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The benefits that exist on behalf of energy storage appear to be nearly limitless and there is no 

exception to this in power systems.  Energy storage can be used to flatten an electrical load by 

charging the storage when the system load is low and discharging the storage when the system 

load is high.  This technique is known as load leveling and is the storage application of interest in 

this thesis. 

One of the biggest benefits that load leveling can yield is the elimination of expensive gas 

turbine generators.  Gas turbine generators are used because they can react to drastic changes in 

the system load that other generators can’t.  Their downfall however, is that they are more 

expensive than the other generators.  But if the load is level enough, there is no need to use gas 

turbine generators because there aren’t any drastic changes in the load. 

Load leveling requires a storage device to have a very large capacity.  In this thesis 

several different large storage types are studied to see which ones are best suited for the 

application of load leveling.  Ultimately both NaS batteries and pumped hydro storage are 

chosen to use for this study and the results for each is compared.   

A theoretical double peak system load with a peak value of 1950 megawatts is used for 

this study.   The load is leveled by discretizing the energy storage’s charging and discharging 

profiles and allocating the stored energy by means of dynamic programming.  An economic 

analysis of both the original case and the case in which energy storage is used to level the load is 

carried out. 
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APPLICATION OF LOAD LEVELING 

 
Robert Kerestes, M.S. 
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This study shows that energy storage used for the application of load leveling can be 

economically beneficial depending on the type of storage that is used.  Battery storage is not 

quite ready to be used for this application but with some improvements to the technology it could 

be soon.  Pumped storage on the other hand is the cheapest form grid level energy storage and 

can generate a great deal of economic gain in today’s power systems. 
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1.0  INTRODUCTION 

The last couple of decades have been a great time of change for the power industry.  There are 

many new and exciting areas in the field of electric power generation and distribution that may 

be a potential solution to improvement of the grid one day.  When looking for a solution to 

powering the grid one has to consider more than just the factor of economics but also feasibility 

and environmental issues as well. 

 Renewable or green solutions to powering the grid are becoming ever more present as 

pressure is being put on industry from the government.  One promising form of green energy is 

the use of large grid scaled energy storage.  Energy storage is promising due to the multitude of 

applications that it can be used for.   

Renewable generation sources such as wind power and solar power are generated by 

stochastic environmental processes such as the sun shining or the wind blowing and must be 

used instantaneously.  Power that is generated by these energy sources can be used in the most 

effective manner by integrating energy storage due to the fact that power generated by these 

stochastic processes sometimes cannot be used immediately and is best stored until it is needed. 

  Energy storage can also be used for several maintenance purposes.  Today’s 

infrastructure is clearly aging and in need of modernization.  One of the biggest problems that 

impede the process of repairing and updating the grid is the grid’s need to be energized at all 

times, especially when dealing with sensitive loads.  Energy storage can be used, rather than 
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some of the more expensive and time consuming methods which require a certain part of the grid 

to be de-energized. 

 The applications of energy storage which appears to yield the largest economic gain are 

the applications of peak shaving and load leveling.  Peak shaving has been used in the past both 

for the protection of electric systems and for financial gain.  As the price of large grid scaled 

energy storage decreases the overall amount of financial gain increases.   

 This thesis explores the economics and feasibility of load leveling with large grid scaled 

energy storage systems.  There are several different types of energy storage units that can be 

used for load leveling but in this study only large NaS battery farms and pumped storage 

facilities will be explored and compared.  The charging and discharging rates are modeled so that 

the power that is allocated is accurate to real world application.     

1.1 PROBLEM STATEMENT AND MOTIVATION 

Peak shaving has been proven useful for grid level application using storage devices rated at less 

than 10 MW, which both protect equipment and reduce the cost of equipment due to lowered 

peaks [1].  This study addresses energy storage with a system power rating of 600 MW used for 

the application of load leveling and the effect it will have on the system load.   

It is known that gas turbine generators are quite expensive to use but are needed due to 

the fact they can respond to changes in the system load much faster than fossil fuel operated 

thermal generation units [2].  However, if very large energy storage units could be used flatten 

the system load enough, the gas turbine generators would not be needed to supply the system 

load, potentially reducing the cost of generation. 
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A completely flat load profile would reduce the overall cost of generation due to the fact 

that all thermal generators could be operated at the same output power rating at all times.  Ideally 

it would be very beneficial to use energy storage to achieve a completely flat load profile, 

however due to the non-constant discharging rates of energy storage units it would take a very 

large quantity of energy storage units to achieve this, and in turn, it would be more costly than 

anything.  With a reasonable amount of energy storage units, the best case that can be achieved is 

much flatter than the original load profile but not quite perfectly flat.   

The best type of energy storage for the application of load leveling must also be 

investigated in order to determine its feasibility and the economic benefit that they yield.  There 

are certain benefits that some forms of storage may have that other forms do not.  This study also 

investigates the different forms of energy storage in order to find the form that is most applicable 

for load leveling.   

Energy storage that is modeled according to its charging and discharging profiles needs 

to be allocated effectively to observe its usefulness for load leveling.  In this study optimization 

methods are used in conjunction with the charging and discharging profiles of the energy storage 

units to allocate the stored energy in the most effective way possible. 

As of now grid level energy storage is not being used according to the methods discussed 

in this study.  However, with growing concerns about the earth’s environment comes the need 

for mankind the further itself from the use of fossil fuels.  Therefore, either if large grid level 

energy storage is or is not the most economical solution for the allocation of electric power it still 

will be a promising green solution and should be investigate either way.      
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1.2 THESIS ORGANIZATION 

 

Chapter 2.0 of this thesis covers grid level energy storage as it is applied to load leveling and 

peak shaving.  Section 2.1 gives a treatment of both peak shaving and load leveling by 

explaining the procedure for both and covering the differences between them.  Five different 

types of energy storage that can be used for grid level applications are covered in Section 2.2.  In 

this section the operation, the advantages and the disadvantages of each type of storage are 

thoroughly discussed.  The third section of chapter two briefly covers distributed energy storage 

systems and their applications to the electrical grid. 

 Chapter 3.0 of this thesis covers the optimization methods that are used in this study.  

Section 3.1 gives a thorough layout of the economic dispatch problem.  The economic dispatch 

problem uses a system of quadratic fuel cost curves which are a function of output power and 

optimizes their operating point by means of Lagrange multipliers.    The constraint equation in 

both the case where there are transmission losses and where there are no transmission losses is 

covered.  Section 3.2 covers the dynamic programming method of and how it is applied to the 

allocation of energy storage.  Thermal generation units have constraints on their 

maximum/minimum change per time step, maximum/minimum up and down times and their 

cold start times.  The commitment of these units based on their constraints is referred to as the 

unit commitment problem and is covered in the third section of Chapter 3.0 . 

 The objective of this study was to do an economic analysis of the energy storage units 

being used to replace gas turbine generators.  Chapter 4.0 sets up both the case in which there are 

gas turbine generators used and the case in which energy storage is used to replace them.  

Section 4.1 models the fuel cost curves of the thermal generators used in this study.   Section 4.2 
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covers the unit commitment problem specific to this study. Section 4.3 models the system load 

that is used for this problem.  The energy storage that is used in this study had to be modeled 

according to charging and discharging rates and allocated to level the load.  The methods that 

were used for this modeling and allocation are discussed in Section 4.4 and in Section 4.5.  The 

sixth section of Chapter 4.0 sets up the economic dispatch for both the case with energy storage 

and without energy storage based on the unit commitment constraints. 

 Chapter 5.0 of this study provides the analysis that was carried and the results.  The 

results of the economic dispatch for the case in which there is no energy storage and for the case 

in which there is energy storage are given in Section 5.1 and Section 5.2 respectively.  Section 

5.3 provides a cost analysis which includes the economic gain due to the use of energy storage 

versus the total cost of the storage.   

Chapter 6.0 and Chapter 7.0 give a conclusion of the work that was performed in this 

study as well as future work that is required to make this study more robust. 
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2.0  GRID LEVEL ENERGY STORAGE 

In today’s electric power infrastructure there are many applications and uses for grid level energy 

storage such as; the allocation of stored renewables, peak shaving, load leveling and grid support 

for maintenance.  Installations of large grid level energy storage systems are becoming more 

common.  8 MW of a total 20 MW battery energy storage system was recently installed in 

Johnson City, NY just this year [42].  The use of grid level energy storage is a highly sought 

after aspect of power systems technology because of the economic return it could potentially 

produce.  This chapter discusses the difference in load leveling and peak shaving through the 

means of large grid level energy storage, five different types energy storage that can be used at 

the grid level and distributed energy storage systems. 

 

2.1 PEAK SHAVING VS. LOAD LEVELING 

Peak shaving and load leveling are both processes which store electrical energy when the 

electrical load is low and discharge the stored energy when the electrical load is high.  In the case 

for peak shaving the energy is stored during a time in which the system load is low and 

discharged to remove only the peaks of the load.  For load leveling the same process takes place 

except the goal is to flatten the load rather than just remove the peak.  For nearly every load 
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profile the system demand is low during the early morning hours and is high in the midday 

through evening hours, especially during rush hour.  Therefore energy storage will be charged 

during the early morning hours and discharged during the midday and early evening hours. 

2.1.1 Peak Shaving   

Figure 2-1 illustrates the use of energy storage for the application of peak shaving.  During the 

early morning hours from about 0000 to 0800 the load is slightly raised while the storage is 

charging.  The storage is then discharged when the so that the load’s peaks are removed.  

 

 

Figure 2-1: Peak Shaving Diagram [3] 

 
There are many applications which peak shaving can be used for, which range from 

equipment protection to economic gain.  The application in which peak shaving is being used for 

determines the size and the type of the storage that is needed.   
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2.1.2 Load Leveling 

This study is aimed at the application of load leveling.  The goal of load leveling is to 

make the load as flat as possible.  This technique is very promising when it comes to the 

economic benefits that it can yield.  Figure 2-2 illustrates the use the load leveling application. 

 

Figure 2-2: Load Leveling Diagram [3] 

 
It should be noted that for the load leveling application there is much more energy 

storage required.  The charging of the energy storage raises the load where the load “dips” during 

the early hours of the morning.  For load leveling the load should be raised or lowered to the 

systems average load value.  It can be seen from Figure 2-2 that the load with the addition energy 

storage remains about constant from hour 2100 to hour 0900.  This is the time in which the 

storage device is charging and hence the load is raised due to the power demand that the storage 

devices require.  The stored energy is then discharged during the midday and early evening hours 

in an attempt to maintain a flat load profile.  It can also be seen from Figure 2-2 that the load has 

two peaks.  These two peaks present the challenge of deciding when to discharge the storage 

devices.  One solution to this problem is to discharge half of the storage device during the first 

peak and then discharge the other half of the storage device during the second peak.  However, 
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unless both peaks are exactly equal in magnitude, which is highly unlikely, the load will still 

remain uneven after both discharges.  A solution to this problem is to use multiple storage 

devices and allocate a greater amount of stored energy for the larger peak and a lesser amount for 

the smaller peak. 

2.2 TYPES OF ENERGY STORAGE 

As was discussed in this chapter, the application that energy storage is being used for determines 

the size and type of storage.  This section discusses the different types of storage and their 

applicability for load leveling. 

Figure 2-3 illustrates the different types of energy storage that can be used as they range 

in system power rating and discharge time at rated power. 

 

Figure 2-3: Positioning of Energy Storage Technologies [6] 
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For this study the interest in energy storage is used for the application of load leveling 

which requires a storage device with a very large system power rating and only those types of 

storage devices will be discussed.  It should be noted that there are types of energy storage which 

can have a very large system power rating but can’t discharge at rated power for a long enough 

time.  A good example of this is a 26 MW NiCd battery installation that was installed in Alaska 

by the Golden Valley Electric Association [41].  While this battery is at a power rating of 26 

MW, it can only discharge for 15 minutes which is not applicable to load leveling. 

2.2.1 Sodium Sulfur Batteries 

Sodium sulfur (NaS) batteries are a very promising form of large grid scaled energy storage.  

These batteries have been in construction since the 1990s in Japanese businesses and as of the 

year 2007 could power the equivalent of 155,000 homes [4]. 

 The NaS cell was developed jointly by the Japanese companies NGK and the Tokyo 

Electric Power Company (TEPC) [3].  NaS has proven that it can be used as a large grid scaled 

energy storage system when it was used to construct the world’s largest energy storage system at 

Futamata in Aomori Prefecture in May 2008 which had a power rating of 34 MW.  This energy 

storage system was constructed with the primary goal of supporting a 51 MW wind farm [5].  

NGK has also constructed a 1.2 MW battery that was shipped to the United States for DESS use 

[1]. 
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Figure 2-4: NaS Battery Schematic [19] 

Figure 2-4 illustrates the schematic diagram of a NaS battery.  The core of the battery 

contains pure molten sodium which is encased by a metal insert.  Outside of the sodium chamber 

is a negative sodium electrode and a positive sulfur electrode which is separated by a beta-

alumina solid electrolyte (BASE) membrane.  During the discharging process the sodium flows 

between the BASE membrane and a safety tube which controls the amount of sodium and sulfur 

that can combine in the case in which the BASE fails.  This sodium produces Na+ ions through 

the process of oxidation at the sodium/BASE interface.  These ions then travel through the BASE 

membrane and combine with sulfur that is being reduced in the positive electrode to form 

sodium polysulfide (Na2Sx).  The charging process is the same chemical process only reversed 

[7,8].   

There are many advantages to using NaS batteries for large grid scaled applications.  As 

far as batteries go NaS ranks at the very top along with a couple chemical compositions in terms 

of system power capacity.  It can be seen from Figure 2-3 that NaS batteries along with flow 
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batteries and lead acid batteries can discharge at a power rating of up to 10 MW for hours.  NaS 

batteries are also advantageous for the length of their cycle life.  NaS batteries have a cycle life 

of up to 2500 cycles for 100% depth of discharge and up to 5000 cycles for 90% depth of 

discharge [1].  These batteries while operating daily can last as long as 15 years giving them a 

clear advantage over other large scaled batteries such as lead acid.  Lastly, NaS batteries are 

advantageous due to their high energy density and charging and discharging efficiency of up to 

92% [9].  Using a NaS battery for ac applications both for charging and discharging lead to an 

80% battery efficiency [3]. 

The disadvantages of NaS batteries are that they are limited to being used only for grid 

scale applications due to their operating temperatures which can be as high as 350o Celsius.  This 

study is only focused on grid scaled applications so this is not problematic.  Sodium sulfur 

batteries, like all batteries, are also expensive. 

2.2.2 Lead-Acid Batteries 

Lead-Acid (L/A) batteries were the first rechargeable batteries to be invented.  They were 

invented by the French physicist Gaston Planté in 1859.  Today L/A batteries range in 

application from small applications such as motor vehicle starting engines and household 

appliances all the way up to grid level applications on the megawatt scale [3,10]. 

L/A batteries consist of two lead plates which are submerged in a pool of liquid 

electrolyte made of water and sulfuric acid creating an anode and a cathode.  A chemical reaction 

takes place in the discharging process which both the anode and the cathode become lead sulfate 

(PbSO4).  This generates the flow of electrons from the positive terminal to the negative 
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terminal.  During the recharging process the sulfates decompose so that the cathode is composed 

of lead oxide (PbO2) and the anode is composed of elemental lead [11,12]. 

 L/A batteries have the advantage of being the most technologically mature out of all of 

the rechargeable battery chemical compositions.  Therefore, they are useful in the sense that not 

a lot of research has to go into them in order to put them into applications.  However they have 

many disadvantages that make other chemical compositions better choices for grid scaled 

applications. 

 One of the biggest disadvantages to L/A batteries is their limited cycle life.  For grid 

applications it is highly desirable to have a storage device that can last for a very long time in 

order to maximize the economic gain that it produces.  The world’s supply of lead is also limited.  

At the pace in which lead is being mined and used today the supply of lead will be exhausted in 

the year 2049 [13].  Lead-Acid batteries are also very heavy and bulky making them hard to 

transport and a poor choice for grid scaled applications which require transportation of the 

battery.   

 Although lead-acid batteries are probably not the ideal choice of battery for large grid 

scaled applications there still have been a couple large installations for the use of T&D 

applications.  There is a 1 MW/1.5 MWh installation that is operating in Alaska and there have 

been up to 20 MW installations deployed around the world. 

2.2.3 Flow Batteries 

Flow batteries, also known as redox batteries, are electrochemical devices which can store 

electrical energy with the use of electrolyte tanks [3,14].  Flow batteries work by using 

electrodes as an electron transfer surface.  Energy is stored in the form of ions in two electrolyte 
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tanks.  One of the tanks is used for positive electrode reaction and the other is used for negative 

electrode reaction.  The electrolytes are pumped through and electrolytic circuit which contains a 

reaction cell which separates the two electrolytes by means of an ion-exchange membrane in 

order to discharge the stored energy in the form of electricity [15].  This process is illustrated in 

Figure 2-5. 

 

Figure 2-5: Flow Battery [11] 

Flow batteries do have the disadvantage of their technological maturity.  In comparison to 

other batteries such as NaS and L/A, flow batteries are fairly new and in the early stages of their 

development.  The vanadium redox battery (VRB) is the most technologically mature out of all 

of the flow type batteries.  The first successful operation of an all vanadium redox battery 

demonstrated in the early 1980s at the University of South Whales [16].  Flow batteries such as 

zinc-bromine (ZnBr) are in the early demonstration and deployment stages where as other flow 

batteries such as zinc-air (Z/air) are still in the R&D stage.  
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2.2.4 Pumped Storage 

Pumped storage can store massive amounts of energy and have a system power rating of several 

hundreds of megawatts up to gigawatts.  The world’s largest pumped storage is the Bath County 

Pumped Storage Station which has a system power rating of approximately 2.7 GW [17].  

Pumped storage stations are currently the most efficient way of storing mass amounts of energy 

[8]. 

 Pumped storage works on the principal that electricity is used to pump water up a 

mountain and stores until the energy is needed i.e. when the system demand is high.  The water 

that is stored on top of the mountain is released down the mountain and through a hydro-turbine 

generator which creates electricity.  Figure 2-6 shows a diagram of the Raccoon Mountain 

Pumped Storage Plant which has a system capacity of 1.6 GW [18].      

 

 

Figure 2-6: Raccoon Mountain Pumped-Storage Plants [18] 
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Pumped storage is highly advantageous for applications such as load leveling which 

require a very large system power rating, due to their capacity.  For a pumped storage plant such 

as the one at Raccoon Mountain it would take hundreds of the largest batteries available to equal 

the system power rating.  Pumped storage is also very efficient and cost effective as a means of 

mass energy storage. 

For as many advantages that pumped storage has, it also has a large disadvantage.  The 

location at which pumped storage can be used is completely dictated by its geography and is 

therefore its biggest disadvantage.  In order to have a pumped storage plant there must be a lower 

reservoir that can store a large amount of water.  A lake is an ideal lower reservoir because it 

already has all of the water that will be needed for storage.  There must be an upper reservoir that 

is used to store the water pumped from the lower reservoir.  The horizontal distance between the 

upper and lower reservoir should be short. This minimizes hydraulic losses and increases the 

velocity of the downward flowing water, increasing response time.   The plant must be built on 

and around solid rock that can support it and somewhere with little environmental problems.  

The plant should also be built close to existing generation sources so the amount of transmission 

losses is kept at a minimum [20].  All of the geographical requirements for a pumped storage 

plant limit the possible locations for construction.  The discharge time for pumped storage can 

range anywhere from seconds to several hours and can also be a disadvantage [21]. 

2.2.5 Compressed Air Energy Storage 

Compressed air energy storage (CAES) is a form of energy storage which compresses air and 

then stores it for a later use.  CAES technology has been around for over 40 years.  Similar to 
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pumped storage in storage capacity, CAES has the potential capacity for a system power rating 

in the hundreds of megawatt level [3,21]. 

 Air in a CAES plant is compressed, cooled and stored with the use of electricity at a high 

pressure within the earth or inside a tank.  This air acts as stored energy until it is later needed.  It 

is then heated, expanded and fed through a turbine-generator to generate electricity.  There are 

three generations of CAES.  The first generation CAES system uses natural gas which is burnt 

with air and sent through a turbine generator.  The second generation CAES systems use the 

same process as the first except the system is flexible to meet smart grid.  Second generation 

CAES plants have from 60-70% green energy [22].  Third generation CAES plants do not use 

the gas turbine and likewise do not use any natural gas.  The benefit of third generation CAES 

plants is that there are zero carbon emissions.  The only generation that is in commercial use is 

the first generation.  Generations two and three are still in the developmental phase.  Figure 2-7 

is the schematic diagram for a first or second generation CAES plant. 
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Figure 2-7: CAES Plant Schematic [22] 

 
Although the energy storage capacity for CAES plants is desirable due to the fact that it 

can store massive amounts of energy.  At this point that might be the only possible advantage 

that CAES has. 

CAES is disadvantageous for several reasons.  First, CAES has the slowest response time 

out of all of the large scale storage devices.  The response time for a CAES plant can range 

anywhere from a couple hours to over one day [3,21,23].  For applications such as load leveling 

and peak shaving with a very consistent load profile this will not pose that great of a problem but 

for all other storage applications it will.  Second, CAES with the exception of the third 

generation plants produces emissions.  One of the greatest benefits to using storage such as NaS 
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batteries, flow batteries and pumped storage is that there are little to no emissions in the charging 

and discharging processes.  Lastly, CAES with the exception of third generation plants is not as 

efficient as other grid scaled storage devices 

2.3 DISTRIBUTED ENERGY STORAGE SYSTEMS 

Distributed energy storage systems (DESS) are energy storage systems of up to a 10 MW 

capacity which are installed on the utility side of the grid and can serve office facilities, 

residential complexes and commercial facilities [1,3].  Applications of DESS include grid 

support for maintenance, the development of new infrastructure and peak shaving.  DESS can be 

movable which make them ideal for maintenance and the installation of new power systems 

equipment.  The construction of new transmission lines and substations, and the installation of 

new transformers can take several years to complete because it is dangerous to work on 

energized equipment.  A solution to this problem is to de-energize the equipment and then 

perform the required work but most equipment can’t be de-energized especially when dealing 

with sensitive loads.  However with movable DESS, electrical systems can be disconnected from 

the original power source at the area that is in need of work and re-energized with the DESS.  

When the required work is complete the DESS can be moved to another section of the grid that 

needs work.  This technique can prove to be very useful for the development of the future 

electric power grid.  Figure 2-8 illustrates the use of movable DESS for the use of system 

maintenance. 
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Figure 2-8: DESS Used for Grid Maintenance [1] 

 

When all of the maintenance or work that needs to be performed is completed the DESS can be 

moved closer to the substation to provide the grid with load support. 

 DESS systems are useful for the applications that require a power rating of up to 10 MW.  

However, for the application of load leveling much larger storage devices will be required due to 

the fact that 10 MW and under is only a very small fraction of the grids power demand.  Storage 

devices on the scale of hundreds of megawatts or greater, such as NaS batteries in parallel, 

pumped storage, flow batteries and CAES would simply be too large to move from one are of the 

grid to the other. 
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3.0  OPTIMIZATION OF THERMAL GENERATION UNITS AND ENERGY 

STORAGE 

Optimization methods are used to find the most economical solution to allocate power generated 

by thermal generation units.  This chapter focuses on the optimization of thermal generation 

units that have to meet a system load with the integration of grid level energy storage.  The most 

economical solution to dispatching the power generated by the thermal generators is found by 

using the economic dispatch method of optimization.  The energy storage is dispatched by using 

a highly predictable system load and then allocating the stored energy with the dynamic 

programming method of optimization.  These techniques are discussed in detail in this chapter. 

3.1 THE ECONOMIC DISPATCH PROBLEM   

The economic dispatch problem is stated as an optimization method which uses Lagrange 

multipliers along with a function for each thermal generator called the cost rate to 

mathematically find the optimal solution.  Each thermal generator has its own set of constraints 

that must be followed when finding the optimal solution.  A daily load must be broken up into 

incremental time steps, each having its own economic dispatch solution.  
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3.1.1 Lagrange Multipliers and the Method of Optimization 

A system of equations with unknown variables can be solved for some optimal value using 

techniques from calculus.  It is known that where a function’s first derivative is equal to zero is 

where that function has either a minimum or a maximum.  In the case of economic dispatch we 

are dealing with a cost function and optimizing a cost function is obviously solving for its 

minimum value.  Economic dispatch uses this same theory to find the minimum cost of several 

generators each with its own cost function. The method of Lagrange multipliers must be 

introduced to find the minimum cost value for the system. 

Consider a function f(x1,x2,…,xn).  This function will be called the objective function i.e. 

the function that is to be minimized.  Then consider also a function g(x1,x2,…,xn).  This function 

will be called the constraint function i.e. the conditions that have to be met while minimizing the 

objective function.  In order to find the minimum solution or the optimum point for the objective 

function, the gradient of f )( f∇ must be normal to g.  The gradient of f is defined as a vector field 

which points in the direction of the greatest rate of increase of the scalar field f [3.1] and is 

represented by (3.1). 
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Where e1, e2, … ,en are linearly independent vectors which form a subspace in nℜ .  It can be 

guaranteed that f∇  is normal to g by requiring that f∇  and g∇  are linearly independent of each 

other.  It can be ensured that these vectors are linearly independent of one another by using a 

Lagrange multiplier as used in (3.2). 
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 0=∇+∇ gf λ  (3.2) 

 
For some λ.  From (3.2) the Lagrangian can be derived which is described by (3.3). 

 
 ),...,,(),...,,(),,...,,( 212121 nnn xxxgxxxfxxx λλ +=Λ  (3.3) 

 
From (3.3) the optimal solution can be found.  The optimal solution is described as the set of 

equations in (3.4) 
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The optimal solution by means of using Lagrange multipliers can be best seen when the 

objective function and the constraint function are functions of two variables.  In this case the 

Lagrangian becomes (3.5) 

. 
 ),(),(),,( yxgyxfyx λλ +=Λ  (3.5) 

 
This can be shown graphically as shown in Figure 3-1.  Note that the point where g(x,y)=c 

crosses f(x,y)=d1 is the optimal solution for the objective function equal to d1  and the point 

where g(x,y)=c crosses f(x,y)=d2 is the optimal solution for the objective function equal to d2. 
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Figure 3-1: Graphical representation of optimal solution using the Lagrange multipliers [24] 

 

3.1.2 Solution to Thermal Generating Units Using Lagrange Multipliers 

The economic dispatch problem can be solved using the theory of Lagrange multipliers 

described in the preceding subsection.  The economic dispatch problem is configured such that 

there are n generators which all have a cost function of quadratic nature.  These generators feed a 

single point bus which in turn feeds the system load [25].  The objective is used to find the 

operating point for each of the n generators which yield the optimal solution. In the case of 

economic dispatch, the solution minimizes the operating cost of the sum of all n generators.  This 

configuration can be seen in the form of a one line diagram represented in Figure 3-2 [25].   
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Figure 3-2: Dispatch to a Load with n Thermal Generators [25] 

The overall cost of the system is described by the equation 3.6 
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Where F1, F2,…, Fn are the cost functions for each of the n generators and P1, P2,…,Pn are the 

respective output power values in MW.  Most input-output curves are given in terms of input 

heat (Hi) with respect to that source of generation's output power in MW.  In the case in which 

the input-output curves are given in terms of input heat with respect to output power, the fuel 

cost must be multiplied by these equations to get the cost functions.  These functions are 

constrained by a minimum and maximum output power values and minimum up and down times.  

The quadratic equations are used with Lagrange multipliers to find the most economical solution 

to the problem.  The quadratic equation describing the cost of generation vs. output power for 
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each generator represents the objective function in the economic dispatch problem.  The 

summation of all of the output powers minus the total demand represents the constraint equation.  

From the theory of Lagrange multipliers in calculus (3.7) can be derived. 
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Where  is the Lagrangian, F is the objective function, λ is the Lagrange multiplier and the 

constraint function is ∑
=

−
n

i
iload PP

1

as previously described.  Taking the partial derivatives of the 

Lagrangian with respect to each individual power output yields (3.8). 
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Equation (3.8) can be rewritten as the system of equations given in (3.9). 
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The above equations can be set up into matrix form by first analyzing the quadratic cost 

equations which represent the individual thermal generating units given in (3.10) 
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Where ai, bi and ci are the quadratic coefficients of the cost functions.  Differentiating the cost 

functions with respect to their powers then yields (3.11). 
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Using the Lagrange multipliers to solve the system for its minimum cost value gives (3.12). 
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(3.12) 

 
The equation for the system’s total power is needed so that the minimum cost value 

which satisfies the system demand can be calculated.  The equation for the systems total demand 

i.e. the constraint equation is given in (3.13) 

 
 loadn PPPP =+++ ...21  (3.13) 
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Incorporating this equation into (3.12) and rearranging yields the system of equations given in 

(3.14) 
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Where the Lagrange multiplier λ is the systems incremental cost rate.  Its units are in $/MWh.  

Equation (3.14) can be written in matrix form and solved using linear algebra techniques.  

Equation (3.14) written in matrix form is as follows in (3.15). 
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(3.15) 

 
Solving the system for output power and the system incremental cost rate yields the matrix 

equation given in (3.16) 
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Equation (3.16) gives the values of power in MW for each generation source that 

produces the minimum cost and the most economical solution.  The solution to (3.16) must fall 
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within the minimum and maximum power constraints for each thermal generator.  When the 

solution given by (3.16) gives an output power which falls out of the minimum or maximum 

power constraints the generation source which falls out of those constraints must be set to the 

minimum value if it is under the minimum power constraint and set to the maximum value if it is 

over the maximum power constraint.  With this power set to the particular value which is within 

the power constraints its cost equation can be eliminated from the system and likewise a row can 

be eliminated from (3.16).  The n+1 x n+1 matrix is then reduced to an n x n matrix. 

3.1.3 Economic Dispatch With Transmission Losses 

The economic dispatch problem that is solved in this study does not incorporate the power losses 

that occur in transmission lines over a distance, however the theory should be briefly covered so 

that there is a good general understanding of the process because the effect of transmission losses 

will be discussed in the comparative analysis section.  Figure 3-2 was adapted to show the 

systems transmission network and is illustrated in Figure 3-3. 

In this figure, TL1, TL2,…,TLn are the transmission lines that deliver the power to the 

single point bus for their respective thermal generators.  These transmission lines are composed 

of a resistive and an inductive series element and two shunt capacitors. 

As one would imagine, when electricity flows throw transmission lines over a long 

distance there are losses that affect the economic dispatch solution.  Due to this fact it is fairly 

obvious that the less distance that electricity must travel through transmission lines the more 

economical a solution will be.  This will be important when considering the economic solution 

with gas turbine generators which are at relatively greater distances from distribution substations 

than energy storage devices which can be placed very close to the substations.  
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Figure 3-3: Dispatch to a Load with n Generators and Transmission Losses 

  

 The same process can be used to calculate the optimal solution for each thermal turbine 

generator for the case in which transmission losses are included with the exception of one 

particular difference.  The objective function remains the same as in the case where transmission 

losses are included but the constraint equation changes.  The new constraint equation is given in 

(3.17). 
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Inserting the new constraint equation into the Lagrangian we can rewrite (3.7) and get (3.18). 
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Both the methods are nearly identical with the exception of the constraint equation but it 

is clear from (3.17) that the solution will be different with losses than without losses.  

Incorporating transmission losses into the problem in turn increases the incremental cost rate and 

in turn provides a more costly solution [26]  

3.2 OPTIMIZING ENERGY STORAGE WITH DYNAMIC PROGRAMING 

Dynamic programing is often referred to as the “brute force” method of finding the optimal 

solution to a problem.  The reason for this is that dynamic programming simply tries every 

possible “avenue” to achieve the desired objective of the problem.  Basically dynamic program is 

the method of solving a large problem by breaking it up into sets of much smaller sub-problems 

[27].  Dynamic programming can be a very effective and powerful tool for optimization, 

especially with the use of computers to carry it out. 

 Figure 3-3 illustrates a one dimensional dynamic programming example [28].  The 

objective is to reach node N starting from node A by covering the shortest distance.  The number 

above each line which connects one node to another node is the distance between each node 

using that particular path.  The goal of getting from node N to node A by covering the shortest 

possible distance in this example is the large problem which is to broken down into much smaller 

sub-problems.  The distance travelled from one node to the next in this example is the sub-

problem.   
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Figure 3-4: Example of a Dynamic Programming Problem [25] 

 

Note that the best solution for a sub-problem might not be the best solution for the large 

problem which is to be solved.  For example the best possible solution to this dynamic 

programming example is the path ACEILN.  However, the sub-problem of travelling from node 

C to the next possible node has the best solution of CF with a total distance of 4 which is 

different to the best possible solution to the overall problem.  Travelling from node C to node N 

by way of node E has best possible solution CEILN which covers a distance of 17 as opposed to 

travelling from node C to node N by way of node F has best possible solution CFJLN or CFJMN 



 

 33 

which both cover a distance of 20.  So even though the solution to a sub-problem may be the best 

possible solution it must be evaluated in terms of the overall solution to see its effectiveness. 

3.2.1 Dynamic Programming Application in Power Systems 

Richard Bellman had originally used dynamic programming which would later be recognized by 

the IEEE as a systems analysis and engineering topic [29].  Bellman and Dreyfus coined the 

“Principal of Optimality” which states “An optimal policy has the property that whatever the 

initial state and decision are, the remaining decisions must constitute an optimal policy with 

regard to the state resulting from the first decision. [30]” 

 Dynamic programing has been used for many engineering applications and is particularly 

useful in electric power engineering.  With the increasing amount of renewable generation that is 

tied into the grid comes the task of allocating the power that is generated from these renewables 

effectively.  Energy generated from renewables such as wind and solar must be either used as it 

is generated or stored.  Dynamic programming with the help of scientific computing can be used 

to find the most cost effective method of allocating energy through storage devices. 

An example of dynamic programming for the allocation of energy is given in Figure 3-5.  

This example was taken from [37] and represents two energy storage units which must allocate 

their stored energy by the most cost effective methods.  The state of the storage is represented by 

a two bit binary number.  For storage unit R and storage unit Q there is a possibility of three 

different next states possible.  The next state which has the cheapest minimum cost path will be 

chosen for each of the storage units.  This process continues on for the next twenty three hours of 

the day.  In this example one day is covered.  The initial state is when t is equal to zero and the 

final state is when t is equal to twenty four i.e. when t is equal to zero for the next day.  
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Figure 3-5: Allocation of Energy Storage by Dynamic Programming [37] 

3.3 UNIT COMMITMENT 

Unit commitment refers to the physical and economic constraints that are placed on thermal 

generation units and the best solution available while following these constraints.  In this section 

some of the constraints that thermal generation units have will be discussed as well as solutions 

to these constraints. 
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3.3.1 Maximum or Minimum Change in Output Power 

Thermal generation units have a maximum and minimum amount of output power that they can 

change per time step.  Thermal generation units have a heat input which yields a power output 

through turbine generators.  The output power is changed by increasing or decreasing the input 

heat and in turn increases the steam flow to the turbine.  Certain generators can change speed 

slower or faster than others and therefore there is constraint on this change. 

3.3.2 Start-Up Time 

Thermal generation units must be brought up to the proper operating speed so the system is 

synchronized to the system load.  As one would expect, it takes a bit of time to reach this proper 

operating speed.  The time that it takes for the turbine generator to be brought up to operating 

speed is referred to as the start-up time constraint.   

3.3.3 Spinning Reserve 

Spinning reserve is a solution to the start-up time constraint.  For instance, gas turbine generators 

are very useful for their fast response time.  However, they are very expensive so it does not 

make economic sense to have them connected to the load at all times.  The solution to this is to 

have them running in spinning reserve mode where they are up and running but without any load 

connected to them.  This still comes at a cost, but a much smaller cost than if they were operating 

with a load connected. 
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3.3.4 Minimum Up and Down Times 

Lastly, another constraint that must be considered is the minimum up and down times that a 

generator has.  A thermal generator works on the principal of fuel being burned to create heat 

and in turn steam which turns the turbine.  This process dictates that a generator once up and 

running can’t be immediately shut down and conversely a generator once shut down can’t be 

immediately started up again. 
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4.0  PROBLEM SETUP AND SOLUTION 

This chapter uses the techniques used in Chapters 2.0 and 3.0 to set up the economic dispatch 

problem both in the case with grid level energy storage for peak shaving and without it.  The 

problem is set up such that there are three generation units of different types.  The single point 

bus that was discussed in Section 3.1 is fed by a coal fired generator, and oil fired generator and 

a gas turbine generator.  Energy storage is also incorporated into the problem for the use of load 

leveling as was discussed in Chapter 2.0.  Figure 3-2 is adapted to fit the problem and is 

illustrated in Figure 4-1. 
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Figure 4-1: Economic Dispatch Problem with Coal, Oil and Gas Thermal Generators and the 

Integration of Energy Storage 
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One of the goals of this study is to show the economic benefit of using energy storage to 

replace the use of gas turbine generators.  Gas turbine generators can react to a change in system 

load much faster than other fossil fuel fired generators and so they are required.  Some studies 

show that gas turbine generators can actually react to a change in load as much as ten times faster 

than other fossil fuel fired thermal generators [31]. This is one of the greatest benefits of gas 

turbine generators.  The problem with gas turbine generators is that they are much more 

expensive to use than other fossil fuel fired thermal generators [25].  It is proposed in this study 

that large grid level energy storage systems can be used to flatten the load so it is smooth enough 

so that the use of gas turbine generators is not required. 

Another benefit of using energy storage to replace gas turbine generators, which is not as 

obvious, is the reduction in emissions.  All of the fossil fuel thermal generators that are discussed 

in this study produced greenhouse gas emissions.  The emissions produced by coal, oil and gas 

are given in Table 4-1.  

Table 4-1: Pollutants Generated By Fossil Fuel Electricity Generation [32]  

Pollutant Hard Coal Brown Coal Fuel Oil Other Oil Gas 

CO2 (g/GJ) 94600 101000 77400 74100 56100 

SO2 (g/GJ) 765 1361 1350 228 0.68 

NOx (g/GJ) 92 183 195 129 93.3 

CO (g/GJ) 89.1 89.1 15.7 15.7 14.5 

Non methane organic 

compounds (g/GJ) 

4.92 7.78 3.70 3.24 1.58 

Particulate matter 

(g/GJ) 

1203 3254 16 1.91 0.1 

Flue gas volume total 

(m3/GJ) 

360 444 279 279 272 
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It may seem like there is an increase in emissions due to the fact that the storage absorbs 

power while it’s charging and this power is supplied by the coal and oil generators which give 

off more pollutants than gas turbine generators.  However, most of the power that is supplied to 

the storage device is supplied by the coal generator and with clean coal technology such as 

carbon capturing becoming ever more prevalent in the industry a good portion of the pollutants 

that are produced from coal fired generation can be removed before they enter the atmosphere 

[33].  

Another goal of this study is to observe and analyze the effect that a smoother, flatter 

load has on the cost of dispatching the power to supply it.  Reducing changes in the load per time 

step could potentially reduce the cost because of the elimination of gas turbines but another 

question that can be answered is how that affects the other generators. 

In this chapter the thermal generation cost curves which are to be used in the economic 

dispatch problem are modeled, the system load is modeled, the charging and discharging profiles 

for the storage units are modeled, storage allocation is optimized and the economic dispatch 

problem is set up.    

4.1 THERMAL GENERATION UNITS 

The thermal generation units used in this study are coal, oil, and gas turbine generators.  Each 

generator is represented by its own heat vs. power curve.  The heat vs. power curves are 

multiplied by their respective fuel costs to obtain the fuel cost curves which are cost per hour as a 

function of power in MW.  The heat vs. power curves for the coal and oil generation are given in 

(4.1)-(4.3) [25]. 



 

 40 

 200142.092.70.510)( coalcoalcoalcoal PPPH ++=      MWPMW coal 1377344 ≤≤  (4.1) 

  200482.097.70.78)( oiloiloiloil PPPH ++=             MWPMW oil 459115 ≤≤  (4.2) 

   20025.00.60.300)( gasgasgasgas PPPH ++=            MWPMW gas 918115 ≤≤    (4.3) 

 
The fuel costs for coal and oil are given in units of $/MBtu and can be seen in Table 4-2.  The 

fuel cost of gas is given in units of $/ccf and must be converted to units of $/MBtu.  The cost of 

gas is 2.0 $/ccf and is converted to $/MBtu in (4.4). 

 
 

MBtuMBtu
Btu

Btu
ft

ft
ccf

ccf
8182.1$

1
10

1100
1

10
10.2$ 63

33 =×××  
(4.4) 

 

The following table illustrates the fuel cost for all three types of generation  

 
Table 4-2: Fuel Costs for Thermal Generation Units [25] 

Coal Unit: fuel cost = 1.1 $/MBtu 
Oil Unit: fuel cost = 1.0 $/MBtu 
Gas Unit: fuel cost = 1.8182 $/MBtu 

 
 
Multiplying the fuel costs by the heat vs. power curves gives the fuel cost vs. power curves 

which are to be optimized using Lagrange multipliers.  The fuel cost vs. power curves for each of 

the thermal generators is given in (4.5)-(4.7). 

 
 2001562.092.75611.1)()( coalcoalcoalcoalcoalcoal PPPHPF ++=×=               $/h (4.5) 

 200482.097.7780.1)()( oiloiloiloiloiloil PPPHPF ++=×=                           $/h (4.6) 

 20045.0909.1045.5458182.1)()( gasgasgasgasgasgas PPPHPF ++=×=        $/h (4.7) 
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4.2 SETTING UP THE UNIT COMMITMENT 

As was discussed in the introduction to this section gas turbine generators can react to a change 

in load much faster than fossil fuel fired thermal generators.  In this study the gas turbine 

generators react three times faster than the coal and oil fired generators.  This relationship is 

given in (4.8) and (4.9). 

 
 MWPP noilcoalnoilcoal 150|| /1/ ≤−+  (4.8) 

 MWPP ngasngas 450|| 1 ≤−+  (4.9) 

  
There are also limitations to how long a generator can be on as well.  The gas turbine 

generator is the most expensive to run and therefore the best and most economical solution is one 

that does not use the gas turbine generators.  However, due to drastic load changes and very large 

load peaks, gas turbines are necessary.  Table 4-3 gives the generator constraints that must be 

followed in order to commit the units. 

 
Table 4-3: Gas Turbine Generation Unit Commitment Constraints [25] 

Unit Min. Up 

Time 

Min. Down Spinning 

Reserve 

Hot Start 

Cost 

Cold Start 

Cost 

Cold Start 

Time 

Gas 

Turbine 

4 hours 4 hours 545.45 $/h $150 $350 4 hours 
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4.3 MODELING THE SYSTEM LOAD 

The system load data was gathered from [34].  The data represents the commercial, residential 

and street lighting sectors of a rural area with a large commercial area.  A rural load was chosen 

for this study because there is usually plenty of area to install large scale energy storage units 

around substations that feed rural loads.  It should be noted that the load would be very different 

if it were in an urban area or if it were in a rural area with a predominantly industrial load.  The 

load is given per hour in Table 4-4. 

 

Table 4-4: System Daily Demand [34] 

Hour 
 

Lighting     
(MW) 

Residential 
(MW) 

Commercial 
(MW) 

Total          
(MW) 

 
0000 

 
100 

 
250 

 
300 

 
650 

0100 100 250 300 650 
0200 100 250 300 650 
0300 100 250 300 650 
0400 100 250 300 650 
0500 100 250 300 650 
0600 100 250 300 650 
0700 0 350 300 650 
0800 0 450 400 850 
0900 0 550 600 1150 
1000 0 550 1100 1650 
1100 0 550 1100 1650 
1200 0 600 1100 1700 
1300 0 600 1100 1700 
1400 0 600 1300 1900 
1500 0 600 1300 1900 
1600 0 600 1300 1900 
1700 0 650 1300 1950 
1800 0 750 900 1650 
1900 0 900 500 1400 
2000 100 1100 500 1700 
2100 100 1100 500 1700 
2200 100 900 300 1300 
2300 100 700 300 1100 



 

 43 

Each load is unique due to its nature and adds an interesting aspect to the problem 

compared with a load which is not broken up into components.  Figure 4-2 depicts graphically 

how these different loading types behave over the course of the day.  The behavior of these loads 

is of particular interest between 0000 and 0700 in which the total load does not change and is the 

lowest value during the day.  This will be the most opportune time to increase the load on the 

residential and commercial sectors by charging the storage devices.  These charged storage 

devices will be used later in the day when the system demand is very high.  In this example the 

times in which the total system load is the highest is in the late afternoon to evening.  This is 

fairly accurate with any realistic daily demand due to the high volume of energy use during the 

late afternoon in the commercial sector and during the evening in the residential sector.  Figure 

4-2 is a MATLAB generated plot which illustrates the daily demand curve with respect to the 

hour of the day. 

It can be seen from Figure 4-2 that this load is of the double peak type.  At 1700 the 

system load reaches its maximum value and then decreases for the next couple of hours.  The 

load then rises again and hits a second peak at 2000.  The first peak is caused by the rush and the 

second peak is caused by everyone returning home in the residential sector.  This can be seen in 

Figure 4-2 where the residential sector increases its greatest amount from 1700 to where the 

second peak occurs at 2000. 

There are several different load profiles that exist.  Some load profiles only have one load 

peak rather than two.  However, this load profile is typical of most loads, especially those that 

have a large residential component.  The load used in this study is illustrated as follows in Figure 

4-2. 
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Figure 4-2: System Daily Demand Curve 

 

 

 

 



 

 45 

4.4 MODELING THE ENERGY STORAGE  

After considering all of the different types of energy storage that were discussed in Section 2.2, 

the most logical choice to use was either NaS batteries or pumped storage.  NaS batteries have 

nearly all of the advantages that the other forms of storage have without many of the 

disadvantages.  The one advantage that the NaS battery lacks over other forms of storage is the 

capacity for a very large system power rating.  However, the only forms of storage that have a 

greater capacity for a very large system power rating is pumped storage and CAES. CAES was 

not used in this study because of its commercial immaturity and the emissions that it gives off.  

Table 4-5 shows a comparison of NaS batteries against L/A, VRB and Z/Br batteries.  A 

graphical representation of Table 4-5 can be seen in Figure 4-3. 

 
Table 4-5: Feasibility Scores of Grid Level Batteries [1] 

Required Features NaS L/A Z/Br VRB 

Adequate Power Rating 10 10 6 4 

High Energy Efficiency 10 6 7 8 

Low Disposal Cost 7 10 7 7 

4 to 10 hrs of Energy at Rated Power 8 6 5 10 

Low Total Installed Cost 9 10 7 6 

Low Relocation Cost 9 7 10 4 

Commercial Maturity 7 10 3 3 

Adequate Cycle Life 10 1 6 9 

Adequate Calendar Life 10 3 5 6 

Financial Strength of Supplier 9 10 1 1 

Lower Maintenance Cost 10 1 5 5 

Low Installed Footprint 10 1 6 3 

Total Feasibility Score 108 75 68 66 
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Figure 4-3: Feasibility Diagram of Grid Level Batteries [1] 

 
The objective of this study was to show the effect that a large 600 MW storage device has 

on the system load.  For the case in which NaS batteries are used the storage device is broken up 

into five 120 MW facilities, three in the commercial sector and two in the residential sector.  

However, NaS batteries can only have a system power rating of about 10 MW [1].  Twelve NaS 

batteries are configured in parallel which represent a 120 MW NaS battery farm.  One of the 

benefits of using batteries is that if there is enough room, then any power rating can be obtained 

simply by configuring the batteries in parallel.   

Batteries are also beneficial because their operation is scalable.  The charging and 

discharging rates of 10 MW NaS batteries were modeled by scaling the charging and discharging 

rates of the 1 MW batteries used by the AEP in [1].  Figure 4-4 illustrates the charging and 

discharging rates for 1 MW NAS batteries.  These charging and discharging rates are continuous 
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and must be discretized in order to allocate the energy that is stored.  In this study, the system 

load profile is in increments of one hour so the storage devices must be discretized in increments 

of one hour. 

 

 

Figure 4-4: Charging and Discharging Profiles for 1 MW NaS Battery [1] 

 
It can be seen from Figure 4-4 that the discharging profiles can be broken up into a 

piecewise function which is composed of a monotonically increasing linear function, a constant 

function and a monotonically decreasing linear function.  The discharging profile is power in 

MW as a function of time in hours.  The charging profile has a small ten minute section which is 

linear and then the function remains constant for the remainder of the charging.  Because this 

linear function is relatively small in comparison to the total charging the assumption is made that 

the charging profile can be modeled as a constant charging at rated power.  The discharging 

function had to be modeled as a linear piecewise function.  Figure 4-5 illustrates the general 

discharging profile as a piecewise function. 
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Figure 4-5: Discharging Profile as a Piecewise Function of Power vs. Time 

 
The discharge profile function, Pdis, is composed as a piecewise linear function that is given in 

(4.10). 
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(4.10) 

 
 Figure 4-4 shows the discharging profiles for depths of discharge of 100%, 90%, 50% for 

two discharges and 33% for three discharges.  90% depth of discharge was chosen for this study 

due to the extended cycle life that is provides compared with that of 100% depth of discharge.  

Figure 4-4 does not give a profile for 45% depth of discharge for two discharges and so some 

assumptions must be made to acquire it.  From Figure 4-4 it can be seen that the tops of the 

trapezoidal load profiles for 100% depth of discharge and 90% depth of discharge are an equal 
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value of 4.4 hours.  However, the bottoms of the load profiles are different at a value of 10 hours 

for 100% depth of discharge and 8.5 hours at 90% depth of discharge.  The assumption was 

made that the difference between the load profiles of 50% depth of discharge and 45% depth of 

discharge would follow the same pattern.  The bottom of the load profile for 90% depth of 

discharge is 85% of the bottom of the load profile for 100% depth of discharge.  Multiplying the 

bottom of the load profile for 50% depth of discharge by 0.85 then gives the bottom of the load 

profile for 45% depth of discharge with a value of 3.655 hours.  The load profile for 45% depth 

of discharge can be seen in Figure 4-6. 

 

2.9 hrs

3.655 hrs
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Pdis

t

 

Figure 4-6:  Discharging Profile for 45% Depth of Discharge 

 
The piecewise linear function for the 90% depth of discharge and the piecewise linear 

function for the 45% depth of discharge were calculated using (4.10) and are given in (4.11) and 

(4.12). 
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For 90% depth of discharge: 
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For 45% depth of discharge: 
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(4.12) 

  
Calculating the definite integral of these piecewise functions yields the total energy that 

is discharged over the time range of the discharging profile in units of MWh.  If these definite 

integrals are broken up hourly then the definite integral for a one hour period can be divided by 

one hour and will yield the average power for that particular hour.  Equation (4.13) gives the 

discretized power supplied by the battery for the kth hour of the discharging process where n is 

discrete time in hours 
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(4.13) 

 
This equation can be verified for correctness by calculating the total energy stored in the battery 

and comparing it to the given value.  The total energy that is stored in the battery is given in 

(4.14).  
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(4.14) 

 
Where kmax is the last hourly discrete time period in the discharging process of the battery.  This 

equation was used to verify that the average power for each hour was correct.  Figure 4-7 

illustrates the discharging processes of the battery in discrete time for the 90% depth of discharge 
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and the 45% depth of discharge cases.  These average power values are given in Table 4-6.  It 

should be noted that for the 45% depth of discharge case, the battery is done charging after hour 

3 and hence has an average value of zero MW for hours 4 through 8. 

 
Table 4-6: Average Discharging Power per Hour 

Hour Average Power (MW) for    
45% Depth of Discharge  

Average Power (MW) for  
90% Depth of Discharge 

0 81.1250 24.3902 
1 100.0000 73.1707 
2 100.0000 99.9390 
3 45.6251 100.0000 
4 0 100.0000 
5 0 100.0000 
6 0 92.6220 
7 0 48.7805 
8 0 6.0976 

 
 In the case is which pumped storage is used for the storage device rather than NaS battery 

storage, the modeling can follow a similar process.  The average power values that were obtained 

in Table 4-6 can also be obtained using pumped storage as the storage device.  With new 

developments in pumped storage such as next generation variable speed pumped storage power 

stations, the ability to control the charging and discharging rate is quite flexible [8]. 

 The purpose of this study is to show the effect that grid level energy storage has by 

reducing the load enough to eliminate the use of gas turbine generators.  Both pumped storage 

and NaS are to be used and compared.  Due to the fact that one focus of this study is a 

comparison between pumped storage and NaS, and the fact that pumped storage can have quite 

flexible charging and discharging rates, it is a reasonable assumption to make that both the NaS 

batteries and pumped storage facility can have the same charging and discharging profiles.  For 

this reason the charging and discharging profiles for the NaS batteries will also be used for 

pumped storage. 
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Figure 4-7: Average Power for Discharging Profiles 
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4.5 ALLOCATION OF STORAGE FOR LOAD LEVELING 

The energy storage devices that were discussed in the introduction to this chapter were modeled 

according to the techniques discussed in Section 4.4.  It can be seen from Figure 4-2 that the 

system load is at its lowest during the early morning hours.  These hours are the opportune time 

for the charging of storage.  For this study the storage was charged between the hours of 0000 

and 1000. The amount that was charged and the times that the charging took place was decided 

by using dynamic programming.  For the NaS case the batteries had 120 MW delivered to each 

unit for six hours and then 57.6 MW for one hour to charge the batteries to their full MWh 

capacity.  The three commercial battery facilities were charged from 0000 to 0700 one 

residential facility was charged from 0200 to 0900 and the other residential facility from 0300 to 

1000.  The charging profile for the NaS case was mimicked for the pumped storage case.  

The power that was stored by each of the units was then allocated using the dynamic 

programming method of optimization that was discussed in Section 3.2.  The goal of the 

optimization was to minimize the average change in system demand per hour while maintaining 

a maximum change less than or equal to 300 MW.  Equation (4.15) was used to calculate the 

average change in power per hour. 
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(4.15) 

 
And the maximum slope change was calculated using (4.16). 

 
 220|)][]1[max(| ≤≤−+= iforiPiPchangepowergreatest loadload  (4.16) 
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Dynamic programming was used along with the MATLAB code in the appendix to 

optimize the allocation of energy storage.  For the case in which the batteries were using 90% 

depth of discharge a rough estimation to the optimum solution can be found visually by looking 

at Figure 4-2.  The commercial load is consistently high from hour 1000 through the evening at 

about hour 2200.  The residential load is high in the evening when people are all home from 

work.  Using this observation it is fairly obvious that the most optimum solution to allocating the 

stored energy would be to discharge the commercial sector batteries so that the maximum 

discharging power of the batteries happened around the 1100 hour and to discharge the 

residential sector batteries so that the maximum discharging power occurred around 1500 to 

1700. 

The problem with the 90% discharge is that it doesn't quite suit the double peak of the 

load.  Due to the fact that there are two load peaks, discharging the batteries to 90% depth never 

reduces the maximum change in load below 300 MW. Therefore, in the case in which the 

batteries are discharged once daily to 90% depth of discharge, the gas turbine generator must be 

used to accommodate the maximum change in the load. 

The result was much better for the case in which the batteries were using two discharges 

of 45% each to allocate the stored energy.  It was much easier to concentrate on reducing only 

the peaks due to the fact that there is a double peak in the load and there are two available 

discharges while using the 45% depth of discharge.  The greatest change in power was able to be 

reduced to 300 MW using this method.  Table 4-7 illustrates the effect that the allocation of the 

battery storage had on the load and the charging and discharging daily profile is illustrated in 

Figure 4-8.  In Figure 4-8 negative MW represent the battery charging power and positive MW 

represent battery discharging power. 
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Table 4-7: Effect of Storage on the System Load 

Discharge Depth Average Change in Power 
(MW) 

Maximum Change in Power 
(MW) 

0% 119.565 500.000 
45% 130.772 300.000 
90% 126.426 320.448 

 
 
The first and primary goal of this optimization was to reduce the maximum change in 

power for any particular time step a value of 300 MW or less.  Once the maximum change in 

power was reduced to a value less than or equal to 300 MW the focus of the optimization then 

shifts to reducing the average change in power.  The flatter that the load profile is the cheaper the 

cost of the thermal generating units is due to the quadratic nature of their fuel cost curves.  The 

less the speed of the generators has to be changed to meet changes in the load profile also leads 

to lower maintenance costs.   
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Figure 4-8: Charging and Discharge Profile for Energy Storage 

 
Figure 4-9 illustrates the effect of the allocation of the storage on the load. 
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Figure 4-9: Load Profile Comparisons with the Integration of Storage 
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Table 4-8 gives the operation of the battery storage units for optimal case for both 45% 

depth of discharge and 90% depth of discharge.  In this table Cmr is the abbreviation for 

commercial, Rsi is the abbreviation for residential and Dis is the abbreviation for discharge.  It 

should be noted that the second discharge for the 45% depth of discharge is always greater or 

equal to five hours after the first discharge as per constraints. 

 
Table 4-8: Discharging Times for the Commercial and Residential Batteries 

Depth of 
Discharge 

Cmr1 
Dis 1 

Cmr2 
Dis 1 

Cmr3 
Dis 1 

Rsi1 
Dis 1 

Rsi2 
Dis 1 

Cmr1 
Dis 2 

Cmr2 
Dis 2 

Cmr3 
Dis 2 

Ris1 
Dis 2 

Rsi2 
Dis 2 

45% 1400 1300 1000 1000 1000 2000 1900 1500 1800 1500 
90% 0900 0900 1000 1500 1500 n/a n/a n/a n/a n/a 

 

4.6 SETTING UP THE ECONOMIC DISPATCH PROBLEM 

The techniques that were discussed in Section 3.1 were used with the goal of making an 

economic analysis of the effect of load leveling.  MATLAB was used to compute the economic 

dispatch of the system load for every hour listed in Table 4-4.  The results of this analysis are 

described in detail in the next chapter. 

As was discussed in Section 3.1 the optimum dispatch of the thermal generator units 

described in Section 4.1 will be found by using Lagrange multipliers.  For the use of Lagrange 

multipliers there must be an objective equation and a constraint equation.  The objective equation 

that is used for the economic dispatch problem is the sum of the fuel cost curves and is given in 

(4.17) 
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 )()()(),,( gasgasoiloilcoalcoalgasoilcoaltotal PFPFPFPPPF ++=  (4.17) 

 
The constraint equation that is used for the economic dispatch problem is the sum of the output 

powers for the coal, oil and gas thermal generation units is equal to the system load and is given 

in (4.18) 

 
 gasoilcoalload PPPP ++=  (4.18) 

 
This yields the Lagrangian equation as follows 

 
 )()()()(),,,( gasoilcoalloadgasgasoiloilcoalcoalgasoilcoal PPPPPFPFPFPPP −−−+++= λλ  (4.19) 

 
Taking the partial derivative of the Lagrangian with respect to each of the powers yields the 

system of equations in (4.20). 
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Where i is equal to coal, oil or gas.  Taking the derivatives of the fuel cost curves for the thermal 

generator units described in (4.5)-(4.7) yields (4.21)-(4.23). 

 

 
coal

coal

coal P
dP
dF

003124.092.7 +=  
(4.21) 

 
oil

oil

oil P
dP
dF

0096.097.7 +=  
(4.22) 



 

 59 

 
gas

gas

gas P
dP
dF

0090.0909.10 +=  
(4.23) 

 
Equations (4.21)-(4.23) are then used to implement the system of equations that is given by 

equation (3.12) giving (4.24)-(4.26). 

 
 λ=+ coalP003124.092.7  (4.24) 

 λ=+ oilP0096.097.7  (4.25) 

 λ=+ gasP0090.0909.10  (4.26) 

 
Rearranging (4.24)-(4.26) and implementing the constraint equation yields the system of 

equations given in (4.27)-(4.30). 

 

 92.7003124.0 −=− λcoalP  (4.27) 

 97.70096.0 −=− λoilP  (4.28) 

 909.100090.0 −=− λgasP  (4.29) 

 ][kPPPP loadgasoilcoal =++  (4.30) 

 
Where Pload is a function of discrete time and k represents the hour of the day.  Equations (4.27)-

(4.30) can be rewritten in matrix form as follows in (4.31). 
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Solving (4.31) by taking the inverse of the 4 x 4 square matrix yields the following matrix 

equation given in (4.32). 
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(4.32) 

 
Equation (4.32) was used to calculate the hour by hour economic dispatch of for the system load 

without the use of battery storage for peak shaving.  Incorporating the battery storage changes 

the constraint equation given in (4.18).  Equation (4.18) needs the addition of a storage equation 

to calculate the economic dispatch of the load with load leveling.  For the NaS case the storage 

equation is as given in (4.33). 

 
 ][][][][][][ 21321 kPkPkPkPkPkP RsiRsiCmrCmrCmrstorage ++++=  (4.33) 

 
Where Cmr stands for commercial and Rsi stands for residential.  This equations represent the 

power of all five batteries as a function of discrete time where k is in hours.  The power value of 

the batteries can either be positive or negative based on the operational mode of the batteries.  If 

the batteries are charging then the power values for that hour are negative, likewise, if the 

batteries are discharging then the power values for that hour are positive.  For the pumped 

storage Pstorage[k] is given by the charging and discharging profile given in Figure 4-8.  

Implementing (4.33) into the constraint equation given in (4.18) gives the new constraint 

equation given in (4.34). 

 
 gasoilcoalstorageload PPPPP ++=−  (4.34) 
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The solution to the economic dispatch problem with the integration of grid level energy storage 

for the application of load leveling can then be written in matrix form using the new constraint 

equation as follows in (4.35) 
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(4.35) 

 

 
The objective of this economic dispatch problem is to ensure that the optimal solution is 

indeed a minimal cost solution.  To check that the solution to the economic dispatch problem is a 

minimum, the second derivative test for the cost curves is used.  Taking the second derivative of 

(4.1)-(4.3) yields (4.36)-(4.38). 

 
 

003124.02

2

=
coal

coal

dP
Fd

 
(4.36) 

 
0096.02

2

=
oill

oil

dP
Fd

 
(4.37) 

 
0090.02

2

=
gas

gas

dP
Fd

 
(4.39) 

 
It is clear from (4.36)-(4.38) that the second derivatives are positive from all possible output 

power values.  This means that setting the first derivative equal to zero could only yield a 

minimal solution. 
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5.0  ANALYSIS AND RESULTS 

The problem that was described in Chapter 4.0 was carried out with the intent to analyze both the 

case in which gas turbines are used to accommodate drastic changes in the load and the case in 

which large grid scaled energy storage devices were used instead of the gas turbines. 

5.1 ECONOMIC DISPATCH SOLUTION WITHOUT ENERGY STORAGE 

The optimum economic dispatch for the load that was modeled in Section 4.3 was calculated 

using the cost vs. power curves that were given in Section 4.1.  Scientific computing was used to 

calculate this economic dispatch for the system load in increments of one hour.   

The economic dispatch that was calculated had to be analyzed to see if it met the unit 

commitment constraints that were given in Section 0.  There were many hours in which the 

economic dispatch yielded a negative power value for the gas turbine generator.  This was as 

expected due to its very high cost. For these hours the gas turbine generators were run in the 

spinning reserve mode.  Setting the gas turbine generators to spinning reserve mode reduces the 

4 x 4 matrix in (4.29) and (4.30) to a 3 x 3 matrix by eliminating the power generated by gas.  

Table 5-1 gives the total system load and the power that was generated by each individual 

generator to supply it.  The change in power per time step had to be analyzed particularly for the 

coal and oil generators.  These generators were constrained to changing no more than 150 MW 
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per time step.  However, there were several time steps in which the coal generator needed to 

change by more than 150 MW per time step for the most economical solution.  In these cases the 

coal generator was set to its maximum change of 150 MW and the economic dispatch was 

calculated by reducing the 4x4 matrix in (4.29) and (4.30) to a 3x3 matrix in equation by 

eliminating the power generated by coal.  Also, there were several hours in which this the 

solution to this economic dispatch problem yielded a solution in which the power generated by 

oil changed by more than 150 MW.  For these cases the oil generator was set to its maximum 

change of 150 MW.  With both the gas and oil generators set to their maximum change per time 

step the remaining power demanded by the load had to be delivered by the gas turbine generator.  

If the remaining power demanded by the load was greater than the minimum power constraint of 

the gas turbine generator then the gas turbine generator was set to that value.  If on the other 

hand, the remaining power demanded by the load was less than the minimum power constraint of 

the gas turbine generator then the gas turbine generator was set to its minimum value and the 

economic dispatch was recalculated.   

The early morning hours have a load which is much less than when the load peaks in the 

evening.  The coal and oil generators were running at a very high power output for the load peak 

but had to be brought down to meet the early morning demand.  From hour 2000 the coal 

generator was reduced by the maximum power change through hour 2300 so that the system 

demand could be met for the early morning hours.  The oil generator was reduced from hour 

2200 by less than the maximum in order to meet the system demand of the early morning hours.  

These adjustments were made possible by the supplemental power delivered by the gas turbine 

generator.  The gas turbine generator was shut down into spinning reserve mode at hour 0000 

because it would not be needed for the early morning hours.  Although the gas turbine generator 
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was not needed for hours 0800 and 0900, it was given a hot start at hour 0700 just in case there 

were drastic changes during rush hour.  Table 5-1 and gives the power generated by each 

generator for every hour.  The power outputted by each of the generators is illustrated in Figure 

5-1.  It can be seen from this figure that there are no changes for the coal or oil fired generators 

that are greater than the maximum possible change of 150 MW per time step.  All large power 

changes are covered by the gas turbine generators.  It can also be seen from the figure that the 

coal and oil generators are brought down slowly at the end of the evening hours to meet the low 

early morning demand. 
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Table 5-1: Power Distribution for Generators without Energy Storage 

Hour Coal Generation 

(MW) 

Oil Generation 

(MW) 

Gas Generation 

(MW) 

Total Load 

(MW) 

0000 490.87 159.13 Hot Shut Down 650.00 

0100 490.87 159.13 spinning reserve 650.00 

0200 490.87 159.13 spinning reserve 650.00 

0300 490.87 159.13 spinning reserve 650.00 

0400 490.87 159.13 spinning reserve 650.00 

0500 490.87 159.13 spinning reserve 650.00 

0600 490.87 159.13 spinning reserve 650.00 

0700 490.87 159.13 Hot Start 650.00 

0800 554.55 180.45 115.00 850.00 

0900 779.30 255.70 115.00 1150.00 

1000 929.30 405.70 315.00 1650.00 

1100 1079.30 434.16 136.54 1650.00 

1200 1229.30 355.70 115.00 1700.00 

1300 1286.55 298.45 115.00 1700.00 

1400 1337.69 430.10 132.22 1900.00 

1500 1337.69 430.10 132.22 1900.00 

1600 1337.69 430.10 132.22 1900.00 

1700 1367.58 439.83 142.59 1950.00 

1800 1217.58 317.42 115.00 1650.00 

1900 1067.58 217.42 115.00 1400.00 

2000 1067.58 367.42 265.00 1700.00 

2100 917.58 459.00 323.42 1700.00 

2200 767.58 415.63 116.79  1300.00 

2300 617.58 280.29 151.40 1100.00 

 

 



 

 66 

 

 

 

 

 

 

0 5 10 15 20
0

200

400

600

800

1000

1200

1400
Power Generation without Energy Storage

Hour

P
ow

er
 in

 M
W

 

 
Gas Turbine Generation
Coal Fired Generation
Oil Fired Generation

 

Figure 5-1: Power Distribution without Energy Storage 
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5.2 ECONOMIC DISPATCH SOLUTION WITH ENERGY STORAGE 

 

Energy storage was allocated using the methods described in Section 4.5 to reduce the maximum 

change in load to be less than or equal to 300 MW.  With the allocation of storage, the maximum 

change in system load became equal to 300 MW.   

As was discussed previously the goal of the use of storage for this study was to level the 

load enough so the use of gas turbine generators would not be needed.  With the load leveled so 

that there is no step which exceeds the maximum change in power by the combined coal and oil 

fired generators, there is no need for the use of gas turbine generators in this system.  The 

economic dispatch was calculated for each hourly time step for the load plus the energy storage.  

The solution to the economic dispatch problem produced values that did not fit the unit 

commitment constraints so the solution had to be re-dispatched according to these constraints.  

There were changes in the load that required the coal generator to change by more than the 

maximum value of 150 MW.  For these hours the coal generator was set to the maximum change 

and was then subtracted by the load plus storage to give the oil fired power output for that hour.   

The solution to the economic dispatch for each hour is given in Table 5-2.  In this table 

the total load is equal to the total load that was given in Table 5-1 with the subtraction of the 

battery storage given in its respective column.  Figure 5-2 illustrates the power outputted by coal 

and oil fired generators.  It can be seen from this figure that there are no time steps in which 

either the coal or oil generator exceeds the maximum possible change in output power.  
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Table 5-2: Power Distribution of Generators with Energy Storage 

Hour Coal Generation 

(MW) 

Oil Generation 

(MW) 

Battery (MW) Total Load 

(MW) 

0000 765.95 244.05 -360.00 1010.00 

0100 765.95 244.05 -360.00 1010.00 

0200 856.49 273.51 -480.00 1130.00 

0300 947.03 302.97 -600.00 1250.00 

0400 947.03 302.97 -600.00 1250.00 

0500 947.03 302.97 -600.00 1250.00 

0600 805.79 257.01 -412.80 1062.80 

0700 675.42 214.58 -240.00 890.00  

0800 773.76 234.23 -177.60 1027.60 

0900 908.61 298.99 -57.50 1207.60 

1000 1035.77 370.86 243.37 1406.63 

1100 1022.48 327.52 300.00 1350.00 

1200 1060.20 339.80 300.00 1400.00 

1300 1119.80 359.19 221.00 1479.00 

1400 1269.80 449.08 181.13 1718.88 

1500 1164.13 373.62 362.25 1537.75 

1600 1175.19 377.46 346.63 1553.37 

1700 1289.09 414.28 246.62 1703.37 

1800 1117.26 358.37 174.38 1475.62 

1900 967.26 251.68 181.13 1218.88 

2000 1074.44 344.43 281.13 1418.88 

2100 1100.47 352.90 246.62 1453.37 

2200 950.47 202.90 146.63 1153.37 

2300 800.47 252.90 46.63 1053.37 
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Figure 5-2: Power Distribution with Energy Storage 
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5.3 COST ANALYSIS 

This section covers the cost that it takes to run the generators to supply the load.  Three cases 

which include the case in which there is no energy storage, the case where there is energy storage 

and the ideal case will be covered.  The ideal case is such that the energy storage can be used to 

flatten the load completely so that it is at a constant value.   

The data that was used for the fuel cost curves from [25] was generated in 1984 so the 

cost prices must be made up to date by including cost inflation of coal, oil and gas.  Figure 5-3 

through Figure 5-5 show the price of coal, oil and gas through the past [35].  The earliest data 

that is given for gas is January of 1991 so this date was used to calculate the price of inflation for 

all three forms of generation.  The calculations are as follows in (5.1)-(5.3) 

Coal Price Inflation: 
250.3

199140$
2011130$

=
intonmetricper
intonmetricper  

(5.1) 

Oil Price Inflation: 
567.3

199130$
2011107$

=
inbarrelper
inbarrelper  

(5.2) 

Gas Price Inflation: 
720.3

199143$
2011160$

=
inmetercubicper
inmetercubicper  

(5.3) 

It can be seen from (5.1)-(5.3) that the price of gas inflated the most, the price of oil 

inflated the second most and the price of coal inflated the least with the inflation rate of all three 

sources of generation being in between 3.25 and 3.75.  Due to the fact that all inflation ratios are 

very close and due to the fact that the inflation ratios agree with the way these forms of 

generation rank in 1984.  There is no need to change the output powers of the generators. 



 

 71 

 

Figure 5-3: A History of Coal Prices [35] 

 

Figure 5-4: A History of Oil Prices [35] 

 

Figure 5-5: A History of Gas Prices [35] 
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5.3.1 The Case with No Energy Storage 

The thermal generator output power values that were given in Table 5-1 were used along with 

the fuel cost curves given in chapter four and the inflation cost rates at each hourly time step to 

calculate the cost of each form of generation.  The cost of each form of generation and the total 

cost are given in Table 5-3. 

 
Table 5-3: Daily Cost of Generation without Energy Storage 

Cost of Coal Generation: $685,547 

Cost of Oil Generation:   $246,838 

Cost of Gas Generation: $162,120 

Total Cost of Generation: $1,094,398 

 

5.3.2 The Case with Energy Storage 

The thermal generator output power values that were given in table 5-2 were used along with the 

fuel cost curves given in chapter four and the inflation cost rates at each hourly time step to 

calculate the cost of each form of generation.  The cost of each form of generation and the total 

cost are given in Table 5-4. 

 
Table 5-4: Daily Cost of Generation with Energy Storage 

Cost of Coal Generation: $770,127 

Cost of Oil Generation: $261,360 

Cost of Gas Generation: $0 

Total Cost of Generation: $1,031,487 
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5.3.3 The Ideal Case 

The average value of the system load was calculated and used as the load for each hour of the 

day.  This simulates the absolute ideal case in which storage can be used to raise the load when it 

is below the average and lower the load when it is above the average so the load remains at its 

average value for the entire day.  Of course, it is virtually impossible to completely flatten the 

load.  But the ideal case is useful to measure how effective the load leveling procedure was.  

Table 5-5 gives the system load and the economic dispatch that satisfies it for each hour of the 

day. 

 
Table 5-5: Hourly Economic Dispatch for the Ideal Case 

Coal Generation 

(MW) 

Oil Generation 

(MW) 

Gas Generation 

(MW) 

Total Load (MW) 

952.07 313.80 0 1265.87 

 

 
These thermal generator output power values were used along with the fuel cost curves given in 

chapter four and the inflation cost rates at each hourly time step to calculate the cost of each form 

of generation.  The cost of each form of generation and the total cost are given in Table 5-6 

. 
Table 5-6: Cost of Generation for the Ideal Case 

Cost of Coal Generation: $743,025 

Cost of Oil Generation: $261,245 

Cost of Gas Generation: $0 

Total Cost of Generation: $1,004,270 
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The percent difference of total cost of generation for the load leveling case that was computed in 

this study and the ideal was calculated in (5.4). 

 
%59.8

2
10042701031487

)10042701031487(% =






 +

−
=differnce  

(5.4) 

5.3.4 Storage Cost 

The cost of storage was calculated for both the 600 megawatt, five battery NaS system as well as 

the 600 megawatt pumped storage facility. 

5.3.4.1 Cost of the NaS System 

In [1], current cost of NaS for grid level storage is given as a value of $1500 per kilowatt.  This 

value was used to calculate the cost of the battery storage that was used in this study.  This 

calculation is given in (5.5). 

 
 

batterybattery
MW

MW
KW

KW
180000000$

1
120

1
1000

1
1500$

=××  
(5.5) 

 
The price of $180 million per battery was multiplied by five to get the total cost for the five 

battery system of $900 million. 

5.3.4.2 Cost of the Pumped Storage Facility 

The cost of the pumped storage facility was calculated by scaling the price of the Raccoon 

Mountain pumped storage facility given in [18].  The price of this facility per megawatt was 

calculated in (5.6).  The dollar inflation rate was taken from [38]. 
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MWin

in
MW

650625$
19791$

201147.3$
1600
300000000$

=×  
(5.6) 

 
At a price of $650,625 per megawatt the total price of a 600 MW pumped storage facility comes 

out to about $390 million. 

5.3.5 Economic Feasibility and Comparative Analysis 

The total cost of generation to supply the daily load described in Section 4.2 was $1,094,398 and 

the cost of generation to supply the daily load with the addition of energy storage as was 

described in Section 4.5 was $1,031,487.  This leads to a total savings of $62,911 per day and a 

total savings of $22,962,515 per year. 

The NaS system has a total battery life of fifteen years.  Over the lifespan of the NaS 

batteries this system yields a total savings of $344,437,725.  While this is a great deal of money 

saved it is still less than half of the cost of the system.  This does not mean that this technology is 

not useful however.  The cycle life and efficiency of NaS systems are improving and the overall 

cost for NaS is being reduced [1,36].  The cycle life and efficiency must be improved and the 

cost must be reduced simultaneously for load leveling by means of grid level NaS systems to be 

lucrative.  For example, if the efficiency is raised to 95% which can be done especially in a DC 

grid, the cycle life improved to 20 years rather than 15 and the cost of NaS storage reduced to 

$750 per kW the total savings then becomes $545,359,731 and the cost of the system becomes 

$450,000,000 which yields a $95,359,731 return on investment (ROI). 
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The pumped storage system can have an operating life much longer than that of the 

battery system.  For instance the Raccoon Mountain pumped-storage facility has been in 

operation since 1978 [18].  For the pumped storage plant which was considered in this study 

which had a total cost of $390,000,000 it would take about seventeen years for a ROI.  For a 

pumped storage facility in operation at least as long as the Raccoon Mountain facility there 

would be a total savings of over $367,763,000. 

The use of grid level energy storage by means of NaS batteries for the application of load 

leveling is still not economically viable.  However, with efforts directed at reducing the cost and 

raising the efficiency and cycle life this technology could be viable in the not too distant future.  

Conversely, pumped storage has the potential for immediate economic gain when used for load 

leveling as long as there is a geographic location that suits the construction of a pumped storage 

facility. 
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6.0  CONCLUSION 

The potential economic benefit that grid level energy storage can provide is quite clear from this 

study.  This can be seen by comparing the economic dispatch for the case in which there is no 

energy storage with the economic dispatch for the case where there is energy storage.  There is 

the potential to save millions and even billions of dollars. 

There are several benefits when using batteries for grid level energy storage for the 

application of load leveling.  Batteries flatten the load so that the use of expensive gas turbine 

generators is not needed.  As clean coal technology increases in efficiency the use of coal will 

produce much less harmful greenhouse gas emissions than gas turbine generators so the use of 

batteries for load leveling also has environmental benefits.  They also reduce transmission losses 

due to the flexibility of their location.  However, with all of the benefits that these batteries 

produce they are still much too expensive to be used as an economically viable solution.  This 

does not mean that battery technology used for load leveling will never be a viable solution; it 

just means that it isn’t right now.  In the future as long as battery efficiency and cycle life are 

improved and the material and construction cost is reduced, there is room for a very large 

amount of economic growth by using batteries for load leveling.  There is a lot of interest coming 

from both academia and industry in going to a DC grid.  This same study performed on a DC 

load would yield a much better result for NaS battery storage because it increases the efficiency a 
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great deal.  Currently solutions using battery storage tied to a DC grid are being developed 

[39,40]. 

  When used for load leveling, pumped storage shares nearly all of the same benefits that 

batteries have without the very large disadvantage of cost.  Using pumped storage as a form of 

energy storage is relatively cheap.  Pumped storage has a massive maximum power capacity that 

can range all the way up to the multi-gigawatt level.  It can have a response time that can be as 

fast as seconds.  With new developments in pumped storage such as the variable speed pumped 

storage unit the charging and discharging rate can be controlled.  The money that can be saved 

by using pumped storage for the application of load leveling can yield a return on investment in a 

relatively short amount of time.  The main downfall that pumped storage has is its limitation 

geographically.  However, there is a great deal of locations available for the installations of 

pumped storage facilities.   

Currently pumped storage is the only form of large grid level energy storage that can be 

economically beneficial.  The locations that can support the installation of a pumped storage 

facility should be maximized in order to provide the greatest economic gain possible.  Although 

at the present moment battery technology is not where it needs to be to provide this economic 

gain, the economic benefit that it can potentially have is clear as long as its efficiency and cycle 

life are increased and its cost is decreased.  New battery types and chemical compositions should 

also be explored so the best possible battery option is found for the use of grid level applications. 
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7.0  FUTURE WORK 

The goal of this study was to analyze the use of grid level storage for the use of load leveling.  In 

this study the charging and discharging was only considered by means of exchanging megawatts 

and losing megawatts to represent efficiency losses.  However in an actual physical system it is 

not as simple as exchanging megawatts for the charging and discharging process.  Current must 

flow into a battery in order for the battery to be charged.   

 One of the goals for future work is to model this system in terms of its physical layout.  

As one would imagine a 120 MW battery farm would be quite large and a fairly complex 

engineering design.  There will be a lot of control theory that will have to be applied so that the 

batteries can be connected in parallel and charged and discharged as desired by the simulation 

used in this study.  The design for each 120 MW battery farm will include twelve 10 MW 

batteries that are connected to a single point bus in parallel.  The appropriate voltage level for the 

bus should be investigated so that the charging and discharging current yields the desired power 

output.  There is also the aspect of reactive power.  This study was concerned more with the 

economics of large scaled battery storage so the load only had a real power component.  As we 

know, actual electric machinery will always have a real power component as well as a reactive 

power component.  It would also be interesting to investigate the effects that this battery storage 

system has when the reactive power components are introduced. 



 

 80 

 As was stated in the conclusion section there is a great deal of power loss caused by 

efficiency losses.  One of the future goals of this project and for battery storage overall is to 

improve its efficiency.  NaS batteries operate at a high temperature.  Cooling systems which 

keep the operating temperature at a minimum in order to maximize efficiency can be 

investigated.  Reducing the operating temperature will also increase the cycle life of the battery.  

Both increasing the efficiency and cycle life of batteries were objectives that make battery 

storage for the application of load leveling lucrative. 

 It was shown in this study that energy storage in the form of pumped storage can be 

lucrative today.  Pumped storage is flexible in terms of its charging and discharging time and this 

flexibility is increasing even more with the integration of variable speed pumped storage 

facilities.  The pumped storage facility that was used in this study can be modeled in terms of its 

discharging current as well as its voltage levels. 

 Storage types such as flow batteries were not used in this study due to the fact that they 

are in there infancy in terms of their technological maturity.  There are multiple compositions of 

flow batteries that are very promising and could be a possible solution in the future.  Flow 

batteries can be modeled and integrated into the economic dispatch problem that was done in this 

study to test their economic viability as there maturity increases.  If flow batteries begin to show 

that they can become a solution which yields an economic gain they will also have to be modeled 

in terms of their voltage level as well as charging and discharging currents and the controls that 

will have to be implemented to achieve large quantities of power.   

 CAES is also in its early stages of development.  Generation one CAES facilities, which 

are the only ones in current commercial operation, still have efficiency losses and gives off 

greenhouse gas emissions.  Generation two CAES facilities are much more efficient and give off 
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fewer emissions and are more efficient than the generation one facilities.  The generation three 

CAES facilities give off zero emissions.  The generation two and generation three facilities are in 

their early stages of development and were not used in this study.  However, as the technology 

improves, especially for the generation three unit, it would be beneficial to study CAES for the 

use of load leveling. 

 Other forms of grid level energy should be studied as they develop.  It is currently 

impossible to reach the ideal case of load leveling with current storage means due the nature of 

their charging and discharging profiles.  However, super capacitors and SMES have discharge 

times that are in the seconds.  These extremely fast discharging times will allow for a much 

flatter load than what can be achieved with slower discharging times.  A future study of these 

storage methods could be beneficial as well. 
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