s i on pa t t e rn [ 3 ] = f o r th ;
20 }
21
22 void Pattern4 : : add pattern (Agent∗ f i r s t , Agent∗ second , Agent∗ th i rd , Agent∗ f o r t h ){
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23 num++;
24 AddressType4 ∗add = new AddressType4 ( f i r s t , second , th i rd , f o r t h ) ;
25 Re lat ion . push back ( add ) ;
26 }
27
28 /∗
29 vo id Pattern4 : : p r i n t o u t (){
30 p r i n t f (” Tota l : %d\n” , num) ;
31 i f (V > 2){
32 vec tor<AddressType4 ∗>:: i t e r a t o r i t r ;
33 f o r ( i t r = Re la t ion . beg in ( ) ; i t r != Re la t ion . end ( ) ; i t r ++){
34 p r i n t f (” f i r s t %7d %c −> second %7d %c −> t h i r d %7d %c −> f o r t h %7d %c\n” ,
35 (∗ i t r )−> g e t f i r s t ()−> g e t i d ( ) , (∗ i t r )−> g e t f i r s t ()−> g e t i n f e c t e d a t ( ) ,
36 (∗ i t r )−>ge t s econd()−> g e t i d ( ) , (∗ i t r )−>ge t s econd()−> g e t i n f e c t e d a t ( ) ,
37 (∗ i t r )−> g e t t h i r d ()−> g e t i d ( ) , (∗ i t r )−> g e t t h i r d ()−> g e t i n f e c t e d a t ( ) ,
38 (∗ i t r )−> g e t f o r t h ()−> g e t i d ( ) , (∗ i t r )−> g e t f o r t h ()−> g e t i n f e c t e d a t ( ) ) ;
39 }
40 }
41 }
42 ∗/
43
44 void Pattern4 : : c a l c u l a t e e xp e c t e d va l u e ( Pattern ∗pattern , double ∗ i n i t i a l d i s t r i b u t i o n ){
45 expected prob = pattern−>g e t r e a l p r ob ( )
46 ∗Condi t iona l prob [ get type number ( t r an sm i s s i on pa t t e rn [ 2 ] ) ] [ get type number ( t r an sm i s s i on pa t t e rn [ 3 ] ) ] ;
47 expected prob ind = pattern−>g e t r e a l p r ob ( )
48 ∗ i n i t i a l d i s t r i b u t i o n [ get type number ( t r an sm i s s i on pa t t e rn [ 3 ] ) ] ;
49
50 }

A.1.7 AddressType2/AddressType3/AddressType4 Objects

1 /∗
2 ∗ AddressType2 . h
3 ∗
4 ∗ Created on : Jun 28 , 2010
5 ∗ Author : j i h 49
6 ∗/
7
8 #ifndef ADDRESSTYPE2 H
9 #define ADDRESSTYPE2 H

10 #include ”Agent . h”
11
12 class AddressType2 {
13 public :
14 AddressType2 (Agent∗ I n f e c t o r , Agent∗ I n f e c t e e ) ;
15 ˜AddressType2 ( ) ;
16
17 Agent∗ g e t i n f e c t o r (void ) { return i n f e c t o r ;}
18 Agent∗ g e t i n f e c t e e (void ) { return i n f e c t e e ;}
19
20 private :
21 Agent∗ i n f e c t o r ;
22 Agent∗ i n f e c t e e ;
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23 } ;
24
25 #endif /∗ ADDRESSTYPE2 H ∗/

1 /∗
2 ∗ AddressType2 . cpp
3 ∗
4 ∗ Created on : Jun 28 , 2010
5 ∗ Author : j i h 49
6 ∗/
7
8 #include ”AddressType2 . h”
9

10 AddressType2 : : AddressType2 (Agent∗ I n f e c t o r , Agent∗ I n f e c t e e ) {
11 i n f e c t o r = I n f e c t o r ;
12 i n f e c t e e = I n f e c t e e ;
13 }
14
15 AddressType2 : : ˜ AddressType2 ( ) {
16 delete i n f e c t o r ;
17 delete i n f e c t e e ;
18 }

1 /∗
2 ∗ AddressType3 . h
3 ∗
4 ∗ Created on : Jun 28 , 2010
5 ∗ Author : j i h 49
6 ∗/
7
8 #ifndef ADDRESSTYPE3 H
9 #define ADDRESSTYPE3 H

10
11 #include ”Agent . h”
12
13 class AddressType3 {
14 public :
15 AddressType3 (Agent∗ Fir s t , Agent∗ Second , Agent∗ Third ) ;
16 ˜AddressType3 ( ) ;
17 Agent∗ g e t f i r s t (void ) { return f i r s t ; }
18 Agent∗ get second (void ) { return second ; }
19 Agent∗ g e t t h i r d (void ) { return th i rd ; }
20 private :
21 Agent∗ f i r s t ;
22 Agent∗ second ;
23 Agent∗ th i rd ;
24 } ;
25
26 #endif /∗ ADDRESSTYPE3 H ∗/

1 /∗
2 ∗ AddressType3 . cpp
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3 ∗
4 ∗ Created on : Jun 28 , 2010
5 ∗ Author : j i h 49
6 ∗/
7
8 #include ”AddressType3 . h”
9

10 AddressType3 : : AddressType3 (Agent∗ Fir s t , Agent∗ Second , Agent∗ Third ) {
11 f i r s t = F i r s t ;
12 second = Second ;
13 th i rd = Third ;
14 }
15
16 AddressType3 : : ˜ AddressType3 ( ) {
17 delete f i r s t ;
18 delete second ;
19 delete th i rd ;
20 }

1 /∗
2 ∗ AddressType4 . h
3 ∗
4 ∗ Created on : Jun 28 , 2010
5 ∗ Author : j i h 49
6 ∗/
7
8 #ifndef ADDRESSTYPE4 H
9 #define ADDRESSTYPE4 H

10
11 #include ”Agent . h”
12
13 class AddressType4 {
14 public :
15 AddressType4 (Agent∗ Fir s t , Agent∗ Second , Agent∗ Third , Agent∗ Forth ) ;
16 ˜AddressType4 ( ) ;
17 Agent∗ g e t f i r s t (void ) { return f i r s t ; }
18 Agent∗ get second (void ) { return second ; }
19 Agent∗ g e t t h i r d (void ) { return th i rd ; }
20 Agent∗ g e t f o r t h (void ) { return f o r t h ; }
21 private :
22 Agent∗ f i r s t ;
23 Agent∗ second ;
24 Agent∗ th i rd ;
25 Agent∗ f o r t h ;
26 } ;
27
28 #endif /∗ ADDRESSTYPE4 H ∗/

1 /∗
2 ∗ AddressType4 . cpp
3 ∗
4 ∗ Created on : Jun 28 , 2010
5 ∗ Author : j i h 49
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6 ∗/
7
8 #include ”AddressType4 . h”
9

10 AddressType4 : : AddressType4 (Agent∗ Fir s t , Agent∗ Second , Agent∗ Third , Agent∗ Forth ) {
11 f i r s t = F i r s t ;
12 second = Second ;
13 th i rd = Third ;
14 f o r th = Forth ;
15 }
16
17 AddressType4 : : ˜ AddressType4 ( ) {
18 delete f i r s t ;
19 delete second ;
20 delete th i rd ;
21 delete f o r t h ;
22 }

A.1.8 fred main Object

1 /∗
2 ∗ f red main . h
3 ∗
4 ∗ Created on : May 13 , 2010
5 ∗ Author : j i h 49
6 ∗/
7
8 #ifndef FRED MAIN H
9 #define FRED MAIN H

10
11
12 #endif /∗ FRED MAIN H ∗/

1 /∗
2 ∗ f red main . cpp
3 ∗
4 ∗ Created on : May 13 , 2010
5 ∗ Author : j i h 49
6 ∗/
7 #include <e r r . h>
8 #include <errno . h>
9 #include <sys / s t a t . h>

10 #include <vector>
11 #include ” fred main . h”
12 #include ”Global . h”
13 #include ” Funct ions Locat ion Patte rn . h”
14 #include ”Place . h”
15
16 extern Pattern2 pattern2 [ cat ] [ cat ] ;
17 extern Pattern3 pattern3 [ cat ] [ cat ] [ cat ] ;
18 extern Pattern4 pattern4 [ cat ] [ cat ] [ cat ] [ cat ] ;
19 // cons t char Type [ 7 ] = { ’H ’ , ’N ’ , ’ S ’ , ’C ’ , ’W’ , ’O ’ , ’X ’} ;
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20
21 using namespace std ;
22
23 int main ( int argc , char ∗argv [ ] )
24 {
25 t ime t c l o ck ; // current date
26 f p r i n t f ( stdout , ”FRED sta r t ed ” ) ;
27 time(&c lock ) ;
28 f p r i n t f ( stdout , ”%s” , ctime(&c lo ck ) ) ;
29
30 Status fp = stdout ;
31
32 ge t g l oba l pa rame t e r s ( ) ;
33
34 for ( int i = 1 ; i < argc ; i++) {
35 f i l ename = argv [ i ] ;
36 P lac e pr epa ra t i on ( ) ;
37 Agent preparat ion ( f i l ename ) ;
38
39
40
41 /∗ char fname [ 8 0 ] ;
42 s p r i n t f ( fname , ”DesAnalysis%s ” , f i l ename ) ;
43 FILE ∗Outfp = fopen ( fname ,”w” ) ;
44 i f (NULL == Outfp ){
45 p r i n t f (”Help ! Cannot open %s\n” , fname ) ;
46 abor t ( ) ;
47 }
48 f c l o s e ( Outfp ) ;
49 ∗/
50
51 Sea rch pat t e rn s ( ) ;
52 C o u n t i n i t i a l d i s t r i b u t i o n ( ) ;
53 Se t pa t t e rn prob ( ) ;
54 Count pattern expected prob ( ) ;
55 Ch i s qua r e t e s t ( ) ;
56 Pr in t out ( ) ;
57
58
59 //////// Place Ana lys i s
60 // update a l l p l a c e s
61 for ( int l o c = 0 ; l o c < p l a c e s i z e ; l o c++){
62 pla [ l o c ] . Update ( ) ; //Update s t a t i s t i c s , e . g . in out
63 }
64 // p r i n t in / out r a t i o
65 inout ( ) ;
66 /∗
67 mode t mask ; // the user ’ s curren t umask
68 mode t mode = 0777; // as a s t a r t
69
70 // crea t e the ”OUT” d i r ec to ry , i f i t does not a l r eady e x i s t
71 mask = umask ( 0 ) ; // ge t the curren t mask , which reads and s e t s . . .
72 umask (mask ) ; // so now we have to put i t back
73 mode ˆ= mask ; // app ly the user ’ s e x i s t i n g umask
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74 i f (0!=mkdir (” s o c i a l a c t i o n ” , mode) && EEXIST!=errno ) // make i t
75 err ( errno , ”mkdir (\” s o c i a l a c t i o n \”) f a i l e d ” ) ; // or d i e
76
77
78 Place ∗ tmp ;
79 f o r ( i n t l o c = 0; l o c < p l a c e s i z e ; l o c++){
80 i f ( p l a [ l o c ] . g e t t y p e ( ) == ’S ’){
81 tmp = &p la [ l o c ] ;
82 tmp−>Pr i n t s o c i a l a c t i o n ( ) ;
83 }
84 }
85 ∗/
86 }
87
88 time(&c lock ) ;
89 f p r i n t f ( stdout , ”================================\nrun s u c c e s s f u l l y \n” ) ;
90 f p r i n t f ( stdout , ”%s” , ctime(&c lo ck ) ) ;
91 return 0 ;
92 }

A.2 SOURCE CODE OF STATISTICALANALYSIS

1 # author : J iawei
2 # dat e : Aug 1 s t 2011
3 # func t i on s : read command l i n e
4 arguments < commandArgs( ) ;
5 options < arguments [ grep ( = , arguments ) ] ;
6 options < s t r sp l i t ( options , = ) ;
7 print ( length ( options ) ) ;
8 getOption < function (name ) {
9

10 i f ( length ( options)==0) {
11 return (NULL) ;
12 }
13 for ( i in 1 : length ( options ) ) {
14 i f ( options [ [ i ] ] [ 1 ] == name ) {
15 return ( options [ [ i ] ] [ 2 ] ) ;
16 }
17 }
18 }

1 # author : J iawei
2 # date : Aug 1 s t 2011
3 # func t i on s : load l i b r a r y , read data from f i l e s
4 # p l o t f i g u r e s o f comparisons , w r i t e f i l e s , and e t c .
5
6 l ibrary (Hmisc ) ;
7
8 read s t a t i s t i c < function ( s t a t i s t i c , s c e n a r i o s d i r e c t o r y ) {
9 for ( i in 1 : length ( s c e n a r i o s d i r e c t o r y ) ) {

10 TraceAnalys i s < paste ( s c e n a r i o s d i r e c t o r y [ i ] , /T r a c e A n a l y s i s , sep= ) ;
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11 setwd ( TraceAnalys i s ) ;
12 tmp < read . table ( s t a t i s t i c , sep= \ t ) ;
13
14 i f ( i == 1) {
15 stat data < tmp ;
16 } else {
17 stat data < cbind ( stat data , tmp ) ;
18 }
19 }
20 return ( stat data ) ;
21 }
22
23 # error bar p l o t
24 e r r ba rp l o t < function (data , colnames , s c ena r i o s , xxlab= , yylab= ) { #p l o t f unc t i on
25
26 ampl i fy < 1 . 9 6 ;
27 i f (nrow(data ) !=length ( colnames ) ) {
28 colnames = NULL;
29 }
30
31 for ( i in seq ( 1 , ncol (data ) ,by=2)) {
32 i f ( i == 1) {
33 e r rbar ( 1 :nrow(data ) ,data [ , i ] , data [ , i ] d a t a [ , i +1]∗ampli fy , data [ , i ]+data [ , i +1]∗ampli fy ,
34 text ( 1 :nrow(data ) , 0 , s r t =90, adj=1, l a b e l=colnames , xpd=T, cex =1.5) ;
35 } else {
36 e r rbar ( 1 :nrow(data ) ,data [ , i ] , data [ , i ] d a t a [ , i +1]∗ampli fy , data [ , i ]+data [ , i +1]∗ampli fy ,
37 }
38 }
39
40 for ( i in seq ( 1 , ncol (data ) ,by=2)) {
41 l ines (1 :nrow(data ) , data [ , i ] , col = ( i +1)/ 2 ) ;
42 }
43
44 legend ( t o p r i g h t , s c ena r i o s , pch=16, col=seq ( 1 , ( ncol (data )/ 2 ) ) ) ;
45 }
46
47
48 generate cp names < function ( type ) {
49 for ( i in 1 : length ( type ) ) {
50 for ( j in 1 : length ( type ) ) {
51 i f ( i == 1&&j == 1) {
52 names < c ( paste ( type [ j ] , | , type [ i ] ) ) ;
53 } else {
54 names < c (names , c ( paste ( type [ j ] , | , type [ i ] ) ) ) ;
55 }
56 }
57 }
58 return (names ) ;
59 }
60
61 genera tepat t e rn2 names < function ( type ) {
62 for ( i in 1 : length ( type ) ) {
63 for ( j in 1 : length ( type ) ) {
64 i f ( i == 1&&j == 1) {

103



65 names < c ( paste ( type [ i ] , type [ j ] , sep= ) ) ;
66 } else {
67 names < c (names , c ( paste ( type [ i ] , type [ j ] , sep= ) ) ) ;
68 }
69 }
70 }
71 return (names ) ;
72 }
73
74 generate pattern3 names < function ( type ) {
75 for ( i in 1 : length ( type ) ) {
76 for ( j in 1 : length ( type ) ) {
77 for ( k in 1 : length ( type ) ) {
78 i f ( i == 1&&j == 1&&k==1) {
79 names < c ( paste ( type [ i ] , type [ j ] , type [ k ] , sep= ) ) ;
80 } else {
81 names < c (names , c ( paste ( type [ i ] , type [ j ] , type [ k ] , sep= ) ) ) ;
82 }
83 }
84 }
85 }
86 return (names ) ;
87 }
88
89 generate pattern4 names < function ( type ) {
90 for ( i in 1 : length ( type ) ) {
91 for ( j in 1 : length ( type ) ) {
92 for ( k in 1 : length ( type ) ) {
93 for ( l in 1 : length ( type ) ) {
94 i f ( i == 1&&j == 1&&k==1&&l==1) {
95 names < c ( paste ( type [ i ] , type [ j ] , type [ k ] , type [ l ] , sep= ) ) ;
96 } else {
97 names< c (names , c (paste ( type [ i ] , type [ j ] , type [ k ] , type [ l ] , sep= ) ) ) ;
98 }
99 }
100 }
101 }
102 }
103 return (names ) ;
104 }
105
106 # return array o f rows wi th top 20% l a r g e s t d i f f e r e n c e between expec t edva l ue and r e a l va lue
107 #f i l t e r t o p < f unc t i on ( data , r a t i o =0.2){
108 # d i f f e r e n c e < abs ( data [ , 1 ] data [ , 3 ] ) ;
109 # return ( c ( rank ( d i f f e r e n c e )< l e n g t h ( d i f f e r e n c e )∗ r a t i o ) ) ;
110 #}
111
112 f i l t e r top < function (data , r a t i o =0.2) {
113 data < data [ , seq ( 1 , ncol (data ) ,by=2 ) ] ;
114 var iance < apply (data , 1 , var ) ;
115 return (c (rank ( v a r i a n c e ) < length ( var i ance )∗ r a t i o ) ) ;
116 }
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1 # EpidemicDynamicPlot .R
2 # date : 6/30/2011
3 # author : J iawei Huang
4
5 # func t i on : p l o t epidemic dynamics by days .
6 # parameter s : group = S |E | I |R
7 # command l i n e :
8 # R CMD BATCH a r g s g r o u p = I EpidemicDynamicPlot .R
9 #

10
11 l ibrary (Hmisc ) ;
12 wd < getwd ( ) ;
13 source (paste (wd, /CommandReader . R , sep= ) ) ;
14 source (paste (wd, /params . d e f , sep= ) ) ;
15
16 ############################ Parameterse t t ing
17 #[ f i n a l cons tant ] parameters , donnot change
18 S < 6 ;
19 E < 8 ;
20 I < 10 ;
21 R < 14 ;
22
23 # read from command l i n e , which group to p l o t
24 group < getOption ( g r o u p ) ;
25
26 i f ( i s . null ( group ) ){
27 OPT < E x p o s e d ;
28 group < E;
29 } else i f ( group == I ) {
30 OPT < I n f e c t i o u s ;
31 group < I ;
32 } else i f ( group == S ){
33 OPT < S u s c e p t i b l e s ;
34 group < S ;
35 } else i f ( group== R ){
36 OPT < R e c o v e r e d ;
37 group < R;
38 } else {
39 OPT < E x p o s e d ;
40 group < E;
41 }
42 OPT;
43
44 # output d i r e c t o r y : a r b i t r a r i l y a s s i gned output d i r e c t o r y . De f a u l t i s ./ S t a t i s t i c a l A n a l y s i s
45 S t a t i s t i c a l An a l y s i s < paste (wd, / S t a t i s t i c a l A n a l y s i s , sep= ) ;
46 i f ( ! f i l e . exists ( S t a t i s t i c a lA n a l y s i s ) ){
47 dir . create ( S t a t i s t i c a lA n a l y s i s ) ;
48 }
49 o u t f i l e < paste (wd, / S t a t i s t i c a lAn a l y s i s / ,OPT, . j p g , sep= ) ;
50
51 ############################
52 jpeg ( o u t f i l e , width = 960 , he ight = 480 , qua l i t y =100);
53
54 for ( i in 1 : length ( s c e n a r i o s d i r e c t o r y ) ) {
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55 f i l e s <
56 l i s t . f i l e s ( s c e n a r i o s d i r e c t o r y [ i ] ) [ grep ( o u t , l i s t . f i l e s ( s c e n a r i o s d i r e c t o r y [ i ] ) ) ] ;
57 out . al l< c ( ) ;
58 for ( j in 1 : length ( f i l e s ) ){
59 out < read . table (paste ( s c e na r i o s d i r e c t o r y [ i ] , / , f i l e s [ j ] , sep= ) )
60 i f ( j == 1) {
61 out . a l l < out [ , group ] ;
62 } else {
63 out . a l l < cbind ( out . a l l , out [ , group ] ) ;
64 }
65 }
66 out .summary < cbind (apply ( out . al l , 1 ,mean) , apply ( out . al l , 1 , sd ) ) ;
67 out .summary < out .summary [ 1 : 1 8 0 , ] ;
68 i f ( i==1) {
69 e r rbar ( 1 :nrow( out .summary) , out .summary [ , 1 ] , out .summary [ , 1 ] out .summary [ , 2 ] ,
70 out .summary[ , 1 ]+ out .summary [ , 2 ] , col=i ,
71 xlab = D a y o f o u t b r e a k , ylab = paste ( N o . o f , OPT, sep = ) ) ;
72 l ines ( out .summary [ , 1 ] , col=i ) ;
73 } else {
74 e r rbar ( 1 :nrow( out .summary) , out .summary [ , 1 ] , out .summary [ , 1 ] out .summary [ , 2 ] ,
75 out .summary[ , 1 ]+ out .summary [ , 2 ] , col=i , add = TRUE) ;
76 l ines ( out .summary [ , 1 ] , col=i ) ;
77 }
78 }
79 legend ( t o p r i g h t , c ( s c e n a r i o s ) , pch=16, col=seq (1 , length ( s c e n a r i o s d i r e c t o r y ) ) ) ;
80
81 dev . of f ( ) ;

1 # author : J iawei
2 # date : Aug 1 s t 2011
3 #func t i on s : main func t i on . c on t r o l a na l y s i s roce s s .
4 ###load func t i on s
5 wd < getwd( ) ;
6 source (paste (wd, /S t a t i s t i c a lAna l y s i sFun c t i o n s . R , sep= ) ) ;
7 source ( paste (wd, /CommandReader . R , sep= ) ) ;
8 source ( paste (wd, /params . d e f , sep= ) ) ;
9

10 ### Set parameters
11 # output d i r e c t o r y : a r b i t r a r i l y a s s i gned output d i r e c t o r y . De f a u l t i s ./ S t a t i s t i c a l A n a l y s i s
12 S t a t i s t i c a l An a l y s i s < paste (wd, / S t a t i s t i c a l A n a l y s i s , sep= ) ;
13 i f ( ! f i l e . exists ( S t a t i s t i c a lA n a l y s i s ) ){
14 dir . create ( S t a t i s t i c a lA n a l y s i s ) ;
15 }
16
17 ### pat t e rn2 ,3 ,4 percent
18 s t a t i s t i c < P a t t e r n 2 r e a l ;
19 pattern2 real < read s t a t i s t i c ( s t a t i s t i c , s c e n a r i o s d i r e c t o r y ) ;
20 type < c ( H , N , S , W ) ;
21 names < generate pattern2 names( type ) ;
22 f i l e name< p a s t e ( S t a t i s t i c a lAna l y s i s , /DiconComparison . j p e g , sep= ) ;
23 jpeg ( f i l ename = f i l e name , width = 960 , he ight = 480 , qua l i t y =100);
24 e r r ba rp l o t ( pattern2 real ,names , s c ena r i o s ,
25 xxlab= D i c o n P a t t e r n s , yylab = P e r c e n t ) ;
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26 dev . of f ( ) ;
27
28 s t a t i s t i c < P a t t e r n 3 r e a l ;
29 pattern3 real < read s t a t i s t i c ( s t a t i s t i c , s c e n a r i o s d i r e c t o r y ) ;
30 type < c ( H , N , S , W ) ;
31 names < generate pattern3 names( type ) ;
32 f i l e name < paste ( S t a t i s t i c a lAna l y s i s , /TriComparison . j p e g , sep= ) ;
33
34 jpeg ( f i l ename = f i l e name , width=1200 , he ight = 480 , qua l i t y =100);
35 e r r ba rp l o t ( pattern3 real ,names , s c ena r i o s ,
36 xxlab= T r i c o n P a t t e r n s , yylab = P e r c e n t ) ;
37 dev . of f ( ) ;
38
39 s t a t i s t i c < P a t t e r n 4 r e a l ;
40 pattern4 real < read s t a t i s t i c ( s t a t i s t i c , s c e n a r i o s d i r e c t o r y ) ;
41 type < c ( H , N , S , W ) ;
42 names < generate pattern4 names( type ) ;
43 f i l e name < paste ( S t a t i s t i c a lAn a l y s i s , /TetComparison . j p e g , sep= ) ;
44 #f i l t e r
45 f i l t e r < f i l t e r top ( pattern4 real ) ;
46 pattern4 real < pattern4 real [ f i l t e r , ] ;
47 names < names [ f i l t e r ] ;
48
49 jpeg ( f i l ename = f i l e name , width = 1200 , he ight = 480 , qua l i t y =100);
50 e r r ba rp l o t ( pattern4 real ,names , s c e n a r i o s ,
51 xxlab= T e t c o n P a t t e r n s , yylab = P e r c e n t )
52 dev . of f ( ) ;
53
54 ### pat t e rn2 ,3 ,4 count number
55 s t a t i s t i c < P a t t e r n 2 c o u n t r e a l ;
56 pattern2 sum < read s t a t i s t i c ( s t a t i s t i c , s c e n a r i o s d i r e c t o r y ) ;
57 type < c ( H , N , S , W ) ;
58 names < generate pattern2 names( type ) ;
59 f i l e name < paste ( S t a t i s t i c a lAna l y s i s , /DiconComparisonSUM . j p e g , sep= ) ;
60 jpeg ( f i l ename =f i l e name , width = 960 , he ight = 480 , qua l i t y =100);
61 e r rbar plot ( pattern2 sum,names , s c ena r i o s ,
62 xxlab= D i c o n P a t t e r n s , yylab = N O . ) ;
63 dev . of f ( ) ;
64
65 s t a t i s t i c < P a t t e r n 3 c o u n t r e a l ;
66 pattern3 sum < read s t a t i s t i c ( s t a t i s t i c , s c e n a r i o s d i r e c t o r y ) ;
67 type < c ( H , N , S , W ) ;
68 names < genera tepat t e rn3 names( type ) ;
69 f i l e name < paste ( S t a t i s t i c a lAna l y s i s , /TriComparisonSUM . j p e g , sep= ) ;
70 jpeg ( f i l ename = f i l e name , width = 1200 , he ight = 480 , qua l i t y =100);
71 e r rbar plot ( pattern3 sum,names , s c e n a r i o s ,
72 xxlab= T r i c o n P a t t e r n s , yylab = N o . ) ;
73 dev . of f ( ) ;
74
75 s t a t i s t i c < P a t t e r n 4 c o u n t r e a l ;
76 pattern4 sum < read s t a t i s t i c ( s t a t i s t i c , s c e n a r i o s d i r e c t o r y ) ;
77 type < c ( H , N , S , W ) ;
78 names < g e n e r a t e pattern4 names( type ) ;
79 f i l ename < paste ( S t a t i s t i c a lAna l y s i s , /TetComparisonSUM . j p e g , sep= ) ;
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80 #f i l t e r
81 f i l t e r < f i l t e r top ( pattern4 sum) ;
82 pattern4 sum f i l t e r e d < pattern4 sum [ f i l t e r , ] ;
83 names < names [ f i l t e r ] ;
84
85 jpeg ( f i l ename = f i l e name , width =1200 , he ight = 480 , qua l i t y =100);
86 e r r ba r plot ( pattern4 sum f i l t e r e d ,names , s c ena r i o s ,
87 xxlab= T e t c o n P a t t e r n s , yylab = N o . )
88 dev . of f ( ) ;
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