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BEST-SUBSET SELECTION FOR COMPLEX SYSTEMS USING AGENT-BASED

SIMULATION

Yu Wang, PhD

University of Pittsburgh, 2011

It is difficult to analyze and determine strategies to control complex systems due to their inherent

complexity. The complex interactions among elements make it difficult to develop and test deci-

sion makers’ intuition of how the system will behave under different policies. Computer models

are often used to simulate the system and to observe both direct and indirect effects of alterna-

tive interventions. However, many decision makers are unwilling to concede complete control to

a computer model because of the abstractions in the model, and the other factors that cannot be

modeled, such as physical, human, social and organizational relationship constraints. This dis-

sertation develops an agent-based simulation (ABS) model to analyze a complex system and its

policy alternatives, and contributes a best-subset selection (BSS) procedure that provides a group

of good performing alternatives to which decision makers can then apply their subject and context

knowledge in making a final decision for implementation.

As a specific example of a complex system, a mass casualty incident (MCI) response system

was simulated using an ABS model consisting of three interrelated sub-systems. The model was

then validated by a series of sensitivity analysis experiments.

The model provides a good test bed to evaluate various evacuation policies. In order to find

the best policy that minimizes the overall mortality, two ranking-and-selection (R&S) procedures

from the literature (Rinott (1978) and Kim and Nelson (2001)) were implemented and compared.

Then a new best-subset selection (BSS) procedure was developed to efficiently select a statistically

guaranteed best-subset containing all alternatives that are “close enough” to the best one for a pre-

iv



specified probability. Extensive numerical experiments were organized to prove the effectiveness

and demonstrate the performance of the BSS procedure.

The BSS procedure was then implemented in conjunction with the MCI ABS model to select

the best evacuation policies. The experimental results demonstrate the feasibility and effectiveness

of our agent-based optimization methodology for complex system policy evaluation and selection.

Keywords: Agent-based simulation, Statistical selection procedure, Ranking-and-selection, Best-

subset selection, Incident response simulation, Mass casualty incident response, Complex sys-

tem, Complex adaptive system, Optimization via simulation.
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1.0 INTRODUCTION

While considerable insights can be gained from simple models, many problem domains are in-

herently complex, and that complexity needs to be well addressed in models in order to better

understand and evaluate alternatives in actual systems. The objective of the research is to develop

a set of optimization-via-simulation (OvS) methodologies to help analysts appropriately model

a complex system and select the best control policies from a finite number of alternatives in an

efficient way.

In this dissertation, we focus our attention on a specific example of a complex system - an

emergency response system for a mass casualty incident (MCI). Our interest is to investigate how

the system's performance measure (mortality) will change under different evacuation policies and

to find a set of best evacuation policies which minimize overall mortality. To do this, we have

analyzed a MCI response system and created an agent-based model to appropriately capture the

complex interactions of different participants in the system, since these interactions may have great

impacts on the system performance.

A simulation model can help in estimating the performances of different policies, but cannot

provide direct answers about which ones are the best. To select the best policies (the ones that

lead to the least mortality in this case), we investigated existing OvS techniques and identified

their limitations for our problem of selecting a best-subset that contains all alternatives that are

“close enough” to the unknown best. We extended fully-sequential ranking-and-selection (R&S)

procedures to develop a new best-subset selection (BSS) procedure to help analysts compare and

select the best policies efficiently with guaranteed statistical precision. The BSS procedure also

provides an effective control mechanism to run the simulation model in a more scientific and

efficient manner.
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It should be noted that, although we have chosen an emergency response system as the study

case, it does not imply our OvS methodologies are only valid for emergency response systems.

Instead, the methodologies presented in this dissertation have general applicability and can be

used for almost any complex system analysis and policy evaluation and selection.

1.1 RESEARCH MOTIVATION

Emergency managers are charged with planning, preparedness, response and mitigation to disas-

ters within their jurisdiction. To do this well, managers must prepare plans in advance based on the

resources available to them. Similarly, based on their plans, they can report to their jurisdictions

that they have a resource shortfall. These plans and estimates for required resources are usually

done by use of expert judgment and intuition and are then subject to acceptance by their jurisdic-

tions. These can be augmented by the use of models to demonstrate the effects of different policy

options or resources available by responders providing validity in the view of those who would

approve any capital purchases or changes in policies.

Models are often used in enterprises for exploring various resource management policies. In

particular, models are often used to explore policy options to react to unplanned disruptions. Ap-

plications include managing disruptions to commercial supply chains [6], reacting to disruptions

in airline routes [7, 8], location of military equipment for global deployment [9], and others. These

models are used to test procedures, challenge assumptions and explore new ideas more efficiently

and rapidly than experimenting in the real world system [10]. While historically the operations

research community has developed techniques that can be applied to homeland security topics,

Wright et al. (2006) [11] find there are many rich opportunities that are still available, especially

in the emergency response domain.

This research aims to investigate the MCI response system behaviors under different response

policies by agent-based simulation model, and to find the best response policies using appropriate

statistical analysis techniques. The motivation behind this research is to first demonstrate how a

complex system (such as an emergency response system) could be conceptualized as a complex

adaptive system and then modeled by agent-based simulation models, and then to provide decision
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makers a set of methodologies to efficiently run the simulation model, compare different configu-

rations (policies) and find the best alternatives.

1.2 PROBLEM STATEMENT

As a specific instance of a complex system, the emergency response system is essentially a complex

adaptive system (CAS) (see Section 2.1 for detail definitions of CAS), since it involves multiple

interrelated sub-systems and interactive actors (e.g., injured casualties, responders, ambulances,

and hospitals), and the outcome of system is affected by all of these participants' behaviors and their

interactions, which leads to highly non-linear system behaviors and makes it difficult to predict the

consequences of various control policies/protocols. For a better illustration, an example about

dispatching policy selection in emergency response is given below.

Policy Selection: Destination hospital selection in evacuation

A common task of emergency response is casualty evacuation, especially to disaster events

that involve a large number of victims. An efficient evacuation plan could effectively save

lives and reduce mortality. In practice, the responders implementing evacuation (e.g., ambu-

lances) usually follow instructions from the incident command (more specifically, the dispatch-

ing branch) that indicate which hospital a victim should be sent to. Whether or not an efficient

evacuation can be organized directly depends on commanders' dispatching decisions, which

requires the commanders to continuously analyze feedback information and make correct de-

cisions in a timely manner.

Usually there exists standard operating procedures to facilitate the decision making for

commanders. One possible strategy is to always use the nearest available hospital as the evac-

uation destination. Obviously, such a policy can effectively save transportation time, but may

not be optimal in achieving a lower overall mortality. Assume that the nearest hospital is a spe-

cialized trauma center with certain specific capabilities that cannot be provided elsewhere, such

a dispatching strategy is very likely to exhaust its capacity in a short period with those mild

patients who suffer general injuries that can be treated anywhere, while those later-evacuated
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severe patients who indeed require specialized treatments have to be sent to faraway hospitals

and cannot receive timely care, which greatly increases their risk of dying.

An alternative policy may take this issue into consideration, and reserve the capacity of

specialized hospitals for potentially specialized patients. However, some questions may be

raised such as

• Which specialized hospitals should be reserved?

• What percentage of capacity should be reserved in those hospitals?

• Should those capacity be reserved from the very beginning or only after certain conditions

are satisfied?

Each of these questions may lead to a variant of the policy, and currently it is difficult to

tell which one(s) are the “best”, especially if there is a large number of alternatives existing.

In general, the difficulty in identifying “good” policies is in part because managers lack the

appropriate decision-oriented tools to help them make an objective and confidential judgment.

Review of past emergency cases could help people learn lessons and accumulate experiences [12],

but it provides little help for predicting the effect of a new policy or identifying the “best” one

from available candidates. In order to effectively study and analyze the system, a valid model is

necessary. To fulfill our research purpose, a useful model should meet the following criteria:

• Reflect the essential system characteristics while simplifying the complexity effectively;

• Result with sufficient details to answer the questions about the system;

• Can be easily understood and extended

So our first question is: how should the response system be abstracted and modeled? It already

has been proven that traditional analytical tools are insufficient for analysis of a complex system

such as emergency response system [13, 14, 15]. A sophisticated mathematical model may be built

to get some quick answers, but too many assumptions must be made to reduce the level of detail

(e.g., the range of allowed interactions between system components), which may over-simplify the

system and lead to an impractical conclusion.
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Simulation can make explicit many of the abstractions needed for mathematical programming

formulations and model the system in more detail. Different types of simulation models have been

developed, among them agent-based simulation (ABS) models provide an intuitive way to capture

the behaviors of a complex system from the ground-up. It enables researchers to translate their

perceptions of individual processes into the knowledge about the complete system. For these rea-

sons, ABS modeling technique will be adapted to simulate the whole response system. By altering

input parameters, the model can simulate the dynamics of the system under different conditions

and policies, and thus provide information about the effectiveness of the policies under different

scenarios.

Many simulation models contain stochastic components to represent the uncertainty involved

in the real world systems, therefore it is improper to run the model only once, then make a decision

based on the single observation. Many replications must be run in order to accurately evaluate

policies, and certain OvS techniques should be utilized to scientifically allocate computational

resources to avoid either insufficient or excess observations, so that the samples can be obtained in

an efficient way, which is especially important for computationally-intensive procedures, such as

ABS.

Two categories of OvS techniques, ranking-and-selection (R&S) and multiple comparison pro-

cedures (MCP), are well suited for comparison and selection of competitive designs via simulation.

R&S approaches are specifically developed to choose the best design(s) while MCP aim at pro-

viding inferences about the relationships among competing alternatives. Our investigation has

focused on R&S since our goal is to select a set of best emergency response policies from multiple

alternatives.

Within R&S, two classes of problem formulations are indifference-zone formulations and sub-

set selection formulations. Currently available indifference-zone approaches are designed to select

only a single best alternative with a guaranteed statistical precision, while subset selection meth-

ods either lack statistical guarantees on their selections or require too many input parameters to

be practical. So to date there is not yet a satisfactory solution for selecting a statistically guaran-

teed best-subset of alternatives. To address this issue, our second research problem is to develop

an efficient statistical methodology to select the best-subset from a finite number of competing

alternatives while guaranteeing a pre-specified correct-selection probability (error) level.
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1.3 CONTRIBUTIONS

This dissertation has two major contributions to the optimization-via-simulation (OvS) research

area, on both complex system modeling and ranking-and-selection (R&S) methodology, as shown

in Figure 1.1.

Figure 1.1: Optimization-via-Simulation for complex system policy selection.

For system modeling, after a comprehensive exploration of different modeling techniques, the

following procedures are proposed to analyze a complex system (e.g., emergency response system

for mass casualty incident). First, the complex system is abstracted as a complex adaptive system

(CAS), which is a simplification to the original system. As the result of abstraction, major func-

tional sub-systems are identified, as well as the important agents, their relationships and interaction

rules. Those nonessential parts of the original system would be filtered out so that researchers can

focus their efforts on those key factors. After all, as mentioned by Lee et al. [16, 17, 18], all
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computer models are simplifications of reality and can never account for every possible factor or

interaction. For the simplified CAS, a flexible and scalable agent-based simulation (ABS) model

architecture is proposed and implemented. The ABS model is used to investigate changes in system

behavior under different control policies, so that it provides a good tool for managers to identify

the best policies when used in combination with proper statistical analysis methods.

In practice, it is a common request from decision makers to have a method that can effectively

compare different alternatives and provide a subset containing all “good enough” solutions, so that

they can choose their final decision from the selected subset. A review of the literature suggests that

there are no efficient procedures for selecting the best-subset with a specified statistical guarantee.

Therefore, the second major contribution of this dissertation is the development of a new

fully-sequential R&S procedure to select the best-subset while satisfying the requirement of pre-

specified correct-selection probability. The new procedure can select the best-subset efficiently by

screening out obviously inferior alternatives in the early stages.

In addition to the two major methodology contributions, there are also some modeling contri-

butions which supplement the emergency response simulation literature, as listed below:

• Integrates the ABS model with a geographical information system (GIS), that is, the pre-

hospital transportation network can be automatically constructed based on geographic data

generated from a given GIS shapefile [19]; and the ongoing status of the simulation (such as

the location of each response vehicle, distribution of evacuated casualties in different hospitals,

etc.) can be displayed in a GIS map view dynamically;

• Implements and compares different victim degradation models;

• Adds an in-hospital module to the pre-hospital care phase, so that hospital bed capacity can be

included as a constraint; further, the hospital capacity can be broken down into specific tertiary

treatment categories (e.g., burn, serve trauma, etc.)
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1.4 OVERVIEW OF THE DISSERTATION

The remainder of this dissertation is organized as follows:

Chapter 2 provides a thorough literature review including all major concepts and techniques

used in this dissertation. In the first section, an general introduction of complex adaptive system

(CAS) is given to help readers understand what is a CAS and why CASs are difficult to analyze

and control. The second section presents a brief overview of emergency management, and the third

section reviews operations research models developed in emergency response research, and argues

why an emergency response system can be conceptualized to a CAS and what modeling technique

is appropriate for CAS analysis. The fourth and fifth sections discuss the agent-based simulation

modeling and optimization-via-simulation (OvS) techniques in detail, respectively.

Chapter 3 develops an agent-based simulation (ABS) model of the response system for mass

casualty incidents. The implementations of the model are explained in detail. Specific issues

regarding emergency response simulation such as casualty degradation are addressed. Multiple

experimental results are presented to verify and validate the model.

The MCI ABS model provides a good test bed for policy evaluation but can not help researchers

find the best alternatives unless combined with certain OvS techniques. Chapter 4 implements

two well-known ranking-and-selection (R&S) procedures (the Rinott and the KN procedures) and

applies them to the ABS model developed in Chapter 3 to select the best evacuation policy. It

also discusses the limitations of existing statistical selection procedures in selecting a subset that

contains all alternatives that are “close enough” to the best.

To address this problem, Chapter 5 develops a new fully-sequential R&S procedure – the best-

subset selection (BSS) procedure to address the inadequacy. The BSS procedure realizes efficient

selection of the best alternative subset and provides an effective simulation control mechanism.

The procedure is explained in detail, and theoretical proof of its statistical validity is provided as

well. A series of numerical experiments are also given to test the procedure and demonstrate its

effectiveness.

Chapter 6 shows how the new best-subset selection procedure can be applied to the ABS model

to solve the emergency response policy evaluation and selection problem. Comprehensive compu-

tational results are provided to confirm the effectiveness of the methodology. Multiple sensitivity
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analysis experiments are organized to investigate the impacts of different factors to the policy se-

lection results.

As the last chapter, Chapter 7 presents the summary and conclusions for the dissertation, and

discusses some future research directions.
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2.0 LITERATURE REVIEW

2.1 COMPLEX ADAPTIVE SYSTEM (CAS)

The concept of CAS originates in the life and physical sciences, and has been developed and widely

used in the engineering and social science research, such as strategic organizational design, supply

chain management and innovation management [20].

According to Ahmed et al. (2005) [21], almost all biological, economic and social systems can

be conceptualized as complex adaptive systems (CASs). Examples of CAS include the biosphere

and the ecosystem [22], industrial businesses [23, 20, 1], supply chain network [24, 25, 26, 27, 28],

the stock market [29], and any human social group-based systems [30].

As a relatively new research field, there has not yet established a unified definition on the term

CAS. North and Macal (2007) [14] presented the following definition for CAS in their book.

“A complex adaptive system is a collection of interacting components with each of these com-

ponents having its own rules and responsibilities. Some components may be more influential than

others, but none completely controls the behavior of the complete system. All of the components

contribute to the results in large or small ways.”

Similarly, John H. Holland [31] defined CAS as a dynamic network of many agents (which

may represent cells, species, individuals, firms, nations) which are constantly acting in parallel,

and reacting to what the other agents are doing. Any coherent behavior in the system has to

arise from competition and cooperation among the agents themselves. The overall behavior of the

system is the result of a huge number of decisions made every moment by many individual agents.

In general, CAS is a special case of complex system. Chaffee and McNeil (2007) [4] pro-

vided a nice figure to depict typical complex systems, as reproduced in Figure 2.1, which presents
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many special characteristics of complex systems such as dynamically interacting, emergence, self-

organization, evolution, etc.

Figure 2.1: Characteristics of complex systems [4].

The key characteristic that differentiates CAS from general complex system is its agency,

which refers to the ability to learn from experiences and to adapt to external changes. Not all

complex systems have agency. For instance, water is a complex system but not a CAS, since its

interacting objects (e.g. oxygen and hydrogen atoms) lack agency [25].

Although most CASs are complicated, CASs are not equivalent to complicated systems as well.

McCarthy et al. (2006) [20] proposed a framework to distinguish CASs from complicated systems.

In their framework, a system is defined as a set of elements with attributes that are connected to

each other and to the environment by certain relationships. Four dimensions are also defined in

the framework to identify the category of a system: (1) the number of elements that make up
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the system; (2) the attributes of the elements; (3) the number and type of interactions among the

elements; and (4) the degree of organization inherent in the system.

System elements are the basic constitution units of a system. Each element has attributes

reflecting its properties and characteristics and thus determines the heterogeneity of the system.

System relationships are the interactions connecting the elements, which can be symbiotic, syn-

ergistic, or redundant. The environment refers to any other system or element whose changes in

attributes would have an effect on the interested system. A system as a whole is a meaningful fam-

ily of elements, relationships, and attributes. There is natural purpose and a degree of organization

governing the system’s existence.

With this framework, a linear complicated system, such as a mechanical clock, may have a

large number of elements, but the attributes, relationships and interactions of elements are rela-

tively fixed and unchanging, so that the system is highly structured and tightly coupled, which

leads to relatively high levels of stability and predictability, but low levels of adaptability. Such

features make it possible to understand, to model, and to reproduce the linear complicated system

by decomposing the system to its constituent elements, known as reductionism.

With a complex adaptive system, the system is still complicated, but the system elements have

the ability to change their individual attributes and interactions to produce new system configura-

tions and behaviors. It is this ability of adaption that distinguishes a CAS from a linear complicated

system.

On the other hand, CASs are not chaotic systems either. Chaotic systems are relatively un-

structured and loosely coupled, resulting in outcomes that appear so random and disorganized that

it is not possible for the system to adapt.

Instead, CASs are somewhere between linear and chaotic systems, with partially connected

agents whose decision making and interactions produce behavior and outcomes that are neither

fully controlled nor arbitrary. It produces system behavior that lies between order (no change or

periodic change) and chaos (irregular change) and leads to the zone of system adaptability known

as the edge of chaos [20].
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Rouse (2008) [32] concluded the following characteristics for CASs.

• CASs are nonlinear and dynamic, and are composed of independent agents whose behaviors

are based on physical, psychological, or social rules rather than the demands of system dynam-

ics.

• Agents’ needs or desires, reflected in their rules, are not homogeneous, their goals and behav-

iors are likely to conflict. In response to these conflicts or competitions, agents tend to adapt

to each other's behaviors.

• Agents are intelligent. As they experiment and gain experience, agents learn and change their

behaviors accordingly. Thus overall system behavior inherently changes over time. Adaptation

and learning tend to result in self-organization. Behavior patterns emerge rather than being de-

signed into the system. The nature of emergent behaviors may range from valuable innovations

to unfortunate accidents.

• There is no single point(s) of control. System behaviors are often unpredictable and uncontrol-

lable, and no one is “in charge.” Consequently, the behaviors of complex adaptive systems can

usually be more easily influenced than controlled.

From these characteristics, we can see that it is difficult to control or even to predict a CAS

since the system keeps redesigning itself. Unlike the common systems studied in Engineering or

Physics, a CAS has no single governing equation or rule that controls the whole system. Instead,

it has many distributed, interacting parts (agents) which are governed by their own rules. Each of

these rules may influence the actions of other agents, and may affect the system outcome. In such

a manner, a CAS exhibits an aggregate behavior that can not be simply derived from the actions of

the agents. [33]

For CAS, it is often true that the most precise way to predict how the system will behave in

the future is to “wait literally for the future to unfold” [13]. Because the behavior of CAS stems

from the complex interaction of many loosely coupled variables, the system behaves in a non-linear

fashion, which means a given magnitude change in the input to the system is not matched in a linear

way to a corresponding change in the output. Therefore, in a non-linear system, large changes in

input may lead to small changes in outcome, and small changes in input may lead to large changes

in outcome. As a result, the behavior of a complex system can neither be written down in closed
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form nor be predicted via the formulation of a parametric model, such as a statistical forecasting

model.

The intrinsic unpredictability of CAS may cause some ”seemingly wise” decisions to have

harmful side effects in practice. Chu et al. (2003) [34] presented an example to illustrate such

phenomena. In the example, a new species of fish called Nile perch was introduced into Lake

Victoria, which is expected to be more economically profitable to the local people. However, the

following unexpected results were observed:

• The local fishermen did not benefit much since they lack the capital and tools for large scale

Nile perch-fishing;

• The original fish (the cichlid fish) was quickly eaten up by the new predators (Nile perch),

which made the local people lose an important source of daily protein since they could not

afford the high price of Nile perch;

• An explosive increase of mosquitoes was found due to the extinction of the cichlid fish, which

used to eat the larva of mosquitoes.

As a result, the life quality of the locals has deteriorated instead of improved as expected.

However, although the future behavior of a CAS can't be predicated in an exact manner, it

does not imply that the future is random [25]. Although small variations may lead to drastically

changes, there still are recognizable behavior patterns exhibited in a CAS. Therefore, our predictive

capacity, although limited to the exact prediction at a future point in time, can still benefit from the

knowledge of these patterns, which means that we can enhance our control ability to CAS using

effective policies or strategies, especially when the system is under some extreme or catastrophic

situations.

2.2 OVERVIEW OF EMERGENCY MANAGEMENT

During the past decade, civil conflicts, terrorist attacks, and natural disasters in the world have

caused significant loss of life and property. In 2005, the catastrophe caused by Hurricane Katrina

in New Orleans impacted all aspects of that city including its assets, population and economy. Of
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the city’s 180,000 structures, 125,000 were flooded; one year later New Orleans population had

been reduced by nearly 60% [35]. The disaster influence is profound: some serious issues still

remain in the recovery of housing and public healthcare in New Orleans even after four years (in

2009) [36].

Although different emergency events have distinct characteristics in terms of scale, complexity

and treatment, all significant emergency events share certain features: they happen suddenly and

often unexpectedly and require immediate responses – unlike other common events, emergency

response do not allow responders to learn the situation leisurely and take time before making a

decision. Besides that, most emergency responses involve many individuals/organizations, without

a rational guidance, it is very likely that the whole system would run into chaos. In fact, ineffective

management and lack of preparedness are two main reasons for most unsuccessful emergency

responses. As a lesson one should never forget, the mismanagement of Katrina responses cost

more than $100 billion and over 1,300 lives [37]. How to respond to emergencies appropriately is

a major challenge for all emergency managers.

There are considerable efforts made to improve the ability to respond to various types of emer-

gencies. Department of Homeland Security (DHS) [38] lists 15 National Planning Scenarios,

which include various types of emergencies/disasters, from potential terrorist attacks to natural

catastrophes. They form the basis for coordinated federal planning, training, exercises, and grant

investments needed to prepare for emergencies of all types.

In response to these emergencies, a large amount of protocols, standards and policies have been

established at different levels. Among them, the National Incident Management System (NIMS)

[39] provides a systematic, proactive approach framework to guide departments and agencies at

all levels to work seamlessly to prevent, protect against, respond to, recover from, and mitigate

the effects of incidents. NIMS works hand in hand with the National Response Framework (NRF)

[40]. NIMS provides the template for the management of incidents, while the NRF provides the

structure and mechanisms for national-level policy for incident management.

Based upon the national standards, local governments and agencies establish specific emer-

gency plans for responding to potential local incidents (e.g., Emergency operations plan from

Boulder County, Colorado [41]). The general purpose of such plans is to define task assignments

and responsibilities for emergency responders in order to best alleviate suffering, save lives and
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protect property. Checklist, chart and table methods are commonly used in local response plan to

assist decision making, guide command flows and regulate appropriate responses.

These response plans provide general instructions, but most of them are not completely pre-

scriptive so that the actual executions are highly dependent on the individual judgments of emer-

gency managers. Although emergency managers are usually experienced personnel with expertise

to handle certain types of emergencies, it is still problematic by only relying on subjective intuition

and expert judgment of managers. Further, emergency incidents are rare-events, which makes it

impractical for emergency managers to master all necessary knowledge to correctly determine the

best response strategies, especially when facing peculiarly extreme situations.

It is widely agreed that well-established response policies are indispensable in supporting

emergency managers to make timely decisions correctly during the response phase. However,

without good understanding of the response system, it is impossible to prepare effective response

policies in advance due to the uncertainty of the event – where it might occur; what might be the

cause; and what would be the extent of injuries. Due to its expense, it is impossible to perform

real-life experiments to verify the effectiveness of a particular policy. Under such circumstances,

researchers have developed lots of OR models to study emergency management in a quantitative

way.

2.3 OPERATIONS RESEARCH (OR) MODELS FOR EMERGENCY MANAGEMENT

2.3.1 Overview

Wright et al. [11] provide an overview of the use of models in homeland security and classify

the models using the four phases of the disaster life cycle: planning, prevention, preparedness and

response, combined with the countermeasures and component support portfolios of the U.S. De-

partment of Homeland Security (DHS). The countermeasures portfolios are chemical, biological,

radiological, and high explosives. The component support portfolios of DHS are border and trans-

portation security, critical infrastructure protection, cyber security, emergency preparedness and

response, and threat analysis. Using their classifications, the work in this dissertation falls into the
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emergency preparedness and response portfolio and could be used for planning or preparedness

purpose by analyzing the effects of resource levels. It could also be used for response by testing

a few preselected policy alternatives and the current resource levels to identify likely issues or

identify critical resource needs.

2.3.2 Analytical models

Mathematical programming is generally used to find solutions to the optimization problems in

emergency management, such as maximal zone coverage or minimizing response time. Toregas

et al. (1971) [42], Weaver and Church (1985) [43], and Marianov and Revelle (1994) [44] used

set covering models while Schilling et al. (1980) [45] Revelle et al. (1997) [46] and Badri et

al. (1998) [47] used goal programming methods. As an early OR models for emergency medi-

cal service (EMS) deployment, the hypercube model was first introduced by Larson (1974) [48].

In the Hypercube Model, the whole response system is modeled as an expanded, spatially dis-

tributed, multi-server queuing system. The Hypercube Model has been used in other EMS base

location studies [49, 50, 51]. In recent years, more analytical models have also been developed

for emergency preparedness and response for applications such as vehicle dispatching and routing

[52], logistics coordination [53, 54], evacuation planning [55], etc. The advantage of mathemati-

cal models is that usually they are relatively lightweight in computational resources consumption

and faster to solve, while the disadvantage is that they rely on many assumptions that may over-

simplify the system studied, causing the application domain of the model to be tightly constrained

and making it unsuitable to model a complex system.

2.3.3 Simulation models

In contrast to analytical models, simulation models can capture behaviors of individual entities,

which allows analysts to analyze transient effects such as those occurring during the initial stages

of a disaster event. The secion lists a few of simulation models that are relevant to emergency

response.
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2.3.3.1 Discrete-event simulation (DES) Goldberg et al. (1990) [56] built a comprehensive

DES model to evaluate the response time of the emergency system in Tucson, AZ. The model

simulates the response to emergency calls using a multi-server-queuing system. Inside the model,

the entire area of interest is divided into zones, and the calls are responded to by the closest idle

vehicle on a first-come-first-served basis. The travel time is estimated by the base-zone distance.

The model was extensively validated against the actual data and it was found that the zone structure

is crucial to build a valid simulation.

Shuman et al. (1992) [57] developed a discrete event simulator (RURALSIM) for design-

ing and evaluating rural EMS systems. RURALSIM could generate multi-type and multi-severity

distributed emergency incidents, which are then responded according to a set of pre-defined oper-

ational rules. A number of measures of effectiveness output by RURALSIM can provide decision

makers more insights into the system evaluation. Several successful implementations of RURAL-

SIM were reported in the states of Maine, Missouri, Oklahoma and Nebraska.

Haghani et al. (2004) [52] presented a simulation model to evaluate a real-time emergency

medical service vehicle response system. The model uses real-time travel time information as

input and is designed to assist the emergency vehicle dispatchers in assigning response vehicles and

guiding those vehicles through non-congested routes. Different response strategies are evaluated

with this simulation model.

DES models are also widely used to simulate operations in hospitals. Hirshberg et al. (1999)

[58] developed a discrete-event computer model of the emergency room and related hospital fa-

cilities to analyze the utilization of surgical staff and facilities during an urban terrorist bombing

incident.

Su and Shih (2003) [59] constructed a computer simulation model to evaluate the existing

EMS system, tested potential operating policies and suggested improvements for pre-hospital care

to decrease casualty mortality and morbidity.

Hung et al. (2007) [60] reported a DES-based patient flow model to test simulated pediatric

emergency department staffing scenarios in order to alleviate the pressures that result from in-

creased census and overcrowding. Boginski et al. (2007) [61] introduced a DES model built in

Rockwell ARENA, to study the process of patient flow through the hospital system and identify

potential sources and locations of delays associated with equipment utilization. Kolker (2008) [62]
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used discreet event simulation to establish a quantitative relationship between emergency depart-

ment (ED) performance characteristics and the upper limits of patient length of stay (LOS).

2.3.3.2 Agent-based simulation (ABS) An agent-based simulation model contains a collec-

tion of autonomous agents which can perceive their environment, exchange information, make

operational decisions, and act based on these decisions [14]. Many ABS models have been devel-

oped in emergency management research.

Carley et al. (2003) [63] built a multi-agent simulation model (BioWar) to simulate biological

and chemical attacks. BioWar incorporates several sub-models including agent-level disease, di-

agnosis, treatment, social networks, environmental and attack models. Narzisi et al. (2007) [64]

developed PLAN-C to study the performance of populations under catastrophe scenarios due to

terrorist attacks. Their research provides particular insight into the dynamics that can emerge in

this complex system.

Massaguer et al. (2006) [65] developed DrillSim, a micro-simulation environment for disaster

response, in which every agent simulates a different type of real person taking part in the activity.

Khalil et al. (2009) [66] compared DrillSim with four other Agent-based crisis response systems

(DEFACTO, ALADDIN, RoboCup Rescue, and FireGrid). Their analysis includes architecture

and methodology of different systems.

Chen and Zhan (2008) [67] used an agent-based model to simulate the traffic flows and the

collective behaviors of response vehicles to investigate the effectiveness of simultaneous and staged

evacuation strategies under three different types of road network structures.

Schoenharl et al. (2009) [68] developed an agent-based simulation model using RePast [69] as

part of the WIPER system (Wireless Integrated Phone-based Emergency Response). WIPER uses

a stream of cellular network activity to detect, classify and predict crisis events. The simulation

models human activity, both in movement and cell phone activity, in an attempt to better understand

crisis events.

Lee et al. (2010) [70] employed an agent-based simulation model of Allegheny County, Penn-

sylvania, to explore the effects of various school closure strategies on mitigating influenza epi-

demics of different reproductive rates.
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For hospital simulation, Zhu et al. (2007) [71] proposed R-CAST-MED, an intelligent agent

architecture built on Recognition-Primed Decision-making (RPD) and Shared Mental Models

(SMMs), to alleviate the issues arising from ineffective information management in emergency

medical services. Daknou et al. (2008) [72] studied the application of multi-agent systems for

emergency department, and proposed a tool to assist the patient care decision-making process at

the emergency department.

In summary, ABS models are suitable for simulating large-scale complex systems since they

are sufficiently flexible and extensible, which means different types of agents can be easily added

and modified over a wide range of scenarios of varying scope and fidelity. However, they are

computationally intensive and require lots of computational time and resources, so it is necessary

for analysts to employ efficient methods for designing simulation experiments to run the ABS

model in an efficient way.

2.3.4 Discussion

From a systematic view, the emergency response system is a large network of communicating sub-

systems, with each subsystem adapting its behavior to collaborate with other subsystems in the

network. Multiple heterogeneous agents exist in each subsystem, such as emergency medical tech-

nicians, police, ambulances, incident command and hospitals. These agents act based on certain

rules and interact consciously in nonlinear and dynamic manners. They can collect environmen-

tal information, exchange information with each other and adapt their behaviors accordingly. For

instance, incident command could stop routing more ambulances to a hospital that has run out of

beds as soon as it receives the report of lack of available beds. Multiple decisions and activities

involving various actors and organizations take place in parallel. As a result, it is very difficult to

understand or control the system.

Comparing these features to the definition and characteristics described in Section 2.1, we can

see that an emergency response system is very suitable to be abstracted and studied as a CAS. How-

ever, although insights from the CAS can provide increased understanding of emergency response

and a helpful formulation for modeling, certain modeling techniques are needed in order to trans-

form such an formulation into tangible and understandable results, particularly from a management
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perspective. The rationale is that the model should enable managers to test and evaluate different

“what-if” scenarios subject to policy changes, so that it helps them compare the effectiveness of

different response policies and selecting the proper ones.

The traditional analytical approach of hierarchical decomposition that works for general com-

plicated system (e.g. industrial product design) does not apply for CAS analysis, since decomposi-

tion may result in the loss of important information about interactions among the agents of interest

[32]. Although a CAS can be reduced to several separate subsystems, we cannot analyze each

subsystem independently and then integrate analysis results to understand the system as a whole

[73]. Researchers working in this field have argued that a CAS should be modeled and studied by

working “bottom up” rather than “top down” [74].

The choice of models is dependent on the nature of the system and critical aspects of interest.

In emergency response, responders continuously gather and report information to the incident com-

mand (decision makers), and the latter accordingly adjust the action commands to responders as

they react to this information. In order to capture these interactions, we use agent-based simulation

to model the whole system and to simulate the adaptive behaviors of different agents.

2.4 AGENT-BASED SIMULATION (ABS) MODELING

Agent-based simulation (ABS) modeling is derived partly from distributed artificial intelligence

and partly from the science of complexity. According to Luck et al. (2003) [75], agent-based sys-

tems has been widely studied in a diverse range, including artificial intelligence, human-computer

interaction, distributed and concurrent systems, decision support, information retrieval and man-

agement, etc. In ABS modeling, large numbers of actors are simulated as adaptive agents that can

adjust their behaviors in response to the changes from environment. Usually, the basic assumptions

about the adaption rules are relatively straightforward [24].
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2.4.1 Overview of agents

The basic constituents of ABS models are agents, which are defined by North and Macal (2007)

[14] as “the decision-making components in complex adaptive systems. Agents have sets of rules

or behavior patterns that allow them to take in information, process the inputs, and then effect

changes in the outside environment. ”

According to Nilsson and Darley (2006) [1], agents distinguish themselves from standard ob-

jects in object-oriented programming on the following aspects:

1. Agents embody stronger autonomy than objects; that is, agents are purposeful - “objects do it

for free, agents do it for money”;

2. Objects are passive while agents are active and have internal mechanism;

3. On the model level, agents are each considered to have their own thread of control whereas in

the standard object model, there is a single thread of control.

Macal and North (2010) [76] provide the following characteristics of agents in ABS:

1. An agent is an identifiable, discrete, or modular, individual with a set of characteristics and

rules governing its behaviors and decision-making capability.

2. Agents are self-contained. The discreteness requirement implies that an agent has a boundary

and one can easily determine whether something is part of an agent, is not part of an agent, or

is a shared characteristic.

3. An agent is autonomous and self-directed. An agent can function independently in its envi-

ronment and in its interactions with other agents for the limited range of situations that are of

interest.

4. An agent is social, interacting with other agents.

5. Agents have protocols for interaction with other agents, such as for communication. Agents

have the ability to recognize and distinguish the traits of other agents.

6. An agent is situated, living in an external environment with which the agent interacts in addi-

tion to other agents.
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7. An agent may be goal-directed, having goals to achieve (not necessarily objectives to maxi-

mize) with respect to its behaviors. This allows an agent to compare the outcome of its behavior

to the goals it is trying to achieve.

8. An agent is flexible, having the ability to learn and adapt its behaviors based on experience.

This requires some form of memory. An agent may have rules that modify its rules of behavior.

The essential characteristics of an agent include the adaption in environment, autonomy and

flexibility [77]. The ability to interact with the environment sets an agent apart from an AI system

which has no need of an environment. The capacity for autonomous action enables an agent to have

control over its own actions and to function without direct human intervention. An agent achieves

flexibility by being responsive to changes in its environment, pro-active in its goal-directed actions,

and social in interacting with other agents to reach the pre-defined objective.

Different taxonomy matrices have been introduced by different researchers to classify agents

into different categories. One commonly-used classification approach is to describe an agent ac-

cording to its function (for example a shipping agent or a sales agent). Tu (2008) [77] divided

agents broadly according to their architecture with deliberative agents and reactive agents, which

are respectively at the stronger and weaker ends of the spectrum of the notion of agency. In this

dissertation, we adopt the categorizations presented by North and Macal (2007) [14] by classified

simulated agents into two categories: full-functional agents and proto-agents; compared to full-

functional agents, proto-agents lack of autonomy and can not make rational decisions by them-

selves.

2.4.2 Agent-based modeling

In ABS modeling, systems are built from the ground-up in contrast to the top-down manner used

in traditional modeling methodologies [78]. According to Nilsson and Darley (2006) [1], the top-

down methodologies are based on the assumption that knowledge is outside the “system” and

researchers can measure and analyze the observable phenomenon of interest by decomposing the

whole system to different sub-units and solving the sub-problems separately. On the contrary,

bottom-up methodologies assume that modelers cannot understand the whole phenomenon of in-

terest but they can observe and understand specific activities and processes of individuals on a
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micro level, and synthesis the whole system by modeling the behaviors and interactions of these

individuals. Figure 2.2 compares the difference of these two methodologies.

sub-problems are solved separately. Then, as Kreipl and Pinedo (2004, p. 83) state, “at
the end, the partial solutions are put together in a single overall solution”. While this
“divide and conquer” approach enables manufacturing and logistics operations to
be translated into mathematical equations for correct analytic solutions, it
de-emphasises the relationships and dynamics which in reality exist among different
manufacturing and logistics entities (Parunak et al., 1998). This is especially the case
when the targeted modelling context is widened to include several dispersed functions
or processes within a company. Models which are constructed by global performance
measures (also called observables (Parunak et al., 1998)), cannot cope with the
dynamics of their constituent parts, since the observables are constructed of
the aggregated behaviours of the whole system (Swaminathan et al., 1998).
Paradigmatically, this top-down assumption is inherited from the positivistic
paradigm, hence built on mechanistic assumptions and reductionism. In this regard,
Kauffman (1995, p. VII) states that “the past three centuries of science have been
predominantly reductionist, attempting to break complex systems into simple parts,
and those parts, in turn, into simpler parts”.

Bottom-up methodologies are instead based on a synthesising philosophy,
where the user presumes that he/she cannot understand the whole phenomenon of
interest but can observe, on a micro level, specific activities and processes, and
tries to understand their behaviour and their objectives. These agents interact and
communicate with other agents and they join to form a coherent whole on a macro
level (d’Inverno and Luck, 2001). Each agent’s ability to make decisions based on
information-processing rules creates the internal dynamics which form the
behaviour of the system; often emergent behaviours which cannot be predicted
in advance (Axelrod, 1997a). In this regard, Bonabeau (2002, p. 110) states that in
order to understand ABM “you first need to understand the concept of emergent

Figure 1.
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Figure 2.2: Top-down and Bottom-up methodologies (Nilsson and Darley, 2006) [1]

A major characteristic of top-down approaches is the assumption that the future selections

can be defined as conditional probability mass functions of past selections. Such dependence

complicates the decision making problem, since the construction of probability mass functions

quickly becomes an obstacle as the number of possible scenarios combinatorially explodes. This

either requires increasing amounts of data to reliably estimate these parameters or forces parameter

estimation to rely upon subjective impressions.

As an alternative, the bottom-up modeling approach allows direct imitation of behaviors which

may be difficult to replicate solely through probability mass functions over the range of aggregate

outcomes. The bottom-up approach provides connections that link the behavior of the individual

components to the resulting system effects. The agent-based model thus allows researchers to
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convert their understanding of individual behaviors or experience with detailed processes into the

knowledge about the complete system. As we have discussed in Section 2.1, a CAS can be con-

sidered as a multi-agent system that evolves over time and space. Jennings (2000) [5] presented a

canonical view to illustrate how such a multi-agent system can be organized at its simplest level,

as shown in Figure 2.3.

Figure 2.3: Canonical view of an agent system (Jennings, 2000) [5]

From Figure 2.3, we can see that the agents are highly coherent modules and a number of them

with related functions may be grouped together in a loose cluster with each agent limited in its view

and influence within its activity domain. There is no identifiable central control of the group since

this function is distributed among the agents, and embedded within each is its individual limited

set of control rules. Their network topology is usually pre-determined and they communicate their

requests and intentions with each other by message exchanging. Because agents communicate in

this manner, they are more naturally suited to distributed simulation.
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According to Luck et al. (2005) [79], agent-based simulation modeling has achieved a com-

paratively wide degree of acceptance and has been successfully implemented in many real-world

systems. In addition to the models developed for emergency research (in Section 2.3.3.2), the ex-

amples of ABS application also include epidemic and pandemic prevention [17, 18], disease prop-

agation [80], human movement in a theme park [81], manufacturing shop floor control [82], urban

planning [83], water usage policy management [84], network security [85], and product/system

design [77, 86, 87, 88, 89]. Readers are also referred to Macal and North (2010) [76] for a more

comprehensive review of ABS applications.

Due to substantial public research and development investments, many ABS modeling software

environments are now freely available [90]. These include Repast, Swarm, NetLogo and MASON

among many others. Proprietary toolkits are also available such as AnyLogic. A detail review and

recommendations of ABS development platforms is provided by Railsback et al. (2006) [91]. A

recent survey and comparison of agent-based modeling and simulation tools can be found in Allan

(2009) [92].

Nilsson and Darley (2006) [1] and Bonabeau (2002) [2] concluded the advantages and disad-

vantages of ABS modeling, their results are summaried in Table 2.1.

Table 2.1: Pros and Cons of ABS [1, 2]

Advantages Disadvantages

• Provides a natural description of a com-

plex adaptive system;

• Increases realism;

• Includes heterogeneity and bounded ra-

tionality;

• Promotes scalability and flexibility;

• High development costs in both time

and effort;

• Requires more data to be collected than

many other approaches;

• Computationally intensive;

The major disadvantage that impedes the application of ABS is its low computational effi-

ciency. Furthermore, simulation models must be run for a certain number of replications in order to
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obtain statistical meaningful conclusions, which consequently aggravates the low-efficiency prob-

lem even more. Therefore, it is necessary to find proper statistical-based techniques for efficient

simulation control and economic output analysis.

2.5 OPTIMIZATION-VIA-SIMULATION METHODS

Well-developed ABS models only provide the prerequisite for the purposes of further system anal-

ysis. In order to obtain correct conclusions, proper optimization-via-simulation (OvS) techniques

must be used to control the simulation and analyze the results. The benefits of OvS include:

• Best utilize computational resources for computationally intensive simulation (e.g., ABS);

• Improve efficiency by screening out non-competitive systems in the early stages;

• Identify the “best” design or policy efficiently with given confidence level;

• Gain some insights about applying adaptive control technique to simulation of a large-scale

complex adaptive system [93].

Multiple approaches have been applied to different simulation models to address various op-

timization problems, including genetic algorithms [94], simulated annealing [95], maximum like-

lihood estimation based methods (e.g., bootstrap methods) [96, 97], tabu search [98], threshold

accepting search methods [99, 100], and ant colony optimization [101, 102] among others. The

goal of our study is to choose a “good set” of systems from a number of competing alternatives,

where the “best” refers to the system with the largest or smallest expected performance measure.

This can be accomplished by comparing output from different alternative systems using the appro-

priate statistical methods.

Kim and Nelson (2007) [103] classify comparison problems arising in simulation studies into

four classes: (1) selecting the system with the smallest (or largest) performance measure (selection

of the best), (2) comparing all alternatives against a standard (comparison with a standard), (3)

selecting the system with the largest probability of actually being the best (multinomial selection),

and (4) selecting the system with the largest probability of success (Bernoulli selection). The

objective of our simulation is to identify the best response policy(s) that lead to the least amount
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of mortality, and there are two major categories of OvS methods that could be used to realize the

objective, which are ranking-and-selection (R&S) and multiple comparison procedures (MCP).

2.5.1 Ranking-and-selection (R&S)

R&S procedures are specifically developed to select the best population or a subset that contains

the best from competing alternatives [104]. Over the last decade, there have been fruitful efforts in

developing statistically valid R&S procedures. In general, these procedures can be classified into

two large categories: Bayesian procedures and Frequentist procedures.

Bayesian procedures try to maximize the posterior probability of correct selection (Chen et

al. 2000) [105] or try to minimize the opportunity cost given a simulation budget (Chick and

Inoue 2001) [106], and are usually more efficient than Frequentist methods. However, Bayesian

procedures cannot provide a statistical guarantee of correct-selection [107], which is their major

disadvantage.

Compared with Bayesian-based approaches, Frequentist procedures, such as Rinott (1978)

[108] and Kim and Nelson (2001) [109], are relatively conservative, since they allocate simulation

effort to different systems to ensure a probability of correct selection even for the least favorable

configuration. But they can provide statistical guarantees of correct-selection, which is preferred

in many application cases. For this reason, the focus of this dissertation is on Frequentist proce-

dures, and the procedure proposed here does guarantee a pre-specified level of correct-selection

probability.

Frequentist procedures may be single or multi-staged. Based on their objectives, there are

two formulations of the problem of comparing alternative systems, which are indifference-zone

formulations and subset selection formulations respectively [110].

Indifference-zone formulations provide a guarantee of selecting the single best system, where

an indifference-zone parameter δ is defined at the range where the experimenter is “indifferent”

to alternatives within δ of the best system. Subset-selection formulations choose a subset of the

available alternatives so that there is a defined probability guaranteeing that the subset includes the

best system.
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2.5.1.1 Indifference-zone selection (IZS) A large set of ranking-and-selection procedures are

based on the indifference-zone formulation. These approaches are characterized by two parame-

ters, {δ ,P∗}, where δ is known as indifference-zone, which indicates a region in which the ex-

perimenter would not discriminate among competing systems. The value P∗ denotes the thresh-

old of desired probability of correctly selecting the best alternative P{CS}; it is expected that

P{CS} ≥ P∗.

The original indifference-zone R&S procedure was proposed by Bechhofer (1954) [111] as a

single stage procedure. From a given {δ ,P∗}, the procedure can determine the number of required

observations for each competing system. A major disadvantage of Bechhofer’s procedure is its

assumption for common, known variance across all systems, which may not be justified in a given

simulation.

To address this issue, Dudewicz and Dalal (1975) [112] presented a two-stage procedure (D-

D), in which variances are estimated at the end of first stage and are used to calculate the number of

observations required at the second stage. A weighted average of the first and second stage sample

means is then used to select the best system. Rinott (1978) [108] modified the D-D procedure to

the R procedure, which yields a greater P{CS} in some cases, but may require a larger total number

of observations. For this reason, it is not appropriate to use the R procedure when the number of

competing systems is large, especially when run time is an issue.

In order to handle cases involving a large number of alternatives, Nelson et al. (2001) [113]

presented the NSGS (Nelson-Swann-Goldsman-Song) procedure, which uses the data from the first

stage sampling to screen out alternatives that are not competitive, and thereby avoid the (typically

much larger) second-stage sample for these systems.

The two-stage procedures with screening can be extended to more than two stages or to

sequential-stage procedures, where a screening procedure is applied at each stage until only the

best alternative is left, such as the fully-sequential procedures KN (Kim and Nelson 2001) [109]

and KN+/KN++ (Kim and Nelson 2006) [114]. These procedures are effective in eliminating

inferior systems and thus more efficient than the R procedure.

In recent years, researchers put their attentions on improving the applicability and efficiency

of indifference-zone selection procedures. Hong and Nelson (2005) [115] proposed sequential

procedures (HN) that attempt to balance the cost of sampling and switching to minimize the total
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computational cost. Hong and Nelson (2007) [107] also presented procedures that are capable

of selecting the best alternative in the situations when the alternatives are revealed (generated)

sequentially during the experiment. Osogami (2009) [116] proposed a two-stage indifference-

zone approach (TSSD) with the goal of reducing both the number of simulated samples of the

performance and the frequency of configuration changes. Tsai and Nelson (2010) [117] applied

the Control Variates (CV) technique in fully-sequential indifference-zone selections to develop a

more efficient R&S procedure.

As a common characteristic, almost all existing procedures (KN/KN+/KN++, HN, TSSD) are

designed to select only a single system (which will then be claimed as the best) whose mean

performance measure (µb) is within an indifference-zone (δ ) to the true-best system's mean (µB,

unknown). All others will be screened out in the early stage or disregarded in the final stage (due

to exceeding the computation budget limitation).

2.5.1.2 Subset selection (SS) The other major type of R&S is subset selection, which is first

presented by Gupta (1965) [118]. The goal of the Subset Selection procedure is to identified a

subset of random size that contains the best system, with user-specified probability P∗ and without

the specification of an indifference-zone (i.e., δ = 0).

Like Bechhofer's indifference-zone procedures, Gupta's subset selection procedure requires

equal and known variances among competing alternatives. To solve this problem, Sullivan and

Wilson (1989) [119] develop two subset selection procedures that extend Gupta's work by allowing

unknown and unequal variance, and specification of a non-zero indifference-zone.

Many subset selection approaches are designed to select a restricted subset, where the term

“restricted” implies that extra input parameters are needed to restrict the selection set. For exam-

ples, Koening and Law (1985) [120] developed a two-stage indifference-zone procedure to select

a subset of size m containing the v best of k systems; where (1≤ v≤m < k). If m = v = 1, then the

problem is to choose the best system. When m > v = 1, they are interested in choosing a subset of

size m containing the best. If m = v > 1, they are interested in choosing the m best systems. Chen

(2009) [121] proposed a heuristic two-stage selection procedure (Enhanced Two-Stage Selection

procedure) to select a subset of size m containing at least c of the v best of k normal populations
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with unknown means and unknown variances. They also derived the probability of correct selec-

tion lower bound of determining a subset based on the distribution of order statistics.

Compared with indifference-zone based approaches, subset selection procedures are less popu-

lar in practice. The early subset selection procedures cannot provide guarantee on the performance

of all alternative systems among the selected subset – they only claim that their selection subset

contains the best but do not claim that the whole subset selected is “good”. And the restricted

subset selection methods require too many input parameters which are usually difficult to justify

in applications. These deficiencies make them less be used in practice.

2.5.2 Multiple comparison procedures (MCP)

Unlike R&S procedures, whose objective is only to find the optimal alternative(s), MCP provide

not only inference about the best system, but also relationships among all the systems. According

to Swisher (2003) [122], MCP can be classified into three general categories: all-pairwise compar-

isons approaches, multiple comparisons with a control (MCC), and multiple comparisons with the

best (MCB).

2.5.2.1 All-pairwise comparison approaches Two sub-categories can be made to classify the

all-pairwise comparison approaches: (a) combined paired-t, Bonferroni, and all-pairwise compar-

isons; (b) all pairwise multiple comparisons (MCA).

The first category is referred as the brute force approach by Fu (1994) [123], since it examines

all possible pairwise for k systems, resulting in a total k(k−1)/2 of confidence intervals. Due to the

Bonferroni inequality, each confidence interval must be constructed at level {1−α/[k(k−1)/2]} in

order to have a joint confidence level of at least (1−α), which causes extremely wide individual

confidence intervals for a large number of alternatives, and consequently, little inference can be

obtained from it.

Unlike brute force approaches, MCA (Tukey 1953) [124] obtains an overall simultaneous con-

fidence level (1−α) with shorter confidence half-widths for all k(k−1)/2 pairwise comparison,

thus it is better for comparison. However, compared with other MCP methods, all-pairwise com-

parisons usually need the most observations
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2.5.2.2 Multiple comparisons with a control (MCC) Sometimes the goal is to compare a

set of alternatives to a pre-defined control (e.g., current existing design). Dunnett (1955) [125]

proposed the first MCC procedure to construct (k−1) simultaneous confidence intervals in com-

parison to a fixed control. The traditional MCC is then expanded to a two-stage MCC procedures

(Bofinger and Lewis, 1992 [126]), and allows different systems having different probability distri-

butions to be compared against a single (standard) design (Damerdji and Nakayama, 1996 [127]).

MCC is usually efficient since it takes the least number of observations.

2.5.2.3 Multiple comparisons with the best (MCB) MCB is used to select the best system

and identify those significantly worse than the best. Since the best system is unknown before, the

number of observations needed for MCB is usually larger than MCC.

The first MCB procedures were developed by Hsu (1984) [128]. Yang & Nelson (1991) [129]

and Nelson & Hsu (1993) [130] describe modifications to the MCB procedure that incorporate two

variance reduction techniques (control variates and CRN) to shorten the length of the confidence

intervals for a specified level of confidence. Goldsman and Nelson (1990) [131] outline an MCB

procedure for steady-state simulation experiments. They also discuss results on how the batch

size can impact the probability of correct selection when using the simulation technique of batch

means. Nelson and Banerjee (2001) [132] present a two-stage MCB procedure that simultaneously

achieves several objectives for a given probability of correct selection.

An important characteristic of MCB is it can be combined with R&S procedures, compared

with the individual approach, the combined R&S-MCB procedures not only select the best system

with pre-specified confidence but also provide insight about how much better the best alternative

is in comparison to the rest of the alternatives, with little or no additional computational overhead.

Gupta and Hsu (1984) [133] first proposed a unified methodology for simultaneously executing

R&S and MCB. Nelson and Matejcik (1995) [134] show that most indifference-zone procedures

can simultaneously provide MCB confidence intervals with the width of the intervals correspond-

ing to the indifference-zone. They also derive a two stage combined procedure - Procedure NM.

Swisher and Jacobson (2002) [135] apply procedure NM to determine the optimal clinic design

from seventeen competing alternatives.
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2.5.3 Summary

In summary, R&S and MCP are both effective tools for selection of the best alternative(s). R&S

approaches allow the simulation analyst to choose the best design at or above a user-specified

probability level within an indifference-zone, or to screen alternatives to a smaller subset. MCP

provide inference about the relationships among competing alternatives. Both procedures are eas-

ily adaptable and statistically valid. R&S and MCP are applicable to comparisons among a finite

and typically small number of systems (often less than 100) [136]. When the number of alterna-

tives becomes large, other methods should be considered. For example, if the factors of the studied

systems can be parameterized, response surface methods (RSM [137]) could be utilized to find an

optimal solution.

2.5.4 Discussion

In our research, it is desired to have a method that examines alternatives and provides them with a

subset of alternatives that are close to the best, so that they can choose the final decision from the

“best-subset”, instead of unconditionally trusting the best solution provided by a computer. Such

a requirement is not only due to the fact that people are unwilling to leave their decision making

responsibilities to computers, but also has its practical reason - it is usually neither possible and

nor necessary to include all system parameters in a computer model. Some constraints on the

system may not be quantifiable for inclusion in a mathematical model, but must be considered in

practice. Indeed, the simulation model is only an abstraction of the real system, but not a complete

representation. Consequently, the best system selected by computer for the abstraction may not be

best for the real system, and could even be infeasible or simply unrealistic in practice. Hence, we

suggest that a best-subset involving multiple potential alternatives should be more useful than the

only one choice, as it allows the decision maker to choose among a set of alternatives based on

criteria not in the model, such as social or political feasibility.

Our research aims to solve a practical policy selection problem for a local government agency.

We have developed an agent-based simulation model of emergency response and used the model

to examine a set of alternative emergency response policies. The ideal deliverable for the customer

is a methodology that can select a subset of alternative policies that all have demonstrated good
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performance in the simulation model, so the customer can choose among them using other factors

to select the policy to implement in practice.

However, our review of the literature suggests that there has not yet a method for select-

ing a best-subset with statistical guarantee (given probability level) from a set of alternatives.

Indifference-zone methods select only a single best alternative, which is not acceptable (because of

skepticism of the output of computer models) and subset selection methods are not useful as well

(because of the lack of guarantees on the subset or the impractical input parameter requirements).

Therefore, we have developed the methodology described in Chapter 5 to select the best-subset

from a finite number of competing alternatives while guaranteeing a pre-specified correct-selection

probability level.

For relevant research, Kim (2005) [138] developed a fully sequential procedures for compari-

son systems with a standard. Andradóttir, Goldsman, and Kim (2005) [139], Andradóttir and Kim

Kim (2010) [140], Batur and Kim (2005) [141] and Batur and Kim (2010) [142] considered the

problem of finding a set of feasible or near-feasible systems among a finite number of simulated

systems in the presence of stochastic constraints. However, none of these research efforts addresses

the best-subset selection problem. Because that the actual best system is unknown, it is difficult

to recognize and eliminate the inferior systems during the screening stage, as well to establish

appropriate stopping criteria.

This explains the motivation of the development of a fully sequential R&S procedure to select

the best-subset while satisfying the pre-specified correct-selection probability requirement. Ac-

cording to Osogami (2009) [116], the KN series are the most efficiient algorithms in terms of the

number of samples needed. So we extend KN in order to develop this new procedure that selects

the best-subset by efficiently screening out obviously inferior alternatives in the early stages.
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3.0 AGENT-BASED SIMULATION MODELING FOR MASS CASUALTY INCIDENT

RESPONSE

In this chapter, we represent a specific complex system – mass casualty incident response system –

as an agent-based simulation model. We hope that the methodology used in this chapter can serve

as a guide for future researchers to model and analyze complex systems.

3.1 OVERVIEW

3.1.1 General operations of MCI response

Mass casualty incidents (MCIs) refer to those large-scale disasters involving relatively large num-

bers of victims (affected people) with injuries at different severity levels. In a MCI response

system, when an incident occurs and is reported, the incident command will assess the situation

and dispatch responders to the disaster scene to perform triage, stabilization and evacuation.

Triage is a technical term used widely in the emergency medical literature and practice. It is

defined as the process of assessing a group of patients’ situations and assigning appropriate medical

resources for treatment [143], which is usually performed by the first arriving emergency medical

technicians (EMTs). On-site triage is recommended or required in most mass-casualty situations in

order to avoid resource waste and manage limited assets better, especially for large-scale incidents

where medical resources are usually tight [144, 145]. The first step of triage is to screen and

classify injured victims into several categories based on their severity levels [146, 147, 148]. A

popular triage coding system for trauma events [146, 143, 3, 148] is presented as follows:
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• “Black” or expectant – Non-salvageable/dead on arrival (DOA): Victims who are found to be

clearly deceased at the scene with no vital signs and/or obviously fatal injuries.

• “Red” or immediate – Life-threatening injury: Victims who have life-threatening injuries

or illness but salvageable (such as head injuries, severe burns, severe bleeding, heart-attack,

breathing-impaired, internal injuries). They have the first priority for treatment and transporta-

tion.

• “Yellow” or delayed – Severe injury. Victims who have potentially serious but not immediately

life-threatening injuries (such as fractures).

• “Green” or minimal – Walking/moderate wounded. Victims who are not seriously injured,

quickly triaged, and escorted to a staging area out of the scene for further evaluation and

transportation.

As the next step, the on-site emergency medical services (EMS) personnel assess the patients'

situation and determine the appropriate actions to take. In severe situations, the EMS responders

treat and stabilize the patients and then evacuate them to appropriate medical facilities (hospitals).

In less critical situations, the EMS may just treat the patients at the scene and leave them for further

medical care to be delivered by other support responders.

Evacuation is usually performed by ambulances traveling from their bases to the scene. When

an ambulance arrives, the EMS will load the most critical patients and transport them to an appro-

priate hospital for more definitive treatment. An evacuation ambulance may travel back and forth

between the scene and various hospitals multiple times, depending on management’s decisions.

The above EMS operations are a generic, fundamental response plan, which is extracted from

the federal, state and local standards (e.g., NFPA 1561 [149], Boulder County Medical Emergency

Response Plan [41]) and are being executed nationwide. Although variations may be made in

the details (rules) for treatment or transportation of casualties to fit the special needs in certain

situations, the basic response principle is to stabilize the casualties at the scene and then transport

them to medical facilities as soon as possible according to their severity priorities.

Besides medical responders, other possible responders might include firefighters, police and

hazmat (hazardous materials) teams. They are usually assigned to perform certain specified tasks.

For example, firefighters are trained for basic life support and can be the first responders to the

scene and work as emergency medical technicians to stabilize victims at the scene; hazmat teams
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might be needed at the scene to deal with the contaminated materials first before other responders

can enter the scene.

3.1.2 Discussion

In an emergency response, responders begin with limited information about the incident and make

decisions based on information they gather themselves or through communicating with other re-

sponders. Based on protocol and decisions made by incident command, responders operate under

a set of rules that may change as incident command gets new information.

For example, in a mass casualty incident, there is an initial call to an emergency number

that notifies responders that an incident has occurred. The first units on the scene then provide

situational awareness and begin triaging patients. As additional responders arrive casualties are

triaged, information is collected and reported to incident command, and patients are evacuated

to the appropriate hospitals. As information is reported and the scope of the incident becomes

more apparent, incident command adapt the response to the size and type of incident based on the

resources available.

The information gathering and processing influence the incident response directly. The con-

crete action steps are dependent on the information gathered during the response, and responders

have to make decisions with incomplete information in a distributed fashion. So agent-based mod-

els are especially relevant to modeling emergency response to mass casualty incidents since they

provide a nature way to describe the information collection and interpretation for various actors.

In this chapter, we build an agent-based model to simulate a mass casualty incident response in

an urban area. The model is used to examine the effects of different evacuation policies to the

response.

3.1.3 Simulation platform selection

Railsback et al. (2006) [91] compared different agent-based simulation toolkits, including Repast

[150], NetLogo [151], MASON [152], and Swarm [153]. According to their review, Repast is

the most complete Java platform. Compared to the other platforms, Repast has good execution

speed and many other desired capabilities, such as the ability to reset and restart models from the
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graphical interface, the “Multi-run“ experiment manager, and built-in geographical and network

supporting functions. Due to these benefits, we chose Repast as our modeling platform.

Repast stands for “Recursive Porous Agent Simulation Toolkit”, which is an open-source,

cross-platform, agent-based modeling and simulation toolkit that was originally developed by re-

searchers at the University of Chicago. Some attractive features of Repast include:

• Full object-orientation;

• Flexible hierarchically nested definition of space and visualization of 2D, 3D environments;

• Supports 2D and 3D Geographical Information Systems (GIS): ESRI ArcGIS or OpenMap;

• Provides convenient interface to connect with external optimization tools ;

• Available on virtually all computing platforms including Windows, Mac OS, and Linux;

• Good tutorial and documentation [154]; many publications about successful application expe-

riences [155, 156, 150, 69].

3.1.4 Highlights of the modeling

3.1.4.1 Generic agent types North and Macal (2007) [14] classified commonly used agents

into two general categories: full-agent and proto-agent. Compared to full-agents, proto-agents

are much simpler in both concept and implementation. Proto-agents cannot make any reasoning-

based decisions, but just act following given rules or commands; full-agents have the capability to

perceive the environment, collect / analyze / exchange information, and make decisions based on

the information obtained. In short, full-agents are more intelligent than proto-agents.

Based on this taxonomy, we decided to use proto-agents to model those non-decision-making

participants, such as injured casualties and ambulances, and employing full-agents to simulate the

decision maker – incident command. Besides that, in order to achieve better extensibility and code

reusability, we extended the agent definition architecture by deriving three generic agent classes:

Indicator, Performer, and Commander, as shown in Figure 3.1.

From Figure 3.1 we can see that the biggest difference among these three derived classes is

that Commander is derived from full-agent so it has the ability to make decisions, while Indicator

and Performer can not since they are derived from Proto-agents.
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Figure 3.1: Class diagram of agents
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The common characteristics shared by all three types are:

• All agents possess attributes and rule-based behaviors, the behaviors include self-action and

interaction with others;

• Behavior will change the attributes, which could be either of itself or others. For example, the

deterioration behavior of injured casualties (self-action) could decrease their survival probabil-

ity (self-attribute); the casualty-pickup behavior of an ambulance (interaction) will change the

attributes of both agents (the number of passengers on the ambulance, evacuated status for the

casualty).

For differences, Indicator agents are entities that do not move through the system by them-

selves, but can only be moved by other agents. Their state can change in accordance to specified

rules and their state can be queried by other agents. Furthermore, an Indicator agent can neither

collect outside information nor make decisions, the only information it can provide is about itself.

In our model, the injured casualties are modeled as Indicators.

Performer agents can execute tasks which are either generated according to internal rules or

assigned by Commanders. Each Performer agent owns a unique task queue, and it will execute

received tasks in a first-in-first-out (FIFO) order. They also maintain a state that can be queried

by a Commander agent. The triage EMTs and ambulances are modeled as Performers in current

model, but they could be modeled as full agents if being endowed decision making autonomy.

Both Performer and Indicator are proto-agents since they are deficient in their decision making

capability. Unlike them, as a derivative of full-agent, Commander agents can collect information

and make decisions based on the information in combination with certain rules, so that they have

autonomic adaptivity to system changes. In our simulation, incident command and hospitals are

modeled as Commanders.

The definition of generic agent classes makes it easier to add new agent instances. For example,

suppose that we want to add fire trucks as another type of evacuation vehicle besides ambulances,

we can simply derive a new sub-class from the Performer – Responder class. Most attributes

(e.g., capacity, speed, etc.) and action methods (pickupCasualtes(), transportToHospital()) can be

inherited from the parent class, the only modifications that we need to do are specifying some

feature parameters. So it would be quite easy to introduce new agents to expand the model.
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3.1.4.2 GIS integration In order to simulate the impacts due to traffic during the evacuation,

we model the transportation network of the city or area under incident using the data extracted

from geographical information system (GIS) shapefiles. In our model, the transportation network

is modeled as a set of nodes and arcs, where the nodes are used to represent specific locations, such

as the incident site (we assume that the incident site is relatively compact so that it can be modeled

as a single node), street cross-sections, medical facilities locations, ambulance bases, etc., and the

arcs are used to represent the connecting streets or roads between two locations.

We developed a set of methods [19] to analyze GIS road shapefiles, extract network data and

simplify the network. The simplification is necessary since not all nodes are needed to be included

in the model. Strategically, finer grids are modeled for the more interesting areas (e.g., street blocks

around the incident scene) while cruder grids are built for other less interesting locations. Such an

implementation enables a better granularity control to the transportation network simulation.

In the simulation, the evacuation vehicles move along the arcs (roads) through the transporta-

tion network, and the ongoing status of evacuation (such as the location of each ambulance, dis-

tribution of evacuated casualties in different hospitals, etc.) can be displayed on a GIS map view

while the simulation is running, which provides a direct picture to the emergency managers about

the evacuation process and can help them identify potential problems.

With the developed tools, our simulation model is no longer location dependent and can be

used to model any region (a city or a county) by simply replacing the source GIS data, which

provides great flexibility to the model to simulate any urban area wherever GIS data are available.

Although the most simulation experiments presented in this dissertation use Pittsburgh (PA, US)

as the scenario, we have also applied this methodology to seven other cities in Pennsylvania (US)

to simulate the responses to incidents occurred at different places of each city.

3.1.5 System structure of MCI response

Our model simulates the emergency medical response to a mass casualty incident in an urban area.

Through the analysis in the Section 3.1.1, we determined the following agents will be simulated in

our model:
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• Injured casualties;

• Emergency medical technicians (EMTs): perform on-site triage;

• Ambulances: evacuate casualties to hospitals;

• Hospitals: receive casualties and provide definitive care to them;

• Incident command: collect information, make casualty dispatching decisions according to cur-

rent effective evacuation policy combined with the information reported by others.

The entire response system is decomposed into three sub-models, the incident site, pre-hospital

(evacuation), and in-hospital processing, as shown in Figure 3.2.

Figure 3.2: Structure diagram of MCI response system

In Figure 3.2, the circles and triangles with a letter “c” inside represent injured casualties,

where the triangles correspond to the specialized type of casualties and the circles stand for general

casualties. The diamond shapes with a letter “E” inside represent on-site EMTs, who perform on-

site triage and classify the triaged casualties into different groups (red, yellow and green), where

different colors indicate different injury severities and evacuation priorities.

The Ambulances in the pre-hospital sub-system travel between the incident site and hospitals,

which are indicated by the boxs with a capital “H” inside, to evacuate the classified casualties
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according to their priorities and the orders from the incident command. The incident command

collects information from ambulances and hospitals and select a destination hospital for a loaded

ambulance upon receiving its request.

3.1.6 Incident site

The major on-site responses include on-scene triage and stabilization performed by EMTs. The

triage results determines the priorities of victims in evacuation. During triage, casualties are identi-

fied as being red, yellow, or green (or black, which means died and is no longer part of the model),

while the red has the highest evacuation priority. In addition, the triage determines whether or not

a patient requires special treatments at a specialized hospital. Other agents are only aware of the

triage designation instead of practical status of casualties, which allows us to simulate triage errors.

3.1.6.1 On-site emergency medical technician (EMT) On-site EMTs are modeled as Per-

former agents, which are used to simulate the first arrived emergency medical technicians who

perform on-scene triage and stabilization. They classify the casualty into different groups by on

their types (“general” or “specialized”) (see Section 3.1.6.2), and assigning a color designation

(red/yellow/green) to indicate the injury severity of each casualty based on the triage result. As

ambulances arrive, triaged patients are loaded according to specified policy (see Section 3.1.7.1).

Both triage and patient loading take certain amounts of time that are assumed following Gamma

distribution.

3.1.6.2 Casualties Casualties refer to the victims involved in the incident, who are modeled us-

ing Indicator agents. For one specific incident, it is possible to observe multiple types of casualties

with various injuries at different severity levels. For example, the possible injuries suffered in a

bomb blast include blunt, blast, and burnt trauma. And the casualties who were closer to the blast

are usually injured more seriously than those further away. In order to represent these differences,

two attributes are defined – “ casualty type” and “survival probability”, where the “casualty type”

is used to differentiate different types of patients; and the “survival probability” is used to specify

to survival possibility of a casualty in an quantitative way.
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In our model, we instantiate two basic casualty types, which are “general” and “specialized”.

The “general” type is assigned to casualties who are adult (indiscriminate gender), suffering com-

mon injuries so that they can be admitted and treated by any hospital. On the contrary, the “special-

ized” type is used to mark those casualties who have specific requirements in treatments, including

but not limited to specialized injury type (burnt, head injury, etc.). For example, child/infant ca-

sualties could also be marked as “specialized” since they typically have to be sent to a definitive

children’s hospital for treatments.

Although very simple, those two abstracted types provide an effective way for us to depict

the basic characteristics of different casualties. To anyone who wants to model casualties in a

more practical manner, it is quite easy to derive new concrete sub-types based on those two basic

types. For example, we could derive a new sub-type called “male-infant-with-head-injury” from

the “specialized” type.

Another attribute – “ survival probability” is designed to quantify the survival possibility of a

casualty by a positive real value within the range of [0,1]. A larger value of survival probability

represents a good condition (usually observed from a mild-injured patient) while a smaller value

corresponds to a bad condition of a patient suffering severe or life threatening injury.

3.1.6.3 Casualty degradation Before definitive care or treatments were received, the health

condition of a casualty would deteriorate continuously (especially for those injured seriously),

this is called Casualty Degradation. The consequence of degradation is the decline of survival

probability of the casualty. In this research we studied the casualty degradation by two different

models, one is the proportional-hazards based model [157], and the other is Sacco’s RPM-based

model [158, 143, 3].

The proportional-hazards based degradation model is proposed by Wu [15]. In this model, each

injured casualty is assumed to have an initial survival probability (P0) , which will continuously

decrease until definitive care is received or its value reaches zero (which indicates the death of

casualty).

The deterioration rate of the survival probability is given by

R(t) = g−t (3.1)
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where g is a real constant greater than one which captures the deterioration characteristic of

victims; t is the elapsed time. So the survival probability can be expressed by a monotonically

decreasing function of time, as shown in the formula below.

Pt = P0×R(t) = P0 ·g−t (3.2)

A key parameter in Sacco's RPM-based degradation model is the RPM score, which is designed

to measure the victim’s injury severity. According to Sacco et al. [143, 3], RPM also provides a

good predictor of survival probability that can be easily obtained during the triage. The RPM score

takes on integer values from 0 to 12, which is the sum of coded values for respiratory rate, pulse

rate, and best motor response. Sacco et al. have provided evidence-based survival probability

estimates for each RPM score through logistic regression, as well as deterioration rates that are

estimated by experts for each RPM score through the Delphi method.

The logistic function used by Sacco et al. for estimating survival probability is

Ps =
1

(1+ e−w)
(3.3)

where Ps is the survival probability estimate. The parameter w is calculated using

w = w0 +(w1×RPM) (3.4)

where w0 and w1 are weights that were determined by Sacco et al. through data analysis.

Figure 3.3 depicts the relationship between RPM and survival probability (based on Table 2 of

[3])

Sacco et al. also used the Delphi method to estimate casualty deterioration before a casualty

reaches definitive care, and expressed it by the decline of the RPM score, as shown in Table 3.1

(reproduced Table 3 of [3]) and Figure 3.4. For instance to better understand Table 3.1, a casualty

with an initial RPM score of 12 may degrade to RPM of 11 after two hours (smaller RPM value

corresponds to lower survival probability). Here we assume that the casualty received little or no

treatment while awaiting transportation to a higher (more definitive) level of care.

It should be noted that the RPM scores are widely used in this dissertation as a measure of

a patient's health condition. For example, when an evacuated casualty arrives at a hospital, a
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Figure 3.3: RPM vs. Survival probability

Table 3.1: Delphi Estimates of degraded RPM scores in 30-Minute Intervals [3]

Initial
RPM

Time Intervals

1 2 3 4 5 6 7 8 9 10 11 12

12 12 12 11 11 10 10 9 9 9 8 8 8
11 11 11 10 10 9 8 7 7 7 6 5 5
10 10 9 9 8 8 7 6 5 5 5 4 4
9 9 8 8 7 5 4 3 1 0 0 0 0
8 7 6 4 3 3 2 2 0 0 0 0 0
7 6 5 3 1 0 0 0 0 0 0 0 0
6 4 3 2 1 0 0 0 0 0 0 0 0
5 3 2 0 0 0 0 0 0 0 0 0 0
4 2 0 0 0 0 0 0 0 0 0 0 0
3 1 0 0 0 0 0 0 0 0 0 0 0
2 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0
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Figure 3.4: Degradation in RPM scores under different initial conditions

(degraded) RPM score is given after triage, which determines whether or not the casualty should

be admitted or discharged. (See Section 3.2.1 for a more detail description.)

3.1.7 Pre-hospital sub-system

The pre-hospital sub-model involves ambulances and the incident command. In the beginning

of the simulation, ambulances are located at their bases and waiting for orders. At the time that

an incident is reported, the ambulances are sent to the incident site. The first arrival ambulance

initiates triage as described in Section 3.1.6.1. The subsequent ambulances evacuate patients to

different hospitals as directed by the incident command. The incident command decides where

the patients should be sent according to the feedback information from ambulances in conjunction

with its understanding of the current state of available hospitals.

3.1.7.1 Ambulance Ambulances are modeled by Performer agents. They are responsible for

casualty evacuation from the incident site to hospitals, and their major tasks include:
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1. Stay-and-wait for orders from incident command;

2. Travel along a calculated shortest path to the disaster site;

3. Evacuate patients from the disaster site to hospitals.

In the beginning of the simulation, all ambulance agents are located at their bases (nodes) and

are assumed available. Upon receiving a “go-to-incident-site” order, each ambulance will calculate

a shortest path (the one takes the least travel time) from its base node to the incident node, then set

out and head to the incident node along the calculated path.

When an ambulance arrives at the incident site, it will begin to load casualties based on the

following rules:

1. Triaged Only: only triaged casualties can be loaded;

2. Two passengers at most: one ambulance can take at most two casualties on each trip;

3. “Worst-first” pickup strategy: if there are casualties triaged differently at the scene, an ambu-

lance should load a red casualty first, then yellow, then green;

4. One red casualty per vehicle: once an ambulance loads a red casualty, the other casualty it

takes can only be yellow or green;

5. Same type principle: on each trip an ambulance can only take casualties of the same type,

determined by the first loaded casualty's type.

6. No waiting at incident site: an ambulance will be informed about available triaged casualties

immediately upon its arrival, then it has to make an instant pickup decision and begin loading.

Only if there are no triaged casualties ready for transport at the scene (but still have some triage

ongoing), an ambulance is allowed to wait at the scene for next triaged casualty;

7. No replacement once loaded: for example, when an ambulance arrives, and there are only

two green casualties waiting for evacuation. According to “no waiting as possible” rule, the

ambulance should begin to load them. Once the pickup decision was made, no change is

allowed even if there is a red casualty being triaged while the ambulance is being loaded.

After casualties are loaded, the ambulance requests instructions from incident command about

which hospital it should go to. Incident command then chooses a target hospital following the

current evacuation policy and provides the selected hospital to the ambulance.
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Table 3.2 lists all possible states for a loaded ambulance.

Table 3.2: Ambulance loading rules

Loading State Comment

1 red
No same type casualty with triaged yellow/green available when mak-
ing pickup decision

1 red + 1 yellow/green Two passengers are the same type

2 yellow/green
Only when no red casualties are present. 2 green casualties would be
loaded only when no yellow casualties are present.

1 yellow/green
Only when no red casualties are present and only a single yellow/green
casualty of the given casualty type is available

3.1.7.2 Incident command The incident command is modeled by a Commander agent, which

is a full-function agent that can exchange information with other agents and make operation deci-

sions.

The incident command can collect information from the incident site, ambulances and hos-

pitals, so that it knows the status of the entire response system. Using the information provided

by on-scene triage and hospitals in accordance with the current policy in effect, the incident com-

mand then assigns ambulances and casualties to specific hospitals when the ambulance picks up

casualties.

The list below concludes major duties of simulated incident command:

• Receipt of information from ambulances regarding the condition of loaded patients;

• Matching of patients with specific injuries to facilities capable of treating these specific prob-

lems (e.g., a burn patient to a burn center or facility with burn care capability);

• Indicating the target hospital for loaded ambulances;

• Notification of hospitals of the number of patients they should expect;

• Receipt of information from hospitals about the availability of beds;

• Balancing the loads of hospitals so as to not overload any one hospital.
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3.1.8 In-hospital sub-system

Hospitals are the last stage of the response system, each evacuated casualty will be sent to a hospital

for definitive care. There are two types of hospital in the system – specialized and regular hospitals.

Specialized hospitals are defined as those that can provide the specific treatments required by

specialized type of patients. A typical hospital is assumed to consist of the following medical

units: emergency department (ED), intensive care unit (ICU), operating room (OR) and general

wards (GW).

The size of each unit in a hospital is the number of beds available for injured casualties, after

accounting for on-going operations. The model can also track casualties in ambulances en route

to the hospital. However, the hospital only reports to the incident command the information that is

required for the policy being evaluated.

When a casualty arrives at the destination hospital, the casualty enters the emergency depart-

ment, where medical staff will perform arrival triage. The casualty is then classified into one of

two triage categories: critical and non-critical.

Critical casualties are those who may need resuscitation or urgent surgery. The critical patient

will be moved to a bed in the emergency department and receive necessary care and diagnosis from

an emergency medical specialist. Upon the diagnosis, the specialist will make a decision whether

or not an urgent surgery is needed. If no surgery is needed, the patient will be sent to a bed in either

ICU or GW. Otherwise, the patient will be moved to an operating room for surgery.

For the patients who are diagnosed as non-critical during the arrival triage, they wait in a

waiting room until a bed becomes available in the ED so that they can receive further examination

from medical staff. The staff will then decide whether the patient should be admitted into a general

ward or be discharged.

If the patient is admitted as an inpatient, a bed in the relevant ward is assigned. However, if the

relevant ward is full, the patient would be prevented from moving into a ward, which would cause

a block in the emergency department.

It should be noted that for severe trauma patients who needs to be moved directly into OR,

a bed in a ward or ICU typically must be found before admission to the OR is allowed. If there

50



is no bed available, the critical patient will be transferred to another hospital, which requires an

ambulance and results in further delay before definitive care.

A brief chart of patient flow in a hospital can be found in Figure 3.5.

Figure 3.5: Hospital process flow

Based on the analysis above, each hospital is modeled as a single full-functional agent, which

contains different medical departments (ED, ICU, and GW). Each department can be considered

as a parallel-processing workstation that can process (treat) several workpieces (patients) simulta-

neously. Each hospital agent instance takes evacuated casualties as its input. The admitted patients

will be moved among different “workstations” (medical departments) to be “processed” (exam-

ined or treated). Finally, the model will calculate the survival states for those patients who receive

definitive cares based on his/her survival probability at that time and estimate the overall mortality

thereby.
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The definitive cares refer to following treatments:

• A non-critical patient is discharged directly;

• A non-critical patient is assigned a GW bed;

• A critical patient is assigned a bed in ICU; or

• A critical patient who is transferred to other hospital survives to be cared there.

3.1.9 Performance measure

The performance measure for the response model is the overall mortality among the casualties.

At the beginning of the incident, each casualty is randomly assigned an initial survival probability

based on a distribution chosen to correspond to the incident being modeled. Over the course of the

simulation, each casualty’s survival probability degrades according to a certain casualty degrada-

tion model mentioned in Section 3.1.6.3. This continues until the casualty reaches definitive care

(i.e., after the casualty has completed in-hospital triage and has been admitted to the ICU, GW or

discharged). When the casualty reaches definitive care, his/her ultimate survival is determined by

comparing his/her survival probability at that time with a random number drawn from [0,1]. The

overall mortality of all the casualties is the mortality of that run of the simulation.

3.1.10 Model validation

According to Brown et al. (2004) [83], there are usually two steps to establish confidence to a

computer model: verification and validation. Verification is to verify that the program is free of

bugs and correctly implements the conceptual model; and validation is to validate the model by

showing it generates output that matches the relevant aspects of the system being modeled.

Verification and validation are critical processes of simulation studies since they provide guar-

antee that a simulation model can represent the real system and gives realistic results for making

reliable decisions. However, it is challenging to validate a complex, large-scale simulation system

due to its randomness and numerous internal operations and interactions.
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Gass (1983) [159] summarized various validation methods, as listed below:

• Face validation (expert opinion). Ask subject matter experts to review the model and judge if

it satisfies with their knowledge.

• Technical validation. See if the model assumptions are plausible and if the outputs are reason-

able.

• Structural validation. See if the model operates in the similar way as the real system to produce

comparable behaviors.

• Sensitivity analysis. Investigate how the model behaves when its variables and parameters

change and compare to the real-world system.

• Replicative validation. See if simulation results match data obtained from the real system.

For this research, the major validation methods used are face validation and technical valida-

tion. We asked subject matter experts to check the model assumptions and to review the simulation

results. From their feedback we are confident that the model is valid and can be used to compare

different operation policies reliably. Besides that, multiple sensitivity analysis experiments are

also performed to validate the robustness of model under different parameter configurations (e.g.,

different casualty degradation models).

3.2 CASE STUDY

3.2.1 Assumptions, constraints and parameter settings

The case study is used to validate the model by showing it can generate reasonable simulation

results under given input parameters. For this study, we assume an IED (Improvised Explosive

Device) explosion at the Pittsburgh D. L. Lawrence Convention Center in downtown Pittsburgh,

PA, United States. There are 150 patients that require medical care. Casualties are of two casu-

alty types: children and adults. Children have to be treated at one of two specialized hospitals:

Children's Medical Center or Magee Women's Hospital. For each of the 10 total hospitals, we

assume that there are 10 available beds in general wards and 5 beds in ICU in the beginning of

simulation. The injury severities are modeled by different initial survival probability values: the

53



larger values indicate mild injuries and the smaller values correspond to severe injuries. We also

assume that the injury severity of each victim is independently and identically distributed accord-

ing to a specified exponential distribution. The EMTs only can estimate the injury status based on

the information gathered during triage, namely that a victim is either specialized or general and the

severity is triaged red, yellow or green. The actual survival probability for the casualty will deteri-

orate continuously before definitive care is received at a hospital. After a casualty is evacuated to

the hospital, emergency room staff will perform in-hospital triage and use Sacco's RPM score to

indicate the casualty's injury severity (after degradation). The RPM score will be used to decide if

a casualty should be admitted or discharged by comparing it to a pre-defined threshold; for those

being admitted, another threshold value will be used to decide if they are in critical condition or

not. In addition, we assume that regionally there are 24 ambulances available to respond to the

incident. The ambulances initially start in one of 6 bases that are distributed over the Pittsburgh

region.

3.2.2 Transportation network construction

We generate the transportation network by using a simplified version of the Pittsburgh area road

network. We then choose 202 nodes, to include the incident site, intersections of major roads,

and locations of hospitals and ambulance bases. Then each resulting road segment is assigned a

baseline speed which will be used to calculate the shortest path for ambulances. Details of the

construction of the model from GIS data are given in Zimmerman et al. (2010) [19].

3.2.3 Evacuation policy

The evacuation policy refers to a dispatch policy that governs the incident command’s assignment

of triaged casualties to hospitals. As each transport ambulance reaches the scene, it picks up

triaged patients based on their triaged priority. Then, incident command provides the ambulance

with its destination based on the type of the patient(s) and the status of the hospitals using the

policy described as below.

First the incident command identifies the hospitals with corresponding type and having avail-

able ICU and GW beds, then it selects a subset from those hospitals that have positive available ED
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capacity (which means patients can get immediate treatment upon their arrival). Finally it selects

one nearest hospital from the subset.

The available ED capacity (AEDC) will be calculated as:

AEDC = max{0,(# of Available ED Beds−# of scheduled incoming patient)}

If all hospitals' AEDC is 0, then the incident command selects one nearest hospital from a

subset that contains all hospitals which have the equally shortest length of total waiting queue, that

is, the hospital should have the shortest length of total waiting queues (including arrival waiting

queue at ED, non-critical diagnosis waiting queue at ED, critical diagnosis waiting queue at ED,

ICU waiting queue, and GW waiting queue). It should be noted that the number of scheduled

incoming patients will also be counted into the total waiting queue length.

3.2.4 Parameter setting

Table 3.3 lists the parameters used in the simulation model. The parameters are classified into

different categories according to their characteristics. As part of the model validation, we tested it

using a range of input parameters for the incident setting to simulate different emergency situations.

3.2.5 Numeric experiments

We run the emergency response model using different input configurations. Each configuration

was run for 300 replications, and the results are shown in the box-plots which identify the mean,

25 and 75 percent quartiles, and the range of mortality among the 300 replications.

The initial simulation scenario includes nc = 150 injured casualties, with a percentage of spe-

cialized type Ps = 0.2. The initial injury severity follows a exponential distribution with Λ = 0.4.

Sacco's degradation model is used as the casualty degradation model. The simulation results for

this scenario are used as a standard to compare with the result of other input configuration settings,

as shown in the following sections.
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Table 3.3: Simulation parameter settings

Category Parameter Value

Casualty
Setting

Num. of Casualties nc ∈ {50, 100, 150, 200, 300, 400}
Initial Survival Probability Distribution Expo(Λ), Λ ∈ {0.1, 0.3, 0.4, 0.5, 0.7, 0.9}
Percentage of Specialized Patients (Children) Ps ∈ {0.0, 0.2, 0.4, 0.6, 0.8, 1.0}
Casualty Degradation Model {Proportional-hazard based, Sacco's}

Ambulance
Setting

Num. of Ambulance Bases nb = 6

Num. of Ambulances na = 24 (4 at each base)

Hospital
Setting

Num. of Hospitals nh = 10

Initial Available GW Beds nGW = 10

Initial Available ICU Beds nICU = 5

Surge Capacity Ratio rsc = 0

Num. of Triage Beds at ED nar = 3

Num. of Non-critical Beds at ED nncd = 2

Num. of Critical Beds at ED ncd = 3

Admitting threshold (RPM score) 11

Critical threshold (RPM score) 4

Time
Setting

On-site Triage Time (min) 0.5

ALS Pickup Time (min) Gamma(µ = 19.15, sd = 13.98)

BLS Pickup Time (min) Gamma(µ = 9.27, sd = 6.43)

Drop-off Time (min) Gamma(µ = 23.16, sd = 12.56)

Arrival Triage Time in hospital (min) Gamma(µ = 5, sd = 0.5)

Non-Critical Examination Time (min) Gamma(µ = 7, sd = 0.5)

Critical Examination Time (min) Gamma(µ = 9, sd = 0.5)

Stopping Criteria – All living casualties have reached definitive care.
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3.2.5.1 Different number of casualties In the first experiment set, we checked the impact

due to the number of casualties. We simulate six different settings, i.e., nc ∈ {50, 100, 150 (the

standard), 200, 300, 400}. The results are compared using a box-plot in Figure 3.6. We can

see that the mortality increases with the increasing number of casualties, which follows intuition

since it takes longer to evacuate more number of casualties to hospitals, and the average waiting

time also becomes longer for a casualty to receive the definitive care, which explains the mortality

increase. Besides that, we observed that when the total number of casualties is below the total

medical capacity (beds) in the region (CasNum ≤ 150), the mortality increases relatively slow.

However, when the total number of casualties exceed the medical capacity (CasNum > 150), the

mortality increases faster.

Figure 3.6: Comparison among different number of casualties

3.2.5.2 Different injury severity distribution The second set of experiments is used to check

the impact of different injury severity distributions. By changing the severity distribution rate Λ,

we can simulate incidents with different levels of scale. In general, a large Λ corresponds to a

milder incident since more of the casualties will have higher initial survival probabilities, or larger

RPM scores. And along with the decrease of Λ, the proportion of severe casualties (who have
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smaller survival probabilities or smaller RPM scores) increases so that a smaller Λ corresponds to

a more severe incident which contains more seriously injured casualties.

In this set, we check six scenarios, Λ ∈ {0.1, 0.3, 0.4 (the standard), 0.5, 0.7, 0.9}, while Λ =

0.1 corresponds to the most severe incident and Λ = 0.9 corresponds to the mildest incident (among

the set). Figure 3.7 demonstrates different injury severity distributions under different Λ (Λ = 0.1,

0.4, and 0.9), where the injury severity is measured by Sacco's RPM scores.

Figure 3.7: Different injury severity distributions

Figure 3.8 displays the simulation results. As expected, an incident with more severely injured

casualties leads to a higher mortality than the one with fewer severely injured patients. In addition,

the decrease of mortality for smaller values of Λ (Λ ≤ 0.4) is more obvious than that for larger Λ

(Λ > 0.4).

3.2.5.3 Different percentage of specialized patients The third experiment set is to check the

impact of different percentages of specialized patients. The specialized percentage Ps is set to 0.0,

0.2 (the standard), 0.4, 0.6, 0.8 and 1.0 respectively, which correspond to the cases that none, 20%,

40%, 60%, 80% and all of the casualty population are specialized type (children). As we have

mentioned in the Section 3.1.6.2, specialized type of patients have to be sent to and treated by a

specialized hospital. Since there are only two specialized hospitals out of ten (20%), it is expected
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Figure 3.8: Comparison among different injury severity distributions

to observe increasing mortality as the specialized percentage increases, as shown in Figure 3.9. It

can be observed the increase of mortality is not linear although the percentage increases in a linear

fashion, which reflects the non-linear nature of the system.

3.2.5.4 Different degradation model The last experiment set tests the impact of different ca-

sualty degradation models – the Sacco's RPM-based model and the proportional-hazard based

model. The Sacco's RPM-based degradation model is used as the standard. In alternative scenar-

ios, the casualties' survival probabilities deteriorate based on the proportional-hazard based model

(Formula 3.2, which is re-written as below).

Pt = P0×R(t) = P0 ·g−t

Where P0 is the initial survival probability, g is the deteriorate base and t is the elapsed time.

In order to eliminate the impact from irrelevant factors, we tested the two degradation models

using the same casualty data sets, which guarantees the initial survival probabilities are identical.

In addition, a set of different values for g (g ∈ {1.0, 1.045, 1.196, 2.007}) is chosen to investigate
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Figure 3.9: Comparison among different percentages of specialized casualties

the impact due to the change of deteriorate base. The reasons of choosing these particular values

are explained as below.

The choice of g = 1.0 is used to test an extreme assumption that there is no degradation occur-

ring for all casualties. In such a case, the survival of each casualty is solely determined by his/her

initial survival probability. The choice of g =1.045 is a result of trial and error, with a purpose to

make the mean mortality of proportional-hazard based model close to that of Sacco's RPM-based

model.

The choices of g =1.196 and 2.007 are results of fitting the proportional-hazard based model

to the data provided by Sacco's model. In Sacco's RPM-based model, the injury deteriorates in

different ways for different initial conditions (as shown in Figure 3.4). However, the deterioration

rate of proportional-hazard based model disregards the initial condition and solely depends on one

parameter g. In order to make the comparison based on certain common foundation, we fit the

proportional-hazard based model using the data provided by Sacco's model to determine the value

of g, the methods of fitting are summarized in Table 3.4.
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Table 3.4: Finding g by Fitting

Result Method of Fitting

g = 1.196

1. Refer to Figure 3.3 to covert the RPM scores in Table 3.1 to corresponding survival
probabilities;

2. Average the survival probabilities (over all 13 initial conditions) at each time point to
get a series of paired-data (t, s) = (time, average of survival probabilities at time t);

3. Fit the proportional-hazard based model using the series of paired-data (t, s) to deter-
mine g.

g = 2.007

1. Refer to Figure 3.3 to covert the RPM scores under initial RPM=6 (which is a median)
in Table 3.1 to corresponding survival probabilities;

2. Record paired-data (t, s) = (time, survival probabilities with initial RPM=6 at time t);
3. Fit the proportional-hazard based model using the series of paired-data (t, s) to deter-

mine g.

The simulation results are shown in Figure 3.10. It is not unexpected to find the minimal mean

mortality achieved by g = 1.0 due to no degradation happening to casualties, and the result of

g =1.045 is very similar to that of Sacco's RPM-based model since it was so designed.

From Figure 3.10 we can see that that the proportional-hazard based degradation models with

g = 1.196 and 2.007 lead to more mortality than Sacco's degradation model, that is because the

proportional-hazard based degradation model assumes any casualty deteriorates in the same pattern

despite of his/her initial injury severity, which results much faster degradation rates for those mildly

injured casualties than Sacco's degradation model.

3.2.6 Summary

In this chapter, we have developed an agent-based simulation model for emergency medical re-

sponse to a mass casualty incident in an urban area. Three interrelated sub-systems (incident site,

pre-hospital, and in-hospital) and various interactive agents are developed and introduced in de-

tails.
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Figure 3.10: Comparison among different degradation models

During the development, we have defined three new generic agent types (Indicator, Performer,

and Commander). The new generic agent types provide a set of prototype templates to derive

new agents, which makes the model easy to expand to contain more different functional agents.

Besides that, the simulation model provides an interface to import processed GIS data to construct

the transportation network, which facilitates researchers considering the effects of different traffic

to the casualty evacuations. In addition, it also enables displaying the ongoing evacuation status on

a GIS view dynamically along with the running simulation, which gives a more direct illustration

to the researchers about the evacuation process.

This methodology can be used to build similar models for other cities or areas at a relatively

low level of investment of time. This model can also be used to evaluate other decisions such as the

effect of increasing the number of ambulances, introducing additional hospital beds, or identifying

good locations for additional medical and emergency response facilities.

Like all such models, there are limitations in interpretation. Currently, it only reports a single

performance measure – mortality. In cases where there are more complex evaluation criteria, the

model could be modified to report other performance measures or combinations of performance
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measures. For example, the morbidity of injured patients could become another measure to eval-

uate the MCI response performance. Second, it only reports quantitative results. Decision makers

using this model should be aware of other factors that may impact decisions such as negotiated

agreements or financial factors that should be considered in conjunction with the results of this

model.
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4.0 POLICY RANKING AND SELECTION

4.1 INTRODUCTION

The agent-based simulation (ABS) model developed in Chapter-3 provides a natural way to cap-

ture the complex behaviors of a mass-casualty incident response system from the ground-up. It

eliminates many of the assumptions needed for mathematical programming formulations so that

the system can be modeled in a more realistic way. The model is then used to simulate the impacts

due to different response policies, and the best policy that leads to the least (minimum) mortality

can be identified by comparing the simulation results.

Due to the randomness involved in simulation, it is improper to run the policies for only one

round, and make a decision based on the single round of observation. Multiple replications are

needed for each policy and certain optimization via simulation (OvS) techniques must be used to

analyze the results in order to obtain a statistically confident conclusion.

In this chapter, we show how the best response policy can be selected from a set of alternatives

efficiently using ranking-and-selection (R&S) techniques. We implement two R&S procedures (the

Rinott procedure and the KN procedure) and compare their efficiencies. Although both procedures

are valid in selecting a single best with a specified confidence level, they are both deficient in

selecting a subset containing all alternatives that are “close enough” to the best one. Hence, we

then argue that a new selection procedure should be developed to help decision makers select the

best-subset while providing a statistical guarantee for the relative correctness of that selection set.
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4.2 POLICY DESCRIPTION

In this dissertation, the term “policy” refers to a set of pre-defined principles or rules to guide

decisions and to achieve rational outcomes. It is exchangeable with the term “action procedure”

or “protocol”. For emergency response, there are usually various pre-defined policies to guide the

decisions/actions of different agents/sub-systems, such as the protocol for the first responder at the

scene, the evacuation policy for ambulances, or the admission policy for hospitals, etc.

In this chapter, we focus on the evacuation policies. These policies govern the incident com-

mand routing (assignment) of ambulances at the incident site to hospitals once the ambulance has

been loaded with triaged casualties. The policies differ in terms of the information required for

the hospital status (space or bed availability at emergency department (ED)) and the thresholds for

closing specialized hospitals.

Currently, twelve different evacuation policies (P-1 to P-12) are proposed and employed to

guide the casualty evacuation; the details are included in Table 4.1. Our objective is to select the

best evacuation policy that leads to the minimal mortality from these alternatives.

Table 4.1: Twelve evacuation policies

P-1 – Random Dispatching
Description: Select a hospital at random from all hospital candidates
Information Exchanging: (None)

P-2 – Shortest Arrival Waiting Queue (only the arrival waiting queue for triage at ED is considered)
Description: Select the nearest hospital (from the incident site) from a subset which involves
those hospitals that have the shortest waiting queue of arrival patients at ED.

1. (Incident command receives the “where-to-go” inquiry from an ambulance);
2. Incident command checks the status of each hospital, identifies a subset which contains those

hospitals having the shortest arrival waiting queue;
3. Incident command selects the nearest one from the subset as the target. (A random choice

would be made if there is a tie)

Information Exchanging: (One-way)

• Hospitals→ Incident command (the length of arrival waiting queue)

(Continued on next page . . .)
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(Table 4.1: continued)

P-3 – Shortest Waiting Queues (all waiting queues are considered)
Description: Select the nearest hospital from a subset which involves those hospitals that have
the shortest length of total waiting queues, that is, the hospital should have the smallest number of
total waiting patients (including arrival waiting queue at ED, non-critical diagnosis waiting queue
at ED, critical diagnosis waiting queue at ED, ICU waiting queue, and GW waiting queue)
Information Exchanging: (One-way)

• Hospitals→ Incident command (the length of total waiting queues)

P-4 – Revised Shortest Waiting Queues (all waiting queues + expected coming)
Description: Similar to P-3, but the number of scheduled incoming patients is also counted into
the length of total waiting queues.
Information Exchanging: (Two-way)

• Hospitals→ Incident command (the revised length of total waiting queues)
• Incident command→ Hospitals (# of scheduled incoming patients)

P-5 – Available First otherwise Shortest Waiting Queue
Description: First try to select the nearest hospital from a subset that involves hospitals having
positive available ED capacity (which means patients can get immediate treatment upon their
arrivals). The available ED capacity (AEDC) is calculated as:
AEDC = max{0, (# of available ED beds – # of scheduled incoming patients)}
If all hospitals' AEDC is 0, then P-4 is used to select one hospital with the shortest revised length
of total waiting queues.
Information Exchanging: (Two-way)

• Hospitals→ Incident command (AEDC & the revised length of total waiting queues)
• Incident command→ Hospitals (# of scheduled incoming patients)

P-6 – Available-Capacity AEDC otherwise Shortest Waiting Queue
Description: First identify hospitals with available ICU & GW beds, then use P-5 to select the
target.
Information Exchanging: (Two-way)

• Hospitals→ Incident command (available capacity of beds & the revised length of total wait-
ing queues)

• Incident command→ Hospitals (# of scheduled incoming patients)

(Continued on next page . . .)
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(Table 4.1: continued)

P-7 – P-6 in Specialized-Hospital-Reserved mode
Description: An ambulance can only pick up same type of patients and send them to correspond-
ing hospitals (general patients to general hospitals, specialized patients to specialized hospitals).
Other rules are the same as P-6.
Information Exchanging: (Three-way)

• Ambulances→ Incident command (type of casualties loaded)
• Hospitals→ Incident command (available capacity of beds & the revised length of total wait-

ing queues)
• Incident command→ Hospitals (# of scheduled incoming patients)

P-8 ∼ P-12 – P-6 in First-Open-Then-Reserved Mode
Description: In the beginning of the simulation, the system is under All-Hospital-Open mode,
which means that Policy-6 is used (specialized casualties must go to specialized hospitals, but
general patients can be sent to any hospitals, and the target hospital is chosen using P-6). However,
after a specified number of specialized type of casualties (ns) are observed, the system switches to
Specialized-Hospital-Reserved mode (P-7), and the thresholds for different policies are:
P-8: ns = 3; P-9: ns = 6; P-10: ns = 9; P-11: ns = 12; P-12: ns = 15;
Information Exchanging: (Three-way)

• Ambulances→ Incident command (type of casualties loaded)
• Hospitals→ Incident command (available capacity of beds & the revised length of total wait-

ing queues)
• Incident command→ Hospitals (# of scheduled incoming patients)

These evacuation policy are used to respond an IED explosion incident described in Sec-

tion 3.2.1 with the same assumptions and constraints. Table 4.2 presents all parameters used in

the simulation study.

4.3 SIMULATION RESULTS

We first performed a pilot study, in which each evacuation policy was run for 300 replications

(indexed by 1, 2, . . . , 300). In order to highlight the difference due to different policies, we

generated 300 casualty data sets corresponding to the 300 replications. Each data set contains 150

random casualty data whose initial RPM scores are drawn from an exponential distribution with a

scale parameter Λ = 0.4. The benefits of using these data sets are
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Table 4.2: Simulation parameter settings

Category Parameter Value

Casualty
Setting

Num. of Casualties nc = 150

Initial Survival Probability Distribution Expo(Λ), Λ = 0.4

Percentage of Specialized Patients (Children) Ps = 0.2 (30 among 150)

Casualty Degradation Model Sacco's RPM-based model

Ambulance
Setting

Num. of Ambulance Bases nb = 6

Num. of Ambulances na = 24 (4 at each base)

Hospital
Setting

Num. of Hospitals nh = 10

Initial Available GW Beds nGW = 10

Initial Available ICU Beds nICU = 5

Surge Capacity Ratio rsc = 0

Num. of Triage Beds at ED nar = 3

Num. of Non-critical Beds at ED nncd = 2

Num. of Critical Beds at ED ncd = 3

Admitting threshold (RPM score) 11

Critical threshold (RPM score) 4

Time
Setting

On-site Triage Time (min) 0.5

ALS Pickup Time (min) Gamma(µ = 19.15, sd = 13.98)

BLS Pickup Time (min) Gamma(µ = 9.27, sd = 6.43)

Drop-off Time (min) Gamma(µ = 23.16, sd = 12.56)

Arrival Triage Time in hospital (min) Gamma(µ = 5, sd = 0.5)

Non-Critical Examination Time (min) Gamma(µ = 7, sd = 0.5)

Critical Examination Time (min) Gamma(µ = 9, sd = 0.5)

Stopping Criteria – All living casualties have reached definitive care.
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• For a specific policy, each replication visits a different independent and identically distributed

(IID) casualty data set;

• For the replications with same index (but belonging to different policies), they all visit the

same casualty set, so that the variation from casualties can be eliminated, which make it more

meaningful to compare different policies.

All replications (300*12) in this pilot study are completed on a personal desktop computer with

a 2.21 GHz AMD Athlon(tm) 64 CPU and 2.50GB RAM memory. The whole running time is

approximately six hours (i.e., six seconds per replication in average). The simulation results are

shown in Figure 4.1.

Figure 4.1: Simulation results under 12 evacuation policies

In Figure 4.1, the red dots connected by a dash line indicate the mean mortality for each of the

different evacuation policies, and the numbers below the dots mark the concrete values of mean

mortality. From the figure, we can observe the following phenomena.

First, P-2 leads to the highest mortality, which is because P-2 only uses the distance and the

length of arrival waiting queue at ED as its decision criteria to select the target hospital. However,
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since the arrival triage is relatively fast, injured casualties tend to be evacuated to those few hospi-

tals nearest to the incident site. After the arrival triage, casualties may have to wait a long time in

queues before receiving more definitive care. During this waiting period, the patients' conditions

may continue to deteriorate. This is of particular concern for severe patients who may not survive

(if they do not receive definitive care in a timely manner), which leads to a higher mortality for the

incident.

Besides that, P-2 does not consider the available capacity of beds when making decisions, so

that it may send patients to a hospital without sufficient capacity to treat them. As a result, the

excess patients will not receive a bed and will have to be sent to other hospitals, which makes the

situation even worse.

Compared with P-2, P-3 obtains an improved mortality because it considers all waiting queues

instead of only arrival waiting queue, which reduces the negative effect due to patient aggrega-

tion. For the same reason, P-4 improves upon P-3 by taking the expected incoming patients into

consideration.

P-5 and P-6 differ from previous policies by using the available capacity of medical units as

an additional decision criterion. This helps to dispatch patients more reasonably to avoid the “no-

beds-for-waiting-patients” situation from occurring, achieving even better results (smaller mortal-

ity).

Readers may have noticed that the random dispatching policy (P-1) is a better than P-2, P-3, P-4

and P-5, but worse than P-6. The explanation for this interesting phenomenon is that P-1 balances

the load of each hospital evenly, which happens to avoid too long waiting times and “no-beds-

for-waiting-patients” circumstances, and therefore achieves a fairly good result. The comparisons

between P-1 and P-2 through P-6 suggest that for this special case, decisions based on incomplete

information are worse than no information. Only comprehensive information can support a good

decision.

P-1 to P6 do not intentionally consider the specialized nature of the injury; in other words,

while a certain casualties should only be sent to a hospital with special facilities (e.g., burn patients

require a burn unit), a more general type of injury can be treated at either a general type of hospital

or a specialized one. However, the medical resources at specialized hospitals are relatively scarce

since the number of specialized beds is substantially less than general hospital beds. For our
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Pittsburgh example case, two of the ten hospitals are assumed to have specialized beds available.

Therefore, it makes sense to reserve some of the medical resources of specialized hospitals for

those patients who really need it.

With this in mind, P-7 to P-12 reserve beds for specialized patients, and these policies dif-

ferentiate each other by their threshold values (ns), which marks when the Specialized-Hospital-

Reserved mode should be triggered. For example, the zero-threshold of P-7 means the system

enters the Specialized-Hospital-Reserved mode from the very beginning of simulation. For P-8

through P-12, the system enters the Specialized-Hospital-Reserved mode only after ns casualties

are observed, where ns are sequentially increasing positive integer series with a constant step equal

to 3.

From Figure 4.1, it can be observed that for this case, the minimal average mortality (0.477 or

47.7%) is achieved by P-8, which suggests that P-8 should be selected as the best policy. However,

the mean mortality of P-7 is very close to P-8, so it is difficult to determine which one is the true

best. The box-plot can provide researchers an intuitive idea about the goodness of each policy, but

is unable to present a statistical guarantee about the correctness of selection.

As a summary, we can see that different evacuation policies for MCI response lead to different

impacts on mortality. The policies based on comprehensive information achieve better results

than those utilizing partial information or no information. Considering that specialized casualties

must be treated at specialized hospitals, it is necessary to strategically reserve some capacity of

specialized hospitals for those patients who really need it. That is, in anticipation of a major

incident, a certain number of beds in specialized units should be made available. However, the

cost of reserving these beds may be quite high.

Note that although the box-plot provides good intuition about the goodness of policy, it is

incapable to present statistical guarantee for the selection. In order to reach a statistically confident

conclusion, the following questions are of interest.

• Are 300 replications per policy enough to make a statistical valid decision to decide the best

alternative at certain (saying 95%) confidence level?

• Is there a better way to allocate the computational budget to different alternatives so that the

conclusion can be made in a more efficient manner?
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4.4 SELECT THE BEST EVACUATION POLICY BY R&S PROCEDURES

As we have discussed in Chapter 2.5, R&S procedures are specifically designed to select the best

population from competing alternatives. A R&S procedure can provide a statistical guarantee

about the selected result, and can help researchers appropriately allocate simulation resources to

reach a decision in an efficient way. In this research, we implement two R&S procedures (the

Rinott procedure and the KN procedure) to select the best evacuation policy.

4.4.1 Rinott procedure

The Rinott procedure is a two-stage R&S procedure first presented by Rinott (1978) [108]. As

setup, the Rinott procedure requires three input parameters, that is, an indifference-zone parameter

δ , a confidence level P∗ = 1−α , and a sample size of the first stage n0. The parameter δ is

the smallest actual difference that it is worth detecting. Differences of less than δ are considered

insignificant.

In the first stage, n0 observations are taken from each of the competitive alternatives. The

variances calculated from the first stage data are then used to determine the number of observations

required in the second stage. Finally, a series of weighted average of sample means (including both

the first and second stage) are compared to select the best system. The full Rinott procedure [103]

is transcribed as below.

Setup: Select confidence level 1−α , indifference-zone parameter δ > 0 and first-stage sample

size n0 ≥ 2.

Initialization: Obtain Rinott's constant h = h(n0,k,1−α), (can be calculated by the program

provided by [160]).

Obtain n0 observations Xi j, j = 1,2, . . . ,n0, from each system i = 1,2, . . . ,k.

For i = 1,2, . . . ,k compute the sample variance of the data from system i:

S2
i =

1
n0−1

n0

∑
j=1

(Xi j− X̄i(n0))
2
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Let Ni = max
{

n0,
⌈

h2S2
i

δ 2

⌉}
where d·e indicates rounding up any fractional part to the next larger integer. Here Ni is the

number of observations that will be taken from system i.

Stopping Rule: If n0≥maxi Ni then stop and select the system with the largest/smallest X̄i(n0)

as the best. Otherwise, take Ni−n0 additional observations Xi,n0+1,Xi,n0+2, . . . ,Xi,Ni from each

system i for which Ni > n0.

Select the system with the largest/smallest X̄i(Ni) as the best.

For this study, we choose as the input parameters: α = 0.05, δ = 0.01, n0 = 10, so the Rinott's

constant h = 4.435. The final R&S results are shown in Table 4.3. Figure 4.2 shows the relationship

between the number of samples needed and the sample variance (estimated using the first stage

data).

Table 4.3: R&S results by Rinott procedure

Policy ID Sample variance S2
i Total Samples (Ni) Mortality (Mean)

p1 1.150 ×10−3 227 0.504

p2 2.106 ×10−3 415 0.663

p3 1.197 ×10−3 236 0.594

p4 1.726 ×10−3 340 0.563

p5 1.523 ×10−3 300 0.536

p6 1.464 ×10−3 289 0.492

p7 1.077 ×10−3 212 0.479

p8 0.775 ×10−3 153 0.473

p9 0.874 ×10−3 172 0.478

p10 1.838 ×10−3 362 0.484

p11 2.835 ×10−3 558 0.487

p12 1.911 ×10−3 376 0.491

From Figure 4.2, we can see that the number of samples needed for each policy is proportional

to its sample variance estimated by the first stage data. A policy with larger sample variance

requires more replications than those with smaller variances. With an indifference-zone with width
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Figure 4.2: Number of samples needed vs. sample variance

equal to 0.01 and at least 95% confidence level, we would select P-8 as the best evacuation policy,

since if P-8 is not the true best policy, its mortality differs from the true best by at most 0.01 at the

95% confidence level.

4.4.2 KN procedure

The KN procedure developed by Kim and Nelson (2001) [109] is a fully-sequential R&S proce-

dure. Similar to the Rinott procedure, KN requires δ , P∗ = 1−α , and n0 as its input parameters.

During its initialization stage the KN procedure observes n0 data from each alternative, and

uses those data to estimate the sample variances of the differences between the various systems

(S2
i`). Then the KN procedure takes more samples from the more promising systems and in the

following stages eliminates those systems that are confirmed as inferiors; such a screening process

continues until only one alternative is left.

As a fully sequential procedure, the KN procedure has more opportunities to discard inferior

systems, which might not be detected by 2- or 3-stage procedures (e.g., the Rinott procedure) until
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the final stage. Thus, the KN procedure is expected to be more efficient in the sense that fewer

observations and less computer time are needed to find the best.

The full KN procedure [103] is transcribed below (it is assumed that the best alternative refers

to the one with the largest sample mean)

Setup: Select the overall desired PCS 1−α , indifference-zone parameter δ > 0 and common

first-stage sample size n0 ≥ 2. Set

η =
1
2

[(
2α

k−1

)−2/(n0−1)

−1

]
Initialization: Let I = {1,2, . . . ,k} be the best of systems still in contention, and let h2 =

2η(n0−1).

Obtain n0 outputs Xi j( j = 1,2, . . . ,n0) from each system i(i = 1,2, . . . ,k) and let X̄i(n0) =

n−1
0 ∑

n0
j=1 Xi j denote the sample mean of the first n0 outputs from system i.

For all i 6= l calculate

S2
il =

1
n0−1

n0

∑
j=1

(
Xi j−Xl j− [X̄i(n0)− X̄l(n0)]

)2

the sample variance of the difference between system i and l. Set r = n0.

Screening: Set Iold = I. Let

I =
{

i : i ∈ Iold and X̄i(r)≥ X̄l(r)−Wil(r),∀l ∈ Iold, l 6= i
}

where

Wil(r) = max
{

0,
δ

2r

(
h2S2

il
δ 2 − r

)}
Stopping Rule: If |I|= 1, then stop and select the system whose index is in I as the best.

Otherwise, take one additional output Xi,r+1 from each system i ∈ I, set r = r+ 1 and go

to Screening.

Similar to the Rinott procedure, we choose the input parameters for the KN procedure as α =

0.05, δ = 0.01, n0 = 10. And the R&S results are shown in Table 4.4.
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Table 4.4: R&S results by KN procedure

Stage Number of rounds Remaining Policy Set (I)

Initialization r = 1∼ 10 {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12}

Screening

r = 11 {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12}
r = 12∼ 16 {1, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12}

r = 17 {1, 4, 6, 7, 8, 9, 10, 11, 12}
r = 18 {4, 6, 7, 8, 9, 10, 11, 12}

r = 19∼ 30 {6, 7, 8, 9, 10, 11, 12}
r = 31∼ 96 {6, 7, 9, 10, 11, 12}
r = 97∼ 102 {7, 9, 10, 11, 12}
r = 103∼ 122 {7, 9, 10, 12}
r = 123∼ 156 {7, 9, 10}
r = 157∼ 188 {9, 10}

Stopping r = 189 {9}

Table 4.4 clearly shows how those non-dominant policies are eliminated gradually from the

remaining set. It should be noticed that “a non-dominant policy” is not equivalent to “a policy with

worse performance measure”. A policy gets eliminated because at some time point there is strong

statistical evidence indicating that the policy could not be the best. In other words, with enough

statistical confidence, it is believed that there is at least one other policy better than this one, so

that it is safe to eliminate this policy from the candidate set.

For example, the policy selected by the Rinott procedure – P-8 – is eliminated after 30 rounds,

which means at that time, the KN procedure has collected enough evidence suggesting that P-8 is

dominated by one or more other policies so that it is not necessary to keep it in the candidate set.

The final selection of the KN procedure is P-9, which can be described: given an indifference-

zone with width equal to 0.01 and at least 95% confidence level, we believe that the P-9 is the

policy that leads to the minimal mortality among 12 alternatives; if it is not, then its mortality

differs from the true best by at most 0.01 at the 95% confidence level.
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4.5 DISCUSSION

Although the final selections of the Rinott procedure and the KN procedure are different, it does

not suggest a contradiction due to the existence of the indifferent-zone. From Table 4.3, the three

lowest values of mortality are achieved by P-8, P-9 and P-7, which are 0.473, 0.478 and 0.479

respectively. Their pair-differences are all less than the width of indifference-zone δ = 0.01. In

others words, according to the definition of indifference-zone formulation, experimenters are “in-

different” to these three alternatives since all of them are within δ -distance to the best. As long as

the final choice is made from these three alternatives, it is correct.

Table 4.5 compares the number of samples required by the Rinott and the KN procedures. It is

obvious that the KN procedure is more efficient than the Rinott procedure because those inferior

alternatives can be screened out in a timely manner in the KN procedure.

Table 4.5: Comparison of the number of samples required by Rinott and KN

Procedure Rinott KN

Number of Samples 3640 961

In conclusion, the KN and Rinott procedures are both good statistical methods for selecting a

single best alternative. They provide a statistical guarantee for the correctness of selection and help

determine the number of replications needed. As a fully sequential procedure, the KN procedure is

more efficient than the two-stage Rinott procedure since it can discard inferior systems effectively.

However, in our study, incident managers may also want an approach that can select a sub-

set containing all alternatives that are “close enough” to the best with a pre-specified statistical

confidence level, so that they can choose their final decision from the “best-subset”.

Existing subset selection methods [161, 162, 118, 163, 164, 119] are incapable for this require-

ment. They are either unable to provide guarantee for the overall performance of selected subset

(such as [118, 163, 119], they only claim that their selection subset contains the best but do not

claim that all alternatives in the subset are “good”), or resort to some impractical assumption (such

as [161, 162, 164] where they assume a common equal variance over all alternatives, which is very

unlikely to be satisfied).
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In order to address this problem, we developed a new fully sequential R&S procedure to select

the best-subset. Similar to the KN procedure, the new selection procedure can select the best-subset

by efficiently screening out the inferior alternatives, and can provide a statistical guarantee for the

correctness of selection to satisfy the pre-specified confidence level. The details of the best-subset

selection procedure are discussed in the next chapter.
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5.0 BEST-SUBSET SELECTION PROCEDURE

5.1 OVERVIEW

The goal of our research is to develop a methodology to help decision makers choose the “best” re-

sponse policies from different alternatives. For the particular example, “best” refers to the policies

leading to the less mortality. Chapter-3 develops an ABS model to simulate the behaviors of a MCI

response system under different policies, and Chapter-4 implements two indifference-zone based

ranking-and-selection (R&S) procedures (the Rinott and the KN procedures) to demonstrate how

to select the best one from twelve evacuation policies by comparing the simulation outputs strate-

gically. The R&S procedures can help analysts appropriately allocate computational resources to

reach a statistically guaranteed conclusion in an efficient manner, which is desired for computa-

tionally intensive models, such as ABS.

As we have discussed in Section 2.5.1, existing indifference-zone based R&S procedures are

designed to select only a single best system instead of a best-subset containing of all alternatives

that are close enough to the best. In Section 4.5, we explained why existing subset selection meth-

ods are insufficient for best-subset selection (they are either incapable of providing guarantees for

the overall performance of the selected subset, or they depend on certain impractical assumptions).

However, there is a practical requirement from decision makers to obtain the best-subset, so that

they can choose their final decision from the best-subset based on criteria not in the model, such as

social or political feasibility.

In order to address this problem, this chapter develops a new fully sequential R&S procedure

to select the best-subset. Based on the input from decision makers, this best-subset selection (BSS)

procedure can select all desired alternatives, screen out those undesired, and provide a guarantee

that the correctness of selection is at or above a pre-specified confidence level.
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In order to demonstrate the effectiveness of BSS, we compare the best-subset procedure with

the MCB procedure developed by Hsu (1984) [128]. First we demonstrate how simultaneous MCB

confidence intervals can be constructed from simulation results, and illustrate a method to select

the best-subset based on the information provided by the MCB confidence intervals. Then we use

BSS to select the best-subset for the same data configuration. The comparison result shows that

the MCB-based method is deficient in providing a statistical guarantee to its selection result and is

overly conservative on sampling. We argued that the new BSS procedure is the most suitable for

selecting the best-subset from a finite number of alternatives.

In the final part of this chapter, we perform a senstivity analysis to analyze the robustness of

BSS from different aspects (input parameters, changes of variances and distributions of competitive

systems in different regions). The results of these experiments demonstrate the BSS procedure

works robustly in selecting the best-subset from a finite number of alternatives.

5.2 LITERATURE REVIEW

Although most existing R&S procedures focus on identifying the best system [121], a few have

examined the problem of best-subset selection. According to Chen (2008) [165], the approaches

for selecting a subset of good systems can be roughly classified into two categories. One category

considers limited computational budgets and tries to maximize the probability of correctness of

selection. A typical representative of this category is OCBA-m, which extends the OCBA (Optimal

Computing Budget Allocation) procedure by Chen et al. (2000) [105] with a goal to maximize the

probability of correctly selecting the top-m systems with a given computing budget.

Another category of approaches is designed to select a restricted subset, which attempts to

exclude populations that deviate more than a specified indifference-zone from the best. These

approaches provide a statistical guarantee of correctness of selection and are more efficient relative

to any computing-budget constraint.

In one example of the second category, Koening and Law (1985) [120] developed a two-stage

indifference-zone procedure to select a subset of size m containing the v best of k systems; where

(1≤ v≤m< k). If m= v= 1, then the problem is to choose the best system. When m> v= 1, they
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are interested in choosing a subset of size m containing the best. If m = v > 1, they are interested

in choosing the m best systems.

Sullivan and Wilson (1989) [119] developed a two-stage restricted subset selection procedure

that determines a subset of maximum size m containing at least one system that is within a pre-

specified distance to the best. Chen (2009) [121] proposed a heuristic two-stage selection proce-

dure (Enhanced Two-Stage Selection procedure) to select a subset of size m containing at least c

of the v best of k normal populations with unknown means and unknown variances.

Since our target is to select the “best” response policies from a number of alternatives that lead

to the minimal mortality, in order to fulfill this goal, we need a method that satisfies the following

requirements:

1. The method can select an unknown best from different alternatives based on a given criteria of

measurement;

2. The method can select all alternatives that behave almost “as well as” the best one (which can

be implemented by indicating a indifference-zone parameter), and discard any alternatives that

are “worse enough” compared to the best one;

3. The method should be able to provide a statistical guarantee to the correctness of selection.

After a cautious investigation of the existing methods, we found that the first class of methods

(Bayesian-based) can not provide statistical guarantee about the correctness of selection, they only

try to maximize the posterior probability of correct selection under given simulation budgets. And

the second category (restricted subset selection) requires too many input parameters which are

usually difficult to justify in applications. For example, the Enhanced Two-stage selection proce-

dure by Chen (2009) [121] requires four input parameters (m,c,v,k), however, sometimes decision

makers are also not clear beforehand about how large the selection set should be (m) and how many

best alternatives the set should contains (c, v).

The inadequacy of existing methods motivates us to develop a new best-subset selection proce-

dure. According to our requirements, the new procedure should be able to select all good enough

alternatives, discard those inferior ones and can provide a statistical guarantee about its selection

(which excludes Bayesian approaches). According to Osogami (2009) [116], the KN procedure is

the most efficient algorithm in terms of the number of samples needed, so we will extend the KN
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procedure to enable it to select the “best-subset” in an efficient way by screening out the obviously

inferior alternatives in its selection stages.

5.3 PROBLEM FORMULATION

In this section, we formulate the best subset-selection problem and define the notation. Assuming

that there are in total k≥ 2 competing simulation systems, let Xi j be a univariate real-valued output

data from replication (or batch) j of system i, and the performance measures of different systems

are defined as xi = E[Xi j] (i = 1, . . . ,k). We will assume that a larger mean is better, and we let

x[1] ≥ x[2] ≥ . . .≥ x[k], where system [1] is the best system (unknown to us) .

Our problem is to find the best-subset I; here we refer to the best system as the system with the

largest mean, and any system whose performance measure is within λ -distance to the best will be

considered as item belonging to the best-subset, so we can define I as

I =
{

i : xi ∈
[

max
i=1,...,k

xi−λ , max
i=1,...,k

xi

]}
For solving this problem, we assume that , Xi j ∼ N

(
xi,σ

2
i
)
(i = 1,2, . . . ,k), that is Xi j 's are

distributed as normal distributions with mean of xi and variance of σ2
i .

It should be mentioned that this assumption is not restrictive since it requires neither com-

mon variance nor independent sampling (which implies that our selection procedure allows using

common random numbers (CRN) to increase the precision when comparing two or more alterna-

tive configurations by simulation). In addition, the assumption of normality is generally plausible

when the basic observations of system performance are either within-replication averages (from

a transient or steady-state simulation) or batch means with a large batch size (from a steady-state

simulation). Although the non-normality of basic observations may be problematic, Kim and Nel-

son (2001) [109] show that fully sequential R&S procedures tend to be robust to non-normality.

In addition, any non-normality can be mitigated by using batches of non-normal data as basic

observations (as in Kim and Nelson (2001) [109]).

For stochastic systems, it is not always possible to guarantee that we select the best-subset

which contains all systems that are within λ -distance to the best. Instead, we apply the idea of
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indifference-zone again to the λ -boundary to find a set of best systems. Specifically, we adopt a

similar approach to that used in Andradóttir, Goldsman, and Kim (2005) [139] and Andradóttir and

Kim (2010) [140] by asking a decision maker to specify a range [λ−,λ+] around the λ -boundary

such that λ+ > λ−. Then three regions can be defined:

• xB− xi ≤ λ−: This is the definitely best region (SB). Any system in this range should be

retained in the final best-subset. We call any system inside this range as “desired”.

• λ− < xB− xi ≤ λ+: This is the transition region (ST ). For any system inside this region, it

does not matter whether it is selected into the final best-subset or not. In other words, it is all

right to exclude a system in this region from the best-subset (even if xB− xi ≤ λ ), or to accept

a system into the best-subset as long as the system i is within this region. Therefore we call

any system inside this region as an “acceptable” system.

• λ+ < xB−xi: This is the elimination region (SE). Any system in this region should be screened

out in the screen phase and should not be contained in the final best-subset. We use the term

“undesired” to refer to any system in this region.

Figure 5.1 provides a demonstration of the division of three regions.

Figure 5.1: Three regions (Desired, Acceptable and Undesired)

For convenience, we choose the parameters λ and ε so that λ = (λ−+ λ+)/2, and define

ε = (λ+−λ−)/2. Essentially, λ is a target value that behaves as a cutoff point between desired
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and undesired systems, and ε is the level of precision to the specification of λ , that is, ε specifies

how much we are willing to be off from λ . In other words, ε defines an indifference-zone around

λ and plays a similar role as δ dened in Kim and Nelson (2001) [109] and Kim and Nelson (2006)

[114].

5.4 BEST-SUBSET SELECTION (BSS) PROCEDURE

In this section, we present a procedure that eliminates all undesired systems and to return a resultant

set that contains all the desired systems plus some or none of the acceptable systems. The complete

proof of the statistical validity of the procedure can be found in Section 5.5.

Setup: Select the overall desired probability of correct selection (PCS) (confident level) P∗ =

1−α (0 < P∗ < 1), boundary parameter λ > 0 and common first-stage sample size n0 ≥ 2.

Choose a small value for the indifference-zone parameter ε (ε > 0), which indicates the half-

width of the transition region. Calculate η as described below:

g(η)≡
c

∑
`=1

(−1)`+1
(

1− 1
2
I (`= c)

)(
1+

2η(2c− `)`

c

)−(n0−1)/2

=
2α

k(k−1)

where I is the indicator function. In the special case that c = 1, we have the closed-form

solution

η =
1
2

[(
4α

k(k−1)

)−2/(n0−1)

−1

]
Initialization: Let I = {1,2, . . . ,k} be the set of systems in contention, N be the set of best

systems, and h2 = 2cη(n0−1).

Obtain n0 outputs Xi j ( j = 1,2, . . . ,n0) from each system i (i = 1,2, . . . ,k) and let X̄i(n0) =

(∑
n0
j=1 Xi j)/n0 denote the sample mean of the first n0 outputs from system i.

For all i 6= ` calculate the estimated sample variance of the pair difference between system

i and `.
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S2
i` =

1
n0−1

n0

∑
j=1

(
Xi j−X` j− [X̄i(n0)− X̄`(n0)]

)2

Set the observation counter r = n0 and go to Screening.

Screening: Define Ȳi`(r) = X̄i(r)− X̄`(r). For each system combination (i, `) (where i ∈ I, ` ∈

I, i 6= `), if Ȳi`(r)−λ ≥+Ri`(r) (i ∈ I, ` ∈ I), then eliminate system ` from set I, where

Ri`(r) = max
{

0,
ε

2cr

(
h2S2

i`
ε2 − r

)}
Stopping Rule: If ∀i ∈ I and ∀` ∈ I, Ȳi`(r)−λ ≤ −Ri`(r), then stop and return I as the best

subset N. Otherwise, take one additional output Xi,r+1 from each system i ∈ I, set r = r+ 1

and go to Screening.

From the experimental result shown in Section 5.6, we can observe that the procedure returns

subset N containing all desired systems, plus some acceptable ones, and without any undesired

systems, with very high probability of correct selection (PCS).

5.5 STATISTICAL VALIDITY PROOF

The basic idea of the fully sequential best subset selection procedure is to approximate the sum

of differences between two systems as a Brownian motion process and use a triangular continu-

ation region to determine the stopping time of the selection process. To prove the validity of the

procedure, we need the following lemmas from Fabian (1974) [166] and Jennison et al (1980)

[167]:

Lemma 1 (Fabian, 1974). Consider a standard Brownian motion process with drift W (t,∆) with

∆ > 0 and t ≥ 0. Let H(t) = a− γt for some a > 0 and γ ≥ 0. Let H(t) denote the interval

(−h(t),h(t)) (so that h(t) = /0 when −h(t) ≥ h(t)), and let T = min{n : W (t,∆) /∈ H(t)} be the

first time W (t,∆) does not fall in the triangular continuation region defined by (t,H(t)). Finally, let

E be the event {W (T,∆)≤−h(T ) and H(T ) 6= /0, or W (T,∆)≤ 0 and H(T ) = /0}. If γ = ∆/(2c)

for any positive integer c, then
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Pr{E }=
c

∑
l=1

(−1)`+1
(

1− 1
2
I (`= c)

)
exp{−2aγ(2c− `)`}

Remark 1: In our proof that the fully sequential procedure provides the stated correct selection

guarantee, the event E will correspond to an incorrect selection (could be incorrectly eliminating a

“good alternative” from the “best-subset” or incorrectly retaining a “bad system” in the final set).

Lemma 2 (Jennison et al, 1980). Suppose that a continuation region H(t) is (−h(t),h(t)) given by

a non-negative function h(t), t ≥ 0. Consider two processes: a continuous process {W (T,∆), t ≥ 0}

with ∆ > 0, and a discrete process obtained by observing W (t,∆) at a random, increasing sequence

of times {ti : i = 1,2, . . .} taking values in a given countable set. Let TC = inf{t > 0 : W (t,∆) /∈

H(t)} and TD = inf{ti : W (ti,∆) /∈H(ti)}, and assume that TD <∞ almost surely. Note that TD≥ TC.

The error probabilities are

Pr{EC} ≡ Pr{W (TC,∆)≤−h(TC)}= Pr{W (TC,∆)< 0}

Pr{ED} ≡ Pr{W (TD,∆)≤−h(TD)}= Pr{W (TD,∆)< 0}

Consider an outcome {(b(t); t ≥ 0),{ti}}, where b(t) is the path of a Brownian motion. As-

sume that the conditional distribution of {ti} given W (t,∆) = b(t),∀t ≥ 0, is the same as the condi-

tional distribution of {ti} given W (t,∆) =−b(t), t ≥ 0. Under these conditions, Pr{ED} ≤ Pr{EC}.

Remark2: Lemma 1 gives the probability of an incorrect selection about the sign of the drift ∆

for a continuous W (t,∆). When the observations are IID normally distributed with mean ∆ and

variance one, the distributions of the partial sums of the observations match that of W (t,∆) at each

integer point. Lemma 2 states that under very general conditions, the probability of an incorrect

selection does not increase when the Brownian motion process is observed at discrete times rather

than continuously. Therefore, procedures designed for W (t,∆) provide an upper bound on the

probability of an incorrect selection for a corresponding discrete process.

THEOREM 1: Assume that Xi j, j = 1,2, . . . ,k are normally distributed, the best subset selection

procedure guarantees

Pr{CS}= Pr{SB ⊆ I ⊆ (SB∪ST )} ≥ 1−α
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PROOF:

We begin by considering the cases of only two systems (i and `) existing, define yi` ≡ xi− x`.

Let 0 < β < 1 and select η such that g(η) = β . For a general output process Gi` = {Gi`, j, j =

1,2, . . .}, let

TGi` = min

{
r : r ≥ n0 and −R(r)<

r

∑
j=1

Gi`, j <+R(r) is violated

}

Therefore, TGi` represents the stage at which ∑
r
j=1 Gi`, j exists the triangular region defined by

R(r) for the first time after n0. Let ICDi` denote the event that a wrong decision is made, which

could be:

• ICEi` – incorrectly eliminate one system during screen when both should be be retained, that

is, |x̄i− x̄`| ≤ (δ − ε)

• ICKi` – incorrectly keep both systems in the final set when one of them should be eliminated,

that is, |x̄i− x̄`| ≥ (δ + ε)

We consider three cases.

First consider the case where the difference between system i and ` is smaller than δ signifi-

cantly, that is, yi` ≤ δ −ε . Under such a scenario, the correct decision is to keep both system i and

`, and the incorrect decision is eliminating system `, that is
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Pr{ICDi` | yi` ≤ δ − ε}

= Pr{system ` is eliminated}

= Pr
{

Ȳi`(TYi`)−δ ≥+Ri`(TYi`)
}

= Pr

{TYi`

∑
j=1

(Yi`, j−δ )≥+Ri`(TYi`) ·TYi`

}

= Pr

{TYi`

∑
j=1

(Yi`, j−δ )≥max
{

0,
ε

2c

(
h2S2

i`
ε2 −TYi`

)}}

= Pr

{TYi`

∑
j=1

(δ −Yi`, j)≤min
{

0,−
h2S2

i`
2cε

+
ε TYi`

2c

}}

= E

[
Pr

{TYi`

∑
j=1

(δ −Yi`, j)≤min
{

0,−
h2S2

i`
2cε

+
ε TYi`

2c

}∣∣∣∣∣S2
i`

}]

Now, we define Zi`, j ≡ (δ −Yi`, j)− (δ − ε− yi`), where yi` = E[Yi`, j]. Notice that 0≤ δ − ε−

yi`, and hence Zi`, j ≤ (δ −Yi`, j) due to the assumption that the difference between system i and ` is

smaller than δ significantly. This implies that ∑
r
j=1 Zi`, j is more likely to exit a given continuation

region through a lower boundary than ∑
r
j=1(δ −Yi`, j). Therefore,

Pr{ICDi` | yi` ≤ δ − ε} ≤ E

[
Pr

{TZi`

∑
j=1

Zi`, j

σi`
≤min

{
0,−

h2S2
i`

2cεσi`
+

ε TZi`

2cσi`

}∣∣∣∣∣S2
i`

}]
where σ2

i` = Var(Yi`) = Var(Zi`). Notice that Zi`, j/σi` are IID N(∆,1) with ∆ = ε/σi`, and

h2 = 2cη(n0−1). Let

a =
h2S2

i`
2cεσi`

=
η(n0−1)S2

i`
εσi`

> 0

and γ = ε/(2cσi`) = ∆/(2c). The sum of Zi`, j, j = 1,2, . . . ,n0, is independent of S2
i`, the

sample variance of Yi`, j, j = 1,2, . . . ,n0, and the observations we take after n0 do no depend on

S2
i` as we assume that the Yi`, j are IID; that is, the infinite sample path after n0 does not depend on

S2
i`. Also, notice that the distribution of ∑

r
j=1 Zi`, j/σi` is identical to that of W (t,∆) for t = r ∈

{n0,n0 +1, . . .}. Then, by Lemma 1 and 2,
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Pr{ICDi` | yi` ≤ δ − ε} ≤ E
[
Pr{W (t,∆)< 0}

∣∣S2
i`
]

= E

[
c

∑
`=1

(−1)`+1
(

1− 1
2
I (`= c)

)
× exp{−2aγ(2c− `)`}

]

= E

[
c

∑
`=1

(−1)`+1
(

1− 1
2
I (`= c)

)
× exp

{
−2 ·

η(n0−1)S2
i`

εσi`
· ε

(2cσi`)
· (2c− `)`

}]

= E

[
c

∑
`=1

(−1)`+1
(

1− 1
2
I (`= c)

)
× exp

{
−

η(n0−1)S2
i`

cσ2
i`

(2c− `)`

}]

Now, consider the second case that the difference between system i and ` are significantly

larger than δ (yi` ≥ δ +ε). Then the correct decision is to eliminate system ` since it is impossible

for system ` to belong to the “nearly-best subset”. On the opposite, the incorrect decision is to

keep both system i and `, that is,

Pr{ICDi` | yi` ≥ δ + ε}

= Pr{system ` is kept}

= Pr
{

Ȳi`(TYi`)−δ ≤−Ri`(TYi`)
}

= Pr

{TYi`

∑
j=1

(Yi`, j−δ )≤−Ri`(TYi`) ·TYi`

}

= Pr

{TYi`

∑
j=1

(Yi`, j−δ )≤min
{

0,
ε

2c

(
−

h2S2
i`

ε2 +TYi`

)}}

= Pr

{TYi`

∑
j=1

(Yi`, j−δ )≤min
{

0,−
h2S2

i`
2cε

+
ε TYi`

2c

}}

This time, we define Z′i`, j ≡ (Yi`, j−δ )− (yi`−δ − ε). By applying a similar argument to that

used for the case yi` ≤ δ − ε , we know Z′i`, j ≤ Yi`, j−δ , and
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Pr{ICDi` | yi` ≥ δ + ε}

≤ E

[
c

∑
`=1

(−1)`+1
(

1− 1
2
I (`= c)

)
× exp

{
−

η(n0−1)S2
i`

cσ2
i`

(2c− `)`

}]

So the conditional probability of ICD for both cases is bounded above by the same quantity.

The third case occurs when the difference between system i and ` is within the transition region,

that is, δ − ε ≤ yi` ≤ δ + ε . In this case, it does not matter whether system i is selected into the

nearly-best subset or not, that is, Pr{ICDi` | δ − ε ≤ yi` ≤ δ + ε}= 0.

Therefore, in all cases,

Pr{ICDi`} ≤ E

[
c

∑
`=1

(−1)`+1
(

1− 1
2
I (`= c)

)
× exp

{
−

η(n0−1)S2
i`

cσ2
i`

(2c− `)`

}]

= E

[
c

∑
`=1

(−1)`+1
(

1− 1
2
I (`= c)

)
× exp

{
−η(2c− `)`

c
(n0−1)S2

i`

σ2
i`

}]

Notice that (n0−1)S2
i`/σ2

i` ∼ χ2
n0−1, a Chi-squared distribution with n0−1 degree of freedom.

To evaluate the expectation in the equitation above, from the moment generating function of a χ2
ν

random variable, we know that E
[
exp{t χ2

ν}
]
= (1−2t)−ν/2 for t < 1/2. Thus, the expected value

is

c

∑
`=1

(−1)`+1
(

1− 1
2
I (`= c)

)
×
(

1+
2η(2c− `)`

c

)−(n0−1)/2

= β

where the equality follows from the way we choose η .

Thus, we have a bound on the probability of an incorrect decision where there are two systems.

Now, consider k ≥ 2 systems, let ICS be the event that incorrect selection was made during the

procedure, which consists of two possible cases, that is, ICS = ICE or ICK.

where

• ICE – incorrect elimination (eliminate one or more “good” systems which should be contained

in the final selection set).
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• ICK – incorrect keeping (keep one or more “bad” systems in the final selection set which

should be eliminated in screening phrase).

Notice that ICE and ICK is mutually exclusive for each pair of comparison, but the probabilities

of incorrect decision (ICD) share the same bound, that is, Pr{ICD}= Pr{ICE}= Pr{ICK}

Therefore,

Pr{ICS}= Pr{ICE or ICK}= Pr{ICD}

Now set β = 2α/k(k−1), and notice that

Pr{ICS}= Pr{ICD} ≤ ∑
i∈I,`∈I,i 6=`

Pr{ICDi`}=
C2

k

∑
n=1

2α

k(k−1)
=

k(k−1)
2

(
2α

k(k−1)

)
= α

where the first inequality follows from the Bonferroni inequality.

Let CS denote the event that a correct nearly-best subset selection is made when the procedure

is applied to all k systems. Then

Pr{CS}= 1−Pr{ICS} ≥ 1−α

2

5.6 NUMERICAL EXPERIMENTS

In this section we illustrate the performance of the best-subset selection procedure by two numeri-

cal experiments.

The first experiment is to demonstrate that the best-subset selection procedure can correctly

identify the best-subset with required probability. In the setup stage, we choose the confidence level

as P∗ = 1−α = 0.95 and take n0 = 10 samples from each alternative. The boundary/indifference-

zone parameters are chosen as (λ−, λ+) = (5, 5.5) so that the transition region width 2ε = λ+−

λ− = 0.5, which means, any system whose mean value is within 5 unit distance of the true best

system should be selected for inclusion (“desired”), and it is also acceptable for the final selection

set to include any system whose mean differs from the true best by more than 5 but less than 5.5.
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For example, suppose the best system's mean is 100, then all systems whose means are greater or

equal to 95 should be selected, and any system whose mean is greater than or equal to 94.5 but

less than 95 could be selected; all others (mean less than 94.5) should be excluded from the final

selection set.

We use a set of normal random variables Xi j with different means and variances to represent

the competitive systems (Xi j ∼ N
(
xi,σ

2
i
)
). The number of total alternative systems k = 3. The

mean and variance values are shown in Table 5.1. Such a configuration is known as the slippage

configuration (SC) since systems 2 and 3 are just at the edge of the desired boundary. According

to the region definitions (see Section 5.3) and parameter settings for this case, we know that both

systems 2 and 3 should be included in the final set and the selected best-subset should contains all

alternatives {1,2,3}, but it is difficult to make the correct selection.

Table 5.1: Mean and variance configurations for the first experiment (SC)

No. 1 2 3

xi 100 95 95

σ2
i 1.0 2.0 4.0

Table 5.2: Replication statistics of the first experiment

Mean (Number of Samples) Standard Deviation (Number of Samples) Pr{CS}

2803.42 1672.78 0.9546

We run 10,000 independent replications. The percentage of correct selection (Pr{CS}) and the

number of samples required in the replications are summarized in Table 5.2. From Table 5.2 we

can see that the percentage of correct selection Pr{CS} = 0.9546 which satisfies the requirement

of PCS≥ 0.95 very well.

Now let us consider a more complex scenario in the second experiment, where we have k =

16 competitive systems (Xi j ∼ N
(
xi,σ

2
i
)
). The mean and variance configurations are shown in

Table 5.3. All other parameters are the same as in the first experiment (P∗= 1−α = 0.95, n0 = 10,
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(λ−, λ+) = (5, 5.5), 2ε = λ+− λ− = 0.5). Here we only test configurations with a common

variance for all configurations (σ2
i = 1.0).

Table 5.3: Mean and variance configurations for the second experiment

No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

xi 100 95.3 95.2 95.1 94.95 94.9 94.85 94.8 94.75 94.7 94.65 94.6 94.55 94.4 94.3 94.2

σ2
i 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

For this experiment, we run 30 batches where each batch consists of 500 replications (15,000

in total, independent replications). The benefit of using batches is to enable plotting box-plot of

correct selection frequency for each alternative system, as shown in the Figure 5.2. The number of

samples required in the replications is summarized in Table 5.4.

Table 5.4: Replication statistics of the second experiment

Mean (Number of Samples) Standard Deviation (Number of Samples) Pr{CS}

13665.73 4650.98 0.99973

From Figure 5.2 we can see that our best-subset procedure works well. With a very high prob-

ability, all desired systems (xi ≥ 95) were selected, and no undesired systems were kept in the final

selection. For the systems within the transition region, it is obvious that the frequency-of-being-

selected drops very quickly as the distance to the best system increases, which means those non-

competitive systems can be effectively eliminated during the screening procedures. The resultant

percentage of correct selection Pr{CS}= 0.99973 is very high, which may suggest certain conser-

vation existing when handling a large number of alternatives. The possible source of conservation

may come from the application of the Bonferroni inequality to control the overall incorrect se-

lection probability by combining pairwise-comparison results together (i.e. the 2α/k(k−1) term

when calculating η), and possible techniques to reduce this conservatism will be left for future

work.
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Figure 5.2: Selection frequency of each alternative in the second experiment
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5.7 COMPARING BSS WITH MCB

In order to better illustrate the effectiveness of the best-subset selection (BSS) procedure, this

section compares BSS with the MCB (Multiple Comparisons with the Best) procedure.

5.7.1 Multiple comparisons with the best (MCB)

MCB procedures are designed to address such a question: how worse are the other alternatives

comparing to the unknown best one? The first MCB procedures were developed by Hsu (1984)

[128], which is used to provide simultaneous confidence intervals for the difference between the

expected performance of each system and the best of the other systems.

For the applications of MCB, Goldsman and Nelson (1990) [131] outlined an MCB procedure

for steady-state simulation experiments. They also discussed results on how the batch size can

impact the probability of correct selection when using the simulation technique of batch means.

Yang and Nelson (1991) [129] and Nelson and Hsu (1993) [130] described modifications to the

MCB procedure that incorporate two variance reduction techniques (control variates and CRN)

to shorten the length of the confidence intervals for a specified level of confidence. Nelson and

Banerjee (2001) [132] present a two-stage MCB procedure that simultaneously achieves several

objectives for a given probability of correct selection. For the specific application on the best-

subset selection, Nelson and Matejcik (1995) [134] developed two-stage MCB procedures (NM

procedure) that provide confidence intervals for the difference between the expected performance

of each system and the best of the others.

A typical MCB procedure can be described as follows: Assume that there are k competing

systems (treatments), and let µ = (µ1,µ2, . . . ,µk) denote the corresponding vector of (unknown)

treatment means. Without loss of generality we assume that “the treatment with larger mean is

better”. Then MCB constructs simultaneous confidence intervals for the parameters µi−max j 6=i µ j

for i = 1,2, . . . ,k. These confidence intervals bound the difference between the performance of

each system and the best of the others with a pre-specified confidence level. Note that most MCB

procedures assume the variances across systems are equal.
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To be specific, for k competing systems with means µ = (µ1,µ2, . . . ,µk) and a common vari-

ance σ2, the MCB procedure guarantees that

Pµ,σ2

{
µi−max

j 6=i
µ j ∈

[
D−i , D+

i
]
∀i = 1,2, . . . ,k

}
≥ 1−α

where:

D−i =−(µ̂i−max
j 6=i

µ̂ j−dσ̂
√

2/r)−

D+
i = (µ̂i−max

j 6=i
µ̂ j +dσ̂

√
2/r)+

k – Number of systems;

α – Confidence level;

r – Number of observations for each treatment;

and d = f (k,ν ,α) is a critical point value determined by k,ν ,α , where ν is the degree of

freedom, ν = k(r−1). The value of d could be obtained from a table (e.g., Appendix E in [168])

or calculated by a program (e.g., the function qdunnett() provided by Chiuzan (2009) [169]).

To better illustrate this, we present a simple MCB example below. The example contains only

three competitive systems, which are represented by three normally distributed random variables

Xi j whose mean and variance values are shown in Table 5.5.

Table 5.5: Means and variances of three competitive systems

No. 1 2 3

xi 100 95.5 94

σ2
i 1.0 2.0 4.0

For confidence level α = 0.05, we constructed the simultaneous MCB confidence intervals

using the MCB procedure. The results are shown in Table 5.6.

From the simultaneous confidence intervals provided by MCB, two things can be inferred:

which alternative is the best one (having the largest mean) and how much is the difference between
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Table 5.6: MCB Results (k = 3, α = 0.05)

r d σ̂ Estimated means & MCB C.I.

10 2.3334 2.78

estimate lower upper
1 100.2 1.60 7.40
2 95.3 -7.80 -2.00
3 95.7 -7.40 -1.60

20 2.2681 1.57

estimate lower upper
1 100.5 3.24 5.48
2 96.1 -5.48 -3.24
3 94.3 -7.24 -5.00

50 2.2335 2.80

estimate lower upper
1 100.0 3.16 5.65
2 95.5 -5.83 -3.33
3 95.6 -5.65 -3.16

100 2.2121 2.83

estimate lower upper
1 100.0 3.33 5.10
2 95.8 -5.10 -3.33
3 94.1 -6.84 -5.06

200 2.2121 2.68

estimate lower upper
1 100.0 3.82 5.01
2 95.6 -5.01 -3.82
3 94.1 -6.44 -5.26

500 2.2121 2.69

estimate lower upper
1 100.0 4.08 4.83
2 95.6 -4.83 -4.08
3 93.9 -6.52 -5.77
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the performance of each system and the best of the others. For example, for r = 10 observations

for each alternative, the estimated mean values are x̂1 = 100.2, x̂2 = 95.3, x̂3 = 95.7. And from

the confidence intervals for µi−max j 6=i µ j, we can infer that system 1 is the best since both its

lower bound and upper bound are great than 0, which means that system 1 is between 1.60 and

7.40 better than the best of other systems at the 95% confidence level. In addition, systems 2 and 3

could not be the best, since both their lower and upper bounds are negative. Furthermore, system

2 is worse than the true best by between 2.00 and 7.80, and system 3 is worse than the true best by

between 1.60 and 7.40 at the 95% confidence level.

However, the original MCB procedure is not suitable for the best-subset selection problem for

two reasons. First, usually the MCB procedure is employed to find the “best” candidates whose

confidence intervals overlap with zero (which means their performance is close enough to the

unknown best), but neither does it allow one to indicate an indifference-zone beforehand, nor to

select the alternatives within a range determined by the indifference-zone and the unknown best.

Second, although the simultaneous confidence intervals made by MCB do provide information to

infer the “best subset”, it is not able to indicate how many replications are needed to select the

best-subset with pre-specified confidence level, which is often desired by experimenters in order

to control the simulation in an adaptive and efficient manner.

5.7.2 MCB-based method for best-subset selection

As a practical approach for the best-subset selection, the method should be able to:

1. allow experimenters to indicate indifference-zone parameters so that all “close-enough-to-the-

best” systems can be selected by the method; and

2. provide the number of replications needed for statistically guaranteed selection result.

The original MCB procedure can not satisfy these two requirements directly, but it does con-

struct simultaneous confidence intervals which provide information about the difference between

each system and the (unknown) best of others. In addition, from Table 5.6 we can observe that

the widths of the confidence intervals continuously shrink as we increase the number of samples.

Based on this, we propose a two-stage MCB-based method for best-subset selection, as described

below.
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Setup: For k competitive systems, select the overall desired probability of correct selec-

tion (PCS) (confident level) P∗ = 1− α (0 < P∗ < 1), boundary/indifference-zone param-

eters (λ−,λ+), and a common initial sample size n0. Calculate the critical point value

d0 = f (k,ν0,β ) using the function qdunnett() provided by Chiuzan (2009) [169], where

ν0 = k(n0−1), β = α/(k−1);

Initialization Stage (Stage-0):

1. Take n0 observations from each of k systems, estimate their means µ̂i,0 and pooled vari-

ances σ̂2
0 ; Construct the simultaneous MCB confidence intervals

[
D−i,0, D+

i,0

]
using µ̂i,0,

d0, σ̂0, and r = n0

2. Calculate the sample size needed for each system

n = max
i∈I

{
2
/(√

2
n0
− ∆i

d0σ̂0

)2}
where

∆i = min
{
(D+

i,0 +λ
−),(−λ

+−D−i,0)
}

I =
{

i : D+
i,0 > (−λ

−) and D−i,0 < (−λ
+)
}

3. Confirm n by re-calculating d1 = f (k,ν1,β ), where ν1 = k(n−1).

If d1 6= d0 then let n0 = n, d0 = d1 and go back to step 1, otherwise continue to Screening

Stage (Stage-1).

Screening Stage (Stage-1): Take n samples from each of the k systems, and construct the

simultaneous MCB confidence intervals
[
D−i,1, D+

i,1

]
based on the kn samples. Eliminate any

system whose D+
i,1 <−λ−, and return the remaining alternatives as the best-subset.

Remark: The basic idea of MCB-based method is to eliminate any system that is significantly

worse than the best, where a system is considered as “significantly worse” if its MCB confi-

dence interval is completely outside the boundary defined by the indifferent-zone parameters

(−λ+, −λ−) (e.g., systems 1 and 2 shown in Figure 5.3). The confidence intervals built in the
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step 1 of Initialization Stage provide basic information about how poor each alternative is when

compared with the best. Since the size of initial samples (n0) is usually a small number, the widths

of the resultant confidence intervals are relatively wide. Figure 5.3 displays five possible distribu-

tions of those confidence intervals.

Figure 5.3: Five possible distributions of confidence intervals

From Figure 5.3 we can see that it is safe to eliminate systems 1 and 2 because the upper

bounds of their MCB confidence intervals are both less than −λ− (which means that their per-

formance measures could only be located in the undesired or acceptable region). For a similar

reason, systems 4 and 5 should be selected into the final best-subset since their lower bounds are

both greater than −λ+ (which implies that their performance measures are located in the desired

or acceptable region).

However, it is difficult to determine whether system 3 should be eliminated or be kept since its

MCB confidence interval envelops the range [−λ+, −λ−]. In order to make a definitive decision,

we have to shrink the MCB confidence interval width for system 3 by additional sampling until

one of its boundaries reaches the −λ− or the −λ+ boundary. For example, if the upper bound

first reaches the −λ− line while the lower bound is still less than −λ+ as a result of shrinkage,

then system 3 should be eliminated since it will degenerate to system 2 if the shrinkage continues.

On the other hand, if the lower bound first touches the −λ+ line while the upper bound is greater

than −λ− during the shrinkage, system 3 should be kept since it will degenerate to system 4 if

the shrinkage continues. With this logic, steps 2 and 3 of the Initialization Stage calculate and

validate the necessary simple size n that guarantees the widths of MCB confidence intervals of

all “system-3-like” alternatives (contained in set I) are narrow (shrunk) enough for experimenters

to make judgments easily. Finally, the Screening Stage takes extra samples using the calculated

sample size and selects the best-subset by eliminating the “significantly worse” alternatives.
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It should be noted that since we want to guarantee the overall probability of correct selection

for the whole subset, the error probability (α) of MCB is adjusted to β = α/(k−1), which follows

from the Bonferroni inequality as there are (k−1) total pairs compared.

The effectiveness of the method was tested by an experiment, in which the MCB-based method

was employed to select a best-subset from k = 3 competitive systems (whose configurations are

shown in Table 5.5). In the setup stage, we choose the overall PCS P∗ = 1−α = 0.95 (α = 0.05),

boundary/indifference-zone parameters (λ−,λ+) = (5, 5.5), and initial sample size n0 = 10. Then

the initial critical point value was calculated as d0 = f (k,ν0,β ) = 2.6458, where ν0 = k(n0−1) =

27, β = α/(k−1) = 0.025.

We ran 5000 independent replications, and compared the best-subset selection results us-

ing MCB-based method with the results from the BSS (k = 3, α = 0.05, n0 = 10, (λ−, λ+) =

(5, 5.5)). The comparisons are summarized in Table 5.7.

Table 5.7: Comparison between BSS and MCB (5000 replications for each)

Method
Number of Samples

Pr{CS}
Mean Standard Deviation

MCB-based 3702 57962 87.96%

BSS 1201 652 99.98%

From Table 5.7, we can see that on average the BSS procedure needs only 1201 samples to

select the best-subset, and the percentage of correct selection (Pr{CS}) is 99.98%. In contrast, the

Pr{CS} of MCB-based method is only 87.96% with 3702 samples (on average), which is more than

three times that for the BSS. The comparison results also imply that MCB-based selection method

is not as robust as BSS for its lower Pr{CS} and the larger standard deviation of sample size.

Therefore, compared with the MCB-based method, BSS procedure is more suitable for selecting

the best-subset from a finite number of alternatives.
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5.8 ROBUSTNESS ANALYSIS

In this section, we analyze the robustness of the Best-subset Selection procedure with respect to

the input parameters (width of indifference-zone, initial samples size), changes of variances, and

different distributions of competitive systems.

Throughout, we assume that each competitive system generates samples that are independent

and identically distributed according to a normal distribution, where each alternative may have a

different mean and/or variance. The upper bound on the overall error probability is set to α = 0.05

so that P∗= 1−α = 0.95. For each experiment, 12,000 independent replications are implemented,

where each replication comprises one implementation of the BSS.

5.8.1 Input parameters

The experiments performed in this section are used to investigate the impacts due to different input

parameters, specifically on two factors: width of the indifference-zone and the initial samples size.

The competitive system configurations used in experiments are shown in Table 5.8.

Table 5.8: Competitive system configurations (input parameters)

System i 1 2 3 4 5 6 7 8 9 10
Mean 100 95.3 95.1 94.9 94.8 94.7 94.6 94.4 94.2 94.0
S.D. 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

Region Desired Acceptable Undesired

5.8.1.1 Impact of indifference-zone width The first set of experiments is used to check the

impact of varying the width of the indifference-zone (2ε = λ+− λ−), where (λ−, λ+) are the

indifference-zone boundaries. The number of samples collected in the initialization stage is n0 =

10, and the experimental results are shown in Table 5.9 and Figure 5.4.

From Table 5.9 and Figure 5.4, we see that narrower indifference-zones correspond to larger

sample sizes (in terms of mean and standard deviation) and higher percentage of correct selection

(Pr{CS}), which follows intuition. The reason that additional samples are required is because
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Table 5.9: Results of different indifference-zone widths

(λ−, λ+) 2ε Pr{CS}
Number of samples

Reason of Incorrect Selection
Mean S.D.

(5, 5.5) 0.50 0.9997 5233 1992 4 miss desired

(5, 5.25) 0.25 1.0000 13874 5601 N/A

(5, 5.1) 0.10 1.0000 36843 15547 N/A

(5, 5.05) 0.05 1.0000 66534 25705 N/A

Figure 5.4: Sample sizes with different indifference-zone widths

103



with the shrinkage of the indifference-zone, it becomes more difficult to confirm that all remaining

alternatives are really “desired” or “acceptable”. The confidence intervals of the paired-differences

among those alternatives must be small enough to provide statistical evidence that all remaining

systems are within the region bounded by the λ+ boundary.

5.8.1.2 Impact of different initial samples size The second set of experiments is to check

the impact of different initial sample sizes. The indifference-zone boundaries are chosen to be

(λ−, λ+) = (5, 5.5), and the experimental results are shown in Table 5.10 and Figure 5.5.

Table 5.10: Results of different initial sample sizes

n0 Pr{CS}
Number of samples

Reason of Incorrect Selection
Mean S.D.

5 0.9972 18386 9809 34 miss desired

10 0.9997 5233 1992 4 miss desired

20 0.9998 3185 920 2 miss desired, and 1 contains undesired

30 0.9998 2733 690 2 miss desired

50 1.0000 2448 528 N/A

100 1.0000 2322 403 N/A

150 0.9999 2408 353 1 misses desired

200 1.0000 2575 313 N/A

250 1.0000 2804 248 N/A

300 1.0000 3123 155 N/A

400 1.0000 4002 16 N/A

The results shown in Table 5.10 and Figure 5.5 suggest that a certain number of initial samples

are important for efficient sampling. If the initial sample size is too small (e.g., n0 = 5), the total

number of samples may be quite large due to the poor estimates of the variance of the difference

between alternative pairs. On the other hand, too many initial samples are not conductive to the

efficiency of the procedure. Since it is not necessary to have so many samples allocated for variance

estimation in the initialization stage, which may suppress the capability of BSS to eliminate the

non-competitive alternatives in the screening stages, and thus lead to an increase of total samples,
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Figure 5.5: Sample sizes with different initial sample sizes

as shown by the cases when n0 > 150. The empirically proper initial samples size should be chosen

from the range of [10,50].

5.8.2 Changing variances

The experiments in this section are designed to investigate the impacts due to the change of vari-

ances across alternative systems. Three different scenarios are studied and compared: common

variance, increasing variances and decreasing variances respectively. The competitive system con-

figurations are shown in Table 5.11, where the variances of alternatives are represented by their

standard deviations (S.D.).

In this example, the indifference-zone boundaries are (λ−, λ+) = (5, 5.5), the initial sample

size is n0 = 10, and the experimental results are shown in Table 5.12 and Figure 5.6.

From the results it can be observed that the increasing variances case needs more samples and

has a larger standard deviation in terms of sample size compared to the common variance case. In

contrast, the decreasing variances case takes less samples and the standard deviation of sample size

is also smaller. The reason is because it is easier (with less samples) for the decreasing variance
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Table 5.11: Competitive system configurations (changing variances)

System i 1 2 3 4 5 6 7 8 9 10
Mean 100 95.3 95.1 94.9 94.8 94.7 94.6 94.4 94.2 94.0

Common S.D. 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
Increasing S.D.

(1.2(i−1))
1.0 1.2 1.44 1.728 2.074 2.488 2.986 3.583 4.300 5.160

Decreasing S.D.
(0.8(i−1))

1.0 0.8 0.64 0.512 0.410 0.328 0.262 0.210 0.168 0.134

Region Desired Acceptable Undesired

Table 5.12: Results of different changing variances

Variance Pr{CS}
Number of samples

Reason of Incorrect Selection
Mean S.D.

Common 0.9997 5233 1992 4 miss desired

Increasing 0.9995 23270 6590 6 miss desired

Decreasing 0.9992 2741 1298 8 miss desired, and 2 contain undesired
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Figure 5.6: Sample sizes with different changing variances

case to obtain a precise variance estimation in the initialization stage, which helps in eliminating

non-competitive systems in the screening stages. In addition, smaller variances also make it easy

to confirm that the BSS procedure should terminate after all remaining systems are within the

λ+-distance to the best.

5.8.3 Slippage configurations (SCs)

The experiments implemented in this section are to study the behaviors of BSS under the slippage

configurations, which is referred to the scenarios where most alternatives locate at (or very close

to) the boundary (λ− or λ+) except for the one best. The SC's are difficult configurations because

all of the other systems are equally close to the best so that it is very difficult to eliminate non-

competitive alternatives. The system configurations are shown in Table 5.13.

The BSS parameter settings are similar: (λ−, λ+) = (5, 5.5), n0 = 10, and the experimental

results are shown in Table 5.14 and Figure 5.7.

From Table 5.13, we can see that the correction selections of SC-1 and SC-2 should contains

all alternatives since all of them are all in the desired region. For SC-3, SC-4, SC-5 and SC-6, all
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Table 5.13: Slippage configurations

System i 1 2 3 4 5 6 7 8 9 10

S.D. 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

Mean

SC-1 100 95.05 95.05 95.05 95.05 95.05 95.05 95.05 95.05 95.05
SC-2 100 95 95 95 95 95 95 95 95 95
SC-3 100 94.95 94.95 94.95 94.95 94.95 94.95 94.95 94.95 94.95
SC-4 100 94.75 94.75 94.75 94.75 94.75 94.75 94.75 94.75 94.75
SC-5 100 94.55 94.55 94.55 94.55 94.55 94.55 94.55 94.55 94.55
SC-6 100 94.5 94.5 94.5 94.5 94.5 94.5 94.5 94.5 94.5
SC-7 100 94.45 94.45 94.45 94.45 94.45 94.45 94.45 94.45 94.45

Table 5.14: BSS results of slippage configurations

Scenario Pr{CS}
Number of samples

Reason of Incorrect Selection
Mean S.D.

SC-1 0.9929 4324 1385 85 miss desired

SC-2 0.9811 4908 1607 227 miss desired

SC-3 1.0000 5666 1890 N/A

SC-4 1.0000 8273 3058 N/A

SC-5 1.0000 3445 1108 N/A

SC-6 1.0000 3000 948 N/A

SC-7 1.0000 2640 821 N/A
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Figure 5.7: Sample sizes under different slippage configurations

other alternatives (System 2 to 10) are in the acceptable region except for System 1 (which is in

the desired region since it has the maximum mean value of 100), therefore correct selections of

these configuration refer to any selection containing System 1, no matter others are included or

not. Since SC-7 has only System 1 in the desired region while all others are in the undesire region,

its correct selection should only Systme 1.

The high Pr{CS} values in Table 5.14 suggest that the BSS works well. Besides that, the

results also show that the most difficult configuration is SC-4, which requires the most samples

and has the largest standard deviation of sample size. That is because most alternatives locate

exactly at the center of the acceptable region and it become difficult for the algorithm to make a

decision to either eliminate them or keep them.

5.8.4 Different distributions of competitive alternatives in each region

The last set of experiments investigates the impacts due to different distributions of competitive al-

ternatives in each region (desired, acceptable, undesired). Three different distributions are studied

and the system configurations are shown in Table 5.15.
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Table 5.15: System configurations – Different distribution of alternatives in each region

System i 1 2 3 4 5 6 7 8 9 10

S.D. 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

Mean
(D:A:U=6:2:2) 100 99 98 97 96 95.5 94.8 94.6 94.4 94
(D:A:U=2:6:2) 100 97 94.9 94.8 94.76 94.74 94.7 94.6 94.4 94
(D:A:U=2:2:6) 100 97 94.8 94.6 94.45 94.4 94.3 94.2 94.1 94

The (D:A:U) in the first column of Table 5.15 indicates the number of alternatives in each

region (Desired, Acceptable, Undesired). So for (D:A:U=6:2:2), six systems (1 to 6) are in the

desired region; Two systems (7 and 8) in the accpetable region and two systems (9 and 10) are in

the undesired region. (D:A:U=2:6:2) and (D:A:U=2:2:6) can be explained in the same way.

The BSS parameters are still chosen as to be (λ−, λ+) = (5, 5.5), n0 = 10, and the experi-

mental results are shown in Table 5.16 and Figure 5.8.

Table 5.16: BSS Results – Different distributions in each region

D:A:U Pr{CS}
Number of samples

Reason of Incorrect Selection
Mean S.D.

6:2:2 1.0000 5056 2253 N/A

2:6:2 1.0000 6357 2354 N/A

2:2:6 1.0000 3329 1210 N/A

From the results we can see that BSS needs more samples when there are more alternatives

in the desired or acceptable regions than in the undesired region. Since it is relatively easy to

eliminate a non-competitive system as long as it is found to be worse for λ+or more than any

other system (may not be the best). However, in order to stop the screening, the algorithm must

accumulate enough evidences that all remaining alternatives are within λ+ distance for each other,

which is very difficult to confirm and therefore consumes a lot of samples.
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Figure 5.8: Sample sizes of different alternative distributions in each region

5.9 SUMMARY

In this chapter, we considered a new ranking-and-selection (R&S) problem which requires choos-

ing the best subset of a set of alternative systems. We extended the existing KN procedure to a

new best-subset selection (BSS) procedure to solve this problem and demonstrated its ability to

select all systems that are close enough to the best system so that the decision maker is indifferent

to the difference (as demonstrated by numeric experiments). From the comparison between BSS

and MCB-based method, we argued that the BSS procedure is more suitable for selecting the best-

subset from a finite number of alternatives. Besides that, the robustness of BSS is also analyzed by

a series of experiments.

As this work was motivated by the problem of policy selection via an emergency response

simulation model, we will apply this method to the model in the next chapter to examine the

effects of a range of alternative emergency response policies. We believe that this procedure can

provide results that are more useful to policy makers than the current selection of the best system

or subset selection procedures.
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We propose as future work continuing research into how to improve the efficiency of the pro-

cedure, in particular in the case where there is a large set of alternatives, while maintaining the

desired probability of correct selection.
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6.0 SELECT BEST EVACUATION POLICIES USING BSS

6.1 OVERVIEW

In this chapter we describe how we applied the Best-subset Selection (BSS) procedure (developed

in Chapter-5) to the agent-based simulation model for a mass casualty incident (MCI) response

(developed in Chapter-3) to select the best response policies under a specified scenario. The best

response policies refer to those that lead to the least mortality. Besides that, we also performed

sensitivity analysis to investigate the impact on the final selection due to changing parameters in

the following aspects

• Required selection precision

• Degradation models of injured casualty

• Characteristics of casualty (number, injury severity distribution, percentage of specialized)

• Conditions of hospitals (available capacity of beds, admission criteria)

6.2 EXPERIMENT CONFIGURATION

The simulated MCI response system configuration is similar to the case study discussed in Sec-

tion 3.2, that is, we assume an IED (Improvised Explosive Device) explosion at the Pittsburgh

D. L. Lawrence Convention Center in downtown Pittsburgh, PA, United States, which resulted in

150 injured patients requiring timely evacuation. There are two types of casualties: children and

adults. Children have to be treated at one of two specialized hospitals: Children's Medical Center

or Magee Women's Hospital. For each of the 10 total hospitals, we assume that there are 10 avail-
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able beds in general wards and 5 beds in ICU at the beginning of simulation. The injury severities

are represented by different initial survival probability values, where small values correspond to

severe injuries. We also assume that the injury severity of each victim is independently and identi-

cally distributed according to a specified exponential distribution. The first arriving EMTs perform

on-site triage to determine the type of victims (specialized or general) and estimate the injury sta-

tus based on the information gathered during the on-site triage. The actual survival probability of

each casualty will deteriorate continuously until definitive care is received at a hospital. After a

casualty arrives at a hospital, emergency room staff will perform in-hospital triage; Sacco's RPM

score is used in the model to indicate the casualty's injury severity (after degradation). The RPM

score will be used to decide if a casualty should be admitted or discharged by comparing it to a

pre-defined threshold; for those being admitted, another threshold value will be used to decide if

they are in critical condition or not. The critical patients will be assigned an ICU bed for treatment

or be transferred to other hospital if there is no available ICU beds. In addition, we assume that

regionally there are 24 ambulances available to respond to the incident. The ambulances initially

start in one of 6 bases that are distributed over the Pittsburgh region. The transportation network

used for the simulation is shown in Figure 6.1, which also marks the intersections of major roads

(in black points), the locations of hospitals (in red crosses) and ambulance bases (in green circles).

Figure 6.1: Transportation network of Pittsburgh, PA
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Twelve different evacuation policies (P-1 to P-12) are proposed and employed to guide the

casualty evacuation, which are detailed in Section 4.2 (Table 4.1). These policies are used to

respond the incident described above. Table 6.1 summarizes all parameters used in the simulation.

Table 6.1: Simulation parameter settings

Category Parameter Value

Casualty
Setting

Num. of Casualties nc = 150

Initial Survival Probability Distribution Expo(Λ), Λ = 0.4

Percentage of Specialized Patients (Children) Ps = 0.2 (30 among 150)

Casualty Degradation Model Sacco's RPM-based model

Ambulance
Setting

Num. of Ambulance Bases nb = 6

Num. of Ambulances na = 24 (4 at each base)

Hospital
Setting

Num. of Hospitals nh = 10

Initial Available GW Beds nGW = 10

Initial Available ICU Beds nICU = 5

Surge Capacity Ratio rsc = 0

Num. of Triage Beds at ED nar = 3

Num. of Non-critical Beds at ED nncd = 2

Num. of Critical Beds at ED ncd = 3

Admitting threshold (RPM score) 11

Critical threshold (RPM score) 4

Time
Setting

On-site Triage Time (min) 0.5

ALS Pickup Time (min) Gamma(µ = 19.15, sd = 13.98)

BLS Pickup Time (min) Gamma(µ = 9.27, sd = 6.43)

Drop-off Time (min) Gamma(µ = 23.16, sd = 12.56)

Arrival Triage Time in hospital (min) Gamma(µ = 5, sd = 0.5)

Non-Critical Examination Time (min) Gamma(µ = 7, sd = 0.5)

Critical Examination Time (min) Gamma(µ = 9, sd = 0.5)

Stopping Criteria – All living casualties have reached definitive care.

The best-subset Selection (BSS) procedure is employed to determine how many times that a

policy should be simulated and to select the best-subset of policies that lead to minimal mortality.

The parameters are set as
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• Number of Systems k = 12

• Expected probability of correct selection (PCS) P∗ = 1−α = 0.95

• Initial sample size from each system n0 = 10

• Boundary/indifference-zone parameters (λ−, λ+) = (0.01, 0.05)

Remark: (λ−, λ+) = (0.01, 0.05) means, any policy whose mortality is equal to or less

than (Mbest + 0.01) must be selected to the best-subset (all policies in the desired region must be

kept), where Mbest is the best (minimal) mortality achieve by certain (unknown) policy(s). And

those policies whose mortality is greater than (Mbest + 0.05) (in the undesired region) must be

eliminated and should not appear in the selection set.

6.3 EXPERIMENTAL RESULTS

All experiments (simulation + best-subset selection) are completed using a personal desktop com-

puter with a 2.21 GHz AMD Athlon(tm) 64 CPU and 2.50GB RAM memory. The results of the

experiments are shown in Table 6.2 and Figure 6.2.

Table 6.2: Result of BSS procedure (key steps & statistics of mortality)

Key
Step

r =10 : I = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12}
r =14 : I = {1, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12}
r =17 : I = {1, 4, 5, 6, 7, 8, 9, 10, 11, 12}
r =25 : I = {1, 4, 6, 7, 8, 9, 10, 11, 12}
r =32 : I = {1, 6, 7, 8, 9, 10, 11, 12}
r =83 : I = {6, 7, 8, 9, 10, 11, 12}
r =144 : I = {6, 7, 8, 9, 10, 11, 12} (FINAL)

Policy P-1 P-2 P-3 P-4 P-5 P-6 P-7 P-8 P-9 P-10 P-11 P-12

Means 0.508 0.658 0.585 0.558 0.541 0.491 0.482 0.474 0.479 0.483 0.488 0.491
S.D. 0.0406 0.0437 0.0399 0.0426 0.0381 0.0390 0.0399 0.0418 0.0468 0.0475 0.0425 0.0391

Samples
83 14 17 32 25 144 144 144 144 144 144 144

1179 (in total)
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Figure 6.2: Results of BSS

The first row of Table 6.2 lists the “key steps” of BSS procedure, which include the following

steps:

• the last step of initialization stage

• steps at which elimination of a candidate policy occurs

• final step that determines the final resulting subset

The last row of Table 6.2 lists the number of replications simulated of each alternative (pol-

icy). It can be noted that the numbers are not equal because inferior policies are eliminated in

earlier screening stages therefore fewer replications are made. Based on the replications made,

the mean and standard deviation of mortality under each policy are calculated and shown in the

corresponding rows in Table 6.2.

Figure 6.2 displays the box-plot of the performance of alternative policies, with the width of

each box proportional to the number of replications made for each alternative (which is printed at

the bottom, above the x-axis). The mean mortality of each policy is also marked (and linked by

dash line) on the plot.
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By eye-balling the figure, we can observe that the best policy is P-8 (circled by an oval in

dash), which has the minimal mean mortality of 0.474 (47.4% of victims died on average). For

the policies in a dotted box (P-7 to P-10), their mean values of mortality are with 0.01-distance

to P-8 so that they should be included since they are in the desired region. And for those policies

out of the box in solid-line (P-2 to P-5), their mean mortality exceed the 0.05-distance to P-8, and

thus should excluded from the final selection. Besides that, P-1, P-6, P-11 and P-12 are in the

acceptable region, and it does not matter whether they are selected or not. As comparison, the final

selection of BSS procedure is I = {6, 7, 8, 9, 10, 11, 12}, which is consistent with our discussion

above.

6.4 SENSITIVITY ANALYSIS

6.4.1 Impact of changing required precision of selection

This experiment is used to check the impact of changing required precision of selection. Assume

that we keep all simulation parameters unchanged but make the selection precision requirement

stricter by setting (λ−, λ+) = (0.01, 0.02), which means

1. Any policy whose mortality ≤ (Mbest + 0.01) must be selected (desired);

2. Any policy whose mortality > (Mbest + 0.02) should be excluded from the final selection

(Discard any policy whose mortality is greater by 0.02 than the unknown best).

The experiment results are shown in Table 6.3 and Figure 6.3. Following the similar analysis

in Section 6.3, we can see that the selection result of BSS (I = {7, 8, 9, 10, 11, 12}) is plausible

since all desired policies that are boxed by dotted line (P-7 to P-11) are selected, where the best

one is P-7. Besides that, none of the alternatives in the undesired region (P-1 to P-5, which are out

of the solid-line box) was included in the selection set. P-6 and P-12 are in the acceptable region,

and it does not matter whether they are selected or not.
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Table 6.3: Result of BSS procedure – precision of selection (λ−, λ+) = (0.01, 0.02)

Required Precision of Selection (λ−, λ+) = (0.01, 0.02)

Key
Step

r =10 : I = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12}
r =51 : I = {1, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12}
r =64 : I = {1, 4, 5, 6, 7, 8, 9, 10, 11, 12}
r =100 : I = {1, 5, 6, 7, 8, 9, 10, 11, 12}
r =111 : I = {1, 6, 7, 8, 9, 10, 11, 12}
r =392 : I = {6, 7, 8, 9, 10, 11, 12}
r =2817 : I = {7, 8, 9, 10, 11, 12}
r =2817 : I = {7, 8, 9, 10, 11, 12} (FINAL)

Policy P-1 P-2 P-3 P-4 P-5 P-6 P-7 P-8 P-9 P-10 P-11 P-12

Means 0.504 0.660 0.591 0.560 0.532 0.494 0.477 0.479 0.480 0.484 0.487 0.489
S.D. 0.0418 0.0374 0.0412 0.0413 0.0437 0.0411 0.0414 0.0415 0.0419 0.0423 0.0422 0.0419

Samples
392 51 64 100 111 2817 2817 2817 2817 2817 2817 2817

20437 (in total)

Figure 6.3: Results of BSS – (λ−, λ+) = (0.01, 0.02)
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Table 6.4 compares the results of (λ−, λ+) = (0.01, 0.02) to the results of (λ−, λ+) =

(0.01, 0.05), and it can be found that the strict selection precision setting ((λ−, λ+) = (0.01, 0.02))

requires nearly twenty times more samples than the original one ((λ−, λ+) = (0.01, 0.05)). The

reason is because the width of the indifference-zone (2ε) is smaller for (λ−, λ+) = (0.01, 0.02)

than (λ−, λ+) = (0.01, 0.05), which makes it more difficult to confirm that all remaining alter-

natives are desired or acceptable, and thus causes a sharp increase of the number of replications

(a.k.a., total samples), as we have discussed in Section 5.8.1.1.

Table 6.4: Comparion between different precision settings

Parameter (λ−, λ+) = (0.01, 0.05) (λ−, λ+) = (0.01, 0.02)

Indifference-zone Width (2ε) 0.04 0.01
Number of Rounds (r) 144 2817
Total Samples (N) 1179 20437
Final Selection Set (P-) {6, 7, 8, 9, 10, 11, 12} {7, 8, 9, 10, 11, 12}

6.4.2 Casualty setting

6.4.2.1 Degradation models This set of experiments is to check whether different degradation

models will affect the final selection of policies. Sacco's degradation model (RPM-based) is em-

ployed in the original experiment, for comparison, a set of proportional-hazard based degradation

models (Formula 3.2 with g = 1.0, 1.045, 1.196 and 2.007, the same set of values used in Sec-

tion 3.2.5.4) is implemented to simulate the injury deterioration for the same set of casualties with

the same distribution of initial injury severity. The experimental results are shown and compared

in Table 6.5 and Figure 6.4.
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Table 6.5: Results of BSS procedure – different degradation models

Proportional-hazard Based Degradation Model (g = 1.0)

Key
Step

r =10 : I = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12}
r =79 : I = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12}
(FINAL)

Policy P-1 P-2 P-3 P-4 P-5 P-6 P-7 P-8 P-9 P-10 P-11 P-12

Means 0.389 0.390 0.387 0.380 0.387 0.389 0.385 0.382 0.385 0.386 0.386 0.387
S.D. 0.0421 0.0420 0.0453 0.0417 0.0368 0.0429 0.0409 0.0404 0.0340 0.0432 0.0461 0.0433

Samples
79 79 79 79 79 79 79 79 79 79 79 79

948 (in total)

Proportional-hazard Based Degradation Model (g = 1.045)

Key
Step

r =10 : I = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12}
r =21 : I = {1, 2, 4, 5, 6, 7, 8, 9, 10, 11, 12}
r =33 : I = {1, 4, 5, 6, 7, 8, 9, 10, 11, 12}
r =56 : I = {1, 5, 6, 7, 8, 9, 10, 11, 12}
r =86 : I = {1, 6, 7, 8, 9, 10, 11, 12}
r =88 : I = {1, 6, 7, 8, 9, 10, 11, 12} (FINAL)

Policy P-1 P-2 P-3 P-4 P-5 P-6 P-7 P-8 P-9 P-10 P-11 P-12

Means 0.507 0.622 0.573 0.547 0.529 0.498 0.500 0.494 0.499 0.499 0.501 0.503
S.D. 0.0405 0.0509 0.0304 0.0426 0.0400 0.0457 0.0420 0.0404 0.0434 0.0374 0.0411 0.0436

Samples
88 33 21 56 86 88 88 88 88 88 88 88

900 (in total)

Proportional-hazard Based Degradation Model (g = 1.196)

Key
Step

r =10 : I = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12}
r =10 : I = {1, 5, 6, 7, 8, 9, 10, 11, 12}
r =18 : I = {1, 6, 7, 8, 9, 10, 11, 12}
r =114 : I = {6, 7, 8, 9, 10, 11, 12}
r =114 : I = {6, 7, 8, 9, 10, 11, 12} (FINAL)

Policy P-1 P-2 P-3 P-4 P-5 P-6 P-7 P-8 P-9 P-10 P-11 P-12

Means 0.725 0.900 0.855 0.811 0.771 0.697 0.695 0.692 0.697 0.698 0.697 0.696
S.D. 0.0310 0.0183 0.0174 0.0213 0.0314 0.0359 0.0334 0.0364 0.0373 0.0356 0.0364 0.0342

Samples
114 10 10 10 18 114 114 114 114 114 114 114

960 (in total)

(Continued on next page . . .)
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(Table 6.5: continued)

Proportional-hazard Based Degradation Model (g = 2.007)

Key
Step

r =10 : I = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12}
r =12 : I = {1, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12}
r =68 : I = {1, 4, 5, 6, 7, 8, 9, 10, 11, 12}
r =68 : I = {1, 4, 5, 6, 7, 8, 9, 10, 11, 12} (FINAL)

Policy P-1 P-2 P-3 P-4 P-5 P-6 P-7 P-8 P-9 P-10 P-11 P-12

Means 0.901 0.937 0.924 0.896 0.892 0.890 0.894 0.890 0.887 0.889 0.890 0.890
S.D. 0.0245 0.0227 0.0229 0.0254 0.0217 0.0233 0.0273 0.0230 0.0230 0.0255 0.0238 0.0233

Samples
68 12 68 68 68 68 68 68 68 68 68 68

760 (in total)

Sacco's degradation model (RPM-based)

Key
Step

r =10 : I = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12}
r =14 : I = {1, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12}
r =17 : I = {1, 4, 5, 6, 7, 8, 9, 10, 11, 12}
r =25 : I = {1, 4, 6, 7, 8, 9, 10, 11, 12}
r =32 : I = {1, 6, 7, 8, 9, 10, 11, 12}
r =83 : I = {6, 7, 8, 9, 10, 11, 12}
r =144 : I = {6, 7, 8, 9, 10, 11, 12} (FINAL)

Policy P-1 P-2 P-3 P-4 P-5 P-6 P-7 P-8 P-9 P-10 P-11 P-12

Means 0.508 0.658 0.585 0.558 0.541 0.491 0.482 0.474 0.479 0.483 0.488 0.491
S.D. 0.0406 0.0437 0.0399 0.0426 0.0381 0.0390 0.0399 0.0418 0.0468 0.0475 0.0425 0.0391

Samples
83 14 17 32 25 144 144 144 144 144 144 144

1179 (in total)

From Table 6.5 and Figure 6.4, the first observation is the mortality results of g= 1.0 are nearly

equal, in comparison with other cases where obvious differences in mortality can be observed for

different evacuation policies. It is because g = 1.0 corresponds to no degradation, so that the only

determinant factor of mortality is the initial survival probability of casualty. Whether a casualty

survives or not is determined in the very beginning, and has nothing with the evacuation policies.

Such a counterintuitive finding suggests in turn that the casualty degradation is an important factor

in our simulation.

The mortality results of g = 1.045 are very close to the results of Sacco's model, and it also

results in a similar selection set with Sacco's model except for including one more acceptable policy
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Figure 6.4: Comparison among different degradation models

(P-1) in its selection set. Besides that, it can be found that g = 1.196 results in an exactly same

policy selection set with Sacco's (although its mortalities are higher). These findings imply that it

is possible to replace the Sacco's RPM-based model by a proportional-hazard based model with

appropriate base value (g), since the policy selection is not very sensitive to the specific degradation

model.

The mortalities of g= 1.196 and g= 2.007 are much higher than Sacco's degradation model, no

matter which policy is specified. This is because that the proportional-hazard based model assumes

the same degradation rate for all casualties despite his/her initial injury severity, which makes

mildly injured casualties deteriorate much faster than those using Sacco's degradation model, and

thus leading to higher mortalities.

By comparing the selection set, the final selection of proportional-hazard based model with

g = 2.007 contains three more policies (P-1, P-4, and P-5) than Sacco's model, which implies the

g = 2.007 provides less differentiation for various policies. Besides that, it can be observed the

Sacco's model consumes the most number of samples, which is because that P-1, P-6, P-11 and

P-12 are in the acceptable region and close to the center (∼0.504), which makes it difficulty to
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decide whether to eliminate it (e.g., P-1) or to keep it (e.g., P-6, P-11, P-12), as we have discussed

in Section 5.8.3.

6.4.2.2 Different number of casualties Table 6.6 lists the results of best-subset selection of

policy via simulation for different number of victims. All other parameters are the same as the

original experiment configuration in Section 6.2. The mean values of mortality are compared in

Figure 6.5.

Table 6.6: Results of BSS procedure – different number of casualties

Casualty Number nc = 100

Key
Step

r =10 : I = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12}
r =41 : I = {1, 2, 3, 5, 6, 7, 8, 9, 10, 11, 12}
r =53 : I = {1, 3, 5, 6, 7, 8, 9, 10, 11, 12}
r =76 : I = {1, 5, 6, 7, 8, 9, 10, 11, 12}
r =184 : I = {1, 5, 6, 7, 8, 9, 10, 11, 12} (FINAL)

Policy P-1 P-2 P-3 P-4 P-5 P-6 P-7 P-8 P-9 P-10 P-11 P-12

Means 0.461 0.556 0.512 0.489 0.461 0.440 0.441 0.438 0.436 0.439 0.437 0.440
S.D. 0.0485 0.0605 0.0524 0.0435 0.0489 0.0496 0.0485 0.0489 0.0497 0.0497 0.0501 0.0511

Samples
184 53 76 41 184 184 184 184 184 184 184 184

1826 (in total)

Casualty Number nc = 150

Key
Step

r =10 : I = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12}
r =14 : I = {1, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12}
r =17 : I = {1, 4, 5, 6, 7, 8, 9, 10, 11, 12}
r =25 : I = {1, 4, 6, 7, 8, 9, 10, 11, 12}
r =32 : I = {1, 6, 7, 8, 9, 10, 11, 12}
r =83 : I = {6, 7, 8, 9, 10, 11, 12}
r =144 : I = {6, 7, 8, 9, 10, 11, 12} (FINAL)

Policy P-1 P-2 P-3 P-4 P-5 P-6 P-7 P-8 P-9 P-10 P-11 P-12

Means 0.508 0.658 0.585 0.558 0.541 0.491 0.482 0.474 0.479 0.483 0.488 0.491
S.D. 0.0406 0.0437 0.0399 0.0426 0.0381 0.0390 0.0399 0.0418 0.0468 0.0475 0.0425 0.0391

Samples
83 14 17 32 25 144 144 144 144 144 144 144

1179 (in total)

(Continued on next page . . .)
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(Table 6.6: continued)

Casualty Number nc = 200

Key
Step

r =10 : I = {1, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12}
r =12 : I = {1, 3, 5, 6, 7, 8, 9, 10, 11, 12}
r =14 : I = {1, 5, 6, 7, 8, 9, 10, 11, 12}
r =15 : I = {1, 6, 7, 8, 9, 10, 11, 12}
r =83 : I = {6, 7, 8, 9, 10, 11, 12}
r =117 : I = {6, 7, 8, 9, 10, 11, 12} (FINAL)

Policy P-1 P-2 P-3 P-4 P-5 P-6 P-7 P-8 P-9 P-10 P-11 P-12

Means 0.567 0.673 0.642 0.608 0.588 0.544 0.535 0.540 0.537 0.535 0.534 0.539
S.D. 0.0376 0.0356 0.0412 0.0208 0.0237 0.0360 0.0346 0.0325 0.0346 0.0347 0.0329 0.0324

Samples
83 10 14 12 15 117 117 117 117 117 117 117

953 (in total)

Casualty Number nc = 300

Key
Step

r =10 : I = {1, 4, 6, 7, 8, 9, 10, 11, 12}
r =32 : I = {1, 6, 7, 8, 9, 10, 11, 12} (FINAL)

Policy P-1 P-2 P-3 P-4 P-5 P-6 P-7 P-8 P-9 P-10 P-11 P-12

Means 0.706 0.805 0.774 0.741 0.734 0.699 0.697 0.701 0.697 0.692 0.693 0.699
S.D. 0.0244 0.0264 0.0224 0.0277 0.0240 0.0309 0.0229 0.0253 0.0274 0.0282 0.0277 0.0266

Samples
32 10 10 32 10 32 32 32 32 32 32 32

318 (in total)

Casualty Number nc = 400

Key
Step

r =10 : I = {1, 4, 5, 6, 7, 8, 9, 10, 11, 12}
r =33 : I = {1, 5, 6, 7, 8, 9, 10, 11, 12} (FINAL)

Policy P-1 P-2 P-3 P-4 P-5 P-6 P-7 P-8 P-9 P-10 P-11 P-12

Means 0.795 0.854 0.852 0.824 0.807 0.794 0.798 0.798 0.798 0.802 0.802 0.799
S.D. 0.0178 0.0257 0.0188 0.0186 0.0182 0.0192 0.0203 0.0186 0.0174 0.0194 0.0187 0.0169

Samples
33 10 10 33 33 33 33 33 33 33 33 33

350 (in total)

From the results, it is easy to find that less casualties correspond to less mortalities, which is

because more casualties cause queues to build up resulting in longer waiting times at the hospital
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Figure 6.5: Comparison among different numbers of casualites

and exhausting the limited capacity of hospitals so that many severe patients pass away because

they do not receive timely care.

Besides that, the distinction of policies is more obvious when the number of casualties is close

to the number of available hospital beds. More or less casualties both blur the distinction. If there

are an excess number of patients, then many would not receive timely treatment due to the short-

age of capacity (beds), no matter which evacuation policy is in use, which leads to high mortalities

(means) with less differences among policies. On the contrary, a lower number of casualties re-

duces the possible waiting and transitions, so that most patients receive timely treatment and avoid

further deterioration, which decreases the mortality and also leads to less differentiation among

policies as well.

Based on similar analysis, it is not unexpected to observe that the variances in mortality with

less casualties are larger than those with more casualties for a given evacuation policy, which

results in more replications (samples) being needed in order to select the best policy subset for

cases with less casualties (100, 150) than those with more casualties (300, 400).
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6.4.2.3 Different distributions of injury severity The injury severity of victims is measured

by their initial survival probability, which is assumed to be distributed exponentially with a certain

rate Λ. The value of Λ determines the distribution pattern of the injury severity of casualties. In

general, a smaller Λ corresponds to a more severe incident since it leads to more of the casualties

having lower initial survival probabilities, and a larger Λ corresponds to a milder incident because

more victims have higher initial survival probabilities, as illustrated in Section 3.2.5.2 (Figure 3.7).

Therefore, the value of Λ can be considered as a measure of the level of incident severity. This

set of experiments is used to investigate the impact of different incident severity on the policy

selection by changing the value of Λ (Λ = 0.1, 0.4, 0.7, 0.9), and the experimental results are

shown in Table 6.7 and Figure 6.6.

Table 6.7: Results of BSS procedure – different initial injury severity distributions

Distributions of injury severity EXPO(Λ) Λ = 0.1

Key
Step

r =10 : I = {1, 4, 5, 6, 7, 8, 9, 10, 11, 12}
r =78 : I = {1, 5, 6, 7, 8, 9, 10, 11, 12}
r =106 : I = {1, 5, 6, 7, 8, 9, 10, 11, 12} (FINAL)

Policy P-1 P-2 P-3 P-4 P-5 P-6 P-7 P-8 P-9 P-10 P-11 P-12

Means 0.735 0.831 0.822 0.767 0.742 0.719 0.720 0.722 0.721 0.722 0.718 0.718
S.D. 0.0415 0.0211 0.0376 0.0363 0.0412 0.0506 0.0461 0.0510 0.0505 0.0509 0.0480 0.0498

Samples
106 10 10 78 106 106 106 106 106 106 106 106

1052 (in total)

Distributions of injury severity EXPO(Λ) Λ = 0.4

Key
Step

r =10 : I = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12}
r =14 : I = {1, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12}
r =17 : I = {1, 4, 5, 6, 7, 8, 9, 10, 11, 12}
r =25 : I = {1, 4, 6, 7, 8, 9, 10, 11, 12}
r =32 : I = {1, 6, 7, 8, 9, 10, 11, 12}
r =83 : I = {6, 7, 8, 9, 10, 11, 12}
r =144 : I = {6, 7, 8, 9, 10, 11, 12} (FINAL)

Policy P-1 P-2 P-3 P-4 P-5 P-6 P-7 P-8 P-9 P-10 P-11 P-12

Means 0.508 0.658 0.585 0.558 0.541 0.491 0.482 0.474 0.479 0.483 0.488 0.491
S.D. 0.0406 0.0437 0.0399 0.0426 0.0381 0.0390 0.0399 0.0418 0.0468 0.0475 0.0425 0.0391

(Continued on next page . . .)
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(Table 6.7: continued)

Samples
83 14 17 32 25 144 144 144 144 144 144 144

1179 (in total)

Distributions of injury severity EXPO(Λ) Λ = 0.7

Key
Step

r =10 : I = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12}
r =11 : I = {1, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12}
r =36 : I = {1, 3, 4, 6, 7, 8, 9, 10, 11, 12}
r =51 : I = {1, 4, 6, 7, 8, 9, 10, 11, 12}
r =87 : I = {1, 6, 7, 8, 9, 10, 11, 12}
r =271 : I = {1, 6, 7, 8, 9, 10, 11, 12} (FINAL)

Policy P-1 P-2 P-3 P-4 P-5 P-6 P-7 P-8 P-9 P-10 P-11 P-12

Means 0.420 0.547 0.467 0.456 0.427 0.407 0.403 0.405 0.406 0.408 0.410 0.408
S.D. 0.0392 0.0428 0.0380 0.0442 0.0355 0.0390 0.0401 0.0397 0.0390 0.0388 0.0381 0.0380

Samples
271 11 51 87 36 271 271 271 271 271 271 271

2353 (in total)

Distributions of injury severity EXPO(Λ) Λ = 0.9

Key
Step

r =10 : I = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12}
r =16 : I = {1, 2, 4, 5, 6, 7, 8, 9, 10, 11, 12}
r =26 : I = {1, 4, 5, 6, 7, 8, 9, 10, 11, 12}
r =187 : I = {1, 4, 5, 6, 7, 8, 9, 10, 11, 12} (FINAL)

Policy P-1 P-2 P-3 P-4 P-5 P-6 P-7 P-8 P-9 P-10 P-11 P-12

Means 0.402 0.491 0.422 0.417 0.406 0.390 0.394 0.392 0.391 0.393 0.391 0.394
S.D. 0.0396 0.0465 0.0409 0.0398 0.0432 0.0389 0.0382 0.0396 0.0411 0.0395 0.0420 0.0424

Samples
187 26 16 187 187 187 187 187 187 187 187 187

1912 (in total)

From these results we can see that for those relative mild incidents (e.g., Λ = 0.7 or 0.9), the

mean values of mortality for different policies are generally lower, which follows our intuition

since the initial survival probabilities of the casualties are higher, hence their injury degradations

are slower accordingly, so that more patients are likely to survive as long as they can receive

treatments within moderate time periods. On the other hand, the mortality of a severe incident

(e.g., Λ = 0.1) is higher because of the lower initial survival probabilities, which cause victims to

more likely pass away in a short time.
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Figure 6.6: Comparison among different initial injury severity distributions

It can be observed when compared with the moderate incident (e.g., Λ = 0.4) that the differ-

ences of the means for mortality under different evacuation policies are less in either a very mild

incident (e.g., Λ= 0.9) or a very severe incident (e.g., Λ= 0.1). This is because the main difference

between different evacuation policies is reflected in the length of time that casualties have to wait

before receiving definitive care at certain hospitals. However, based on the analysis above, very

high initial survival probabilities could support patients' survival for a quite long period, while very

low initial survival probabilities would lead to quick deaths in a very short time. For both cases,

mortality is less sensitive to the variation of evacuation time, and thus lessening the difference be-

tween different evacuation policies. And it also explains why more policies are selected for (Λ =

0.1) and (Λ = 0.9) than (Λ = 0.4).

People may also notice that the scenario of Λ = 0.7 consumes much more replications than

other scenario, while its sample variances are generally smaller than others. The reason is because

the mortality of P-1 is only slightly less than the median of the acceptable region, which makes hard

for the algorithm to determine whether P-1 should be kept or eliminated (refer to the discussion in

Section 5.8.3), and therefore more replications are required to reach the decision.
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6.4.2.4 Different percentage of specialized casualties In this experiment, specialized casual-

ties refer to children since they need to be cared in either of the specialized hospitals: Children's

Medical Center or Magee Women's Hospital. The experiments in this section are used to investi-

gate the impact to the policy selection due to the change of percentage of specialized casualties (Ps

= 0.0, 0.2, 0.6, 1.0). The experimental results are shown in Table 6.8 and Figure 6.7.

Table 6.8: Results of BSS procedure – different percentages of specialized patients

Ps = 0.0

Key
Step

r =10 : I = {1, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12}
r =19 : I = {1, 4, 5, 6, 7, 8, 9, 10, 11, 12}
r =28 : I = {1, 5, 6, 7, 8, 9, 10, 11, 12}
r =50 : I = {1, 6, 7, 8, 9, 10, 11, 12}
r =132 : I = {1, 6, 7, 8, 9, 10, 11, 12} (FINAL)

Policy P-1 P-2 P-3 P-4 P-5 P-6 P-7 P-8 P-9 P-10 P-11 P-12

Means 0.491 0.652 0.568 0.557 0.515 0.475 0.495 0.475 0.475 0.475 0.475 0.475
S.D. 0.0415 0.0400 0.0364 0.0394 0.0384 0.0435 0.0453 0.0435 0.0435 0.0435 0.0435 0.0435

Samples
132 10 19 28 50 132 132 132 132 132 132 132

1163 (in total)

Ps = 0.2

Key
Step

r =10 : I = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12}
r =14 : I = {1, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12}
r =17 : I = {1, 4, 5, 6, 7, 8, 9, 10, 11, 12}
r =25 : I = {1, 4, 6, 7, 8, 9, 10, 11, 12}
r =32 : I = {1, 6, 7, 8, 9, 10, 11, 12}
r =83 : I = {6, 7, 8, 9, 10, 11, 12}
r =144 : I = {6, 7, 8, 9, 10, 11, 12} (FINAL)

Policy P-1 P-2 P-3 P-4 P-5 P-6 P-7 P-8 P-9 P-10 P-11 P-12

Means 0.508 0.658 0.585 0.558 0.541 0.491 0.482 0.474 0.479 0.483 0.488 0.491
S.D. 0.0406 0.0437 0.0399 0.0426 0.0381 0.0390 0.0399 0.0418 0.0468 0.0475 0.0425 0.0391

Samples
83 14 17 32 25 144 144 144 144 144 144 144

1179 (in total)

Ps = 0.6

(Continued on next page . . .)
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(Table 6.8: continued)

Key
Step

r =10 : I = {1, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12}
r =27 : I = {1, 3, 4, 6, 7, 8, 9, 10, 11, 12}
r =35 : I = {1, 4, 6, 7, 8, 9, 10, 11, 12}
r =157 : I = {1, 4, 6, 7, 8, 9, 10, 11, 12} (FINAL)

Policy P-1 P-2 P-3 P-4 P-5 P-6 P-7 P-8 P-9 P-10 P-11 P-12

Means 0.574 0.717 0.611 0.583 0.605 0.565 0.559 0.558 0.560 0.559 0.559 0.561
S.D. 0.0446 0.0269 0.0421 0.0420 0.0362 0.0437 0.0457 0.0483 0.0488 0.0494 0.0485 0.0492

Samples
157 10 35 157 27 157 157 157 157 157 157 157

1485 (in total)

Ps = 1.0

Key
Step

r =10 : I = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12}
r =89 : I = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12}
(FINAL)

Policy P-1 P-2 P-3 P-4 P-5 P-6 P-7 P-8 P-9 P-10 P-11 P-12

Means 0.714 0.723 0.716 0.713 0.704 0.709 0.709 0.709 0.709 0.709 0.709 0.709
S.D. 0.0372 0.0335 0.0326 0.0326 0.0330 0.0278 0.0278 0.0278 0.0278 0.0278 0.0278 0.0278

Samples
89 89 89 89 89 89 89 89 89 89 89 89

1068 (in total)

From the results, it can be found that the scenario with specialized percentage Ps = 1.0 (which

means all casualties are children) has the highest mean values of mortality with almost no differ-

ence among different policies, and the variances of mortality for all policies are generally smaller

than other scenarios, which leads to all alternatives being selected into the final set with minimum

replications. The reason is because there is not enough total capacities (beds) in the two specialized

hospitals, no matter which evacuation policy is used, the only possible result is the two specialized

hospitals are overwhelmed soon by excess patients, so that the means of mortality are roughly

equally high and the variances are relatively small despite the policy choice. As the percentage of

specialized patients decreases, there are more general (adult) patients who can be cared for by gen-

eral hospitals, which reduces the load on the specialized hospitals and thus decreases mortalities

accordingly.

The most replications is required by the scenario with percentage Ps = 0.6, which is because

its variances of mortality for the selected policies are generally larger than other scenarios, so it
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Figure 6.7: Comparison among different percentages of specialized patients

needs additional replications to confirm that the remaining alternatives are the best while only a

few replications are required to eliminate the inferior policies.

A small bump can be observed at P-5 for the scenario of Ps = 0.6. The reason for the bump

is analyzed as follows. The decision criteria of P-5 are the available ED capacity and the distance

from scene to hospital, which aims to provide immediate treatment to patients upon their arrival.

However, a high percentage of specialized patients implies less general (adult) patients that need to

be treated. Consequently, adult patients more quickly pass through the triage at ED in the nearby

hospitals with almost no waiting, and releasing their capacity. However, such a policy also causes

the general patients to be continuously sent to a few nearby hospitals and exhausts their available

ICU and GW beds in a short time, leading to the small bump of mortality.

Another interesting phenomenon deserving mention is the small peak that appeared at P-7 for

the scenario with percentage Ps = 0.0. As we already know, Ps = 0.0 means there are no children

casualties at all, but P-7 still reserves the capacity of specialized hospitals for the non-existing

children patients, which wastes the capacity and leads to the small peak of mortality at P-7 for Ps

= 0.0.
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6.4.3 Hospital setting

6.4.3.1 Different number of Beds The original number of available beds is (ICU, GW) = (5,

10). This set of experiments changes the available number of beds in ICU and General Wards to (3,

6) (60% of the original) and (10, 20) (200% of the original) respectively, and checks their impacts

on the final selection. All other parameters are the same as the original setting. The experimental

results are shown in Table 6.9 and Figure 6.8.

Table 6.9: Results of BSS procedure – different numbers of beds in a hospital

Number of Available Beds (ICU, GW) = (3, 6)

Key
Step

r =10 : I = {1, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12}
r =16 : I = {1, 3, 5, 6, 7, 8, 9, 10, 11, 12}
r =22 : I = {1, 5, 6, 7, 8, 9, 10, 11, 12}
r =54 : I = {1, 6, 7, 8, 9, 10, 11, 12}
r =175 : I = {1, 6, 7, 8, 9, 10, 11, 12} (FINAL)

Policy P-1 P-2 P-3 P-4 P-5 P-6 P-7 P-8 P-9 P-10 P-11 P-12

Means 0.559 0.681 0.620 0.617 0.582 0.541 0.543 0.545 0.540 0.541 0.542 0.542
S.D. 0.0451 0.0387 0.0372 0.0321 0.0448 0.0432 0.0434 0.0425 0.0421 0.0421 0.0419 0.0434

Samples
175 10 22 16 54 175 175 175 175 175 175 175

1502 (in total)

Number of Available Beds (ICU, GW) = (5, 10)

Key
Step

r =10 : I = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12}
r =14 : I = {1, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12}
r =17 : I = {1, 4, 5, 6, 7, 8, 9, 10, 11, 12}
r =25 : I = {1, 4, 6, 7, 8, 9, 10, 11, 12}
r =32 : I = {1, 6, 7, 8, 9, 10, 11, 12}
r =83 : I = {6, 7, 8, 9, 10, 11, 12}
r =144 : I = {6, 7, 8, 9, 10, 11, 12} (FINAL)

Policy P-1 P-2 P-3 P-4 P-5 P-6 P-7 P-8 P-9 P-10 P-11 P-12

Means 0.508 0.658 0.585 0.558 0.541 0.491 0.482 0.474 0.479 0.483 0.488 0.491
S.D. 0.0406 0.0437 0.0399 0.0426 0.0381 0.0390 0.0399 0.0418 0.0468 0.0475 0.0425 0.0391

Samples
83 14 17 32 25 144 144 144 144 144 144 144

1179 (in total)

(Continued on next page . . .)
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(Table 6.9: continued)

Number of Available Beds (ICU, GW) = (10, 20)

Key
Step

r =10 : I = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12}
r =19 : I = {1, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12}
r =73 : I = {1, 4, 5, 6, 7, 8, 9, 10, 11, 12}
r =113 : I = {1, 4, 5, 6, 7, 8, 9, 10, 11, 12} (FINAL)

Policy P-1 P-2 P-3 P-4 P-5 P-6 P-7 P-8 P-9 P-10 P-11 P-12

Means 0.468 0.545 0.488 0.476 0.456 0.453 0.455 0.455 0.460 0.454 0.454 0.452
S.D. 0.0462 0.0383 0.0432 0.0430 0.0420 0.0429 0.0462 0.0471 0.0437 0.0399 0.0440 0.0400

Samples
113 19 73 113 113 113 113 113 113 113 113 113

1222 (in total)

Figure 6.8: Comparison among different numbers of beds in a hospital

It can be seen that for the scenarios of (10, 20) (more beds) and (3, 6) (less beds), either of

them makes the policies less distinguishable than the original configuration (5, 10). The reason is

similar to what has been discussed in Section 6.4.2.2 (different number of casualties). Less beds

make it easy to exhaust the capacity of hospitals and lead to higher mortality with less distinction
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among policies, while more beds bring excess capacity which helps reduce possible waiting and

transition and lower the mean and variance of mortality.

In terms of number of replications, the less-beds scenario (3, 6) requires more replications to

determine whether or not to keep the P-1 since its mean mortality is in the “desired-side” of accept-

able region but close to the median of acceptable region, as we have analyzed in Section 6.4.2.3

(different distributions of injury severity, the scenario of Λ = 0.7)

6.4.3.2 Different admission criteria The admission criteria consists of two thresholds mea-

sured in RPM score (Sc, Sa). Sa is used to decide whether a casualty should be admitted or dis-

charged, and is estimated during the in-hospital triage upon casualty's arrival. Sc is used to decide

whether the admitted casualty is in critical condition or not, and determines the specific type of bed

(i.e., ICU or GW bed) that the patient will received. For example, the admission threshold used in

the original experiment is (Sc, Sa) = (4, 11), which means that any casualty whose RPM score (after

degradation) is less than or equal to 11 will be admitted and be assigned to a bed. Furthermore, if

the degraded RPM score is less than or equal to 4 (which indicate a severe injury), a ICU bed will

be assigned otherwise a GW bed will be assigned to the patient.

For better understanding the impact of the function of each threshold value, each time we only

change one parameter. For example, the original admission thresholds are (Sc, Sa) = (4, 11), which

means that any patient whose degraded RPM score is less than or equal to Sa=11 will be admitted

as an in-patient, but only those whose RPM ≤ 4 (Sc) can be assigned to an ICU bed. Now if we

raise the threshold for critical patients, that is, let (Sc, Sa) = (3, 11), then the patients with RPM ≤

11 still can be admitted, but only those whose RPM ≤ 3 will receive an ICU bed.

In a similar way we investigate the impact of raising/lowering the admitting/critical threshold,

the simulation results are shown in Table 6.10 and Figure 6.9.
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Table 6.10: Results of BSS procedure – different admission thresholds

Admission Threshold (Sc, Sa) = (3, 11)

Key
Step

r =10 : I = {1, 2, 3, 5, 6, 7, 8, 9, 10, 11, 12}
r =11 : I = {1, 3, 5, 6, 7, 8, 9, 10, 11, 12}
r =18 : I = {1, 5, 6, 7, 8, 9, 10, 11, 12}
r =26 : I = {1, 6, 7, 8, 9, 10, 11, 12}
r =150 : I = {6, 7, 8, 9, 10, 11, 12} (FINAL)

Policy P-1 P-2 P-3 P-4 P-5 P-6 P-7 P-8 P-9 P-10 P-11 P-12

Means 0.510 0.635 0.589 0.602 0.526 0.482 0.483 0.484 0.480 0.477 0.477 0.478
S.D. 0.0440 0.0285 0.0403 0.0399 0.0382 0.0428 0.0416 0.0402 0.0402 0.0414 0.0431 0.0440

Samples 150 11 18 10 26 150 150 150 150 150 150 150

1265 (in total)

Admission Threshold (Sc, Sa) = (4, 10)

Key
Step

r =10 : I = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12}
r =11 : I = {1, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12}
r =27 : I = {1, 4, 5, 6, 7, 8, 9, 10, 11, 12}
r =80 : I = {1, 5, 6, 7, 8, 9, 10, 11, 12}
r =102 : I = {1, 5, 6, 7, 8, 9, 10, 11, 12} (FINAL)

Policy P-1 P-2 P-3 P-4 P-5 P-6 P-7 P-8 P-9 P-10 P-11 P-12

Means 0.517 0.592 0.564 0.538 0.516 0.500 0.511 0.505 0.502 0.503 0.499 0.503
S.D. 0.0431 0.0407 0.0472 0.0422 0.0481 0.0468 0.0456 0.0428 0.0427 0.0431 0.0431 0.0465

Samples 102 11 27 80 102 102 102 102 102 102 102 102

1036 (in total)

Admission Threshold (Sc, Sa) = (4, 11)

Key
Step

r =10 : I = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12}
r =14 : I = {1, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12}
r =17 : I = {1, 4, 5, 6, 7, 8, 9, 10, 11, 12}
r =25 : I = {1, 4, 6, 7, 8, 9, 10, 11, 12}
r =32 : I = {1, 6, 7, 8, 9, 10, 11, 12}
r =83 : I = {6, 7, 8, 9, 10, 11, 12}
r =144 : I = {6, 7, 8, 9, 10, 11, 12} (FINAL)

Policy P-1 P-2 P-3 P-4 P-5 P-6 P-7 P-8 P-9 P-10 P-11 P-12

Means 0.508 0.658 0.585 0.558 0.541 0.491 0.482 0.474 0.479 0.483 0.488 0.491
S.D. 0.0406 0.0437 0.0399 0.0426 0.0381 0.0390 0.0399 0.0418 0.0468 0.0475 0.0425 0.0391

Samples 83 14 17 32 25 144 144 144 144 144 144 144

1179 (in total)
(Continued on next page . . .)
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(Table 6.10: continued)

Admission Threshold (Sc, Sa) = (4, 12)

Key
Step

r =10 : I = {1, 3, 5, 6, 7, 8, 9, 10, 11, 12}
r =16 : I = {1, 5, 6, 7, 8, 9, 10, 11, 12}
r =31 : I = {1, 6, 7, 8, 9, 10, 11, 12}
r =204 : I = {1, 6, 7, 8, 9, 10, 11, 12} (FINAL)

Policy P-1 P-2 P-3 P-4 P-5 P-6 P-7 P-8 P-9 P-10 P-11 P-12

Means 0.520 0.672 0.607 0.580 0.544 0.500 0.498 0.496 0.498 0.497 0.501 0.501
S.D. 0.0407 0.0270 0.0273 0.0401 0.0356 0.0390 0.0427 0.0375 0.0378 0.0376 0.0374 0.0390

Samples 204 10 16 10 31 204 204 204 204 204 204 204

1699 (in total)

Admission Threshold (Sc, Sa) = (5, 11)

Key
Step

r =10 : I = {1, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12}
r =23 : I = {1, 4, 5, 6, 7, 8, 9, 10, 11, 12}
r =27 : I = {1, 5, 6, 7, 8, 9, 10, 11, 12}
r =37 : I = {1, 6, 7, 8, 9, 10, 11, 12}
r =47 : I = {6, 7, 8, 9, 10, 11, 12}
r =75 : I = {6, 7, 8, 9, 10, 11, 12} (FINAL)

Policy P-1 P-2 P-3 P-4 P-5 P-6 P-7 P-8 P-9 P-10 P-11 P-12

Means 0.509 0.623 0.561 0.547 0.522 0.474 0.476 0.477 0.473 0.473 0.472 0.470
S.D. 0.0456 0.0422 0.0425 0.0368 0.0337 0.0455 0.0455 0.0457 0.0443 0.0405 0.0438 0.0426

Samples 47 10 23 27 37 75 75 75 75 75 75 75

669 (in total)

From the results, it can be concluded that critical threshold (Sc) has less impact than admitting

threshold (Sa). With the same critical threshold (Sc = 4), the admitting threshold of (Sa = 11)

achieves less mortality for the most policies (only except for P-2, P-3 and P-5). The reason is the

lower threshold value (Sa = 10) prevents many moderate injured patients from being admitted so

that they receive no treatments but only deteriorate as is, which increases the mortality. In contrast

the higher threshold value (Sa = 12) allows any patients being admitted into hospitals (since the

maximal possible RPM = 12), which increases the work loads of the hospitals and may waste

the capacity since it admits those mild patients unnecessarily, while leaving those indeed severe

patients untreated for a longer time (during the waiting and transition), and thus increasing the

mortality as well.
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Figure 6.9: Comparison among different admission thresholds used by hospitals

Besides that, the higher admitting threshold (Sa = 12) makes the mortality of P-1 less distinct

to the policies of P-6 ∼ P-12, which explains why P-1 was included in the final select set. For the

same reason, the lower admitting threshold (Sa = 10) kept both P-1 and P-5 in the final selection.

6.5 SUMMARY

This chapter combines the best-subset selection procedure with the agent-based simulation model

developed in previous chapters to specifically solve the problem of the best-subset selection of

evacuation policy to respond a mass casualty incident. Computational results of a case study

demonstrate the effectiveness of the methodology. In addition, a series of sensitivity analysis

experiments were performed to study the impacts of different factors on the policy selection results,

as well as the number of replications needed, which provides us more insights into the response

process and helps identify the impact factors that are the most important to the response.
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7.0 CONCLUSIONS AND FUTURE RESEARCH

The major contribution of this dissertation is an extension to ranking-and-selection (R&S) methods

for use in a new problem type, the best-subset selection problem. This enables decision makers to

use stochastic simulation models to find a best-subset of policies that optimize a pre-defined per-

formance measure from a finite number of alternatives, from which they can make a final decision

based on tradeoffs between performance and other criteria such as resource availability, physi-

cal and human resources constraints, or other policy reasons. In addition, this dissertation details

the modeling of a complex system and policy alternatives to be implemented in a mass casualty

incident (MCI) response. This chapter summarizes the major developments and results reached

through the research. It also outlines several possible directions to extend current research work,

with respect to the simulation modeling and output analysis correspondingly.

7.1 SUMMARY AND CONCLUSIONS

The first part of this dissertation presents the existing difficulties in selecting good control policies

for a complex system. This problem could be considered as a specific case of so-called “wicked

problem” [170]. A wicked problem is difficult to address because of the complex interdependen-

cies in the system. Using traditional analysis by decomposition approaches, the effort to solve one

aspect of a wicked problem may reveal or create other problems. In order to tackle such a problem,

the first requirement is to model the complex system in a comprehensive and effective way, so that

sufficient detail is captured in order to best identify underlying complex interrelationships.

As a specific example of a complex system, a mass casualty incident (MCI) response system

containing multiple participants was selected to test our methodology by selecting the best-subset
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of evacuation policies that lead to minimal mortality. After a thorough literature review, we pro-

posed that such a complex system could be appropriately described by a complex adaptive system

(CAS), since the system operates according to the actions and interactions of the system members

who are equipped with localized decision-making capabilities, rather than operates in an integrated

way with a single decision maker making system-wide decisions. For CAS modeling, agent-based

simulation (ABS) is an effective tool since it allows researchers to reproduce and investigate pro-

cesses observed in reality and avoids imposing overly simplified assumptions or constructing too

many conditional probability mass functions in modeling decision uncertainty in CAS. Using ABS,

complex operational processes can be analyzed by a dynamic system with artificial agents repre-

senting real world objects. This dynamic system evolves in iteration steps over time, in which the

artificial agents communicate with each other within certain contexts, so that ABS can properly

capture individual agents’ actions and interactions that determine the full system behavior.

In this dissertation, an ABS model was developed to investigate the performance of a MCI

response system under different evacuation policies, while various artificial agents were created

to represent different participants in the system, such as injured casualties, on-site EMTs, ambu-

lances, incident command, and hospitals. A divide-and-conquer strategy was employed to build

the model. The MCI response system was first decomposed into three interrelated functional sub-

systems, then each sub-system was built individually, and finally all three sub-systems were in-

tegrated together to form the whole response system. Such a development procedure follows the

“bottom-to-up” principle and has been demonstrated to work well in modeling such a complex

system.

Chapter-3 details the characteristics of the ABS model. Some highlights include the GIS in-

tegration and the definitions of three new generic agent types (Indicator, Performer, and Com-

mander). The new generic agent types extend the agent definition architecture and provide a set

of prototype templates so that concrete agents with specific functional roles can be derived from

them. Such an implementation achieves better code reusability and makes it easier to add new

agent instances into the model.

The ABS model enables researchers to study how different factors affect overall mortality – the

system performance measure. Among these factors, one of the most important is victim degrada-

tion. In this dissertation, two well-known degradation models, a proportional-hazard based model
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and Sacco’s RPM based model, were implemented and compared with a goal to find whether or not

different casualty degradation models would impact the final policy selection. The experimental

results show that casualty degradation has significant impact on the overall mortality. However,

the results also suggest it is possible to exchange these two models without dramatically affecting

the policy selection results.

Specifically, although the estimated mortality estimates are sensitive to different degradation

models, the best-subset selection policy is relatively insensitive to the variation in degradation mod-

els – similar selection results can be obtained by either Sacco’s RPM-based model or proportional-

hazard based models with a range of parameters. This outcome is significant since we are trying

to select the best sets of policies in the face of uncertain assumptions about patient deterioration.

Although the simulation model provides a good test bed for policy evaluation and comparison,

the model itself cannot help decision makers to select the best policy (or set of policies). Such

a problem could be addressed by comparing the outputs from different alternatives strategically.

There are two reasons motivating us to research statistical analysis techniques. One is because

of the randomness inherent in the system, multiple replications are required to run the simulation

model for each policy and proper statistical analysis techniques are needed to analyze the results

in order to reach a statistically confident conclusion. The other reason is because ABS is a compu-

tationally intensive procedure, which may consume lots of computational time and other resources

unnecessarily without appropriate simulation control techniques.

Ranking-and-selection (R&S) procedures are especially designed to fulfill these requirements.

Chapter-4 illustrates how the R&S procedures can be used in conjunction with the ABS model to

select the best evacuation policy. Two credited R&S procedures (the Rinott and the KN procedures)

are implemented, and their efficiencies are compared to each other.

Although existing R&S procedures work well in selecting a single best alternative, they are

deficient in selecting a best-subset that contains all alternatives that are “close enough” to the best

with a pre-specified statistical confidence level, which is a format that may be the most useful to

decision makers who are unwilling to accept a single “answer” generated by a computer algorithm.

To address this problem, Chapter-5 develops a new best-subset selection (BSS) procedure. As a

fully sequential procedure, BSS continuously compares results from different alternatives in each

simulation round, eliminates those inferior alternatives during the screening stages, and stops the
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simulation timely when enough evidence has been accumulated to reach a reliable conclusion.

The performance comparison results between the BBS and a MCB-based procedure show that

the BSS exceeds the MCB-based procedure in both efficiency and precision. In other words, the

BSS achieves a better probability of correct selection with fewer samples in comparing with the

MCB-based procedure.

It should be noted that the BSS procedure is different from Simon’s “satisficing” strategy [171],

which attempts to meet criteria for adequacy, rather than to identify an optimal solution. Although

their effects look similar (the decision maker does not seek the true optimal, but only requires that

the final selection is “good enough”), the objective of satisficing is to find acceptable (or feasible)

alternatives by comparing alternatives with a pre-specified standard. In contrast, the BSS provides

a guarantee that all alternatives in the selection set are close to the optimal, which is a stronger

requirement, but certainly would meet the satisficing criteria.

The development of the BSS procedure is the major theoretical contribution of this research.

It provides an extension of R&S for decision makers to obtain a relatively small subset of best

alternatives in an effective and efficient way, so that they can choose their final decision among the

selected alternatives based on other criteria not in the model, such as social or political feasibility.

The BSS procedure also provides an effective control mechanism to run simulated scenarios for a

number of replications as necessary.

Chapter-7 applies the BSS procedure to the MCI ABS model to address the subset selec-

tion problem for best evacuation policies. The experimental results confirm that our methodology

works well by selecting the evacuation policies leading to minimal mortality in an efficiently man-

ner. In the sensitivity analysis, we conducted extensive computational experiments to test our

method under different system configurations.

An interesting phenomenon that can be observed from the experimental results is that the

random dispatching policy (P-1) achieves quite low estimated mortality. Compared with P-1, the

estimated mortality under P-2, P-3, P-4 and P-5 is generally higher, and the mortality under P-6 to

P-12 is lower. These policies differ on the information used in decision making. For examples, P-1

collects no information but just dispatches casualties randomly (and thus evenly) to the various

hospitals. Starting from P-2, additional information is added into the decision criteria set. The

decision criteria of P-2 include lengths of arrival waiting queues in hospital emergency departments
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and distances from hospitals to the incident site. P-3, P-4 and P-5 adds other waiting queues,

the number of patients currently en-route to the hospital and the available capacity in emergency

departments into the decision criteria set, respectively. However, this additional information still

results in lower performance than dispatching patients to hospitals randomly under P-1. P-6 to

P-12 adds the number of available beds in each hospital to the information used and these policies

are superior to P-1.

From the analysis we can see that too little information has no benefit but may have harmful

impact on decision making instead (e.g., P-2 to P-5 versus P-1). In order to reduce mortality, the

number of available beds at each hospital is an important piece of information to consider in de-

cision making (e.g., P-6 to P-12 versus P-1). In addition, the result that P-1 achieves quite low

mortality suggests that it is wise to utilize all available facility resources as much as possible in

a MCI response, since it helps balance the load among hospitals and avoids unnecessary waiting

and transferring for patients. Such a finding provides a useful guidance for emergency managers,

especially when it is difficult to collect information under certain extreme conditions (e.g., after a

severe earthquake). In summary, these experiments provide researchers with an important insight

into the MCI response problem, and illustrate the importance of different impact factors on mor-

tality. Hence, this provides a good foundation for the subsequent research on policy optimization

by identifying the important factors that should be given priority.

As a concluding remark, this research brings together the fields of MCI response system anal-

ysis, agent-based simulation, and statistical output comparison and simulation control techniques.

The combination of these fields itself is an intellectual contribution. In addition, there are several

derived practical and theoretical contributions within each field. Practical implementation of a

large-scale model using these techniques establishes a methodology template suitable for reuse to

simulate other complex systems. Theoretical development of new best-subset selection procedure,

combined with the practical aspects of the implementation, enables managers in finding the best

alternatives from competing systems in an effective and efficient manner. In a unified sense, this

research enables enhanced use of OvS in analysis of complex systems.

143



7.2 LIMITATIONS DISCUSSION AND FUTURE RESEARCH DIRECTIONS

There are several directions that our research can be extended, which can be classified into two

categories, which are simulation modeling and output analysis respectively.

7.2.1 Possible extensions on simulation modeling

One advantage of simulation is it provides a convenient way for researchers to check the impacts

of different factors on the system performance, where a factor may belong to either one of the

two categories: quantitative measures of the situation (environment), and action rules responding

to specific situations. For this research, the examples of the first category are the total number of

injured casualties, the percentage of specialized patients, etc. An instance of the second category

is the admission criteria used in hospitals. So the first possible extension is to build a decision

support tool based on the ABS model. The tool could be utilized to evaluate the impact of the

factors that are considered to have non-negligible impacts on the outcome, prioritize the factors

according to their importance, and identify the key factors that really matter to the system. Such a

tool could help decision makers focus their attentions on a few important factors and avoid wasting

time and effort on issues that are not significant. In other words, the tool can effectively reduce

the dimensions of decision space for decision makers in policy making or optimization, so that it

becomes easier for them to gain situational awareness and to find optimal solutions in an efficient

way.

In our research context, a policy is essentially a decision tree, which consists of a series of rules

that prescribe in detail what kind of actions should be taken when certain type of situations are

encountered. In the current implementation, the policies or decision trees are pre-defined and all

action rules are hard-coded in the program, which makes it difficult to test a new policy or a variant

of an existing policy after certain modifications. Thus, the second possible extension of the simula-

tion model is to develop a set of flexible schemes to store the policy trees (or rule sets). A potential

direction could be the development of a “rule database” (rule-base), which stores pairs of con-

ditions and consequences to represent action rules. By adding/modifying/activating/deactivating

certain records, it is easy to change the policy in use. And the decisions of agents can be obtained
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by logically inquiring the rule-base iteratively via an interface between the rule-base and the simu-

lator, which might be a foundation to create intelligent agents in future. The intelligent agents can

autonomously learn from previous experiences and choose the best rule to execute, which would

provide another effective way to improve or optimize existing policies.

Compared with other models appearing in the literature, our MCI response simulation model

is more comprehensive since it covers almost all aspects in a MCI response system, from up-

stream (the incident scene) to down-stream (hospitals). However, due to the limitations on time and

resources, our simulation model only implemented a very simple hospital model, which simulates

the major processes in the emergency department and simplifies other departments (ICU, General

Wards, etc). It could be argued that such a simplified hospital model may not be adequate to reflect

the complex structure and various processes in hospitals, which may significantly affect simulation

outcomes. Therefore it may be fruitful to develop a more complete hospital model to replace the

current simple one, and the complete hospital model could simulate the various medical facilities

in a more precise way so to obtain more accurate simulation results.

An important characteristic of the current simulation model is the GIS integration. It provides

an interface to import processed GIS data in constructing the urban transportation network, which

facilitates practitioners considering the effects of different traffic to the casualty evacuations. In

addition, it also enables displaying the ongoing evacuation status on a GIS view dynamically along

with the simulation running, which gives a more direct illustration to the practitioners about the

evacuation process and can help them identify potential problems. Currently, all GIS data are

read from a static database, which is valid for coordination-related information, such as hospital

locations, road connections, etc. However, static data are inadequate in describing the traffic status.

For example, currently we only use static values of average speed on each route segment to depict a

specific traffic pattern that is unchangeable during the simulation. For a more practical simulation,

a useful extension is to integrate the real-time traffic data from the GPS system into the simulation

to better reflect the actual situation. Such an extension may also help in converting the simulation

model to a real-time decision support tool for enabling the incident managers in finding an optimal

strategy for large-scale evacuations under disasters.

Besides these, with respect to the incident response simulation model, other possible research

directions include multi-scene response planning via simulation, post-hospital transfer and opera-
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tions, etc. For modeling such a complex system, a large number of open questions are left for the

successor researchers to complete.

7.2.2 Possible directions on output analysis

In the current research, we are only considering one performance measure – mortality – as the

single criterion in choosing the best response policies. But in practice, it is very common to

observe situations that intend to use multiple performance measures instead of a single measure

as the decision criteria. For example, in MCI response, the morbidity of injured patients could

become another measure to evaluate the response performance. One of the advantages of the

BSS procedure is to enable decision makers to select the “good enough” alternatives based on

the most important criteria first, then apply other criteria to make their final decision from the

selected subset. For instance using our case, researchers can use the BSS to select the best policy

subset leading to the minimal mortality (the first criterion), then choose the policies with the lowest

morbidities from the subset (the second criterion).

For multiple criteria selection problem, one possible direction is to extend the BSS procedure to

select a subset consisting of the policies having Pareto-optimality instead of only being outstanding

in one performance measure. And the other possible direction is to filter out policies based on

certain screening criteria, and then apply the BSS to the remaining alternatives based on critical

criteria. In other words, the first step is to identify alternatives that meet a performance standard

on criteria-1(2,3, . . .), then select the best subset based on criteria-C. Note that usually criteria-C

is the most critical one, and the screening criteria-1(2,3, . . .) are of the form ”must be better than

X(Y,Z, . . .) in performance measure-1(2,3, . . .)”.

In terms of R&S analysis technique research, an important extension is to improve the effi-

ciency of the BSS procedure. As we may have observed in Chapter-5, although the BSS procedure

offers improved performance over the MCB-based procedure in selecting a best-subset, it is still

conservative in the sense that it samples more than strictly necessary and over-delivers on the target

of probability of correct selection. The possible source of conservation may come from the appli-

cation of the Bonferroni inequality to control the overall incorrect selection probability, which is

usually unnecessary except for so-called slippage configurations. A potential direction to address
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this problem is to employ Bayesian-based approaches in conjunction with the Frequentist-based

BSS procedure to improve its efficiency. Besides that, another possible direction to improve the

efficiency is to develop certain parallel computing techniques to distribute the computation work

onto different computer nodes, which could also help in obtaining the selection result in an efficient

manner.
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APPENDIX

ACRONYMS

ABS Agent-based Simulation

ALS Advanced Life Support

BLS Basic Life Support

BSS Best-subset Selection

CAS Complex Adaptive System

CRN Common Random Numbers

DES Discrete-event Simulation

DHS Department of Homeland Security

ED Emergency Department (in hospital)

EMS Emergency Medical Services

EMT Emergency Medical Technician

GIS Geographical Information System

GPS Global Positioning System

GW General Wards (in hospital)

ICU Intensive Care Unit (in hospital)
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IED Improvised Explosive Device

IZS Indifference-zone Selection

KN A fully-sequential R&S procedure developed by Kim and Nelson (2001)

MCA All pairwise Multiple Comparisons

MCB Multiple Comparisons with the Best

MCC Multiple Comparisons with a Control

MCI Mass Casualty Incident

MCP Multiple Comparison Procedures

NIMS National Incident Management System

NRF National Response Framework

OCBA Optimal Computing Budget Allocation

OR Operating Room (in hospital)

OvS Optimization via Simulation

PCS Probability of Correct Selection

R&S Ranking and Selection

Repast Recursive Porous Agent Simulation Toolkit

RPM
The sum of coded values for Respiratory rate, Pulse rate, and best Motor re-

sponse, which is used to score victim severity and to predict survivability.

RSM Response Surface Methods

SC Slippage Configuration

SS Subset Selection
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