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In many clinical trials, patients are not followed continuously. This means their vital status may 

not be immediately recorded. In such cases, the results from the Kaplan-Meier estimator or the 

log rank test, popular methods used for survival analysis, may be biased or inconsistent. Hu and 

Tsiatis first produced a new estimator to estimate survival distribution for right-censored data 

with delayed ascertainment, Van der Laan and Hubbard modified their estimator. We investigate 

each of these proposed estimators and their properties. Using simulations, we compare these new 

estimators to each other and to the Kaplan-Meier estimator using different sample sizes, different 

failure rates, and different maximum delay times. The public health importance of this thesis is 

that we can partially alleviate the problem caused by delayed ascertainment in the analysis of 

right-censored time to event data by choosing the most accurate and consistent estimator that 

accounts for the delayed ascertainment. The reduction of bias in analyses of public health data 

ensures that such studies are reliable so that proper inference can be made and hence, potential 

public health policy can be based on an accurate decision making process. 
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1.0  INTRODUCTION 

In some clinical studies, the outcome of interest is the length of time to an event, not just whether 

the event occurs. However, for a variety of reasons, during the collection of time to event data, 

some subjects are not followed until they ultimately experience an event. For example, a subject 

may drop out of a study before the time of analysis or could be lost to follow-up because they 

moved and cannot be contacted. Another possibility is that the study ends before a subject 

experiences the event being studied. In these cases, their failure times are said to be right-

censored. The term “right” is used since all we know is that the event occurs sometime after the 

censoring time (Klein and Moeschberger, 2005). Survival data can be described using the 

survival function, S(t), the probability that the failure time (time to event) is greater than time t. 

One of the popular estimators for determining the survival function, given the right-censored 

data, is the Kaplan-Meier estimator. This estimator requires the key assumption that the 

censoring is independent of the failure times (Miller, 1981).  

1.1 SURVIVAL DATA WITH DELAYED ASCERTAINMENT 

In clinical trials, patients are not often followed continuously and their vital and disease status 

might be recorded only after a certain time has passed. This delayed recording is called “delayed 

ascertainment.” In this case, the key assumption of the Kaplan-Meier estimator, independent 
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censoring, is not met (Hu and Tsiatis, 1996). Three different situations with delayed 

ascertainment are described in Figure 1. In that figure, E represents when patients entered the 

study, T represents when patients experienced an event, A is the time when T was recorded into 

dataset, and C is the time when the analysis was performed. Case I represents a situation where 

the event and its ascertainment occurred after time C. Case II represents a situation where the 

event occurred before time C, but it was reported after time C. Finally, case III represents a 

situation where the event and its ascertainment occurred before time C. At time C, only the last 

case (Case III) is reported as a subject with the event even though the second subject (Case II) 

also experienced an event prior to the time of analysis.  

 

 

 

 

 

 

 

Figure 1. Survival data with delayed ascertainment 

 

The failure times of Cases I and II were right-censored because their recordings indicated 

that the event had not occurred at time C. When a patient’s status is not up to date at the time of 

analysis, the censoring process depends on both A and T. This causes the Kaplan-Meier estimator 

to be biased or inconsistent. To alleviate this problem, Hu and Tsiatis (1996) developed a new 

estimator that accounts for delayed ascertainment. Later, Van der Laan and Hubbard (1998) 

offered a new estimator, which is a modification the Hu and Tsiatis estimator.  
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1.2 THE STRUCTURE OF DATA WITH DELAYED ASCERTAINMENT 

To describe the structure of survival data with delayed ascertainment, we will focus on the vital 

status as the event of interest. We denote T as the time from entry into the study until death.  

1.2.1 Uncensored data 

We will first consider the situation where all patients have experienced the outcome of interest - 

death. We will follow many of the notational conventions used by Hu and Tsiatis (1996). 

Assume that a random sample of n subjects participated in the study and regularly visit hospitals. 

Let Uji (j = 1,…, k-1) be the time to jth visit from time of entry into the study for ith subject and 

Aji (j = 1,…, k-1) be the time when the status at Uji is recorded. Additionally, let Aki be the time 

when Ti is recorded. We can describe the status process of each subject using a random vector 

{(U1i, A1i), … , (Uk-1 i, Ak-1 i), (Ti, Aki)}, where Uji ≤ Aji (j = 1,…, k-1). Here, the number of 

hospital visits, k, is random and depends on i.    

The distribution of the above vector is complex since each patient has different number of 

hospital visits. We can describe this vector using a bivariate process {Vi(t), Ri(t); t ≥ 0}, where 

Ri(t) is a function indicating whether or not the ith subject died prior to time t and Vi(t) is the first 

time at which we know the subject’s vital status at time t. If a subject is alive at time t (Figure 2, 

Case I), Vi(t) is Aji, which is the reporting time of Uj*i  where Uj*i is the minimum Uji greater than 

time t. On the other hand, if a subject dies before time t (Figure 2, Case II), Vi(t) is Aki, the time 

when Ti is reported. When a subject dies before time t but their failure time is not yet recorded at 

time t (Figure 2, Case III), Vi(t) is still Aki by the definition. 
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Figure 2. Uncensored data with delayed ascertainment 

 

1.2.2 Right-censored data 

As we discussed before, survival data in many clinical trials is right-censored. In this thesis, for 

simplification purpose, we will focus on the situation when a survival time is right-censored only 

due to incomplete follow-up. With right-censored data, we define C to be the censoring time and 

F to be the follow-up time, the time from a subject’s entry to time when the analysis is 

performed. If a subject is known to be dead before the time of analysis (Figure 3, Case I), the 
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censoring time used for the censoring variable is the time when the analysis is performed. 

However, if a subject is known to be alive up to the time of analysis (Figure 3, Case II), then we 

are not certain whether that subject died between the last monitored time and the time of 

analysis. Van der Laan and Hubbard (1998) state that it is a common practice to use the last 

monitored time as the censoring time since all we know is that the failure time, T, is greater than 

the time of the last visit.  

   

 

 

 

 

 

 

 

 

 

 

Figure 3. Right-censored data with delayed ascertainment 

 

If V(t) is greater than the censoring time, then we cannot really assess a subject’s vital 

status at time t. Therefore, let Xi(t) be the minimum of Vi(t) and Ci, and Δi(t) be the indicator of 

whether we can classify a subject’s status at time t. We can describe the observed right-censored 

data using {Xi(t), ∆i(t), R*i(t); t ≥ 0}, where R*(t) is the vital status indicator, which can be 

defined only if a subject’s status at time t is known. 
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2.0  ESTIMATORS 

2.1 HU AND TSIATIS ESTIMATOR 

The primary interest in survival analysis is to estimate the survival function S(t) = pr(T ≥ t), 

where T is the time to death. Using the notation of Hu and Tsiatis, this can be expressed as 1 - 

pr{R(t) =1}. Hu and Tsiatis make two assumptions. First, they assume that one knows a subject 

died by time t before time t + C(t), where C(t) is a nonrandom value and represents the maximal 

reporting delay. This assumption can be expressed as pr{V(t) ≤ t + C(t)| R(t) = 1} = 1. Second, 

they assume that the follow-up time is independent of both the failure time distribution and the 

ascertainment process. Under their first assumption, the survival distribution function, S(t), can 

be expressed as 1 - pr{V(t) ≤ t + C(t), R(t) = 1} (Appendix A.1). Hu and Tsiatis define cause-

specific hazard functions λj(t, u) and a sub-distribution function G1(t, u) to describe the survival 

distribution function using the process {V(t), R(t)}:  

 λ𝑗(𝑡, 𝑢) ∶=  limℎ→0 ℎ−1 pr {𝑢 ≤ V(𝑡) < 𝑢 + ℎ , R(𝑡) = 𝑗|V(𝑡) ≥ 𝑢}  (𝑗 = 0,1) 

and 

𝐺1(𝑡, 𝑣) ≔ pr{V(𝑡) ≤ 𝑣, R(𝑡) = 1} =  ∫ 𝑒𝑥𝑝 − {𝛬1(𝑡, 𝑥) + 𝛬0(𝑡, 𝑥)} λ1(𝑡, 𝑥)𝑑𝑥𝑣
0  , 

where 𝛬𝑗(𝑡, 𝑥) = ∫  λ𝑗(𝑡,𝑢)𝑑𝑢𝑥
0  (𝑗 = 0,1). Let λ*j(t, u) be cause-specific hazard functions for 

V(t) with the observable random variables {Xi(t), ∆i(t), R*i(t); t ≥ 0}. Appendix A.2 shows that 

λ*j(t, u) is the same as λj(t, u) under their second assumption. Therefore, the survival distribution 
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function can be expressed as a function of the observable random variables {Xi(t), ∆i(t), R*i(t); t 

≥ 0}: 

S(𝑡) = 1 − pr{𝑅(𝑡)  = 1} = 1 − pr{𝑉(𝑡) ≤ 𝑡 + 𝐶(𝑡),𝑅(𝑡) = 1} = 1 − 𝐺1{𝑡, 𝑡 + 𝐶(𝑡)} 

         = 1 − ∫ 𝑒𝑥𝑝 − {𝛬1(𝑡, 𝑥) + 𝛬0(𝑡, 𝑥)} 𝜆∗1(𝑡, 𝑥)𝑑𝑥𝑡+𝐶(𝑡)
0  ,                           (2.1.1) 

where 𝛬𝑗(𝑡, 𝑥) = ∫  𝜆∗𝑗(𝑡,𝑢)𝑑𝑢𝑥
0 (𝑗 = 0,1).  

To estimate the above survival function, Hu and Tsiatis use the counting process theory 

(Appendix A.3) and derive the following estimator:  

𝑆�𝐻𝑇(𝑡) = 1−∑ 𝐸�{ 𝑋𝑖(𝑡),𝛥𝑖(𝑡)}
𝑌{𝑡,𝑋𝑖(𝑡)}  𝐼{𝑋𝑖(𝑡) ≤ 𝑡+ 𝐶(𝑡),𝑅𝑖(𝑡) = 1,∆𝑖(𝑡) = 1}𝑛

𝑖=1  ,          (2.1.2) 

where 𝐸�{Xi(t), Δi(t)} is the Kaplan-Meier estimator obtained from the data {Xi(t), Δi(t)} and 

Y{t,Xi(t)} is the number of subjects with Xi(t) greater than or equal to t.  

When vital status at every given time point is recorded immediately, the Hu and Tsiatis 

estimator and the Kaplan-Meier estimator are the same. In some clinical trials, the maximal 

reporting delay time C(t) is given. When this value is unknown, Hu and Tsiatis suggest choosing 

a value large enough.    

2.2 VAN DER LAAN AND HUBBARD ESTIMATOR 

Van der Laan and Hubbard (1998) extend Hu and Tsiatis’ study and modify their estimator. They 

use the ‘inverse probability of censoring weighted’ (IPCW) representation from Robins (1993). 

They assume that the censoring time is independent of both the failure time distribution and the 

ascertainment process. They define �̅�(𝑉(𝑡)) as the conditional expectation given the failure time 

distribution T and ascertainment process V(t): 
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 �̅�(𝑉(𝑡)) = 𝐸[∆(𝑡)|𝑇,𝑉(𝑡)] = 𝑝𝑟(𝐹 ≥ 𝑉(𝑡)|𝑇,𝑉(𝑡)).  

Under their assumption, they make a key identity that F(t) = pr(T ≤ t) = 𝐸[𝐼(𝑇≤𝑡)∆(𝑡)
�̅�(𝑋(𝑡))

]. The 

estimator of F(t) is 1
𝑛
∑ 𝐼(𝑇𝑖≤𝑡)∆𝑖(𝑡)

�̅�𝑛(𝑋𝑖(𝑡))
 𝑛

𝑖=1 , where �̅�𝑛(𝑋𝑖(𝑡)) is an estimator of �̅�(X(t)). They define 

𝐹�𝑉(𝑡)(𝑥) as pr(V(t) ≥ x), and 𝐹�𝑋(𝑡)(𝑥) as pr(X(t) ≥ x). Under their assumption, 1
�̅�(𝑥)

= 𝐹�𝑉(𝑡)(𝑥)
𝐹�𝑋(𝑡)(𝑥)

 and 

the modified estimator is expressed as:  

𝑆�𝑉𝐻(𝑡) = 1− 1
𝑛
∑ 𝐹�𝑉(𝑡),𝐾𝑀(𝑋𝑖(𝑡))

𝐹�𝑋(𝑡),𝑛(𝑋𝑖(𝑡))  𝑅𝑖(𝑡)∆𝑖(𝑡)𝑛
𝑖=1  ,                                                    (2.2.1) 

where FV(t),KM is the Kaplan-Meier estimator obtained from the data {Xi(t), Δi(t)} and FX(t),n(x) is 

the proportion of subjects with Xi(t) greater than or equal to x.  

The Van der Laan and Hubbard estimator is equal to Hu and Tsiatis estimator when the 

maximal reporting delay, C(t), value is equal to a positive infinite value. So they conclude that 

the C(t) term in the Hu and Tsiatis estimator is unnecessary. 
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3.0  SIMULATION RESULTS 

3.1 SIMULATION SETUP 

A series of simulations were performed to compare the new estimators to each other and to the 

Kaplan-Meier estimator. For simplicity, it was assumed that the monitoring times of the “alive” 

status were recorded immediately, i.e., Aji = Uji (j = 1,…, k-1). The time when each subject 

entered the study was uniformly generated on an interval from zero to three years and the time of 

analysis was three years. The time to failure was generated from an exponential distribution with 

means of one year and two years. Furthermore, the failure times were generated independently 

from the follow-up times, the times from entry to the time of analysis. First, the case where the 

failures were immediately recorded was simulated. Then, the cases with delayed reporting were 

simulated. The delays were generated from uniform distributions along three different intervals: 

(0, 0.5), (0, 1) and (0, 2). The times to periodic hospital visits were simulated using a Poisson 

process with a mean inter-arrival time of six months. We investigated the magnitude of bias and 

the consistency of each estimator. We used the last monitoring time as the censoring time when a 

subject was censored. However, Hu and Tsiatis used the follow-up time as the censoring time. 

We used both censoring time definitions and compared the estimates.    

For all simulations, the Kaplan-Meier estimator, the Hu and Tsiatis estimator and the Van 

der Laan and Hubbard estimator were calculated at three time points: one, two and three years. 
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For the Hu and Tsiatis estimator, the C(t) values used were 0 and 1. For each scenario, sample 

sizes of 60 and 100 were simulated 500 times. These simulations were performed using the R 

language. A typical simulation of three estimators and two C(t) values for the three landmark 

times with the sample size of 60 required just under 10 minutes of CPU time. With the sample 

size of 100, it required about 19 minutes of CPU time. 

3.2 RESULTS 

Results of our simulations are summarized in Tables 1 - 9. Tables 1 – 4 show the estimated 

survival distribution values at each time point, compared to the true survival distribution. For 

each table, t represents the time points (in years) at which estimators were calculated; S(t) 

represents the true survival distribution; KM, the empirical average of the Kaplan-Meier 

estimator; 1 – G1(t,t), the empirical average of the Hu and Tsiatis estimator with C(t) value of 0; 

1 – G1(t,t+1), the empirical average of the Hu and Tsiatis estimator with C(t) value of 1; and VH 

represents the  empirical average of the Van der Laan and Hubbard estimator. Tables 5 – 8 

display empirical standard deviations of the estimators. Table 9 displays empirical averages of 

the Hu and Tsiatis estimators when the follow-up time was used as the censoring time.  

When there was no delay, the Hu and Tsiatis estimator and the Van der Laan and 

Hubbard estimator gave the same empirical average values as the Kaplan-Meier estimator. This 

is because two new estimators reduce to the Kaplan-Meier estimator if a subject’s status is 

always recorded immediately. New estimators and the Kaplan-Meier estimator underestimated 

the true survival distribution at every time point.   
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The Hu and Tsiatis estimator with the maximum delay value, C(t), of 0 and the Kaplan-

Meier estimator gave the same estimate values since the Hu and Tsiatis estimator reduces to the 

Kaplan-Meier estimator when the C(t) value is equal to 0. These estimators overestimated the 

true survival function.  

When the C(t) value was correctly defined or when the assigned C(t) value was greater 

than the true maximum delay value, the Hu and Tsiatis estimator and the Van der Laan and 

Hubbard estimator were the same. These estimators underestimated the true survival function.  

When the assigned value was less than the true maximum delay value, the Hu and Tsiatis 

estimator overestimated the true survival function, and it was more biased than the Van der Laan 

and Hubbard estimator.  

As demonstrated in Tables 1 - 4, the differences between the estimators in the magnitude 

of bias decreased at later time points. In general, the Van der Laan and Hubbard estimator was 

less biased than the Hu and Tsiatis estimator and the Kaplan-Meier estimator. 

As shown in Tables 5 - 8, all estimators were more consistent at later time points. The 

Van der Laan and Hubbard estimator was more likely to be consistent than other estimators at 

later time points. As we expected, the estimators were more consistent when the sample size was 

larger. 

Lastly, Table 9 showed that the Hu and Tsiatis estimator values were changed when the 

follow-up time, rather than the last available monitoring time, was used as the censoring time. 

The Hu and Tsiatis estimators with different C(t) values were no longer the same as the Kaplan-

Meier estimator or the Van der Laan and Hubbard estimator. When there is no delay, the Hu and 

Tsiatis estimator was less biased than other estimators. The Hu and Tsiatis estimator was more 

biased than the Kaplan-Meier estimator when the assigned C(t) value was smaller than the true 
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maximum delay value. When the assigned value was equal to or larger than the true maximum 

delay value, the Hu and Tsiatis estimator was less biased than other estimators at earlier time 

points. 

 

 

Table 1. Sample Size = 60, Mean Failure Rate = 1 year.  

Delay t S(t) KM 1 – G1(t,t) 1 – G1(t,t+1) VH 
 

No Delay 1 0.3679 0.3465 0.3465 0.3465 0.3465 
2 0.1353 0.1075 0.1075 0.1075 0.1075 
3 0.0498 0.0333 0.0333 0.0333 0.0333 

UNIF (0, 0.5) 1 0.3679 0.4475 0.4475 0.3408 0.3408 
2 0.1353 0.1424 0.1424 0.1040 0.1040 
3 0.0498 0.0418 0.0418 0.0331 0.0331 

UNIF (0, 1.0) 1 0.3679 0.6103 0.6103 0.3519 0.3519 
2 0.1353 0.1945 0.1945 0.1127 0.1127 
3 0.0498 0.0520 0.0520 0.0352 0.0352 

UNIF (0, 2.0) 1 0.3679 0.7999 0.7999 0.4783 0.3725 
2 0.1353 0.3855 0.3855 0.1533 0.1278 
3 0.0498 0.1116 0.1116 0.0535 0.0535 

 

 

Table 2. Sample Size = 60, Mean Failure Rate = 2 years. 

Delay t S(t) KM 1 – G1(t,t) 1 – G1(t,t+1) VH 
 

No Delay 1 0.6065 0.5860 0.5860 0.5860 0.5860 
2 0.3679 0.3227 0.3227 0.3227 0.3227 
3 0.2231 0.1635 0.1635 0.1635 0.1635 

UNIF (0, 0.5) 1 0.6065 0.6655 0.6655 0.5798 0.5798 
2 0.3679 0.3667 0.3667 0.3177 0.3177 
3 0.2231 0.1852 0.1852 0.1590 0.1590 

UNIF (0, 1.0) 1 0.6065 0.7683 0.7683 0.5842 0.5842 
2 0.3679 0.4242 0.4242 0.3212 0.3212 
3 0.2231 0.2134 0.2134 0.1606 0.1606 

UNIF (0, 2.0) 1 0.6065 0.8815 0.8815 0.6826 0.6145 
2 0.3679 0.5795 0.5795 0.3748 0.3491 
3 0.2231 0.2899 0.2899 0.1942 0.1942 
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Table 3. Sample Size = 100, Mean Failure Rate = 1 year. 

Delay t S(t) KM 1 – G1(t,t) 1 – G1(t,t+1) VH 
 

No Delay 1 0.3679 0.3454 0.3454 0.3454 0.3454 
2 0.1353 0.1115 0.1115 0.1115 0.1115 
3 0.0498 0.0323 0.0323 0.0323 0.0323 

UNIF (0, 0.5) 1 0.3679 0.4488 0.4488 0.3386 0.4488 
2 0.1353 0.1455 0.1455 0.1106 0.1455 
3 0.0498 0.0369 0.0369 0.0286 0.0369 

UNIF (0, 1.0) 1 0.3679 0.6080 0.6080 0.3497 0.3497 
2 0.1353 0.1975 0.1975 0.1101 0.1101 
3 0.0498 0.0533 0.0533 0.0322 0.0322 

UNIF (0, 2.0) 1 0.3679 0.7980 0.7980 0.4822 0.3749 
2 0.1353 0.3817 0.3817 0.1492 0.1229 
3 0.0498 0.1082 0.1082 0.0435 0.0435 

 

Table 4. Sample Size = 100, Mean Failure Rate = 2 years. 

Delay t S(t) KM 1 – G1(t,t) 1 – G1(t,t+1) VH 
 

No Delay 1 0.6065 0.5850 0.5850 0.5850 0.5850 
2 0.3679 0.3295 0.3295 0.3295 0.3295 
3 0.2231 0.1611 0.1611 0.1611 0.1611 

UNIF (0, 0.5) 1 0.6065 0.6658 0.6658 0.5799 0.5799 
2 0.3679 0.3768 0.3768 0.3271 0.3271 
3 0.2231 0.1868 0.1868 0.1601 0.1601 

UNIF (0, 1.0) 1 0.6065 0.7684 0.7684 0.5859 0.5859 
2 0.3679 0.4223 0.4223 0.3190 0.3190 
3 0.2231 0.2121 0.2121 0.1583 0.1583 

UNIF (0, 2.0) 1 0.6065 0.8841 0.8841 0.6820 0.6106 
2 0.3679 0.5816 0.5816 0.3777 0.3512 
3 0.2231 0.2933 0.2933 0.1930 0.1930 

 

Table 5. MSE. Sample Size = 60, Mean Failure Rate = 1 year. 

Delay t KM 1 – G1(t,t) 1 – G1(t,t+1) VH 
 

No Delay 1 0.0670 0.0670 0.0670 0.0670 
2 0.0511 0.0511 0.0511 0.0511 
3 0.0372 0.0372 0.0372 0.0372 

UNIF (0, 0.5) 1 0.0729 0.0729 0.0719 0.0719 
2 0.0569 0.0569 0.0517 0.0517 
3 0.0378 0.0378 0.0361 0.0361 

UNIF (0, 1.0) 1 0.0691 0.0691 0.0720 0.0720 
2 0.0665 0.0665 0.0560 0.0560 
3 0.0463 0.0463 0.0406 0.0406 

UNIF (0, 2.0) 1 0.0601 0.0601 0.0817 0.0816 
2 0.0830 0.0830 0.0660 0.0623 
3 0.0690 0.0690 0.0576 0.0576 
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Table 6. MSE. Sample Size = 60, Mean Failure Rate = 2 years. 

Delay t KM 1 – G1(t,t) 1 – G1(t,t+1) VH 
 

No Delay 1 0.0751 0.0751 0.0751 0.0751 
2 0.0727 0.0727 0.0727 0.0727 
3 0.0757 0.0757 0.0757 0.0757 

UNIF (0, 0.5) 1 0.0739 0.0739 0.0772 0.0772 
2 0.0735 0.0735 0.0734 0.0734 
3 0.0898 0.0898 0.0892 0.0892 

UNIF (0, 1.0) 1 0.0643 0.0643 0.0740 0.0740 
2 0.0838 0.0838 0.0872 0.0872 
3 0.0874 0.0874 0.0885 0.0885 

UNIF (0, 2.0) 1 0.0489 0.0489 0.0777 0.0842 
2 0.0865 0.0865 0.0910 0.0909 
3 0.1038 0.1038 0.1066 0.1066 

 

Table 7. MSE. Sample Size = 100, Mean Failure Rate = 1 year. 

Delay t KM 1 – G1(t,t) 1 – G1(t,t+1) VH 
 

No Delay 1 0.0545 0.0545 0.0545 0.0545 
2 0.0396 0.0396 0.0396 0.0396 
3 0.0273 0.0273 0.0273 0.0273 

UNIF (0, 0.5) 1 0.0577 0.0577 0.0555 0.0555 
2 0.0411 0.0411 0.0377 0.0377 
3 0.0300 0.0300 0.0282 0.0282 

UNIF (0, 1.0) 1 0.0576 0.0576 0.0584 0.0584 
2 0.0549 0.0549 0.0445 0.0445 
3 0.0376 0.0376 0.0316 0.0316 

UNIF (0, 2.0) 1 0.0434 0.0434 0.0626 0.0584 
2 0.0649 0.0649 0.0515 0.0502 
3 0.0479 0.0479 0.0410 0.0410 

 

Table 8. MSE. Sample Size = 100, Mean Failure Rate = 2 years. 

Delay t KM 1 – G1(t,t) 1 – G1(t,t+1) VH 
 

No Delay 1 0.0546 0.0546 0.0546 0.0546 
2 0.0570 0.0570 0.0570 0.0570 
3 0.0609 0.0609 0.0609 0.0609 

UNIF (0, 0.5) 1 0.0508 0.0508 0.0576 0.0576 
2 0.0624 0.0624 0.0600 0.0600 
3 0.0618 0.0618 0.0630 0.0630 

UNIF (0, 1.0) 1 0.0467 0.0467 0.0607 0.0607 
2 0.0653 0.0653 0.0631 0.0631 
3 0.0690 0.0690 0.0716 0.0716 

UNIF (0, 2.0) 1 0.0364 0.0364 0.0533 0.0590 
2 0.0696 0.0696 0.0731 0.0748 
3 0.0795 0.0795 0.0821 0.0821 
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Table 9. When the follow-up time is used as the censoring time 
(Sample Size = 60, Mean Failure Rate = 1 year) 

 
Delay t S(t) KM 1 – G1(t,t) 1 – G1(t,t+1) VH 

 
No Delay 1 0.3679 0.3349 0.3661 0.3661 0.3349 

2 0.1353 0.0959 0.1367 0.1367 0.0959 
3 0.0498 0.0359 0.0685 0.0685 0.0359 

UNIF (0, 0.5) 1 0.3679 0.4437 0.4799 0.3681 0.3309 
2 0.1353 0.1244 0.1758 0.1383 0.0914 
3 0.0498 0.0437 0.0929 0.0929 0.0437 

UNIF (0, 1.0) 1 0.3679 0.5952 0.6297 0.3638 0.3337 
2 0.1353 0.1661 0.2311 0.1402 0.0914 
3 0.0498 0.0531 0.1104 0.1104 0.0531 

UNIF (0, 2.0) 1 0.3679 0.7904 0.8145 0.4978 0.3783 
2 0.1353 0.3437 0.4335 0.2090 0.1295 
3 0.0498 0.0803 0.1840 0.1840 0.0803 
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4.0  DISCUSSION 

In this thesis, we investigated right-censored survival data when it has delayed ascertainment. 

We investigated new estimators proposed by Hu and Tsiatis and Van der Laan and Hubbard, and 

compared them with the Kaplan-Meier estimator to find the most accurate estimator for right-

censored survival data with delayed ascertainment. These new estimators are valid when patients 

are monitored regularly. If there is no delay, the Hu and Tsiatis estimator and the Van der Laan 

and Hubbard estimator both simplify to the Kaplan-Meier estimator. If recording of patients’ 

status is delayed and not up to date at the time of analysis, both new estimators are less biased 

than the Kaplan-Meier estimator. When the assigned C(t) value in the Hu and Tsiatis estimator is 

equal to or greater than the true maximal delay time, the Hu and Tsiatis estimator and the Van 

der Laan and Hubbard estimator are the same. The differences between the estimators in the 

magnitude of bias decreased at later time points and as the duration of delay decreased. Our 

study shows that the Van der Laan and Hubbard estimator performs more accurately than the Hu 

and Tsiatis estimator when the ascertainment of the event is delayed.  

In many clinical trials, we want to compare survival distributions between different 

treatment groups. Different treatment groups might have different delayed ascertainment 

processes. Fine and Tsiatis (2000) showed that the lagged logrank test performs well in spite of 

delayed reporting if the ascertainment processes are not different. If there is a difference in 

ascertainment, they found that the lagged logrank test can be biased and that their new estimator 
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can be less biased. In the future, more sophisticated methods to test differences in survival 

distributions when treatment groups have different patterns of check-ups should be developed.    

Another issue is that in many clinical trials, the event of interest is not a terminal event. 

Events such as a hospitalization or having a car accident can occur several times; that is, they 

could be recurrent events. Furthermore, there are other clinical studies which involve time to 

event outcomes related to competing causes of disease or death. For example, we may be 

interested in deaths caused by breast cancer but a breast cancer patient might die due to a disease 

other than breast cancer. Hence, we need to develop new estimators which account for delayed 

ascertainments with recurrent or competing events.  
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APPENDIX A 

PARTIAL PROOF OF HU AND TSIATIS ESTIMATOR 

A.1 SURVIVAL DISTRIBUTION FUNCTION 

(Assumption 1)    pr{V(t) ≤ t + C(t)| R(t) = 1} = 1 

↔ pr{𝑉(𝑡)≤ 𝑡 + 𝐶(𝑡),   𝑅(𝑡) = 1} 
pr{𝑅(𝑡) = 1} 

= 1  

↔ pr{𝑉(𝑡) ≤  𝑡 +  𝐶(𝑡),𝑅(𝑡) = 1} = pr{𝑅(𝑡)  =  1}   

 

∴ S(t) = pr(T ≥ t) = 1 - pr{R(t) = 1} = 1 - pr{V(t) ≤ t + C(t), R(t) = 1}  

 

A.2 CAUSE-SPECIFIC HAZARD FUNCTIONS FOR V(t) 

If there is no censoring, the cause-specific hazard functions for V(t) is defined as: 

λj(t, u) = lim ℎ→0 ℎ−1 pr {𝑢 ≤ V(𝑡) <  𝑢 + ℎ , R(𝑡) =  𝑗|V(𝑡) ≥  𝑢}  (𝑗 = 0,1). 
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If there is censoring from incomplete follow-up, the cause-specific hazard functions for V(t) is   

expressed only using the observable random variables {Xi(t), Δi(t), Ri
*(t); t ≥ 0}: 

λ𝑗∗(𝑡,𝑢)  =  lim ℎ→0 ℎ
−1 pr {𝑢 ≤ X(𝑡) <  𝑢 + ℎ , Δ(𝑡) = 1, R∗(𝑡) =  𝑗|X(𝑡) ≥  𝑢 }  (𝑗 = 0,1) . 

Since X(t)= V(t) and R*(t)= R(t) when Δ(t)=1,  

 λ𝑗∗(𝑡,𝑢)  =  
lim ℎ→0 ℎ−1 pr{u≤V(𝑡)< 𝑢+h ,   𝐶 ≥ 𝑡,   R(𝑡)= 𝑗 }  

𝑝𝑟{V(𝑡)≥ 𝑢,   𝐶 ≥ 𝑢}
 (𝑗 = 0,1) .  

Under the Hu and Tsiatis second assumption,   

 λ𝑗∗(𝑡, 𝑢) =
lim ℎ→0 ℎ−1 pr{𝑢≤V(𝑡)< 𝑢+ℎ ,   R(𝑢)= j }∗𝑝𝑟{𝐶 ≥ 𝑢}  

𝑝𝑟{V(𝑡)≥ 𝑢}∗𝑝𝑟{𝐶 ≥ 𝑢}
 (𝑗 = 0,1)   

  = λj(t, u) 

 

A.3 COUNTING PROCESS 

Suppose a sample of n subjects has the observable random variables {Xi(t), Δi(t), Ri
*(t); t ≥ 0} (i 

= 0,…, n). Define the counting process as: Nji(t, u) = I{Xi(t) ≤ u, Δi(t) = 1 , Ri
*(t) = j}  (j = 0,1, i = 

0,…, n, u ≥ 0), and the at-risk process as: Yi(t, u) = I{Xi(t) ≥ u}. Let Nj(t, u) = ∑ 𝑁𝑗𝑖(𝑡,𝑢) 𝑖 , N(t, 

u) = N0(t, u) + N1(t, u), and Y(t, u) = ∑ 𝑌𝑖(𝑡,𝑢)𝑖 . We also define 𝑑𝑁𝑗(𝑡,𝑢) be the change of in the 

counting process over a short time interval [u, u+h).   

We can substitute λ*j(t,x) in (2.1.1) with 𝑑𝑁𝑗(𝑡, 𝑥)/𝑌(𝑡, 𝑥) and derive the following 

estimator: 

S�(𝑡) = 1 − ∫ 𝑒𝑥𝑝 − {∫ 𝑑𝑁1(𝑡,𝑢)+𝑑𝑁0(𝑡,𝑢)
𝑌(𝑡,𝑢)

𝑥
0 }𝑡+𝑐(𝑡)

0
𝑑𝑁1(𝑡,𝑥)
𝑌(𝑡,𝑥)

   

        = 1 − ∫ 𝑒𝑥𝑝 − {∫ 𝑑𝑁(𝑡,𝑢)
𝑌(𝑡,𝑢)

𝑥
0 }𝑡+𝑐(𝑡)

0
𝑑𝑁1(𝑡,𝑥)
𝑌(𝑡,𝑥)
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        = 1 − ∫ 𝐸�(𝑡, 𝑥−)𝑡+𝑐(𝑡)
0

𝑑𝑁1(𝑡,𝑥)
𝑌(𝑡,𝑥)

                                                                    (A.3.1) 

, where 𝐸�(𝑡, 𝑥) is the Kaplan-Meier estimator of E(t, x) = pr(V(t) ≥ x) and it is asymptotically 

equivalent to 𝑒𝑥𝑝 − {∫ 𝑑𝑁(𝑡,𝑢)
𝑌(𝑡,𝑢)

𝑥
0 }. The estimator (A.3.1) is equivalent to (2.1.2). 



 21 

APPENDIX B 

PARTIAL R CODE 

install.packages("survival") 
library(survival)              
 
est <- function(n,los,mean_fail,inter_visit,delayed_time,x,C_x){ 

#n=sample size 
#los=length of study;x=time point of interest 
#mean_fail=mean failure time 
#inter_visit=mean inter-arrival time 
#delayed_time 
#x=time point of interest 

 
#----------------#  
# Create dataset #   
#----------------#  
E1 <- runif(n,min=0,max=los)             #entering time  
T1 <- rexp(n,1/mean_fail)                #failure times 
delay <- runif(n,min=0,max=delayed_time)  
Ak <- T1 + delay                  #final time at the failure time is recorded 
F1 <- los - E1                           #follow-up times 
 
# Times to hospital visits: a Possion process  
U.matrix <- matrix(NA, nrow=n, ncol=30)               
for (i in 1:n) { 
     U.matrix[i,] <- cumsum(rexp(30,1/inter_visit))    #30 is random number  
  } 
for (i in 1:n) { 
 if (U.matrix[i,1]>=Ak[i]){ 
  U.matrix[i,]<-Ak[i]} else 
U.matrix[i,c(which(U.matrix[i,]>=Ak[i]))]<- Ak[i] 
  } 
U.matrix <- cbind(U.matrix,Ak) 
 
# censoring time: the last monitoring time before follow-up for those  
# individuals who are censored 
C1 <- NULL 
for (i in 1:n) { 
     if (U.matrix[i,1]<=F1[i]&&F1[i]<Ak[i]){ 
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C1[i]<-U.matrix[i,max(which(U.matrix[i,]<=F1[i]))]) } else C1[i] <- F1[i] 
  } 
 
#death indicator at time x 
R <- NULL   
  for (i in 1:n) { 
 R[i]<-ifelse(T1[i]<=x,1,0) 
  } 
 
# First time at which an individual's vital status at time x is known 
V <- NULL 
  for (i in 1:n) { 
     V[i] <- ifelse(R[i]==0,U.matrix[i,min(which(U.matrix[i,]>=x))],Ak[i]) 
  } 
 
# For the right censored data  
X <- pmin(V,C1) 
delta <- ifelse(X==V,1,0) #indicate whether vital status at x is known 
R_c <- NULL               #death indicator, defined only if vital status is 
known 
  for (i in 1:n) { 
 if(delta[i]==1){                             
  R_c[i]<-R[i]} else R_c[i]<-NA 
  } 
 
## END OF DATA GENERATION ## 
#-----------------------------------------------# 
 
#-----------------------------------------------# 
#       SURVIVAL DISTRIBUTION ESTIMATORS        # 
#-----------------------------------------------# 
                   
## True survival distribution, S(x) 
true.S <- exp(-x/mean_fail)  
 
#----------------------------# 
# Kaplan-Meier estimator, KM # 
#----------------------------# 
status1 <- as.numeric(Ak<C1)                    #status  
surv.data <- Surv(pmin(Ak,C1), status1)         #right-censored data 
KM.time <- summary(survfit(surv.data~1))$time 
if(max(KM.time)>=x){ 
   KM.S<-c(summary(survfit(surv.data~1),times=x)$surv) } else KM.S<-
c(summary(survfit(surv.data~1),times=c(max(KM.time)))$surv) 
 
#------------------------# 
# Hu and Tsiatis, HT=1-G # 
#------------------------# 
G_ind.1 <- NULL     #C_x value=0 (assuming no delay) 
  for (i in 1:n){ 
 G_ind.1[i] <-ifelse(X[i]<=x & delta[i]==1 & R_c[i]==1,1,0) 
   } 
G_ind.2 <- NULL     #C_x value is given 
  for (i in 1:n){ 
 G_ind.2[i] <-ifelse(X[i]<=x+C_x & delta[i]==1 & R_c[i]==1,1,0) 
   } 
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denom <- NULL  
Y <- matrix(NA, nrow=n, ncol=n)  
  for (i in 1:n){ 
    for (l in 1:n) { 
 Y[i,l] <- ifelse(X[l]>=X[i],1,0) 
 } 
    denom[i] <- sum(Y[i,])  
   } 
 
X.surv.data <- Surv(X,delta)          
X.KM.time <- summary(survfit(X.surv.data~1))$time 
num <- NULL   
  for (i in 1:n){ 
    num[i]<-
summary(survfit(X.surv.data~1),times=ifelse(X.KM.time[1]<X[i],X.KM.time[max(w
hich(X.KM.time<X[i]))],0))$surv 
   } 
#combine 
G.1 <- NULL    
  for (i in 1:n){ 
 G.1[i] <- G_ind.1[i]*num[i]/denom[i] 
   } 
HT.1 <- 1 - sum(G.1)  #when C_x value=0 
 
G.2 <- NULL    
  for (i in 1:n){ 
 G.2[i] <- G_ind.2[i]*num[i]/denom[i] 
   } 
HT.2 <- 1 - sum(G.2)  #when C_x value is given 
 
#-----------------------# 
# Laan and Hubbbard, LH # 
#-----------------------# 
#combine 
LH <- NULL    
  for (i in 1:n){ 
 LH[i] <- R[i]*delta[i]*num[i]/denom[i] 
   } 
 
LH <-1- sum(LH) 
 
#---------------------# 
# Report the result   # 
#---------------------# 
out <- c(true.S,KM.S,HT.1,HT.2,LH) 
return(out) 
} 
 
#------------------------------------------------------------------# 
#--------------------------# 
# Simulation               # 
#--------------------------# 
 
#change for different settings 
n=60 
mean_fail=1 
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#constant settings 
los=4 
inter_visit=0.5 
C_x=1 
 
### Pattern I (No delay) 
delayed_time=0 
 
#12months 
x=1 
P1 <- matrix(NA, nrow=NT, ncol=5) 
p1.stime1<- system.time( 
for(sim in 1:NT){ 
      P1[sim,] <- est(n,los,mean_fail,inter_visit,delayed_time,x,C_x) 
 }) 
mse.KM <- sd(P1[,2])              #MSE of KM 
mse.HT1 <- sd(P1[,3])              #MSE of HT 
mse.HT2 <- sd(P1[,4])              #MSE of HT 
mse.LH <- sd(P1[,5])              #MSE of LH 
P1.row1 <- c(colMeans(P1),mse.KM,mse.HT1,mse.HT2,mse.LH) 
 
 
### Pattern II (Delay ~ UNIF(0,1)) 
delayed_time=1 
 
#12months 
x=1 
P2 <- matrix(NA, nrow=NT, ncol=5) 
p2.stime1<- system.time( 
for(sim in 1:NT){ 
      P2[sim,] <- est(n,los,mean_fail,inter_visit,delayed_time,x,C_x) 
 }) 
mse.KM <- sd(P2[,2])              #MSE of KM 
mse.HT1 <-sd(P2[,3])                #MSE of HT w/C(x)=0 
mse.HT2 <-sd(P2[,4])                #MSE of HT w/C(x)=1 
mse.LH <-sd(P2[,5])                 #MSE of LH 
P2.row1 <- c(colMeans(P2),mse.KM,mse.HT1,mse.HT2,mse.LH) 
 
 
### Pattern III (Delay ~ UNIF(0,2)) 
delayed_time=2 
 
#12months 
x=1 
P3 <- matrix(NA, nrow=NT, ncol=5) 
p3.stime1<- system.time( 
for(sim in 1:NT){ 
      P3[sim,] <- est(n,los,mean_fail,inter_visit,delayed_time,x,C_x) 
 }) 
mse.KM <- sd(P3[,2])              #MSE of KM 
mse.HT1 <-sd(P3[,3])                #MSE of HT w/C(x)=0 
mse.HT2 <-sd(P3[,4])                #MSE of HT w/C(x)=1 
mse.LH <-sd(P3[,5])                #MSE of LH 
P3.row1 <- c(colMeans(P3),mse.KM,mse.HT1,mse.HT2,mse.LH) 
 
 
### Pattern IV (Delay ~ UNIF(0,0.5)) 
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delayed_time=0.5 
 
#12months 
x=1 
P4 <- matrix(NA, nrow=NT, ncol=5) 
P4.stime1<- system.time( 
for(sim in 1:NT){ 
      P4[sim,] <- est(n,los,mean_fail,inter_visit,delayed_time,x,C_x) 
 }) 
mse.KM <- sd(P4[,2])              #MSE of KM 
mse.HT1 <-sd(P4[,3])                #MSE of HT w/C(x)=0 
mse.HT2 <-sd(P4[,4])                #MSE of HT w/C(x)=1 
mse.LH <-sd(P4[,5])                 #MSE of LH 
P4.row1 <- c(colMeans(P4),mse.KM,mse.HT1,mse.HT2,mse.LH) 
 
 
##Note: Codes for other time points are omitted.  
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