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ABSTRACT

CONTROLLING MIXING AND SEGREGATION IN TIME PERIODIC

GRANULAR FLOWS

Tathagata Bhattacharya, PhD

University of Pittsburgh, 2011

Segregation is a major problem for many solids processing industries. Differences in par-

ticle size or density can lead to flow-induced segregation. In the present work, we employ

the discrete element method (DEM) – one type of particle dynamics (PD) technique – to

investigate the mixing and segregation of granular material in some prototypical solid han-

dling devices, such as a rotating drum and chute. In DEM, one calculates the trajectories of

individual particles based on Newton’s laws of motion by employing suitable contact force

models and a collision detection algorithm. Recently, it has been suggested that segregation

in particle mixers can be thwarted if the particle flow is inverted at a rate above a critical

forcing frequency. Further, it has been hypothesized that, for a rotating drum, the effective-

ness of this technique can be linked to the probability distribution of the number of times

a particle passes through the flowing layer per rotation of the drum. In the first portion of

this work, various configurations of solid mixers are numerically and experimentally studied

to investigate the conditions for improved mixing in light of these hypotheses.

Besides rotating drums, many studies of granular flow have focused on gravity driven

chute flows owing to its practical importance in granular transportation and to the fact

that the relative simplicity of this type of flow allows for development and testing of new

theories. In this part of the work, we observe the deposition behavior of both mono-sized

and polydisperse dry granular materials in an inclined chute flow. The effects of different

parameters such as chute angle, particle size, falling height and charge amount on the mass
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fraction distribution of granular materials after deposition are investigated. The simulation

results obtained using DEM are compared with the experimental findings and a high degree

of agreement is observed. Tuning of the underlying contact force parameters allows the

achievement of realistic results and is used as a means of validating the model against

available experimental data. The tuned model is then used to find the critical chute length

for segregation based on the hypothesis that segregation can be thwarted if the particle

flow is inverted at a rate above a critical forcing frequency. The critical frequency, fcrit,

is inversely proportional to the characteristic time of segregation, ts. Mixing is observed

instead of segregation when the chute length L < Uavgts, where Uavg denotes the average

stream-wise flow velocity of the particles.

While segregation is often an undesired effect, sometimes separating the components

of a particle mixture is the ultimate goal. Rate-based separation processes hold promise

as both more environmentally benign as well as less energy intensive when compared to

conventional particle separations technologies such as vibrating screens or flotation methods.

This approach is based on differences in the kinetic properties of the components of a mixture,

such as the velocity of migration or diffusivity. In this portion of the work, two examples of

novel rate-based separation devices are demonstrated. The first example involves the study of

the dynamics of gravity-driven particles through an array of obstacles. Both discrete element

(DEM) simulations and experiments are used to augment the understanding of this device.

Dissipative collisions (both between the particles themselves and with the obstacles) give rise

to a diffusive motion of particles perpendicular to the flow direction and the differences in

diffusion lengths are exploited to separate the particles. The second example employs DEM

to analyze a ratchet mechanism where a current of particles can be produced in a direction

perpendicular to the energy input. In this setup, a vibrating saw-toothed base is employed

to induce different mobility for different types of particles. The effect of operating conditions

and design parameters on the separation efficiency are discussed.

Keywords: granular flow, particle, mixing, segregation, discrete element method, particle

dynamics, tumbler, chute, periodic flow inversion, collisional flow, rate-based separation,

ratchet, static separator, dissipative particle dynamics, non-spherical droplet.
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1.0 INTRODUCTION

Granular materials are ubiquitous. It is hard to find a process industry that does not handle

granular materials in any form. These materials are widely used in chemical, pharmaceutical,

cement, agricultural, food, construction, minerals and metallurgical industries, to name a

few. Although very common, granular materials pose unique challenges and display counter-

intuitive behavior that makes research in this field exciting and stimulating. Understanding

the fundamental behavior of these materials can determine the success or failure of a vast

number of man-made and natural processes. In fact, this class of materials ranks second,

behind water, on the scale of priorities of human activities and endeavors [5]. Hence, even

a fractional advance in our understanding of the behavior of granular materials can have a

profound impact on our economic and general well-being [5]. Granular processing accounts

for as much as $61 billion in the USA, 40% of the value added by the chemical industry [6].

Approximately one-half of the products, and more than three-quarters of the raw materials

used in chemical industries, are in granular form [7]. Mixing of powders is critical in industries

such as pharmaceutical [8] and food [9]. There are other operations that require the transfer

of heat or mass within the granular materials, like the calcination of minerals in rotary

kilns [10], or the drying of fruits and grains [11] or producing carbon nano-tubes in a rotary

reactor [12]. Transporting, mixing, blending, pressing, heating, coating, granulation and

drying of granular materials are a few of the many examples where the understanding of the

flow of granular materials is critical for success of the operation.

An important phenomenon concerning the flow of granular materials is segregation or de-

mixing. Particle segregation has been a topic of intense research and industrial frustration

for many decades [13–16]. Small differences in any mechanical property of the particles

(size, density, shape, etc.) lead to flow induced segregation where one type of particle tends
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to segregate or leave the main stream of particles due to the differences. Processing of

these materials typically leads to pattern formation [17, 18], layering [19, 20] or complete

separation of the materials [21–23]. Segregation is unique to granular materials and has

no parallels in fluids. Also, contrary to fluid mixing, where more agitation implies better

mixing [24], a granular system might segregate into different regions in a container when

agitated strongly. Segregation is undesirable in most of the particle processing industries as

it creates non-uniform product quality, which may result in dramatic revenue losses. In order

to emphasize the importance of the understanding of granular flow, consider the example of

manufacturing of tablets in a pharmaceutical industry: reliable and uninterrupted flow of

well-blended powders is key to the success of a tableting process. Unavoidable segregation

occurs during transfer of materials from the blender to the tableting press as this process

requires the blended material to flow through many solids handling devices such as chutes

or hoppers. A batch of powder, potentially worth millions of dollars, would have to be

discarded if only five tablets do not conform to the final product quality due to the strict

quality control standards enforced in these industries [25].

A common feature of these materials is structural evolution on a number of different

length and time scales. Furthermore, they are not easily characterized as a solid or a liquid

or a gas [26], often possessing very complex rheological properties governed by intermediate

scale structure. This intermediate scale structure is between macro or continuum scale

and the atomic scale, and corresponds to microscale or mesoscale. Granular materials share

much of the complex behavior common to soft matter or complex fluids [27]: segregation and

pattern formation, flow by rearrangement of grains, and solid and liquid-like behavior. The

physics of two interacting particles in a granular assembly is well understood, however, the

complexity arising from the interactions of an assembly of particles is not well understood.

Hence, a common goal of those studying granular material is to relate macrostructural (bulk)

behavior to the underlying microstructural (discrete) dynamics and kinematics.

Mixing of granular materials is, without exception, accompanied by segregation, avalanch-

ing, stratification etc., however, the fundamentals of the processes still defy understanding.

While a qualitative understanding of the mechanisms of segregation has existed for some

time now [14, 28, 29], there are remarkably few models that give quantitative predictions of
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the extent of segregation [30]. Such information is particularly important in the analysis

and design of industrial mixing operations. Modeling of mixing and segregation requires the

confluence of several tools, including the three primary approaches, namely continuum based

approach, discrete approach and kinetic theory based approach. None of these approaches,

however, is wholly satisfactory by itself. Most of the current practices are heuristic with lim-

ited possibilities of generalization. The absence of general constitutive equations to predict

the extent of segregation is clearly an impediment to systematic approaches to the prob-

lem. Moreover, the approaches are regime dependent, which may require adopting different

sub-viewpoints.

The broad objective of the present work is to examine the segregation phenomena (with

the central theme on size driven segregation as density segregation is somewhat under-

stood [30]), what causes it, and investigate ways to control it. We investigate the segregation

phenomenon in two industrially relevant granular systems: The effect of different operating

parameters on mixing/segregation in a prototypical solids mixer (a rotating drum , chapter 3)

and also in a simple flow device (a chute, chapter 4). Recently [31], it has been suggested

that segregation in particle mixers can be thwarted if the particle flow is inverted at a rate

above a critical forcing frequency. Therefore, in the present work, we also attempt to test

this hypothesis on mitigating segregation based on fundamental physics of granular flow in

those prototypical solids flow devices.

While segregation is often an undesired effect, sometimes separating the components of

a particle mixture is the ultimate goal in many industrial processes. As part of the present

work, we investigate two novel rate-based separation devices, which require no or small

energy input and are environmentally benign (green). This constitutes the subject matter of

chapter 5. There, we examine how a drift-diffusive motion can be generated in a collisional

granular flow, which in turn, could be used to separate a granular mixture. Possibilities of

another method of separation using a ratchet mechanism are also demonstrated.

The great majority of existing models of granular flow were developed using classical con-

tinuum theory. Although the continuum models are readily accessible and in extensive use,

they possess no length scale, and hence, cannot accommodate microstructure (or, the infor-

mation about individual particles). There is now experimental evidence [5] which suggests
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that microstructural mechanisms control the bulk behavior of granular media. A second

approach, called the discrete element method (DEM), is an alternative choice that deals ex-

plicitly with the microstructure. DEM uses the techniques of molecular dynamics simulation

to capture the motion of every particle in a large assembly. In this approach, properties of

particles such as size, shape, and density can be directly specified, thus DEM is a suitable

tool for analyzing segregation. Details such as velocity and concentration profiles for every

component in a mixture can be obtained. However, the number of particles and their shapes

that can be simulated in DEM is limited by computer power, such that many industrial scale

processes are beyond the reach of DEM. Moreover, DEM might not be able to predict the

results well when the system is scaled-up (unless the actual system is simulated). In contrast,

continuum theories do not have the limitations of scale-up to larger system sizes as these

models are based on constitutive relations (sometimes obtained by fitting phenomenological

equations to various data, such as output from DEM). The continuum theories are broadly

based on the transport equations obtained using kinetic theories, in some cases including

empirical corrections for inter-particle friction. The continuum model has been successful in

predicting experimentally measured stresses and flow profiles for particles in shear flows and

chute flows.

The lack of a comprehensive theory has promoted the advance of numerical simulations in

the field of granular materials. Therefore, a large part of the work presented in the following

chapters is carried out using DEM (also known as particle dynamics (PD)). First developed

by Cundall and Strack [2] in 1979, DEM has emerged as a successful simulation technique

to study granular flows, giving insight into phenomena ranging from force transmission,

agglomerate formation, flow of cohesionless materials, pneumatic conveying, fast fluidization,

etc. This simulation technique is based on Newton’s laws of motion – also known as the

Lagrangian approach – according to which individual particles are treated as contacting

bodies. The trajectories of each particle (i.e., position, velocity, orientation, etc.) give

insight into the macroscopic flow of the granular assembly. At the heart of this methodology

lies an efficient contact detection algorithm and a model to calculate the contact properties

between particles. DEM is used not only to model the flow of the granular material but also
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to simulate processes that involve the transfer of heat [32–34] and mass [31,35]. For the sake

of completeness, Chapter 2 will discuss the necessary background of the particle dynamics

technique.

The remainder of this dissertation is organized as follows: Chapter 2 covers the relevant

background about the mechanisms of mixing and segregation including a literature review of

the body of knowledge on free surface segregation. Understanding of the free surface segre-

gation phenomenon is very important as this type of segregation is prevalent in the systems

studied in the current work. This chapter also describes the simulation methodology, namely

the particle dynamics (PD) technique, covering different force models and contact detection

algorithm. Also included is a description of various mixing indices used to quantify mixing

and segregation in a particulate system. Chapter 3 presents the experimental and simulation

results regarding the control of segregation in a tumbler mixer. The hypothesis regarding a

critical forcing frequency is tested in a baffled tumbler, which is also utilized as a feed-back

tool to select the most successful baffle configuration from a host of promising designs of

tumbler mixers. Chapter 4 deals with another granular system of industrial importance – a

chute flow. A chute flow segregation tester is described where DEM results are validated with

experimental data. The validated DEM model is then used to corroborate the continuum-

derived hypothesis of critical forcing frequency in a chute flow. Results demonstrating the

development of a characteristic segregation time along with a critical chute length (beyond

which segregation will prevail) are presented. The following chapter (Chapter 5) proposes

two novel rate-based separation devices, which require little or no energy input to separate

particles in a granular mixture. The first rate-based separation study involves probing the

dynamics of gravity-driven particle flow through an array of obstacles, and in the second

example, DEM is employed to analyze a ratchet mechanism where a directed current of

particles can be produced perpendicular to the direction of energy input. Methods to char-

acterize the systems with respect to their separation capability are elaborated, which include

simulation, theory and experiments. Finally, Chapter 6 closes with a brief summary along

with an outlook on future extensions. Also covered is a short discussion on the remaining

challenges to link the fundamental physics of particle flow and the industrial needs.
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2.0 BACKGROUND

In this chapter, we provide the background information relevant to understanding the prob-

lems that we mentioned in the Introduction chapter. Especially, the past work by other

researchers in the area of segregation is briefly reviewed and possible shortcomings or gaps

in their work are highlighted.

2.1 THE BASICS OF SEGREGATION

We first present a general discussion of free surface segregation as this is very relevant to

what follows in the next chapters. As we continue to review, we also present a historical

perspective of the study of segregation.

One of the earliest studies on segregation dates back to 1939. In 1939, a Japanese

researcher, Yositisi Oyama, reported a work that dealt with mixing of two granular materials

in a rotating cylinder (see reference in Otino, 2010 [36]). It is worth mentioning here that in

the same year, Brown [13] reported the fundamental principles of segregation and pointed

out that segregation is often a surface phenomena. Though Oyama was investigating mixing

of two solids, he found out the occurrence of what is now known as “axial segregation”. The

knowledge of segregation and its effects were long known to the engineers as they had to

deal with poor product quality due to segregation. In fact, there was a patent in 1904 which

sought to prevent the occurrence of clinker rings in rotary kilns due to axial segregation [36].

The focus was on how to mitigate segregation by solving the problem on a case-by-case

basis rather than the fundamental understanding of it. Therefore, we observe that the early

studies on segregation were carried out in pockets, mainly by industrial researchers, even
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long before the scientific community took a serious look at it. During the late 80’s, this

field became a hotbed for research as physicists acknowledged that the physics of granular

materials are largely unexplored [37] and engineers stressed that a better understanding of

granular materials would have a tremendous benefit to industry [6]. Also, the attention of

some of the influential physicists (like Nobel Laureate de Gennes [38]) in granular research

caused a strong growth in research and publication in this field.

In many industrial processes (such as in pharmaceuticals or food), the goal is to blend

two or more particulate materials uniformly, where size segregation is undesired. However,

in some cases (such as in mining and agricultural engineering [39]), size segregation or sep-

aration is intended. Standish [40] outlined several mechanisms for segregation which are of

particular relevance to shearing flow. The actual segregation patterns are numerous and

depend on the prevailing segregation mechanism – the most prevalent being the percolation

mechanism, i.e., sifting of fines through the voids of larger particles, either spontaneous [41]

or shear-induced (mainly in size segregation). Spontaneous percolation takes place when the

ratio of the percolating particle diameter to the bed particle diameter is less than a threshold

(0.1547 [41]). The following summarizes different mechanisms as described by Standish:

• Percolation or consolidation trickling mechanism

• Angle of repose mechanism

• Inertia mechanism

• Trajectory mechanism (fluid resistance mechanism)

The angle of repose mechanism leads to separation of the material having the steepest

angle of repose. The inertia mechanism generally refers to the segregation of coarse particles

to the base of a heap, for example, because larger particles would roll down a larger distance.

Segregation may occur due to fluid resistance or drag on a particle which is of interest in

a fluidized system (such as in a blast furnace where the particles land on the stock-line

from a chute against hot ascending gas). Particles would segregate due to fluid resistance

and this force resisting the motion of particles is a strong function of the particle shape.

Apart from the above classifications, some researchers also suggested a similar classification

for segregation mechanism (although many more have been identified in the literature [42]):
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percolation/sieving, fluidization, convection, and trajectory segregation. These four mech-

anisms are nearly similar to the ones proposed by Standish [40] and share many common

features. They have been pictorially described in Figure 1.

Amongst the early literature [13, 14, 28, 43–48], Drahun et al. [49] seem to be the first

workers who have done extensive experimentation on this particular topic by analyzing the

effects of various variables on segregation. They have reported comprehensive findings on the

mechanism of free surface segregation along a slope, which can be helpful in understanding

exactly the same phenomena occurring in a tumbler or in a chute flow. Their report also con-

tained an assessment of previous work (15 references therein) performed on the mechanism

of segregation. They observed that although the existence of free surface segregation had

long been recognized, there had been few attempts to produce theories that would predict

quantitatively the amount of segregation. Most investigators were primarily interested in the

prevention of segregation rather than the factors that caused it. Therefore, attempts were

made to solve a particular problem on an ad-hoc basis without fundamental understanding

of its occurrence. Moreover, the results of some of the studies are not generic and are not

applicable universally. Drahun et al. noted that, in general, analytical models do not cap-

ture the key features of free surface segregation satisfactorily (e.g., the predictive models by

Matthee [45] and Tanaka [46]). Drahun et al.’s study was conducted with binary systems

where one component was present in small quantities. The experimental setup permitted

the slope length, solids flow rate and solids fall height to be varied independently in order

to assess the effects of independent variables (e.g., size, density, shape, free fall height, etc.)

on the rate and extent of segregation. Results were presented in dimensionless form and the

major findings from their work are summarized below:

• Free surface segregation occurs by avalanching, inter-particle percolation and particle

migration.

• Both diameter and density have a significant effect on segregation. Smaller particles sink

by percolation and are found closer to the pouring point, whereas large particles rise to

the surface by particle migration and are found at the extreme end of the surface. On

the other hand, the denser particles are found near the pouring point and less dense

particles at the far end. This gives rise to stratification.
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Figure 1: Various segregation mechanisms (illustration obtained from Figueroa [1] with

permission).
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• An increase in particle velocity onto the inclined surface influences the material distribu-

tion controlled by diameter but not that controlled by density. In particular, if the free

fall height is increased, the smaller particles bounce down the free surface to the far end.

• A slight segregation in a feeding device like conveyor or hopper can markedly influence

the free surface segregation.

• Free surface segregation can be minimized by appropriate balance of size ratio and density

ratio.

• Particle shape, unless extreme such as needles or platelets, does not have much effect on

segregation.

• Surface roughness or the surface friction arising out of the shape has no effect on segre-

gation. Rolling and sliding do not contribute greatly to segregation.

Recently, Makse et al. [50] has provided some explanations to the above mentioned phe-

nomena, especially, stratification or layering. When poured between two vertical plates, a

granular mixture spontaneously stratifies into alternating layers of small and large particles

whenever the large particles have larger angle of repose than the small ones. Makse et al.

also found spontaneous segregation, without stratification, when the large particles have

smaller angle of repose than the small ones.

Tanaka et al. [46] developed a first principle 2D mathematical model, which is capable

of describing the movement of only two particles relative to one another using a critical

friction coefficient as the determining factor for one of the two particles’ movement. It

was originally used to quantify the segregation phenomena in flows from hoppers. This

model was later modified by Kajiwara et al. [51] and Tanaka et al. [52] to analyze the

segregation phenomena in an industrial process: Distribution of coke and iron ore at the

top of a blast furnace. The mathematical model used a discrete approach to analyze the

granular flow problem. In their work, the distinct (or discrete) element method (DEM)

technique was employed. The constitutive equation for interaction between two particles

was described by a Voigt-Kelvin rheological model with a slider and dashpot. Previously,

Cundall and Strack (1979) [2] described a similar discrete model to capture the behavior of

an assembly of particles, but they did not employ a viscous effect when approximating the

sliding condition. Later, Kajiwara et al. [51] used a slider and dashpot, which represented
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the kinetic energy dissipation of particles, and the accuracy of the model was enhanced.

In their study, the dashpot factor was experimentally determined. In their report, the

authors cited a few references where different techniques were reviewed and their drawbacks

in effectively modeling the flow dynamics of granular material were mentioned. They found

that there is extensive literature on the flow of granular materials under the assumption of

continuum, but those studies lack generality and cannot capture the segregation phenomena

with higher analytical accuracy. Kajiwara et al. also claimed that their work has led to a

better understanding of the solids flow in the process and can remove the inherent difficulties

in a continuum approach. Their model was used to examine segregation during discharge

from a hopper. Specifically, they analyzed the particle size distribution when a stone box

(one type of insert) was used in the hopper: the stone box suppressed the variation of

particle size distribution during discharge in the radial direction. Kajiwara et al.’s model

also precisely described the frictional wall effect in solids flow and bridge formation. In a

nutshell, this work was one of the first computational efforts to apply DEM to understand

the segregation phenomena in an industrial process.

Since DEM is computationally demanding, Kajiwara and Tanaka’s group developed an-

other model [53] based on percolation theory to examine the sieving behavior of smaller

particles on a slope and to study segregation. The percolation frequency of the small par-

ticle is determined by particle size ratio and the velocity gradient. Earlier, Bridgwater et

al. [48] had shown the functional behavior of this percolation frequency using experiments.

There have been many efforts to model the free surface segregation in simple shear flows

(such as in pile/heap formation) based on continuum principles. Some of the first studies

were done by Bouchaud et al. (BCRE model, after Bouchaud, Cates, Ravi and Edwards) [54]

and Mehta et al. [55]. In the BCRE model, they considered single-species sandpile (no

segregation) and used two coupled variables to describe the evolution of sand piles. The

two variables were the height of the sand pile h(x, t) (which corresponds to static bed), and

the local thickness of the rolling layer, R(x, t). BCRE also proposed a set of convective-

diffusion equations for the rolling grains, which was later simplified by de Gennes [56].

Recently, Boutreux and de Gennes (BdG model) [57] extended the BCRE model for the case

of two species (the so-called “minimal” model). In this model, grains with different surface
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properties but of equal size were considered. Since the minimal model does not take into

account the size difference between the grains, Boutreux had treated the important case

(the so-called “canonical” model) where the grains differed only in size (surface properties

being the same), in a second article [58,59] of the series started by BdG [57]. Boutreux [59]

argued that unlike Makse et al. [60] (whose modification of first BdG model [57] applies

only to a case with large difference of size), their generalization is applicable for situations

where the species have a small difference of sizes. In the last and third paper of the BdG

series [61], Boutreux et al. presented the generalization of the minimal model for surface

flows of granular mixtures (referred to as the general case of the canonical model). The final

model [61] takes into account both the differences in surface properties and the size of the

grains.

More recently, Jop, Forterre and Pouliquen [62] proposed a constitutive law for dense

granular flows based on continuum method using a simple visco-plastic approach. They

observed that a continuum description of free surface flows is at present debatable because

of the fact that granular materials can behave [26] like a solid (in a sand pile), a liquid (when

poured from a silo) or a gas (when strongly agitated). For the two limiting cases, solids

and gases, constitutive equations have been proposed based on kinetic theory for collisional

rapid flows, and soil mechanics for slow plastic flows. The intermediate dense regime, where

the granular material flows like a liquid, still lacks a unified view and has motivated many

studies over the past decade. Though Jop et al.’s work [62] does not consider any difference in

particle sizes (no segregation), it is a step forward in developing continuum based segregation

models. Additional work along this line can be found in a recent review by Campbell [63].

The above paragraphs provide a general background of the free surface segregation.

Review of the segregation phenomena pertaining to a specific system such as in a rotating

tumbler and in a chute is presented in the corresponding chapters. In the next section, for

completeness, we briefly review the numerical techniques used in the direct simulations of

granular flow systems in this dissertation.
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2.2 MODELING: PARTICLE DYNAMICS

Particle dynamics (PD), which is also known as the discrete element method (DEM), has

been quite successful in simulating granular materials [64–76], yielding insight into such

diverse microscopic phenomena as force transmission [77], packing [78], wave propagation

[70], agglomeration formation and breakage [79], cohesive mixing [80], bubble formation in

fluidized beds [72], and segregation of free-flowing materials [21]. This method, originally

developed by Cundall and Strack in 1979 [2], is based on the methodology of molecular

dynamics (MD) for the study of liquids and gases (Allen and Tildesley, 1987 [81]). A recent

review (up to the year 2006) on particle dynamics theory and its applications can be found

in Zhu et al. [82] and in Zhu et al. [64], respectively. The basic advantage of particle

dynamics over continuum techniques is that it simulates effects at the particle level owing

to its first-principle nature (“exact numerical experiment” [16]). No global assumption is

needed as is customary in a continuum description. Individual particle properties can be

specified directly, and the assembly performance, like segregation, is simply an output from

the simulation. Also, the growth of this technique can be attributed, in part, to the ever

increasing speed of modern computers.

Currently, a million particles can be easily simulated using high performance computing

(HPC) which involves the application of highly scalable parallel processing and tremendous

acceleration from general purpose GPUs (graphics processing units) [83] to push the com-

putation power to petascale levels. Roth et al., 2000 [84] and Kadau et al., 2006 [85] have

already demonstrated this with billions of particles in a molecular dynamics run. Though

particle dynamics (PD) algorithms are similar in structure with molecular dynamics (MD),

PD simulations are computationally more expensive due to the peculiar interaction of gran-

ular particles: Particles exert forces on each other only when they are in mechanical contact.

In MD, particles can interact even when they are not in mechanical contact (influence zone

of particles is defined by a “cut-off” distance). This “cut-off” distance in MD is usually

more than PD (in PD, it is summation of the contacting particles radii). The computational

intensity is also aggravated by the fact that the granular particles are rather rigid and their

repulsive force grows steeply with the compression once the particles are in contact. This
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condition dictates a very small integration time step for the computation of the trajectories

in order to obtain reliable results.

This section is organized as follows: First we discuss a general DEM algorithm, then two

important parts of a DEM algorithm are elicited – contact force modeling and the contact

detection algorithm.

2.2.1 General DEM Algorithm

2.2.1.1 Hard-sphere vs. Soft-sphere Depending on the bulk density and characteris-

tics of the flow to be modeled, two different methods of calculating the trajectories are used:

Hard-sphere model and soft-sphere model.

The hard-sphere model works in rapid, not-so-dense flows (like “granular gases” [86])

where the collisions are instantaneous (i.e., duration of a collision, tc = 0) and the typical

duration of a collision is much shorter than the mean time between successive collisions.

While in a true “dilute flow”, particles only rarely experience multi-body interactions, in this

technique they cannot be in contact with more than one other particle. As the name suggests,

the particles do not suffer any deformation to generate the contact forces. The central idea of

hard-sphere modeling is to track the next collisions and the particle trajectories are obtained

from a set of collision rules (no integration is performed) which relate the post-collision

velocities as a function of pre-collision velocities (using coefficient of restitution, both for

normal and tangential directions). Hence, during the time intervals between collisions, the

particles move along known ballistic trajectories. In this regime, one applies the conservation

of linear and angular momentum for each collision sequentially – one collision at a time [87].

This method is also known as an “event-driven” algorithm. At low particle concentration,

this algorithm is much more efficient than force-based soft-sphere method since the numerical

integration of the equations of motion is avoided. Instead, the dynamics of the system is

determined by a sequence of discrete events. The enormous gain in the simulation speed is

the main motivation for using this approach.

However, in this dissertation, we employ a soft-sphere approach owing to the fact that

our systems can be characterized by slow, dense granular flows where particles have enduring
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contacts and multi-particle collisions are highly likely. As the name suggests, the particles

can deform and forces arise because of this deformation. As will be discussed in the next sub-

section, particle trajectories are obtained via integration of forces at discrete time intervals

as the simulation marches forward in time. That is why this method is also known as

“time-step-driven” simulation.

2.2.1.2 Equations of Motion In the soft-sphere PD or DEM model (we use PD or

DEM interchangeably or synonymously throughout this document), bulk flow of the granular

materials is captured via simultaneous integration of the interaction forces between individual

pairs of particles in contact, and the trajectories are obtained by explicit solution of Newton’s

equations of motion for every particle [2, 81].

The equations (Newton’s laws of motion) that describe the particle motion are:

Linear Motion:

mp
d~vp
dt

= −mp~g + ~Fn + ~Ft (2.1)

Angular Motion:

Ip
d~ωp

dt
= ~Ft × ~R (2.2)

where mp, ~vp, Ip, ~ωp, ~R, ~Fn and ~Ft are the particle mass, particle velocity, particle mass

moment of inertia, particle angular velocity, particle radius, normal force and tangential

force acting on a particle, respectively. The simplest model for a granular particle is a sphere

as particle collisions can be identified in a very simple way (it is complicated for any other

shape, see Section 2.2.3). For spherically-symmetrical particles, the normal force ~Fn causes

changes of the translational motion of the particles; the tangential force ~Ft causes changes in

both the rotational and translational motion of the particles. Both components of the force

are functions of the relative positions of the particles (~ri − ~rj) and of the relative velocity

(~vi − ~vj). The models used to calculate the contact forces between particles are indeed the

essence of this simulation technique and are based on contact mechanics considerations [88].

A separate section (see Section 2.2.2) has been devoted for this purpose. The above two

differential equations form a system of coupled nonlinear differential equations and cannot
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be solved analytically (cannot be directly integrated). The approximate numerical solutions

of these equations, i.e., the computation of the trajectories of all particles of the system by

numerical integration is the ultimate objective of DEM. We elaborate on the integration

scheme and general flow of our DEM algorithm in the next sections.

2.2.1.3 Boundary Conditions Just as a problem in continuum mechanics needs initial

and boundary conditions (the similarity between continuum mechanics and discrete system

is that we start with a system of differential equations, and hence initial and boundary

conditions are needed for both to solve), the description of a particle system is complete

only when the behavior of the particles at the boundary is properly described and if the

initial conditions, both particle coordinates and velocities, are supplied.

For our boundary conditions, we use both periodic and wall boundaries. The wall bound-

ary is obtained by building up the walls from particles which obey the same rules of interac-

tion as the particles of the granular materials themselves. By choosing appropriate sizes and

positions of the wall particles, boundaries (like container walls, inclined surfaces, etc.) with

adjustable roughness can be obtained. This kind of boundary can be easily incorporated in

the DEM algorithm without needing any extra interaction rules – the particle-particle force

laws can still be applied to the walls too. The wall or boundary particles do not interact with

each other and they can have a prescribed motion (like rotation). An alternative to the use

of boundary/wall particles is the use of mathematical smooth walls (flat surfaces); however,

the use of these types of walls necessitates special treatment, such as rolling friction, which

we will discuss briefly later. Our simulations are periodic in the z direction so that any par-

ticle which leaves the system at one side is re-inserted at the opposite side. Such boundary

conditions are used to mimic infinitely extended systems (i.e., a cylinder with a periodic

z direction is equivalent to a cylinder with infinite length). Algorithmic implementation

of periodic boundary conditions is rather simple in granular systems (PD) as the particle

interactions (forces) are short-ranged (as opposed to MD).

2.2.1.4 Initial Conditions Coming back to the initial conditions for DEM, the values

of the coordinates ~rp(t = 0), the velocities ~vp(t = 0) and angular velocities ~ωp(t = 0) should
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be specified for p = 1, ..., N , where N is the total number of particles in the system. A typical

initial condition for our simulations is obtained by allowing a bed of particles arranged in

a randomly perturbed lattice to settle under the action of gravity so that a relaxed state is

obtained. Initial positioning of the particles in the lattice sites should avoid large overlaps

as this would generate very large spurious forces, which are unrealistic, and the simulation

would not proceed further.

2.2.1.5 Integration Scheme and Time-Step Now we turn our attention to the inte-

gration scheme and time-step used in our algorithm. From the position of particles, all forces

acting on each particle are determined and the net acceleration of the particle is obtained,

both linear and angular. The position and orientation at the end of next time-step is then

evaluated explicitly using the method of integration (one type of “finite-difference” method)

initially adopted by Verlet and attributed to Störmer [81] :

ẋt+ 1

2
∆t = ẋt +

1

2
ẍt∆t (2.3)

xt+∆t = xt +
1

2
(ẋt + ẋt+∆t)∆t (2.4)

The time-step ∆t should be chosen to be sufficiently small such that any disturbance

(in this case a displacement-induced stress on a particle) does not propagate further than

that particle’s immediate neighbors within one time-step. Generally, this criterion is met

by choosing a time-step which is smaller than r/λ, where r is the particle radius and λ

(λ ∝
√

E/ρ) represents the relevant disturbance wave speed (for example, dilatational,

distortional or Rayleigh waves [68]). Under these conditions, the method becomes explicit,

and therefore at any time increment the resultant forces on any particle are determined

exclusively by its interaction with the closest neighbors in contact. Thornton and Randall [68]

suggest the time-step be chosen to correspond with Rayleigh wave speed (∝
√

G
ρ
) so that

∆t =
πR

αo

√

ρ

G
(2.5)
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where R is the particle radius, αo is a constant (taken to be 0.1631ν + 0.8766 in our case),

ρ is the density of the particle and G is the shear modulus, and ν is the Poisson ratio of the

particle. To be on the safe side, we have used one quarter of the time-step value given by

the above Equation 2.5, which yielded a time-step ∆t ≈ 10−6 s.

A flow chart of the DEM algorithm is given in Figure 2.

2.2.2 Force Models

The force models are integral to soft-sphere simulation. The forces on the particles include

external forces (e.g., gravity) and contact forces – normal repulsion and tangential friction.

The force between contacting particles is described by

~Fij =







~F n
ij +

~F t
ij if α > 0

0 otherwise
(2.6)

where α is a computational “overlap” to mimic the deformation of particles and is given by

α = (Ri + Rj) − Sij . Ri and Rj are the particle radii and Sij is the distance (separation)

between the centers of particles i and j . For two-dimensional systems, the normal and the

tangential components can be written in the form ~F n
ij = F n

ij ê
n
ij , ~F

t
ij = F t

ij ê
t
ij , with the unit

vectors ênij =
~ri−~rj
|~ri−~rj |

, êtij =





0 −1

1 0



 · ênij .

Now, we briefly review the historical background of the approaches for modeling normal

and tangential forces. After that, we focus mainly on what our approach is. The accuracy

of DEM primarily depends on the ability to describe the mechanics of the contacts between

particles. The first attempt to study the mechanics of elastic contacts between particles

was done by Hertz in 1882 [89]. Hertz predicted static normal compression between the two

bodies as a function of the mechanical properties of the materials and assumed that there is no

energy loss due to elastic wave propagation. Therefore, the coefficient of restitution was equal

to 1.0. Several models have been proposed to overcome this shortcoming [2, 72, 73, 90–92].

Cundall and Strack [2] first proposed a force model accounting for the contact mechanics

through the use of a spring, a dashpot and a slider configuration, as shown in Figure 3.
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Figure 2: Flow chart of a typical DEM algorithm.
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nF

Ft

i j

normal force

tangential force

Figure 3: Schematic of a simple DEM force model (spring-dashpot) as was used by Cundall

and Strack [2]. The spring is used for the elastic deformation while the dashpot accounts for

the viscous dissipation.
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Walton and Braun proposed a normal contact model which was able to mimic elasto-

plastic and plastic collisions giving restitution coefficients in good agreement with experi-

mental results [73]. With respect to tangential loads between particles, Mindlin and Dere-

siewicz [93] described the microslip and sliding processes as a result of variable normal and

tangential forces. The deformation is contact history dependent and contact mechanics

models with different approaches have been proposed [2, 68, 72, 79].

A thorough description of the interaction laws from contact mechanics and their merits

can be found in references [82,94–97]; therefore, they are not reviewed here. We only discuss

the models employed in the present work.

2.2.2.1 Normal Forces Two approaches are used to model normal forces in this work:

a Hertzian spring-dashpot model and an elasto-plastic material model [98,99]. In both cases,

the deformation of the particles is mimicked via a computational “overlap” α, as discussed

before. Again, in both cases, during the initial stages of loading, the normal force, Fn, is

purely elastic and is given by

Fn = knα
3/2 (2.7)

where kn is the normal force constant from the Hertz theory [88]. This constant is a function

of the particle radii, Ri, and elastic properties (Young’s modulus, Ei, and Poisson ratio, νi):

kn =
4

3
E∗

√
R∗ (2.8)

where R∗ and E∗ are given by

1

E∗
=

1− ν2
1

E1
+

1− ν2
2

E2
(2.9)

1

R∗
=

1

R1
+

1

R2
(2.10)

respectively. At this point the two models differ in their mode of energy dissipation. In the

case of the spring-dashpot model, a damping term that is proportional to the relative normal

velocity between particles is linearly added to the repulsive force from Equation 2.7. While

the expression of the damping term can take several forms, we choose the one suggested by
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Oden and Martins [91] due to the fact that it qualitatively reproduces the experimentally

observed dependence of the coefficient of restitution on impact velocity for many engineering

materials (i.e., a power law decrease). Combining the repulsive force and this dissipation

term yields what we refer to as our elastic model henceforth, given as

Fn = knα
3/2 − γnαα̇ (2.11)

where α̇ is the relative normal velocity (vn) of the particles, and γn is a damping parameter

that is assumed to be adjustable and is simply supplied as a constant in the model (we used

γn = 0.0015E
1−ν2

).

In contrast, in our elasto-plastic model (referred to as plastic model henceforth), dissi-

pation is assumed to arise from the plastic deformation of the center of the contact spot. In

this model, once the normal force exceeds a yield force, Fy, further loading is given by the

linear expression

Fn = Fy + ky(α− αy) (2.12)

In this expression, ky is the plastic stiffness which is related to the yield force by ky =

(3/2)(Fy/αy), and αy is the deformation at the point of yield (i.e., where both Equation 2.7

and 2.12 give Fn = Fy). Unloading (see Figure 4) prior to exceeding the yield limit is purely

elastic, while unloading after the yield limit is given by

Fn = Fmax − kn
√

R̄(αmax − α)3/2 (2.13)

where Fmax and αmax are the maximum force attained during loading and deformation,

respectively, and R̄ is dimensionless and given by the ratio of the new contact curvature due

to plastic deformation, Rp, to R∗,

R̄ =
Rp

R∗
=

Fy

Fmax

(

2Fmax + Fy

3Fy

)3/2

(2.14)

Reloading after initial yield follows the same path as Equation 2.13 up to the maximum

prior force, at which point the contact continues to deform plastically (Equation 2.12).

22



α

F

y
F

max
F

α αy max

yield point

lo
ad

in
g

u
n

lo
a
d

in
g

Figure 4: Schematic showing force-displacement curve of elasto-plastic deformation for dry

particles.

While the yield force, Fy, can be loosely related to the yield stress (σy) of the bulk

material, in this work, we treat it in the same manner as γn from the spring-dashpot model.

2.2.2.2 Tangential Forces In our case, we used a simple “history dependent” tangential

force model which is very close to the model developed by Walton and Braun [73]. For each

time-step, the new tangential force acting at a particle-particle contact, Ft, is given as:

Ft = Fto − kt∆s (2.15)

where Fto is the old tangential force and kt∆s is the incremental change in the tangential

force during the present time-step due to relative particle motion; i.e., ∆s is the tangential

displacement during the present time-step. This displacement is calculated from the compo-

nent of velocity tangent to the contact surface, vt (i.e., ∆s = vtdt where dt is the time-step).

The tangential stiffness, kt, is not a constant and depends upon the overlap α :

kt(α) = 8G∗a = 8G∗
√
R∗α (2.16)

23



where a is the radius of the contact spot (=
√
R∗α) and G∗ is given by

1

G∗
=

2− ν1
G1

+
2− ν2
G2

(2.17)

where Gi is the shear modulus of the particle i. In this model, we must impose a discontinuity

in order to limit the tangential force to the Amonton’s law limit (Ft ≤ µfFn, where µf is

the coefficient of sliding friction).

Note that, there is no source of energy dissipation (prior to macroscopic sliding) in our

tangential force model, though it can be incorporated using a more involved model where kt

will assume different values depending upon loading, unloading and reloading [68, 100].

2.2.2.3 Comments on Rolling Friction As mentioned earlier in Section 2.2.1.3, we

do not consider any rolling friction. However, a small discussion on this contentious issue is

presented here for completeness. Rolling friction is a rarely employed force in mainstream

DEM simulations [101]. Nevertheless, there are two potential reasons for inclusion of such

a force when modeling real particles: to dissipate energy when particles roll on a smooth

surface, and to approximate the behavior of slightly aspherical particles. If rolling friction is

not considered, a spherical particle will continue to roll on a flat surface without stopping.

(As we have seen earlier, inter-particle forces act at the contact point between particles and

not at the mass center of a particle. This generates a torque and causes the particle to ro-

tate. The torque has contributions from two components of the tangential and asymmetrical

normal traction distributions (on the contact spot). In comparison with the contribution of

the tangential component, the determination of the contribution of the asymmetric normal

component, usually known as rolling friction torque, is very difficult and is still an active

area of research [88, 102–104]. The rolling friction torque is considered to be negligible in

many DEM models [82]. However, it has been shown that the torque plays a significant

role in some cases involving the transition between static and dynamic states, such as the

formation of shear band and heaping, and movement of a single particle on a plane [82].
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2.2.3 Contact Detection Algorithm

Clearly, the necessity of a large number of particles coupled with small time-steps, makes

DEM a very computationally intensive technique. This situation can be exacerbated in

applications where multiple particle sizes or complex particle shapes are required. This

problem, however, can be partially overcome by the use of more effective contact detection

algorithms. However, contact detection itself can take up to 60% of the total CPU time in

some problems. Therefore, a current direction of research is to develop efficient algorithms

to minimize CPU time. There has been a considerable amount of research performed [3,

81, 105–124] on the topic of finding nearest neighbors and detection of contacts between

many bodies, both on spherical shapes and irregular shapes. Most of these algorithms can

be classified as body-based search or space-based search (alternatively, tree based search or

cell/bin based search). It is worth mentioning here that most of these search algorithms were

originated from general computing algorithms of computer science which were normally used

for traditional computing, computer graphics (CAD), animation, computational geometry,

collision detection and motion planning in robotics [125–129]. Now, we briefly review the

algorithm that we adopted for the present work along with its merits and demerits. We also

shed some light onto how the shortcomings of the algorithm employed here can be addressed.

Algorithms employing binary search (i.e., tree-based [129]) has a total contact detection

time which scales as T ∝ N ln(N) , where N is the total number of particles. Another body-

based search scheme which employs Delaunay triangulation [112] also has complexity varying

between O(N2) and O(N ln(N)). Some of these algorithms perform better for either loose or

dense packing. Table 1 shows different algorithms and their complexity. In this work, we use

the so-called No Binary Search (NBS) algorithm of Munjiza et al. [3], which is a cell based

algorithm. This algorithm is suitable for assembly of particles whose sizes are close to each

other and the total contact detection time scales as T ∝ N , which is a performance superior

to binary search algorithms. The NBS algorithm works well both for loose and dense packing

as it is independent of packing density. This is because the outer loop is always over the total

number of particles and not on the number of cells. If there is a particle size distribution, the

size of the cell is taken as the maximum diameter of the particle, and the algorithm becomes
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somewhat less efficient owing to the fact that more contact checking within a cell is needed as

there can be many more particles in a cell (more than the optimum number of particles in a

cell). Therefore, NBS works well if dlarge/dsmall is small (close to 1.0) and if the mean number

of particles in a cell is 1.0 – 5.0 [121]. To overcome this difficulty for different sized particles

(polydispersity), very recently, some cell-based hierarchical search algorithms or multi-grid

search algorithms have been proposed [115, 120–122]. In this approach, depending upon

its size, a particle belongs to a layer of grids (or cells/bins) suitable for that size range.

Therefore, different layers of grids are possible and contact detection is performed in and

between different layers hierarchically.

In the present work, we also modify the NBS algorithm, specifically via examination of

the looping behavior of the algorithm. In NBS, the outer loop is always over the total number

of objects (and not over the number of bins or cells). We find that the use of efficient data

structures and abstractions of C++, which is an object-oriented (OOP) language, enables us

to have an outer loop, which will go over the total number of non-empty bins. Preliminary

investigation [130] shows that the resulting code is more than three times faster than our

implementation of the original NBS algorithm in C. Figure 5 shows the effectiveness of this

modified NBS algorithm.

Table 1: Different contact detection algorithms and their scaling

Algorithm Scaling

List algorithm (e.g., [81, 105]) T ∝ N2

Binary search (tree-based, e.g., [108]) T ∝ N ln(N)

No binary search (NBS, cell-based, e.g., [3]) T ∝ N
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Figure 5: Total contact detection time as a function of total number of particles. [◦] corre-
sponds to our implementation of the original NBS algorithm of Munjiza et al. [3] in C and

[•] corresponds to the modification of the outer loop of the NBS algorithm using an efficient

data structure in C++. A naive brute force method where all particles are searched against

all other particles has also been included. Total contact detection time has been obtained

by running the outer loop 10 times in a 3.2 GHz, Intel Xeon processor.
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2.3 MIXING & SEGREGATION MEASURES

In this section, information about how to quantify mixing and segregation is presented. Fan

et al. [131] have described a number of mixing indices for various types of mixing situations

(such as in tumbler mixer, fluidized bed, etc.). A number of indices are used to quantify

the efficiency of mixing and this background information would be used to characterize the

systems described in the succeeding chapters. Merits and demerits of various mixing indices

have been examined by Rollins et al. [132]. Although (as noted by Fan et al. [131]) the

representation of the complex characteristics of a solids mixture via any available mixing

index appears to be far from satisfactory, in this work, we have employed multiple indices

to probe and ascertain the performance of a system.

Danckwerts [133] used the term “scale of scrutiny” as the maximum size of the segregating

regions that can cause the mixture to be considered acceptable for its intended use. For a

given powder, its quality of mixing decreases as the scale of scrutiny, with the extreme case

where each sample contains only one particle. In this section, some measures that attempt

to quantify the degree of mixing are described, among them Intensity of Segregation (IS),

which is the mixing measure frequently used in this work.

2.3.1 Intensity of Segregation

The Intensity of Segregation (IS) is essentially the standard deviation of the concentration

calculated at multiple locations in the granular bed, and is calculated using the following

expression:

IS = σ =

√

∑Nc

i=1(C − 〈C〉)2
Nc − 1

(2.18)

where Nc is the number of concentration measurements, C is the concentration of the tracer

particles in the designated measurement location, and 〈C〉 is the average concentration of

that type of particle in the entire bed. It should be noted that large values (approaching 0.5

for a equi-volume mixture) of IS correspond to a segregated state while smaller values denote

more mixing. This particular index will be revisited in Section 3.3 when the experimental

procedure in a tumbler mixer will be discussed.
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2.3.2 Lacey Mixing Index

The Lacey mixing index [134] is defined as a function of the variance (σ2) of the composition

of the actual mixture, the variance σ2 of the composition of the corresponding completely

segregated mixture (σ2
SEG, that is, its upper limit), and the variance of the perfectly mixed

granular material (σ2
MIX , lower limit):

Lacey mixing index,ML =
σ2
SEG − σ2

σ2
SEG − σ2

MIX

(2.19)

In other words, this index represents the ratio of the degree of mixing achieved to the

maximum mixing possible. A Lacey mixing index equal to 1 corresponds to a perfectly

mixed state, and value of 0 corresponds to complete segregation. It is to be noted here that,

by switching σMIX with σSEG in the above equation for ML, a derived index [(1-ML)] can be

used to follow the evolution of a system from a complete mixed state to a segregated state.

In Section 4.4.2.4, we have used this derived index to examine the onset of segregation in a

periodic chute flow when the system started from a mixed state.

2.3.3 Poole Mixing Index

The mixing index as described by Poole [135] is defined as:

Poole mixing index,MP =
σ2

σ2
MIX

(2.20)

A value of 1 for the Poole mixing index represents a perfect mixture, and this index increases

as the mixing quality decreases.
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2.3.4 Relative Standard Deviation (RSD)

The RSD is defined as below:

RSD =
σ

〈C〉 (2.21)

where σ, and 〈C〉 bear the same meanings as described in the sub-section on Intensity of

Segregation (Section 2.3.1). The global state of mixing is better reflected by the RSD,

which is also often the measure used in industrial settings. We have used this index in

Section 4.4.2.4 to examine the onset of segregation in a periodic chute flow, in addition to

IS and (1-ML).
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3.0 CONTROLLING SEGREGATION IN TUMBLERS

Tumblers or rotating drums play an important role in many solids processing industries. In

this Chapter, we examine how segregation can be controlled in this type of device. We begin

with a brief review of the background on mixing and segregation in tumblers.

3.1 MIXING AND SEGREGATION IN ROTATING DRUMS

The flow behavior in a rotating cylinder is very complex. Henein et al. [136] and Mell-

mann [137] observed six regimes of flow with increasing cylinder speed of rotation: slipping,

slumping, rolling, cascading, cataracting and centrifuging (see Figure 6). In industrial appli-

cations, rotating drums are operated at rolling or continuous flow regimes. In the continuous

flow regime, a thin layer of particles moves at high velocity in the free surface (called the shear

layer), whereas the rest of the bed rotates as a solid body (called the passive layer) [138].

Diffusive mixing and segregation of particles are due to the flow of particles in the shearing

layer only, and therefore, it is the shearing layer which needs particular attention if something

has to be done to thwart segregation. Therefore, the background on free surface flow from

the previous Chapter is of particular help to devise theories that would help in describing

the segregation phenomena in a tumbler.

There has been extensive research performed [10, 12, 21, 131, 136–220] addressing the

mixing and segregation in rotating drums or tumblers. These studies can be broadly classified

into the following three groups based on their focus [16]: (a) studies of the time evolution

of the mixed state, (b) studies of axial dispersion, and (c) studies of radial (or transverse)

mixing. A few important aspects will be reviewed here.
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Figure 6: Different regimes of flow in a rotating drum (illustration obtained from Vargas [4]

with permission).
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The first category of studies focuses on characterizing the efficiency of mixers by deter-

mining the time evolution of a global mixing index. A mixing index is normally a statistical

measure that reflects the extent of mixing. Several indices are available (refer to the dis-

cussion in Chapter 2, Section 2.3). These indices are typically determined by sampling the

granular bed composition at different (usually random) positions within the mixer. A typical

measure of the mixed state is the Intensity of Segregation (IS) (Danckwerts [133]), defined

as the standard deviation of the number fraction of the tracer particles from the mean value.

We will elaborate on experimental IS more later in Section 3.3. A key result common to

many such studies is that, initially, the Intensity of Segregation decays exponentially with

time. Although this approach has been useful for determining the effect of system parame-

ters (e.g., baffles, Wes et al. [215] ) on the rate of mixing in a particular mixer, it gives little

insight into fundamental mechanisms of mixing.

Studies of axial dispersion [213,217,219,220] investigate the axial mixing which is deter-

mined primarily by particle diffusion (effective diffusion coefficient in the axial direction) in

the flowing layer and is typically slow. Investigations (Rao et al. [206]) show that the axial

dispersion increases with rotational speed of the mixer and particle size.

The issue of transverse mixing in a rotating drum in the continuous-flow regime was

first studied by Hogg and Fuerstenau [217] and Inoue et al. [218] using idealized flow models.

Visualization studies of the evolution of mixing with colored tracer particles were carried out

by Lehmberg et al. [214], and recently a continuum analysis and experiments for mixing in

this regime were presented by Khakhar et al. [21]. Although most of the studies focused on

the slow continuum regime, recently many studies have also been performed on the slumping

or avalanching regime.

Mixing in the slumping (avalanching) regime has been studied by many workers [172,183,

187, 191, 195, 200]. Geometrical aspects dominate in the slumping regime, whereas dynamic

effects predominantly control mixing in the cascading or continuous-flow regime [16].

Turning our focus back to the relevance of free surface segregation in tumblers, one can

note that a consequence of shear layer segregation in a rotating cylinder is radial segregation,

in which denser particles or smaller particles migrate towards the core of the cylinders. The

experimental work of Nityanand et al. [208] illustrates the typical behavior of systems with
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size segregation. Percolation dominates at low rotation rate (RPM) of the cylinder and

the smaller particles sink to lower levels in the flowing layer and thus form a core at the

centre. However, at higher rotational speeds, the segregation pattern reverses, with the

smaller particles at the periphery instead of the core. These results reflect the challenge of

the segregation processes in the shearing layer.

Recent studies of radial segregation have focused primarily on the dynamics and extent

of segregation in the low-rotational-speed regime [16]. 2D DEM simulations were used to

study the density segregation [204] and size segregation [194] in the rolling regime. Size

segregation in two dimensions has been reported by Cleḿent et al. [199] in the avalanching

regime and by Cantelaube and Bideau [198] in the rolling regime experimentally. Smaller

particles formed the central core in both these experiments. Cantelaube and Bideau also

reported the statistics of trapping of the small particles at different points in the layer.

Baumann et al. [201] suggested a similar trapping mechanism for size segregation based on

computations using a 2D heaping algorithm, and Prigozhin and Kalman [188] proposed a

method for estimating radial segregation based on measurements taken in heap formation.

Khakhar et al. [21] have reported experiments and theory of density segregation. They

proposed a constitutive model for the segregation flux in cascading layers and validated the

model by both particle dynamics and Monte Carlo simulations for steady flow down an

inclined plane. Earlier, Alonzos et al. [205] showed how an optimum combination of size and

density differences can be used to minimize segregation.

Very recently, Gui et al. [141] studied the microscopic and macroscopic characteristics of

mixing based on fractal dimension analysis and Shannon entropy analysis, respectively. They

found, by numerical analysis on the dimension of the fractal interface, that a slow rotational

speed is favorable for particle mixing. Recent DEM studies on unbaffled tumblers by Arntz

et al. [143] concentrated on the effect of drum rotational speed and fill level on mixing. They

studied many regimes such as rolling, cascading, cataracting and centrifuging. Their studies

indicate that good mixing is possible for Froude Numbers in the range 0.25<Fr<0.68. Also,

high fill fractions (>65%) show the most intense segregation, which is at variance with the

earlier prediction by Dury and Ristow [221]. It is well established that mixing and segregation
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patterns are sensitive to the container geometry and fill level [152,185,197]. The dynamics of

mixing and segregation are still not well understood, and therefore, all the designs of solids

mixers currently are empirical. Several approaches have been proposed to control or eliminate

segregation. McCarthy et al. [197] found that the mixing is enhanced in the avalanching

regime for an odd number of baffles. Wightman and Muzzio [212] performed experiments

for size segregation in a drum, both for pure rotation and rotation with vertical rocking.

They found that rocking accelerates axial mixing. Samadani and Kudrolli [176] found that

segregation could be reduced by adding a small volume fraction of fluid. Recently, Li and

McCarthy [160] found that segregation could be turned on or off by adding small amounts

of moisture in multi-sized mixture with particles having different surface characteristics.

Hajra and Khakhar [161] found that segregation could be eliminated by using a small (in

comparison to the diameter of the cylinder) rotating impeller placed at the axis of rotation,

that is, in the flowing layer. Jain et al. [153], Thomas [177] and Hajra and Khakhar [222]

performed experiments for binary mixtures composed of different size and different density

particles and they found that mixing can occur instead of segregation if the denser beads

are bigger, and also if the ratio of particle size is greater than the ratio of particle density.

Khakhar and Ottino [223] have summarized the findings of many studies of granular flow

in tumblers so that they can be applied to the design and scale up for problems of industrial

importance. For summaries of recent work on mixing and segregation in tumblers, one can

refer to Duran [224] or Ristow [225].

One can observe that the solutions to combat segregation based on the past studies can be

categorized into two groups: Change the particles or change the process [226]. Changing the

particles may involve controlling inter-particle adhesion or balancing the differences in size

and density. Changing the process may involve geometrical changes (such as manipulating

baffles) or operational changes (such as varying the tumbler rotational speed). Looking back

at the developments on the design of baffles for rotating cylinders, we find that very little

is known from a theoretical point of view on the effect of baffles on solid mixing, even in

simple cases limited to monodispersed systems. Industries use empirical designs based on
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past experience, which often have no theoretical basis. Moreover, a literature search yields

no previous studies dealing with issues involving novel baffle shapes and their placements in

a solid mixer and how their designs will affect segregation.

Recently, Shi et al. [31], have shown that periodic flow inversions either manually – in

a chute – or via selective baffle placement in a tumbler-type mixer – can serve as a generic

method for eliminating segregation in free-surface flows, perhaps the most common and

well-studied of granular flows [39, 75, 227].

In this work, for the first time, we use experiments and simulations to study the effects

of various design and operating parameters, such as baffle shape and placement, on mixing

of binary mixtures with different sizes or densities. We show that periodic flow inversion

can be used to reduce segregation in a rotating cylinder, where different baffle shapes and

placements were engineered based on the hypothesis of flow modulation, and some of these

novel designs yielded excellent mixing results in actual experiments. Attempts are made to

link this technique to the probability distribution of the number of times a particle passes

through the flowing layer per rotation of the drum, and using this information, predictions

are made as to which baffle configurations would produce better mixing. In order to achieve

this objective, the numerical experimental tool DEM (Discrete Element Method) has been

extensively used in the present study.

In the next section, we take a brief look at the hypothesis of flow modulation as mentioned

above. Mathematical expressions describing the hypothesis in a tumbler are also presented.

This is expected to aid in designing actual or numerical experiments to corroborate the

hypothesis, either directly or indirectly.

3.2 HYPOTHESIS: TIME MODULATION IN A TUMBLER

Time-modulation in fluid mixing and other dynamical systems [24] is a fairly common prac-

tice, but has found only limited applications in granular processing [197,228,229]. As already

mentioned in Section 3.1, Shi et al. [31] have shown that periodic flow inversions via selective

baffle placement can serve as a generic method to thwart segregation. The key to adapting
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this idea to free-surface segregation lies in recognizing two important facts: that it takes

a finite time for material to segregate and that there is always a preferred direction that

particles tend to segregate. For example, in a free-surface flow, small particles need time to

percolate through the flowing layer (also, smaller particles travel faster than the larger par-

ticles [230]); thus, if the flow is interrupted before the small particles could reach the bottom

of the flowing layer, segregation can be prevented. This relatively simple observation can be

employed to engineer systems that counteract segregation.

In order to capitalize on the fact that this flow interruption can thwart segregation, one

next needs to invert the flowing layer, prior to reinitiating the flow. One way to achieve

this two-step process in a continuous flow is to invert the flowing layer at a sufficiently high

frequency, fcrit, fcrit > t−1
S , where tS is the characteristic segregation time. A critical issue

with this technique is that a full understanding of segregation kinetics – and therefore, the

characteristic segregation time, tS – is still lacking. However, this hypothesis can well be

tested indirectly for many baffle configurations in a rotating tumbler or directly in a chute

flow segregation tester (Chapter 4) using scaling arguments and utilizing existing theoretical

tools [21, 30].

Now we attempt to derive an expression for critical forcing frequency in an unbaffled

tumbler owing to its simplicity as a model system. As a closed-form expression of the

critical forcing frequency for baffled tumbler is not available at present due to the inherent

complexity of the flow, the hypothesis of time modulation can be translated into some other

indirect measure (like the number of layer passes a particle makes) to implement it in a baffled

tumbler and to apply this knowledge in understanding the behavior of baffled tumblers. In

fact, one of the objectives of this present work is to take up this challenge and apply this

hypothesis to explain the behavior of baffled tumblers.

For size segregation, the segregation velocity takes the form vS = KT (1− d̄)+fKS(1− d̄)

[21], where (1− d̄) is the dimensionless particle size difference, f is the number fraction of the

segregating species, KS and KT are segregation constants, which depend on the local number

density ratio, local void fraction and granular temperature, respectively. For an unbaffled

tumbler, the characteristic segregation time may then be written as tS = δo/[KT (1 − d̄) +

fKS(1 − d̄)], where δo is the maximum shear layer thickness and also corresponds to the
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characteristic length for segregation. The expression for tS above can also be recast as

tS = δo/[ξ(1− d̄)], where ξ = (KT +fKS). Again, due to current theoretical uncertainty and

the time-varying nature of our flow (as well as our granular temperature, pressure, etc.), ξ

is treated as a fitting parameter that is a function of the local number density, the granular

temperature and the composition of the mixture [21]. Referring to the work by Khakhar et

al. [223], the thickness of the shear layer at the midpoint is given by δo/R = (ω/γ̇o)
1/2, such

that the time for size segregation can be written as

tS =

(

ω

γ̇o

)1/2
R

ξ(1− d̄)
(3.1)

where, γ̇o is the shear rate at midpoint of the layer and is given by

γ̇o =

[

g sin(βm − βs)

cd cos(βs)

]1/2

(3.2)

The parameter c in Equation 3.2 is the dimensionless collisional viscosity and it is ap-

proximately constant with a value of ≈ 1.5 for all Froude numbers Fr = ω2R/g and size

ratios s = d/R [223]. βs and βm are the static and dynamic angles of repose, respectively.

The critical perturbation frequency, fcrit is then given by

fcrit =
1

tS
=

(

γ̇o
ω

)1/2
(1− d̄)ξ

R
(3.3)

In order to suppress segregation in an unbaffled tumbler, a forcing frequency should be

chosen such that the mean residence time of the particles in the layer τmean = 2π/
√
ωγ̇ [155]

is less than the time of segregation tS. The effective forcing frequency is then given by,

fe =
1

τmean
=

√
ωγ̇o
2π

(3.4)

and the ratio of frequencies (using Equations 3.3 and 3.4) is given by

fe
fcrit

=
ωR

2π(1− d̄)ξ
=

γ̇oδ
2
o

2πR(1− d̄)ξ
(3.5)

A similar procedure can be crafted for density segregation [144], resulting in an expression

for the frequency ratio of the form
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fe
fcrit

=
ωR

2π(1− ρ̄)KS
=

γ̇oδ
2
o

2πR(1− ρ̄)KS
(3.6)

where (1 − ρ̄) is the dimensionless density difference and KS is a segregation constant that

depends on local void fraction and granular temperature.

The fact that all the relations used in developing the frequency ratios above are based

on data for monodispersed system and for unbaffled tumblers, might render our analysis

somewhat limited for application in the baffled cases. Nevertheless, as we mentioned earlier,

we show that this general theory can still be applied indirectly to explain the behavior of

baffled tumblers.

3.3 EXPERIMENTS

Experiments are carried out in a quasi-2D rotating cylinder (1.5 cm in length and 13.8 cm

in diameter), which is mounted on a circular plate attached to a bigger rotating drum (see

Figure 7 for the setup). The bigger drum is rotated using a computer controlled stepper

motor at a fixed rate (6 RPM). The cylinder is made up of two sets of transparent glass discs,

which is fitted face to face to close the cylinder. This arrangement also helps in dispensing

particles when a particular experiment is completed. We used nearly spherical cellulose

acetate beads as the model particles. We mainly focus on size segregation experiments and

binary mixtures (equal volume, 50:50 v/v) composed of 2 mm and 3 mm acetate beads are

used.

In a typical experimental run, particles are placed in the cylinder using a divider so

that the initial particle bed remains completely segregated (see Figure 7 or Figure 8). All

experiments are carried out using 50% cylinder fill fraction. A digital camera (Nikon D200)

with a resolution of 6 Mega pixels is used to capture the photographs as the experiment

progresses and the evolution of the system from a complete segregated state to a mixing state

is observed. Digitized images are also taken at low shutter speeds in a separate experiment

to calculate the shearing or flowing layer thickness (δ0) at the layer mid point [231] when no

baffle was used. Photographs are captured at every half cylinder rotation. An image analysis
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technique, which relies on the colors of the particles to identify different sized particles, is

used to compute the distribution of particles as a function of time. This procedure yields

the information required to calculate the Intensity of Segregation (IS) (refer to Section 2.3)

using Equation 2.18 for each experimental run.

With regards to the quantification of mixing, it is important to measure the extent of

mixing in order to investigate the performance of a mixer. As discussed in Section 2.3,

several methods of mixing measures are available in the literature. Among them, mixing

index [158] or Intensity of Segregation [133] are most commonly used. In this study, we

have used the Intensity of Segregation (IS) as the method of measurement of mixedness.

Low IS means good mixing. The captured images from experiments are divided into Nc

number of uniformly distributed boxes or cells and the concentration C at the center of a

cell is calculated from the fraction of particles with a specific color (denoting a specific-sized

particle) [21] in that cell. The mean value of the concentration, < C >, of a particular

species is the average concentration of all the cells. Also, as the IS is plotted over time as

the mixing process evolves, the asymptotic state is defined as the number of revolutions after

which the Intensity of Segregation becomes flat.

Both the DEM simulations and the experiments use cellulose acetate particles in thin

(≈ 6-7 particle deep) and ≈ 40-60 particle wide tumblers. The simulated particle sizes and

densities (as well as vessel size) are matched to their corresponding experiments as closely

as possible; however, the particle stiffness and other parameters used have been reduced in

order to decrease necessary simulation time (a practice shown to have essentially no impact

on flow kinematics [232]) in some simulations (using so-called “soft” particles). Table 2

lists the material properties used in the simulations. Note that an elasto-plastic model with

actual material properties is used when the objective is to compare simulation results with

the experimental data. On the other hand, fictitious “soft” material properties are used

for performing other studies (e.g., effect of number of baffles, etc.) when comparison with

experimental data is not the primary aim.

41



Table 2: Material properties used in the simulations

Parameter Value

Young’s Modulus (E, GPa) 1.5 (acetate), 0.03 (soft)

Density (ρ, kg/m3) 1300 (acetate), 1000 (soft)

Coefficient of Friction (µ) 0.30

Poisson Ratio (ν) 0.43 (acetate), 0.33 (soft)

Yield Stress (σy, MPa) 30.0 (acetate), 0.3 (soft)

3.4 RESULTS

In this section, we present the results obtained for different configurations of baffles for

mixing in a tumbler. Both simulation and experimental results are presented, and they are

also analyzed in light of the hypothesis that periodic flow inversion can thwart segregation

(as described in Section 3.2).

All modeling/experimental results are discussed by considering the optimum baffle size

(L/D = 0.5), which was experimentally obtained by Hajra et al. [139]. The focus of dis-

cussion here is on size segregation, however in what follows, we will see that the type of

segregation (density/size) has no impact in developing arguments about why a special case

(baffle configuration) is better or in testing our hypothesis.

3.4.1 Effect of Baffle Shape

In this section, we examine how baffle shape affects mixing. We use four different shapes of

baffles: flat, S-shaped, reverse S-shaped, and C-shaped (Figure 8). The effective length of the

baffles remains constant. The effective length is defined as the length of the tightest bounding

box enclosing the baffle in question. Figure 9 shows the experimental and corresponding
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Figure 8: Different baffle shapes considered for this study: C-shaped, S-shaped, Reverse S-

shaped and Flat baffle, respectively. Effective length of all types of baffles is constant (equal

to the optimum baffle length). The cylinder is rotated at 6 RPM. Also, note that the initial

bed is completely segregated with one quarter of the cylinder filled with one kind of particles

and the other quarter with the second kind of particles.

simulation images, which depict the asymptotic results for different shapes of baffles. The

experimentally calculated IS is plotted in Figure 10 (size segregation) and Figure 11 (density

segregation) as a function of time. For size segregation, the asymptotic average IS values

(and standard deviation in parentheses) for the flat, reverse S, S and C-shaped baffles are

0.21 (0.01), 0.21 (0.01), 0.18 (0.01) and 0.19 (0.02), respectively. The corresponding IS

values (and standard deviation) for density segregation case are 0.20 (0.02), 0.23 (0.02), 0.21

(0.01) and 0.20 (0.01), respectively. One can observe that there is no dramatic difference in

mixing for the types of baffles considered. Since the asymptotic IS values are all well below

0.25, which is a threshold to determine if a system is mixed or segregated, this suggests

that a flat baffle may very well be used as compared to other sophisticated designs like a

C-shaped or an S-shaped baffle.

3.4.2 Effect of Baffle Placement

In this section, we investigate how the placement of a baffle within the tumbler with respect

to the axis of rotation can change the extent of mixing. We shift the baffle, both in the

transverse and radial directions, and the baffle position becomes asymmetric with respect
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Figure 9: Comparison of experimental and DEM results for various baffle shapes. The

images show asymptotic (steady-state) mixing state of the rotating drum containing 2 mm

and 3 mm acetate beads. Left column shows experimental results and the right column

shows results obtained from DEM. A good agreement is observed between these two.
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Figure 10: Quantitative results for size segregation in a rotating cylinder with different baffle

shapes as indicated in the legend. The cylinder is rotated at 6 RPM.
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Figure 11: Quantitative results for density segregation in a rotating cylinder with different

baffle shapes as indicated in the legend. The cylinder is rotated at 6 RPM.
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to the axis of rotation. Again, the motivation for doing this emanated from our hypothesis

that the more we invert the flowing layers, the better mixing we expect.

A few baffle positions are considered for this investigation on baffle placement: symmet-

ric baffle placed at the free surface, symmetric baffle placed within the shear layer, baffle

placed outside the flowing layer, completely asymmetric placement and baffles with segments

(two/three segments). Figure 12 shows a schematic of the various baffle configurations stud-

ied in this work. The maximum shear layer thickness δ0 is calculated using a technique

described by Orpe et al. [231] so that we may properly place the baffles, as described. The

shear layer thickness (δ0) is found to be approximately 15 mm for size segregation experi-

ments. Figure 13 shows a qualitative comparison between experiments and simulations for

various baffle placements when the mixing process has reached an asymptotically unchang-

ing state. We observe that DEM reproduces the asymptotic behavior quite well. Figure 14

shows the calculated experimental IS values over time for various baffle configurations for

2 mm and 3 mm acetate beads. The asymptotic average IS values for the different cases

are 0.25 (baffle placed in passive layer or outside shear layer), 0.23 (baffle placed in shear

layer) and 0.21 (baffle placed on free surface). The corresponding standard deviations are

0.02, 0.01 and 0.01, respectively. Therefore, one can observe that the case where the baffle

was placed on the free surface or within the shear layer, produces a low IS (less than 0.25)

and yields a good mixing.

3.4.3 Effect of Tumbler Filling Fraction

In this section, we discuss how the filling level of the tumbler affects the mixing behavior.

We present only simulation results here. The filling level is varied between 20-70% and in all

the cases, a flat baffle is axially placed on the free surface. Figure 15 shows the asymptotic

average value of the Intensity of Segregation (IS) obtained from DEM simulations plotted

against different filling fractions. It is to be noted here that all of the fill levels produce

reasonably good mixing results as the Intensity of Segregation (IS) is below 0.25 in all

cases. However, within themselves, the best possible mixing is obtained when the tumbler

is half filled under the given conditions.
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Figure 12: Schematic showing various baffle configurations and baffle placements. Note that

δ0 is the maximum depth of the shear layer.
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Figure 13: Images showing qualitative comparison between experiments and DEM simula-

tions of the asymptotic state of mixing in rotating tumblers with various novel baffle config-

urations. An unbaffled case (top) has also been shown for comparison. The emphasis here

is on different kinds of baffle placements within the tumbler. Two different sized particles

are considered: 2 and 3 mm acetate beads. The effective length of the baffles is fixed and

the cylinder is rotated at 6 RPM.
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Figure 14: Quantitative results for size segregation for a rotating cylinder with a flat optimum

sized baffle fixed at different locations as indicated in the legend. The cylinder is rotated at

6 RPM.
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Figure 15: Asymptotic average Intensity of Segregation (IS) is plotted against different

filling levels in a rotating tumbler. In all cases, a flat optimum baffle is placed on the free

surface of particle bed.
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3.4.4 Hypothesis Testing via Layer-Pass Simulations

In the previous section, we have shown both experimentally and by way of simulations that

segregation can be reduced if we consider changing baffle shapes or their placement in the

tumbler. We also recognize that this enhancement in mixing is due to the flow modulation

introduced by the periodic alteration of the flowing layer and hence the effective direction of

segregation as discussed in Section 3.2. In this section, we attempt to explain what causes

a specific baffle configuration to yield better mixing. Numerical experimentations on the

various baffle configurations are used to demonstrate that periodic flow inversion by way of

layer passes is the key to better mixing. Out of many combinations of baffle configurations,

we choose some of the candidates that show good mixing (results) from simulations and

experiments (already discussed) to investigate why a particular configuration is better than

others.

Going back to the flow modulations introduced by baffles, one observes that the static

portion of the bed in a rotating drum simply “stores” the material and returns it, for its

next pass through the surface layer (after it undergoes a full 180-degree change in orienta-

tion). Moreover, in an unbaffled tumbler, the flowing layer itself also induces a 180-degree

orientation change, so that for a full rotation the bed and layer effects on orientation cancel

each other. Now if we place baffle near the axis of rotation and near to the shearing layer,

we periodically alter the flowing layer so that we achieve both (i) a smaller average unin-

terrupted flow length, L, and (ii) periodic variations in the effective direction of segregation

with respect to the tumbler streamlines. The fact that the static bed and the flowing layer(s)

no longer produce related orientations, is key to the results reported here.

To visualize what happens for different baffle configurations, we use non-segregating

particles in a rotating drum for our simulations. In this way, by using identical (same

size and density) particles we can focus our attention only on a single variable, i.e., the

effect of baffles (not the effect of particle properties themselves) on the flowing layer and

flow inversions. This allows us to single out the effect of baffles on the patterns of flowing

layers. The results obtained through DEM are post-processed in the following way to obtain

meaningful images and plots: Individual particles are tracked to determine whether it is in a
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shearing (flowing) layer or not. To accomplish this goal, we first calculate the time averaged

velocity field from identical configurations of the tumbler for a number of revolutions. Then,

using the time averaged velocities, the vorticity (i.e., curl of velocity, ∇× Ṽ) is calculated

and stored as a lookup table. Since the particles within the static bed do not move relative to

one another, obtaining a non-zero value for the vorticity implies that the particles are found

within a shearing/flowing layer (note that the introduction of baffles will lead to potentially

more than the one flowing layer that is obtained in a non-baffled tumbler).

The vorticity is obtained in the following way. Only the x and y components of the

velocity field are considered as we are interested in the vorticity in the z direction. Using

a suitable grid, the average velocities of each of the discrete particles can be mapped onto

the grid and the curl can be calculated. By doing this, we obtain a reference lookup table of

vorticity values on the grid points at different time instances for one complete revolution of

the tumbler. In the next step, we consider a number of revolutions of the tumbler and in each

instance of time, we re-map the reference curl values (from the grids) onto discrete particles

using the lookup table corresponding to the same tumbler configuration. Re-mapping is

done using a suitable interpolation scheme [233]. A cut-off curl value is used, above which,

a particle would be thought to be in the shearing layer. In the present study, a cut-off

curl of 0.3 is used, which gives accurate flowing layer boundaries as verified by the video

obtained from temporal images. Finally, the number of times a particle passes through a

shearing layer for certain revolutions of the tumbler is counted and a distribution is obtained.

Eight revolutions (3rd to 10th, as the flow reaches a steady state from the 3rd revolution)

of the tumbler are found to be suitable for obtaining the distribution and it is observed

that the distribution does not change significantly if more revolutions (more averaging time)

are considered. A single pass through the shearing layer would re-orient the particles by

180 degrees; therefore, the segregation direction (orientation) will change during the mixing

process if the particles pass through the layer, on average, in fewer than half a rotation.

Figure 16 shows shearing layers for different baffle configurations. Two different colors

are used to demarcate flowing and static layers. Figure 17 shows the probability distribution

of the number of layer passes a particle takes per rotation of the drum for many different

baffle configurations. On examining this plot, we observe that, as expected, the unbaffled
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Figure 16: Snapshots showing the evolution of the shearing layer at different times (time

increases from left to right) for a few baffle configurations obtained from DEM. The baffle

configurations (top to bottom) are S-shaped, flat, three-segmented and two-segmented baf-

fles. Dark (red) particles are in the shearing layer and the lighter (blue) particles constitute

the static bed in these pictures.
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Figure 17: Probability distribution of the number of layer passes a particle takes per rotation

of the drum for many different baffle configurations.
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case exhibits a very narrow distribution centered on about 0.5 rotations. This result implies

that, for an unbaffled tumbler, essentially all of the particles pass through the layer in

half of a revolution (so that the solid body rotation and layer pass cancel each other and

effectively yield a constant orientation). In contrast, the other promising baffles (such as

segmented, symmetric, S-shaped, etc.) result in much broader distributions suggesting that

the orientation of a particle will become essentially uncorrelated to its previous orientation

as the layer passes and solid body rotation will not be commensurate. Therefore, these

candidates are expected to produce better mixing results as per our hypothesis.

Now, we take a look at the real experimental data to see whether the above candidates

are really good or not in terms of mixing performances. Figure 18 shows the comparison

of experimental IS values for various promising baffle configurations. This plot shows that

a flat baffle of optimum length or a S-shaped baffle of optimum length is expected to have

better mixing as the asymptotic IS values are lower in comparison to other cases. Therefore,

our expectation is that these candidates should also have broadened layer pass distributions.

Now, we plot (in Figure 19 ) the layer pass peak heights (from Figure 17 ) – a measure of

broadening, higher peak height means lower broadening – with the asymptotic IS values,

obtained from both experiments (Figure 18) and simulations, for different baffle configura-

tions (seven different promising configurations are tested) – and we get what we expected as

per our hypothesis. As we go down in IS, the layer pass peak height also decreases, showing

a better mixing. Therefore, a flat baffle of optimum length fitted at the center symmetrically

or a novel S-shaped baffle produces a better mixing than other types of baffles.

We believe that this characterization tool built on the hypothesis mentioned earlier can

be effectively used to test different baffle configurations and predict their performance, even

for actual industrial solids mixers.

3.4.5 Application of Layer Pass to Other Cases

In this section, we attempt to apply the previously built concept of layer pass simulations to

three other cases: Optimization of the shape of S-shaped baffles, performance of an X-shaped

baffle, and lastly, to examine the effect of the number of baffles on mixing.
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Figure 18: Quantitative results obtained from size segregation experiments for a rotating

cylinder with various promising designs of baffles. The cylinder is rotated at 6 RPM.
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Figure 20: Various S-shaped baffles and a typical X-shaped baffle have been shown here. For

the first four pictures, the amplitude of the S shape A is varied from 5% to 20% of L with

an increment of 5%. L is the effective length of the baffle.

3.4.5.1 Optimizing S-shaped Baffles We have seen that the S-shaped baffle performs

better in terms of mixing. Therefore, we take a closer look at the shape of the S-shaped

baffle, and attempt to explore the parameters of the S shape in the hope of obtaining better

mixing. Different S shapes are formed by varying the amplitude of a sinusoidal curve. The

S shapes are generated from y = A sin(2π x
L
), and we vary the amplitude A at four different

levels (refer to Figure 20). We perform similar layer pass simulations on these four S shapes,

and it turns out that, the mixing performance does not change significantly if the shape is

altered. This is evident from Figure 21: all the distributions overlap with each other.

3.4.5.2 S Shape vs. X Shape X-shaped baffles are widely used in many industrial

solids mixers. We compare the layer pass results of an S-shaped baffle and an X-shaped

baffle (refer to Figure 22). The effective lengths and other simulation parameters are kept

fixed for both the cases. We can clearly see from Figure 22 that the distribution for X-shaped

baffle is slightly shifted toward the left and the peak height is also little smaller. Therefore,

we expect the X-shaped baffle to perform somewhat better in terms of mixing.

3.4.5.3 Effect of the Number of Baffles As we mentioned earlier, conventionally,

baffles are placed at the periphery (wall) of tumblers in industrial applications. Little is

known about the effect of the number of baffles on mixing in a solids mixer. Therefore,
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Figure 21: Probability distribution of the number of layer passes a particle takes per rotation

of the drum for many different S-shaped baffles. A is varied from 5% to 20% of L with an

increment of 5%. L is the effective length of the baffle.
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Figure 22: Probability distribution of the number of layer passes a particle takes per rotation

of the drum for S and X-shaped baffles.
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starting with a base case of no baffle attached to the wall, we systematically vary the number

of baffles in a tumbler up to eight in number. These different cases are shown in Figure 23.

These radial baffles are oriented in such a way that they have equal angular distance. For

example, for a case with 6 baffles, the baffles make an angle of 60 degrees with each other

if extended up to the centre. The baffle length is the same for all the cases (L ≈ D/4). As

usual, other parameters like number of particles, etc., remain unchanged for all the cases to

single out the effect of only one parameter (i.e., the effect of number of baffles) on the mixing.

We perform similar layer pass simulations as discussed in Section 3.4.4 and plot the results

in Figure 24. We observe that, except in the cases with no baffle or one baffle, all other

distributions are centered around 0.5 rotations per layer pass (the range of peak positions

for all cases is 0.44 – 0.53). Surprisingly, a wider distribution is obtained when there is no

baffle or just a single baffle fitted to the wall of the tumbler. As more baffles are added,

the distributions become narrower, suggesting a poor mixing outcome. Figure 24 strongly

suggests that even an unbaffled tumbler has a better mixing performance compared to a

tumbler with a number of baffles fitted radially to the wall (as normally used in industrial

practices). The mixing performance gets worse as more and more radial baffles are added to

the tumbler. This observation again bolsters the fact that mixers with novel designs of baffles

placed axially in or near the shearing layers are expected to outperform any conventional

solids mixers where baffles are fitted radially to the wall of the device.
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Figure 23: Tumblers fitted with various numbers of radial baffles at the wall. Up to eight

baffles have been considered.
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4.0 SEGREGATION IN A CHUTE FLOW

4.1 MOTIVATION & BACKGROUND

At the very outset, let us take a brief look at why chutes are an important part of the

solids processing industry. As an example, we briefly describe the importance of under-

standing segregation in chute flows in the steel industry, as we have noted that earlier work

on segregation in industrial cases mostly pertained to metallurgical industry.

Traditionally, metallurgical industries have used chutes to transfer and distribute granu-

lar materials (such as coke, iron ore, etc.). The distribution of coke, ore, sinter and other raw

materials at the stock level of a blast furnace is very crucial for its smooth operation. This

is achieved with the use of a rotating chute (see Figure 25) whose rotation rate (RPM) and

inclination angle can be adjusted as needed. The hopper situated above the chute contains

the charge which consists of materials of various sizes with different physical properties and

it is difficult to distribute uniformly, while still maintaining a minimum resistance to the

ascending hot gas flow. This hot gas actually reduces the metallic charge (iron ore) and

produces hotmetal or liquid iron (which is later converted to steel). “Burden distribution”

is a generic term used to denote the radial ore/coke distribution as well as the particle size

distribution in the top part of a blast furnace. Owing to the differences in particle size and

density, the burden materials tend to separate from the main stream and get distributed

radially at the top of the furnace as per the principles of segregation. Therefore, segregation

plays a major role in determining the fate of any burden distribution scheme. Different

burden distribution strategies (i.e., using different chute RPM and angle) may yield different

segregation patterns, and in turn, will produce different voidage across the particle bed in the

top of a furnace. Since voidage distribution has a close relationship with gas utilization in a
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Figure 25: Example of chute flow in actual practice. An industrial chute is used for transfer

and distribution of granular materials on top of a blast furnace for producing liquid iron in

a steel plant. This illustration shows a bell-less top (BLT) charging device.
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furnace, the fuel rate can be effectively reduced if the extent of gas utilization is improved.

Non-uniform distribution of the charge materials results in a non-uniform radial distribu-

tion of particle size and voidage and hence permeability of the particle bed. The resulting

non-uniform radial distribution of the gas flow affects the charge descent rate because the

ascending gas finds the path of least resistance and the gas will flow through the areas of

higher permeability. The resulting non-uniform flow of gas in the other localities leads to

inadequate utilization of its thermal and chemical energies and hence leads to inferior fuel

efficiency, uneven descent of burden, lower productivity and excessive wall build-up or higher

thermal load on the walls of the blast furnace. This amounts to a recurring loss of revenue

in ironmaking. This discussion only highlights the industrial impact of segregation during

chute flow for one specific industry, as there are numerous applications of chute flow in many

other industries. It is clear that it is important to understand and control the segregation

in a chute flow.

A literature review reveals that there have been many studies [16, 30, 39, 87, 234–249] of

granular flow, which focused on chute flows because of the practical importance of such flows

in granular transportation and the relative simplicity of this type of flow (which allows for

detailed development and testing of theory [30]).

Savage and Lun [39] observed that in a chute flow, for high solid volume fractions, large

voids are less likely to be formed than small voids. As a result, smaller particles percolate

through the voids created by larger particles and descend to layers below. This results in a

net segregation flux of the smaller particles in the downward direction (i.e., normal to the

chute surface or inclined plane). They developed the following expression for segregation

flux of small particles:

Nb = nv
nb

na + nb
npurD̄[Eb + Ē −Em + 1]exp[−Eb − Em

Ē −Em

] (4.1)

where Nb = flux of small particles (type b), nv = number of voids per unit area, ni =

number of type i particles, np = number of particles per unit area in a layer, ur = mean

downstream velocity of a particle in a layer relative to those in underlying layers, D̄ =

mean particle diameter, Eb = ratio of small particle diameter to mean particle diameter,

Ē = ratio of mean void diameter to mean particle diameter and Em = minimum possible
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voids diameter ratio. Similar segregation flux expression was derived for larger particles by

replacing b with a everywhere in Equation 4.1. The above authors presented experimental

data for polystyrene beads of varying sizes in a chute flow, in which all the smaller particles

collect at the lower levels in the layer, confirming the percolation mechanism as described

both here and in Section 2.1. In their work, comparisons of the distance along the chute at

which the material segregates completely into two layers is found to be in agreement with

experiments. Hirschfield and Rapaport [241], using molecular dynamics simulations, showed

that in a chute flow larger particles rise to the top of the layer which is in agreement with

the results of Savage and Lun [39].

Dolgunin et al. [238, 242] studied segregation in a chute flow for both size and density

differences. For size segregation they used a close range (6.6 - 7.0 mm smooth steel balls)

while the density segregation experiments were performed for nearly a 1:2 density ratio

of two different materials. The interesting result from their work is that they obtained a

non-monotonic (S-shaped) concentration profile for different components. They also vali-

dated their continuum mathematical model of segregation with very good agreement with

experiments. Though a model involving the constitutive equation for segregation flux was

developed earlier by Khakhar et al. [21] for density segregation in a tumbler using an effec-

tive medium approach, the work of Dolgunin et al. appears to be one of the first continuum

models of segregation involving a chute flow, for both size and density. Later, Khakhar et

al. [30] noted that the model of Dolgunin et al., however, is not rigorous and thus does not

clearly specify the driving forces for the segregation or the dependence of the segregation

flux on the particle properties.

The work of Khakhar et al. [30] and Ottino et al. [16] critically reviewed the different

segregation models and observed that, although the theories for segregation provide some

physical insight into the process and are reasonably successful in describing segregation in

chute flows, few are grounded on fundamentals. They suggested that statistical mechanical

studies (based on kinetic theory) of hard sphere mixtures can provide a starting point for

understanding granular segregation. Therefore, they set out to study density and size seg-

regation in a chute flow of cohesionless spherical particles by means of computations and

theory based on the transport equations for a mixture of nearly elastic particles (i.e., using
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statistical mechanics or kinetic theory). They noted that the kinetic-theory results permit a

general understanding of the causes of segregation. They were successful in developing the

segregation fluxes based on number fraction or concentration gradient (ordinary diffusion),

granular temperature gradient (temperature diffusion) and granular pressure gradient (pres-

sure diffusion). Granular temperature is proportional to the kinetic energy of the velocity

fluctuations of the particles and is defined as:

T = (〈u2〉 − 〈u〉2) (4.2)

where u is the velocity and the angled bracket indicates a time average. Khakhar et al. [30]

compared the results from kinetic theory of binary mixtures with computations using Monte

Carlo (MC) simulations (for elastic particles) and particle dynamics (PD) or DEM simula-

tions (for inelastic particles). Ordinary diffusion always results in mixing, whereas pressure

and temperature diffusion produce segregation if density and size differences are present.

In their work, the equations for the pressure and ordinary diffusion fluxes for equal-sized

particles with different densities were identical to the corresponding equations for an ideal

gas; the form of the binary diffusivity, however, was different. They observed that the

temperature diffusion flux does not contribute to segregation in this case. Thus, denser

particles always concentrate in regions of higher pressure, regardless of the granular tem-

perature profile. The case of different-sized particles with equal density is more complex,

and the direction of the segregation flux depends on both the temperature and pressure

gradient (especially, for segregation in a flowing layer such as in a tumbler or a chute). In

general, the gradient in temperature across the layer results in the smaller particles migrat-

ing to the higher-temperature regions. Khakhar et al. [30] also noted that extrapolating

these results to temperature-induced segregation in a chute flow leads to a prediction that

the smaller particles migrate to the top of the layer as the top layer has higher fluctuating

velocity or granular temperature; this is the reverse of the predictions of Hirschfield and

Rapaport [241] and Savage and Lun [39]. They argued that this aberration is due to the fact

that gravitational effects were not considered in their study, and these effects might produce

pressure gradients that could reverse the segregation flux, i.e., direction of the segregation

flux depends on both the temperature and pressure gradient for size segregation.
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More recently, Zhang et al. [247] studied how segregation can be enhanced in an industrial

process, in this case, in a chute used for preparing materials for sintering in ironmaking. Size

segregation is beneficial in preparing a well-bedded feedstock for high sintering quality. They

tried to understand how a magnetic field can enhance the segregation in a chute by placing

magnets beneath the chute in many different configurations. They used two dimensional

(2D) DEM to simulate these different cases with magnets. Four different sizes of particles

(disks) were considered. To test the accuracy of their simulation, they compared the velocity

field of particles with a snapshot of the actual chute flow when the particles are leaving the

chute tip, which is an indirect qualitative validation.

In the area of measurement of flow properties in a granular flow down an incline, the work

of Barbolini et al. [248] deserves a mention here. They have outlined different techniques

for the measurements of velocity and concentration profiles in a setup similar to chute flow.

They also compared their velocity profile measurements with the velocity profiles found in

the literature involving experiments with real snow avalanches and a significant agreement

was observed.

In the present work, we examine the deposition behavior of both mono-sized and polydis-

perse dry granular materials in an inclined chute flow (quasi-2D). Unlike other studies in the

past, for the first time, we perform a systematic study, both experimentally and numerically

(using DEM), to observe the effects of different operating parameters such as chute angle,

particle size, falling height and charge amount on the mass fraction distribution of granular

materials after deposition. Tuning of the underlying contact force parameter of DEM allows

to achieve realistic results and is used as a means of validating the model against available

experimental data. The tuned model is then used to find the critical chute length for seg-

regation based on a recently proposed theory by our group [31], which we elaborate further

in the next section. As per the theory, segregation can be eliminated if a flow is perturbed

above a critical forcing frequency via periodic flow inversion. This critical frequency, fcrit,

is inversely proportional to the characteristic time of segregation, tS. Mixing is observed

instead of segregation when L < UavgtS, where L, Uavg , and tS denote the length of the

chute, the average stream-wise flow velocity of the particles, and the characteristic time of

segregation, respectively.
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4.2 HYPOTHESIS REVISITED: TIME MODULATION IN A CHUTE

FLOW

In this section, an expression for the critical forcing frequency (or critical time or critical

chute length) is developed, which is central to our hypothesis of flow modulation as described

in Section 3.2.

Utilizing existing theoretical tools [21, 30], which are briefly reviewed in the preceding

sections, one can estimate the value of the characteristic segregation time tS. The critical

forcing frequency fcrit can be obtained via a scaling argument as follows:

The variation of number fraction of small particles in the layer (c) is given by the

convective-diffusion equation:

∂c

∂t
+ vx

∂c

∂x
+ vy

∂c

∂y
=

∂

∂y

(

D
∂c

∂y
− Js

)

(4.3)

neglecting the diffusion and segregation fluxes in the flow direction (x) (that is, assuming

that the Péclet number in the x direction is large). The term on the right hand side is the

diffusional flux with D and JS being the diffusion coefficient and the segregating flux, respec-

tively. Khakhar et al. [21] derived the convective-diffusion equation for density segregation,

and they proposed the segregation flux expression for the more dense particles considering

the “buoyant force” as the driving force (effective medium approach). An empirically similar

expression for the segregation flux for a mixture of particles of different sizes flowing down

an inclined plane was also proposed by Dolgunin and Ukolov [238,242]. Savage and Lun [39]

proposed a different segregation flux expression for mixtures of different sizes of particles.

One can refer to the discussions in Section 4.1.

Surprisingly, though the mechanism of segregation for size and density segregation is

different, the pattern of segregation is very similar in both cases (large or light particles rise

on the top of the flowing layer, and the small or denser particles go down). Though a model

for density segregation flux is available [21], a general expression for the segregation flux in

the flowing layer due to size differences is not available. However, it can be derived following

a procedure similar to density segregation as shown below. Recently, Hajra et al. [250] have
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proposed the following form of the segregation velocity for a segregating species:

vS = [KT + (1− c)KS](1− d̄) (4.4)

where d̄ = d1/d2 is the size ratio, d1 and d2 are the diameter of small (segregating species) and

large particles, respectively; c = φ1/φt is the number fraction of the small particles, φ1 is the

concentration (volume fraction) of the small particles, φt = (φ1+φ2) is the total solids volume

fraction; KT and KS are the characteristic segregation velocities. KT and KS are lumped

parameters, which depend on granular temperature, local void fraction, gravity, particle sizes,

density, shape, roughness, coefficient of friction, coefficient of restitution, concentration of

small and large particles, etc. Hence, the segregation flux of the segregating species could

be written as

JS = vSφ1 (4.5)

substituting for the expression of vS from Equation 4.4 into Equation 4.5, we get

JS = [KT + (1− c)KS](1− d̄)φtc (4.6)

If d̄ = 1 (for equal sized particles), then vS = 0 and JS = 0 (there is no size segregation).

Assuming the total volume fraction (φt) to be nearly constant, and substituting for the

expression for the segregation flux JS using Equation 4.6 we obtain, from Equation 4.3,

∂c

∂t
+ vx

∂c

∂x
+ vy

∂c

∂y
=

∂

∂y
[D

∂c

∂y
− {KT + (1− c)KS}(1− d̄)φtc] (4.7)

If we put KS = 0 then our flux expression is similar to the model of Khakhar et al. [21]

derived for density segregation and to the model of Dolgunin and Ukolov [238] proposed

for size segregation in chute flow. The characteristic segregation velocity, KS accounts for

the local motion due to the physical and mechanical properties of the particles such as size,

shape, roughness, coefficient of restitution, coefficient of friction, etc.

Now, we can write down the expression for the characteristic segregation time as tS =

R1/[(KT + (1− c)KS)(1− d̄)], where R1 is the radius of the small particles. Now using this

value, we can define a segregation-based Péclet number as Pe = (KT+(1−c)KS)(1−d̄)R1

D
, where

D is the collisional diffusivity. Rearranging the above expression, we get Pe = [(KTR1/D)+
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(1 − c)(KSR1/D)](1 − d̄). Because of the current theoretical uncertainty and the time-

varying nature of the flow (as well as granular temperature, local void fraction, system

non-uniformity, etc), we treat β = KTR1/D and α = KSR1/D as the fitting parameters

that should be a decreasing function of fluctuation energy of the flow and should be close

to unity at small to moderate energies. This yields Pe = β(1 − d̄) + (1 − c)α(1 − d̄). The

particle diffusivity in sheared granular flows were obtained by Savage [251] from numerical

simulations of shear flow of nearly elastic hard spheres. A scaling of the form D = F (ν)d2γ̇

was obtained, where d is the particle diameter, γ̇ is the shear rate, and F (ν) is a function of

the solid volume fraction (ν). Hajra and Khakhar [155] confirmed the scaling experimentally.

By using the diffusivity as given by Savage [251] (D = 0.01R2
1γ̇), we get tS written as

tS = tD
Pe

=
R2

1

DPe
= 100

[β+(1−c)α](1−d̄)γ̇
, where γ̇ is the shear rate. This suggests that the critical

perturbation frequency, fcrit, will vary linearly with the shear rate as

fcrit = 0.01γ̇(1− d̄)[β + (1− c)α] (4.8)

Now we can derive the critical chute length to initiate segregation as follows: Khakhar et

al. [21] verified that the flow down an inclined chute is essentially linear, so that γ̇ = 2Uavg/H ,

where Uavg is the average stream-wise flow velocity and H is the height of the particle stream

flowing down the chute at a stable region. Therefore, by using the expression Uavg = γ̇H/2,

the critical chute length to initiate segregation is then given by (using Equation 4.8)

Lcrit = UavgtS = Uavg/fcrit =
100Uavg

[β + (1− c)α](1− d̄)γ̇
=

50H

[β + (1− c)α](1− d̄)
(4.9)

4.3 EXPERIMENTAL SETUP

The experimental results are obtained on a test unit [252] as shown in Figure 26. The setup

consists of an inclined chute of rectangular cross section made up of PMMA (polymethyl-

methacrylate) in a quasi-two-dimensional rectangular cell. The depth to width ratio is 1:8.

The bottom of the chute is rough and it can be fixed at two different angles (45 degrees and

60 degrees) to the vertical. To control the depth of the moving bed along the chute, a pneu-

matic control gate is installed at the hopper opening to regulate the flow. The gate opening
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Figure 26: Schematic of the chute flow experimental setup showing a model hopper, chute

and deposit bins (segregation box). The chute length is 600 mm, the vertical distance

between the chute hinge and the hopper opening (flow control gate) is 100 mm, the hopper

cross section is square (150 mm × 150 mm); the setup is quasi-2D with a depth of 150 mm

and a width of 1200 mm (1:8 aspect ratio). There are 20 bins each having a volume of 60 mm

× 60 mm × 150 mm (L × H × W). The bins can take up to three different vertical positions

with respect to the chute hinge. Levels 1, 2 and 3 as described in the text are 800 mm,

1050 mm and 1300 mm below the chute hinge, respectively.
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pressure is varied between 2 kg/cm2 – 5 kg/cm2, which causes the gate to open instantly. A

horizontal tray (called a “segregation box”) with 20 bins to collect the deposited materials

can be slid in a rail inside the setup at three different levels (heights). Nearly spherical

polystyrene particles of different sizes (6, 7 and 14 mm) are used as the test granular mate-

rial. A vacuum cleaner is used to collect the particles from different bins of the segregation

box. The collected particles are later weighed using a highly accurate electronic weighing

balance (Sartorius make, Model GP 3202, capacity 3200 g with 0.01 g accuracy).

4.4 RESULTS & DISCUSSIONS

In this section, we discuss the results relating to the deposition behavior of both mono-sized

and polydisperse dry granular materials in a chute flow. The results obtained from many

experiments and DEM simulations are compared for the flow of a stream of granular material

down an inclined chute. The effects of different parameters such as chute angle, particle size,

falling height and charge amount on the mass fraction distribution of granular materials

after deposition are also examined. Starting with the mono-dispersed case, we first tune

the underlying contact force parameters of the DEM model so that we can obtain realistic

results. Sensitivity of a model parameter, namely the yield stress of the material, on the

final results has been carried out so that appropriate contact force parameters can be chosen

to validate the model. The tuned model is then used to find the critical chute length for

segregation based on the theory discussed in Sections 3.2 and 4.2.

4.4.1 Mono-dispersed Flow

4.4.1.1 DEM Simulation & Tuning of Force Model The simulation parameters

(chute angle, particle size, etc.) for various cases considered in the present study are inspired

by experiments [252] performed on an identical setup (refer to Figure 26 in Section 4.3).

Figure 27 shows the simulation setup, which closely resembles the actual experimental setup

as described in Section 4.3. All the pertinent dimensions and other parameters like number
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Figure 27: The chute flow setup as used in the numerical simulations. This typical snapshot

shows 14 mm diameter particles flowing down a 600 mm chute inclined at 60 degrees with

the vertical. Hopper with the gate (opened to the right, short black line) is also shown in

this picture. The chute, bins and other fixed walls are made from 4 mm diameter particles.

There are 20 bins spanning the full width of the setup (1200 mm). The simulation is periodic

in the direction pointing into the plane of the paper. Bins are numbered from 1 to 20 (R to

L): bins 1-10 are called wall-side bins and bins 11-20 are called chute-side bins.
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Table 3: Material properties used in the simulations (and experiments)

Parameter Value

Young’s Modulus (E, GPa) 2.9

Density (ρ, kg/m3) 951-1160

Coefficient of Friction (µ) 0.30

Poisson Ratio (ν) 0.33

Yield Stress (σy, MPa) 45.0

of particles (or mass of particles), density, size of particles, etc., are kept as close as possible

to the experimental conditions so that results can be compared with reasonable accuracy.

A typical simulation evolves with particles starting from rest in the hopper after gravita-

tional settling. The hopper gate is opened and as time elapses, the particles are acted upon

by gravity resulting in their flow through the chute and finally the particles are deposited in

various bins after leaving the chute (refer to Figure 27).

Before we present results for the different cases, let us discuss how the DEM model is

tuned. We consider two force models in our PD simulations: elastic with viscous damping (re-

ferred to as elastic in Section 2.2.2) and elasto-plastic (referred to as plastic in Section 2.2.2).

Table 3 shows the material properties that are used in the simulations. Figures 28 (a) and

(b) compare the results from the elastic and plastic force models with the experimental data

for two different experimental cases as mentioned in the caption. Though the simulation

results agree well with the experiments for both types of force models, we choose the plastic

force model because of its superior capability to capture the underlying physics. A plas-

tic model was favored because all the model parameters can be directly derived from the

material properties. In the elastic model, the damping parameter cannot be obtained from

material properties.
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Figure 28: Comparison of simulation results from two force models with the data obtained

from the experiments. The force models PD Elastic and PD Plastic denote elastic with

viscous damping and elasto-plastic models, respectively. (a) corresponds to a case with

7 mm diameter polystyrene balls (1 kg ) with a 60 degrees chute and the bins placed at level

1. (b) corresponds to 6 mm diameter polystyrene balls (0.537 kg) with a 45 degrees chute

and the bins placed at level 1. Refer to Figure 26 for the positions of different levels.
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First, we tune the yield stress used in the plastic force model to mimic realistic contact

mechanics. The tuning is performed in the following way: we adjust the yield stress in order

to match a single set of experimental data and then the adjusted yield stress is kept fixed

in the model and is subsequently used to compare results from other experimental data or

make predictions for different chute flow cases. Figure 29 shows that a yield stress of 45 MPa

reproduces the experimental results very well. The peak position and peak height for the

plastic model with a yield stress of 45 MPa are bin number 7 and 27.96%, respectively. This

is close to the experimental observation of peak position at bin number 6 and peak height

at 28.65%. The corresponding values for the next closest case (plastic model with 22.5 MPa

yield stress) are bin number 7 and 31.69%, respectively. Note that here we prefer peak height

over peak position to select the model as both the yield stresses give a close peak position

when compared with the experiment. In addition to the above comparisons, we also perform

two-sample Kolmogorov-Smirnov (K-S) test [253] to cross-check the agreement between the

experimental result and plastic models with different yield stress parameters. The two-

sample K-S test is generally performed for comparing two samples or distributions, as it is

sensitive to differences in both location and shape of the empirical cumulative distribution

functions (CDFs) of the two samples. The two-sample K-S test returns the probability

(p) of observing the given statistic (i.e., whether the two distributions are from the same

continuous distribution or not – a p value of 1.0 signifies that the two distributions are

identical) and also quantifies a distance (k) between the empirical distribution functions

of the two distributions. A lower k value signifies a better agreement between the two

distributions. Table 4 summarizes the results of the two-sample K-S test performed [254]

on the yield stress tuning data. The experimental data are used as one of the samples

for all cases. One can clearly observe that the experimental data is best matched by the

plastic force model with a yield stress of 1x (i.e., 45 MPa) as it produces the highest p value

and the lowest k value. Therefore, we select the plastic model with 45 MPa yield stress to

simulate various cases as described in the next sub-sections (coincidentally, the yield stress

of polystyrene beads is ∼ 45 MPa, which indicates that our plastic model has a sound force

model and captures the contact mechanics very well).
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Figure 29: Tuning of the plastic force model parameter (YS : yield stress) for a case similar

to the experimental condition as in Figure 28 (a). A base YS value of 1x corresponds to 45

MPa. Note that only two curves (corresponding to experiment and PD plastic model with

YS = 45 MPa) have their line colors changed to emphasize their agreement as compared to

other cases.
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Table 4: Two-sample Kolmogorov-Smirnov (K-S) test results of elasto-plastic force model

tuning data

Case p value k value

PD Plastic (YS: 1/2x) vs. Experiment 0.50 0.25

PD Plastic (YS: 1x) vs. Experiment 0.97 0.15

PD Plastic (YS: 2x) vs. Experiment 0.50 0.25

PD Plastic (YS: 10x) vs. Experiment 0.00 (test failed) 0.50

As Khakhar et al. [223] noted that thorough studies of the parametric sensitivity of the

results of DEM simulations to the used parameters are lacking, we believe that Figure 28 is

a small but important step in that direction. Though more rigorous studies in this direction

are warranted, it is worthwhile to mention here that, recently, McCarthy et al. [100] have

performed a similar validation study of DEM for a different system (annular cell).

The various simulations and the operating parameters are listed in Table 5. In the

following sub-sections, simulation results for the various cases mentioned in Table 5 are

presented and whenever applicable, comparison is made with the experimental data.

4.4.1.2 Case 1: Effect of Charge Amount The only parameter which is varied for

this case is the total number (or mass) of particles in the hopper. This is also known as

the charge amount in industrial practice. Refer to Table 5 for a complete description of

all the operating parameters. The hopper is filled with three different amounts of particles

separately and in each run, the particles are allowed to fall on the chute. Figure 30 shows the

comparison between model and experiment of the effect of charge amount on mass fraction

distribution. All peak positions are centered on bin number 7 and the agreement becomes

better for higher charge amount. The peak heights are 26.72% (300 g, model), 35.02% (300

g, experiment), 31.10% (600 g, model), 38.31% (600 g, experiment), 32.28% (900 g, model)
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Table 5: Different cases for mono-disperse simulation (and experiment) and the operating

parameters used

Case Operating parameters

Case 1: Effect of charge amount Mass of particles: 0.3 kg (N = 1455 particles),

0.6 kg (N = 2910), 0.9 kg (N = 4365)

Diameter of particles: 7 mm

Chute angle: 45o

Bin location: level 2 (1050 mm below chute hinge)

Case 2: Effect of particle size Diameter of particles: 7 mm and 14 mm

Mass of particles: 1 kg (N7 = 4850, N14 = 600)

Chute angle: 60o

Bin location: level 1 (800 mm below chute hinge)

Case 3: Effect of falling height Bin location: level 1, 2 and 3

(level 3 is 1300 mm below chute hinge )

Diameter of particles: 6 mm

Mass of particles: 1 kg (N = 5000)

Chute angle: 60o

Case 4: Effect of chute angle Chute angle: 45o and 60o

Diameter of particles: 6 mm

Mass of particles: 0.537 kg (N = 5000)

Bin location: level 1
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Figure 30: Effect of charge amount: comparison with experimental data.

and 33.37% (900 g, experiment). Clearly, there is a qualitative agreement between the

trends for both model and experiment. In addition to comparing peak positions and peak

heights of the distributions, we also perform a two-sample Kolmogorov-Smirnov (K-S) test

on the corresponding experimental and DEM results to confirm that the two distributions

(experiment vs. model) are from the same continuous distribution. A high probability (p

= 96.5%) of observing the given statistic is obtained, which again confirms that there is a

good agreement between experiment and model. The main observation from this graph is

that there is no significant effect of the initial charge amount on where most of the particles

get deposited after leaving the chute; however, there is some effect on the peak height or the

maximum mass fraction of particles.

4.4.1.3 Case 2: Effect of Particle Size Two different sized particles, 7 mm and 14 mm,

are considered separately. Figure 31 shows the comparison between modeling results and

the experimental data. We can observe that the similarity between these two is significant

(two-sample K-S test gives a very high p value of 96.5% for both particle sizes), yet there is
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Figure 31: Effect of particle size: comparison with experimental data.

a slight mismatch at the wall side (bins 1–3) for 14 mm particles. However, the overall trend

is comparable. If we closely observe the distributions, we can notice that despite doubling

the particle size, the effect on the final distribution is not very significant. Also, the location

of the densest region in the trajectory is nearly insensitive to the size of particles.

4.4.1.4 Case 3: Effect of Falling Height In this case, the falling height of particles is

varied at three different levels (see Table 5). Figure 32 shows three snapshots of the particle

trajectory corresponding to three different falling heights. Figure 33 offers the comparison

between experiment and simulation of the mass fraction distribution for each of the falling

heights. We can observe that, as expected, the densest region of the trajectory (highest

mass fraction or peak of the distribution) shifts towards the wall side as the falling height is

increased and the densest region also gets thinner (peak height decreases). The simulation

accurately captures the right bin number for the maximum deposition for level 1 and level 2.

There is some mismatch when the falling height is increased to level 3. The maximum % of

mass fraction, for the case of level 1 in experiment is 30.84% (24.66% for level 2 and 17.67%
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Figure 32: Snapshots showing trajectories for three different falling heights.

for level 3) and the corresponding simulation value is 30.1% (23.92% for level 2, and 19.78%

for level 3). The two-sample K-S test gives a (p, k) value of (0.99, 0.10), (0.77, 0.20) and

(0.77, 0.22) for level 1, 2 and 3, respectively, when compared with experiments. Therefore,

we can conclude that the simulation captures the essential features (peak position, peak

height and distribution shape) of the chute flow reasonably well.

4.4.1.5 Case 4: Effect of Chute Angle For this case, the chute angle is varied at two

different levels: 45 degrees and 60 degrees, and all other parameters are kept constant. There

is a high degree of agreement between model and experiment as is evident from the visual

observation. We also perform the two-sample K-S test and obtain a (p, k) value of (0.97,

0.15) and (0.99, 0.10) for 45 degrees and 60 degrees chute angles, respectively. As expected

from Figure 34, higher chute angle produces a wider trajectory with the peak (densest region)

shifted towards the wall.

4.4.2 Polydisperse Flow

In this section, we discuss the experimental and simulation results for chute flow for a mixture

of particles with different sizes. First, two cases are analyzed: the effect of falling height

and of chute angle. Then, by varying the length of the chute, we show that employing the
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Figure 33: Comparison of simulation and experimental results for observing the effect of

falling height: level 1 is 800 mm below chute hinge, level 2 is 1050 mm below chute hinge

and level 3 is 1300 mm below chute hinge.
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Figure 34: Effect of chute angle: the chute is fixed at two different angles, 45o and 60o, by

keeping other parameters unchanged.
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Table 6: Different cases for polydisperse simulation and operating parameters

Case Operating parameters

Case 1: Effect of falling height Bin location: level 2 and 3

Diameter of particles: 6 mm, 7 mm and 14 mm

Mass of particles: 6 mm : 0.5 kg (N=4641),

7 mm: 0.3 kg (N=1455), 14 mm: 0.2 kg (N=119)

Chute angle: 45o

Case 2: Effect of chute angle Chute angle: 45o and 60o

Diameter of particles: same as Case 1

Mass of particles: same as Case 1

Bin location: level 2

hypothesis of time modulation (as discussed in Section 4.2), we can obtain a critical chute

length for segregation for the system considered in this study.

Following the discussion in Section 2.1, we can see that in our case, the size ratios of the

particles are more than the spontaneous percolation threshold. Therefore, the spontaneous

percolation is not expected to drive the segregation, and the shear-induced percolation should

work as the main segregation mechanism.

The various cases of simulations and the operating parameters are listed in Table 6,

which correspond to the same conditions as used in the experiments. The same tuned model

from the mono-dispersed case is used for all the simulations. To match the experimental

conditions, the particles are randomly placed in the hopper in the simulation because random

mixtures are also used in the hopper during all the experiments. To ascertain that the

initial randomness does not affect the final distribution, some sensitivity tests are done

before actual simulations are performed. To do this, the initial arrangement of particles

is generated using various random number generators (e.g., gsl rng() from GNU Scientific
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Figure 35: Effect of initial randomness of a mixture of 6 mm, 7 mm and 14 mm particles on

final mass fraction distribution: Initial particle arrangements are randomly generated using

different random number generators. Only the distribution for 6 mm particle size is shown

here.

Library [255], drand48(), rand() and random() from standard C library). In each run, 6215

particles were generated using uniform random number generators. Figure 35 shows a mass

fraction distribution plot where we can clearly establish that the final distribution is not

sensitive to the random number generator used (i.e., on the initial randomness).

4.4.2.1 Case 1: Effect of Falling Height Figures 36 [(a): experiment, (b): simula-

tion] show the mass fraction distribution of different-sized particles after they are mixed

randomly in the hopper and allowed to flow over the chute. The chute angle is fixed at

45 degrees and the elevation of the bins is varied at level 2 and level 3, respectively. This

controlled experiment singles out the effect of the falling height on mass fraction distribution

and particle size distribution in a multi-sized mixture. Though the individual distributions

corresponding to model and experiment do not agree quite well, they indicate similar trend
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– the peaks shift to the wall side (towards lower bin numbers) as the falling height increases,

for both experiment and simulation. It is evident that as the falling height increases, the

larger particles tend to deposit towards the wall owing to their higher inertia.

4.4.2.2 Case 2: Effect of Chute Angle Figures 37 [(a): experiment, (b): simulation]

show the mass fraction distribution of multi-sized particles for two chute angles. The chute

angles are varied at 45 and 60 degrees, respectively, and the bins are kept at a fixed elevation

of level 2 in both the cases. This controlled experiment singles out the effect of the chute

angle on mass fraction distribution and particle size distribution in a multi-sized mixture.

In spit of the fact that the individual distributions corresponding to model and experiment

do not agree quite well, we can observe that like the mono-dispersed case, the peaks shift to

the wall side (lower bin numbers) as the angle increases, and the corresponding height of the

peaks also get lowered, for both experiment and simulation. It is evident that as the chute

angle increases, the particles tend to deposit towards the wall owing to higher acceleration

(as θ increases, g sin θ also goes up).

4.4.2.3 Critical Chute Length for Segregation Following the discussion on the ap-

plication of the hypothesis of time modulation in a chute flow in Section 4.2, now we attempt

to quantify the critical chute length for the system under consideration. Figures 38 (a) and

(b) show how the velocity profile of particles on a stable region of chute is calculated. This

information is needed to obtain the shear rate (γ̇) in the system. Starting with a base case

as shown in Figure 38 (a), we systematically vary the chute length from 300 mm to 7000 mm

by keeping other parameters (such as falling height, chute angle, etc.) unchanged. Then we

monitor the mass fraction distribution for each of the simulation cases. A narrow distribu-

tion for all the particle sizes would mean that all the particles with different sizes have been

deposited within a small region spanning only a few bins, and we consider this to be a case

similar to mixing of particles (think of a mixture of particles in a container or bin).

A wider distribution for one particle size, on the other hand, would mean that there is

considerable spread of that type of particles and the deposition would span across multiple

bins. We consider this to be akin to segregation as all types of particles are no longer
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Figure 36: Effect of falling height on mass fraction distribution of a mixture of polydisperse

particles: (a) shows experimental results and (b) corresponds to simulation.
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Figure 37: Effect of chute angle on mass fraction distribution of a mixture of polydisperse

particles: (a) shows experimental results and (b) corresponds to simulation.
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Figure 38: (a) A typical flowing layer on a 600 mm chute with 45 degrees inclination. The

bins are placed at level 2 (1050 mm below chute hinge). The bed of particles consists of 6, 7

and 14 mm particles in a weight ratio of 5:3:2, respectively. (b) Velocity profile of particles

is calculated on a small slice of width 28 mm centered at half chute length corresponding to

the scenario shown in (a). Situation (a) is chosen because of a fully developed layer with

uniform thickness around the middle of the chute.
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deposited in one small region. Essentially, a narrow distribution for one particle size and a

wider distribution for another particle size is a typical signature for segregation. Therefore,

segregation will occur if various particle sizes have differing degrees of spread in the mass

fraction distribution. This is evident from Figure 39 where we can observe that as the chute

length increases, the distribution becomes wider (i.e., peak height reduces as the sum of

the distributions is 100%) for smaller particles whereas larger particles continue to have a

sharper peak. In this figure, to have a comparison on a uniform distance scale for all particle

sizes and chute lengths, all the peak positions corresponding to 14 mm particle distribution

have been rescaled so that it is denoted as bin number 0 (an arbitrary choice). The negative

bin numbers correspond to the bins to the left of the 14 mm peak position (towards wall

side) and the positive bin numbers correspond to the bins to the right (i.e., towards chute

side). The important observation from these plots is that 6 mm and 7 mm particle sizes have

a wider mass fraction distribution as compared to 14 mm particles for higher chute length.

If we observe closely, we can notice that the 14 mm particle is always distributed only over

a narrow distance (about 4 bins or 240 mm) for all chute lengths, whereas the 6 mm (or

7 mm) particles are distributed over a wider distance (from about 8 bins or 480 mm for

chute length 300 mm to about 25 bins or 1.5 m for chute length 7 m). This signifies that

as the chute length increases, there is more and more separation occurring between particles

with different sizes. Therefore, from this distribution plot, we can get some idea about how

segregation can be controlled by varying the chute length.

Now, turning our focus back to the theoretical prediction of the critical chute length to

initiate segregation, we tabulate the pertinent parameters of Equation 4.9 for our case in

Table 7. γ̇ has been calculated from the slope of the linear portion of the velocity profile in

Figure 38 (b). The equation gives a value of 4.0 m as the critical chute length for the present

system under consideration. Now, if we plot the peak height (i.e., maximum mass fraction)

for all the distributions (for all particle sizes) as a function of chute lengths, we obtain a

plot as shown in Figure 40(a). It is evident from this plot that as the chute length increases

initially, the peak height decreases rapidly and that after about L = 5.4 m of chute length,

the peak height becomes nearly flat and does not change significantly. The peak height is

a measure of the spread of the distribution: Lower peak height means wider spread, and a

90



M
as

s 
F

ra
ct

io
n 

(%
)

Distance (bins)

0

10

20

30

40

50

60 14 mm (L = 300 mm)

7 mm (L = 300 mm)

6 mm (L = 300 mm)

-25 -20 -15 -10 -5 0 5
0

10

20

30

40

50

60

L = 4800 mm

-25 -20 -15 -10 -5 0 5

L = 5400 mm

-25 -20 -15 -10 -5 0 5

L = 6000 mm

-25 -20 -15 -10 -5 0 5

L = 7000 mm

0

10

20

30

40

50

60

L = 2400 mm L = 3000 mm L = 3600 mm L = 4200 mm

L = 600 mm L = 900 mm L = 1800 mm

Figure 39: Mass fraction distribution of 14, 7 and 6 mm particles in a polydisperse chute

flow for different chute lengths. To obtain a clear comparison, 14 mm particle peak positions

for all chute lengths have been arbitrarily set to bin number 0. Other conditions are similar

to Figure 38 (a).
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Table 7: Parameters to calculate critical chute length from Equation 4.9

Parameter Value

β 2.0

c 0.7467

α 2.1

d̄ 0.4286

Uavg 1.275 m/s

γ̇ 22.0 s−1

wider spread signifies segregation. Also, in Figure 40(b), we plot the degree of mixing (a new

mixing measure specific to chute flows), R (Equation 4.10), as a function of chute length.

The degree of mixing R is defined as

R = W14/(W6 +W14) (4.10)

where Wi is the full width at half maximum (FWHM) of the mass fraction distribution for

a particular particle size i (we consider 14 mm and 6 mm, the largest and smallest particle

sizes, respectively). A value of R = 0.5 (i.e., W14 = W6) indicates that the two sizes are

completely mixed and R ≤ 0.25 (when the spread of small particles is three times the spread

of larger particles) signifies segregation. This plot also confirms the fact that segregation is

initiated at about L = 5.4 m of chute length. Therefore, our theoretical prediction and the

prediction from the computer model are of the same order of magnitude (4.0 m vs. 5.4 m)

and this suggests that our theory of forcing frequency is capable of qualitatively explaining

segregation phenomena, in this case, in a chute flow.
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Figure 40: (a) Maximum mass fractions (peak heights) have been plotted as a function of

chute length for a polydisperse chute flow simulation. Lower peak height corresponds to a

wider distribution and hence signifies considerable segregation. (b) Degree of mixing R has

been plotted as a function of chute length.
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4.4.2.4 Critical Chute Length for Segregation: Finite vs. Periodic Chute The

theory of time modulation applies to a fully developed shear flow. As we have seen in the

earlier section, this assumption may not remain valid if longer chutes are used with a limited

number of particles. A finite chute flow is essentially a batch flow where thinning of particle

layers is possible if a longer chute is used and this may cause the particles to segregate in

the flowing direction and not along the normal-to-flow direction. With this issue in mind,

we test the limits of a finite chute flow in verifying our hypothesis, and in addition to that,

we also employ a periodic chute flow setup to cross-examine if a batch flow is still the right

situation to test the hypothesis.

Figure 41 shows how the average centroid positions (along the flow direction) of big-

ger (14 mm) and smaller (6 mm) particles change as a function of time for chutes with

different lengths. The y axis corresponds to a quantity called X̄c, which is defined as

X̄c =
(Xc,big−Xc,small)

0.5Lplug
, where Xc is the centroid of the particle mass (for big or small) and

Lplug is the length of the particle plug on the chute at the time in question. This quantity

clearly measures the amount by which the two types of particles are separated on the chute

along the flow direction. The x axis corresponds to the dimensionless time t̄ as defined by

t̄ = t−tentry

texit−tentry
, where tentry and texit correspond to the particle entry and exit time to/from

the chute respectively. A value of X̄c = 1.0 signifies a complete separation of the bigger and

smaller particles on the chute along the flow direction. As is evident from this figure, there

is some degree of horizontal separation on chute for lengths above 4.8 m (the X̄c for other

intermediate chute lengths shorter than 4.8 m never exceeds 0.5). Therefore, the assump-

tions of shear flow (only vertical segregation) on these longer chutes is not completely valid.

Therefore, we felt a need to further test our hypothesis using a periodic chute flow setup.

In the periodic chute flow setup, all the conditions are similar (particle numbers, etc.)

to the finite chute length case except that the periodic chute is enclosed in a simulation box

with length 600 mm and the chute angle is set at 20o. The choice for the above angle is due

to the fact that a chute angle of 45o (as used in the experiments) does not produce a steady

flow as the particles continue to accelerate indefinitely. Therefore, 20o is chosen as the chute

angle for verifying our hypothesis for the periodic chute case.
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Figure 41: Normalized difference of the average centroid position of bigger and smaller

particles on chute as a function of normalized time. Data for different chute lengths have

been plotted together.

In order to calculate the characteristic segregation time tS, the shear rate γ̇ is calculated

from the velocity profile at different times during the flow and an average value is obtained

from different time samples. Figure 42 shows how the shear rate fluctuates over time and

these data are used to find an average shear rate ( γ̇ ). Table 8 tabulates all the pertinent

data for calculation of tS (refer Equation 4.9). Note that the fitting parameters α and β are

kept the same as in the finite-length chute case and this yields a characteristic segregation

time of about 7.2 s. Now, we investigate if we can arrive at this characteristic segregation

time – as obtained from the theory – from direct observation of the concentration profile. To

accomplish this, first we plot the concentration profiles of all types of particles at different

time instances in the periodic chute flow. The bed of particles is sliced into many bins in

the normal-to-flow direction, and the volumes of all types of particles in a particular bin is

used to calculate the concentration of each kind of particle in that bin. It is obvious from

Figure 43 that somewhere between 4–10 s, the bigger particles (14 mm) start to separate.

The concentration of 14 mm particle becomes zero for about half of the bed height starting
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Figure 42: The shear rate fluctuation over time in a periodic chute flow.

Table 8: Parameters to calculate critical segregation time for a periodic chute flow from

Equation 4.9

Parameter Value

β 2.0

c 0.7467

α 2.1

d̄ 0.4286

γ̇ 9.61 s−1
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from time 4 s. To further narrow down the initiation time for segregation, we plot three

different indices for segregation as function of time: the so-called Intensity of Segregation

(IS) (Figure 44), the Relative Standard Deviation (RSD) (Figure 45) and also (1-ML) (Fig-

ure 46), where ML is the Lacey index. One can refer to Section 2.3 for the description of

these indices. These indices are calculated considering 14 mm particles as the tracer par-

ticles. Clearly, all these indices suggest that after about 6.0 s (the vertical line in these

graphs corresponds to 6.0 s), there is a clear segregation taking place in the periodic chute

flow. Therefore, we can conclude that the direct observation in a periodic chute flow gives

a characteristic segregation time which is of the same order of magnitude as the prediction

from the theory (6.0 s vs. 7.2 s).
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Figure 43: Evolution of concentration profiles in a periodic chute flow.
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Figure 44: Evolution of Intensity of Segregation (IS) in a periodic chute flow. The vertical
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Figure 45: Evolution of the relative standard deviation (RSD) of concentration in a periodic

chute flow.
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Figure 46: Evolution of the derived Lacey index (1-ML) in a periodic chute flow.
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5.0 RATE-BASED SEPARATION IN COLLISIONAL FLOWS

Separation of particles is extremely important in a number of solids processing industries.

Rate-based separation processes hold promise as both more environmentally benign as well

as less energy intensive when compared to conventional particle separations technologies

such as vibrating screens or flotation methods. This approach is based on differences in

the kinetic properties of the components of a mixture, such as the velocity of migration

or diffusivity. In this Chapter, two examples of novel rate-based separation devices are

demonstrated. The first rate-based separation example involves the study of the dynamics

of gravity-driven particles through an array of obstacles. Both discrete element (DEM) sim-

ulations and experiments are used to augment the understanding of this device. Dissipative

collisions (both between the particles themselves and with the obstacles) give rise to a dif-

fusive motion of particles perpendicular to the flow direction and the differences in diffusion

lengths are exploited to separate the particles. The extent of separation (i.e., how far one

type of particle is removed from another) depends on the different distances traversed by

the two types of particles and hence is directly proportional to the time of migration in the

gravity field (i.e., time-dependent). The second example employs DEM to analyze a ratchet

mechanism where a directed current of particles can be produced perpendicular to the di-

rection of energy input. In this setup, a vibrating saw-toothed base is employed to induce

different mobility for different types of particles. The effect of different operating conditions

and design parameters on the separation efficiency are discussed.
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5.1 SEPARATION OF GRANULAR MIXTURE BY AN ARRAY OF

OBSTACLES

excitor mechanism

multi-slope screen

heavy duty helical

coil spring

Figure 47: Schematic of a banana screen.

Particle separation is a routine task across many industries (chemical, pharmaceutical,

food, metallurgical, etc.). Conventional separation devices (such as vibrating screens, see

Figures 47 and 48) are energy intensive: energy is spent for separation as well as de-clogging

of the screen. We should note that it has been mathematically proven that clogging is

inevitable when the screen opening size is less than three particle diameters [256]. Moreover,

industrial vibrating screens can weigh thousands of tons when loaded with materials and

hence shaking the screen requires heavy energy input. Novel rate-based separation devices

that require no or small energy input are environmentally benign (green) and clogging is

not an issue in those devices. Obstacles arranged in a periodic lattice had been used in
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Figure 48: Schematic of a vibrating screen.

the past [257–260] to study transport and diffusion in many processes, especially to study

microfluidic particle-separation devices (e.g., to separate macromolecules). The main idea

behind these devices is to exploit the differences in diffusion lengths of different particles

(macromolecules) to perform separation. In some previous studies [258, 261, 262], a special

mechanism called a “geometric ratchet” was described as a way to separate constituents of

a mixture (mainly macromolecules like DNA or other charged biomolecules in an electric

field). A geometric ratchet mechanism does not require any external vibration or time-

dependent forcing but consists, instead, of a 2D periodic array of asymmetric obstacles (see

Figure 49). Because of the asymmetry of the obstacles, the particles average drift velocity

acquires a component perpendicular to the direction of the external force (here, gravity),

which constitutes the ratchet effect. A mixture of particles when poured in this kind of

setup will separate out due to the drift-diffusive motion. Inspired by this principle, a device

has been conceived where macroscopic particles are made to flow over an inclined chute fitted

with an array of obstacles (‘pegs’) (refer to Figure 50).
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Figure 49: Schematic of a static separator or geometric ratchet showing the drift-diffusive

motion of a particle.
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Figure 50: Schematic of the particle separation device via dissipative collisions.
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The device as shown in Figure 50 is called a “static separator” as there is no external

energy input to the system. The dynamics of gravity-driven particles through the array of

obstacles are studied here to investigate its application as a separation device. Dissipative

collisions (both between the particles themselves and with the obstacles) give rise to random

trajectories of the particles and hence a drift-diffusive motion of particles is developed in

this device. When a net force, for example gravity, acts on the system the particles will

have a diffusive behavior superimposed on a convective regime – a scenario analogous to

hydrodynamic chromatography [257].

Diffuse-dispersive motion of granular materials have been the subject of many studies.

However, most of the studies dealt with the dynamics of a single particle and did not consider

the collective behavior of an ensemble of particles which are very important in many applied

situations. Single-particle dispersion has been studied in Galton-board devices [47, 263], in

billiards [264], and also, in a rough inclined plane [134, 265]. The influence of interacting

particles on diffusion processes is still an open problem [266, 267].

The purpose of this work is to study, for the first time, the dynamics of gravity driven par-

ticle flow through an array of obstacles and to characterize the system in order to determine

its usability as a particle separator. This device is characterized by both a single-particle and

a many-particle approach employing discrete element method (DEM) simulations and actual

experiments. One interesting feature of this device is that the ensemble average behavior

is deterministic and can be well characterized spatially and temporally. This is obviously

beneficial from an industrial perspective as characterizing the diffusive behavior can lead to

predictable separation states. The extent of separation (Es) (i.e., how far one type of par-

ticle is removed from another in the longitudinal direction, based on the rate of a process)

depends on the different distances traversed by the two types of particles and is proportional

to time of migration (t).

This section is organized as follows: First the experimental and theoretical procedures

are described. Subsequently, results for single particle and many-particle flows are presented,

both for simulations and experiments.
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5.1.1 Experimental Setup and Procedure

The device comprises an inclined chute fitted with obstacles in a triangular lattice. Figure 51

shows a top view of the setup with labels for different components. A perforated plastic

(polypropylene) sheet (32 in. × 48 in.) with 1/8 in. thickness is used as the surface for the

inclined chute. The holes (1/8 in. diameter) are staggered and the center-to-center spacing

is 1/4 in. Cylindrical dowel pins made from stainless steel with 1/8 in. diameter are used as

the pegs or obstacles. These pins are 3/4 in. long and can be inserted through the holes on

the plastic sheet as per a desired peg-to-peg spacing (3/4 in. spacing was typical). There are

9 peg columns in the width direction and 45 peg rows along the length direction yielding an

1:5 aspect ratio. The pegs are also staggered – each peg is inserted exactly between two pegs

of a previous row thus forming an equilateral triangle with 3/4 in. sides (see Figure 52 for a

close-up view of the pegs). The plastic sheet is attached (bolted) to a rectangular structure

made from five 1/16 in. thick L shaped channels (21
4
in. legs). Four L channels with similar

dimension as above are used as four legs of the setup, which can be varied in height in order

to control the inclination angle of the device (a typical angle of 26 degrees was used in the

experiments). These legs are fitted with friction shoes to hold them in place on the floor.

The columns of pegs are enclosed by two side walls made from 1/32 in. thick aluminum L

channels to contain the particle flow. These channels are slotted (1/8 in. wide) so that they

can be pressed and held onto the plastic sheet using 4-40 screws, which would match the

perforations on the sheet. In order to create a bumpy surface, the remaining holes on the

plastic sheet are plugged using ≈ 3 mm (1/8 in.) transparent glass beads.

A mono-layer of nearly spherical particles with different material, color and size are used

to observe the flow. A long rectangular plexi-glass plate can be placed (supported by the

side walls) on the device as a cover to restrict some particles from jumping out of the device

due to collisions at higher device inclination angles. The initial condition is obtained by

placing a desired number of particles in a stencil placed centrally with respect to the width

of the device, as shown in Figure 51. The stencil is fabricated from an aluminum plate and

fifteen circular holes in a 5 × 3 rectangular array are cut to retain the particles. To collect

the flowing materials as it exits the last row of pegs, a funnel or Y shaped receptacle (labeled
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Figure 51: A device to separate particles via collisional flow.
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(a)

(b)

Figure 52: (a-b) A close-up view of the pegs or obstacles interacting with the particles during

an experiment. The triangular lattice formed by the pegs can be seen clearly in (b).
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“collector” in Figure 51) is placed at the end. The collector is placed to capture the particles

as they arrive, which in turn, gives us a picture of the time dependent particle positions at

exit, and hence, a measure of separation – the fastest particle (or the first to exit the device)

deposits at the bottom of the collector and the slowest, or the last to arrive, deposits at the

top. An ideal situation would be to have a very long, narrow and shallow compartment,

which will allow only one particle of any size to enter at any time, thus forming a single

line of particles where the particles will be arranged in the order they arrived. This will

give us a quantitative measure of separation also. However, due to jamming issues at the

entrance, the ideal situation could not be realized and instead two types of collectors (a

narrow type and a wide type), which prevented considerable jamming are used. The narrow

type collector has approximately 160 mm (L) × 20 mm (W) rectangular storage compart-

ment whereas the wide type collector has about 130 mm × 90 mm storage compartment.

The funnel angles (with horizontal) for narrow and wide collectors are approximately 45

degrees and 19 degrees, respectively. Sufficient care is taken to choose the depth of the

compartment in such a way that it can only hold a single layer of particles (however, this

is not always possible for some size ratios of particles). The distance between the last row

of pegs to the bottom of the collector compartment is 200 mm (for wide-type collector) and

220 mm (for narrow-type collector). All of the above hardware for building the setup were

purchased from McMaster-Carr and the particles were purchased from Engineering Labora-

tories (www.plasticballs.com). A typical diameter tolerance for the balls is ± 0.005 in. with

a sphericity of 0.005 in.

Both a video (either Canon 3CCD Digital Video Camcorder/DV format or Canon Vixia

HF 200 Camcorder/AVCHD format) and a still camera (Nikon D40) are used to record the

collisional particle flow in this device. Care is taken to ensure that there is no perspective

effect or parallax error (in other words, the field of view of the camera is perfectly parallel to

the plastic sheet so that the tips of the pegs are only visible – as opposed to the sides of the

pegs – and they appear as perfect circles in the video). The above is especially important

for extracting collisional data from the video frames. The video camera produces interlaced

video with approximately 30 (DV format) or 60 (AVCHD format) frames per second (fps).

Open-source video processing program ffmpeg [268] is used to cut and de-interlace the videos,
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and then extract individual frames for further processing. Each frame is first pre-processed

by another open-source program ImageMagick [269], which digitizes the frames into a text

file with pixel coordinates and their RGB information. This text file is then post-processed

using an in-house C program to perform thresholding and other operations. The C program

identifies particles and pegs using HSI (Hue Saturation Intensity) thresholding [270] and

locates the center of mass of each particle. Collisional and kinematic data (such as time

dependent displacement or exit time) can be collected from the centre of mass information

of particles for a fixed amount of time for various operating conditions. Still images are also

recorded of both the initial particle arrangement in the stencil and the final arrangement in

the collector. Image processing is also performed on these still images to obtain quantitative

information about particle separation. Again, HSI thresholding is applied on the images

capturing the final arrangement of the particles in the collector. Concentration plots for

both kinds of particles are obtained by dividing the length of the collector into many bins

and then calculating the number of pixels of a particular color (particle) in that bin. This

is again touched upon in the Results section.

Different methods of particle release from the top part of the device are tested. The

aluminum stencil as a release device delivers the best results with lesser amount of jamming.

In most of the trials, equal volume fraction binary mixtures are used. Jamming of particles

near the walls caused by flow-blocking arches is an issue and this is intensified when another

release method (such as using a funnel) is used. As is discussed later, under a given operating

condition, there is an optimum loading of the device which causes particles to flow freely

without jamming – and this is determined by performing various trials (by taking note of

the relative ratio of the largest particle diameter to the peg spacing (edge-to-edge)) so that

accurate statistical data can be extracted without significant jamming in the device, which

might introduce spurious errors in the collected data.

5.1.2 Theory and Simulation

5.1.2.1 Random walk theory An attempt has been made to develop a simple theoret-

ical model based on the work of Benito et al. [271]. Experiments and DEM based numerical
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simulations are time consuming and the developed ad-hoc theoretical model would assist

in exploring a larger range of parameters not readily accessible via experiments or simula-

tions. The theoretical model, as described below, incorporates the idea of a random walk in

determining the position of a particle in the device.

The exit time or the transit time of a particle through the device is calculated in the

following way: A particle position is randomly generated just above the first row of pegs

(above a height equal to the vertical peg spacing, Hp = 2S sin(π/3), where 2S is the center-

to-center peg spacing) and then it is allowed to fall down by gravity until it encounters

a peg in its path. If it does not encounter a peg in its path, it falls unhindered through

the rest of the device longitudinally and the transit time is calculated from Equation 5.1

using kinematic principles involving a sphere rolling down an incline of length l and angle

θ with the horizontal. In this equation, a is the acceleration of the sphere and is equal to

(5/7)g sin θ.

t =

√

(
2l

a
) (5.1)

In the event of a collision with a peg, one has to decide about the direction of the

trajectory of the particle. If the z-coordinate of the particle center (see Figure 53, x and

z are the longitudinal and the transverse directions, respectively) is to the right of that of

the peg then the particle rolls over the peg to the right and vice versa. At this point, one

needs to find the new z position of the particle. This can be achieved by choosing a random

number uniformly distributed between 0 and 1.0 (RAN(0,1)) and the new particle postion

can be obtained from this random number via Equation 5.2:

zp = zpeg + A(Rpeg +Rp) + A(2S − 2Rpeg − 2Rp)RAN(0, 1) (5.2)

Here, zpeg is the z-coordinate of the center of the colliding peg; Rpeg and Rp are the radii of

the peg and the particle, respectively. S is the half peg spacing (centre-to-centre) and A is a

factor equal to +1 (or -1) if the particle moves to the right (or left) after collision. Figure 53

explains the relative dimensions used in Equation 5.2.

Once a new position is identified, a new calculation begins for the trajectory of the

particle following the same procedure as explained above. The time between two collisions
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Figure 53: Schematic showing relative positions of the peg and particle centers.
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is calculated from Equation 5.1 by replacing the variable l with the vertical peg spacing (i.e.,

Hp = 2S sin(π/3) ) and a counter is used to add all the times between collisions until the

particle exits the last row of pegs. Following this method, one can find the exit time of a

particle as well as the number of collisions it sustains. Finally, these data can be plotted on

a histogram to obtain the probability distribution of exit time and collision frequency.

5.1.2.2 DEM simulation Apart from the ad-hoc theory as described in the previous

sub-section, DEM simulations are also performed to obtain similar probability distributions

of exit time of a single particle and also other kinematic information (such as velocity) for

a monolayer of particles. In order to speed up the computations, a smaller chute length

(208 mm as opposed to 726 mm in experiment) is used in some of the simulations. The

chute and the pegs are made from particles with a typical diameter of 1 mm. For a binary

mixture, typical flowing particle diameters are 2 and 4 mm. Periodic boundaries are used in

the transverse direction with a typical simulation box width of 52 mm (1:4 aspect ratio). A

typical peg center-to-center distance of 10.4 mm is used. The inclination angle of the device

is set to 15 degrees with the horizontal (refer to Figure 50 for a typical DEM simulation

setup). For a multi-particle case, a binary mixture is used with equal numbers of small and

large particles in a 1:2 size ratio. Table 9 lists the various design and operating parameters

for both DEM simulations and experiments. It is to be noted here that we are not interested

in reproducing any experimental results exactly in DEM simulations, instead, efforts are

made to prove the concept of separation independently using both of these methods.

5.1.3 Results

5.1.3.1 Single particle results Here, we present results from single particle investiga-

tions, both from the random walk theory and DEM simulations.

Random walk theory: A computer program is written to implement the random

walk theory. More than 10,000 trials are performed to obtain the exit time and collisional

statistics. Figure 54 shows the probability distribution of a single particle’s exit time and the

number of collisions it suffers. The exit times have been scaled by the theoretical exit time
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Table 9: Various design and operating parameters used in DEM simulations and in experi-

ments for the collisional separation device

Parameter Simulation Experiment

L (pegged length) 208 mm, 679 mm, 6.79 m 726 mm

W (pegged width) varies, 52 mm typical 152 mm

2S varies, 10.4 mm typical, 19.05 mm,

same as column and same as column spacing,

row spacing 6= row spacing

2Rpeg varies, 1.0 mm typical 3.18 mm

2Rp 2 mm, 4 mm 4.65 mm, 6.9 mm, 7.8 mm

θ 15 degrees 26 degrees

Initial Condition equal numbers on a rectangular equal volume on a stencil

(multi-particle) lattice
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of an unhindered particle (refer to Equation 5.1). As per the theory, the most-probable exit

time of a single particle with 4.65 mm diameter is about 1.5 times that of an unhindered

particle of same size. Also, there is a 70% (most-probable) chance that the particle will

suffer about 2 collisions with the pegs in its journey through the device. In order to obtain

an idea about how the exit time and the number of collisions with the obstacles depend

upon the effective diameter (defined as deff = Rp/(S − Rpeg), to be discussed later) of a

particle, the average exit times and the number of collisions of over more than 10,000 trials

have been plotted as a function of deff in Figure 55. Both the graphs resemble an S-shaped

curve where there is a sudden jump of the exit time (or number of collisions) after a certain

particle size. Efforts are also made to corroborate the exit times obtained from the ad-hoc

theory with the exit times observed in actual experiments (averages of 30 trials are computed

for two different sizes of acrylic balls). Table 10 shows a comparison and it is imperative to

say that the theory does not predict the exit times accurately (but it is congruent with the

observation that smaller particles are faster).

DEM simulations: There are three different pertinent characteristic lengths that are

important for separation in this device: peg diameter (2Rpeg), peg spacing (2S) and particle

diameter (2Rp). We are interested in observing the effects of all these length scales on the exit

time distribution of a single particle. Figure 56 shows the effect of peg diameter on the exit

time distribution of a particle. The particle diameter is 4 mm and the peg diameter varies at

1, 2, 4, 6 and 8 mm. The edge-to-edge distance between two pegs is kept constant at 6.4 mm

and the device has a length of 208 mm and a width of 52 mm. More than 1000 trajectories

are simulated with random starting position of the particle in order to obtain the statistics.

The distributions did not change significantly if more trials beyond 1000 are included. The

exit times are scaled by the transit time of an unhindered (i.e., when there were no obstacles)

particle of the same size. One can observe from Figure 56 that the most-probable exit time

for a particle is not sensitive to the obstacle diameter: an eightfold increase in peg diameter

reduces the most-probable exit time by only about 25%. Also, the cases corresponding to

dpeg<dp are slightly different from the ones with dpeg>dp, with the most-probable scaled exit

time changing from about 8.0 to 6.0, respectively.
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Figure 54: Probability distribution plot for (a) exit time and (b) number of collisions with

obstacles for a single particle with 4.65 mm diameter. Other parameters are same as the

experimental conditions listed in Table 9.
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Figure 55: Average exit time and number of collisions as a function of the effective diameter

of particles. Other parameters are same as the experimental conditions listed in Table 9.
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Table 10: Comparison of exit time of a single particle between ad-hoc theory and experiments

Diameter Exit Time Exit Time

Theory Experiment

4.88 mm 0.96 s 4.97 s

6.9 mm 3.84 s 5.76 s

Figures 57[a–c] show the effect of peg spacing on the probability distribution of exit

time of a single particle on the device. Starting with a base case of 10.4 mm peg spacing,

exit time distributions have been obtained by varying the peg spacing by 1.5 and 2.0 times

(the edge-to-edge spacing is 9.4, 14.6 and 19.8 mm, respectively). The particle diameter is

4 mm and peg diameter is 1 mm. The device has a length of 208 mm. As before, the exit

times are scaled by the transit time of an unhindered particle. One can observe that the

most-probable exit time of a particle is very sensitive to the peg spacing – doubling the peg

spacing reduces the exit time nearly by half. From the above observation, it is very clear

that there are only two important characteristic lengths in this device, namely peg spacing

(2S) and particle diameter (2Rp), which will control separation. One can combine these

length scales into a ratio – Rp/(S − Rpeg), which can be used as an operating parameter.

In essence, the ratio Rp/(S − Rpeg) is nothing but the ratio of a particle diameter to the

edge-to-edge peg spacing, which is also a measure of a particle’s collision probability with a

peg and can be denoted as the effective diameter of a particle, deff . The results shown in

Figures 57[a–c] can be represented as a function of deff . We observe that the most-probable

exit time reduces as deff is reduced (e.g., when deff = 0.43, 0.27 and 0.20, the corresponding

most-probable dimensionless exit times are ≈ 5, 3 and 2.5, respectively). This again confirms

the hypothesis that a particle with a smaller deff will favor fewer collisions (with larger mean

free path between successive collisions) and hence would not establish a diffusive motion and

exit the device faster.
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Figure 56: Effect of obstacle diameter on the exit time distribution of a single particle. 1.0x,

2.0x, 4.0x, 6.0x and 8.0x correspond to 1, 2, 4, 6 and 8 mm peg diameter, respectively.

Particle diameter is 4 mm. 120
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Figure 57: Effect of peg spacing on the exit time distribution of a single particle. (a), (b) and

(c) correspond to 10.4, 15.6 and 20.8 mm center-to-center peg spacing, respectively. Particle

and peg diameters are 4 mm and 1 mm, respectively.
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5.1.3.2 Multi-particle results The goal of this part of the work is to study the influ-

ence of the collective effects on the multi-particle dynamics in the separation device and to

determine if the single particle observations still hold for a multi-particle case.

DEM Results: Figure 58 shows simulation results of the average velocities of a mixture

of small and large particles (1:2 size ratio) in the longitudinal (x) direction. A steady velocity

regime is clearly achieved due to the fact that there is a balance between the energy dissipated

during collisions (between particles and also with pegs) and the energy gained during the

flow over the chute surface when there is no collision. One can clearly observe that the single

particle predictions still hold here: smaller particles are faster – in this case by 40% – as a

smaller deff means fewer collisions and faster transit. In the current case, a 679 mm long

and 52 mm wide device is considered with 10.4 mm peg center-to-center spacing. Chute and

pegs are made from 1 mm particles. Therefore, we expect that particle separation is possible

in this device which can be confirmed from simulations (refer to Figure 59). A monolayer of

particles start from a uniformly mixed state (small and big particles are placed alternately on

a rectangular lattice) and are allowed to flow over the obstacles in a very long device (6.79 m

or 10x longer). The distribution of particles is obtained by the following method: The length

of the device is divided into many bins and the number of particles (of both types) having

their x-coordinates within the range of a particular bin are counted, and then the fraction

of particles are plotted in the y axis as a function of longitudinal position on the device.

At initial times, the particles are mixed at one end of the device and as time progresses,

we can observe three distinct particle regions – an extended leading region (region I in the

bottom-right sub-figure of Figure 59) consisting only of smaller particles (as they are faster),

an intermediate mixed region (region II) , and a relatively shorter trailing region (region III)

comprising only larger particles. Note that after about 25 s, the particles reach an effective

separated state.

Since we observe jamming in many experiments, numerical investigations are also per-

formed to study the effect of particle loading on the extent of separation (Es). The extent

of separation Es is defined in Equation 5.3:

Es =
(<Vsmall>−<Vbig>)t

L
(5.3)
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Figure 58: Average x-velocity of small and large particles in a multi-particle collisional flow

over the device.
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Figure 59: Spatial distribution of particles at different time instances showing progress of

separation. Small and big particles correspond to 2 and 4 mm diameter, respectively. Three

distinct particle regions as described in the text have been shown in the bottom-right sub-

figure. The line over the bars passes through the data corresponding to the bin centers of a

histogram.
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where <Vsmall>, <Vbig> are the average longitudinal (x) velocities of small and big particles

respectively. t is the time allowed for migration and L is the length of the device. The extent

of separation is plotted as a function of % area coverage of particles (equal number of small

and big particles are used) in Figure 60. The area coverage of particles denotes the loading

of the device, and is calculated as the ratio of the cross-sectional area of all flowing particles

to the non-pegged surface area of the device. We can clearly observe that as the loading

(area coverage) increases, the extent of separation decreases dramatically. This graph can

be used to select an optimum number of particles for effective separation, without significant

jamming. We found that for the given design and operating parameters of the device [2S

= 10.4 mm, dpeg = 1 mm, L = 679 mm (periodic), W = 52 mm, dp = 2 and 4 mm, θ =

15o, t = 30 s], 150 small and 150 big particles are sufficient to obtain an effective separation

without significant jamming.

Experimental Results:

Numerical investigations encouraged us to perform experiments with many particles in

an actual setup (refer to Section 5.1.1). Two different types of collectors are used to observe

direct separation of particles in this device when particles exit the last row of obstacles.

Equal volume mixtures of 4.65 mm (small, pink color) and 7.8 mm (big, black color) acrylic

balls are used. Each experiment is repeated at least four times and the results presented

here are the average of those observations. In the first set of experiments, 18 small and 90

big particles are used (50:50 v/v). To generate the initial condition, each circular hole of

the aluminum stencil is filled with 3 big and 15 small particles (total six holes are filled).

Figure 61 shows the initial and final conditions of one of the trials for this experiment.

Thresholding and binning of pixels of the image corresponding to the final positions of

particles yield Figure 62, which shows the spatial distribution of particles along the collector

length. Data for each bin corresponds to the number fraction of a particular type (color) of

particle calculated with respect to the total number of pixels of that type in the given length

of the collector considered. As mentioned earlier, a minimum of four trials are performed to

verify the reproducibility of the results and the calculated distribution corresponds to the

average of those trials. It is evident from these plots that the device is capable of separating

a mixture.
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Figure 60: The extent of separation (Es) as a function of area coverage of particles in the

device.
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(a)

(b)

Figure 61: (a) Initial and (b) final conditions of one experiment consisting of 18 big and 90

small balls (50:50 v/v) with a narrow-type collector.
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Figure 62: Spatial distribution of small and big particles along the length of a narrow-type

collector for a set of experiments with 18 big and 90 small particles (50:50 v/v). Average of

four repeat experiments has been plotted here. HSI thresholding has been used to extract

the data for both types of particles in 24 bins. The bottom of the collector, which is 220

mm below the last row of pegs, corresponds to distance 1.0 of the scaled x axis.
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In order to confirm this observation, a wider collector at the end is also placed for

another set of experiments involving 30 big and 150 small particles (50:50 v/v). Figure 63

shows the initial and final conditions of one of the trials for this set of experiments. Similar

image processing technique yields the final spatial distribution of each type of particles in

the collector, which is depicted in Figure 64. In order to compare the automated image

processing results with manual counting of particles in each bin, we have plotted a similar

spatial distribution of particles in the collector for one of the trials belonging to the same set

of experiments in Figure 65. There is a very close agreement between the HSI thresholding

and hand calculation, which gives us confidence about the fidelity of the image processing

technique. From Figure 64 (or Figure 65), we can clearly observe that most of the smaller

particles occupy the bottom of the collector as they are faster, and the bigger ones arrive

late owing to their higher probability for sustaining many more collisions, which slows them

down. The peaks of the distributions are clearly widely separated, suggesting that this

device is an efficient particle separator (although a longer chute is necessary to get complete

separation).

5.2 SEPARATION OF GRANULAR MIXTURE BY RATCHET

MECHANISM

As outlined in Section 1, while segregation is often an undesired effect, sometimes separating

the particles from the mixture is the ultimate goal. Mixtures of different sized particles

can separate when set in motion in a number of methods, including rotating drums, shear

flow, vertical shaking, horizontal shaking, etc [272,273]. In this part of the work, we seek to

investigate and further the body of knowledge on granular separation by ratchet mechanism

using particle dynamics (PD). In other areas of science and technology (like in biology –

“brownian motors” in cells, diffusion sorting of macromolecules) [261, 262], ratchets have

been the subject of intense research efforts because they can produce a directed current of

particles without any net average force in the direction of particle motion. This is somewhat

counterintuitive. Using this concept, a new method of separation of particles was first
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Figure 63: (a) Initial and (b) final conditions of one experiment consisting of 30 big and 150

small balls (50:50 v/v) with a wide-type collector.
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Figure 64: Spatial distribution of small and big particles along the length of a wide-type

collector for a set of experiments with 30 big and 150 small particles (50:50 v/v). Error bars

obtained from four repeat experiments have also been shown. HSI thresholding has been

used to extract the data for both types of particles in 12 bins. The bottom of the collector,

which is 200 mm below the last row of pegs, corresponds to distance 1.0 of the scaled x axis.
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Figure 65: Spatial distribution of small and big particles along the length of a wide-type

collector for an experiment with 30 big and 150 small particles (50:50 v/v). Manual counting

has been used to extract the number fraction data for each bin for both types of particles.

The bottom of the collector, which is 200 mm below the last row of pegs, corresponds to

distance 1.0 of the scaled x axis.
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proposed by Farkas et al. [274,275]. The central idea of separation using ratchet mechanism

is to produce horizontal size segregation in a vertically vibrated layer of granular material

using a sawtoothed base [276] (see Figure 66). For example, in a mixture with two-sized

particles, vibration will cause the large particles to rise to the top of the layer, and the

vibrating base with a sawtooth surface profile will produce stratified flows either in the same

or in the opposite directions at different heights within the layer. The result of combining

vibration and a sawtooth profile is that, under proper conditions, the large and small particles

may be horizontally driven in opposite directions. Basically, the ratchet creates a symmetry-

breaking flow pattern, which emerges perpendicular to the direction of the energy input.

This method has a tremendous potential as an industrially viable separation device owing

to the fact that the components of the mixtures can be easily collected without any further

processing, many ratchets can work in parallel yielding high throughput and the quality of

the separation can be tuned by changing the ratchet width or the loading rate.

There have been some studies (both numerical and experimental) undertaken recently [273,

276–280] on this method of separation. These studies have shown that the response of a par-

ticular type of particle to a ratchet system depends significantly upon the size and shape of

the ratchet, the driving force, and the properties of the particles themselves. The direction

in which spherical particles move on the ratchet depends on the size and elasticity of the

particles, among other things. Thus two species of particles (equal size and density, but

different hardness) may move in opposite directions on the same ratchet base. Whether a

particular combination of particle and ratchet will display net motion to the left, to the

right, or any coordinated motion at all is not clear a priori. Also, which combination will

produce separation is also not clear at present and this highlights the need for further study

of these systems. Moreover, no consensus about a theoretical model has emerged yet which

can relate the ratchet design and operating parameters to the quality of separation.

Since many earlier studies employed 2-D systems, we seek to examine a full 3-D ratchet

system in this part of the work. In the past [274, 277], the effects of different design and

operating parameters (like ratchet height, asymmetry, particle properties, loading, etc.) were

studied in 2-D setups using either event driven algorithms or MD-like simulations with

Lennard-Jones type force potentials, here the main aim of the current work is to get more
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+ve

Figure 66: Simulation snapshot of a typical ratchet device in action. The asymmetry pa-

rameter a = 0.9. A positive displacement is obtained in this setup when particles move to

the right of the figure (in the direction of the arrow, i.e., they encounter less steeper side of

the tooth as it vibrates).

insights into the effect of only a few parameters using full 3-D particle dynamics simulations

with realistic force models to find conditions for separation.

5.2.1 Simulation Setup

The discrete element method (DEM) is used to investigate the separation capability of a

ratchet. Figure 66 shows a typical snapshot of the progress of a DEM simulation. The

system is fully three dimensional with a typical length L ≈ 60d, height H ≈ 100d and width

W ≈ 5d (simulation box size was L ×W × H), where d is the diameter of the largest particle

size present in the system. In some cases (for long devices), two side walls are used to contain

the particles, however, in many cases the simulations are periodic in all the three directions.

The height H is chosen such that no particle crosses the top boundary. Figure 67 shows a

schematic of ratchet teeth. Each tooth can be characterized by three parameters as shown:

the height h, the width w, and the asymmetry parameter a defined as a = l/w, where l is

the length of the projection of the longer side of the tooth on the horizontal direction. In

exploring the parameter space, h is varied at different levels as discussed later. In a typical

simulation, each tooth has w ≈ 3d, a = 0.9 and p ≈ 5d. Here, p is the depth of a tooth (see
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Figure 67: Schematic of ratchet teeth showing relative dimensions.

Figure 67). For periodic simulations, 20 identical ratchet teeth have been used. The device is

subjected to a sinusoidal oscillation with frequency f and amplitude Av. The dimensionless

acceleration Γ = 4π2f 2Av/g (g = acceleration due to gravity) is fixed at 2.61 (with f ≈ 12

Hz, Av ≈ 2d). The loading or the number of particle layers [Nh = (n1d1+ n2d2)/L] used are

around 10 for the periodic simulations.

An elastic with viscous damping force model (see Section 2.2.2.1) is used to simulate

the various cases. In order to speed up the computations (which does not affect the flow

kinematics), fictitious soft particles are used while maintaining the required size or density

ratios. For all cases, an equal volume fraction (50:50 v/v) was used for both types of particles.

A typical simulation starts with both kinds of particles uniformly mixed in a binary mixture

in a rectangular area just above the ratchets, and the particles are allowed to settle under

the action of gravity. For periodic simulations, the initial rectangular region extended to the

full length of the device.

5.2.2 Results

The system under study is a very complex one with many parameters. It is nearly impossible

to explore the parameters space exhaustively, though in the past, some studies have tried
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to investigate a few important ones (such as sawtooth shape, layer width, frequency of

vibration, material hardness, etc.). However, these studies were limited in the sense that the

simulation methods used were far from being realistic (inappropriate force model was used

for macroscopic particles) and the results were not exhaustive – they depended on the system

at hand and cannot be used in a general way. Moreover, they were interested in observing

the direction of transport, and due to that, in many cases, non-segregating (mono-disperse)

particles were used. In this study, we try to focus on only a single geometrical parameter but

perform an exhaustive study within that small parameter-space using binary mixtures with

both size and density differences. The dependence of one of the very important parameters

– namely, the ratchet height – on separation in this device has been exhaustively examined

here, and unlike other studies, we present results for the direct numerical simulation of a

long ratchet device in order to directly observe the possibility of separation, if any, for a

given particle parameter set.

Figure 68 shows the dependence of ratchet height on the distance travelled by the two

types of particles of a binary mixture. Both size and density separations are considered

individually. Periodic boundary conditions in the length direction (L ≈ 60d) are used to

record the distance travelled by particles for a given duration of time (200 s in this case).

The results have been presented here as dimensionless quantities with the distance being

scaled by the device length L. The following parameter set is used: h/d is varied from 0.0 (a

flat base) to 6.25 (beyond which there will be essentially no transport as the teeth would be

too high to produce any horizontal motion of the particles), where d is taken as the size of

the bigger particle for size separation or just the particle size for a density separation case;

w, Γ, a, Nh, etc. are the same as described in the previous sub-section. It is obvious from

Figure 68 that the direction of the horizontal transport (of all types of particles together)

can be switched for certain parameter combinations (to be specific, by using taller ratchets

– which is in agreement with the observations made in other studies, such as by Farkas et

al. [274]). All particles can either move in a negative direction or in a positive direction and

this transition happens at a particular h/d ratio. For example, for a size ratio of 2:1, this

switching of transport direction happens somewhat earlier at around h/d = 3.65. Also, there

is an indication that for some size and density ratios and certain h/d, the smaller (heavier)
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Figure 68: Effect of ratchet height on the distance travelled (separation) by particles for

various size and density ratios. A horizontal line with ordinate 0 has also been drawn to

show the switching of particle direction.
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particles may have a net positive movement whereas the bigger (lighter) ones can move in

the negative direction (i.e., two kinds of particles can also move in opposite directions, in

addition to all particles moving either in positive or negative direction). Figure 68 shows

that this may be possible for size ratio 2:1 at h/d ≈ 3.53. Another interesting observation

from Figure 68 is that, for all cases, the distance travelled by the particles goes through

a clear minimum at around h/d ≈ 0.78. Therefore, this particular h/d ratio creates the

maximum driving force for all kinds of particles to travel in a particular direction.

It is also interesting to note a unique behavior of particles for a size ratio of 3:2 as

compared to other size or density ratios from Figure 69. In this figure, the differences in the

migration distances have been plotted for all size and density ratios on a single graph. The

curve for size ratio 3:2 crosses the zero line at about h/d ≈ 4.0. This suggests that for h/d

<4.0, all particles move to the negative direction with smaller particles moving faster than the

larger ones and for h/d >4.0, all particles move to the positive side (switching of direction)

but with larger particles moving faster than the smaller ones (switching of speed). In all

other cases, this is not observed – the particle transport direction switches from negative to

positive direction in a similar way, but the two types of particles never switch their speeds.

The separation is expected to be pronounced (calculated from the differences in distances

travelled by two kinds of particles, see Figure 69) for a size ratio of 2:1 (and also for a density

ratio of 2:1, but to a lesser extent). However, the other size and density ratio – 3:2 – does

not point to considerable separation as compared to the 2:1 case. Therefore, we observe that

a particular size or density ratio should exist in order for the particles to separate, and this

would only occur at a certain ratchet height (h/d ≈ 0.78), given other design and operating

parameters. It is interesting to note that a size ratio of 2:1 indicates more separation vis-à-

vis a 2:1 density ratio (the maximum differences in distances travelled by the two types of

particles being 9.18 for 2:1 size ratio, and 7.91 for 2:1 density ratio), whereas this observation

is reversed for a size ratio of 3:2 vis-à-vis a 3:2 density ratio (the maximum differences in

distances travelled by two types of particles being 2.25 and 5.45, respectively).

From Figures 68 and 69, we note that, in general, larger or lighter particles travel faster

in this device (with the exception of size ratio 3:2 where both kinds of particles can travel

faster depending upon the h/d ratio as discussed earlier). Therefore, we expect that for
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Figure 69: Data from Figure 68 have been plotted to show the effect of ratchet height on

the differences in migration distances (separation) by particles for various size and density

ratios. The differences in migration distances correspond to (small - big) or (light - heavy).
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a combined size and density separation case where the bigger particles are lighter and the

smaller particles are heavier, the degree of separation may be enhanced or amplified. In

order to do that, we plot similar data (as given in Figures 68 and 69) in Figures 70 and 71,

respectively, for a combined size (2:1) and density (1:2) ratio. Surprisingly, we do not get

a better separation as compared to the pure 2:1 size ratio case – the highest difference in

the distances (scaled) travelled by the two types of particles is 8.91 for the combined case as

compared to a higher value of 9.18 for a pure 2:1 size ratio case. Therefore, it is interesting

to note that, for the cases we studied, a combined effect of size and density differences may

slightly lower the ability of the device to separate particles effectively as is evident from the

current investigation. However, the shapes of the graphs and other features of the process

remain similar to that of the pure size or density ratio cases.

In order to directly observe the separation of particles, we consider simulating a long

ratchet device with a 2:1 size ratio while keeping the density constant (h/d was kept fixed

at 1.17). We also consider other cases such as a 2:1 density ratio case (with h/d = 1.17) and

a case with 2:1 size ratio but with an h/d ratio of ≈ 3.53 that predicted an opposing flux of

materials through the device as per Figure 68. The other parameters of these simulations are

similar to the ones described in Section 5.2.1 except the h/d ratio, and the length L of the

device. For 2:1 size and density ratio cases, L is ≈ 1500d (made 25x longer than the periodic

simulations). The initial condition is obtained by locating the particles near the right side

of the device (inside a 53d wide window) for h/d = 1.17, as the predicted movement (as per

Figure 68) of all kinds of particles is to the left of the device, yielding a negative travelling

distance. For the case where the particles are expected to move in opposite directions (i.e,

for size ratio 2:1 with h/d ≈ 3.53), the binary mixture is placed symmetrically in the middle

of the device (inside a window of width 53d), and the device length L is ≈ 2040d (34x longer

than a periodic device).

Figure 72 shows the progress of separation for a size ratio of 2:1 and h/d ≈ 1.17 as a

function of time. To obtain these plots, the device length is divided into many bins and

the number of particles inside a particular bin is counted from their positions. Initially, the

binary mixture starts from a completely mixed state from the right side of the device as

can be seen from the spatial distribution corresponding to time 1 s in Figure 72. As time
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Figure 70: Effect of ratchet height on the distance travelled (separation) by particles for a

combined size and density case. Size ratio of big and small particles is 2:1 and density ratio

is 1:2 (bigger particles are lighter and vice versa).
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Figure 71: Data from Figure 70 have been plotted to show the effect of ratchet height on

the differences in migration distances (separation) for a combined size and density case. The
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Figure 72: Spatial distribution of particles at different time instances showing progress of

separation in the ratchet device for a size ratio of 1:2. Three distinct particle regions as

described in the text have been shown in the bottom-right sub-figure.

143



progresses, we can observe that all types of particles travel to the left of the device (negative

distance) and their distributions tend to broaden and move apart from each other. The larger

particles travel faster than the smaller ones, and at larger times, we can notice three distinct

particle regions – a leading small region consisting only of larger particles (region I in the

bottom-right sub-figure of Figure 72), an extended overlapping region of mixtures (region

II), and a trailing small region comprising only smaller particles (region III). Therefore, it

is possible to get some degree of separation in this device for a given design and operating

parameters. This distribution plot complements Figure 68 and confirms the hypothesis that

a ratchet can produce a directed current of particles in the direction perpendicular to the

energy input. Figure 73 shows similar progress of separation for a 2:1 density ratio case with

h/d ≈ 1.17. However, as noted earlier, the separation quality is not as good as a 2:1 size

ratio case (comparing equivalent time instances).

Figure 74 shows the spatial distribution of both kinds of particles for a size ratio of 2:1

but with h/d ≈ 3.53. As described earlier, the binary mixture is placed symmetrically at

the middle of the device. As suggested by Figure 68, it is expected that there will be an

opposing flux of materials through the device for this parameter combination – however, as

is evident from the graph, it is inconclusive to suggest such outcome in the given time frame

(1–12 s).

From all of the above figures, we can clearly observe that a ratchet device has a con-

siderable intermediate mixture region compared to regions with pure materials, and hence,

the separation quality is expected to be of inferior quality when compared to the collisional

separation device described in Section 5.1, where the pure particle regions covered a rela-

tively larger area. However, many ratchet devices can be made to work in series (resulting

in more migration time t), and the separation quality can be progressively enhanced due to

the fact that the extent of separation (Es) is proportional to the migration time (t) (refer to

Equation 5.3).
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Figure 73: Spatial distribution of particles at different time instances showing progress of

separation in the ratchet device with a density ratio of 2:1.
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Figure 74: Spatial distribution of particles (size ratio 2:1) at different time instances showing

progress of separation in a ratchet device with h/d ≈ 3.53, which is expected to give rise to

opposing flux of materials.
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6.0 SUMMARY AND OUTLOOK

In this chapter, a brief summary of the major contributions of the current work is presented

along with an outlook on future extensions. A short discussion on the many challenges to

link the fundamental physics of particle flow and the current industrial needs is also included

here.

6.1 CONTROLLING SEGREGATION IN TUMBLERS

Segregation in granular materials has been studied for a long time but its theoretical under-

standing even in the most simple cases is yet not complete. When particles differ in almost

any mechanical property, a small agitation leads to flow induced segregation. Controlling

or minimizing segregation continues to be a complicated problem. Industries use empirical

designs based on the past experiences, which often have no theoretical basis. A literature

search yields no previous studies dealing with issues involving novel baffle shapes and their

placements in a solids mixer and how their designs will affect mixing and segregation. In this

work, for the first time, we use experiments and simulations to study the effects of various

design parameters, such as baffle shapes and placement, on the mixing of binary mixtures

with different sizes or densities. It has been demonstrated that segregation in a rotating

drum can be dramatically reduced by introducing periodic flow inversions within the drum

by employing novel baffle designs. Both experimental observations and simulation results

agree qualitatively and the simulation tool is further used to test our hypothesis, which states

that the time modulation in the shearing layer is the key to thwarting segregation.
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Segregation can be minimized if the particle flow is inverted at a rate above a critical

forcing frequency. For a rotating drum, this translates to the probability distribution of

the number of times a particle passes through the flowing layer per rotation of the drum.

A broader probability distribution signifies that the orientation of a particle will become

essentially uncorrelated to its previous orientation. Therefore, the baffle designs that produce

a broader distribution are expected to yield better mixing results. It has been shown that the

peak height of the layer pass distribution correlates strongly with the experimentally obtained

intensity of segregation. This observation actually demonstrates that the hypothesis of flow

inversion can be used for designing new baffles and examining the effectiveness of a new

design. Moreover, the characterization tool (layer-pass simulations) that is developed to test

the hypothesis can easily be used to examine different baffle configurations and predict their

performances.

As noted by Khakhar et al. [223], the time is ripe to exploit the knowledge gained

about surface flows and to apply it to design and scale-up solids processing devices. In this

spirit, the current work has attempted to test the hypothesis regarding a critical forcing

frequency (flow inversion) to mitigate segregation. The hypothesis has been embodied in

a mathematical form by utilizing the existing knowledge (continuum-derived) developed by

other researchers, and is used as an elimination tool to select optimum designs of tumbler

mixers from a host of promising baffle designs.

6.2 SEGREGATION IN A CHUTE FLOW

Granular materials are omnipresent. Many man-made or natural processes involve flow of

granular materials. Industrial applications typically involve handling and processing of a

large amount of multi-sized granular materials, which may have different shapes and densi-

ties. These processes require many solids handling devices like hopper, chute, etc. In this

work, a simple chute flow consisting of both mono-sized and polydisperse spherical granular

particles is analyzed. Effects of various parameters like charge amount, particle size, falling

height and chute angle are studied systematically to examine how the mass fraction distri-
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bution in the trajectories are affected by these parameters. A contact force parameter of the

DEM model has been adjusted in order to obtain reliable results and account for the devia-

tion from experimental observations. The tuned model is then used to find the critical chute

length for segregation as per our hypothesis regarding a critical forcing frequency. Both a

finite length chute and a periodic chute are used to test the hypothesis beyond doubt.

In the present investigation, we are only concerned about the mass fraction distribution of

particles in the bins placed below the chute. However, there are many applications where the

distribution of porosity or voidage of the bed is of utmost importance (like in a blast furnace

or in many fluidized beds where a gas has to pass through the particle bed). Therefore, the

present work can be extended to calculate the porosity or voidage of the particle bed after

deposition and the effects of many parameters on that. With regards to the significance and

practical applications of the results described in this part of the work, it is sufficient to say

that a reliable model can be used to design and probe any granular flow system employing a

chute for transfer of materials. And, there are plenty of industrial applications where these

investigations would help in improving productivity and product quality.

6.3 RATE-BASED SEPARATION IN COLLISIONAL FLOWS

While segregation is often an undesired effect, sometimes separating the components of a

particle mixture is the ultimate goal in many industrial processes. Rate-based separation

processes hold promise as both green and less energy intensive, when compared to conven-

tional particle separations technologies such as vibrating screens or flotation methods.

It has been demonstrated, for the first time, that a device inducing diffusive motion to

the constituents of a mixture by way of gravity-driven collisional flow through an array of

obstacles can be used to separate particles effectively, without any external energy input.

The effects of various design and operating parameters on the extent or quality of separation

are investigated by means of a simple single particle model (based on a random walk theory)

along with experiments and DEM simulations. It has been found that the ratio of the particle

size to the available gap between two obstacles (called effective diameter or deff) is a key
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parameter controlling the separation. This parameter is also a measure of the probability

of a particle colliding with a peg. Smaller particles are found to be faster (lower deff ,

and hence, relatively fewer number of collisions) than the larger ones, in both simulations

and experiments. Also, the extent of separation deteriorates as the loading of the device is

increased due to relatively high number of dissipative collisions for all types of particles, which

effectively reduce their relative mobility (in the extreme case, jamming occurs). Realization

of a complete theoretical model to predict the length (L) or time (t) required for obtaining

a desired extent of separation in a particular device with a given design and operating

parameter is still elusive and could be the topic of future research.

In another example of a novel separation technique, it has been demonstrated that a

ratchet mechanism employing a vibrating saw-toothed base can be used to induce different

mobility for different types of particles. A directed current of particle is produced perpen-

dicular to the energy input. In contrast to the collisional separation device considered in

Section 5.1 where smaller particles travel faster, the larger or lighter particles in general

move faster in a ratchet device. Therefore, it is shown that the final goal of separation

can be achieved by means of different opposing mechanisms or exploiting phenomena which

might seem to be at odds when compared in a general sense. It has been demonstrated and

confirmed in this study that a ratchet can be used to separate particles, but the quality

of separation is not as good as a gravity-driven collisional separation device. Also, a com-

plete theoretical or a mathematical description of the process relating different design and

operating parameters in the device still remains an open question owing to the complexity

of the process, which is characteristic of any system involving granular materials (“complex

systems”).

A common feature of these two rate-based separation devices is that the extent of sepa-

ration (Es) is proportional to the time (t) allowed for migration. Therefore, more migration

time can be achieved if the devices can be made to work in series (instead of a single long

device), i.e., the output of one device could be directed as the input of another, and by doing

so, the separation quality can be progressively enhanced.
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6.4 OUTLOOK

Various solids processing industries rely on routine handling of powders and particles for

many bulk solids processes such as mixing and separation, press feeding, die filling, tableting,

packaging, bin storage, conveying, coating, etc. Solids handling is often the major bottle-neck

in the series of steps for making a final product. Practitioners are regularly asked to develop

and scale-up processes for making granular products with critical quality parameters that are

rooted in a micro-scale of scrutiny. Examples include microscale compositional variance in a

multicomponent mixture (like pet food or tablets), the microstructure of products made by

an agglomeration process, the mesoscale structural features of a particulate-filled composite,

or the effect of die filling on the structure of a pressed piece or tablet. The present work,

to some extent, aimed to elucidate the linkages between the fundamental physics of particle

flow and the industrial needs as outlined above. Though some progress has been made to

understand the segregation process [27], many formidable challenges await solutions in both

the fundamental understanding and industrially relevant applications.

Perhaps, the biggest difficulty in solids processing is the issues of scaling. The follow-

ing question would be of interest for future investigations dealing with granular flows: How

do the stress and flow fields scale when the same power ratio or specific energy input has

been utilized in a solids processing device? As a future step that is both industrially and

scientifically relevant, a combined approach including experimental investigation, simulation

and development of theory will always be helpful in searching answers to many elusive ques-

tions. The challenges in simulating large scale industrial systems are many. DEM is the gold

standard when it comes to direct numerical simulation of particle systems. At present, a

million spherical particles can be simulated using DEM on an ordinary workstation. For non-

spherical particles, however fewer can be simulated. Industrially relevant realistic systems

can easily contain 109 particles. Therefore, the direct numerical simulations at the particle

level for industrial systems is in the range of current super computers for spherical particles,

but this is not cost effective for larger systems or those containing non-spherical particles.

Therefore, a logical future research direction would be the application of high performance

computing techniques such as general purpose graphics processing units (GPGPUs) (a very
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recent work in this direction has been performed by Radeke et al., 2010 [83]) along with the

development of faster algorithms (especially, the contact detection algorithms, which con-

sume bulk of the computing time) to speed-up calculations and make industrial scale direct

numerical simulations possible on readily available hardware (such as desktop computers or

workstations). As suggested by Williams et al. [115], the future is towards developing “smart

software” that will dynamically load the optimal algorithm for contact detection suitable for

the problem at hand.
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APPENDIX A

OTHER STUDIES

A.1 SIMULATION OF MESOSCOPIC PHENOMENA

Throughout this dissertation, we have mostly discussed the application of particle dynamics

to simulate macroscopic phenomena. Here in this Appendix, we show how another tool

– called dissipative particle dynamics or DPD – can be used to tackle problems in the

mesoscopic length scale. We briefly review this emerging tool, its merits and demerits and

finally discuss one example where an attempt has been made to use this tool in solving a

practical problem involving droplets.

A.1.1 Non-spherical Droplet Generation

Let us turn our focus in the discussion of another exciting engineering problem involving

particles but at a different length scale: Generation of non-spherical droplets for microflu-

idic applications. Non-spherical particles, which can be processed from droplets (droplets

are used as precursors to the final particles), have a broad range of applications includ-

ing cosmetics, bio-technology, structural materials and pharmaceuticals [281]. Droplets and

particles have the potential to become important tools for drug delivery and biosensing.

Microfluidic technology holds tremendous promise [282] as it can perform typical laboratory

operations using a fraction of the volume of reagents in significantly less time. Reagents

can be tremendously reduced from milliliters and microliters to nanoliters and femtoliters
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whereas hours of reaction time could be decreased to mere seconds or less (which is central

to the concept of “lab on a chip”). One subcategory of microfluidics is droplet-based mi-

crofluidics. Unlike continuous flow systems, droplet-based systems focus on creating discrete

volumes (nanoliters or less) with the use of immiscible phases. Droplet-based microfluidics

involves the generation and manipulation of discrete droplets. This method produces highly

monodisperse droplets in the nanometer to micrometer diameter range, at a very high rate.

Due to high surface area to volume ratios at the microscale, heat and mass transfer times

and diffusion distances are shorter, facilitating faster reaction times.

Interfacial tension between two immiscible phases naturally favors minimization of sur-

face area and this produces spherical shapes as a sphere has minimum surface area for a

given volume. Therefore, non-spherical shape is not a thermodynamically favorable state

and hence, the challenges for producing irregular shaped droplet can be easily understood.

Non-spherical shape opens up the possibility of having unique properties otherwise impos-

sible to obtain in spherical shape. For example, when converted to non-spherical particles,

they can pack more densely than spherical ones [283]. Also, irregularly shaped particles can

behave differently from spherical ones under the same hydrodynamic [284], electric, and mag-

netic conditions (see references in [281]). Since the properties of non-spherical particles are

strongly dependent on their shape, methods must be developed to control not only their size,

but also shape to obtain reproducible and uniform behavior. Though experimentally it is

possible to produce non-spherical droplets and particles using droplet-based microfluidic [282]

systems, it remains difficult to produce large quantities of monodisperse non-spherical parti-

cles of tunable geometry and adjustable properties. A literature search revealed no previous

computational work on the tuning of the shape of a droplet though experimental work on

stable non-spherical shape using interfacial particle jamming has been reported [285–287].

Therefore, in this work, we seek to address the challenges of non-spherical droplet generation

from a computational perspective. The broad objective of this part of the work is to explore

different ideas that would enable us to tune the shape of a spherical droplet by using a

computational tool called dissipative particle dynamics (DPD). The background and details

of DPD follows in the next sub-section.
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A.1.2 Methodology: Dissipative Particle Dynamics

Dissipative particle dynamics (DPD) is an emerging technique to explore the mesoscopic

length scale (few µm). First developed by Hoogerbrugge and Koelman [288], this technique

seeks to bridge the gap between two length scales – microscopic (few nm) and mesoscopic.

DPD is a coarse graining method based on molecular dynamics (MD) [289] which can take

care of hydrodynamic behavior of complex fluids like colloids, gels, polymer melts, etc.

This method is based on the simulation of soft spheres, whose motion is governed by certain

collision rules [290], which is discussed below. In structure, a DPD algorithm looks much like

DEM or MD where particles move according to Newton’s laws. However, each DPD particle

or soft sphere represents mesoscopic description of the fluid, and does not represent individual

atoms or molecules, but loosely corresponds to “lumps” of fluids or clusters of molecules

called a “bead”. Therefore, unlike conventional molecular dynamics (MD) where we need to

know the detailed interaction between each atoms or molecules, a coarse graining is applied

in DPD and no detailed molecular level information is needed. Coarse graining results in

larger time and length scales (higher than atomistic scales) and permits the use of larger

time steps than MD simulations. Therefore, complex physical systems with hydrodynamic

behavior (complex fluids) can easily be simulated with a reasonable computational cost.

Imagine simulating a very tiny volume of a complex fluid by considering each and every

atom in the domain (as in MD, for example, one mole of something would require more than

6 × 1023 molecules) vis-à-vis using coarse graining where each bead is a collection of many

molecules (a rough calculation using the data from Gao et al. [291] shows only 98,304 beads

will be required in DPD to simulate the same volume of fluid versus about half a million

molecules if it were simulated by classical MD).

The transport equations for a simple DPD particle i are shown in Equation A.1.

dri
dt

= vi ,
dvi

dt
=

∑

j 6=i

(FC
ij + FD

ij + FR
ij) (A.1)

where
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FC =







aij(1− rij)r̂ij for rij < rc

0 for rij ≥ rc
(A.2)

FD = −γwD(rij)(r̂ij · vij)r̂ij (A.3)

FR = σwR(rij)ζij∆t−1/2r̂ij (A.4)

In the equations above, r and v are position and velocity vectors; aij is the maximum

repulsion between particles within a pre-defined cutoff radius, rc; ζij is a random number

with zero mean and unit variance chosen independently for each pair of interacting particles

i and j, and at each time-step ∆t. The terms FC, FD and FR respectively represent:

• Conservative Force: which is a soft repulsion between particles that enforces elastic

collisions.

• Dissipative Force: which reduces the relative velocity between two particles, simulating

viscous effects.

• Random Force: which is the result of all thermal molecular motion within particles i

and j, adding heat to the system.

These forces also act along the line of centers and conserve linear and angular momentum.

The coefficients γ and σ characterize the magnitude of the dissipative and random forces,

which vanish for r > rc. Both wD and wR are weighting functions which satisfy the following

condition [292]:

wD(r) = [wR(r)]2, γ =
σ2

2kBT
(A.5)

Equation A.5 ensures a balance of kinetic energy within the DPD model based on the

Fluctuation-Dissipation Theorem, where kB is the Boltzmann constant and T is the tem-

perature of the system. This theorem states that a perturbation within a system at the

molecular level dissipates as the system returns to equilibrium [293–295]. In essence, FD

and FR serve as a thermostat in order to maintain the temperature, ensuring the system is

not artificially heated.
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A.1.3 Boundary Conditions

The manner in which the walls are prescribed in DPD is an unresolved matter in the lit-

erature. Wall particles are “frozen” (i.e., of the lowest thermal energy within the system),

but the soft repulsion between particles does not prevent actual fluid elements from “pen-

etrating” the wall. In addition, there is the problem of the wall particles decreasing the

overall fluid temperature. Various researchers have sought to combat this by analytically

solving for effective wall forces [296], increasing the density of particles at the wall [297], or

by introducing a random velocity distribution (with fixed mean) for the wall particle [295].

DPD time and length scale calculation has been described by Moeendarbary et al. [298].

These units allow us to model systems with length scales from nanometers to micrometers

and overall time scales of up to a few seconds.

A.1.4 Results: Non-spherical Droplet Generation

Since a spherical shape is the most stable configuration for a droplet, we employ a few charged

particles (“stabilizers”) to perturb the stable spherical state. Equation A.6 shows the

repulsive force between a charged particle pair, which in essence, is a Coulombic interaction:

FQ =
1

4πε0

qiqj
r2

r̂ij (A.6)

where ε0 is the dielectric constant of the medium, qi and qj are charges on the particles

and r is the separation distance between particles. If both charges have the same sign (like

charges) then the product qiqj is positive and the direction of the force on qi is given by

r̂ji; the charges repel each other. If the charges have opposite signs then the product qiqj

is negative and the direction of the force on qi is given by −r̂ji; the charges attract each

other. In a typical simulation, we use three kinds of DPD particles/beads: droplet, solvent

and stabilizer particles. The initial configuration is a cluster of droplet particles in a near

spherical shape in the matrix of solvent particles. The droplet particles are surrounded by

charged stabilizer particles. A typical initial configuration is shown in Figure 75 along with

an intermediate stage, which shows that DPD can be used to tune the shape of a spherical

droplet.
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Figure 75: (Left) Initial spherical shape of a DPD droplet consisting of 22,528 particles

(red). Eight (8) charged particles (blue) are positioned at the corners of a cube enclosing the

spherical droplet. There are 90,112 solvent particles which are not shown here for clarity.

(Right) Intermediate stage showing the evolution of the non-spherical shape.

A.1.5 Outlook

In future, the following further studies are proposed to systematically investigate the real-

ization of a non-spherical droplet:

1. Assessing different initial configurations: In order to get a droplet in cubic, tetra-

hedral or bipyramidal shape, one needs to change the orientation and numbers of the

stabilizer particles. Therefore, examination of the effects of different initial configurations

on the final shape of the droplet is a good starting point.

2. Exploring the parameters space: The parameter aij determines the magnitude of

the maximum repulsive force between a pair of DPD particles, i and j. Exploration of

the parameters space by changing aij and the charges qi on the stabilizer particles would
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aid in identifying proper parameters for a desired shape.

3. Evaluating size effects: Since the system sizes accessible to simulations are rather

small, one can draw conclusions about the behavior of larger real systems by investigating

the size effects, i.e., how the system properties will vary with the system size. This can

be evaluated by using different volumes of the simulation box.

4. Evaluating density effects: The system density ρ (equal to the number of DPD parti-

cles per unit volume) determines how many total particles will be in the simulation box.

Typically, the density chosen is a free parameter, but since the number of interactions

for each particle increases linearly with the density, the required computation time (CPU

time) t per time-step and per unit volume increases as ρ2 [290]. Therefore, for efficiency

reason, many workers used a value of ρ = 3.0, which is the lowest possible density where

the scaling relation for excess pressure in the equation of state still holds good. However,

the effect of density on final droplet shape is not clear and this can be a topic of future

investigations.

5. Exploring other ideas: Using armored particle layers around a droplet to stabilize a

non-spherical shape by jamming the interface is a fairly common practice [281,285–287,

299,300]. Such techniques can be implemented in the droplet simulation to stabilize the

non-spherical shape.
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APPENDIX B

NOMENCLATURE

English Symbols

2S center-to-center peg spacing (Ch. 5)

A a factor equal to ±1 (Ch. 5)

Av amplitude of vibration of ratchet device (Ch. 5)

a radius of contact spot (Ch. 2)

(a) asymmetry parameter of ratchet tooth (Ch. 5)

aij maximum repulsion between particles i and j (Appendix A)

C concentration of tracer particle (Ch. 2)

〈C〉 mean concentration of tracer particle (Ch. 2)

c dimensionless collisional viscosity (Ch. 3)

(c) concentration (Ch. 4)

D drum diameter (Ch. 3)

(D) (particle) diffusivity (Ch. 4)

d particle diameter (Ch. 3)

(d) diameter of largest particle in a ratchet device (Ch. 5)

d particle size ratio (Ch. 3, 4)

deff effective diameter of a particle (Ch. 5)

dp diameter of a particle (Ch. 5)

dt time-step (Ch. 2)

E elastic modulus (Ch. 2)

E∗ effective elastic modulus (Ch. 2)

Ei elastic modulus of particle i (Ch. 2)

Es extent of separation (Ch. 5)
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English Symbols

êij
n normal unit vector (Ch. 2)

êij
t tangential unit vector (Ch. 2)

FC
ij conservative force on particle i due to particle j in DPD (Ap-

pendix A)

FD
ij dissipative force on particle i due to particle j in DPD (Appendix

A)

f number fraction of segregating species (Ch. 3)

(f) frequency of vibration of ratchet device (Ch. 5)

fcrit critical forcing frequency (Ch. 3, 4)

fe effective forcing frequency (Ch. 3)
−→
Fij force on particle i due to particle j (vector) (Ch. 2)
−−→
Fij

n normal force on particle i due to particle j (vector) (Ch. 2)
−→
F t
ij tangential force on particle i due to particle j (vector) (Ch. 2)

−→
Fn normal force (vector) (Ch. 2)
−→
Ft tangential force (Ch. 2)

F n
ij normal force on particle i due to particle j (Ch. 2)

F t
ij tangential force on particle i due to particle j (Ch. 2)

Fmax maximum force (Ch. 2)

Fn normal force (Ch. 2)

FQ Coulombic force (Appendix A)

FR
ij random force on particle i due to particle j in DPD (Appendix

A)

Fr Froude number (Ch. 3)

Ft tangential force at particle-particle contact (Ch. 2)

Fto old tangential force (Ch. 2)

Fy yield force (Ch. 2)

G shear modulus (Ch. 2)

G∗ effective shear modulus (Ch. 2)

Gi shear modulus of particle i (Ch. 2)
−→g acceleration due to gravity (vector) (Ch. 2)

g acceleration due to gravity (Ch. 3)

H particle bed height in a chute (Ch. 4)

(H) height of simulation box (Ch. 5)

Hp vertical center-to-center peg spacing (Ch. 5)

h ratchet tooth height (Ch. 5)

h(x, t) height of a dynamic sand pile (Ch. 2)

Ip moment of inertia of a particle (Ch. 2)

JS segregation flux (Ch. 4)
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English Symbols

KS segregation constant, size (Ch. 3, 4)

KT segregation constant, density (Ch. 3, 4)

kB Boltzmann constant (Appendix A)

kn normal force constant (Ch. 2)

kt tangential stiffness (Ch. 2)

ky plastic stiffness (Ch. 2)

L effective baffle length (Ch. 3)

(L) chute length (Ch. 4)

(L) separation device length or length of simulation box (Ch. 5)

Lplug length of particle plug on chute (Ch. 4)

l length of the projection of the longer side of ratchet tooth on

horizontal (Ch. 5)

ML Lacey mixing index (Ch. 2)

MP Poole mixing index (Ch. 2)

mp mass of a particle (Ch. 2)

N total number of particles (Ch. 2, 3, 4)

Nc number of concentration measurement locations (Ch. 2, 3)

Nh number of particle layers (Ch. 5)

Pe segregation-based Péclet number (Ch. 4)

p depth of a ratchet tooth (Ch. 5)

qi charge on particle i (Appendix A)

R̄ ratio of contact curvature due to plastic deformation and effec-

tive radius (Ch. 2)
−→
R radius of particle (vector) (Ch. 2)

R radius of a particle (Ch. 2)

(R) drum radius (Ch. 3)

(R) degree of mixing (Ch. 4)

R∗ effective radius (Ch. 2)

R1 radius of small particle (Ch. 4)

Rp contact curvature due to plastic deformation (Ch. 2)

(Rp) radius of a particle (Ch. 5)

Rpeg radius of a peg (Ch. 5)

R(x, t) thickness of rolling layer (Ch. 2)
−→ri radius of particle i (vector) (Ch. 2)

r radius of a particle (Ch. 2)

(r) separation distance between particles (Appendix A)

ri position vector of a DPD particle (Appendix A)

rij vector connecting centers of two DPD particles i and j (Ap-

pendix A)
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English Symbols
−→rj radius of particle j (vector) (Ch. 2)

Sij separation between centers of particle i and particle j (Ch. 2)

T total contact detection time (Ch. 2)

(T ) granular temperature (Ch. 4)

(T ) temperature of a DPD system (Appendix A)

t dimensionless time (Ch. 4)

t time allowed for migration of particles (Ch. 5)

tc duration of collision (Ch. 2)

tD diffusion time (Ch. 4)

tentry particle entry time on chute (Ch. 4)

texit particle exit time from chute (Ch. 4)

tS characteristic segregation time (Ch. 3, 4)

Uavg average stream-wise flow velocity of particles in a chute (Ch. 4)

u velocity of particle (Ch. 4)

〈Vbig〉 average longitudinal velocity of big particles (Ch. 5)

〈Vsmall〉 average longitudinal velocity of small particles (Ch. 5)
−→vi velocity of particle i (vector) (Ch. 2)
−→vj velocity of particle j (vector) (Ch. 2)
−→vp particle velocity (vector) (Ch. 2)

vi velocity vector of a DPD particle (Appendix A)

vS segregation velocity (Ch. 3)

vt tangential velocity (Ch. 2)

W width or depth of simulation box (Ch. 5)

Wi full width at half max (FWHM) for distribution of particle type

i (Ch. 4)

w ratchet tooth width (Ch. 5)

wD weighting function for dissipative force in DPD (Appendix A)

wR weighting function for random force in DPD (Appendix A)

X̄c scaled difference of particle mass centers on chute (Ch. 4)

Xc centroid of particle mass on chute (Ch. 4)

ẋt velocity at time t (Ch. 2)

xt position at time t (Ch. 2)

zp z coordinate of a particle (Ch. 5)

zpeg z coordinate of the center of a peg (Ch. 5)
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Greek Symbols

α computational overlap between contacting particles (Ch. 2)

(α) a fitting parameter (Ch. 4)

α̇ relative normal velocity of particles in contact (Ch. 2)

αmax maximum deformation (Ch. 2)

αo a constant in time-step equation (Ch. 2)

αy deformation at yield point (Ch. 2)

β a fitting parameter (Ch. 4)

βm dynamic angle of repose of granular materials (Ch. 3)

βs angle of repose of granular materials (Ch. 3)

Γ dimensionless acceleration of ratchet device (Ch. 5)

γ magnitude of dissipative force in DPD (Appendix A)

γ̇ shear rate (Ch. 4)

γn damping parameter (Ch. 2)

γ̇o shear rate at midpoint of layer in a tumbler (Ch. 3)

∆s tangential displacement (Ch. 2)

∆t time-step (Ch. 2)

δo maximum shear layer thickness (Ch. 3)

ε0 dielectric constant (Appendix A)

ζij a random number with zero mean and unit variance (Appendix

A)

λ wave speed (Ch. 2)

ν Poisson ratio (Ch. 2)

(ν) solid volume fraction (Ch. 4)

νi Poisson ratio for particle i (Ch. 2)

ξ a fitting parameter (Ch. 3)

ρ density (Ch. 2)

σ standard deviation of the composition of a mixture (Ch. 2)

σMIX standard deviation of the composition of a completely mixed

mixture (Ch. 2)

σSEG standard deviation of the composition of a completely segregated

mixture (Ch. 2)

σy yield stress (Ch. 2)

τmean mean residence time of particle in layer (Ch. 3)

φi concentration of species i (Ch. 4)

φt total solids volume fraction (Ch. 4)

ω drum rotation rate (Ch. 3)
−→ωp angular velocity of a particle (vector) (Ch. 2)
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Abbreviations

AVCHD advanced video codec high definition (Ch. 5)

BCRE Bouchaud, Cates, Ravi & Edwards (model) (Ch. 2)

BdG Boutreux & de Gennes (model) (Ch. 2)

CAD computer aided design (Ch. 2)

CCD charge-coupled device (Ch. 5)

CDF cumulative distribution function (Ch. 4)

CPU central processing unit (Ch. 2)

DEM discrete element method (Ch. 1-6)

DNA deoxyribonucleic acid (Ch. 5)

DPD dissipative particle dynamics (Appendix A)

DV digital video (Ch. 5)

FWHM full width at half max (Ch. 4)

GNU GNU’s not Unix (Ch. 4)

GPGPU (GPU) general purpose graphics processing units (Ch. 2, 6)

HPC high performance computing (Ch. 2, 6)

HSI hue-saturation-intensity (Ch. 5)

IS intensity of segregation (Ch. 2, 3, 4)

MC Monte Carlo (simulation) (Ch. 4)

MD molecular dynamics (Ch. 2, Appendix A)

NBS no binary search (Ch. 2)

OOP object-oriented programming (Ch. 2)

PD particle dynamics (Ch. 1)

PMMA polymethylmethacrylate (Ch. 4)

RGB red-green-blue (Ch. 5)

RPM revolutions per minute (Ch. 3)

RSD relative standard deviation (Ch. 2, 4)
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Subscripts

1 small or segregating species

avg average

B Boltzmann

big big

c collision or centroid or cell

crit critical

D diffusion

e effective

eff effective

entry entry

exit exit

i particle i

ij on particle i due to particle j

j particle j

L Lacey

max maximum

n normal

o old

P Poole

p particle

peg peg

plug plug

S segregation or size

s separation

small small

T density

t tangential or at time t

y yield

Superscripts

C conservative

D,D dissipative

n normal

Q Coulombic

R,R random

t tangential
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rotary drum reactors. Powder Technology, 20(1):29–37, 1978.

[214] J. Lehmberg, M. Hehl, and K. Schügerl. Transverse mixing and heat transfer in hori-
zontal rotary drum reactors. Powder Technology, 18:149–163, 1977.

[215] G. W. J. Wes, A. A. H. Drinkenburg, and S. Stemerding. Solids mixing and residence
time distribution in a horizontal rotary drum reactor. Powder Technology, 13(2):177–
184, 1976.

[216] Abouzeid, T. S. Mika, K. V. Sastry, and D. W. Fuerstenau. The influence of operating
variables on the residence time distribution for material transport in a continuous
rotary drum. Powder Technology, 10(6):273–288, December 1974.

[217] R. Hogg and D. W. Fuerstenau. Transverse mixing in rotating cylinders. Powder
Technology, 6:139–147, 1972.

[218] Sato K. Inoue, I. Yamaguchi K. Motion of a particle and mixing process in a horizontal
drum mixer. Kogaku Kogaku, 34:1323–30, 1970.

[219] R. Hogg, G. Mempel, and D. W. Fuerstenau. The mixing of trace quantities into
particulate solids. Powder Technology, 2:223–228, 1968-69.

[220] R Hogg. Diffusional mixing in an ideal system. Chemical Engineering Science,
21(11):1025–1038, 1966.

[221] Christian M. Dury and Gerald H. Ristow. Competition of mixing and segregation in
rotating cylinders. Phys. Fluids, 11(6):1387, 1999.

[222] S. K. Hajra and D. V. Khakhar. Combined density and size segregation in rotating
cylinders. In preparation, 2007.

[223] D. V. Khakhar and J. M. Ottino. Scaling of granular flow processes: from surface flows
to design rules. AIChE Journal, 48(10):2157–2166, 2002.

[224] J. Duran. Sands, Powders, and Grains. Springer, 2000.

[225] G. H. Ristow. Pattern Formation in Granular Materials. Springer, 2000.

[226] J. M. Ottino and R. M. Lueptow. Materials science - On mixing and demixing. Science,
319:912–913, 2008.

[227] J. T. Jenkins and S. B. Savage. A theory for the rapid flow of identical, smooth, nearly
elastic spherical particles. J. Fluid Mech., 130:187–202, 1983.

182



[228] C. Wightman, P. R. Mort, F. J. Muzzio, R. E. Riman, and R. K. Gleason. The structure
of mixtures of particles generated by time-dependent flows. Powder Technology, 84:231–
240, 1995.

[229] S. J. Fiedor and J. M. Ottino. Mixing and segregation of granular matter: multilobe
formation in time-periodic flows. J. Fluid Mech., 533:223–236, 2005.

[230] Nitin Jain, J. M. Ottino, and R. M. Lueptow. Effect of interstitial fluid on a granular
flowing layer. Journal of Fluid Mechanics, 508(-1):23–44, 2004.

[231] A. V. Orpe and D. V. Khakhar. Scaling relations for granular flow in quasi-two-
dimensional rotating cylinders. Physical Review E, 64(3), September 2001.

[232] O. Walton. Application of molecular dynamics to macroscopic particles. International
Journal of Engineering Science, 22:1097–1107, 1984.

[233] interp2() function of Matlab R© R2010a (The Mathworks Inc., Natick, MA, USA) is
used with ‘linear’ option as the interpolation method.

[234] C. Campbell. Flow regimes in inclined open-channel flows of granular materials. Powder
Technology, 41(1):77–82, January 1985.

[235] M. Farrell, C. Lun, and S. Savage. A simple kinetic theory for granular flow of bi-
nary mixtures of smooth, inelastic, spherical particles. Acta Mechanica, 63(1):45–60,
November 1986.

[236] Thorsten Poschel. Granular material flowing down an inclined chute: a molecular
dynamics simulation. Journal de Physique II, 3(1):27–40, January 1993.

[237] O. R. Walton. Numerical simulation of inclined chute flows of monodisperse, inelastic,
frictional spheres. Mech. Mat., 16:239–247, 1993.

[238] V. Dolgunin. Segregation modeling of particle rapid gravity flow. Powder Technology,
83(2):95–103, May 1995.

[239] X. Zheng. Molecular dynamics modelling of granular chute flow: density and velocity
profiles. Powder Technology, 86(2):219–227, 1996.

[240] Olivier Pouliquen and Nathalie Renaut. Onset of granular flows on an inclined rough
surface: Dilatancy effects. Journal de Physique II, 6(6):923–935, June 1996.

[241] D. Hirshfeld and D. C. Rapaport. Molecular dynamics studies of grain segregation in
sheared flow. Physical Review E, 56(2):2012–2018, 1997.

[242] V. Dolgunin, A. Kudy, and A. Ukolov. Development of the model of segregation
of particles undergoing granular flow down an inclined chute. Powder Technology,
96(3):211–218, May 1998.

183



[243] S. Dippel and D. Wolf. Molecular dynamics simulations of granular chute flow. Com-
puter Physics Communications, 121-122:284–289, 1999.
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[275] Zénó Farkas, Ferenc Szalai, Dietrich E. Wolf, and Tamás Vicsek. Segregation of gran-
ular binary mixtures by a ratchet mechanism. Phys. Rev. E, 65(2):022301, Jan 2002.

[276] D. C. Rapaport. Mechanism for granular segregation. Phys. Rev. E, 64(6):061304, Nov
2001.

[277] Xiaodong Shi, Guoqing Miao, and Hua Zhang. Horizontal segregation in a vertically
vibrated binary granular system. Physical Review E, 80(6):061306, 2009.

[278] G. Costantini, A. Puglisi, and U. M. B. Marconi. Models of granular ratchets. Journal
of Statistical Mechanics: Theory and Experiment, 2009(07):P07004, 2009.

[279] A Igarashi and C Horiuchi. Granular segregation by an oscillating ratchet mechanism.
Acta Physica Polonica B, 35(4):1471–1480, April 2004.

[280] A. Bae, W. Morgado, J. Veerman, and G. Vasconcelos. Single-particle model for a
granular ratchet. Physica A: Statistical Mechanics and its Applications, 342(1-2):22–
28, 2004.

[281] Ho Shum, Adam Abate, Daeyeon Lee, André Studart, Baoguo Wang, Chia-Hung Chen,
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