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The conventional processes for acid gas removal (AGR), including CO2 in the Integrated 

Gasification Combined Cycle (IGCC) power generation facilities are: a chemical process, using 

methyl-diethanolamine (MDEA); a physical process, using chilled methanol (Rectisol) or a 

physical process, using mixtures of dimethylethers of polyetheleneglycol (Selexol). These 

conventional processes require cooling of the fuel gas streams for CO2 capture and subsequent 

reheating before sending to turbines, which decreases the plant thermal efficiency and increases 

the overall cost. Thus, there is a pressing need for developing an economical process which can 

capture CO2 from the hot fuel gas stream without significant cooling. 

The overall objective of this study is to investigate the potential use of physical solvents 

for selective capture of CO2 from post water-gas-shift streams under relatively elevated pressures 

and temperatures. In order to achieve this objective, a comprehensive literature review was 

conducted to define an “ideal solvent” for CO2 capture and to identify six different physical 

solvents which should obey such a definition.  

The first physical solvents identified were perfluorocarbons (PFCs), which are known to 

have low reactivity, high chemical stability and relatively low vapor pressures. Three different 

PFCs, known as PP10, PP11, and PP25, were selected as potential candidates for CO2 capture. 

The equilibrium solubilities of CO2 and N2 were measured in these PFCs under different 
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operating conditions up to 30 bar and 500 K. These PFCs have relatively low viscosity at 500 K, 

very good thermal and chemical stabilities and showed high CO2 solubilities; hence they were 

considered as “ideal solvents.” The CO2 solubilities in PP25 were found to be greater than in the 

other two PFCs. Due to its superior behavior, PP25 was selected for the development of a 

conceptual process for CO2 capture form Pittsburgh No. 8 shifted fuel gas mixture using Aspen 

Plus simulator. Unfortunately, during the pressure-swing option for solvent regeneration, the 

solvent loss was significant due to the fact that the boiling point of PP25 is 533 K which is close 

to the absorber temperature (500 K). Also, other drawbacks of PFCs include, high cost, and 

absorption of other gases (light hydrocarbons) along with CO2.  

It was then decided to seek different physical solvents, which have negligible vapor 

pressure, in addition to the other attractive properties of the “ideal solvent” in order to use in the 

Aspen Plus simulator. Extensive literature search led to Ionic Liquids (ILs), which are known to 

have unique properties in addition to extremely low vapor pressures, and therefore they were 

considered excellent candidates for the CO2 capture from fuel gas streams under elevated 

pressures and temperatures. Three ILs, namely TEGO IL K5, TEGO IL P9 and TEGO IL P51P, 

manufactured by Evonik Goldschmidt Chemical Corporation, were selected as potential solvents 

for CO2 capture. The solubilities of CO2, H2, H2S and N2 were measured in the TEGO IL K5 and 

the solubilities of CO2 and H2 were measured in the TEGO IL K5 at pressures up to 30 bar and 

temperatures from 300 to 500 K. Also, the density and viscosity of these three ILs were 

measured within the same pressure and temperature ranges, and the surface tension for TEGO IL 

K5 and TEGO IL P51P were measured from 296 to 369 K. Due to their superior performance for 

CO2 capture, the TEGO IL K5 and the TEGO IL P51P were selected to be used in the Aspen 

simulator for the conceptual process development. The density and surface tension data for the 
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TEGO IL K5 and the TEGO IL P51P were used in Aspen Plus, employing the Peng-Robinson 

Equation of state (P-R EOS) to obtain the critical properties of the two ILs; and the measured 

solubility data were also used to obtain the binary interaction parameters between the shifted gas 

constituents and two ILs.  

The Aspen Plus simulator was employed to develop a conceptual process for CO2 capture 

from a shifted fuel gas stream (102.52 kg/s) generated using Pittsburgh # 8 coal for a 400 MWe 

power plant. The conceptual process developed consisted mainly of 4 adiabatic absorbers (2.4 m 

ID) arranged in parallel and packed with Plastic Pall Rings of 0.025 m for CO2 capture; 3 flash 

drums arranged in series for solvent regeneration using the pressure-swing option; and 2 

pressure-intercooling systems for separating and pumping CO2 to the sequestration sites. The 

compositions of all process steams, CO2 capture efficiency, and net power were calculated using 

Aspen Plus for each solvent. The results indicated that, based on the composition of the inlet gas 

stream to the absorbers, 87.6 and 81.42 mol% of CO2 were captured and sent to sequestration 

sites; and 97.69 and 97. 86 mol% of H2 were separated and sent to turbines using the TEGO IL 

K5 and the TEGO IL P51P, respectively. Also, the two solvents exhibited minimum loss of 0.06 

and 0.17 wt% with a net power balance of -26.44 and -14.72 MW for the TEGO IL K5 and the 

TEGO IL P51P, respectively. Thus, the TEGO IL K5 could be selected as a physical solvent for 

CO2 capture from shifted hot fuel gas streams since large quantities of CO2 are absorbed. 
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1.0  INTRODUCTION 

The goal of the 2002 Global Climate Change Initiative (GCCI) is to significantly reduce the 

greenhouse gas (GHG) intensity of the U.S. economy over the next 10 years while sustaining the 

economic growth needed to finance investment in new, clean energy technologies. The initiative 

calls for increased emphasis on carbon sequestration and for increased investment in research 

and development to provide the technical basis for optimum future decisions. By the year 2012, 

the DOE is expected to develop commercial CO2 capture/sequestration systems which would 

capture at least 90% of emissions and result in less than 10% increase in the cost of energy 

services.1,2 

Combustion- and gasification-based systems are the two main fossil fuel technologies 

currently being developed for power generation. In the former, pulverized coal is directly 

combusted to generate high-pressure steam which runs a turbine, which in turn runs a power 

generator with an overall thermal efficiency of about 35%. In the latter, coal and/or biomass 

mixed with steam and oxygen (or air) is gasified at high-pressure and temperature to produce 

syngas which is sent to an Integrated Gasification Combined-Cycle (IGCC) process for power 

generation with an overall thermal efficiency nearing 40%.1,3 

The IGCC power generation facilities enjoy several advantages over the coal-fired power 

technologies, such as (1) the discharge of solid byproducts and wastewater is reduced by roughly 

50%; (2) the emission of pollutant (NOx, SOx, CO, etc.) is lower; (3) the emission of trace 
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hazardous air pollutants, including gaseous mercury (Hg) is low; and (4) carbon dioxide (CO2) 

emission is reduced by at least 10% per equivalent net production of electricity.1 The CO2 

emission from IGCC units, however, is by far the largest contributor to greenhouse gas when 

compared with that of other produced gaseous constituents, including N2O and NH3. Fortunately, 

the IGCC is remarkably suitable for near total CO2 removal and subsequent sequestration.1,2,4,5 

This is because CO2 can be captured more efficiently from IGCC than from pulverized coal (PC) 

combustion technology due to the following: (1) the fuel gas stream has higher CO2 

concentration than the flue gas stream, which can be further increased by converting more CO 

into CO2 prior to combustion through the water-gas-shift (WGS) reaction, while simultaneously 

producing more hydrogen; and (2) the IGCC gasifiers typically operate under relatively high 

pressure, making CO2 capture from the syngas much easier than that from flue gas. 

The temperature and pressure of the fuel gas stream produced via gasification 

technologies strongly depend on the type of gasifier used.6,7 For instance, after a 2-stage or a 3-

stage WGS reactor, the shifted fuel gas temperature is expected to be about 508 K.7 Actually, the 

IGCC is considered as the most promising process for power generation because of its high 

thermal efficiency and low emissions, and its ability to use different feedstocks.4 For the IGCC 

process to become commercially viable, however, all contaminants in the syngas have to be 

removed before combustion, and the emission control technologies should target the removal of 

Hg, As, Cd, Se, SOx, NOx and particulates, in addition to the other contaminants present in high 

concentration, such as H2S and CO2 (acid gas). Currently, technologies for removal of acid gases 

from the syngas stream used in the IGCC processes fall into three categories, namely cold-, 

warm-, and hot-gas cleanup.4 
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In cold-gas cleanup, H2S and CO2 are removed from syngas by first concentrating them 

either with amine-based chemical solvents, such as methyldiethanolamine (MDEA), or 

refrigerated physical solvents, such as chilled methanol8 (Rectisol process), mixtures of dimethyl 

ethers of polyethylene glycol9,10 (Selexol process), or n-formylmorpholine/n-

acetylmorpholine11,12 (Morphysorb process).2,4,5,13 These solvents were reported to be effective in 

removing nearly all of the undesirable contaminants from syngas. Table 1.1 shows a few 

commercially available processes employing physical solvents for AGR. 

 

Table 1.1: Physical solvents used in commercial processes14 

Process Physical solvent 
Purisol8 N-methyl-2-pyrrolidone 

Estasolvan Tributyl-phosphate 
Fluor Solvent15 Propylene carbonate 

Rectisol8 and IFPEXOL Methanol 
Selexol10,16, Sepasolv 
MPE, and Genosorb Polyethylene glycol dialkyl ethers 

 

Generally, these physical processes have the following similar features: (1) high selectivity for 

H2S and COS over CO2; (2) high loadings at high acid gas partial pressures; (3) strong solvent 

stability; and (4) low heat requirements, since most of the solvents can be regenerated by a 

simple pressure letdown, meaning that there is no significant heat of reaction or solution.4,5 Also, 

physical-solvent processes can be easily configured to take advantage of their high H2S/CO2 

selectivity together with high levels of CO2 recovery. Usually, this can be accomplished by 

staging absorption for high H2S removal, followed by CO2 removal. 

In general, physical methods are favored when the acid gas pressure is high. This is 

because the concentration gradient (or the partial pressure difference) between the acid gas and 

the physical (non-reactive) solvent is the driving force for AGR. On the other hand, chemical 
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methods are more effective when the acid gas pressure or concentration in the gas stream is low. 

This is because the reaction rate or the chemical potential between the acid gas and the reactant 

(reactive solvent) is the driving force for AGR. This can be schematically illustrated in Figure 

1.1 in terms of loading (mole acid gas/mole of solvent). 

 

 

Figure 1.1: Physical versus Chemicals Solvents17 

 

A comparison among chemical and physical solvent-based processes reveals the following: 

(1) the heat requirements for solvent regeneration in the MDEA chemical process are greater 

than those needed for the physical solvent-based processes; (2) the glycol process is generally 

more expensive than the MDEA process, however, its package, including total acid gas removal 

(AGR), sulfur recovery, and tail gas treatment could be more cost effective than the MDEA 

process, particularly when the syngas pressure is high and deep sulfur removal is required (e.g., 
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down to 10-20 ppmv); and (3) the refrigeration and complexity of the chilled methanol process 

make it the most expensive AGR process, and accordingly its use is generally restricted to 

applications in which almost pure syngas (containing as low as <0.1 ppmv total sulfur) is 

required.2 For sulfur recovery in these cold-gas cleanup technologies, often conducted using the 

Claus process, H2S-rich acid gas feed is required, implying that the absorption process should be 

more selective towards H2S than CO2. On the other hand, for CO2 sequestration, the selected 

absorption process should be more selective towards CO2 than H2S. Although these two 

objectives appear to be conflicting, those two gases have been successfully removed by staging 

the absorption process into separate steps.2,4,5 It should be pointed out that the major drawback of 

the cold-gas cleanup technologies is that the entire syngas stream has to be cooled prior to H2S 

and CO2 removal to 311 K for amine-based absorption processes and to 211 or 233 K for the 

refrigerated physical solvent processes.4 Unfortunately, cooling the syngas to such low 

temperatures leads to the condensation of most of the water vapor present in the syngas stream, 

which significantly reduces the overall thermal efficiency of the process and increases the capital 

costs of the system. 

In hot-gas cleanup, carried out at temperatures approaching that of the gasifier (~1144 K), 

solid sorbents such as zinc ferrite are reacted with H2S to form sulfides. The sorbents are usually 

regenerated by oxidation with air in a separate vessel. The oxidation converts H2S in the syngas 

into a gas stream containing SO2 which is treated separately. There are many technical 

difficulties associated with cleanup, including sorbent stability and the need for SO2 removal. In 

addition, the cost of the hot-gas cleanup is high because the process must be carried out in high-

cost alloy equipment. Also, hot-gas cleanup effectively removes H2S, but does not significantly 

remove Hg and other contaminants.4 
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In warm-gas cleanup, carried out at moderate temperatures (~ 478 K), H2S and other 

contaminants such as Hg, As, Se and Cd, which were not removed by hot-gas cleanup, can be 

effectively removed. In 2007, Vidaurri et al.3 developed a warm-gas cleanup process where H2S 

is oxidized in-situ with small amount of air (or O2) at temperatures (383 – 493 K) in the presence 

of a catalyst to liquid elemental sulfur without H2 consumption. This liquid elemental sulfur was 

also capable of removing low concentrations of Hg from the syngas streams. Even though some 

cooling of the fuel gas from the gasifier temperature is required, leading to some energy 

efficiency penalty, the warm-gas cleanup temperature is above the steam dew point, which 

prevents water vapor condensation from the syngas stream.4 Indeed, warm-gas cleanup is 

obviously more attractive than cold- and hot- syngas cleanups because it allows the removal of 

multi-contaminants from the syngas while using low-cost alloy equipment at an energy penalty 

lower than that of the cold-gas cleanup. 

Thus, there is a pressing need to develop warm-gas cleanup technologies in order to 

allow control of the emissions of sulfur, ammonia, chlorides and Hg, Se, As and Cd. The prime 

mover for this development stems from the fact that the syngas, at a relatively high temperature, 

can easily be used in the downstream power generation facilities or as a fuel for chemical 

production plants (e.g. Fisher-Tropsch and methanol synthesis). 

The focus of this research is the use of physical solvents for CO2 capture from warm gas 

streams. 
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2.0  BACKGROUND 

2.1 SELEXOL AND RECTISOL PROCESSES FOR CO2 CAPTURE 

The two most-widely-used physical processes for AGR are Selexol and Rectisol. The Selexol 

process is more expensive than the MDEA process which requires high thermal energy (heat) for 

solvent regeneration, and the chilling option could increase the process costs. The Rectisol 

process is complex, and refrigeration makes it the most expensive AGR process. These processes 

are briefly discussed in the following. The only composition found in the open literature10 for the 

solvent used in the Selexol process is given in Table 2.1; and the solvent used in the Rectisol 

process is methanol. The solubilities of various gases in the Selexol solvent, expressed in terms 

of that of methane (CH4), are given in Table 2.2; and the absorption coefficients for various 

gases in the Rectisol solvent, as a function of temperature, are depicted in Figure 2.1. The 

physical properties of solvents used in the Selexol and Rectisol Processes are given in Table 2.3. 

From the table, it can be sees that at 298 K the vapor pressure of methanol is high (16678.4 Pa), 

whereas that of the Selexol solvent is extremely low (0.093 Pa). Also, at 298 K the viscosity of 

the Selexol solvent (0.0059 Pa.s) is much greater than that of methanol (0.000539 Pa.s). 
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Table 2.1: Composition of the Selexol process solvent10 

CH3(CH2CH2O)nCH3 
Component n Mol% Molecular Weight 

  kg.kmol-1 kg.kmol-1 
3 10.69 178.2 19.05 
4 26.94 222.3 59.88 
5 26.57 266.3 70.77 
6 18.42 310.4 57.17 
7 10.75 354.4 38.10 
8 4.78 398.5 19.05 
9 1.85 442.5 8.19 
 100  272.21 

 

 

 

Figure 2.1: Absorption coefficient (α) of various gases in methanol  

(Partial pressure: 1 bar) 

 

  



 9 

Table 2.2: Solubilities of gases in the Selexol solvent  

(Component Solubility Index relative to CH4) 

Component Component Solubility 
Index Solubility Ncm3/g.bar, @25°C 

CH4 1.0 0.20 
H2 0.2 0.03 
CO 0.8 0.08 
CO2 15 3.10 
COS 35 7.0 
H2S 134 21 

CH3SH 340 68 
C6H6 3,800 759 
H2O 11,000 2,200 
HCN 38,000 6,600 

 

 

Table 2.3: Physical properties of solvents used in the Selexol and Rectisol processes 

Process Selexol Rectisol 

Solvent Name Dimethylethers of 
Polyethylene glycol Methanol 

Formula CH3(CH2CH2O)nCH3 
3<n<9 CH3OH 

MW (kg/kmol) 178 - 442.5 32.04 
Density at 298K (kg/m3) 1030 753 
Viscosity at 298K (Pa.s) 0.0059 0.000539 

Melting Point (K) 244-251 175.62 
Boiling Point at 1.013 Bar (K)  321.25 

Cp at 298K (J/kg/K) 2090 2498 
Thermal Conductivity at 298K (W/m/K) 0.19 0.2011 

Vapor Pressure at 298K (Pa) 0.093 16678.4 
Surface Tension (N/m) 0.0283 - 0.0346 0.0188 
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It should be mentioned that for any physical-solvents to be economically feasible they must 

have:2,4 (1) low vapor pressures in order to prevent solvent losses; (2) high selectivity for acid 

gases when compared with those of CH4, H2 and CO; (3) low viscosity; (4) thermal stability; and 

(5) non-corrosive behavior to metals. Unfortunately, only a few commercially employed solvents 

as given in Table 1.1 meet some of these criteria. 

2.2 PHYSICAL GAS ABSORPTION INTO LIQUID SOLVENTS 

The physical gas absorption into liquid solvents involves the following steps: 

Step 1: Transport of the gas species through the bulk gas to the gas-film boundary; 

Step 2: Transport of the gas species from the gas-film boundary through the gas-film (gas-side) 

to the gas-liquid interface; 

Step 3: Transport of the gas species from the gas-liquid interface through the liquid-film (liquid-

side) to the liquid-film boundary; and 

Step 4: Transport of the gas species from the liquid-film boundary through the bulk liquid. 

For steps 2 and 3, according to the two-film theory, a steady state mass transfer across a 

stagnant gas-liquid interface can be described for the gas-film and the liquid-film, as shown 

schematically in Figure 2.2, by the following equations: 

( ) ( )* * CCHeakPPakR GGGS −=−=  (2-1) 

( )LLS CCakR −= *  (2-2) 
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The overall rate of mass transfer in terms of the bulk gas and liquid concentrations of a 

gas component can thus be expressed as: 

akaHek

CC
R

LG

LG
S 11

+

−
=

 

(2-3) 

Generally, the partial pressure of the physical solvents in the gas-phase is so small that 

the gas-phase resistance (1/kG) can be neglected. This assumption suggests that Equation (2-3) 

can be reduced to Equation (2-2), and accordingly, the knowledge of the solubility (C*) and the 

volumetric liquid-side mass transfer coefficient (kLa) is essential in order to determine the rate of 

mass transfer in the gas absorption process. 

 

 

Figure 2.2: Gas concentration profile in liquid solvents 

 

The gas absorption process is usually carried out in a unit operation (reactor) where the gas under 

given pressure and temperature is physically absorbed into the liquid solvent. In general, the gas 

 

CL 

CG 

C* 

Gas-Liquid Interface 
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x=0 x=δL 
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Pi 
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a form of bubbles is brought into contact with the liquid solvent using a gas distributor where the 

difference between the concentration of the gas in the gas-bulk (CG) and the concentration of the 

gas dissolved in the liquid-bulk (CL) is the driving force; and the resistance to mass transfer is 

thus located in the liquid-film (kL). In general, the physical absorption process continues until the 

thermodynamic equilibrium is reached, where CL equals the equilibrium gas solubility (C*). 

Under such conditions, there is no driving force and subsequently there is no mass transfer. 

The unit operation used to carry out the absorption process can be: (1) a packed-bed 

reactor, operating in a countercurrent or concurrent mode where different open or structured 

packing are employed; (2) a bubble column reactor, where the gas is injected through the liquid-

phase via a gas distributor located at the bottom of the reactor; and (3) an agitated reactor 

provided with a motor, in order to induce proper mixing of the gas bubbles throughout the liquid-

phase for mass transfer enhancement. The accepted geometrical ratios of agitate reactors are 

shown in Table 2.4. 

Based on the mode of gas mixing throughout the liquid, agitated reactors are generally 

classified into (1) surface-aerated reactor (SAR); (2) gas-inducing reactor (GIR); and (3) gas-

sparging reactors (GSR) as depicted in Figure 2.3.  
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Table 2.4: Geometrical ratios of agitated reactors 

Ratios Ranges18 
H/dT 1 

dImp./dT 1/4-1/2 
HL/dT 1/2-5/6 

dW/dImp, 1/4-1/6 
W/dT 1/10-1/12 

 

H: Liquid height from the bottom of the rector, m; dT: diameter of the tank, m; HL: Liquid height 

above the impeller of the reactor, m; dW: Width of the impeller blade, m; dimp.: Diameter of the 

impeller, m; W: baffle width, m 

 

 

 

Figure 2.3: Operating modes of agitated reactors 

 

Surface-Aeration Gas-Inducing Gas-Sparging

QG

QG
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In this study, the physical absorption for CO2 as a single component or in a mixture in a 

liquid solvent was carried out in one-gallon gas-inducing reactor (GIR), where the gas was 

induced through the hollow shaft of the reactor; and hence the criteria need for the design and 

scaleup of only GIRs are here reviewed. 

2.2.1 Hydrodynamic regimes in GIRs 

In GIRs, different hydrodynamic regimes could occur depending on the mixing speed, relative 

position of the impeller to the gas-liquid surface, impeller and reactor sizes and design.19-27 At 

low mixing speed, gas-inducing reactors behave as surface aeration reactors, since no gas is 

induced into the liquid. As the mixing speed increases the pressure near the impeller decreases 

until at a critical mixing speed, the pressure around the impeller becomes so small that gas 

bubbles are induced into the reactor. Further increase of the mixing speed increases the pumping 

capacity of the impeller, which results in an increase of the induced gas flow rate. Thus, more 

gas bubbles are induced and dispersed throughout the liquid. Under these conditions, Aldrich and 

van Deventer28 and Patwardhan et al.29 reported that the circular motion of the impeller creates a 

flow separation, which forms a wake region below the impeller. Consequently, gas cavities 

appear behind the impeller, which reduce subsequently the average density of the mixture and 

decrease the power input. These cavities can also be perceived as a local gas holdup in the 

vicinity of the impeller. In fact, when such cavities are observed behind the blades, the impeller 

is considered flooded. Thus, the following regimes can prevail in GIRs: (1) Surface aeration 

regime until the critical mixing speed for gas induction, (2) At the critical mixing speed, 

bubbling30 commences, (3) Continuous bubbling30 occurs as the mixing speed is increased, and 

(4) Gas jet30 or flooding at very high mixing speeds, i.e. high gas induction rate. 
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Table 2.5: Hydrodynamic studies in GIRs 

Authors Gas/Liquid Reactor characteristics Remarks 

Zlokarnik31 Air/Water 
dT /dImp.: 2.42-5.00/hollow 
shaft 
4 types: 0.06, 0.12 

Effect of mixing speed, liquid height and 
impeller submergence on QGI 

Zlokarnik32 Air/Water dT: 0.15-1.00/Hollow Shaft 
4 types: 0.06 Effect of N on QGI 

Martin19 Air/water dT: 0.28/Baffles/Hollow Shaft 
Flat, angles T: 0.254 

QGI is function of the contact angle. Scale-up 
of GIR 

Topiwala and Hamer33 O2/K2SO4 sol., bacterial 
broth 

dT: 0.158/4-Baffles 
Hollow T: 0.075 

QGI increases with N and decreases with 
K2SO4. Effect of liquid properties on dS , εG 

Joshi and Sharma20 Air/water, DEG, Sodium 
dithionite 

dT: 0.41-1.00/4-Baffles, 
Hollow shaft/Pipe T: 0.2-0.5 
Flat cylind. T: 0.250-0.395 

QGI increases with orifice area, N, dImp., and 
decreases with H and μL. No effect of σL on 
QGI 

White and de Villiers34 Air/Tap water, glycerin-
water-teepol 

dT: 0.29/Stator, Hollow shaft 
12-vanes rotor: 0.056 QGI increases with μL 

Sawant and Joshi21 Air/water, isopropanol, 
PEG 

Denver dT: 0.1-0.172 , dImp.: 
0.070-0.115 
Wenco dT: 0.3 dImp.: 0.050 

QGI increases with N and dImp., decreases with 
H and μL, and is independent of σL and ρL. 
NCRI affected by μL 

Zundelevich22 Air/Water dT: 0.4/Stator, Hollow shaft 
Rotor Stator: 0.08, 0.10, 0.12 Effect of dImp. and H on QGI and PG* 

Sawant et al.35 Air/Water, PEG/dolomite dT: 0.30/ Stator, Hollow shaft 
Wenco: 0.10 

QGI increases with N and decreases with H, 
and μL 

Sawant et al.36 Air/Water, PEG/dolomite dT: 0.1-0.172, 0.380 
dImp.: 0.070-0.115/Stator 

QGI increases with N and dImp., decreases with 
H and μL 

Joshi et al.37 - - Review on agitated gas-liquid contactors 

Raidoo et al.38 Air/Water 
dT: 0.57/Stator, Hollow shaft 
6-B DT: 0.15-0.25 
6-B T/6-B PT: 0.25 

QGI increases with ΔP, dImp. and N. At high N, 
QGI flattens off 

Chang39 
H2,N2, CO,CH4/n-
C6H14,n-C10H22, n-C14H30, 
c-C6H12 

dT: 0.127/4 Baffles 
6-B RT: 0.0635, Hollow shaft Determination of NCR 
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Table 2.5 (continued) 

Authors Gas/Liquid Reactor characteristics Remarks 

He et al.40 Air/Water+CMC, 
water+triton-X-114 

dT: 0.075/4 Baffles 
6-B DT: 0.032 

NCR increases with μL, H and σL,; a, εG 
increases with N, and decreases with H, σL. εG 
increases and decreases with μL 

Rielly et al.41 Air/Water 
dT: 0.30, 0.45, 0.60/4 Baffles 
2-B Flat Pa: 0.215 
2-B Concave T: 0.215 

Bubble coalescence increases with QGI. Model 
to determine NCR and QGI 

Aldrich and van 
Deventer42 

Air/H2O, resin, brine sol., 
sucrose/nylon, 
polystyrene 

dT: 0.19/Baffles, Draft tube 
6, 12-B RT: 0.05, 0.057 
4-B Pipe T: 0.065 

QGI decreases with μL and ρL 

Aldrich and van 
Deventer28 

Air/Water, aqueous ethyl 
alcohol, sucrose, glycerin 

dT: 0.19/Baffles, Draft tube 
6, 12-B RT: 0.05, 0.057 

At low μL, QGI increases with μL, and 
decreases with μL at high μL. QGI decreases 
with ρL 

Saravanan et al.43 Air/H2O dT: 0.57, 1.0, 1.5/Baffles 
6-B DT: 0.19-0.55, Draft tube Scale-up effect on NCRI and QGI. 

Al Taweel and Cheng44 Air/water + PGME  dT: 0.19/Baffles, Draft tube 
8-B RT: 0.096 

Effect of liquid properties on a and εG. 
Additives retards the coalescence 

Aldrich and van 
Deventer23 

Air/water, sucrose, 
ethanol, brine solution  

dT: 0.19/Baffles, Draft tube 
6, 12-B RT: 0.05, 0.057 Effect of H, dImp., μL and ρL on FrC and Ae 

Heim et al.24 Air/water-fermentation 
mixture 

dT: 0.30/4-Baffles/hollow 
shaft 
4-B Pipe/6-B Pipe T: 0.125 
6-B DT: 0.100, 0.150 

QGI is a function of N, dImp., H, μL, and 
increases with μL 

Hsu and Huang45 Ozone/water dT: 0.170/Baffles, Draft tube 
6-B PT: 0.060 Bubble coalescence Increases with QGI 

Saravanan and Joshi46 Air/H2O dT: 0.57, 1.0, 1.5/Baffles 
6-B DT: 0.19-0.55, Draft tube 

Review on modeling and experimental studies 
of NCR, εG and QGI in GIR 

Hsu and Huang25 Ozone/water dT: 0.29/4-Baffles 
2 6-B PT: 0.09-0.12 

Effect of impeller submergence on NCR and 
the mixing time 

Hsu et al.26 Ozone/water dT: 0.170/Baffles, Draft tube 
6-B PT: 0.35-0.50 dT Effect of N and dImp. on NCR, εG, dS, QGI and a 
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Table 2.5 (continued) 

Authors Gas/Liquid Reactor characteristics Remarks 

Patwardhan and Joshi47 Air/H2O dT: 1.5/Baffles, Draft tube 
2 6-B DT: 0.50 

Review on modeling and experimental studies 
of NCR, εG and QGI in GIR 

Tekie48 N2, O2/Cyclohexane dT: 0.1154-Baffles 
6-B RT: 0.0508, Hollow shaft 

No effect of pressure, temperature, mixing 
speed and liquid height on dS 

Forrester et al.30 Air/Water 
dT: 0.45/4 Baffles, hollow 
Shaft 
26-B Concave T: 0.154 

QGI increases with number of gas outlets 

Hsu et al.27 Ozone/water dT: 0.29/4-Baffles 
2 6-B PT: 0.09-0.12 Effect of N and dImp. on NCR, and PG* 

Patwardhan and Joshi49 - - Review of hydrodynamic studies in agitated 
reactors 

Patil and Joshi50 Air/H2O 
dT: 1.0/Baffles, Draft tube 
12-B PT: -/4-24 vanes Stator 
T:- 

QGI exhibit a hysteresis behavior. Effect of 
impeller design on QGI 

Patwardhan and Joshi29 - - Review of experimental and modeling studies 
on GIR 

Fillion51 H2, N2/Soybean oil dT: 0.115/4-Baffles hollow 
shaft, 6 blades RT Effect of P, T, N, H and QGI on dS and εG 

Lemoine52 

N2, O2, Air / Toluene, 
mixtures of toluene, 
benzaldehyde and benzoic 
acid 

dT: 0.115/4-Baffles hollow 
shaft 
dImp.: 0.051, 6 blades RT 

Effect of P, T, N, H and QGI on dS and εG 

Lemoine and Morsi53 

N2, O2, Air/Toluene, 
mixtures of toluene, 
benzaldehyde and benzoic 
acid 

dT: 0.115/4-Baffles hollow 
shaft 
dImp.: 0.051, 6 blades RT 

Effect of P, T, N, H, QGI (UG), gas nature and 
liquid nature on dS and εG 

B: Blade, DT: Disk turbine, RT: Rushton turbine, PT: Pitched turbine, P: Propeller, Pa: Paddles 
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2.2.2 Critical mixing speeds for gas induction in GIRs 

In GIRs, several correlations have been proposed in the literature in order to predict the critical 

speed for gas induction (NCR).21-26,43,47,51 Using a hollow shaft, Evans et al.54,55 extended the 

earlier model proposed by Martin19 and employed the theory of flow past immersed body along 

with Bernoulli’s equation to obtain the critical mixing speed for gas induction in GIRs as 

follows: 
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where P(θ) and CP(θ) are defined as the pressure and the pressure coefficients at any angular 

position θ, respectively, and K is a factor accounting for the slip between the impeller and the 

fluid. Therefore, the critical speed of induction is: 

( ) ( )( )2.Im 1
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(2-5) 

The values of Cp(θ) are calculated from the potential flow theory for inviscid flow around a 

cylinder in an infinite medium: 

( ) ( )θθ 2sin 4=PC  (2-6) 

Saravanan and Joshi46 and White and de Villiers34 used a similar model in a hollow shaft 

stator-diffuser type impeller. Increasing liquid viscosity has been reported to increase the critical 

mixing speed of gas induction21,23,51 to a power ranging from 0.1 to 0.13, while negligible effects 

of liquid density and surface tension were reported. On the other hand, increasing liquid height 

or decreasing impeller diameter was found21,23,51 to increase the critical mixing speed of gas 
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induction. Several techniques have been developed to determine critical mixing speeds in 

agitated reactors. The most commonly used method is the photographic technique, which had 

been successfully carried out in the GIR.20,23,51 Another commonly accepted technique developed 

by Clark and Vermeulen,56 consists of monitoring the mixing speed at which the power input 

decreases steeply. 

2.2.3 Induced gas flow rate in GIRs 

In GIRs, extensive studies on the rate of gas induction can be found in the literature.19,22-26,28,33-

36,38,42,43,46,51 While the effect of liquid surface tension on the induction rate appears to be 

negligible, the impact of the liquid viscosity is critical. In fact, several investigators reported a 

decrease of the gas flow rate with increasing liquid viscosity,20,22,35,51 whereas others reported an 

increase.23,34 Furthermore, recent studies found that the rate of gas induction was first increased 

and then decreased with increasing liquid viscosity.28,42 Liquid density, however, has been 

reported to decrease the gas induction rate,23,28,42 due to the increase of the buoyancy. While the 

effects of temperature and pressure on the induced gas flow rate have been scarcely reported,51 

the effects of mixing speed, liquid height, impeller and reactor diameter are well established. In 

fact, Fillion51 found that the effect of increasing temperature on gas induction rate was similar to 

the effect of decreasing viscosity, whereas an increase of pressure decreases the induction rate by 

influencing the cavities structure. Decreasing the liquid height, vessel diameter or increasing the 

impeller diameter increases the pumping capacity of the impeller, hence the induction rate, as 

generally reported.19,22,24,34-36,38,43 In GIRs, Fillion51 used a sealed bearing device and re-

circulation loop to measure the gas flow rate with a Coriolis mass flowmeter. 
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2.2.4 Gas bubble size and distribution in GIRs 

The quality of the gas in the liquid-phase is often characterized by the gas bubble size and 

distribution, which, along with the gas holdup, control the gas-liquid interfacial area, the bubble 

rise velocity, and the contact time. In GIRs, the gas bubbles are formed near the impeller, and 

therefore, the gas bubble size can be controlled by the energy of the gas stream, impeller type 

and size, as well as liquid properties. The formation of a single gas bubble is subject to the 

competition between the forces of buoyancy and surface tension. In agitated reactors, however, 

multiple bubbles are formed, which can collide, break up, coalesce or be consumed by reaction.  

The bubble size measurement techniques can be classified into two main categories:48 

(1) direct optical techniques; and (2) indirect techniques. Several direct techniques have been 

used to measure the gas bubble sizes in gas-liquid contactors. High speed flash 

photography48,51,57-74 as well as light scattering75,76 have been used in order to evaluate 

statistically the Sauter mean bubble diameter and the bubble size distribution in gas-liquid 

contactors. Indirect techniques, such as ultra-sound,77 electrical resistivity probe,78-81 

photoelectric capillary,82 acoustic,83 capillary probe57 and gas disengagement61,84-87 have also 

been used to measure the gas bubble size. Since most of these techniques provide local 

measurement of the bubble size, it should be mentioned that unless tedious study of the entire 

reactor at different positions is carried out, extreme care should be taken to use these 

measurements in overall calculations. It is also important to point out that most of these 

techniques have been extensively used at atmospheric pressure and room temperature, but due to 

the lack of adequate instrumentation only few studies have been completed under typical 

industrial conditions, i.e. high temperatures and pressures.88 
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The mixing speed and superficial gas velocity, i.e. the mixing power input, have been 

reported to decrease the bubbles diameter,51,69,76,89-93 whereas the effect of temperature and 

pressure on the gas bubble sizes has been scarcely reported. It seems, however, that increasing 

temperature, which decreases the liquid viscosity, decreases the bubble diameter. Fillion51 

reported that the reactor type has an important impact on the bubble size, which is the result of 

different modes of bubble formation in the different reactor types. Literature data showed that 

the dS values are supposed to increase with increasing liquid surface tension,51,69,89,91-95 and 

decrease with increasing liquid density. Vermeulen et al.93 and Matsumura et al.89 reported that 

dS values decrease with increasing liquid viscosity. Also, it should be mentioned that the effect of 

gas holdup on the bubble diameter reported by Calderbank,76 Miller,90 Sridhar and Potter91 and 

Hughmark92 reflects the coalescing behavior of the liquid employed. 

2.2.5 Gas Holdup in Agitated Reactors 

The gas holdup, εG, defined as the gas volume fraction present in the expanded volume of the 

reactor, has tremendous impact on the hydrodynamics and heat as well as mass transfer, since it 

can control the gas-liquid interfacial area.85 Thus, it is necessary to study the effect of operating 

conditions, physical properties and reactor design on εG in order to assess the parameters 

influencing the gas-liquid interfacial area.  

A number of methods have been developed in order to measure the gas holdup in gas-

liquid contactors. The dispersion height technique is a direct method, where the liquid height is 

measured under gassed and ungassed conditions.96 This method, however, has been reported to 

lack accuracy when waves or foam are formed at the liquid surface.88 An alternative to this 

technique is the manometric method or gas disengagement technique,48,85-87,94,97,98 which 
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indirectly measures the gas holdup. In fact, by using high accuracy differential pressure (DP) 

cells, the pressure difference between two points in the reactor is measured. The gas holdup is 

then calculated precisely even under high temperatures and pressures. Other techniques such as 

ultrasound and real time neutron radiography,77 X- and γ-ray99 and electrical resistivity probe100 

have also been employed but less frequently in gas-liquid contactors to measure the gas holdup. 

Literature findings indicated that εG decreases with increasing liquid surface tension44,89-

92,94,101-105 and decreasing liquid density24,46,89-91,94,103,104 in agitated reactors. The effect of liquid 

viscosity on εG, on the other hand, appears to be controversial, since Matsumura et al.89 in the 

SAR, Saravanan and Joshi,46 Heim et al.24 and Tekie48 in the GIR, and Loiseau et al.105 in the 

GSR found that εG decreases with increasing liquid viscosity, whereas Murugesan found that εG 

values increase with increasing liquid viscosity in the GSR. Furthermore, He et al.40 in the GIR 

and Rushton and Bimbinet106 in the GSR found that εG first increases and then decreases with 

increasing liquid viscosity, revealing a maximum. In addition, Sridhar and Potter91 reported an 

increase of εG with increasing gas density, which was attributed to the increase of gas 

momentum.107 The effects of mixing speed,24,44,48,51,89,92,104,108 superficial gas velocity46,89-92,94,104-

106 and power input36,40,46,90,91,94,101,102,105,106,109 have been reported to increase εG whereas the 

effect of temperature on εG appeared to be reactor dependent. Fillion51 found that εG decreases 

with temperature in the GIR and increases in the GSR. Few and controversial studies on the 

effect of pressure on εG can be found, since for instance, Fillion51 reported negligible effect of 

pressure on εG, while Sridhar and Potter91 found an increase of εG with pressure in agitated 

reactor. The effect of impeller and reactor types and diameter has been reported to have an 

important influence on the gas holdup.24,46,89,92,101,102,104,110,111 An increase of the number of 

impellers and diameter has been observed to increase εG, whereas an increase of reactor diameter 
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was found to decrease εG. Although extensive studies on εG have been carried out, it should be 

stressed that the experimental data under typical industrial conditions, i.e. high pressures51,91,112 

and temperatures91 are very scarce. εG is directly reflect the interfacial area (a), therefore if εG 

increases then a increases. 

2.2.6 Mass Transfer Parameters 

2.2.6.1 Volumetric Mass Transfer Coefficient, kLa 

Depending on the systems used, either chemical or physical methods113,114 have been employed 

to measure kLa in gas-liquid contactors. In the physical methods, the physical gas absorption or 

desorption is monitored by pressure transducers or gas probes48 as a function of time under 

defined conditions. The transient pressure decline technique appears to be the most successful 

method used.39,48,115 For instance, Chang and Morsi116-118 developed a powerful model to 

describe the transient pressure decline, based on a modified Peng-Robinson EOS and mass 

balance. The improvement brought by this model is discussed elsewhere.39 In the chemical 

methods, reviewed by Danckwerts et al.,119 kLa data are obtained by combining known kinetics 

and mass transfer under chemical reaction conditions. The difficulty of temperature control, as 

well as the lack of kinetics data, however, seems to set the boundaries of the chemical method. 

The direct determination of kL is only possible through the chemical method,96 but can, however, 

be indirectly calculated from the measurement of kLa and a.94,96,113,119,120 

Empirical and statistical correlations have been used to predict the volumetric mass 

transfer coefficient in agitated reactors. In the SAR, it appears that kLa follows essentially the 

trend of the mass transfer coefficient, kL
39,48,51,115,121 since the absorption takes place at the free 

gas-liquid interface. Thus, an increase in mixing speed, power input, impeller diameter or a 
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decrease in the liquid height and vessel diameter, will result in an increase of the volumetric 

mass transfer coefficient.39,48,51,115,121 The diffusivity, on the other hand, has been reported in all 

correlations to be proportional to kLa raised to a power ranging between 0.5 and 1, which is in 

good agreement with the penetration theory and film model, respectively. While it appears that 

there is a good agreement on the effect of liquid viscosity on kLa, the effect of liquid density and 

surface tension are controversial. In fact, increasing liquid viscosity is generally found in Table 

2.6 to decrease kLa, whereas increasing liquid density and surface tension were reported to 

increase or decrease48,115,121-124 kLa. Additional controversial findings on the effect of pressure 

were reported kLa. In contrast, the temperature was generally reported to increase kLa in the 

SAR.48,51,115,121 

In the GIR, below the critical mixing speed for gas induction, the reactor performs 

exactly as an SAR, since no gas bubbles are induced in the liquid phase. When the critical 

mixing for gas induction is reached, however, gas bubbles start to be induced and dispersed in 

the liquid phase, increasing considerably a and therefore kLa. Consequently, both a and kL can 

influence kLa values, sometimes only a or kL have an impact on kLa. Increasing the mixing 

speed, power input, impeller diameter or decreasing the liquid height and vessel diameter 

increases the turbulences inside the reactor and the pumping capacity of the impeller. Thus, both 

a and kL increase and subsequently kLa as often found.20,24,30,36,39,48,51,117,118,125-130 On the other 

hand, the effect of physical properties on kLa appears to be system-dependent since the overall 

trends of kLa with liquid viscosity, density and surface tension are different. It appears also that 

increasing temperature leads to a decrease of kLa48,51 in the GIR, whereas the effect of pressure 

seems more complex and was generally found to be negligible.48,51 
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2.2.6.2 Gas-liquid interfacial area, a 

Several methods have been developed in order to measure the gas-liquid interfacial area, a in 

gas-liquid contactors. The gas-liquid interfacial area can be measured using physical or chemical 

methods. Optical methods, such as photographic,94 light reflection94,131 and light scattering132 

were used as physical techniques; however, they were restricted to transparent contactors having 

low gas holdup.77 Other physical methods including γ–ray radiography77 and real time neutron 

radiography77 have also been used to estimate a. Midoux and Charpentier133 reviewed various 

chemical reactions, where it is possible to measure a. The limitation of this method is that the 

reaction kinetics are needed before measuring a. While these previous procedures mainly help to 

reveal the bubble contributions to a, other measuring techniques have been used in ripple tank to 

determine a at the gas-liquid interface. Muenz and Marchello,134,135 measured the wave 

frequency using a stroboscope and determined the amplitude through the analysis of the 

refractive surface properties via a photo-volt photometer and densitometer. Recently, Vazquez-

Una et al.136 used a CDD camera viewing the surface at a 45° angle to calculate through digitized 

images analysis the wave length, λ. The surface peak-to-peak amplitude and frequency were 

determined from the surface displacement recorded using a vertically oriented laser triple-range 

distance-measuring device. 
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Table 2.6: Literature survey on kLa in GIRs 

References Gas /Liquid Operating 
Conditions Remarks 

Topiwala et al.33 Air /K2SO4 (aq.) 303 K kLa increases with N 

Joshi and Sharma20 Air/Sodium dithionite 
sol. 

Atm./dImp.0.2-
0.5/dT 0.41-1 

Effect of reactor size and 
impeller design on a and 
kLa 

Zlokamik et al.137 O2,N2/Water, Na2SO4, 
NaCl 2 bar / 293 K kLa increases with 

(P*/VL)0.8 
Pawlowski and 
Kricsfalussy138 H2/DNT 41 bar / 393-433 

K kLa is a function of P*/VL  

Kara et al.125 H2/Tetralin, coal liquid 70-135 bar / 606-
684 K 

kLa increases with and 
decreases with  

Karandikar et al.139  H2,CO/F-T medium 
(C11-C22, MW=201.5) 
liquid containing water 

423-498K, 10-40 
bar, 
11.7-20 Hz 

kLa increases strongly 
with P and N 
kLa increases with T 

Karandikar et al.126 

CO, CH4, CO2, H2/ F-T 
liquids (heavy, ≥C22, 
MW=368.5) containing 
water 

10-50 bar / 373-
573 K 

kLa increases with P, N, 
P*/VL, decreases with 
H/dT 

Eiras140 H2, C2H4, C3H6/n-
Hexane 

1-40 bar / 313-
353 K 

kLa increased with N. 
Effect of P and T was not 
clear 

Lee and Foster141,142 O2, CH4/Silicon fluid, 
perfluoroalkyl,polyether 

10-70 bar / 293-
573 K 

kLa increased with N, P 
and T, (kLa)O2> (kLa)CH4 

Chang39 
H2, N2, H2O, CO, 
CH4/n-C6H14, n-C10H22, 
n-C14H30, c-C6H12 

1-60 bar 
328-528 K 

kLa increases with N, 
decreases with H. Effect 
of P and T on kLa is 
system dependent 

Chang and Morsi128  CO/n-hexane,n-decane, 
n-tetradecane 

328-428K, 1-50 
bar, 13.3-20 Hz 
4 L reactor 

kLa increases slightly 
with P 
kLa increases with N 

Dietrich et al.129  N2,H2/Ethanol,water, 
hydrogenation 
mixture/Ni Raney 
particles (10-15µm) 

293-353K, 10-50 
bar 
0.5 L reactor 

kLa independent of P 
kLa increases with 
increasing T and N 

Hichri et al.143  H2/2-propanol,o-
cresol,mixture (2/3 2-
propanol+ 1/3 o-cresol)/ 
Pyrex beads 
(40<dp<300µm) 

303-393K, 13.3-
25 Hz, 0-30 bar, 
solid up to 5 
vol.% 

No influence of P 
kLa increases with T 
kLa increases strongly 
with N 

Al Taweel et al.44 Air/Water+ propylene 
glycol methyl ether 298 K / Atm. Effect of surface tension 

on a 
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Table 2.6 (Continued) 

References Gas /Liquid Operating 
Conditions Remarks 

Hsu et al.26 Ozone/Water 298 K, 8.3-26.7 
Hz 

kLa increases with N, due 
to the increase of εG, 
level off at 23.3 Hz 

Lekhal et al.144  H2,CO/n-
Octene,ethanol,water 

323K, 10-150 bar, 
18.3-41.7 Hz 

Poor effect of P on kLa 
kLa increases strongly 
with N 

Tekie et al.145 N2, O2/Cyclohexane 

7-35 bar /330-430 
K 
6.7-20 Hz/0.171-
0.268m 

kLa increases with N, 
decreases with H. Effect 
of P on kLa is system 
dependent. Effect of T is 
not clear 

Tekie et al.146  N2,O2/Cyclohexane 330-430K, 7-35 
bar, 
6.7-20 RPM 

kLa increases slightly 
with P 
kLa increases with T and 
N 

Mohammad115 N2, O2/Benzoic acid 
1-5 bar /423-523 
K 
100-23.3 Hz 

kLa increases with N, and 
slightly with T and P 

Fillion and Morsi147 N2, H2/Soybean Oil 

1-5 bar / 373-473 
K 
10-23 Hz / 0.171-
0.268m 

kLa increases with N, 
decreases with H and T. 
kLa is independent of P. 

Alghamdi148 H2,CO,N2,He/Isopar-M 
(C10-C16),PAO-8 (C30-
C70)/solid Al2O3 

373-473K, 7-35 
bar, 13.3-20 Hz, 
solid up to 50 
wt.% 

kLa slightly increase with 
P 
kLa increases with T and 
N 

Hsu et al.149 Ozone/Water 290-303K, 10-
21.7 Hz 

kLa increases with N, 
levels off above 16.7 Hz 

Chen et al.150  O2/water 293-313K, 1-1.2 
bar, 15-21.7 Hz 

kLa independent of P 
kLa increases with T and 
N 

Soriano151 
He, N2, H2 
,CO/Polyalphaolefins 
(PAO-8), Sasol Wax 

7-35 bar, 423-523 
K, 13.3-20 Hz 

kLa increases strongly 
with N, kLa increases 
with T 
Effect of P depends on 
gas-Liquid system 

Lemoine and Morsi53 

N2, O2, Air/ Toluene, 
mixtures of toluene, 
benzaldehyde and 
benzoic acid 

4.5-15 bar / 300-
453 K 
13.3-20.0 Hz / 
0.171-0.244m 

kLa increases with N 
kLa decreases with H and 
T 
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2.2.6.3 Mass transfer coefficient, kL 

The two-film model (“Whiteman’s model”) was first introduced by Whiteman152 in 1923, and 

considers that the gas is being absorbed by molecular diffusion alone across a stagnant liquid 

film of thickness, Δ. While the liquid composition is assumed constant due to mixing in the bulk, 

the resistance is concentrated in the film and results in a concentration gradient (C*-CL) between 

its two edges. This model leads to the following equation of kL: 

∆
= AB

L
Dk  (2-7) 

Despite the simplistic physical meaning of this model, it integrates important aspects of the real 

behavior of the gas-liquid absorption, which are the dissolution and molecular diffusion of the 

gas into the liquid before its transport by convection. This simplistic model predicts results 

similar to more complex and realistic models.75,119,153 It is also worth mentioning that the effects 

of the hydrodynamic parameters on kL are described by the behavior of the film thickness, 

whereas the effect of physical properties could have an impact on both the diffusivity and the 

film thickness. For instance, increasing the viscosity or decreasing the temperature decreases the 

diffusivity, which reduces kL. The effects of pressure, liquid surface tension and density on kL are 

more complex and appear to be system dependent.48,51 

In 1935, Higbie154 proposed the penetration theory or “Higbie’s model” based on the 

postulate that transfer occurs by a penetration process, which in fact overlooks the assumption of 

steady-state transfer. In this model, it is assumed that all liquid surface elements are exposed to 

the gas for the same amount of time before being replaced. During this exposure time, also called 

contact time, the element absorbs the same amount of gas per unit area as if it was stagnant and 

infinitely deep. The contact time is related to kL as: 
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C

AB
L t

D
k

×
×=

π
2  (2-8) 

Assuming that the bubbles slip through the stationary liquid, the contact time in gas-liquid 

contactors is usually calculated155,156 as follows: 

T

B
C U

d
t =  (2-9) 

Thus, the effects of physical properties, operating conditions and reactor design on kL are the 

resulting consequence on their effects on dB, UT and DAB. 

The Danckwerts model also called “surface renewal theory” proposed in 1951119,157 is 

similar to Higbie’s model.154 In fact, instead of assuming that all surface elements are exposed to 

the gas for the same amount of time tC, it assumes that there is a stationary distribution of the 

surface exposure. Hence, an element of surface being replaced by a fresh liquid element is 

independent of the exposure time. The only parameter taking into account the hydrodynamics is 

in this case the single parameter s, which has the dimensions of reciprocal time (s-1) and 

represents the fractional rate of surface renewal.119 

sDk ABL ×=  (2-10) 

Several investigators have introduced empirical and semi-empirical models based on the 

previously discussed theory, such as the “film-renewal model”.158,159 Kishinevskii et al.160 and 

King153 have proposed a different approach wherein the turbulences were extended to the liquid 

surface and the gas absorption was a combination of molecular and eddy-diffusivity. Literature 

studies showed that in all reactor types, the mass transfer coefficient increases with the degree of 

turbulences, i.e. with increasing superficial velocity, mixing speed, impeller diameter and power 

input. kL values were also found to increase with liquid density and decrease with liquid 

viscosity, while the effect of liquid surface tension is not clear.70,156,161 kL was always found to be 
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proportional to the diffusivity to a power ranging between 0.5 and 1, which corresponds to the 

penetration theory and the film model, respectively. It should also be mentioned that kL values 

were commonly found to increase with the bubble size in all gas-liquid contactors.75 

Nevertheless, no experimental data on the mass transfer coefficient have been reported in the 

literature under high temperature and high pressure for gas absorption in liquid solvents. 
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3.0  OBJECTIVE 

As can be concluded from the preceding section, the existing conventional chemical processes 

(MEA, MDEA) and physical processes (Rectisol,8 Selexol,9 Morphysorb11,12) for acid gases 

removal (including CO2) from warm fuel gas steams require cooling the entire gas from the 

gasifier temperature down to ambient or sub-ambient temperature, leading to a significant 

increase of the cost of CO2 capture process and a dramatic decrease of the thermal efficiency of 

the IGCC facilities. The overall objective of this study is to investigate new chemically and 

thermally stable physical solvents, which allow selective CO2 capture from shifted warm fuel gas 

streams available at high pressures and moderate temperatures (~ 478 K).3 

In order to achieve this objective, the following research is proposed: 

1. Define an “ideal” physical solvent for selective CO2 capture from a warm fuel gas 

mixture, which contains CO2, CO, H2S, H2O, and H2 in amounts typifying those of post-

shift reaction; and select 6 different physical solvents which follow such a definition; 

2. Measure the solubilities (x*) and mass transfer coefficients (kLa) for the gaseous 

constituents of the fuel gas stream into the selected physical solvents under high 

pressures and temperatures, similar to those of warm fuel gas streams. A one-gallon gas-

inducing agitated reactor available in our laboratory will be used for this purpose; 
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3. Develop conceptual process design for CO2 capture from warm fuel gas stream using 

ASPEN Plus Simulator for CO2 capture using the “best” physical solvents, which will be 

selected based on the definition of the “ideal” physical solvent. 
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4.0  DEFINITION OF AN “IDEAL” SOLVENT 

An “Ideal” solvent for CO2 capture from warm gas streams should enjoy the following 

characteristics: 

1. The solvent should contain a hard base, which will permit a strong affinity to CO2 

considered as a hard Lewis acid, according to Pearson’s hard soft [Lewis] acid base (HSAB) 

principle, which states that: hard [Lewis] acids prefer to bind to hard [Lewis] bases, and soft 

[Lewis] acids prefer to bind to soft [Lewis] bases.162 Hard Lewis acid is defined as that where the 

acceptor atom is of high electronegativity. Hard base could be defined in a similar way by 

considering the high electronegativity of the donor atom. Ethers, R-O-R’, are among the best 

examples of Pearson hard bases. Selexol solvent, which is a well-known benchmark for CO2 

capture, contains polyether groups, which are responsible for the solvent’s ability to solubilize 

relatively large amounts of CO2. Other examples of Pearson's hard Lewis bases include: 

CH3CO2
-, NO3

-, SO4
--, NH3, CO3

--, and ROH.163 

Pearson defined the "absolute hardness" parameter as:164 

( )
2

AI −
=η  (4-1) 
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He also defined “absolute electronegativity” as:164 

( )
2

AIx +
=  (4-2) 

where I is the ionization potential; and A is the electron affinity of any atom, ion, radical, or 

molecule. 

The ionization potential of an element is a measure of its ability to enter into chemical 

reactions requiring ion formation or donation of electrons and is related to the nature of the 

chemical bonding in the compounds formed by elements. The electron affinity of an element is 

the energy given off when a neutral atom gains an extra electron to form a negatively charged 

ion. These two parameters defined by Pearson for each acid and base may be found from 

experimental results.164 

2. The solvent should have a solubility parameter (δ’) which is as close as possible to that 

of CO2 under actual CO2 capture process conditions. The solubility parameter indicates the 

relative solvency behavior of a specific solvent. It is derived from the cohesive energy density of 

the solvent, which is derived from the heat of vaporization. The heat of vaporization is the 

energy required to vaporize the liquid, regardless of the temperature at which it boils. Thus, the 

liquid that vaporizes readily has less intermolecular stickiness than the liquid which requires 

considerable addition of heat in order to vaporize.165 

From the heat of vaporization of liquid, the cohesive energy density (C) can be obtained 

from the following expression: 

( )
mV

RTHC −∆
=  (4-3) 

where: 

C = Cohesive energy density, cal.cm-3 
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ΔH = Heat of vaporization, cal.mol-1 

R = Universal gas constant, cal.mol-1.K-1 

T = Temperature, K 

Vm = Molar volume, cm3.mol-1 

The cohesive energy density is a direct reflection of the degree of van der Waals forces 

holding the molecules of the liquid together. Thus, this correlation between heat of vaporization 

and van der Waals forces translates into a correlation between heat of vaporization and solubility 

behavior. This is due to the fact that the same intermolecular attractive forces have to be 

overcome to vaporize a liquid as to dissolve a solute in it. This can be illustrated by considering 

what happens when two liquids are allowed to mix: the molecules of one liquid are physically 

separated by the molecules of the other liquid, similar to the separations that happen during 

vaporization. The same intermolecular van der Waals forces must be overcome in both cases.165 

In 1936, Joel H. Hildebrand proposed the square root of the cohesive energy density as a 

numerical value indicating the solvency behavior of a specific solvent: 

( )
mV

RTHC −∆
=='δ  (4-4) 

It was not until the third edition of his book in 1950 that the term “solubility parameter” was 

proposed. Table 4.1 lists several solvents in order of increasing solubility parameter.165 The 

solubility parameter values are expressed in Standard Hildebrand units (square root of calories 

per centimeter cube, (cal.cm-3)0.5) and in International System (SI) units (square root of Mega-

Pascal, MPa0.5). The relationship between the two units is: 

2/132/1 )()(0455.2)(' −⋅= cmcalMPa δδ  (4-5) 
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Table 4.1: Hildebrand solubility parameters of different solvents165 

Solvent δ' Reference 

 (cal/cm3)0.5 (MPa)0.5  
Perfluoro-n-hexane (C6F14) 5.9 12.1 

166 Perfluoro-n-heptane (C7H16) 6.0 12.3 
Perfluorocyclohexane (C6F12) 6.1 12.5 
Perfluoro(methylcyclohexane) (C7F14) 6.1 12.5 
n-Pentane 7167 14.4  
CO2 7.14 14.6 168 
n-Hexane 7.24 14.9 

 

n-Heptane 7.4167 15.3 
Diethyl ether 7.62 15.4 
n-Dodecane - 16.0 
Cyclohexane 8.18 16.8 
Methyl ethyl ketone 9.27 19.3 
Acetone 9.77 19.7 
Diacetone alcohol 10.18 20.0 
Ethylene dichloride 9.76 20.2 
Methylene chloride 9.93 20.2 
Pyridine 10.61 21.7 
Water 23.5 48.0 

 

In this table, the Standard Hildebrand values are from Hansen169 and SI Hildebrand values are 

from Barton.170 

It should be mentioned that the solubility of CO2 (x1) in a solvent (component 2) is 

related to the solubility parameters of the two components as follow:166 








 Φ−−
RT

vx
2
2

2
211

1
)''(exp δδ

α  (4-6) 

where Φ2 represents the volume fraction of the solvent and ν1 is the CO2 molar volume. This 

relationship indicates that a smaller difference between δ1 and δ2 should result in high solubility 

of CO2 in the solvent. 
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3. The solvent should be thermally and chemically stable to prevent degradation and 

formation of unwanted products under the capture process conditions. For instance, Selexol 

solvent would not be viable if it were used at temperatures greater than 39 °C (312 K). This is 

because at such temperatures the dimethylethers of polyetheleneglycol [CH3(CH2CH2O)nCH3, 

where 3<n<9] representing the composition of the Selexol solvent (see Table 2.1) as given by 

McKetta171 would decompose. 

4. The solvent should have a negligible vapor pressure (similar to that of ionic liquids) 

under the CO2 capture process conditions in order to minimize solvent loss. The total solvent 

recovery in the process should be the critical objective for the overall process economics. It was 

graphically reported by Wölfer172 that the vapor pressure of Selexol solvent with the given 

composition mentioned above171 is about 0.1 Pa at 298 K. Figure 4.1 shows the Selexol vapor 

pressure as a function of temperature compared to another physical solvent NMP (N-Methyl-2-

pyrrolidone). Also, Shah16 and Dow Chemical Company173 reported a value of 0.093 Pa at 298 

K, which is extremely small. Other properties of the Selexol solvent can be found in Appendix 

A. Thus, the solvent to be developed or used for CO2 capture should have a vapor pressure 

similar to that mentioned for the Selexol solvent under the actual process conditions. 
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Figure 4.1: Selexol solvent vapor pressure as a function of temperature172 compared to N-

Methyl-2-pyrrolidone 

 

5. The solvent should have low viscosity under the actual capture process conditions. For 

instance, the performance of centrifugal pumps is affected when pumping viscous liquids. A 

dramatic increase in brake-Horsepower and a reduction of flowrate and head occurs with 

increasing liquid viscosity,174 leading to the increase of the cost of liquid solvent circulation to 
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the absorber and regenerator. The viscosity of an “ideal” CO2 capture solvent should be less or 

equal to that of Selexol solvent, which has been reported to be 0.0059 Pa.s173 at 298 K (see 

Appendix A). The viscosity (η) of a Selexol solvent purchased from Univar USA Inc.175 

measured in our laboratory, which is presented in Figure 4.2, can be modeled as a function of 

temperature using the following expression.  

( ) 2ln DTTC
T
BA +⋅++=η  (4-7) 

where A = -125.96 

 B = 15755.04 

 C = 0.31145 

 D = -2.7986×10-4 

In this equation, T is in K and η is in Pa.s 

It should be mentioned that Equation (4-7), which is different from the well-known 

Andrade Equation176,177 expresses as [ln(η)=A+B/T] and fits the experimental viscosity data with 

high accuracy. 

6. The solvent used in the entire CO2 capture process, including the absorber and 

regenerator should have a useful net enthalpy taking into account the cooling systems (heat 

exchanger) for bringing the shifted gas temperature to that of the absorber; compression system 

(compressor) for delivering the CO2 to the sequestration sites and increasing the H2 pressure up 

to the turbine conditions; and pumping system (pump) for recirculation of the liquid solvent back 

to the absorber. The useful net enthalpy could be used for heating H2 prior to entering the turbine 

or generating high-quality steam to be sold or used for other purposes. 
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Figure 4.2: Selexol solvent viscosity as a function of temperature 
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5.0  SELECTION OF PHYSICAL SOLVENTS 

A comprehensive literature review was conducted in order to select potential solvents which 

encompass the characteristics of the “ideal” physical solvents outlined in the preceding section. 

Table 4.1 shows that the Hildebrand solubility parameters of perfluorinated and hydrocarbon 

solvents are close to that of CO2, however, the vapor pressures of the perfluorinated solvent are 

much lower than those of the hydrocarbons. This initiated an extensive literature search on the 

properties of the perfluorinated solvents as detailed below. The rational for selecting such 

perfluorinated solvents in the experimental program is also given. 

5.1 PERFLUORINATED SOLVENTS FOR CO2 CAPTURE 

Perfluorinated compounds are characterized by different physical properties when compared 

with their analogous hydrocarbons (HCs).178-181 A comparison among some physical properties 

of saturated perfluorohexane (n-C6F14), and saturated n-hexane (n-C6H14) is given in Table 5.1. 

In general, n-C6F14 has significantly greater compressibilities, viscosities and densities than those 

of n-C6H14. The saturated n-C6F14 has lower dielectric constant, refractive index, and surface 

tension than those of n-C6H14 at 298 K, which reflect its nonpolar character and low 

polarizability.182 Table 5.1 shows that the molecular weight of the n-C6F14 is greater than that of 

n-C6H14. Branching was reported to have a negligible effect on the boiling points of 
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perfluorinated compounds, which is in contrast with the behavior of the corresponding HCs.179-

181,183 This behavior of the boiling points indicates extremely low intermolecular interactions in 

PFCs, which make them behave as ideal liquids.179-181 Table 5.1 also indicates that the surface 

tension of n-C6F14 is smaller than that of n-C6H14 at 298 K.  

 

Table 5.1: Comparison among physical properties of different hexanes178 

Property n-C6F14 n-C6H14 
Molecular weight, kg.kmol-1 338.0 86.2 
Boiling Point, bp (°C) 57 69 
Heat of Vaporization, ΔHv (kcal.mol-1) 6.7 6.9 
Critical Temperature, Tc (°C) 174 235 
Density at 25 °C, d (g.cm-3) 1.672 0.655 
Viscosity at 25 °C, η (cP) 0.66 0.29 
Surface Tension at 25 °C, σ (dyn.cm-1) 11.4 17.9 
Compressibility at 1 atm, β (10-6 atm-1) 254 150 
Refractive index, n25

D (-) 1.252 1.372 
Dielectric constant, ε1 (-) 1.69 1.89 

 

The high strength of C–F and C–C bonds in PFCs contributes to their outstanding thermal and 

chemical stabilities.184 The PFC’s thermal stability is limited only by the strength of their C–C 

bonds, which decreases with increasing the chain length or chain branching.185 Perfluorinated 

compounds are nonpolar and are poor solvents for all materials except those with very low 

cohesive energies, such as gases. Saturated PFCs are practically insoluble in water and HF, but 

slightly soluble in HCs, and dissolve relatively well in low-molecular weight HCs.170,179 The 

cohesive pressures of PFCs are only about half those of their corresponding HCs;170 the heats of 

solution of PFCs are much different from those of HCs;170,186,187 and the enthalpies of interaction 

between PFCs and HCs are smaller than those between HCs.186,187 In terms of solvent-solute 

interactions, PFCs are more like Ar and Kr than HCs.178 The distinct difference between 
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interaction energies of PFCs and those of HCs is related to their boiling-point trends, and is 

manifested by the non-ideal behavior of their mixtures.166,188-193 

A useful property of PFCs is their ability to dissolve oxygen and other gases.194,195 PFCs 

dissolve about two to three times more oxygen than their analogous HCs, and about ten times 

more than water, which explain their use as oxygen carriers in artificial blood and organ 

perfusion applications.196 The high solubility of O2 in PFCs is not due to any specific attractive 

interaction between these two compounds,197-200 but rather results from the existence of large 

cavities (free volume) in PFC liquids which can accommodate the gas molecules. Dias et al.201 

measured the solubility of oxygen in n-C6F14 and n-C6H14, and found that the solubility of O2 in 

the former is twice as that in the latter; and increasing temperature decreased the oxygen 

solubility in both liquid. Costa Gomes et al.202 also investigated the solubilities of O2 and CO2 in 

the same liquids and reported an improvement of almost 100% for the solubility of O2 in n-C6F14 

when compared with that in n-C6H14. In the case of CO2, as shown in Table 5.2, the increase is 

not as significant, but it is important to notice that n-C6F14 dissolves between 2-20 times more 

CO2 than O2 depending on the temperature. 

 

Table 5.2: Solubility (x1, 1×103) of O2 and CO2 in n-C6F14 and n-C6H14
202 

T O2 CO2 
K n-C6H14 n-C6F14 n-C6H14 n-C6F14 

200 5.9±0.4 10±1 174±30 231±39 
300 3.0±0.1 5.4±0.1 16.6±0.4 24.3±0.8 
400 3.1±0.1 5.1±0.1 7.9±0.1 11.2±0.2 
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In addition, CO2 displays greater solubility in PFCs when compared with other gases, as 

can be seen in Table 5.3. Also the solubility of N2 in perfluorohexane is greater than that in 

water, acetone, and cyclohexane as can be observed in Table 5.4. This behavior can be attributed 

to the absence of dipole in the perfluorinated solvent. 

 

Table 5.3: Solubility of gases in PFCs 

Gas solubility mL(gas)/100 g (solvent) at 25 °C and 1 atm 

Gas Perfluoro-
hexane 

Perfluoro 
methyl- 

cyclohexane 

1,3-dimethyl-
cyclohexane 

Perfluoro- 
decalin 

Perfluoro- 
methyl 
decalin 

He 6.6 5.5 4.6 3.9 3.4 
H2 10.7 9.0 7.4 6.3 5.6 
N2 26.3 22.0 18.3 15.6 13.8 
CO 26.3 24.2 20.0 17.1 15.0 
O2 41 34.6 28.6 24.4 22.0 
CO2 156 132.0 109.0 93.0 82.0 

 

 

Table 5.4: Solubility of N2 in various solvents 

Solvent 
Solubility 

mL(N2)/100g (solvent) at 25 °C 
and 1 atm 

Bonding 

Water 1.6 Hydrogen-bonding 
Acetone 17.7 Dipole-dipole 

Cyclohexane 18.5 Cyclohexane has no dipole 
but dipole can be induced 

Perfluorohexane 44.2 No dipole 
 

Thus, PFCs could be employed as attractive physical solvents for CO2 capture from fuel gas 

streams at elevated temperatures and pressures based on the following: (1) CO2 displays greater 

solubility in PFCs than in the corresponding hydrocarbons, about twice as much;203 (2) PFCs are 

extremely chemically and thermally stable, due to the high energy of C–F bond; (3) PFCs’ vapor 
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pressures are low, which will minimize solvent loss at high temperature; (4) PFCs have low 

viscosities at high temperatures, which would minimize the pumping and re-circulation costs of 

solvents; and (5) PFCs are non-toxic and completely safe under high pressures and temperatures. 

It should be mentioned, however, that some of the drawbacks of PFCs include, high cost, and 

absorption of other gases (light hydrocarbons) along with CO2.  

The two main processes currently used for the manufacture of PFCs are electrochemical 

fluorination (ECF) and cobalt fluoride processes. The ECF process enjoys lower cost when 

compared with cobalt fluoride, but suffers from producing lower yields and selectivity, as well as 

extensive molecular rearrangement. The electrochemical, physical and thermodynamic 

properties, manufacture, and existing industrial applications of perfluorinated compounds (PFCs) 

are given in Appendix B. 

5.2 RATIONALE BEHIND SELECTING PERFLUORINATED SOLVENTS 

The rationale behind selecting the perfluorinated solvents for CO2 capture from post water-gas-

shift reactor gas streams at elevated temperatures and pressures is based on the following 

principles: 

(1) Typically, CO2 displays much higher solubility in perfluorinated solvents when compared 

with other gases, as can be seen in Table 5.3. The solubility of CO2 in perfluorinated 

solvents is expected to be greater than that in the corresponding hydrocarbons, as 

illustrated in Table 5.4. The reason for this behavior can be explained by the absence of 

dipole in perfluorinated solvents as can be observed for N2 solubility in different solvents 

as shown in Table 5.4. 
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(2) Perfluorinated compounds are extremely thermally stable. The C-F bond is very high 

energy, allowing perfluorinated compounds to be routinely used in very high temperature 

applications, such as Teflon's use in cooking ware. 

(3) Perfluorinated compounds are extremely chemically stable. Therefore, they are not 

expected to be chemically degraded by either high operating temperatures or the presence 

of reactive compounds such as H2S. 

(4) Vapor pressure of perfluorinated solvents is extremely low, minimizing solvent losses. 

Vapor pressure can be controlled using mixtures with different molecular weights. 

(5) Perfluorinated solvents have low viscosity, minimizing pumping and solvent recirculation 

costs. 

(6) Water has low solubility in perfluorinated compounds, minimizing dilution of the 

solvents. 

Thus, it is expected that these solvents will have good solvation properties toward CO2, 

be fairly selective for solvating CO2 compared to other gaseous constituents, and be stable in a 

liquid phase at elevated temperatures [e.g. greater than 260 °C (500 °F)]. 

5.3 PERFLUORINATED SOLVENTS USED IN THIS STUDY 

In this study, the three perfluorinated compounds (Flutec fluids), namely Perfluoro-

perhydrofluorene (C13F22), Perfluoro-perhydrophenanthrene (C14F24), and Perfluoro-

cyclohexylmethyldecalin (C17F30), given in Table 5.5 were selected for CO2 capture under 

elevated pressures and temperatures. 
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Table 5.5: Physical properties of the selected solvents204,205 

 PP10 PP11 PP25 
Molecular Formula C13F22 C14F24 C17F30 

Main molecular species Perfluoro -
perhydrofluorene 

Perfluoro-
perhydro- 

phenanthrene 

Perfluoro -
(cyclohexylmethyldecalin) 

Molecular Weight 574 624 774 
Density (kg.m-3) 1984 2030 2049 
Boiling Point (°C) at 1 atm 194 215 260 
Pour Point (°C) -40 -20 -10 
Viscosity (kinematic) 
(mm2.s-1) at 25  C 4.84 14.0 56.1 

Viscosity (dynamic) 
(mPa.s) at 25  C 9.58 28.4 114.5 

Surface Tension (mN.m-1) 
at 25  C 19.7 19 - 

Vapor Pressure (mbar) <1 <1 <1 
Heat of Vaporization at 
Boiling Point (kJ.kg-1) 71* 68* 67.9* 

Specific Heat (kJ.kg-1.°C-1) 0.92* 1.07* 0.957* 
Critical Temperature (°C) 357.2* 377* 400.4* 
Critical Pressure (bar) 16.2* 14.6* 11.34* 
Critical Volume (L.kg-1) 1.59* 1.58* 1.574* 
Thermal Conductivity 
(mW.m-1.°C-1) 56* 52.6* 63.8* 

Coefficient of Expansion at 
0°C 0.00078 0.00075 0.00084 

Refractive Index n20
D 1.3289 1.3348 1.3376 

 

* estimated by F2 Chemicals Ltd., UK.204 
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The perfluorocarbons have the following structures: 
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6.0  EXPERIMENTAL 

6.1 EXPERIMENTAL SETUP 

The experimental setup used in this study, schematically shown in Figure 6.1 and illustrated in 

Figure 6.2 is similar to that employed by Tekie et al.,145 Fillion and Morsi,147 and Lemoine et 

al.206 It consists of the following main units: 1. Reactor, 2. Preheater, 3. Vacuum system, and 

4. Computer/data acquisition system. The reactor is a gas-inducing 4-liter ZipperClave vessel 

provided with two Jerguson sight-windows (as can be seen in Figure 6.3) and has an effective 

volume of 3.83×10-3 m3. The reactor is rated at a maximum allowable pressure of 137 bar for a 

temperature of 530 K. The reactor is equipped with four symmetrically located baffles 

(measurement details are in Figure 6.3), a cooling coil, a specially designed heating jacket, a 

thermo-well and an agitator with a six flat blades impeller and a hollow shaft (more details are 

shown in Figure 6.4). Four holes of 0.0016 m (1/16 in) diameter each located at the upper and 

lower end of the shaft allow the reactor to operate in a gas-inducing mode. The agitator is driven 

by a magnetic drive that has enough capacity of dumping any eccentricity. Two K-type Chromel-

Alumel thermocouples are used to measure the gas and liquid phase temperature, whereas the 

pressure inside the reactor is measured using a Setra Model No. 205-2 pressure transducer rated 

at 0 – 500 psia. For safety purposes, the reactor is fitted with a relief valve and a 3/16” rupture 

disk rated at 72 bar at 295 K. As also illustrated in Figure 6.1, a leak-free special device was 
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mounted on the shaft and an external re-circulation loop was designed to measure in the GIR the 

induced gas flow rate through the agitator hollow shaft. 

A digital video camera (DVCAM: DSR-PD100A 3CCD Progressive Scan Compact 

Digital Camcorder, 12× Optical Zoom), manufactured by Sony, is used to record the gas bubbles 

and measure the gas holdup through the Jerguson sight-windows shown in Figure 6.1. Also, the 

gas flow rate was measured during the experiment with the re-circulation loop illustrated in 

Figure 6.1, using a Coriolis mass flow meter type CMF-010M, manufactured by Micro Motion 

Inc., Boulder CO, USA. 

A high-pressure bomb with an effective volume of 1.176×10-3 m3 is used to heat the gas 

to the desired temperature before it is charged to the reactor. The preheater is maintained at a 

constant temperature in a convection furnace controlled with a thermostat. A K-type shielded 

thermocouple and a pressure transducer Setra -14.7 – 1000 psig are installed to record both 

temperature and pressure readings during the experiments. 

The vacuum pump used is a Welch duo-seal model 1400, which is an oil sealed 

mechanical vacuum pump that can reach down to 1000 Pa. The system is used to degas the liquid 

in the reactor before the start of the experiment. A liquid trap is connected between the reactor 

outlet and the vacuum pump inlet to collect any possible condensed vapor. The gas from the 

vacuum pump is then vented to the exhaust. 

All pressure transducers and thermocouples used in the setup are interfaced with an on-

line personal computer through an interfacing board from Keithley Instruments, Inc. (Model 575) 

for the agitated reactor used for the mass transfer and hydrodynamic measurements. User-

friendly computer programs developed in our laboratory were used to assign the channels for the 

interface board and to monitor on-line the system pressures and temperatures. At any given 
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condition, the pressures and temperatures of both phases are displayed on the computer screen. 

During gas absorption, the pressure decline is recorded and displayed as a function of time. Also, 

the pressures and temperatures in the preheater are recorded before and after the gas is charged 

into the reactor to build a mass balance on the gas phase. 

A Balzers quadrupole Mass Spectrometer QME 200 (Quad Mass Spectrometer), 

equipped with 2 roughing pumps (Vacuubrand Diaphragm vacuum pump MZ 2T and Trivac 

D8A) and a molecular pump (Pfeiffer TMU 065), and a pressure gauge PKR 250 to monitor the 

pressure inside the mass spectrometer is connected to the experimental setup. It allows 

instantaneous "on-line" monitoring of the composition of the multi-component gaseous system 

used in the experiments under the actual operating conditions. The different molecules are 

detected using a Faraday cup detector. This mass spectrometer is connected to a computer 

interface and is controlled using the Balzers AG QUADSTAR 422 software version 6.02. 
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Figure 6.1: Schematic of the experimental setup used for hydrodynamic and mass transfer measurements 
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Figure 6.2: 4-Liter zipper clave reactor equipment  
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Figure 6.3: Design of the Jerguson windows and position of the impeller 
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Figure 6.4: Impeller and shaft design in the agitated reactors 
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6.2 FIRST GAS-LIQUID SYSTEMS USED 

Three perfluorocarbons (PFCs), namely PP10, PP11, and PP25 were initially employed in this 

study. The reactor, gas-liquid system and ranges of the operating variables used are: 

Reactors  :  Gas Inducing Reactor (GIR) 

Gases  :  CO2, N2, gas mixture (H2, CO2, CO, CH4, Ar) 

Liquids  :  PP10, PP11, PP25 

Pressure  :  6-30 bar 

Temperature :  300-500 K 

Mixing Speed  :  10-20 Hz (600-1200 rpm) 

Liquid Height  :  0.14-0.22 m 

 

CO2 and N2 with purity of 99.99% (Grade 4.0 gases) were purchased from Valley National 

Gases Inc., USA,207 whereas He was commercial-grade gas and the three perfluorinated liquids 

were ordered from F2 Chemicals Ltd., UK.204 The composition of the gas mixtures shown in 

Table 6.1 were ordered from Valley National Gases Inc., USA, and delivered in 300 Cylinders at 

1400 psia. Some thermodynamic properties of the gas-liquid systems used are listed in Table 

6.2;168,208 and additional properties for PP10, PP11 and PP25 can be found in Table 6.5. Also, 

other properties, including density, viscosity, surface tension and vapor pressure for the three 

PFCs can be estimated using the equations given in Table 6.6. 
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Table 6.1: Gas mixtures compositions 

Components Formula Mixture 
  % 
Argon Ar 0.70 
Methane CH4 0.77 
Carbon monoxide CO 0.83 
Carbon dioxide CO2 41.21 
Hydrogen H2 56.49 
Water H2O 0.00 
Total - 100.00 

 

 

 

Table 6.2: Thermodynamics properties of the gases and PFCs used204,209 

Component Formula MW 
kg.kmol-1 

Tb 
K 

Tc 
K 

Pc 
bar 

Vc 
m3.mol-1 

ω 
- 

Carbon Dioxide CO2 44.010 194.7 304.19 73.82 0.09407 0.228 
Nitrogen N2 28.013 77.35 126.1 33.94 0.09010 0.04 
Helium He 4.003 4.22 5.2 2.28 0.05730 -0.39 
Argon Ar 39.948 87.28 150.86 48.98 0.0746 0.00 
Methane CH4 16.043 111.66 190.58 46.04 0.0993 0.011 
Carbon Monoxide CO 28.01 81.7 132.92 34.99 0.0931 0.066 
Hydrogen H2 2.016 20.39 33.18 13.13 0.0642 -0.22 
Water H2O 18.015 373.15 647.13 220.55 0.056 0.345 
PP10 C13F22 574.10 467 630.2 16.2 2.7696 0.491 
PP11 C14F24 624.11 488 650.0 14.6 2.5316 0.513 
PP25 C17F30 774.13 533 673.6 11.34 2.0333 0.745 
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6.2.1 Vapor pressure of the PFCs 

The vapor pressure of PP10, PP11 and PP25 could not be found in the literature and therefore 

they were measured in our laboratory up to a temperature of 500 K. Also, the experimental data 

were used to obtain the coefficients C1 through C6 in the Antoine Equation (Equation (6-1)) used 

in the Aspen Plus 13.1 as Riedel’s method. Equation (6-1) appears to predict with R2>92% the 

vapor pressure values for the three fluorocarbons as shown in Figure 6.5. 

( ) 6
65

2
1 lnln TCTC

T
CC PS +++=  (6-1) 

in Equation (6-1), PS is in Pa. 

The values for the constants C1 through C6 are listed in Table 6.3. 

 

 

Table 6.3: Values for the constants in the extended Antoine type equation  

for the liquid vapor pressure 

 PP10 PP11 PP25 
C1 75.76 78.04 100.04 
C2 -8495.91 -8981.91 -11617.36 
C5 -7.501 -7.783 -10.646 
C6 5.98×10-18 5.09×10-18 5.13×10-18 
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Figure 6.5: Vapor pressure of the fluorocarbons as a function of temperature 
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6.2.2 Density of the fluorocarbons 

The density values of fluorocarbons were measured experimentally and then correlated as a 

function of temperature using a Rackett-type equation,168,208,210 Equation (6-2) which has the 

following general form with Tr = T/Tc: 

( )[ ]n

BA rT1
L

−−⋅=ρ  (6-2) 

Table 6.4 gives the constants for the Rackett-type equation obtained and Figure 6.6 shows the 

predicted densities of the three fluorocarbons used as a function of temperature. The critical 

temperatures (Tc) for the three perfluorinated liquids are given in Table 6.2. 

 

 

Table 6.4: Parameters for the density in the Rackett-type equation 

 A B n 
 kg.m-3 - - 
PP10 628.931 0.2655 0.2532 
PP11 632.911 0.2666 0.2192 
PP25 635.324 0.2667 0.2136 
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Figure 6.6: Correlation of the fluorocarbon liquid densities using the Rackett-type equation 

6.2.3 Viscosity of the fluorocarbons 

At 298.15 K the viscosities for PP10, PP11, and PP25 are 0.00958, 0.0284, and 0.1145 Pa.s, 

respectively. Several viscosity values For PP11 were obtained from F2 Chemicals Ltd.211 and 

correlated within the temperature range from 300 to 500 K as follows: 

( )
T

95.3270533.14ln +−=η
 

(6-3) 

The viscosity of PP25 was measured using a rheometer from 298 to 373 K and the experimental 

values were correlated using Equation (6-4): 

( ) 2

9597465.1305620.8ln
TT

+−−=η
 

(6-4) 
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The viscosity of PP10 was estimated using the Sastri-Rao method212 which was modified in 

order to fit the viscosity of PP10 of 0.00958 Pa.s at ambient temperature (298.15 K) by the 

following equation: 

N
SB P −×= ηη 1.0  (6-5) 

where the values of ηB and N for PP10 were estimated using the group contributions described 

by Sastri-Rao212 and were found to be 1.11 mPa.s and 0.75 respectively. 

The vapor pressure used in equation (6-5) is in atmospheres and is calculated from: 

( ) ( )( )





























 −−






 −

−×+=
bb

b

b
bS T

T
T

T

T
T

T
T

TP ln2338.0
23

1ln0309.15398.4ln
19.0

19.0

 

(6-6) 

Tb is the boiling point in K, which is given in Table 6.2. 

The correlations for PP10 and PP11 were directly given by F2 Chemicals Ltd., whereas 

in the case of PP25, the experimental data were correlated using Equation (6-4) since the 3 

parameter equation gave a satisfactory fit. 

The viscosities of PP10, PP11 and PP25 are plotted as a function of temperature in Figure 

6.7. 
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Figure 6.7: Viscosity of the fluorocarbons as a function of temperature 

6.2.4 Surface tension of the fluorocarbons 

At 298.15 K the surface tensions for PP10, PP11, and PP25 are 0.0197, 0.0190, and  

0.0194 N.m-1 as given by F2 Chemicals Ltd.204 The surface tensions of the fluorocarbons were 

calculated in the temperature range from 280 K to 500K using Equation (6-7);168,208 and the 

values obtained are plotted in Figure 6.8. 

11/9

1c

c
1 TT

TT








−
−

=σσ L  (6-7) 

Tc values for PP10, PP11, and PP25 are 630.2, 650, and 673.6 K, respectively. The T1 value is 

298.15 K.  

T, K

200 250 300 350 400 450 500 550 600

η L
, P

a.
s

0.0001

0.001

0.01

0.1

1
PP10:  Experimental points
(F2 Chemicals)
PP10
PP10: 298.15K (F2 Chemicals)
PP11:  Experimental points
(F2 Chemicals)
PP11
PP11: 298.15K (F2 Chemicals)
PP25: Experimental points
(Rheometer measurements)
PP25
PP25: 298.15K (F2 Chemicals)



 64 

 

Figure 6.8: Surface tensions of the fluorocarbons as a function of temperature 
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5.0
16

AB 101728.1D
AB

B

V
TM

η
ψ−×=

 
(6-8) 

 

  

T, K

250 300 350 400 450 500 550

σ,
 N

.m
-1

0.004

0.006

0.008

0.010

0.012

0.014

0.016

0.018

0.020

0.022

PP11
PP25
PP10



 65 

In this Equation, VA is the molar volume of the diffusing gas (m3.kmol-1) at its normal boiling 

point, defined by Tyn and Calus168,214 as follows: 

( ) 048.13 285.010 CA VV ⋅×= −

 (6-9) 

( ) 048.13971.0 CA VV ⋅=   

The values of Vc is in cm3.mol-1 are given in Table 6.2, and ψ is the association factor of the 

solvent which characterizes its polarity and has a value of 1.0 for unassociated solvents.168 The 

molecular weight of the solvent, MB, is in kg.kmol-1, the temperature in K and the viscosity of the 

solvent in Pa.s. The calculated diffusivities of the different gases are represented in Figures 6.9, 

6.10 and 6.11 for PP10, PP11 and PP25, respectively. 
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Figure 6.9: Diffusivities of gases in PP10 as a function of temperature 
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Figure 6.10: Diffusivities of gases in PP11 as a function of temperature 
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Figure 6.11: Diffusivities of gases in PP25 as a function of temperature 
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Table 6.5: Physical properties of the 3 PFCs (Flutec Fluids)204,205 

 PP10 PP11 PP25 
Molecular Formula C13F22 C14F24 C17F30 

Main molecular species Perfluoroperhydro-
fluorene 

Perfluoroperhydro-
phenanthrene 

Perfluoro 
(cyclohexylmethyldecalin) 

Structure 

  
 

Molecular Weight 574.10 624.11 774.13 
Density (kg.m-3) 1984 2030 2049 
Boiling Point (°C) at 1 atm 194 215 260 
Pour Point (°C) -40 -20 -10 
Viscosity (kinematic) (mm2.s-1) 4.84 14.0 56.1 
Viscosity (dynamic) (mPa.s) 9.58 28.4 114.5 
Surface Tension (mN.m-1) 19.7 19 - 
Vapor Pressure (mbar) < 1 < 1 < 1 
Heat of Vaporization at Boiling Point (kJ.kg-1) 71* 68* 67.9* 
Specific Heat (kJ.kg-1.°C-1) 0.92* 1.07* 0.957* 
Critical Temperature (°C) 357.2* 377* 400.4* 
Critical Pressure (bar) 16.2* 14.6* 11.34* 
Critical Volume (L.kg-1) 1.59* 1.58* 1.574* 
Thermal Conductivity (mW.m-1.°C-1) 56* 52.6* 63.8* 
Coefficient of Expansion at 0°C 0.00078 0.00075 0.00084 
Refractive Index n20

D 1.3289 1.3348 1.3376 
 

*Estimated Value by F2 Chemicals Ltd., UK.204  

F
F
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F F

F
F
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Table 6.6: Density, viscosity, surface tension and vapor pressure of the three PFCs 

  Equations Constants PP10 PP11 PP25 

Density kg.m-3 
Rackett-type equation:168,208,210 

n

cT
T

L BA 


















−−

⋅=
1

ρ  

A (kg.m-3) 628.931 632.911 635.324 
B (-) 0.2655 0.2666 0.2667 
Tc (K) 630.2 650.0 673.6 
n (-) 0.2532 0.2192 0.2136 

Viscosity Pa.s ( ) 2ln
T
C

T
BA ++=η  

A (-) -13.702 -14.533 -8.620 
B (K-1) 2700.14 3270.95 -1350.47 
C (K-2) 0 0 959746 

Surface 
Tension N.m-1 

911

1 15.298 







−
−

=
c

c
L T

TT
σσ 168,208 

σ1 (N.m-1) 0.0197 0.0190 0.0194 
Tc (K) 630.2 650.0 673.6 

Vapor 
Pressure bar 

Wagner-type correlation: 

( )6351

1
1ln XdXcXbXa

XP
P

 .

c

s ⋅+⋅+⋅+⋅×






−

=







 

where X = 1-Tr and Tr = T/Tc 

Pc (bar) 16.2 14.6 11.34 
Tc (K) 630.2 650.0 673.6 
a (-) -8.4376 -8.5458 -9.6797 
b (-) 1.7499 1.7534 1.8856 
c (-) -5.9196 -6.0944 -8.1024 
d (-) 0.9399 0.8828 1.0326 

Diffusivity m2.s-1 

Wilke and Chang’s Equation:208,213 
( )

6.0

5.0
16

AB 101728.1D
AB

B

V
TM

η
ψ−×=  

With the molar volume of the diffusing gas at its 
normal boiling point, defined by Tyn and Calus:168,214 

( ) 048.13971.0 cA VV ⋅=  
ψ is the association factor of the solvent and has a 
value of 1.0 for unassociated liquids168 

MB (kg.kmol-1) 574.10 624.11 774.13 

Vc (m3.kmol-1) 2.7696 2.5316 2.0333 
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6.3 STATISTICAL EXPERIMENTAL DESIGN APPROACH 

Statistical design and analysis is a powerful tool to study a multi-variable system through a 

statistically designed number of experiments. The advantages of this tool are reliable observation 

of variables, minimum number of experiments, and highly accurate statistical correlations.215 In 

this study, the Central Composite Statistical Design (CCSD) and analysis technique, similar to 

that employed by Li et al.216, Tekie et al.146 and Fillion and Morsi147 were used to construct an 

experimental mapping of the parameters, which insured reliable observations; minimum number 

of experiments; and highly accurate statistical correlations.217 

Box and Wilson218 first introduced this design in the 50’s as an alternative to 3k factorials 

in order to estimate quadratic response surface equations. In this technique, for k independent 

variables at five levels, the total number of experiments is 2k factorial points augmented by 2×k 

axial points, and with a number of replicates at the central point following Equation (6-10) in 

order to provide a design with uniform precision:219 

( ) kNNγN FFCentral ×−−+×= 22
2  (6-10) 

NCentral is the number of replicates at the central point, NF is the number of factorial points, and γ 

is defined by the following equation: 

( )
( )24

71493 2

+×
−+++

=
k

kkkγ  (6-11) 

 

  



 72 

The factorial and axial points are equidistant from the central point to offer symmetric properties 

of the design. In fact, this property becomes important in the examination of the response surface 

since the orientation of the design does not influence anymore the precision of estimated 

surfaces. The central composite matrix design was made rotatable by setting the axial point 

values as follows: 

( )4 2kα =  (6-12) 

In this study, the effect of pressure (P), temperature (T), mixing speed (N) and liquid 

height (H) on the measured experimental data were statistically investigated using the CCSD of 

four variables (k = 4) at 5 levels. For such a design, the number of replications at the central 

point is (NC = 7), the number of factorial points (NF = 16) and the radius of the hyper-sphere (α = 

2). Table 6.7 shows the different levels for the four coded variables studied. The coded variables 

xi (i=1,2,3,4) as defined by Equation (6-13) were used in the distribution and analysis of the 

experiments. 
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
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−
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−
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(6-13) 

where Ei and Ei,c are the value of the i-th variable at any point, and the central point, respectively; 

and ∆i is the step size of the i-th variable. Ei,MIN and Ei,MAX are the values of the i-th variable at the 

minimum point and maximum point, respectively. The distribution of experiments for k = 4 can 

be mathematically represented by Equation (6-14): 

( ) 222
4

4

1

2 2===∑
=

αNx F
i

i  (6-14) 
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The coordinates of the experiments with the coded values are: (0,0,0,0) for the central 

point, (±1,±1,±1,±1) for the factorial points, and (±2,0,0,0), (0,±2,0,0), (0,0,±2,0) and (0,0,0,±2) 

for the axial points. 

 

Table 6.7: Ranges of the operating variables and coded values in the experimental CCSD 

Levels Coded 
Variables -2 -1 0 +1 +2 

Temperature K x1 
300 350 400 450 500 

°C 26.85 76.85 126.85 176.85 226.85 
Mixing Speed Hz x2 

10 12.5 15 17.5 20 
rpm 600 750 900 1050 1200 

Liquid Height m x3 
0.14 0.16 0.18 0.2 0.22 

cm 14 16 18 20 22 
Pressure bar x4 

6 12 18 24 30 
psi 87.54 175.08 262.62 350.16 437.70 

6.4 STATISTICAL DISTRIBUTION OF THE EXPERIMENTS 

Table 6.7 shows the range of each variable and its coded value, and Figure 6.12 shows the spatial 

setting of all the experiments and therefore the sets of experiments which need to be completed 

in order to study the effect of the 4 variables over the specified range. 
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Figure 6.12: Distribution and spatial settings of the experiments according to  

the central composite statistical design 
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6.5 EXPERIMENTAL PROCEDURES 

6.5.1 Measurement of the Volumetric Mass Transfer Coefficients (kLa) and the 

Equilibrium Gas Solubility (C*) 

The multi-step physical gas absorption method was used to obtain the equilibrium solubility and 

the volumetric mass transfer coefficient values of CO2 and N2 in the three fluorocarbon liquids 

used. This experimental procedure used is similar to that reported by Chang;39 Chang et al.;116 

Chang and Morsi;117,118 and Tekie et al.145 It should also be mentioned that one batch of the PFC 

liquids was used in all experiments and no physical or chemical changes were observed. The 

experimental procedure followed is given below: 

1. A predetermined volume of liquid is charged at room temperature into the reactor. 

2. The reactor is closed and the liquid is degassed using the vacuum pump in order to reach 

the saturation pressure of the liquid. 

3. The gas preheater is also vacuumed. 

4. The gas is charged into the preheater to an initial pressure. 

5. The contents of the reactor and the preheater are heated to a desired temperature. 

6. The initial pressure (PI,P) and temperature (TI,P) in the preheater is recorded. 

7. The gas is charged to the reactor at the same temperature and at an initial predetermined 

pressure (PI). 

8. The final pressure and temperature of the preheater is recorded. 

9. The reactor content is stirred at a given mixing speed until the thermodynamic 

equilibrium, characterized by a constant final pressure in the reactor (PF), is reached. The 

pressure decline (Pt) is recorded as a function of time. 
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10. Steps 6 through 9 were repeated to collect multiple data points at different pressures as 

shown in Figure 6.13. 

 

The experimental procedure given above was followed at each run with different temperature, 

mixing speed, superficial gas velocity and liquid height. After each run, C* and kLa were 

calculated using a modified Peng-Robinson Equation of State. Detailed calculations of these two 

values are given in Section 7.1. The computer programs developed by Chang39 to calculate C* 

and kLa were modified for the present gas-liquid systems. The computer programs were designed 

to: 

1. Setup the interfacing channels for data collection. 

2. Calibrate the pressure transducers at atmospheric conditions. 

3. Record all the operating conditions, including temperature, mixing speed, liquid 

height, etc. of the system in both phases. 

4. Monitor the reactor and the preheater temperatures, induced gas flow rate, superficial 

gas velocity and pressures on a continuous basis during the experiment. 

5. Collect the pressure decline data during the gas absorption on a real time basis. 

6. Calculate C* at equilibrium conditions. 

7. Calculate kLa values during the transient period. 
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Figure 6.13: Schematic of the multi-step procedure at constant temperature (T),  

mixing speed (N) and liquid height (HL) 

6.5.2 Measurement of the Gas Bubble Size, dS 

The photographic method, similar to that employed by Fillion and Morsi,147 was used to measure 

the bubble size. The bubbles were recorded through the Jerguson sight-window with a digital 

video camera under the desired operating conditions. The camera was focused on the cooling 

coil, located above the impeller; and a light source was mounted over the camera in order to 

provide an optimal lighting. The cooling coil of known outside diameter of 0.00635 m was used 
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to calibrate the bubble size analysis software. The focus of the camera on the cooling coil was 

essential to avoid and prevent interferences among bubbles, and only discernible bubbles in the 

focus plan were taken into consideration. The recorded images were then selected and transferred 

through an image Grabber Software, Snappy 4.0, to a PC. Using Adobe Photoshop CS2 version 

9.0 software, the cooling coil and over 200 bubbles were selected. Their contours were then 

treated and converted in a black and white image, where the selection appeared in white. Particle 

analysis software, Optimas Version 4.1 from BioScan, was then used to analyze the digitized 

images. The Sauter mean bubble diameter is then calculated from the bubble sizes measured. 

6.5.3 Measurement of the Gas Holdup, εG 

The dispersion height technique was used to measure the gas holdup under the designed 

operating conditions. The digital video camera was located in front of the Jerguson glass window 

of the reactor, and focused at the gas-liquid interface. As a reference, a ruler was placed along 

the sight-window and the enlarged images on the TV screen were used to precisely measure the 

dispersion height. Therefore, at any given mixing speed, the gas holdup was determined from the 

difference between the dispersion height, HD, and the clear liquid height, H. 
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7.0  CALCULATION METHODS 

7.1 CALCULATION OF THE EQUILIBRIUM GAS SOLUBILITY, C* 

The calculation of C* was carried out under the following assumptions: (1) non-ideal behavior of 

the liquid and gas phases; and (2) the liquid phase is well mixed. The amount of gas-absorbed 

prior to the agitation was also accounted which made the calculation of C* more rigorous and 

accurate compared with previous studies.48,51 The Peng-Robinson Equation of State (PR-

EOS)39,208,220 can be written as: 

( )
( ) ( )b-vb+b+vv

Ta - 
b-v

RT = P  (7-1) 

This equation can be expressed in terms of the compressibility factor, Z as:  

( ) ( ) ( ) 0231 32223 =-BAB-BZ-B-BA-+Z-B -Z  (7-2) 

where 

22TR
aPA =

 
(7-3) 

RT
bPB =

 
(7-4) 

RT
PvZ =

 
(7-5) 
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For a single-component, two-phase system the solution of Equation (7-2) results in three roots 

with the largest positive root corresponding to the vapor phase and the smallest positive root 

greater than “b” corresponding to the liquid phase. At the critical point: 

( )
P
TR0.45724 = Ta
c

2
c

2

c  (7-6) 

( )
P

RT
 0.077 = Tb

c

c
c 796  (7-7) 

At any temperature: 

( ) ( ) ),( ωα rc TTa = Ta ⋅  (7-8) 

( ) ( )cTb = Tb  (7-9) 

( )[ ]221
RT11 /+ = −κα  (7-10) 

with 

2ω269920ω54221374640 . .+. = −κ  (7-11) 

The fugacity of a pure component is written as: 

( ) ( )
( )BZ

BZ
B

ABZZ
P
f

21
21ln

22
ln1ln

−+
++

−−−−=





  (7-12) 

For a binary system, the binary interaction parameter δij is required in order to use the PR-EOS. 

The mixing rules are defined as follows: 

a x x a= i,jjiji ∑∑  (7-13) 

∑i iibxb=  (7-14) 

( ) jiijij aaδ = a −1  (7-15) 
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The fugacity of each component in the liquid phase is calculated from: 

( ) ( ) ( )
( )BZ+

B+Z+
a

ax
B

ABZZ
b
b = 

Px
f ikiik

k

k

21
21ln

22
ln1ln

−






 ∑−−−−  (7-16) 

If the values of xi and xj are replaced by yi and yj, Equations (7-13), (7-14) and (7-16) can be used 

for the vapor phase. 

The PR-EOS was selected to calculate the liquid and gas phase densities of the system, as 

well as the solubility of the gases, C*, the concentration of the gases in the liquid, CL, and the 

total liquid volume, VL, which was subsequently used in the kLa calculations. In order to check 

the accuracy of the PR-EOS, the following steps were followed: 

1. The saturated liquid density of the liquid was calculated using the Rackett Equation 

(6-2). 

2. The PR-EOS was used to calculate the saturated liquid density of the liquid, where the 

pressure of the saturated liquid is the vapor pressure estimated from the Wagner’s Equation. 

3. These density values were compared, as shown in Figure 7.1, and a significant 

difference can be observed. 

Since the Rackett equation provides accurate estimates of the saturated liquid density of 

fluorocarbons, two parameters Ψ1 and Ψ2 were introduced in the sub-functions of the PR-EOS in 

order to correct the predicted liquid-phase density of the PR-EOS as previously reported by 

Enick et al.,221 Chang39 and Tekie.48 The two correction factors, Ψ1 and Ψ2, were introduced into 

the two sub-functions in the PR-EOS as Enick et al.:221 

)T-(1+1 = 1/2
R

1/2 κα 1Ψ  (7-17) 

P
RT077800b

C

C
2  . = )(TC Ψ  (7-18) 
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Ψ1 and Ψ2 were then optimized during an iteration process in which the squared error between 

the saturated liquid densities obtained by the modified PR-EOS and the Rackett Equation (6-2) 

was minimized. The optimized values of Ψ1 and Ψ2 were then correlated as a function of 

temperature with the following equations: 

41138263
1 10101010 TETDTCTB+A = −−−− ⋅+⋅+⋅+⋅Ψ  (7-19) 

41138263
2 10101010 TETDTCTB+A = −−−− ⋅+⋅+⋅+⋅Ψ  (7-20) 

with T in Equations (7-19) and (7-20) ranging from 300 to 500K. The values of the constants A, 

B, C, D and E can be found in Table 7.1 for each liquid. 

 

Table 7.1: Constants in Equations (7-19) and (7-20) 

Liquid A B C D E 

PP10 Ψ1 -0.4648 16.9032 -69.8008 13.1745 -9.3029 
Ψ2 0.9211 0.9170 -2.8960 0.6602 -0.6885 

PP11 Ψ1 -0.5166 16.9074 -72.1900 13.8568 -10.1224 
Ψ2 0.9206 0.2387 -0.2900 0.1188 -0.2388 

PP25 Ψ1 0.0538 9.4644 -41.1697 8.0470 -6.0036 
Ψ2 0.8452 0.3418 -0.7831 0.2187 -0.2745 

 

Figure 7.1 shows the saturated liquid density of the three fluorocarbons from the Rackett 

equation, the PR-EOS without correction and the modified PR-EOS, and as can be seen in this 

figure, a very good agreement can be reported between the modified PR-EOS and the Rackett 

equation. 
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Figure 7.1: Validation of the modified PR-EOS by liquid density calculation 
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The modified Peng-Robinson Equation of State (PR-EOS), coupled with component 

mole and volume balances, was used for the calculation of the equilibrium solubility of the gases 

in the fluorocarbon liquids. For a two-component, two-phase system at equilibrium, the 

fugacities of each component in each phase are equal: 

f = f G
i

L
i  (7-21) 

The fugacities were calculated using Equation (7-16). From the mass balance equation, the total 

number of moles in the reactor stays the same as: 

N + N = N LGT  (7-22) 

The component balance could be written as: 

x N + y N = N LG 111  (7-23) 

x N + y N = N LG 222  (7-24) 

The overall volume balance is: 

V + V = V GLR  (7-25) 

VL and VG were calculated using the number of moles and the molar volumes (vG and vL) 

obtained from the modified PR-EOS as: 

v N = V GGG  (7-26) 

v N = V LLL  (7-27) 

In addition to these equations, the number of moles charged to the reactor, N1, is calculated from 

the difference between the initial and final conditions in the preheater, using the PR-EOS. The 

equations used for the calculation of the initial and final molar volumes are: 

P
ZRT = v
I

I
GII

G

 
(7-28) 
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P
ZRT = v

F

F
GFF

G  (7-29) 

Subsequently, the number of moles charged becomes: 









−  

v
  

v
  = VN F

G
I
G

preh
11

1  (7-30) 

where Vpreh is the volume of the preheater. The initial number of moles of liquid in the reactor 

was determined from the amount of liquid charged and its molar volume at ambient conditions 

as: 

v
V = N

L

L
2

 
(7-31) 

The liquid molar volume can be calculated from: 

T

L
L P

RTZ = v
 

(7-32) 

Based on the above equations, an iterative algorithm for calculating C*, initially developed by 

Chang39 was modified for the present systems and used. The main steps of this algorithm are 

depicted in Figure 7.2 and are summarized in the following. 

1. The vapor pressure PS of the fluorocarbon liquid is calculated using Wagner Equation, 

and the initial values of y2 = PS/PT and x1 = 0 are assumed. 

2. A value of the binary interaction parameter, δij is assumed. 

3. y1 is calculated as y1 = 1-y2. 

4. ZG is calculated using Equations (7-2) to (7-5), (7-13) and (7-14). 

5. The molar volume of the gas phase vG is calculated from: 

T

G
G P

RTZ
v =

 
(7-33) 

6. The vapor phase fugacities of both components are calculated using Equation (7-16). 
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7. x2 is calculated from x2 = 1-x1. 

8. ZL is calculated using Equations (7-2) to (7-5), (7-13) and (7-14). 

9. The molar volume of the liquid phase vL is calculated from: 

T

L
L P

RTZv =
 

(7-34) 

10. At equilibrium, f1
L = f1

G, from which a new value of x1, 1x is obtained.  

11. If the error calculated from Δx = 11 xx −  is not less than the specified accuracy (10-6), 

steps 7 to 11 are repeated with the new value of x1 = 1x . 

12. f2
L is obtained from Equation (7-16), since x1 is fixed. 

13. At equilibrium, f2
L = f2G must be true, and a new value of y2, 2y  is obtained. 

14. If the error calculated from Δy = 22 yy −  is not less than the specified accuracy (10-

6), steps 3 to 13 are repeated with the new value y2 = 2y . 

15. From Equations (7-23) and (7-24), NL and NG are calculated. 

16. The gas and liquid phase volumes are determined from VG = (vG×NG) and VL = 

(vL×NL), respectively. 

17. A volume balance is confirmed if VR = (VG+VL), otherwise a new value of the 

interaction parameter δij is assumed and steps 2 through 15 are repeated. 

18. If the volume balance is confirmed, the equilibrium values of x1, y1, vL and vG are 

obtained at the corresponding pressure and temperature. Finally C* is calculated 

from: 

Lv
xC 1=∗

 
(7-35) 
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Using these data, an expression of the gas solubility C* as a function of pressure can be 

developed at a constant temperature as: 

2
,11,10 FF PEPE=C +∗

 (7-36) 

with E1=0 if the gas-liquid system obeys Henry’s law. 

The density of the three PFC liquids were experimentally measured and then correlated 

as a function of temperature using a Rackett-type equation168,208,210 (See Equation (6-2) in 

Section 6.2.2, page 60) 

The Peng-Robinson Equation of State was modified to precisely predict the measured 

density of the three PFCs using the Rackett-type equation given above.222 At thermodynamic 

equilibrium, the modified PR-EOS was employed to calculate the equilibrium solubility, C*. The 

values were then correlated as a function of the solute gas partial pressure at constant 

temperature using Equation (7-36). 
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Figure 7.2: Algorithm for C* calculation in the agitated reactors39 
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7.2 CALCULATION OF THE VOLUMETRIC MASS TRANSFER COEFFICIENT 

The calculation of kLa was carried out under the following assumptions: (1) non-ideal behavior 

of the liquid and gas phases; (2) the liquid phase is well mixed; (3) the mass transfer resistance of 

the gas phase is negligible compared to the liquid phase. The transient physical gas absorption 

technique, where the decline of the total pressure of the system with time is recorded, in 

conjunction with total mole was used to calculate kLa values of CO2 and N2 in the three PFC 

liquids. The rate of mass transfer from the solute gas to the liquid phase is calculated using the 

two-film model as: 

( ) LLL
L VCCak

dt
dn

×−= *1

 
(7-37) 

where n1L is the number of moles of component i transferred from the gas-phase into the liquid-

phase, C* is the concentration of the solute gas at the gas-liquid interface and CL is the 

concentration of the gas in liquid bulk. In order to calculate kLa from Equation (7-37), C*, CL 

and n1L were determined as a function of the solute gas partial pressure P1. From the gas partial 

pressure P1 one can calculate the number of moles in the gas phase using the Peng-Robinson 

equation of state, and knowing the initial number of moles in the gas phase by subtracting the 

number of mole at any time t, the number of mole in the liquid phase (n1L) can be calculated. 

Details of a typical pressure versus time experimental data curve can be found in Appendix C. At 

the gas-liquid interface, the liquid is assumed to be in instantaneous equilibrium with the partial 

pressure P1 of the gas phase, hence P1F is replaced by P1 in Equation (7-36) to obtain C*. 
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Since the liquid-phase volume (VL) is expected to change with time due to the high 

solubility of CO2 in the liquid solvent, Equation (7-37) can be written as: 

( ) ( )dtak
nn

dn
L

Liti

Li =
− ,

*
,

,  (7-38) 

In this equation, n*
i,t represents instantaneous equilibrium gas-liquid interface number of moles 

of component i at any time (t). The corresponding amount of component i within the liquid-phase 

(ni,L) was calculated using the P-R EOS coupled with a reactor volume balance since a batch 

reactor system was used in all experiments. Assuming kLa constant during the absorption, 

Equation (7-38) was numerically integrated using Athena Visual Studio Software Package 

(Version 12.3) from the initial condition (t = 0) to any time (t) near the thermodynamic 

equilibrium as: 

( ) ( ) tdak
nn

dn t

L

n

Liti

Li
Li

∫∫ =
− 0

0 ,
*
,

,
,

 (7-39) 

The incremental integration of the left-hand-side of the above equation, designated as F(ni,L) was 

plotted as a function of time (t) as: 

( ) ( ) taknF LLi =,  (7-40) 

Then, if the left hand side of the Equation (7-40), plotted versus time, yields a straight line with 

zero intercept, its slope will correspond to kLa. It should be mentioned that kLa values presented 

in this study were obtained with a regression coefficient (R2) greater than 0.98. 
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7.3 CALCULATION OF GAS HOLDUP AND SAUTER MEAN BUBBLE 

DIAMETER 

In the agitated reactor, the dispersion height technique was used to measure the gas holdup under 

the designed operating conditions, since the manometric method was reportedly unsuccessful by 

Tekie48 due to considerable turbulences created by the impeller, affecting the differential 

pressure (dP) cells signal. At any given operating conditions, εG was determined from the 

difference between the dispersion height, HD, and clear liquid height, H, as: 

D

D
G H

HHε −
=  (7-41) 

 

The Sauter mean Bubble diameter was calculated by measuring the bubble size for about 

200 gas bubbles to insure reproducibility of the experimental results. It was then calculated from 

the bubble volume to area ratio as:48,51 

∑
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 (7-42) 
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8.0  RESULTS AND DISCUSSION OF PERFLUORINATED SOLVENTS 

8.1 EQUILIBRIUM GAS SOLUBILITY OF CO2 AND N2 IN THE PFC SOLVENTS 

The equilibrium solubilities of CO2 and N2 in the three perfluorocarbons used in this study could 

not be found in the open literature; and the experimental data obtained were with an average 

deviation of less than 12%. The solubility of CO2 and N2, expressed in mole fraction (x*), in 

PP10, PP11, and PP25 liquids are presented as a function of the gas partial pressure (P1,F) at 

constant temperatures in Figure 8.1, respectively. As can be seen in these figures, the CO2 and N2 

solubilities increase with the gas partial pressure at constant temperature in the three solvents. 

The x* values of the CO2 and N2 in the three PFCs used appeared to vary non-linearly with gas 

partial pressure at constant temperature and can be modeled by the following equation: 

2
,11,10 FF PEPx* = E +  (8-1) 

The values of the coefficients E0 and E1 are given in Table 8.1. It should be noted that for N2 

almost a linear relationship can be assumed which is obvious from the small values of E1. The 

increase of solubility with pressure can be attributed to the increase of the concentration gradient 

of the gas species between the two phases, which leads to the increase of the gas amount in the 

liquid. This solubility behavior is in accordance with a number of findings available in the 

literature.48,51,52,85,115 
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Figure 8.1: Effect of pressure and temperature on the solubility of CO2 and N2 in PP10, PP11 and PP25 
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Table 8.1: Coefficients E0 and E1 in Equation (8-1) 

Gas Temperature PP10 PP11 PP25 
E0×103 E1×105 E0×103 E1×105 E0×103 E1×105 

CO2 

300 17.5302 -12.8406 15.3058 -10.2806 18.4282 -15.0400 
350 11.5405 -6.9523 10.8460 -5.9840 12.2822 -7.9309 
400 8.1781 -3.6591 8.0371 -3.0860 9.2580 -5.0741 
450 6.6328 -3.1160 6.4706 -1.5321 7.4069 -3.4224 
500 5.6870 -2.4788 5.5048 0.9222 6.8706 -2.5957 

N2 

300 3.1085 -1.4215 2.5629 0.1346 3.2858 -1.4113 
350 2.9933 -1.1992 2.7310 -0.8385 3.1385 -1.2357 
400 3.0525 -1.1623 2.6343 -0.0707 3.1387 -1.1144 
450 3.3380 -1.0386 3.0609 -1.2516 3.2727 -0.9885 
500 3.8964 -1.1277 3.2224 -0.5467 3.5397 0.2844 

 

At infinite dilution (low gas solubility) and for ideal solutions, the Henry’s law can be applied to 

model the gas solubility. The definition of the Henry’s law constant at infinite dilution (He∞) can 

be approximately estimated, at constant temperature, using the following equation: 









≅

→
∞ *

0
lim

* x
P

He i

x  
(8-2) 

The values of the He∞ were calculated at constant temperature for CO2 and N2 in PP10, PP11, 

and PP25 and the values were correlated as a function of the reciprocal of temperature (1/T). 

This because the effect of temperature on x* values and has been generally studied through the 

Henry’s law (He) constant and the standard heat of solution of a gas (ΔHº).223,224 In certain cases 

(e.g., for relatively small temperature ranges), the standard heat of solution of a gas (ΔHº) may be 

treated as a constant and can be related to the Henry’s law constant at infinite dilution (He∞) 

through Equation (8-3).224 









×= ∞∞ RT

ΔHexpHeHe
0

0,
 (8-3) 
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However, there are other cases (e.g., for relatively wide temperature ranges) in which ΔHº is 

temperature dependent and, therefore, is not a constant. For the latter cases, ΔHº may be obtained 

from Equation (8-4).223,224 

( )
( ) 








∂

∂
= ∞

T1
)(He ln

R
ΔH 0

 (8-4) 

Figure 8.2 shows that for CO2 the Henry’s law constant (He∞) can be correlated as a function of 

the reciprocal of temperature (1/T) using an Arrhenius-type equation over the temperature range 

from 300 to 500 K, which means that the standard heat of solution is constant. Figure 8.2 also 

illustrates that CO2 shows higher solubility in the Selexol solvent224 at relatively low 

temperature. It should be mentioned, however, that the Selexol solvent cannot be used at 

temperatures greater than 39°C (312 K), which underlines the thermal stability of the PFCs and 

underscores their ability to absorb CO2 at temperatures as high as 500K. 

The apparent activation energies of absorption for CO2 in the three PFCs were obtained 

using Equation (8-4) within the temperature range of 300-500 K. 
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Figure 8.2: Effect of temperature on Henry law constants for CO2 in the fluorocarbons  

and Selexol solvent224 
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that developed by Himmelblau,223 the dependency of He∞ on with temperature was described 

using Equation (8-5), where its coefficients are listed in Table 8.2. 

( ) 2T
C

T
BAHe ln ++=∞

 
(8-5) 

 

Table 8.2: Coefficients in He∞ correlation, Equations (8-3) and (8-5) 

  PP10 PP11 PP25 

CO2 
He0,∞ (bar) 1099.25 952.76 807.06 
ΔH0 (kJ.kmol-1) -7,505.68 -6,821.31 -6894.64 

N2 
A 2.8590 3.9861 4.2334 
B 2,092.9 1,326.2 1,105.5 
C -368,333 -223,437 -198,583 

 

 

Figure 8.3: Effect of temperature on Henry law constants for N2 in the fluorocarbons 
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The values of the standard heat of solution for N2 were calculated using Equation (8-6), 

which was derived from Equations (8-4) and (8-5). 







 +=∆

T
CBRH 20  (8-6) 

The values of He∞ and ∆H0 calculated using Equations (8-5) and (8-6) are given in Table 8.3. 

The knowledge of the standard heat of solution in physical absorption processes is important to 

verify the occurrence of chemical reaction in the range of temperature studied. In fact, 

Doraiswamy and Sharma228 reported that ∆E (the apparent activation energy of absorption, 

which, by definition, equals -∆H0),48,51,115,195,223,225-227,229-232 for mass transfer without chemical 

reaction should be < 21,000 kJ.kmol-1, which is in agreement with the values listed in Tables 8.2 

and 8.3. 

 

 

Table 8.3: He∞ and ΔH0 for N2 in the three PFCs 

  300 350 400 450 500 
PP10 He∞ (bar) 311.94 341.03 326.76 296.19 262.83 

ΔH0 (kJ.kmol-1) -3,015.1 -98.5 2,089.0 3,790.4 5,151.5 
PP11 He∞ (bar) 373.95 384.24 366.91 340.30 312.55 

ΔH0 (kJ.kmol-1) -1,358.4 410.9 1,737.8 2,769.9 3,595.6 
PP25 He∞ (bar) 302.45 320.82 316.08 301.69 284.31 

ΔH0 (kJ.kmol-1) -1,815.8 -243.3 936.1 1,853.4 2,587.2 
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From Figure 8.1, the effect of gas nature on the solubility in the three fluorocarbons used 

can be deduced. As can be observed at the same pressure and temperature, the solubility values 

of CO2 in the three liquids are about 4 times greater than those of N2. This behavior can be 

explained using the solubility parameter (δ) concept developed by Hildebrand.166,233 The 

solubility parameters can be using Equation (8-7): 

v
RTH v −∆

=δ
 

(8-7) 

The solubility (x1) of component 1 (gas) in component 2 (liquid) can then be related to the 

solubility parameters of the two components as follows. 
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(8-8) 

This relationship indicates that a smaller difference between δ1 and δ2 should result in a higher x1 

value.168,234,235 Table 8.4 shows the solubility parameters for the gases and liquids used. 

 

 

 

Table 8.4: Solubility parameter of the gases and liquids used168,234,235 

Component δ, (MPa)0.5 
CO2 14.6 
N2 10.8 

PP10 15.62 
PP11 15.52 
PP25 15.15 
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It should be mentioned that the solubility parameters of the three PFCs listed in Table 8.4 

were calculated using Hildebrand et al.166,233 The enthalpy of vaporization, ΔHv, was determined 

from Equation (8-9), proposed by Pitzer et al.:236 

( ) ( ) 456.0354.0 195.10108.7 rr
C

v TT
RT

H
−+−=

∆
ω  (8-9) 

The calculated ΔHv from Equation (8-9) was then used in Equations (8-10) and (8-11) from 

Hildebrand et al.166,168 to obtain the solubility parameters for the PFCs: 

RTHU vii −∆≈∆  (8-10) 
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δ

 
(8-11) 

As can be noticed in Table 8.4 the differences between the solubility parameter of CO2 and those 

of the three PFCs are much smaller than those of N2, which means that less energy is needed for 

mixing (dissolving) CO2 in the three PFCs than that for N2. 

Figure 8.1 also shows both CO2 and N2 exhibit greater solubilities in the PP25 (C17F30) 

than in the P11 (C14F24) and PP10 (C13F22), which can be attributed to the fact that the size of 

PP25 molecule is larger than those of PP11 and PP10, allowing large molecular spaces for 

accommodating more dissolved gas molecules. It is also apparent that CO2 solubility increases 

with the number of fluorine atoms in the solvent molecules. 
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8.2 GAS HOLDUP, SAUTER MEAN BUBBLE DIAMETER AND VOLUMETRIC 

MASS TRANSFER COEFFICIENTS OF CO2 AND N2 IN PP10, PP11, AND PP25 

An extensive literature search revealed that data on the gas holdup, Sauter mean bubble size and 

volumetric mass transfer coefficients of CO2 and N2 in gas-inducing reactors using PFCs as 

liquid solvent do not exit.222 In the following the effect of the main operating variables, pressure, 

temperature, mixing speed, and liquid height above the impeller as well as gas and liquid nature 

on the holdup, εG, Sauter mean bubble diameter, dS and volumetric mass transfer coefficient, kLa 

are discussed. 

8.2.1 Effect of Pressure on the Gas Holdup, εG, Sauter Mean Bubble Diameter, dS and 

Volumetric Mass Transfer Coefficient, kLa 

Figures 8.4, 8.7 and 8.10 depict the effect of pressure on the gas holdup, and, as can be seen, εG 

values decrease with increasing pressure. In a few cases the gas holdup values remarkably 

decrease up to pressures of ≤ 20 bar and then the values almost level off with increasing 

pressures up to 30 bar. This behavior of the gas holdup can be explained by the effect of pressure 

on the induced gas flow rate. In fact, the induced gas flow rate was observed to decrease with 

pressure, which can be related to the change of gas-phase and liquid-phase densities. Increasing 

pressure increases the local density of the gas-liquid system, and, consequently, the hydrostatic 

head above the impeller, as well as the pressure drop across the orifices, increase, leading to a 

decrease of the induced gas flow rate and the corresponding gas holdup. This effect of pressure 

on the gas holdup is in accordance with the findings by Fillion,51 who found that the induced gas 

flow rate values decrease with increasing gas density. 
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Figures 8.5, 8.8 and 8.11 show the effect of pressure on the Sauter mean bubble diameter 

for CO2 and N2 in the three PFCs. As can be observed, dS values slightly decrease with increasing 

pressure. Actually, increasing pressure alters the gas-liquid physical properties, such as gas 

density, liquid viscosity and liquid surface tension, and it was reported to enhance the formation 

of small rigid spherical gas bubbles.237,238 This slight decrease of the gas bubbles size, however, 

implies that at the lowest pressure used (about 6 bar), the gas bubbles are already small and could 

shrink very slightly with increasing pressure.48,51 These findings are similar to those previously 

reported by Chang and Morsi,239 Li et al.216 and Inga and Morsi237 for different gas-liquid 

systems. 

Figures 8.6, 8.9 and 8.12 demonstrate the effect of pressure on the volumetric mass 

transfer coefficient for CO2 and N2 in the three PFCs. In general, kLa tends to increase with 

increasing pressure, but in some cases kLa for both gases appears to increase up to pressures ≤ 17 

bar, and then the values seem to increase very slightly or almost level off. As a matter of fact, 

increasing pressure increases the gas solubility, which alters the physicochemical properties of 

the gas-liquid system, such as liquid viscosity and surface tension, which could increase kLa 

values. Numerous investigators85,126,128,139,144,146,151,240 reported that kLa values were strongly 

dependent on the gas-liquid system and the range of pressures used. In this study, it appears that 

increasing pressure resulted in the formation of small gas bubbles with large gas-liquid 

interfacial area (a) in the GIR, which resulted in the increase of the volumetric mass transfer 

coefficient, kLa. Sometimes at pressures greater than 17 bar, however, the negligible increase of 

kLa values can be attributed to the fact that Sauter mean bubble diameter decreases very slightly 

with increasing pressure above 17 bar. Thus, the gas-liquid interfacial area sometimes has a 

strong impact on the volumetric mass transfer coefficient within the operating conditions used. 
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8.2.2 Effect of Temperature on the Gas Holdup, εG, Sauter Mean Bubble Diameter, dS 

and Volumetric Mass Transfer Coefficient, kLa 

Figure 8.4 shows the effect of temperature on the gas holdup for CO2 and N2 in the three PFCs. 

As can be observed, the gas holdups for both gases increase with increasing temperature. 

Increasing the temperature decreases the liquid density, and, therefore, increases the induced gas 

flow rate and, subsequently, the gas holdup, which is in agreement with the results reported by 

Aldrich and van Deventer.28 Also, Bruijn et al.241 showed that the impeller suction efficiency 

increases with decreasing liquid viscosity (i.e. increasing the temperature) due to the formation 

of less stable cavities around the impeller under such high temperatures. Thus, increasing the 

temperature led to the decrease of the density and viscosity of the PFCs, which increased the 

pumping capacity of the impeller (the induced gas flow rate) and, subsequently, the gas holdup. 

These results are in agreement with the previous findings by He et al.40 and Aldrich and van 

Deventer28 in GIRs. 

Figure 8.5 illustrates the effect of temperature on the Sauter mean bubble diameter for 

CO2 and N2 in PP10, PP11, and PP25. As can be seen in this figure, increasing the temperature 

from 350 to 450 K appears to slightly decrease dS by about 20 to 30% for N2. This behavior can 

be attributed to the decrease of the liquid viscosity89,93 and surface tension51,69,89,91-95 with 

temperature, and is in accordance with several findings in the literature.58,90-94,242 In the case of 

CO2, dS appears to be independent of temperature for PP10 and PP11 and is only slightly 

dependent on the temperature for PP25. It is important to mention that the effect of temperature 

on the Sauter mean bubble diameter is weaker than its effect on the gas holdup. 

The temperature effect on kLa is usually related to the changes of the physicochemical 

properties of the gas-liquid system used.39,48,51,96,115 In this study, as shown in Figure 8.6, kLa 
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values increase with increasing temperature for CO2 and N2 in PP10, PP11, and PP25. Several 

authors121,129,139,143,146,150,151,240 reported similar trends for kLa values in different gas-liquid 

systems. In Figures 8.6(a) and 8.6(d), kLa values for CO2 and N2 in PP10 increase by about a 

factor of 2 to 3 when the temperature increases from 350 to 450 K. This effect of temperature on 

kLa can be explained by its effect on a and kL. For instance, increasing temperature decreases the 

liquid viscosity and surface tension, resulting in an increase of the gas holdup and a decrease of 

the Sauter mean bubble diameter, which lead to an increase of the gas-liquid interfacial area, a, 

with increasing temperature, as can be deduced from Equation (8-12). 

( )GS

G

d
a

ε
ε
−

=
1
6

 
(8-12) 

Also, increasing temperature is expected to increase the gas diffusivity, DAB, according to 

the Wilke and Chang’s Equation,213 and, subsequently, the mass transfer coefficient, kL, since kL 

is proportional to DAB to a power n as given in Equation (8-13), where n equals 0.5 for 

penetration theory and 1.0 for the two-film model.243 

n
ABL Dk ∝  (8-13) 

Thus, increasing temperature increases both kL and a and, subsequently, kLa for both CO2 

and N2 in the three PFCs under the operating conditions used. 
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Figure 8.4: Effect of pressure and temperature on εG for CO2 and N2 in PP10, PP11 and PP25 
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Figure 8.5: Effect of pressure and temperature on dS for CO2 and N2 in PP10, PP11 and PP25 
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Figure 8.6: Effect of pressure and temperature on kLa for CO2 and N2 in PP10, PP11 and PP25 
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8.2.3 Effect of Mixing Speed on the Gas Holdup, εG, Sauter Mean Bubble Diameter, dS 

and Volumetric Mass Transfer Coefficient, kLa 

Figure 8.7 represents the effect of mixing speed on εG in the PP10, PP11, and PP25. As can be 

seen, the εG increases with increasing mixing speed for both gases studied. For the lowest mixing 

speed, which is close to the critical mixing speed for gas induction, a very small amount of gas is 

induced in the reactor and therefore small εG values are obtained as can be observed in Figure 

8.7(b) at 10.0 Hz. Figure 8.7 indicates that increasing mixing speed from 10.0 to 20.0 Hz 

increases, the gas induction rate in the gas inducing reactor and thus εG increases by 3 to 5 times. 

This behavior is due to the increase of the pumping capacity of the impeller in the 

reactor,19,23,29,30 and is in agreement with several literature findings.46,89,104-106,110,111,244 It is also 

important to emphasize that under all the conditions studied, εG values level off at high mixing 

speeds due to the establishment of a fully developed hydrodynamic regime in the reactor. 

The Sauter mean bubble diameters, dS, for both gases are found to slightly increase with 

increasing mixing speed as illustrated in Figure 8.8. Increasing mixing speed increases the 

induced gas flow rate and the bubble size population in GIRs,26,41 which could cause an 

enhancement of the gas bubble coalescence, leading to high values of the Sauter mean bubble 

diameter. These results are similar to those reported earlier by Fillion and Morsi,147 Hsu and 

Huang25 and Lemoine52 for different gas-liquid systems in GIRs. 

Figure 8.9 shows the effect of mixing speed on the volumetric liquid-side mass transfer 

coefficient at the central point (400 K, 0.18 m) for CO2 and N2 in the three PFCs studied. As can 

be seen in these figures, increasing mixing speed strongly increases the volumetric liquid-side 

mass transfer coefficient, kLa, which is in agreement with numerous 
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investigations.26,51,52,120,126,128,129,139,143,144,148-150,237,240,245-247 The increase of the volumetric liquid-

side mass transfer coefficient with mixing speed can be attributed to the increase of the liquid-

side mass transfer coefficient kL and/or the gas-liquid interfacial area, a. Increasing mixing speed 

increases the turbulence and shear rate in the reactor,145,146 which reduces the gas-liquid film 

thickness (Δ), leading to the increase of the mass transfer coefficient; hence, kL = DAB/Δ. Also, 

increasing mixing speed increases the pumping capacity of the impeller, and, consequently, more 

gas bubbles are induced into the liquid through the hollow shaft, which increase the gas holdup. 

The increase of the number of gas bubbles in the reactor could lead to a slight increase of the 

Sauter mean bubble diameter due to bubble coalescence. An increase of the gas holdup could 

lead to an increase of the gas-liquid interfacial area and, hence, to a small increase of the Sauter 

mean bubble diameter. Since Calderbank and Moo-Young75 reported that kL is directly 

proportional to dS, kL increase with mixing speed. Thus, the combined effects of increasing 

mixing speed on the mass transfer coefficient and the gas-liquid interfacial area led to the 

increase of kLa values as shown in Figure 8.9. It is also important to mention that the increase of 

kL with mixing speed in gas-inducing reactors was reported to be stronger than that in surface 

aeration reactors52 due to the higher dS values exhibited in GIRs. Figure 8.9(b) shows that when 

increasing mixing speed from 10.8 to 15.0 Hz, kLa values appear to increase by almost 10 times 

for CO2, whereas when increasing mixing speed from 15.0 to 20.0 Hz, a smaller increase (2 

times) of kLa can be observed. The smaller increase of kLa values at higher mixing speeds can be 

related to the effect of mixing speed on the induced gas flow rate (QGI) through the hollow shaft. 

As reported by Fillion51 and Lemoine et al.,206 at mixing speeds greater than the critical mixing 

speed for gas induction, QGI increases with mixing speed until a fully developed hydrodynamic 

regime is reached, and afterward QGI becomes independent of the mixing speed. Thus, increasing 
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mixing speed after reaching the fully developed hydrodynamic did not significantly increase QGI 

and subsequently kLa values were not significantly increased. 
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Figure 8.7: Effect of pressure and mixing speed on εG for CO2 and N2 in PP10, PP11 and PP25 
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Figure 8.8: Effect of pressure and mixing speed on dS for CO2 and N2 in PP10, PP11 and PP25 
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Figure 8.9: Effect of pressure and mixing speed on kLa for CO2 and N2 in PP10, PP11 and PP25 
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8.2.4 Effect of Liquid Height on the Gas Holdup, εG, Sauter Mean Bubble Diameter, dS 

and Volumetric Mass Transfer Coefficient, kLa 

The effect of liquid height above the impeller on the gas holdup is presented in Figure 8.10. As 

can be seen, the gas holdup decreases with increasing liquid height. For instance, Figure 8.10(a) 

shows that increasing liquid height from 0.14 to 0.18 m decreases the εG by 30% for CO2 in PP10 

and by more than 100% for CO2 in PP25 (See Figure 8.10(c)). The reason for this gas holdup 

behavior can be related to the fact that increasing liquid height above the impeller increases the 

hydrostatic head (pressure drop) needed to induce the gas into the liquid. This increase of 

pressure drop increases the critical mixing speed for gas induction19,21,30,51,52 and reduces the 

pumping capacity of the impeller,21,23,51 which lead to the decrease of the gas holdup. This 

behavior of the gas holdup is similar to that reported in numerous literature 

studies.24,26,29,35,36,40,145,146 It should be mentioned that the gas holdup for CO2 at the liquid height 

0.22 m was not presented in Figure 8.10 due to the difficulty of seeing the expanded liquid 

height through the reactor sight-window due to the high solubility of CO2 in the three PFCs used. 

Figure 8.11 illustrates the effect of liquid height on the Sauter mean bubble diameter. As 

can be seen, dS values increase from 20 to 30% as the liquid height increases from 0.14 to 0.22 

m. Increasing the liquid height decreases the pumping capacity of the impeller, which leads to a 

decrease in the population of entrained gas bubbles. Also, increasing the liquid height decreases 

the turbulence in the reactor, which decreases the probability of gas bubbles breakup. Thus, 

increasing liquid height decreases the number and minimizes the breakup of the induced gas 

bubbles, and, subsequently, the Sauter mean bubble diameter increases. 
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Figure 8.12 shows that the volumetric liquid-side mass transfer coefficient, kLa, decreases 

with increasing liquid height. In Figures 8.12(a) and 8.12(d) for instance, increasing liquid height 

from 0.14 to 0.22 m decreases the kLa values by a factor of 5 for both CO2 and N2 in PP10. The 

same behavior of kLa for both gases in PP11 and PP25 can be observed in Figures 8.12(b), 

8.12(e), 8.12(c) and 8.12(f), where kLa values appear to decrease by one order of magnitude with 

increasing liquid height from 0.14 to 0.22 m. This behavior of kLa can be related to the effect of 

liquid height on the mass transfer coefficient (kL) and the gas-liquid interfacial area (a). As 

mentioned above, increasing the liquid height decreases the turbulence in the reactor, which 

results in a decrease of kL. Also, increasing liquid height decrease the pumping capacity of the 

impeller, as well as the gas holdup, and increases the Sauter mean bubble diameter, which lead to 

the decrease of a. Thus, the decrease of the both kL and a values led to the decrease of kLa with 

increasing liquid height. 
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Figure 8.10: Effect of pressure and liquid height on εG for CO2 and N2 in PP10, PP11 and PP25 
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Figure 8.11: Effect of pressure and liquid height on dS for CO2 and N2 in PP10, PP11 and PP25 
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Figure 8.12: effect of pressure and liquid height on kLa for CO2 and N2 in PP10, PP11 and PP25 
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8.2.5 Effect of Gas Nature on the Gas Holdup, εG, Sauter Mean Bubble Diameter, dS and 

Volumetric Mass Transfer Coefficient, kLa 

As can be seen in Figures 8.4, 8.7 and 8.10, the gas holdup values for CO2 appear to be 

consistently smaller than those for N2 under similar operating conditions. This means that the gas 

bubble population for CO2 is much larger than that of N2, and, accordingly, the probability of gas 

bubble coalescence (formation of large gas bubbles) is higher for CO2 than for N2. It should be 

emphasized that the gas solubility is the amount of dissolved gas, not the mobile or moving gas 

bubbles which represent the gas holdup. Hence, even though CO2 has higher solubility values 

than N2 in the three PFCs used, it exhibited lower gas holdup values in these liquids as compared 

with those of N2. 

As can be observed in Figures 8.5, 8.8 and 8.11, the Sauter mean bubble diameter values 

of CO2 are always greater than those of N2 in the three PFCs. Again, this behavior can be 

attributed to the wider gas bubble population for CO2 than that of N2, which resulted in higher 

probability of gas bubbles coalescence, leading to a larger Sauter mean bubble diameter for CO2 

than those of N2. 

Figure 8.9 depicts the effect of gas nature on the volumetric mass transfer coefficients in 

PP10, PP11 and PP25. As can be observed in this figure, kLa values for CO2 in the three PFCs 

are always smaller than those of N2 under similar operating condition. This kLa behavior can be 

attributed to the smaller gas holdup and larger Sauter mean bubble diameter for CO2 and 

subsequently its resulting smaller gas-liquid interfacial area when compared with that of N2 in 

the three PFCs as shown in Figures 8.7 and 8.8. These data indicate that the gas-liquid interfacial 

area (a) is controlling the behavior of kLa, since the mass transfer coefficients (kL) for CO2 and 
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N2 are expected to be the same, given that the diffusivities of CO2 and N2 in each liquid used are 

very close, and the difference of the Sauter mean bubble diameter is not significant. These results 

are in agreement with the findings by Tekie48 for kLa values of O2 and N2 in cyclohexane. 

8.2.6 Effect of Liquid Nature on the Gas Holdup, εG, Sauter Mean Bubble Diameter, dS 

and Volumetric Mass Transfer Coefficient, kLa 

The gas holdup values of CO2 and N2 appear to decrease with increasing the molecular weight of 

the PFCs used as it can be seen in Figure 8.10. Presumably, the increase of the density and 

viscosity of the liquids with increasing molecular weight under identical operating conditions 

decreased the pumping capacity of the impeller, which led to the decrease of the gas holdup of 

CO2. It should be mentioned that during the physical absorption of CO2 and N2 in the three 

PFCs, no froth was observed under all the operating conditions used, indicating that these 

solvents are coalescing (non-foaming) liquids. 

As can be observed from Figures 8.5, 8.8 and 8.11, the dS values for CO2 and N2 in the 

three PFCs are very close, and no particular trend can be reported. It was expected that the gas 

holdup for both gases in PP25 would be greater than that in PP11 and PP10; however, the 

difference between the values appears to be within the margin of error. 

As can be seen in Figure 8.12, the kLa values for CO2 and N2 follow the order (kLa)PP25 < 

(kLa)PP11 < (kLa)PP10, indicating that the volumetric liquid-side mass transfer coefficients decrease 

with increasing molecular weight (or the viscosity) of the PFCs. This behavior of kLa values is 

reasonable since the diffusivities in the PFCs were found to follow the order (DAB)PP25 < 

(DAB)PP11 < (DAB)PP10. Also, the gas-liquid interfacial area (a) of CO2 and N2 should follow the 

order (a)PP25 < (a)PP11 < (a)PP10 since the gas holdup and the Sauter mean bubble diameter 
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appeared to follow the orders (εG)PP25 < (εG)PP11 < (εG)PP10 and (dS)PP25 ≈ (dS)PP11 ≈ (dS)PP10, 

respectively. Thus, the combined decrease of the gas-liquid interfacial area (a) and the mass 

transfer coefficient (kL) led to the obvious decrease of the volumetric mass transfer coefficients 

(kLa) with the molecular weight of the PFCs used. These results are in agreement with the 

findings by Albal et al.,245 who reported that volumetric liquid-side mass transfer coefficient 

decreases with increasing liquid phase viscosity. 
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9.0  STATISTICAL CORRELATION OF KLA DATA 

Different statistical correlations were developed for each gas-liquid system investigated, using 

the statistical software packages Minitab 15 and SigmaPlot 11.0. Although these statistical 

correlations are limited to the systems used, they enjoy higher confidence levels (95%) and much 

better regression coefficients than conventional dimensionless correlations. The following 

general statistical correlation was found for εG, dS, and kLa: 
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The coefficients in Equation (9-1) (i.e., the α, β, and γ values) are given Tables 9.2 through 9.7 

for CO2 and N2, and the parity plot between the experimental and predicted εG, dS, and kLa values 

are illustrated in Figures 9.1 through 9.3. As can be noticed in these figures, the predictions using 

the statistical correlations are with average regression coefficients of 91, 88, and 96% for Figures 

9.1, 9.2 and 9.3, respectively. It should be mentioned that the coded variables, x1, x2, x3 and x4, in 

Equation (9-1) were calculated based on the gas-liquid system used as follows, and more details 

can be found in Section 6.3 and Equation (6-13): 
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Table 9.1: Values for PMAX and PMIN in Equation (9-5) 

 PP10 PP11 PP25 
CO2 N2 CO2 N2 CO2 N2 

Final 
Pressure 

PMIN 4.075 5.539 2.889 4.478 4.663 5.090 
PMAX 31.039 30.949 31.536 31.391 30.531 30.805 

Mean 
Pressure 

PMIN 6.473 5.749 5.650 5.226 6.711 5.818 
PMAX 37.149 31.756 35.128 32.035 37.248 32.059 
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Table 9.2: Coefficients of statistical correlations for εG for CO2 

 PP10 PP11 PP25 
β0 -2.870E+00 -3.979E+00 -3.696E+00 
β1 -2.525E-01 -7.118E-02 1.381E-01 
β2 5.241E-01 -4.717E-02 5.132E-01 
β3 1.123E+00 1.320E+00 -3.177E-01 
β4 -3.964E-01 -2.161E-01 -3.553E-01 
β11 -2.759E-01 1.902E-01 5.925E-02 
β12 4.299E-02 1.143E-01 -3.895E-03 
β13 -2.066E-03 8.856E-02 -1.393E-02 
β14 -8.470E-03 -4.207E-02 -2.339E-02 
β22 -1.455E-01 -3.764E-01 -3.892E-01 
β23 1.035E-01 1.816E-01 8.416E-02 
β24 -8.345E-05 1.767E-02 -4.726E-03 
β33 3.516E-01 6.277E-01 6.401E-02 
β34 -1.378E-02 5.267E-03 -4.479E-02 
β44 -4.712E-02 2.715E-03 -5.242E-02 
α1 7.500E-02 -3.090E-03 -6.650E-04 
α2 5.068E-02 5.332E-01 1.747E-01 
α3 -1.411E+00 -1.173E+00 -1.317E+00 
α4 2.370E-01 -3.102E-02 2.025E-01 
γ1 1.629E+00 -2.872E+00 3.278E+00 
γ2 -3.439E-01 9.015E-01 1.100E+00 
γ3 8.427E-01 1.039E+00 1.364E-01 
γ4 6.387E-01 1.547E-01 6.430E-01 
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Table 9.3: Coefficients of the statistical correlations for εG for N2 

 PP10 PP11 PP25 
β0 -3.852E+00 1.594E+01 -3.121E+00 
β1 -5.039E-02 7.702E+00 8.881E-01 
β2 3.403E-01 3.627E-01 6.690E-01 
β3 -1.992E-01 -9.745E+00 -1.095E+00 
β4 -1.178E-01 3.182E+00 -1.571E-01 
β11 -6.289E-02 1.193E+00 2.120E-01 
β12 8.431E-02 2.525E-01 -1.532E-02 
β13 -2.593E-01 1.335E-01 -1.513E-01 
β14 1.816E-02 -1.883E-02 -4.211E-02 
β22 6.161E-02 4.871E-02 -2.919E-01 
β23 -2.841E-01 -7.144E-02 2.120E-02 
β24 -6.878E-03 3.502E-02 2.880E-02 
β33 4.170E-02 1.411E+00 2.522E-01 
β34 -1.382E-03 1.052E-03 -5.961E-03 
β44 4.080E-03 -3.189E-01 -4.618E-03 
α1 6.033E-04 -2.613E+01 -1.430E+00 
α2 -1.741E-01 1.926E+01 7.315E-02 
α3 -4.369E-01 -3.149E+01 -1.167E+00 
α4 1.450E-01 1.727E+01 1.060E+00 
γ1 3.743E+00 2.768E-01 5.138E-01 
γ2 4.552E-03 7.957E-03 1.363E+00 
γ3 1.970E-01 -2.837E-01 -5.345E-01 
γ4 4.161E-02 -1.876E-01 8.574E-03 
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Table 9.4: Coefficients of the statistical correlations for dS for CO2 

 PP10 PP11 PP25 
β0 -5.632E+00 -5.857E+00 -6.240E+00 
β1 1.023E+00 6.399E-01 9.775E-02 
β2 8.757E-01 1.162E-01 1.839E-01 
β3 9.312E-01 -7.677E-02 4.130E-02 
β4 -3.264E-02 -3.749E-02 2.677E-02 
β11 4.128E-01 2.022E-01 8.322E-03 
β12 3.479E-01 3.518E-02 -4.197E-02 
β13 7.661E-01 6.703E-03 9.394E-03 
β14 -8.163E-04 -6.163E-03 1.484E-02 
β22 4.145E-01 -6.451E-02 -5.853E-02 
β23 4.714E-01 -1.189E-02 -7.633E-04 
β24 1.134E-03 -1.017E-02 -7.217E-03 
β33 3.526E-01 1.510E-02 3.299E-02 
β34 -4.697E-03 -5.325E-03 4.479E-03 
β44 3.691E-03 9.302E-03 -1.714E-02 
α1 -4.940E-01 -6.613E-01 -3.459E-01 
α2 -1.613E-01 -1.893E-01 -1.563E-01 
α3 -4.287E-01 -2.686E-01 -3.285E-01 
α4 -3.538E-01 -3.460E-04 3.437E-02 
γ1 1.074E+00 6.941E-01 1.956E-01 
γ2 1.531E+00 7.134E-03 9.029E-03 
γ3 1.064E+00 -5.215E-01 7.211E-02 
γ4 5.401E-03 2.856E+00 -9.136E-01 
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Table 9.5: Coefficients of the statistical correlations for dS for N2 

 PP10 PP11 PP25 
β0 -5.839E+00 1.209E+01 -5.749E+00 
β1 1.158E+00 6.310E+00 5.835E-01 
β2 6.100E-01 -2.925E+00 8.150E-02 
β3 1.077E+00 -2.028E+00 -2.946E-01 
β4 -8.022E-03 -2.821E-02 -4.274E-02 
β11 4.835E-01 9.795E-01 6.654E-02 
β12 1.363E-01 -2.180E-02 -2.456E-02 
β13 6.093E-01 5.378E-03 -2.363E-03 
β14 -6.347E-03 -7.769E-03 1.936E-03 
β22 2.711E-01 4.008E-01 -4.513E-02 
β23 1.387E-01 1.204E-02 -2.003E-03 
β24 5.904E-03 3.882E-03 -2.903E-03 
β33 4.082E-01 -2.054E-01 7.278E-02 
β34 -1.050E-03 6.649E-03 7.577E-04 
β44 8.778E-03 4.490E-03 -1.343E-03 
α1 -5.167E-01 -1.959E+01 -1.011E+00 
α2 -1.910E-01 -9.392E+00 7.719E-02 
α3 -4.684E-01 9.802E+00 -5.813E-01 
α4 -1.343E-02 -3.072E-09 2.641E-01 
γ1 1.122E+00 3.054E-01 4.672E-01 
γ2 1.296E+00 -3.146E-01 2.492E-03 
γ3 1.097E+00 2.059E-01 -4.575E-01 
γ4 1.025E+00 8.636E+00 1.955E-02 
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Table 9.6: Coefficients of the statistical correlations for kLa for CO2 

 PP10 PP11 PP25 
β0 1.339E+01 -3.527E+00 -3.584E+00 
β1 2.999E-01 4.326E-01 7.667E-01 
β2 4.224E+00 1.972E-01 7.097E-01 
β3 2.665E+00 -1.228E-04 -2.647E-01 
β4 1.428E-01 1.166E-01 2.530E-01 
β11 -2.169E-01 -7.230E-03 4.711E-02 
β12 1.603E-01 2.721E-02 -1.101E-01 
β13 -1.078E-01 6.235E-02 -9.256E-04 
β14 2.909E-02 -8.847E-03 -6.772E-02 
β22 6.419E-01 -6.289E-01 -3.648E-01 
β23 -1.217E-01 1.430E-01 7.060E-02 
β24 2.157E-02 3.152E-02 2.064E-02 
β33 4.880E-01 7.545E-02 8.854E-02 
β34 -5.892E-03 -2.534E-02 -5.263E-03 
β44 -2.777E-02 -7.898E-03 -2.297E-03 
α1 1.189E-08 -2.663E-01 -5.653E-02 
α2 -8.824E+00 3.318E-01 1.614E-01 
α3 -7.675E+00 -6.805E-02 -1.434E-01 
α4 1.469E-06 1.251E-01 -1.376E-01 
γ1 9.021E+00 5.539E-01 1.626E+00 
γ2 3.845E-01 1.190E+00 1.056E+00 
γ3 3.642E-01 1.269E+00 8.332E-01 
γ4 6.082E+00 1.963E-02 7.608E-01 
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Table 9.7: Coefficients of the statistical correlations for kLa for N2 

 PP10 PP11 PP25 
β0 -1.734E+00 -5.759E-01 -3.332E+00 
β1 5.387E-03 1.469E+00 6.481E-01 
β2 2.006E+00 1.210E+00 1.133E+00 
β3 1.889E-01 -1.471E+00 -4.764E-01 
β4 5.513E-02 -3.815E-01 1.855E-02 
β11 -1.891E-01 2.684E-01 -1.179E-01 
β12 5.828E-02 2.586E-02 -2.112E-01 
β13 -2.880E-01 8.733E-02 -5.246E-02 
β14 -2.400E-02 3.728E-03 -2.840E-02 
β22 4.376E-01 -4.474E-01 -5.453E-01 
β23 -2.764E-01 2.166E-01 1.486E-01 
β24 -2.087E-02 2.284E-02 -1.930E-02 
β33 1.026E-01 2.548E-01 -2.495E-02 
β34 2.217E-02 4.031E-03 1.789E-02 
β44 -3.745E-02 -1.060E-01 -9.415E-02 
α1 4.637E-04 -2.174E+00 -4.386E-02 
α2 -1.777E+00 1.727E-04 2.331E-01 
α3 -8.331E-01 -2.057E+00 3.636E-02 
α4 1.373E+00 1.668E+00 1.680E-01 
γ1 4.059E+00 4.998E-01 1.599E+00 
γ2 6.436E-01 -5.607E+00 6.996E-01 
γ3 5.452E-01 -4.785E-01 5.788E-01 
γ4 8.843E-02 3.033E-01 7.436E-01 
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Figure 9.1: Comparison between experimental and predicted εG values  

using the statistical correlation 
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Figure 9.2: Comparison between experimental and predicted dS values  

using the statistical correlation 
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Figure 9.3: Comparison between experimental and predicted kLa values  

using the statistical correlation 
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10.0  CONCEPTUAL PROCESS DESIGN USING PP25 SOLVENT 

10.1 ASPEN PLUS SIMULATOR 

Since CO2 appears to have higher solubility in PP25 than the other two PFCs, Aspen Plus 

(version 24.0) was used for the simulation of a conceptual PP25 physical solvent process for 

selective CO2 capture from a syngas generated from an E-Gas gasifier using Pittsburgh #8 coal 

and shifted to a pressure and temperature of 381 psia (26.27 bar) and 857 °F (731.48 K), 

respectively. The composition of this shifted gas, given in Table 10.1, is taken from “Capital and 

Operating Cost of Hydrogen Production from Coal Gasification”, Final Report, April 2003, by 

Parsons.248 After CO2 capture from the shifted gas stream, CO2 and H2 gases were recovered, and 

PP25 solvent was regenerated using two options, namely Pressure-Swing (P-Swing) and 

combined Pressure-Temperature-Swing (P-T-Swing). 

For the shifted gas shown in Table 10.1, the solubilities of CO2, N2 and H2 in PP25 were 

measured, whereas those of the other components were calculated using Aspen Plus (version 

24.0), which employs the PR-EOS. The solubilities of the gaseous components in PP25 

expressed in mole fraction (x*) are presented as a function of the partial pressure of each gas at 

different temperatures in Figures Figure D.1 and Figure D.2 in the Appendix D. 

In the simulation, the shifted gas flow rate into the conceptual PP25 process was 102.517 

kg/s (5.380 kmol/s), and the PP25 solvent flow rate was 11,831.2 kg/s. The CO2 capture process 
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was carried out at 500 K and 30 bar using an absorber (ABSORBER) and the outlet streams 

were one vapor-phase (ABS-VAP) and one liquid-phase (ABS-LIQ). It should be mentioned 

that when CO2 capture was carried out at 312 K (similar to Selexol), two immiscible liquid 

phases, namely an aqueous phase (mainly water) and an organic phase (mainly PP25 containing 

dissolved gases, including CO2) were found. 

 

 

Table 10.1: Composition of the Shifted Gas Used in This Study 

Component Mole fraction 
Ar 0.0048 

CH4 0.0024 
H2 0.3750 
N2 0.0033 
CO 0.0627 
CO2 0.2387 
H2O 0.3068 
NH3 0.0016 
COS 0.0000 
H2S 0.0047 
Total 1.0000 

 

 

In order to allow a comparison between the two PP25 solvent regeneration options, the 

following constraints were considered: (1) the H2 recovered from the gas stream enters the 

turbines at arbitrarily designated 20 bar and 1000 K; and (2) the CO2 to be delivered for 

sequestration was arbitrarily available at 20 bar and 310 K. 

Figure 10.1 shows a schematic of the conceptual PP25 process with the following main 

units: 

- Absorber (ABSORBER): to capture CO2 from the shifted gas using PP25 solvent. 
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- 3 flash drums (FLASH1, FLASH2, and FLASH3): to decrease the pressure (Table 

10.2). 

 

 

 

Figure 10.1: P-swing and P-T-swing PP25 Solvent Regeneration Options with 3 Flash Drums 
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third flash drum for the P-T-swing option were maintained at 1 bar as in the P-Swing option, all 

PP25 would be vaporized and lost into the vapor phase. 

 

 

Table 10.2: Conditions of flash drums for P-Swing and P-T-Swing  

PP25 solvent regeneration options  

 P-Swing Combined P-T-Swing 

 P T P T 
bar K bar K 

FLASH DRUM - 1 20 500 20 530 
FLASH DRUM - 2 10 500 10 560 
FLASH DRUM - 3 1 500 4 590 

 

 

Table 10.3 shows that at the absorber conditions of 500 K and 30 bar, 56.1 % of CO2 and 79.6% 

of water in the shifted gas are captured by PP25; and 67.5 % of H2 in the shifted gas is separated 

into the vapor-phase from the top of the absorber. Also, 0.36% of the PP25 fed to the absorber is 

lost in the vapor-phase from the top of the absorber and has to be recovered. 
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Table 10.3: Composition of the liquid-phase (ABS-LIQ) and 

vapor-phase (ABS-VAP) from the absorber (500 K and 30 bar) 

 Feed to absorber Liquid phase 
(ABS-LIQ) 

Vapor-phase 
(ABS-VAP) 

kmol/s kmol/s Mole Fraction kmol/s Mole Fraction 
Ar 0.0258 0.0118 6.525×10-4 0.0140 5.472×10-3 
CH4 0.0129 6.578×10-3 3.634×10-4 6.333×10-3 2.473×10-3 
H2 2.0174 0.6553 0.0362 1.3621 0.5320 
N2 0.0178 7.346×10-3 4.058×10-4 0.0104 4.064×10-3 
CO 0.3373 0.1370 7.568×10-3 0.2003 0.0782 
CO2 1.2841 0.7203 0.0398 0.5639 0.2202 
H2O 1.6505 1.3140 0.0726 0.3365 0.1314 
NH3 8.608×10-3 5.767×10-3 3.186×10-4 2.840×10-3 1.109×10-3 
COS 0 0 0 0 0 
H2S 0.0256 0.0172 9.482×10-4 8.399×10-3 3.280×10-3 
PP25 15.283 15.2275 0.8412 0.0557 0.0218 
Total 20.6632 18.1027 1.0000 2.5605 1.0000 

 

 

In the P-Swing option, the absorber and the 3 flash drums were configured to operate 

adiabatically (no heat exchange with the surroundings), and consequently the heat duties of these 

units were null. In addition, throughout this regeneration option, the temperature was kept almost 

constant (~ 500 K) while the pressure was decreased from 30 to 1 bar in 3 steps: 20, 10, and 1 

bar. Tables 10.4, 10.5 and 10.6 show a comparison between the compositions of the CO2 stream 

to be sent to sequestration, the H2 streams to be sent to turbines, and the composition of the 

regenerated PP25 streams to be recycled to the absorber for the P-Swing and P-T-Swing 

regeneration options. Table 10.4 indicates that the PP25 losses in the CO2 stream to be sent to 

sequestration based on the total amount of solvent fed to the absorber in the P-T-Swing option 

are greater (2.59%) than those found in the case of the P-Swing option (0.82%) despite the fact 

that the amounts of CO2 to be sent to sequestration are almost the same, and the amount of H2 to 

be sent to turbines (Table 10.5) are almost identical in the two regeneration options. These 
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solvent losses are coming from the absorber (ABSORBER), 1st flash drum (FLASH1), and the 

2nd flash drum (FLASH2), since a solvent “separator” was used after the 3rd flash drum in order 

to recover PP25 from the vapor-phase and redirect it to the solvent steam. Table 10.6 confirms 

the decrease of the amount of PP25 solvent in the stream to be sent to the absorber for the P-T-

Swing when compared with the P-Swing as in Table 10.4. It should be emphasized that these 

relatively elevated PP25 losses, which could be economically prohibitive, can be attributed to the 

fact that the absorption and regeneration temperatures in both regeneration options are close to 

the solvent boiling point (533 K), as mentioned above. 

 

Table 10.4: Composition of the CO2 stream to be sent to sequestration 

Component 
Original feed 
to absorber 

Feed to flash 
drums P-Swing P-T-Swing 

kmol/s kmol/s kmol/s kmol/s 
Ar 0.0258 0.011812 0.0257 0.0257 
CH4 0.0129 6.578×10-3 0.0128 0.0128 
H2 2.0174 0.6553 0 0 
N2 0.0178 7.346×10-3 0.0177 0.0177 
CO 0.3373 0.1370 0.3366 0.3362 
CO2 1.2841 0.7203 1.2720 1.2712 
H2O 1.6505 1.3140 1.5387 1.5750 
NH3 8.608×10-3 5.767×10-3 8.405×10-3 8.434×10-3 
COS 0 0 0 0 
H2S 0.0256 0.0172 0.0250 0.0250 
PP25 15.283 15.2275 0.1248 0.3953 
Total 20.6632 18.1027 3.3617 3.6674 
 

 

Table 10.5: Hydrogen stream to be sent to turbines 

Component Original feed to absorber Feed to 
flash drums P-Swing P-T-Swing 

kmol/s kmol/s kmol/s kmol/s 
H2 2.01739 0.65527 2.01575 2.01418 
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Table 10.6: Composition of the regenerated PP25 stream to be sent to the absorber 

Component 
Original feed to 

absorber 
Feed to 

flash drums P-Swing P-T-Swing 

kmol/s kmol/s kmol/s kmol/s 
Ar 0.0258 0.011812 9.326×10-5 1.298×10-4 
CH4 0.0129 6.578×10-3 7.662×10-5 9.524×10-5 
H2 2.0174 0.6553 1.633×10-3 3.209×10-3 
N2 0.0178 7.346×10-3 4.109×10-5 6.273×10-5 
CO 0.3373 0.1370 7.197×10-4 1.105×10-3 
CO2 1.2841 0.7203 0.0121 0.0129 
H2O 1.6505 1.3140 0.1118 0.0755 
NH3 8.608×10-3 5.767×10-3 2.025×10-4 1.740×10-4 
COS 0 0 0 0 
H2S 0.0256 0.0172 6.081×10-4 5.397×10-4 
PP25 15.2832 15.2275 15.1585 14.8879 
Total 20.6632 18.1027 15.2857 14.9816 

 

 

Table 10.6 also shows that for the P-T-Swing, the amount of H2 in the regenerated PP25 stream 

to be sent to the absorber is 0.16% based on the total amount of H2 in the shifted gas fed to the 

absorber, which is greater than that found for the P-Swing (0.08%). This is explained by the 

increase in solubility of H2 in PP25 as a function of temperature. 

Table 10.7 shows that even though a large amount of heat is involved in the heating and 

cooling of the PP25 solvent, the net enthalpy for the P-T-Swing regeneration option is smaller 

than that for the P-Swing option. This net enthalpy could be utilized for generating steam or in 

other process applications. It should be pointed out that heating PP25 solvent at large flow rate 

(11,831.2 kg/s) for only 90 K (from 500 to 590 K) requires a significant amount of power, 

totaling 1,615.22 MW, which can be related to the high specific heat of the solvent. 
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Table 10.7: Thermal comparison between the two PP25 solvent regeneration options 

 P-Swing P-T-Swing 
MW MW 

 Heating Flash Drums 0 1,615.22 
 Heating or Cooling PP25 24.82 -1,396.00 
Total Heat Duty -28.85 5.83 
Work Required 106.74 110.15 
Heating H2 8.36 4.58 
Cooling CO2 -162.44 -213.38 
Net Enthalpy -76.20 -92.82 

10.2 IS PP25 SOLVENT AN “IDEAL” SOLVENT? 

The PP25 physical solvent used in this conceptual process design for CO2 capture showed high 

CO2 solubilities, has relatively low viscosity at 500 K, possesses very good thermal and chemical 

stabilities, and has a solubility parameter close to that of CO2 and hence it could be considered as 

an “ideal” solvent. Unfortunately, the relatively high vapor pressure of PP25 at 500 K appeared 

to be major drawback of this solvent. This was obvious in the conceptual process design, 

particularly during the pressure-temperature swing regeneration option, where the solvent loss 

was significant. This is because the boiling point of PP25 is 533 K, which is close to the absorber 

temperature, which was set at 500 K. It is therefore imperative to seek different physical 

solvents, which have negligible vapor pressure, in addition to the other desirable properties of the 

“ideal” solvent. 

Ionic liquids are known to have negligible vapor pressure due to their chemical structure 

and accordingly our research emphasis has been focused on using ionic liquid for CO2 capture 

from fuel gas streams at relatively high temperatures. 



 141 

11.0  IONIC LIQUIDS 

Ionic liquids (ILs) are salts having two ions which are poorly coordinated to the extent that these 

salts can be present as liquids below 373 K, or even at room temperature. In these ILs, at least 

one ion has a delocalized charge and one component is organic, which prevents the formation of 

a stable crystal lattice. ILs are different from typical salts such as alkali halides, which have very 

high melting points due to their extremely strong Columbic forces. ILs offer virtually an infinite 

number of possible structures that allows them to be tuned towards desirable properties and 

applications. They have been used as catalysts249 while combining their power as solvents. They 

have been used for azeotropic250 and extractive251 distillations. Also, due to their thermal 

stability, ILs have been used as lubricants at relatively high temperatures.252 ILs are known as 

“designer” or “tailor-made” solvents because their physical properties, such as melting point, 

viscosity, and gas solubilization, can be controlled by altering the substituents of the cation or the 

anion.249 They are considered “green” or “environmentally-friendly” solvents due to their non-

volatility and minimal impact on the environment.252-254 Some ILs can be easily disposed of, e.g., 

using ultrasound to degrade solutions of imidazolium-based ionic liquids with hydrogen peroxide 

and acetic acid to relatively harmless compounds.255 In addition, the negligible vapor pressure249 

of ILs allows them to be employed in numerous reactions or separation processes.251,252,256,257 

It should be mentioned that certain ILs have some inherent drawbacks such as: (1) 

various ILs have been found to be combustible and require careful handling;258 (2) a brief 
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exposure (5 to 7 seconds) to a flame torch will ignite some ILs, and some of them can be 

completely consumed by combustion;258 (3) ILs tend to have a higher viscosity than 

conventional solvents, which could increase pumping costs; and (4) some ILs are hydroscopic as 

well as potentially toxic to aquatic environments.259 This aquatic toxicity should not be ignored 

as it was reported to be equal to or greater than that of many conventional solvents.253,254 

11.1 PROPERTIES OF THE GASES AND IONIC LIQUIDS USED 

In this study, gaseous CO2 with 99.99% purity (Grade 4.0), H2 with 99.99% purity (Grade 4.0), 

industrial grade N2 (99.7%) and a gaseous mixture consisting of 9.47/90.53 mole ratio of H2S/N2 

were obtained from Valley National Gases, LLC, USA.207 The use of H2S/N2 mixture was 

necessary to allow high pressure in the gas cylinder (137 bar) recommended for applying the 

physical gas absorption technique and to avoid any exposure to pure H2S due to its high toxicity 

at 15 ppm level for a short exposure time. The liquids used as potential solvents for CO2 capture 

are the ionic liquids TEGO IL K5, TEGO IL P51P and TEGO IL P9 manufactured by Evonik 

Goldschmidt Chemical Corporation260. The compositions of these solvents and their scientific 

name as reported by the Company are given in Table 11.1. The selection process for this IL was 

also guided by the recently developed definition of an “ideal” physical solvent for CO2 

capture.261,262 Table 11.2 shows the critical properties of the ILs as well as the gases used in this 

study. 
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Figure 11.1: ILs used as physical solvent for CO2 capture 
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Table 11.1: Composition of the ionic liquids TEGO IL K5, TEGO IL P51P and TEGO IL P9 

from the MSDS provided by Evonik Goldschmidt chemical corporation 

Ionic Liquid Components CAS 
Number 

Concentration 
(%) 

TEGO IL K5 

Quaternary Ammonium Compounds, Coco 
Alkylbis (hydroxyethyl)methyl, Ethoxylated, 
Chlorides 

61791-10-4 100 

Methyl Chloride 74-87-3 < 0.03 

TEGO IL P51P 1,2-Ethanediol 107-21-1 1-10 
Alkoxylated Ammonium Phosphate P-89-783 90-99 

TEGO IL P9 

Polyoxypropylene methyl diethyl ammonium 
chloride 68132-96-7 85-95 

Water 7732-18-5 5-15 
Methyl Chloride 74-87-3 < 0.03 

 

 

Table 11.2: Critical properties of the gases and ILs used 

Component MW 
kg.kmol-1 

Tb 
K 

Tc 
K 

Pc 
bar 

Vc 
m3.kmol-1 

ω 
- Reference 

CO2 44.010 194.70 304.19 73.82 0.0941 0.228 
168,209 H2 2.016 20.39 33.18 13.13 0.0642 -0.22 

N2 28.013 77.35 126.10 33.94 0.0901 0.040 
H2S 34.082 212.80 373.53 89.63 0.0985 0.083 
IL K5 924.68 626.56 848.46 7.138 2.9486 0.0302 Section 12.3 

(See page 182) IL P51P 3205.27 717.98 824.22 1.857 10.1607 0.0512 
IL P9 690.39 NA NA NA NA NA  

 

NA: Not Available 
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11.2 EXPERIMENTAL SETUP 

The same 4-liter ZipperClave agitated reactor as for the perfluorocarbons experiments was 

employed in ILS experiments. The experimental setup used to obtain the solubilities and 

volumetric liquid-side mass transfer coefficients for CO2, N2 and H2S in the IL K5 physical 

solvent is identical to that previously described. 

11.3 SECOND GAS-LIQUID SYSTEMS USED 

11.3.1 Density of the ionic liquids 

In order to maintain a constant volume of liquid in the 4L Zipper Clave reactor, it is important to 

know the density of the ionic liquids, so that at room temperature the correct amount of solvent 

can be charged in the reactor. We decided to measure the density in our 4L Zipper Clave reactor 

by charging a known mass of solvent in the glass liner placed in the reactor. Since the reactor 

was calibrated with an external ruler, the increase in liquid height as a function of temperature 

was related to the increase in liquid volume and let to the density of the liquid. 

Since the density of the 3 different ionic liquid appeared to decrease linearly with 

increasing temperatures, instead of a complex Racket equation used for the density correlation of 

the perfluorocarbon density, we chose a simple linear regression to correlate their density as a 

function of temperature: 

TBA ⋅+=Lρ  (11-1) 
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Table 11.3: Coefficient for Equation (11-1) for the three ILs 

Liquid A B 
kg.m-3 kg.m-3.K-1 

TEGO IL K5 1262.9772 -0.590133 
TEGO IL P51P 1256.4542 -0.773155 
TEGO IL P9 1209.6301 -0.535747 

 

 

 

Figure 11.2: Density of the selected ionic liquids as a function of temperature 
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designed for measurements at room temperatures, but we were able to extend the measurements 

up to 400 K after which the glassware became too hot to handle safely and all the accuracy of the 

measurements could not be guaranteed. 

 

 

Figure 11.3: Comparison of density data for TEGO IL K5 obtained using the 4L reactor and a 

pycnometer as a function of temperature 
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Figure 11.4 shows the viscosities of the 3 ILs which were measured using a Cannon-Fenske 
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highest viscosity. The values were correlated using the Vogel-Tamman-Fulcher Equation (11-2) 

with a regression coefficient (R2) > 0.99, and the coefficient for the equation can be found in 

Table 11.4: 









−

⋅=
O

OL TT
B0expµµ  (11-2) 

 

 

Figure 11.4: Viscosity of the three ionic liquids as a function of temperature 
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11.3.3 Surface tension of the ionic liquids 

The Ethoquad C/25 Cocoalkylmethyl[polyoxyethylene (15)] ammonium chloride, CAS# 61791-

10-4)263 from Azko Nobel has a coconut fatty alkyl chain and 15 ethylene oxide units, which is 

identical to TEGO IL K5. Azko Nobel reported two values for the surface tension of TEGO IL 

K5 in a water solution at 298 K, 43.4 mN/m at 0.1% and 41.5 mN/m at 1%, which are the only 

surface tension data found in the literature for the three studied ionic liquids. 

To measure the surface tension of the ionic liquids in our laboratory, we used the Fisher 

Surface Tensiomat, Model 21, which can be used to determine the apparent surface tension and 

interfacial tension of liquids. 

The ring method also known as the Lecomte du Nouy ring method is the technique most 

often used by researchers for static surface tension measurement. The surface tension can be 

determined directly from the force required to pull the ring from a liquid. This method does not 

require any calibration with other methods or known solutions. The surface tension for the du 

Nouy method is the mechanical force necessary to lift a platinum-iridium ring of precisely 

known dimensions wire radius (r) and ring radius (R) from the solution surface via a counter-

balanced lever-arm. The arm is held horizontal by torsion applied to a taut stainless steel wire to 

which it is clamped. Increasing the torsion in the wire raises the arm and the ring, which carries 

with it a film of the liquid in which it is immersed. The force necessary to pull the test ring free 

from this surface film is measured. The Surface Tensiomat shows this “apparent” surface on a 

calibrated dial, which can be converted to “absolute” values by multiplying by a correction 

factor. 
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The equation describing this process is: 

R
FP
⋅
⋅

=
π

η
4

 (11-3) 

η = surface tension 

P = force or pull necessary to detach ring from solution surface 

V = volume of solution displaced by the pull of ring 

F = Harkins-Jordan correction factor, f(R/r,R3/V) 

Harkins and Jordan264 also presented some possible sources of error associated with the 

ring method: 

1. The plane of the ring must be horizontal to the liquid surface. 

2. The diameter of the vessel holding the liquid should be greater than 8 cm. 

3. The ring should lie in a plane. 

The surface tensiomat measures apparent surface tension, in order to obtain the absolute 

surface tension, the following relationship is used: 

FPS ×=  (11-4) 

where S is the absolute value, P is the apparent value as indicated by the dial reading, and F a 

correction factor. The correction factor is dependent on the size of the ring and the size of wire 

used in the ring, the apparent surface tension, and the densities of the two phases. Equation 

(11-5) shows the relationship for the correction factor: 

( )
( )

K
dD

P
R
baF +

−
×=− 2

2 4
π

 (11-5) 

with 

R
rK 679.104534.0 −=  (11-6) 
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By replacing πR=C/2, and Equation (11-6) 

( ) R
r

dDC
bPaF 679.104534.016

2 −+
−

+=  (11-7) 

where 

F = correction factor 

R = radius of the ring 

r = radius of the wire of the ring 

P = apparent value or dial reading of surface tension 

D = density of the lower phase 

d = density of the upper phase 

K = 0.04534 – 1.679 r/R 

C = circumference of the ring 

a = 0.725 

b = 0.0009075 

K, a and b are universal constants for all rings, for the instrument in our laboratory, 

C = 6.005 cm and R/r = 53.7936868. 

 

 

Figure 11.5 represents the surface tension of the TEGO IL K5 and the TEGO IL P51P as 

a function of temperature in the range from 296 to 369 K. The data for the TEGO IL K5 were 

correlated with R2=0.936 and the data for TEGO IL P51P was correlated with R2=0.848. Since 

the surface tension of a liquid is related to its critical temperature (Tc) through the Guggenheim’s 

empirical correlation, Equation (11-8), according to Rebelo et al.,265 this equation was used to 
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model the measured surface tensions of the two ILs values as a function of temperature and the 

calculated values of σ0 and Tc for each IL are listed in Table 11.5. 
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Figure 11.5: Surface tension of TEGO IL K5 and TEGO IL P51P as a function of temperature 

 

 

Table 11.5: Calculated values of coefficients in Equation (11-8) 
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TEGO IL P51P 0.04695 824.22 

  

T, K

260 280 300 320 340 360 380 400 420


L, 

N
.m

-1

0.00

0.01

0.02

0.03

0.04

TEGO IL K5
TEGO IL P51P



 153 

11.4 CALCULATION OF THE SOLUBILITY AND VOLUMETRIC MASS 

TRANSFER COEFFICIENT OF GASES IN THE ILS 

11.4.1 Gas Solubility, C* 

The calculation of the gas solubility in the IL was conducted assuming non-ideal behavior of the 

liquid and gas phases under the experimental conditions used. Knowing the total pressure and 

temperature of gas-liquid system inside the reactor, the Peng-Robinson Equation-of –State (P-R 

EOS) was used to calculate the liquid-phase and gas-phase compositions at thermodynamic 

equilibrium using the steady-state portion of the P–t profile, where the reactor volume balance 

was taken into account. The amount of gas absorbed prior to mixing in the reactor was accounted 

for by building a mass balance on the preheater, which made the calculation of the gas solubility 

in the liquid more rigorous when compared with previous studies. The solubilities of N2 and 

CO2, as individual gases, in the IL solvent were obtained using the same experimental setup and 

calculation method. The solubility of N2, mixed with H2S, in the IL solvent was subsequently 

compared with that of N2 as single gas in the same solvent at identical pressure and temperature 

conditions. This comparison allowed the validation of the solubility values of N2 and 

consequently those of H2S in the IL solvent. 

11.4.2 Volumetric Liquid-Side Mass Transfer Coefficient, kLa 

For pure CO2, H2 and N2 the calculation of kLa was carried out using a transient physical 

absorption technique under the following assumptions: (1) non-ideal behavior of the liquid and 

gas phases, (2) the liquid phase is well mixed, (3) the mass transfer resistance on the gas-side is 
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negligible when compared with that in the liquid-side, and (4) the double-film theory is 

applicable. The rate of mass transfer of the solute gas from the gas-phase into the liquid-phase 

(ni,L) during the transient portion of the P–t profile can be expressed using Equation (7-37) (See 

page 89); and the calculation scheme used for calculating kLa can be found in Section 7.2. 

For the N2/H2S gaseous mixture, the Mass Spectrometer was used to obtain N2 and H2S 

mole fractions as a function of time by monitoring the intensity at the atomic mass units 28 and 

34, corresponding to the 100% peaks for N2 and H2S, respectively. The pressure transducer in the 

reactor was also used to record the total pressure decline as a function of time. The knowledge of 

these data allowed the calculation of the partial pressures corresponding to N2 and H2S as a 

function of time, which, in turn, were substituted into Equations (7-38) and (7-39) in order to 

obtain kLa values for each gas in the mixture. 

11.5 RESULTS AND DISCUSSIONS OF IONIC LIQUIDS 

11.5.1 Solubility of CO2 in the ILs 

As can be seen in Figure 11.6, the equilibrium solubility of CO2 in the IL, expressed as mole 

fraction (x*), appears to increase nonlinearly with CO2 partial pressure (PCO2) for all 5 

temperatures used and Equation (11-9) can be used to model the experimental x* values in this 

IL with a correlation coefficient (R2) > 0.992. It is also important to note that the solubility 

decreases with increasing temperature. The solubility of CO2 in the IL at 300 K is about 2.4 to 

4.6 times greater than that at 500 K over the pressure range investigated (0-30 bar). This decrease 
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of CO2 solubility with increasing temperature was previously reported by a number of 

investigators, including Anthony et al.266,267, Kumelan et al.268 and Shin et al.269 

Figure 11.7 shows the equilibrium solubility of CO2 in the TEGO IL P51P, and as can 

also be observed, the solubility values increase nonlinearly with CO2 partial pressure for all 

temperatures used, and Equation (11-9) can be employed to model the solubility data for this IL 

with R2 > 0.98.5. 

** 1
2

12 XbXaPCO ⋅+⋅=  (11-9) 

 

 
Figure 11.6: Solubility of CO2 in the TEGO IL K5 as a function of temperature  

and CO2 partial pressure 
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Figure 11.7: Solubility of CO2 in the TEGO IL P51P as a function of temperature  

and CO2 partial pressure 
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Figure 11.8: Solubility of CO2 in the TEGO IL P9 as a function of temperature  

and CO2 partial pressure 
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Figure 11.9: CO2 Solubility comparison between Selexol, TEGO IL K5, TEGO IL P51P and 

TEGO IL P9 as a function of CO2 partial pressure at 300 K 
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Figure 11.10: CO2 Solubility comparison between TEGO IL K5 and TEGO IL P51P as a 

function of CO2 partial pressure at 500 K 
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that the value of the Henry’s law constant at infinite dilution for the TEGO IL K5 at 500 K is 7.5 

times that at 300 K. 
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In certain cases (e.g., for relatively small temperature ranges), the standard heat of solution of a 

gas (ΔHº) may be treated as a constant and can be related to the Henry’s law constant at infinite 

dilution (He∞) through Equation (11-11).224 
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However, there are other cases (e.g., for relatively wide temperature ranges) in which ΔHº is 

temperature dependent and, therefore, is not a constant. For the latter cases, ΔHº may be obtained 

from Equation (11-12).223,224,270 
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Figure 11.11 depicts ln(He∞) as a function of the reciprocal of absolute temperature (1/T) and 

shows that the Henry’s law constants at infinite dilution (He∞) for the two ILs are not a linear 

function of the reciprocal of temperature; accordingly the standard heat of solution of CO2 (ΔHº) 

is temperature-dependent. Therefore, the Henry’s law constants at infinite dilution (He∞) were 

modeled as a function of the reciprocal of absolute temperature using Equation (11-13), where 

the constants in this equation are given in Table 11.6. 
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Table 11.6: Coefficients in Equation (11-13) 

 TEGO IL K5 TEGO IL P51P 
A 4.569 -10.912 
B 1032.61 11069.1 
C -479,608.6 -2,127,077 

 

The combination of Equations (11-12) and (11-13) yields the following expression: 
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Figure 11.11: Henry’s law constant as a function of temperature for CO2  

in the TEGO IL K5 and TEGO IL P51P 
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The values of ΔHº for CO2 in both ILs are given in Table 11.7. The negative values of 

ΔHº indicate that CO2 dissolves in the ionic liquids in the specified temperature range, even 

though the magnitude of ΔHº decreases from that for relatively strong acid-base bonds at 300 K 

to that for either very weak acid-base bonds or van der Waals associations at 500 K.262 

 

Table 11.7: Henry’s law constant at infinite dilution and standard heat of solution for CO2  

dissolved in the TEGO IL K5 and TEGO IL P51P 

 T 
(K) 

He∞ 
(bar) 

ΔHº 
(kJ.mol-1) 

TEGO IL K5 

300 14.35 -18.00 
350 33.57 -14.20 
400 66.80 -11.35 
450 86.93 -9.14 
500 108.39 -7.37 

TEGO IL P51P 

300 10.62 -25.87 
350 28.10 -9.03 
400 29.94 3.61 
450 27.70 13.43 
500 14.16 21.29 

 

11.5.3 Solubility of H2 in the TEGO IL P51P 

Figure 11.12 shows the solubility of H2 (expressed in mole fraction) in the TEGO IL P51P, and, 

as can be observed from Figure 11.12, the solubility of H2 increases with temperature from 350 

to 500 K, which is similar to that reported for other ILs by Kumelan et al.271 The comparison 

between Figures 11.7 and 11.12 reveals that the solubility of CO2 in the TEGO IL P51P is about 

4 times that of H2 at 350 K; and this ratio decreases to about 1.5 at 500 K. This behavior is 

similar to that reported for the solubilities of CO2 and H2 in other ionic liquids.268,271 
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Figure 11.12: Solubility of H2 in the TEGO IL P51P as a function of pressure and temperature 
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consequently the solubility data for H2S in the IL physical solvent using the gas mixture should 

also be reliable. It should be mentioned that the partial pressures of H2S used in the experiments 

were < 2.5 bar because the original gas mixture contained 9.47 mole% of H2S, and the highest 

total pressure used in the experiments was 30 bar. The H2S solubility data obtained within this 

small pressure range, however, are useful since the H2S mole fraction in a typical shifted gas 

stream using Pittsburgh No. 8 Coal was reported to be 0.48 mole % which corresponds to 0.13 

bar, considering the fuel gas pressure is available at 26.3 bar.248 

Figure 11.14 shows that the solubility of H2S in the IL physical solvent non-linearly 

increases with pressure within the range investigated. This behavior is not surprising since 

similar behavior of CO2 solubility can be observed in Figure 11.6. It is also important to note that 

the H2S solubility in the IL decreased with increasing temperature, which is also similar to the 

behavior of the CO2 solubility in the same ionic liquid. 

 
Figure 11.13: Comparison between the solubilities in the IL of  

N2 as single gas and N2 within the binary H2S/N2 mixture  

PN2
, bar

0 5 10 15 20 25 30 35

x*
, -

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

500 K (Pure N2)
500 K (N2 from H2S/N2 mixture)



 165 

 
Figure 11.14: Solubility of H2S in the IL as a function of 

temperature and H2S partial pressure 

 

11.5.5 Comparison between H2S and CO2 solubilities in the TEGO IL K5 

Table 11.8 shows a comparison between the solubilities of H2S and CO2 in the IL physical 

solvent under similar pressures and temperatures. The solubility values of CO2 were predicted by 

fitting the data measured at pressures varying from 2 to 30 bar. As can be deduced from this 

table, the solubilities of H2S in the IL are lower than those predicted for CO2 at 300 K. At the 

other temperatures used (350, 400, 450 and 500 K), however, H2S solubilities appear to be 

greater than those of CO2. Thus, the IL can be used to remove H2S and CO2 from a relatively dry 

hot gas stream within a temperature range from 350 to 500 K under pressures up to 30 bar. 

PH2S
, bar

0.0 0.5 1.0 1.5 2.0 2.5

x*
, -

0.00

0.01

0.02

0.03

0.04

0.05

0.06

300 K
350 K
400 K
450 K
500 K



 166 

11.5.6 kLa of CO2 and H2 in the TEGO IL K5 and TEGO P51P 

In order to design a CO2 capture process using ILs, one must know the solubility and the 

volumetric liquid-side mass transfer coefficients (kLa) which will determine the size of the 

absorber, such as a packed-bed reactor.272 These mass transfer coefficients should be measured 

under the pressure and temperature of the CO2 capture process in order to properly design and 

scaleup the absorber. 

11.5.6.1 Effect of Pressure on kLa 

Figures 11.15, 11.16 and 11.17 show the effect of pressure on kLa values for CO2 in the TEGO 

IL K5 and TEGO IL P51P at various temperatures, mixing speeds, and liquid heights. In general, 

kLa values increase with pressure, and in some cases, kLa values increase up to a pressure of 

about 25 bar and then slightly increase or level off. The reason for increasing kLa with pressure 

can be attributed to the increase of the CO2 solubility, which alters the physicochemical 

properties of the liquid phase, such as liquid viscosity and surface tension, which are supposed to 

increase kLa. Numerous investigators85,126,128,139,144,146,151,240 reported that kLa is strongly 

dependent on the gas-liquid system and the range of pressures used. In this study, it appears that 

increasing pressure resulted in shrinkage of the gas bubbles into small ones with large gas-liquid 

interfacial area (a), leading to the increase of kLa. 

11.5.6.2 Effect of Temperature on kLa 

Figure 11.15 illustrates that kLa values increase with increasing temperature for CO2 in the 

TEGO IL K5 and TEGO IL P51P within the temperature range used. Similarly, several authors 

reported an increase of kLa values with temperature in different gas-liquid 
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systems.121,129,139,143,146,150,151,240 The effect of temperature on kLa can be explained by its effect 

on the gas-liquid interfacial area (a) and the liquid-side mass transfer coefficient (kL). For 

instance, increasing temperature decreases the liquid viscosity and surface tension, resulting in 

an increase of the gas holdup (εG) and a decrease of the Sauter mean bubble diameter (dS), 

resulting in increasing the gas-liquid interfacial area (a), as can be deduced from Equation 

(8-12). Also, increasing temperature results in increasing the gas diffusivity and, consequently, 

the liquid-side mass transfer coefficient (kL) since it is directly proportional to the gas diffusivity 

to power 1 (film-theory) or 0.5 (penetration theory).261 Thus, the combined effect of temperature 

on both a and kL led to the observed increase of kLa, as indicated in Figure 11.15. 
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Figure 11.15: Effect of temperature on kLa for CO2 in the TEGO IL K5 and TEGO IL P51P 

11.5.6.3 Effect of Mixing Speed on kLa 

Figure 11.16 shows the effect of mixing speed on kLa for CO2 in the TEGO IL K5 and TEGO IL 

P51P and, as can be observed, increasing mixing speed increases kLa, which is in agreement with 

numerous investigations.26,51,52,120,126,128,129,139,143,144,148-150,237,240,245-247 The increase of kLa with 

P1,m, bar

0 10 20 30 40

k La
, s

-1

0.0001

0.001

0.01

350 K
450 K TEGO IL K5 - CO2, N=15.0 Hz, H=0.16 m

P1,m, bar

0 10 20 30 40

k La
, s

-1

0.0001

0.001

0.01

0.1

350 K
450 K

TEGO IL P51P - CO2, N=15.0 Hz, H=0.16 m



 169 

mixing speed can be attributed to the effect on the liquid-side mass transfer coefficient kL and the 

gas-liquid interfacial area (a). Increasing mixing speed increases the turbulence and shear rate in 

the reactor,145,146 which reduces the gas-liquid film thickness (Δ), leading to the increase of the 

mass transfer coefficient, since kL = DAB/Δ. Also, increasing mixing speed increases the pumping 

capacity of the impeller, and, consequently, more gas bubbles are induced into the liquid through 

the hollow shaft, which increases the gas holdup. This increase of the gas holdup (εG) should 

increase the gas-liquid interfacial area (a) according to Equation (8-12). It is important to note 

that the increase in kLa from 13.3 to 16.7 Hz is about 20 times, whereas the increase in kLa from 

16.7 to 20 Hz is about 2-3 times. This smaller increase of kLa values at higher mixing speeds can 

be related to the effect of mixing speed on the induced gas flow rate (QGI) through the hollow 

shaft. As reported by Fillion51 and Lemoine et al.,206 at mixing speeds greater than the critical 

mixing speed for gas induction, QGI increases with mixing speed until a fully developed 

hydrodynamic regime is reached, and then QGI becomes independent of the mixing speed. Thus, 

it appears that a fully developed hydrodynamic regime is reached at 16.7 Hz and, accordingly, 

further increase of mixing speed up to 20 Hz did not significantly increase QGI and subsequently, 

kLa values were not significantly increased. 
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Figure 11.16: Effect of mixing speed on kLa for CO2 in the TEGO IL K5 and TEGO IL P51P 
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11.5.6.4 Effect of Liquid Height on kLa 

Figure 11.17 shows the effect of liquid height on kLa for CO2 in the TEGO IL K5 and TEGO IL 

P51P and as can be seen kLa values decrease with increasing liquid height. For instance, 

increasing liquid height from 0.14 to 0.22 m decreases the kLa values by an order of magnitude 

for CO2 in the TEGO IL P51P and about 8 times in the TEGO IL K5. This behavior of kLa can 

be related to the effect of liquid height on both the mass transfer coefficient (kL) and the gas-

liquid interfacial area (a). Increasing liquid height decreases the turbulence in the reactor, which 

results in a decrease of kL. Also, increasing liquid height decreases the pumping capacity of the 

impeller, as well as the gas holdup, and increases the Sauter mean bubble diameter, which leads 

to the decrease of a. Thus, the decrease of both the kL and a values led to the decrease of kLa with 

increasing liquid height. 
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Figure 11.17: Effect of liquid height on kLa for CO2 in the TEGO IL K5 and TEGO IL P51P 
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11.5.6.5 Effect of Gas Nature on kLa 

Figure 11.18 depicts the effect of gas nature at 400 K, 16.7 Hz, 0.18 and 0.22 m on kLa values for 

CO2 and H2 in the TEGO IL P51P. As can be observed in this figure, kLa values for CO2 are 

smaller than those of H2 under similar operating conditions. This kLa behavior can be attributed 

to the smaller gas holdup and larger Sauter mean bubble diameter for CO2 which led to a smaller 

gas-liquid interfacial area for CO2 than that of H2.. These data indicate that the gas-liquid 

interfacial area (a) is controlling the behavior of kLa in the gas-inducing reactor (GIR), since the 

mass transfer coefficients (kL) for CO2 is supposed to be larger than that of H2, given the fact that 

the diffusivity of CO2 is about four times that of H2
 according to the Wilke-Chang Equation.168 

 

 

 

Figure 11.18: Effect of gas nature on kLa in the TEGO IL P51P 
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11.5.6.6 Effect of Liquid Nature on kLa 

As can be deduced from Figures 11.15, 11.16 and 11.17, under similar operating conditions, kLa 

values for CO2 in the TEGO IL K5 are smaller than those in the TEGO IL P51P. Figure 11.19, 

however, shows that the difference between kLa values in both ILs is minimal, which could be 

due to the small differences between the viscosities and densities of the two ILs under the 

operating conditions used in this study. 

 

 

Figure 11.19: Effect of liquid nature on kLa in the TEGO IL K5 and TEGO IL P51P 
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values for N2 in the gas mixture with H2S are lower than those obtained for N2 as a single gas. 

This important finding underlines the fact that the presence of H2S with N2 in the gaseous 

mixture creates a resistance to N2 mass transfer from the gas bubbles into the IL solvent, (1/kGa) 

leading to the decrease of its kLa value. The reciprocal of this resistance represents the 

volumetric gas-side mass transfer coefficient (kGa), which can be quantified from the following 

relationship: 

akakak GgleNLmixtureNL

1
)(
1

)(
1

sin,, 22

+=
 

(11-16) 

The calculated kGa from the experimental data at N2 mean pressure of 5 and 28 bar, respectively 

was found to vary from 0.0020 to 0.0028 s-1 at 350 K and from 0.033 to 0.040 s-1 at 500 K. Such 

resistance may be attributable, in part, to dipolar coupling and/or hydrogen bonding between H2S 

and N2 molecules. 

Figures 11.20 and 11.21 show that kLa values for CO2 in IL are greater than those for N2 

and since CO2 solubility values in the same solvent are also greater than those of N2, this 

combined behavior highlights the stronger selectivity of IL towards CO2 than towards N2. 

Furthermore, even though the mean pressure for H2S is much lower than that of CO2 and N2, 

Figures 11.20 and 11.21 show that kLa values of H2S in the IL appear to be greater than those of 

CO2 and N2. It should be mentioned that similar behavior of kLa values was also observed at 400 

and 450 K. Thus, this kLa behavior, in addition to the greater solubility of H2S than that of CO2 in 

the IL within the temperature range studied, indicates that H2S can be more easily captured than 

CO2 from the fuel gas stream by the IL physical solvent within this temperature range from 350 

to 500 K. Also, due to the greater solubility and mass transfer coefficients of H2S than those of 

CO2 in the IL a shorter absorber can be employed for H2S capture than that needed for CO2. 
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Figure 11.20: Comparison among kLa values for CO2, H2S and N2 in the IL 

(T = 350 K, N = 15.0 Hz, H = 0.16 m) 

 

 
Figure 11.21: Comparison among kLa values for CO2, H2S and N2 in the IL K5 
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Table 11.8: Comparison between the solubility of H2S and CO2 in the IL K5 physical solvent 

Temperature Pressure x*H2S x*CO2 (calculated from 
experimental data) x*H2S / x*CO2 

K bar % % - 

300 

0 0 0  
0.277 1.14 1.28 0.89 
0.312 1.28 1.44 0.89 
0.607 2.38 2.77 0.86 
0.633 2.49 2.89 0.86 
0.937 3.52 4.24 0.83 
0.949 3.58 4.30 0.83 
1.219 4.45 5.48 0.81 
1.240 4.48 5.57 0.80 
1.538 5.38 6.85 0.78 
1.550 5.38 6.90 0.78 

350 

0 0 0  
0.357 0.87 0.68 1.27 
0.445 1.04 0.85 1.23 
0.739 1.70 1.41 1.20 
0.773 1.79 1.47 1.21 
1.171 2.59 2.23 1.17 
1.190 2.65 2.26 1.17 
1.616 3.49 3.06 1.14 
1.630 3.50 3.09 1.13 
2.050 4.26 3.87 1.10 
2.053 4.27 3.87 1.10 

400 

0 0 0  
0.357 0.62 0.46 1.33 
0.397 0.68 0.52 1.31 
0.783 1.31 1.02 1.29 
0.833 1.38 1.08 1.28 
1.206 1.95 1.56 1.25 
1.281 2.05 1.66 1.24 
1.612 2.51 2.09 1.20 
1.659 2.59 2.15 1.21 
2.023 3.11 2.61 1.19 
2.050 3.14 2.65 1.19 

450 

0 0 0  
0.415 0.58 0.45 1.29 
0.463 0.64 0.50 1.28 
0.920 1.24 0.99 1.25 
0.921 1.24 0.99 1.25 
1.333 1.75 1.44 1.21 
1.339 1.75 1.44 1.21 
1.803 2.29 1.94 1.18 
1.837 2.33 1.98 1.18 
2.273 2.82 2.44 1.15 
2.326 2.87 2.50 1.15 

500 

0 0 0  
0.429 0.53 0.41 1.29 
0.449 0.56 0.43 1.29 
0.863 1.03 0.83 1.25 
0.910 1.09 0.87 1.25 
1.399 1.62 1.34 1.21 
1.411 1.64 1.35 1.21 
1.814 2.05 1.74 1.18 
1.885 2.12 1.81 1.17 
2.278 2.51 2.18 1.15 
2.311 2.54 2.21 1.15 
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12.0  CONCEPTUAL PROCESS DESIGN USING IONIC LIQUIDS 

Compared to coal-powered combustion systems, Integrated Gasification Combined-Cycle 

(IGCC) is considered the most promising process for power generation due to its high thermal 

efficiency (~ 40%), low emissions, and the flexibility in using different feedstocks.4 For the 

IGCC process to become commercially viable, however, all contaminants, such as Hg, As, Cd, 

Se, SOx, NOx, H2S and CO2 in the syngas have to be removed prior to combustion. Cold-, hot- 

and warm-gas acid gas removal technologies from IGCC syngas streams were discussed by 

Vidaurri et al.3,4 and have been recently summarized by Heintz et al.273 Among the emission 

control technologies, the warm-gas cleanup process is the most appropriate and efficient 

technique for IGCC systems. It can remove multi-contaminants from the syngas such as acid 

gases, sulfur, and heavy metals at high temperatures without the need of expensive alloy 

equipment or cooling systems, while incurring a lower energy penalty compared to the cold-gas 

and hot-gas cleanup.273 The warm-gas cleanup process significantly increases the thermal 

efficiency and reduces the capital and operating costs of IGCC when compared with other 

conventional processes.274 Given the benefits of the warm-gas cleanup process, there is a need to 

develop novel warm-gas cleanup processes to mitigate the emission of sulfur, chlorides, NH3, 

CO2, Hg, As, Se and Cd, and further reduce the cost of energy production associated IGCC 

power generation. 
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Recently, Ionic Liquids (ILs) have been investigated as potential physical solvents for 

acid gas removal from warm gas streams.273 ILs consist mainly of a large organic asymmetric 

cation (i.e., pyridinium, imidazolium, phosphonium, etc.) and either an inorganic (i.e., Cl-, BF4
-, 

PF6
-, CF3SO3

-, NTf2
-) or an organic (i.e., RCOO-) anion,275 which in combination prevent the 

formation of a stable crystal lattice.276,277 The physical properties (melting point, viscosity, gas 

solubilization, etc.) of ILs are strongly affected by their anion and cation compositions.275 In 

general, ILs exist as liquids at a low temperature (< 373 K)278 and possess many attractive 

properties for acid gas removal, such as chemical and thermal stability, non-inflammability, high 

ionic conductivity, and wide electrochemical potential window.278 Furthermore, ILs exhibit 

extremely low vapor pressures which allowed them to gain a reputation as ‘green’ or 

environmentally-friendly solvents.252-254,278 ILs offer virtually an infinite number of possible 

structures that allow them to be tailor-made for desirable applications. They have been used as 

catalysts249,279 and lubricants,252 and used in azeotropic and extractive251 distillations and in 

numerous reactions or separation processes.251,252,256,257 However, ILs have some inherent 

drawbacks summarized by Heintz et al.,273 which include combustibility, higher viscosity, higher 

production cost and potential toxicity to aquatic environments.259 

Research conducted by Anderson et al.280 indicated that ILs can selectively capture CO2 

from flue gas streams by showing that CO2 has greater solubility than other gases (C2H4, C2H6, 

CH4, O2, N2) in 1-hexyl-3-methylpyridinium bis(trifluoromethylsulfonyl)imide [hmpy][Tf2N].281 

Further, Anderson et al.280 and Muldoon et al.282 showed that the CO2 solubility in ILs is strongly 

dependent on the composition of the anion. Therefore this paper is focused on the development 

of a conceptual process for CO2 capture from shifted warm syngas streams using the ILs TEGO 

IL K5 and TEGO P51P as physical solvents. 
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12.1 PHYSICAL PROPERTIES OF THE INVESTIGATED IONIC LIQUIDS 

The TEGO IL K5 and the TEGO IL P51P solvents are supplied by Evonik-Degussa GmbH 

Company (Hopewell, VA).260 The structures of the solvents are illustrated in Figure 11.1 where 

the exact values of m and n in the TEGO IL K5 were not given by the supplier or the Solvent 

Innovations GmbH, which manufactures “AMMOENG” as analogues of the TEGO ILs. 

Therefore, in this study, the values for m and n were assumed in order to obtain an approximate 

formula for this IL. For instance, the chemical formula of the TEGO IL K5 was represented by 

(m + n) = 13, resulting in 15 ethylene oxide units (as specified in Evonik Degussa's MSDS). 

Table 11.1 shows the composition of TEGO IL K5 and TEGO IL P51P and their scientific 

names. The molecular weight of this IL (924.68 kg.kmol-1) was determined from the patent by 

Jork et al.,283 which has a representation of the TEGO IL K5 molecule. The molecular weight of 

the TEGO IL P51P, shown also in Figure 11.1, was calculated assuming n = 51 (as indicated by 

the “P51” nomenclature and Evonik Degussa's specification that n = 50 – 60) resulting in a value 

of 3205.27 kg.kmol-1. The selection of these ILs for CO2 capture was guided by the developed 

definition of an “ideal” physical solvent for CO2 capture,261,262 where the presence of multi ether 

functional groups in these ILs was one of the main motivation for their selection. Multi ether 

functional groups were used as a required feature for the “ideal” physical solvents  because ether 

functional groups has been reported to selectively absorb CO2 at near ambient temperature (~39 

°C). Inaddition, Selexol,261 which consists of polyethylene glycol of dimethylethers, 

(CH3O(CH2CH2O)nCH3 with 3 ≤n ≤ 9), is widely used as a physical solvent for CO2 capture. 
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12.2 EXPERIMENTAL APPROACH 

The density, viscosity, and surface tension of TEGO IL K5 and TEGO IL P51P were measured 

in our laboratory and modeled as a function of temperature within the temperature range of 300 

to 500 K. The shifted gas composition used in this study is given in Table 12.1. The solubility of 

CO2, H2, H2S and N2 were measured in the TEGO IL K5.The solubility of CO2 and H2 were 

measured in the TEGO IL P51P within the same temperature range. The PR-EOS was selected in 

the Aspen Plus simulation in order to calculate the solubility of these gases as well as those of 

the other gases (given in Table 12.1) in the two ILs. In order to use the PR-EOS, the critical 

properties of ILs are needed. Unfortunately, extensive literature search yielded no values, and 

therefore, the critical properties of the two ILs used were estimated as described in Section 12.3. 

 
Table 12.1: Shifted gas composition used 

Component mol% 
Ar 0.48 
CH4 0.24 
H2 37.50 
N2 0.33 
CO 6.27 
CO2 23.87 
H2O 30.68 
NH3 0.16 
H2S 0.47 
COS 0.00 
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12.3 ESTIMATION OF THE CRITICAL PROPERTIES OF THE IONIC LIQUIDS 

Valderrama and Rojas284 applied the group contribution method and proposed Equations (12-1) 

and (12-2) to calculate the boiling point (Tb) and critical point (Tc), respectively and proposed  

Equations (12-3), and  (12-4) to calculate the critical volume (Vc), and critical pressure (Pc), 

respectively. 
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Valderrama and Robles285 also coupled the definition of the acentric factor (ω), Equation 

(12-5)236,286 and Antoine Equation (12-6) for the vapor pressure (Ps) proposed by Rudkin287 to 

calculate ω using Equation (12-7). 
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When Equations (12-1) and (12-2) were used to calculate Tb and Tc for the two ILs investigated 

they yielded unrealistic values. Therefore another scientific approach was implemented. 

For the TEGO IL K5 Tc was calculated using the experimental surface tension data and 

Equation (11-8) (see value in Table 11.5), then Tc was utilized to calculate Tb using Equation 
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(12-2) above. Vc, Pc and ω were also calculated using Equations (12-3), (12-4) and (12-7), 

respectively. At Tb, the value of Pb = 1.01325 bar.  

The calculated values of Pc = 5.884 bar, Tc = 848.46 K, and ω = - 0.0718 were then used 

in the P-R EOS to calculate the density of the TEGO IL K5 as a function of temperature 

(Experimental data were correlated by Equation (11-1) and coefficients can be found in Table 

11.3). As can be seen in Figure 12.1 the calculated density values are considerably lower than 

those measured in our laboratory. 

 

Figure 12.1: Density of the TEGO IL K5 as a function of temperature 
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This means that the Pc value predicted with Equations (12-4) has to be readjusted so that the P-R 

EOS can predict the experimental density values with high precision. Therefore, the Pc value is 

optimized in order to minimize the deviation between the experimental and calculated density 

values using the P-R EOS. The optimization results led to Pc = 7.138 bar and ω = 0.0302. 

For the TEGO IL P51P, after calculating Tb and using its value in Equation (12-2), the Tc 

value came to be negative due to the large value of the group contribution of this IL. In order to 

obtain a realistic Tc value, the experimental vapor pressure data of this IL were correlated using 

Equation (12-8), which is required for Aspen Plus: 

( ) ( ) 7
654

3

2
1 lnln Ds TDTDTD

DT
DDP ⋅+⋅+⋅+
+

+=  (12-8) 

in order to simplify this equation, the coefficients D3, D4 and D6 were set to nil; the coefficients 

D1, D2 and D5 were regressed in order to fit the experimental values. The regression resulted in 

D1 = -15.483, D2 = -15275.3, and D5 = 134.62.  

The Pc for the TEGO IL P51P was then optimized by minimizing the deviation between 

experimental and calculated density values using the P-R-EOS. Figure 12.2 indicates that the 

deviation between the values is less than 2%. The ω for this IL was also calculated using 

Equation (12-7). Table 12.2 summarizes the critical properties of the TEGO IL K5 and TEGO IL 

P51P calculated for the P-R EOS which was employed in the Aspen Plus simulation. 
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Figure 12.2: Density of the TEGO IL P51P as a function of temperature 

 

Table 12.2: Critical properties of the TEGO IL K5 and the TEGO IL P51P 

Critical values Units TEGO IL K5 TEGO IL P51P 
MW kg.kmol-1 924.68 3205.27 
Tc K 848.46 824.22 
Tb K 626.56 717.98 
Vc m3.kmol-1 2.9486 10.1607 
Pc bar 7.138 1.857 
ω - 0.0302 0.0512 
Zc - 0.2984 0.2753 

 

The use of the P-R EOS in the Aspen simulation for predicting the solubility of the 
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parameters between the gases and the ILs are not available because these ILs are not in the 

Aspen database. As mentioned above the solubility of CO2, H2, H2S and N2 in the TEGO IL K5 

and the solubility of CO2 and H2 in the TEGO IL P51P were measured at different pressures and 

temperatures. At each temperature, the critical properties of the gases and the ILs shown in Table 

12.2 were used in the P-R EOS to predict the solubility of these gases in the ILs. The binary 

interaction parameters between the gases and the ILs were optimized so that the difference 

between the predicted and measured solubility values is minimized. The binary interactions for 

CO2, H2, H2S and N2 in the TEGO IL K5 and those for CO2 and H2 in the TEGO IL P51P were 

then correlated as a function of temperature using Equation (12-9). Table 12.3 lists the 

coefficients in Equation (12-9) for calculating the binary interaction parameters. Also, Figures 

12.3 and 12.4 show the experimental and predicted solubility values as a function of pressure and 

temperature for CO2 in the TEGO IL K5 and TEGO IL P51P, respectively.  

T
CTBAij +⋅+=δ

 
(12-9) 

 

 

Table 12.3: Coefficients in Equation (12-9) for calculating the binary interaction parameters 

Liquid Solvents Gases A B C 

TEGO IL K5 

CO2 0.21 0.00034 -100 
H2 -71.2 0.1256 11206 
H2S -0.28 0.001 0 
N2 0.1 0.002 0 

TEGO IL P51P CO2 5.133 -0.00602 -1239.1 
H2 -122.167 0.16952 23257.6 
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Figure 12.3: Experimental solubility of CO2 in TEGO IL K5. Solid lines obtained using Aspen 

Plus with the binary interaction parameter listed in Table 12.3 
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Figure 12.4: Experimental solubility of CO2 in TEGO IL P51P. Solid lines obtained using Aspen 

Plus with the binary interaction parameter listed in Table 12.3 
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of Hydrogen Production from Coal Gasification”, Final Report, April 2003, by Parsons248. The 

apparent molecular weight of this shifted gas stream is 19.055 kg/kmol. Shuster et al.288 reported 

in the Interim Report “Systems Analysis Study on the Development of Fluorinated Solvents for 

Warm-Temperature/High-Pressure CO2 Capture of Shifted Syngas” April 19, 2005, that fuel gas 

stream for a 400-MWe power plant is 813,643 lb/h (102.52 kg/s) or 5.38 kmol/s. 

In the Aspen Plus simulation of the conceptual process development, the pressure and 

temperature of the shifted gas stream was set to 30 bar and 500 K, respectively. The process 

consists of 4 identical adiabatic packed-bed absorbers arranged in parallel (Figure 12.5) to handle 

the total shifted gas mass flow rate of 102.52 kg/s. In order to capture CO2 from this gas stream, 

16,000 kg/s of the TEGO IL K5 or 12,000 kg/s of TEGO IL P51P are required. Therefore each 

packed-bed can support a mass flow rate of 25.63 kg/s (1.345 kmol/s) of the shifted gas and 

4,000 kg/s (4.326 kmol/s) of the TEGO IL K5 solvent or 3,000 kg/s (0.936 kmol/s) of the TEGO 

IL P51P solvent. 

The shifted gas enters each packed-bed absorber from the bottom at 500 K and the IL 

solvent enters each absorber from the top at 298 K in a counter-current scheme. In each absorber, 

the TEGO IL K5 and the TEGO IL P51P solvents are heated by the sensible heat of the gas to 

415.2 K and 467.4 K, respectively. In the continues process, 10.19 kg/s of the TEGO IL K5 or 

20.29 kg/s of the TEGO IL P51P were needed to compensate for solvent losses during the CO2 

capture and regeneration steps. Table 12.4 shows the solvent losses in the main process streams. 

A review of the data suggests that the greater solvent losses measured in the TEGO IL P51P can 

be correlated to the higher absorber temperature when compared to the TEGO IL K5 solvent. 
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Table 12.4: Solvent loss streams 

Flowrate in kg/s TEGO IL K5 TEGO P51P 
CO2 stream 7.92 0.34 
H2 stream 2.27 3.42 
H2O stream 0.00 16.53 
Total amount of solvent lost 10.19 20.29 

 

 

The packed-bed absorber characteristics and packing specifications used in the Aspen Plus 

simulation are given in Table 12.5. 

 

 

Table 12.5: Packed-bed and packing specifications 

Description Unit Value 
Packed column diameter m 2.4 
Packed bed cross section area m2 4.52 
Number of stages - 6 
Height of each stage m 3 
Packed bed height m 18 
Packing type - Plastic Pall Rings 
Packing dimension m 0.025 (1”) 
Packing surface area m2/m3 205 
Void fraction - 0.90 
Gas flowrate kg/s 25.63 
Liquid flowrate kg/s 4002.22 
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The gas-solvent mass transfer in the packed-bed, was accounted for using the Billet and 

Schultes’ Correlations (1993),289 which were implemented to estimate the mass transfer 

coefficients and the effective gas-liquid interfacial area in packed-beds with random and 

structured packings. The liquid-phase binary mass transfer coefficient ( L
kiK , ) is defined in Aspen 

Plus as: 
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with a default value of CL = 0.905 (this value is reported by Billet and Schultes289). 

The total interfacial area for mass transfer (aI) is defined by: 

pte
I hAaa =  (12-11) 

The effective area (ae) per unit volume of the bed is related to the specific area of packing (aP) 

through the following equation: 
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The volumetric mass transfer coefficients (kLa) for CO2 in the solvent were calculated from the 

liquid-phase binary mass transfer coefficient ( L
kiK , ) obtained from Aspen Plus, where (i) and (k) 

stand for CO2 and the solvent, respectively, using the following equation: 
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Figure 12.5 (for more detailed schematics – Aspen Printout – see Appendix E) indicates that 

subsequent to gas absorption in the packed-beds, the gas streams (solvent-poor) from the top of 

the 4 absorbers are combined into one stream; and the liquid streams (solvent-rich) from the 

bottom of the 4 absorbers are also combined into one stream. The solvent-rich stream is 

regenerated using pressure-swing option with 3 adiabatic flash drums arranged in series at 
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different pressures, 20, 10 and 1 bar, respectively. These flash drums allow the separation of the 

absorbed gases from the IL into a CO2-rich gas-stream, containing some H2 and H2O vapor at 

about 414 K for the TEGO IL K5 and about 467 K for the TEGO IL P51P, and an IL solvent-

rich stream containing some CO2, H2 and other dissolved gaseous constituents. 

For both solvents, the gas streams leaving the top of the 3 flash drums are cooled to 288 

K to separate any water present prior to being combined into one stream. This stream is then 

compressed to 80 bar, followed by intercooling to 298 K in order to separate some liquid CO2. 

This stream is further compressed to 153 bar (2200 psia) followed by intercooling at 223 K in 

order to separate any remaining H2 from liquid CO2 stream which is sent to sequestration sites.  

The IL solvent-rich stream from the bottom of the third flash drum at 1 bar is pumped to 

30 bar and recycled back to the packed-bed absorbers where the required make-up solvent is 

added to it at 298 K before it enters the absorbers. 

In addition, the H2 streams from the entire process are combined, pressurized to 100 bar, 

and heated to 1500 K before sending to turbines as shown in Figure 12.5. 
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Figure 12.5: Schematic of the conceptual design process for CO2 capture using ILs 
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12.5 SIMULATION RESULTS USING IONIC LIQUIDS 

The composition of the combined outlet liquid stream from the 4 packed-bed absorbers, for the 

two ILs, expressed in molar flow rate and percentage of the inlet feed molar flow rates, is 

presented in Table 12.6. As can be seen 98.51 mol% of the CO2, 47.67 mol% of H2, 98.75 mol% 

of H2S and 98.99 mol% of H2O are captured using the TEGO IL K5 solvent and about 0.01 

mol% of this solvent is lost in the gas stream. Also, 93.04 mol% of CO2, 52.67 mol% of H2, 

91.90 mol% of H2S and 95.64 mol% of H2O are captured using the TEGO IL P51P and about 

0.03 mol% of this solvent is lost. 

 

Table 12.6: Composition of the outlet liquid stream from the packed-bed absorbers 

 TEGO IL K5 TEGO IL P51P 
Component Mole flow 

rate 
Percentage of the 

inlet stream 
Mole flow 

rate 
Percentage of the 

inlet stream 
 kmol/s mol% kmol/s mol% 
Ar 0.0256 96.51 0.0199 76.28 
CH4 0.0131 97.98 0.0107 81.62 
H2 0.9632 47.67 1.0653 52.67 
N2 0.0136 76.25 0.0131 73.17 
CO 0.3251 94.41 0.2472 72.67 
CO2 1.3345 98.51 1.2321 93.04 
H2O 1.9350 98.99 1.6661 95.64 
NH3 0.0093 98.91 0.0081 91.08 
H2S 0.0268 98.75 0.0238 91.90 
Solvent 17.3008 99.99 3.74288 99.97 
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Table 12.6 shows that a significant mole flow rate of H2 is absorbed by both solvents since CO2 

solubility decreases (see Figure 12.3), while the H2 solubility increases with temperature (see 

Section 11.5). A series of compression-cooling steps is therefore deemed necessary to separate 

H2 from CO2 liquid at 223 K. 

Based on the inlet gas stream composition, the CO2-rich stream which is being sent to 

sequestration site at 153 bar and 223 K contains 87.6 mol% of CO2, 2.3 mol% of H2 and 89.4 

mol% of H2S, when using the TEGO IL K5 solvent (Table 12.7); and 81.42 mol% of CO2, 2.1 

mol% of H2 and 82.06 mol% of H2S when using the TEGO IL P51P solvent (Table 12.8). Also, 

based on the inlet gas stream composition indicates that the H2-rich stream which is being sent to 

turbines at 100 bar and 1500 K contains 97.7 mol% of H2, 84.6 mol% of CO, 12.4 mol% of CO2 

and 1.2 mol% of H2O vapor when the TEGO IL K5 solvent (Table 12.7) is used; and 98.86 

mol% of H2, 89.55 mol% of CO, and 17.78 mol% of CO2 when using the TEGO IL P51P solvent 

(Table 12.8). This mole percentage of CO2 is significant since with this solvent cooling to 223 K 

was not sufficient to separate any remaining H2 from liquid CO2 stream to be sent for 

sequestration. 

Based on the inlet gas stream composition, the water-stream is separated from the system 

at 288.2 K and 1 bar and contains 98.70 mol% of H2O and 75.70 mol% of NH3 and 0.1 mol% of 

H2S when using the TEGO IL K5 solvent (Table 12.7); and 94.70 mol% of water, 72.37 mol% of 

NH3, 0.80 mol% of CO2, 0.47 mol% H2S, and other gases with less than 0.20 mol% when using 

the TEGO IL P51P solvent (Table 12.8). Also, based on the inlet gas stream composition, the 

recycled solvent-stream contains 15.56 mol% of H2O, 5.20 mol% of CO2, and 0.13 mol% of H2 

when using the TEGO IL K5 solvent (Table 12.7); and 5.24 mol% of H2O, 5.24 mol% of CO2, 

and 0.26 mol% of H2 when using the TEGO IL P51P solvent (Table 12.8).  
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Table 12.7: Composition of the outlet streams from the conceptual process based on the inlet gas 

composition for the TEGO IL K5 solvent 

 
Gas Inlet  
stream 

CO2  
stream 

H2  
stream 

H2O  
stream 

TEGO IL K5  
recycle stream 

 kmol/s mol% mol% mol% mol% 
Ar 0.0258 27.49 72.51 0 2.63 
CH4 0.0129 30.57 69.43 0 3.74 
H2 2.0176 2.31 97.69 0 0.13 
N2 0.0178 12.23 87.77 0 0.67 
CO 0.3373 15.36 84.64 0 2.05 
CO2 1.2843 87.60 12.40 0 5.20 
H2O 1.6506 0.10 1.20 98.70 15.56 
NH3 0.0086 22.67 1.63 75.70 8.53 
H2S 0.0253 89.35 10.55 0.09 6.98 
      
T (K) 500 219.5 1500 288.2 414.3 
P (bar) 30 153 100 1 30 

 

 

Table 12.8: Composition of the outlet streams from the conceptual process based on the inlet gas 

composition for the TEGO IL P51P solvent 

 
Gas Inlet  
stream 

CO2  
stream 

H2  
stream 

H2O  
stream 

TEGO IL P51P  
recycle stream 

 kmol/s mol% mol% mol% mol% 
Ar 0.0258 19.65 80.18 0.17 0.99 
CH4 0.0129 23.10 76.69 0.20 1.31 
H2 2.0176 2.10 97.86 0.03 0.26 
N2 0.0178 10.46 89.39 0.15 0.84 
CO 0.3373 10.30 89.55 0.15 0.82 
CO2 1.2843 81.42 17.78 0.80 3.02 
H2O 1.6506 0.70 4.60 94.70 5.24 
NH3 0.0086 18.19 9.44 72.37 3.37 
H2S 0.0253 82.06 17.47 0.47 2.55 
      
T (K) 500 220.8 1500 286.2 467.0 
P (bar) 30 153 100 1 30 
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Table 12.9 shows details of the power duty and requirements for each unit presented in Figure 

12.5. The units which are operated adiabatically exhibit no power requirements as it is the case 

for the packed-bed absorbers and the flash drums. It should be noted that when the power is 

negative, it means that work is done by the system on the surroundings; and when the power is 

positive, such as in all compression and pumping units, it means that the work is applied by the 

surroundings onto the system. 

Table 12.9 shows that the largest power consumptions are for heating and cooling of the 

CO2 streams (HX1, HX2, HX3) after the flash units and the intercooling (HX-80, HX-153) 

during the CO2 compression, which represents -228.93 MW and -226.68 MW for the TEGO IL 

K5 and the TEGO IL P51P, respectively. The intercooling stage (HX-80) requires - 43.51 MW 

when using the TEGO IL K5 and -36.37 MW when using the TEGO IL P51P. This is because as 

Table 12.4 indicates 77.70 mol% of the TEGO IL K5 solvent is lost in CO2-stream, whereas 

81.53 mol% of the solvent lost is found in the water-stream and only 1.70 mol% in the CO2-

stream with TEGO IL P51P. Heating (HX-H2) the H2 streams to 1500 K before sending to the 

turbines requires 97.8 MW for the TEGO IL K5 system and 99.91 MW for the TEGO IL P51P. 

Also, for the TEGO IL P51P solvent, since after the unit HX-80 there is no liquid in the 

stream, the units SEPA-80 and PMP-153 are not required. 

The pumping power (F3-PUMP) required to recycle the IL solvent-stream back to the 

absorbers at 30 bar is 75.11 MW for the TEGO IL K5 and 63.97 for TEGO IL P51P. This is 

because the recycled mass flow rate of the former solvent is larger than that of the latter. Also, 

the distribution of the cooling in the 3 flash drums (HX1, HX2 and HX3) was found to be 

different since decreasing the pressure from 30 to 1 bar in 3 steps changes the flow rates of the 

vapor and liquid phases exiting the units depending on the IL solvent used. Furthermore, since 
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more CO2 is reaching the turbines in the case of the TEGO IL P51P, the compressor (CMP-H2) 

requires more power 9.97 MW instead of 8.12 MW in the case of the TEGO IL K5 solvent.  

Table 12.9 also indicates that the net power balance is more negative (-26.45 MW) for 

the TEGO IL K5 than for the TEGO IL P51P, which means that the conceptual process scheme 

with the former IL provides useful excess power which can be used for steam or other power 

generation. 
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Table 12.9: Energy consumption of the process 

Units Description 

Power 
MW 

TEGO IL 
K5 

TEGO IL 
P51P 

ABSORB-1 

Packed-Bed Absorbers 

0.00 0.00 
ABSORB-2 0.00 0.00 
ABSORB-3 0.00 0.00 
ABSORB-4 0.00 0.00 
FLASH1 

Flash Drums 
0.00 0.00 

FLASH2 0.00 0.00 
FLASH3 0.00 0.00 
CMP-H2 Compressor to boost H2 to 100 bar 8.12 9.97 
HX-H2 Heater to heat H2 to 1500 K 97.80 99.91 
HX1 

Heat exchanger to cool CO2 stream to 288 K 
-4.99 -32.83 

HX2 -9.28 -55.08 
HX3 -144.18 -75.68 
SEPAR-1 

Separator to separate CO2 gas from IL  
after cooling to 288 K 

-5.54 -0.38 
SEPAR-2 -12.04 -0.46 
SEPAR-3 -6.80 -1.63 
SEPAR-4 0.00 0.00 
CMP-10 CO2 compressor to 10 bar 10.88 6.74 
CMP-20 CO2 compressor to 20 bar 7.08 5.74 
CMP-80 CO2 compressor to 80 bar 23.37 22.28 
HX-80 Intercooling to 298 K -43.51 -36.37 

SEPA-80 
Separation of Liquid CO2 from CO2 stream 
containing H2 

-0.82 NA 

CMP-153 CO2 compressor to 153 bar 6.00 6.00 
HX-153 Intercooling to 223 K -26.98 -26.73 

SEPAR-153 
Separation of Liquid CO2 from CO2 stream 
containing H2 

-0.73 -0.19 

PMP-153 Pumping of liquid CO2 to 153 bar 0.06 NA 
F3-PUMP Pump to bring IL back to 30 bar for recycling 75.11 63.97 
Net Power -26.45 -14.72 

 

NA: Not available 
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12.5.1 Effect of packed-bed absorber height on CO2 capture 

Figure 12.6 shows the effect of the packed-bed height on CO2 captured in the packed-bed 

absorber.  As shown in Figure 12.6  CO2 absorption increases from 97.3 mol% at 6 m to 98.5 

mol% for a 30 m bed, whereas the H2 absorption decreases from 53.6 mol% to 52.0 mol%. A 

further increase in the absorber height resulted in a negligible effect on the absorption rate, 

therefore, 18 m was used in the calculations.  

 

 
 

Figure 12.6: Effect of packed-bed height on CO2 and H2 absorption 
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kLa for the TEGO IL P51P are larger than those for the TEGO IL K5, which can be explained by 

a larger diffusion coefficient of CO2 in the TEGO IL P51P affecting directly the binary mass 

transfer coefficient for the liquid L
PPILCOk 51,2  as seen from Equation (12-10). 

 

 

Figure 12.7: Comparison of kLa along the packed-bed column for the TEGO IL K5  

and TEGO IL P51P 
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12.6 DISCUSSION 

An Aspen Plus simulator, which employed the Peng-Robinson Equation of State (P-R EOS), was 

used to develop a conceptual process for CO2 capture from a shifted hot fuel gas stream 

produced from Pittsburgh # 8 coal for a 400 MWe power plant using two ILs as physical 

solvents: TEGO IL K5 and TEGO IL P51P. The compositions of the process streams, CO2 

capture efficiency, and net power were calculated for the two solvents. The compositions of the 

main four process streams, CO2-rich, H2-rich, water, and IL solvent, were expressed as a 

percentage of the composition of the absorber gas inlet stream. 

The mol% values are expressed as a function of the shifted fuel gas stream inlet flowrates 

to the absorber. The CO2-rich stream which is being sent to sequestration site at 153 bar and 223 

K contained 87.6 mol% of CO2, 2.3 mol% of H2, and 89.4 mol% of H2S, when the TEGO IL K5 

solvent is used.; and 81.42 mol% of CO2, 2.1 mol% of H2 and 82.06 mol% of H2S when using 

the TEGO IL P51P solvent. The H2-rich stream which is being sent to turbines at 100 bar and 

1500 K contained 97.7 mol% of H2, 84.6 mol% of CO, 12.4 mol% of CO2, and 1.2 mol% of H2O 

vapor when using the TEGO IL K5 solvent and 98.86 mol% of H2, 89.55 mol% of CO, and 

17.78 mol% of CO2 when using the TEGO IL P51P solvent. The water stream which is separated 

from the system at 288.2 K and 1 bar contained 98.70 mol% of H2O and 75.70 mol% of NH3 and 

0.1 mol% of H2S when the TEGO IL K5 solvent is used; and 94.70 mol% of water, 72.37 mol% 

of NH3, 0.80 mol% of CO2, 0.47 mol% H2S, and other gases with less than 0.20 mol% when 

using the TEGO IL P51P solvent. In addition the solvent-stream for the TEGO IL K5 , which is 

recycled to the absorbers, contained 15.56 mol% of H2O, 5.20 mol% of CO2, and 0.13 mol% of 

H2, In comparison the solvent-stream for the TEGO IL P51P contained  5.24 mol% of H2O, 5.24 

mol% of CO2, and 0.26 mole% of H2.  
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In addition, the two physical solvents exhibited minimum losses of 0.06 and 0.17 wt% 

with a net power balance of -26.44 and -14.72 MW for the TEGO IL K5 and the TEGO IL P51P, 

respectively. Thus, the TEGO IL K5 could be selected as a physical solvent for CO2 capture 

from shifted hot fuel gas streams. 
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13.0  CONCLUSIONS 

From the extensive experimental and simulation results obtained in this study so far, the 

following conclusions can be drawn: 

1. These results proved that PFCs are thermally and chemically stable under the operating 

conditions employed, and CO2 is consistently more soluble in these solvents than N2 under 

similar conditions. Thus, PFCs show a potential for selective CO2 capture from post-shift 

fuel gas streams at elevated pressures and temperatures. 

2. The equilibrium solubilities (x*) of CO2 and N2 in PP10, PP11, and PP25, expressed in mole 

fraction, were found to increase with pressure at constant temperatures. The solubilities for 

both gases were greater in PP25 than in the other two PFCs due to its larger molecular weight 

when compared with those of the other two PFCs. Under similar operating conditions, the 

solubility of CO2 in the three PFCs appeared to be about 4 times that of N2, which is 

attributed to the closeness of the solubility parameter of CO2 to those of the PFCs when 

compared with that of N2. 

3. CO2 is more soluble in the Selexol solvent than in the PFCs only at low temperatures 

(≤ 333 K). The Selexol process, however, is customarily operating at temperatures of about 

312 K, indicating that the Selexol solvent would not be effective at high temperatures 

typifying those at the exit of the gasifier system. This study proved the thermal and chemical 
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stability and the ability of the PFCs to selectively absorb CO2 at temperatures up to 500 K 

and pressures as high as 30 bar. 

4. The volumetric mass transfer coefficients (kLa) of CO2 and N2 in PP10, PP11, and PP25, 

increased with increasing mixing speed, pressure, and temperature due to the increase of the 

gas-liquid interfacial area (a) and the liquid-side mass transfer coefficient (kL). The increase 

of the gas-liquid interfacial area with these operating variables was attributed to the increase 

of the gas holdup (εG) and the decrease of the Sauter mean bubble diameters (dS).  

5. The volumetric mass transfer coefficients of CO2 and N2 in the three PFCs decreased with 

increasing liquid height above the impeller due to the decrease of the gas holdup and increase 

of the Sauter mean bubble diameter, which led to the decrease of the gas-liquid interfacial 

area.  

6. The volumetric mass transfer coefficients of CO2 in the three PFCs were found to be always 

smaller than those of N2 due to the smaller gas-liquid interfacial areas (smaller gas holdup 

and larger Sauter mean bubble diameter) of CO2 when compared with those of N2 under 

similar operating conditions.  

7. The volumetric mass transfer coefficients for CO2 and N2 in PP25 were smaller than those in 

PP11, and both were smaller than those in PP10, indicating that the volumetric mass transfer 

coefficients decrease with increasing PFC viscosity. Also, under the operating conditions 

investigated, the gas-liquid interfacial areas of CO2 and N2 in the three PFCs appeared to 

control the behavior of the volumetric mass transfer coefficients in the gas-inducing reactor 

used. 

8. The simulation results using the PP25 physical solvent showed that the P-T-Swing option 

leads to a greater solvent loss, but a more favorable (more negative) net enthalpy when 
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compared with the P-Swing option. However, in either regeneration option to be 

economically viable, the PP25 solvent must be completely recovered from the absorber and 

all flash drums. 

9. The use of the TEGO IL K5 ionic liquid as a solvent for CO2 capture showed promising 

results. The solubilities of H2S and CO2 were found to increase with pressure and decrease 

with increasing temperature. The H2S solubilities in the IL were greater than those of CO2 

within the temperature range investigated (300 - 500 K) up to a H2S partial pressure of 2.33 

bar. Accordingly, the IL can be used to remove H2S and CO2 from dry gas mixture within a 

temperature range from 300 to 500 K under a total pressure up to 30 bar. The CO2 solubility 

(x*) in TEGO IL P51P is greater than the solubility in TEGO IL K5 for the temperature 

range studied. The CO2 solubility decreased, whereas that of H2 increased with increasing 

temperature in the TEGO IL P51P. 

10. The volumetric liquid-side mass transfer coefficients (kLa) for CO2 in the TEGO IL K5 and 

TEGO IL P51P at 450 K were higher than the ones at 350 K due to the lower viscosity of the 

two ILs at 450 K than at 350 K. The kLa values for CO2 and H2 in both ILs increased with 

temperature and mixing speed and decreased with liquid height. The kLa for CO2 and H2 in 

both ILs increased with pressure up to 25 bar and then leveled off. Under similar operating 

conditions, kLa values for H2 in the TEGO IL P51P were greater than those for CO2; and kLa 

values for CO2 in the TEGO IL K5 were almost the same as those in the TEGO IL P51P. 

11. The presence of H2S in the H2S/N2 mixture created mass transfer resistance which decreased 

kLa values for N2. The kLa and x* values of CO2 were found to be greater than those of N2 in 

the IL which highlight the stronger selectivity of this physical solvent to CO2 when compared 

with that of N2. Also, in the temperature range from 350 to 500 K, since the solubility and 
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kLa of H2S in the IL were greater than those of CO2, H2S can be more easily captured than 

CO2 from dry fuel gas streams using a shorter absorber than that needed for CO2. 

12. The Aspen Plus simulator, which employed the Peng-Robinson Equation of State (P-R EOS) 

was used to design a conceptual process for CO2 capture from a shifted hot fuel gas stream 

produced from Pittsburgh # 8 coal for a 400 MWe power plant using the TEGO IL K5 and 

TEGO IL P51P ILs. The simulation results indicated that the TEGO IL K5, with a net power 

balance of -26.44 MW, had better performance than that of the TEGO IL P51P.  This is 

because the CO2-rich stream sent to sequestration sites at 153 bar and 223 K contained 87.6 

mol% of CO2, 2.3 mol% of H2, and 89.4 mol% of H2S, for TEGO IL K5; and 81.42 mol% of 

CO2, 2.1 mol% of H2, and 82.06 mol% of H2S for the TEGO IL P51P. Also, TEGO IL K5 

exhibited lower losses of 0.06 wt% whereas the TEGO IL P51P exhibited 0.17 wt%. Thus, 

these results suggested that the TEGO IL K5 IL could be used as a potential physical solvent 

for CO2 capture from shifted fuel gas streams at temperatures up to 500 K and pressures up 

to 30 bar. 
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APPENDIX A 

SELEXOL SOLVENT 

This appendix was retrieved from the Dow Chemical website173 and gives some information on 

the Selexol solvent, but unfortunately this datasheet was removed since last consulted in 2003. 
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APPENDIX B 

LITERATURE REVIEW ON PERFLUOROCARBON COMPOUND 

B.1 ABSTRACT 

A comprehensive literature search was conducted in order to delineate the electrochemical, 

physical and thermodynamic properties, manufacture, and existing industrial applications of 

perfluorinated compounds (PFCs). The potential use of PFCs in acid gas removal (AGR) 

processes has been also investigated. The two main processes currently used for the manufacture 

of PFCs are electrochemical fluorination (ECF) and cobalt fluoride processes. The ECF process 

enjoys lower cost when compared with cobalt fluoride, but suffers from producing lower yields 

and selectivity, as well as extensive molecular rearrangement. 

The numerous industrial applications of PFCs underscore their unique and important 

properties. For instance, owing to their good heat transfer capacity, PFCs are extensively used in 

energy-dissipating devices and refrigeration applications. Their low toxicity, non-flammability 

and inert properties made them useful as fire-extinguishing agents. Their low volatility and high 

boiling point along with reasonable viscosity and density allowed their employment as lubricants 

and greases. Also, their high electrical resistivity and dielectric strength are currently attracting 

attention for their potential use as insulators in capacitors. 
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The PFCs have low reactivity and high chemical stability due to the high energy of their 

C-F bonds. The PFCs have high boiling point and low vapor pressure because of the strength of 

the C-F bond and their high molecular weights, which minimize PFCs losses under high 

temperature applications. PFCs have also no dipole and very low molecular interactions due to 

the repulsive tendency of fluorine atoms, which lead to high gas solubility and decrease of the 

forces required to expel gas molecules upon decreasing pressure or increasing temperature. 

These unique properties make PFCs strong good candidates for AGR from fuel or flue gas under 

high pressures and temperatures. 

B.2 INTRODUCTION 

Fluorine is predominantly found in the salts of halide ions
−F19

9 , such as fluorite (CaF2) and 

cryolite (Na3AlF6), or in a gaseous state as (F2), which is highly toxic and colorless. It is placed 

13th in the order of abundance of elements on the earth, and thus outranks the other four halogens 

(Cl, Br, I, At), which are the elements in Group VIIA, the next-to-last column of the Periodic 

Table.290,291 Fluorine is the most electronegative among common elements (Pauling values: F: 

4.0; O: 3.4; Cl: 3.2; C: 2.6; H: 2.2) and is the most reactive element known.184 Fluorine it highly 

difficult to handle, hence asbestos, water, and silicon burst into flame in its presence, and it 

reacts with Kr, Xe, and Rn, elements which were once thought to be inert.292 Fluorine is a 

powerful oxidizing agent, which can force other elements into unusually high oxidation numbers, 

such as in AgF2, PtF6, and IF7. Also, fluorine forms the strongest single bond to carbon and 

requires a very small space when compared with other halogens,182 as it is the second smallest 

atom after hydrogen.292,293 
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Fluorine is primarily used in the manufacture of teflon or polytetrafluoroethylene (PTFE), 

(C2F4)n, and other low and high molecular weight fluoro-polymers, which are utilized as oils and 

thermoplastics in many applications, including gaskets, valve packings, and linings for storage 

vessels, pans, rectors, and pipes that need to be inert during chemical reactions. Large amounts 

of fluorine are also consumed each year in the manufacture of freons, such as CCl2F2 which is 

used in refrigerators and cars. 

Perfluorocarbon (PFC) liquids represent a growing market as they possess unique 

properties, which have led to their extensive use as inert fluids in: (1) testing electronics, (2) 

cooling electronic devices, and (3) vapor-phase soldering. The quantities of PFCs required for 

each of these three applications are approximately in the ratio of 3:1:1, with a total world market 

in excess of 1000 tons in 1990.205 The use of Latin prefix (Perfluoro-) to indicate the highest 

substitution possible of hydrogen atoms attached to carbon by fluorine atoms in organic 

compounds without affecting the nature of the functional groups present in the molecule is 

widely used for the denomination of many fluoro-compounds. It has been acceptable to directly 

state the number of fluorine atoms for simple molecules, such as C1–C4 aliphatics [e.g., 

tetrafluoroethene (CF2=CF2), pentafluoropropionic acid (C2F5CO2H), and octafluoropropane 

(C3F8)] or monocyclic aromatics e.g., hexafluorobenzene (C6F6), pentafluoropyridine (C5F5N)]. 

For large molecules, however, such names become cumbersome and do not reveal immediately 

that the compounds are fully perfluorinated [e.g., dodecafluorocyclohexane (c-C6F12) or 

pentadecafluorooctanoic acid (n-C7F15CO2H)]. In such cases, it is advantageous to use the prefix 

“Perfluoro-” in conjunction with the standard hydrocarbon nomenclature [e.g., Perfluoro-

cyclohexane and Perfluoro-octanoic acid]. Actually, this has been a common practice for over 40 

years, where many authors use Perfluoro- even for quite simple molecules, [e.g., Perfluoro-
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propene (CF3CF=CF2)185,294]. In the following, a literature review is presented in order to assess, 

identify and better understand the behavior of PFCs and their potential for AGR applications 

under high pressures and temperatures. 

B.3 ELECTROCHEMICAL PROPERTIES OF PFCS 

The physical properties and chemical reactivities of organic molecules can be dramatically 

affected by fluorination. The numerous commercial applications of organo-fluorine materials 

clearly reflect the beneficial effects of fluorination. This is because over the past two decades 

advances in both experimental and theoretical aspects of organofluorine chemistry have made the 

“unusual” behavior of perfluorinated compounds much more understandable and predictable, 

which is important for the design of commercial products.182 

Most of the effects of fluorination can be anticipated by comparing the physical 

properties of fluorine atom with those of other common atoms as shown in Table B.1. As can be 

seen in this table, the high ionization potential295 and relatively low polarizability296 of fluorine 

atom imply very weak intermolecular interactions, low surface energies, and low refractive 

indices for perfluorocarbons.184 Also, the extreme electronegativity of fluorine atom as shown in 

the table insures that it will always be inductively electron-withdrawing when bonded to carbon, 

and that the bond will be strongly polarized (δ+)C–F(δ-), since the bond polarity can be derived 

from electronegativity differences.297 Consequently, the C–F bond has relatively higher ionic 

strength and is stronger than the corresponding C–X bond, where X could be H, Cl, Br, I, C, N, 

and O atoms as listed in Table B.1. The consequence of the C–F bond dipole is that partially 

perfluorinated compounds have a strong polar character, and accordingly their physical 
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properties are often different from those of either their hydrocarbon or perfluorocarbon 

counterparts. Thus, the resulting electronic effects of fluorination on molecular properties can be 

attributed to the unique combination of the fluorine atom properties: its high electronegativity 

and small size,298 its three tightly bound, nonbonding electron pairs, and the excellent match 

between its 2s or 2p orbital with the corresponding orbital of carbon atom. 

 

Table B.1: Atomic Physical Properties295,296,298 

Atom 
Ionization 
potential 
(IP) 

Electron 
affinity 
(EA) 

Atom 
polarizability 
(αv) 

Van der 
Waals’ radius 
(rv) 

Electronegativity 
Pauling 
(χp) 

 kcal.mol-1 kcal.mol-1 Å3 Å - 
H 313.6 17.7 0.667 1.20 2.20 
F 401.8 79.5 0.557 1.47 3.98 
Cl 299.0 83.3 2.18 1.75 3.16 
Br 272.4 72.6 3.05 1.85 2.96 
I 241.2 70.6 4.7 1.98 2.66 
C 240.5 29.0 1.76 1.70 2.55 
N 335.1 -6.2 1.10 1.55 3.04 
O 314.0 33.8 0.82 1.52 3.44 

B.4 PHYSICAL PROPERTIES OF PFCS 

Perfluorocarbons (PFCs) are characterized by an unusual physical properties when compared 

with their analogous hydrocarbons (HCs).178-181 A comparison among some physical properties 

of saturated perfluoro-hexane (n-C6F14), saturated n-hexane (n-C6H14) and partially 

perfluorinated alkanes (n-CF3(CF2)2(CH2)2CH3) is given in Table B.2. In general, PFCs have 

significantly greater compressibilities and viscosities than those of HCs; and their densities are 

typically about 2.5 times those of the latter. The saturated PFCs have the lowest dielectric 

constants, refractive indices, and surface tensions of any liquids at room temperature, which 
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reflect their nonpolar character and low polarizability.182 These physical properties, coupled with 

their outstanding chemical and thermal stabilities, make perfluorinated compounds ideal 

candidates for several commercial applications.299-301 For instance, their high densities, 

viscosities, and expansion coefficients make them excellent convective coolants. Also, their 

chemical inertness combined with low dielectric constants, low dielectric losses, and high 

dielectric strengths and resistance makes them good insulating materials, especially for 

electronics applications.205,302 

 

Table B.2: Comparison Among Physical Properties of Different Hexanes178 

Property n-C6F14 n-CF3(CF2)2(CH2)2CH3 n-C6H14 
Molecular weight, kg.kmol-1 338.0 212.1 86.2 
Boiling Point, bp (°C) 57 64 69 
Heat of Vaporization, ΔHv (kcal.mol-1) 6.7 7.9 6.9 
Critical Temperature, Tc (°C) 174 200 235 
Density at 25 °C, d (g.cm-3) 1.672 1.265 0.655 
Viscosity at 25 °C, η (cP) 0.66 0.48 0.29 
Surface Tension at 25 °C, σ (dyn.cm-1) 11.4 14.3 17.9 
Compressibility at 1 atm, β (10-6 atm-1) 254 198 150 
Refractive index, n25

D (-) 1.252 1.290 1.372 
Dielectric constant, ε1 (-) 1.69 5.99 1.89 

 

Although several physical properties of partially perfluorinated alkanes (HFCs) lie between those 

of PFCs and HCs, differences and exceptions still exist. For example, the dielectric constant of n-

CF3(CF2)2(CH2)2CH3 is much greater than those of n-C6F14 and n-C6H14. Also, n-C6H13F has a 

greater boiling point (91.5°C) and a considerably higher surface tension (19.8 dyn.cm-1) than 

those of n-C6F14 and n-C6H14, whereas the boiling point and surface tension of n-

CF3(CF2)2(CH2)2CH3 lie in between those of HC and PFC. These “anomalies” point to the 

importance of polar effects in HFCs owing to the net C–F or C–C dipoles which are absent in 

PFCs and HCs.182 Table B.2 also shows that the molecular weights of the PFCs are greater than 
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those of HCs, however, the boiling points of homologous linear PFCs and HCs are similar, 

indicating that the molecular weights have little influence on the boiling points.  

Table B.3 indicates that branching has a negligible effect on the boiling points of 

perfluorinated compounds, which is in contrast with the behavior of the corresponding HCs.179-

181,183 The trends of the boiling points shown in Table B.3 reflect extremely low intermolecular 

interactions in PFCs, which make them behave as ideal liquids.179-181 

 

Table B.3: Boiling Points of Homologous Perfluoroalkanes and Alkanes182 

 Boiling point (°C) 
 n = 1 2 3 4 5 6 7 8 9 10 
n-CnF2n+2 -128 -78 -38 -1 29 57 82 104 125 144 
n-CnH2n+2 -161 -88 -42 -0.5 36 69 98 126 151 174 
c-CnF2n   -32 -6 23 53 81 102   
c-CnH2n   -34 13 50 81 118 151   

 

The surface tension (σ) of a liquid is a measure of the molecular energy acting on its 

surface (dyn.cm-1 = mN.m-1) in order to oppose its expansion. Table B.4 shows that the PFCs 

have the lowest surface tension values of any organic liquid, which mean that the PFCs will wet 

practically any solid surface. Table B.2 also indicates that the surface tension of PFC is greater 

than that of the corresponding HFC, and both are smaller than that of their HC counterpart. It 

should be mentioned that perfluorinated ethers and amines have low surface tensions, typically 

15-16 dyn.cm-1, indicating their PFC-like character.182 
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Table B.4: Surface Tensions of Perfluorocarbons and Hydrocarbons179,303,304 

 Surface Tension (dyn.cm-1)(a) 
 PFC HC 
n-Pentane 9.4 15.2 
n-Hexane 11.4 17.9 
n-Octane 13.6 21.1 
Methyl-c-hexane 15.4 23.3 
Decalin 17.6 29.9(b,c) 
Benzene 22.6(d) 28.9(b) 

(a) at 25 °C, (b) at 20 °C, (c) trans isomer, (d) at 23 °C 

B.5 THERMODYNAMIC PROPERTIES OF PFCS 

In the following section, the thermal stability of PFCs and the solubility of different fuel gases, 

including CO2, in PFCs and HCs as well as other perfluorinated solvents are presented. 

B.5.1 Stability: Bond Strengths and Reactivity of PFCs 

The C–F bonds in fluoro-alkenes (and fluoro-benzenes) are quite strong, 116 kcal.mol-1 in C2H3F 

and 125 kcal.mol-1 in C6H5F,305 but their C=C π-bond strengths vary considerably with the 

degree of fluorination. The π-bond dissociation energies (Dπ) for CH2=CH2 and CH2=CF2 are 

64–65 kcal.mol-1,306 and 62.8±2 kcal.mol-1,307 respectively, while Dπ for CF2=CF2 is only 53 

kcal.mol-1. The Experimental Dπ values for other fluoro-ethylenes are not known, but available 

thermodynamic data indicate that monofluorination stabilizes double bonds, whereas 

neighboring difluorination and trifluorination are destabilizing.308 Also, fluorination of 

acetylenes is highly destabilizing,309 as both HC≡CH and FC≡CF are dangerously explosive and 
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CF3C≡CCF3 is an extraordinarily reactive dienophile (possibility to react with a diene) and 

enophile.310,311 

In the case of saturated compounds, fluorine forms the strongest single bond with carbon. 

In monohaloalkanes, the C–F bond is about 25 kcal.mol-1 stronger than the C–Cl bond308,312 and 

the difference between the heterolytic bond dissociation energies (breaking of a chemical bond in 

a compound) is even greater with values close to 30 kcal.mol-1.313 As a consequence of the 

relatively strong C–F bond and the poor departure group ability of fluoride ion,314-316 alkyl 

fluorides are 102–106 times less reactive than the corresponding chlorides in typical SN1 

solvolysis or SN2 displacement reactions.317,318 The alkyl fluorides displacement reactions, 

however, can be catalyzed by acid when H-bonding assists the departure of fluoride.319,320 For 

instance, C6H5CH2X solvolysis in 10% aqueous acetone has kF to kCl ratio (kF/kCl) of 3.2×10-2, 

but with 6 M HClO4, the kF to kCl ratio is 2.6×103.320 Also, the decomposition of benzyl fluoride 

catalyzed by HF can be violent, leading to storage problems.321 

Tables B.5 and B.6 show the bond dissociation energies (heats of formation of simple 

alkyl radicals,305,322 D0) for different ethanes; and as can be seen while α-fluorination increases 

the C–F bond dissociation energies, it does not significantly affect those of C–H, C–Cl, or C–Br 

bonds. The increase of C–F bond dissociation energies from 107.9 kcal.mol-1 in CH3CH2–F to 

124.8 kcal.mol-1 in CH3CF2–F shows the strong impact of the α-fluorination. On the other hand, 

β-fluorination significantly increases the C–H bond dissociation energies, but has little effect on 

those of C–F bonds, as can be seen for CH3CH2–X and CF3CH2–X in Table B.5. 
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Table B.5: Bond Dissociation Energies of Ethanes308,323 

 D0 (C–X) (kcal.mol-1) 
X CH3CH2–X CH3CF2–X CF3CH2–X CF3CF2–X 
H 100.1 99.5 106.7 102.7 
F 107.9 124.8 109.4 126.8 
Cl 83.7 - - 82.7 
Br 69.5 68.6 - 68.7 
I 55.3 52.1 56.3 52.3 

 

Table B.6: C–C and C–O Bond dissociation Energies308 

Ethane D0 (C–C) (kcal.mol-1) Ether D0 (C–O) (kcal.mol-1) 
CH3CH3 88.8 CH3OCH3 83.2 
CH3CF3 101.2 - - 
CF3CF3 98.7 CF3OCF3 105.2 

 

The α- and β-fluorination appear to decrease the reactivity of saturated compounds towards 

nucleophilic reactions. Compared with CH3CH2Br, the reaction between CF3CH2Br and NaI in 

acetone is about one fold slower,324 and RCF2Br compounds are inert to halide exchange under 

identical conditions. The strong C–F bonds appear to diminish the reactivities of alkyl CF3 and 

CF2H groups towards F- displacement or hydrolysis, which can be attributed to the shielding of 

the carbon center by the F and inductive effects. The polyfluorohaloalkanes can resist direct 

attack on carbon, but their reaction with nucleophiles involve initial attack on halogen by either 

one- or two-electron transfer processes.325,326 

Aliphatic C–C bonds are usually strengthened by fluorination.308,327 The CF3–CF3 bond is 

10 kcal.mol-1 stronger than the CH3–CH3 bond, and the C–C bonds in poly(CF2CF2) are about 8 

kcal.mol-1 stronger than those in poly(CH2CH2).293 Fluorination also increases the C–C bond 

strength in four and larger ring cyclo-alkanes, and is believed to reduce the strain energy of 

cyclobutane.308,327,328 Partially perfluorinated alkanes, however, can have stronger C–C bonds 
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than those in perfluorinated alkanes. For instance, the CF3–CH3 bond is 2.5 kcal.mol-1 stronger 

than the CF3–CF3 bond. 

The high strength of C–F and C–C bonds in PFCs contributes to their outstanding thermal 

and chemical stabilities.184 The PFCs thermal stabilities are limited only by the strengths of their 

C–C bonds, which decrease with increasing the chain length or chain branching.185 The most 

robust PFC is CF4, whose C–F bonds can measurably dissociate only above 2000 °C. 

Temperatures approaching 1000 °C are required to pyrolyze n-C2F6 or n-C3F8,185 but 

poly(CF2CF2) rapidly decomposes above 500 °C and its copolymers with perfluoroalkenes are 

significantly less stable.329 The PFCs with tertiary C–C bonds thermolyze (decomposition of an 

organic compound into a solid phase then gas phase with thermal treatment without oxygen) 

around 300 °C and highly branched systems can undergo more chemical changes than their HC 

analogs.182 Perfluorocyclopropanes, on the other hand, are different, since c-C4F8 undergoes 

homolysis at a rate of <5% h-1 at 500 °C330 whereas c-C3F6 extrudes CF2 at about 170 °C.331 

Perfluoroethers often are more thermally stable than PFCs owing to their especially strong C–O 

bonds, as at 585 °C poly(CF2CF2O) decomposes about 10 times slower than poly(CF2CF2).329 

Partially perfluorinated hydrocarbons (HFCs) are thermally less stable than their PFC 

counterparts, but they decompose primarily by HF elimination rather than by C–C bond 

rupture.184 Even though poly(CH2CF2) has stronger C–C bonds than poly(CF2CF2), it is unstable 

above 350 °C and starts to lose HF rapidly with further increase of temperature.329 Similarly, 

CF3CF2H loses HF only at 925 °C and C–C bond split becomes significant only about 1125 

°C.332 The eliminations of HF from HFCs are greatly accelerated by the presence of bases, which 

provide means to treat partially perfluorinated elastomers333 and functionalize the surfaces of 

hydrofluorinated plastics.334,335 The chemical unreactivity associated with saturated PFCs has 
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also its exceptions, as PFCs are susceptible to defluorination by reducing agents and fusion with 

alkali metals, which has been exploited to convert most PFCs to carbon and metal fluorides336,337 

for elemental analysis. 

B.5.2 Solubility of Gases in PFCs 

Perfluorinated compounds are nonpolar and are poor solvents for all materials except those with 

very low cohesive energies, such as gases. Saturated PFCs are practically insoluble in water and 

HF, but slightly soluble in HCs, and dissolve relatively well in low-molecular weight HCs.170,179 

The cohesive pressures of PFCs are only about half those of their corresponding HCs;170 the 

heats of solution of PFCs are much different from those of HCs;170,186,187 and the enthalpies of 

interaction between PFCs and HCs are smaller than those between HCs.186,187 In terms of 

solvent-solute interactions, PFCs are more like Ar and Kr than HCs.178 The distinct difference 

between interaction energies of PFCs and those of HCs is related to their boiling-point trends, 

and is manifested by the non-ideal behavior of their mixtures.166,188-193 

Among several empirical solvent polarity scales,338 the one introduced by Middleton and 

co-workers190-192 based on the analysis of the solvent polarity, is particularly useful in ranking 

perfluorinated solvents. The PFCs solvent spectral polarity indices shown in Table B.7 underline 

the nonpolar character of PFCs, reveal higher polarity of HFCs when compared with those of 

HCs (PS = 7.52 for C6H5F versus 6.95 for C6H6), and indicate high polarity of perfluorinated 

alcohols. The polarity values for CF3CH2OH and (CF3)2CHOH are 10.2 and 11.08, respectively, 

when compared with 10.64 and 12.1 for 50% aqueous HCO2H and H2O, which reflect the strong 

hydrogen-bonding character of PFC-alcohols.182 
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A useful property of PFCs is their ability to dissolve oxygen and other gases.194,195 PFCs 

dissolve about two to three times more oxygen than their analogous HCs, and about ten times 

more than water, which explain their use as oxygen carriers in artificial blood and organ 

perfusion applications.196 The high solubility of O2 in PFCs is not due to any specific attractive 

interaction between these two compounds,197-200 but rather results from the existence of large 

cavities (free volume) in PFC liquids which can accommodate the gas molecules. 

 

Table B.7: Solvent spectral Polarity Index339 

Solvent Polarity Index Solvent Polarity Index 
n-C6F14 0.00 n-C6H14 2.56 
c-C6F11CF3 0.46 c-C6H11CH3 3.34 
n-C8F18 0.55 n-C8H18 2.86 
(n-C4F9)3N 0.68 (n-C4H9)3N 3.93 
c-C10F18 
(Perfluorodecalin) 0.99 c-C10H18 

(Decalin) 4.07 

CFCl2CFCl2 3.22 CHCl2CHCl2 9.23 
CFCl3 3.72 CCl4 4.64 
C6F6 4.53 C6H6 6.95 
CF3CO2Et 6.00 CH3CO2Et 6.96 
C6H5F 7.52 C6H5Cl 8.30 
o-C6H4F2 7.86 o-C6H4Cl2 8.94 
CF3CH2OH 10.2 CH3CH2OH 8.05 
(CF3)2CHOH 11.08 (CH3)2CHOH 7.85 

c: cyclo, o: ortho 

 

Table B.8 compares the solubility of oxygen in hexane and perfluorohexane; and as can be 

noticed the solubility of O2 in perfluorohexane is twice as that in hexane and increasing 

temperature decreases the oxygen solubility in both liquid. 
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Table B.8: Experimental data on mole fraction solubilities and Henry’s law coefficient  

for O2 in hexane and perfluorohexane201 

T x1, 1×103(a) H1,2
(b) 

K - MPa 
 n-C6H14 

288.89 2.17 46.7 
293.20 2.10 48.2 
298.10 1.99 51.0 
298.51 1.99 50.9 
298.86 1.99 51.0 
303.43 1.83 55.5 
307.84 1.69 60.1 
312.44 1.55 65.6 

 n-C6F14 
288.69 4.94 20.5 
293.38 4.68 21.6 
299.36 4.23 23.9 
303.36 3.75 26.9 
303.37 3.79 26.6 
303.41 3.75 27.0 
303.47 3.76 26.9 
307.83 3.42 29.6 
312.58 2.94 34.5 

 

(a) at a solute partial pressure of 101325 Pa  

(b) Henry’s law coefficients at the saturation pressure of the pure solvent 

The tabulated experimental values for Henry’s law were fitted as a function of 1/T201 

using Equations (B-1) and (B-2) as: 

For n-C6H14: 

2

14
6

2,1
104874.6106901.2108310.3ln
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H ×
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×

−×=
 

(B-1) 

For n-C6F14: 
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(B-2) 
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Costa Gomes et al.202 investigated the solubilities of O2 and CO2 in the same liquids and 

found an improvement of almost 100% for the solubility of O2 in perfluorohexane when 

compared with that in n-hexane. In the case of CO2, as shown in Table B.9, the increase is not as 

significant, but it is important to notice that perfluorohexane dissolves between 2-20 times more 

CO2 than O2 depending on the temperature. 

 

Table B.9: Solubility (x1, 1×103) of O2 and CO2 in n-Hexane and in Perfluoro-n-hexane202 

T O2 CO2 CO2 (no electrostatics) 
K n-C6H14 n-C6F14 n-C6H14 n-C6F14 n-C6H14 n-C6F14 
200 5.9±0.4 10±1 174±30 231±39 171±29 196±34 
300 3.0±0.1 5.4±0.1 16.6±0.4 24.3±0.8 16.6±0.4 22.4±0.7 
400 3.1±0.1 5.1±0.1 7.9±0.1 11.2±0.2 8.0±0.1 10.7±0.2 

 

Table B.10 compares the solubility of O2, CO2 and CO in different liquids; and as can be 

observed the solubility of CO2 is once again greater than that of O2 in both solvents, and CO 

behaves like O2. The difference between gas solubilities in hydrocarbon and fluorocarbon 

solvents, however, is not as substantial for CO2 as for CO and O2 which can be explained by 

comparing their dipoles. Costa Gomes et al.202 explained the solute-solvent interactions by the 

dispersion forces rather than the electrostatic terms, a hypothesis that could be supported by the 

polarizability values: CO, αV = 1.60 Å3; O2, αV = 1.95 Å3; CO2, αV = 2.65 Å3. 
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Table B.10: Experimental solubility (x1, 1×103) of Gases at 298 K in various 

hydrocarbon and fluorocarbon solvents202 

 O2 CO2 CO 
n-C6H14 1.99 - - 
n-C7H16 2.04 - - 
n-C8H18 2.05 12.6 1.71 
C6H6 0.815 9.70 0.663 
n-C6F14 4.23 - - 
n-C7F16 5.22 - - 
n-C8F18 5.34 - - 
C6F6 2.41 22.0 2.12 
x(C6F14)/x(C6H14) 2.13 - - 
x(C7F16)/x(C7H16) 2.56 1.73 2.24 
x(C8F18)/x(C8H18) 2.60 - - 
x(C6F6)/x(C6H6) 2.96 2.27 3.20 

 

In Table B.11, the solubility of CO2 in different fluorocarbon liquids is again higher than those of 

all the other gases listed, and when compared with H2 or N2, at the temperature used, it differs by 

more than one order of magnitude. Thus, perfluorinated compounds are expected to have higher 

selectivity toward CO2 than other gases present in the flue or fuel gas. 
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Table B.11: Solubility (x1, 1×104) of gases in TFE and HFIP at 101.33 kPa 

gas partial pressure340 

 TFE, 2,2,2-trifluoroethanol HFIP, 1,1,1,3,3,3-
hexafluoropropan-2-ol 

Gas 268.15 K 283.15 K 273.15 K 283.15 K 
He 1.13 1.41 2.24 2.38 
Ne 1.73 1.99 3.66 3.79 
Ar 9.21 8.87 16.26 15.51 
Kr 20.88 18.81 31.61 29.91 
Xe 49.48 42.59 69.16 61.28 
H2 2.13 2.43 3.50 3.84 
N2 6.02 6.23 11.61 11.68 
O2 9.36 9.29 16.60 16.37 
CH4 13.20 12.32 19.71 19.37 
C2H4 73.61 60.42 127.0 117.2 
C2H6 61.44 50.51 79.75 71.84 
CO2 209.7 152.2 264.8 221.9 
CF4 16.87 14.99 38.76 35.57 
SF6 89.88 68.45 230.7 186.4 

 

In Table B.12 and Figure B.1, it can be seen that the solubility of CO2 in 1-N-butyl-3-

methylimidazolium hexafluorophosphate increases linearly with pressure, and accordingly the 

data follow Henry’s law over the pressure and temperature ranges used. Figure B.2 shows 

Henry’s law constant plot as a function of the reciprocal of temperature (1/T); and even though 

the solubility of CO2 appears to decreases with temperature, large amounts of CO2 can still be 

dissolved in 1 kg of solvent, which underlines the potential use of PFCs as physical solvent in 

AGR processes. 
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Table B.12: Solubility of CO2 in 1-N-butyl-3-methylimidazolium hexafluorophosphate341 

T=293.15 K T=313.15 K T=333.15 K T=353.15 K T=373.15 K T=393.15 K 
mCO2 p mCO2 p mCO2 p mCO2 p mCO2 p mCO2 p 

mol/kg MPa mol/kg MPa mol/kg MPa mol/kg MPa mol/kg MPa mol/kg MPa 
1.199 1.533 0.0557 0.105 0.1554 0.424 0.0734 0.266 0.0510 0.229 0.2179 1.199 
1.809 1.967 0.6674 1.292 0.6344 1.746 0.3710 1.329 0.3286 1.486 0.6023 3.416 
2.244 2.755 1.478 2.893 1.043 2.885 0.7914 2.915 0.6153 2.827 0.7959 4.571 
3.497 4.190 2.187 4.242 1.350 3.730 1.234 4.592 0.9427 4.467 0.9649 5.513 
3.985 4.752 3.018 5.844 1.614 4.492 1.641 6.194 1.221 5.830 1.132 6.526 

  3.656 7.293 2.073 5.807 2.088 8.025 1.459 7.055 1.307 7.597 
  4.391 9.480 2.488 7.091 2.453 9.685 1.867 9.191 1.430 8.324 
    2.719 7.822       
    2.917 8.562       
    3.116 9.184       

 

 

 

Figure B.1: Solubility of CO2 in 1-N-butyl-3-methylimidazolium hexafluorophosphate [PF6] as a 

function of temperature and total pressure341 
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Figure B.2: Henry’s law constant of CO2 in 1-N-butyl-3-methylimidazolium 

hexafluorophosphate [PF6]341 

 

Table B.13 compares the solubility of N2 in water, acetone, cyclohexane and perfluorohexane; 

and as can be seen the solubility of CO2 follows the order: perfluohexane > cyclohexane > 

acetone > water. In water, the molecules are held tightly together by hydrogen-bonding, and 

consequently the gas is expected to dissolve poorly as few spaces are available for gas 

molecules. In acetone, the molecules interactions are weaker, and therefore more CO2 is 

dissolved. Cyclohexane has an induced dipole, which contributes to higher solubility than in 

acetone. Perfluorocarbons, however, have no dipole, and induced dipoles are prevented to appear 

due to the presence of fluorine atoms. Thus, the fluorine atoms have a tendency to repel each 

other, which lead to very low molecular interactions between perfluorocarbon molecules.342 

Increasing pressure forces the gas molecules into the liquid, however, a perfluorocarbon will not 
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exert a large force to squeeze the gas molecules out due to the low degree of molecular 

interactions, and consequently, the gas will dissolve in a large quantity in such  solvent342 

 

Table B.13: Solubilities of nitrogen in various solvents at 298 K and 1 atm342 

Expressed as mL of gas per 100g of liquid  
at 25 °C, 1 atm 

Liquid Solubility 
Perfluorohexane 44.2 

Cyclohexane 18.5 
Acetone 17.7 
Water 1.6 

 

Some gases, however, can contribute to the intermolecular forces existing in the solvent. In fact, 

gases with high boiling points have greater attractions towards the liquid molecules, as indicated 

in Table B.14. 

 

Table B.14: Solubilities of various gases in a perfluorohexane (PP1) at 298 K and 1 atm342 

Expressed as mL of gas per 100g of liquid at 25 °C, 1 atm 
Gas Solubility Gas Boiling Point (°C) 
He 6.6 -272 
H2 10.7 -259 
N2 26.3 -210 
CO 26.3 -192 
Ar 39.8 -186 
O2 41.0 -183 

CO2 156.0 -78 
SF6 167.0 -64 

C2H6 263.0 -89 
Cl2 781.0 -35 
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Table B.15 shows the solubilities of different gases in one of the perfluorocarbon liquids 

(PP5) made by FLUTEC INC., and again this perfluorocarbon shows a large selectivity toward 

CO2 when compared with other gases, such as H2, CO, and N2. 

 

Table B.15: Solubilities of various gases in a typical FLUTECTM (Perfluorodecalin (PP5)) liquid  

at 298 K and 1 atm343 

Expressed as mL of gas per 100g of liquid at 25°C, 1 atm 
Gas Solubility 
He 3.9 
H2 6.3 
N2 15.6 
CO 17.1 
Ar 23.7 
O2 24.4 

CO2 93 
SF6 99 

C2H6 156 
Cl2 463 

* Ozone figures were for 6 wt% in oxygen in the gas phase; the actual 
solubility is likely to be significantly higher 

 

Table B.16 compares the solubility of different gases in different perfluorocarbon liquids. The 

solubility of each gas decreases as the molecular weight, liquid viscosity and density increase 

(see Table B.19). Increasing such physical properties decreases the space between the fluorine 

atoms and thus fewer gaps are available to accommodate CO2, leading to lower solubility as 

shown in Table B.16. 
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Table B.16: Solubility of different gases in perfluorocarbon liquids at 298 K and 1 atm204 

Gas solubility, mL(gas)/100 g (liquid) at 25 °C and 1 atm 

Gas 

FLUTEC Liquid 
Perfluoro 
hexane 

Perfluoromethyl
-cyclohexane 

Perfluoro-1,3-
dimethyl-cyclohexane 

Perfluoro 
decalin 

Perfluoro 
methyldecalin 

C6F14 C7F14 C8F16 C10F18 C11F20 
PP1 PP2 PP3 PP6 PP9 

He 6.6 5.5 4.6 3.9 3.4 
H2 10.7 9.0 7.4 6.3 5.6 
N2 26.3 22.0 18.3 15.6 13.8 
CO 26.3 24.2 20.0 17.1 15.0 
Ar 39.8 33.5 27.7 23.7 20.0 
O2 41.0 34.6 28.6 24.4 22.0 

CO2 156.0 132.0 109.0 93.0 82.0 
SF6 167 140 116 99 87 

C2H6 263 221 183 156 138 
C3H8 5.9 - - - - 
Cl2 781 657 542 463 408 
F2 44 - - - - 
O3

* 7.8 7.4 - 6.3 6.3 
 

* Ozone figures were for 6 wt.% in oxygen in the gas phase; the actual solubility is likely to be 

significantly higher 

In Table B.17, the solubilities of several gases in fluorocarbons at 1 atm are listed; and it 

is important to mention that the solubility of CO2 is almost one order of magnitude greater than 

those of the other listed gases in fluorocarbons. 
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Table B.17: Solubility of gases in fluorocarbons at 1 atm gas pressure344 

1 atm, 25 °C 
Solvent Gas 104×x2 

n-C7F16 

He 8.90 
H2 14.2 
Ar 53.0 
N2 39.1 
O2 55.3 
CO 38.8 
CO2 208.8 
C2H6 0.203 

C6F11-CF3 
N2 31.8 
Ar 45.9 

C6F10-CF3-(CF3) N2 33.0 
(C4F9)3N Ar 50.0 

Cyclic C8F16O Air 46.0 
Ar 50.0 

 

In addition, Table B.18 shows that CO2 has a greater solubility than those of N2 or O2 which 

suggests that perfluorocarbons will selectively absorb CO2 in larger quantities relative to other 

gases. 

 

Table B.18: Solubility of Gases in Perfluorocarbon Solvents344 

Solubility in g/kg 

Liquids Temperature Air O2 N2 CO2 O2 N2 
n-C7F16 

25°C 

- - 0.457 0.283 2.42 
FC-80 0.093 0.181 0.361 0.216 1.95 

L-1822345 0.072 0.158 0.285 0.184 1.55 
FC-47 0.072 0.134 0.272 0.174 1.46 
n-C7F16 

37°C 

- - - - - 
FC-80 0.086 0.171 0.354 0.217 1.61 
L-1822 0.065 0.121 0.271 0.162 1.31 
FC-47 0.071 0.129 0.276 0.171 1.34 
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B.6 MANUFACTURE OF PFCS 

In recent years, the continuing quest for economical processes aimed at producing high boiling 

point fluids has achieved considerable success. In fact, high-purity perfluorocarbon liquids are 

now available, such as Flutec Fluids produced by Rhône-Poulenc Chemicals Ltd., and Multifluor 

Inert Fluids by Air Products and Chemicals Inc.205 The Flutec Fluids are produced with large 

ranges of boiling points which can exceed 260 °C, as shown in Table B.19. It is also important to 

mention that the availability of Flutec Fluids with various boiling points, has led to the 

development of new applications of perfluorinated liquids.346 

The higher-boiling perfluoro-alkanes and cycloalkanes are manufactured either by 

electrochemical fluorination or by cobalt trifluoride fluorination347,348 of the corresponding 

alkanes, alkenes, or aromatic hydrocarbons (C5–C18). Inherently, electrochemical fluorination 

(ECF) should be the lower-cost process for the production of the low molecular-weight 

perfluorocarbon liquids, since it avoids the cost of generating elemental fluorine. The ECF route, 

on the other hand, has some disadvantages since high reactants purity is required despite the fact 

that low yield and selectivity, and extensive molecular rearrangement are often obtained. With 

few recycle steps, however, higher yield and selectivity can be achieved. The cobalt fluoride 

(CoF3) process leads to rearrangement of the parent hydrocarbon,205 but with proper control of 

the process conditions and careful selection of feed stocks, it is possible to manufacture some 

perfluorocarbons at the high 99% or even 99.9% purity level (e.g., tracer applications). Owing to 

the recycle capability of the cobalt fluoride process, it is also economically feasible to reduce 

trace impurities, such as CH-containing material to extremely low levels (<0.1 ppm w/w). 

When comparing C7 perfluorocarbon samples manufactured by these two industrial 

processes, perfluoroheptane synthesized by ECF contains generally 70% of C7F14, whereas 90% 
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of C7F14 is produced by CoF3 fluorination. The technical-grade perfluoromethylcyclohexane 

produced by CoF3 process for industrial use contains approximately 90% of C6F11CF3, which can 

be enhanced to 99% C6F11CF3 for tracer applications. The manufacture of 

perfluoroperhydrophenanthrene (Flutec PP11), shown below, is typical of the production of high 

molecular-weight cyclic perfluorocarbons: 

HFFCFHC C,CoF 1017 2414
350

21014
3 + →+



 (B-3) 

In the finished product, about 85% of the material possesses the phenanthrene skeleton, while the 

remaining substance contains perfluorobicycloalkanes. 

The cobalt trifluoride process used at Rhône-Poulenc Chemicals Ltd. was pioneered in 

the US by Fowler in the 1940s,347 developed further in the U.K.,349 and is now commonly 

operated in a continuous stirred reactor, as described in the patent literature.205 Vaporized 

phenanthrene and fluorine are fed simultaneously to a reactor containing a CoF2/CoF3 mixture to 

produce a perfluorocarbon product which is condensed and separated from the HF byproduct. 

Physical separation techniques are used to recycle perfluorinated material to the reactor, 

followed by chemical stabilization steps and drying of the highly perfluorinated material. A 

similar sequence is used in the ECF process, and the specification of the perfluorocarbon may be 

modified to meet the physical or chemical requirements of the intended application. It should be 

emphasized that often physical, thermal, or electrical properties of a final product are more 

important than its precise chemical composition. 

In Table B.19, several physical and thermodynamic properties of Flutec Fluids are 

summarized. The composition of these fluids may vary during their production; however, this 

does not constitute a major issue as pure compounds are not required in most of PFCs 

applications. 
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Table B.19: Typical Properties of Flutec Fluids204,205 

 PP50 PP1C PP1 PP2 PP3 PP5/6 PP7/9 PP10 PP11 PP24 PP25 

Molecular Formula C5F12 C6F12 C6F14 C7F14 
C7F14/ 
C8F16 

C10F18 
C10F18/ 
C11F20 

C13F22 C14F24 C16F26 C17F30 
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Molecular Weight 288 300 338 350 400 462 512 574 624 686 774 
Density (kg.m-3) 1604 1707 1682 1788 1828 1917 1972 1984 2030 2052 2049 
Boiling Point (°C) at 1 atm 29 48 5 76 102 142 160 194 215 244 260 
Pour Point (°C) -120 -70 -90 -30 -70 -8 -70 -40 -20 0 -10 
Viscosity (kinematic) (mm2.s-1) 0.29 0.615 0.39 0.873 1.06 2.66 3.25 4.84 14.0 15.3 56.1 
Viscosity (dynamic) (mPa.s) 0.465 1.049 0.656 1.561 1.919 5.10 6.41 9.58 28.4 31.5 114.5 
Surface Tension (mN.m-1) 9.4 12.6 11.1 15.4 16.6 17.6 18.5 19.7 19 22.2 - 
Vapor Pressure (mbar) 862 368 294 141 48 8.8 2.9 <1 <1 <1 <1 
Heat of Vaporization at Boiling 
Point (kJ.kg-1) 90.8 75.8* 85.5 85.9 82.9 78.7 75.5 71* 68* 65.8* 67.9* 

Specific Heat (kJ.kg-1.°C-1) 1.05 0.878* 1.09 0.963 0.963 1.05 1.09 0.92* 1.07* 0.93* 0.957* 
Critical Temperature (°C) 148.7 180.8* 177.9 212.8 241.5 292.0 313.4 357.2* 377* 388.7* 400.4* 
Critical Pressure (bar) 20.48 22.64* 18.34 20.19 18.81 17.52 16.60 16.2* 14.6* 15.1* 11.34* 
Critical Volume (L.kg-1) 1.626 1.567* 1.582 1.522 1.520 1.521 1.500 1.59* 1.58* 1.606* 1.574* 
Thermal Conductivity 
(mW.m-1.°C-1) 64.0 66.4* 65.3 59.9 60.4 57.0 57.5 56* 52.6* 64.6* 63.8* 

Coefficient of Expansion  
at 0 °C 0.00189 0.00167 0.00159 0.00138 0.00123 0.00104 0.00095 0.00078 0.00075 0.00078 0.00084 

Coefficient of Expansion at bp 0.00213 - 0.00205 0.00190 0.00178 0.00170 0.00167 - - - - 
Refractive Index n20

D 1.2383 1.2650 1.2509 1.2781 1.2895 1.3130 1.3195 1.3289 1.3348 1.3462 1.3376 
 

*Estimated Value 
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B.7 APPLICATIONS OF PFCS 

The perfluorocarbon liquids are predominantly used as an alternative to chlorofluorocarbons 

(CFC). The continuing trend for size/cost reduction in electronics and electrical industries leads 

to higher packing densities of energy-dissipating devices, and therefore more effective heat 

removal systems are required. This has been successfully achieved in many cases by direct liquid 

cooling, where l,1,2-trichloro-1,2,2-trifluoroethane (CFC-113) has been used extensively.303 This 

situation, however, is beginning to change since CFC-113 is implicated in stratospheric ozone 

depletion. Thus, perfluorocarbons are now being studied and used for larger volume applications, 

e.g., in distribution transformers and large voltage regulators. Since the heat transfer during 

boiling increases with pressure, in a hermetically sealed system the vapor pressure and 

temperature of CFC-113 (boiling point 47.6 °C at 1 atm) minimize the possibility of thermal 

damage and provide good heat transfer. This particular characteristic is being investigated for the 

prospect of using perfluorocarbons as alternative coolants. More specifically, the following two 

important parameters which are required to efficiently optimize the heat removal, are being 

studied: (1) the critical heat flux as a function of saturated boiling temperature (this affects the 

size and cost of a device), and (2) the temperature difference between the heat emitting surface 

and the liquid coolant. 

Refrigeration applications operating in the -20 to -40°C temperature range have 

increasingly used R-502, which is an azeotropic mixture of R-22 (CF2HCl) and R-115 (C2F5Cl), 

rather than R-22 alone. The high halogen content of R-115 results in extra thermal capacity 

benefits, which decrease the temperature of compression and improve the energy efficiency. 
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Unfortunately, R-115 is being banned because of its ozone-depleting effects, and finding a 

substitute for R-502 has been so far difficult. It is, however, possible to use perfluoropropane (R-

218) instead of R-115 and obtain similar temperature-reduction benefits, without the ozone-

depletion problem. Nonetheless, some loss of efficiency occurs, which can usually be overcome 

by adding a minor proportion of propane as a third ingredient.350 The ternary mixture has better 

properties than R-502 and is being commercialized as Isceon 69-L by Rhône-Poulenc Chemicals 

Ltd., as an interim solution. Although this mixture has a much reduced ozone-depletion potential, 

R-22 is not yet regarded as an acceptable refrigerant for a long term. 

From a technical viewpoint, perfluorocarbons are ideal candidates for all types of fluid 

cooled transformers, but such applications have been limited to those which justify the high cost 

of the fluid, like mobile radar. In the past, non-flammability in transformers for the general 

distribution of electrical power has been achieved using liquids such as polychlorinated 

biphenyl/trichlorobenzene blends (PCB), perchloroethylene, and 1,1,2-trichloro-l,2,2-

trifluoroethane (CFC-113). PCBs and CFC-113 have become environmentally unacceptable, and 

perchloroethylene is receiving increasingly adverse comments regarding its possible 

carcinogenicity and accumulation in various natural lipids.205 

The capacitors have inevitably been included in the modern electronics trend to reduce 

component size, preferably without compromising performance. Liquid impregnated capacitors 

play a significant role in achieving such objectives, and perfluorocarbons are particularly 

effective because they have all the desirable properties, except low permittivity (1.8–2) when 

compared with that of other organic capacitor impregnants (3–5.5). Hence, a low relative 

permittivity would be expected to give a low energy storage for an equivalent potential on the 

capacitor surfaces.205 The properties of perfluorocarbons, however, allowed to overcome this 
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defect, since the capacitors made at Sandia Laboratories have considerably improved energy 

density and reliability when compared with those impregnated with hydrocarbon or silicone.205 

The devices were operated at near-atmospheric pressures, where perfluorocarbon vapors have 

high enough dielectric strength to reduce the likelihood of electrical breakdown caused by gas 

bubbles formed during ebullition. Other properties of the perfluorocarbons, such as low liquid 

surface tension and viscosity, are critical in efficiently wetting and impregnating the capacitor 

windings. A typical performance improvement is the increase of pulses before failure from about 

106 to 108 at electrical stress levels, which corresponds to about three times those possible with 

silicone or hydrocarbon impregnants.184 The fluids used were based on perfluorotributylamine 

and perfluorohexanes. Other perfluorocarbons are also obvious candidates, such as 

perfluoro(methylcyclohexane) and perfluoro(1,3-dimethylcyclohexane), as they have some of the 

highest vapor dielectric strengths known.351 

The effectiveness of perfluorocarbons as fire-extinguishing agents has also been 

known,352 but they were historically dismissed in favor of Halon-1211 (CF2ClBr) and Halon-

1301 (CF3Br) for efficiency/cost ratio purposes. Halon-1301 is exceptional in being the only 

material usable in enclosed spaces where humans are present, as it is used on oil platforms, in 

aircraft, etc. Finding an alternative to Halon-1301 has been difficult, however, the very low 

toxicities of perfluorocarbons will allow their use in human-occupied enclosed situations, and 

work is in progress to assess their suitability.353 One major drawback, which is being thoroughly 

studied, is the tendency of some perfluorocarbons to form toxic perfluoroisobutene under 

extremely high temperatures.184 

Perfluorocarbon ethers combine the usual inert, nonflammable characteristics of 

perfluorocarbons with exceptionally low vapor pressures. Consequently, these fluids have 
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become extensively used as lubricants, both in high vacuum and oxygen handling 

technologies.354 Examples of such applications include handling of corrosive halogen 

compounds and lubrication of high-temperature heat pumps. In certain other applications, 

however, limitations occur due to the formation of Lewis acids, causing a chemical degradation 

at the C–O–C linkage, and in order to overcome such limitations, the use of compounds 

containing only carbon and fluorine (i.e. perfluorocarbons) is being considered. 

Because of the volatility of perfluorocarbon lubricants, the low boiling point compounds 

can only be used under hermetically sealed conditions. It should be mentioned; however, those 

lubricants with boiling points of ≥ 250 °C should have sufficiently low vapor pressures for open 

lubrication of glands, valves, etc. Perfluorocarbon ethers could also be suitable for greases which 

incorporate low molecular-weight fluorocarbon polymers as thickening agents. 

Three Flutec perfluorocarbons containing no additives were tested for boundary 

lubrication properties and compared with those of an ISO 10 mineral oil (contains performance-

enhancing additives). Although both fluids have approximately equivalent viscosity,205 the 

perfluorocarbons required a greater load than the mineral oil to cause both initial seizure and 

weld. At equivalent loads, the temperatures reached with the perfluorocarbons were higher those 

with mineral oil, indicating an increased tendency for mild wear, however, this disadvantage can 

be overcome by including additives or modifying the viscosity of the perfluorocarbons.205 
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B.8 PERFLUOROCARBONS SUMMARY 

The attractive properties of the perfluorocarbons (PFCs) make them a potential alternative to 

current physical solvents being used to capture CO2 in commercial acid gas removal (AGR) 

processes, such as methanol (Rectisol) and dimethylethers of polyethylene glycol (Selexol). The 

perfluorinated liquids can be selected for potentially capturing CO2, at elevated temperatures and 

pressures, from fuel gas based on the following properties: (1) CO2 displays much higher 

solubility in perfluorinated compounds than in the corresponding hydrocarbons, about twice as 

much;203 (2) Perfluorinated liquids are extremely chemically and thermally stable, due to the 

high energy of C–F bond; (3) Perfluorinated liquids vapor pressure is extremely low, and 

therefore solvent losses are minimum; (4) Perfluorinated liquids have typically a relatively low 

viscosity, which could minimize the pumping and re-circulation costs of solvents; and 

(5) Perfluorinated liquids are non-toxic and completely safe under high pressure and temperature 

conditions. Some of the drawbacks of perfluorinated liquids include, high cost, and physical 

absorption of other gases (light hydrocarbons) along with CO2. 
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APPENDIX C 

EXPERIMENTAL PRESSURE VERSUS TIME PLOT FOR CO2 ABSORPTION IN PP25 

 
Figure C.1: Typical pressure versus time data plot 
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APPENDIX D 

PREDICTED SOLUBILITIES OF GASES IN PP25 AS A FUNCTION OF PRESSURE 

AND TEMPERATURE USING ASPEN PLUS, EMPLOYING P-R EOS 
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Figure D.1: Solubilities of CO2 and H2 in PP25 (Predicted using Aspen Plus version 24.0) 
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Figure D.2: Solubilities of CO, CH4, Ar in PP25 (Predicted using Aspen Plus version 24.0) 
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APPENDIX E 

ASPEN PLUS DETAILED SCHEMATIC OF THE CONCEPTUAL DESIGN PROCESS 

FOR CO2 CAPTURE USING IONIC LIQUIDS 
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Figure E.1: Conceptual design schematic (part 1: absorber and flash units) 
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Figure E.2: Conceptual design schematic (part 2: CO2 compression and CO2/H2 separation) 
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