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AND THEIR APPLICATIONS IN INTRINSIC PROTEIN DISORDER AND 

BACTERIAL SPORE GERMINATION 

Jintao Liu, PhD 

University of Pittsburgh, 2011 

 

Living organisms are complex systems, where complexity arises in part from the large number of 

interacting components. Here I address interactions in two topics: intrinsically disordered 

proteins (IDP) and bacterial spore germination. In the first part, I study the role of intrinsic 

protein disorder in protein function with a standard thermodynamic model. IDPs are proteins 

without stable structure in their native states. Their ubiquitous presence undercuts the traditional 

view that a protein’s structure determines its function. Here I propose a quantitative theory that 

makes predictions regarding the role of intrinsic disorder in protein structure and function. By 

relating disorder with the free energy of folding, I show that both catalytic and low-affinity 

binding proteins prefer ordered structures, whereas high-affinity binding proteins can tolerate 

disorder. Relevant to both transcription and signal transduction, the theory also explains how 

increasing disorder can tune the binding affinity to maximize the specificity of promiscuous 

interactions. These claims are supported by a genome-wide survey of disorder. Collectively, the 

study provides insights into how natural selection acts on folding stability to optimize protein 

function. In the second part, I study the mechanism of the initiation of bacterial spore 

germination and propose a quantitative model. Spores are formed by some species of gram 

positive bacteria (e.g., Bacillus and Clostridium) during starvation. They are metabolically 

dormant and can later germinate into vegetative cells when nutrients (called germinants) 
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reappear. The lag time of germination after encountering germinants is highly heterogeneous for 

spores in the same population, and the mechanism is still unclear. Here I propose a quantitative 

model based on the assumption that the heterogeneity is due to the variability in levels of 

activated germinant receptors (GR) per spore. The model produces predictions that are consistent 

with experiments on germination with mixtures of nutrients that trigger different types of GRs, 

which also suggests that signals from different GRs are summed by a common integrator.  
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1.0  INTRODUCTION 

Physicists have long been interested in studying biological systems. A famous example is Erwin 

Schrödinger’s 1944 book What is Life? [1]. The book barely included any mathematics – an 

essential tool for physicists. This was partly because it was aimed for the general audience and 

partly because biology was “much too involved to be fully accessible to mathematics” [1]. After 

all, large parts of live organisms were still mysterious, such as the physical nature of heredity – 

the main topic of Schrödinger’s book. Since then much progress has been made. We now have 

detailed knowledge on the inner workings of many organisms [2, 3], and physicists have played 

an important role in this process by inventing experimental techniques and proposing 

quantitative theories [4, 5]. Yet, there are still plenty of puzzles to solve and I can say this is an 

exciting time for physicists to jump into biology. 

 Living organisms are complex systems, where complexity arises, in part, from the large 

number of interacting components. Here I address interactions on the molecular level (Fig. 1.1) 

in two topics: intrinsically disordered proteins (IDP) and bacterial spore germination. The 

common goal is to understand the effect of these interactions on higher levels. In both cases, the 

networks of interactions are unknown, thus excluding the possibility of studying them based on 

the details of the network. For IDPs, I take the deductive approach: starting from the 

thermodynamics of protein folding and biomolecular interactions, I deduce the relation between 

protein disorder and its function and then go on to explain the finding that proteins of different 



 2 

functions have different propensities for disorder. While it is a simple theory, it is not a trivial 

application of physics, mostly because biology also has its own principles and is not reducible to 

physics. I combined thermodynamics with concepts such as efficiency and specificity of 

biomolecular interactions, which are alien to physics but native to biology. For bacterial spore 

germination, I take the abductive approach, start from experimental observations, propose 

hypotheses, implement them in quantitative models, and validate them by comparing model 

predictions with new experiments. While no law of physics was used, I hope that readers will see 

the influence of physics, i.e., the striving for simple and elegant quantitative theories that explain 

and unify real world phenomena. I have benefited greatly from the pioneering works of others. 

Yet I also faced many challenges, since theoretical studies on both topics are still in the 

exploration stage. 

 

 

 

Figure 1.1: Schematic diagram of the network of interactions between the molecules inside and outside a cell.  

The filled circles represent molecules, the straight lines represent interactions between the molecules, and the 

ellipse represents the boundary of a cell. 
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 This dissertation is organized as follows. In Chapter 2, I will introduce IDP, including 

historical trends of protein research, characteristics and thermodynamics of IDP, and computer 

predictions of disorder. In Chapter 3, I will present a genome wide survey on the relation 

between disorder and protein function and a thermodynamic theory explaining this relation. This 

work has been published and appears in condensed form in Ref. [6]. In Chapter 4, I will 

introduce bacterial spores and their germination, including the structure and properties of spores, 

measurement and stages of germination. In Chapter 5, I will present a model of the mechanism 

of germination and validation of this model with experimental data from the laboratory of our 

collaborators. Part of this work has been published and appears in Refs. [7, 8]. In Chapter 6, I 

will summarize my key findings and discuss the open questions. 
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2.0  INTRINSICALLY DISORDERED PROTEINS 

2.1 INTRODUCTION 

 

Proteins are one of the fundamental elements of life. They perform functions such as catalyzing 

chemical reactions, regulating gene expressions, binding ligands, transducing signals, and so on 

[3, 9]. They are linear polymers made of the twenty standard amino acids. The traditional view is 

that proteins, in their active form, have stable three dimensional structures which are determined 

by their amino acid sequences (Fig. 2.1), and the structures in turn encode their functions [9]. 

This is called the Sequence-Structure-Function paradigm and it is supported by the numerous 

protein structures that have been solved [10]. The emphasis of structure in protein research is 

clearly illustrated by what was written in the preface of the book Introduction to Protein 

Structure [11]: “The fundamental tenet of molecular biology, namely that one cannot really 

understand biological reactions without understanding the structure of the participating 

molecules, is at last being vindicated”. However, in recent years, many proteins have been found 

to be without stable structure in their native states, and they are called intrinsically disordered 

proteins (IDP) [12-14]. Their ubiquitous presence undercuts the principle that a protein’s 

structure determines its function [13]. Yet the sequence-structure-function paradigm is still the 
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standard in textbooks and IDPs receive minimal to no coverage at all [9, 11]. To understand this 

heavy bias, here we take a brief tour of the historical ideas. 

 

 
 

Figure 2.1: Four levels of protein structure. 

A protein’s amino acid sequence consists the primary structure. Amino acids within the same protein interact 

with each other and with water molecules and fold in sequence specific ways, where the local fold is called 

secondary structure and the global fold is called tertiary structure. Some proteins may form complexes with 

others, and the binding configuration is called quaternary structure. The labels are: R – side-chain group of 

an amino acid, Cα – α-carbon atom, C – carbon, N – nitrogen, O – oxygen, and H – hydrogen. (Source: 

Adapted from Ref. [2], p. 75, Fig. 5-7.)  

 

Long before the determination of the first protein structure in 1958 [15], it has been 

speculated that proteins have well defined structures [16, 17]. It was known that enzymes, 

proteins that catalyze chemical reactions, are highly specific in selecting their substrates, i.e., an 

enzyme that works with one molecule is typically irresponsive to others even when they have 

similar structures and chemical properties. To explain this specificity, Emil Fischer proposed in 
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1894 the key-lock theory [16, 17], and claimed that the catalytic site of an enzyme must have a 

surface highly complementary to that of its cognate substrate, so that it does not fit to other 

molecules (Fig. 2.2A). To emphasize the complementarity of protein-substrate interface, proteins 

were perceived as rigid molecules. 

 

 

Figure 2.2 Schematic diagram of protein-ligand interaction. 

Proteins are drawn as filled blocks and ligands are drawn as empty triangles. Rectangular blocks denote 

folded proteins and cloud shaped block denotes IDP in unfolded state. Shown are (A) the key-lock theory, (B) 

induced fit, and (C) induced folding. 

 

The key-lock theory was widely accepted and generalized to all proteins [18] until D. E. 

Koshland pointed out in 1958 that it was insufficient to explain all the properties of enzymes 

[19]. For example, some enzymes could be turned on or off by the binding of regulatory 

molecules to locations distant from their catalytic sites. To resolve the crisis, Koshland suggested 

a revised explanation and called it “induced fit” theory (Fig. 2.2B). The theory assumes that 
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intermolecular interactions may cause appreciable changes in the three-dimensional relations of 

the amino acids at the active site and bring the catalytic groups into the proper orientation for 

reaction. The theory did not gain much acceptance initially, and a referee even wrote “the 

Fischer Key-Lock theory has lasted 100 years and will not be overturned by speculation from an 

embryonic scientist” [20]. But it eventually became the new norm, especially given that 

conformational changes are often seen in protein structures [11]. 

 From history, we see a trend from viewing proteins as static objects to dynamic ones, 

which were no doubt influenced by the advancement of experiments. As more and more protein 

structures are solved, many proteins have been found to contain segments that could not be 

resolved in their structures, which sometimes can even be a significant fraction of a protein [21]. 

But those observations were usually ignored without understanding their functional significance, 

except in a minority of cases [21-25]. After all, great successes have been achieved by studying 

structured parts of proteins. Nowadays we are convinced that the induced fit theory only 

describes a subset of the existing proteins, and there are IDPs which do not fold on their own but 

can form stable structures when binding with their cognate partners (Fig. 2.2C) [26]. 

At the time of writing more than 68,000 experimentally determined protein structures 

have been deposited to the database Protein Data Bank (PDB) [10]. In contrast, there are only 

643 entries in the most comprehensive database on experimentally characterized IDPs – DisProt 

[27]. This imbalance is not due to the rare occurrence of disorder among proteins; on the 

contrary, bioinformatics studies using disorder prediction techniques showed that disorder is 

ubiquitous, and the proportion of proteins containing long disordered regions increases with the 

increasing complexity of an organism [6, 12, 14, 28]. 
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2.2 CHARACTERISTICS OF DISORDERED PROTEINS 

Proteins fall onto a structural continuum, from tightly folded, to compact but flexible, and to 

highly extended and unstructured (Fig. 2.3) [26, 29]. Tightly folded proteins can usually be 

studied using X-ray crystallography, and it is found that they often also contain disordered 

regions, which either appear as segments missing from the electron-density map or are 

intentionally removed to enable crystallization [30]. A survey of the PDB database found that 

only ~7% of the deposited structures contain the complete amino acid sequences of the 

corresponding proteins, and only ~25% contain >95% of their full sequences [31]. Highly 

disordered proteins fail attempts of crystallization, and thus cannot be studied with X-ray 

crystallography. Instead, they can be studied with Nuclear Magnetic Resonance (NMR). NMR 

studies provide direct evidence on the existence of disorder in tightly folded proteins and the 

existence of highly disordered proteins [32]. They also show that disordered regions fold into 

stable structures upon binding to their cognate substrates (Fig. 2.3), which suggest that disorder 

can play important functional roles [26, 33]. 

In addition to X-ray crystallography and NMR, IDPs can also be studied using other 

techniques, including but not limited to Circular Dichroism, hydrodynamic measurements, 

fluorescence spectroscopy, as well as Raman spectroscopy [34]. It has been found that IDPs 

generally are: resistant to boiling temperature that cause ordered proteins to precipitate; 

insensitive to chemicals that cause ordered proteins to denature; and susceptible to proteolytic 

cleavage. A comprehensive review on the properties of IDPs can be found in Ref. [35]. 
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Figure 2.3: The continuum of protein structure. 

(Source: Adapted from Ref. [26]) 
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2.3 THERMODYNAMICS OF IDP 

Proteins are usually studied under constant temperature and pressure, therefore the Gibbs free 

energy is the relevant thermodynamic potential. Figure 2.4 illustrates the free energy landscapes 

of proteins. At equilibrium, the most likely configuration of a protein is the one with the lowest 

free energy. Ordered proteins fold stably because their folded structure have significantly lower 

free energies than other possible configurations. In contrast, disordered proteins do not have 

configurations with significantly lower free energies than others, thus the lack of stable structure. 

However, their free energy landscapes change when interacting with their binding partners, 

which enable them to form stable structures, and different partners may induce different 

structures on the same IDP. 

 

Figure 2.4: Diagram for the free energy landscapes of proteins. 

Free energy landscapes of (a) a typical ordered protein and of a typical IDP in the (b) absence or (c) presence 

of different binding partners. The landscapes are depicted schematically in 1-D cross-sections. (Source: 

Adapted from Ref. [36].) 
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 It is useful to group the configurations of an IDP into two states: If the IDP assumes the 

configuration when it is bound with its partner, we say it is in folded state; otherwise, it is in 

unfolded state. At equilibrium and in the absence of binding partners, the ratio between the 

probabilities for the folded and unfolded states is given by Boltzmann distribution 

 𝑝folded

𝑝unfolded
= 𝑒−∆𝐺𝑓/𝑅𝑇 (2.1) 

where ∆𝐺𝑓 is the free energy difference between folded and unfolded states, 𝑅 is the ideal gas 

constant, and 𝑇 is absolute temperature. For IDPs, ∆𝐺𝑓 > 0 so that the unfolded state is more 

stable than the folded state; for ordered proteins, ∆𝐺𝑓 < 0. In the next chapter, I will deal with 

the case when binding partners are present. 

2.4 COMPUTER PREDICTION OF DISORDER 

The difference between disordered and ordered proteins originates from their amino acid 

sequences. Just as sequence determines the structure of a protein, it also determines which part of 

a protein is disordered. This principle is the basis of all the existing algorithms predicting 

disorder. The first algorithm was developed by Dunker and colleagues in 1997 [37, 38]. Since 

then more than 50 disorder predictors have been developed. Most of them are similar in the 

prediction of long disordered regions, but differ in the local details of the outputs [39]. These 

tools enable us to study disorder in proteins that have not been experimentally characterized and 

to perform genome-wide studies on the functional significance of disorder. Here I introduce three 

of the predictors used in this work, and assessments of other predictors can be found in a number 

of reviews [35, 39, 40].  
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(1) PONDR VSL2 [41]. PONDR is the abbreviation for Predictors of Natural Disordered 

Regions [42], which is a family of predictors specialized for different purposes respectively, such 

as on disordered regions of different “flavors” [43] or lengths [37]. VSL2 is a general purpose 

predictor that applies to Variously characterized, Short and Long disordered regions [41]. It is a 

linear support vector machine [44] that was trained with 1,327 non-redundant protein sequences. 

(2) FoldIndex [45]. Uversky et al found that the known list of IDPs and ordered proteins can 

be distinguished from the empirical formula 〈𝑅〉 = 2.785〈𝐻〉 − 1.151 [46], where 〈𝑅〉  is the 

average net charge per residue of a protein at pH 7.0, and 〈𝐻〉 is the average hydrophobicity per 

residue [47]. In 〈𝑅〉-〈𝐻〉 plots, IDPs scatter in the region above the line described by the formula, 

and ordered proteins scatter in the region below the line [46]. This agrees with the fact that high 

net charge leads to strong repulsion between the residues within the same protein and high 

hydrophobicity leads to greater tendency to form compact structures in water, and the folding of 

a protein is determined by these two competing factors. The disorder predictor FoldIndex was 

designed based on this idea [45]. 

(3) DisEMBL. This predictor is based on artificial neural networks trained for predicting 

three definitions of disorder [48]: a) Loops/coils as defined by the DSSP (Define Secondary 

Structure of Proteins) algorithm [49], a standard method for assigning secondary structure to the 

amino acids of proteins. Note that disorder is only found within loops, but loops/coils are not 

necessarily disordered. b) Hot loops, loops with a high degree of mobility as determined from B 

factor (Debye–Waller factor) in X-ray crystallography [50], which describes the attenuation of x-

ray scattering caused by thermal motion. c) Missing coordinates in X-Ray structure. Since none 

of these definitions alone can give reliable predictions of order/disorder, it is recommended that 
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they should be combined and use the Loop predictor only as a filter to remove false disorder 

predictions of the other two [40]. 

In this dissertation, I will be mainly using VSL2, as both itself and its predecessor VSL1 

[51] were evaluated as the highest ranked in the CASP7 and CASP6 (Critical Assessment of 

Techniques for Protein Structure Prediction) assessments respectively [52, 53]. In addition, I will 

also use FoldIndex and DisEMBL so that conclusions drawn from the predictions by VSL2 are 

guaranteed to be general rather than predictor specific. 

2.5 OUTSTANDING QUESTIONS 

While a large number of proteins are intrinsically disordered, the origins of this disorder are not 

well understood, and its ubiquitous presence undercuts the principle that a protein’s structure 

determines its function. It has been suggested that disorder itself plays a functional role by, e.g., 

allowing for multiple interaction partners [54] and functional diversity [28, 55, 56], which are 

particularly important in cell signaling and cancer [57]. The correlation between intrinsic 

disorder and protein function, however, is still nebulous. These motivated me to look for the 

general principles that might link protein function and disorder. 

In Chapter 3, I will present a quantitative theory that makes predictions regarding the role 

of intrinsic disorder in protein structure and function. In particular, I will discuss the implications 

of analytical solutions of a series of fundamental thermodynamic models of protein interactions 

in which disordered proteins are characterized by positive folding free energies. Without 

assuming any a priori structure-function relationship, the theory predicts that both catalytic and 

low-affinity binding proteins prefer ordered structures, whereas only high-affinity binding 
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proteins (found mostly in eukaryotes) can tolerate disorder. Relevant to both transcription and 

signal transduction, the theory also explains how increasing disorder can tune the binding affinity 

to maximize the specificity of promiscuous interactions.  The predictions are validated by 

performing genome-wide surveys of disorder in both prokaryotic and eukaryotic genomes. 

Collectively, the study provides insight into how natural selection acts on folding stability to 

optimize protein function. 
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3.0  TOWARD A QUANTITATIVE THEORY OF INTRINSICALLY DISORDERED 

PROTEINS AND THEIR FUNCTION 

3.1 GENOME-WIDE SURVEY OF DISORDER 

Genome-wide surveys of protein disorder have shown that disorder is more prevalent in some 

functional categories than others [28, 55]. I revisit this question by analyzing the fraction of 

amino acid residues in disordered regions of both eukaryotic and prokaryotic genomes for 

different functional categories. 

The genomes studied are: human (Homo sapiens), mouse (Mus musculus), zebrafish 

(Danio rerio), chicken (Gallus gallus) and Arabidopsis thaliana from the Swiss-Prot database 

[58]; yeast (Saccharomyces cerevisiae) from the Saccharomyces Genome Database [59]; 

Escherichia coli (K-12) from EcoCyc and EcoliHub [60]; rice (Oryza sativa) from the Gramene 

database [61]; fruit fly (Drosophila melanogaster) from FlyBase [62]; Caenorhabditis elegans 

from WormBase [63]; Dictyostelium discoideum from dictyBase [64]; Schizosaccharomyces 

pombe from the Schizosaccharomyces pombe GeneDB database [65]; Bacillus anthracis and 

Pseudomonas fluorescens from the TIGR database [66].  

For each protein, the percentage of disordered amino acids was estimated by using the 

VSL2B predictor [41], which was trained with experimental data by using machine learning 

techniques and validated in comprehensive blind experiments. The predictor uses the amino acid 
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sequences of proteins (Fig. 3.1) as input and gives the probability that each amino acid (also 

called residue) is in a disordered region (Fig. 3.2), from which the percentage of disordered 

residues in a protein is calculated. 

 

MEEPQSDPSVEPPLSQETFSDLWKLLPENNVLSPLPSQAMDDLMLSPDDIEQWFTEDPGP 
DEAPRMPEAAPPVAPAPAAPTPAAPAPAPSWPLSSSVPSQKTYQGSYGFRLGFLHSGTAK 
SVTCTYSPALNKMFCQLAKTCPVQLWVDSTPPPGTRVRAMAIYKQSQHMTEVVRRCPHHE 
RCSDSDGLAPPQHLIRVEGNLRVEYLDDRNTFRHSVVVPYEPPEVGSDCTTIHYNYMCNS 
SCMGGMNRRPILTIITLEDSSGNLLGRNSFEVRVCACPGRDRRTEEENLRKKGEPHHELP 
PGSTKRALPNNTSSSPQPKKKPLDGEYFTLQIRGRERFEMFRELNEALELKDAQAGKEPG 

   GSRAHSSHLKSKKGQSTSRHKKLMFKTEGPDSD 
 

Figure 3.1: Amino acid sequence of the protein p53 in human. 

Each letter represents one amino acid and this protein has 393 residues. (Source: UniProt [58].) 

 

 

Figure 3.2: Disorder probability for the residues of human p53 protein given by VSL2B. 

A probability greater than 0.5 predicts a residue to be disordered. 

 

Figure 3.3 shows the distributions of the amount of disorder in human, yeast, and E. coli 

proteins as predicted by the disorder predictor VSL2B (also shown are the distributions after 
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removing proteins with more than one function; see also Fig. 3.4 for predictions of two other 

predictors FoldIndex [45] and DisEMBL [48]). To assign protein function, I use the gene 

ontology classification [67], in which protein binding, catalytic activity, and transcription 

regulator activity are the three largest functional categories. Contrary to the striking bias of 

catalytic and transcription human proteins to be significantly more ordered and disordered, 

respectively, disorder is neither strongly favored nor disfavored in binding proteins. These 

distinctions are still visible in yeast but are less obvious in bacterial genomes such as E. coli, 

whose proteins are found to be significantly more ordered than those found in eukaryotes across 

all functional categories. 

Based on a more comprehensive analysis of the preference of disorder among the 

different functional categories, I classify the genomes into three types (Fig. 3.5): (type I) no 

strong preference for ordered structures in binding proteins but preference for disorder in 

transcription proteins, among which are human, mouse, zebrafish, chicken, rice, fruit fly, A. 

thaliana, and D. discoideum; (type II) no strong preference for ordered structures for either 

binding or transcription proteins, among which one finds yeast, S. pombe, and C. elegans; and 

(type III) strong preference for ordered structures in both binding and transcription proteins, 

among which there are E. coli, B. anthracis, and P. fluorescens. For catalysis, all genomes show 

a strong preference for ordered proteins. Note that prokaryotic genomes are all type III, whereas 

eukaryotes are either type I or II, with type I genomes being generally larger than type II. 
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Figure 3.3: Disorder distributions predicted by VSL2B. 

Normalized histograms of the percentage of disordered residues predicted by VSL2B in the sequence of 

human (H. sapiens), yeast (S. cerevisiae) and E. coli (K-12) proteins within the gene ontology categories of 

protein binding, catalytic activity, and transcription regulator activity. The distributions after removing the 

overlap between the three categories are shown by the lower bars (shaded). All distributions are normalized 

to the total number of proteins in each category noted in the upper right corner of each frame. In humans, 

contrary to the bias of transcription and catalytic proteins to be significantly more disordered and ordered, 

respectively, binding proteins indicate that disorder is neither strongly favored nor disfavored. The statistical 

significance of these results, based on a Kolmogorov–Smirnov test [68], is 𝑷 < 𝟏𝟎−𝟏𝟓𝟎. In yeast, although 

binding and catalytic proteins show the same trend as occurs in higher eukaryotes, transcription proteins 

overall show no significant preference for order or disorder. In E. coli, all three functions show strikingly 

similar distributions favoring ordered structures. Similar distributions were found in other eukaryotic and 

prokaryotic genomes. 
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Figure 3.4: Disorder distribution predicted by FoldIndex and DisEMBL. 

Normalized histograms of the percentage of disordered residues in the sequence of human, yeast (S. 

cerevisiae) and E. coli (K-12) proteins within the Gene Ontology categories of Protein Binding, Catalytic 

Activity and Transcription Regulator Activity using (a) FoldIndex and (b) DisEMBL respectively. The 

distributions after removing the overlap between the three categories are shown by the lower bars (shaded). 

These two predictors show similar biases as in Fig. 3.3, but with the caveat of consistently under-predicting 

disorder with respect to the VSL2B predictor. Note that FoldIndex is specialized in predicting regions that 

have low hydrophobicity and high net charge, and DisEMBL is specialized in predicting highly mobile loops 

and regions lacking electron density in crystal structures [40]. 
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Figure 3.5: Disorder distribution of Transcriptional proteins in different genomes. 

The genomes are classified into three groups: Type I, no strong preference for ordered structures in Binding 

proteins, but preference for disorder in Transcription; Type II, no strong preference for ordered structures 

for either Binding or Transcription; Type III, strong preference for ordered structures in both Binding and 

Transcription; For Catalysis, all genomes show a strong preference for ordered proteins. 
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3.2 THERMODYNAMIC MODEL 

The analysis in Section 3.1 suggests that selection pressures act on protein disorder to optimize 

particular aspects of protein function, raising the question of what universal properties may have 

driven proteins involved in Binding, Catalysis, and Transcription to evolve along different 

pathways. Here I show that a simple thermodynamic model of molecular interactions can 

elucidate the role of disorder in binding and catalysis. 

As described by Dyson and Wright [26], proteins in the cellular environments may have 

disorder in long loops, end terminals, hinge regions, domains, and even covering their full 

sequences (Fig. 2.3). However, in a complex, these motifs acquire well-defined 3D structures. 

Common descriptors to all these forms of disorder are the folding free energy (∆𝐺𝑓) of the motifs 

participating in the molecular interaction and the dissociation constant (𝐾𝑑) of the interaction, 

where a positive folding free energy corresponds to a disordered protein [22]. In this model, 

folding is defined as a two-state equilibrium between the unfolded state (U) and the folded state 

(F) [69]. Thus, the ratio of the concentrations of folded to unfolded proteins that are unbound is 

given by 

    [F]eq [U]eq⁄ = 𝑒−∆𝐺𝑓 𝑅𝑇⁄  (3.1) 

where “eq” denotes equilibrium, R is the ideal gas constant and T is absolute temperature. 

Molecular interactions are described by a simple binding model that assumes that only folded 

proteins bind the substrate (Fig. 3.6, conformational selection [70]), i.e., 

 

 

(3.2) 

where 𝐾𝑑𝑐 is the binding affinity between F and S 
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 𝐾𝑑𝑐 ≡ [F]eq[S]eq [FS]eq⁄  (3.3) 

which implicitly accounts for the effects of interface area, shape, hydrogen bonds, and other 

interactions, hence I will call it complementary affinity. Note that the size of the interface 

provides a natural upper bound on the number of contacts contributing to the interaction. In this 

sense, higher complementarity is often associated with a large interface, although in some cases 

it can be caused by other factors (e.g., small-molecule drugs often have binding affinities 

between 10−9 to 10−12  molar, 1 molar (M) = 1 mol/L). 𝐾𝑑𝑐  is equivalent to the experimental 

binding affinity between the protein (irrespective of whether it is in the U or F state) and its 

substrate 𝐾𝑑
exp ≡ �[U]eq + [F]eq�[S]eq [FS]eq�  if the protein is ordered ([U]eq ≪ [F]eq). On the 

other hand, if the protein is disordered ([U]eq ≳ [F]eq), then using Eq. 3.1 we have 

 𝐾𝑑
exp = 𝐾𝑑𝑐�1 + 𝑒∆𝐺𝑓 𝑅𝑇⁄ � (3.4) 

Note that in this formulation, 𝐾𝑑𝑐  characterizes the strength of the binding interaction for the 

folded protein and is independent of the folding free energy ∆𝐺𝑓, allowing for a clear distinction 

between binding and folding. 

Aside from conformational selection [70], disordered proteins could also function 

through induced folding (Fig. 3.6) [13, 71] or a combination of the two [72]. However, as will be 

demonstrated later, the conclusions do not lose generality because I only rely on equilibrium or 

steady state properties. For each functional category, I relate a measure of optimal performance 

to ∆𝐺𝑓 over the range of parameters found in nature. With the exception of transcription, where 

further discussion is needed, I will show that this general model accounts for the observed 

distributions in Figs. 3.3 and 3.4 if one assumes that natural selection acts on ∆𝐺𝑓 to optimize 

protein function. In the following, I discuss the key relations between folding stability and 

function. 
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Figure 3.6: Schematic diagram of folding and binding of IDP. 

Proteins are drawn as filled blocks and ligands are drawn as empty triangles. Cloud shaped and rectangular 

blocks denote IDP in unfolded and folded states respectively. The upper and lower pathways are called 

conformational selection and induced folding respectively. 

 

 For binding proteins, combine Eqs. 3.1, 3.3, and 3.4, the equilibrium complex 

concentration is given by 

 
[FS]bind =

1
2
��𝑐𝑝 + 𝑐𝑠 + 𝐾𝑑

exp� − ��𝑐𝑝 + 𝑐𝑠 + 𝐾𝑑
exp�2 − 4𝑐𝑝𝑐𝑠� (3.5) 

where 𝑐𝑝 ≡ [U] + [F] + [FS]  and 𝑐𝑠 ≡ [S] + [FS]  are the total protein and substrate 

concentration, respectively. At given 𝐾𝑑𝑐, [FS]bind reaches a maximum [FS]bindmax  if ∆𝐺𝑓 ≪ 0. The 

curves in Fig. 3.7A show the ratio [FS]bind [FS]bindmax⁄  as a function of folding free energy (∆𝐺𝑓), 

in the absence of excess protein or substrate (𝑐𝑝 = 𝑐𝑠 = 1 μM). This ratio defines a measure of 

the efficiency of protein binding to produce maximum amount of complex. For the 

physiologically relevant range of 𝐾𝑑𝑐 between 10−5 and 10−10 M, a binding efficiency of, say, 
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90% or higher, is obtained for folding-stability thresholds of ∆𝐺𝑓 < −1.2 kcal/mol and ∆𝐺𝑓 <

2.9 kcal/mol, respectively (see ref. [73], where a similar analysis was used to relate peptide 

immunogenicity and folding stability). Specifically, only strongly interacting proteins with 

𝐾𝑑
exp < 1.2 × 10−7  M can efficiently bind disordered proteins (∆𝐺𝑓 > 0). As shown in Fig. 

3.7A, a more stringent criterion of 97% binding efficiency also leads to a wide range of stability 

thresholds, where now 𝐾𝑑
exp < 1 × 10−8 M can tolerate disorder. An excess of protein (𝑐𝑝 > 𝑐𝑠) 

or substrate (𝑐𝑠 > 𝑐𝑝) can accommodate a slightly larger amount of disorder (Fig. 3.8A), but this 

does not affect our main conclusion that highly complementary interactions are more tolerant of 

disorder, whereas the binding efficiency of low-complementarity interactions is rapidly 

diminished by disorder. 

 For catalysis, there is an additional step of substrate conversion to product P via the FS 

complex,  

 

 

(3.6) 

where 𝑘1, 𝑘−1, and 𝑘cat are reaction rate constants. Within the Michaelis-Menten limit [9], i.e., 

assuming the concentration of FS reaches steady state 

 𝑑[FS ]/𝑑𝑡 = 𝑘1[F][S]− (𝑘−1 + 𝑘cat)[FS] = 0 (3.7) 

one can derive the catalytic rate 

 
𝑉cat ≡

𝑑[P]
𝑑𝑡 = 𝑘cat[FS] =

𝑘cat𝑐𝑝[S]
𝐾𝑚𝑐 �1 + 𝑒∆𝐺𝑓 𝑅𝑇⁄ � + [S]

 (3.8) 

where 𝐾𝑚𝑐 ≡ (𝑘−1 + 𝑘cat)/𝑘1 is the Michaelis constant. At given 𝐾𝑚𝑐 , 𝑉cat  reaches a maximum 

𝑉catmax  if ∆𝐺𝑓 ≪ 0 . Figure 3.7B show the ratio 𝑉cat 𝑉catmax⁄ , which defines a measure of the 
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efficiency of catalysis, as functions of ∆𝐺𝑓 with different values of 𝐾𝑚𝑐 . For typical 𝐾𝑚𝑐  values 

between 10−1 M and 10−6 M there is a relatively invariant threshold of the folding free energy, 

∆𝐺𝑓 = −1.0 kcal/mol, above which catalysis becomes suboptimal (i.e., 𝑉cat 𝑉catmax⁄ ≤ 90%). This 

threshold is maintained even for substrate concentrations as high as 10−5 M (Fig. 3.8B). Thus, 

catalytic function is optimized when thermodynamics strongly favor the ordered state. 

Interestingly, because to have a fast conversion rate the strength of the enzyme–substrate 

interaction characterized by the Michaelis constant 𝐾𝑚  must be much weaker than standard 

protein–protein 𝐾𝑑, enzymes can also be thought of as a special case of extremely weak binding 

proteins, i.e., ordered. 

In the discussions above, I assumed folding is a two-state equilibrium between the 

unfolded state and the folded state. However, the conclusions also apply to folding through 

multiple states. Here I assume the protein first goes from the unstructured state U to an 

intermediate state I and then to the foled state F 

 
U

∆𝐺𝑓
(1)

�⎯� I
∆𝐺𝑓

(2)

�⎯�F (3.9) 

We have [U]eq/[I]eq = 𝑒∆𝐺𝑓
(1) 𝑅𝑇�  and [I]eq/[F]eq = 𝑒∆𝐺𝑓

(2) 𝑅𝑇� . Thus 

𝐾𝑑
exp ≡

�[U]eq + [I]eq + [F]eq�[S]eq
[FS]eq

= 𝐾𝑑𝑐 �1 + 𝑒∆𝐺𝑓
(2) 𝑅𝑇� + 𝑒∆𝐺𝑓

(1) 𝑅𝑇� 𝑒∆𝐺𝑓
(2) 𝑅𝑇� � (3.10) 

where 𝐾𝑑𝑐 ≡ [F]eq[S]eq [FS]eq⁄ . Compare Eqs. 3.4 and 3.10, disorder is now characterized by 

two folding free energies instead of one. But Eq. 3.5, which is used in Fig. 3.7A, is unchanged 

so the conclusions from the two-state folding analysis still hold, and they can be easily 

generalized to N-state folding. 
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Figure 3.7: Binding and catalytic efficiency. 

(A) Ratio of complex concentration [𝐅𝐒]𝐛𝐢𝐧𝐝 as given by Eq. 3.5 to maximum concentration [𝐅𝐒]𝐛𝐢𝐧𝐝𝐦𝐚𝐱  (∆𝑮𝒇 ≪

𝟎). 𝒄𝒑 = 𝒄𝒔 = 𝟏 μM. Vertical dash-dotted lines indicate the folding free energy for 90% (dashed lines for 

97%) binding efficiency ([𝐅𝐒]𝐛𝐢𝐧𝐝 [𝐅𝐒]𝐛𝐢𝐧𝐝𝐦𝐚𝐱⁄  with 𝑲𝒅
𝒄 = 𝟏𝟎−𝟓  and 𝟏𝟎−𝟏𝟎  M, respectively. To maintain high 

binding efficiency, weak binding requires negative ∆𝑮𝒇  (prefers order), whereas strong binding allows 

positive ∆𝑮𝒇 (tolerates disorder). (B) Fractional production rate for catalytic activity relative to maximum 

catalytic rate 𝑽𝐜𝐚𝐭𝐦𝐚𝐱 (∆𝑮𝒇 ≪ 𝟎) as given by Eq. 3.8 ([S] = 1 μM). The vertical dash-dotted line indicates the 

folding free energy for 90% (dashed line for 97%) catalytic efficiency (𝑽𝐜𝐚𝐭 𝑽𝐜𝐚𝐭𝐦𝐚𝐱⁄ ) with all relevant 𝑲𝒎
𝒄 . To 

maintain high catalytic efficiency, negative ∆𝑮𝒇  (ordered structure) is required for the whole range of 

physiological parameters shown here. Note that to allow for fast conversion, enzyme-substrate interactions 

(characterized by the Michaelis constant 𝑲𝒎) are limited to much weaker interactions than those of binding 

proteins (𝑲𝒅). 
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Figure 3.8: Expanded view of stability thresholds. 

(A) Contour plot of stability thresholds ∆𝑮𝒇𝐛𝐢𝐧𝐝 for 90% binding efficiency ([𝐅𝐒]𝐛𝐢𝐧𝐝 [𝐅𝐒]𝐛𝐢𝐧𝐝𝐦𝐚𝐱⁄ = 𝟎.𝟗, where 

[𝐅𝐒]𝐛𝐢𝐧𝐝 is the protein-substrate complex concentration) as a function of the dimensionless quantities 𝒄𝒑 𝒄𝒔⁄  

and 𝑲𝒅
𝒄 𝒄𝒔⁄ , where 𝒄𝒑 and 𝒄𝒔 are the total protein and substrate concentration respectively, and 𝑲𝒅

𝒄  is the the 

“complementary” binding affinity. The region between −1 kcal/mol < ∆𝑮𝒇𝐛𝐢𝐧𝐝 < 3 kcal/mol covers almost the 

full phase space of physiological parameters. (B) Contour plot of stability thresholds ∆𝑮𝒇𝐜𝐚𝐭 for 90% catalytic 

efficiency (𝑽𝐜𝐚𝐭 𝑽𝐜𝐚𝐭𝐦𝐚𝐱⁄ = 𝟎.𝟗, where 𝑽𝐜𝐚𝐭 is the catalytic rate) under the full range of Michaelis constant 𝑲𝒎
𝒄  

and substrate concentration [S]. The stability threshold is around −1 kcal/mol for almost the full range of 

parameters. 
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I also assumed the folding and binding of IDPs follow the conformational selection 

pathway (Fig. 3.6). However, the conclusions also apply to the induced folding pathway. Here I 

assume the unfolded protein U first associates with the substrate S, then transforms into the 

folded state F with the assistance from the substrate and becomes bound to it (induced folding) 

 
U + S

𝐾𝑑
(1)

�� U ∙∙ S
𝐾𝑑

(2)

��FS (3.11) 

We have 

 𝐾𝑑
(1) = [U]eq[S]eq [U ∙∙ S]eq⁄  

𝐾𝑑
(2) = [U ∙∙ S]eq [FS]eq⁄  

𝑐𝑝 = [U] + [U ∙∙ S] + [FS] 

𝑐𝑠 = [S] + [U ∙∙ S] + [FS] 

(3.12) 

One can derive 

�1 + 𝐾𝑑
(2)�

2
[FS]eq2 − ��𝑐𝑝 + 𝑐𝑠��1 + 𝐾𝑑

(2)�+ 𝐾𝑑
(1)𝐾𝑑

(2)� [FS]eq + 𝑐𝑝𝑐𝑠 = 0 (3.13) 

Note that the situation where induced folding applies is when FS is much more stable than U ∙∙ S 

(𝐾𝑑
(2) ≪ 1). Thus 

 [FS]eq2 − �𝑐𝑝 + 𝑐𝑠 + 𝐾𝑑
(1)𝐾𝑑

(2)�[FS]eq + 𝑐𝑝𝑐𝑠 = 0 (3.14) 

Since the total free energy change of the whole folding/binding process is independent of the 

pathway it takes, we have (compare Eqs. 3.2 and 3.11) 

 𝑅𝑇 ln�𝐾𝑑
(1)/𝑐0�+ 𝑅𝑇 ln�𝐾𝑑

(2)/𝑐0� = ∆𝐺𝑓 + 𝑅𝑇 ln(𝐾𝑑𝑐/𝑐0) (3.15) 

where 𝑐0 = 1 M, the left hand side Eq. 3.15 corresponds to induced folding and the right hand 

side corresponds to conformational selection. The equation can be simplified as 

 𝐾𝑑
(1)𝐾𝑑

(2) = 𝑒∆𝐺𝑓 𝑅𝑇⁄ 𝐾𝑑𝑐 (3.16) 
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Solve for [FS]eq using Eqs. 3.14 and 3.16, one obtains 

 [FS]eq =
1
2
��𝑐𝑝 + 𝑐𝑠 + 𝑒∆𝐺𝑓 𝑅𝑇⁄ 𝐾𝑑𝑐� − ��𝑐𝑝 + 𝑐𝑠 + 𝑒∆𝐺𝑓 𝑅𝑇⁄ 𝐾𝑑𝑐�

2
− 4𝑐𝑝𝑐𝑠� (3.17) 

Induced folding applies when [U]eq ≫ [F]eq (∆𝐺𝑓 ≫ 𝑅𝑇), where the Eq. 3.17 is equivalent to 

Eq. 3.5, so the conclusions on Binding proteins based on conformational selection also applies 

when induced folding is assumed instead. This is also true for Catalysis since it is a special case 

of Binding. 

3.3 SPECIFICITY OF PROMISCUOUS INTERACTIONS 

Here I show that disorder also provides a mechanism to distinguish between two substrates that 

differ in binding affinity by a relatively small amount, say 1.5 kcal/mol (Fig. 3.9). For strong 

binding ( 𝐾𝑑
exp  small), the amount of complex formation with each substrate is almost 

indistinguishable. A positive ∆𝐺𝑓 , however, can tune 𝐾𝑑
exp  (Eq. 3.4) to maximize the 

discrimination between binding of the two substrates while at the same time maintaining a high 

level of binding to the higher-affinity substrate. Note that the experimental affinity required to 

bring about this optimal specificity is lower the higher the concentration of protein or substrate. 

Our finding is reminiscent of Schulz’s high-complementarity (or small 𝐾𝑑𝑐), low-affinity (or large 

𝐾𝑑
exp) rationalization of the flexibility of nucleotide binding proteins [22], which has also been 

applied in the context of signal transduction [26] as well as the suggestion of Dunker et al. [74] 

that disorder uncouples complementarity (𝐾𝑑𝑐) and affinity (𝐾𝑑
exp). Here I define “specificity” as 

simply providing better discrimination among similar physical interactions, a more common 

usage of the concept [71] that is likely to play a critical role in complex cellular networks.  



 30 

 

Figure 3.9: Maximum discrimination in binding to similar substrates. 

The solid curve shows the equilibrium complex concentration [𝐅𝐒]𝐛𝐢𝐧𝐝 (Eq. 3.5) normalized by the strong 

binding limit [𝐅𝐒]𝐛𝐢𝐧𝐝
𝐬𝐭𝐫𝐨𝐧𝐠 (𝑲𝒅

𝐞𝐱𝐩 → 𝟎). 𝒄𝒑 = 𝒄𝒔 is used without losing generality. Each pair of vertical lines shows 

the relative amount of bound complexes formed by two different substrates with a binding free energy 

difference of 1.5 kcal/mol. For strong binding, the complex concentration saturates, and there is almost no 

difference in the amount of complex formed by either substrate (dashed lines). On the other hand, decreasing 

the experimental binding affinity by destabilizing the folded state (F) enhances complex formation by the 

stronger binding substrate relative to the weaker one (dash-dotted lines). 
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3.4 DISCUSSION 

The survey indicates that the distribution of the amount of disorder depends strongly on protein 

function, and a first-principles thermodynamic analysis explains the nature of this relationship. 

For proteins whose main function is to bind other proteins, the amount of disorder that can be 

tolerated without degrading function is quite broad, depending on the complementarity of the 

interaction. Catalytic proteins have a strong preference for a stable folded state with ∆𝐺𝑓 ≲ 1 

kcal/mol, consistent with the notion that catalysis has strong conformational requirements, as 

conjectured by Pauling [18] in the pre-structure age and more recently discussed by other 

researchers (see, e.g., ref. [75]). Note, however, that although protein stability below the 

aforementioned threshold (Figs. 3.7B and 3.8B) does not improve catalysis any further [76], this 

pre-organized state leaves ample room for conformational changes that might be required to 

bring about efficient catalysis. Finally, I show that disorder can be used to maximize the 

specificity of promiscuous interactions relevant to transcription and signal transduction. 

 Instead of rationalizing our findings in terms of adaptability or other processes that are 

not easily quantifiable, I restrict the discussion to the experimentally derived parameters defined 

in our models, making our predictions both experimentally and quantitatively more relevant. For 

instance, Fig. 3.9 shows that for μM concentrations, highly complementary complexes, say, 𝐾𝑑𝑐 ~ 

nM, will yield maximum discrimination if folding instability lowers 𝐾𝑑
exp  to μM. This extra 

discrimination is likely to play a role in the differential regulation of promiscuous binding 

domains such as SH2/3s, whose typical affinities agree with the predictions of the model [77]. 

More interestingly, the theory also elucidates the dependence on concentration of the 

experimental affinity that optimizes specificity (Fig. 3.9). 
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Figure 3.10: Distributions of experimentally measured protein-ligand binding affinities. 

Data are taken from the PDBbind database (version 2007). The overall distributions are consistent with our 

hypothesis that the lack of disorder in prokaryotes could be due to their relatively weaker binding affinities 

(≳ 𝟏𝟎−𝟕 M). 

 

 The theory predicts that lower-affinity interactions are expected to involve proteins with 

less disorder, which may help explain why disorder is less prevalent in prokaryotes (type III) 

than eukaryotes (types I and II). Indeed, the strikingly similar distributions for E. coli shown in 

Fig. 3.3 suggest that disorder does not play a role in function (similar data are observed for other 

prokaryotes). Without disorder, protein binding efficiency would imply 𝐾𝑑
exp ≳ 10−7  M. A 

survey of the protein-ligand interactions in the PDBbind database [78] (Fig. 3.10) confirms not 

only that bacterial proteins may indeed bind small ligand molecules more weakly than humans 

proteins but also that there is a sharp drop in the number of E. coli ligands (20% compared with 

50% for human) with 𝐾𝑑
exp smaller than the predicted threshold of 10−7 M. From the point of 
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view of evolution, the drop of 𝐾𝑑
exp  is also consistent with the intuition that short-lived 

microorganisms have less need to form long-lived complexes. 

 It is important to stress that protein-functional assignments are still incomplete [67]. 

Indeed, for the genomes I analyzed, only a subset of all proteins has at least one assigned 

function, e.g., ~75%, 88% and 32% of human, yeast, and E. coli, respectively. As already 

mentioned, our analysis encompasses motifs participating in the molecular interactions. Hence, 

for multi-site/domain proteins a specific function should not necessarily require folding of the 

entire protein. Figure 3.11 further expands on the amount of intrinsic disorder in multifunctional 

proteins as well as on the correlation of disorder and protein length. For the most part, I find that 

proteins with both binding and transcription functions have a disorder distribution similar to 

transcription, whereas the distribution for proteins with binding and catalytic functions is more 

similar to catalytic. For these subsets, I failed to observe significant correlations between 

disorder and protein length. For E. coli, most proteins are ordered. However, the few highly 

disordered proteins involved in transcription are all relatively small, resulting in a weak negative 

correlation. The small sets of proteins with both catalytic and transcription functions as well as 

all three functions (including binding) show a positive correlation with length while seemingly 

encompassing a combination of the disorder distributions of each individual functional category. 

Further analysis of disorder as a local property of the functioning site is likely to reveal insights 

into how evolution has coupled structure and functions to cope with the increasing complexity of 

higher organisms. 

 Ultimately, the theory might provide more subtle quantitative predictions for the interplay 

between disorder and function for specific proteins. Although current experimental technologies 

cannot readily analyze weakly stable proteins, let alone positive folding free energies, 
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computational techniques might help to fill this gap. Although there are other aspects not 

considered here, such as the role of disorder in aggregation and degradation, our findings show 

how disorder has opened a new dimension in the regulation of molecular interactions for 

eukaryotes and, most certainly, humans. Collectively, our findings suggest that protein folding 

should be viewed as a continuum in which folding stability is just one more parameter that 

evolution uses to optimize function. 
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Figure 3.11: Intrinsic disorder as a function of protein length. 

Plotted are proteins with (non-overlapping) binding, transcription, and catalytic function (large circles), and 

for proteins with more than one function, as indicated by the colored arrows from each individual functional 

category (smaller circles). For each polar coordinate plot, the radial and angular (counterclockwise) 

coordinates correspond to protein length in a log-scale and the percentage of residues that are classified as 

disordered for the protein (as in Fig. 3.3), respectively. For clarity, percent disorder and protein length are 

labeled only in transcription and catalysis plots, respectively. Indicated outside each circle is the percentage 

of proteins in each functional category relative to the total number of proteins for which the function has 

been annotated for each organism (i.e., 15,260, 5,900, and 1,362 for human, yeast and E. coli, respectively). 

The figure shows that disorder does not correlate with protein length for well-sampled functional categories. 

The analysis of disorder in multifunctional proteins also reveals interesting patterns. Specifically, binding 

does not seem to impact the level of disorder of either transcription or catalytic proteins, whereas disorder in 

proteins with both catalytic and transcription functionalities appear to follow either one of the patterns found 

for the individual functions. 
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4.0  BACTERIAL SPORE GERMINATION 

4.1 INTRODUCTION 

Some gram positive bacteria (e.g., Bacillus and Clostridium) stay in the division/growth cycle 

when nutrients are abundant and conditions are favorable; otherwise, they protect themselves by 

transforming into spores (Fig. 4.1) [79]. Spores are radically different from normal bacterial cells 

[80, 81]. They have low water content, low protein mobility, and near-undetectable metabolic 

activity. They are also highly resistant to harsh environmental conditions such as heat, radiation, 

and toxic chemicals. These properties make spores long-lived and hard to kill. However, they 

constantly monitor their surroundings and can initiate germination into normal cells within a few 

minutes when nutrients, called germinants, reappear (Fig. 4.1).  

 

Figure 4.1: Life cycle of spore forming bacteria. 
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4.2 MEASUREMENTS OF GERMINATION 

4.2.1 Single spore measurements 

Germination of single spores has been characterized with electron microscopy, phase contrast 

microscopy, and Raman scattering spectroscopy. Electron microscopy yields the greatest details 

on the structure of spores and their morphological changes during germination [82, 83]. As 

shown in Fig. 4.2A, a spore is typically structured as (from interior to exterior): a core containing 

DNA and other essential molecules surrounded by thin layers of an inner membrane and a cell 

wall; a thick shell called the cortex mainly consisting of peptidoglycan; a thin layer of outer 

membrane; a  thin layer called the coat mainly consisting of proteins, which protects the spore 

from reactive chemicals and predators; and finally, an additional layer called the sporangium, 

which is present only in some species and is comprised of the remains of the wall from the 

original bacterium. During germination, the cortex is degraded, the part of the spore surrounded 

by inner membrane and cell wall transforms into a vegetative cell, and the coat is torn apart and 

abandoned (Fig. 4.2B). Electron microscopy has the limitation that spores have to be killed and 

fixed with chemicals before the observation. Therefore, it cannot be used to measure the kinetics 

of germination. In contrast, phase contrast microscopy and Raman scattering spectroscopy can be 

used to monitor germination in real time without disrupting the process. 
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Figure 4.2: Electron micrographs of longitudinal sections of germinating Clostridium pectinovorum spores. 

(A) Early stage of germination. The labels are: P - protoplast, CM - core membrane, GCW - germ cell wall, 

CX - cortex, CI - inner coat, CO - outer coat, V - vesicular structures, and SP - sporangium. (B) Last stage of 

germination, where vegetative cell emerges from fractured spore coat. Markers represent 0.5 μm. Other 

spore species have similar structures. (Source: Adapted from Ref. [83].) 
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Figure 4.3: Phase contrast micrographs of germinating Clostridium pectinovorum spores. 

Shown are the loss of refractility and progressive emergence of vegetative cell. Marker represents 5 μm and 

applies to all the images. The sequence of events is labeled with numbers. Other spore species undergo similar 

changes during germination. (Source: Adapted from Ref. [83].) 

 

Figure 4.3 shows the process of germination observed with phase contrast microscopy 

[83]. Spores are initially phase bright. After the introduction of germinants, they first become 

phase dark, indicating that they have initiated germination. Then vegetative cells gradually 

emerge from spores’ coats. Early experiments on hundreds of spores using this technique [84] 

showed that, while the transition from phase bright to phase dark is rapid (~10 seconds), the time 

it takes for a spore to initiate the transition varies widely from spore to spore (from a few seconds 

to more than 10 minutes). This heterogeneity in germination is not due to genetic differences or 

variations in germination condition, but appears to be due to stochasticity in gene expression and 
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variations in culture conditions during sporulation [7]. It is advantageous for the survival of 

spore populations, as the fast germinating spores make sure opportunities to establish new 

colonies are not missed when conditions improve and the slow germinating spores guarantee the 

whole population is not jeopardized when the improvement is only temporary. However, it also 

greatly complicates spore eradication in the food and health care industries, as small percentages 

of spores germinate extremely slowly (called superdormant spores) and are not easily killed 

before germination [85-87]. 

Recently, Raman scattering spectroscopy has also been used to characterize spore 

germination [88-91]. A major event during the early stage of germination is the release of spores’ 

large depot (~10% of spore dry weight) of Ca2+ and dipicolinic acid (DPA) [80]. The two form 

chelated complexes inside the spore core, thus I will call them CaDPA. CaDPA can be detected 

by Raman scattering spectroscopy, as it gives rise to strong Raman scattering of light at certain 

wavelengths, and the amount of CaDPA is proportional to the intensity of the scattering [88, 92]. 

In a series of recent experiments, individual spores were confined with optical traps, and the 

amount of CaDPA inside each spore was measured during germination [89, 90]. It was found 

that there is usually a delay between the addition of germinant and the beginning of CaDPA 

release, and the length of this delay varied from spore to spore, but the durations of CaDPA 

release were roughly the same for all the spores and were short compared to the delay before the 

release (Fig. 4.4). These experiments show that the heterogeneity in germination originates from 

processes prior to the release of CaDPA. 
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Figure 4.4: Raman scattering from germinating spores. 

Bacillus subtilis spores were germinated with L-alanine. Relative intensities of the 1017 cm−1 CaDPA Raman 

band from five individual spores are plotted, which show that the incubation time – time since the addition of 

germinants – required for the initiation of CaDPA release ranges between 5-15 minutes, and the duration of 

the release is around 3 minutes for all the spores. (Source: Adapted from Ref. [89].) 

 

4.2.2 Population measurements 

While single spore measurements yielded many details on what happens during germination, 

they are time consuming to perform and the extracted properties are noisy. Population 

measurements have also been developed, which are advantageous in exploring germination 

under many different experimental conditions. 

An early method that has been commonly used is to measure the optical density (OD) of 

solutions containing spores, which is a measure of how much light of certain wavelength 

(typically 600 nm) is absorbed by the sample 
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 OD = log10(𝐼0 𝐼⁄ ) (4.1) 

where 𝐼0 and 𝐼 are intensities of the incident and transmitted light respectively. OD decreases as 

spores germinate, and this property has been used to study the effects of various factors on 

germination [93-96]. However, this method does not give quantitative measures on germination 

as it is not clear how to convert changes in optical density to percentage of spore germination, 

which is essential for this dissertation. 

Recently, a new technique has been developed to yield quantitative measures of 

germination [97, 98]. It takes advantage of the fact that spores release CaDPA upon germination. 

DPA2− can form fluorescent complexes with Tb3+, so Tb3+ is added to the solution containing 

spores at the beginning of each experiment. Therefore, by measuring the fluorescence intensity, 

one obtains the amount of CaDPA released by the spores. Since each spore from the same 

population contains about the same amount of CaDPA [92], the method provides a quantitative 

measure on the amount of spores that have released CaDPA. In addition, it can also be used to 

study another major event in the early stage of germination – commitment. Commitment happens 

before CaDPA release. While germinants are required for spores to initiate germination, they do 

not have to be present for the whole period until CaDPA release. Experiments showed that 

spores continue to germinate after the interactions between germinants and their corresponding 

GRs were blocked [93, 96, 99], demonstrating that commitment is the moment where no 

germinant is needed anymore and spores irreversibly proceed to later stages of germination. 

Similar to CaDPA release, the time it takes for a spore to commit to germination is also 

heterogeneous [99]. 
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4.3 STAGES OF GERMINATION 

To help the readers understand the problems I am addressing in Chapter 5, here I divide 

germination of a single spore into four stages based on two well characterized events – 

commitment to germination and CaDPA release – and name them as: commitment, pre-CaDPA 

release, CaDPA release, and post-CaDPA release (Fig. 4.5). 

 

Figure 4.5: Four stages of spore germination with nutrient germinants. 

(I) commitment to germination, (II) pre-CaDPA release, (III) CaDPA release, and (IV) post-CaDPA release. 

Note that durations of the various stages are not drawn to scale, and that there can be a small amount (~10%) 

of slow CaDPA release prior to Tlag starting at the beginning of stage I with spores of some species [88, 89, 91, 

100]. 

 

Stage I, which is a major source of germination heterogeneity [99], starts from the addition of 

germinant and ends the moment that the spore commits to germination. Germinants are typically 

amino acids, sugars or purine nucleosides. They trigger germination by binding to a group of 
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germinant receptors (GR) on the inner membrane of spores [80]. Germinant-GR interaction plays 

a major role in Stage I and a large set of experiments can be and have been performed, in 

particular with B. subtilis spores since: i) the GRs are already known; ii) many germinants and 

inhibitors for each GR are known; iii) levels of GRs can be controlled and likely even measured 

directly in the near future; and iv) there are spores with GR variants that exhibit modified 

germinant-GR interaction. The next question is what other molecules and processes are involved 

in Stage I, and this will be key to understanding how nutrient-GR interaction triggers 

germination, why Tcommitment varies between spores and is decreased by heat activation and 

increasing the GR level per spore.  

Stage II starts from the moment of commitment and ends at the initiation of CaDPA 

release. Little is known about Stage II, in large part because there is as yet no method for direct 

measurement of the length and heterogeneity of its duration in individual spores. The molecular 

changes involved in Stage II are unknown, except that the release of monovalent ions (H+, Na+, 

K+) should begin during one of the first two stages, since this event is prior to the release of 

CaDPA [101]. While the initial germinant is no longer required at this stage, it is unclear whether 

germinant-GR interaction still plays any role. 

Stage III starts from the initiation of CaDPA release and ends at the completion of 

CaDPA release. This stage has been well characterized by a series of recent experiments [88-91]. 

The duration of Stage III is relatively constant and unaffected by heat activation, germinant 

concentration and levels of GRs per spore. In addition, experiments measuring the uptake of a 

nucleic acid dye by single germinating Bacillus spores showed that the uptake starts at the 

beginning of Stage III [102], implying the initiation of drastic changes inside the spore core at 

this time, although what these changes are is not clear. One remaining question is what 
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determines the duration of CaDPA release, which lasts three minutes in wild type B. subtilis 

spores [89] but only takes 30 seconds in wild type B. cereus spores [90]. The protein CwlJ is 

certainly one of the players in this stage, since its deletion results in significantly slower CaDPA 

release [89].  

The final stage in germination, Stage IV, starts from the completion of CaDPA release 

and covers the remainder of the germination process, including the progression into spore 

outgrowth. Significant heterogeneity has also been observed in this stage but little is known 

about the contributing factors or mechanisms [7]. Since I am only concerned with the mechanism 

that initiates spore germination, I will not discuss Stage IV further.  

4.4 OUTSTANDING QUESTIONS 

The duration of the early stage of germination varies a lot between spores, and, depending on 

germinant concentration, certain fraction of spores may not germinate even at very long times 

[80]. This heterogeneity of germination has long been a concern in food industry and health care, 

and has been studied mainly via either direct or indirect measurement of CaDPA release. 

However, it was realized only recently that the major source of the heterogeneity is actually in 

the commitment step [99]. It is now becoming clear that the commitment step is the key to 

understand the mechanism of germination initiation and the reason for germination 

heterogeneity. Yet there is still no definite answer on what mechanism is responsible for the 

triggering of germination and what determines how long a spore takes to commit to germination. 

 In Chapter 5, I will propose a quantitative model based on the assumption that the 

heterogeneity in germination is due to the variability in levels of activated GRs per spore. The 
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model has three key components: the distribution of GR numbers in a spore population, the 

concentration dependence of nutrient binding and activation of the particular GR, and the 

threshold number of bound GRs for a spore to germinate. The GR distribution can be directly 

determined from experiments, and the other two components were determined by fitting data for 

percentage of germination as a function of nutrient concentration. The model has been used to 

predict germination of spores with mixtures of nutrients that trigger different types of GRs and 

produced results that were consistent with experiments, which suggests that signals from 

different types of GRs are summed by a common signal integrator. 
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5.0  A QUANTITATIVE MODEL OF GERMINATION 

5.1 INTRODUCTION 

In this chapter, I propose a quantitative model on Stage I of germination – the commitment step. 

I will use the model to address the following two questions: (1) what determines how long it 

takes for a spore to commit to germination, i.e., what cause the heterogeneity of germination; (2) 

how are signals alerting the presence of germinants processed inside spores. 

The model is inspired by an earlier model by Woese et al. [103]. To understand the 

mechanism of germination and the reason for its heterogeneity, Woese et al postulated that 

germination occurs (spores become phase dark) when the level of some unknown substance 𝑃 in 

a spore reaches a threshold 𝑃𝑐, and production of 𝑃 is catalyzed by some unknown “germination 

enzyme” 𝐸 in the spore (Fig. 5.1). The rate of accumulation of 𝑃 is assumed to be 

 𝑑𝑃
𝑑𝑡 = 𝐾𝑛 − 𝑘2𝑃 (5.1) 

where 𝐾  and 𝑘2  are constants determining the rate of production and degradation of 𝑃 

respectively, 𝑛 is the number of 𝐸 in a spore that are activated by germinants. Before the addition 

of germinants 𝑃 = 0; after the addition of germinants 

 𝑃(𝑡) =
𝐾𝑛
𝑘2

(1− 𝑒−𝑘2𝑡). (5.2) 

The incubation time it takes for a spore to germinate (when 𝑃(𝑡) > 𝑃𝑐) is 
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 𝑡 = �−
1
𝑘2

ln �1−
𝑃𝑐𝑘2
𝐾𝑛 � , 𝑛 > 𝑃𝑐𝑘2 𝐾⁄

∞, 𝑛 ≤ 𝑃𝑐𝑘2/𝐾
� (5.3) 

The model thus accounts for the heterogeneity of germination as due to variations in the number 

of germination enzymes 𝑛 from spore to spore, and can also account for superdormant spores 

[85, 87] – spores that stay dormant even after long incubation times – as due to an insufficient 

number of germination enzymes. 

 

 

Figure 5.1: Schematic diagram of the model proposed by Woese et al. 

 

The molecules corresponding to the “germination enzyme” postulated by Woese et al. do 

exist; they are the germinant receptors (GRs) on the inner member of spores. Evidence that GRs 

are responsible for nutrient-induced germination1 is (1) spores with GRs knocked out do not 

respond to nutrients [80, 104], (2) overexpressing a GR leads to faster germination and a higher 

percentage of germinating spores in the presence of the cognate germinant [105]. However, the 

biochemical process corresponding to the accumulation of 𝑃 is still unknown. In addition, the 

                                                

1 Germination can also be induced by high pressure and non-nutrients such as exogenous CaDPA and 
dodecylamine, which are out of the scope of this dissertation. 
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model has never been used to make quantitative predictions that can be verified against 

experiments. In the following, I will develop a more general approach to modeling spore 

germination that encompasses key elements of the Woese model but is more closely linked to 

exeperimental data both in its parameterization and its predictions. 

5.2 GERMINANT RECEPTORS 

Nutrients trigger spore germination through interactions with GRs. GRs are proteins located in 

the inner membranes of spores [80, 106]. In B. subtilis, the spore species studied in this 

dissertation, there are three types of GRs – GerA, GerB, and GerK – which respond to different 

nutrients (Fig. 5.2). GerA can be triggered by L-alanine or L-valine. Neither GerB nor GerK 

alone can trigger germination. However, GerB together with GerK can be triggered by AGFK (a 

mixture of L-asparagine, glucose, fructose, and K+). In addition, compared with triggering GerA 

alone, faster germination is observed when GerB or GerK is also triggered with their 

corresponding germinants, indicating that GerB and GerK can also facilitate germination through 

GerA (Fig. 5.2). At last, three point mutations were isolated on the GerB GR (the mutated GR is 

called GerB*) that enabled it to trigger germination without GerK by binding to L-asparagine (or 

a few other nutrients) alone [107, 108]. 

It is unclear how multiple GRs act together to trigger germination [108]. In this chapter, I 

focus on the simplest system – spores of B. subtilis FB10 strain, in which GerB is substituted 

with GerB*, either GerA or GerB* alone can trigger germination with a single nutirient and 

without co–receptors, and the role of GerK can be ignored. This will lay the groundwork for 

understanding wild type spores where more complex interactions between the GRs are involved. 
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Figure 5.2: The GRs and their cognate germinants in B. subtilis spores. 

Abbreviations used for receptors are in boxes and are as follows: A, GerA; B, GerB; B*, GerB*; K, GerK. 

Abbreviations used for germinants or cogerminants are as follows: A, L-alanine, AA, L-alanine, L-

asparagine, L-serine, or L-threonine; f, fructose; g,glucose; V, L-valine. “/” indicates “or”, cogerminants are 

shown in parentheses. Long arrows mean germination is induced through the GR(s) with the corresponding 

germinants, and short arrows means no significant germination is induced. (Source: Adapted from Ref. 

[108].) 

5.3 THEORY 

Here I introduce the theoretical basis of two critical building blocks of the spore germination 

model: Hill equation for germinat-GR interaction, and gamma distribution for GR level 

distribution. 

5.3.1 The Hill equation 

I will use the Hill equation to model germinant-GR binding. The equation that bears his name 

was first used by A. V. Hill [109] to explain experimental data on the absorption of oxygen by 

the protein hemoglobin in red blood cells. Hill postulated that 𝑛 hemoglobin molecules aggregate 

into a complex that then binds oxygen according to the equation 
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 Hb𝑛 + 𝑛O2
𝐾𝑛↔ Hb𝑛(O2)𝑛 (5.4) 

where, according to the Law of Mass Action, the parameter 𝐾𝑛 ≡ [Hb𝑛(O2)𝑛]/[Hb𝑛][O2]𝑛 is a 

constant (called the association constant) and square brackets denote concentrations. The 

percentage saturation of hemoglobin with O2 is then given by 

 𝑦 =
𝐾𝑛[O2]𝑛

1 + 𝐾𝑛[O2]𝑛 (5.5) 

which is nowadays called the Hill equation, and 𝑛 is called the Hill coefficient. Hill noted that 

this equation fit all known dissociation curves of oxyhemoglobin with a very high degree of 

accuracy except that 𝑛 did not turn out to be integer. Hill should have stopped here, but to 

resolve this problem, he further postulated that hemoglobin formed aggregates of different sizes: 

HbO2, Hb2(O2)2, Hb3(O2)3, etc., so the exact expression for 𝑦 should be 

 𝑦 = �
𝑎𝑛𝐾𝑛[O2]𝑛

1 + 𝐾𝑛[O2]𝑛
𝑛=1,2,3,…

 (5.6) 

where 𝑎𝑛  is the relative abundance of Hb𝑛(O2)𝑛 . He then claimed Eq. 5.5 to be an 

approximation of Eq. 5.6. Hill’s theory was several decades later found to be wrong, as crystal 

structures of hemoglobin showed that they are tetramers with each subunit binding one oxygen 

molecule, and more realistic models were proposed [110, 111]. However, Hill’s equation as a 

simple empirical formula survived, as it captures the sigmoid shape binding curves typically 

have. 

Nowadays, Hill equation is still widely used to analyze protein-ligand interactions. In this 

thesis, I use a different form of the equation 

 𝑦 = 𝑥𝑛 (𝐾𝑑𝑛 + 𝑥𝑛)⁄  (5.7) 

where 𝐾𝑑  has the dimension of concentration and is called apparent dissociation constant. 

Typical uses of the Hill equation are to provide rough measures of the binding affinity between 
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ligand and protein through 𝐾𝑑  (the smaller it is, the stronger is the interaction) and the 

cooperativity between different subunits of the same protein (or protein complex) through 𝑛 (the 

larger 𝑛 is, the stronger the cooperative interaction). However, the physical interpretation of the 

Hill coefficient depends on details of the binding model and no meaning should be inferred from 

it unless parameters of the correct mechanism can be identified [112]. In the following, I briefly 

demonstrate that the Hill coefficient has different meanings in different situations. 

 First, consider the following binding scheme [112] 

 R + 2L
𝐾𝑑1��RL + L

𝐾𝑑2��RL2 (5.8) 

At equilibrium, we have 𝐾𝑑1 = [R][L]/[RL], 𝐾𝑑2 = [RL][L]/[RL2], and [R]tot = [R] + [RL] +

[RL2], and we can derive 

 
[RL2]
[R]tot

=
[L]2

𝐾𝑑1𝐾𝑑2 + 𝐾𝑑2[L] + [L]2 
(5.9) 

When 𝐾𝑑2 ≪ 𝐾𝑑1, i.e., when there is marked positive cooperativity between the binding of two 

ligands on the same receptor (the binding of the first ligand significantly increases R’s affinity 

for the second ligand), fitting of the binding curve with the Hill equation leads to a Hill 

coefficient close to 2. 

 Then consider the following modified binding scheme [112] 

 R + 2L
𝐾𝑑1��RL + L

𝐾𝑑2��RL2
𝐾𝑑3��R∗L2 (5.10) 

where there is an additional step that converts R into an active state R∗ once it is fully bound. At 

equilibrium, we have 𝐾𝑑3 = [RL2]/[R∗L2], and [R]tot = [R] + [RL] + [RL2] + [R∗L2], and we 

can derive 

 
[R∗L2] 
[R]tot

=
[L]2

𝐾𝑑1𝐾𝑑2𝐾𝑑3 + 𝐾𝑑2𝐾𝑑3[L] + (1 + 𝐾𝑑3)[L]2 (5.11) 
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When 𝐾𝑑1 = 𝐾𝑑2 ≫ 𝐾𝑑3, i.e., when there is no cooperativity between the binding of two ligands 

on the same receptor (the binding of the first ligand has no effect on R’s affinity for the second 

ligand) but there is strong preference for the active state once R is fully bound, fitting of the 

binding curve with the Hill equation also leads to a Hill coefficient close to 2. 

 It is clear that although we could obtain Hill coefficients close to 2 for both schemes, they 

arise for different reasons. 

5.3.2 Gamma distribution 

I will use gamma distribution to model the levels of GRs on individual spores. The expression 

levels of many proteins in cells follow the gamma distribution [113], which can be derived with 

the following model (derivations adapted from Ref. [114]): 

 

 

(5.12) 

which assumes that the gene encoding the protein is transcribed into mRNA with a first order 

rate constant of 𝑘1, the mRNA is then translated into protein with a first order rate constant of 

𝑘2, and finally mRNA and protein are degraded with first order rate constants of 𝛾1  and 𝛾2 

respectively. Let us denote protein concentration with 𝑥(𝑡), which varies with time 𝑡, and denote 

the probability density for a cell to have the protein concentration at 𝑥 with 𝑝(𝑥). Note that x is 

treated as a continuous variable. An analysis where the protein level is treated as a discrete 

variable can be found in Ref. [115]. The two approaches leads to analytically different but 

numerically similar distributions. The evolution of 𝑝(𝑥) with 𝑡  is described by the following 

master equation: 
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 𝜕𝑝(𝑥) 𝜕𝑡⁄ = 𝜕[𝛾2𝑥𝑝(𝑥)] 𝜕𝑥⁄ + 𝑘1 � 𝑑𝑥′𝑤(𝑥, 𝑥′)𝑝(𝑥′)
𝑥

0
 (5.13) 

The first term on the right hand side of Eq. 5.13 corresponds to the decrease in 𝑥 caused by 

protein degradation and cell growth/proliferation, where 𝛾2 = ln 2/𝑇 + ln 2/𝑇1, with 𝑇 being the 

half-life of the protein and 𝑇1 being the length of a cell cycle. It can be visualized as a continuous 

current of probability density toward 𝑥 = 0 with a magnitude of 𝛾2𝑥𝑝(𝑥), so the rate of change 

in 𝑝(𝑥) from this part is given by the divergence of the current 𝜕[𝛾2𝑥𝑝(𝑥)] 𝜕𝑥⁄ . 

The second term on the right hand side of Eq. 5.13 corresponds to the change in 𝑥 caused 

by the production of protein. First, according to the model, mRNA is been produced at rate 𝑘1, 

and its lifetime follows exponential distribution (since its degradation is described by a first order 

rate constant 𝛾1) with a mean value 1/𝛾1. During the life of a mRNA, proteins are been produced 

at the constant rate 𝑘2, thus the number of proteins translated from each mRNA also follows 

exponential distribution, with a mean value of 𝑏 = 𝑘2/𝛾1. Second, for many proteins one can 

assume the lifetime of mRNA is short compared to the lifetime of the protein, as it was observed 

in experiments that protein production happens in bursts, with each event resulting in an 

exponentially distributed number of proteins [116]. Finally, one can assume the burst size 𝑥 − 𝑥′ 

is independent of the original protein concentration 𝑥 , thus the transport of the probability 

density 𝑝 from 𝑥′ to 𝑥 is described by 

 𝑤(𝑥, 𝑥′) = 𝑏−1𝑒−(𝑥−𝑥′)/𝑏 − 𝛿(𝑥 − 𝑥′) (5.14) 

where the 𝛿 function accounts for the decrease of 𝑝(𝑥) due to bursts. 

 At steady state 𝜕𝑝 𝜕𝑡⁄ = 0, the master equation can be solved by using the Laplace 

transformations, and we obtain the gamma distribution: 

 𝑝(𝑥) = 𝑥𝑎−1𝑒−𝑥 𝑏⁄ 𝑏𝑎Γ(𝑎)⁄  (5.15) 
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where 𝑎 = 𝑘1/𝛾2 is the mean number of mRNAs produced (also the mean number of protein 

bursts) during the average lifetime of a protein. The parameters 𝑎 and 𝑏 determine the shape and 

scale of the distribution respectively, and the mean is 〈𝑥〉 = 𝑎𝑏. 

5.4 SINGLE GERMINANT MODEL 

First consider germination with single germinant so only one type of GR is involved. Figure 5.3 

shows the key elements of the model for germination kinetics (Fig. 5.3D) based on three key 

elements: the distribution of GR numbers in a spore population (Fig. 5.3A), the concentration 

dependence of nutrient germinant binding and activation of the particular GR (Fig. 5.3B), and 

the dependence of commitment time for a spore on the number of bound GRs (Fig. 5.3C). 

Of the three basic components of the model only the GR distribution (Fig. 5.3A) can be 

directly determined from experiments. The other components, the GR activation and the 

commitment time curves will be determined by fitting data for germination kinetics as a function 

of germinant concentration. The GRs are present at low levels, with 24-40 molecules per spore 

for the GerB receptor [117] and other GRs may also be expressed at similar levels. In addition, 

recent experiments with spores expressing fluorescently-labeled GRs have provided detailed 

quantitative information about receptor distributions in spores [118]. Here, instead of the Poisson 

distribution assumed by Woese et al., I assume the GR number on a single spore follows a 

gamma distribution (Section 5.3.2), as was recently shown to be the case for most of the proteins 

in the proteome of bacteria E. coli [113]: 

 𝑝(𝑁;𝑎, 𝑏) = 𝑁𝑎−1𝑒−𝑁/𝑏/Γ(𝑎)𝑏𝑎  (5.16) 
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where 𝑁 is the total number of GRs on a spore, 𝑎 is the shape parameter and 𝑏 is the scale 

parameter. This can be verified by tagging GRs with fluorescent proteins and measuring the 

fluorescent intensities of each spore [118]. Indeed, preliminary data showed distributions of the 

fluorescent intensity could be fit with Eq. 5.16 and yielded shape parameters 𝑎 ranging between 

2-5 (courtesy of P. Setlow). More experiments and analyses are required to obtain a better 

measure of the parameters, as the effects of the fluorescent tags on the expressions of the GRs 

are still unclear. Here I will leave 𝑎 as a tunable parameter (as will be shown below, the value of 

𝑏 is irrelevant in this model). 

 

Figure 5.3: Model for spore germination with nutrient germinants. 

(A-C) Components of the model.  (A) Distribution of number of GRs of a given type per spore in a spore 

population. (B) Fraction of GRs bound to germinant as a function of germinant concentration. (C) Minimum 

number of bound GRs required for a spore to commit to germination by certain time. (D) Schematic diagram 

of germination kinetics generated by the model for different germinant concentrations. The speed and extent 

of germination increase as germinant concentration is increased. 
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I also assume GRs are activated by germinant binding (Fig. 5.3B). In addition, binding 

and activation are assumed to be fast in comparison to the time required for germination. This 

step was only minimally studied by Woese et al., probably due to the unclear nature of the 

“germination enzyme” at that time. The number of bound GRs in a spore 𝑁∗ is the product of the 

total number of GRs 𝑁 in the spore and the average GR occupancy ℎ(𝑐) at the given germinant 

concentration 𝑐, 

 𝑁∗(𝑐) = 𝑁 × ℎ(𝑐). (5.17) 

Since we do not know the mechanism of germinant-GR interaction, I will use the Hill equation, 

derived in Section 5.3.1, to describe the binding of germinants to GRs: 

 ℎ(𝑐) =  𝑐𝛼 (𝐾𝛼+𝑐𝛼)⁄  (5.18) 

where 𝛼 is the Hill coefficient and 𝐾 is the apparent binding affinity between germinant and GR. 

One can see that increasing germinant concentration increases levels of bound GRs per spore, as 

does increasing 𝑁. 

Our third assumption is that commitment time depends only on the number of bound GRs 

in a spore. This assumption is a simplification because other spore properties, such as the 

expression levels of other components of the germination pathway or spore water content are 

also likely to affect the germination rate [7]. To capture the phenomenon that the percentage of 

spores that germinate decreases as the nutrient concentration is decreased, an activation threshold 

should exist, so that below a threshold number of bound GRs germination does not occur, but 

above the threshold commitment time decreases with increasing numbers of bound GRs, 𝑁∗. 

Another way of expressing this assumption is that the germination criterion for a spore to 

commit to germination before time 𝑡 is 

 𝑁∗ > 𝑁𝑔(𝑡) (5.19) 
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where 𝑁𝑔(𝑡) decreases monotonically over time (Fig. 5.3), so that the more bound GRs in a 

spore, the faster it commits to germination. 

Now I combine the three assumptions together. Using Eqs. 5.17 and 5.19, the 

germination criterion can also be written as 

 𝑁 > 𝑁𝑔(𝑡)/ℎ(𝑐) (5.20) 

Then using Eq. 5.16, the fraction of spores committed to germination at time 𝑡 with germinant 

concentration 𝑐 (Fig. 5.3D) is given by 

 𝐹(𝑡, 𝑐) = � 𝑝(𝑁;𝑎, 𝑏)
𝑁>𝑁𝑔(𝑡)/ℎ(𝑐)

 (5.21) 

As will be seen below, it is more convenient to treat 𝑁 as a continuous variable, then 

 𝐹(𝑡, 𝑐) = � 𝑝(𝑁;𝑎, 𝑏)𝑑𝑁
∞

𝑁𝑔(𝑡)/ℎ(𝑐)
 (5.22) 

Since the gamma distribution has the property that 𝑝(𝑁; 𝑎,𝑏)𝑑𝑁 = 𝑝(𝑁 𝜇⁄ ;𝑎, 𝑏 𝜇⁄ )𝑑(𝑁 𝜇⁄ ) , 

where 𝜇 = 𝑎𝑏 is the average number of GRs per spore, we have 

 𝐹(𝑡, 𝑐) = � 𝑝(𝑛; 𝑎, 1/𝑎)𝑑𝑛
∞

𝑛𝑔(𝑡)/ℎ(𝑐)
, (5.23) 

where 𝑛 ≡ 𝑁/𝜇  is the normalized number of GRs on a spore, 𝑛𝑔(𝑡) ≡ 𝑁𝑔(𝑡)/𝜇  is the 

normalized germination threshold. Equation 5.23 enables us to apply the model without knowing 

the absolute levels of GRs in the spores, which simplifies the fitting procedure. 
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5.5 DOUBLE GERMINANT MODELS 

To extend the model to the case of two germinants activating two different types of GRs, here I 

generalize the three key elements of the single germinant model. 

 For GR levels, each GR should still follow the gamma distribution, but there is the new 

question that whether the levels of the two GRs on the same spore are correlated. Correlations 

are likely to exist since the expressions of different GRs are regulated by the same transcription 

factors during sporulation, including both the same RNA polymerase sigma factor, σG, as well as 

the DNA binding protein SpoVT [119]. This can be verified by tagging different GRs with 

fluorescent proteins of different color and measuring the fluorescent intensities from different 

GRs on the same spores [118]. Indeed, preliminary data showed correlation coefficients between 

0.3-0.4 (courtesy of P. Setlow). More experiments and analyses are required to obtain a better 

measure of the levels of the GRs and their correlation, as the effects of the fluorescent tags on the 

expressions of the GRs are still unclear. Here I will assume the levels of different GRs are 

correlated and leave the correlation coefficient as a tunable parameter. 

For GR-germinant interaction, there is the question of whether the activation of one GR 

affects the activation of a different GR. Such effects are seen in the chemosensing system in 

bacteria of a number of species, and many chemosensory proteins are associated in large arrays 

in the plasma membrane of bacteria, with this association allowing direct cooperative 

interactions between different proteins [120-123]. Indeed, recent work has shown that the great 

majority of a spore’s GRs are co-localized in one small region of the spore’s inner membrane 

[118], and this seems likely to promote cooperative interactions. Cooperativity between different 

GRs is also strongly suggested by the requirement for both GerB and GerK GRs for germination 

of wild type B. subtilis spores with the AGFK mixture [80]. For the spore strain studied in this 
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dissertation, FB10, we need to consider possible interactions between GerA and GerB*. 

However, the point mutations giving rise to the GerB* GRs may disrupt interactions between 

them, just as they eliminate the GerK GR requirement in order for the GerB* GR to respond to 

L-asparagine alone [107, 108]. Here I start from the assumption that different GRs do not 

interact, so Eqs. 5.17 and 5.18 are still applicable, but different GRs have different values for the 

parameters 𝐾  and 𝛼 . This simplification will be validated when the model predictions are 

compared with experiments, and I leave more complex models for future study. 

Finally, I generalize the germination criterion with the help of phase diagrams of 

germination (Fig. 5.4). With a single germinant (Fig. 5.4A), the criterion for a spore to commit to 

germination before time 𝑡 is assumed to be Eq. 5.19, which can also be written as 

 𝑛∗ 𝑛𝑔(𝑡)⁄ > 1 (5.24) 

where 𝑛∗ ≡ 𝑁∗/𝜇 is the normalized number of GRs on the spore. With double germinants, the 

new criterion should fall back to Eq. 5.24 when the concentrations of one germinant is set to 

zero, so that it is 𝑛1∗ 𝑛𝑔
(1)(𝑡)⁄ > 1  if 𝑛2∗ = 0  and is 𝑛2∗ 𝑛𝑔

(2)(𝑡)⁄ > 1  if 𝑛1∗ = 0 , where the 

subscripts/superscripts 1 and 2 denote to the two GRs involved respectively. In addition, a recent 

experiment [8] found that percentages of B. subtilis spore germination with mixtures of low 

concentrations of germinants acting on different GRs were much higher than the sums of the 

percentages of germination with individual germinants alone (Fig. 5.5). This phenomenon was 

not seen with spores lacking GRs responsible for recognizing one or several components of the 

germinant mixtures. Therefore, different GRs function synergistically in triggering germination. 

Given the above constrains, there are still many ways different GRs could function together, such 

as the random model shown in Fig. 5.4B. Instead of enumerating all the possibilities, here I only 
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consider two representative ones, following the rule that no complex mechanism should be 

introduced if simple ones are able to explain the data. 

(I) SUM Model (Fig. 5.4C). Spores “count” both GRs and base their decisions on the 

collective number of bound GRs, and germinate if 

 𝑛1
∗ 𝑛𝑔

(1)(𝑡)⁄ + 𝑛2
∗ 𝑛𝑔

(2)(𝑡)⁄ > 1 (5.25) 

The underlying assumption of this model is that bound GRs are activated and initiate certain 

downstream signals. When mixtures of germinants are used, the activation of one type of GR is 

independent of the activation of other GRs, but their downstream signals are summed together. 

Finally, once the total signal strength reaches certain threshold, the spore commits to 

germination. 

(II) OR Model (Fig. 5.4D). Spores “count” both GRs but only base their decisions on the 

dominant GR, and germinate if 

 𝑛1
∗ 𝑛𝑔

(1)(𝑡)⁄ > 1    or    𝑛2
∗ 𝑛𝑔

(2)(𝑡)⁄ > 1 (5.26) 

The underlying assumption is that the downstream signals from different GRs are summed 

separately instead of together, and a spore commits to germination if the signal from either GR is 

strong enough. 
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Figure 5.4: Phase diagrams of germination. 

According to the model, at any time 𝒕 a spore is in one of two states: dormant or committed to germination. 

(A) With a single germinant, a spore has committed to germination if 𝒏∗ 𝒏𝒈(𝒕)⁄ > 1, otherwise it is still 

dormant. With double germinants, the state of a spore depends on both GRs via (𝒏𝟏∗/𝒏𝒈
(𝟏)(𝒕), 𝒏𝟐∗/𝒏𝒈

(𝟐)(𝒕)) and 

the sate space is divided by a curve connecting (1,0) and (0,1). Shown are (B) a random model, (C) the SUM 

model, and (D) the OR model. 
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Figure 5.5: Germination of FB10 spores with L-valine or/and L-asparagine. 

A) Amount of CaDPA release from gerB* B. subtilis spores germinating with L-valine and/or L-asparagine 

and B) degree of synergy when both germinants were used. Spores of B. subtilis FB10 (has the GerB* GR) 

were germinated with various concentrations of L-valine and/or L-asparagine, and amount of CaDPA (in 

arbitrary units) released at 30 min after addition of germinants are shown (similar results were obtained for 

other time points). The symbols used in A) are:  - L-valine germination;  - L-asparagine germination;  - 

sum of the rates with L-valine and L-asparagine germination alone; and  - experimental curve with L-

valine plus L-asparagine germination. Degree of synergy was defined as the ratio between experimentally 

measured amount of CaDPA release (proportional to percentage of germination) with L-valine plus L-

asparagine germination and the sum of the corresponding amounts  of CaDPA release with L-valine and L-

asparagine germination alone. (Collaboration with X. Yi and P. Setlow.) 
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5.6 RESULTS 

In this section, I apply the models to FB10 spores. The procedure is illustrated in Fig. 5.6. 

Experiments are performed by our collaborators, where spores are germinated with L-valine 

or/and L-asparagine. Note L-valine activates the GerA GR and L-asparagine activates the GerB* 

GR. First, I will extract the model parameters by fitting the single germinant model separately to 

germination data with L-valine alone and data with L-asparagine alone. Then I will apply the 

parameters to the double germinant models to predict germination with mixtures of L-valine and 

L-asparagine, and validate the predictions against experiments, thus allowing me to determine 

which mechanism might be used to process germination signals inside spores. 

 

 

 

Figure 5.6: Flowchart of model implementation. 
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5.6.1 Experiments 

Germination kinetics are often sensitive to spore preparation procedures, e.g. percentages of 

germination at given incubation time may differ significantly between different trials, making it 

unreliable to mix data from different trials. Thus high throughput experiments are critical for 

obtaining data for the quantitative models presented here, as I need data for 𝐹(𝑡, 𝑐) – fraction of 

commitment – over a broad range of germinant concentrations. However, high throughput assays 

measuring 𝐹(𝑡, 𝑐) are not yet available. Here I use CaDPA release data, which are relatively easy 

to obtain, to approximate the commitment data. Note that the approximation is only reasonable at 

incubation times longer than ~17 minutes (Fig. 5.7), since at earlier times the delay between 

commitment and CaDPA release becomes significant enough that the percentage of spores 

having released CaDPA is far lower than the percentage of spores having committed to 

germination. 

 

 

Figure 5.7: Percentages of commitment and CaDPA release during germination of FB10 spores. 

Commitment and CaDPA release are labeled with ● and ○ respectively. Spores were germinated in 150 μM 

L-asparagine. (Source: Adapted from [99].) 
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Experiments were performed (by our collaborators) in a 96-well plate, so that 

germination under 96 different conditions could be measured simultaneously. Each well 

contained 100 μl of solution with around 107 spores and a fixed amount of Tb3+, and germination 

was measured by recording the fluorescence emission from Tb-DPA [97, 98], the intensity of 

which is proportional to the amount of CaDPA released by the spores into the solution. Figure 

5.8 shows the CaDPA release of FB10 spores with various concentrations of L-valine or/and L-

asparagine, which starts soon after the addition of germinants and lasts for more than 30 minutes. 

Since the duration of the CaDPA release for individual spores is relatively short (~3 minutes, 

Fig. 4.4), the fluorescence intensity is roughly proportional to the amount of spores that have 

released their CaDPA. One can see that germination is heterogeneous, with some spores 

germinating in the first few minutes but others taking more than half an hour. In addition, the 

percentage of germination increases and the average germination time decreases as the nutrient 

levels is increased. 
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Figure 5.8: Germination of FB10 spores. 

The germinants are (A) L-alanine, (B) L-asparagine, and (C) equal concentrations of L-alanine plus L-

asparagine. Germinant concentrations range from 0.1 to 100 mM. Two trials were performed for each 

concentration. Data provided by X. Yi and P. Setlow. 
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5.6.2 Data fitting 

Here I extract the apparent binding affinity between germinant and GR 𝐾, the Hill coefficient of 

the binding 𝛼, and the function 𝑛𝑔(𝑡) from the single germinant data. Equation 5.23 is fit to the 

data shown in Fig. 5.8A and B respectively (a MATLAB script carrying out the fitting is 

included in Appendix A). To convert the fluorescence intensity to fraction of germination, I 

assume 100% of the spores are germinated at saturating concentrations of L-valine plus L-

asparagine (10 mM each), since few spores are superdormant (take extremely long time to 

germinate) to high concentrations of nutrient mixtures [85, 87]. Figure 5.9 shows the extracted 

parameters for L-valine (binding to GerA) and L-asparagine (binding to GerB*) germination 

respectively. Note that only parameters for the time period between 17 and 30 min are shown, 

due to limitations of the experiment (the experimental readings far underestimated the actual 

amount of committed spores at earlier stage, and were likely complicated by the outgrowth of 

germinated spores at later stage). 

The estimated parameters include the apparent binding affinity 𝐾 and the Hill coefficient 

𝛼 between germinants and their cognate GRs, and the corresponding threshold 𝑛𝑔(𝑡) for a spore 

to commit to germination by time 𝑡. First, 𝑛𝑔, as expected, decreases with time, i.e., the more 

bound GRs on a spore, the less time it takes to commit to germination. GerA showed lower 𝑛𝑔 

values than GerB* for all the time points, which raises the question of whether the two GRs have 

the same efficacy in triggering germination, e.g., given that a spore with a certain number bound 

GerA needs a certain amount of incubation time to commit to germination, will it take the same 

amount of time to commit to germination if it had the same number of bound GerB* instead? To 

answer this question, the average level of GerA on a spore relative to that of GerB* will be 
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needed. Second, the values of 𝐾 fall in the typical range for protein-ligand binding (Fig. 3.10), 

and the binding of L-asapragine to GerB* is almost an order of magnitude stronger than that of 

L-valine to GerA. Finally, the Hill coefficients 𝛼 were close to 1, suggesting that each GR may 

have only one binding site and function as monomer. Note, I did not assume 𝐾 and 𝛼  were 

constants over time, but extracted their values for different time points independently. The 

results suggest that it is also reasonable to treat them as constants. Finally, 𝐾, 𝛼, and 𝑛𝑔(𝑡) are 

the minimum set of parameters to describe the data, as they determine the inflection point, the 

steepness, and the final height of the curve in Fig. 5.9A respectively. 

 

Figure 5.9: Data fitting. 

(A) Fitting of Eq. 5.23 to the percentages of CaDPA release at 20 min yielded the values of the model 

parameters at 20 min. Repeating this procedure for all the time points ranging between 17 and 30 min yielded 

the values of (B) 𝒏𝒈, (C) 𝑲, and (D) 𝜶 as functions of time. The tunable parameter 𝒂 (for gamma distribution) 

is set to 3.5. 
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5.6.3 Model prediction 

In this section, I use the extracted parameters (Fig. 5.9) to predict experiments with double 

nutrients (Fig. 5.8C). In other words, I use the single germinant data at a given time point (Fig. 

5.10, plotted with symbols + and ○) as input to predict germination with double nutrients at the 

same time point and validate the prediction against the corresponding data (Fig. 5.10, plotted 

with symbol ●). 

 

 

Figure 5.10: Percentages of FB10 spores committed to germination at 20 min with various concentrations of 

L-valine or/and L-asparagine. 

The solid lines are plotted with Eq. 5.23 using the extracted parameters (at 20 min) shown in Fig. 5.9. 

 

The prediction procedure is as follows. (I) Generate 10,000 “spores” by generating 

10,000 pairs of random numbers (𝑛GerA , 𝑛GerB* ) with each pair representing the normalized 

number of GerA and GerB* GRs on a spore (Fig. 5.11). Both 𝑛GerA and 𝑛GerB* follow the gamma 
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distribution 𝑝(𝑛;𝑎, 1 𝑎⁄ ), and as a simplification I assume the same shape parameters 𝑎 for GerA 

and GerB*. In addition, 𝑛GerA  and 𝑛GerB*  are correlated with correlation coefficient 𝑟 . The 

algorithm generating random numbers following this joint gamma distribution is described in 

Appendix B. (II) At given germinant concentrations ( 𝑐L-Val , 𝑐L-Asn ) and incubation time 𝑡 , 

calculate the normalized number of bound GRs (𝑛GerA
∗ , 𝑛GerB*

∗ ) using Eqs. 5.17 and 5.18 and the 

corresponding parameters values in Fig. 5.9. (III) The model predicts that the fraction of spores 

committed to germination at time 𝑡  with double germinant (𝑛GerA
∗ , 𝑛GerB*

∗ ) is the fraction of 

“spores” satisfying Eq. 5.25 (the SUM model) or Eq. 5.26 (the OR model). 

 

 

Figure 5.11: Scatter plot of the normalized numbers of GerA and GerB* on individual spores. 

(𝒂 = 𝟑.𝟓, 𝒓 = 𝟎.𝟑𝟓.) 
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Figure 5.12: Model predictions for the germination of FB10 spores with equal concentrations of L-valine and 

L-asparagine. 

(A) Percentage of commitment at 20 min after the addition of germinants. The models assumed the shape 

parameter 𝒂 = 3.5 and correlation coefficient 𝒓 = 0.35.  (B-D) Deviations (mean square difference) between 

model prediction and experiment. (B) Deviations at different incubation time (assuming 𝒂 = 3.5 and 𝒓 = 

0.35). (C) Deviations at 17, 20, and 30 min as functions of 𝒂 (assuming 𝒓 = 0.35). (D) Deviations at 17, 20, and 

30 min as functions of 𝒓 (assuming 𝒂 = 3.5). 
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Figure 5.12A shows the model predictions compared with experiment at 20 min after the 

addition of germinants. It is clear that the data is better fit by the SUM model than the OR model, 

and similar results were obtained for all the time points between 17 and 30 min (Fig. 5.12B). 

Note I assumed 𝑎 = 3.5 for the shape parameter of GerA/GerB* level distribution (Eq. 5.16) and 

a correlation coefficient 𝑟 = 0.35 for the correlation between the levels of GerA and GerB* on 

the same spore. Figures 5.12C and D show that the predictions of the SUM model are optimal at 

around 𝑎 = 3.5 and are insensitive to the correlation coefficient 𝑟, while the OR model fails over 

the whole range of parameters. 

5.6.4 Goodness of fit and prediction 

In Section 5.6.2, I obtained the model parameters from fitting of the model to experimental data. 

The fitting procedure yielded a set of parameter values that minimize the mean square difference 

between the model and the data (see Appendix A). However, it is not the only set of parameter 

values that could describe the data. Instead, there should be a whole range of parameter values 

that may agree with the data with different probabilities [124]. In the following, I carry out an 

ensemble analysis that reflects this probabilistic view of parameter estimation. 

The expected value of some property of a model is given by [125]: 

 𝐸[𝑓(Θ)|𝑀,𝑌] = � 𝑓(Θ)𝑃(Θ|𝑀,𝑌)𝑑Θ
Θmax

Θmin

 (5.27) 

where 𝑓(Θ) is a generic function of the model parameters, and 𝑃(Θ|𝑀,𝑌) is the probability 

distribution of Θ given the model 𝑀 and data 𝑌. Using Bayes theorem 

 𝑃(Θ|𝑀,𝑌) =
𝑃(𝑌|Θ,𝑀) ∙ 𝑃(Θ|M)

𝑃(𝑌)  (5.28) 
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where 𝑃(𝑌|Θ,𝑀) is the conditional probability of simulating data 𝑌 given Θ and 𝑀, 𝑃(Θ|M) is 

the probability distribution of Θ prior to any knowledge about data 𝑌, and 𝑃(𝑌) is the evidence 

for a model. Both 𝑃(𝑌) and 𝑃(Θ|M)  can be considered as a constants [124]. Finally, it is 

reasonable to assume that 𝑃(𝑌|Θ,𝑀) is representable as a multivariate Gaussian [124] 

 𝑃(𝑌|Θ,𝑀) = const × exp �−�
[𝑌𝑖 −𝑀𝑖(Θ)]2

2𝜎𝑖2𝑖

� (5.29) 

with 𝜎𝑖 denoting the standard deviation of data 𝑌𝑖. 

 The distribution 𝑃(Θ|𝑀,𝑌)  can be estimated using the Metropolis-Hasting algorithm 

[124, 126, 127], which is a Monte Carlo technique that could generate random walks in the 

parameter space for Θ following to the desired distribution. The procedure is as follows: (1) 

Select with equal probability one of the parameters Θ𝑚 , with Θ𝑚 ∈ �𝐾,𝛼, 𝑛𝑔(𝑡1),𝑛𝑔(𝑡2), … �. 

Note that based on the results in Fig. 5.9, here I assume the parameters 𝐾 and 𝛼 are constant over 

time; (2) Propose an update from Θ𝑚  to Θ𝑚′ = Θ𝑚 + Δ𝑚 , where Δ𝑚  is drawn with constant 

probability from an interval [−Δ𝑚max,Δ𝑚max]; (3) Accept the proposed step with probability min[1, 

𝑃(𝑌|Θ′,𝑀)/𝑃(𝑌|Θ,𝑀)], where Θ′ = (Θ1,Θ2, … ,Θ𝑚′ , … ). If the proposed step is accepted, the 

next Θ in the random walk is Θ+ = Θ′, otherwise Θ+ = Θ. At the beginning of a random walk, Θ 

is randomly initialized. Each random walk is consisted of 104 “warm-up” steps to equilibrate 

followed by 2 × 105  accumulation steps, and Θ  is sampled after every 200 steps so that an 

ensemble of 1,000 sets of parameters are collected. The values of Δ𝑚max are chosen so that the 

acceptance ratio is around 0.3. I also assume 𝜎𝑖 = 0.1, i.e., the experimental data on percentage of 

germination is accurate up to ±10%, which should be an upper bound. 



 75 

 

Figure 5.13: Data Fitting and model prediction using ensemble method. 

(A) Histograms of K for the binding of L-asparagine to the GerB* GR and the binding of L-valine to the 

GerA GR respectively.  (B) Histograms of 𝜶. (C) Mean value and standard deviation (plotted as error bar) of 

germination criteria as function of commitment time. (D) Predictions of the SUM model and the OR model 

using the ensemble of parameters shown in (A-C). Each parameter set from the ensemble gives rise to one 

prediction, the lines and the error bars show the ensemble average and the standard deviations of the 

predictions. Experimental data is also shown to compare with the model. 
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The ensemble of parameters estimated using the Monte Carlos method is shown in Figs. 

5.13A-C. The parameters 𝐾 and 𝛼 are plotted in histograms, which reflect the likelihood of the 

parameter values representing the data given the model. The values obtained are consistent with 

that shown in Fig. 5.9, and the widths of the histograms provide a measure of the goodness of fit. 

The ensemble average and standard deviation of the parameter 𝑛𝑔(𝑡) for the time range 15-30 

mins is also shown, and the result is also consistent with that shown in Fig. 5.9, but with 

noticeably smaller error bars. The parameters are then used to make predictions, and Fig. 5.13D 

shows the SUM model shows good agreement with experiment for the whole ensemble of 

parameters. 

5.7 DISCUSSION 

The agreement of the SUM model with experiments suggests that spores “count” their total 

number of bound GRs and use this information as a major factor in deciding whether or not to 

germinate. The mechanism by which spores count is not known, but there are at least two 

possibilities. 

The first possible mechanism is that any single active GR has a certain probability to 

trigger germination, and the more active GRs there is the more likely a spore is to germinate and 

the faster the process is. (As an analogy, any activated grenade in an arsenal has certain 

probability to trigger the explosion of the entire arsenal, and the more activated grenades there 

are the more likely and the sooner is the explosion). However, this mechanism predicts that 

spores are unstable since the GRs may maintain a low level of activity either due to trace levels 
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of germinants in the environment or to spontaneous GR activation, and this contradicts the fact 

that spores can stay dormant for extremely long periods. 

The second possible mechanism is that germination is determined by the total number of 

active GRs on a spore, i.e., signals from all the active GRs are integrated inside the spore, and 

germination is triggered when the total signal strength is above a certain threshold. There is 

currently no direct evidence for such an “integrator”, although it has been suggested that the 

GerD protein, loss of which greatly decreases germination via GRs, might serve such a function 

[128]. However, since there was synergism between the GerA and GerB* GRs in germination 

when GerD was absent, GerD is not likely to be the “integrator” postulated above. In addition, 

GerD appears not to be present in spores of Clostridium species [129], and although synergism 

between multiple germinants has not been investigated in spores of Clostridium species, one 

might expect such a phenomenon to be widespread. A second way that signals from different 

germinants could be integrated is via some major germination event itself, such as CaDPA 

release. The release of the great majority of CaDPA during the germination of individual spores 

takes only a few min, although this is preceded by a long lag period (Tlag), the length of which 

varies considerably between individual spores [100]. While all events that take place during Tlag 

are not known, there is a slow release of CaDPA during this period [130].  This slow CaDPA 

release in Tlag would likely alter spore properties such as core water content and the strain on the 

spore’s peptidoglycan cortex, and these changes could then trigger fast CaDPA release and 

completion of spore germination [80, 130]. In this scenario perhaps the whole spore core/cortex 

functions as the integrator, and there is no dedicated integrator molecule. 

The model provides a simple explanation for superdormant spores, which is that the 

superdormant fraction comes from the low-expression end of the GR distribution (Fig. 5.3A). 
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This is supported by the experimental observation that superdormant spores germinate normally 

with CaDPA or dodecylamine [85, 87], which do not involve the activation of the GRs, but 

remain dormant with respect to the initial nutrients used to isolate them. What is less clear is why 

superdormant spores are also less responsive to other nutrients that stimulate different GRs yet 

germinate relatively normally with nutrient mixtures that stimulate multiple GRs [85]. One 

possible reason is that the levels of different GRs on single spores are correlated, so that a spore 

with low levels of one GR is also likely to have low levels of other GRs. Another possibility is 

that the diminished responses of superdormant spores to single nutrients combined with normal 

responses to nutrient combinations is a reflection of cooperative interactions between different 

GRs. 

The model also provides the basis for including the effects of other factors, such as heat 

activation or pH, on the kinetics or extent of germination. Heat activation is a common 

laboratory procedure of applying sub-lethal heat shock on spores before germinants are added 

(for the experiments used in this study, spores were heat activated for 30 min at 75°C and cooled 

on ice for ≤ 1 hour before use [8]). It is known that this procedure leads to increased germination 

rates but the reason is still unclear. The model suggests two possible explanations: (1) Heat 

activation increases the affinity of GRs for their cognate germinants, thus increasing the number 

of bound GRs in a spore for a given germinant concentration; (2) Heat activation increases the 

efficacy of each bound GR, shortening commitment time for a given number of bound GRs 

and/or decreasing the germination threshold. The latter seems to be favored by the fact that non-

heat-activated spores give much higher yields of superdormant spores than do optimally 

activated populations [85]. However, the two possibilities may coexist, and other factors not yet 

considered in the model may also play some role.  
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6.0  CONCLUSIONS AND OUTLOOK  

6.1 INTRINSICALLY DISORDERED PROTEINS 

Through a thermodynamic model, I showed that evolution may act differentially upon the level 

of disorder for proteins of different functions, which is supported by a genome-wide survey of 

disorder. For proteins whose main function is to bind other proteins, the amount of disorder that 

can be tolerated without degrading function is quite broad, depending on the complementarity of 

the interaction. Catalytic proteins have a strong preference for a stable folded state, consistent 

with the notion that catalysis has strong conformational requirements. More interestingly, 

disorder can be used to maximize the specificity of promiscuous interactions relevant to 

transcription and signal transduction. An interesting hypothesis arising from the theory is that 

lower affinity interactions are expected to involve proteins with less disorder, which may help 

explain why disorder is less prevalent in prokaryotes than eukaryotes. The hypothesis is 

consistent with a preliminary survey of protein-ligand interactions using the PDBbind database 

that suggests that bacterial proteins bind small ligand molecules more weakly than humans 

proteins. 

There is still questions about the role of disorder in eukaryotic transcriptional proteins 

and prokaryotic proteins. Eukaryotic transcription factors have long been noticed to have ordered 

DNA binding domains and disordered transcription activation domains [21]. The genome wide 
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survey further confirmed the ubiquitous presence of disorder in eukaryotic transcriptional 

proteins, in contrast to the lack of disorder in prokaryotes. To understand the difference, it is 

useful to compare how transcription is activated in different ways in the two types of organisms 

[2]. Prokaryotic transcription activators generally have separate activation and DNA-binding 

regions, where the activation region interacts and recruits RNA polymerase onto the DNA. 

Mutant transcription factors that bind DNA but could not interact with RNA polymerase do not 

activate transcription. Eukaryotic transcription activators, in contrast, rarely activate transcription 

through direct interaction with RNA polymerases. Instead, they recruit complex transcription 

machinery which in turn recruits the RNA polymerase. It has been suggested that, by being 

disordered, transcription factors could rapidly recruit the components of the transcription 

machinery through a fly-casting mechanism [131], and facilitate the assembly of the complex 

and the binding to the DNA. The theory presented here further suggest that disorder may also 

facilitate the process by tuning the binding affinities between the transcription factors and 

maximizing the discrimination between cognate and non-cognate binders. 

6.2 BACTERIAL SPORE GERMINATION 

I analyzed germination of FB10 spores with L-valine or/and L-asparagine – a simplified case 

where only the GerA and GerB* GRs are involved. I proposed a model (Fig. 6.1A) assuming: (1) 

There is no interaction between the GerA and GerB* GRs; (2) GRs are activated by germinant 

binding, and the active GRs generate certain downstream signal. The strength of the signal from 

each type of GR is proportional to the number of the corresponding GRs that are activated. (3) 

Signals from GerA and GerB* are summed by a common integrator and the total signal strength 
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is used to determine how fast a spore commits to germination, and the stronger the signal the 

faster a spore germinates. The agreement between the predictions of the model and the 

experiments suggests that these are reasonable assumptions. Based on the first assumption, we 

can conclude that the interactions between GerA and GerB* should be weak if not nonexistent. 

Figure 6.1B shows an extended model to include this possibility, where a GR can either function 

alone or together with a different GR. The extended model would be plausible if GRs function as 

complexes, where both homo-oligomers and hetero-oligomers can be formed. 

 

 

Figure 6.1: Possible mechanisms of signal processing inside spores. 

 

To generalize the model to wild type B. subtilis spores, where there is GerB instead of 

GerB*, and where the GerK GR also play important roles, more complex mechanisms of signal 

processing need to be considered. Figure 6.1C illustrates a mechanism where two types of GRs 

need to be activated simultaneously in order to trigger germination, which seems to apply to 

germination of wild type B. subtilis spores with AGFK, where both GerB and GerK are 

activated, but neither GerB nor GerK alone can trigger germination [80]. Figure 6.1D shows a 

model where one type of GR can either function alone or together with a second GR, while the 
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second GR has to function together with the first one. This mechanism seems to apply to the 

GerA GR in wild type B. subtilis spores, where the activation of GerA alone is sufficient to 

trigger germination, and the rate of germination is increased if either GerB or GerK is also 

activated, although neither of them can trigger germination alone [108]. Finally, these models 

seem to be supported by the recent finding that different GRs colocalize in discrete clusters on 

the inner membranes of spores [118]. 
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APPENDIX A 

MATALAB SCRIPT FOR DATA FITTING 

function spore_fit(filename,gam_a) 
 
% This matlab script fits the single germinant model to experimental data on fractions of 
%spores committed to germination at various germinant concentrations. 
% 
%--INPUT-- 
% 
%filename: name of the file containing experimental data 
% 
%Data should be in a text file with two columns, with the first column being germinant 
%concentrations in units of mM, and the second colum being the corresponding fractions 
%of spores committed to germination at a given time point. 
% 
%gam_a: scale parameter for gamma distribution 
% 
%The model assumes the number of germinant receptors (GR) on a spore follows gamma 
%distribution. Gamma distribution has two parameters: a shape parameter that 
%determines the shape of the distribution, and a scale parameter that determines the 
%mean value of the distribution. The model only depends on the shape parameter. 
% 
%--OUTPUT-- 
% 
%The script generates a plot showing the experimental data (fraction of commitment vs. 
%germinant concentration), the model parameters from fitting of the experimental data, 
%and a curve generated by the model using the derived parameters. 
%The model parameters are: 
% 
%K: apparent binding affinity between germinant and its cognate GR 
%alpha: Hill coefficient of the binding 
%n_g: normalized number of bound GRs (relative to the average number of GRs on a spore) 
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%         required for a spore to commit to germination no later than the given time point. 
% 
%--EXAMPLE-- 
% 
%spore_fit('data.txt',3) 
 
data = load(filename); 
conc = data(:,1); % germinant concentration (mM) 
fcom = data(:,2); % fraction of commitment at a given time point 
 
f_type = fittype('1 - gamcdf( (1+(K/c)^alpha)*ng, gam_a, 1/gam_a )','problem',{'gam_a'},... 
                 'dependent',{'y'},'independent',{'c'},'coefficients',{'K', 'alpha', 'ng'}); 
f_opt = fitoptions('Method','NonlinearLeastSquares','Lower',[0, 0, 0],'Upper',[Inf, Inf, Inf],... 
               'Startpoint',[median(conc), 1, 1]); 
f_result = fit(conc,fcom,f_type,f_opt,'problem',{gam_a}); 
 
tmp = coeffvalues(f_result); 
K     = tmp(1); 
alpha = tmp(2); 
ng    = tmp(3); 
 
tmp = confint(f_result,0.95); 
err_K     = (tmp(2,1) - tmp(1,1)) / 2; 
err_alpha = (tmp(2,2) - tmp(1,2)) / 2; 
err_ng    = (tmp(2,3) - tmp(1,3)) / 2; 
 
figure(1) 
clf 
set(gca,'fontsize',16) 
tmp_x = 10.^[-2:.01:2]; 
tmp_y = 1 - gamcdf( (1+(K./tmp_x).^alpha)*ng, gam_a, 1/gam_a ); 
semilogx(tmp_x,tmp_y,'r','linewidth',2) 
hold on 
semilogx(conc,fcom,'ob','markerfacecolor','b') 
hold off 
axis([min(conc) max(conc) 0 1.2]) 
xlabel('Germinant concentration (mM)') 
ylabel('Fraction of commitment') 
title(['spore_fit(''' filename ''',' num2str(gam_a) ')'],'interpreter','none') 
legend(['Model (95% confidence):' ... 
       '\newlineK = ' num2str(K,3) ' \pm ' num2str(err_K,2) ' mM' ... 
       '\newline\alpha = ' num2str(alpha,3) ' \pm ' num2str(err_alpha,2) ... 
       '\newlineN_g/N_{average} = ' num2str(ng,3) ' \pm ' num2str(err_ng,2)], ... 
       'Experimental data','location','southeast') 
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APPENDIX B 

ALGORITHM GENERATING CORRELATED GAMMA DISTRIBUTIONS 

Multivariate gamma distributions can be generated from multivariate normal distributions [132]. 

Consider 𝑿𝒖 = (𝑋1𝑢 , … ,𝑋𝑝𝑢) distributed as a p-variate normal vector with mean vector zero and 

covariance matrix 𝑴 = (𝜎𝑖𝑗). It can be shown that 𝑍𝑖 = ∑ 𝑋𝑖𝑢2𝑛
𝑢=1  follows gamma distribution 

𝑝(𝑥) =
1

𝑏𝑎Γ(𝑎) 𝑥
𝑎−1𝑒−𝑥/𝑏 

with 𝑎 = 𝑛/2 and 𝑏 = 2𝜎𝑖𝑖. Since the 𝑋𝑖’s are correlated, hence 𝑍𝑖’s are also correlated and we 

obtain a possible p-variate gamma distribution. 

Now the problem reduces to generating the p-variate normal distribution 𝑿 =

(𝑋1, … ,𝑋𝑝). Suppose 𝒀 = (𝑌1, … ,𝑌𝑝) is a vector with each element follows the standard normal 

distribution and no correlation between the elements. Since linear combinations of normal 

random variables is again normal, we could let 𝑿 = 𝑪𝑇𝒀, where C be a 𝑝 × 𝑝 matrix, and the 

problem again reduces to finding C such that 

𝑪𝑇𝑪 = 𝑴 

Since M is symmetric positive-definite, C is the Cholesky decomposition of M. 
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 Finally, following is a MATLAB script generating the number of GerA and GerB* on a 

population of spores: 

 

N_spore = 10000;    % number of spores 
N_GerA = zeros(1,N_spore);  % number of GerA GR on each spore 
N_GerB = zeros(1,N_spore);  % number of GerB* GR on each spore 
a = 3;     % gamma distribution parameter: a (2*a must be integer) 
b = 1/a;    % gamma distribution parameter: b 
r = .35;     % correlation between levels of GerA and GerB* 
M = b/2 * [1 sqrt(r);  sqrt(r) 1]; % covariance matrix 
C = chol(M);    % Cholesky decomposition 
for i = 1:N_spore 
     Y = randn(2, 2*a);   % standard normal distribution 
     X = C' * Y; 
     N_GerA(i) = sum(X(1,:).^2); 
     N_GerB(i) = sum(X(2,:).^2); 
end 
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