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Precipitation is the most important input for hydrological simulations and soil moisture 

contents (SMCs) are the most important state variables of hydrological system. We can improve 

hydrological simulations by improving the quality of precipitation data and assimilating satellite-

measured SMC data into land surface simulation. Multiscale data fusion is an effective approach 

to derive precipitation data due to the multiscale characteristics of precipitation measurements. 

Multiscale data assimilation is the exact approach to assimilate satellite-measured SMC data 

into land surface simulations when measurements and model simulations are not at the same 

spatial resolution. To date, no systematic assessments of these approaches have been conducted 

in hydrological simulations. For the purpose of improving hydrological forecast, this study 

assesses influences of precipitation data fusion and soil moisture data assimilation on the 

simulations of streamflow, SMCs and evapotranspiration over 14 watersheds selected from the 

Ohio River Basin.  

 

As the technical basis of this study, a large-scale flow routing scheme and a parameter 

calibration scheme with multiple precipitation inputs are developed for Noah LSM. A multiscale 

data fusion algorithm, namely Multiscale Kalman Smoother (MKS) based framework, which 

plays an important role in multiscale precipitation data fusion and multiscale soil moisture data 
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assimilation, is assessed in a large experimental site with 2246 precipitation events in 2003. 

Three precipitation data products are derived by fusing NLDAS-2 precipitation data product and 

NEXRAD MPE precipitation data product with the MKS-based framework. For the assessment 

over the 14 watersheds in three individual years, essential improvements of hydrological 

simulation have been found for a half number of cases. Findings of this assessment show that 

precipitation data fusion is a statistically effective approach to improve hydrological simulations. 

To assess the influences of soil moisture data assimilation on hydrological simulation, AMSR-E 

SMC data are assimilated into land surface simulation by Noah LSM. Results show that soil 

moisture data assimilation has not improved hydrological simulations for most of cases because 

AMSR-E data underestimate SMC compared with model simulations. However, for those cases 

in which precipitation data overestimate real precipitation, the soil moisture data assimilation has 

been proved as an effective approach to improve hydrological simulations.  
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1.0  INTRODUCTION 

1.1 RESEARCH MOTIVATIONS  

The principle goal of hydrological forecast is to predict streamflow, for some more 

complicated cases, soil moisture and evapotranspiration as well. Hydrological models, which 

simulate water and energy budgets in watersheds, are the foundation of hydrological forecast. 

Meteorological inputs, such as temperature, pressure and humidity of air, surface wind speed, 

radiation and precipitation, drive the evolution of hydrological systems. If we build up our 

understandings to a watershed on the basis of physicals laws, then the hydrological model is a set 

of governing equations, which describe dynamics within and between components of 

hydrological process, and the meteorological inputs are the boundary conditions of those 

equations. Reliable hydrological forecasts require not only realistic hydrological model but also 

accurate meteorological inputs. Therefore, hydrological forecast can be improved through two 

ways: one is to choose or develop more realistic models and the other is to use or derive more 

accurate meteorological inputs.  

 

Hydrological process can be either simulated with rainfall-runoff models or land surface 

models (LSMs). LSMs simultaneously simulate water and energy balances in land surface 

process, which have more physical basis than simple rainfall-runoff models. After almost 40 
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years’ development, LSMs have been mature in the past decade. In terms of hydrological 

simulation, LSMs, such as VIC (Liang et al. 1994; Liang and Xie 2001; Liang and Xie 2003), 

CLM (Dai et al. 2003; Lawrence et al. 2010; Bonan et al. 2011) and Noah (Chen et al. 1996; 

Chen et al. 1997; Koren et al. 1999; Chen and Dudhia 2001; Ek et al. 2003), share similar 

functions and structures. Firstly, all of them can simulate basic components of hydrological 

cycle, including runoff generation, evapotranspiration, and dynamics of moisture and 

temperature in soil layers, at the watershed scale or the grid scale of climate model, e.g. 1/8 

degree to 1 degree. Secondly, the same governing equations have been applied to describe 

mechanisms of hydrological process. For example, Richards’ equation is used to simulate the 

movement of soil moisture in unsaturated zone and the thermal diffusion equation is used for 

simulating the fluxes of heat in soil layers. For some comprehensive models which consider 

groundwater explicitly, Darcy’s law may be used to simulate the flow of ground water (Du et al. 

2007). In large watersheds where flow routing has to be considered, Saint Venant equations and 

their simplified forms are usually used for routing water flows over land surface and in river 

channel (Jain et al. 2004; Jain and Singh 2005; Liu et al. 2009). Because of close formulations 

for hydrological process, none of LSMs have been proved absolutely superior to others in 

hydrological forecast so far. In addition, it seems that it is hard to significantly improve 

hydrological forecast by developing more advanced LSMs since the existing ones have 

incorporated most hydrological knowledge.  

 

On the contrary, it is more promising to improve hydrological forecast by improving the 

quality of meteorological inputs for LSMs. Nowadays, hydrological forecast is not limited by the 

availability of meteorological inputs; but indeed, it is limited by their accuracies After the launch 
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of the first satellite in 1957, more and more platforms, as well as instruments, are emerging for 

measuring meteorological inputs. Especially, satellite-borne sensors and ground-borne radars, 

which measure meteorological inputs continuously in space rather than the point measurements 

of tradition meteorological stations, have facilitated hydrological forecast significantly. 

However, even with cutting-edge hydrological models and meteorological inputs produced by 

modern technologies, the accuracy of hydrological forecast still cannot fully fulfill the 

requirements of operational applications. Even though available meteorological measurements 

are not reliable enough, they have distinctive advantages respectively. More reliable 

meteorological data may be derived by combining the advantages of existing measurements. 

Therefore, the problem of improving hydrological forecast can be partially solved by deriving 

more accurate meteorological inputs through data fusion.   

 

Precipitation is the most important meteorological input for LSMs. Its accuracy directly 

affects the reliability of hydrological forecast. Intuitively, precipitation is the source of all forms 

of water in watershed. Specifically, the importance of precipitation can be explained through 

mechanisms inside the control volume of hydrological modeling, as depicted in Figure 1.1. For 

hydrological simulation with LSMs, the study domain, i.e. the watershed, is usually discretized 

into a number of rectangular grids. Each grid is corresponding to a control volume of 

hydrological model, which describes all components of hydrological process except flow 

routing. The control volume starts from the bottom of soil layer and ends at the top of canopy, 

which is usually composed of a layered soil column and a layer of vegetation growing in it. 

Vegetation interacts with soil layers through their roots, which penetrate one or more soil layers 

and extract water to fulfill the water demanding by transpiration. From the top to the bottom, 
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canopy, snowpack and soil column can be abstracted as a series of buckets with holes at side or 

bottom to describe reallocation of precipitation within the control volume. Among them, the 

bucket for soil column is directly related to runoff generation. As shown in Figure 1.1, the side 

hole of the bucket is used to describe surface flow generation. After certain amount of 

precipitation, if soil water content reaches to some threshold, e.g. the height of side hole, then 

extra precipitation will be turned into surface runoff. Reversely, if the soil water content is under 

the height of side hole, then all precipitation will be absorbed by soil layers. Base flow, which 

recharges groundwater aquifer from soil layers, is through the bottom hole in the form of free 

drainage forced by gravity in most of land surface models (Zeng and Decker 2009). Same as the 

bucket for soil column, other buckets describing intercepted precipitation and snowpack also 

have thresholds of storage for the purpose of separating precipitation. The existence of storage 

thresholds in those buckets for hydrological components represents the nonlinear nature of 

precipitation redistribution. It means that the amounts of precipitation allocated to canopy 

interception, snow pack and soil moisture contents are not always linearly proportional to certain 

factors, for example, storage capacities of buckets. Even the minor change of precipitation 

quantity may vary the proportions of precipitation redistributions significantly. Therefore, 

surface flow, base flow, and storages in each component simulated by hydrological model are 

very sensitive to the quantity of precipitation. In other words, if we can improve the accuracy of 

precipitation by any means, it is likely that hydrological forecast will be improved and the 

improvement may be significant as well. 
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Figure 1.1 Control volume of hydrological modeling 

 

Data fusion is an effective approach to derive new precipitation datasets by taking 

advantages of existing measurements, such as rain gauge measurement, radar measurement and 

satellite measurement. These measurements all have their advantages and limitations. For 

example, rain gauges provide the most accurate measurement of precipitation but they are only 

available discretely at points. Interpolation algorithms can help to interpolate rain gauge 

measurements over space but they cannot compensate for the insufficiency of rain gauges. 

Geostationary satellites with infrared sensors boarded and polar orbit satellite with microwave 

sensors boarded, which measure precipitation through the temperature of clouds and microwave 

echoes respectively, are good at continuous measurement of precipitation over large areas, but 

limited in the accuracies and spatial resolutions. Ground mounted precipitation radars fall 

between rain gauges and satellites in terms of accuracy, coverage as well as spatial resolutions. 

Specifically, for the cases of hydrological forecast, measurements of precipitation by rain gauge, 
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radar and satellite may exist simultaneously. Then, derivation of better precipitation data needs 

to deal with precipitation measurements at different spatial resolution and with different 

accuracies. Multiscale data fusion is an exact solution for our goal, since it takes advantage of 

measurements for the same phenomenon but at different spatial resolutions. 

 

Given meteorological inputs and hydrological model, i.e. governing equations and their 

parameters, hydrological forecasts can also be improved by rectifying state variables of LSMs. 

LSMs can simulate two types of variables, which describe dynamic properties of watersheds in 

hydrological cycle. One type of variables describes water or energy, which will leave the control 

volume after one step of simulation and no longer interact with hydrological components in the 

control volume. For example, evapotranspiration and generated runoffs, they leave the control 

volume either by the movement of atmosphere or overland and groundwater flows. We call this 

type of variables as model outputs. The other type of variables describes water or energy related 

factors, which will stay in the control volume after current step of simulation and further interact 

with hydrological components in the control volume at the next step of simulation. For example, 

intercepted water by canopy, moisture and temperature in soil layers will be the initial conditions 

in the next step simulation. We call this type of variables as model states. Together with 

meteorological inputs at the current time step, model states of the previous time step will feed the 

current step model simulation. Since either hydrological models or meteorological inputs may 

come with errors, it is unavoidable that computed model states are erroneous. If we accept the 

reality that both hydrological models and meteorological inputs are imperfect, so as a matter of 

course, we can reduce errors in hydrological forecasts by rectifying model states before the next 

step simulation. The technique, which aims to improve model simulation by means of rectifying 
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model states through incorporating measurements directly or indirectly related to them, is called 

data assimilation.  

 

Soil moisture measurements are much like precipitation measurements in terms of 

accuracy and spatial coverage. They are available at varying spatial resolutions with different 

accuracies. In situ measurements are the most accurate ones but they are discrete both in time 

and space. Besides, compared with the need of soil moisture data assimilation for hydrological 

forecasts, the number of in situ measurements is very limited. Moreover, soil moisture is highly 

heterogeneous in space because it is affected by too many factors, for example, soil property, 

precipitation and vegetation. Therefore, interpolation is not an effective approach to distribute in 

situ point measurements to the whole watershed. Same as precipitation, soil moisture contents 

can also be measured by satellite-borne sensors of microwave radiometry. As an advantage, 

satellite measured soil moisture data continuously cover large area, which is good for soil 

moisture data assimilation in the hydrological forecast. However, there are also two main 

limitations coming with satellite-measured soil moisture contents. One is that the soil moisture 

derived from the microwave brightness temperature of land surface is usually erroneous because 

microwave is absorbed and scattered by cloud and vegetation. The other is that satellite-

measured soil moisture contents data are usually at very coarse spatial resolutions. For example, 

for the wavebands used to derive soil moisture, the Special Sensor Microwave/Imager (SSM/I) 

sensor has a resolution of 69×43 km2 at 19 GHz (Ku-band) (Drusch et al. 1999); the Tropical 

Rainfall Measurement Mission Microwave Imager (TRMM/TMI) has a resolution of 63×37 km2 

at 10.65 GHz (X-band) (Cashion et al. 2005); and the Advanced Microwave Sending Radiometer 

(AMSR-E) has a resolution of 75×43 km2 at 6.925 GHz (C-band) (Crow et al. 2001). The 
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mapping resolutions of soil moisture products may be a little bit finer than the resolutions of 

sensors. However, they are still very coarse. For example, the resolution of SSM/I soil moisture 

is 25 km. The spatial resolution of hydrological forecast, i.e. the horizontal size of control 

volume, varies according to application purposes and it is not necessarily the same as spatial 

resolution of any satellite soil moisture data product. So, the resolution related problem, how to 

estimate soil moisture more accurately based on erroneous soil moisture measurements by 

satellite and simulations by LSMs at multiple spatial resolutions, comes again. Similar to the 

case of precipitation, this problem can be solved by the strength of multiscale approach, more 

specifically, multiscale data assimilation technique. 

 

The purpose of using multiscale approaches is to fully utilize the information of data and 

to avoid introducing extra errors by means of aggregation or disaggregation. The principle 

philosophies of multiscale precipitation fusion and multiscale soil moisture data assimilation are 

exactly the same. It is to estimate more accurate precipitation or soil moisture based on multiple 

erroneous measurements or simulations at different spatial resolutions. The reasons of doing data 

fusion in a multiscale way can be explained from two aspects. One is the scale-dependent nature 

of measurements and their corresponding errors. Both measurements and errors are related to 

their resolutions. From the perspective of hydrological forecast, such scale-dependence can be 

explained on the heterogeneities of precipitation and soil moisture. Because both of precipitation 

and soil moisture varies significantly over space, the measured quantities will be mostly different 

if changing resolution of measurement, i.e. the extent of a single measure. From the perspective 

of data fusion theory, if we adopt the Multiresolution Model (MR model) for signal and image 

processing (Chou et al. 1991; Basseville et al. 1992; Chou et al. 1993; Willsky 2002), then 
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multiscale measurements and their associated errors can be described by linear Gaussian models 

and Lyaponov equation respectively. In other words, both of them are functions of resolution. 

The other is the limitation of aggregation and disaggregation. Suppose that we don’t use 

multiscale approaches, then we have to aggregate or disaggregate measurements if their 

resolutions are finer or coarser than the resolution of hydrological forecast. Information will be 

lost in the aggregation process and no information will be gained in the disaggregation process. 

Besides, more errors may be introduced by aggregation or disaggregation. Moreover, it is hard to 

estimate statistical features of those added errors. By doing data fusion or data assimilation in a 

multiscale way, we can fully utilize information from measurements, especially those finer than 

hydrological forecasts.  

 

Multiscale recursive estimation was proposed as a methodology for merging multisensory 

and multiscale measurements in order to obtain estimations and their error statistics at desired 

scales in 1990s (Chou and Willsky 1991; Basseville et al. 1992; Chou et al. 1993; Chou et al. 

1994). With the name of scale recursive estimation (SRE), the multiscale data fusion technique 

was firstly used in fusing precipitation measurements by different instruments at different spatial 

resolutions, e.g. SSM/I derived precipitaiton at 15 km × 15 km and radar derived precipitaiton at 

2.5 km × 2.5 km resolution (Gorenburg et al. 2001). A mulplicative randome cascade model 

(Gupta and Waymire 1993; Over and Gupta 1994) was used to describe the multiscale variabilty 

of precipitaiton (Gorenburg et al. 2001). In order to fit the linear Gaussion Model between scales 

in the multiscale data fusion framework (Willsky 2002), measurements of precipitaiton or their 

nomalization forms were mapped into a log space (Gorenburg et al. 2001). Logrithm transform 

facilitates the normalnality approximation of measurements; however it also introduces difficulty 
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in handling zero values coming from the spatial intermittency of precipitation phenomenon. In 

order to solve this problem, a lognormal model (LN) and a bounded lognormal model (BLN) 

were develped by Tustison et al. in their verification of quantitative precipitation forecast 

(Tustison et al. 2002). Gupta et al. investigated limitations of LN and BLN together with 

muliplicative random cascade model and proposed a power transform to precipitation 

measurement for a better approximation of normalnality. In doing so, precipitation measurments 

were taken a power of 0.17 for their specific data and then, the multiscale data fusion was 

conducted in a real space instead of a log space. Besides, an Expectation Maximization (EM) 

algorithm, which was built up on the work of (Kannan et al. 2000), was introduced to estimate 

error variances in the multiscale data fusion framework. Employing the multiplicative random 

cascade model to precipitation, Bocchiola fused precipitations derived from TRMM (PR and 

TMI) and NEXRAD by using LN and BLN by Tustison et al as well as EM algoirthm to assure 

normalnality and to estimate parameter respectively. A tree-pruning technique was applied by 

Bocchiola to exclude zero rainfalls in those intermittent areas. Inspired by the works of Gupta et 

al and Bocchiola, de Vyver and Roulin developed a new normalization method by taking a power 

transform to assure that the process noises and measurement noises are normally distributed. de 

Vyver and Roulin’s approach also came with an EM algorithm for parameter identification. After 

the power transform, precipitation measurements were in a real space. Therefore, just like what 

Gupta et al. did, de Vyver and Roulin’s approach was not bothered by the zero-rainfalls. An 

evolution trace can be found from above-mentioned studies, which is started from the simple 

application of mutiscale data fusion technique to further development of methodology with 

respect to the features of precipitation. Those studies showed the capability of multiscale data 

fusion technique in precipiation fusion. However, it is worth mentioning that all of those studies 
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just demostrated multiscale data fusion technique on the precipitation snapshots at a certain time. 

Besides, the techniques for normality approximations, e.g. the logorithm transform and the 

power transform, are highly nonlinear, which may introduce extra errors and uncertainties when 

achieve normality. So far, two research gaps have been in hydrological forecast. One is that a 

robust model is needed to describe multiscale variability of precipitation and the corresponding 

approach is to assure the normality. The other is that systematical evaluation of multiscale data 

fusion technique for precipitation over a long time period for all possible precipitation types, e.g. 

convective precipitation and stratiform precipitation, is greatly needed. Only with these two gaps 

to be filled, multiscale data fusion techniques can be applied in operational hydrological forecast.  

 

Multiscale data fusion approach was firstly discussed by Kumar (Kumar 1999) on 

consistent estimate of soil moisture across scales given multiscale measurements, for example, 

derived from remote sensing and in situ technique. By adopting a fractal model to describe 

multiscale variability of soil moisture, the usefulness of multiscale Kalman filtering (MKF) has 

been demonstrated in Kumar’s study. However, Kumar also pointed out that the variability of 

estimated soil moisture by MKF might be less than reality due to the smoothing nature of this 

algorithm. The application of MKF in soil moisture data assimilation was formally began in the 

work of Parada and Liang (Parada and Liang 2004), in which, extended with an EM algorithm, 

MKF was used to assimilate near surface soil moisture (at 800 m resolution) derived from 

electronically scanned thin array radiometer (ESTAR) into VIC-3L land surface model (at 3200 

m resolution). A further study about impacts of spatial resolutions and data quality on multiscale 

soil moisture data assimilation was also conducted by Parada and Liang (Parada and Liang 

2008). One interesting finding in this study is that land surface model running at coarser 



 12 

resolution can be rectified considerably by assimilating soil moisture at finer scales; even the 

finer measurements are much nosier. For other related studies about multiscale soil moisture data 

assimilation, it is necessary to clarify a confusing approach, namely “ensemble multiscale filter” 

(Zhou et al. 2008) or “multiscale Ensemble filtering” (Pan and Wood 2009; Pan et al. 2009). 

Essentially this type of algorithms is just a kind of Ensemble Kalman Filtering (EnKF) which 

works with measurements at the same scale of land surface model. The “multiscale” in the 

studies of Zhou and Pan means that the updated step of each ensemble of EnKF was conducted 

in a multiscale manner in order to reduce the dimension of error covariance matrix, Kalman gain, 

etc. To summarize, the study of multiscale soil moisture data assimilation is still in an 

exploration stage. For the purpose of the practical application in hydrological forecast, a lot of 

work is need to be done, for example, assessing the role of multiscale soil moisture data 

assimilation for the improvement of simulations of streamflow, soil moisture and 

evapotranspiration as well.  

 

Essentially, the scale recursive estimation (SRE) algorithm used in precipitation data 

fusion and the multiscale Kalman filtering (MKF) algorithm used in soil moisture data 

assimilation are the same. Both of them include a Kalman filtering step and a Kalman smoothing 

step. Since the fused data by these algorithms are estimates conditioned on all measurements, it 

is more like a smoothing algorithm. Therefore, we call this kind of data fusion algorithm as 

Multiscale Kalman Smoother (MKS) algorithm.  
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1.2 RESEARCH QUESTIONS  

Three research questions are proposed in this study. Two of them are more scientific and 

one question is more technical. The two scientific questions are listed as follows: 

1. What are the influences of precipitation data fusion on hydrological simulations? In other 

words, what are the improvements in the simulations of streamflow, soil moisture contents 

and evapotranspiration made by using fused precipitation data? 

2. What are the influences of soil moisture data assimilation on hydrological simulations? In 

other words, what are the improvements in the simulations of streamflow, soil moisture 

contents and evapotranspiration made by assimilating satellite-measured soil moisture data 

into land surface simulation?   

 

In this study, both precipitation data fusion and soil moisture data assimilation are 

multiscale data. The MKS algorithm will be used in precipitation data fusion and soil moisture 

data assimilation. In order to find out whether this data fusion algorithm is effective to 

investigate research questions (1) and (2), it is necessary to test the performance of the MKS 

algorithm. Therefore, the technical research questions is: 

3. What is the performance of the MKS algorithm in multiscale precipitation data fusion and 

multiscale soil moisture data assimilation? 
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1.3 RESEARCH DESIGN 

In order to address these three research questions, a complete hydrological simulation 

system with land surface simulation, flow routing, parameter calibration, precipitation data 

fusion and soil moisture data assimilation should be established at first. In addition, due to the 

purpose of providing guidelines for operational hydrological forecast, this study should be 

conducted in multiple watersheds with operational land surface model, widely used precipitation 

datasets and satellite-measured soil moisture data. In this study, we select the operational LSM of 

National Weather Service (NWS), namely Noah LSM to simulate land surface process. 

Meanwhile, we select the phase-2 precipitation product of North-American Land Data 

Assimilation System (NLDAS-2) and NEXRAD MPE precipitation data of NWS as the inputs to 

derive precipitation datasets through multiscale data fusion. At last, 14 experimental watersheds 

are selected in the Ohio River Basin and research questions (2) and (3) will be investigated in all 

of these experimental watersheds.  

 

To answer these questions, this study has conducted the following work: 

• Developing a large-scale flow routing scheme for Noah LSM since it doesn’t have flow 

routing functions. In Chapter 2.0, a large-scale flow routing scheme is proposed. It will be 

used in parameter calibration for Noah LSM and assessments of the influences of 

precipitation data fusion and soil moisture data assimilation on streamflow simulation. 

• Developing a parameter calibration scheme for Noah LSM with multiple precipitation inputs. 

In Chapter 3.0, a parameter calibration scheme is proposed for Noah LSM, which is featured 
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with a four-coefficient approximation for parameters in Noah LSM and multiobjective 

optimization of multiple precipitation inputs. 

• Assessing the performance of the MKS algorithm. In Chapter 4.0, the performance of the 

MKS algorithm is assessed with multiscale precipitation data fusion. Findings of this 

assessment also work for multiscale soil moisture data assimilation.  

• Assessing the influences of precipitation data fusion on hydrological simulations. In Chapter 

5.0, influences of precipitation data fusion on the simulations of streamflow, soil moisture 

contents and evapotranspiration are investigated over the 14 experimental watersheds. 

• Assessing the influences of soil moisture data assimilation on hydrological simulations. In 

Chapter 6.0, influences of soil moisture data assimilation on the simulation of streamflow, 

soil moisture contents and evapotranspiration are investigated over 14 experimental 

watersheds.  

• Summarizing the major findings of this study. Major findings of this study are summarized 

and concluded in Chapter 7.0.  
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2.0  A LARGE-SCALE FLOW ROUTING SCHEME FOR LAND SURFACE MODEL 

2.1 INTRODUCTION 

Land surface models (LSMs) have been increasingly used in hydrological studies in 

recent years. Leading LSMs, such as VIC (Liang et al. 1994; Liang and Xie 2001; Liang and Xie 

2003) , Noah (Chen et al. 1996; Chen et al. 1997; Koren et al. 1999; Chen and Dudhia 2001; Ek 

et al. 2003), and CLM (Lawrence et al. 2010; Bonan et al. 2011), have integrated comprehensive 

descriptions of energy and water balances in soil-vegetation-atmosphere continuum. Compared 

with conceptual hydrological models, LSMs simulate evapotranspiration and runoff generations 

on clear physical laws. In addition, LSMs can be easily coupled with weather or climate models 

for scenario simulations. With increasing interests in global climate change, LSMs will gain 

much more extensive applications in hydrology in the near future. However, a gap still exists 

between LSMs and hydrology, since LSMs cannot directly simulate streamflow but runoffs. 

Streamflow is not only a conventional measurement of hydrology but also the most important 

forecast in hydrological services. To fill the gap, flow routing schemes are demanded. The values 

of flow routing scheme lie in two aspects. One is to simulate streamflow and the other is to 

validate land surface simulations. Even though LSMs can simulate most variables of 

hydrological processes, streamflow is the only one that can be widely validated. Therefore, it is 

critical to develop flow routing scheme for the further application of LSMs in hydrology.  
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The flow routing schemes for LSMs are generally called large-scale flow routing 

schemes because the computational unit of LSMs is usually at relatively coarse spatial 

resolutions, such as 1/8 degree, 1/4 degree and 1/2 degree. Because of large size of grid, large-

scale flow routing scheme has three features compared with routing scheme developed for finer 

resolutions. First of all, the lag of water movement should be considered both within a grid and 

between neighboring grids. Simulated runoffs may take hours or even days to reach the outlet of 

a grid or move from an upstream grid to a downstream grid. Secondly, flow network cannot be 

derived directly from DEM data at large scales. At the resolutions of LSMs, DEM data are too 

coarse to capture geomorphic features controlling routing. Therefore, large-scale flow network 

can only be derived from finer resolution DEM data or upscaled from flow network at finer 

resolutions. Lastly, requirement of computational resource is also one concern of large-scale 

flow routing scheme. Land surface simulation is typically conducted at coarse spatial resolutions 

but very fine temporal resolutions, e.g. from minutes to one hours. Routing of long series of 

simulated runoffs over large watersheds requires massive computation resources. In terms of 

computational requirement, routing algorithms can be categorized into two types. One is 

recursive algorithm and the other is sequential algorithm. The former is easy to implement but 

requires more computational resources. The later needs an auxiliary grid-ordering algorithm but 

is more computationally efficient. Sequential algorithms are preferred in large-scale flow 

routing. Considering these features, a complete large-scale flow routing scheme should include 

three components. The first is a large-scale flow network derivation algorithm, which is the basis 

of large-scale flow routing. The second is a grid-ordering algorithm. This algorithm can order all 

grids in a watershed into such a sequence, in which any downstream grid has larger order than its 
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upstream grids. The third is the formulation of in-grid routing and between-grid routing. The 

purpose of this study is to develop a complete scheme for large-scale routing. 

 

Studies on large scale flow routing started in 1990s along with water balance simulations 

at continental scales using General Circulation Models (GCMs) (Liston et al. 1994; Marengo et 

al. 1994; Miller et al. 1994; Hagemann and Dumenil 1998; Arora and Boer 1999; Arora et al. 

1999; Coe 2000; Olivera et al. 2000; Arora 2001) and using land surface models and 

hydrological model at large scales (Lohmann et al. 1996; Coe 1998; Lohmann et al. 1998; Oki et 

al. 1999; Guo et al. 2004; Gong et al. 2009). In most of these studies, routing processes in grid 

box and between grid boxes were formulated separately. In-grid routing is usually formulated 

with linear reservoir(Liston et al. 1994; Hagemann and Dumenil 1998), given flow speed 

(Marengo et al. 1994; Miller et al. 1994; Coe 1998; Oki et al. 1999; Coe 2000), given residence 

time(Costa and Foley 1997), Manning’s equation (Arora and Boer 1999) and unit hydrograph 

methods (Lohmann et al. 1996; Lohmann et al. 1998; Mengelkamp et al. 2001). Between-grid 

routing, also called channel routing in literature, is usually formulated with linear reservoir 

(Hagemann and Dumenil 1998), Manning’s equation (Arora and Boer 1999; Arora et al. 1999; 

Arora et al. 2001) and linearized Saint Venant equation (Lohmann et al. 1996; Naden et al. 1999; 

Olivera and Maidment 1999; Olivera et al. 2000; Gong et al. 2009). The results in literatures 

showed that combinations of each in-grid routing and between-grid routing methods could 

generate realistic streamflows if parameters of these methods are well calibrated. However, none 

of these methods are complete flow routing schemes. All of reviewed studies relied on existing 

flow networks. Once flow network data are not available or mismatch the scale of land surface 

simulation, flow routing cannot be conducted.  
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Particularly for LSMs, both surface runoff and baseflow need to be routed within a grid. 

Compared with other methods, unit hydrograph  (UH) method has been widely applied in 

overland flow routing at watershed scales. The instant unit hydrograph (IUH) of UH method can 

be either derived on DEM data or approximated with some functions, such as the probability 

density function (PDF) of Gamma distribution (Croley 1980; Aron and White 1982; Singh and 

Chowdhury 1985; Mengelkamp et al. 2001). If assume grid of land surface simulation is a close 

sub-watershed, UH method is a good choice for the routing of surface runoff within a grid. On 

the other hand, linear reservoir is a parsimonious method for the routing of simulated baseflow 

within a grid (Liston et al. 1994; Hagemann and Dumenil 1998). In the proposed routing scheme 

of this study, UH method and linear reservoir method are chosen as alternative methods for the 

in-grid flow routing.  

 

Flow network is the basis of grid-to-grid flow routing. The accuracy of flow network has 

strong influence on routed streamflow. A reliable algorithm of deriving large-scale flow network 

can remove the dependence of land surface simulation on existing flow network data, such as the 

Total Runoff Integrating Pathways (TRIP) data (Oki and Sud 1998). In recent decades, a number 

of automatic algorithms have been developed to derive large-scale flow networks (Renssen and 

Knoop 2000; Vorosmarty et al. 2000; Fekete et al. 2001; Olivera and Raina 2003; Reed 2003; 

Paz et al. 2006; Arora and Harrison 2007). With these algorithms, flow network at coarser 

resolution can be derived from DEM data at finer resolutions. For the convenience of expression, 

the grid at finer resolution is called cell henceforth, which is relative to grid at coarser resolution. 

According to the assessment of derivation algorithms conducted by (Davies and Bell 2009), cell 

outlet tracking based method (Reed 2003; Paz et al. 2006) is better than network scaling method 



 20 

(Fekete et al. 2001) and network tracing method (Olivera and Raina 2003), which is similar to 

network burning method (Renssen and Knoop 2000). As a part of the proposed routing scheme, a 

sophisticated large-scale flow network derivation algorithm is developed based on cell outlet 

tracking method.  

 

In the rest parts of this paper, the details of the proposed large-scale flow routing scheme 

are described in section 2.2, 2.3 and 2.4. Application and discussion of the routing scheme is 

given in section 2.5. At last, this study is summarized in section 2.6.  

2.2 LARGE-SCALE FLOW NETWORK DERIVATION ALGORITHM 

Nowadays, high-resolution DEM data are widely available for hydrological applications. 

For example, United State Geology Survey (USGS) provides National Elevation Dataset (NED) 

1, which is available at 1, 1/3 and 1/9 arc second resolution over the entire U.S. These DEM data 

are ready for deriving large-scale flow networks, which will be used in land surface simulations. 

In this study, an algorithm is developed to derive large-scale flow networks based on much finer 

resolution DEM data, e.g. 1/8 degree flow network based on 1/2048 degree DEM data. The 

algorithm is designed to be totally automatic and simple to use. Basically, it is a kind of cell 

outlet tracking algorithm. In order to be free from manual correction of flow networks, possible 

situations of river network over large-scale grids are considered with combinations of three 

abstractions of grid outlets and three abstractions of downstream grids. For the simplicity of use, 

                                                 

1 http://ned.usgs.gov/ 

http://ned.usgs.gov/
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the only input of the algorithm is the flow accumulation at finer resolution, which can be easily 

made with general GIS tools. 

 

In the algorithm, flow directions of all grids are determined with two sequential steps. 

Step 1 is to determine the outlet of grid. As shown in Figure 2.1, grid outlets are abstracted into 

three types. Type #1 and #2 outlets are the cells with the 1st and 2nd largest flow accumulations 

within grid. Type #O is the cell with the largest flow accumulation from cells within grid. It may 

overlap with type #1 or type #2 outlet. Once the type #1 and #2 outlets are identified, their 

upstream channels can be determined by cell tracking based on flow accumulation data. If the 

upstream channel of the #1 outlet meanders more than one quadrant of grid, the #1 outlet is set to 

be the outlet of grid (see panel (1) of Figure 2.1). On the contrary, if the upstream channel of the 

#1 outlet just crosses a corner of grid and the upstream channel of #2 outlet meanders more than 

one quadrant of grid, then #2 outlet is set to be the outlet of grid (see panel (2) of Figure 2.1). If 

both the upstream channel of the #1 and the #2 outlet just cross corners of grid, then the #O 

outlet is set to be the outlet of grid (see panel (3) of Figure 2.1). After the determination of the 

outlet of grid, then the algorithm goes to step 2. As shown in Figure 2.2, three types of 

downstream grids are abstracted to determine the flow direction of the current grid. Type T1, T2 

and T3 downstream grids are the 1st grid, 2nd grid and 3rd that the main downstream channel of 

the current grid goes to. In step 2, if the main downstream channel meanders more than one 

quadrant of grid T1, then set the flow direction of current grid to T1 (see panel (1) of Figure 2.2). 

If the downstream channel of current grid just crosses a corner of T1 but meanders more than 

one quadrants of T2, then set the flow direction to T2 (see panel (2) of Figure 2.2). But if the 
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main downstream channel just crosses corners of T1 and T2, then set the flow direction to T3 

(see panel (3) of Figure 2.2). The flowchart of the derivation algorithm is given in Figure 2.3.  

 

With the three abstractions of grid outlet and three abstractions of downstream grid, the 

proposed algorithm can deal with the most probable situations of real river channel over the grid 

of land surface simulation. Applications in 14 watersheds in the Ohio River basin show that the 

algorithm can derive realistic large-scale flow networks in all watersheds (see Chapter 5.0 and 

Chapter 6.0 ). An example in SERI3 watershed in Indiana will be demonstrated in the application 

and discussion section.  

2.3 GRID-ORDERING ALGORITHM  

A grid-ordering algorithm is required by high-performance sequential flow routing. In the 

proposed routing scheme, we use the grid-ordering algorithm developed by Croley et. al. (Croley 

1980; Croley and He 2005) to calculate the order of girds in watershed. If flow routing starts 

from the grid with the smallest order, e.g. 0, all grids in the contributing area of a grid should 

have smaller routing orders than that of the grid. This assures that once flow routing proceeds to 

a grid, all of its upstream grids have been routed. The procedures of the grid-ordering algorithm 

are shown in Figure 2.4. Flow direction derived with the algorithm described in the previous 

section is the only input for the grid-ordering algorithm.  
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Grid ordering starts from the outlet grid of watershed. The algorithm recursively tracks 

all upstream grids of each grid and assign smaller orders to upstream grids and larger orders to 

downstream grids. For the same watershed, the grid ordering results can be different if the 

sequence of tracking directions (see Figure 2.4) is different. To generate valid ordering of grid, 

the sequence of tracking directions can be arbitrary if all upstream directions can be traversed.  

 

 

Figure 2.1 Three types of grid outlets. Type #1 and #2 outlets are the cells with the 1st and the 2nd largest flow 

accumulations. Type #O outlet is the cell with the largest flow accumulation from cells within grid 

 

 

Figure 2.2 Three types of downstream grids. The type T1, T2 and T3 grids are the 1st grid, the 2nd grid and the 3rd 

grid that the main downstream channel of current grid C goes to. 
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Figure 2.3 Flow chart of large-scale flow network derivation algorithm 
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Figure 2.4 Flowchart of grid-ordering algorithm. For each grid, tracking of upstream grid starts from southeast 

(lower right) and then go to next directions as shown in the sequence of tracking directions. 
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2.4 FLOW ROUTING METHODS  

2.4.1 In-Grid routing  

Flow routing methods include formulations for in-grid routing and between-grid routing. 

In the formulation of in-grid routing in the proposed scheme, surface runoff and base flow are 

routed separately. Once routed streamflows of surface runoff and baseflow reach to the outlet of 

grid, they will be added together as the input of between-grid routing. 

 

As mentioned in the introduction section, unit hydrograph (UH) method is adopted in the 

proposed routing scheme for surface runoff routing. For the UH method, the key is to determine 

unit hydrograph in a reasonable way. If assuming the grid box of land surface simulation is a 

closed watershed, the simulated streamflow of surface runoff at the outlet of grid can be 

calculated as  

( ) ( ) ( )
0

s sQ t UH R t dτ τ τ
∞

= −∫      (2-1) 

where 𝑡 is time, 𝑈𝐻 is the unit hydrograph, sR  is the simulated surface runoff. In this study, two 

approaches are investigated to approximate UH. The first approach is based on finer resolution 

DEM data. A grid can be discretized into cells at a finer resolution. Therefore, the flow distances 

of cells to the outlet of grid can be calculated at the finer resolution. Assuming that the flow rate 

is constant over all cells within grid, then UH can be approximated by scaling the histogram of 

flow distances of cells to the outlet of grid. To scale UH according to the flow rate, a scaling 

coefficient, denoted with α , is needed to stretch or compress the histogram. The second 
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approach is based on synthetic unit hydrograph with the probability density function (PDF) of a 

two-parameter Gamma distribution 

( ) ( )
1

exp
, , k

k

t

UH t k t
k

θθ
θ

−

  −    =
Γ

    (2-2) 

where k  and θ  are the shape and the scaling parameters of the synthetic unit hydrograph. 

Literature (Croley 1980; Aron and White 1982; Singh and Chowdhury 1985) proves that the 

PDF of the two-parameter Gamma distribution is flexible enough to approximate unit 

hydrographs derived from real data. In terms of application, these two approaches are 

complementary to each other. The first approach just has one parameter but needs to derive the 

histogram based on finer resolution DEM data. The second approach has one more parameter but 

it doesn’t rely on any other inputs.  

 

The routing of baseflow relates to assumptions on groundwater. For the scale of land 

surface simulation, groundwater within a grid can be either assumed to be in a time-varying 

mode or an equilibrium status. Linear reservoir is used to route baseflow if assuming the storage 

of groundwater is changing over time. The simulated streamflow of baseflow can be calculated 

as  

( ) ( )bQ t K S t= ⋅      (2-3) 

where ( )S t  is the storage of groundwater at time t , K  is the recession coefficient of linear 

reservoir, which is calibrated. If assuming groundwater is in an equilibrium status within the grid 

of land surface simulation, then the discharge of groundwater to river channel is equal to the 

recharge, the baseflow simulated by LSMs. Therefore, baseflow should be directly added to the 

simulated streamflow at the outlet of grid. 
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2.4.2 Between-Grid routing 

Once surface runoff and baseflow are routed to the outlet of grid, the next step is 

between-grid routing. Linearized Saint-Venant equation  

2

2
Q Q QD C
t x x

∂ ∂ ∂
= −

∂ ∂ ∂
     (2-4) 

is used to describe the inflow and outflow of river channel between neighboring grids, where Q  

represents flow rate in river channel, x  represents the flow distance along river channel, C  and 

D  are the velocity and diffusivity of flood wave. In the proposed scheme, the streamflow at the 

outlet of river channel is calculated with the convolution integral solution of equation (2-4) as  

( ) ( ) ( )
0

, ,
t

Q x t I t s h x s ds= −∫     (2-5) 

where ( ) ( )2

, exp
42

ct xxh x t
Dtt tDπ

 −
= −  

 
 is the impulse response function (IRF), ( )I t  is the 

sum of incoming streamflows from upstream channels or grids at time t . Even parameter C  and 

D  can be associated with channel shapes, slopes and other attributes of river channel, but more 

parameters will be introduced. In the proposed scheme, C  and D  are treated as effective 

parameters and determined through calibration. 

 

Theoretically, parameters of the routing scheme can be calibrated for each grid of 

watershed. However, there will be a large number of parameters if doing so, which means too 

much freedom in parameter calibration. In order to effectively identify parameters and avoid 

parameter equifinality, all routing parameters are treated as global parameters. In other words, 

each parameter has the same value over all grids.  
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2.5 APPLICATIONS AND DISCUSSIONS 

The proposed routing scheme has been examined extensively in the Ohio River Basin. 

Specifically, the capability and performance of the routing scheme is demonstrated through an 

example of application in SERI3 watershed. SERI3 watershed is the east fork of the White River, 

a branch of the Ohio River. The outlet of SERI3 is near Seymour, Indiana, USGS 03365500. 

With elevation ranging from 128 m to 381 m, SERI3 watershed has a mild topography over a 

drainage area of 6063 km2 (see Figure 2.5). The proposed routing scheme is calibrated at the 

outlet of SERI3 watershed and validated at the outlet of BAKI3 watershed, namely the east fork 

of the White River at Columbus, which is a sub-watershed of SERI3. At the outlet of BAKI3, 

USGS locates 03364000 streamflow gage. Both the outlets of SERI3 and BAKI3 watersheds are 

marked in the map of Figure 2.5.  

 

In the applications, surface runoff and baseflow are simulated at 1/8 degree resolution 

with Noah LSM. All atmospheric inputs, including air temperature, air pressure, specific 

humidity, wind speed, incoming shortwave and long wave radiations, and precipitation, are the 

phase 2 forcing data of the North American Land Data Assimilation System (NLDAS-2). Flow 

network at 1/8 degree resolution is derived from DEM data at 1/2048 degree resolution, which 

are resampled from the National Elevation Dataset (NED) 1 Arc Second (1/3600 degree) DEM 

data. For each 1/8 degree grid, there are 256×256 cells at 1/2048 degree resolution. For each 1/8 

degree grid, the histogram of flow distances from cells to the outlet of grid is derived from flow 

direction data at 1/2048 degree resolution. And the histogram is used to approximate unit 

hydrography for the surface flow routing within the grid. To facilitate the evaluation of the 

derived flow network at 1/8 degree resolution, main river channels of the experimental watershed 
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is derived from the DEM data at 1/2048 degree. In addition, the lengths of the segments of main 

river channel within all grids are also derived through cell tracking.  

 

Table 2.1 Ranges of parameters in calibration 

Parameter name Range 

Scaling parameter for histogram based unit hydrograph ( ) 0.002-0.5 

Shape parameter of Gamma PDF ( ) 0.5-10 

Scaling parameter of Gamma PDF ( ) 0.5-20 

Recession coefficient of linear reservoir ( ) 0.01-1.0 

Wave velocity ( ) 0.05-4.0 (m/s) 

Wave diffusivity (  500-3000 (m2/s) 

 

Parameters, including the scaling parameter for flow distance histogram, the shape and 

the scaling parameters of the two-parameter Gamma PDF, the recession coefficient of linear 

reservoir, and the wave velocity and the wave diffusivity of linearized Saint Venent equation for 

between-grid routing are calibrated with a Particle Swarm Optimization (PSO) algorithm (Wang 

2010). The ranges of routing parameters are listed in Table 2.1. Nash-Sutcliffe Efficiency (NSE) 

is used as the goodness of fit in parameter calibration, which is defined as the following 

 ( )
( )

2

1
2

1

1
T t t

o st
T t

o ot

Q Q
NSE

Q Q
=

=

−
= −

−

∑
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                                                               (2-6) 

where t  represents time step and T  represents the total time step, t
oQ and t

sQ  represent observed 

and simulated streamflow at time step t , oQ is the mean of observed streamflow over calibration 

period. In this study, flow routing is conducted at hourly time step and then simulated hourly 
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streamflow is aggregated into daily time step for NSE computation because the observed 

streamflows are measured at daily time step at both the outlet of SERI3 and BAKI3 watersheds. 

 

Table 2.2 Calibrated parameters and corresponding Nash-Sutcliffe efficiencies (NSEs) of Experiment 1, 2, 3, 4 and 

5.  

 α  or k  K  or θ   C   D  NSE (SERI3) NSE (BAKI3) 

Experiment 1 0.1452 0.9504 0.4686 2940.619 0.8428 0.7411 

Experiment 2 0.1643  0.4610 2995.767 0.8456 0.7055 

Experiment 3 2.6579 13.0373 0.4652 2971.601 0.8368 0.7752 

Experiment 4 9.7300 3.3881 0.4300 2851.384 0.8493 0.7873 

Experiment 5   0.4109 2038.949 0.8056 0.7434 

Note:  

(1) Column 2: α  for Experiment 1 and 2, k  for Experiment 3 and 4 

(2) Column 3: K  for Experiment 1, θ  for Experiment 3 and 4 

 

In the following example of application, the derived flow network is firstly analyzed. 

And then, five experiments are conducted to discuss the assumptions for baseflow routing, the 

approximations of unit hydrograph, the approximations of flow length between grids and 

redundancy of routing scheme will be conducted. To simulate surface runoff and baseflow, land 

surface simulation of Noah LSM starts from 01/01/2000 to 12/31/2005. Among this period, the 

first three years (01/01/2000 to 12/31/2002) play as the warm-up period for Noah LSM and the 

last three years (01/01/2003 to 12/31/2005) are the period of calibration. The goodness of routed 

streamflow depends on both the simulated runoffs of Noah LSM and the routing scheme. In 

order to avoid the influences of Noah simulation on the analysis of the routing scheme, the 
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investigations on the routing scheme are conducted just in the calibration period instead of a 

validation period. However, the routed streamflow at the outlet of sub-watershed (BAKI3) can 

be regarded as kind of validation since calibration is conducted at the outlet of SERI3 watershed. 

2.5.1 Analysis of derived flow network 

The derived flow network of SERI3 watershed is given in Figure 2.5. First of all, derived 

flow network is consistent with the main river channel, which is derived from the DEM data at 

1/2048 degree resolution. The grid-wise topology of the main river channel segments is mostly 

reserved by the derived network. This is because the algorithm of flow network derivation has 

comprehensively considered possible shapes of river channel. For example, the main river 

channel in the grid with routing order 12 (called #12 grid and similarly for other grids) is from 

#27 grid and goes to #56 grid. But the main channel just meanders in a small portion of #12 grid, 

i.e. less than a quadrant. In addition, most part of #12 grid is the contributing area of #58 grid. 

Therefore, the flow direction of #12 grid is pointed to #58 grid, instead of the downstream gird 

of the main channel, namely #56 grid. Nevertheless, the algorithm of flow network derivation 

also has some limitations. The topology of main river channel segments may be violated at small 

probabilities. For example, the flow direction of #14 grid points to its left neighboring grid (#24 

grid). But the main river channel from  #14 grid doesn’t go to the main river channel of #24 grid. 

Moreover, the downstream river channel of #14 meanders more than one quadrant of #24 grid. 

Therefore, #24 grid is the T1 type (see Figure 2.2) downstream grid. It is correct to point the 

flow direction of #14 grid to #24 grid according to rules set in the derivation algorithm. The 

same situation also happens to #38 grid. This kind of problem doesn’t mean any defects of the 

algorithm of deriving large-scale flow network. Instead, it is unavoidable because of the large 
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size of LSM grid and the assumption of the single flow direction, which is implicitly used in this 

study. However, such a problem will not significantly influence flow routing since the 

contributing areas of problematic grids are usually relative small.  

 

Figure 2.5 Map of SERI3 watershed. In the figure, square boxes are grids at 1/8 degree resolution; numbers are 

routing orders of grids.  

 

As a summary of Figure 2.5, the derived flow network at 1/8 degree resolution is good 

for flow routing since it realistically reproduces the topology of the main river channels derived 

from DEM data at a very fine resolution (1/2048 degree). In addition, the routing orders 
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annotated in the center of grids in Figure 2.5 comply with the requirement of the sequential flow 

routing. That is, all upstream grids should have smaller routing orders than that of the 

downstream grid if routing starts from grid with smaller routing order. It indicates that the grid-

ordering algorithm matches the objective of sequential routing in the proposed scheme.  

2.5.2 Comparison of assumptions for baseflow routing  

At the scale of land surface simulation, based flow generated by LSM cannot be routed 

using groundwater dynamics for mainly two reasons. First, the computation unit of LSM, namely 

grid, is usually not a closed groundwater unit. Second, information about groundwater aquifers, 

initial conditions and boundary conditions are very hard to obtain at the scale of LSM. Therefore, 

most of LSMs don’t describe the interaction between generated baseflow and groundwater at the 

level of physical dynamics. Indeed, the routing of baseflow heavily relies on simple and effective 

conceptual methods with specific assumptions. As mentioned in Section 2.4.1, the proposed 

routing scheme respectively considers two assumptions for baseflow routing. One assumes time-

varying groundwater and the other assumes balanced groundwater, which is in equilibrium 

status. In this section, two experiments, namely Experiment 1 and Experiment 2, are conducted 

in SERI3 watershed to compare these two assumptions. Taking the assumption of time-varying 

groundwater, Experiment 1 uses linear reservoir to describe the time lag of generated runoff 

within grid. While in Experiment 2, generated runoff is added to between-grid routing directly 

because the recharge and the discharge of groundwater are assumed balanced.  
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Figure 2.6 Observed and simulated streamflows in SERI3 watershed. The upper panel includes the routed 

streamflow with linear reservoir for baseflow. The lower panel includes the routed streamflow with the assumption 

of equilibrium groundwater.  

 

Parameter calibrations are conducted respectively for the two experiments. Calibrated 

parameters and corresponding NSEs at the outlets of SERI3 and BAKI3 watersheds are listed in 

Table 2.2. The NSEs of the two experiments reach almost the same value at the outlet of SERI3 

watershed (i.e. 0.8428 and 0.8456). Observed and simulated streamflows in the calibration 

period are shown in Figure 2.6. It can be seen that the simulated streamflows of both experiments 

are well agreed with the observed streamflows at the outlet of calibration. This result indicates 

that both assumptions, namely time-varying groundwater and balanced groundwater, work well 

in baseflow routing. As a kind of validation, streamflow at the outlet of BAKI3 watershed, as 

shown in Figure 2.7, is also routed with observed streamflow in the calibration period. Similar to 
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Figure 2.6, simulated streamflows of both experiments have good fits to observations. This 

means that the whole framework of the proposed routing scheme is well designed for the 

objective of grid-by-grid routing for land surface simulations. While the NSEs at the outlet of 

BAKI3 watershed, as shown in Table 2.2, indicate that the assumption of time-varying 

groundwater is a little bit more robust than the assumption of balanced groundwater.  

 

Figure 2.7 Observed and simulated streamflows in BAKI3 watershed. Other descriptions are the same as Figure 

2.6.  

2.5.3 Comparison of approximations for unit hydrograph 

Unit hydrograph (UH) method is an intuitive approach for overland flow routing. The 

success of UH method for the routing of surface runoff simulated by LSM relies on unit 

hydrograph, which should be realistic and easy to derive. In this section, two approximations of 
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unit hydrograph are compared. Each has pros and cons. For example, if approximated with the 

histogram of flow distances within grid, unit hydrograph has clear physical meanings. However, 

it also has drawbacks. Firstly, single flow direction doesn’t hold at the scale of land surface 

simulation. Even an outlet of grid can be defined but it hardly happens that all generated runoffs 

over an entire grid reach the outlet. Therefore, within a grid, the contributing area of the outlet is 

mostly just a part of the grid and the histogram of flow distances can only be derived from the 

contributing area. In addition, derivation of such histogram also requires high-resolution DEM 

data and cannot be done with general GIS tools, such as ArcGIS and GRASS. On the contrary, it 

is much easier to approximate unit hydrograph with the PDF of the two-parameter Gamma 

distribution or other mathematic functions. Unit hydrograph doesn’t have much physical 

meaning. To evaluate the goodness of these two approximations, an experiment, namely 

Experiment 3, is designed to compare these two approximations with the results of Experiment 2. 

In Experiment 3, the PDF of the two-parameter Gamma distribution is used to approximate unit 

hydrograph while Experiment 2 uses scaled histogram of flow distances to approximate unit 

hydrograph. In both Experiment 2 and 3, groundwater is assumed in an equilibrium status. So, 

the only difference between these two experiments is the approximation of unit hydrograph.   

 

Figure 2.8 shows the observed and simulated streamflows at the outlets of SERI3 and 

BAKI3 watersheds. It can be seen that simulated streamflows at the outlet of SERI3 has a good 

fit to observed streamflow. This result indicates that the approximation of unit hydrograph with 

the PDF of two-parameter Gamma distribution is good for the overland flow routing. Moreover, 

the simulated streamflow at the outlet of BAKI3 watershed also well fits the observed 

streamflow. Additionally, it can be seen that the NSE (BAKI3) of Experiment 3 is obviously 
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larger than the NSE (BAKI3) of Experiment 2. The routed streamflow of Experiment 3 is good 

not only at the outlet of calibration but also at internal grids. This means that the approximation 

of Experiment 3 is more reliable than the approximation of Experiment 2 in terms of grid-wise 

flow routing.  

 

 

Figure 2.8 Observed and simulated streamflows at the outlets of SERI3 and BAKI3 watersheds. PDF of two-

parameter Gamma distribution is used to approximate unit hydrograph and groundwater are assumed in an 

equilibrium status. 
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2.5.4 Comparison of approximations for channel length 

Flow length, namely the variable  in equation (2-4) and (2-5), is one of inputs for 

between-grid routing. It directly affects the traveling time of streamflow between grids. Flow 

length can be approximated either at grid scale or at finer scale. The former takes the orthogonal 

or the diagonal dimension of grid as the flow length within a grid. The latter approximates flow 

length by tracking the main river channel, which is derived from DEM at finer resolution. 

Technically, the former is easy to use but not as accurate as the latter. The latter is good at 

accuracy but has higher complexity due to the tracking of main river channel. In this section, 

Experiment 4 is designed to investigate how much improvement that the latter approach can 

make compared with the former approach. In Experiment 4, (1) surface runoff is routed with unit 

hydrograph approximated with the PDF of two-parameter Gamma distribution; (2) baseflow is 

directly added to grid outlet since balanced groundwater is assumed; (3) for between-grid 

routing, flow length within grid is approximated by tracking main river channel derived from the 

DEM data at 1/2048 degree resolution. The settings of Experiment 4 are the same as those of 

Experiment 3, except that flow length within grid is approximated with the orthogonal or the 

diagonal dimension of grid in Experiment 3.  

 

Figure 2.9 shows the observed and the simulated streamflows of Experiment 4 at the 

outlets of SERI3 and BAKI3 watersheds. It can be seen that simulated streamflows have good 

fits to observed streamflows at both outlets. NSEs at these two outlets are also listed in Table 2.2. 

Both NSEs of Experiment 4 are slightly larger than the corresponding ones in Experiment 3. This 

indicates that the performance of the proposed routing scheme can be improved if flow length is 

approximated at finer resolution by tracking main river channel. However, the improvements are 
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very limited at both the outlet of calibration and the inner grid of watershed. Even though the 

approximation of flow length with the orthogonal or the diagonal dimension of grid is not as 

accurate as the other approximation, it is also a good option for large-scale flow routing due to its 

simplicity and its very limited drop of performance.  

 

 

Figure 2.9 Observed and simulated streamflows at the outlets of SERI3 and BAKI3 watersheds. Flow length is 

approximated by tracking main river channel derived from DEM at 1/2048 degree resolution.  

2.5.5 Investigation on the redundancy of the routing scheme 

In the proposed routing scheme, the in-grid routing deals with the travelling time of 

runoffs within grid while the between-grid routing deals with the travelling time of streamflow 

between grids. By keeping both of them, a routing scheme has clear physical sense. However, 
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there is also a problem coming with the in-grid routing and the between-grid routing in the 

parameter calibration of the routing scheme. Generally, optimal parameters are identified by the 

best fit of simulated streamflow to observed streamflow at the outlet of calibration. It is very 

hard to separate the influences of the in-grid routing and the between-grid routing on simulated 

streamflow in calibration. Therefore, there is a large possibility that the parameters of the in-grid 

routing interact with the parameters of the between-grid routing. It means even the travelling 

times of water within grids and between grids are not realistic but the overall performance of 

routing scheme may be optimal at the outlet of watershed. In other words, the routing scheme is 

redundant in terms of performance. If not considering the physical sense of flow routing, a 

routing scheme may also have acceptable performance just with between-grid description. The 

travelling time within grid can be effectively included in the travelling time between grids. In 

this section, Experiment 5 is designed to investigate the redundancy of the proposed routing 

scheme. In this experiment, the in-grid routing is no considered. Both surface runoff and 

baseflow are added directly to the outlet of grid and then go to between-grid routing. For the 

between-grid routing, flow length is approximated with the orthogonal and the diagonal 

dimension of grid. Thus, the results of Experiment 5 are comparable with the results of 

Experiment 1, 2 and 3, which use the same setting of between-grid routing.  

 

Figure 2.10 shows the observed and the simulated streamflows of Experiment 5 at the 

outlets of SERI3 and BAKI3 watersheds. It can be seen that simulated streamflows also have 

good fits to observed streamflow at both outlets. It is hard to find differences between the 

simulated hydrographs of Experiment 5 and those of Experiment 1, 2, and 3 by visual checking. 

However, NSE (SERI3) of Experiment 5, as listed in Table 2.2, is smaller than those of 
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Experiment 1, 2, and 3. It means that the proposed routing scheme drops a little bit performance 

if not considering the in-grid routing process. NSE (BAKI3) is at the same magnitude of NSE 

(BAKI3) of Experiment 1 and 3 and it is also a larger than NSE (BAKI3) of Experiment 2. These 

results indicate that redundancy does exist in the proposed routing scheme. By adjusting 

parameters, the between-grid routing can partially describe the effect of the within-grid routing. 

But it is still worthwhile keeping the within-grid routing in the proposed scheme. Firstly, there is 

no performance lose due to the redundancy. On the contrary, slight improvements of 

performance can be found at the outlet of calibration if the in-grid routing is counted. Secondly, 

the routing scheme is more physically complete if having both the in-grid routing and the 

between-grid routing. Nevertheless, further study is necessary for reducing the interaction 

between parameters of the in-grid routing and the between-grid routing.  

 

Figure 2.10 Observed and simulated streamflows of Experiment 5 at the outlet of SERI3 and BAKI3 watershed. No 

in-grid routing is used and the flow length for between-grid routing is approximated with the orthogonal and the 

diagonal dimension of grid.  
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2.6 SUMMARY  

This paper proposed a complete scheme of large-scale flow routing for land surface 

simulation. It includes three parts: (1) an algorithm of large-scale flow network derivation, (2) a 

grid-ordering algorithm and (3) descriptions of the in-grid routing and the between-grid routing. 

Based on cell tracking, the algorithm of large-scale flow network derivation is used to derive 

flow network at the scale of land surface simulation from DEM data at a much finer resolution. 

With the grid-ordering algorithm, all downstream grids are ranked after their upstream grids and 

then sequential flow routing can be conducted. The travelling of generated runoffs and 

streamflows within watershed is described with the in-grid routing and the between-grid routing 

processes. Unit hydrograph method is used for the surface runoff routing within grid. Two 

alternative assumptions about groundwater within grid and the corresponding baseflow routing 

methods are given and compared. Linearized Saint-Venant equation is used to describe the 

movement of streamflow between neighboring grids. In addition to the routing scheme, 

assumptions for baseflow, approximations of unit hydrograph, approximation of flow length, and 

redundancy are also investigated in the study.  

 

In the experiment watershed, namely SERI3, flow network at 1/8 degree resolution is 

derived from the DEM data at 1/2048 degree resolution, as shown in Figure 2.5. The derived 

flow network is consistent with the main river channel derived from the DEM data at 1/2048 

degree. Topology of the main river channel is reserved by the derived flow network. Therefore, 

the derived flow network is good for large-scale flow routing.  
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With different settings of baseflow routing, surface runoff routing, and approximations of 

flow length, five experiments have been conducted in SERI3 watershed in the Ohio River Basin. 

Investigations show that (1) both the assumptions of time-varying groundwater and balanced 

groundwater can be used for baseflow routing while the former is a little bit more robust than the 

latter; (2) the PDF of the two-parameter Gamma distribution is a good approximation of unit 

hydrograph for surface runoff routing within a grid; (3) both the approximation of flow length at 

grid scale or at finer scale work well for between-channel routing but the latter has a little bit 

higher performance than the former; and (4) redundancy exists in the proposed flow routing 

scheme but it is better to keep both the in-grid routing and the between-grid routing for better 

performance and physical completeness.  

 

In conclusion, the proposed routing scheme has good performance for routing surface 

runoff and baseflow simulated by land surface models. However, there are still some rooms for 

improvement. Further studies will be conducted to impose more physical constraints to 

parameters of the routing scheme. For example, to associate the shape and the scaling parameters 

of the PDF of the two-parameter Gamma distribution with topographies within grid and to 

associate the wave velocity and the wave diffusivity of linearized Saint-Venant equation with 

river channels derived from high-resolution DEM data.  
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3.0  A PARAMETER CALIBRATION SCHEME FOR NOAH LAND SURFACE 

MODEL WITH MULTIPLE PRECIPITATION INPUTS 

3.1 INTRODUCTION 

Land surface models (LSMs) have great potential in hydrological applications. Compared 

with traditional rainfall-runoff hydrological models, LSMs can not only simulate surface and 

subsurface runoffs, but also fluxes of water and heat within soil-vegetation-atmosphere 

continuum. LSMs have more comprehensive and clearer descriptions of physics than rainfall-

runoff models, which makes LSMs ready to simulate the response of water resources to climate 

changes by coupling with climate model (Klingaman et al. 2008). In addition, LSMs can play the 

role of distributed hydrological models with flow routing schemes. The potential of LSMs has 

been widely demonstrated by increasing applications, such as investigation of hydrological 

variability (Li et al. 2005), assessment or correction of precipitation data (Sheffield et al. 2004; 

Pan et al. 2010), land surface process simulation (Nijssen et al. 2001; Slater et al. 2007; Ozdogan 

et al. 2010), and streamflow simulation (Lohmann et al. 2004; Gusev et al. 2008). However, 

successful application of LSMs depends on effective parameter calibration (Nasonova and Gusev 

2008). From the viewpoint of structure, LSMs are composed of equations and parameters. 

Equations, such as Richards’ equation governing soil water flux and heat diffusion equation 

governing temperatures within soil column, represent the generality of LSMs. These equations 
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have the same forms in many simulation domains. Parameters are associated with characteristics 

of land surface; for example, porosity, field capacity, wilting point and saturated hydraulic 

conductivity are specifically related to the soil type within LSM grid. In order to describe the 

spatial heterogeneity of study domain, parameters of LSMs are usually spatially distributed. It is 

often hard to accurately specify these parameters without resorting to model calibration, which is 

to obtain optimal model parameters by best fitting model simulations against independent 

observations. Finally, parameter calibration is turned to be optimization problems and solved by 

automatic optimization algorithms.   

 

Particularly, parameter calibration of LSMs has two features. One is the high dimension 

and complex structure of the feasible space of parameter and the other is the intensive 

computational requirement. Land surface simulation is typically a kind of distributed simulation, 

which means that simulation domain is discretized into sub-units, called grids. Each grid comes 

with a set of parameters associated with soil, vegetation and others. In order to best fit 

simulations to observations, parameters of all grids should be optimal to observations. This 

means the dimension of optimization problem is very high if there are a large number of grids in 

the simulation domain. Moreover, most parameters of LSMs interact with each other. For 

example, the wilting point should be smaller than the filed capacity and the filed capacity should 

be smaller than the porosity for same soil type. Another example, the porosity of clay should be 

smaller than the porosity of loam, and the porosity of loam should be smaller than the porosity of 

sandy loam. These constrains impose complex structure of the feasible space of parameters. 

Even though the spatial size of LSM grid is usually large, for example 0.125°, the temporal 

resolution of land surface simulation is usually small, mostly not longer than 1 hour. It means 
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that there are a big number of iterations for the duration of hydrological application, which is 

usually at the order of year. Due to the complicated structure of LSMs, the optimization 

problems of parameter calibration are typically solved by random search algorithms, which rely 

on massive model simulations and need huge computational resources. Therefore, intensive 

computation is required to calibrate parameters of LSM. The computational intensity may be 

extremely high when land surface simulation is conducted over a large area for a long time 

period, which is often the case of practical application of LSMs.  

 

To date, parameter calibration for LSMs is basically based on the theories and methods of 

parameter calibration for hydrological models. Optimal parameters are identified by solving 

optimization problems with random search optimization algorithms. From the viewpoint of 

optimization problem, the parameter calibration of LSMs can be categorized into two types. One 

is calibration with single measurements and the other is calibration with multiple measurements. 

For the former type, measurement is usually streamflow (Xie et al. 2007; Troy et al. 2008; 

Nasonova et al. 2011). Streamflow is an essential objective of hydrological simulation. In 

addition, streamflow is also the most reliable measurements related to outputs of LSMs. The 

latter type addresses the multiple-output nature of LSMs. For this type, parameters are identified 

jointly against some or all of sensible and latent heat fluxes and other related measurements 

(Crow et al. 2003; Harris et al. 2004; Demarty et al. 2005; Johnsen et al. 2005; McCabe et al. 

2005; Matsui et al. 2007). These studies used optimization algorithms, including SCE-UA (Crow 

et al. 2003; Troy et al. 2008; Nasonova et al. 2011), MOSCEM-UA (Johnsen et al. 2005), 

simulated annealing (Xia et al. 2004) and MOGSA (Bastidas et al. 2006). SCE-UA (Duan et al. 

1992; Duan et al. 1994) and MOSCEM-UA (Vrugt et al. 2003) are random search algorithms, 
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which are widely used in hydrological parameter calibration. Existing studies of parameter 

calibration for LSMs filled the gap between LSMs and their application. However, further 

studies are still needed to develop parameter calibration schemes for LSMs. For example, 

parameters are usually confined by upper and lower boundaries in these existing studies. Little 

regard is given to the physical constraints of parameters. To address this problem, it is necessary 

to develop new parameter calibration scheme. Moreover, few studies have dealt with the 

computational intensity of parameter calibration for LSMs. Furthermore there are no existing 

studies, which calibrate parameters of LSM for multiple forcing data. To facilitate the parameter 

calibration of LSMs, effective and efficient optimization algorithms has to be developed for 

high-performance computational platforms.  

 

In this study, a parameter scheme is developed for Noah LSM (Chen et al. 1996; Chen et 

al. 1997; Koren et al. 1999; Chen and Dudhia 2001; Ek et al. 2003) with multiple precipitation 

inputs. Consistencies between parameters are considered and a parallel optimization algorithm is 

designed to identify a single set of parameters for Noah LSM. The optimal set of parameters is 

required to be good for large simulation domain and multiple precipitation inputs over a long 

simulation period. The primary goal of this study is to assess the applicability of multiple 

precipitation datasets in streamflow simulation with Noah LSM, an operational LSM used in 

National Weather Services (NWS). However, the proposed scheme also can be used to calibrate 

LSM in the ensemble simulation of streamflow with multiple forcing datasets. In the proposed 

scheme, the parameters of Noah LSM are constrained with a default parameter tables. In addition, 

only four global coefficients are to be calibrated without losing the description of spatial 

heterogeneity in the simulation domain. An MPI (Message Passing Interface) based 
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multiobjective particle swarm optimization algorithm (MPI-based MOPSO) is designed and 

implemented for identifying the four coefficients on parallel computers.  

 

In the rest parts of this paper, Noah LSM will be briefly introduced in section 3.2. The 

four-coefficient approximation and the formulation of optimization problem will be described in 

section 3.3 and 3.4. And then the MPI-based MOPSO algorithm is given in section 3.5. The 

evaluation of proposed scheme is going to be conducted in section 3.6 in two watersheds. In the 

end, this study will be summarized in section 3.7.  

3.2 BRIEF DESCRIPTION OF NOAH LSM 

A schematic representation of Noah LSM is given in Figure 3.1. Noah LSM describes the 

processes of soil thermodynamics, soil hydrology, interception of water by canopy, heat fluxes 

to/from snowpack, soil and canopy. It simulates soil moisture (both water and ice), soil 

temperature, skin temperature of land surface, snowpack depth, snow water equivalent, canopy-

intercepted water, the energy flux and the water flux of soil column, surface runoff, and 

subsurface runoff. The purpose of this study is to develop a parameter calibration scheme of 

Noah LSM to assess precipitation datasets in terms of streamflow simulation. So only the soil 

hydrology part of Noah LSM is described in the followings due to its direct relation to the runoff 

generation.  
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Figure 3.1 A schematic representation of Noah land surface model.  

 

In Noah LSM, volumetric soil moisture content (θ ) is governed by Richards’ equation 

KD F
t z z z θ
θ θ∂ ∂ ∂ ∂ = + + ∂ ∂ ∂ ∂ 

      (3-1) 

where K  is soil water conductivity, D  is soil water diffusivity, Fθ  is the term of sources and 

sinks (i.e. infiltration, evapotranspiration, and runoff), and z  is soil depth. Both K  and D  are 

functions of soil moisture content θ . In Noah LSM, K  is computed as  

( )
2 3b

s
s

K K θθ
θ

+
 

=  
 

           (3-2) 
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where sK  is the saturated soil water conductivity and b  is a curve-fitting parameter. D  is 

computed as  

( ) ( )
2b

s
s

D K D θθ θ
θ θ

+
 ∂Ψ = =   ∂   

                                            (3-3) 

where Ψ  is the soil water potential, which is also a function of soil moisture content θ  as  

( )
b

s
s

θθ
θ

−
 

Ψ = Ψ  
 

                                                                   (3-4) 

where sΨ  is saturated soil water potential, sD  is saturated hydraulic diffusivity ( s s
s

s

b KD
θ
Ψ

= − ). 

Parameters sK , sΨ  and b  depend on soil types.  

 

As shown in Figure 3.1, there are four soil layers in Noah LSM. By integrating equation 

(3-1) for each layer and expending Fθ , water balance by layer is described as follows: 
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where 
izd  is the thickness of the thi  soil layer, I  is the infiltration, 

it
E  is the canopy 

transpiration extracted from thi  soil layer, and dirE  is the direct evaporation from bare soil. At 



 52 

the bottom of the 4th soil layer, soil water diffusivity is assumed to be zero, so that the soil flux is 

only the gravitational drainage, also named baseflow. As the main discharge of soil column, 

infiltration I  is determined according to the throughfall precipitation dP  and maximum 

infiltration maxI , which is formulated with the saturation deficit of soil column xD  and a time 

step coefficient kdt  as   

( )
( )

1 exp
1 exp

x i
max d

d x i

D kdt
I P

P D kdt
δ
δ

− − ⋅  =
+ − − ⋅  

                              (3-9) 
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and 

 s
ref
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Kkdt kdt
K

=                                                                       (3-11) 

where sθ  and iθ  are the porosity and the soil moisture of thi  soil layer; iδ  is the conversion of 

the current model step dt  (in terms of seconds) into daily values (i.e. / 86400i dtδ = ); 

3.0refkdt =  and 62 10refK −= ×  ms-1. Infiltration min( , )d maxI P I= . Surface runoff d maxR P I= −  

when d maxP I> . Direct evaporation of bare soil from the 1st soil layer is formulated as  

( ) 11 w
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θ θ

−
= −

−
      (3-12) 

where pE  is the potential evaporation, wθ  and refθ  are the wilting point and the field capacity of 

soil, fσ  is the green vegetation fraction. Evapotranspiration tE  is formulated as  

1
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where cW  is the intercepted water by canopy, cmaxW  is the maximum value of cW , cn  is a curve-

fitting parameter, cP  is the plant coefficient, which is a function of canopy resistance as  

1

1
r

c

c h
r

RP
R C

R

∆+
=

∆+ +
         (3-14) 

where hC  is the surface exchange coefficient for heat and moisture; ∆  is the slope of the 

saturation specific humidity curve; rR  is a function of surface air temperature, surface pressure 

and hC ; and cR  is the canopy resistance and formulated as  
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where 1F , 2F , 3F , and 4F  represent the effects of solar radiation, vapor pressure deficit, air 

temperature, and soil moisture. In equation set (3-15), ( )s aq T  is the saturated water vapor mixing 

ratio at the temperature aT ; cminR  and cmaxR  is the minimum and the maximum stomatal 

resistances; LAI  is the leaf area index; gR  is incoming solar radiation; sh  is a canopy stress 

parameter; and 20.55 g

gl

R
f

R LAI
= . 
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3.3 FOUR-COEFFICIENT APPROXIMATION 

The hydrological part of Noah model has been described in section 3.2. To simulate 

surface runoff ( R ) and baseflow (
4zK ), parameters in equations (3-1) – (3-15) should be 

specified with reasonable values. However, due to data availability and scaling issues, most of 

these parameters need to be determined through calibration. In order to represent the 

heterogeneity of the simulation domain with model parameters, each grid should have a set of 

parameters. Therefore, a big number of parameters need to be calibrated, which brings 

computational difficulty and uncertainty to the searching of optimal parameters. To solve this 

problem, two steps can be used. The first step is to reduce the number of free parameters. Only 

those that are essentially related to runoff simulation should be chosen for calibration since this 

study aims to develop a parameter calibration scheme for assessing precipitation datasets with 

streamflow simulation. In this study, we choose the porosity ( sθ ), the field capacity ( refθ ), the 

wilting point ( wθ ), the saturated hydraulic conductivity ( sK ), the b  parameter, and the leaf 

index ( LAI ). These parameters in Noah model are directly related to water fluxes within the soil 

column of every LSM grid in the simulation domain, but we have to note that the leaf index is 

not from measurement but a turning parameter in Noah model. The second is to associate 

parameters with soil type or vegetation type. Actually this step has been done in Noah model, 

which uses look-up tables for parameters corresponding to soil or vegetation types. With the 

association, parameter calibration is going to be conducted for a limited number of soil or 

vegetation types instead of all LSM grids in the simulation domain. 
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Table 3.1 Default parameter values for 15 soil types used in Noah LSM 

SOIL TYPE TYPE ID B DRYSMC MAXSMC REFSMC SATPSI SATDK WLTSMC 

SAND  1 2.79 0.01 0.339 0.236 0.069 1.07E-06 0.01 

LOAMY SAND  2 4.26 0.028 0.421 0.383 0.036 1.41E-05 0.028 

SANDY LOAM  3 4.74 0.047 0.434 0.383 0.141 5.23E-06 0.047 

SILT LOAM  4 5.33 0.084 0.476 0.36 0.759 2.81E-06 0.084 

SILT  5 5.33 0.084 0.476 0.383 0.759 2.81E-06 0.084 

LOAM  6 5.25 0.066 0.439 0.329 0.355 3.38E-06 0.066 

SANDY CLAY LOAM 7 6.66 0.067 0.404 0.314 0.135 4.45E-06 0.067 

SILTY CLAY LOAM 8 8.72 0.12 0.464 0.387 0.617 2.04E-06 0.12 

CLAY LOAM  9 8.17 0.103 0.465 0.382 0.263 2.45E-06 0.103 

SANDY CLAY  10 10.73 0.1 0.406 0.338 0.098 7.22E-06 0.1 

SILTY CLAY  11 10.39 0.126 0.468 0.404 0.324 1.34E-06 0.126 

CLAY  12 11.55 0.138 0.468 0.412 0.468 9.74E-07 0.138 

ORGANIC MATERIAL  13 5.25 0.066 0.439 0.329 0.355 3.38E-06 0.066 

 

Even with reduced number of parameters and association with soil or vegetation types, 

consistency is not guaranteed between parameters of a soil or vegetation type and between the 

same parameter of different soil or vegetation types. To hold the consistency in parameter 

calibration, a four-coefficient approximation is developed in this study. In the scheme, a default 

parameter table of Noah LSM is used to constrain free parameters. For widely-used land surface 

models, such as Noah and VIC, default parameter tables have been developed by model 

developers. Those default parameter tables are derived under certain conditions, which may not 

suit for describing soil and vegetation everywhere. Nevertheless, they provide reasonable 

estimates of relative magnitudes between parameters of the same type of soil or vegetation and 

between the same parameters of different soil or vegetation types. For example, the magnitude of 
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the wilting point, the field capacity and the porosity of sand in the default parameter table may 

not be directly applied to a LSM grid with sand soil type. However, these parameters in the LSM 

grid can be approximated through scaling corresponding values in the default parameter table. 

By doing so, the consistency is reserved between porosity, field capacity and wilting point. 

Without such a constraint, the optimal estimate of field capacity may be larger than that of 

porosity for a soil type. If a scaling coefficient is global for all types of soil or vegetation, then 

the relative magnitudes of the same parameter among different soil or vegetation types are also 

reserved. Therefore, the optimal estimate to the porosity of a sand type is always larger than that 

of a sandy loam type. Based on the default soil parameter table of Noah LSM as shown in Table 

3.1 Default parameter values for 15 soil types used in Noah LSM, the wilting point ( wθ ), filed capacity 

( refθ ), porosity ( sθ ), saturated hydraulic conductivity ( sK ), saturated hydraulic diffusivity ( sD ) 

and b  parameters of each soil type are formulated with three global scaling coefficients ( 1ρ , 2ρ  

and 3ρ ) as  

 ( )1w WLTSMC DRYSMC DRYSMCθ ρ= − +                                      (3-16) 

 ( )1ref REFSMC DRYSMC DRYSMCθ ρ= − +                                      (3-17) 

 ( )1s MAXSMC DRYSMC DRYSMCθ ρ= − +                                     (3-18) 

2b Bρ= ⋅                                                                                           (3-19) 

 3sK SATDKρ= ⋅                                                                                 (3-20) 

and 

 s
s

s

b SATPSI KD
θ

⋅⋅
=                                                                           (3-21) 
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where DRYSMC  is the default dry soil moisture of the soil type; WLTSMC  is the default wilting 

point of the soil type; REFSMC  is the default reference soil moisture of the soil type; 

MAXSMC  is the default porosity of the soil type, B  is the default b  parameter of the soil type, 

SATDK  is the default parameter of saturated hydraulic conductivity, and SATPSI  is the default 

saturated soil water potential. Figure 3.2 gives an example of wilting point, filed capacity, and 

porosity scaled with 1 0.5ρ = , 1 0.75ρ = , 1 1.0ρ =  and 1 1.25ρ =  for the 13 soil types listed in 

Table 3.2. It can be seen that both the consistency between parameters and the consistency 

between soil types are reserved among scaled parameter values. The leaf index (LAI) of Noah 

LSM is a parameter related to vegetation type. Since the seasonality of vegetation type is 

described in monthly green vegetation fraction, so LAI is already a global parameter for all 

vegetation types. In the calibration scheme, the optimal estimate LAI ( lai ) is calculated as  

4lai LAIρ= ⋅                                                                                           (3-22) 

where LAI  is the default LAI parameter of Noah LSM.  

 

Table 3.2 Optimal parameters used in streamflow simulation 

Watershed  1ρ   2ρ   3ρ   4ρ  

KINT1  0.501 1.613 1.624 1.343 

SERI3 0.512 1.993 1.991 1.993 
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Figure 3.2 Plot of porosity (in red color), field capacity (in green color) and wilting point (in blue color) of 13 soil 

types when 1 1.0ρ =  (default values), 1 0.5ρ = , 1 0.75ρ =  and 1 1.25ρ = . Names of soil types corresponding 

to SOIL TYPE ID are listed in Table 3.1.  

 

So far, the hydrological parameters of Noah LSM have been related to the four scaling 

coefficients. By tuning these four coefficients, surface runoff generation, baseflow generation 

and evapotranspiration call can be adjusted. Moreover, with the constraints and relative 

magnitudes provided by the default parameter table, the heterogeneity of the simulation domain 
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can be effectively described by the four scaling coefficients. Meanwhile, the consistencies are 

also reserved between parameters and between soil types. The dimension of corresponding 

optimization problem is also reduced significantly.  

3.4 FORMULATION OF OPTIMIZATION PROBLEM 

Formulation of optimization problem is an essential step of automatic parameter 

calibration while objective functions are the basis of an optimization problem. Choosing 

objective functions depends on the expectation of model simulation. In this study, the goal is to 

facilitate the assessment of multiple precipitation datasets through the streamflow simulation 

with Noah LSM. The precipitation dataset is regarded as the best if it generates streamflow, the 

best-fit observation. Therefore, Nash-Sutcliffe Efficiency (NSE) is chosen as the form of 

objective function in this study. Given a land surface model and a routing scheme, the simulated 

streamflow is a function of atmospheric input which is also named forcing data ( F ) and model 

parameters, in this case, the four scaling coefficients ( 1 2 3 4{ , , , }ρ ρ ρ ρΘ = ). The forcing data of 

Noah LSM includes air temperature, air pressure, wind speed, specific humidity, incoming 

shortwave radiation and long wave radiation, and precipitation. NSE is defines as the following 
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where obs
nQ  and sim

nQ  are the observed and the simulated streamflow at the thn  time step; N  is 

the total number of time steps; and obsQ  is the mean of the observed streamflow over the 

simulation period. Nash-Sutcliffe efficiency has a range from -∞ to 1. An NSE of 1 corresponds 
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a perfect match of simulated streamflow to the observed data. An NSE of 0 indicates that 

simulation is as accurate as the mean of observed data, whereas an NSE less than zero occurs 

when the mean of observed streamflow is a better predictor than model simulation. 

 

To confine the influences of other atmospheric inputs and scaling coefficients on 

streamflow, a single set of parameters is going to be optimized, which is good for streamflow 

simulations with all precipitation datasets. In addition, except precipitation, rest atmospheric 

inputs are the same for all simulations, in other words, NLDAS-2 data. Let’s use iF  to represent 

the forcing data for the streamflow simulation with the thi  precipitation dataset, and then the 

optimization problem of this study is formulated as the following 

maximize : 
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subject: Θ  in feasible space, where M  is the total number of precipitation datasets.  

 

Based on the four-coefficient approximation, the optimization problem is featured with 

simple structure and low dimension. Complexity is not an obstacle to solve the optimization 

problem. Theoretically, any random-search based multiobjective optimization algorithm can be 

used to solve the problem. However, computational intensity is an issue that has to be considered 

in searching for optimal parameters. In order to evaluate an objective function, Noah LSM must 

be run over the entire simulation domain for the whole simulation period. For example, the 

running time of each evaluation is at the order of minutes or even hours if Noah LSM runs at 
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hourly time step for years in large watersheds, such as 32 32×  or 64 64×  LSM grids in the case 

studies of section 3.6. Such a running time is not manageable for a random search algorithm if it 

just runs on a single computer, especially when the algorithm has large population or a big 

number of iterations. To solve the optimization problem, the only practical way is to use parallel 

optimization algorithm, which distributes the evaluation of objective functions to multiple 

computational nodes. 

3.5 MPI-BASED MOPSO ALGORITHM 

An effective and efficient parallel optimization algorithm is designed and implemented 

based on particle swarm optimization (PSO) algorithm (Kennedy and Eberhart 1995). PSO 

algorithm is a kind of random search algorithm and is characterized by simplicity and efficiency. 

Multiobjective PSO algorithms can be easily developed and customized for specific applications, 

for example, parameter calibration of hydrological models (Gill et al. 2006). PSO algorithm is 

developed based on a social-psychological metaphor, which involves individuals interacting with 

each other. Each individual is called a particle including a position vector ( X ) and a velocity 

vector (V ), while the position vector corresponds to the variables of the optimization problem 

formulated in section 3.4. The set of all individuals is called a swarm. The evolution mechanism 

of PSO algorithm is that all particles keep tracking the particle with the best position in the 

solution space of optimization problem. For a maximization problem, such as the one of this 

study, best position means that the parameter set corresponds to the highest NSE values among 

all particles. For the convenience of notation, the particle with the best position is represented by 
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gbest . Once gbest  is determined, all particles in the swarm evolve to the next iteration 

according to the following formula: 

( )gbestV w V r X X

X X V

 = × + −


= +
               (3-25) 

where w  is the inertial coefficient, r  is a uniformly distributed random number from 0 to 1.0, 

gbestX  is the position of gbest . Through such evolution, all particles of the swarm are going to 

converge to a small domain of the solution space, which is centered with the optimal parameter 

set of Noah LSM.  

 

The challenge of applying PSO algorithm in the multiobjective optimization problem 

comes from the selection of gbest . PSO algorithm is originally designed for single objective 

optimization problem. gbest can be easily identified by comparing the fitness of all particles. For 

the case of this study, there is just one NSE for each set of parameters if only having one 

precipitation dataset. Therefore, it is straightforward to determine gbest . For multiobjective 

optimization problem, things are much more complicated. In this study, we use the concept of 

Pareto optimal to determine gbest . In addition to the swarm, another population of particle, 

called solution pool, is maintained in the proposed optimization algorithm. Solution pool is used 

to store Pareto solutions. A particular method of choosing gbelst  is designed here based on the 

solution pool. For a specific particle, N  nearest particles in the solution pool can be identified 

and then gbest  is randomly selected from them. This method cannot only choose a gbest  but 

also help to keep the diversity of the swarm, with which the optimization algorithm will not 

converge prematurely.  
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Figure 3.3 Flowchart of MPI-based multiobjective particle swarm optimization algorithm (MOPSO) 

 

With the method of choosing gbest , PSO algorithm now can be applied to multiobjective 

optimization problems. To solve the optimization problem in section 3.5, a multiobjective PSO 

algorithm is developed based on the Message Passing Interface (MPI) technique, which is 

abbreviated as MPI-based MOPSO algorithm. When running a PSO algorithm, computational 
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time is mostly spent on evaluating all particles in the swarm. Each evaluation includes multiple 

runs of Noah LSM over the entire simulation domain for the whole simulation period. In the case 

of this study, the computational time of such evaluation is at the order of minutes or even hours 

for a large watershed and simulation of multiple years. To reduce computational time, the 

proposed MOPSO algorithm distributes the evaluation of all particles into multiple processes 

including a master process and many slave processes. Each process just evaluates particles in a 

chunk of the swarm, except that the master process also communicates data between all 

processes. The reduction of computational time depends on the number of processes. The more 

processes, the less computational time will be. 

 

As shown in the flowchart of the MOPSO algorithm in Figure 3.3, there are seven steps 

in the master process and five steps in the slave processes. 

• Steps in the master process 

1. Randomly initialize all particles in the swarm and evaluate them. 

2. Find Pareto frontiers of the swarm and save them into the solution pool, then find and 

kick out inferior particle in the solution pool. Some existing Pareto solutions may be 

inferior solutions compared with the newly found Pareto frontiers. Those inferior 

solutions need to be kicked out from the solution pool.  

3. For each particle in the swarm, randomly select gbest  from N  nearest particles in 

the solution pool. 

4. Evolve all particles in the swarm according to equation (3-25). 

5. Broadcast swarm data, including all the information of particles, to all slave 

processes. 
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6. Evaluate the particles in the 1st chunk of the swarm by computing all objective 

functions. 

7. Receive the thi  chunk from the thi  slave process, for 2,3, , pi N=  , where pN  is the 

total number of processes. 

• Steps in the slave processes 

1. Receive swarm data from the master process. This step is following the step 5 of the 

master process.  

2. Find Pareto frontiers of the swarm and save them into the solution pool, then find and 

kick out inferior particles in the solution pool. This step is the same as the step 2 of 

the master process. Each slave process maintains a solution pool. Therefore, the 

master process doesn’t need to broadcast the data of the solution pool, which can 

reduce the time of communication between processes.  

3. For each particle in the swarm, randomly select gbest  from N  nearest particles in 

the solution pool. This step is the same as the step 3 of the master process. 

4. Evaluate the particles in the thi  chunk of the swarm by computing all objective 

functions. 

5. Send the data of thi  chunk of the swarm to the master process. 

 

The MPI-based MOPSO algorithm stops after a given number of iterations or all the 

particles of the swarm converging to a point in the solution space. The positions of the particles 

in the solution pool are then the Pareto solutions of the optimization problem.  
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There are three configuration parameters of the MPI-based MOPSO algorithm, including 

the size of swarm ( swarmN ), the number of processes ( procN ) and the size of nearest neighborhood 

for choosing gbest  ( gbestN ). swarmN  represents the number of particles in the swarm. Generally 

speaking, a larger swarmN  should be specified if the optimization problem is more complicated. 

procN  should be equal to the number of computation units, for example, the number of CPU 

cores in parallel computing platforms. A larger procN  will speed up the searching of optimal 

parameters. In order to effectively use computational resources, swarmN  should be divided exactly 

by procN . gbestN  is related to the capability of global search. When setting gbestN , there is a 

tradeoff between the capability of global search and converge time. The algorithm has higher 

capability of global search when gbestN  is larger; however, it will take more computational time 

to converge. 

3.6 EVALUATIONS  

The proposed scheme is evaluated in two watersheds of the Ohio River Basin with five 

precipitation inputs. KINT1 watershed is a contributing area of the Harpeth River near Kingston 

Spring, Tennessee and SERI3 watershed is a contributing area of the East Fork White River at 

Seymour, Indiana. The drainage areas of these two watersheds are 2,341 square miles and 681 

square miles respectively. In the evaluation experiments, Noah LSM runs at 1/32 degree 

resolution and hourly time step. To run Noah LSM, land surface data, such as soil types and land 

use types in simulation domain, should be specified in advance. Except LAI, all other free 
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parameters of the four-coefficient approximation are related to soil types. To illustrate the spatial 

variability of these parameters, the soil type maps of the KINT1 and the SERI3 watersheds are 

given in Figure 3.4 and Figure 3.5, while Figure 3.6 gives the areal percentage of each soil type 

in both watersheds. In KNIT1 watershed, silt loam takes about a half area and rest types, 

including clay, clay loam, and silty clay loam, have relatively even shares of areal percentage. In 

SERI3 watershed, silty clay loam and clay loam are the first dominant and the second dominant 

soil types, which cover 60% and 26% areas of the watershed respectively. KINT1 watershed 

represents a case of watersheds in which multiple soil types account for the heterogeneity of 

parameters while SERI3 watershed represents a case of watersheds in which one or two 

dominant soil types account for the heterogeneity of parameters.  

 

Figure 3.4 Map of KINT1 watershed. Soil type map is at 1/32 degree resolution; grid in black color is at 1/8 degree 

resolution; river networks in white color are derived from DEM data at 1/2048 degree resolution; the red circle 

represents the outlet of SERI3 watershed. 
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Figure 3.5 Map of SERI3 watershed. Soil type map is at 1/32 degree resolution; grid in black color is at 1/8 degree 

resolution; river networks in white color are derived from DEM data at 1/2048 degree resolution; the red circle 

represents the outlet of SERI3 watershed. 

 

Figure 3.6 Pie charts of soil types in KINT1 (left panel) and SERI3 (right panel) watersheds. 

 

The five precipitation inputs include NLDAS-2 (North American Land Data Assimilation 

System, version 2) precipitation data, RADAR (Next Generation Weather Radar (NEXRAD) 

Multisensor Precipitation Estimation (MPE) precipitation data and three precipitation data 
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derived by fusing NLDAS-2 and RADAR precipitation data. All precipitation data are at hourly 

time step while NLDAS-2 and RADAR precipitation data are at spatial resolutions of 1/8 degree 

and 1/32 degree, respectively. A multiscale data fusion algorithm, namely Multiscale Kalman 

Smoother (MKS)-based framework (Wang et al. 2011), is used to derive new precipitation data 

by fusing NLDAS-2 and RADAR precipitation data. Given a prior estimate of the areal mean of 

precipitation, the MKS-based framework can effectively merge the spatial patterns of 

precipitation measurements at multiple spatial resolutions. Three precipitation datasets has been 

derived at 1/32 degree resolutions, namely FUSED-1, FUSED-2 and FUSED-3, which take 

[ ]mean(NLDAS-2) mean(RADAR) 2.0+ , [ ]max mean(NLDAS-2),mean(RADAR)  and 

mean(NLDAS)  as the prior estimates of the areal mean of precipitation. In addition to 

precipitation, rest atmospheric inputs including air temperature, air pressure, wind speed, specific 

humidity, and incoming shortwave and long wave radiation are NLDAS-2 data, which have been 

resampled into 1/32 degree resolution from 1/8 degree resolution. In the evaluation experiments, 

the surface runoff and the baseflow generated by Noah LSM are routed into streamflow time 

series at the outlets of watersheds with the flow routing scheme given in Chapter 2.0. The flow 

routing scheme separately deals with in-grid routing and between-grid (channel) routing, which 

uses unit hydrograph method and the linearized Saint Venant equation respectively. Evaluation 

experiments in the two watersheds include a three-year calibration period (01/01/2003 to 

12/31/2005) and a two-year validation period (01/01/2006 to 12/31/2007), in which the four 

coefficients are calibrated and validated against daily streamflow. 
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Figure 3.7 Nash-Sutcliffe Efficiencies (NSEs) of Pareto set of parameters of KINT1 (left panel) and SERI3 (right 

panel) watersheds corresponding to five precipitation inputs, namely NLDAS, RADAR, FUSED-1, FUSED-2, and 

FUSED-3.  

 

Table 3.3 Yearly Nash-Sutcliffe Efficiencies (NSEs) in the calibration period (2003-2005) and the validation period 

(2006-2007) in KINT1 watershed corresponding the five precipitation inputs. 

  Year NLDAS RADAR FUSED-1 FUSED-2 FUSED-3 

Calibration 

period 

2003 0.911 0.933 0.926 0.798 0.856 

2004 0.824 0.827 0.854 0.693 0.856 

2005 0.807 0.847 0.867 0.846 0.882 

Validation 

period 

2006 0.772 0.751 0.781 0.856 0.803 

2007 0.234 0.545 0.606 -1.100 0.302 
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Table 3.4 Yearly Nash-Sutcliffe Efficiencies (NSEs) in the calibration period (2003-2005) and the validation period 

(2006-2007) in SERI3 watershed corresponding the five precipitation inputs. 

 Year NLDAS RADAR FUSED-1 FUSED-2 FUSED-3 

Calibration 

period 

2003 0.477 0.396 0.502 0.520 0.597 

2004 0.913 0.888 0.899 0.810 0.898 

2005 0.895 0.864 0.911 0.894 0.916 

Validation 

period 

2006 0.823 0.822 0.841 0.817 0.847 

2007 0.704 0.732 0.736 0.337 0.711 

 

With the setting of 128swarmN = , 32procssN =  and 5gbestN = , optimization has been 

conducted in the two experimental watersheds. Two sets of Pareto solutions, one has the size of 

36 and the other has the size of 19, have been identified for KINT1 and SERI3 watersheds over 

the whole calibration period. The corresponding NSEs of these solutions are plotted in Figure 3.7. 

It can be seen that all NSEs are larger than 0.65 and most of them are around 0.85. This indicates 

that the four-coefficient approximation is able to describe the absolute and the relative 

magnitudes of parameters. In addition, the MPI-based MOPSO algorithm can search the globally 

optimal solutions to the optimization problem. For each watershed, differences between NSEs of 

the Pareto solutions come from the differences of precipitation inputs. Therefore, the reliability 

of precipitation dataset can be assessed with the parameter calibration scheme.  
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Figure 3.8 Observed and simulated streamflows in KINT1 watershed. Calibration period includes 2002, 2003, and 

2004; validation period includes 2006 and 2007. In each plot, horizontal axis represents time and vertical axis 

represents streamflow rate (cft/s).  

 

In order to further evaluate the proposed parameter calibration scheme against 

streamflow, two single sets of coefficients with the maximum sum of the five NSEs among all 

Pareto solutions have been chosen for KINT1 and SERI3 watersheds, as listed in Table 3.2 Optimal 

parameters used in streamflow simulation. Yearly Nash-Sutcliffe Efficiencies (NSEs) in the calibration 
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period and the validation period have been calculated and listed in Table 3.3 for KINT1 

watershed and Table 3.4 for SERI3 watershed. Corresponding yearly streamflows are plotted in 

Figure 3.8 and Figure 3.9. For KINT1 watershed, the streamflow series simulated by the five 

precipitation datasets well reproduce the magnitude and the timing of the observed streamflow 

series except FUSED-2 in 2002 and 2003. In the validation period, all of the five precipitation 

datasets fairly simulate the streamflow in year 2006 since all NSEs are larger than 0.75. For 

SERI3 watershed, all of the five precipitation datasets also well reproduce the observed 

streamflow series in 2004 and 2005. For the validation period, all of the five precipitation 

datasets also well simulate streamflows since all NSEs are larger than 0.8. These results once 

again indicate that the four-coefficient approximation is a reasonable simplification and 

approximation of the parameters of Noah LSM, which are related to runoff generation. In 

addition, the performance the MPI-based MOPSO algorithm is also demonstrated in terms of 

searching global optimal. From the NSEs listed in Table 3.3 and Table 3.4 and the streamflow 

series plotted in Figure 3.8 and Figure 3.9, it also can be noticed that the five precipitation 

datasets have poor performance in streamflow simulation in year 2007 for both watersheds. 

Simulated streamflows fairly reproduce the timing of the observed streamflow but the 

magnitudes are pretty off. Similar situation also happen to SERI3 watershed in 2003. Such 

problems are because of the poor qualities of the NLDAS-2 data and the RADAR data in these 

years, which are very possible due to the changes of algorithms used in RADAR precipitation 

data derivation. To summarize, the proposed parameter calibration scheme for Noah LSM have 

good performances in both the calibration period (e.g. in 2004 and 2005) and validation period 

(e.g. in 2006) for the two experimental watersheds.  
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Figure 3.9 Observed and simulated streamflows in SERI3 watershed. Calibration period includes 2002, 2003, and 

2004; validation period includes 2006 and 2007. In each plot, horizontal axis represents time and vertical axis 

represents streamflow rate (cft/s). 
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3.7 SUMMARY 

In this study, a complete parameter calibration scheme is developed for Noah LSM, 

which includes a four-coefficient approximation of parameters and a parallel optimization 

algorithm. Through introducing the default soil parameter table as constraints, the consistencies 

among parameters of the same soil type and among the same parameters of different soil types 

are hold by the four-coefficient approximation. By associating with soil types, the four-

coefficient approximation can also describe the spatial heterogeneity of parameters. In addition, 

the four-coefficient approximation is an effective simplification of the parameter calibration 

problem in Noah LSM. The dimension of the corresponding optimization problem has been 

dramatically reduced. Furthermore, the proposed scheme is designed for calibrate Noah LSM 

with more than one precipitation data inputs. It can be not only used in precipitation data 

evaluation but also good for ensemble simulations of hydrological process with multiple forcing 

data.  

 

Particularly aiming at the high computational intensity of land surface simulation and the 

problem of assessing multiple precipitation datasets with Noah LSM, an multiobjective particle 

swarm optimization is developed based on the Message Passing Interface technique, called MPI-

based MOPSO algorithm. In the process of parameter calibration, it can easily distribute the 

computation of land surface simulations into multiple nodes of high-performance computational 

platform with parallel architecture. Compared with the serial optimization algorithm, the 

computational time can be significantly reduced by the MPI-based MOPSO algorithm, which 

makes it possible to calibrate Noah LSM over large simulation domain.  
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The proposed parameter calibration scheme has been evaluated in KINT1 and SERI3 

watersheds. The results indicate that the four-coefficient approximation can effectively describe 

the absolute magnitudes of parameters of the same soil type and the relative magnitudes of the 

same parameters among different soil types. With the proposed parameter calibration scheme, 

influences of parameters on simulated streamflow can be minimized and then, multiple 

precipitation datasets can be assessed in terms of the streamflow simulation by Noah LSM. In 

addition, the results also prove that the MPI-based MOPSO algorithm is capable of optimal 

searching.  

 

At last, the proposed parameter calibration scheme is not limited to Noah LSM. It can be 

applied to other LSMs and even distributed hydrological models with one or multiple forcing 

datasets. In the future, more studies are needed to reduce the uncertainty of calibrated parameters 

by introducing more physical and empirical constraints of parameters. 
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4.0  ASSESSMENT OF MULTISCALE DATA FUSION ALGORITHM IN 

PRECIPITATION DATA FUSION 

4.1 INTRODUCTION 

Precipitation plays an important role in land surface models (LSMs). It affects 

hydrological processes and the water and energy fluxes. Improvements in the quality of 

precipitation data can significantly improve the simulations of land surface models on soil 

moistures, evapotranspiration, runoff, and other water and energy fluxes as well.  

 

There are three typical ways to measure precipitation, namely rain gauge, radar and 

satellite. Each of them has its strengths and weaknesses in terms of accuracy, resolution, and 

coverage. Rain gauges are most accurate at a point or local scale but poor in capturing spatial 

patterns over a large area. The ground-based Next Generation Radar (NEXRAD) network in the 

U.S. provides measurements of precipitation with good spatial coverage at a much higher spatial 

resolution. However, magnitudes of the radar precipitation are criticized for systematic bias and 

random errors (Smith et al. 1996; Seo et al. 1999; Krajewski et al. 2010). In recent decades, the 

satellite-borne infrared imager and microwave imager make it possible to measure precipitation 

at a global scale with coarser spatial resolutions than that of the NEXRAD network. Satellite 

derived precipitation data products, with a larger spatial coverage but lower spatial resolutions 
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than NEXRAD network, also suffer from biases and noises (Grimes et al. 1999; Anagnostou et 

al. 2001). 

 

Data fusion is an effective approach to derive higher-quality precipitation data products 

by combining multiple sources of precipitation measurements. For example, the Multisensor 

Precipitation Estimator (MPE) of NEXRAD precipitation data are based on the NEXRAD Stage 

II and rain gauge precipitation data. The NLDAS precipitation data are combinations of daily 

reanalysis precipitation data with the NEXRAD Stage II precipitation data or the Eta model 

predicted precipitation data (Cosgrove et al. 2003). The PERSIANN system combines multiple 

precipitation measurements, such as the TRMM (Tropical Rainfall Measuring Mission) 

Microwave Imager (TMI) and GOES-IR (Geosynchronous Satellite Longwave Infrared Imagery) 

precipitation, using artificial neural networks (Sorooshian et al. 2000). Among the data fusion 

algorithms employed, the Kalman filter and its derived algorithms are widely used, such as the 

direct application of the Kalman filter (Seo 1998; Seo 1998) and the scale recursive regression. 

The latter is essentially a Multiscale Kalman Smoother (MKS) (Willsky 2002).  

 

The MKS algorithm was originally proposed to process digital signals and images at 

multiple spatial resolutions (Chou et al. 1994). It has been extensively used in a variety of 

applications together with the Expectation-Maximization (EM) algorithm for optimal parameter 

estimation (Kannan et al. 2000), such as signal and image processing (Simone et al. 2000; Farina 

et al. 2001; Nounou 2006), precipitation data fusion (Gorenburg et al. 2001; Tustison et al. 2002; 

Bocchiola and Rosso 2006; Bocchiola 2007; de Vyver and Roulin 2009), data assimilation for 

soil moisture (Kumar 1999; Parada and Liang 2004; Parada and Liang 2008), atmospheric 
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variables (Zhou et al. 2008), and altimetry data fusion (Slatton et al. 2001; Slatton et al. 2002). 

The MKS algorithm can be flexibly used in a time or a space domain. For example, the scale 

denotes the temporal resolution when precipitation measurements associated with different 

temporal resolutions are fused (Bocchiola and Rosso 2006). Additionally, the scale denotes the 

spatial resolution when precipitation measurements associated with different spatial resolutions 

are fused (Gorenburg et al. 2001; Tustison et al. 2002; Gupta et al. 2006; Bocchiola 2007; de 

Vyver and Roulin 2009). Through the MKS algorithm, precipitation measured at different 

temporal and spatial resolutions with different accuracies can be combined to produce higher-

quality precipitation data products. Till now, the effectiveness of the MKS algorithm has only 

been evaluated with individual precipitation images (Gorenburg et al. 2001; Tustison et al. 2002; 

Gupta et al. 2006; Bocchiola 2007; de Vyver and Roulin 2009), systematic evaluations on this 

type of data fusion approach with massive precipitation data have not been conducted yet.  

 

In this study, we use an extended MKS-based approach to first fuse two precipitation data 

sources at a coarser and a finer spatial resolution and then statistically investigate the 

improvements achieved through precipitation fusion. Correlation and root mean square error 

(RMSE) are applied as metrics of improvements. Particularly, we investigate two types of errors, 

white noise and bias. Evaluations are conducted based on hypothetical experiments using real 

precipitation data.  

 

In the remaining sections, we briefly describe the MKS-based framework in Section 4.2. 

Then, we present the data and experiment area in Section 4.3. Experiment designs and results are 

described and discussed in Section 4.4. Finally, we summarize the findings of this study in 

Section 4.5.  
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4.2  MULTISCALE KALMAN SMOOTHER-BASED (MKS-BASED) FRAMEWORK 

The MKS-based framework combines an extended MKS algorithm and a parameter 

estimation scheme (Parada and Liang 2004). Figure 4.1 depicts a multiscale tree with three 

spatial scales representing multiscale hidden states (i.e., fused precipitation). The MKS algorithm 

includes an upward sweep and a downward sweep. The former is a fine-to-coarse Kalman 

filtering step from the leaf nodes to the root node and the latter is a coarse-to-fine Kalman 

smoothing step from the root node to the leaf nodes. Both sweeps are along the multiscale tree. 

The dynamic equations for fusing multiscale precipitation are expressed as:  

( ) ( ) ( ) ( )X t A t X t w tγ= +                                                         (4-1) 

( ) ( ) ( )2 ( )P t A t P t Q tγ= +                                                       (4-2) 

where t represents a node in the multiscale tree, tγ  represents the coarse scale node containing 

node t, ( )X t  and ( )X tγ  represent the hidden states (e.g., fused precipitation in this case) at a 

child node t and its parent node tγ , respectively, ( )w t  is the added detail at the child node 

following ( )( )0,N Q t , ( )Q t  is the error variance of ( )w t , ( )P t  and ( )P tγ  are the error 

variances of ( )X t  and ( )X tγ , and ( )A t  is a transition operator mapping precipitation from a 

parent node to a child node. Given the prior estimate of precipitation at the root node (0)X  and 

its error variance (0)Σ , the prior estimates of precipitation and associated error variances at the 

rest nodes of the multiscale tree can be inferred based on Eqs. 4-1 and 4-2. We refer to this step 

as initialization step. After this step, the upward sweep can be carried out using the inversed 

forms of Eqs. 4-1 and 4-2 together with a measurement equation expressed as follows:  

( ) ( ) ( ) ( ) ( )Y t C t X t D t v t= + + .                                                (4-3) 
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where ( )Y t  represents the measurement (e.g., precipitation) of node t , ( )C t  is a transition 

operator mapping precipitation to the measurement, ( )v t  is the measurement noise following 

( )( )0, N R t , ( )R t  is the error variance of ( )v t , and ( )D t  is a bias compensator which is 

calculated as:  

( ) ( )( ) 0sD t Y C t X= −                                                         (4-4) 

where S is the scale of node t, SY  is the mean of the measurements at scale S, and (0)X  is the 

mean of the root node. ( )D t  is introduced in the observation equation by (Parada and Liang 

2004) to minimize impacts of the inconsistency (e.g., bias) between measurements at different 

scales on the fused precipitation. Adding this term enables the MKS-based framework to achieve 

the same estimated mean of the fused precipitation at all scales. For example, if the precipitation 

measurements at different scales have different means, then the average of these means (i.e., the 

mean of the means) can be chosen – a case employed in this study – as the estimate of ( )0X . 

 

The upward sweep includes three operations: (1) fine-to-coarse prediction, (2) prediction 

merging, and (3) observation update. In operation (1), the fine-to-coarse predictions of ( )X t  are 

derived based on the updated states of its child nodes. In operation (2), multiple fine-to-coarse 

predictions of ( )X t  are fused into a merged prediction of ( )X t . In operation (3), the merged 

prediction of ( )X t  is updated by ( )Y t . From the leaf to the root, these operations are conducted 

at all nodes of the multiscale tree. If no measurement at node t, the updated prediction of ( )X t  

just takes the value of the merged prediction. Via the upward sweep, the finer resolution data add 

their influences to the estimates of the hidden states at coarser resolutions. 
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The downward sweep follows the upward sweep starting at the root node and moving 

toward the leaves of the multiscale tree. It refines the estimates of the hidden states further 

through a scale-recursive Kalman smoothing step. As a result, coarser resolution data add their 

influences to the estimates of the hidden states at finer resolutions. By means of the upward and 

the downward sweeps, information in multiscale measurements will propagate to all the nodes of 

the multiscale tree collectively. For more details about our extended MKS-based framework, 

please refer to (Parada and Liang 2004).  

 
Figure 4.1 A schematic of a 2-D multiscale tree with three different spatial scales, 0, 1, and 2. For node t  at scale 1, 

tγ  represents its parent node and ntα  ( 1,2,3,4n = ) represents its child nodes. Without a parent, the node at 

scale 0 (i.e., the coarsest resolution) is called a root node; without any children, the nodes at scale 2 (i.e., the finest 

resolution) are called leaf nodes. 

 

The MKS-based framework has a set of parameters: (0)X , (0)Σ , ( )A t , ( )C t , ( )Q t  and 

( )R t , which need to be estimated. In this study, we set ( ) 1A t =  to keep mass conservation (i.e., 

to have the same total precipitation amount) at all scales. We also set ( ) 1C t =  because both the 
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measurements and the hidden states are precipitation. In the MKS-based framework, the areal 

mean precipitation over the study area, (0)X , determines the total amount of the fused 

precipitation at all scales. Without preference given to any measurement source, we determine 

(0)X  as: 

( ) ( )1 2

10 S S Sn
X Y Y Y

N
= + + ⋅⋅ ⋅ +      (4-5) 

where 1S , 2S , … , and nS  are scales with measurements available and N  is the total number of 

scales with measurements. (0)Σ , ( )Q t  and ( )R t  are estimated using the EM algorithm, in which 

the log-likelihood function is formulated as:  

( ) ( )( ) ( )( ) ( ) ( ) ( ) ( ){ }2 11, | log
2 ctlogL Q t R t Y Q t X t A t X t Q tγ −

∈= − Σ + −         

 
( )( ) ( ) ( ) ( ) ( ){ }2 11 log ( )

2 mt R t Y t C t X t D t R t F−
∈− Σ + − − +   ,                (4-6) 

where   is the set of all nodes at the multiscale tree, m  is a subset of   with measurements, 

c  is a subset of   except the root node, and F  is a constant. To maximize the log-likelihood, 

two recursive steps, expectation step (E-step) and maximization step (M-step), are iterated. The 

E-step is to compute the expectations of precipitation estimates ( ( ) , X t t∈ ) conditioned on all 

available measurements. The two sweeps of the extended MKS algorithm together play the role 

of the E-step. The M-step is to maximize Eq. 6 given the estimated precipitation obtained at the 

E-step. In order to reduce the number of parameters, we further assume that ( )Q t  and ( )R t  are 

homogeneous at each scale. Finally, Eq. 6 is maximized using the Newton gradient method. 

More details about the EM algorithm can be found in (Kannan et al. 2000). In Eq. 6, the first half 

(i.e., the Q related terms) is a measure of the consistency among the fused precipitation data 
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along the multiscale tree and the second half (i.e., the R related terms) is a measure of the 

consistency between the fused precipitation and measurements. To enhance the contribution of 

measurements, we constrain ( ) ( )Q t R t>  in the M-step.  

4.3 STUDY AREA AND DATA  

Our study area (Figure 4.2) is bounded by longitudes (-88, -84) and latitudes (37.75, 

41.75), which contains 32 32×  grids at 1/8 degree resolution and 128 128×  grids at 1/32 degree 

resolution. It includes almost the entire state of Indiana and parts of Illinois, Kentucky, Ohio, and 

Michigan. Covering an area of 152,175 km2, it is large enough for evaluating the MKS-based 

framework for precipitation data fusion. The average annual precipitation of this region is about 

1000 mm. Precipitation is relatively evenly distributed throughout the year. Typically, 

precipitation is steady and of long duration during winter and early spring and short, but of high 

intensity during late spring and summer.  

Hourly NEXRAD MPE precipitation data (DelGreco et al. 2005) from the Ohio River 

Forecast Center (OHRFC), National Weather Service (NWS) for the year 2003 are used in this 

study. The original data are at a spatial resolution of approximately 4 km in XMRG format, 

which is a binary file format used within the NWS to store gridded data. We re-sampled and 

projected the XMRG formatted precipitation data into the geographic coordinate system at two 

resolutions, 1/32 degree and 1/8 degree, respectively.  
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Figure 4.2 Location of our study area bounded by longitudes (-88, -84) and latitudes (37.75, 41.75) which contains 

32 32×  gray grids at 1/8 degree resolution. 

4.4 EXPERIMENTS AND RESULTS 

4.4.1 Experiment Design 

Two hypothetic experiments are designed to investigate the effectiveness of the MKS-

based framework in removing errors of the precipitation data from different sources. Two most 

common types of errors, Type-I errors and Type-II errors, are investigated. The Type-I errors are 

mainly resulted from random noise while the Type-II errors mainly contain errors due to 

systematic bias, such as instrument bias and algorithm bias. Experiment 1 investigates the 

effectiveness in filtering out the Type-I errors while Experiment 2 examines the effectiveness in 
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filtering out the Type-II errors. We use a synthetic experiment approach here due to its advantage 

of being able to control the magnitudes of errors to be included in the generated precipitation 

data. Thus, this approach is more effective in evaluating improvements of fused precipitation. In 

fact, the approach of using synthetic data has been widely used in data assimilation study for the 

convenience of performance evaluation (Walker and Houser 2004). 

 

In both experiments, synthetic precipitation data are generated at 1/8 degree and 1/32 

degree resolutions based on the hourly NEXRAD MPE precipitation data. In the study area, 

precipitation was recorded over a total of 3636 hours in 2003. Among all of these hourly-

recorded precipitation data (called precipitation images), 2246 of them are revealed to be realistic 

in terms of spatial patterns and amounts through the OHRFC’s manual inspection. Therefore, we 

use these 2246 hourly precipitation images as the truth at 1/32 degree resolution. In addition, we 

aggregate these data from 1/32 degree resolution to 1/8 degree resolution and also treat them as 

the truth at 1/8 degree resolution. Since the resolutions of 1/8 degree and 1/32 degree correspond 

to the scales 5 and 7 of the multiscale tree built for the study area, we also call the precipitation 

data at these two resolutions as the data at scales 5 and 7, respectively. The mean and the 

standard deviation of the true precipitation images at scale 7 are shown in Figure 4.3A and 

Figure 4.3B. Due to aggregation, the mean and the standard deviation of the true precipitation 

images at scale 5 are smaller than corresponding ones at scale 7. This is because the total amount 

of each hourly precipitation image is the same but the precipitation-covered area is larger at scale 

5 than that at scale 7. The relative differences between scales 5 and 7 are shown in Figure 4.3C 

and Figure 4.3D, respectively. All of these statistics are calculated over precipitation-covered 
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areas, which are defined as a set of grids whose precipitation amounts are larger than zero. In the 

remaining parts of this paper, we use Ω  to denote the precipitation-covered area.  

 
Figure 4.3 (A) Time series of the means of the true precipitation data at 1/32 degree resolution (i.e., scale 7); (B) 

time series of the standard deviations of the true precipitation data at 1/32 degree resolution; (C) time series of the 

relative differences between the means of the true precipitation data at 1/32 degree resolution and those at 1/8 degree 

resolution; and (D) time series of the relative differences between the standard deviations of the true precipitation 

data at 1/32 degree resolution and those at 1/8 degree resolution. All of these statistics are calculated over the 

precipitation-covered areas based on the 2246 hourly precipitation data in 2003. 

 

In Experiment 1, the Type-I errors are generated based on Gaussian distributions with 

zero mean and different standard deviations prescribed according to the real data. That is, at each 

hour k, the prescribed standard deviation is proportional to the standard deviation of the true 
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precipitation image at hour k. For example, assuming the standard deviation of the true 

precipitation image at hour k is ks , the Type-I error at hour k is then generated for each grid 

within Ω  based on a Gaussian distribution of (0, )i kN x s  where ix  ( 1,2, ,21i =  ) denoting a 

prescribed noise level. At the same hour, the generated errors for each grid are generally 

different from each other, but they follow the same distribution. As shown in Table 4.1, a total of 

21 noise levels ranging from 0.1 to 5.0 are used to generate Type-I errors to mimic the white 

noise in real precipitation data. In addition, we categorize these 21 noise levels into three groups 

to represent scenarios of fair, moderate and large amounts of noise. Synthetic precipitation data 

are finally generated by adding the Type-I errors to true precipitation values. Since we have 

generated 21 levels of synthetic precipitation data at both scales 5 and 7, a total of 21 21×  

combinations are used in Experiment 1. For all combinations, data fusion is carried out on each 

of the 2246 hourly precipitation images.  

 

In Experiment 2, the Type-II errors are generated based on Gaussian distributions with 

nonzero means and standard deviations prescribed according to the true data. At each hour, the 

mean and the standard deviation are again proportional to those of the true hourly precipitation 

images. For example, assuming the mean and the standard deviation of the precipitation image at 

hour k is km  and ks , the Type-II error at hour k is then generated for each grid within Ω  based 

on a Gaussian distribution of ( , )j k i kN y m x s , where jy  ( 1,2, ,15j =  ) denoting a prescribed 

bias level and ix  ( 1,2, ,21i =  ) denoting a noise level. As shown in Table 4.2, the range of the 

bias levels is wide enough to mimic the bias in real precipitation data. Since the focus of 

Experiment 2 is to evaluate the MKS-based framework on removing biased errors in the 

precipitation data, we set the noise level to 9 2.0x =  when generating the Type-II errors at all of 
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the bias levels in scales 5 and 7. Synthetic precipitation data are then generated by adding the 

Type-II errors to the corresponding true precipitation values. Like Experiment 1, there are 

15 15×  combinations of the synthetic precipitation data series used in Experiment 2. Data fusion 

is once again carried out over each of the 2246 hourly precipitation images for all combinations. 

Because the synthetic precipitation data are erroneous, we use 5
errorY and 7

errorY to denote these 

synthetic precipitation images at scale 5 and scale 7, respectively.  

 

Since precipitation data cannot have negative values, a strict non-negative value rule has 

to be applied when generating the synthetic precipitation data for both experiments. Once the 

value of the synthetic precipitation in a grid is negative, we regenerate the error until it is non-

negative. Figure 4.4 shows the average percentage of grids whose synthetic precipitation values 

are regenerated for Experiments 1 and 2, respectively, over the 2246 precipitation hours in 2003. 

Due to the regeneration process, the means of the errors in the precipitation-covered area (Ω ) 

are increased. The larger average percentage value in Figure 4.4 indicates that a higher bias is 

added to the synthetic precipitation data and that the distributions of the added errors are less 

normally distributed. For Experiments 1 and 2, we find the average percentage varies from 

almost zero to about 40% over the ranges of the noise levels or the bias levels. This implies that 

non-normality exists in the errors of the synthetic precipitation data in both experiments. 

However, the majority of the Type-I errors and the Type-II errors are still normally distributed. 

The range of the prescribed bias levels in Experiment 2 is asymmetric to reflect the reality that 

the absolute magnitude of the negative bias is generally not too large.  
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Figure 4.4 Average percentage of grid cells whose synthetic precipitation values are regenerated for Experiment 1 

(panel A) and Experiment 2 (panel B) over the 2246 precipitation hours in 2003. 

 

Table 4.1 A list of twenty-one noise levels used in generating Type-I errors 

Category Noise level ( ix , 1,2, ,21i =  ) 

Fair 0.10, 0.25, 0.50, 0.75, 1.0, 1.25, 1.50 

Moderate 1.75, 2.0, 2.25, 2.50, 2.75, 3.0 

Large 3.25, 3.50, 3.75, 4.0, 4.25, 4.50, 4.75, 5.0 

 

Table 4.2 A list of fifteen bias levels used in generating Type-II errors 

Bias level ( iy , 1,2, ,15i =  ) 

-0.50, -0.30, -0.20, -0.10, 0.00,  

0.10, 0.20, 0.30, 0.50, 0.7, 

 1.0, 1.5, 2.0, 2.5, 3.0 

 

In addition, benchmark experiments have been designed as companions to Experiments 1 

and 2, respectively. In the benchmark experiments, a conventional data fusion method including 

two steps is applied to the data of Experiments 1 and 2, respectively. In Step 1, we either 
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aggregate the synthetic precipitation data at hour k of scale 7 (denoted as 7,
e
k
rrorY ) to scale 5 

(denoted as 7 5,k
errorY → ) or disaggregate the synthetic precipitation data from scale 5 (denoted as 

5,
e
k
rrorY ) to scale 7 (denoted as 5 7,k

errorY → ). In the aggregation process, we use the average precipitation 

values of the 4 4×  1/32 degree resolution (scale 7) grids inside a 1/8 degree resolution (scale 5) 

grid as the precipitation value of the grid at scale 5. In the disaggregation process, all of the 4 4×  

1/32 degree grids inside a 1/8 degree resolution grid take the same precipitation value of the grid 

at scale 5. In step 2, we fuse the precipitation of scales 5 and 7 at each hour k as 

( ),
5, 5, 7 5,0.5fused B error error

k k kX Y Y →= × +  and ( ),
7, 7, 5 7,0.5fused B error error

k k kX Y Y →= × + . We use ,
5,
fused B
kX  and ,

7,
fused B
kX  

as the benchmarks for scales 5 and 7 and compare them with the corresponding fused 

precipitation data ,
,
fused E
j kX  (j = 5, 7) based on the MKS-based framework.  

 

Two metrics are used in evaluation, namely correlation ( Corr ) and root mean square 

error ( )RMSE . Correlation is a measure of the consistency of the two images’ spatial patterns. 

At hour k and scale j , the correlation between the true ( ,
true
j kX ) and synthetic precipitation 

images ( ,
error
j kY ) is represented as: 

( ) ( ) ( )( ) ( ) ( )( )
( ) ( )

1
, , , ,

, , , 1 2 1 2

, ,

,
var var

true true error error
N j k j k j k j ktrue error

j k j k j k true error
j k j k

X E X Y E Y
Corr X Y

X Y
ω

ω ω
Ω ∈Ω

− ⋅ −
=

⋅

∑
,        (4-7) 

where ( )var ⋅  represents variance of the precipitation values within the precipitation-covered 

area Ω , NΩ  is the number of measurements (i.e., grids), and j = 5 or 7 representing the scale. 

RMSE is a measure of the overall difference (magnitudes) between the two precipitation images. 

Similarly, RMSE is formulated as:  
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( ) ( ) ( )( )2

, , , , ,
1,true error true error

j k j k j k j k j kRMSE X Y X Y
N ω

ω ω
∈Ω

Ω

= −∑               (4-8) 

Correlation and RMSE between the true and fused precipitation images are calculated by 

applying Eqs. 4-7 and 4-8 where ,
error
j kY  is replaced by either ,

,
fused E
j kX  or ,

,
fused B
j kX .  

 

To investigate the effectiveness of the MKS-based framework in a statistic sense, we 

evaluate the overall performance of the data fusion over all of the 2246 precipitation hours in 

2003 rather than over some selected individual hours. Thus, we use the means of correlations and 

RMSEs in our analyses and they are expressed as follows:  

( ) ( ), , , , ,
1

1, ,
TN

true true
j j k j k j k j k j k

kT

Corr X Z Corr X Z
N =

= ∑ ,      5 or 7j = ,   (4-9) 

( ) ( ), , , , ,
1

1, ,
TN

true true
j j k j k j k j k j k

kT

RMSE X Z RMSE X Z
N =

= ∑ ,      5 or 7j = ,      (4-10) 

where NT is the total number of precipitation hours (i.e., 2246), j denotes the spatial scale, and 

,j kZ  represents either ,
,
fused E
j kX , ,

,
fused B
j kX , or ,

error
j kY .  

 

In the following analyses, we compare ,,( , )true
jkj j kCorr X Z  and ( ), ,,true

j j jk kRMSE X Z  

computed before and after the data fusion using both the MKS-based framework and the 

conventional method. For notational convenience, we use superscripts “-” and “+” to represent 

“before” and “after” data fusion. Therefore, jCorr−  denotes the mean of the correlations between 

the true precipitation data and the synthetic precipitation data at scale j . jCorr+  denotes the 

mean of the correlations between the true precipitation data and the fused precipitation data at 
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scale j . Similar meanings are applied for jRMSE −  and jRMSE + . Moreover, to facilitate the 

evaluation analyses, we define j j jCorr Corr Corr+ −∆ = −  and j j jRMSE RMSE RMSE− +∆ = −  for 

5 or 7j = . Positive values of jCorr∆  and jRMSE∆  indicate valuable effects of data fusion. 

4.4.2 Results and Discussion 

4.4.2.1 Experiment 1 

By showing the color-filled contour plots of jCorr− , jCorr+  and jCorr∆  ( j  = 5 or 7), 

Figure 4.5 provides an overall picture about the effectiveness of the MKS-based framework in 

terms of restoring the spatial patterns of precipitation. Since no data fusion has been conducted 

yet, information associated with 7
errorY  has no influence on 5Corr− . Therefore, contours of 5Corr−  

only change along the noise levels of scale 5. Similarly, contours of 7Corr−  only change along 

the noise levels of scale 7. It can be seen that jCorr−  ( j  = 5 and 7) decrease rapidly with an 

increase of the noise levels at scale j . In particular, the correlations are reduced from almost 1.0 

to about 0.26 when the corresponding noise levels increase from 1 0.1x =  to 13 3.0x =  (i.e., noise 

levels between fair and moderate). In the plots of 5Corr−  and 7Corr− , it can be found that 

0.53jCorr− >  for j  = 5 and 7 as long as the Type-I errors are confined within the “fair 

category”. This indicates that r
j
erroY (j=5 and 7) generated with errors in the “fair category” (see 

Table 4.1) still contain most of the patterns of the true precipitation data. On the other hand, 

r
j
erroY (j=5 and 7) generated with errors confined in the “large category” lose most of the spatial 
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patterns of the true precipitation data, since 0.26jCorr− ≤  for j  = 5 and 7. The loss of the spatial 

patterns for r
j
erroY (j=5 and 7) generated with errors in the “moderate category” falls between that 

of the fair and large categories.  

 

For each fused result at scale j, if j jCorr Corr+ −> , it implies that the MKS-based 

framework can improve precipitation spatial pattern through removing some of the Type-I errors 

at scale j . Significant improvements can be seen at scale 5 in Figure 4.5. That is, the Type-I 

errors in 5
errorY  are substantially removed by fusing 5

errorY  with 7
errorY . 5Corr+  is greater than 0.6 

for all of the combinations, even for those that 7
errorY  are associated with the Type-I errors in the 

large category. For scale 5, the data fusion only degrades the spatial patterns of the precipitation 

when 5
errorY  are associated with very small noise levels (e.g, the noise level of 0.25ix ≤ ) while 

7
errorY  are associated with much higher noise levels. Compared to the plot of 5Corr+ , 

improvements shown in the plot of 7Corr+  are much smaller, but still considerable. Two paired t-

tests (one for scale 5 and the other for scale 7) between jCorr−  and jCorr+  over all of the 21 21×  

combinations reveal that the differences between jCorr−  and jCorr+  are statistically significant at 

the 95% confidence level. In other words, the synthetic precipitation data at a coarser resolution 

(i.e., scale 5) are also helpful in removing the Type-I errors and in improving the spatial patterns 

of the synthetic precipitation at a finer resolution (i.e., scale 7) through the MKS-based 

framework, even though the effect is not as much as it is for the opposite situation. 
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Moreover, plots of 5Corr∆  and 7Corr∆  provide direct measures of the improvements of 

the precipitation patterns at scales 5 and 7, respectively. Distinct differences in the pattern and 

magnitude are shown between the plots of 5Corr∆  and 7Corr∆ . The contours of 5Corr∆  are 

jointly controlled by the noise levels at scales 5 and 7. Denoting the synthetic data at scale 5 that 

are associated with the Type-I errors in the fair category as ,
5
error fY , we can see that when ,

5
error fY  

are combined with the synthetic data at scale 7 (i.e., 7
errorY ), 5Corr∆  is more sensitive to the 

noise level at scale 5 rather than to the noise level at scale 7, since the color-filled contours are 

horizontal-like strips in the region. A negative zone of 5Corr∆  can be seen in the region in the 

plot of 5Corr∆ , when the noise level at scale 7 is much greater than that at scale 5. However, the 

slight decrease of the correlation over the small region would not cause any concern since the 

absolute magnitudes of those negative 5Corr∆  are very small. Over the negative region of 

5Corr∆ , magnitudes of the corresponding 5Corr+  are mostly greater than 0.85, indicating that the 

fused precipitation data still represent most of the spatial features of the true precipitation images 

at scale 5. When the noise level of the Type-I errors associated with 5
errorY  is getting larger, e.g., 

from the fair group to the moderate or large group, the effectiveness of the precipitation data 

fusion becomes increasingly significant. Meanwhile, the effectiveness depends on the quality of 

5
errorY  and 7

errorY . As expected, the improvement is more significant if the noise level at scale 7 is 

smaller.  
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Figure 4.5 Color-filled contour plots of jCorr− , jCorr+  and jCorr∆  for scale 5 (i.e., 5j = , upper panel) and 

scale 7 (i.e., 7j = , lower panel), respectively, for Experiment 1. In each plot, the horizontal axis and the vertical 

axis represent, respectively, the noise levels at scales 7 and 5. In addition, the two horizontal and the two vertical 

gray lines indicate the boundaries, respectively, between the fair and moderate, and between the moderate and large 

categories of the noise levels specified in Figure 4.1. 

 

Improvements indicated by 7Corr∆  are much less than those by 5Corr∆ . The contours of 

7Corr∆  are mostly controlled by the noise levels at scale 7. Also, the magnitudes are much 

smaller than those of 5Corr∆ . This indicates that 5
errorY  have relatively less influence than 7

errorY  

on the fused precipitation data at scale 7, no matter what the noise level is at scale 5. In other 
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words, we cannot significantly improve the spatial pattern of 7
errorY  (at finer resolution) by fusing 

5
errorY  (at coarser resolution) with 7

errorY  using the MKS-based framework. Both the magnitude 

and the pattern of 7Corr∆  demonstrate that 7
errorY  play a more significant role than 5

errorY  in 

improving the spatial patterns at scale 7 in data fusion. This is because when 5
errorY  are fused into 

the data at scale 7, much less new information on the spatial patterns can be added since the 

coarser resolution includes less spatial variability information. Nevertheless, 5
errorY  do provide 

some new information, which is detected by the EM algorithm, to improve the spatial patterns of 

7
errorY .  

 

One reason for such a significant difference between 5Corr∆  and 7  Corr∆ is that the EM 

algorithm in the MKS-based framework places more weight on the data for which there are a 

larger number of measurement points (see Eq. 6). In this study, the number of measurement 

points at scale 7 is 16 times of that at scale 5. Generally, if the noise levels at different 

resolutions are comparable to each other, more information is provided by the finer resolution 

data than that by the coarser resolution data. Thus, it makes sense that the finer data have more 

influence on the fused data than the coarser data. Such a general rule of the multiscale data 

fusion may not work if the finer resolution data are too noisy. This is why we see a region with 

negative values in 5Corr∆  since the noise levels at the finer resolution are much higher than 

those at the coarser resolution. If, however, the two (or more) data sources used for fusion have 

the same spatial resolution or comparable noise levels, the EM algorithm in our MKS-based 

framework would be able to adjust its parameters to effectively place more weights on the data 

source with less errors and thus to improve the spatial patterns and magnitudes as shown here 
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and in Parada and Liang [2008] as well. Results here demonstrate an important value of the 

high-resolution data when combined with coarse resolution data to improve the spatial patterns 

of the coarse resolution data, even if the high-resolution data have larger (but not significantly 

larger) Type-I errors than those at the coarser resolution.  

 

 For the case of 7Corr∆ , improvements are even seen for the region over which the large 

noisy data at scale 5 are fused into the smaller or equally noisy data at scale 7. The largest occurs 

to the combinations of 5
errorY  in the large category and 7

errorY  in the moderate category where 

7Corr∆  ranges from 0.12 to 0.14. This indicates that the noisy data at scale 5 have the largest 

effects on improving the spatial patterns of 7
errorY  in the moderate category. For the combinations 

with 7
errorY  in the fair region (i.e., left of the first vertical line), small values in 7Corr∆  are due to 

the high values of 7Corr−  prior to conducting the data fusion. For the combinations with 7
errorY  in 

the large noise category (i.e., right of the second vertical line), smaller values in 7Corr∆  indicate 

less influence of the noisy data at scale 5. But overall, there are still improvements to this large 

noisy data region at scale 7. The relative improvements in this region are actually not small 

compared to the original spatial patterns of the noisy data at scale 7 shown in the plot of 7Corr− . 

The almost equal values of 7Corr∆  (i.e., the vertical-like color-filled contours) reveal an 

interesting feature. That is, there appears to be an almost equal contribution of the noisy data at 

scale 5 to the improvements of the spatial patterns at scale 7 due to the combined effects of the 

upward and downward sweeps and the EM algorithm involved in the MKS-based framework. 

When the correlation measure is employed, impacts on the fused data at scale 7 by the different 
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noise levels at scale 5 are minimized while such impacts are not if the RMSE measure is used. 

Results here confirm that one can fuse coarse resolution data with fine resolution data (as long as 

the coarse spatial resolution is not too coarse compared to the fine resolution) to improve the 

spatial patterns of the fine resolution data even if the data at the coarser resolution include a large 

amount of noise. The impacts of the coarser resolution data on the fused data at a finer resolution 

are much less than those the other way around. This is expected from the upward and downward 

sweeps and the EM algorithm as to-be-elaborated later. 

 

In terms of restoring the spatial pattern of precipitation data, the results of Experiment 1 

and its benchmark experiment are compared in Figure 4.6. We use 
1B

jCorr∆  to represent 

improvements in the spatial patterns obtained with the conventional data fusion while 
1E

jCorr∆  

(i.e., the same as  jCorr∆  shown in Figure 4.5 for Experiment 1) to represent improvements 

obtained with the MKS-based framework. Figure 4.6 shows the difference between 
1E

jCorr∆  

and 
1B

jCorr∆  at scales 5 and 7 (i.e., 5j =  and 7j = ). It can be seen that 
1

5

E
Corr∆  is 

significantly greater than 
1

5

B
Corr∆  except for a few combinations when the noise level at scale 5 

is in the fair group while the noise level at scale 7 is much greater than the fair group. In 

addition, 
1

7

E
Corr∆  is larger than 

1

7

B
Corr∆  for more than half of the combinations, including all 

of the combinations when the noise levels at scale 5 are greater than those at scale 7. In general, 

given the noise levels at scale 5, the superiority of the MKS-based framework over the 

conventional approach decreases when the noise levels at scale 7 increase. On the contrary, given 

the noise levels at scale 7, the superiority of the MKS-based framework increases when the noise 
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levels at scale 5 increase. This is because the EM algorithm used in the MKS-based framework 

places more weights on the finer resolution data than the coarser resolution data while the 

conventional data fusion approach places equal weights to the data at both resolutions.  

 

In Experiment 1, we also evaluate the effectiveness of the MKS-based framework in 

improving the magnitudes of the synthetic precipitation data using RMSE. Figure 4.7 shows the 

color-filled contour plots of jRMSE − , jRMSE +  and jRMSE∆  ( 5j =  or 7 ). Since no data fusion 

is conducted yet, the contours of jRMSE −  only change along the noise levels at scale j. jRMSE −  

increases rapidly when the noise levels at scale j  increase for 5j =  and 7j = . Particularly, 

5RMSE −  ranges from almost 0 to about 8 and 7RMSE −  ranges from almost 0 to more than 9 when 

the noise levels increase from 1 0.1x =  to 21 5.0x = . For the same noise level, 7RMSE −  is greater 

than 5RMSE − , indicating more variability in 7
errorY  than 5

errorY .  

 

Figure 4.6 Color-filled contour plots of 
1 1

5 5
E B

Corr Corr∆ − ∆  and 
1 1

7 7
E B

Corr Corr∆ − ∆ , where the 

superscript 1E  denotes Experiment 1 and the superscript 1B  denotes the benchmark experiment. Both experiments 

use the same erroneous precipitation data with the Type-I errors. The meanings of the horizontal and vertical axes 

are the same as in Figure 4.5. 
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Figure 4.7 Color-filled contour plots of jRMSE − , jRMSE +  and jRMSE∆  for scale 5 (i.e., 5j = , upper panel) 

and for scale 7 (i.e., 7j = , lower panel), respectively, for Experiment 1. The meanings of the horizontal and 

vertical axes and the meanings of the two horizontal and vertical gray lines and are the same as in Figure 4.5. 

 

In Figure 4.7, jRMSE +  ( 5j =  and 7 ) reflects the joint influence of the information 

associated with 5
errorY  and 7

errorY  on the magnitudes and spatial patterns of the fused precipitation 

data. The contours of 5RMSE +  have a different pattern from the contours of 7RMSE + . The former 

is affected by the noise levels at both scales while the latter is mostly controlled by the noise 

levels at scale 7. This indicates that the influence of the finer resolution data on the coarser 
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resolution data is much stronger than the other way around. Comparing with the plot of 5Corr+  in 

Figure 4.5, it can be seen that the contours of 5RMSE +  and 5Corr+  have similar patterns. In 

general, the spatial pattern and the absolute magnitude of the precipitation data at the coarser 

resolution (i.e., scale 5) can be improved simultaneously through the MKS-based framework. On 

the contrary, the pattern of the contours of 7RMSE +  is mostly affected by the noise levels at scale 

7, similar to that of 7Corr+  in Figure 4.5. In addition, the average of 5RMSE +  is smaller than that 

of 7RMSE + . This is mainly because the variability associated with 5
errorY  is smaller than that 

associated with 7
errorY  (see plots of 5RMSE −  and 7RMSE −  in Figure 4.7).  

 

 

Figure 4.8 Color-filled contour plots of 
1 1

5 5
E B

RMSE RMSE∆ − ∆  and 
1 1

7 7
E B

RMSE RMSE∆ − ∆ , where the 

superscript 1E  denotes Experiment 1 and superscript 1B  denotes the benchmark experiment. Both experiments 

use the same erroneous precipitation data with the Type-I errors. The meanings of the horizontal and vertical axes 

are the same as in Figure 4.5. 
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Moreover, Figure 4.7 depicts the color-filled contours of 5RMSE∆  and 7RMSE∆ . Both 

plots can be divided by a zero-value contour. From the plot of 5RMSE∆ , we see that the 

magnitudes of 5
errorY  are significantly improved if the noise levels at scale 7 are not substantially 

higher than that at scale 5. From the plot of 7RMSE∆ , it can be seen that the magnitudes of 

7
errorY  are also improved for most of the combinations, except when 7

errorY  in the fair group are 

combined with 5
errorY  in the large group. The overall improvements (i.e., positive 5RMSE∆ ) at 

scale 5 are greater than those at scale 7 (i.e., positive 7RMSE∆ ). However, the absolute 

magnitudes of the negative 5RMSE∆  are also greater than those of the negative 7RMSE∆ . This 

indicates that precipitation data at the finer resolution (i.e., scale 7) have stronger influences on 

the magnitudes of the fused precipitation data at the coarser resolution (i.e., scale 5). Once again, 

this is partially due to the EM algorithm, which places more weights on the finer resolution data. 

If the finer precipitation data are not substantially noisier than the coarser precipitation data, the 

magnitudes of precipitation data at the coarser resolution will be significantly improved after the 

data fusion with the MKS-based framework. Otherwise, the magnitudes of the precipitation data 

at the coarser resolution may be degraded if the finer data are too noisy. The contours of 

7RMSE∆  are mainly controlled by the noise levels at scale 7. That is, 5
errorY  contribute limited 

information to the improvement of the magnitudes of 7
errorY .  

 

A comparison between the MKS-based framework and the conventional data fusion 

method using jRMSE∆  ( 5j =  and 7) is also conducted. We use 
1B

jRMSE∆  and 
1E

jRMSE∆  to 

respectively represent the overall improvements (magnitudes and spatial patterns) obtained with 
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the conventional data fusion method and the MKS-based framework. Figure 4.8 shows the color-

filled contour plots of 
1 1

5 5
E B

RMSE RMSE∆ − ∆  and 
1 1

7 7
E B

RMSE RMSE− ∆ . From Figure 4.8, we 

see that at scale 5, the MKS-based framework is significantly better than the conventional data 

fusion method for most of the combinations. This includes many of those whose noise levels at 

scale 7 are greater than the noise levels at scale 5. The magnitudes of 
1 1

5 5
E B

RMSE RMSE∆ − ∆  

are quite minor for the combinations when the MKS-based framework is not as good as the 

conventional data fusion method. This occurs when the noise levels at scale 7 are much greater 

than those at scale 5. In addition, we see that the MKS-based framework is superior to the 

conventional data fusion method at scale 7 for the combinations when the noise levels at scale 5 

are greater than those at scale 7. Results of Figure 4.6 and Figure 4.8 consistently demonstrate 

that the MKS-based framework is superior to the conventional data fusion method in removing 

the Type-I errors for most parts.  

4.4.2.2 Discussion 

In Section 4.4.2.1, we have presented and discussed the effectiveness of the MKS-based 

framework in removing the Type-I errors and also compared the results with those of the 

conventional data fusion method. In this section, we further discuss why the MKS-based 

framework is sometimes more effective but less effective at other times.  

 

In the MKS-based framework, data at a finer resolution affect the fusion through the 

upward sweep, which is a combination of three steps, fine-to-coarse prediction, the prediction 

merging, and the observation update. The fine-to-coarse prediction is from child nodes to their 

parent node. In our multiscale tree structure (Figure 4.1), each parent has four children. 
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Therefore, there are four predicted states (one from each child) for each parent node. The four 

predicted states (i.e., precipitation) are then merged based on a weighted summation with their 

corresponding error variances, which is more effective in reducing the noise than a simple 

averaging method. Thus, the prediction-merging step can decrease the amount of noise 

propagated to the parent node from the child nodes. For Experiment 1, the finer data are at scale 

7 and the coarser data are at scale 5. Thus, the prediction merging step is conducted twice: one at 

scale 6 and the other at scale 5. After this step, the noise at scale 5 becomes much less than that 

at sale 7. Therefore, the “true” information included in the finer resolution data at scale 7 can 

contribute significantly to the fused data at scale 5. This is one reason that the finer data help 

more in improving the data quality at the coarser resolution (i.e., at scale 5). On the other hand, 

the coarser data affect the fused data at a finer resolution via the downward sweep. If at the 

parent nodes, the differences between the predicted and smoothed states (i.e., precipitation) are 

small, the updates to the child nodes through the downward sweep would be small. Since data at 

a coarser resolution are generally more homogeneous than those at a finer resolution, the 

differences between the predicted and smoothed states are small. Thus, the coarser resolution 

data have less influence on the fused data at a finer resolution. In Experiment 1, the coarser data 

affect the fused precipitation at the finer resolution (scale 7) by two Kalman smoothing steps via 

the downward sweep, from scale 5 to scale 6, and then from scale 6 to scale 7. In doing so, the 

influence becomes even weaker. This is partially why the coarser data only provide limited help 

to the fused precipitation at the finer resolution.  
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The other reason is related to the EM algorithm. The EM algorithm is used to estimate 

the parameters ( )Q t  ( ct∈ ), and ( )R t  ( mt∈ ), through maximizing the log-likelihood 

function of Eq. 6. Since the number of measurements at a child scale is four times of the number 

of measurements at its parent scale, the number of the measurement points at scale 7 would be 16 

times more than that at scale 5. However, the contribution of each measurement point is equally 

weighted in Eq. 6. This is a reasonable assumption when the error level by each measurement 

point is comparable at different spatial scales. To maximize the log-likelihood, optimal 

parameters and fused data as well should better fit the measurements at finer resolutions than 

those at coarser resolutions. Accordingly, finer measurements would have more influence on the 

fused precipitation at the coarser resolutions than the other way around. In Experiment 1, the 

finer resolution has 16 times measurement points of that at the coarser resolution. Therefore, it is 

unavoidable that the MKS-based framework puts much more weights on the synthetic 

precipitation data at scale 7. Thus, the data quality at scale 7 becomes more influential than that 

at scale 5. Consequently, the importance of the finer resolution data sometimes is over 

emphasized as indicated in our results. This is a limitation of the EM algorithm when the noise 

levels at finer resolutions are much larger than those at coarser scales. 

 

Due to these reasons, measurements at finer resolutions are thus more influential than 

those at coarser resolutions when the MKS-based framework is used to remove the Type-I errors. 

This is why we see the different color-filled contour patterns between scales 5 and 7 for the fused 

precipitation and why we see small negative regions shown in Figure 4.5 and Figure 4.7. In 

addition, these features of the MKS-based framework also explain the negative regions shown in 

Figure 4.6 and Figure 4.8. This is because in the conventional data fusion method, “weights” of 
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the measurements at scale 7 are the same as those at scale 5, not like that in the EM algorithm. 

Thus, the MKS-based framework is not superior to the conventional data fusion method for the 

combinations where the noise levels at scale 7 are much greater than those at scale 5.  

4.4.2.3 Experiment 2 

Experiment 2 is designed to evaluate the effectiveness of the MKS-based framework in 

removing the Type-II errors associated with the precipitation data. As described in Section 4.4.1 

about generating the Type-II errors, the noise portion in the Type-II errors is set to a constant 

level of 9 2.0x = . To investigate the influence of the bias portion of the Type-II errors on the 

effectiveness of the MKS-based framework, we compare the metrics of Experiment 2 with those 

of Experiment 1 whose noise levels correspond to 9 2.0x =  at both scale 5 and scale 7. The same 

notations, i.e., jCorr− , jCorr+ , jCorr∆ , jRMSE − , jRMSE + , and jRMSE∆  ( 5j =  and 7 ) are also 

used for analyzing the results of Experiment 2. 

 

Figure 4.9 presents the color-filled contour plots of jCorr− , jCorr+  and jCorr∆  ( j  = 5 or 

7) for Experiment 2. These plots provide an overall picture of the correlations before and after 

the data fusion, as well as the corresponding improvements at scale 5 and scale 7. Plots of jCorr−  

( 5j =  and 7 ) show a small variation range, from 0.38 to 0.46, in jCorr−  ( j  = 5 and 7) across 

the 15 bias levels. These are close to the correlation values of their counterparts of 9 2.0x =  

shown in Figure 4.5 for Experiment 1. This indicates that the magnitudes of jCorr−  ( 5j =  and 7

) are mainly controlled by the white noise portion of the Type-II errors included in the 
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precipitation data. The small variations of jCorr−  ( 5j =  and 7 ) are due to the process of 

generating the synthetic precipitation data, which are affected by interactions between the bias 

and the noise.  

 

 

Figure 4.9 Color-filled contour plots of jCorr− , jCorr+  and jCorr∆  for scale 5 (i.e., 5j = , upper panel) and 

scale 7 (i.e., 7j = , lower panel) for Experiment 2. In each plot, the horizontal axis and the vertical axis represent, 

respectively, the bias levels at scales 7 and 5. 
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In Figure 4.9, plots of 5Corr+  and 7Corr+  reflect the joint influences of the information 

associated with 5
errorY  and 7

errorY  on the fused precipitation. Compared to the plot of 5Corr−  in 

Figure 4.9, the range of correlations at scale 5 increases from a range of (0.38, 0.46) to a range of 

(0.80, 0.86) after data fusion. Similarly, at scale 7, the spatial correlations increase from (0.38, 

0.46) to (0.51, 0.60). Compared to the corresponding plots of 5Corr+  and 7Corr+  in Figure 4.5, 

the magnitudes of jCorr+  ( 5j =  and 7 ) in Figure 4.9 are again close to the correlations of the 

counterparts of 9 2.0x =  in Experiment 1. This indicates that improvements on the correlations 

are also mainly attributed to the improvements in removing the noise portion of the Type-II 

errors. In addition, the bias portion of the Type-II errors in the synthetic data does not essentially 

affect the ability of the MKS-based framework in removing the noise portion of the Type-II 

errors. jCorr+  ( 5j =  and 7 ) just varies slightly with the different bias levels.  

 

Plots of 5Corr∆  and 7Corr∆  show that improvements at both scales 5 and 7 in 

Experiment 2 are again close to those of their counterparts with 9 2.0x =  in Experiment 1 (see 

Figure 4.5). In Experiment 1, without introducing any bias into the synthetic data, the magnitude 

of 5Corr∆  is 0.413 and the magnitude of 7Corr∆  is 0.135 when the noise levels at both scales 

are 9 2.0x = . In Experiment 2, with 15 bias levels involved, the magnitudes of 5Corr∆  are close 

to 0.413 and the magnitudes of 7Corr∆  are also close to 0.135, albeit with small variations. 

Results in Figure 4.9 clearly indicate that the MKS-based framework can effectively recover the 

spatial patterns of precipitation due to the noise at both scales even when the noise is mixed with 

bias. Moreover, such a recovery in Experiment 2 is as effective as it is in Experiment 1, even 
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though in Experiment 2 the noise is blended into the bias as opposed to Experiment 1 where the 

errors only include noise.  

 

Figure 4.10 Color-filled contour plots of 
2 2

5 5
E B

Corr Corr∆ − ∆  and
2 2

7 7 
E B

Corr Corr∆ − ∆ , where the 

superscript 2E  denotes Experiment 2 and the superscript 2B  denotes the benchmark experiment. Both 

experiments use the same erroneous precipitation data with the Type-II errors. The meanings of the horizontal and 

vertical axes are the same as in Figure 4.9. 

 

Results of using the MKS-based framework are also compared to those using the 

conventional data fusion method. Figure 4.10 shows the color-filled contour plots of 

2 2
5 5

E B
Corr Corr∆ − ∆  and

2 2
7 7 

E B
Corr Corr∆ − ∆ , where superscripts 2E  and 2B  denote the 

results of Experiment 2 and those of the benchmark experiment respectively. At scale 5, the 

MKS-based framework shows significant superiority to the conventional data fusion method 

(Figure 4.10). At scale 7, differences between the two data fusion schemes are reduced, but the 

MKS-based framework is still slightly more effective than the conventional one. Moreover, 

magnitudes of 
2 2

5 5
E B

Corr Corr∆ − ∆  are close to 0.127, which is the magnitude of 
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1 1
5 5

E B
Corr Corr∆ − ∆  when the noise levels at both scales 5 and 7 are 9 2.0x =  in Figure 4.6. 

Similarly, magnitudes of 
2 2

7 7
E B

Corr Corr∆ − ∆  are also close to 
1 1

7 7 180.0
E B

Corr Corr∆ − ∆ =  for 

9 2.0x = . These results confirm again that the bias in the Type-II errors associated with the 

precipitation data have little influence on the effectiveness of the MKS-based framework in 

terms of recovering the spatial patterns of the precipitation data.  

 

Results so far have clearly suggested that given the synthetic precipitation data mixed 

with both noise and bias (i.e., Type-II errors), the MKS-based framework can restore the spatial 

patterns of the precipitation data as much as it does in the counterparts of Experiment 1 where 

the synthetic precipitation data only include the noise. This implies that the bias portion of the 

errors included in the Type-II errors negligibly affect the performance of the MKS-based 

framework. This is mainly due to a unique feature of our MKS-based framework (Parada and 

Liang, 2004). As shown in Eq. 3, a D  term has been introduced to the observation equation. This 

D term minimizes impacts of the inconsistency (i.e., bias) among different measurement sources 

on the fused precipitation at different scales. With the D  term, the MKS-based framework just 

fuses fluctuations (above and below their means) of the measurements. That is why the MKS-

based framework is almost influence-free of the different bias when restoring the spatial patterns 

of the precipitation data. It is worth noting that this D term cannot remove the absolute bias 

involved in the final values of the fused precipitation data if the mean of the means selected (see 

Eq. 5) has a bias from the true mean. This is often the case because no one knows the true mean 

in practice.  
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Figure 4.11 Color-filled contour plots of jRMSE − , jRMSE +  and jRMSE∆  for scale 5 (i.e., 5j = , upper 

panel) and scale 7 (i.e., 7j = , lower panel) for Experiment 2. The meanings of the horizontal and vertical axes are 

the same as in Figure 4.9. 

 

Similar to the analysis for Experiment 1, we also conduct an analysis on the RMSE for 

Experiment 2. Figure 4.11 shows the color-filled contour plots of jRMSE − , jRMSE +  and 

jRMSE∆  for 5j =  and 7j = . From the plots of 5RMSE −  and 7RMSE − , we see that the 

magnitudes of jRMSE −  ( 5j =  and 7 ) increase with the increase of the bias levels at scale j . 

This is consistent with our experiment design. The ranges of 5RMSE −  and 7RMSE −  are from 



 113 

about 3.0 to 5.0 and from 3.5 to 6.0 for scales 5 and 7, respectively. The former is a little bit 

smaller than the latter since the means of the true precipitation data at scale 5 are slightly smaller 

than the corresponding ones at scale 7. With both noise levels being 9 2.0x =  at scales 5 and 7, 

the magnitude of 5RMSE −  is 3.0 and 7RMSE −  is 3.59 in Experiment 1. In Experiment 2, the 

magnitudes of most of 5RMSE −  and 7RMSE −  are greater than them due to the added bias in the 

synthetic data of Experiment 2.  

 

Plots of 5RMSE +  and 7RMSE +  in Figure 4.11 illustrate the averages of the RMSE 

between the true and fused precipitation data at scales 5 and 7, respectively. Comparing to the 

plots of 5RMSE −  and 7RMSE − , the RMSE has been reduced at both scales 5 and 7 for most of the 

15 15×  combinations. This indicates that the MKS-based framework is also effective in restoring 

the magnitudes of the synthetic precipitation data associated with the Type-II errors. In 

Experiment 2, the magnitudes of 5RMSE +  range from about 2.0 to 4.0 while the counterpart in 

Experiment 1, with the noise level of 9 2.0x = , is 1.91. In addition, the magnitudes of 7RMSE +  in 

Experiment 2 range from about 3.0 to 5.5 while the counterpart in Experiment 1 is 2.80. 

Generally, the magnitudes of jRMSE +  ( 5j =  or 7 ) in Experiment 2 are greater than the 

magnitudes of their counterparts in Experiment 1. This indicates that the MKS-based framework 

can remove some but not all of the added bias in the synthetic data at both scales.  
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Plots of 5RMSE∆  and 7RMSE∆  of Figure 4.11 illustrate the improvements at scales 5 

and 7, respectively, for all of the 15 15×  combinations. For both 5j =  and 7, jRMSE∆  

increases with an increase of the bias level at its own scale but decreases with an increase of the 

bias level at the other scale. The magnitudes of 5RMSE∆  range from -0.73 to 2.86 while their 

counterpart, with 9 2.0x =  in Experiment 1, is 1.1. The magnitudes of 7RMSE∆  range from 0.49 

to 1.23 while their counterpart in Experiment 1 is 0.78. If the bias level at scale j  is higher than 

the bias level at the other scale, then jRMSE∆  is greater than its counterpart with 9 2.0x =  in 

Experiment 1. For the opposite situation, jRMSE∆  in Experiment 2 is then smaller than its 

counterpart in Experiment 1. When the bias levels at both scales are close to each other, 

jRMSE∆  in Experiment 2 are close to their counterpart with 9 2.0x =  in Experiment 1 for 5j =  

and 7j =  as well. These results clearly indicate that the effectiveness of the MKS-based 

framework in restoring the magnitudes of the synthetic precipitation data associated with the 

Type-II errors depends on the bias levels at both scales. Basically, the MKS-based framework 

can effectively remove the bias included in the Type-II errors. However, it cannot completely 

remove all of it. In fact, reduction of the RMSE using the MKS-based framework is mainly 

determined by the way in which the areal mean of the precipitation, namely (0)X , is calculated. 

As shown in Eq. 5, (0)X  is calculated by averaging the means of the measurements at all scales. 

Once (0)X  is determined, the mean of the fused precipitation data at each scale of the multiscale 

tree is determined and is equal to (0)X . If, for example, (0)X  is closer to the areal mean of the 

true precipitation data than the original mean of the precipitation data at scale 5, then 5RMSE +  

could be smaller than 5RMSE −  in Figure 4.11. Otherwise, 5RMSE +  could be even larger than 

5RMSE −  in Figure 4.11. This is why 5RMSE +∆  and 7RMSE +∆  have the patterns shown in Figure 

4.11.  



 115 

 

Figure 4.12 Color-filled contour plots of 
2 2

5 5
E B

RMSE RMSE∆ − ∆  and
2 2

7 7 
E B

RMSE RMSE∆ − ∆ , where 

the superscript 2E  denotes Experiment 2 and the superscript 2B  denotes the benchmark experiment. Both 

experiments use the same erroneous precipitation data with the Type-II errors. The meanings of the horizontal and 

vertical axes are the same as in Figure 4.9. 

 

In order to further evaluate the effectiveness of the MKS-based framework in recovering 

the magnitudes of the precipitation data associated with the Type-II errors, jRMSE∆  of 

Experiment 2 and jRMSE∆  of the benchmark experiment are also compared. Figure 4.12 shows 

that the MKS-based framework is superior to the conventional data fusion method at scale 5 for 

almost all of the combinations except when the bias levels at scale 7 are much higher than those 

at scale 5. At scale 7, the MKS-based data framework is superior to the conventional method 

only for the combinations when the bias levels at scale 5 are much higher than those at scale 7. 

This indicates a need of enhancing the performance of the MKS-based framework for the finer 

resolution, where there is a much larger bias in the data, when recovering the magnitudes of the 

synthetic precipitation data.  
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Table 4.3 A list of various Corr  and RMSE  values for Experiment 1 and Experiment 2 for an individual storm 

occurring at 9:00 AM of September 22, 2003. 

 
5Corr−  5Corr+  7Corr−  7Corr+  5RMSE −  5RMSE +  7RMSE −   7RMSE +  

Experiment 1 0.33 0.91 0.40 0.58 3.75 2.18 3.75 2.81 

Experiment 2 0.50 0.92 0.45 0.64 4.74 3.48 4.97 4.04 

 

 

Figure 4.13 Comparison of the images among the true, erroneous, and fused precipitation for an individual storm 

occurred at 9:00 am of September 22, 2003. true
jX , error

jY  and fused
jX  ( 5j =  and 7) denoted the true, synthetic, 

and fused precipitation images at scales 5 (upper panel) and 7 (lower panel), respectively. The synthetic 

precipitation data are generated with the Type-I errors in which the noise levels are 9 2.0x =  for both scales 5 and 

7. The horizontal and vertical axes in each plot represent, respectively, the longitudes and latitudes of our study area. 
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Figure 4.14 Comparison of the images among the true, erroneous, and fused precipitation for an individual storm 

occurred at 9:00 am of September 22, 2003. true
jX , error

jY  and fused
jX  ( 5j =  and 7) denoted the true, synthetic, 

and fused precipitation images at scales 5 (upper panel) and 7 (lower panel), respectively. The synthetic 

precipitation data are generated with the Type-II errors in which the noise levels are 9 2.0x =  and the bias levels 

are 10 1.0y = , respectively, for both scales 5 and 7. The horizontal and vertical axes of each plot have the same 

meanings as in Figure 4.13.  

 

Analyses so far have been focused on evaluating the MKS-based framework in terms of 

statistical metrics over 2246 hourly precipitation images. Examples of the data fusion results at 

individual hours are also provided in this study. Figure 4.13 and Figure 4.14 illustrate the true, 



 118 

the synthetic and the fused precipitation images at 9:00 am on 09/22/2003 for both scales 5 and 

7, respectively. Figure 4.13 is for the situation in which the synthetic precipitation data include 

the Type-I errors (i.e., Experiment 1) and Figure 4.14 is for Experiment 2 in which the synthetic 

precipitation data include the Type-II errors. Both of the noise levels at scales 5 and 7 are 2.0 in 

Figure 4.13, while in Figure 4.14 the bias levels at both scales are 1.0 and the noise levels at both 

spatial scales are 2.0. Table 4.3 lists the correlation and RMSE of the two examples before and 

after the data fusion using the MKS-based framework. As expected, performance of these 

individual scenarios measured by the two metrics is consistent with the findings discussed in 

Section 4.4.2. Through inspections, Figure 4.13 and Figure 4.14 clearly show the significant 

improvements of the fused precipitation data in both of the spatial patterns and magnitudes at 

scales 5 and 7, respectively.  

4.5 CONCLUSIONS 

In this study, we systematically investigated the effectiveness of the MKS-based 

framework in removing the Type-I errors (white noise) and the Type-II errors (bias and noise 

together) associated with precipitation data. Hypothetical experiments are conducted using 

synthetic precipitation data, which are generated at scale 5 (1/8 degree resolution) and scale 7 

(1/32 degree resolution), respectively. The mean of correlation and the mean of root mean square 

error are used in evaluation. In addition, results of the MKS-based framework are compared to 

those of a conventional data fusion method. Our main findings are summarized as follows. 
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1. For the Type-I errors, the MKS-based framework can significantly improve the spatial 

patterns and the magnitudes of the synthetic precipitation data at scale 5 (the coarser 

resolution) when the scale 7 (the finer resolution) data are fused with the scale 5 data. 

Exception occurs when the data at scale 5 are already pretty good and the data at scale 7 are 

very noisy. Results of Experiment 1 also suggest that the MKS-based framework is good at 

improving spatial patterns of the data at the coarser resolution, even if the finer resolution 

data may have larger Type-I errors. In other words, these results demonstrate the important 

value of the high-resolution data in multiscale data fusion using the MKS-based framework, 

even if the high-resolution data are noisier.  

2. When the precipitation data at scale 5 are fused with the data at scale 7, improvements at 

scale 7 can still be achieved on both the spatial patterns and the magnitudes. But the 

improvements at the finer resolution are smaller than those at the coarser resolution because 

the coarser resolution data usually contain less information compared with the finer 

resolution data. The largest improvement comes with the combination of the less noisy data 

at scale 5 fused with the noisier data at scale 7. Slight deterioration occurs when the very 

noisy data at scale 5 are fused with the much less noisy data at scale 7  

3. For the Type-II errors, results show that the influence of both the bias and the white noise 

portions of the Type-II errors can be simultaneously and effectively removed through the 

MKS-based framework. The improvements at both scales on the spatial patterns are close to 

those of the counterparts with the same noise level in Experiment 1. This demonstrates the 

value of the D term (see Eq. 3) in our MKS-based framework. The improvements at both 

scales on the magnitudes of the precipitation depend on the bias levels at scales 5 and 7. The 
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magnitudes at one scale may be deteriorated if the bias at this scale is small but the bias at the 

other scale is much larger.  

4. Comparing the results of Experiments 1 and 2 to those of the benchmark experiments, the 

MKS-based framework is significantly superior to the conventional data fusion method in 

improving the spatial patterns and the magnitudes of the synthetic precipitation data at scale 

5. This is especially true for the combinations when the precipitation data at scale 5 are much 

noisier than the precipitation data at scale 7. For improvements of the spatial patterns at scale 

7, the MKS-based framework is mostly superior to the conventional data fusion method 

while for improvements of the magnitudes at scale 7, the MKS-based framework is superior 

only if the precipitation data at scale 5 are noisier to those at scale 7.  

5. A limitation of the EM algorithm included in the MKS-based framework is found in this 

study. Because the number of measurements at the finer resolution (i.e., scale 7) is much 

larger (e.g., 16 times in this study) than that at the coarser resolution (i.e., scale 5), the EM 

algorithm over emphasizes the importance of the finer resolution data. Therefore, the MKS-

based framework may not perform well when the finer resolution data are much noisier than 

the coarser resolution data.  

 

In summary, the MKS-based framework is effective in recovering both spatial patterns 

and magnitudes of the synthetic precipitation data by removing the Type-I and the Type-II errors, 

which are associated with the precipitation data at multiple scales. This study provides not only 

new insights of the performance of the MKS-based framework, but also a guideline for the 

optimal fusion of the precipitation data at different resolutions. However, there are also two main 

limitations. The first is that an additive Gaussian error model is used in generating the synthetic 
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precipitation data. Thus, conclusions of this study may not apply to situations when a 

multiplicative error model is assumed for the precipitation data. The second limitation is that the 

synthetic precipitation data assume the errors are spatially independent. Thus, the effectiveness 

of the data fusion algorithms, including both the MKS-based framework and the conventional 

method, may be less when applied to real precipitation data with spatially correlated errors. In 

addition, the random errors added to each grid of a synthetic precipitation image follow the same 

distribution. In the future, we will evaluate a more complicated error model and compare its 

results to those obtained in this study. In addition, we will conduct further investigations to 

improve estimations of the variance parameters using the EM algorithm.  
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5.0  ASSESSMENT OF PRECIPITATION DATA FUSION ON HYDROLOGICAL 

SIMULATIONS  

5.1 INTRODUCTION 

Precipitation is an essential input for hydrological models and land surface models 

(LSMs) to simulate the water and energy budget in land surface processes. In reality, 

precipitation is the only natural water input to the hydrological cycling at watershed scale. It 

provides water demanded by runoff generation, evapotranspiration and soil moisture evaluation. 

Precipitation has two features, the total amount and the spatial pattern. In the distributed 

simulation of watershed hydrology, it is not enough to know the total amount and intensity of 

precipitation. The spatial pattern, which describes the spatial distribution of precipitation, is also 

important in simulating the variability of hydrological processes.  

 

In general, hydrological simulations include streamflow simulation, evapotranspiration 

simulation and soil moisture simulation. Both hydrological models and land surface models can 

be used in hydrological simulations. However, LSMs, such as Noah model (Chen et al. 1996; 

Chen et al. 1997; Chen and Dudhia 2001; Ek et al. 2003), VIC model (Liang et al. 1994; Liang 

and Xie 2001; Liang and Xie 2003) and CLM model (Dai et al. 2004; Lawrence et al. 2010; 

Bonan et al. 2011), depict land surface processes with much more physics compared with 
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hydrological models. Typical LSMs simulate the water budget and energy budget of 

hydrological processes simultaneously while most hydrological models just focus on the water 

balance itself. In order to evaluate the influences of precipitation on hydrological simulation on a 

physical basis, the following discussion will mainly base on the theories of LSMs. Meanwhile, 

some widely-used conceptual hydrological models, such as TOPMODEL (Beven 1997; Beven 

and Freer 2001), SAC-SMC model (Vrugt et al. 2006) and Xinanjiang model (Zhao 1992), are 

also covered more or less. In particular, the influences of precipitation on hydrological 

simulations will be discussed separately from the aspects of streamflow, evapotranspiration and 

soil moisture.  

 

In both LSMs and hydrological models, the water of streamflow comes from two sources: 

surface runoff and subsurface runoff. Surface runoff can be further categorized into infiltration 

excess runoff (Horton type) and saturation excess runoff (Dunne type). On the one hand, if the 

intensity of precipitation exceeds the infiltration rate of soil column, infiltration excess runoff 

will occur. On the other hand, if the total amount of precipitation exceeds the infiltration capacity 

of soil column, saturation excess runoff will occur. Thus, either the total amount or the intensity 

of precipitation has direct influences on the simulation of surface runoff. In respect of subsurface 

runoff simulation, conceptual hydrological models may relate the subsurface runoff linearly to 

the total soil water in soil column (layers), such as SAC-SMC model and Xinanjiang model, 

which use a linear reservoir approximation. Conceptual hydrological models may also relate 

subsurface runoff nonlinearly to the total soil water in soil column, for example TOPMODEL. In 

LSMs, subsurface flow is basically described with physical laws, such as Richards’ equation or 

Darcy’s law. For example, Noah model and VIC model simulate baseflow as the gravitational 
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drainage at the bottom boundary of soil column. The amount of baseflow is directly related to the 

soil moisture in the bottom layer of soil column. Precipitation changes soil moisture through 

infiltration, whose rate is usually a function of the amount and the intensity of precipitation and 

antecedent soil moisture. Therefore, precipitation also has influences on baseflow simulation. 

Considering that precipitation is the main recharge source of soil moisture, the influence of 

precipitation on baseflow simulation should be significant.  

 

In physics-based LSMs and conceptual hydrological models, soil column is typically 

divided into layers to describe the evolution of soil moistures from the top to the bottom of soil 

column. The surface soil layer directly accepts the infiltrated water from precipitation, and then 

redistributes the accepted water to underneath layers through gravitational flow and diffusion 

processes. For all soil layers, the input water comes from infiltration and the output water goes to 

gravitational flow, diffusion fluxes and evapotranspiration. The recharge of soil moistures is a 

discrete process of short duration while the discharge of soil moistures is a continuous process of 

very long duration. When precipitation occurs, infiltration process significantly changes soil 

moistures in a short time. Meanwhile, antecedent soil moisture also influences infiltration rate. 

For example, the amount of infiltrated water is a function of the total precipitation amount in the 

simulation time step and the antecedent total soil water in soil column. However, precipitation is 

the positive factor of infiltration processes. It has the dominant influence on infiltration rate for 

most of the time. Therefore, precipitation is also one of the controlling forces for the evolution of 

soil moistures. This conclusion is consistent with field observations and the descriptions of soil 

moisture dynamics in LSMs and conceptual hydrological models as well.  
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In hydrological simulations, evapotranspiration is a compound term including multiple 

components. For most LSMs and the conceptual hydrological models, evapotranspiration is a 

sum of the evaporation from the water intercepted by the canopy of vegetation, direct 

evaporation from bare soil, and transpiration from vegetation. Actually, the water of the last two 

components comes from soil moisture in soil layers. For all kinds of models, the amount of 

intercepted water by vegetation canopy is a function of the amount of precipitation and the 

interception capacity of vegetation canopy. Therefore, precipitation has direct influences on the 

amount of intercepted water and the evaporation of the intercepted water. Once again, for most 

models, evapotranspiration from the root zone of soil layers and the direct evaporation from bare 

soil are functions of potential evapotranspiration (PET) and saturation degree of soil moistures. 

PET is usually specified as an input for conceptual models (e.g. SAC-SMC model, TOPMODEL 

and Xinanjiang Model) or calculated according to atmosphere conditions using Penman-

Monteith equation in LSMs, such as Noah model and VIC model. The saturation degree, 

however, is calculated based on soil moisture contents, which helps to scale PET to actual 

evapotranspiration and actual evaporation directly from bare soil. Through the influence on soil 

moisture, precipitation also has significant impacts on the last two components of 

evapotranspiration.  

 

Based on the analysis above, precipitation has significant influences on hydrological 

simulations, no matter whether such influences are direct or indirect. The reliability of 

hydrological simulations heavily relies on the accuracy of precipitation data. If the quality of 

precipitation data is improved, it can be expected that the reliability of hydrological simulation 

will be improved correspondingly.  
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From the viewpoint of hydrological simulations, there are no perfect precipitation data 

that not only accurately record the amount but also the spatial pattern of precipitation. The first 

reason for this problem is that precipitation measurements usually have limitations. Rain gauge, 

weather radar and weather satellite are the three conventional measurements of precipitation. 

Rain gauge directly measures precipitation at discrete points. Among these three types of 

measurements, rain gauge is the most reliable one but it is poor to describe the spatial pattern of 

precipitation. Even in the continental United States, rain gauge network is not dense enough to 

capture precipitation over space. Otherwise, there would be no need to develop and deploy Next-

Generation Radar (NEXRAD) network by National Weather Service (NWS) from the 

perspective of hydrology. NEXRAD network continuously measures precipitation over space at 

a relatively high spatial resolution, i.e. closely 4 km. Satellite radar may carry either microwave 

imager or infrared imager. NEXRAD precipitation data are only widely available in the U.S. 

while weather satellites provide precipitation measurements at a global scale. Near-earth orbiting 

satellites usually carry microwave imager, such as the Spatial Sensor Microwave/Imager (SSM/I) 

and the Tropical Rainfall Measuring Mission (TRMM), but geostationary satellites usually carry 

infrared imager. Compared with near-earth orbiting satellites, geostationary satellites measure 

precipitation at coarser spatial resolutions but finer temporal resolutions over wider spatial areas. 

All precipitation data of weather radars and weather satellites are indirect measurements, which 

suffer from biases and uncertainties caused by inverse computation and parameter calibration. 

Another limitation comes from the multiscale of precipitation data. First of all, precipitation 

phenomenon is very complex and explicitly has multiscale features of statistics. For example, the 

mean of precipitation changes for different locations of measurements and different extents of 

measurements. In other words, precipitation phenomenon is nonstationary over space. Similarly, 
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precipitation is also nonstationary over time. Therefore, precipitation data are associated with the 

spatial and the temporal scales of the measurements. For the same precipitation event, the 

amount and the spatial pattern of precipitation data are different if the measurement scales are 

different. In addition, the applications of precipitation data are also conducted at specific 

temporal and spatial scales, which are not necessarily the same as those of precipitation data. 

Therefore, it is common to upscale or downscale the precipitation data before application.  

 

However, the advantages of different types of precipitation data are usually 

complementary. For example, rain-gauge-based precipitation data are usually good at the total 

amount while weather-radar-based data are usually good at the spatial pattern. More reliable 

precipitation datasets can be derived for hydrological simulations if the rain-gauge-based 

precipitation data and the weather-radar-based precipitation data can be effectively fused 

together. Considering the multiscale characteristic of precipitation, the data fusion method 

should be able to deal with measurements or data at multiple spatial resolutions. Multiscale 

Kalman Smoother (MKS) (Basseville et al. 1992; Chou et al. 1993; Willsky 2002) is an 

algorithm designed to process signals of different spatial or temporal resolutions. For the cases of 

processing two-dimensional data, the MKS algorithm has demonstrated its strength in fusing 

multiscale data in the studies of soil moisture data assimilation (Parada and Liang 2004; Parada 

and Liang 2008), altimetry data fusion (Slatton et al. 2001; Slatton et al. 2002) and precipitation 

data fusion (Gorenburg et al. 2001; Gupta et al. 2006; Bocchiola 2007; de Vyver and Roulin 

2009). According to the systematic evaluation by (Wang et al. 2011), the MKS algorithm can 

effectively remove noise in precipitation data, especially at coarse resolutions. Therefore, the 

MKS algorithm is the right tool for multiscale precipitation data fusion.  
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In this study, we first fuse NLDAS-2 and NEXRAD MPE precipitation data products 

with the MKS algorithm and then assess the improvements of hydrological simulations with 

derived precipitation data products. NLDAS-2 precipitation data are part of phase-2 forcing data 

of the North American Data Assimilation System (NLDAS) (LDAS 2011). NLDAS-2 

precipitation data are developed based on CPC (Climate Prediction Center) daily CONUS 

(Continental United State) gauge data with topographical adjustment, CPC hourly 

CONUS/Mexico gauge data, hourly Doppler Stage II radar precipitation data, half-hourly 

CMORTH data and 3-hourly NARR precipitation data. Hourly NLDAS-2 precipitation is 

derived by temporally disaggregating the daily gauge products with the Doppler radar, 

CMORPH products, or hourly rain gauge products. NLDAS-2 precipitation data are believed to 

have reliable representation of the total amount of precipitation because of the backbone of CPC 

daily gauge data. However, NLDAS-2 precipitation data also have obvious limitations. The 

spatial pattern of NLDAS-2 precipitation data is mainly derived from interpolating of CPC daily 

gauge data. In addition, NLDAS-2 precipitation data are at a relatively coarse resolution, i.e. 1/8 

degree. NEXRAD MPE data are derived from measurements of the Next Generation Weather 

Radar with the Multisensor Precipitation Estimation (MPE) algorithm (Nelson et al. 2006). 

NEXRAD MPE hourly data are at a spatial resolution of 4 km, so the spatial pattern of 

precipitation can be well captured. Compared with the previous version of NEXRAD 

precipitation data product, Stage III data product, NEXRAD MPE precipitation product is better 

in agreement with gauge observations (Wang et al. 2008). However, NEXRAD MPE data 

product also has considerable biases and uncertainties compared with rain gauge measurements 

(Habib et al. 2009). In this study, we derive three series of precipitation products based on 

NLDAS-2 precipitation data (called NLDAS-2 data for abbreviation) and NEXRAD MPE 
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precipitation data (call RADAR data for abbreviation). Assessments of the derived precipitation 

data will be conducted with Noah LSM in hydrological simulation. Fourteen watersheds in the 

Ohio River basin are selected to assess the influences of precipitation data fusion on hydrological 

simulations. 

 

In the rest of this chapter, we will introduce the method of precipitation data fusion in 

section 5.2 and then introduce experimental watershed and analyze NLDAS-2 and RADAR data 

in section 5.3. Section 5.4 will describe three settings of data fusion. In section 5.5, we will 

assess the influence of precipitation fusion on the simulations of streamflow, soil moisture and 

evapotranspiration in the fourteen experimental watersheds. At last, a summary of this study will 

be given in section 5.6. 

5.2 METHOD FOR PRECIPITATION DATA FUSION 

In this study, Multiscale Kalman Smoother (MKS) algorithm and Expectation-

Maximization (EM) algorithm are used together to fused precipitation data at multiple 

measurements. The MKS algorithm is a data fusion algorithm designed to deal with 

measurements at different spatial resolutions. As Figure 5.1 shows, multiscale measurements are 

organized into a multiscale tree. The computation of the MKS algorithm is conducted along the 

multiscale tree through two steps, upward sweep and downward sweep. Upward sweep is a 

Kalman filtering by scale from finer resolutions to coarser resolutions. It passes information from 

measurements at finer resolutions to estimates, the state variables and their associated error 

covariance, at coarser resolutions. Downward sweep is a Kalman smoothing from coarser 
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resolutions to finer resolutions. It passes information from measurements at coarser resolutions 

to estimates at finer resolutions. The MKS algorithm has a number of parameters, which will be 

optimally estimated with the EM algorithm based on measurements.  

 

Figure 5.1 Schematic representation of Multiscale Kalman Smoother (MKS) algorithm. The three images, denoted 

as 0scale = , 1scale =  and 3scale =  respectively, represent measurements of the same region from the 

coarsest resolution to the finest resolution. The varying colors in these images represent different values of 

measurements. Each pixel of image is called a node. All nodes are organized into a tree shape, called multiscale tree 

while the node and the nodes at the coarsest resolution and the finest resolution are called root node and leaf nodes, 

respectively.  

 

In the MKS algorithm, there are four kinds of estimates for state variables and their error 

covariance: (1) unconditional estimate, denoted as ˆ( | )x t −  and ( | )P t − ; (2) estimate conditioned 

on measurements at descendent nodes of current node, denoted as ˆ( | )x t +  and ( | )P t t+ ; (3) 
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estimate conditioned on measurements at descendent nodes of the current node and the current 

node itself, denoted as ˆ( | )x t t  and ( | )P t t ; and (4) estimate conditioned on measurements at the 

whole multiscale tree, ˆ ( )sx t  and ( )sP t . ˆ( | )x t −  and ( | )P t −  are prior estimates computed in the 

initialization of the MKS algorithm. ˆ( | )x t +  and ( | )P t t+  are predicted from the measurements 

at the descendent nodes of node t . ˆ( | )x t t  and ( | )P t t  are updated estimates of ˆ( | )x t +  and 

( | )P t t+  with the measurements at node t . ˆ ( )sx t  and ( )sP t  are the outputs of the MKS 

algorithm and they are also called smoothed estimates because they are computed in the Kalman 

smoothing step.  

 

Initialization is from the root node to the leaf nodes of the multiscale tree. Given the areal 

estimate at the root node, (0)X , and its error variances ( )0Σ , the state variables and their error 

covariances at the nodes of the multiscale tree can be initialized with  

 ( ) ( ) ( ) ( )ˆ ˆ| |x t A t x t w tγ− = − +  (5-1) 

 ( ) ( ) ( ) ( )| | TP t A t P t A tγ− = −  (5-2) 

where ( )w t  is the process error following ( )0, ( )Q t ; ( )Q t  is the covariance of ( )w t ; tγ  

represents the parent node of t .  

 

Upward sweep includes measurement update and fine-to-coarse prediction. These two 

steps follow each other from the leaf nodes to the root nodes of the multiscale tree. For all leaf 

nodes, ˆ ˆ( | ) ( | )x t x t+ = −  and ( )| ( | )P t P t+ = −  since there are no descendent nodes for them. If 

there are measurements available for node t , denoted as ( )y t , ˆ( | )x t +  is updated into ˆ( | )x t t  as  
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 ( ) ( ) ( ) ( ) ( ) ( ) ( )ˆ ˆ ˆ| | |x t t x t K t y t C t x t D t= + + − + −    (5-3) 

 ( ) ( ) ( ) ( )| |P t t I K t C t P t= − +    (5-4) 

 ( ) ( ) ( ) ( ) ( ) ( ) ( ) 1
| |T TK t P t C t C t P t C t R t

−
 = + + +   (5-5) 

where ( )R t  is the covariance of measurement errors at node t  and ( )D t  is a term of 

compensation for the biases between measurements. With the ( )D t  term, the MKS algorithm 

just deals with the fluctuation of measurements relative to the estimate of areal mean, (0)X . 

Suppose the mean of the measurements at the scale of node t  is sY , then we calculate 

( ) ( ) (0)sD t Y C t X= − . If no measurements are available, set ( | )ˆ ˆ( | )x t t x t= +  and 

( | ) ( | )P t t P t= + .  

 

The fine-to-coarse prediction is next to the measurement update. For node t , itα  is one 

of its child nodes and the fine-to-coarse prediction from itα  to t  is described as  

 ( ) ( ) ( )|ˆ ˆ| i i i ix t t F t x t tα α α α=  (5-6) 

 ( ) ( ) ( ) ( ) ( )| | T
i i i i i iP t t F t P t t F t Q tα α α α α α= +  (5-7) 

where  

 ( ) ( ) ( ) ( )1| |T
i iF t P t A t P tα α−= − −  (5-8) 

 ( ) ( ) ( ) ( ) ( ) ( ) ( )1| || |T
i i i iQ t P t P t A t P t A t P tα α α α−= − − − − − . (5-9) 

All predictions of node t  from its child nodes are then merged to get  

 ( ) ( ) ( ) ( )
( )

1

1

ˆ ˆ| | | |
cN t

i i
i

x t P t P t t x t tα α−

=

+ = + ∑  (5-10) 
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 ( ) ( )( ) ( ) ( )
1( )

1 1

1

| 1 | |
cN t

c i
i

P t N t P t P t tα
−

− −

=

 
+ = − − + 

 
∑  (5-11) 

where ( )cN t  represents the number of child nodes.  

 

The upward sweep stops once it proceeds to the root node of the multiscale tree. 

Information in the measurements at the whole multiscale tree has been incorporated into the 

updated estimates of state variables and their error covariance. Therefore, the last step of the 

upward sweep is to set ˆ ˆ(0 | 0)(0)sx x=  and (0 | 0)(0)sP P= . Starting from the root node, the 

downward sweep includes Kalman smoothing steps from coarser resolution to finer resolution. 

Except the root node, smoothed estimates at rest nodes of the multiscale tree are calculated as  

 ( ) ( ) ( ) ( ) ( )ˆ ˆ ˆ| |ˆs sx t x t t J t x t x t tγ γ= + −    (5-12) 

 ( ) ( ) ( ) ( ) ( ) ( )| | T
s sP t P t t J t P t tP t t Jγ γ= + −    (5-13) 

where  

 ( ) ( ) ( ) ( )1| |TJ t P t t F t P t tγ−=  (5-14) 

Through the downward sweep, information in the measurements at coarser resolution is merged 

with the updated estimates ( ˆ( | )x t t  and ( | )P t t ) into the smoothed estimates ( ˆ ( )sx t  and ( )sP t ) 

that are conditioned on measurements at the whole multiscale tree.  

 

In addition to the computation steps introduced above, to conduct multiscale data fusion, 

we still need to specify parameters of the MKS algorithm, ( )A t , ( )C t , ( )Q t , ( )R t , t∈ .   is 

the set of nodes in the multiscale tree. Considering that all data are already the magnitudes of 

precipitation (NLDAS-2 data and RADAR data) in our precipitation data fusion experiments, we 
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set ( ) 1A t =  and ( ) 1.C t =  However, if the data are not the magnitudes of state variable, ( )A t  and 

( )C t  should be specified according to the characteristics of data. In order to reduce the 

complexity and difficulty of parameter estimation, we assume the error covariance terms ( )Q t  

and ( )R t  to be scale homogeneous. In other words, ( )Q t  or ( )R t  takes the same value for all the 

nodes at the same scale. Supposing that the prediction errors are independent of all nodes and 

similar for the measurement errors, the log-likelihood function of all measurements, denoted as 

Y , given ( )Q t  and ( )R t  can be formulated as  

 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ){ }
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ){ }

1

1

, , log

  

ˆ ˆ ˆ ˆ

 log

   

ˆ ˆ

c

c

T
s s s s

t

T
s s

t

Y Q t R t Q t x t A t x t Q t x t A t x t

R t y t c t x t D t R t y t c t x t D t

constant

γ γ−

∈

−

∈

= − + − −          

− + − − − −      

+

∑

∑






(5-15) 

where c  is the set of nodes in the multiscale tree except the root node and m  is the set of nodes 

of the multiscale tree with measurements. We use the EM algorithm to estimate ( )Q t  and ( )R t . 

The EM algorithm includes two steps: Expectation step (E-step) and Maximization step (M-

step). Particularly, the E-step is actually the upward sweep plus the downward sweep and it 

computes the smoothed estimates of state variables, i.e. ˆ ( )sx t . The M-step is to estimate ( )Q t  

and ( )R t  by maximizing equation (5-15). In this study, the maximization is conducted with 

Newton’s method. Optimal parameters are obtained by iterating the E-step and the M-step for 

given numbers.  

 

In addition to parameters, we also need to determine the areal mean of state variables and 

their prior error covariance, namely (0)X  and (0)Σ , before precipitation data fusion. (0)X  is the 

most important parameter of the MKS algorithm. It controls mean magnitudes of fused data al all 
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scales. The estimate of (0)X  totally depends on the understanding of data and intensions of 

precipitation data fusion. Three settings for estimating (0)X  will be given in the section 5.4 

while the prior error covariance is estimated as (0) (0) (0) (0) )ˆ (0ˆ T
s sx X x XΣ = − −       . In the 

description of this section, we use vector notations for all variables. However, all the equations 

are also valid for scalar variables.   

5.3 EXPERIMENTAL WATERSHEDS AND DATA ANALYSIS 

5.3.1 Experimental watersheds 

We select 14 experimental watersheds to assess the influences of precipitation data fusion 

on hydrological simulations. As shown in Figure 5.2, these watersheds scatter in the Ohio River 

Basin. The areas, elevation ranges and descriptions of these 14 watersheds are summarized in 

Table 5.1. Considering the strong association of precipitation with topography, four types of 

typical topographies are discussed in this study. Among the 14 watersheds, CLAI2, CRWI3 and 

FDYO1 have flat topographies; ALPI3, BAKI3, DBVO1, NHSO1 and SERI3 watersheds have 

mild topographies; BSNK2, CYCK2 and KINT1 watersheds have relatively steep topographies; 

ALDW2, ELRP1 and PSNW2 have steep topographies. Digital elevation model (DEM) data of 

these watersheds can be found in Figure 5.8 to Figure 5.21 respectively. In addition, these 14 

watersheds distribute from the north to the south. This means that the selection of these 

experimental watersheds considers the association of precipitation with temperature, which 

varies with latitudes. Due to the comprehensive consideration of precipitation, topography and 



 136 

temperature, conclusions drawn from this study are expected to be applicable over the entire 

Ohio River Basin.  

 

There are no or minor human regulations in these watersheds. Therefore, observed 

streamflow data of these 14 watersheds, which can basically reflect the natural rainfall-runoff 

relationships, can be directly used in the parameter calibration of Noah LSM and its flow routing 

scheme.  

 

 

Figure 5.2 Maps of the 14 Experimental watersheds in the Ohio River Basin. For each watershed, the circle 

represents the location of outlet. SERI3 also includes the area of BAKI3 since the latter is a sub-watershed of the 

former.   
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5.3.2 Data analysis  

NLDAS-2 precipitation data are in longitude-latitude coordinate system at 1/8 degree 

resolution over CONUS. NEXRAD MPE precipitation data are in a coordinate system of HRAP 

(Hydrologic Rainfall Analysis Project) at a resolution of 4 km. To unify the coordinate system of 

data, NEXRAD MPE precipitation data have been projected into a longitude-latitude coordinate 

system and resampled to 1/32 degree resolution, which is approximately 4 km in the region of 

the Ohio River Basin. In the following analysis, we call the projected and resampled NEXRAD 

MPE data as RADAR data for abbreviation.  

 

The purpose of the data analysis is to reveal the differences between NLDAS-2 and 

RADAR data. Even though the two precipitation data describe precipitation over the same area, 

data fusion is valuable only if there are considerable differences between them. Comparison 

between NLDAS-2 and RADAR data are conducted separately in these 14 experimental 

watersheds. Particularly, three statistics related to precipitation are considered. The first is about 

recording the occurrences of precipitation. Precipitation data may or may not record a 

precipitation event. We use relative missing number (RMN) to evaluate the recording of 

occurrence. RMN is defined as the total number of situations that one precipitation data miss a 

precipitation event but the other data record it. Larger RMN indicates that the precipitation data 

are more probable to miss precipitation events compared with the other data. The second 

statistics is the correlation between the two precipitation data. Correlation is an indicator of the 

agreement between the spatial patterns of two precipitation images, which is formulated as the 

following  
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( ) ( )1 2

1 2

1 2
1 2,

X X

X X

E X X
CORR X X

µ µ

σ σ

 − − =  (5-16) 

where 1X  and 2X  represent the amount of precipitation data in the pixels of precipitation images 

within precipitation-covered region Ω . 
1Xσ  and 

2Xσ  are variances of 1X  and 2X . Ω  is defined 

as the union of precipitation-covered pixels of precipitation image 1 and 2. The third statistics is 

the average magnitudes of precipitation images. The differences between the spatial averages of 

NLDAS-2 data and the spatial averages of RADAR data, namely 

(NLDAS-2) (RADAR)mean mean− , are used to compare the average magnitudes. In order to 

compute these three statistics, RADAR data have been aggregated into the same spatial 

resolution of NLDAS-2 data, namely 1/8 degree. This means that the spatial pattern and the 

variability of RADAR data have been significantly reduced. The actual differences between 

NLDAS-2 and RADAR data (at 1/32 degree resolution) should be larger than the differences 

shown at 1/8 degree resolution.  

 

To be consistent with the section 5.4, in which the influence of precipitation data fusion 

on hydrological simulation was assessed in the period from 01/01/2003 to 12/31/2005, we 

analyze NLDAS-2 and RADAR precipitation data in the same period in section 5.3. In addition, 

data are analyzed by year to show the possible multiyear trend of differences between the two 

data.  
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Figure 5.3 Relative missing numbers in the 14 experimental watersheds in the calibration period (2003, 2004 and 

2005).  

 

Figure 5.3 uses bar plots to show the RMNs of NLDAS-2 and RADAR data for year 

2003, 2004 and 2005. First of all, both NLDAS-2 and RADAR data have nonzero RMN for 

these three years, which means that either of these two datasets has chances of missing the 

occurrences of precipitation events. Secondly, the RMNs of RADAR data are significantly larger 

than those of NLDAS data for all watersheds, especially in year 2003 and 2005. It indicates that 

RADAR data have much more chances to miss precipitation events compared with NLDAS-2 

data. Thirdly, the RMNs of RADAR in the three watersheds with steep topographies, i.e. 

ALDW2, ELRP1 and PSNW2, are much larger than the RMNs of RADAR data in other 

watersheds. While the RMNs of NLDAS-2 data in the three watersheds are at the same level of 

those in other watersheds. In other words, the ability to record the occurrence of precipitation is 
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significantly affected by the topographies of watersheds for RADAR data but not for NLDAS-2 

data. Fourthly, the RMNs of NLDAS-2 data in most of the experimental watersheds in 2004 are 

obviously larger than the corresponding ones in 2003 and 2005. While the RMNs of RADAR 

data in most of experimental watersheds in 2005 are smaller than the corresponding ones in 2003 

and 2004. Such difference indicates that the qualities of NLDAS-2 and RADAR data may 

change annually. This point should be noticed in precipitation data fusion.  

 

Figure 5.4 shows the distributions of correlation between all hourly precipitation images 

of NLDAS-2 and RADAR data in 2003, 2004 and 2005. For each watershed, the boxplot gives 

the 25th, 50th and 75th percentiles of the distribution. In addition, the means of correlations are 

also plotted. Three findings can be found from Figure 5.4. First, the means of correlations over 

all of the 14 watersheds are smaller than 0.5 for the three years, especially for ALDW2, ELRP1 

and PSNW2, the watersheds with steep topographies. Except ALPI3 in the three years, BAKI3 in 

2003, CYCK2 in 2003, KINT1 in 2003,SERI3 in 2003, the medians (50th percentiles) of other 

watersheds in the rest of years are almost equal to or lest than 0.5. This indicates that at least a 

half of precipitation images of the two data have correlations no more than 0.5. Second, the 25th 

percentiles of all watersheds are equal to zero. This is because a big number of precipitation 

images have zero correlations due to the relative missing of precipitation occurrences. This result 

also indicates that at least 25% of the precipitation images have correlations no more than zero 

for the three years in all experimental watersheds. Third, the correlations in most of the 14 

watersheds in 2004 are smaller than the corresponding ones in 2003 and 2005. This result is 

consistent with the results shown in Figure 5.3. That is to say that NLDAS-2 and RADAR data 

have poorer consistency in 2004. As mentioned earlier, the correlations between NLDAS-2 data 
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and RADAR data are computed at 1/8 degree resolution. It is reasonable to expect that 

correlations between the two data should be even smaller at 1/32 degree, the resolution of 

RADRA data, which will be fused.  

 

 

Figure 5.4 Boxplots of correlation between hourly NLDAS-2 and RADAR precipitation data over the 14 

experimental watersheds in the three years of the calibration period (2003, 2004, and 2005). Marker “x” represents 

the mean of correlations.  

 

Figure 5.5, Figure 5.6 and Figure 5.7 respectively illustrate the distributions of 

(NLDAS-2) (RADAR)mean mean−  for the 14 watersheds in year 2003, 2004 and 2005.  The 

10th, 25th, 50th, 75th, 90th percentiles of the distributions are also plotted along the x-axis of each 

histogram. From these three figures, we can firstly find that most of the differences are 

distributed between -1.0 to 1.0. For all watersheds over the three years, more than 50% of 



 142 

precipitation images have differences ranging from -0.5 to 0.5. However, for most of watersheds, 

there also more than 20% precipitation images have differences, whose absolute values are 

beyond 0.5. Taking the precipitation-covered area into account, differences of the total amount of 

precipitation between the two data are not small at all, which may significantly impact the 

simulation of hydrological processes. The vertical green line in each histogram represents the 

annual mean of the difference. It can be seen that the annual mean of NLDAS-2 data is larger 

than that of RADAR data in most of watersheds over the three years, especially in ALDW2, 

PSNW2 and BSNK2, whose topographies are steep or relatively steep. Even the annual mean of 

RADAR data also has chances to be larger than that of NLDAS-2 data, for example SERI3 in 

2004, DBVO1 in 2005 and FDYO1 in 2005, but the absolute magnitudes are very small. In this 

study, precipitation data fusion and hydrological simulations are conducted at hourly time step, 

which means all the hourly differences between two data will be taken into account even though 

the annual means of the two data are close.  

 

In this section, we have analyzed the differences between NLDAS-2 data and RADAR 

data by year. We found considerable differences in terms of recording the occurrences of 

precipitation events, agreements between the spatial patterns, and average hourly precipitation. 

These differences indicate the possibility of deriving more reliable precipitation data through 

fusing these two products.  
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Figure 5.5 Histograms of ( ) ( )NLDAS-2 RADARmean mean−  in the 14 experimental watersheds in 2003. 

From left to right, the five red “x” markers in each plot represent the 10th, 25th, 50th , 75th  and 90th percentiles. The 

green line represents the mean of data. 

 

Figure 5.6 Histograms of ( ) ( )2mean NLDAS mean RADAR− −  in the 14 experimental watersheds in 2004. 

From left to right, the five red “x” markers in each plot represent the 10th, 25th, 50th , 75th  and 90th percentiles. The 

green line represents the mean of data. 
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Figure 5.7 Histograms of ( ) ( )2mean NLDAS mean RADAR− −  in the 14 experimental watersheds in 2005. 

From left to right, the five red “x” markers in each plot represent the 10th, 25th, 50th , 75th  and 90th percentiles. The 

green line represents the mean of data. 

5.4 SETTINGS OF PRECIPITATION DATA FUSION 

As mentioned in section 5.2, (0)X  is the most important parameter of the MKS 

algorithm. In the content of the precipitation data fusion, (0)X  represents the areal mean of 

precipitation over the area of data fusion. Once (0)X  is set, the means of fused precipitation data 

at all scales are equal to it. Therefore, (0)X  has a decisive influence on the magnitude of fused 

precipitation. (0)X  cannot be determined automatically using optimization algorithms or 

statistical inference algorithms. Instead, it can only be determined according to a user’s 
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judgment. There are two references for determining (0)X . One is the understanding of the data 

to be fused. The other is the expectation of the fused precipitation data.  

 

In this study, we have three settings for ( )0X . In the first setting, we set  

 ( ) ( ) ( )0 0.5 NLDAS-2 RADARX mean mean= × +   . (5-17) 

This setting, called FUSED-1 hereafter, is based on the understanding that NLDAS-2 data and 

RADAR data are equally reliable in terms of the average magnitude. Fused precipitation data of 

this setting are expected to have the average of (NLDAS-2)mean  and (RADAR)mean  as mean 

magnitude. In the second setting, we set  

 ( ) ( ) ( )0 max NLDAS-2 , RADARX mean mean=    . (5-18) 

This setting, called FUSED-2 hereafter, is based on the understanding that both NLDAS-2 data 

and RADAR data may underestimate precipitation. Fused precipitation data of this setting are 

expected to have the maximum of (NLDAS-2)mean  and (RADAR)mean  as mean magnitude. 

In the third setting, we set  

 ( ) ( )0 NLDAS-2X mean= . (5-19) 

This setting, called FUSED-3 hereafter, is based on the understanding that NLDAS-2 data are 

more reliable than RADAR precipitation data. Fused precipitation data of this setting are 

expected to have the same mean magnitude as NLDAS-2 data.  

 

In the settings FUSED-1 and FUSED-2, both the spatial pattern and the magnitude of 

NLDAS-2 and RADAR data will contribute to the fused precipitation data. However, in the 

setting FUSED-3, RADAR data only contribute spatial pattern to the fused precipitation data. 
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Because RADAR data are at a much finer resolution than that of NLDAS-2 data, RADAR data, 

therefore, will play much more significant roles in determining the spatial pattern of the fused 

precipitation data than NLDAS-2 data.  

 

In the precipitation data fusion with the MKS algorithm, fused data can be at all scales of 

the multiscale tree built for the input data. For example, when doing data fusion in SERI3 site (a 

square envelope of SERI3 watershed with the size of 2 2°× ° ), there are 7 scales of the multiscale 

tree ranging from 0 to 6. NLDAS-2 data and RADAR data are at scale 4 and scale 6 of the 

multiscale tree respectively. The fused precipitation data can be at 1/32, 1/16, 1/8, 1/4, 1/2, 1, 

and 2 degree resolutions. In this study, we just output fused precipitation data at 1/8 and 1/32 

degree resolutions for the assessments with hydrological simulations. The fused data at 1/8 

degree resolution can be regarded as the improved version of NLDAS-2 data by incorporating 

information in RADAR data at 1/32 degree resolution. Similarly, the fused data at 1/32 degree 

resolution can be regarded as the improved version of RADAR data by incorporating 

information in NLDAS-2 data at 1/8 degree resolution.  

5.5 ASSESSMENT OF FUSED PRECIPITATION DATA 

5.5.1 Assessment with streamflow simulations 

Streamflow is the most important hydrological forecast. If fused precipitation data can 

improve the accuracy of simulated streamflow, hydrological forecast will be improved, too. In 

addition, streamflow observations are much more reliable than the observations of soil moisture 
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and evapotranspiration. Therefore, this study first assesses precipitation data fusion based on 

streamflow.  

 

The assessment is conducted by comparing simulated streamflows with the three fused 

precipitation datasets (FUSED-1, FUSED-2 and FUSED-3) and two input precipitation datasets 

(NLDAS-2 and RADAR). Without special note, the streamflow simulated with the fused 

precipitation data of setting FUSED-1 are abbreviated as FUSED-1 in later analysis, and 

similarly for FUSED-2, FUSED-3, NLDAS-2 and RADAR. Streamflows are simulated using 

Noah LSM at 1/8 degree resolution. The flow routing scheme described in chapter 2.0 is used to 

route the surface runoff and baseflow simulated by Noah LSM into streamflow series at the 

outlet of watershed. For the 14 experimental watershed, DEM data, 1/8 degree computational 

grids, and flow networks are given in Figure 5.8 to Figure 5.21. As the input parameter 

information of Noah model, hybrid STATSGO/FAO topsoil texture data and USGS 24-category 

vegetation (land use) data have been processed into 1/8 degree resolution from 30-second 

resolution using majority resampling method. The maps of soil types and land use types of the 14 

watersheds are also given in Figure 5.8 to Figure 5.21. Parameters of Noah LSM and its routing 

scheme are calibrated simultaneously with NLDAS-2, RADAR, FUSED-1, FUSED-2 and 

FUSED-3 precipitation data using the parameter calibration scheme described in chapter 3.0 . 

The parameter calibration period is from 01/01/2003 to 12/31/2005 while Noah LSM runs from 

01/01/2000. The three years of 2000, 2001 and 2002 are the spin-up period for Noah LSM to 

remove the influences of initial conditions. Only one set of parameters is calibrated for the five 

precipitation inputs. In the assessment, this set of parameters will work with the five precipitation 
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inputs to simulate streamflow series. In order to simply focus on the influences of precipitation 

input on simulated streamflow, assessment is conducted in the calibration period (2003-2005).  

 

 

 

Figure 5.8 DEM, flow network, soil types, and land use types in ALDW2 site. Except DEM is at 1/2048 degree 

resolution, all other data are at 1/8 degree resolution. Gridded region is the ALDW2 watershed, whose outlet is 

marked with the red circle.  
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Figure 5.9 DEM, flow network, soil types, and land use types in ALPI3 site. Except DEM is at 1/2048 degree 

resolution, all other data are at 1/8 degree resolution. Gridded region is the ALPI3 watershed, whose outlet is 

marked with the red circle.  
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Figure 5.10 DEM, flow network, soil types, and land use types in BAKI3 site. Except DEM is at 1/2048 degree 

resolution, all other data are at 1/8 degree resolution. Gridded region is the BAKI3 watershed, whose outlet is 

marked with the red circle.  
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Figure 5.11 DEM, flow network, soil types, and land use types in BSNK2 site. Except DEM is at 1/2048 degree 

resolution, all other data are at 1/8 degree resolution. Gridded region is the BSNK2 watershed, whose outlet is 

marked with the red circle.  
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Figure 5.12 DEM, flow network, soil types, and land use types in CLAI2 site. Except DEM is at 1/2048 degree 

resolution, all other data are at 1/8 degree resolution. Gridded region is the CLAI2 watershed, whose outlet is 

marked with the red circle.  
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Figure 5.13 DEM, flow network, soil types, and land use types in CRWI3 site. Except DEM is at 1/2048 degree 

resolution, all other data are at 1/8 degree resolution. Gridded region is the CRWI3 watershed, whose outlet is 

marked with the red circle.  
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Figure 5.14 DEM, flow network, soil types, and land use types in CYCK2 site. Except DEM is at 1/2048 degree 

resolution, all other data are at 1/8 degree resolution. Gridded region is the CYCK2 watershed, whose outlet is 

marked with the red circle.  
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Figure 5.15 DEM, flow network, soil types, and land use types in DBVO1 site. Except DEM is at 1/2048 degree 

resolution, all other data are at 1/8 degree resolution. Gridded region is the DBVO1 watershed, whose outlet is 

marked with the red circle.  
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Figure 5.16 DEM, flow network, soil types, and land use types in ELRP1 site. Except DEM is at 1/2048 degree 

resolution, all other data are at 1/8 degree resolution. Gridded region is the ELRP1 watershed, whose outlet is 

marked with the red circle.  
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Figure 5.17 DEM, flow network, soil types, and land use types in FDYO1 site. Except DEM is at 1/2048 degree 

resolution, all other data are at 1/8 degree resolution. Gridded region is the FDYO1 watershed, whose outlet is 

marked with the red circle. 
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Figure 5.18 DEM, flow network, soil types, and land use types in KINT1 site. Except DEM is at 1/2048 degree 

resolution, all other data are at 1/8 degree resolution. Gridded region is the KINT1 watershed, whose outlet is 

marked with the red circle.  
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Figure 5.19 DEM, flow network, soil types, and land use types in NHSO1 site. Except DEM is at 1/2048 degree 

resolution, all other data are at 1/8 degree resolution. Gridded region is the NHSO1 watershed, whose outlet is 

marked with the red circle.  
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Figure 5.20 DEM, flow network, soil types, and land use types in PSNW2 site. Except DEM is at 1/2048 degree 

resolution, all other data are at 1/8 degree resolution. Gridded region is the PSNW2 watershed, whose outlet is 

marked with the red circle.  
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Figure 5.21 DEM, flow network, soil types, and land use types in SERI3 site. Except DEM is at 1/2048 degree 

resolution, all other data are at 1/8 degree resolution. Gridded region is the SERI3 watershed, whose outlet is marked 

with the red circle.  

 

The assessment in terms of streamflow simulation is discussed below by watersheds. 

Hydrographs and Nash-Sutcliffe Efficiency (NSE) are used as the standards to evaluate the 

reliability of precipitation inputs. NSE can range from -∞ to 1. An NSE of 1 corresponds a 

perfect match of the simulated streamflow to the observed streamflow. An NSE of 0 indicates 

that the model simulation is as accurate as the mean of the observed streamflow, whereas an 

NSE less than 0 occurs when the mean of observed streamflow is a better predictor than 

simulated streamflow. Therefore, it is expected that the streamflow simulated with fused 



 162 

precipitation data has larger NSE than that of streamflow simulated with NLDAS-2 or RADAR 

precipitation data. In the following, the assessments of precipitation data fusion are conducted in 

terms of simulated streamflow by watershed. 

 

Table 5.1 Areas, elevation ranges and descriptions of the 14 experimental watersheds 

NAME 
AREA 

(km2) 

MIN_E 

(m) 

MAX_E 

(m) 
TOPOGRAPHY USGS station name 

ALDW2 3533 469 1478 steep Greenbrier River at Alderson, WV 

ALPI3 1352 232 381 mild Whitewater River near Alpine, IN 

BAKI3 4421 182 363 mild East fork White River at Columbus, IN 

BSNK2 3364 127 447 relatively steep Rolling Fork near Boston, KY 

CLAI2 2929 124 237 flat Little Wabash River below Clay city, IL 

CRWI3 1318 202 298 flat Sugar Creek at Crawfordsville, IN 

CYCK2 938 189 444 relatively steep Red River at Clay city, KY 

DBVO1 1383 219 454 mild Big Darby Creek at Darbyville, OH 

ELRP1 1424 433 788 steep Allegheny River at Eldred, PA 

FDYO1 896 231 315 flat Blanchard River near Findlay, OH 

KINT1 1764 146 390 relatively steep Harpeth River near Kingston Springs, TN 

NHSO1 453 298 403 mild Nimishillen Creek at North Industry, OH 

PSNW2 1870 488 1477 very steep Cheat River near Parsons, WV 

SERI3 6063 170 363 mild East fork White River near Seymour, IN 

 

ALDW2 watershed. ALDW2 is a mountainous watershed in West Virginia with steep 

topography. The hydrographs of the observed and the five simulated streamflow series are 

plotted in Figure 5.22 by years and corresponding NSEs are listed in Table 5.2. Findings in 

ALDW2 watershed include: 
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1) FUSED-2 data have best performances in 2003, 2004, and 2005. This indicates that both 

NLDAS-2 and RADAR data underestimate precipitation in these years. As shown in Figure 

5.22, the peaks simulated with NLDAS-2 data and RADAR data are below the observed 

peaks. Even the peaks simulated with FUSED-2 data may slightly above the observed peaks 

sometimes; but the hydrographs of FUSED-2 data fit the observed hydrographs much better 

than those of other precipitation data. This means that the average magnitude of the two input 

precipitation data makes positive contribution to the fused precipitation data.  

2) FUSED-3 data have better performances than NLDAS-2 data since FUSED-3 data keeps the 

mean magnitudes of NLDAS-2 data. The difference between these two data is that the spatial 

patterns of RADAR data have been fused into FUSED-3 data. This finding indicates that the 

spatial patterns of RADAR data make some positive contribution to the fused precipitation 

data. Even though the NSEs of RADAR data are significantly smaller than the corresponding 

ones of NLDAS-2 data, the spatial patterns of RADAR data (at 1/32 degree resolution) are 

still valuable for precipitation data fusion. 

3) FUSED-1 data have poorer performances than NLDAS-2 data because the average 

magnitudes of RADAR data have been introduced into FUSED-1 data. This finding indicates 

that the fused precipitation data may have poor reliability than input data if the areal mean of 

precipitation ( (0)X ) is not properly estimated. In addition, spatial pattern takes the second 

place in influencing the streamflow simulation compared with the average magnitudes of 

precipitation in ALDW2 watershed.  

4) In the snowing season of ALDW2 watershed, i.e. December to May, simulations of flow 

peaks are poor for the five precipitation inputs. A possible reason is that Noah LSM doesn’t 

describe snow accumulation and melting processes well.  
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5) Overall, streamflow simulation can be substantially improved using fused precipitation data, 

such as FUSED-2. 

 

Figure 5.22 Observed streamflow and simulated streamflow with NLDAS-2, RADAR, FUSED-1, FUSED-2 and 

FUSED-3 precipitation data in calibration period (2003, 2004 and 2005) in ALDW2 watershed. The unit of 

streamflow is cubic feet per second (cft/s). Corresponding Nash-Sutcliffe Efficiencies (NSE) are given in the titles 

of plots.  

 

Table 5.2 Nash-Sutcliffe Efficiencies (NSEs) corresponding to the five precipitation inputs in ALDS2 watershed 

  NLDAS-2 RADAR FUSED-1 FUSED-2 FUSED-3 

2003 0.776 0.440 0.650 0.849 0.826 

2004 0.582 0.131 0.378 0.680 0.650 

2005 0.543 0.300 0.433 0.698 0.557 
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ALPI3 watershed. ALPI3 is a watershed in Indiana with mild topography. The 

hydrographs of the observed and the five simulated streamflow series are plotted in Figure 5.23 

by years and the corresponding NSEs are listed in Table 5.3. Findings in ALPI3 watershed 

include: 

1) FUSED-2 data have best performances in 2003, 2004 and 2005. This means that both 

NLDAS-2 and RADAR data have chances of underestimating precipitation. From the 

hydrographs in Figure 5.23, we can also have the same finding. For the three years, the 

peaks of streamflow simulated with NLDAS-2 and RADAR data are below the observed 

peaks. Even though the hydrographs of FUSED-2 may be slightly above the observed peaks, 

they have much better fit to the observed hydrographs than those of NLDAS-2 and RADAR 

data, especially in 2004 and 2005.  

2) In 2003, the reliability of NLDAS-2 data is very poor, i.e. NSE=0.366 and the reliability of 

RADAR data is a little bit better, i.e. NSE=0.492, while the NSE of FUSED-2 data is 0.562, 

which is almost over 0.2 than that of NLDAS-2 data. In 2005, the NSEs of NLDAS-2 and 

RADAR data are 0.504 and 0.559 respectively, while the NSE of FUSED-2 data is 0.833, 

which is over 0.3 than that of NLDAS-2 data. These results indicate that even the RADAR 

data have poor reliability; they also can be used to improve NLDAS-2 data through data 

fusion.  

3) FUSED-3 data have NSEs slightly larger than the corresponding ones of NLDAS-2 in the 

three years. This spatial pattern of RADAR data doesn’t help much to improve the reliability 

of NLDAS-2 data through data fusion in ALPI3 watershed.  
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4) In the March and April of 2003, poor streamflow simulations with the five precipitation 

inputs may be because Noah LSM doesn’t describe snow accumulation and melting 

processes well.  

5) Overall, streamflow simulation can be improved significantly in ALPI3 watershed, 

especially for 2003 and 2005.  

 

 

Figure 5.23 Observed streamflow and simulated streamflow with NLDAS-2, RADAR, FUSED-1, FUSED-2 and 

FUSED-3 precipitation data in calibration period (2003, 2004 and 2005) in ALPI3 watershed. The unit of 

streamflow is cubic feet per second (cft/s). Corresponding Nash-Sutcliffe Efficiencies (NSE) are given in the titles 

of plots.  
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Table 5.3 Nash-Sutcliffe Efficiencies (NSEs) corresponding to the five precipitation inputs in ALPI2 watershed  

  NLDAS-2 RADAR FUSED-1 FUSED-2 FUSED-3 

2003 0.366 0.493 0.455 0.562 0.455 

2004 0.695 0.696 0.702 0.755 0.703 

2005 0.504 0.559 0.507 0.833 0.511 

 

BAKI3 watershed. BAKI3 is a watershed in Indiana with mild topography. The 

hydrographs of the observed and the five simulated streamflows are plotted in Figure 5.24 by 

years and the corresponding NSEs are listed in Table 5.4. Findings in BAKI3 watershed are: 

1) In 2003, both NLDAS-2 and RADAR data have poor reliability. NSEs of all fused 

precipitation data are smaller than the NSE of NLDAS-2 data, which means that it is 

possible that RADAR data deteriorate NLDAS-2 data through precipitation data fusion if 

RADAR data are poor. It can be seen from the observed and simulated hydrographs in 2003 

that the simulated hydrographs are even worse in cold season than those in warm season. 

Therefore, there are two possible reasons for the poor simulations of streamflow in 2003. 

One is that there were more precipitation evens in the cold season of 2003 and both 

NLDAS-2 and RADAR data didn’t well record these events. The other reason is that Noah 

LSM didn’t properly describe snow accumulation and melting processes in the cold season. 

The second reason is more possible because the peak of simulated streamflow is behind the 

peak of the observed streamflow. This timing difference may indicate that the snow melting 

process simulated by Noah LSM is slower than the real process in March and April of 2003.  
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Figure 5.24 Observed streamflow and simulated streamflow with NLDAS-2, RADAR, FUSED-1, FUSED-2 and 

FUSED-3 precipitation data in calibration period (2003, 2004 and 2005) in BAKI3 watershed. The unit of 

streamflow is cubic feet per second (cft/s). Corresponding Nash-Sutcliffe Efficiencies (NSE) are given in the titles 

of plots.  

 

Table 5.4 Nash-Sutcliffe Efficiencies (NSEs) corresponding to the five precipitation inputs in BAKI3 watershed 

  NLDAS-2 RADAR FUSED-1 FUSED-2 FUSED-3 

2003 0.513 0.401 0.461 0.352 0.510 

2004 0.857 0.827 0.854 0.775 0.875 

2005 0.864 0.837 0.877 0.822 0.866 
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2) In 2004, both NLDAS-2 and RADAR data have good reliability, i.e. NSE=0.857 and 0.827 

respectively. As Figure 5.24 shows, the hydrographs of simulated streamflows with 

NLDAS-2 and RADAR data have good fits to the hydrographs of observed streamflow. The 

NSE of FUSED-3 data is slightly larger than that of NLDAS-2 data, which reflects the 

minor contribution from the spatial patterns of RADAR data at 1/32 degree resolution. 

3) In 2005, both NLDAS-2 and RADAR data have good reliability, i.e. NSE=0.864 and 

NSE=0.837. The NSE of FUSED-1 data is slightly higher than that of NLDAS-2 data, which 

indicates that the real average magnitude of precipitation falls between those of NLDAS-2 

and RADAR data. 

4) Overall, no essential improvements of streamflow simulations have been made through 

precipitation data fusion. For year 2003, it is because both NLDAS-2 data and RADAR data 

have poor reliabilities; for year 2004 and 2005, it is because both NLDAS-2 data already 

have good reliability and there is no big room for further improvement.  

 

Table 5.5 Nash-Sutcliffe Efficiencies (NSEs) corresponding to the five precipitation inputs in BSNK2 watershed 

  NLDAS-2 RADAR FUSED-1 FUSED-2 FUSED-3 

2003 0.717 0.588 0.656 0.745 0.735 

2004 0.813 0.410 0.634 0.813 0.753 

2005 0.776 0.712 0.779 0.834 0.791 
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Figure 5.25 Observed streamflow and simulated streamflow with NLDAS-2, RADAR, FUSED-1, FUSED-2 and 

FUSED-3 precipitation data in calibration period (2003, 2004 and 2005) in BSNK2 watershed. The unit of 

streamflow is cubic feet per second (cft/s). Corresponding Nash-Sutcliffe Efficiencies (NSE) are given in the titles 

of plots.  

 

BSNK2 watershed. BSNK2 is a watershed in Kentucky with relatively steep 

topography. The hydrographs of the observed and the five simulated streamflows are plotted in 

Figure 5.25 and the corresponding NSEs are listed in Table 5.5. Findings in BSNK2 watershed 

include: 

1) In 2003, the NSEs of FUSED-2 and FUSED-3 data are slightly larger than the NSE of 

NLDAS-2. In this year, both NLDAS-2 and RADAR underestimate precipitation in flooding 

period, which can be seen from the observed hydrograph and the simulated hydrographs with 
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NLDAS-2 and RADAR data. This is the reason why FUSED-1 data have smaller NSE, 

which falls between the NSEs of NLDAS-2 and RADAR data.  

2) In 2004, the NSE of FUSED-2 data have the same NSE as NLDAS-2 data, while the NSEs of 

FUSED-1 and FUSED-3 data are smaller than the NSE of NLDAS-2 data. From the plot of 

the observed hydrograph and the simulated hydrographs with NLDAS-2 data and RADAR 

data, we can see that both data underestimate precipitation but the underestimation of 

RADAR data is more severe. Correspondingly, the NSE of RADAR data (0.410) is much 

smaller than that of NLDAS-2 data (0.813). That is why FUSED-1 data have smaller NSE 

than NLDAS-2 data. FUSED-2 and NLDAS-2 data have the same NSE is because FUSED-2 

data takes the average magnitude of NLDAS-2 data. Because the NSE of FUSED-3 data is 

smaller than the NSE of NLDAS-2 data, it can be inferred that the RADAR data (at 1/32 

degree resolution) didn’t well capture the spatial pattern of precipitation in this year.  

3) In 2005, all NSEs of FUSED-1, FUSED-2 and FUSED-3 data, especially FUSED-2 data, are 

larger than the NSE of NLDAS-2 data. This is mainly due to RADAR data have relatively 

good reliability, i.e. NSE=0.712. Meanwhile, this finding indicates that both NLDAS-2 and 

RADAR data also underestimate precipitation in flooding periods of 2005.  

4) Overall, considerable improvements of streamflow simulations have been made through 

precipitation data fusion in year 2003 and 2005. When RARAR data have higher reliability, 

there are larger improvements.  

 

CLAI2 watershed. CLAI2 is a watershed in Illinois with flat topography. The 

hydrographs of the observed and the five simulated streamflow series are plotted in Figure 5.26 

and the corresponding NSEs are listed in Table 5.6. Findings in CLAI2 watershed include: 
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1) In 2003, both NLDAS-2 and RADAR data are not very reliable, i.e. NSE=0.605 and 

NSE=0.487 respectively. The NSEs of FUSED-1, FUSED-2 and FUSED-3 data are smaller 

than the NSE of NLDAS-2 data. This is mainly due to the poor qualities of these two data. 

As shown in the first panel of Figure 5.26, the hydrographs simulated with NLDAS-2 and 

RADAR data have very poor fits to the observed hydrograph in the period from February to 

August. As a result, the fused precipitation data also generate poor hydrographs in this 

period.  

2) In 2004, NLDAS-2 data are relative reliable, i.e. NSE=0.739. The hydrograph simulated with 

NLDAS-2 data basically captures the shape of observed hydrograph. RADAR data have very 

poor reliability, i.e. NSE=0.236. As indicated by hydrographs, RADAR data significantly 

underestimate precipitation in this year. The NSE of FUSED-2 data is slightly larger than the 

NSE of NLDAS-2 data. Because the RADAR data are very unreliable, the improvement 

made through precipitation data fusion is very slight.  

3) In 2005, NLDAS-2 data are very reliable, i.e. NSE=0.896 while RADAR data are very 

unreliable, i.e. NSE=0.387. The NSEs of FUSED-2 and FUSED-3 data are slightly larger 

than the NSE of NLDAS-2 data. Due to the low reliabilities of NLDAS-2 and RADAR data, 

improvements of streamflow simulation are hard to made through precipitation data fusion.  

4) Overall, no improvements of streamflow simulations are made through precipitation data 

fusion in 2003 since both NLDAS-2 and RADAR data are not reliable in this year. There are 

very slight improvements of streamflow simulation made through precipitation data fusion in 

2004 and 2005. 
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Figure 5.26 Observed streamflow and simulated streamflow with NLDAS-2, RADAR, FUSED-1, FUSED-2 and 

FUSED-3 precipitation data in calibration period (2003, 2004 and 2005) in CLAI2 watershed. The unit of 

streamflow is cubic feet per second (cft/s). Corresponding Nash-Sutcliffe Efficiencies (NSE) are given in the titles 

of plots.  

 

Table 5.6 Nash-Sutcliffe Efficiencies (NSEs) corresponding to the five precipitation inputs in CLAI2 watershed 

  NLDAS-2 RADAR FUSED-1 FUSED-2 FUSED-3 

2003 0.604 0.487 0.535 0.367 0.544 

2004 0.739 0.238 0.431 0.750 0.719 

2005 0.896 0.387 0.847 0.907 0.904 
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CRWI3 watershed. CRWI3 is a watershed in Indiana with flat topography. The 

hydrographs of the observed and the five simulated streamflow series are plotted in Figure 5.27 

and the corresponding NSEs are listed in Table 5.7. Findings of CRWI3 watershed include: 

1) In 2003, RADAR data have good reliability, i.e. NSE=0.789, while the NSEs of FUSED-1, 

FUSED-2 and FUSED-3 data are significantly larger than the NSE of NLDAS-2 data but are 

slightly smaller than the NSE of RADAR data. Particularly, the NSE of FUSED-3 data is 0.1 

more than the NSE of NLDAS-2 data, which means that the spatial pattern of RADAR data 

(at 1/32 degree resolution) can improve the NLDAS-2 data significantly. But the mean 

magnitudes of RADAR data don’t help much because the NSEs of FUSED-1 and FUSED-2 

data are just slightly larger than the NSE of FUSED-3. 

2) In 2004, NLDAS-2 data have poor reliability, i.e. NSE=0.585 while RADAR data have 

relative better reliability, i.e. NSE=0.669. The NSEs of FUSED-1 and FUSED-3 data are 

significantly larger than the NSE of NLDAS-2 data. Meanwhile, the NSEs of FUSED-1 and 

FUSED-3 data are very close, which indicates that the mean magnitudes of NLDAS-2 and 

RADAR data are close. The improvements of simulated streamflows with FUSED-1 and 

FUSED-3 are essentially attributed to the spatial patterns of RADAR data (at 1/32 degree 

resolution) on the fused precipitation data. The smaller NSE of FUSED-2 data is because 

FUSED-2 data overestimate precipitation in this year, which is indicated by the hydrographs 

in the second panel of Figure 5.27. In addition, the results in 2004 also indicate that NLDAS-

2 and RADAR have different timing, since it has been already inferred that the mean 

magnitudes of NLDAS-2 and RADAR are close but the FUSED-2 data overestimate 

precipitation.  
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3) In 2005, NLDAS-2 data have good reliability, i.e. NSE=0.795 while RADAR data have 

relatively good reliability, i.e. NSE=0.667. The NSEs of FUSED-1 and FUSED-2 data are 

slightly larger than that the NSE of NLDAS-2 data, which is mainly due to the contribution 

of the spatial patterns in RADAR data (at 1/32 degree resolution). 

4) Overall, NLDAS-2 data can be improved significantly in 2003 and 2004 and be improved 

slightly in 2005. The improvements mainly come from the spatial patterns in RADAR data at 

1/32 degree resolution.  

 

 

Figure 5.27 Observed streamflow and simulated streamflow with NLDAS-2, RADAR, FUSED-1, FUSED-2 and 

FUSED-3 precipitation data in calibration period (2003, 2004 and 2005) in CRWI3 watershed. The unit of 

streamflow is cubic feet per second (cft/s). Corresponding Nash-Sutcliffe Efficiencies (NSE) are given in the titles 

of plots 
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Table 5.7 Nash-Sutcliffe Efficiencies (NSEs) corresponding to the five precipitation inputs in CRWI3 watershed 

  NLDAS-2 RADAR FUSED-1 FUSED-2 FUSED-3 

2003 0.636 0.789 0.749 0.784 0.739 

2004 0.585 0.669 0.751 0.375 0.759 

2005 0.795 0.667 0.804 0.706 0.817 

 

CYCK2 watershed. CYCK2 is a watershed in Kentucky with relatively steep 

topography. The hydrographs of the observed and the five simulated streamflow series are 

plotted in Figure 5.28 and the corresponding NSEs are listed in Table 5.8. Findings in CYCK2 

watershed include: 

1) In 2003, both NLDAS-2 and RADAR data have very poor reliability, i.e. NSE=0.154 and 

NSE=0.146 respectively. It is mainly reflected in the simulated hydrographs for the peak in 

February, as shown in Figure 5.28. No matter magnitude or timing, the simulated 

hydrographs are significantly different from the observed hydrograph. Even though the NSEs 

of FUSED-1 and FUSED-3 data are slightly larger than the NSE of NLDAS-2 data, but there 

are no essential improvements made through data fusion. There are two possible reasons for 

the poor streamflow simulations. One is that both NLDAS-2 and RADAR data didn’t well 

record the precipitation (very possible snow) in February. The other is that Noah LSM fails 

to properly describe snow accumulation and melting processes, or both.  

2) In 2004, NLDAS-2 data have good reliability, i.e. NSE=0.786, and RADAR data have 

relatively good reliability, i.e. NSE=0.710. For the fused precipitation data, the NSEs of 

FUSED-1 and FUSED-2 data are close to the NSE of NLDAS-2 data while the NSE of 

FUSED-2 data, i.e. 0.891, is significantly larger than the NSE of NLDAS-2 data. This 
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indicates that the improvements made through precipitation data fusion is mainly due to the 

mean magnitudes instead of the spatial patterns of RADAR data.  

3) In 2005, both NLDAS-2 and RADAR data have relatively poor reliability, i.e. NSE=0.656 

and NSE=0.631 respectively. Similar to the results in 2004, the NSE of FUSED-2 data is 

significantly larger than that of NLDAS-2 data while the NSEs of FUSED-1 and FUSED-3 

data are close to the NSE of NLDAS-2 data. These results in this year are the same as those 

in 2004. 

4) Overall, no essential improvements of streamflow simulation are made through precipitation 

data fusion in 2003 but there are significant improvements made in 2004 and 2005.  

 

Figure 5.28 Observed streamflow and simulated streamflow with NLDAS-2, RADAR, FUSED-1, FUSED-2 and 

FUSED-3 precipitation data in calibration period (2003, 2004 and 2005) in CYCK2 watershed. The unit of 

streamflow is cubic feet per second (cft/s). Corresponding Nash-Sutcliffe Efficiencies (NSE) are given in the titles 

of plots.  
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Table 5.8 Nash-Sutcliffe Efficiencies (NSEs) corresponding to the five precipitation inputs in CYCK2 watershed 

  NLDAS-2 RADAR FUSED-1 FUSED-2 FUSED-3 

2003 0.154 0.146 0.170 0.133 0.199 

2004 0.786 0.710 0.751 0.891 0.786 

2005 0.656 0.631 0.644 0.746 0.669 

 

DBVO1 watershed. DBVO1 is a watershed in Ohio with mild topography. The 

hydrographs of the observed and the simulated stream flow series are plotted in Figure 5.29 and 

the corresponding NSEs are listed in Table 5.9. Findings in DBVO1 watershed include: 

1) In 2003, both NLDAS-2 and RADAR data are very unreliable, i.e. NSE=0.369 and 

NSE=0.295 respectively, while the NSE of FUSED-2 data is slightly larger than that of 

NLDAS-2 data. As shown in the first panel of Figure 5.29, the simulated hydrographs in 

March and April are especially poor. This is either because NLDAS-2 and RADAR data 

have poor qualities in these two months or because Noah LSM fails to properly describe 

snow accumulation and melting processes in this period.  

2) In 2004, NLDAS-2 data have relatively good reliability (NSE=0.748) while RADAR data 

have relatively poor reliability (NSE=0.580). The NSE of FUSED-2 data is significantly 

larger than that of NLDAS-2 data while the NSE of FUSED-3 data is close to that of 

NLDAS-2 data. This indicates that the improvements of streamflow simulation made through 

precipitation are mainly due to the mean magnitudes instead of the spatial patterns of 

RADAR data (at 1/32 degree resolution).  

3) In 2005, NLDAS-2 data have relatively poor reliability, i.e. NSE=0.642 while RADAR data 

have relatively good reliability, i.e. NSE=0.766. NSEs of FUSED-1, FUSED-2 and FUSED-

3 data, especially that of FUSED-2 data (i.e. 0.888), are all larger than the NSE of NLDAS-2 
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data. This indicates that very significant improvements of streamflow simulation have been 

made through precipitation data fusion. Both the spatial patterns and the mean magnitudes of 

RADAR data (at 1/32 degree resolution) contribute to the improvements but the mean 

magnitudes play a more important role. 

4) Overall, no essential improvements of streamflow stimulation are made through precipitation 

data fusion in 2003. But significant improvements are made through precipitation data fusion 

in 2004 and 2005.  

 

Figure 5.29 Observed streamflow and simulated streamflow with NLDAS-2, RADAR, FUSED-1, FUSED-2 and 

FUSED-3 precipitation data in calibration period (2003, 2004 and 2005) in DBVO1 watershed. The unit of 

streamflow is cubic feet per second (cft/s). Corresponding Nash-Sutcliffe Efficiencies (NSE) are given in the titles 

of plots.  
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Table 5.9 Nash-Sutcliffe Efficiencies (NSEs) corresponding to the five precipitation inputs in DBVO1 watershed 

  NLDAS-2 RADAR FUSED-1 FUSED-2 FUSED-3 

2003 0.369 0.295 0.319 0.392 0.335 

2004 0.748 0.580 0.701 0.852 0.766 

2005 0.642 0.766 0.721 0.888 0.729 

 

ELRP1 watershed. ELRP1 is a mountainous watershed in Pennsylvania with steep 

topography. The hydrographs of the observed and the five simulated streamflow series are 

plotted in Figure 5.30 and the corresponding NSEs are listed in Table 5.10. Findings in ELRP1 

watershed include: 

1) In the three years, both NLDAS-2 and RADAR data have poor reliability, i.e. all NSE<0.5, 

especially RADAR data. For each year, the NSE of FUSED-2 data are at least 0.1 larger than 

that of NLDAS-2 data. Meanwhile, the NSE of FUSED-3 data is slightly larger than the 

corresponding NSE of NLDAS-2 data. This means that NLDAS-2 data can be improved 

through precipitation data fusion even RADAR data have worse qualities. The improvements 

are mainly due to the mean magnitudes instead of the spatial patterns of RADAR data (at 

1/32 degree resolution).  

2) As shown in Figure 5.30, the simulated hydrographs have worse fits to the observed 

hydrographs for cold seasons of the three years. This is either because both NLDAS-2 data or 

RADAR data have poorer reliability in cold seasons or because Noah LSM has poor 

performance in describing the snow accumulation and snow melting processes.  

3) Overall, there are significant improvements of streamflow simulation are made through 

precipitation fusion for the three years.  
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Figure 5.30 Observed streamflow and simulated streamflow with NLDAS-2, RADAR, FUSED-1, FUSED-2 and 

FUSED-3 precipitation data in calibration period (2003, 2004 and 2005) in ELRP1 watershed. The unit of 

streamflow is cubic feet per second (cft/s). Corresponding Nash-Sutcliffe Efficiencies (NSE) are given in the titles 

of plots.  

 

Table 5.10 Nash-Sutcliffe Efficiencies (NSEs) corresponding to the five precipitation inputs in ELRP1 watershed 

  NLDAS-2 RADAR FUSED-1 FUSED-2 FUSED-3 

2003 0.362 0.122 0.235 0.548 0.374 

2004 0.492 0.235 0.365 0.598 0.500 

2005 0.434 0.308 0.380 0.616 0.482 
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Figure 5.31 Observed streamflow and simulated streamflow with NLDAS-2, RADAR, FUSED-1, FUSED-2 and 

FUSED-3 precipitation data in calibration period (2003, 2004 and 2005) in FDYO1 watershed. The unit of 

streamflow is cubic feet per second (cft/s). Corresponding Nash-Sutcliffe Efficiencies (NSE) are given in the titles 

of plots.  

 

FDYO1 watershed. FDYO1 is a watershed in Ohio with a flat topography. The 

hydrographs of the observed and the five simulated streamflow series are plotted in Figure 5.31 

and corresponding NSEs are listed in Table 5.11. Findings in FDYO1 watershed include: 

1) In the three years, both NLDAS-2 and RADAR data have poor reliability, i.e. all NSE<0.5. 

As shown in Figure 5.31, the hydrographs simulated with NLDAS-2 data and RADAR data 

are significantly below the observed hydrograph in flood period. This means that these two 

data commonly underestimate precipitation in the three years. The NSE of FUSED-2 data are 

significantly larger than the NSE of NLDAS-2 data in each of these three years. 
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2) Overall, significant improvements of streamflow simulation are made through precipitation 

data fusion. The improvements are mainly due to the mean magnitudes of RADAR data (at 

1/32 degree resolution).  

 

Table 5.11 Nash-Sutcliffe Efficiencies (NSEs) corresponding to the five precipitation inputs in FDYO1 watershed 

  NLDAS-2 RADAR FUSED-1 FUSED-2 FUSED-3 

2003 0.270 0.361 0.298 0.606 0.296 

2004 0.437 0.491 0.458 0.661 0.418 

2005 0.384 0.281 0.298 0.548 0.392 

 

KINT1 watershed. KINT1 is a watershed in Tennessee with relatively steep topography. 

The hydrographs of the observed and the five simulated streamflow series are plotted in Figure 

5.32 and the corresponding NSEs are listed in Table 5.12. Findings in KINT1 watershed include: 

1) In 2003, both NLDAS-2 and RADAR data have very good reliability, i.e. NSE=0.932 and 

NSE=0.938 respectively. As shown in Figure 5.32, the simulated hydrographs with these two 

data reproduce the observed hydrograph very well. The NSE of FUSED-1 data is slightly 

larger than that of NLDAS-2 data.  

2) In 2004 and 2005, both NLDAS-2 and RADAR data have good reliability. The NSEs of 

FUSED-1 and FUSED-2 data slightly larger than the NSE of NLDAS-2 data in each of these 

two years.  

3) Overall, there are no essential improvements of streamflow simulation made through 

precipitation data fusion. Both of NLDAS-2 and RADAR data have good reliability in these 

three years. There is very limited room for improvements.  
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Table 5.12 Nash-Sutcliffe Efficiencies (NSEs) corresponding to the five precipitation inputs in KINT1 watershed 

  NLDAS-2 RADAR FUSED-1 FUSED-2 FUSED-3 

2003 0.932 0.938 0.942 0.860 0.913 

2004 0.843 0.815 0.854 0.734 0.851 

2005 0.809 0.786 0.816 0.776 0.833 

 

 

Figure 5.32 Observed streamflow and simulated streamflow with NLDAS-2, RADAR, FUSED-1, FUSED-2 and 

FUSED-3 precipitation data in calibration period (2003, 2004 and 2005) in KINT1 watershed. The unit of 

streamflow is cubic feet per second (cft/s). Corresponding Nash-Sutcliffe Efficiencies (NSE) are given in the titles 

of plots.  
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NHSO1 watershed. NHSO1 is a watershed in Ohio with mild topography. The 

hydrographs of the observed and the five simulated streamflow series are plotted in Figure 5.33 

and the corresponding NSEs are listed in Table 5.13. Findings in NHSO1 watershed include: 

1) In 2003 and 2004, NLDAS-2 data have poor reliability, i.e. NSE<0.6, while the reliability of 

NLDAS-2 data is a little bit better. All NSEs of FUSED-1, FUSED-2 and FUSED-3 data are 

significantly higher than the NSE of NLDAS-2 data, especially the NSEs of FUSED-2 data, 

which are significantly larger than the corresponding NSEs of NLDAS-2 data. This indicates 

that both the mean magnitudes and the spatial patterns of RADAR data (at 1/32 degree 

resolution) contribute to the improvements obtained by fused precipitation data while the 

mean magnitudes plays a bigger role. 

2) In 2005, both NLDAS-2 and RADAR data have relatively good reliability. Even though the 

NSE of FUSED-2 data is slightly larger than that of NLDAS-2 data, all NSEs of fused data 

are very close to the NSE of NLDAS-2 data.  

3) Overall, there are significant improvements of streamflow simulation made through 

precipitation data fusion in 2003 and 2004. However, no essential improvements are made in 

2005.  

 

Table 5.13 Nash-Sutcliffe Efficiencies (NSEs) corresponding to the five precipitation inputs in NHSO1 watershed 

  NLDAS-2 RADAR FUSED-1 FUSED-2 FUSED-3 

2003 0.583 0.677 0.695 0.801 0.751 

2004 0.447 0.560 0.494 0.729 0.493 

2005 0.716 0.689 0.716 0.718 0.716 
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Figure 5.33 Observed streamflow and simulated streamflow with NLDAS-2, RADAR, FUSED-1, FUSED-2 and 

FUSED-3 precipitation data in calibration period (2003, 2004 and 2005) in NHSO1 watershed. The unit of 

streamflow is cubic feet per second (cft/s). Corresponding Nash-Sutcliffe Efficiencies (NSE) are given in the titles 

of plots.  

 

PSNW2 watershed. PSNW2 is a mountainous watershed in West Virginia with very 

steep topography. The hydrographs of the observed and the five simulated streamflow series are 

plotted in Figure 5.34 and the corresponding NSEs are listed in Table 5.14. Findings in PSNW2 

watershed include: 

1) In 2003 and 2005, NLDAS-2 data have relatively poor reliability, i.e. NSE=0.664 and 

NSE=0.523 respectively, while RADAR data have very poor reliability, i.e. NSE=0.173 and 

NSE=-0.074 respectively. In 2003, the NSE of FUSED-2 data is slightly larger than that of 

NLDAS-2 data while the NSEs of FUSED-1 and FUSED-3 data are smaller than that of 
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NLDAS-2 data. In 2005, the NSE of FUSED-2 data significantly larger than that of NLDAS-

2 data while the NSEs of FUSED-1 and FUSED-3 data are smaller than that of NLDAS-2 

data. This means that both NLDAS-2 and RADAR data underestimate precipitation in these 

two years, which can be seen the hydrographs in Figure 5.34. In addition, the spatial patterns 

of NLDAS-2 data cannot help to improve streamflow simulation with fused precipitation 

data.  

2) In 2004, NLDAS-2 data have relatively poor reliability, i.e. NSE=0.548, while RADAR data 

have extremely poor reliability, i.e. NSE=-0.457. No NSEs of fused precipitation data are 

larger than the NSE of NLDAS-2 data. This means that the fused data may have worse 

reliability than all input datasets if one of input datasets has very bad quality. 

3) Overall, data assimilation has different performance in the three years. In 2003, very slight 

improvements are made. Significant deteriorations occur in 2004. However, significant 

improvements are made in 2005.  

 

Table 5.14 Nash-Sutcliffe Efficiencies (NSEs) corresponding to the five precipitation inputs in PSNW2 watershed. 

  NLDAS-2 RADAR FUSED-1 FUSED-2 FUSED-3 

2003 0.664 0.173 0.463 0.681 0.648 

2004 0.548 -0.457 -0.051 0.393 0.368 

2005 0.523 -0.074 0.214 0.641 0.487 
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Figure 5.34 Observed streamflow and simulated streamflow with NLDAS-2, RADAR, FUSED-1, FUSED-2 and 

FUSED-3 precipitation data in calibration period (2003, 2004 and 2005) in PSNW2 watershed. The unit of 

streamflow is cubic feet per second (cft/s). Corresponding Nash-Sutcliffe Efficiencies (NSE) are given in the titles 

of plots.  

 

SERI3 watershed. SERI3 is a watershed in Indiana with mild topography. The 

hydrographs of the observed and the five simulated streamflow series are plotted in Figure 5.35 

and the corresponding NSEs are listed in Table 5.15. Findings in SERI3 watershed include: 

1) In 2003, both NLDAS-2 and RADAR data have poor reliability, i.e. NSE<0.5. The NSE of 

FUSED-3 data is slightly larger than that of NLDAS-2 data while the NSEs of FUSED-1 and 

FUSED-2 data are smaller than that of NLDAS-2 data. This means that the spatial patterns of 

RADAR data (at 1/32 degree resolution) slightly help to improve the streamflow simulation 

with FUSED-3 data but the magnitudes do not help in this year.  
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2) In 2004 and 2005, both NLDAS-2 data and RADAR data are very reliable, i.e. NSE>0.85. 

Except the NSE of FUSED-2 data in 2004, all NSEs of fused data are close to the 

corresponding NSEs of NLDAS-2 data. No essential improvements are made through 

precipitation data fusion even though the NSEs of FUSED-1 and FUSED-3 data are lightly 

larger than the NSE of NLDAS-2 data in 2005.  

3) Overall, no essential improvements are made through precipitation data fusion in these three 

years. 

 

Figure 5.35 Observed streamflow and simulated streamflow with NLDAS-2, RADAR, FUSED-1, FUSED-2 and 

FUSED-3 precipitation data in calibration period (2003, 2004 and 2005) in SERI3 watershed. The unit of 

streamflow is cubic feet per second (cft/s). Corresponding Nash-Sutcliffe Efficiencies (NSE) are given in the titles 

of plots.  
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Table 5.15 Nash-Sutcliffe Efficiencies (NSEs) corresponding to the five precipitation inputs in SERI3 watershed 

  NLDAS-2 RADAR FUSED-1 FUSED-2 FUSED-3 

2003 0.434 0.373 0.420 0.197 0.473 

2004 0.905 0.866 0.902 0.750 0.903 

2005 0.911 0.905 0.918 0.904 0.920 

 

Table 5.16 Flags of essential improvement (Y), negligible change (=) and deterioration (N) for the 14 experimental 

watersheds over 2003, 2004 and 2005 

  2003 2004 2005 

ALDW2 Y Y Y 

ALPI3 Y Y Y 

BAKI3 = = = 

BSNK2 = = Y 

CLAI2 N = = 

CRWI3 Y Y = 

CYCK2 = Y Y 

DBVO1 = Y Y 

ELRP1 Y Y Y 

FDYO1 Y Y Y 

KINT1 = = = 

NHSO1 Y Y = 

PSNW2 = N Y 

SERI3 = = = 
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To summarize the assessments of precipitation data fusion in terms of streamflow 

simulation, we can define three qualitative categories: essential improvement, negligible change, 

and deterioration. If the maximum NSE of the three fused precipitation data is at least 0.05 larger 

than the NSE of NLDAS-2 data, we say that essential improvement is made, whereas we say that 

deterioration happens if the maximum NSE of the three fused precipitation data is at least 0.05 

smaller than the NSE of NLDAS-2 data. If the maximum NSE of the three fused precipitation 

data falls between the NSEs of essential improvement and deterioration, we say the change made 

by precipitation data fusion is negligible. Table 5.16 listed the flags of essential improvement, 

negligible change and determination. Over the 42 watershed/year, 21 of them have essential 

improvements, 19 of them have negligible changes and only 2 of them have deteriorations. Such 

results indicate that it is likely that the fused precipitation data can simulate better hydrographs 

of streamflow. Therefore, we can conclude that precipitation data fusion is an effective approach 

to improve the reliability of precipitation data.  

5.5.2 Assessment with soil moisture simulations  

The assessment of precipitation data fusion on soil moisture simulation is conducted 

along with streamflow simulation. We don’t use measurements to directly validate soil moisture 

simulation. Instead, the goodness of simulated streamflow is regarded as the indicator of 

reliability for simulated soil moistures. Given precipitation inputs, it is reasonable to infer that 

soil moisture contents (SMCs) are simulated properly if streamflow simulation is good. In the 

following assessment, we will focus on the differences between simulated SMCs with NLDAS-

2, RADAR, FUSED-1, FUSED-2 and FUSED-3 data. Particularly, the assessment is conducted 

from two aspects. One is to show the difference over time and the other is to show the 
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differences over space. To investigate the temporal differences, the simulated SMCs of the four 

soil layers of Noah LSM are plotted in Figure 5.36 to Figure 5.49 for all of the 14 experimental 

watersheds. To investigate the spatial differences, land surface simulations are conducted with 

the fused precipitation data at 1/32 degree resolution. No matter whether over time or over space, 

the simulated SMCs corresponding to larger NSE are regarded as the better simulation.   

 

Specifically, the simulated SMCs with the five precipitation inputs in 2004 are analyzed 

individually for the 14 experimental watersheds. Differences between averaged SMCs of each 

watershed will be first described. And then, common features of these differences also will be 

summarized.  

 

In ADLDW watershed (Figure 5.36), we have the following findings: 

1) In rain period (January to June, September to December), there are considerable differences 

between the simulated SMCs of the 1st and the 2nd layers in short periods after precipitation 

events.  

2) In dry period (July to August), there are significant differences between the simulated SMCs 

of the 3rd and the 4th layers. 

3) In the transition time of dry period and rain period (September and October), the differences 

of simulated SMCs in the 1st, the 2nd, and the 3rd layers vanish quickly while the differences 

in the 4th layer vanish slowly.  

4) In four layers, SMCs simulated with FUSED-2 data are always higher than those simulated 

with other precipitation inputs.  
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Figure 5.36 Spatial average of simulated soil moisture contents of the 1st, 2nd, 3rd and 4th layer (SMC1, SMC2, SMC3 

and SMC4) over ALDW2 watershed in 2004 with NLDAS-2, RADAR, FUSED-1, FUSED-2 and FUSED-3 

precipitation inputs. The unit of soil moisture is volumetric ratio (m3/m3). 

 

In ALPI3 watershed (Figure 5.37), we have the following findings: 

1) From July to the end of the year, there were no heavy precipitation events to form flood 

peaks. There are considerable differences between simulated SMCs in four layers. 

2) Especially, the SMCs simulated with NLDAS-2 data are significantly higher than those 

simulated with other precipitation data.  



 194 

 

Figure 5.37 Spatial average of simulated soil moisture contents of the 1st, 2nd, 3rd and 4th layer (SMC1, SMC2, SMC3 

and SMC4) over ALPI3 watershed in 2004 with NLDAS-2, RADAR, FUSED-1, FUSED-2 and FUSED-3 

precipitation inputs. The unit of soil moisture is volumetric ratio (m3/m3). 

 

In BAKI3 watershed (Figure 5.38), we have the following findings: 

1) From July to September is the dry period of 2004. The differences between simulated 

hydrographs are very small. But considerable differences between simulated SMCs can be 

found in the 3rd layer. 

2) In November and December, the time period that the 3rd and the 4th layers are getting wet, 

there are significant differences between the simulated SMCs in these two layers.  
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Figure 5.38 Spatial average of simulated soil moisture contents of the 1st, 2nd, 3rd and 4th layer (SMC1, SMC2, SMC3 

and SMC4) over BAKI3 watershed in 2004 with NLDAS-2, RADAR, FUSED-1, FUSED-2 and FUSED-3 

precipitation inputs. The unit of soil moisture is volumetric ratio (m3/m3). 

 

In BSNK2 watershed (Figure 5.39), we have the following findings: 

1) August and September are the dry period of 2004. There are significant differences between 

the SMCs in four layers, especially in the 3rd and the 4th layer. 

2) From October to December, the 3rd and the 4th layer are getting wet. There are significantly 

differences between simulated SMCs.  
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Figure 5.39 Spatial average of simulated soil moisture contents of the 1st, 2nd, 3rd and 4th layer (SMC1, SMC2, SMC3 

and SMC4) over BSNK2 watershed in 2004 with NLDAS-2, RADAR, FUSED-1, FUSED-2 and FUSED-3 

precipitation inputs. The unit of soil moisture is volumetric ratio (m3/m3). 

 

In CLAI2 watershed (Figure 5.40), we have the following findings: 

1) There are significant differences between the simulated SMCs in the 1st, the 2nd and the 3rd 

layer. Even though NLDAS-2, FUSED-2 and FUED-3 data have close NSEs in 2004, 

differences of SMCs simulated with them are still considerable.  

2) The differences of SMCs are more significant in dry down period of soil moistures.  
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Figure 5.40 Spatial average of simulated soil moisture contents of the 1st, 2nd, 3rd and 4th layer (SMC1, SMC2, SMC3 

and SMC4) over CLAI2 watershed in 2004 with NLDAS-2, RADAR, FUSED-1, FUSED-2 and FUSED-3 

precipitation inputs. The unit of soil moisture is volumetric ratio (m3/m3). 

 

In CRWI3 watershed (Figure 5.41), we have the following findings: 

1) Significant differences between simulated SMCs can be found in the 1st and the 2nd layer 

during the dry down periods of soil moisture, e.g. September. 

2) Significant differences between simulated SMCs can be found in the 3rd and 4th layer during 

the wetting period of soil moisture, e.g. November and December.   
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Figure 5.41 Spatial average of simulated soil moisture contents of the 1st, 2nd, 3rd and 4th layer (SMC1, SMC2, SMC3 

and SMC4) over CRWI3 watershed in 2004 with NLDAS-2, RADAR, FUSED-1, FUSED-2 and FUSED-3 

precipitation inputs. The unit of soil moisture is volumetric ratio (m3/m3). 

 

In CYCK2 watershed (Figure 5.42), we have the following findings: 

1) Significant differences between simulated SMCs can be found in the 1st, 2nd, 3rd, and 4th 

layers, especially in the 3rd and 4th layer during the period of July, August and September.  

2) In particular, the simulated SMCs in the 4th layer with FUSED-2 data are significantly higher 

than others during the period from July to November.  
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Figure 5.42 Spatial average of simulated soil moisture contents of the 1st, 2nd, 3rd and 4th layer (SMC1, SMC2, SMC3 

and SMC4) over CYCK2 watershed in 2004 with NLDAS-2, RADAR, FUSED-1, FUSED-2 and FUSED-3 

precipitation inputs. The unit of soil moisture is volumetric ratio (m3/m3). 

 

In DBVO1 watershed (Figure 5.43), we have the following findings: 

1) Significant differences between simulated SMCs can be found in the 1st, the 2nd, the 3rd and 

the 4th layers, especially during the period from July to December. 

2) For most of the time, the SMCs simulated with FUSED-2 data are considerably higher than 

others, especially in the 3rd layer. 
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Figure 5.43 Spatial average of simulated soil moisture contents of the 1st, 2nd, 3rd and 4th layer (SMC1, SMC2, SMC3 

and SMC4) over DBVO1 watershed in 2004 with NLDAS-2, RADAR, FUSED-1, FUSED-2 and FUSED-3 

precipitation inputs. The unit of soil moisture is volumetric ratio (m3/m3). 

 

In ELRP1 watershed (Figure 5.44), we have the following findings: 

1) Significant differences between simulated SMCs can be found in the 1st, the 2nd, the 3rd and 

the 4th layers, especially the 3rd and the 4th layers. 

2) In the 3rd and the 4th layers, simulated SMCs with FUSED-2 data are significantly higher 

than others in the wetting periods of soil moisture. 
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Figure 5.44 Spatial average of simulated soil moisture contents of the 1st, 2nd, 3rd and 4th layer (SMC1, SMC2, SMC3 

and SMC4) over ELRP1 watershed in 2004 with NLDAS-2, RADAR, FUSED-1, FUSED-2 and FUSED-3 

precipitation inputs. The unit of soil moisture is volumetric ratio (m3/m3). 

 

In FDYO1 watershed (Figure 5.45), we have the following findings: 

1) Significant differences between simulated SMCs can be found in in the 1st, the 2nd, the 3rd 

and the 4th layers, especially the 2nd, the 3rd and the 4th layers. 

2) In the 2nd and the 3rd layers, SMCs simulated with FUSED-2 data are significantly higher 

than others in the dry down periods of soil moisture. In the 4th layer, SMCs simulated with 

FUSED-2 data are significantly higher than others in the wetting period of soil moisture, e.g. 

December.  
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Figure 5.45 Spatial average of simulated soil moisture contents of the 1st, 2nd, 3rd and 4th layer (SMC1, SMC2, SMC3 

and SMC4) over FDYO1 watershed in 2004 with NLDAS-2, RADAR, FUSED-1, FUSED-2 and FUSED-3 

precipitation inputs. The unit of soil moisture is volumetric ratio (m3/m3). 

 

In KINT1 watershed (Figure 5.46), we have the following findings: 

1) Even though the simulated hydrographs with NLDAS-2, RADAR, FUSED-1 and FUSED-3 

are very close, considerable differences still exist between SMCs simulated with these five 

precipitation inputs, especially during the period from July to November.  



 203 

 

Figure 5.46 Spatial average of simulated soil moisture contents of the 1st, 2nd, 3rd and 4th layer (SMC1, SMC2, SMC3 

and SMC4) over KINT1 watershed in 2004 with NLDAS-2, RADAR, FUSED-1, FUSED-2 and FUSED-3 

precipitation inputs. The unit of soil moisture is volumetric ratio (m3/m3). 

 

In NHSO1 watershed (Figure 5.47), we have the following findings: 

1) Significant differences between simulated SMCs can be found in the 1st, the 2nd, the 3rd and 

the 4th layers, especially the 3rd and the 4th layers. 

2) In the 4th layer, SMCs simulated with FUSED-2 data are higher than others during most time 

of the year.  
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Figure 5.47 Spatial average of simulated soil moisture contents of the 1st, 2nd, 3rd and 4th layer (SMC1, SMC2, SMC3 

and SMC4) over NHSO1 watershed in 2004 with NLDAS-2, RADAR, FUSED-1, FUSED-2 and FUSED-3 

precipitation inputs. The unit of soil moisture is volumetric ratio (m3/m3). 

 

In PSNW2 watershed (Figure 5.48), we have the following findings: 

1) The SMCs simulated with RADAR data are significantly lower than others in the 4 layers 

during most time of the year. No more analyses are needed in this watershed since fused 

precipitation data have poor reliability than NLDAS-2 data and RADAR severely 

underestimates precipitation.  



 205 

 

Figure 5.48 Spatial average of simulated soil moisture contents of the 1st, 2nd, 3rd and 4th layer (SMC1, SMC2, SMC3 

and SMC4) over PSNW2 watershed in 2004 with NLDAS-2, RADAR, FUSED-1, FUSED-2 and FUSED-3 

precipitation inputs. The unit of soil moisture is volumetric ratio (m3/m3). 

 

In SERI3 watershed (Figure 5.49), we have the following findings: 

1) Considerable differences between SMCs simulated with NLDAS-2, RADAR, FUSED-1 and 

FUSED-3 data can be found in four layers even though the simulated hydrographs with these 

four precipitation inputs are equally good. 
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Figure 5.49 Spatial average of simulated soil moisture contents of the 1st, 2nd, 3rd and 4th layer (SMC1, SMC2, SMC3 

and SMC4) over SERI3 watershed in 2004 with NLDAS-2, RADAR, FUSED-1, FUSED-2 and FUSED-3 

precipitation inputs. The unit of soil moisture is volumetric ratio (m3/m3). 

 

Despite the differences obtained at each watershed, common features of simulated SMCs 

can be found in all watersheds. For different soil layers, the influences of precipitation data 

fusion on simulated SMCs vary at different time scales. For the 1st layer, most influences are just 

kept in the dry-down period of SMC. However, for the other three layers, most differences from 

precipitation data fusion are getting smaller in the dry-down period and those differences will 

vanish once all simulated SMCs reach to the wilting point of soil. Precipitation event may also 

sweep out the differences made by precipitation data fusion. If precipitation is heavy enough to 

make the 1st soil layer saturated, the differences of simulated SMCs will vanish too. For deeper 

layers, the time scales of influences are getting longer. This is because impacts of precipitation 
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data fusion can be accumulated in deeper layers. Therefore, seasonal patterns are shown in the 

differences of SMC in the 4th layer.  

 

As shown in Table 5.16, in terms of streamflow simulation, precipitation data fusion 

makes essential changes in some experimental watersheds but makes negligible changes in some 

other experimental watersheds. ALDW2 watershed and SERI3 watershed are selected as the 

representatives of watersheds with essential changes and negligible changes. Figure 5.50 and 

Figure 5.51 show snapshots of the simulated SMCs in the four layers of Noah LSM with the five 

precipitation inputs in these two watersheds. The time of the two snapshots is 08/01/2004 17:00 

(UTC). For both watersheds, there are a long dry-down periods before this time. Therefore, the 

spatial patterns of simulated SMCs have smaller differences than average levels. For ALDW2 

watershed, differences between spatial patterns can be seen from simulated SMCs of the four 

layers. The differences are getting larger from the top later to the bottom layer. In addition, it 

also clearly shows that the spatial patterns of SMCs simulated with NLDAS-2 data and RADAR 

data have been mingled into the spatial patterns of SMCs simulated with fused precipitation data. 

For SERI3 watershed, the differences are smaller than those in ALDW2 watershed, but are still 

noticeable. The findings from Figure 5.50 and Figure 5.51 indicate that the spatial pattern and the 

average magnitude of RADAR data also can be improved through fusing NLDAS-2 precipitation 

data. 
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In summary, we include that significant differences of simulated SMCs can be obtained 

with fused precipitation data compared with those simulated with NLDAS-2 data or RADAR 

data. In other words, we can improve SMC simulations if the corresponding NSEs of fused 

precipitation data are higher than the NSE of NLDAS-2 or RADAR data.    

 

 

Figure 5.50 Simulated soil moisture contents of the 1st, 2nd, 3rd and 4th layer of Noah LSM in ALDW2 watershed at 

08/01/2004 17:00:00 (UTC time) with NLDAS-2, RADAR, FUSED-1, FUSED-2 and FUSED-3 precipitation 

inputs. From top to bottom, the four rows are corresponding to the four layers; from left to right, the five columns 

are corresponding to the five precipitation inputs.  
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Figure 5.51 Simulated soil moisture contents of the 1st, 2nd, 3rd and 4th layer of Noah LSM in SERI3 watershed at 

08/01/2004 17:00:00 (UTC time) with NLDAS-2, RADAR, FUSED-1, FUSED-2 and FUSED-3 precipitation 

inputs. From top to bottom, the four rows are corresponding to the four layers; from left to right, the five columns 

are corresponding to the five precipitation inputs.  

 

5.5.3 Assessment with evapotranspiration simulations  

The assessment of precipitation data fusion with evapotranspiration simulation is 

conducted using the same assessment strategy for soil moisture simulation. Noah LSM simulates 

a number of evaporation and transpiration terms, including evaporation from the intercepted 

water by canopy, sublimation of snow, direct evaporation from bare soil, and transpirations from 
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soil layers of root zone. In this section, we will assess the actual evapotranspiration (ETA), 

which is the sum of all the above-mentioned terms. If there are considerable differences between 

simulated ETAs, either over time or over space, we believe that the precipitation data with the 

highest NSE make effective improvements in ETA compared with other precipitation data.  

 

The differences between simulated ETA over time is demonstrated in Figure 5.52 to 

Figure 5.65, which plot the spatial average of daily ETA series over the 14 experimental 

watersheds during the time of February, May, August, and November of 2004. Generally, 

considerable differences of simulated ETA can be found in each of the 14 plots. For the EAT 

series in May and August, the differences are seem to be small in most of plots. However, the 

differences are actually larger than the differences in February and November because the ranges 

of the Y-axes in the subplots of May and August are much lager than those in the subplots of 

February and November. In conclusion, considerable differences between simulated ETA series 

can be found in all of the 14 experimental watersheds including those with negligible streamflow 

improvements made through precipitation data fusion.  

 

Once again, as the representatives of watersheds with essential improvements in 

streamflow simulation and watersheds with negligible improvements in streamflow simulation, 

ALDW2 watershed and SERI3 watershed are selected to run Noah LSM at 1/32 degree 

resolution. Simulations are conducted in square regions, which enclose these two watersheds 

respectively. Snapshots of simulated ETA on 08/17/2004 are given in Figure 5.66 and Figure 

5.67 for ALDS2 site and SERI3 site respectively. The times marked on the snapshots are UTC 

time while the daylight saving time of these two sites are four hours after UTC times. 
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Considerable differences can be found between the spatial patterns of simulated ETA in both 

watersheds. For both sites, there are no precipitation events since at least 24 hours ahead 

08/17/2004. This means that the differences between the spatial patterns of simulated ETA is 

caused by the differences of simulated SMCs due to precipitation fusion. In other words, there 

are always differences between simulated ETAs if simulated SMCs are different. Due to the long 

memory of soil moisture contents on precipitation inputs, the differences between precipitation 

data also have long-time influences on simulated ETA.  

 

In summary, considerable differences have been found in simulated ETA time series 

over the 14 experimental watersheds and in the spatial patterns of ETA snapshots over space in 

ALDW2 and SERI3 watersheds. Based on these findings, it is reasonable to infer that effective 

improvements of ETA simulation can be made through precipitation data fusion.  

 

 

Figure 5.52 Spatial average of daily total evapotranspiration simulated by Noah LSM with NLDAS-2, 

RADAR, FUSED-1, FUSED-2 and FUSED-3 precipitation inputs over ALDW2 watershed during February, May, 

August and November of 2004. The Unit is W/m3.  
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Figure 5.53 Spatial average of daily total evapotranspiration simulated by Noah LSM with NLDAS-2, RADAR, 

FUSED-1, FUSED-2 and FUSED-3 precipitation inputs over ALPI3 watershed during February, May, August and 

November of 2004. The Unit is W/m3.  

 

Figure 5.54 Spatial average of daily total evapotranspiration simulated by Noah LSM with NLDAS-2, RADAR, 

FUSED-1, FUSED-2 and FUSED-3 precipitation inputs over BAKI3 watershed during February, May, August and 

November of 2004. The Unit is W/m3. 
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Figure 5.55 Spatial average of daily total evapotranspiration simulated by Noah LSM with NLDAS-2, RADAR, 

FUSED-1, FUSED-2 and FUSED-3 precipitation inputs over BSNK2 watershed during February, May, August and 

November of 2004. The Unit is W/m3.  

 

Figure 5.56 Spatial average of daily total evapotranspiration simulated by Noah LSM with NLDAS-2, RADAR, 

FUSED-1, FUSED-2 and FUSED-3 precipitation inputs over CLAI2 watershed during February, May, August and 

November of 2004. The Unit is W/m3.  
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Figure 5.57 Spatial average of daily total evapotranspiration simulated by Noah LSM with NLDAS-2, RADAR, 

FUSED-1, FUSED-2 and FUSED-3 precipitation inputs over CRWI3 watershed during February, May, August and 

November of 2004. The Unit is W/m3.  

 

Figure 5.58 Spatial average of daily total evapotranspiration simulated by Noah LSM with NLDAS-2, RADAR, 

FUSED-1, FUSED-2 and FUSED-3 precipitation inputs over CYCK2 watershed during February, May, August and 

November of 2004. The Unit is W/m3.  
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Figure 5.59 Spatial average of daily total evapotranspiration simulated by Noah LSM with NLDAS-2, RADAR, 

FUSED-1, FUSED-2 and FUSED-3 precipitation inputs over DBVO1 watershed during February, May, August and 

November of 2004. The Unit is W/m3.  

 

Figure 5.60 Spatial average of daily total evapotranspiration simulated by Noah LSM with NLDAS-2, RADAR, 

FUSED-1, FUSED-2 and FUSED-3 precipitation inputs over ELRP1 watershed during February, May, August and 

November of 2004. The Unit is W/m3.  
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Figure 5.61 Spatial average of daily total evapotranspiration simulated by Noah LSM with NLDAS-2, RADAR, 

FUSED-1, FUSED-2 and FUSED-3 precipitation inputs over FDYO1 watershed during February, May, August and 

November of 2004. The Unit is W/m3.  

 

Figure 5.62 Spatial average of daily total evapotranspiration simulated by Noah LSM with NLDAS-2, RADAR, 

FUSED-1, FUSED-2 and FUSED-3 precipitation inputs over KINT1 watershed during February, May, August and 

November of 2004. The Unit is W/m3.  
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Figure 5.63 Spatial average of daily total evapotranspiration simulated by Noah LSM with NLDAS-2, RADAR, 

FUSED-1, FUSED-2 and FUSED-3 precipitation inputs over NHSO1 watershed during February, May, August and 

November of 2004. The Unit is W/m3.  

 

Figure 5.64 Spatial average of daily total evapotranspiration simulated by Noah LSM with NLDAS-2, RADAR, 

FUSED-1, FUSED-2 and FUSED-3 precipitation inputs over PSNW2 watershed during February, May, August and 

November of 2004. The Unit is W/m3.  
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Figure 5.65 Spatial average of daily total evapotranspiration simulated by Noah LSM with NLDAS-2, RADAR, 

FUSED-1, FUSED-2 and FUSED-3 precipitation inputs over SERI3 watershed during February, May, August and 

November of 2004. The Unit is W/m3.  

5.6 SUMMARY AND CONCLUSIONS  

Precipitation is the most important input for hydrological simulation. The reliability of 

hydrological simulations is directly related to the quality of precipitation data. In this study, we 

have extensively assessed the improvements made by precipitation data fusion in hydrological 

simulations of 14 experimental watersheds in Ohio River Basins with Noah LSM. Due to the 

features of total amount and spatial pattern, NLDAS-2 data (at 1/8 degree resolution) and 

NEXRAD MPE data (at 4km resolution and resampled into 1/32 degree resolution, called 

RADAR data) are fused to derive three precipitation data products. Moreover, Multiscale 
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Kalman Smoother (MKS) is used in precipitation data fusion because it is good at dealing with 

multi-resolution data.  

 

Figure 5.66 Simulated hourly total evapotranspiration by Noah LSM with NLDAS-2, RADAR, FUSED-1, FUSED-

2 and FUSED-3 precipitation inputs in ALDW2 site at 14:00, 17:00, 20:00 and 23:00 of 08/17/2004 (UTC time).  

 

Considerable differences have been found between NLDAS-2 data and RADAR data in 

terms of the recording of precipitation events, spatial patterns and mean magnitudes of 

precipitation. To be more specific, essential improvements of streamflow simulation have been 

made through precipitation data fusion in 21 watershed/year over 42 watershed/year. In 

improving NLDAS-2 data with RADAR data (at 1/32 degree resolution), the mean amount of 

RADAR data plays a bigger role than the spatial pattern. In addition, 19 watershed/year have 
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negligible changes in the streamflow simulation using fused precipitation data. There are two 

main reasons for negligible changes. One is that NLDAS-2 data and/or RADAR data are already 

very good. There is very limited room for further improvements. For example, BAKI3 in 2004 

and 2005, KINT1 in 2003, 2004, and 2005, and SERI3 in 2004 and 2005 belong to this category. 

The other reason is that NLDAS-2 data and/or RADAR data have poor quality. For example, 

BAKI3 in 2003, CLAI2 in 2004 and 2005, CYCK2 in 2003 and SERI3 in 2003. There are only 

two watershed/year that have deteriorations. The watershed/year of CLAI2 in 2003 has slight 

deterioration, which is probably resulted from the poor reliability of RADAR data. The 

watershed/year of PSNW2 in 2005 has significant deterioration because of the very poor 

reliability of RADAR data. According to these findings, it can be concluded that precipitation 

data fusion is a statistically effective method to improve streamflow simulation.  

 

The assessments with soil moisture simulation and evapotranspiration simulation are 

conducted with the same strategy. With the five precipitation inputs, simulated SMCs and ETAs 

have been compared over time (e.g. the spatial average SMC and ETA over the 14 experimental 

watersheds) and over spaces (e.g. ALDW2 site and SERI3 site). Considerable differences can be 

found between simulated SMCs and ETA both in terms of time series and spatial patterns. Under 

the assumption that once a precipitation input generates better hydrographs (i.e. larger NSEs), the 

SMCs and ETA simulated with this precipitation input are better than those simulated with other 

precipitation inputs, improvements of SMCs and ETA simulations can also be made by 

precipitation data fusion.  
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Figure 5.67 Simulated hourly total evapotranspiration by Noah LSM with NLDAS-2, RADAR, FUSED-1, 

FUSED-2 and FUSED-3 precipitation inputs in SERI3 site at 14:00, 17:00, 20:00 and 23:00 of 08/16/2004 (UTC 

time) 

 

In general, this study shows that precipitation data fusion is a statistically effective 

approach to improve hydrological simulation. There are good chances that the simulations of 

streamflow, soil moisture and evapotranspiration can be improved by using fused precipitation 

data, especially for the watersheds in which either NLDAS-2 data or RADAR data are not very 

reliable. However, this study has the following two limitations. First, assessments with soil 

moistures and evapotranspiration have not been conducted with direct measurements. Future 

work is needed when accurate spatial measurements of soil moisture contents and 
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evapotranspiration are available. Second, Noah LSM may have relatively poor performance in 

simulating the accumulation or melting of snow since it affects the assessments of precipitation 

data fusion in cold season, especially for watersheds with relatively steep and very steep 

topographies. In the future, we may either improve the description of snow process in Noah LSM 

or use other LSMs with better description of now process to assess the effectiveness of 

precipitation data fusion in hydrological simulations.  
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6.0  ASSESSMENT OF SOIL MOISTURE DATA ASSIMILATION ON 

HYDROLOGICAL SIMULATIONS 

6.1 INTRODUCTION 

At watershed scale, hydrological cycle includes the movements of water in atmosphere, 

vegetation, soil and river channels. These movements are interconnected by soil hydrology. 

Basically, soil hydrology includes the descriptions of water and heat fluxes within soil column 

and related boundary and initial conditions. In most of hydrological models and land surface 

models (LSMs), soil columns are typically divided into a number of layers, which are designed 

to give quick and slow responses of soil columns to atmospheric inputs. There are many state 

variables related to soil layers, such as soil moisture contents (SMCs) and soil layer temperatures. 

However, SMCs are the most important state variables, which impact runoff generation, 

infiltration, and evapotranspiration. Taking Noah LSM (Chen et al. 1996; Chen et al. 1997; 

Koren et al. 1999; Chen and Dudhia 2001; Ek et al. 2003) as an example, surface runoff and 

infiltration are functions of precipitation and total SMC in soil column. Baseflow is a function of 

the SMC of the bottom layer of soil column. Given atmospheric inputs, evapotranspiration is also 

a function of SMCs in soil layers of root zone. In addition, SMCs of the current time step also 

have influences on the SMCs and other state variables of the next time step. Therefore, SMCs are 
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important states of hydrological system. The accuracy of simulated SMCs directly influences 

other hydrological simulations. 

 

For hydrological simulations conducted with LSMs, the accuracy of SMCs is under 

influence. Firstly, atmospheric inputs, especially precipitation, have significant influences on the 

simulation of SMCs. Results of Chapter 5.0 show that precipitation affects not only the 

magnitudes of simulated SMCs but also the spatial patterns of simulated SMCs. Because errors 

and uncertainties are unavoidable in the measurements made by meteorological stations, weather 

radars and weather satellites, atmospheric data are usually erroneous, which directly introduces 

errors in simulated SMCs with LSMs. The second aspect is the structure and the parameters of 

LSMs. For example, Richards’ equation governs soil hydrology in most of LSMs. In order to 

solve the equation, LSMs need to formulate the relationship between SMC and soil water 

potential. There are many empirical parameterization of this relationship, such as a Brooks-

Corey equation (Brooks and Corey 1966) and van Genuchten’s equation (van Genuchten 1980). 

Such parameterization brings a considerable number of parameters to LSMs. Even though some 

of them can be associated with physical attributes of soil types (Cosby et al. 1984), it is still hard 

to accurately estimate their values due to the third factor, the heterogeneity of land surface 

characteristics within the computational unit of LSM, which is usually called a grid. Generally, 

LSMs associate land surface characteristics with soil types and vegetation types. For example, 

LSMs, e.g. Noah LSM and VIC LSM (Liang et al. 1994; Liang and Xie 2001; Liang and Xie 

2003), assume that there is only one soil type within a grid. Because of the large size of LSM 

grid, it is impossible to have only one soil type over such a big area. Therefore, the soil type of 

the LSM grid is a kind of effective soil type or the dominant soil type in the grid. No matter what 
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the situation is, the parameters associated with the soil type are hard to effectively describe the 

heterogeneity related to soil. Due to such simplification of LSMs and the heterogeneity of land 

surface characteristics within LSM grid, errors are unavoidable when using SMCs simulated 

with LSMs to represent the average status of soil moisture at the scale of LSM grid. To sum up, 

errors and uncertainties exist in simulated SMCs because of these three reasons. The magnitudes 

of these errors and uncertainties are related to the errors in atmospheric data, model structures, 

model parameters, and the heterogeneity of land surface characteristics within LSM grid. In 

order to obtain more reliable hydrological simulations, simulation of SMCs should be first 

improved.  

 

In recent years, more and more satellite derived soil moisture datasets, such as SSM/I 

data (Drusch et al. 1999), TMI data (Cashion et al. 2005) and AMSR-E data (Crow et al. 2001), 

are becoming available for hydrological applications. These data are indirect measurement of 

near surface SMC. The magnitudes of SMCs are derived based on the empirical relationships 

between satellite-measured brightness temperatures and SMC in the near-surface soil layer. 

Satellites measure near surface soil moisture over a large spatial area, which provides new 

insights about the magnitudes and the spatial patterns of SMC. However, there are also a number 

of limitations of satellite-derived data. The first is uncertainties in the data, which particularly 

come from empirical relationships used in data derivation. In addition, there are also 

uncertainties caused by unmodeled reflection, scattering and absorption of microwave by 

atmosphere and vegetation. The second is the shallow depth of satellite measurements, which 

usually ranges from 0 to 5 cm. To date, no satellite detects soil moisture contents in deep layers. 

The third is the coarse spatial resolution of satellite measurements. For examples, SSM/I has a 
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resolution of 69×43 km2 at 19 GHz; TMI has a resolution of 63×37 km2 at 10.65 GHz; and 

AMSR-E has a resolution of 75×43 km2 at 6.925 GHz (C-band). These resolutions are usually 

larger than those of hydrological simulations. Due to these limitations, satellite data are not ready 

to be directly applied as inputs of hydrological simulation.  

 

Data assimilation is a technique to improve model simulation with measurements directly 

or indirectly related to state variables. Both the model simulation and the measurements are 

allowable to come with errors and uncertainties. Typically, data assimilation has two consecutive 

steps. The first step is data fusion, which derives more reliable estimates of model states based 

on model-simulated state variables and related measurements. The second step is model 

simulation with the fused estimates of model states as initial conditions. Through these two steps, 

model simulation can be improved by assimilating measurements. Data assimilation technique, 

therefore, provides a chance to improve hydrological simulations with satellite-derived soil 

moisture data.  

 

Sequential data assimilation is a simple and effective data assimilation method, which 

improves model simulation by sequentially assimilating measurements. Kalman Filter (KF) 

derived algorithms, such as Extended Kalman Filter (EKF) and Ensemble Kalman Filter (EnKF), 

are algorithms that are widely used in sequential data assimilation (Reichle et al. 2002; Aubert et 

al. 2003; Francois et al. 2003; Reichle and Koster 2003). Especially, EnKF algorithm has been 

extensively used in soil moisture data assimilation due to its strength of dealing with the 

nonlinearity of model prediction (Zhou et al. 2006; Montaldo et al. 2007). Essentially, KF, EKF 

and EnKF are data fusion algorithms requiring model simulations and measurements at the same 
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spatial resolution. If measurements are not at the spatial resolution of model simulation, 

measurements should be resampled into the spatial resolution of model simulation, which 

introduces extra errors and uncertainties. Multiscale Kalman Smoother (MKS) is another kind of 

data fusion algorithm specializing at fusing data of multiple spatial resolutions (Chou et al. 1993; 

Chou et al. 1994; Willsky 2002). Due to this feature, MKS algorithm has been extensively used 

in many fields, for example, signal processing (Nounou 2006), altimetry data fusion (Slatton et al. 

2001; Slatton et al. 2002), precipitation data fusion (Gorenburg et al. 2001; de Vyver and Roulin 

2009), and data assimilation (Parada and Liang 2004; Parada and Liang 2008). In terms of soil 

moisture data assimilation, if the spatial resolutions of measurement and model simulation are 

different, MKS algorithm is a good choice to avoid errors and uncertainties brought by data 

resampling.  

 

With respect to applications in hydrological simulation, soil moisture data assimilation is 

at the starting phase. Most of existing studies focus on the changes of simulated water and 

energy fluxes made by data assimilation at single points (Parada and Liang 2004; Zhou et al. 

2006; Huang et al. 2008). Very few studies have directly investigated the impacts of data 

assimilation on streamflow simulation. For the purpose of improving hydrological forecast, it is 

necessary to systematically investigate the impacts of soil moisture data assimilation on 

hydrological simulation at watershed scale, especially for the streamflow simulation. To increase 

the significance of the operational hydrological forecast, such investigations should be conducted 

in multiple watersheds with operational LSM, widely-used forcing data and satellite-measure soil 

moisture data.  
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In this study, we first assimilate AMSR-E near surface soil moisture data hydrological 

simulation with Noah LSM and then assess the impacts of soil moisture data assimilation on 

hydrological simulation through multiple experiments in 14 watersheds. The AMSR-E data are 

provided by Goddard Earth Sciences Data and Information Services Center. They are averaged 

daily soil moisture contents in near surface soil layer, which roughly corresponds to the first 

layer of Noah LSM. In the assessment, we use NLDAS-2 forcing data, plus RADAR, FUSED-1, 

FUSED-2 and FUSED-3 precipitation data to simulate hydrological processes with Noah LSM. 

Hydrological simulations are conducted at 1/8 degree, which is the spatial resolution of 

atmospheric inputs. However, the spatial resolution of the AMSR-E data is 1/4 degree, which is 

different from model simulation. Instead of resampling AMSR-E data to 1/8 degree, we use 

MKS algorithm in the assessment.  

 

In the rest of this chapter, we will describe experiment design in section 6.2. And then, 

features of the AMSR-E data are explored in section 6.3. The essential part of this study, 

assessments of soil moisture data assimilation, will be discussed in section 6.4. In the end, 

findings of this study will be summarized in section 6.5.  
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6.2 EXPERIMENT DESIGN 

6.2.1 Experimental watersheds 

Fourteen experimental watersheds are selected to assess the impact of soil moisture data 

assimilation on hydrological simulations. Locations of these watersheds are illustrated in Figure 

5.2. Areas, elevation ranges, topographies and descriptions are listed in Table 5.1. These 14 

experimental watersheds with flat, relatively steep, steep and very steep topographies are evenly 

distributed in the Ohio River Basin, which ensures the applicability of the findings of this study 

in the Ohio River Basin. More detailed descriptions of these experimental watersheds are 

provided in Chapter 5.0.  

6.2.2 Data assimilation experiments 

In this study, data assimilation includes two essential operations: model simulation and 

data fusion of measured and simulated near surface soil moisture content. Model simulations are 

conducted at hourly time step with Noah LSM and NLDAS-2 forcing data, plus RADAR, 

FUSED-1, FUSED-2 and FUSED-3 precipitation inputs. Totally, there are five precipitation 

inputs together with the precipitation data of NLDAS-2 forcing. As described in Figure 3.1, there 

are four soil layers in Noah model while the near surface layer has a thickness of 10 cm. For each 

watershed, there are five data assimilation experiments, which correspond to NLDAS-2, 

RADAR, FUSED-1, FUSED-2 and FUSED-3 precipitation inputs respectively. These five 

precipitation inputs represent different scenarios of precipitation data. Model simulations of all 
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experiments in this study use the same parameters and initial conditions of the study in chapter 

5.0 , which makes the results of this study comparable to those of the study in chapter 5.0 . 

 

Noah LSM simulates two kinds of soil moisture contents, namely SMC and SH2O. SMC 

is the total soil moisture content in a soil layer, which is the general concept of soil moisture 

content. SH2O is the liquid part of SMC. Because the dielectric constant of ice is close to the 

dielectric constant of soil, the AMSR-E data only recorded the liquid part of SMC. Therefore, 

data assimilation of near surface soil moisture actually just works on SH2O instead of SMC. In 

consideration of the considerable missing values in AMSR-E data (as shown in section 6.3), data 

assimilations are only conducted at the day when the missing percentage of the AMSR-E data is 

no more than 25%. Specifically, data assimilation includes the following six steps: 

Step 1: Step 1 is to compute the daily average value of liquid soil moisture content 

( 2SH O ) in the near surface layer. 

 
23
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24 n

n
SH O SH O

− −

=

= ∑     (6-1) 

where 2 nSH O−  is the liquid soil moisture content in the near surface soil layer at the thn  hour of 

the day.  

Step 2: Step 2 is to fuse 2SH O
−

 with the daily AMSR-E near surface soil moisture data, 

while the fused soil moisture content is denoted as 2SH O
+

. Data fusion is based on the MKS 

algorithm. Details of MKS algorithms are provided in chapter 5. As discussed in Chapter 4 and 

Chapter 5, the estimate of areal mean of state variables is essential to multiscale data fusion with 

the MKS algorithm. In the experiments of this study, we estimate the areal mean of SH2O in 

near surface layer as  
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 ( ) ( ) ( )AMSR-E0 0.5 2 2X mean SH O mean SH O− = × +  
, (6-2) 

which indicates that the mean of fused SH2O in near surface soil layer will be the average of the 

mean of simulated daily SH2O and the mean of AMSR-E data.  

Step 3: Step 3 is to compute update coefficient as  

 232
2

SH OCoef
SH O

−

+= . (6-3) 

Step 4: Step 4 is to update the liquid soil moisture content of the near surface soil layer 

 ( )23 232 2 2 2SH O SH O Coef SH O SH O
+ −+ −= + × − . (6-4) 

To ensure that 232SH O+  is in a proper range for Noah LSM, validation check of 232SH O+  

is conducted for each grid. If 232SH O+  is larger than the porosity of soil type of the grid ( sθ ), 

then we set 232 sSH O θ+ = , whereas if 232SH O+  is smaller than the wilting point of the soil type of 

the grid ( wθ ), we set 232 sSH O θ+ = .  

Step 5: Step 5 is to update the total soil moisture content (SMC) of near surface layer. 

SH2O is part of SMC. Once SH2O is updated, SMC is updated correspondingly 

 23 23 23 23( 2 2 )SMC SMC SH O SH O+ − + −= + −  (6-5) 

Like step 4, validation check is also conducted for 23SMC+ . 

Step 6: Step 6 is to proceed the model simulation to the hour 0 of the next day while 

23SMC+ are 232SH O+  used as part of initial conditions.  

 

 



 232 

Through these steps, the AMSR-E data are assimilated into the hourly simulations with 

Noah LSM. By revising one of initial conditions, AMSR-E data influence simulated soil 

moisture contents, evapotranspiration and runoffs. In above descriptions, SH2O and SMC 

represent the liquid soil moisture content and the total soil moisture content in the near surface 

layer. In the rest part of this chapter, we abbreviate liquid soil moisture content and total soil 

moisture content as SH2O and SMC for notational convenience. In addition, we use subscripts 1, 

2, 3 and 4 to respectively represent the near surface, the second, the third and the bottom soil 

layer.  

6.3 ANALYSIS OF AMSR-E DATA 

6.3.1 Data missing and processing 

Data missing is a serious problem of the AMSR-E data. Figure 6.1 shows the cumulative 

missing percentages of the AMSR-E data during the period of 2003 to 2005 over the 14 

experimental watersheds. It can be seen that at least 20% of days have 75% - 100% missing 

values in AMSR-E data for all experimental watersheds. Data missing is especially serious in 

ALDW2, CYCK2, ELRP1 and PSNW2 watersheds, whose topographies are relatively steep, 

steep or very steep. Over a half of days have 50% to 100% missing in the AMSR-E data. Missing 

data are replaced with interpolated values before data assimilation. For a grid without valid 

value, if its neighboring grids have valid values at the same time, then the missing value of the 

grid is replaced by interpolating values of neighboring grids using inversed distances as weights. 

If all of its neighboring grids don’t have valid values, then the missing value of the grid is 
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interpolated with the values of the grid at previous and next time steps. However, if the values of 

the grid at the previous and the next time steps are invalid, then use the average of valid values in 

the watershed to replace the missing values of the grid.  

 

Figure 6.1 Cumulative missing percentage of AMSR-E data over the 14 experimental watersheds. 

 

The problem of data missing has significantly influences on data assimilation. When data 

missing exceeds certain extent, there is very limited information that can be added to model 

simulation. Additionally, the interpolations for the missing values also introduce extra errors and 

uncertainties into the AMSR-E data. Therefore, we only assimilate data in days whose missing 

percentages of the AMSR-E data are no more than 25%. Thus, data assimilation is conducted in 

less than 20% of days in ALDW2, CYCK2 and PSNW2 watersheds and less than 30% of days in 

ELRP1 watershed. For the rest of watersheds, data assimilation is conducted in more than 70% 

of days in the period of 2003 to 2005.  
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6.3.2 Magnitudes of the AMSR-E data 

In data assimilation, it is expected that some differences exist between the magnitudes of 

the AMSR-E data and model simulated SH2Os. Model simulations are improved if the AMSR-E 

data are more reliable than model simulations. Meanwhile, consistency is also expected between 

AMSR-E data and model simulated SH2Os since they describe the same status of near surface 

soil layer. If the differences between the AMSR-E data and model simulated SH2Os are too 

small, the impact of data assimilation on model simulation will be very limited. However, if the 

consistencies between the AMSR-E data and model simulated SH2Os are very poor, it may 

indicate that either the measurements or the model simulations are very unreliable.  

 

Figure 6.2 Scatter plots of the mean of AMSR-E data and the mean of daily liquid soil moisture data in near surface 

layer simulated by Noah LSM with NLDAS-2 precipitation data for the 14 experimental watersheds over the period 

of 2003 to 2005. In each plot, the dashed line is 1:1 line.   
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For analyzing the results of data assimilation, it is worthwhile investigating the 

relationship between the AMSR-E data and daily-averaged SH2Os simulated by Noah LSM with 

the five precipitation inputs. The scatter plots between the spatial average of the AMSR-E data 

and the spatial average of daily-averaged SH2O simulated with Noah LSM in the 14 

experimental watersheds are given in Figure 6.2 to Figure 6.6, which are corresponding to 

NLDAS-2, RADAR, FUSED-1, FUSED-2 and FUSED-3 precipitation inputs. In addition, the 

correlations between the spatial average of the AMSR-E data and the spatial average of daily-

averaged SH2O simulated with the five precipitation inputs are listed by year in Table 6.1 to 

Table 6.14 for the 14 experimental watersheds.  

 

 

Figure 6.3 Scatter plots of the mean of AMSR-E data and the mean of daily liquid soil moisture data in near surface 

layer simulated by Noah LSM with RADAR precipitation data for the 14 experimental watersheds over the period of 

2003 to 2005. In each plot, the dashed line is 1:1 line.   
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Figure 6.4 Scatter plots of the mean of AMSR-E data and the mean of daily liquid soil moisture data in near surface 

layer simulated by Noah LSM with FUSED-1 precipitation data for the 14 experimental watersheds over the period 

of 2003 to 2005. In each plot, the dashed line is 1:1 line.   

 

Figure 6.5 Scatter plots of the mean of AMSR-E data and the mean of daily liquid soil moisture data in near surface 

layer simulated by Noah LSM with FUSED-2 precipitation data for the 14 experimental watersheds over the period 

from 2003 to 2005. In each plot, the dashed line is 1:1 line.   



 237 

 

Figure 6.6 Scatter plots of the mean of AMSR-E data and the mean of daily liquid soil moisture data in near surface 

layer simulated by Noah LSM with FUSED-3 precipitation data for the 14 experimental watersheds over the period 

of 2003 to 2005. In each plot, the dashed line is 1:1 line. 

 

Two main findings can be summarized based on Figure 6.2 to Figure 6.6 and Table 6.1 to 

Table 6.14. The first is that consistency between the AMSR-E data and model simulated SH2Os 

is very poor. Except ALDW2 in 2003 (correlations>0.4), BSNK2 in 2005 (correlations>0.5), 

ELRP1 in 2003 (correlations>0.5), KINT1 in 2005 (correlations > 0.4) and PSNW2 in 2003 

(correlations>0.4), correlations in the rest experimental watersheds are far less than 0.5 for all the 

time and even a big number of them have correlations less than 0.0. This finding suggests that 

the AMSR-E data have poor agreements with Noah simulations in terms of average magnitudes 

of SH2O in the near surface soil layer over time. The second finding is that the spatial averages 

of AMSR-E data are mostly smaller than the spatial averages of daily-averaged SH2O simulated 
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with Noah LSM. As shown in Figure 6.2 to Figure 6.6, most scatter points are below the 1:1 line 

in most plots except those of ALDW2, ELRP1 and PSNW2 watersheds. This finding indicates 

that data assimilation may improve model simulation for experimental watersheds only if the 

precipitation data are lager than actual values. For ALDW2, ELRP1 and PSNW2 watersheds, the 

impacts of data assimilation are expected to be limited since there are small numbers of days 

with eligible satellite-measured soil moisture data.  

 

Table 6.1 Correlations between the average AMSR-E and the mean of daily-averaged liquid soil moisture content of 

the near surface layer simulated by Noah LSM with NLDAS-2, RADAR, FUSED-1, FUSED-2 and FUSED-3 

precipitation inputs in ALDW2 watershed. 

  NLDAS-2 RADAR FUSED-1 FUSED-2 FUSED-3 COUNT 

2003 0.460 0.417 0.426 0.416 0.421 54 

2004 -0.177 -0.165 -0.172 -0.180 -0.180 30 

2005 -0.242 -0.229 -0.233 -0.221 -0.234 45 

AVERAGE 0.014 0.008 0.007 0.005 0.002   

 

Table 6.2 Correlations between the average AMSR-E and the mean of daily-averaged liquid soil moisture content of 

the near surface layer simulated by Noah LSM with NLDAS-2, RADAR, FUSED-1, FUSED-2 and FUSED-3 

precipitation inputs in ALPI3 watershed. 

  NLDAS-2 RADAR FUSED-1 FUSED-2 FUSED-3 COUNT 

2003 0.006 0.015 -0.001 -0.058 -0.006 247 

2004 -0.154 -0.176 -0.180 -0.235 -0.174 264 

2005 0.303 0.299 0.294 0.247 0.291 251 

AVERAGE 0.052 0.046 0.038 -0.015 0.037   
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Table 6.3 Correlations between the average AMSR-E and the mean of daily-averaged liquid soil moisture content of 

the near surface layer simulated by Noah LSM with NLDAS-2, RADAR, FUSED-1, FUSED-2 and FUSED-3 

precipitation inputs in BAKI3 watershed. 

  NLDAS-2 RADAR FUSED-1 FUSED-2 FUSED-3 COUNT 

2003 0.143 0.162 0.145 0.113 0.132 251 

2004 -0.325 -0.320 -0.335 -0.353 -0.338 265 

2005 0.240 0.252 0.237 0.194 0.226 256 

AVERAGE 0.019 0.032 0.016 -0.015 0.007   

 

 

Table 6.4 Correlations between the average AMSR-E and the mean of daily-averaged liquid soil moisture content of 

the near surface layer simulated by Noah LSM with NLDAS-2, RADAR, FUSED-1, FUSED-2 and FUSED-3 

precipitation inputs in BSNK2 watershed. 

  NLDAS-2 RADAR FUSED-1 FUSED-2 FUSED-3 COUNT 

2003 0.283 0.311 0.285 0.297 0.282 257 

2004 0.262 0.315 0.257 0.241 0.248 265 

2005 0.553 0.538 0.545 0.534 0.539 268 

AVERAGE 0.366 0.388 0.363 0.357 0.356   
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Table 6.5 Correlations between the average AMSR-E and the mean of daily-averaged liquid soil moisture content of 

the near surface layer simulated by Noah LSM with NLDAS-2, RADAR, FUSED-1, FUSED-2 and FUSED-3 

precipitation inputs in CLAI2 watershed. 

  NLDAS-2 RADAR FUSED-1 FUSED-2 FUSED-3 COUNT 

2003 0.293 0.330 0.313 0.292 0.295 265 

2004 0.013 0.007 0.023 -0.010 0.015 278 

2005 0.279 0.325 0.299 0.266 0.278 264 

AVERAGE 0.195 0.221 0.212 0.183 0.196   

 

 

Table 6.6 Correlations between the average AMSR-E and the mean of daily-averaged liquid soil moisture content of 

the near surface layer simulated by Noah LSM with NLDAS-2, RADAR, FUSED-1, FUSED-2 and FUSED-3 

precipitation inputs in CRWI3 watershed. 

  NLDAS-2 RADAR FUSED-1 FUSED-2 FUSED-3 COUNT 

2003 0.291 0.328 0.303 0.266 0.283 262 

2004 -0.142 -0.147 -0.147 -0.151 -0.142 279 

2005 0.116 0.127 0.112 0.082 0.103 266 

AVERAGE 0.089 0.103 0.089 0.065 0.081   
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Table 6.7 Correlations between the average AMSR-E and the mean of daily-averaged liquid soil moisture content of 

the near surface layer simulated by Noah LSM with NLDAS-2, RADAR, FUSED-1, FUSED-2 and FUSED-3 

precipitation inputs in CYCK2 watershed. 

  NLDAS-2 RADAR FUSED-1 FUSED-2 FUSED-3 COUNT 

2003 0.365 0.303 0.341 0.363 0.366 73 

2004 0.111 0.180 0.131 0.146 0.119 69 

2005 0.167 0.162 0.169 0.187 0.172 64 

AVERAGE 0.214 0.215 0.214 0.232 0.219   

 

 

Table 6.8 Correlations between the average AMSR-E and the mean of daily-averaged liquid soil moisture content of 

the near surface layer simulated by Noah LSM with NLDAS-2, RADAR, FUSED-1, FUSED-2 and FUSED-3 

precipitation inputs in DBVO1 watershed. 

  NLDAS-2 RADAR FUSED-1 FUSED-2 FUSED-3 COUNT 

2003 0.034 0.004 0.010 -0.054 0.017 255 

2004 -0.078 -0.112 -0.110 -0.171 -0.096 268 

2005 0.194 0.182 0.181 0.132 0.182 256 

AVERAGE 0.050 0.025 0.027 -0.031 0.034   
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Table 6.9 Correlations between the average AMSR-E and the mean of daily-averaged liquid soil moisture content of 

the near surface layer simulated by Noah LSM with NLDAS-2, RADAR, FUSED-1, FUSED-2 and FUSED-3 

precipitation inputs in ELRP1 watershed. 

  NLDAS-2 RADAR FUSED-1 FUSED-2 FUSED-3 COUNT 

2003 0.570 0.570 0.570 0.565 0.571 93 

2004 0.219 0.200 0.204 0.226 0.221 110 

2005 0.387 0.386 0.390 0.411 0.391 104 

AVERAGE 0.392 0.385 0.388 0.401 0.394   

 

 

Table 6.10 Correlations between the average AMSR-E and the mean of daily-averaged liquid soil moisture content 

of the near surface layer simulated by Noah LSM with NLDAS-2, RADAR, FUSED-1, FUSED-2 and FUSED-3 

precipitation inputs in FDYO1 watershed. 

  NLDAS-2 RADAR FUSED-1 FUSED-2 FUSED-3 COUNT 

2003 0.186 0.165 0.181 0.124 0.193 275 

2004 -0.147 -0.160 -0.182 -0.171 -0.155 284 

2005 0.255 0.248 0.254 0.240 0.254 276 

AVERAGE 0.098 0.084 0.084 0.064 0.097   
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Table 6.11 Correlations between the average AMSR-E and the mean of daily-averaged liquid soil moisture content 

of the near surface layer simulated by Noah LSM with NLDAS-2, RADAR, FUSED-1, FUSED-2 and FUSED-3 

precipitation inputs in KINT1 watershed. 

  NLDAS-2 RADAR FUSED-1 FUSED-2 FUSED-3 COUNT 

2003 0.303 0.189 0.290 0.286 0.303 254 

2004 0.310 0.345 0.322 0.305 0.309 259 

2005 0.481 0.478 0.481 0.477 0.482 265 

AVERAGE 0.365 0.337 0.364 0.356 0.365   

 

 

Table 6.12 Correlations between the average AMSR-E and the mean of daily-averaged liquid soil moisture content 

of the near surface layer simulated by Noah LSM with NLDAS-2, RADAR, FUSED-1, FUSED-2 and FUSED-3 

precipitation inputs in NHSO1 watershed. 

  NLDAS-2 RADAR FUSED-1 FUSED-2 FUSED-3 COUNT 

2003 0.127 0.143 0.133 0.113 0.126 257 

2004 -0.324 -0.296 -0.324 -0.319 -0.325 263 

2005 0.084 0.081 0.082 0.077 0.084 263 

AVERAGE -0.037 -0.024 -0.036 -0.043 -0.038   
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Table 6.13 Correlations between the average AMSR-E and the mean of daily-averaged liquid soil moisture content 

of the near surface layer simulated by Noah LSM with NLDAS-2, RADAR, FUSED-1, FUSED-2 and FUSED-3 

precipitation inputs in PSNW2 watershed. 

  NLDAS-2 RADAR FUSED-1 FUSED-2 FUSED-3 COUNT 

2003 0.465 0.464 0.469 0.454 0.461 67 

2004 -0.036 -0.043 -0.043 -0.041 -0.039 43 

2005 -0.309 -0.290 -0.298 -0.299 -0.309 52 

AVERAGE 0.040 0.044 0.043 0.038 0.038   

 

 

 

Table 6.14 Correlations between the average AMSR-E and the mean of daily-averaged liquid soil moisture content 

of the near surface layer simulated by Noah LSM with NLDAS-2, RADAR, FUSED-1, FUSED-2 and FUSED-3 

precipitation inputs in SERI3 watershed. 

  NLDAS-2 RADAR FUSED-1 FUSED-2 FUSED-3 COUNT 

2003 0.099 0.135 0.098 0.069 0.086 251 

2004 -0.309 -0.290 -0.318 -0.336 -0.321 268 

2005 0.285 0.311 0.282 0.239 0.266 255 

AVERAGE 0.025 0.052 0.021 -0.009 0.010   
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6.4 ASSESSMENTS OF SOIL MOISTURE DATA ASSIMILATION 

Assessments of soil moisture data assimilation are conducted in the 14 experimental 

watersheds respectively. In terms of the impacts on the simulations of streamflow, soil moisture 

contents and evapotranspiration, assessments are discussed in the following three subsections. 

The same method of assessment is used for the three subsections, which is to compare the 

simulations with and without soil moisture data assimilation. Experiments in Chapter 5.0 are 

control experiments, i.e. experiments without data assimilation.   

6.4.1 Assessment in the simulation of soil moisture contents 

As state variables, soil moisture contents affects all outputs of LSM related to soil water, 

such as runoffs and evapotranspiration. Theoretically, the MKS algorithm based soil moisture 

data assimilation will definitely improve the simulation of SH2O if the following two criteria are 

satisfied. One criterion is model simulated and satellite-measured SH2Os are unbiased estimates 

of real soil moisture contents and the other criterion is the uncertainties associated with the 

measured and the simulated SH2Os are properly estimated. However, model simulated and 

satellite-measured SH2Os usually come with biases in reality. If biases are not well dealt, data 

assimilation may deteriorate simulations of SH2Os. In practical hydrological simulation, it is 

very hard to determine the biases in simulated SH2Os because there are too many possible 

influences. Thus, equation (6-2), which puts equal confidences on model simulation and satellite 

measurement, is the most robust way of dealing with biases for soil moisture data assimilation 

with the MKS algorithm. 
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In order to assess the impacts of assimilating the AMSR-E data on the simulation of 

SMCs, spatial averages of SMCs in the 1st, the 2nd, 3rd and 4th layers simulated by Noah LSM and 

NLDAS-2 forcing with and without data assimilation are plotted in Figure 6.7 to Figure 6.20, 

which are respectively corresponding to the 14 experimental watersheds in 2004. From these 

figures, firstly it can be seen that data assimilation has strong influences on simulated SMC in 

near surface soil layer (called SMC1 hereafter) for all experimental watersheds except ALDW2 

and PSNW2. The impacts of data assimilation on SMC1 have clear seasonal feature. Except 

BSNK2 and KINT1, which are in area of relatively warm climate, data assimilation increases 

SMC1 in cold months, e.g. December, January and February whereas data assimilation decreases 

SMC1 in the rest months of the year. This is very possible that the AMSR-E data overestimate 

SH2O in cold months and underestimate SH2O in the rest of months. For ALDW2 and PSNW2 

watershed, they are not much affected by data assimilation because only a few days have data 

assimilation. As shown in Table 6.1 and Table 6.13, there are only 30 and 43 days with the 

missing percentage of the AMSR-E data less than 25% in these two watersheds. In addition, 

another reason is, as shown in Figure 6.2 to Figure 6.6, the situation of underestimation in 

ALDW2, PSNW2 and ELRP1 is not as severe as the rest of experimental watersheds. For this 

reason, data assimilation also has very limited impacts on simulated SMC1 in ELRP1 watershed 

except in the cold months. The second finding from Figure 6.7 to Figure 6.20 is that data 

assimilation not only affects the SMC in the near surface soil layer but also affect the SMCs in 

deeper layers, while the magnitudes of influences are getting smaller along soil depth. This 

means that the impacts of data assimilation for the near surface soil layer can be effectively 

propagated to deep layers through the soil hydrology of Noah LSM. This finding further 

indicates that data assimilation for near surface soil layer has effects on runoff generation and 
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evapotranspiration, which depend on SMCs in all soil layers. From Figure 6.7 to Figure 6.20, we 

can also have the third finding. The influences of data assimilation on SMCs exist at different 

time scales. For example, data assimilation has short-time influences on SMC1. The influences 

are mostly kept in inter-storm period. Once there is an effective precipitation event, the 

influences of data assimilation on SMC1 will be swept out by infiltration. Data assimilation has 

longtime influences in deeper layers, especially in third layer and the bottom layer.  

 

 

 

Figure 6.7 Spatial averages of simulated soil moisture contents (m3/m3) with and without data assimilation by Noah 

LSM and NLDAS-2 forcing data in ALDW2 watershed for 2004. SMC1, SMC2, SMC3 and SMC4 represent average 

soil moisture contents in layers 1, 2, 3, and 4. 
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Figure 6.8 Spatial averages of simulated soil moisture contents (m3/m3) with and without data assimilation by Noah 

LSM and NLDAS-2 forcing data in ALPI3 watershed for 2004. SMC1, SMC2, SMC3 and SMC4 represent average 

soil moisture contents in layers 1, 2, 3, and 4. 

 

 

Figure 6.9 Spatial averages of simulated soil moisture contents (m3/m3) with and without data assimilation by Noah 

LSM and NLDAS-2 forcing data in BAKI3 watershed for 2004. SMC1, SMC2, SMC3 and SMC4 represent average 

soil moisture contents in layers 1, 2, 3, and 4. 
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Figure 6.10 Spatial averages of simulated soil moisture contents (m3/m3) with and without data assimilation by 

Noah LSM and NLDAS-2 forcing data in BSNK2 watershed for 2004. SMC1, SMC2, SMC3 and SMC4 represent 

average soil moisture contents in layers 1, 2, 3, and 4. 

 

 

Figure 6.11 Spatial averages of simulated soil moisture contents (m3/m3) with and without data assimilation by 

Noah LSM and NLDAS-2 forcing data in CLAI2 watershed for 2004. SMC1, SMC2, SMC3 and SMC4 represent 

average soil moisture contents in layers 1, 2, 3, and 4. 
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Figure 6.12 Spatial averages of simulated soil moisture contents (m3/m3) with and without data assimilation by 

Noah LSM and NLDAS-2 forcing data in CRWI3 watershed for 2004. SMC1, SMC2, SMC3 and SMC4 represent 

average soil moisture contents in layers 1, 2, 3, and 4. 

 

Figure 6.13 Spatial averages of simulated soil moisture contents (m3/m3) with and without data assimilation by 

Noah LSM and NLDAS-2 forcing data in CYCK2 watershed for 2004. SMC1, SMC2, SMC3 and SMC4 represent 

average soil moisture contents in layers 1, 2, 3, and 4. 
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Figure 6.14 Spatial averages of simulated soil moisture contents (m3/m3) with and without data assimilation by 

Noah LSM and NLDAS-2 forcing data in DBVO1 watershed for 2004. SMC1, SMC2, SMC3 and SMC4 represent 

average soil moisture contents in layers 1, 2, 3, and 4. 

 

 

Figure 6.15 Spatial averages of simulated soil moisture contents (m3/m3) with and without data assimilation by 

Noah LSM and NLDAS-2 forcing data in ELRP1 watershed for 2004. SMC1, SMC2, SMC3 and SMC4 represent 

average soil moisture contents in layers 1, 2, 3, and 4. 
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Figure 6.16 Spatial averages of simulated soil moisture contents (m3/m3) with and without data assimilation by 

Noah LSM and NLDAS-2 forcing data in FDYO1 watershed for 2004. SMC1, SMC2, SMC3 and SMC4 represent 

average soil moisture contents in layers 1, 2, 3, and 4. 

 

 

Figure 6.17 Spatial averages of simulated soil moisture contents (m3/m3) with and without data assimilation by 

Noah LSM and NLDAS-2 forcing data in KINT1 watershed for 2004. SMC1, SMC2, SMC3 and SMC4 represent 

average soil moisture contents in layers 1, 2, 3, and 4. 
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Figure 6.18 Spatial averages of simulated soil moisture contents (m3/m3) with and without data assimilation by 

Noah LSM and NLDAS-2 forcing data in NHSO1 watershed for 2004. SMC1, SMC2, SMC3 and SMC4 represent 

average soil moisture contents in layers 1, 2, 3, and 4. 

 

 

Figure 6.19 Spatial averages of simulated soil moisture contents (m3/m3) with and without data assimilation by 

Noah LSM and NLDAS-2 forcing data in PSNW2 watershed for 2004. SMC1, SMC2, SMC3 and SMC4 represent 

average soil moisture contents in layers 1, 2, 3, and 4. 
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Figure 6.20 Spatial averages of simulated soil moisture contents (m3/m3) with and without data assimilation by 

Noah LSM and NLDAS-2 forcing data in SERI3 watershed for 2004. SMC1, SMC2, SMC3 and SMC4 represent 

average soil moisture contents in layers 1, 2, 3, and 4. 

 

These findings can be explained by the data assimilation method and features of the 

AMSR-E data. Given land surface model, atmospheric inputs and parameters, the performance 

of data assimilation depends on data fusion method and the quality of satellite-measured soil 

moisture data. The features of the AMSR-E data have been analyzed in section 6.3. Except the 

problem of data missing, another important feature is that most of the AMSR-E data 

underestimate SH2O compared with simulated SH2Os with Noah LSM and any of NLDAS-2, 

RADAR, FUSED-1, FUSED-2 and FUSED-3 precipitation data, which is shown in Figure 6.2 to 

Figure 6.6. In terms of data fusion method, the areal mean of SH2O in near surface soil layer is 

determined by equation (6-2), which indicates that the mean of fused SH2O falls between the 

average of the mean of the AMSR-E data and the mean of daily-averaged SH2O simulated with 

Noah LSM. Therefore, if the average magnitudes of AMSR-E data are smaller than those of 

simulated SH2O, then the fused SH2O will be smaller than the simulated SH2O by average. 



 255 

Correspondingly, simulated SH2O and SMC will be smaller once the fused SH2O replaces the 

simulated SH2O as the initial condition for the next step simulation. After iterations, the change 

of SMC1 will propagate to SMCs in deeper layers through the soil hydrology of Noah LSM. 

Precipitation events can easily restore the SMC1 to its highest value, i.e. the porosity of soil type, 

whereas the influences of precipitation events on SMCs in deeper layers are much weaker. 

Therefore, the influences of data assimilation in deeper soil layers will accumulate. That is why 

data assimilation, as shown in Figure 6.7 to Figure 6.20, has influences on SMC3 and SMC4 

almost at seasonal time scales.  

 

Based on the results, data assimilation significantly influences simulations of SMCs. In 

the soil hydrology of Noah LSM, SMCs have direct influences on runoff generation and 

evapotranspiration. Therefore, it is expected that data assimilation also have significant impact 

on simulations of streamflow and evapotranspiration.  

6.4.2 Assessments in streamflow simulation 

Assessments in streamflow simulation are mainly conducted by comparing the Nash-

Sutcliff Efficiencies (NSEs) of streamflows simulated with and without data assimilation. NSE 

can range from ∞−  to 1, which is defined in equation 3-23. An NSE of 1 corresponds a perfect 

match of simulated streamflow to the observed streamflow. An NSE of 0 indicates that the 

simulated streamflow is as accurate as the mean of the observed streamflow, whereas an NSE 

less than zero occurs when the mean of the observed streamflow is a better predictor than model 

simulation. If streamflow simulation can be improved by soil moisture data assimilation, then the 

NSE of streamflow simulated with data assimilation should be larger than the NSE of the 
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corresponding streamflow simulated without data assimilation. On the contrary, if soil moisture 

data assimilation deteriorates streamflow simulation, then the NSE of streamflow simulated with 

soil moisture data assimilation will be smaller than the NSE of streamflow simulated without soil 

moisture data assimilation.  

 

The NSEs of streamflow simulated with and without data assimilation in 2004 and 2005 

over the 14 experimental watersheds are presented in Figure 6.21 to Figure 6.25, which are 

respectively corresponding to the streamflows simulated by Noah LSM and NLDAS-2, RADAR, 

FUSED-1, FUSED-2 and FUSED-3 precipitation data. As shown in Figure 6.21, assimilating of 

the AMSR-E data significantly deteriorates streamflow simulation with NLDAS-2 data in most 

experimental watersheds except ALDW2, CYCK2, ELRP1 and PSNW2. Besides, data 

assimilation also doesn’t deteriorate the NSE in CRWI3 in 2005. As shown in Figure 6.22, the 

impacts of data assimilation on NSE for the streamflows simulated with RADAR data are similar 

to the impacts on NSE for the streamflows simulated with NLDAS-2 data but the deteriorations 

are smaller than those shown in Figure 6.21. Similar finding of Figure 6.22 also can be found in 

Figure 6.23 and Figure 6.25, which shows that the NSEs of streamflows is simulated with 

FUSED-1 and FUSED-3 data. In Figure 6.24, even though data assimilation deteriorates the 

NSEs of simulated streamflows in most experimental watersheds, just like Figure 6.21, Figure 

6.22, Figure 6.23 and Figure 6.25, there is a distinct difference in Figure 6.24 where considerable 

improvements of NSE are shown in SERI3 in 2004, KINT1 in 2004 and CRWI3 in 2004. This 

suggests that there are chances that data assimilation can help to improve streamflow simulation, 

even though data assimilation deteriorates streamflow simulations for most watersheds over most 

of the time.  
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Figure 6.21 Nash-Sutcliffe Efficiencies with and without data assimilation in 2004 and 2005 over the 14 

experimental watersheds. NLDAS-2 precipitation data are used in Noah LSM simulation. 

 

 

Figure 6.22 Nash-Sutcliffe Efficiencies with and without data assimilation in 2004 and 2005 over the 14 

experimental watersheds. RADAR precipitation data are used in Noah LSM simulation. 
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Figure 6.23 Nash-Sutcliffe Efficiencies with and without data assimilation in 2004 and 2005 over the 14 

experimental watersheds. FUSED-1 precipitation data are used in Noah LSM simulation. 

 

 

Figure 6.24 Nash-Sutcliffe Efficiencies with and without data assimilation in 2004 and 2005 over the 14 

experimental watersheds. FUSED-2 precipitation data are used in Noah LSM simulation. 
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Figure 6.25 Nash-Sutcliffe Efficiencies with and without data assimilation in 2004 and 2005 over the 14 

experimental watersheds. FUSED-3 precipitation data are used in Noah LSM simulation 

 

In addition to NSE, hydrograph of streamflow series can also provide insights about the 

impacts of soil moisture data assimilation on streamflow simulations. Figure 6.26 to Figure 6.39 

plot the observed streamflow and the streamflows simulated by Noah LSM and NLDAS-2 data 

with and without data assimilation in 2004 and 2005 for all of the 14 experimental watersheds. 

Except ALDW2, ELRP1 and PSNW2, the three watersheds with steep or very steep 

topographies, streamflows simulated with data assimilation are usually smaller than those 

simulated without data assimilation, which are usually smaller than observed streamflows. These 

findings indicate that simulations of Noah LSM and NLDAS-2 data already underestimate 

streamflows in most of watersheds, but data assimilation makes the simulation even severe. And 

then, the NSEs of streamflow are smaller after data assimilation.  
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Why data assimilation deteriorates streamflow simulations for some cases and improves 

streamflow simulations for some other cases? Streamflow simulation is impacted by data 

assimilation in terms of surface runoff generation and baseflow generation. For experimental 

watersheds except ALDW2, ELRP1 and PSNW2, data assimilation makes soil layers drier for 

the time except cold months. This means that the infiltration capacity of soil column is increased 

compared with the situation without data assimilation during the time. Then less surface runoff 

will be generated for given amount of precipitation. Meanwhile, baseflow is also decreased since 

the decrease of SMC in the bottom layer, namely SMC4. Due to the nonlinear relationship 

between gravitational drainage and SMC4, slight change of SMC4 will cause considerable change 

of baseflow.  

 

The impacts of data assimilation on runoff generations can explain the results shown in 

Figure 6.26 to Figure 6.39. According to the hydrographs, we can tell that the precipitation of 

NLDAS-2 data underestimate precipitation for most watersheds. After data assimilation, 

simulated SMCs are even smaller in the time except cold months because the AMSR-E data 

underestimate SH2O comparing simulated SH2O during the same time period. Sequentially, less 

surface runoff and baseflow are generated due to the decreases of SMCs caused by data 

assimilation. This is the reason why the NSEs of most experimental watersheds are smaller after 

data assimilation. However, there are also cases that NSEs are larger after data assimilation. This 

also can be explained by the impacts of data assimilation on runoff generation. As shown in 

Figure 5.27, Figure 5.32 and Figure 5.35 in chapter 5.0, FUSED-2 data obviously overestimate 

precipitation in CRWI3, KINT1, and SERI3 in 2004. There are peaks of hydrographs simulated 

with FUSED-2 data that are significantly larger than the observed peaks for these cases. Due to 



 261 

the features of the AMSR-E data, data assimilation makes soil layers drier, which counteracts 

some of negative influences caused by the overestimation of precipitation. Therefore, streamflow 

simulations are improved for these cases. The impacts of data assimilation on runoff generation 

can also explain why the deteriorations of NSE in Figure 6.22 are smaller than those in Figure 

6.21. It has been found in chapter 5.0, RADAR precipitation data usually have smaller 

magnitudes than NLDAS-2 data for most of experimental watersheds. In other words, the SMCs 

simulated with RADAR data are drier than those simulated with NLDAS-2 data. For this reason, 

the changes of SMCs made by data assimilation are smaller for the cases with RADAR data than 

the cases with NLDAS-2 data. Thus, it is reasonable that the deteriorations in Figure 6.22 are 

smaller than those in Figure 6.21. 

 

In summary, streamflow simulations are not improved for most of the experimental 

watersheds by assimilating AMSR-E data into hydrological simulation with Noah LSMs and the 

five precipitation inputs. There are only very limited cases in which data assimilation makes 

improvements through firstly affecting soil moisture contents and then affecting runoff 

generation sequentially.  
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Figure 6.26 Observed streamflow series and simulated streamflow series with and without data assimilation by 

Noah LSM and NLDAS-2 forcing data in ALDW2 watershed for 2004 and 2005. 

 

 

Figure 6.27 Observed streamflow series and simulated streamflow series with and without data assimilation by 

Noah LSM and NLDAS-2 forcing data in ALPI3 watershed for 2004 and 2005. 
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Figure 6.28 Observed streamflow series and simulated streamflow series with and without data assimilation by 

Noah LSM and NLDAS-2 forcing data in BAKI3 watershed for 2004 and 2005. 

 

 

Figure 6.29 Observed streamflow series and simulated streamflow series with and without data assimilation by 

Noah LSM and NLDAS-2 forcing data in BSKN2 watershed for 2004 and 2005. 
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Figure 6.30 Observed streamflow series and simulated streamflow series with and without data assimilation by 

Noah LSM and NLDAS-2 forcing data in CLAI2 watershed for 2004 and 2005 

 

 

Figure 6.31 Observed streamflow series and simulated streamflow series with and without data assimilation by 

Noah LSM and NLDAS-2 forcing data in CRWI3 watershed for 2004 and 2005. 

 



 265 

 

Figure 6.32 Observed streamflow series and simulated streamflow series with and without data assimilation by 

Noah LSM and NLDAS-2 forcing data in CYCK2 watershed for 2004 and 2005 

 

 

 

Figure 6.33 Observed streamflow series and simulated streamflow series with and without data assimilation by 

Noah LSM and NLDAS-2 forcing data in DBVO1 watershed for 2004 and 2005. 
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Figure 6.34 Observed streamflow series and simulated streamflow series with and without data assimilation by 

Noah LSM and NLDAS-2 forcing data in ELRP1 watershed for 2004 and 2005. 

 

 

Figure 6.35 Observed streamflow series and simulated streamflow series with and without data assimilation by 

Noah LSM and NLDAS-2 forcing data in FDYO1 watershed for 2004 and 2005. 
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Figure 6.36 Observed streamflow series and simulated streamflow series with and without data assimilation by 

Noah LSM and NLDAS-2 forcing data in KINT1 watershed for 2004 and 2005. 

 

 

Figure 6.37 Observed streamflow series and simulated streamflow series with and without data assimilation by 

Noah LSM and NLDAS-2 forcing data in NHSO1 watershed for 2004 and 2005. 
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Figure 6.38 Observed streamflow series and simulated streamflow series with and without data assimilation by 

Noah LSM and NLDAS-2 forcing data in PSNW2 watershed for 2004 and 2005. 

 

 

Figure 6.39 Observed streamflow series and simulated streamflow series with and without data assimilation by 

Noah LSM and NLDAS-2 forcing data in SERI3 watershed for 2004 and 2005. 
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6.4.3 Assessment in the simulation of evapotranspiration 

In Noah LSM, total evapotranspiration (called ETA hereafter) mainly includes 

evaporation from bare soil and transpiration extracted from soil layers. Both of them are under 

the influences of soil moisture contents. Theoretically, if data assimilation increases soil moisture 

contents, then ETA will increased, whereas, if data assimilation decreases soil moisture contents, 

then ETA will decreased. In order to assess the influences of data assimilation on the simulation 

of evapotranspiration, the spatial average of daily ETA simulated by Noah and NLDAS-2 

forcing data with and without data assimilation have been plotted in Figure 6.40 to Figure 6.53 

for February, May, August and November in 2004. From these figures, firstly we can see that 

significant differences between ETAs simulated with and without data assimilation can be found 

in watersheds except ALDW2, ELRP1 and ALDW2. For all watersheds except KINT1, ETAs 

simulated with data assimilation are larger than ETAs simulated without data assimilation in 

some times of February. The reason for this result is that SMCs simulated with data assimilation 

are larger than SMCs simulated without data assimilation in these times. For plots of May, 

August and November, ETAs simulated with data assimilation are smaller than ETAs simulated 

without data assimilation for most of experimental watershed. This is because data assimilation 

decreases SMCs in these times.  

 

These results indicate that data assimilation increases ETA in cold months and decreases 

ETA in the rest months of 2004. If hydrological simulation is evaluated using streamflow as 

reference, then data assimilation may deteriorate ETA simulation for most of watersheds over 

most of the time. However, this doesn’t mean that data assimilation methods cannot help to 

improve ETA simulation. Instead, the deteriorations due to the quality of the AMSR-E data are 
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biased estimates. If unbiased satellite-measured data are available, or not as biased as the AMSR-

E data used in this study, there are good chances that data assimilation would improve ETA 

simulation.   

 

Figure 6.40 Spatial averages of simulated total evapotranspiration (W/m2) with and without data assimilation by 

Noah LSM and NLDAS-2 forcing data in ALDW2 watershed in February, May, August and November of 2004. 

 

Figure 6.41 Spatial averages of simulated total evapotranspiration (W/m2) with and without data assimilation by 

Noah LSM and NLDAS-2 forcing data in ALPI3 watershed in February, May, August and November of 2004. 
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Figure 6.42 Spatial averages of simulated total evapotranspiration (W/m2) with and without data assimilation by 

Noah LSM and NLDAS-2 forcing data in BAKI3 watershed in February, May, August and November of 2004. 

 

 

Figure 6.43 Spatial averages of simulated total evapotranspiration (W/m2) with and without data assimilation by 

Noah LSM and NLDAS-2 forcing data in BSNK2 watershed in February, May, August and November of 2004. 
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Figure 6.44 Spatial averages of simulated total evapotranspiration (W/m2) with and without data assimilation by 

Noah LSM and NLDAS-2 forcing data in CLAI2 watershed in February, May, August and November of 2004. 

 

 

Figure 6.45 Spatial averages of simulated total evapotranspiration (W/m2) with and without data assimilation by 

Noah LSM and NLDAS-2 forcing data in CRWI3 watershed in February, May, August and November of 2004. 
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Figure 6.46 Spatial averages of simulated total evapotranspiration (W/m2) with and without data assimilation by 

Noah LSM and NLDAS-2 forcing data in CYCK2 watershed in February, May, August and November of 2004. 

 

 

Figure 6.47 Spatial averages of simulated total evapotranspiration (W/m2) with and without data assimilation by 

Noah LSM and NLDAS-2 forcing data in DBVO1 watershed in February, May, August and November of 2004. 
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Figure 6.48 Spatial averages of simulated total evapotranspiration (W/m2) with and without data assimilation by 

Noah LSM and NLDAS-2 forcing data in ELRP1 watershed in February, May, August and November of 2004. 

 

 

Figure 6.49 Spatial averages of simulated total evapotranspiration (W/m2) with and without data assimilation by 

Noah LSM and NLDAS-2 forcing data in FDYO1 watershed in February, May, August and November of 2004. 
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Figure 6.50 Spatial averages of simulated total evapotranspiration (W/m2) with and without data assimilation by 

Noah LSM and NLDAS-2 forcing data in KINT1 watershed in February, May, August and November of 2004. 

 

 

Figure 6.51 Spatial averages of simulated total evapotranspiration (W/m2) with and without data assimilation by 

Noah LSM and NLDAS-2 forcing data in NHSO1 watershed in February, May, August and November of 2004. 
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Figure 6.52 Spatial averages of simulated total evapotranspiration (W/m2) with and without data assimilation by 

Noah LSM and NLDAS-2 forcing data in PSNW2 watershed in February, May, August and November of 2004. 

 

 

Figure 6.53 Spatial averages of simulated total evapotranspiration (W/m2) with and without data assimilation by 

Noah LSM and NLDAS-2 forcing data in SERI3 watershed in February, May, August and November of 2004. 
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6.5 SUMMARY AND CONCLUSIONS  

In this study, the impacts of soil moisture data assimilation on hydrological simulations 

have been investigated through simulations of soil moisture contents, streamflow and 

evapotranspiration. This study is featured for its multiple watersheds, multiple precipitation 

inputs and multiscale of data assimilation. Firstly, assessments are conducted in the 14 

experimental watersheds, which represent watersheds with relatively cold and relatively warm 

climates in the Ohio River Basin. Secondly, for each watershed, we have five precipitation inputs, 

namely NLDAS-2, RADAR, FUSED-1, FUSED-2 and FUSED-3. The first two are widely-used 

precipitation data and the last three are derived precipitation data. Therefore, conclusions of this 

study are well applicable in the Ohio River Basin for scientific or operational purposes. Thirdly, 

this study assimilates the AMSR-E data into Noah LSM simulation, while the measurement and 

the simulation are at 1/4 degree and 1/8 degree respectively. A multiscale data fusion algorithm, 

namely MKS algorithm, is used in data assimilation.  

 

Results of this study show that soil moisture data assimilation has significant impacts on 

simulated soil moistures, streamflow and evapotranspiration. In other words, data assimilation is 

an effective tool to improve hydrological simulation if satellite-measured soil moisture data have 

good quality. However, the performance of data assimilation on improving hydrological 

simulations heavily depends on the quality of measurements. In this study, the AMSR-E data are 

biased compared with model simulations using Noah LSM and the five precipitation inputs in all 

of experimental watersheds. In the cold months, the AMSR-E data overestimate liquid soil 

moisture contents, whereas in the rest months, AMSR-E data underestimate liquid soil moisture 

contents. This makes data assimilation deteriorate streamflow simulation for most of watersheds 
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in most of the time. If hydrological simulation is evaluated in terms of streamflow simulation, 

soil moisture contents and evapotranspiration are also deteriorated for most of watersheds in 

most of the time. Due to the feature of the AMSR-E data, data assimilation improves 

hydrological simulations only if precipitation is overestimated in the rest time other than cold 

months.  

 

Even no significant improvements of hydrological simulations are obtained through soil 

moisture data assimilation; results of this study demonstrate that data assimilation of near surface 

soil moisture content can effectively change the state variables (e.g. SMCs) and outputs of 

hydrological model. In the future, soil moisture data assimilation needs to be further assessed 

with more reliable satellite-measured soil moisture data. In addition, there is one more topic need 

further investigation. The penetration depth of AMSR-E data is usually 3 – 5 cm but the 

thickness of the 1st layer of Noah model is 10 cm. This dimension mismatch may cause errors in 

soil moisture data assimilation.  
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7.0  SUMMARY AND CONCLUSIONS  

For the purpose of improving hydrological forecast, this study has assessed the influences 

of precipitation data fusion and soil moisture data assimilation on the simulations of streamflow, 

soil moisture contents and evapotranspiration. A comprehensive hydrological information system 

has been developed as the basis of the assessments. This system includes modules of land surface 

simulation with Noah LSM, large-scale flow routing scheme for LSM, parameter calibration 

scheme for Noah LSM with multiple precipitation inputs, multiscale precipitation data fusion 

and multiscale soil moisture data assimilation. Scientific details of these modules are given in 

Chapter 2.0 , Chapter 3.0 , Chapter 5.0 and Chapter 6.0 . In addition, Chapter 4.0 systematically 

investigates the performance of the multiscale data fusion algorithm used in multiscale 

precipitation data fusion and multiscale soil moisture data assimilation. In order to increase the 

applicability of this study in operational hydrological forecast, the assessments of the 

precipitation data fusion and soil moisture data fusion are conducted in 14 experimental 

watersheds selected from the Ohio River Basin.  

 

Major findings and conclusions of this study are summarized as follows: 

1) The large-scale flow routing scheme proposed in Chapter 2.0 is a complete scheme for 

streamflow simulation with land surface models. It includes a derivation algorithm of large-

scale flow network, a grid-ordering algorithm for sequential flow routing, and descriptions of 
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in-grid routing and between-grid routing. It has been proved that the proposed routing 

scheme is effective in routing runoffs simulated by Noah LSM into streamflow in the 

extensive applications in Chapter 5.0 and Chapter 6.0 .  

2) The parameter calibration scheme proposed in Chapter 3.0 is innovative in terms of the 

consideration of consistencies between parameters, the reduction of dimension of 

optimization problem, multiobjective optimization for multiple precipitation inputs and 

parallel optimization algorithm. This calibration scheme provides a fair basis for comparing 

the reliabilities of multiple precipitation datasets through hydrological simulations. 

Applications in Chapter 5.0 and Chapter 6.0 have demonstrated that this calibration scheme 

can effectively identify optimal parameters for multiple precipitation inputs.  

3) Before assessing the precipitation data fusion and soil moisture data assimilation, the 

performance of the multiscale data fusion algorithm, namely Multiscale Kalman Smoother 

(MKS) based framework, has been systematically investigated in Chapter 4.0 over a large 

watershed for one-year’s precipitation events. The MKS based framework has been found 

significantly effective in removing white noises in multiscale measurements, especially for 

the noises in the measurements at coarser resolutions. In addition, the MKS based framework 

can also remove the biases of measurements, which, however, relies on the method of 

estimating the areal mean of state variables.  

4) The assessment of precipitation data fusion has been conducted in terms of the simulations of 

streamflow, soil moisture contents and evapotranspiration over 14 experimental watersheds 

in Chapter 5.0. NLDAS-2 precipitation data (at 1/8 degree resolution) and NEXRAD MPE 

precipitation data (at approximately 1/32 degree resolution) are fused by the MKS based 

framework with three settings for estimating the areal mean of precipitation. In total, five 
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precipitation datasets including NLDAS-2, NEXRAD MPE and three derived precipitation 

datasets are compared. It has shown that precipitation data fusion is a statistically effective 

approach to improve hydrological simulations. Based on the assessments over the 14 

experimental watersheds for a period of three years, essential improvements in streamflow 

simulations are found in 21 water/year over 42 watershed/year. In addition, significant 

differences of simulated soil moisture contents and simulated evapotranspiration can be made 

through precipitation data fusion. The improvements made through precipitation data fusion 

vary over watersheds. Both the mean magnitudes and the spatial patterns of NEXRAD MPE 

data can help to improve the NLDAS-2 precipitation data. However, the mean magnitudes 

usually play a much bigger role. 

5) The assessment of soil moisture data assimilation has been conducted in terms of the 

simulations of streamflow, soil moisture contents and evapotranspiration over the 14 

experimental watersheds in Chapter 6.0. AMSR-E near surface soil moisture data have been 

assimilated into the land surface simulation by Noah LSM with the five precipitation inputs 

used in the assessments of precipitation data fusion. It has revealed that, compared with the 

liquid soil moisture content simulated by Noah LSM with the five precipitation inputs, 

AMSR-E data overestimate the liquid soil moisture content during cold months (e.g. 

December, January and February) but underestimate the liquid soil moisture content during 

the rest months. Due to this reason, the assimilation of AMSR-E data deteriorated 

hydrological simulations over most of the experimental watersheds in most of time except 

the cases that precipitation data significantly overestimate real precipitation. In addition, 

significant changes in simulated soil moisture contents and evapotranspiration have been 

made by soil moisture data assimilation. The findings in Chapter 6.0 also demonstrate the 
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potential of soil moisture data assimilation to improve hydrological simulations. Once the 

satellite-measured soil moisture with better accuracies are available, it is expected that 

hydrological simulations can be improved through soil moisture data assimilation.  

 

Even though experiments of this study are well designed for the purposes of assessing 

precipitation data fusion and soil moisture data assimilation, there are two limitations of this 

study. One is that the influences of precipitation data fusion and soil moisture data assimilation 

on the simulations of soil moisture contents and evapotranspiration are not directly assessed 

against measurements. Further assessments are necessary once reliable spatial measurements of 

soil moisture contents and evapotranspiration are available. The other is that Noah LSM may 

have poor performances in simulating snow accumulation and melting processes, which 

introduces uncertainties to the findings of this study in cold climate. In the future, further 

research can be conducted with other LSMs and better description of the snow accumulation and 

melting process. 
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