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Adaptive decision-making requires that options be weighed according to the predicted value of 

the outcomes that they are likely to produce. Cognitive neuroscientific research has frequently 

emphasized the importance of the ventromedial prefrontal cortex (VMPFC) for encoding value 

information.  As measured via functional MRI, VMPFC activity has been shown to correlate 

with the subjective values of explicitly-presented options (e.g., monetary gambles, offered foods) 

and also with the learned values of stimuli or actions that have been arbitrarily paired with 

rewards or punishments.  Additional work has confirmed VMPFC sensitivity to abrupt changes 

in option values, particularly when these may be inferred on the basis of regular fluctuations in 

and/or interrelationships between option-outcome contingencies (e.g., as in serial reversal 

learning).  The use of fixed option alternatives in these settings (e.g., constant choice stimuli) 

raises the question of whether such rapid updating of value activity can only occur when 

inferences can rely upon concretely-encoded sensory and motor information.  To determine 

whether any brain region tracks values that may only be inferred via abstract rules, we scanned 

17 participants as they completed a series of unique, two-trial discrimination problems in which 

the stimulus chosen on each Trial 1 was replaced with a novel stimulus of the same reward status 

on the following Trial 2.  Under this protocol, optimal responding required inferences regarding 

the valence of each unsampled Trial 1 stimulus. Additional problem-wise manipulation of the 

magnitude of the available gains and losses created a situation in which the specific values of the 

unsampled stimuli could also be inferred.  BOLD-signal analyses revealed activity in the right 
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lateral frontopolar cortex (FPC) that varied linearly with the inferable values of the unsampled 

Trial 1 stimuli; follow-up analyses confirmed that this effect was not attributable to the influence 

of the recently-delivered Trial 1 outcomes.  Therefore, the results indicate that the brain does 

encode values that may only be inferred via abstract deduction.  The frontopolar focus of this 

inferred-value activity corroborates and expands upon recent accounts of FPC function, which 

posit a broader role for this region in monitoring the value of re-directing behavior towards 

postponed response options.  
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1.0  INTRODUCTION 

Adaptive decision-making requires that options be weighed according to their value – a 

measure that, within many theoretical frameworks, is proportional to the likelihood and 

magnitude of the gains or losses that the option is likely to produce (for reviews, see Glimcher, 

Camerer, Fehr, & Poldrack, 2009; Sutton & Barto, 1998).  In some cases, the pending gain or 

loss may be obvious, due to the availability of either direct sensory evidence (e.g., the sight of an 

offered food) or a verbal indication of a potential outcome.  In other cases, the values of initially-

neutral choice alternatives may be learned through their repeated pairing with motivationally-

significant consequences. Given the diversity of options which may inherently carry or 

ultimately acquire value, a major question for cognitive neuroscience concerns how the brain 

learns and encodes value information in all of its different possible forms.  

In humans, functional MRI (fMRI) investigations of value processing have frequently 

focused on the ventromedial prefrontal cortex (VMPFC), a broad region that encompasses the 

inferior sector of the medial PFC and the medial sector of the orbital frontal cortex (Bechara, 

Damasio, & Damasio, 2000).   In decision-making settings, blood-oxygenation-level-dependent 

(BOLD) signals within the VMPFC reliably track the value of a remarkable variety of choice 

options. During decisions between explicitly-offered food, non-food, or monetary rewards, 

VMPFC activation has been shown to correlate with the options’ subjective values, with the 

latter estimated via value functions that have been derived from participants' choice behavior 
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(e.g., Chib, Rangel, Shimojo, & O'Doherty, 2009; Kable & Glimcher, 2007).  VMPFC value 

signals also emerge as participants learn to associate either distinct motor actions (e.g., Glascher, 

Hampton, & O'Doherty, 2009; Wunderlich, Rangel, & O'Doherty, 2009) or choice stimuli (e.g., 

Glascher, et al., 2009; Wunderlich, Rangel, & O'Doherty, 2010) with experimentally-introduced 

reward rates of varying probability or magnitude. 

The observation of VMPFC sensitivity to learned option values raises the question of 

how this form of value-signaling is acquired.  During standard probabilistic discrimination (i.e., 

two constant options with independent, stable probabilistic return rates), the evolution of both 

choice behavior and VMPFC value signals can be adequately modeled with basic reinforcement 

learning (RL) algorithms (e.g., see Palminteri, Boraud, Lafargue, Dubois, & Pessiglione, 2009).  

Although the available RL algorithms vary in their specific computations, they frequently 

incorporate an iterative process that consists of (1) the sampling of an option, (2) a generation of 

a prediction (e.g., Voption) of the likely value to be gained from choosing that option, (3) the 

computation of an error signal δ proportional to the actual reward r minus Voption, (4) an 

adjustment of Voption by a quantity proportional to δ times a learning rate η, and (5) the weighting 

of the next trial’s decision by the updated option values (see Daw & Doya, 2006; Sutton & 

Barto, 1998). The Voption term of the algorithm may then be used as a regressor to explain trial-

by-trial variability in VMPFC responses to the actions or stimuli under evaluation.    

When option values are learned in more structured tasks, the dynamics of VMPFC value 

activity may be better explained by sophisticated algorithms that exploit any structural 

information that may be available to the learner (e.g., interdependencies between, or reliable 

fluctuations in option values).  The superior fit that may be obtained with these “model-based” 

RL algorithms – as contrasted with the “model-free” approach described above – was initially 



 3 

demonstrated in an fMRI study by Hampton et al. (Hampton, Bossaerts, & O'Doherty, 2006).  

Hampton et al. were specifically interested in probabilistic reversal learning, a task which 

extends upon standard probabilistic discrimination by regularly switching the contingencies 

associated with the choice alternatives.  In the specific reversal protocol used by Hampton et al., 

two fractal stimuli alternated in their status as the “correct” option (70%:30% probability of 

gain:loss) and the “incorrect” option (40%:60% gain:loss) at a relatively stable, moderate rate.   

Participants were alerted to the probabilistic and reversing nature of the contingencies, and 

advised to persistently choose the “correct” stimulus until they had inferred that a reversal had 

occurred.  Additionally, a set of pre-scan practice trials provided exposure to the reversal rate 

and reward schedules that would be used in the scanner.  The subsequently-acquired 

neuroimaging data were then used to evaluate the ability of a model-free and a model-based RL 

algorithm to predict VMPFC activity, with the assumption that trial-by-trial responses in this 

region should reflect the anticipated value of the to-be-selected stimulus.   

The key qualitative difference between Hampton et al.’s (2006) model-free and model-

based algorithms was illustrated through the divergent predictions that they made for trials that 

immediately follow a loss outcome.  Within model-free RL, the delivery of a loss following the 

selection of a stimulus S1
 on trial t results in an incremental reduction in the estimated value Vs1 

during the  transition to trial t+1 (assuming that Vs1(t) > r(t)).  The estimated value of the 

unsampled stimulus S2 remains unchanged.  If the participant repeats the S1 choice on trial t+1, 

then the predicted magnitude of VMPFC activity is relatively low, given the recent decrease in 

Vs1.  If the participant switches to stimulus S2
 -- a choice that, given the instructions, is indicative 

of an inference that a reversal has occurred -- then the RL model still predicts a relatively low 

degree of VMPFC activity, since S2 typically has not been sampled (and Vs2 has not been 
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updated) since it was abandoned as a newly “incorrect” stimulus at the time of the preceding 

reversal.  

In contrast to the model-free approach, Hampton et al.’s (2006) model-based RL 

algorithm took advantage of the available task structure information to simultaneously update the 

estimated values of both choice options.  In the case of the specific algorithm that was employed 

(formally, a Bayesian Hidden Markov Model), the output that was used to predict VMPFC value 

activity was p(correct), the probability that the current “choice state” of either staying with or 

switching from the trial t choice was the “correct” strategy for trial t+1.   The trial-by-trial 

calculation of p(correct) relied upon the combination of the trial t selection and reward 

information with the structural details learned during the pre-scan practice, including the reversal 

rate and probabilistic schedules, and, critically, the “anticorrelated” nature of the reward 

contingencies (i.e., as implied in the constant presence of one “correct” and one “incorrect” 

stimulus). The algorithm exploited the anticorrelation property by coupling negative adjustments 

in p(correct) for “staying” with positive adjustments in p(correct) for “switching”, and vice 

versa.  As a consequence, although both the model-based and model-free algorithms predicted 

decreased VMPFC activation when a loss was followed by a “stay” response, only the model-

based algorithm predicted increased activation when a loss was followed by a response switch.  

The predictions of the model-based RL algorithm best matched the observed VMPFC activity, 

which exhibited increased as opposed to decreased response magnitude on the post-loss switch 

trials (see Hampton et al. Fig. 3A).  This specific observation was corroborated by the superior 

quantitative fit of the model-based algorithm’s predictions to overall VMFPC activity, even 

when fit assessments accounted for the greater number of free parameters utilized in this 

approach.         
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In summary, Hampton et al. (2006) demonstrated that VMPFC activity – at least within a 

reversal setting -- was best explained by a model that made use of known contingency 

interrelationships in order to infer value changes before they had been directly experienced.  As 

the authors noted, their Hidden Markov Model was just one of many possible algorithms that 

would have generated such structure-based inferences.  Consequently, much uncertainty remains 

with respect to the precise nature of the operations that ultimately gave rise to their VMPFC 

results.  One important question concerns the degree of abstraction that the inference-guiding 

operations entailed. In the Hampton et al. model, abstract processing was assumed: The 

estimated values of the “stay” and “switch” options were encoded and adjusted in a manner that 

was independent of the specific stimuli to which they were being applied.   However, post-

reversal inferences are also predicted by models in which options are encoded more concretely.  

For example, Fuhs and Touretzky (2007) proposed a model of deterministic reversal learning in 

which the sensory and motor experiences of the task are categorized into two contexts, with each 

context corresponding to a stable pattern of environmental inputs (i.e., a single pair of stimulus-

outcome contingency assignments). A key function of the model is to recognize ongoing 

experiences as consistent with one of the two contexts, which can in turn be used to predict the 

current value of each behavioral option.  Extended to the probabilistic setting, a two-context 

model, like the Hampton et al. model, would predict increased value estimates and increased 

VMPFC activation during post-loss response-switching trials.  In this case, the increase in 

predicted value follows from the fact that the negative outcomes received for the original 

selection are most consistent with the context in which the value of the alternative choice is high. 

The distinction between the Hampton et al. (2006) approach and the two-context model is 

not trivial.  Relative to the latter, concrete experience-based approach, any model that 
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incorporates an abstract encoding of the task structure is much more powerful in its inferential 

capabilities.  This enhanced power would apply to any situation that involves the generalization 

of learned structural information to a new set of stimulus- and/or action options.  As an example, 

consider a situation in which extensive training on a single pair of serially-reversing stimuli is 

followed by transfer to a new reversal problem that uses a new set of stimuli (see Rygula, 

Walker, Clarke, Robbins, & Roberts, 2010 for an example of the use of such a protocol with 

marmoset subjects).  Models that rely on a concrete versus abstract encoding of the task structure 

would behave quite differently on the first occasion when the values of the new stimuli are 

reversed.  From the perspective of a two-context model, the new circumstances would not match 

any experienced context; as a consequence, the model would have no basis for predicting the 

new stimulus values.  In contrast, a model based on abstractly-encoded “switch” and “stay” 

options would be capable of applying previously-learned structural information to the new 

stimuli, and could thereby support rapid post-reversal adjustments.  

Given the importance of abstract, rule-guided value predictions, the central goal of the 

present dissertation research is to determine whether activity in the VMPFC – or in any other 

brain region -- is sensitive to value information that may solely be inferred using abstract rules.  

This goal is accomplished by adapting a task from the non-human primate literature (Lockhart, 

Parks, & Davenport, 1963) in which optimal performance requires the repeated generation of 

inferences regarding never-sampled stimuli. 

The original Lockhart et al. (1963) study was designed to explore the learning capabilities 

of monkeys that had acquired an object discrimination “learning set.”  In this context, the term 

learning set (LS) describes the rapid, often single-trial learning that highly-trained animals may 

exhibit on deterministic object discriminations (i.e., S+ and S- stimuli rewarded at rates of 100% 
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and 0%, respectively).  In a typical learning set training protocol, monkeys complete hundreds of 

unique discrimination problems, each comprised of a new pair of S+/S- junk objects presented 

for two or more successive trials (for examples see Harlow, 1949; Levine, Levinson, & Harlow, 

1959).  The hallmark of learning set development is the gradual but ultimately dramatic increase 

in the slope of the single-problem learning curve, such that mean accuracy for the first non-

chance problem trial (Trial 2) increases from near-chance to near-ceiling levels.  Substantial 

behavioral and neural evidence suggests that this improved performance reflects a shift from 

simple associative to strategy-based learning mechanisms (Browning, Easton, & Gaffan, 2007; 

Deets, Harlow, & Blomquist, 1970; Murray & Gaffan, 2006).   The purpose of the Lockhart et al. 

study was to determine the scope of the information that might be encoded during this strategic 

learning phase.  The authors were specifically interested in the nature of the learning that might 

occur during the Trial 1-to-Trial 2 transition, at which point monkeys might develop accurate 

response tendencies directed towards either the chosen Trial 1 object (i.e., “win-stay/lose-shift”) 

or the unchosen Trial 1 object (i.e,, avoid unchosen following a win, and approach unchosen 

following a loss). 

To test this question regarding Trial 1 learning, Lockhart et al. (1963) created a task that 

selectively enhanced the behavioral relevance of either the initially-chosen or initially-unchosen 

problem stimuli (Fig. 1). The task consisted of 6-trial discriminations presented according to a 

largely standard protocol, which included control procedures designed to ensure that Trial 1 S+ 

and S- selections occurred with equal frequency.  The principal experimental manipulation 

occurred on Trials 2-6, during which either the chosen or unchosen Trial 1 stimulus was replaced 

with a novel stimulus (“N+” or “N-”) that adopted the value of the stimulus that it replaced.  

Replacement of either the chosen or unchosen stimuli was carried out as a between-subjects 
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manipulation.  Note that for subjects assigned to a “replace-unchosen” condition, optimal Trial 2 

performance could be achieved via a strictly-defined application of the win-stay/lose-shift rule – 

in other words, the approach or avoidance of a previously-rewarded or -nonrewarded object. 

Under the “replace-chosen” protocol, it is impossible to execute a strict win-stay/lose-shift 

strategy; successful performance instead requires attention to and generation of an appropriate 

response towards the unsampled Trial 1 stimulus.  

In their small sample of monkey subjects, Lockhart et al. (1963) only observed accurate 

Trial 2 responding when performance could be guided by sampled as opposed to unsampled 

objects.  By the end of an 8-week testing period, the replace-unchosen group (who could rely on 

experienced contingencies) achieved ~80% Trial 2 S+/N+ selection rates, with accuracy levels 
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approaching ceiling across Trials 3-6.  Although the replace-chosen subjects also demonstrated 

strong Trial 3-6 performance, their Trial 2 accuracy never reliably exceeded chance, regardless 

of whether performance was assessed within or across the two Trial 1 Selection conditions.  

Thus, at minimum, these results suggest that monkeys do not readily take advantage of the 

anticorrelation structure of deterministic discriminations in order to generate adaptive responses 

to unsampled stimuli, even when alterations in task structure encourage this kind of behavioral 

policy.  In the case of the Lockhart et al. study, the replace-chosen subjects instead appeared to 

base their learning on the outcome of Trial 2, which was received for sampling a stimulus that 

would continue to appear on the remaining four trials.   

 Preliminary data from our lab suggested that human participants, when exposed to a 

computerized version of the Lockhart et al. (1963) task, can spontaneously acquire the optimal 

Trial 2 behavior in the replace-chosen condition (presented as a conference poster, Cox & Fiez, 

2010). Therefore, in spite of monkeys’ poor performance in this setting, the replace-chosen 

protocol provides a viable means for measuring humans’ neural sensitivity to values that are 

inferred via abstract rules.  In the present study, we refined our approach from the preliminary 

work to create both a pre-scan training sequence and an in-scanner test task that incorporated the 

critical replacement manipulation (see Fig. 2 for a depiction of the fMRI task).   

All stages of the experiment were organized around a fundamental two-trial problem 

structure, with each problem consisting of (1) the free choice, on Trial 1, of either one of two 

uniquely-patterned “card” stimuli, (2) the delivery of a gain or loss of “points”, depending on the 

predetermined status of the Trial 1 selection, (3) a second free choice on Trial 2, and (4) delivery 

of a second points outcome, depending on the Trial 2 choice and the active contingency 

assignments.  During an initial, simple-discrimination phase of pre-scan training, the same pair 
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of stimuli was repeated across the two problem trials, with the goal of inducing our largely-

uninstructed participants into acquiring a pattern discrimination learning set.  Subsequent 

training problems incorporated the replace-chosen manipulation, such that each sampled Trial 1 

stimulus was replaced with a novel card of the same value on the following Trial 2. 

In view of our specific neuroimaging aims, the fMRI task was designed to facilitate the 

detection of hemodynamic signals that track with the inferable values of the unchosen Trial 1 

stimuli. In this process, it was necessary to make three important modifications to the original 

Lockhart et al. (1963) task structure.  First, to dissociate the BOLD responses that might be 

evoked by either of the two Trial 2 stimuli (i.e., the novel card and the old-but-unsampled card), 

we introduced a brief “preview period” consisting of the display of a single member of the card 
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pair immediately prior to the onset of Trial 2.  Participants were explicitly instructed to refrain 

from responding during these preview periods.  Old-unsampled and novel stimuli were 

previewed at equal rates, with the “old” stimuli representing the primary condition of interest.  

The novel previews were included both to prevent the success of any inference-generation rules 

that might be exclusively guided by the Trial 1 outcomes and to address any alternative 

interpretations of preview-period activity as directly reflective of these outcomes.  We did not 

make any formal predictions as to whether the participants would spontaneously infer the values 

of the previewed novel stimuli, since adaptive behavior can be guided through reliance on the old 

stimuli alone.   

Second, to allow for a more rigorous test of value-related signaling than would be 

afforded by a simple valence manipulation (i.e., S+ versus S-), we added a categorical, problem-

level manipulation of outcome magnitude.    Across each two-trial pair, the delivered gains and 

losses were either consistently “high” (20 points) or “low” (5 points), thus providing a basis for 

inferring the magnitude of the outcomes associated with the previewed stimuli.  Third, to 

facilitate deconvolution of the hemodynamic responses evoked by the Trial 2 preview and Trial 2 

proper, we applied a “catch trial” manipulation to a small percentage of the problems (Ollinger, 

Shulman et al., 2001).  In this context, a catch trial referred to a preview period that was 

immediately followed by fixation as opposed to the corresponding Trial 2; points were neither 

earned nor lost for these trials. 

 Using this design, we sought the existence of brain regions in which preview-period 

activation was directly correlated with the values of the old-but-unsampled previewed stimuli.  

Such a response pattern would be consistent with the interpretation that a region signals value 

information that has been inferred via abstract rules.  In light of the past neuroimaging research 
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described above, we anticipated that a primary locus of value-related signaling might be found in 

the VMPFC.  Although our analysis differed from that of Hampton et al. (2006) in its inclusion 

of both to-be-chosen and to-be-unchosen stimuli, our prediction of VMPFC value activity across 

all “old” previews was supported by data suggesting that this region signals stimulus values 

regardless of ultimate selection status during “pre-decision” intervals (Wunderlich, et al., 2010).   

Although our a priori predictions were limited to the VMPFC, other prefrontal regions 

have exhibited inferred-value activity in specialized settings, and therefore could be speculated 

to be potentially responsive to values that must be inferred via abstract rules.  Two such regions 

are the lateral PFC (LPFC, including both dorsal and ventral sectors) and frontopolar cortex 

(FPC).  Electrophysiological data from the monkey LPFC have suggested a potential role for this 

region in signaling “category-based” inferred values (Pan, Sawa, Tsuda, Tsukada, & Sakagami, 

2008). In a task in which value information regarding the terminal member of a stimulus chain 

(“C” in “ABC”) could be inferred to apply to the chain as a whole, the pairing of a new reward 

contingency with the terminal stimulus was reflected in subsequent LPFC responses to the chain-

initial stimulus (“A”).  This observed LPFC sensitivity to higher-order structure suggests that 

value activity in this region might be similarly influenced by other, more abstract task rules. 

With respect to the FPC, recent fMRI evidence (Boorman, Behrens, Woolrich, & Rushworth, 

2009) raised the intriguing possibility that this region specifically tracks value information 

related to recently-unchosen options.  In a task in which left- and right-button presses were 

rewarded according to independent, randomly- and gradually-drifting probabilities, Boorman et 

al. found that FPC activity tracked the difference in the estimated reward probabilities associated 

with the trial-by-trial unchosen and chosen options. A finding of such FPC relative unchosen-

value activity in an abstract rule-bound context would be consistent with models that place this 
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region at the apex of a rostrocaudal, abstract-to-concrete processing gradient within the PFC 

(Badre, 2008).   

1.1 METHODS 

1.1.1 Participants 

Healthy adults between 18-35 years of age were recruited from the University of 

Pittsburgh and surrounding community.  Prior to enrollment, prospective participants were 

screened according to the inclusion criteria (right-handedness, MRI compatibility, English 

proficiency) and the exclusion criteria (self-report of learning or reading disabilities, psychiatric 

or neurological illness, or usage of psychoactive medication).  Thirty-eight participants were 

initially enrolled in the study, which consisted of two experimental stages (behavioral training, 

fMRI acquisition) scheduled to occur on two consecutive days. 

A subset of the enrolled participants were excluded from the final dataset due to problems 

that occurred during either the behavioral or fMRI stages.  During the behavioral training stage, 

participants were excluded on the basis of either unsatisfactory performance (n = 6, see section 

1.1.3), voluntary withdrawal (n = 1) or software malfunction (n = 2).  Participants who were 

excluded during behavioral training did not participate in the fMRI stage, and their data were 

omitted from all behavioral analyses.  Behavioral data were also omitted for participants for 

whom scheduling conflicts prevented the fMRI session from occurring as planned (n = 3).  

During the fMRI stage, additional participants were excluded on the basis of either unsatisfactory 

performance (n = 5, see section 1.1.4.2), visible head movement during the structural series (n = 
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1), head movement > 4 mm during the functional series (n = 1), early termination due to 

participant discomfort (n = 1), or an error in the acquisition protocol (n = 1).  Both behavioral 

and fMRI data were discarded for these participants.   The final analyzed dataset consisted of 17 

participants (10 male, 18-22 y, mean +/- s.d. = 19.82 +/- 1.29 y).  For a single analyzed 

participant, the second half of the fMRI dataset was omitted due to movement that crossed the 4 

mm threshold during these final five runs.  Behavioral data acquired during these runs were also 

eliminated from all analyses. 

1.1.2 Behavioral task 

The behavioral task was generated using the E-Prime software package (v. 1.1.4.1., 

Psychology Software Tools, Pittsburgh, PA).  During the behavioral training, stimuli were 

presented via an LCD desktop computer monitor, and responses were collected via keyboard 

input.  During the fMRI scans, stimuli were projected onto a mirror affixed to the scanner head 

coil, and responses were registered via an MRI-compatible response unit worn on the right hand. 

1.1.2.1 Stimuli and general task structure 

The basic task display features and response requirements remained constant throughout 

the pre-scan training and fMRI stages. For each two-trial pattern discrimination problem, a trial 

included, at minimum, a choice period, an outcome period, and an inter-trial (or inter-problem) 

fixation period. On each trial, two playing cards marked with unique multi-colored patterns 

flanked a central fixation cross (see Fig. 2). During the choice period, the left and right cards 

(position randomized across trials) were selected using either the “1” and “2” keys on the 

keyboard or the index- and middle-finger buttons of the MRI response unit. During the outcome 
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period, the selected card was highlighted with a gray box, and the fixation cross was replaced by 

the number of points earned for the current selection (bold text for rewards, italics for losses). 

The inter-trial/problem interval was marked by the return of the central fixation cross, which 

appeared in white between Trials 1 and 2 of a single problem, and in gray before the start of a 

new problem. 

The procedure for generating the individual card patterns was designed to fulfill two 

goals: (1) to permit the creation of a very large number of unique stimuli, and (2) to present 

abstract patterns which were unlikely to be familiar to the participants. The latter goal was 

intended to minimize the inclusion of patterns towards which participants might possess pre-

existing biases, and also to discourage the formulation of irrelevant hypotheses based on 

meanings that the images might carry outside of the task context. Our task stimuli were 

generated according to a method introduced by Gaffan and Harrison (1988) and subsequently 

used in several non-human primate studies. Each pattern consisted of two superimposed 

characters, with the superimposed character appearing as half the size of the base character (52 pt 

and 104 pt font for the top and bottom characters, respectively). Characters were randomly 

sampled from a fixed pool of 36 total characters that had been selected from three obscure 

writing systems (the Shavian, Deseret, and Elder Futhark scripts, see http://www.omniglot.com). 

On each occasion when a character was sampled, it was additionally assigned a color, which was 

randomly drawn from a pool of 12 total colors. All random sampling occurred without 

replacement, such that no individual character (or color) was eligible to re-appear until each of 

the characters (or colors) had been sampled at least once during a single cycle through the 

corresponding list.  
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1.1.2.2 Experimental Factors 

The replace-chosen problems presented during fMRI testing and the final phases of 

behavioral training were manipulated according to three within-subjects factors (see Fig. 2). The 

first factor, Trial 1 Selection (S+, S-), determined the valence of the initially-chosen stimulus, 

which in turn determined the replacement which would occur on Trial 2. The second factor, 

Preview Familiarity (old, novel), determined whether the old, unsampled Trial 1 stimulus or the 

novel replacement stimulus was previewed before Trial 2. The third factor, Problem Magnitude 

(high, low), varied the size of the rewards and punishments that could be delivered on each 

problem (+20/-20 points or +5/-5 points for selection of a positive/negative stimulus).   

The experimental design may also be described according to a scheme based on the 

values of the old- and novel-previewed stimuli; that is, with respect to a 2(Preview Familiarity) x 

4(Preview Value: +20, +5, -5, -20) design.  The two different design descriptions are emphasized 

for different aspects of the experiment.  Because the initial behavioral training phases did not 

include a preview period, and because training-stage performance was evaluated according to 

criteria that were jointly applied to the two Trial 1 Selection conditions (see section 1.1.3), Trial 

1-centered designs are emphasized throughout the majority of the discussion of the training.  A 

Trial 1-centered design is also relevant for some aspects of the fMRI data, as Trial 1-based 

performance criteria were also applied to this stage of the experiment, and because the Trial 1 

Selection factor figures into the potential interpretation of some of our observed BOLD effects.  

The preview-centered design is primarily relevant for the fMRI stage, during which our principal 

experimental question focused on BOLD (and to some extent, behavioral) effects that were 

related to the values of the previewed stimuli.  In some instances we also report analyses 

organized according to a 3-way preview-centered design in which the statuses of the previewed 
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cards are defined categorically as opposed to quantitatively (i.e., 2(Preview Familiarity) x 

2(Preview Valence) x 2(Problem Magnitude)).   

1.1.3 Behavioral training  

Study participation began with a single behavioral training session lasting up to 2.5 

hours.  Training consisted of five separate phases designed to gradually introduce the 

deterministic contingencies, the replacement manipulation, and a set of additional features that 

supported the transition of the task to an fMRI-appropriate design.  At the start of training, the 

experimenter informed participants that they would earn “points” which would not carry any 

monetary value during the first four phases of the task, but would acquire a small amount of 

monetary value during the fifth phase (1 point = 1 cent).  Participants were also instructed that 

their goal should be to earn as many points as possible, and that the rate at which they earned 

points would govern the rate at which they progressed through the task phases.  These verbal 

instructions were followed by a set of instructions presented on the computer screen:   

On each trial of this training, you will see two playing cards, and you will be able to choose one of them.  

You can choose the left card using the "1” key, and the right card using the "2" key.  For the initial 

components of the training, there will be no time limit on how long you can take to make your choice. 

 

On each trial, when you make a choice, you will earn or lose a certain number of points.   After you make 

your selection, the number of points that you have earned or lost will appear in the center of the screen.   

For the initial phases of training, the points do not correspond to any actual monetary earnings or losses.   

However, the rate at which you progress through the training is influenced by the rate at which you earn 

points.  So try to perform well! 
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The training will consist of five total phases.   Some phases may be preceded by a set of special 

instructions.  Please read these instructions carefully!  The information that they provide will help you to 

maximize your point earnings. 

 

The omission of any reference to the relevant structural features of the task (e.g., the 

deterministic, opposing stimulus-outcome contingencies, or the replacement manipulation) was 

motivated by two general considerations.  First, the sparse instructions created a learning 

situation which approximated that which would be presented to nonhuman subjects, thereby 

implying that our training data provide at least an initial basis for cross-species comparison on 

this task. Second, we anticipated that the requirement for self-discovery of the structure would 

add a degree of uncertainty that might otherwise be lacking in a deterministic setting.  The 

presence of uncertainty figures importantly in the engagement of several of the regions that 

comprise the brain’s valuation circuitry (e.g., Bhanji, Beer, & Bunge, 2010; Delgado, Miller, 

Inati, & Phelps, 2005). 

1.1.3.1 Phase 1: Discrimination learning set training 

Phase 1 introduced the deterministic contingencies and the problem-level magnitude 

manipulation.  The phase consisted of one or more consecutive blocks of 20 two-trial 

deterministic discrimination problems.  Problems were defined according to two factors: Trial 1 

Selection (S+, S-) and Problem Magnitude (high, low).  Within each block, five problems were 

assigned to each of the resulting four conditions and presented in a random sequence.  During 

Trial 1 of each problem, participants were free to choose either the left or right stimulus.  All 

responses were self-paced.  Immediately after a response, an outcome display appeared for 0.5 s, 

with the outcome value determined by the current Trial 1 Selection and Problem Magnitude 
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assignments. In accordance with the deterministic contingencies, the displayed outcome became 

permanently associated with the chosen stimulus, and the oppositely-valenced outcome became 

associated with the unchosen stimulus. Following a 1 s ITI, the two cards re-appeared until a 

Trial 2 selection was registered. The Trial 2 outcome was determined by the current Problem 

Magnitude condition and the contingencies that were set on Trial 1. Following the 1 s inter-

problem interval, a new pair of cards appeared and a new Trial 1 began. 

Although participants were told that progress through the phases was determined by the 

points earned per block, the actual performance criteria were more subtle and focused 

exclusively on Trial 2 accuracy.  Progression to Phase 2 required the joint achievement of ≥ 90% 

Trial 2 accuracy on the 10 problems that begin with an S+ selection and with an S- selection, 

respectively. These joint accuracy criteria were motivated by pilot data which revealed a greater 

errors-to-criterion rate for problems that begin with the selection of an S- as opposed to an S+ 

(or, phrased differently, for problems which required a “switch” as opposed to a “stay” response 

on Trial 2, Cox & Fiez, 2010). 

1.1.3.2 Phase 2: Replace-chosen training 

Phase 2 introduced the Trial 2 replacement manipulation; all other factors and timing 

parameters were carried over from Phase 1. Participants were informed that they were 

proceeding to Phase 2 but were not alerted to the specific change in the task. As in Phase 1, the 

Trial 1 Selection and Problem Magnitude factors were crossed to form four problem conditions, 

each of which were represented by five problems in each 20-problem block. For the second trial 

of each problem, the computer replaced the initially-sampled card with a novel card, with the 

novel card inheriting the value of the replaced card.  As was the case for Phase 1, the Phase 2 

accuracy criteria required the joint achievement of ≥ 90% Trial 2 accuracy for both Trial 1 
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Selection conditions.  Pilot data suggested that, relative to Phase 1, Phase 2 tends to produce a 

reversed Trial 1 Selection effect (Cox & Fiez, 2010); specifically, we found a qualitative trend 

for a greater errors-to-criterion rate for problems that began with an S+ as opposed to an S- 

selection (or, phrased differently, for problems which required the avoidance of an old-

unsampled S- and/or approach of a novel N+).  

1.1.3.3 Phase 3: Adaptation to the Trial 2 preview and the fMRI timing parameters 

Phase 3 introduced the fMRI timing parameters and the Trial 2 preview periods.  Phase 3 

also marked the first phase during which participants were exposed to the full 2(Preview 

Familiarity) x 2(Trial 1 Selection) x 2(Problem Magnitude) design.   To accommodate this 

design, block size was increased to 24 problems, with each of the eight conditions represented 

three times during each randomly-sequenced block. 

The transition to the fMRI timing parameters involved two general changes in the 

structure of each trial.  First, the duration of the choice period was limited to a fixed 1 s, 

regardless of when the participant responded.  The chosen stimulus was highlighted if a response 

was registered during the first 0.9 s of this time window (with the 0.1 s buffer included due to 

technical issues concerning the maintenance of precise timing).  If a response was not detected 

by the 0.9 s deadline, then the participant earned 0 points for the trial, and this point value was 

displayed with the warning message “Too Slow” during the outcome period.  Since no stimulus 

was selected, the S+/S- designations were randomly assigned to the two Trial 1 stimuli.     The 

second general change in trial structure involved the introduction of the jittered inter-trial 

intervals that were necessary for our fast event-related fMRI design.  Within each block, ITI 

durations of 1.5, 3, 4.5, and 6 s were jittered according to a rough approximation of an 
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exponential distribution (Ollinger, Corbetta, & Shulman, 2001), such the shortest intervals 

occurred with the greatest frequency. 

The Trial 2 preview, which occurred immediately prior to the Trial 2 choice period, 

consisted of a 1.5 s period during which the previewed stimulus was displayed in the center of 

the screen. Participants were notified of the preview period, the response deadline, and the 

altered timing parameters with the following instructions:  

Phase 3 is different from the previous phases in three important ways.  

 

First, during Phase 3 you will be required to make a response within slightly less than 1 second (0.9 

seconds) after a pair of cards appears.  If you do not make a response within this time window, then you 

will see a "too slow" message and will receive zero points for that trial.  Second, on every other trial of 

Phase 3 you will notice that one card will appear 1.5 seconds prior to the other card.  You should NOT 

RESPOND when only one card is on the screen.  If you do make a response during this time, then you will 

see a "too early" message and will receive zero points for that trial.   You may respond after the second card 

appears.  You will have slightly less than 1 second (0.9 seconds) to make your response.  Third, you will 

notice that the delays between individual trials will be much longer during Phase 3. 

 

In summary, you can expect the following changes during Phase 3:  

(1) You must respond within 0.9 seconds after a PAIR of cards appears. 

(2) You must NOT respond when only one card is on the screen. 

(3) You can expect the delays between trials to be long. 

 

If a response was detected during the preview period, then a display consisting of the 

previewed card and the “Too Early” message replaced the Trial 2 choice display, and the 

outcome display was replaced by 0.5 s of additional fixation.  For the purposes of assessing 

attainment of the performance criteria, these trials were recorded as inaccurate.  Satisfaction of 
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the Phase 3 accuracy criteria required ≥ 11 correct Trial 2 responses out of the 12 problems 

representing each Trial 1 Selection condition during a single block (i.e., > 91.6% accuracy).   

1.1.3.4 Phase 4: Adaptation to catch trials 

Phase 4 introduced the Trial 2 “catch trials”, which in this context referred to Trial 2 

previews that were not followed by a Trial 2 choice or outcome period.  The catch trials were 

included to support the eventual fMRI analysis.  Specifically, by decoupling the relationship 

between the preview and the events that typically followed it, the catch trials would facilitate the 

estimation of any preview-specific BOLD responses (Ollinger, Shulman et al., 2001).  Relative 

to the Phase 3 block structure, the Phase 4 blocks included eight added “catch trial” problems, 

with a single problem representing each of the eight cells of our design.     

Participants were alerted to the presence of the catch trials with the following 

instructions: 

 

Phase 4 is similar to Phase 3, except for one important difference. 

 

During Phase 4, you will sometimes see a single card appear on the screen, and it will not be joined by the 

other card 1.5 seconds later.  Instead, the card will disappear and you will see the "+" sign only, indicating 

that the trial has ended. These trials are called "partial trials."   Since the second card never appears on these 

trials, you will not have the opportunity to make a response.  Instead, you will need to wait for the next trial 

to begin.  The majority of the trials are NOT partial trials, meaning that on most trials, you will have the 

opportunity to respond.  Your performance will only be assessed for those trials on which you were 

allowed to make a response. 
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In summary, during Phase 4 you can expect the following to occur: On some trials, a card will appear alone 

and never be joined by the other card.  On these partial trials, you should not respond, and you should wait 

for the next trial to begin. 

Since the catch trials did not include the 1 s Trial 2 choice period, any required “Too 

Early” messages replaced the first 1 s of the fixation period that immediately followed the catch 

trial.  The Trial 2 accuracy criteria for Phase 4 were identical to those used for Phase 3 (> 91.6% 

accuracy per Trial 1 Selection condition), and were only applied to the standard, complete trials. 

1.1.3.5 Phase 5: Monetary earnings 

The purpose of Phase 5 was to expose the participant to monetary gains and losses that 

were similar to those which they would earn in the scanner.  Only a single block of Phase 5 was 

presented; no accuracy criteria were applied.  Participants were informed of these changes with 

the following instructions:  

Phase 5 is similar to Phase 4, with two important differences. 

 

First, the points that you earn or lose during Phase 5 DO indicate the number of cents that you have won or 

lost.  Second, you will only complete one block of Phase 5 during this experimental session, regardless of 

your performance. 

 

In summary, during Phase 5 you (1) will earn or lose money, instead of points, and (2) complete only one 

block of trials. 

The end of Phase 5 was signaled by a display reporting the cumulative block earnings 

(range  = $1.70-$3.20 in the reported dataset). If the participant completed the five phases in < 2 

h, then s/he was dismissed for the day and paid an amount equal to the Phase 5 earnings plus an 

$18.00 base pay.  Participants who did not complete the training within 2 hours were offered the 
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option of either terminating the training immediately (and canceling the scan session) or of 

continuing with the training for the remaining 30 min.   If the participant chose to terminate the 

training, as was common amongst individuals who found the task very frustrating, then s/he was 

thanked for his/her participation and provided with the $18.00 base pay.  These participants were 

recorded as having failed to pass the behavioral training stage.  A similar protocol was followed 

with those participants who did opt to continue training but did not successfully finish within the 

remaining 30 min. 

1.1.4 Functional MRI session 

1.1.4.1 Pre-scan practice 

Two practice periods were provided immediately prior to the acquisition of functional 

data.  Each period consisted of problems structured identically to those viewed during Phases 4 

and 5 of the behavioral training.  The first, 32-trial block of problems was presented outside of 

the scanner, with the participant interacting with a desktop computer similar to that used during 

training.  A second, 16-trial block of problems was presented inside the scanner during the initial 

series of structural data acquisition.  This second practice period was included to acquaint the 

participant to the novel visual and response elements of the scanner-based task (e.g., projected 

display, MRI response unit) before the actual collection of functional data began.   No monetary 

rewards were gained or lost during the practice periods.  

1.1.4.2 Data acquisition 

Participants were scanned at the Neuroscience Imaging Center with a 3T Siemens 

scanner.    The ~80 min scanning session included the acquisition of multiple structural and 
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fieldmap images; only those data used in the reported analyses will be described here.  Prior to 

functional acquisition, T2-weighted structural images (resolution 0.8 x 0.8 x 3.2 mm) were 

collected in 51 contiguous axial slices with a target orientation of 30° relative to the AC-PC 

plane.  The 30° tilt has been employed in several previous studies of the VMPFC (e.g., Hampton, 

et al., 2006) as a strategy for reducing susceptibility-related signal dropout in the orbitofrontal 

cortex (Deichmann, Gottfried, Hutton, & Turner, 2003).  Due to the head positioning of three of 

our subjects, it was necessary to undershoot this target orientation by 1-2° in order to avoid a 

shift from axial to coronal output.  Immediately following the functional runs, a high-resolution 

T1-weighted MPRAGE volume (resolution = 1 mm3) was also acquired. 

Functional data (resolution = 3.2 mm3) were acquired with a one-shot echo-planar 

imaging (EPI) pulse sequence (TR = 1500 ms, TE = 25 ms, FOV = 205 mm, flip angle = 70°) 

across a 29-slice subset of the structural field of view.  This subset was adjusted on a per-subject 

basis such that the 2nd-most inferior slice in the acquisition grid corresponded to the most inferior 

slice on which the orbitofrontal cortex could be visualized.  In other words, the inferior-most 

slice of the grid was left as a “buffer slice” that protected against experimenter error in precisely 

identifying the inferior border of the OFC.  The resulting coverage generally excluded the 

relatively superior and/or caudal frontal areas, a large portion of parietal cortex, and smaller 

portions of other brain regions.   The functional data were collected across ten 5 min 7.5 s runs, 

each of which consisted of a 32-problem block structured identically as the block encountered 

during Phase 5 of training.  The end of the 10th functional run was followed by a screen 

displaying the cumulative session earnings (range = $23.95-$29.30 in the reported dataset). 

As in the behavioral training stage, the performance criteria that were used to determine 

fMRI data inclusion required the joint attainment of specified Trial 2 accuracy rates for problems 
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associated with the two possible Trial 1 Selection conditions.  However, relative to the training 

stage, the fMRI criteria were relaxed in three ways.   First, the accuracy target was reduced to ≥ 

85% correct responses following the Trial 1 S+ and S- selections.  Second, accuracy rates were 

computed as the percent of correct responses out of the total number of “valid” problems (no 

Trial 1 response omissions or preview-period responses) as opposed to all non-catch-trial 

problems.  Finally, Trial 2 accuracy data were evaluated across as opposed to within runs.  These 

revised criteria were motivated by practical considerations; application of a more rigorous 

accuracy standard (e.g., ≥ 90% of all non-catch problems) would have resulted in a doubling of 

the already high rate of performance-related fMRI data exclusion (i.e., 10 versus 5 subjects).  

Participants’ difficulty in maintaining the near-ceiling performance levels within these conditions 

– in spite of having undergone a very extensive training protocol – might reflect the challenges 

that are inherent to the prolonged, continuous performance of any cognitively-demanding task.  

Previous research on “mental fatigue” supports this interpretation by showing that both response 

accuracy and speed tend to decline as the time spent on a cognitive-control task increases (e.g., 

Boksem, Meijman, & Lorist, 2006).   

1.1.4.3 Post-scan questionnaires 

Two post-scan pen-and-paper questionnaires were administered. The first questionnaire 

tested participants’ explicit, “offline” awareness of the values of the preview stimuli in the 

absence of significant response speed and memory demands.  Eight sets of screenshots, one per 

task condition, depicted a sample series of events leading up to a Trial 2 preview (see Appendix 

A).  Participants were asked to indicate the values of the previewed cards.  The second 

questionnaire included four items requesting that participants rate the extent to which they 

“cared” about the different possible outcomes (e.g., “How much did you care about earning 20 



 27 

cents?”).  Responses were marked on a 7-point Likert scale (1 = “didn’t care at all”, 7 = “cared a 

lot.”).  This informal survey of reward- and punishment-related motivation was primarily 

included as a means of evaluating the effectiveness of the Problem Magnitude manipulation.     

1.1.5 fMRI preprocessing 

Functional data were preprocessed with Automated Image Registration (AIR v. 3.08, 

Woods, Grafton, Holmes, Cherry, & Mazziotta, 1998) and NeuroImaging Software (NIS v. 3.6, 

developed at the University of Pittsburgh and Princeton University).  Images were motion-

corrected to a target volume representing the midpoint of the functional series; structural inplane 

data were also aligned to this volume.  The motion-corrected data were subsequently detrended 

such that voxel-wise baseline and linear trends were removed on a run-by-run basis. 

In preparation for group analysis, functional data were spatially-normalized to a single 

reference brain chosen from amongst the analyzed participants.  For each participant, the 

normalization protocol began with two structural alignment steps: (1) alignment of the structural 

inplanes to the MPRAGE volume using FSL FLIRT (v. 5.4.2, Jenkinson & Smith, 2001), and (2) 

nonlinear warping of the participant’s MPRAGE to the reference MPRAGE with AIR 

align_warp (v. 5.2.5, 5th-order polynomial model, Woods, Grafton, Watson, Sicotte, & 

Mazziotta, 1998).  Following these steps, the functional data were upsampled to the structural-

inplane resolution, subjected to the pre-defined alignment and warp, downsampled to the original 

3.2 mm2 resolution, and spatially-smoothed using the AIR gsmooth program (3D Gaussian filter, 

8 mm FWHM).    
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1.1.6 Hemodynamic response estimation 

 Within each single-subject smoothed dataset, hemodynamic responses to the major task 

events were modeled using the AFNI 3dDeconvolve program (Ward, 1998).  The baseline 

component of the regression model consisted of the intercept term and the six head-movement 

time-series estimates (x, y, z, roll, pitch, yaw) determined during the motion correction step.  For 

the signal component of the model, twenty events of interest were identified, with each event 

aligned to the onset of Trial 1, the Trial 2 preview, or Trial 2 proper (for non-catch trials).  The 

Trial 1 events were defined according to the four possible Trial 1 outcomes (high/low 

reward/punishment), and the preview and Trial 2 events were organized by the familiarity, 

valence, and magnitude of the previewed card (old/novel, high or low S+/S-).  Each event was 

modeled with a series of 10 delta (i.e., “stick”) functions time-locked to the 10 functional 

volumes acquired following event onset.  Therefore, the model-estimated shape of each event-

related hemodynamic response function corresponded to the estimated beta weights (i.e., the 

amplitude of the stick functions) for the 15 s following event onset. 

The goal of the deconvolution analysis was to obtain a set of hemodynamic response 

estimates that were specific to the valid and accurately-performed problems.  Therefore, it was 

desirable to reduce the impact of BOLD data associated with invalid or incorrectly-performed 

problems on the ultimate regression solution.  Since the low rate and heterogeneous nature of the 

behavioral errors precluded the inclusion of a full set of error-related regressors in the regression 

model, we implemented an alternative strategy that aimed to remove error-associated datapoints 

from the design matrix submitted to 3dDeconvolve.  The removal process consisted of two steps.  

First, in the original, full matrix of task events, we “zeroed out” the markers that would have 

otherwise indicated the occurrence of the targeted Trial 1, Preview, and Trial 2 events.  This step 
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effectively rendered the 3dDeconvolve program blind to these events, without removing any 

information related to the passage of time.  Second, we used the 3dDeconvolve “censor” flag to 

instruct the program to disregard, when computing the regression solution, any rows of the 

matrix that directly temporally coincided with the actual display of the targeted problems on the 

screen.  For example, for a non-catch problem, this censoring step would instruct the program to 

disregard those rows that corresponded to the actual Trial 1, inter-trial interval, preview, Trial 2, 

and inter-problem interval displays.  

Since this error-management strategy did present some disadvantages (e.g., disregard of 

datapoints associated with the tail end of responses to preceding “good” problems, and failure to 

account for any signal variance that the error-associated problems may have contributed to 

timepoints that occurred after the actual problem displays), we compared this “censored error” 

approach to a universal error-coding strategy that assigned all problematic events to a single set 

of 10 error-specific stick functions.  The major analysis results remained largely constant across 

these two deconvolution strategies.   

In preparation for statistical analysis, the response estimates generated for each subject, 

task component, and task condition were summarized according to a value proportional to the 

area under the estimated response curve, excluding the contribution of the initial and 

hemodynamically-irrelevant timepoint (Cox, 2010).  The area-under-the-curve (AUC) formula 

was βT2 +   βT3 + βT4 + βT5 + βT6 + βT7 + βT8 + βT9 +(0.5*βT10), where each B denotes the estimated 

beta coefficient for the corresponding response timepoint.  The AUC values were the primary 

dependent measure of interest in all reported fMRI analyses.   
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1.1.7 Statistical analysis of fMRI-stage BOLD and behavioral data 

The principal aim of the majority of our fMRI analyses was to test for hemodynamic 

effects that co-varied with the values of the old-unsampled preview stimuli, or, in other cases, of 

the novel preview stimuli or the actual delivered outcomes.  In practice, this search for value-

related activity was carried out by means of linear trend analyses applied to either the voxelwise 

data (using the “acontr” option of the AFNI 3dANOVA2 program, Ward, 2006) or to ROI-

averaged time-series data (using SPSS statistics software, Release 18.0.0, IBM, Armonk, NY).  

Trend analysis consisted of the subject-by-subject computation of a weighted sum based on the 

multiplication of a set of condition-specific contrast weights with their respective AUC values.  

When testing for a linear effect of value, these weights were set at [20, 5, -5, -20] for the preview 

(or outcome) conditions associated with these monetary quantities. The resulting sums were then 

submitted to a single-sample t-test to assess the reliability of their difference from a test value of 

0.  In our fMRI data, the value-based linear contrasts were conducted on both a voxelwise and 

ROI-focused basis; additional tests of quadratic trends (weights = [1 -1 -1 1]) were included to 

examine the effects of stimulus (or outcome) magnitude.  The fMRI-stage behavioral 

performance data and a subset of the post-scan questionnaire data were also analyzed according 

to this general approach.  In addition to the primary analyses on the value-related trends, in some 

cases we performed repeated-measures ANOVA testing on the effects of the categorical 

variables that were present in our design (e.g., Preview Familiarity, Value, Valence, or 

Magnitude; or Trial 1 Selection status). 

All voxelwise analyses were restricted to a masked region that approximated the common 

area of brain-related, non-background functional signal across the 17 analyzed subjects (Fig. 3).  

The group-level mask was constructed according to a multistep process.  First, in each individual 
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subject, the AFNI 3dAutomask program was used to generate a mask corresponding to the 

largest contiguous region of suprathreshold functional intensity.  Second, to remove 

suprathreshold voxels that fell outside of the outer brain contour, we created second-order masks 

based on the conjunction of the 3dAutomask output and a mask of the subject’s brainstripped, 

warped, and downsampled MPRAGE data.  Finally, the group-level mask was defined as the set 

of nonzero voxels that was common to all 17 subjects’ second-order masks.   

Within the masked region, the results of the voxelwise trend analyses were thresholded at 

p < .001, and a cluster threshold of 5 contiguous voxels was applied to protect against Type I 

errors (Forman et al., 1995).  For a subset of the significant regions-of-interest (ROI) identified 

through this approach, the cluster-averaged hemodynamic timecourse data were extracted for the 

component of the task that contributed to the functional definition of the ROI (e.g., the four old-

preview conditions) for submission to follow-up analyses.  In cases in which it was of interest to 

assess the responses of the same ROI to other task components (e.g., the four novel-preview 

conditions), the ROI voxels identified through the original voxelwise testing process were used 

as a mask to extract the timecourse data from these other task components.  All follow-up 

hemodynamic timecourse analyses were evaluated against a significance threshold of p < .05. 
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1.2 RESULTS 

1.2.1 Pre-scan training 

Due to a programming error, two of the 17 participants included in the current dataset 

were presented with a training sequence that skipped Phases 1-2, such that these individuals only 

experienced Phases 3-5. This error was not detected until after the analysis process had already 

begun.   Because these participants’ latency to complete training and overall performance in the 

scanner were relatively typical, their data were included in all reported analyses for which data 

were available (i.e., Phases 3-5 of the behavioral training, and the fMRI analyses).   

The phase-by-phase blocks-to-criterion data (Table 1) highlighted a relative peak in the 

amount of practice required to advance through the phases, with Phase 2 representing the most 

time-consuming phase.  This observation was confirmed by repeated-measures ANOVA, which 

yielded a significant main effect of phase (F(3,42) = 10.63, p < .00005), and by significant or 

marginally-significant comparisons between Phase 2 and the remaining three criterion-dependent 

phases (p’s < .005 for Phase 2 versus Phases 1 and Phase 4, p = .091 for Phase 2 versus Phase 3).  

Note that Phase 2 marks the introduction of the replace-chosen manipulation, and therefore the 

first point in training during which behavior can no longer rely on experienced stimulus values.  

Table 1.  Blocks-to-criterion (mean, SE) by pre-scan training phase (n = 15). 

phase discrimination (1) replace-chosen (2) previews+fMRI timing (3) catch trials (4)
blocks 1.80 (0.24) 10.20 (1.62) 6.47 (1.18) 3.67 (0.86)  

 As described in the Methods (Section 1.1.3), in our pilot data we observed that learning 

difficulty varied across the two Trial 1 Selection conditions, such that the total number of Trial 2 

errors to criterion depended on whether the stimulus chosen on Trial 1 had earned a positive or a 
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negative outcome.  The direction of this effect differed across the discrimination and replace-

chosen phases of training, such that Trial 1 S- selections were associated with a greater number 

of Trial 2 errors during the discrimination phase, and Trial 1 S+ selections were associated with a 

trend for increased Trial 2 errors during the replace-chosen phase.  To determine whether these 

effects were replicated in the present dataset, we specifically focused on the Trial 2 errors-to-

criterion data for Phases 1-2 (Table 2).  A two-way ANOVA testing the effects of Training Phase 

and Trial 1 Selection yielded a significant interaction, F(1,14) = 4.98, p = .043.  Consistent with 

the pilot data, paired t-tests performed on the discrimination-phase (Phase 1) error data found a 

marginally-significant trend for a greater number of errors following Trial 1 S- as opposed to S+ 

selection (t(14) = -2.05, p = .060).  Likewise, within the replace-chosen phase (Phase 2) error 

data, the expected trend for a greater number of errors following S+ versus S- selection 

approached significance (t(14) = 1.59, p = .13).    Therefore, although the phase-specific effects 

were only modestly supported by the statistics, the training data generally appear to validate the 

importance of separately evaluating performance for these two problem types.  

Table 2.  Trial 2 errors-to-criterion (mean, SE) for Phases 1-2 of training, sorted by Trial 1 Selection (n = 15). 

phase
trial 1 selection S+ S- S+ S-
total errors 1.20 (.43) 2.67 (.78) 36.87 (6.87) 32.73 (6.56)

discrimination (1) replace-chosen (2)

 

The many blocks and errors that preceded Phase 2 mastery, coupled with the 

unconstrained randomization of the card positions, may raise concerns that this phase was passed 

by means of position-based strategies that were successful when the cards happened to be 

positioned appropriately.  Follow-up analyses (Appendix B) argue against this interpretation of 

Phase 2 performance.    
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1.2.2 Functional MRI session behavioral performance 

Figures 4(a) and 4(b) present the Trial 2 accuracy and reaction time data for the valid, 

non-catch trial problems completed during the fMRI session. For the reaction time data, no 

significant main effects or interactions of preview familiarity, value, valence, or magnitude were 

detected. 

Although, on average, participants maintained generally high accuracy rates, some 

accuracy differences did emerge amongst the eight preview-organized cells of our design.  A 

two-way repeated-measures ANOVA testing the factors of Preview Familiarity and Preview 

Value yielded a significant main effect of Familiarity, as reflected in the higher Trial 2 accuracy 

rates following old as opposed to novel previewed stimuli (F(1,16) = 10.13, p = .006).  This 

result suggests that participants primarily took advantage of the inferable values of the old, 

unsampled Trial 1 stimuli, and were less likely to infer (or make use of inferences regarding) the 

values of the novel replacement stimuli.  A significant Familiarity x Value interaction was also 

present (F(3,48) = 3.20, p = .031); the old- and novel-specific value effects are examined in 

further detail in the text that follows.  

Planned contrasts limited to the old preview data found significant linear (i.e., signed 

value) and quadratic (i.e., absolute value) effects of previewed stimulus value on subsequent 

Trial 2 accuracy (linear trend, t(16) = 2.23, p = .040; quadratic trend, t(16) = 2.30, p = .035).  

Both trends were positive, such that increasing stimulus values and high absolute gain/loss 

magnitudes were both associated with greater Trial 2 accuracy.  Further examination of these 

trends with a two-way Preview Valence (S+, S-) x Preview Magnitude (high, low) ANOVA 

found the expected main effect of magnitude, a main effect of valence that approached 

significance (F(1,16) = 3.02, p = .10), and a non-significant interaction effect (F(1,16) = .087, p 
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= .77).  Two aspects of these behavioral results are worth noting here.  First, although the linear 

trend may raise concerns that accuracy could serve as an alternative explanation for any value-

related effects in our BOLD data, the presence of the quadratic trend suggests that any BOLD 

activity purely related to accuracy should also be modulated by high versus low stimulus 

magnitudes.  Second, the results of both the trend analysis (combined linear and quadratic 

effects) and the 2-way ANOVA (significant or near-significant main effects, but no interaction) 

are consistent with the interpretation that performance largely reflected an additive effect of the 

two major categorical variables, Preview Valence and Preview Magnitude.   An influence of the 

Preview Valence variable is consistent with the Trial 1 Selection effects reported for the 

behavioral data, since the old S+ and S- preview stimuli were preceded by Trial 1 Selections of 

an S- and an S+, respectively (and thereby followed by an optimal policy of choosing either the 

previewed S+ or the to-be-revealed N+, respectively).  An influence of the Preview Magnitude 

variable is consistent with the assumption that participants appropriately inferred the size of the 

potential Trial 2 reward that was at stake, which may in turn have created incentive-related 

effects on performance accuracy (a common phenomenon in rewarded, cognitively-demanding 

tasks, for examples see Charron & Koechlin, 2010; Gilbert & Fiez, 2004). 

In the analyses limited to the novel preview data, an inverse linear relationship with 

previewed stimulus value approached significance (t(16) = -1.62, p = .12); no reliable quadratic 

effect was present.  As in the old-preview data, the direction of the linear trend was again 

consistent with the general observation that Trial 2 was more difficult when the Trial 1 S+ was 

chosen, thereby requiring the approach of a novel N+ and/or avoidance of a familiar S- on Trial 

2.  The follow-up valence x magnitude ANOVA resulted in a somewhat different pattern than 
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was seen with the old-preview data, in that only a marginally-significant valence x magnitude 

interaction was found, F(1,16) = 3.22, p = .092.   

 

Appendix C presents the group-summarized data for the total number of invalid response 

events detected (Trial 1 response omissions and preview-period responses). Some significant 
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differences between conditions were found (Figure C1(a)); these were largely attributable to 

patterns that emerged in the preview-period response rates (Figure C1(b)).  The most notable 

effects that were observed included (1) a reliably greater number of preview-period responses 

during the old versus the novel previews, and (2) a reliable linear relationship between the 

preview-period response count and the values of the old preview stimuli.  This pattern of results 

is consistent with the assumption that stimulus value is encoded during the old-preview displays, 

since one might expect that the difficulty of withholding a response should increase in proportion 

to the predicted value of future approach to the previewed stimulus.  The implications of this 

preview-period effect for the interpretation of our fMRI data are considered in the discussion.   

The self-reported degree to which participants “cared about” earning or losing the high or 

low monetary outcomes is plotted in Figure 5.   These outcome-rating data were submitted to a 

similar sequence of analyses as were applied to the old- and novel-specific Trial 2 accuracy data.  

Within the self-report data, a positive, U-shaped quadratic effect of value was significant 

(F(1,16) = 50.37, p = 2.5 x 10-6), thus confirming the meaningfulness of our magnitude 

manipulation within this participant sample.  Follow-up t-tests confirmed that the greater degree 

of “caring” about high versus low outcomes remained robust when examined for earnings and 

losses separately (for earn 20/5, t(16) = 7.78, p = 8.0 x 10-7, for lose 20/5, t(16) = 5.28, p = 7.50 x 

10-5).   We additionally observed a linear effect of value that approached significance (F(1,16) = 

2.46, p = .137), and a marginally-significant effect of outcome valence (F(1,16) = 7.44, p = 

.069), as reflected in the tendency for the gain outcomes to elicit greater “caring” scores than the 

loss outcomes. The valence x magnitude interaction was non-significant. 
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Participants’ responses to the offline sample problems confirmed their ability to infer and 

explicitly state the values of the old, unsampled preview stimuli.  All except one of the 17 

participants provided 4/4 correct responses for the questionnaire items that featured old stimulus 

previews. The single participant who responded incorrectly is likely to have misunderstood the 

offline task instructions, due to the absence of any sign information (+/-) in his responses, and to 

his strong performance within the scanner (≥ 90% accuracy for each of the eight possible 

previews).   For the items that featured novel stimulus previews, 8 participants provided 4/4 

correct responses, 2 participants provided a single correct response, and the remaining 6 

participants did not respond correctly to any of the problems, instead providing responses such as 

“0” or “don’t know.”   Although these highly disparate response patterns are not of serious 

concern with respect to our primary experimental question, they do point to the possibility of 

important individual differences in hemodynamic responses to the novel-preview conditions, 

particularly amongst those individuals who did correctly predict the novel stimulus values 
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(hereafter referred to as the “novel-correct” subgroup). This possibility is further explored in the 

fMRI analyses that focused on the novel preview conditions of the task.  

1.2.3 Functional MRI data results 

1.2.3.1 Frontopolar BOLD signals vary directly with the values of the old preview stimuli 

Our primary experimental question, which concerned the existence of brain regions that 

signal values deduced via abstract inference, was addressed in the voxelwise test for linear trends 

that track with the values of the old preview stimuli.  At the p < .001 threshold, a positive linear 

effect of old preview value was found in only a single cluster located in the right frontopolar 

cortex (Figure 6, Table 3). A significant inverse linear relationship with value was found in the 

lingual gyrus.  Notably absent from the voxelwise linear contrast results was the VMPFC.  At a 

relaxed p < .005 threshold (cluster threshold = 5 voxels), a second, positive linear effect did 

emerge in the medial PFC (peak coordinates = [2,63,0]); however, this ROI appeared to be 

located in the medial frontal pole as opposed to the areas in which VMPFC value activity is 

typically observed (e.g., the general region identified in the Hampton et al. (2006) study).    

Mean hemodynamic timecourse and area-under-the-curve data from the frontopolar ROI 

are depicted in Figures 7(a) and 7(b).  For comparison to data extracted from other task 

components and other ROIs (see below), trend analysis was repeated on the ROI-averaged AUC 

data; as expected, the linear effect of value was significant (t(16) = 5.65, p = 3.63 x 10-5).  The 

quadratic effect of value was non-significant (t(16) = .376, p = .71).  An alternative analysis 

organized as a valence x magnitude ANOVA found the anticipated significant main effect of 

valence (F(1,16) = 12.98, p = .004) and significant valence x magnitude interaction (F(1,16) = 

5.99, p = .026).   
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Table 3.  Linear trends related to the values of the old, unsampled preview stimuli, p < .001, contiguity threshold = 

5 voxels.  BA, Brodmann area, TT, Talairach and Tournoux atlas.   

 

The constant, inverse relationship between the values of the old preview stimuli and of 

the immediately preceding outcomes (e.g., S+high always follows a 20-cent loss) implies that the 

observed frontopolar cortex (FPC) value signals may have been attributable to a delayed Trial 1 

Outcome effect.  According to this interpretation, the FPC does not signal the inferred values of 

the previewed stimuli, but instead encodes the inverse of the values of the recently-delivered 

outcomes.  If the FPC old-preview response was indeed triggered by the preceding outcomes, as 

opposed to the preview display per se, then this region should exhibit the inverse activity pattern 

in the novel preview conditions, given the direct relationship between the values of the novel 

preview stimuli and the outcomes that preceded them (e.g., N+high follows a 20-cent reward).   

ROI Location Laterality BA Peak t  value Peak TT coords. n  Voxels

Superior frontal gyrus (frontal pole) R 10 5.25 [22,63,-6] 5
Lingual gyrus R 17 -4.54 [6,-91,-3] 6
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This possibility was tested in two ways.  First, the FPC cluster from the old-preview 

analysis was applied as a mask for extracting the mean estimated hemodynamic responses to the 

novel preview stimuli; the resulting timecourses and AUC values are presented in Figures 8(a) 

and (b).  Trend analysis conducted on the AUC data found no significant linear effect of novel 

preview stimulus value (t(16) = .47, p = .65; for the novel-correct subgroup, t(7) = -.24, p = .82).  
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Additionally, when the novel-preview and old-preview AUC values were compared directly, we 

found no significant interactions between preview familiarity and any of the other potential 

effects of interest (i.e, value, valence, magnitude, valence x magnitude, all p’s > .13). 

 

Consistent with our findings within the pre-defined FPC cluster, voxelwise analysis of 

the novel-preview data also failed to detect any significant linear effects of value within or near 
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frontopolar cortex.  This null result persisted when the significance threshold was relaxed to p < 

.005 and also when analyses were restricted to the novel-correct subgroup.  At the p < .001 

threshold, positive value-related linear trends were found in two regions located in the right 

fusiform gyrus and the left middle frontal gyrus.  The absence of these regions from the 

voxelwise old preview analyses, in addition to evidence suggesting that the values of the novel 

stimuli were not readily inferred (e.g., lower accuracy following novel previews, and for 

predicting novel stimulus values offline) discourages the interpretation of these regions as 

playing a value-signaling role.  The factors which may be responsible for these novel-preview 

effects are discussed in Appendix D.  

 A Trial 1 Outcome-based explanation of our FPC old-preview findings might also predict 

that significant value-related activity should be seen in this region during the delivery of the 

outcomes themselves.  To test this second prediction, we performed a similar sequence of 

analyses on the Trial 1 hemodynamic responses as were performed on the novel preview data.  

Trial 1 timecourses and AUC values from the old-preview-defined FPC cluster are plotted in 

Figures 9(a) and (b).  Trend analysis of the AUC data found no significant evidence for a direct 

linear relationship with outcome value, but did detect a marginally-significant quadratic effect of 

Trial 1 outcome, such that the largest gains and losses tended to elicit the greatest outcome-

related activity (t(16) = 1.88, p = .079).  This overall pattern of Trial 1 results is consistent with 

the assumption that the linear FPC effect observed during the old previews is unlikely to be 

attributable to the immediately preceding outcome displays. 



 44 

Follow-up, voxelwise tests of the linear effect of Trial 1 outcome value did not find any 

significant activation within frontopolar cortex; this null result persisted at the relaxed p < .005 

threshold.  Activation that did track with outcome value was found broadly across the striatum, 

globus pallidus, and midbrain (Appendix E).  This activation pattern is consistent with the 

extensive existing fMRI and electrophysiological data demonstrating the engagement of these 
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regions by positive and negative outcome delivery (e.g., Delgado, Locke, Stenger, & Fiez, 2003; 

Nieuwenhuis et al., 2005; Zaghloul et al., 2009).   

1.2.3.2 Engagement of lingual gyrus by the old preview stimuli  

As was noted in section 1.2.3.1, the voxelwise analysis did detect a single lingual gyrus 

cluster in which activity varied inversely with the inferable values of the old preview stimuli.  

The timecourses and AUC values for this cluster appear in Figure 10. 

Trend analyses performed on the ROI-averaged AUC data confirmed the expected, 

inverse linear effect of value (t(16) = -4.46, p = 3.95 x 10-4) and also found a marginally-

significant, inverse U-shaped quadratic effect (t(16) = -2.05, p = .057).  The marginal 

significance of the quadratic trend suggests that the lingual gyrus was responsive to a different 

feature of our task than the inferred values per se.  This interpretation is consistent with the 

results of a secondary valence x magnitude analysis, which found a significant main effect of 

valence (F(1,16) = 13.24, p = .002), a marginally-significant effect of magnitude (F(1,16) = 4.19, 

p = .057), and a non-significant valence x magnitude interaction (p = .22).   Therefore, as was the 

case for the old-preview Trial 2 accuracy data, the lingual gyrus response may be best described 

as a categorical effect of viewing either an old-unsampled S+ or S-.  As described earlier, 

participants tended to find the old-preview S- conditions (which evoked greater lingual gyrus 

activity) more difficult than the old-preview S+ conditions. 

To further clarify the nature of the lingual gyrus response, we applied the old-preview-

defined ROI as a mask to the novel-preview and Trial 1 data.   Lingual gyrus data from the 

novel-preview conditions appear in Figure 11.  Despite the qualitative trend in the AUC means, 



 46 

such that previews of novel S+ stimuli appear to evoke greater activity than novel S- stimuli, 

neither trend analyses nor a valence x magnitude ANOVA conducted on these data revealed any 

reliable effects (all p’s > .12).   
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 Lingual gyrus response curves and AUC values from the Trial 1 conditions are plotted in 

Figure 12.  During this component of the task, lingual gyrus activity resembled that of the 

frontopolar ROI, such that responses were primarily sensitive to the greater outcome magnitudes, 

regardless of outcome valence.   Trend analysis found only a significant quadratic trend, t(16) = 

2.79, p = .013.  A secondary valence x magnitude ANOVA found neither a significant main 

effect of valence nor a significant valence x magnitude interaction (p’s > .50).   
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1.2.3.3 Ventromedial prefrontal cortex responses to the old preview stimuli 

Given the failure of the voxelwise tests to detect old-preview value effects in the 

VMPFC, we conducted a series of follow-up analyses in order to determine the nature of the 
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activity pattern that was elicited in this region by the old preview stimuli.  As a spatial focus of 

these analyses, we chose a set of coordinates reported by Hampton et al. (2006) that 

corresponded to the peak voxel for which the model-based RL algorithm had provided a 

significantly better account of VMPFC activity relative to model-free RL (MNI coordinates = 

[6,45,-9]). Old-preview hemodynamic responses and AUC values were extracted from a 7-voxel 

sphere centered on these coordinates (converted to the Talairach atlas space, [6,43,-10]); these 
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data are presented in Figure 13.   Trend analysis on the VMPFC AUC data found no significant 

results for either the linear or quadratic value-related trends.  A secondary valence x magnitude 

ANOVA yielded only a main effect of valence (F(1,16) = 6.55, p = .021); VMPFC responses to 

old-preview S+ stimuli tended to evoke a greater activity decrease relative to the S- stimuli. 

Therefore, in its differential responsiveness to the previews preceding more difficult (S-) and less 

difficult (S+) Trial 2 choices, this VMPFC ROI resembles the lingual gyrus ROI, albeit with an 

overall deactivating as opposed to activating response pattern.  

VMPFC timecourse and AUC data from the novel-preview and Trial 1 components of the 

task are presented in Figures 14 and 15, respectively.  Neither trend analyses nor ANOVA tests 

found any significant value, valence, or magnitude effects within these data.  
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1.3 DISCUSSION 

Our functional MRI results confirm that inferred value-related activity can be found in 

the human brain, even when the underlying inferences must rely exclusively on abstract rules.  

We specifically focused on a learning context that was based on an adaptation of a task from the 

nonhuman primate literature (Lockhart et al., 1963).  Following each Trial 1 within a series of 

unique discrimination problems, we replaced the initially-sampled choice stimuli with novel 

stimuli of the same reward value, thereby creating a situation that encouraged attention to and 

inferences regarding the initially-unsampled options.  BOLD signal analyses focused on the 

responses evoked by the initially-unsampled stimuli when these were displayed in isolation 

following Trial 1 outcome delivery.  Activity within a region of the right lateral frontal pole was 

found to vary linearly with the previewed stimulus values.  This finding cannot be easily 

explained as a delayed effect of the recently-delivered outcomes, as similarly-timed displays of 

the novel replacement stimuli did not evoke any reliable value-related FPC activity.   

The finding of an association between FPC activity and the values of the initially-

unsampled stimuli is consistent with at least three general interpretations of the function of this 

region in value-learning settings.  One possibility is that the observed patterns reflect the 

influence of a confounding factor.  The presence of positive linear value effects in a subset of our 

“old-preview” behavioral measures (Trial 2 accuracy and preview-period responses) might 

motivate such a concern.  However, other aspects of our data and the broader frontal pole 

literature argue against such an interpretation.  Explanations of FPC activity in terms of an 

accuracy-associated factor (e.g., certainty or confidence) are complicated by the additional 

presence of quadratic value-related trends in the accuracy data (high magnitude > low 

magnitude) but not in the frontopolar data.  Explanations of our value-related FPC activity in 



 54 

terms of a factor related to the invalid preview-period responses (e.g., increased rates of 

inappropriate but ultimately suppressed motor preparation in our included trials) cannot be easily 

addressed on the basis of our data alone, but seem relatively implausible in view of past research 

on this brain region. Given the typical association of the FPC with complex processes (e.g., 

relational reasoning, multitasking, and prospective memory, see Ramnani & Owen, 2004 for a 

review), and the generally preserved motor skills seen in patients with rostral prefrontal damage 

(Burgess, Dumontheil, & Gilbert, 2007), it would be surprising to find true motor-related FPC 

activity in the absence of effects in the known sensorimotor regions that fell within our field of 

view (e.g., sensorimotor striatum).   

The remaining two interpretations of our findings both assume that the FPC was indeed 

responsive to the inferred values, but they make divergent predictions regarding the degree to 

which this value-signaling function generalizes across all possible abstract rule-bound contexts.  

On the one hand, one might posit that the FPC is a key and perhaps even critical node for 

signaling any value inferred via abstract reasoning.  This view would lead to the prediction that 

the FPC should be engaged by and perhaps even necessary for the performance of any value-

learning task that involves the transfer of a learned rule to a novel set of stimulus- or action-

defined options. Since previous fMRI research of inferred value-signaling employed fixed option 

sets, it is difficult to locate existing evidence that directly assesses this prediction.  However, the 

monkey literature may provide at least an initial means of addressing this issue, since it has been 

speculated that monkeys lack a region that is homologous to the human lateral frontal pole (see 

Tsujimoto, Genovesio, & Wise, 2011).  In spite of this anatomical deficit, and in spite of the 

considerable difficulty that at least one species of monkey has been shown to exhibit with the 

Lockhart et al. (1963) task, monkeys are generally capable of learning an astounding variety of 
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abstract performance rules (see Gaffan, 1985; Genovesio & Wise, 2008 for reviews).  Therefore, 

while this observation does not provide a strong refutation of a claim that the FPC is critical for 

all abstractly-deduced value predictions, it does suggest a reason to be hesitant in promoting such 

a conclusion. 

In view of the above, the third and more plausible interpretation of our results assumes 

that frontopolar cortex plays an important role in tracking abstractly-deduced values, but only 

under certain circumstances.  Our observations of inferred-value activity most likely represent a 

special case of a core FPC function that may be defined independently of the degree to which a 

situation taxes abstract reasoning processes.  As briefly noted in the introduction (and reviewed 

in more detail below), research on the neural signaling of the values of recently foregone option 

alternatives has provided some insight into how one might begin to describe the FPC 

contribution within value-learning settings.  The relevant findings from the FPC literature are 

reviewed in further detail below; subsequently, we discuss how our present results might fit into 

this broader picture of frontopolar function.  

1.3.1 Relevant past investigations of FPC function 

Research implicating the FPC in value processing has emerged only recently, with three 

fMRI studies in particular providing much of the evidence relevant to this domain (Boorman, 

Behrens, & Rushworth, 2011; Boorman, et al., 2009; Daw, O'Doherty, Dayan, Seymour, & 

Dolan, 2006).  The earliest of these studies (Daw et al., 2006) highlighted the potential 

frontopolar contribution to exploratory decisions, which prioritize the attainment of value-related 

information over the pursuit of well-established valuable options.  In the Daw et al. (2006) task, 

participants repeatedly chose between four differently-colored “slot machines” which were 
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rewarded according to independently- and randomly-varying payoff rates (i.e., rates were drawn 

from normal distributions with means that decayed towards a common value but were also 

subject to random trial-by-trial fluctuations).  Subjective, trial-by-trial predicted values of the slot 

machines were modeled according to a Bayesian RL algorithm that incorporated a set of 

assumptions regarding the parameters that governed the variability in the payoffs.  Choices were 

then classified as “exploratory” if they were directed towards any option other than the one 

associated with the highest predicted value; the remaining choices were labeled as “exploitative.”  

In the BOLD data analysis, contrast of the exploratory versus exploitative trials identified 

exploration-preferring activity within the frontal pole.  The authors offered the preliminary 

interpretation that the FPC may have been involved in controlling the switch in behavior from 

exploitative to exploratory modes.  As was later noted by Boorman et al. (2009), the Daw et al. 

results are also consistent with an account in which the FPC principally serves to track the values 

of unchosen stimuli, if one assumes that participants were most likely to make an exploratory 

decision when the predicted value of the to-be-explored option was relatively high. 

 As was briefly summarized in the introduction, the Boorman et al. (2009) study provided 

direct evidence for unchosen-value activity within the frontal pole.  This study is worth 

reviewing in greater detail, as the behavioral task included several carefully-designed elements 

that permitted the authors to advance very precise claims regarding the observed FPC signals.  

Specifically, the authors sought out unchosen-value signals that tracked information relevant for 

future as opposed to immediate decisions.  Within their task, the independently, randomly- and 

gradually-drifting reward probabilities associated with the left- and right-button press options 

represented the variables that were most relevant to track as a reference for future decisions.  To 

dissociate the kinds of information that were useful for pending- and current-trial decisions, 
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Boorman et al. also implemented a “reward magnitude” manipulation: On each trial, randomly-

generated numbers appeared on the left- and right-side of the screen, indicating the potential 

point-total that could be earned for choosing the corresponding button-press.  Therefore, on each 

trial, adaptive decision-making required the integration of the information tracked across past 

trials (reward probabilities) with that presented on the current trial (reward magnitudes).  

Participants were explicitly notified of these structural features of the task.   Within this context, 

Boorman et al. found that frontopolar activity tracked with the relative reward probability 

associated with the unchosen action – that is, the difference between estimated reward 

probabilities associated with the unchosen and chosen options, with the subjective probability 

estimates generated according to Bayesian, model-based RL.   Activity correlated with the 

“relative chosen action values” – computed as the difference, between the chosen and unchosen 

options, of the probability-weighted reward magnitudes – was found within the VMPFC. 

 Based on their findings, Boorman et al. (2009) proposed that a fundamental function of 

the FPC is to monitor the evidence in favor switching to a response alternative, and, when this 

evidence is sufficient, to promote the execution of the switch through interaction with other brain 

regions. Two additional pieces of evidence support this account.  First, results from a follow-up 

study (Boorman, et al., 2011) confirmed that the FPC signal may be best understood as encoding 

the value of switching to a particular target, and not solely the value of switching away from the 

present policy. Specifically, when their basic task protocol was expanded to include three choice 

options, the FPC signal was most effectively explained as reflecting the reward probability of the 

highest-valued unchosen option, relative to the reward probabilities of the other-unchosen and 

chosen options.  Second, in the original 2009 study, functional connectivity analyses suggested 

that high unchosen-value signals in the FPC may promote activity within the mid-intraparietal 
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sulcus (IPS), a region that has been previously implicated in behavioral switching during 

rewarded tasks (Glascher, et al., 2009).  In the Boorman et al. connectivity analyses, mid-IPS 

activity was successfully predicted by a regressor encoding the interaction between frontopolar 

signal intensity and the relative reward probability of the unchosen option; this finding was 

limited to the periods immediately preceding actual switch execution.  

 Before considering how the Boorman et al. findings and theory might inform 

interpretation of the present results, it is important to acknowledge the existence of other views 

that have been put forth in the literature, and in particular the “domain-general” theories (e.g., 

Burgess, et al., 2007; Koechlin & Hyafil, 2007; Ramnani & Owen, 2004) which aim to explain 

the contribution of the FPC across an array of cognitive phenomena.  According to one of the 

most prominent of these accounts (Koechlin & Hyafil, 2007), the FPC plays a fundamental role 

in “cognitive branching,” a process which was summarized as follows:  

“Collectively, the data depicts an anterior prefrontal system in which lateral prefrontal regions 

select and maintain the task set governing ongoing action, whereas the FPC enables previously 

selected task sets to be maintained in a pending state for subsequent automatic retrieval and 

execution upon completion of the ongoing one.  This process, which we call “cognitive 

branching,” forms a domain-general core function at the basis of the behaviors and mental 

activities requiring simultaneous engagement in multiple tasks that are not serially organized into 

a single, pre-established superordinate plan (p. 595).” 

This description of frontopolar function is not incompatible with the Boorman et al. 

(2009) view, but instead suggests ways in which the Boorman et al. account could be expanded 

in order to encompass a larger set of learning and decision-making domains.  Relative to this 

goal, two aspects of the Koechlin and Hyafil (2007) view are particularly noteworthy.  First, the 

authors’ reference to the maintenance and execution of ongoing and pending task sets suggests 
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that the FPC might not only signal the value of switching between two, differentially-rewarded, 

mutually-exclusive decision options, but also between the multiple subtasks that must be 

executed serially in order to achieve an overarching goal.  Second, the authors have used the 

term “task sets” in a very broad sense, such that it encompasses both overt motor responses (e.g., 

option selection) and cognitive operations.  Notably, this more inclusive conceptualization of that 

which is “switched” may be similarly applicable to the intraparietal sulcus, as this region has also 

been argued to mediate both motor and cognitive (e.g., visual attentional) switching (Grefkes & 

Fink, 2005). 

  By merging the Koechlin and Hyafil (2007) perspective and that of Boorman et al. 

(2009), one might propose the very general idea that the FPC serves to signal the value of 

switching to an alternative operation (cognitive or motor) that must be postponed while a current 

operation is being executed (either because it is currently associated with greater incentives, or 

because it holds an earlier position within an operation sequence).  The potential validity of this 

viewpoint can be illustrated within the domain of relational reasoning, which represents an area 

for which the importance of the FPC has been relatively well-established (see Cho et al., 2010; 

Christoff et al., 2001; Green, Kraemer, Fugelsang, Gray, & Dunbar, 2010; Waltz et al., 1999).  

As described by Thompson and Oden (2000), relational reasoning requires, at minimum, the 

recognition of an abstract relationship between one set of items (e.g., A larger than B) and 

judgment of whether the same relationship holds for a second item set (C larger than D?).  From 

the perspective of the merged Boorman et al. (2009) and Koechlin & Hyafil (2007) accounts, the 

positive FPC activations that are observed in fMRI studies of relational reasoning (e.g., see 

Christoff, et al., 2001) might be understood as signaling the positive value of switching to the 
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cognitive process of evaluating the second of the two inter-item relationships, pending 

completion of the evaluation of the first relationship.    

1.3.2 Relating existing FPC theories to current results 

As stated previously, our observed frontopolar activity might be most plausibly 

interpreted as reflecting a single instantiation, in an abstract rule-governed task, of an FPC 

function that transcends the degree of abstraction present in a decision-making context. As 

summarized above, this core function may involve tracking the value of switching to a cognitive 

and/or motor operation, pending completion of a current operation.   This view can provide a 

coherent explanation for our fMRI results, including both the Trial 1 and preview period 

observations.  First, consider the situation that is encountered on Trial 1, during which the 

participant receives a monetary outcome that is anticorrelated with the inferable value of the 

unsampled Trial 1 stimulus.   If frontopolar cortex simply signaled the value of switching to a 

foregone decision option, then in this case we would have expected to observe an inverse linear 

relationship between FPC activity and outcome value.  Instead, the only effect in our FPC ROI 

that received any statistical support was a marginally-significant effect of the absolute outcome 

magnitudes.  This pattern of activity is consistent with a view according to which the FPC, on 

Trial 1, does not signal the value of the alternative decision option, but instead encodes the 

general advantageousness of the second component of a cognitive plan that includes (1) the 

initial monitoring of the sampled stimulus-outcome relationship and (2) the subsequent inference 

of the unsampled stimulus-outcome relationship.  The value of switching to the second, 

inference-generating “task set” should be independent of Trial 1 outcome valence and dependent 
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on Trial 1 outcome magnitude (due to the problem-level implementation of the magnitude 

manipulation).  

Second, consider the situation that is encountered during the previews of the old-

unsampled stimuli.  The participant views a card, the value of which can be inferred on the basis 

of its anticorrelated relationship with the recently-delivered outcome.  At first glance, our finding 

of value-related FPC activity during this period may seem to offer a straightforward confirmation 

of the unmodified Boorman et al. (2009) account: The FPC is tracking the evidence in favor of 

switching to a foregone decision option.  However, a notable difference between the Boorman et 

al. study and our task is that our participants evaluated the unsampled stimuli at point at which 

the sampled stimuli were no longer available, and indeed would never appear again.  Therefore, 

it is difficult to interpret this activity as signaling a value of a response switch relative to 

“choosing” the initially-sampled stimulus.  Instead, an alternative explanation might posit that 

the FPC is signaling the value of switching responding towards the previewed stimulus, but that 

this is a switch that is executed relative to the current activity, which consists of waiting for the 

end of the forced passivity of the preview period.  This interpretation of our results does produce 

a testable prediction; specifically, one would expect to see the value-related FPC activity 

disappear if the preview period were omitted.  Note that confirmation of this prediction would 

not necessarily raise concerns for the assumption that the FPC is essential for the task, since, as 

explained above, this region may be playing a very important role in permitting the execution of 

the inference process on Trial 1.   

In summary, our data do appear to support an emerging theoretical view that the 

frontopolar cortex encodes the benefit to be gained by switching to a pending “task set” 

following completion of a current task set (Boorman, et al., 2009; Koechlin & Hyafil, 2007, see 
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also Ramnani & Owen, 2004).  This represents a secondary contribution of our results, beyond 

the primary contribution of confirming that the brain – and in this case, the FPC – is capable of 

signaling option values that must be inferred via abstract rules.  

1.3.3  Ventromedial prefrontal activity and the potential role of choice uncertainty 

At the outset of the experiment, we predicted that the ventromedial prefrontal cortex, as 

opposed to the frontal pole, would be the most likely locus of deduced-value activity.  This 

prediction was motivated by previous demonstrations of value-correlated VMPFC activity, 

regardless of whether the values were informed by individual subjective preferences (e.g., Chib, 

et al., 2009), learned probabilistic associations (e.g., Palminteri, et al., 2009), or inference of a 

post-reversal contingency switch (e.g., Hampton, et al., 2006).  However, in our study, we did 

not find evidence of a reliable linear relationship between VMPFC activity and the values of the 

old, unsampled Trial 1 stimuli.  Signals extracted from a VMPFC region defined through 

previous research (Hampton et al., 2006) showed only a categorical effect of the old-previewed 

stimulus’ valence, with old S+ stimuli resulting in greater BOLD response decreases relative to 

old S- stimuli.  This region showed no reliable value-, valence-, or magnitude-related effects 

during previews of the novel replacement stimuli or during Trial 1 outcome delivery.   

Interpretation of these results may be informed by existing views regarding the 

relationship between VMPFC activity and the uncertainty that is present in a task. One recent 

argument (Bhanji, et al., 2010) states that VMPFC value-prediction signals are most robustly 

evoked in the presence of “choice uncertainty,” as occurs when the actor is unsure of the 

likelihood that a decision will lead to the desired outcome (see also Wunderlich, et al., 2009).  

Examples of situations that produce choice uncertainty include the many reinforcement learning 
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scenarios that have been discussed here (e.g., Boorman, et al., 2009; Daw, et al., 2006; Hampton, 

et al., 2006; Palminteri, et al., 2009) and also non-learning situations that necessarily involve 

some degree of “guessing” (Bhanji, et al., 2010).   

Based on the assumption that choice uncertainty is an important factor in driving VMPFC 

value activity, one might explain the present results by appealing to the relative lack of choice 

uncertainty that was present in our deterministic task, in spite of the measures that were taken to 

add at least some degree of uncertainty (e.g., omission of explicit instruction regarding the task 

structure).  It is likely that any subjective uncertainty that did persist in our highly-trained 

subjects would have varied roughly inversely with the Trial 2 accuracy rates that we observed 

amongst the old-preview conditions, resulting in the observed pattern whereby the VMPFC 

response exhibits a more modest response decrease during old S- versus S+ previews.  In other 

words, one could interpret the VMPFC deactivations as a reflection of participants’ general 

ability to resolve any choice uncertainty soon after the recognition of an old-unsampled stimulus, 

and the valence-related effects as a reflection of the residual uncertainty that might have 

persisted during some of the old S- previews.  Note that, from this perspective, it may still be 

reasonable to predict that the VMPFC may be capable of signaling values that have been 

generated via abstract rules; however, such an activity pattern might only occur when choice 

uncertainty is present (e.g., during learning of the rules, or during execution of probabilistic 

abstract rules).  

1.3.4 Lingual gyrus activity and the potential role of color-specific visual imagery 

An unexpected effect that emerged in the old preview analyses was an inverse linear 

relationship between stimulus value and lingual gyrus activity.  Follow-up analyses of the ROI-
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extracted data suggested that the linear trend may have only captured a component of the 

meaningful variance in this region.  Notably, the additional effects detected through these 

analyses – including a marginally-significant quadratic trend, and a significant main effect of 

valence in the absence of a significant valence x magnitude interaction – mirrored the effects 

seen in the Trial 2 accuracy data (although inversely, such that the lingual gyrus trends directly 

mirrored the trends in the Trial 2 error rates).  Similarly, no reliable differentiation was found 

amongst the lingual gyrus responses to the novel preview conditions, thus mirroring our 

observation of only approaching-significance or marginal trends in the novel preview accuracy 

rates.  The Trial 1 Outcome data provided additional information regarding the lingual gyrus 

response profile, with activation during this task component revealing a preference for the 

greater-magnitude outcomes.   

What factors might account for this overall pattern of lingual gyrus effects?  One 

plausible explanation appeals to the important role of the lingual gyrus in color processing, as 

has been demonstrated via both fMRI and focal-lesion approaches (e.g., Bouvier & Engel, 2006; 

Cavina-Pratesi, Kentridge, Heywood, & Milner, 2010; Simmons et al., 2007). In addition to 

permitting the discrimination of presented color stimuli, the lingual gyrus may also contribute to 

the retrieval of color-associated information in memory.  For example, in a recent MEG study 

that required the identification of celebrities depicted in color photographs (Lindin, Diaz, 

Capilla, Ortiz, & Maestu, 2010), lingual gyrus was found to be more active when participants 

indicated a “tip-of-the-tongue” (TOT) state (i.e., the failure to remember a known name), relative 

to when they successfully produced the name.  The authors interpreted the TOT effect in lingual 

gyrus and other occipital regions as possibly reflecting the increased visual imagery that was 

evoked during prolonged and unsuccessful retrieval attempts.  In light of anecdotal reports from 
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our participants regarding their use of stimulus color as a retrieval cue, it is conceivable that a 

similar explanation might apply to our lingual gyrus observations.  The old preview stimuli that 

preceded poorer performance may have induced a state that, like TOT, involves the recognition 

of a familiar stimulus but an inability to generate an associated label (in this case, its inferred 

valence, such as “S-”).  These TOT-like states may have in turn evoked an increased reliance on 

visual imagery and therefore a greater lingual gyrus response.  A visual imagery interpretation 

might also explain the enhanced lingual response to the high-magnitude Trial 1 outcomes, 

particularly if one assumes that high motivation to encode and/or maintain color information 

results in similarly increased reliance on visual imagery. 

1.3.5 Novel contributions, limitations, future directions 

In closing, the following paragraphs reflect upon the current study more broadly, and 

specifically on its relationship to other work on inferred-value signaling, some of the 

methodological limitations that need to be considered, and the future research directions that our 

findings motivate.  

As stated above, the principal and arguably unique contribution of our study is its 

demonstration of hemodynamic correlates of values inferred via abstract rules.  The necessary 

reliance on abstract rules marks an important difference between the inferred values in our task 

and those studied in the Hampton et al. (2006) probabilistic reversal task, since in the latter 

situation, inferences of a sudden post-reversal value increase can be adequately explained in 

terms of the relative weighting of previously-experienced contexts that separately encode the two 

experienced sets of stimulus-outcome contingencies.   However, it should be noted that our study 

is not the first to investigate the hemodynamic correlates of option-outcome contingencies that 
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have never been previously experienced (Daw, Gershman, Seymour, Dayan, & Dolan, 2011). 

Therefore, it is important to delineate the differences between our investigation and this previous 

work.  

Daw et al. (2011) recently provided evidence of BOLD signals that were sensitive to 

values that could be inferred on the basis of regularities in a task’s sequential structure.  

Specifically, the authors sought to examine model-free versus model-based RL predictions of 

activity within the ventral striatum, a region in which activity is often found to track reward 

prediction errors (see Daw & Doya, 2006 for a review).  Since value predictions necessarily 

inform the magnitude of a prediction error, this form of reward-related activity can provide 

indirect information regarding the predicted values that might be encoded elsewhere within the 

brain.  Each trial of the Daw et al. (2011) task consisted of two states, the first of which involved 

the presentation of two choice stimuli.  Choice of either stimulus determined which of two 

possible successor states was most likely (i.e., with 70% probability) to follow the initial state.  

Each successor state consisted of its own set of unique choice stimuli, the selections of which 

were rewarded according to randomly, gradually-varying probabilistic contingencies.  The 

critical distinction between their model-free and model-based accounts of learning within this 

task hinged upon the degree to which the two algorithms’ value predictions were informed by the 

state transition probabilities. When rewards were gained for choices made following low-

probability state transitions, only model-based RL was able to appropriately potentiate the future 

selection of the alternative first-choice option, as opposed to the first-choice option that had been 

selected immediately preceding the unlikely transition into the rewarded successor state.  

Daw et al. (2011) found that activity within the ventral striatum correlated with a 

regressor that incorporated a combination of the prediction errors generated by the model-free 
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and model-based RL algorithms (where prediction errors were modeled at both the points of state 

transition and of outcome delivery).  In other words, this region showed a prediction error-related 

effect that was likely to have reflected the joint operation of both forms of learning during the 

task.  Importantly, the model-based RL effect in this study cannot be explained in terms of the 

simple recall of a best matching “context” from previous experience.  Therefore, it is important 

to acknowledge that our study is not unique in demonstrating inferred-value activity in the 

presence of stimulus-outcome contingencies that have never been sampled directly.  However, 

our study results do remain unique in their resistance to explanation by any model that relies 

upon a fixed set of states defined in terms of their specific sensory features.   Although other 

fMRI investigators have studied the learning and implementation of decision rules that must be 

transferred across specific stimuli (e.g., Bunge, Kahn, Wallis, Miller, & Wagner, 2003; 

Kumaran, Summerfield, Hassabis, & Maguire, 2009), these authors were primarily interested in 

the structures supporting performance more generally, as opposed to identifying regions that 

signaled the values of particular options. 

Some limitations of our study should be recognized and considered in the design of future 

research.  First, due to the relatively restricted sample size and limited fMRI field of view, our 

BOLD analyses may have been limited in their overall sensitivity in detecting significant value-

related effects.  Therefore, it is quite possible that future investigations utilizing a greater number 

of subjects, trials, or functional slices might reveal inferred value-related activity in regions that 

were not reported here.  Second, it would have been desirable to have avoided the observed 

accuracy differences amongst our experimental conditions, since these effects do add a degree of 

complexity to the interpretation of the BOLD data. Any future investigations that take advantage 

of the Lockhart et al. (1963) protocol may benefit from more stringent criteria that eliminate the 



 68 

persistence of subjects’ difficulty with problems that require that the avoidance of an inferred 

negative stimulus (or, interpreted differently, the approach of a novel positive stimulus). 

A more fundamental challenge for future research concerns the identification of which 

brain circuits, if any, encode value information that is inferred via abstract rules that 

fundamentally differ from the anticorrelation-based rule utilized here.   The process of answering 

this question need not consist of a mere descriptive exercise of linking different arbitrary rules to 

different brain regions. Instead, it should be pursued as a means of understanding how the core 

processing requirements imposed by different decision rules (for example, the nesting of 

multiple conditional rules, Badre, Kayser, & D'Esposito, 2010, or the maintenance of 

“temporally-complex” representations, Browning & Gaffan, 2008) might ultimately result in the 

recruitment of different networks for representing the outcomes that are predicted to be attained 

through rule execution.  Improved understanding of this theoretical issue may in turn point to 

important clinical implications, such that patients who have sustained damage to particular 

regions might be expected to exhibit motivational or cognitive control deficits within some rule-

governed settings, but not others.  
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APPENDIX A 

POST-SCAN QUESTIONNAIRE #1 

 

Figure A1. Two sample items from the first post-scan questionnaire.  Problems #1 and #2 illustrate previews of a 

novel, low-magnitude negative stimulus and an old, low-magnitude negative stimulus, respectively. 
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APPENDIX B 

STIMULUS VERSUS POSITION STRATEGIES DURING TRAINING PHASE 2 

The randomized nature of the card positions may raise concerns that, by chance 

occurrence, participants may have satisfied the Phase 2 performance criteria by applying a 

position- as opposed to a stimulus-based strategy. Two of the position-based strategies that may 

have been adopted, and which may have been occasionally rewarded, are the position-guided 

win-stay lose-shift strategy (position-WSLS, c.f. Levine, 1959) and the position-perseveration 

strategy.  Position-WSLS dictates that a left or right keypress should be repeated following a 

Trial 1 reward, and avoided following a punishment.  This strategy would be reinforced at a high 

rate during blocks for which the relative card positions remain constant across Trials 1-2.  A 

position-perseveration strategy entails the repeated selection of the same keypress across the two 

problem trials, and would earn the greatest reinforcement during blocks in which position 

changes more frequently following negative as opposed to positive Trial 1 outcomes.  Since 

Phase 2 was associated with a high blocks-to-criterion count (Table 1), it is conceivable that 

participants occasionally encountered blocks that were structured in one of these two ways.  This 

occasional position-strategy-favoring structure would be problematic if it allowed for the 

completion of Phase 2 in the absence of successful learning of a stimulus-based strategy. 
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To address this concern, we compared participants’ actual Phase-2 final-block accuracy 

with the accuracy rates that would have been observed if the above-described position strategies 

had been invariably executed.  Drawing upon data from each participant’s criterion-satisfying 

block, we used the observed Trial 1 choices and outcomes, combined with the actual Trial 1 and 

Trial 2 card positions, to determine the expected Trial 2 performance under both the position-

WSLS and position-perseveration strategies.  The position strategies could plausibly explain 

participants’ satisfaction of the accuracy criteria if they would have indeed predicted highly-

successful responding during the final Phase 2 blocks.  This did not appear to be the case in our 

dataset (Fig. B1): The predicted position-strategy accuracy rates approximated ~50%, a 

significantly lower value than the necessarily high accuracy that was actually observed during 

the criterion-satisfying blocks (for actual versus position-WSLS, t(14) = 18.69, p = 2.69 x 10-11, 

for actual versus position-perseveration, t(14) = 15.30, p = 3.90 x 10-10).   

.Figure B1.  Trial 2 accuracy for the final, criterion-satisfying block of Phase 2, as was observed and as was 

predicted by two position-based strategies.  **, p < .01.  
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APPENDIX C 

INVALID RESPONSE TOTALS 
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APPENDIX D 

VALUE-RELATED ACTIVITY DURING THE NOVEL STIMULUS PREVIEWS 

As was briefly noted in the Results (Section 1.2.3.1), the voxelwise search for linear 

value-related trends in the novel preview data identified two significant clusters at the p < .001 

level (contiguity threshold = 5 voxels, see Fig. D1 and Table D1).  Peak Talairach coordinates 

suggested that the first of these two clusters primarily mapped onto the right culmen; however, 

the overlay of adjoining significant voxels onto the right fusiform gyrus – and the consistency of 

the associated ROI-averaged timecourses with effects reported above for the lingual gyrus  – 

suggested that this cluster might be most appropriately interpreted as mapping onto the fusiform.  

The second of the two clusters was found in the left middle frontal gyrus.  

As was mentioned in the main text, the absence of these regions from the voxelwise old 

preview analyses, in addition to the evidence suggesting that the values of the novel preview 

stimuli were not readily inferred, discourages the interpretation of these regions as playing a 

value-signaling role.  To inform speculation of what function these regions might be serving, the 

two ROIs were submitted to a similar sequence of analyses as was applied to the old-preview 

ROIs.   That is, for each cluster, we extracted the ROI-averaged timecourses for the novel-

preview, old-preview, and Trial 1 task components, and examined the resulting data with trend 
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analysis (linear and quadratic relationships with value) and with 2-way ANOVAs (valence x 

magnitude).  These results are presented in Tables D2-D3 and Figures D2-D7; possible 

interpretations are discussed in the section that follows. 

Table D1.  Linear trends related to the values of the novel, unsampled preview stimuli, p < .001, contiguity 

threshold = 5 voxels.  BA, Brodmann area, TT, Talairach and Tournoux atlas.    

ROI Location Laterality BA Peak t  value Peak TT coords. n  Voxels

Fusiform gyrus / Culmen R 37 7.27 [49,-43,-23] 7
Middle Frontal Gyrus L 11 / 47 4.36 [-29,40,-6] 5
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D.1 ROI ANALYSIS SUMMARY 

Table D2.  ROI-Averaged Timecourse Analyses: p values, Right Fusiform Gyrus.  See text for an explanation of the 

statistical analyses.  M.E. = Main effect.  Main effect of magnitude is omitted as these results are identical to those 

reported for the quadratic value-related trend.  Bold font indicates an effect that is significant at α = .05. 

  

Task Component linear trend quad. Trend M.E. of valence val. x mag. intxn.

Novel Previews 2.86 x 10-5 .83 8.37 x 10-5 .19
Old Previews .29 .79 .048 .45
Trial 1 Outcomes .31 .31 .16 .39
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Table D3.  ROI-Averaged Timecourse Analyses: p values, Left Middle Frontal Gyrus.  Table conventions are the 

same as those described for Table D2. 

Task Component linear trend quad. Trend M.E. of valence val. x mag. intxn.

Novel Previews 1.77 x 10=4 .39 .0044 .39
Old Previews .30 .84 .19 .66
Trial 1 Outcomes .080 .91 .16 .92  
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D.2 ROI ANALYSIS DISCUSSION 

Follow up analysis of the ROI-averaged data from the right fusiform ROI suggested that 

the linear relationship between activity in this region and the values of the novel preview stimuli 

was primarily driven by the main effect of valence (which, unlike the valence x magnitude 

interaction, was statistically significant in the 2-way ANOVA analysis).  The other informative 

aspect of the follow-up ROI analyses came from the old-preview analyses, which similarly 

revealed a main effect of valence, albeit one which occurred in the opposite direction (old S- > 

old S+).   

How should this pattern of effects be interpreted?  Two aspects of the data suggest a 

similar interpretation might apply to this ROI as was described in the Discussion to explain the 

results in the lingual gyrus (Section 1.3.1.4).  First, the fusiform gyrus shares the general status 

of the lingual gyrus as a region which was likely to be important for processing the surface 

properties of the card patterns; previous research using the FMR-adaptation approach showed 

this region to be responsive to changes in both stimulus color and stimulus shape (Cavina-

Pratesi, et al., 2010).  Second, the S- > S+ ordering of the old-preview valence effect in the 

fusiform is the same as the ranking of the valence effects in the lingual gyrus.  Therefore, one 

possible interpretation of the fusiform effects, at least within the old-preview data per se, would 

appeal to the occurrence of something akin to a “tip-of-the-tongue” effect in which extra visual 

imagery is employed in the attempt to retrieve a forgotten stimulus label (i.e., its positive or 

negative valence).  Although the MEG study that supported this TOT explanation for the lingual 

gyrus (Lindin, et al., 2010) did not report the same TOT effect in the fusiform, other areas of the 

literature support the general notion that the fusiform gyrus might be recruited during prolonged 

attempts to determine the identity of an ambiguous stimulus (e.g., Ploran et al., 2007).   
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A somewhat more difficult challenge involves the explanation of the novel S+ > S- effect 

in the fusiform: If the TOT state applies to stimuli which are known but for which a label cannot 

be recollected, then how could such a state be generated by a subset of the stimuli which are, at 

least by objective definition, “new”?  Since considerable evidence throughout the text suggests 

that participants may have more reliably attended to and/or encoded the initially-unsampled 

stimulus when this was an S+ as opposed to an S-, one possibility is that the novel S- stimuli 

were more likely to have been appropriately judged as “new” than the novel S+ stimuli were 

(since participants would be more likely to recognize an “N-” as not identical to the successfully-

encoded, initially-unsampled S+ stimulus).  In other words, when an N+ was viewed, it may 

have been relatively difficult for the participants to judge whether this was truly a “new” 

stimulus or simply the appearance of an initially-unsampled S- that they failed to recognize as 

familiar.  If the N+ stimuli were occasionally, inappropriately judged to be “known” stimuli, then 

this may have created a situation similar to the TOT state, and triggered similar invocation of 

visual imagery processes in an attempt to retrieve the appropriate valence label for the stimulus. 

Follow-up analyses of the left middle frontal gyrus (lMFG) ROI did not reveal any 

significant effects beyond the expected linear value-related trend and main effect of valence for 

the novel preview stimuli.  The qualitative activity pattern that this region exhibited during the 

old preview stimuli was suggestive of a main effect of stimulus valence (old S- > old S+, as seen 

with the fusiform), but this effect was not significant. A marginally-significant, inverse linear 

relationship with the values of the Trial 1 outcomes was found. 

Overall, the lMFG responses are consistent with the general memory-related 

interpretations applied to the fusiform and lingual gyri, particularly if one assumes that a reliable 

old-preview valence effect would have emerged under conditions of greater statistical power. 
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Left MFG has been implicated in the retrieval of visual information (e.g., Wheeler, Petersen, & 

Buckner, 2000) and has been associated with greater activation in the presence of increased 

retrieval effort (e.g., Maril, Wagner, & Schacter, 2001).  Therefore, a similar interpretation of the 

N+ > N- effect as was suggested for the fusiform might also be appropriate in the case of the 

MFG; that is, the relative sensitivity of the lMFG to the N+ stimuli might be explained in terms 

of participants’ effortful (and mistaken) attempts to retrieve past information regarding these 

stimuli.  Previous evidence documenting the involvement of the lMFG during the encoding of 

visual images (e.g., Wheeler, et al., 2000) may also provide insight into the marginally-

significant, inverse association of lMFG activity and Trial 1 outcome value, if one assumes that 

the tendency for greater accuracy following Trial 1 S- selections is mediated by more successful 

encoding of the initially-unsampled S+ stimulus.  
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APPENDIX E 

VALUE-RELATED ACTIVITY DURING TRIAL 1 OUTCOME DELIVERY: RESULTS 
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Table E1.  Linear trends related to the values of the Trial 1 outcomes, p < .001, contiguity threshold = 5 

voxels.  BA, Brodmann area, TT, Talairach and Tournoux atlas.   

 

ROI Location Laterality BA Peak t  value Peak TT coords. n  Voxels

Striatum, Globus Pallidus, Midbrain L, R n/a 6.58 [-15,4,3] 114
Putamen R n/a 4.51 [22,20,0] 5
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