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AUTOMATED FEATURE EXTRACTION AND CONTENT-BASED RETRIEVAL OF 

PATHOLOGY MICROSCOPIC IMAGES USING K-MEANS CLUSTERING AND 

CODE RUN-LENGTH PROBABILITY DISTRIBUTION 

Lei Zheng, PhD 

University of Pittsburgh, 2005

The dissertation starts with an extensive literature survey on the current issues in content-based 

image retrieval (CBIR) research, the state-of-the-art theories, methodologies, and 

implementations, covering topics such as general information retrieval theories, imaging, image 

feature identification and extraction, feature indexing and multimedia database search, user-

system interaction, relevance feedback, and performance evaluation. A general CBIR framework 

has been proposed with three layers: image document space, feature space, and concept space. 

The framework emphasizes that while the projection from the image document space to the 

feature space is algorithmic and unrestricted, the connection between the feature space and the 

concept space is based on statistics instead of semantics. The scheme favors image features that 

do not rely on excessive assumptions about image content 

As an attempt to design a new CBIR methodology following the above framework, k-

means clustering color quantization is applied to pathology microscopic images, followed by 

code run-length probability distribution feature extraction. Kulback-Liebler divergence is used as 

distance measure for feature comparison. For content-based retrieval, the distance between two 

images is defined as a function of all individual features. The process is highly automated and 

the system is capable of working effectively across different tissues without human interference. 

Possible improvements and future directions have been discussed. 

 iv 



TABLE OF CONTENTS 

PREFACE..................................................................................................................................... X 

1.0 IMAGE AND DIGITAL IMAGING.......................................................................... 1 

1.1 A TAXONOMY OF IMAGES ........................................................................... 1 

1.2 IMAGE REPRESENTATION ........................................................................... 4 

1.3 IMAGE FEATURE ............................................................................................. 7 

2.0 IMAGE INFORMATION RETRIEVAL: A LITTLE THEORY......................... 10 

2.1 A BRIEF HISTORY.......................................................................................... 10 

2.2 DOCUMENT AND QUERY ............................................................................ 11 

2.3 FEATURE AND RETRIEVAL........................................................................ 13 

2.4 RETRIEVAL METHODOLOGY ................................................................... 17 

2.5 CONTENT-BASED IMAGE RETRIEVAL MODEL................................... 19 

3.0 IMAGE INFORMATION RETRIEVAL: VARIOUS APPROACHES............... 24 

3.1 IMAGE MANUAL INDEXING....................................................................... 24 

3.2 AUTOMATED IMAGE FEATURE EXTRACTION.................................... 27 

3.3 IMPORTANT IMAGE FEATURES ............................................................... 30 

3.3.1 Color Feature Matching ............................................................................. 30 

3.3.2 Texture Feature Matching ......................................................................... 33 

3.3.3 Shape and Sketch Features ........................................................................ 37 

3.3.4 Image Feature Matching in Compressed Domain ................................... 41 

3.3.5 Composite Image Features and Region Based Matching........................ 54 

3.3.6 Conclusions.................................................................................................. 57 

3.4 FEATURE WEIGHTING, FEATURE SELECTION, AND RELEVANCE 

JUDGMENT ....................................................................................................................... 58 

4.0 SYSTEM IMPLEMENTATION AND PERFORMANCE EVALUATION........ 61 

 v 



4.1 FEATURE INDEXING..................................................................................... 61 

4.2 USER-SYSTEM INTERACTION: RELEVANCE FEEDBACK................. 64 

4.3 PERFORMANCE EVALUATION.................................................................. 66 

5.0 METHODOLOGY: COLOR QUANTIZATION OF PATHOLOGY 

MICROSCOPIC IMAGE,FEATURE EXTRACTION, AND CONTENT INDEXING ..... 69 

5.1 BACKGROUND................................................................................................ 69 

5.2 SCIENTIFIC CONTRIBUTIONS................................................................... 77 

5.2.1 Major Scientific contributions ................................................................... 77 

5.2.2 How many colors do we need?................................................................... 80 

5.2.3 Discrete domain processing........................................................................ 82 

5.3 HYPOTHESIS AND EVALUATION.............................................................. 85 

5.4 MATERIAL AND METHODS ........................................................................ 89 

5.4.1 Materials ...................................................................................................... 89 

5.4.2 Methods........................................................................................................ 92 

5.5 EVALUATION ................................................................................................ 102 

5.5.1 Information Packing Capability.............................................................. 102 

5.5.2 Content-Based Image Retrieval Performance........................................ 104 

6.0 RESULTS AND INTERPRETATIONS ................................................................ 107 

6.1 PRINCIPAL COMPONENT ANALYSIS .................................................... 107 

6.2 K-MEANS CLUSTERING OF COLOR PIXELS ....................................... 109 

6.3 K-CODING ...................................................................................................... 111 

6.4 K-CODE RUN LENGTH PROBABILITY DISTRIBUTION.................... 114 

6.5 RUN-LENGTH PROBABILITY DISTRIBUTION FEATURE FOR 

CONTENT CLASSIFICATION..................................................................................... 116 

6.6 CONTENT-BASED IMAGE RETRIEVAL PERFORMANCE................. 118 

6.7 PERFORMANCE ANALYSIS AND INTERPRETATION ....................... 121 

6.7.1 Interpretation of Performance Metric .................................................... 121 

6.7.2 Pathology Classification and Specificity of Image Feature................... 125 

6.7.3 Within-Class Divergence .......................................................................... 129 

6.8 SUMMARY...................................................................................................... 131 

7.0 CONCLUSION AND FUTURE WORK ............................................................... 134 

 vi 



7.1 PATHOLOGY MICROSCOPIC IMAGES AND RUN-LENGTH 

FEATURE......................................................................................................................... 134 

7.2 FEATURE EXTRACTION AND SIMILARITY MEASURE.................... 135 

7.3 RUN-LENGTH FEATURE FOR TISSUE CLASSIFICATION AND 

CONTENT-BASED IMAGE RETRIEVAL.................................................................. 136 

7.4 FUTURE WORK............................................................................................. 137 

7.4.1 Image quality control................................................................................ 137 

7.4.2 Rotation invariant and two-dimensional features ................................. 138 

7.4.3 Feature extraction and modeling............................................................. 140 

BIBLIOGRAPHY..................................................................................................................... 142 

 vii 



LIST OF TABLES 

1 Table 5.1 Images and tissue types.............................................................................................. 91 

2Table 6.1 Comparison of distortion .......................................................................................... 111 

3Table 6.2. Content-based Image Retrieval Performance .......................................................... 119 

4Table 6.3. CBIR performance confusion matrix....................................................................... 120 

 viii 



LIST OF FIGURES 

1 Figure 2.1 Content-Based Image Retrieval................................................................................ 13 

2 Figure 2.2 Three-Space-Two-Mapping Model .......................................................................... 21 

3 Figure 3.1. Information scale of various retrieval tasks............................................................. 25 

4 Figure 3.2.  Color feature matching ........................................................................................... 33 

5 Figure 3.3. Retrieval based on texture feature ........................................................................... 36 

6 Figure 3.4. Sketch matching ...................................................................................................... 40 

7 Figure 3.5. Wavelet popularity .................................................................................................. 47 

8 Figure 3.6. Wavelet functions.................................................................................................... 48 

9 Figure 3.7. Diagram of Haar’s wavelet transformation ............................................................. 52 

10 Figure 5.1. A typical run-length probability distribution for a random code. ......................... 97 

11 Figure 5.2 Flowchart.............................................................................................................. 101 

12 Figure 6.2 K-means clustering............................................................................................... 109 

13 Figure 6.3. K-coding of pathology microscopic image ......................................................... 113 

14 Figure 6.4 K-coding error ...................................................................................................... 113 

15 Figure 6.5. K-code run-length probability distribution of one image.................................... 115 

16 Figure 6.6. K-code run-length probability distribution.......................................................... 117 

17 Figure 6.7. Content-based Image Retrieval Performance...................................................... 121 

18 Figure 6.8. Query session: brain ............................................................................................ 123 

19 Figure 6.9. Query session: heart muscle ................................................................................ 124 

20 Figure 6.10. Query session: autolysis .................................................................................... 127 

21 Figure 6.11. Query session: kidney tubules ........................................................................... 128 

22  Figure 6.12. Query session: prostate cancer Gleason’s grade 3 ........................................... 129 

 ix 



PREFACE 

I thank Dr. Michael Becich for his generous support, guidance, and patience through the full 

course of this research, without which every bit of this thesis is simply not possible. I also want 

to thank Dr. Paul Munro for his mentorship, insightful discussion about the problems and 

solutions in the very details that usually take hours of his precious time. I owe debt to Dr. John 

Gilbertson, who helped me with data collection, image classification, provided advices, and for 

his many other roles. 

 x 



1.0  IMAGE AND DIGITAL IMAGING 

It is said that one image is worth a thousand words. Visual information accounts for about 90% of 

the total information content that a person acquires from the environment through his sensory 

systems. This reflects the fact that human being relies heavily on his highly developed visual 

system compared with other sensory pathways. The external optical signal is perceived by eyes, 

and then converted into neural signal; the corresponding neural subsystem specialized for visual 

system is specially organized to detect subtle image features and perform high-level processing, 

which is further processed to generate object entities and concepts. 

The anatomy of the visual system explains from the structure aspect why visual information 

is so important to human cognition. The cognitive functions that such a system must support 

include the capability to distinguish among objects, their positions in space, motion, sizes, shapes, 

and surface texture [stillings95, p463]. Some of these primitives can be used as descriptors of 

image content in machine vision research. 

1.1 A TAXONOMY OF IMAGES 

There are two formats, in which visual information can be recorded and presented – static image, 

and motion picture, or video. Image is the major focus of research interest in digital image 

processing and image understanding. Although a relatively recent development, computerized 
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digital image processing has attracted much attention and shed lights to a broad range of existing 

and potential applications. This is directly caused by rapid accumulation of image data, a 

consequence of exponential increases of digital storage capacity and computer processing power. 

There are several major types of digital images depending on the elemental constituents that convey 

the image content. Images can take the form of: 

1. Printed text and manuscript. Some examples of the kind are micro-films of old text 

documents, photograph of handwriting. 

2. Line sketch, including diagrams, simple line graphs 

3. Halftones. Images are represented by a grid of dots of variable sizes and shapes. 

4. Continuous tone. Photographic images that use smooth and subtle tones. 

5. Mixture of above. 

Among all above, continuous tone or photographic images are most common in the digital 

imaging practice and of major concern of content-based image retrieval. They used to be generated 

by converting from other media using a scanner. The process is labor intensive and costly. It was 

estimated that the image capturing and the subsequent manual indexing may account for 90 percent 

of the total cost of building an image database [besser95] [gettyedu]. This was the situation a few 

years ago. Now, digital cameras are becoming very popular and images are also being converted 

from analog electronic format (such as analog videos) to digital format. 

At the conceptual level, an image is a representation of its target object(s). According to the 

Webster's 3rd New International Dictionary [webster93], an image is “the optical counterpart of an 

object ... a mental picture, a mental conception ...” The definition reflects the fact that an image has 

its content, which captures the optical or mental properties of an object; with its format varying 

across different kinds of media. It is determined by how the optical properties are quantized, or the 
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degree of mental abstractions that is required. Here are some examples of image according to the 

above broader definition: 

1. An image can be an array of pixel values stored in uncompressed bitmap digital 

image format. In this format, each value represents the color intensity at discrete points or pixels. A 

well-known example of this is Microsoft's BMP format. Although BMP format allows for pixel 

packing and run-length encoding to achieve certain level of compression, its uncompressed version 

is more popular. 

2. Popular Internet standard image formats see more extensive image transformation 

and compression, such as GIF and JPEG. The GIF standard defines a color degeneration process, 

which maps the colors in an image into no more than 256 new colors. Further compression using 

LZW algorithm (after the names of the inventors, Abraham Lempel, Jacob Ziv, and Terry Welsh) is 

then applied. The GIF image file stores the color palette along with the compressed pixel values. 

On the other hand, JPEG applies transformation rather than mapping to the pixel intensity. Discrete 

cosine transformation (DCT) is used to transform the pixel value representation in the spatial 

domain into a frequency domain representation. Instead of pixel values, cosine transformation 

coefficients are used to represent the wave signals. The two-dimensional image is represented as 

the combination of the wave signals of different frequencies. DCT is an orthogonal transformation 

that is computationally reversible. The information packing capability of DCT is harvested by the 

subsequent quantization step, which takes advantage of the characteristics of human vision by 

filtering out the part of the signals that is not significant to human visual system. Entropy coding or 

arithmetic coding is applied to achieve higher compression ratio before the coefficients are stored 

[miano99]. 
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3. Specially defined signature file stores specifically extract images features in numeric 

or Boolean format, indicating the presence (or non-presence) and strength of the features. This is a 

very compact representation of image that is targeted for fast retrieval instead of display, archival, 

etc. Only the essential image features are conserved in the signature file and they are algorithm 

dependent. This allows for easy indexing and fast search for matching features of the query. An 

example of this can be found in image coding method using vector quantization (VQ), in which 

image blocks are coded according to a carefully chosen codebook. If the image blocks are similar 

to each other or the images in a set bear significant similarity, higher compression ratio can usually 

be achieved than the general- purpose compression algorithms such as GIF, JPEG. 

4. Textual annotation can also be thought of as an instantiation of mental image, and 

sometimes, the descriptors can be coded by a predefined convention, or a thesaurus. The fact that 

two visually different images can convey the same concept and different concepts may present in 

images that share many similar optimal properties brings about a gap between image retrieval by 

content, and retrieval by concept [rasmussen97, Faloutsos]. 

1.2 IMAGE REPRESENTATION  

The design of various image file formats usually has its root in the physical hardware 

implementation that supports the imaging process, the purpose of the image content, and how the 

image is to be processed.  For example, the raster representation of image is closely related to the 

digital image sampling and display apparatus. Wavelet coefficient representation is used in some 

systems that require continuous transmission through computer network with zooming capability. 
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Simple image formats such as Microsoft’s uncompressed Windows BMP format consists of 

2 very simple parts, a simple header part that contains the metadata information about images and a 

second part that stores the intensity of each pixel sequentially. The header part has information such 

as: the size of the header part, the image width, image length, number of bits per pixel, preferred 

resolution (in pixel per meter), number of significant colors, and some other reserved fields. In 

uncompressed BMP file with 24-bit per pixel, right after the image header, the pixel values are 

stored in the order of scan line starting from the bottom to the top with the last line coming fast. In 

each scan line, the pixel values are arranged from left to right, with 3 bytes for each pixel defining 

the value for Red, Green, and Blue, so that each color channel takes 8 bits which maps to a range 

from 0 to 255. For memory access efficiency, the number of bytes per scan line is rounded up to a 

multiple of four. The rest of the bytes are padded with arbitrary values. For compressed BMP files, 

or when the number of bits per pixel does not equal to 24 (number of bits per pixel could be 1, 4, 8, 

or 24), extra steps may be required to generate a BMP file from the raster representation. 

Since image files require tremendous storage space, and demand substantial network 

bandwidth in raw pixel value format, compression is much desired in most occasions. Usually, 

image compression algorithms can bring about 10 fold of reduction in the file size without 

significantly affecting the visual quality. On the other hand, the compression is at the price of 

extensive processing and CPU power. The most commonly used compression routines usually 

include some kind of transformation, such as discrete cosine transformation (DCT) and discrete 

wavelet transformation (DWT), followed by general compression algorithms, such as run length 

encoding (RLE) and entropy encoding (i.e. Huffman encoding). There is an optional color space 

transformation/quantization at the beginning of the compression routine as can be seen in GIF 

format and JPEG standard. 
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The pixel values should undergo sophisticated processing before being stored in JFIF 

format, which is better known as JPEG file. There are four major steps involved, namely: color 

space transformation, discrete cosine transformation (DCT), quantization, and entropy 

compression. First, the pixel values should be converted from RGB color model into YCbCr color 

model, which has the advantage of concentrate the information in Y channel so as to allow better 

compression for the Cb and Cr channels. Then, the image is divided into 8 x 8 blocks, on which 

two-dimensional DCT is performed for each of the three channels. DCT is a kind of orthogonal 

transformation that can be implemented as matrix multiplication with a standard 2-dimensional 

DCT matrix. The resulting coefficients are quantized according to their impacts to the visual 

quality, with more information conserved from the low frequency components, while less from the 

high frequency ones according to empirical experience. This is achieved through dividing the 

coefficient matrix by two quantization tables, for the Y components, and Cb-Cr components. 

Huffman encoding is used to make the final compression. The JPEG standard allows for many 

different implementations and the compression ratio can be adjusted. The JPEG standard even 

accommodates a lossless format. 

A more hardware oriented image format is TIFF (which stands for Tag Image File Format) 

format. TIFF serves as a wrapper that holds one or more image frames in one file, each with 

metadata information stored with tags. The image in each frame can be in different format, either 

compressed or uncompressed. TIFF handles the image frames individually. Usually, TIFF file is 

handled through a library of functions that provide a consistent API for manipulating the image at 

different level of granularity, such as pixel, scan-line, stripe, and block. One such library is the 

libtiff, which can be found at [http://www.libtiff.org/]. 
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The image format is an important factor in the image retrieval, as it determines the primary 

image constituents that convey the visual information content. They could be pixels, frequency 

coefficients, color histogram, concept terms, as in above 4 kinds of images. Traditionally, all image 

processing researches deal with the first kind of image format, as other 3 can be derived from that. 

However, to manipulate compressed images is regarded of great importance in some real world 

applications, such as high fidelity video transmission, replay and manipulation; signature file is a 

common practice in many retrieval systems; and the most widely used and reliable image retrieval 

systems still employ text annotation as a mediator for retrieval, where expert manual labeling of the 

images is essential. This also forms a ladder of image abstraction from the physical optical entity. 

The kinds of features we are interested in, and the corresponding algorithms or methodology to 

extract the most descriptive features determine the details of the abstraction. 

1.3 IMAGE FEATURE 

Some researchers have reported the kinds of characteristics that are useful for image content 

description. They are usually well defined by a set of supporting image-processing routines.  On the 

other hand, they can also be easily mapped to a certain aspect of human visual perception. The 

human visual perception process and the construction of mental image are outlined by the theory of 

primal sketch by Marr [marr76] [marr82]. The human vision system can differentiate objects, 

identify their location in space, their motions, sizes, shapes, and their surface textures [stilling95, 

p463-464]. Accordingly, machine vision systems also devise algorithms for object recognition, 

motion detection, edge detection and contour defining, shape descriptive, and texture pattern 

identification. Among these, object recognition, edge and contour, shape, and texture are relevant to 
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static image retrieval, and the color feature is very often used to help in every aspect of these 

characteristics, or used alone as a global feature of the whole image. 

 Now, we can safely define the concept of image feature based on the above analysis.  

An image feature can be defined as the result of a computation or an expert evaluation criterion, 

performed to a target image. Practically, from the perspective of machine vision and computerized 

content-based image retrieval, we can define the content of an image as the set of all possible 

features, or combination of basic features, of that target image. The nature of image content we 

need to deal with, the user’s information need, and the way human users interpret the content of the 

image, all three of these vary from task to task. As an exploratory approach to understand image 

content using machine intelligence, it is not uncommon to resort to image features less intuitive to 

human perception, or even develop new algorithms to define novel image features, in order to 

address particular image content and user information need. These facts welcome an open 

definition of image feature as given above that is extensible to accommodate particular cases of 

application. It is also worth noticing that an image feature is tied to the algorithm(s) that defines it. 

According to different interests, image content can be perceived in three levels with 

increasing complexity: machine vision is good at discerning primitive features including, but not 

limited to, color, texture, and shape [rui99]; human image information consumers are more 

concerned with the composition of the primitive features to form objects and the semantic 

relationship among multiple objects in the same image context. At the highest level, image content 

can be symbolized by the concepts that it conveys [eakins96] [eakins98]. Accordingly, there are 

queries that the users can generate focusing on different levels of content. Some of them can be 

satisfied by focusing on only one or two basic image features, while others require understanding of 

the semantics of the images. 
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In chapter 2, I will introduce the concept of document feature, of which image feature is a 

special case, in the context of general information retrieval framework. The utilization of image 

features in content-based image retrieval will be further explained in chapter 3. 

 9



2.0  IMAGE INFORMATION RETRIEVAL: A LITTLE THEORY. 

2.1 A BRIEF HISTORY 

Although it was not until the early 1970s when the problem of retrieving digital images from 

archives started to draw people's attention, the practice of information retrieval has been a part of 

the librarians’ daily responsibility long before electronic computer was popular enough to enter this 

arena. Some researchers would date the practice of information retrieval back to the earliest library 

systems that can be found in the record, which is as early as the third century B.C., in the Library of 

Alexandria with catalogs and classifications for its 500,000 stored volumes. Since then, theories 

and methodologies have been developed for library information retrieval that target at handling 

printed text documents. Most of them are still applicable for general information retrieval tasks. 

With a little bit of generalization and modification, they are able to accommodate the multimedia 

information retrieval scenarios, and provide us an insight into the multimedia information retrieval 

problem from a general information content perspective [squire00]. It was not until the late 1990s 

that the research on image, video, and audio retrieval took off. 
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2.2 DOCUMENT AND QUERY 

An information system consists of two major types of entities: document and query. Documents 

can be of any format, with any kind of internal structure, in organizing the information it carries. 

An information retrieval system treats all documents in collection as unstructured files. Documents 

can be represented with document surrogates. A document surrogate is usually a concise 

representation of the original document being processed for particular purposes, and contains only a 

small portion of the information that the complete document carries. Some examples of a document 

surrogates are article abstracts and image icons. They are more suitable for efficient storage and 

fast access and processing. A query is an indication of user's information need.  It can take many 

different forms, ranging from Boolean query that is very concise, to a very detailed specification of 

the kind of documents the user needs that spans longer than the actual documents themselves, to 

one or more sample documents (such as images queries) that are set as examples for the kind of 

desired documents. 

Researchers tend to think of queries and document surrogates as special kinds of documents 

that bear many of the same characteristics as regular documents. The retrieval process is to find 

documents that match the query document based on the specified criteria, and processing procedure 

that is applied to both query and documents in the archive [korfhage97, chapter 2]. This vision 

helps to bring the image retrieval problem and many derived techniques into the big picture of 

information retrieval. 

With image retrieval, all the images in the archive are usually processed by machine or 

indexed by human experts to generate the signature file and the textual annotation for feature 

abstraction and, later, faster retrieval. Document surrogates are a constituent part of the image 

database that remains relatively static. On the query side, query-by-example has gained wide 
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acceptance as a major image database querying scheme.  In this approach, the query is not used for 

direct comparison. Instead, the query image is processed first, following a similar procedure to 

generate the "query surrogate", which is then compared with the document surrogates from the 

database. 

The document surrogate (and also the query surrogate) should retain as many useful 

features as possible while filter out those noises. Some researchers would define document feature 

as, "Information extracted from an object and used during query processing" [yate99]. Since, as 

stated prevoiusly, all objects in an information storage and retrieval system can be unified as 

documents, and all documents are usually processed to generate document surrogates, before a 

query is even defined. The document surrogates, essentially a compact representation of the set of 

all document features of interest, are relatively static and stored as a persistent part of the 

information system, with a longer lifetime than the ephemeral queries. Figure 1 below shows the 

typical architecture of a content-based image retrieval system with image documents, document 

surrogates (feature vectors), and query illustrated. In this work, a document feature refers to an 

information element that is extracted from the original document for the purpose of indexing and 

retrieval. 
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1 Figure 2.1 Content-Based Image Retrieval 

1) Each image is broken down into a feature vector of numerical features; 

2) image comparison is based on vector arithmetic; 3) database search is to 

find the feature vector(s) that have the minimal difference to the query 

image. 

2.3 FEATURE AND RETRIEVAL  

Document feature is an important concept in information retrieval. It defines the way that 

documents are compared with each other. The definition of document feature also implies several 

fundamental methodology of information retrieval. Essentially, information retrieval is the study of 

the statistical characteristics of unstructured data [callen00]. In the study of text retrieval, a 

document feature is an indexing term, which could take the form of a word, a phrase, or an N-gram. 
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Information retrieval tries to find statistical patterns of the document features in the data without 

understanding the structure of document or the implications of the features. 

Firstly, all documents, by definition, are unstructured, which means, either the structure of 

the data is unknown, or the semantics of the data component are unknown. In information retrieval, 

a document is defined as an information object with unknown structure (Callan00). In contrast to 

the structural representations that are popular in other research areas such as relational database 

management system (RDBMS), natural language processing (NLP), and extended markup language 

(XML) techniques, most free text documents, audio, and pixel representation of images are 

unstructured data. 

Secondly, information retrieval doesn't make any effort in interpreting the meaning of the 

indexing terms. Nor does it make any prior assumption about those meanings. The only thing that is 

used to make the retrieval decision is the statistical patterns of the document features. In the 

content-based image retrieval, object recognition and image understanding are also based on the 

identification of statistical patterns that are characteristic to the content. 

Thirdly, all features are treated as independent to each other at the time of processing. This is 

a further assumption from the second one, and could be dangerous in theory. The redundant, 

ambiguous nature of the language we use determines that there are correlations among the features. 

Also, different interpretations can be applied to the same word in different contexts, which means 

the interpretation of a feature is not self-contained, independent, and context free. However, in 

practice, all text retrieval models work fine under the assumption, and it helps to clear many 

barriers and bring about the major success we have seen in the last decade of last century. The 

rising of many successful web search engines is a good proof for the success of the theory. The 

above three assumptions are usually referred to as the "bag of words" assumption in text 
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information retrieval, where every non-stop word is used as indexing term without regarding to 

their actual meaning and the internal document structure. 

These assumptions actually make more sense with multimedia information retrieval, where 

multimedia objects/documents are records of their physical properties: 1) there is no internal 

semantic structure for those records; 2) human perception of those physical properties by sensory 

system is not necessarily connected to the interpretation of the content; and 3) either the recorded 

physical properties are independent to each other, or we can extract only independent properties 

from the object and leave out any possible redundant information. These properties can be used as 

indexing features of the multimedia documents. It is plausible that in the special case of image 

retrieval, we can adopt the same set of assumptions but under a different name as "bag of pixels". 

This scheme might exclude such techniques as object recognition from the big map in a pure sense, 

just as text information retrieval would with natural language processing. However, just as having 

been proved with text retrieval, the combination of the techniques is expected to generate much 

more power than each of them used alone. 

The feature extraction step is usually designed to meet the users' specific information need 

with the domain context of the information in mind. Special attention should be paid to the types of 

the queries that system is expected to answer, and the nature of the document collection. Although 

it is one of the most important steps towards retrieval, there are no general rules that are applicable 

to a variety of problems. A document could either be manually indexed (such as keywords 

identified by the authors of a publication), or automatically indexed by computer. The features can 

be carefully selected to target at a particular type of content, e.g. indexing text documents with a 

controlled vocabulary such as the terms from a thesaurus, or the features can be massively extracted 

automatically from the documents, and then selected according to their relevance to the retrieval. 
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Initial studies in 1960s showed that either manual indexing or automatic indexing usually 

gave equally good performance (canfield experiments), and the conclusion has been supported by 

other researchers since then. Primitive studies in multimedia retrieval have also shown very 

promising results without resorting to manual indexing by human experts. However, the best results 

are often achieved by combining both approaches due to the fact that it is not likely for both 

approaches to make the same mistakes in retrieving non-relevant documents, but rather to agree 

upon retrieving those truly relevant documents. This is due to the benefit of the combination of 

evidence. 

The features of the documents from the database (in information retrieval, the term database 

is used interchangeably with document collection, rather than its meaning in database management 

system research) are usually indexed and stored as document surrogates, which become a static 

component of the database. Fewer real systems require each document in the collection to be 

processed for every query session (one exception being the Fast Data Finder system).  The features 

can be stored in several different kinds of formats for the kind of query and the kind of users' 

information need the system will serve. Those that have been implemented in real systems include 

bitmap, signature file, inverted list, and permuterm. They could be either compressed to improve 

performance, or uncompressed for better manageability. All of these have been found working well 

in various text retrieval systems, while some of them are more general-purpose and have found 

better usage in multimedia information retrieval. The detail of the storage and index format of the 

feature values will be further discussed in the following chapters. 
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2.4 RETRIEVAL METHODOLOGY 

Having defined the concept of document features, the retrieval process can be viewed as a mapping 

process, in which documents in the document space are projected into a feature space, followed by 

a matching processing according to a retrieval model that group the documents with similar 

concepts in proximity in the concept space. In the document space, feature space, and in the 

concept space, there are patterns in the distribution of objects. Exploiting these patterns would help 

to improve the retrieval performance by selecting better features, assigning weights to these 

features, and designing better transformation metric. The topic of application of data mining 

techniques, such as cluster analysis, multi-dimensional scaling, in addressing this problem will be 

revisited where appropriate in later chapters. 

According to the assumption made about the data distribution of the feature values, several 

retrieval models have been used to make retrieval decisions. All features do not contribute equally 

to the distinguishing of the document content. The distributions of the values also affect their 

quality as distinguishing features. Different retrieval models employ different mechanisms in 

determining the contribution of each of the features to the retrieval decision. 

Several information retrieval models have seen great success in the past, including Boolean 

model, vector space model (one of the variations is latent semantic indexing (LSI)), probabilistic 

model (including basic probabilistic model, Bayesian inference networks, and language models) 

and fuzzy matching model, citation analysis models (including hubs & authorities, and page 

ranking mechanisms). Besides, artificial neural networks, logic-based, and natural language 

processing (NPL) techniques have also been used. These models take very different views, and 

make different assumptions about the distribution of the features. Accordingly, the definition of 

document similarity varies greatly across these different models. For example, in some cases, there 
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is a measurable document distance that is inversely proportional to the similarity measure; while in 

other systems, document similarity can only be inferred indirectly from the probability, of which 

two documents are similar to each other. The latter situation includes retrieval criteria determined 

by co-occurrence data and/or user feedback that are not characteristics of the documents themselves 

but rather the connections imposed to them through users’ information seeking behavior. Thus, 

relevance of the document may be a better term than document similarity in describing the retrieval 

criterion. It is important to view the retrieval process as a process that matches the documents and 

the query, which is an instantiation of the user's information need. Because of the massive success 

of the vector space model, the document similarity measure is mistakenly regarded as the sole 

criterion for retrieval. 

Not surprisingly, most models in practical use give more or less the same level of 

performance. Although this leaves the necessity of research on various retrieval models doubtful, 

they have been constantly improved by combining the strength of different models, and bringing in 

new techniques, particularly, data mining techniques, to the existing models. 

Boolean-based matching is the most obvious approach to text document retrieval. Boolean 

retrieval systems appeared along with the technology such as punched cards and edge-notched 

cards in 1930s. In such a system, a query is an aggregation of specification of binary features in the 

format of a first-order logic (FOL) statement, and deductive inference is used as retrieval algorithm. 

A feature can take one of the three values, present, non-present, or unspecified. The documents that 

meet the requirement are considered relevant to the query. In spite of its simplicity and high search 

efficiency, a pure Boolean model has little strength in dealing with real world problems. However, 

Boolean matching can be found as an essential flavor in many retrieval systems. For example, 
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proximity matching is a very common add-on to the Boolean model and makes it very powerful in 

text document retrieval. 

Vector space model combined with feature weighting is arguably the most important and 

most widely used retrieval model. It is a framework that allows various customizations. Definition 

of the distance metric is core to the vector space model. Euclidean distance, Bayesian distance, 

Mahalanobis distance (simplified Mahalanobis distance) or variations of them are among the 

popular choices. Latent semantic indexing (LSI) takes another step from the scheme of vectorized 

features of the vector space model. Probabilistic model and fuzzy matching are similar in 

implementation but make different assumptions about the data distribution in theory. Bayesian 

inference network is an application of probabilistic model. For introduction of various retrieval 

models, a recent textbook is [yate99]. 

2.5 CONTENT-BASED IMAGE RETRIEVAL MODEL 

To summarize, information retrieval is a process of finding relevant documents in a document 

collection based on query. For both information processing and practical system performance 

reasons, documents are not compared directly. Instead, they are processed following a similar 

routine of essential feature extraction to generate document surrogates. The feature values are then 

used as input to a particular retrieval model. A retrieval model makes certain assumptions about the 

distribution of the feature values in the feature space, and determines the relevance of the 

documents by manipulating the document surrogates in the feature space. The adopted retrieval 

model would project those document surrogates bearing similar concepts to proximity in the 

concept space. There are 3 spaces in this simplified model, the document space, the feature space, 
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and the concept space. Two transformations are required to project the objects in the lower level 

spaces to the more abstract spaces. The first transformation is the feature extraction step, in which 

documents are processed to generate feature values. The goal of the second transformation is to 

overcome the “semantic gap [smeulder00]” between the image features and the concepts in the 

same domain in which the user’s information need is specified. A three-level model was introduced 

by Eakins [eakinsURL]. In that model, all three levels are used as handles for retrieval. Another 

four-layer was introduced along with the VIPER (now GNU GIFT, www.gnu.org/software/gift/) 

system. 

The advantage of the model proposed here is that it clearly defines the basic image 

representation, the derived features, and the concepts that the image delivers, and the user's 

information need in their own right. The two projections are core to the retrieval process where 

most uncertainties rise and most researches take place. There is no guarantee that the projections 

are always valid and provide a viable solution for retrieval based on only the bag-of-pixels 

assumption, that is, without really "understanding" the image intelligently. This is because that the 

definition of image content varies from user to user. Even with the same query, different users may 

have different information need. The information content of the image can be consumed in 

different ways by even the same user. Besides, the whole notion of artificial intelligence is not to 

replicate human intelligence, but rather achieve the same level of intelligence with the approaches 

that are most suitable for machine. At last, while an indexing term in text retrieval may be used as a 

concept by itself, there is no deterministic or causal relationship that connects an optical property of 

an object to the concept it bears. 

Thus, human semantic framework about image content is not guaranteed to be replicated faithfully 

in a computerized information retrieval system. However, within a well-defined domain context, 
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and when the image content in general is under careful control, it is safe to make the assumption 

that correct mappings between these three spaces exist and we can develop such algorithms based 

on the statistical patterns. Under certain circumstances, primitive image features, such as the color 

histogram, alone are sufficient to devise a working retrieval algorithm. Computationally "cheap" 

features might be just as important as those high-level features that require more processing and 

complex algorithms. From the perspective of the goal of retrieving relevant documents, it is not 

appropriate to divide features into different levels based on the complexity of feature extraction 

process. 

 

……

Concept Space

Feature Space

Document Space

Retrieval Model

Feature Extraction

 

2 Figure 2.2 Three-Space-Two-Mapping Model 

The document space is organized according to the physical properties of the 

image, the image format, and the optical properties being recorded (color 

intensity, or frequencies of changes, or other coefficients; it has been shown that 
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all features, low level or high level, are treated indiscriminately by machine, and 

can play roles of similar importance in the retrieval process; according to users’ 

different information needs and domain context, the concept space is very much 

fragmented. The mapping from the image document space to the feature space is 

based on image processing algorithms, which are usually quite subjective and 

universal to all content description processes regardless of data and users’ 

information needs. The extracted features are reorganized, weighted, with noise 

removed according to specific task definition, training data, and retrieval model of 

choice. Different retrieval models can be used for different tasks or for same task, 

so that the same set of features can be mapped to very different fragments of the 

concept space. This is the part that contains the most intelligent content of the 

system. 

 

There are refinements added to how these two transformations are performed. An important 

manipulation that accompanies both transformations is the feature weighting. In the feature 

extraction step, features can be weighted according to the nature of raw data and the algorithms that 

are used to process the data. Those features that help to distinguish the objects in the document 

space in general often receive heavier weights. Those don't, receive lower weight or even be 

eliminated. An example of this is the quantization step following the discrete cosine transformation 

(DCT) in the JPEG compression. The DCT coefficients and the three color channels are weighted 

differently according to the two quantization matrices, which is designed to reflect the significance 

of those coefficients to the visual quality of the image. 

Many retrieval models often imply some kind of feature weighting scheme according to 

their assumptions about the distribution of the feature values. This fact also brings about the 

variations even in the same retrieval model. A typical example of this in text document retrieval is 

that how term frequencies are normalized. They can be either: 1) not normalized, 2) normalized by 

document length, 3) normalized by their frequencies in both relevant documents and irrelevant 
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documents from a ground truth collection, or 4) normalized by any kind of mathematically 

reasonable manipulations, such as taking log of them. 

As a senior researcher stated it, information retrieval in general is an area that sees a little 

theory, and a lot of practice. There are many different approaches. In the next chapter, the current 

state of the art of research of content-based image retrieval will be reviewed with an emphasis on 

image feature manipulation. 
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3.0  IMAGE INFORMATION RETRIEVAL: VARIOUS 

APPROACHES 

This chapter will examine the image features that have been used for image content description and 

content-based image retrieval research and practice. Not all surveyed research works on the image 

feature description necessary lead to implementation of a working retrieval system. Some use 

synthetic data or image collection for test purpose, such as those in texture features testing. Vector 

space model and distance measure is the most common feature matching scheme, in which a 

feature gives a vector of values, and the matching is based on the pair-wise distances of the feature 

vectors. Individual work may derive a customized distance equation that works best in a specific 

setting. 

3.1 IMAGE MANUAL INDEXING 

Early content-based image retrieval started with the emergence of large digital image databases in 

the early 1990s. It was not until 1997 that it began to draw wide attention, which was 2200 years 

after the founding of Library of Alexandria that started the earliest practice of information storage 

and retrieval; 30 years after the first production automated search service in 1967, marked by 

Lockheed's DIALOG system serving NASA projects, and Data Corporation's OBAR (Ohio Bar 

Automated Research) full-text retrieval system. From a hardware perspective, CBIR only came to 
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realization and matured as the powerful computer hardware had brought about the challenge of 

managing large scale image collection and had also provided computation power for the capable 

image processing and feature extraction algorithms. 

With the availability of fast, cheap storage and digital imaging technology in the last 

decade, the advantage of capture, processing, storage, and transmission of image in digital format 

became apparent. Large image archives, such as those of satellite images and medical images, have 

been built up so rapidly that a methodology for automatic indexing and retrieval is in demand in 

order to better meet the consumers' information need. In many of those areas, digital imaging has 

been automated to great extent. Indexing those images manually would consume a huge amount of 

human effort. The Internet provides another driving force and incubator for the fast proceeding of 

the research in the area. 

 

 

3 Figure 3.1. Information scale of various retrieval tasks. 

(from lecture notes of Prof. Jamie Callan, Language Technology Institute, Carnegie 

Mellon University.) 
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Nevertheless, well before the term content-based image retrieval was forged [kato92], 

images were interpreted by human experts manually as an important step of indexing. In this 

process, text descriptors, either open set free format text or keywords from a standard thesaurus, are 

associated to the individual image. Text retrieval methodology can then be used to identify those 

descriptors that convey the same concept of the query.  Those keywords and text terms are treated 

as image features. In other words, the projection from document space to the feature space is 

carried out manually by human expert. This approach is time consuming, arbitrary, susceptible to 

environmental changes, and inconsistent among different human experts, requiring substantial 

human labor in creating an indexing system, setting up conventions and building/customizing a 

thesaurus, and indexing every image in the database. The indexing scheme is pre-defined to serve a 

particular purpose and the anticipated users of the image archive, and thus content dependent. After 

the image archive has been indexed, it can only be used for limited purposes. Any change in the 

usage of the database, in the indexing scheme, or in the selected image features will cost another 

round of human labor to re-index all the images. 

The tradeoff is that it requires very minimal computation power devoted to image 

processing and feature extraction step. This made it a viable solution when machine time was more 

expensive than human labor as in the history. At that time, some image processing techniques that 

are computationally complex either took too long or were regarded as too expensive and thus 

prohibitive for wide use, although the mathematical foundation of the algorithms might have been 

in existence for a long time and seen many successful applications in other area. Only very simple 

image primitives, such as the color histogram, were feasible to be used as indexing features, and 

were not capable of defining complex image content. The CBIR approach had to wait for its time 
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until storage and computation power are cheap enough to handle big image archives, and the world-

wide-web provides incentive for providing digital content online. 

Some of the old techniques have still proven to be useful. For example, the color histogram 

(see page 28 for a definition of color histogram) is still one of the most widely used indexing 

features. In retrieving web images, the text on the same page of the image, and the linkage text 

pointing to the image or the page provide a indexing setting somewhat similar to the text-based 

image retrieval scenario. 

3.2 AUTOMATED IMAGE FEATURE EXTRACTION 

With the maturation of computing technology and the CPU power of the computer, image features 

can be identified for the purpose of indexing. We are approaching to the point that we can use these 

features to describe the content of an image so that the images in a large database can be defined 

reasonably uniquely. In another sense, image documents can be projected from the document space 

to the feature space uniquely, so that fine granularity classification on the basis of the feature space 

manipulation becomes much possible. This allows us to define the image content from a machine 

intelligence perspective, which is not expected to duplicate exactly the process of human cognition. 

Practically, we can define the content of an image as the set of all possible features, or any 

combination of basic features, of that image; while an image feature can be defined as the numeric 

value generated by a pre-defined image-processing algorithm applied to the image of interest. 

Usually a feature value can be either a vector or a scalar. Thus, the feature extraction step allows us 

to reduce the two dimensional image to one dimension feature values. The feature values will be 
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ultimately reduced to relevance estimate, which is a scalar of zero dimension. This is within the 

framework of various retrieval models, which have been introduced in previous chapter. 

Due to the fundamental differences between image processing, numerical feature extraction, 

and the understanding of image semantics, visual language, the validity of retrieval based on 

common primitive features is, at large, questionable [liuy]. The task of building an all-purpose 

CBIR system is equivalent to building an image understanding system that duplicates human visual 

perception, reasoning, and specific domain knowledge. Although limited success has been achieved 

in some CBIR systems with retrieval algorithms focusing on one or two kinds of carefully-selected 

primitive image features [das99] [smith95] [brandt99] [squire95] [deng99] [brunelli99] 

[srikanth99] [graham98], and progress has been made in applying artificial neural network 

classifiers directly to the digitized image [rowley98] [squire95] [ikeda00], the problem in general is 

still unsolved. 

However, under careful image quality control, and by limiting the retrieval problem to a 

well-defined domain, it is possible to map primitive features to the content semantics. The 

existence of a mapping between machine generated image features and high level concepts of 

human cognition is a basic assumption that we rely on in order to justify all research efforts on 

applying artificial intelligence to machine image understanding. Restricting the scope of a CBIR 

system to a particular domain also helps to formalize the evaluation metric of system performance 

by making the relevance judgment meaningful. 

Image content can be perceived in three levels with increasing complexity: machine vision 

is good at discerning primitive features including, but not limited to, color, texture, and shape 

[rui99]; human users are more interested in the composition of the primitive features to form 

objects and the semantic relationship among multiple objects in the same image; at the highest 
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level, image content can be symbolized by the concepts that it conveys [eakins96] [eakins98]. 

Accordingly, there are queries that the users can generate at all these levels. Some of them can be 

satisfied by focusing on only one or two basic image features, while for others understanding of the 

semantics of the images is essential. 

Machines excel in more than one image processing schemes in deriving various features. Some are 

intuitive, some are not. Spatial domain processing is very intuitive, and widely used for the 

objectives such as image enhancement, object recognition. The manipulation focuses on pixels or 

aggregation of pixels within a defined region. Frequency domain processing is less intuitive, 

exploiting various transformation coefficients as basic elements, and widely used to generate 

compressed image/video formats. Recently, with the rapid rising of wavelet transformation, 

extracting image feature in frequency domain has attracted substantial attention in the wavelet 

community and content-based image retrieval community alike. Some higher level image 

processing techniques can use a mixture of algorithms developed in both domains. Early CBIR 

systems tended to reply on simple and computationally cheap features. It is a recent trend that 

multi-step, complex processing algorithms be used in identifying more comprehensive features 

with stronger connections to the targeted concepts and retrieval goals. However, the approaches 

here are mostly ad hoc. The difficulty in establishing a standard collection of test images like the 

those can be found in text retrieval, such as Cranfield, CACM, ISI, and most recently, TREC (A 

video TREC is available though. see http://www-nlpir.nist.gov/projects/trecvid/). 
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3.3 IMPORTANT IMAGE FEATURES 

3.3.1 Color Feature Matching 

The use of color feature can be found in many image retrieval systems because it is very easy to 

implement, costs little computation time, and is intuitive to human visual perception. Quite often, a 

homogeneous color block in an image corresponds roughly to a separate object. Machines can 

distinguish more subtle color differences than the human eye. It has been reported that in some 

particular image database, color feature alone can support fairly good retrieval accuracy. 

In spatial domain representation, an image is a two-dimensional array of color pixels. To 

represent a color, it is necessary to define a color space model. There are several color space 

models, with the simplest and the most commonly used one as RGB model. It has its root in 

computer display hardware. In RGB model, there are three primary colors -- red, green, and blue, 

and they are additive. Any color is combination of these three primary colors with different 

contribution from each [buford94] [foley92]. Visualized in a three dimensional hyper space, RGB 

color model can be represented by a unit cube with eight corners as pure black, pure white, the 

three primary colors, and three secondary colors as cyan, magenta, and yellow). Many image 

formats use this color model or a palette derived from it, such as the popular BMP, GIF, and PNG.  

To derive a color histogram of an image, a quantization step is usually added to distribute 

the pixels into a finite number of bins before the color histogram being derived, so that fewer colors 

need to be dealt with than actually in the image. The color intensity can be either uniformly 

quantized, or in a non-uniform way. Besides, vector quantization, including tree-structured vector 

quantization, and product quantization are also used [heckbert82] [jacobs95] [wan96]. The number 
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of pixels in each bin is then summed up. The process of dividing pixels into color bins can be 

refined to take into account the local features [pass99]. 

The generated histogram is a vector of N-dimension, where N is the number of colors after 

quantization. The color difference between two images is measured by the distance between the 

two color histograms. A variety of distance functions can be used, including Euclidean distance 

(aka L2 norm) [niblack94] [tseng95], quadratic distance [hafner95]. Other measures have also been 

proposed, such as L1 norm (color histogram intersection) [swain91] [srihari95]. Distance 

contributed by different colors can also be weighted so that the differences in the perceptually 

similar colors receive lower weights while those in the perceptually very different colors receive 

higher weights. A weight matrix has been proposed as a part of the MPEG-7 standard [IBM99]. In 

the measures mentioned above, L1 norm and L2 norm have been used by many researchers despite 

that L1 measure leads to low recall in missing matching images, and L2 tends to give low accuracy 

retrieval as the matching requirement is more relaxed. 

A global color histogram can be used to represent the color feature of one image. In many 

cases, a region-based matching between two images produces more accurate relevance judgment. 

The images to be compared with each other are divided into sub-regions, either according to a 

hierarchical sequence such as a quad-tree, or through image segmentation process. This falls into 

the category of region-based matching, and will be covered later in the chapter.  

The color feature of two images can be compared by a distance or similarity measure rather 

than by counting the number of pixels in each color bin.  This measure is then combined with the 

presence of that color in the image to form the color feature descriptor. The descriptor can be of 

lower dimensionality than the color histogram and efficiently indexed to facilitate fast retrieval 

performance. The method was introduced as dominant color descriptor in [deng01]. The color 
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distance measure the authors adopted has been shown to be equivalent to the quadratic color 

histogram distance measure. The color descriptors were arranged in a D3 lattice structure for fast 

range query search. 

In IBM’s QBIC project, following color representation schemes are used: 

1. Mean color. 

2. Mean + standard deviation. 

3. Multi-bin histogram. The distance of two color histogram is defined as following: 
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where h(I) is the color histogram of the image in the database, h(Q) is that of the query, 

A is k x k similarity matrix denoting the similarity among different color pairs. 

4. Color grid. The distance is defined as: 
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where C is the color in grid square g. 

The following two examples show the color histogram matching (left) and color grid 

matching (right) respectively. 
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4 Figure 3.2.  Color feature matching 

Left: matching is based on global color histogram. Right: matching is based on grid 

color matching. Query is specified in the format of color grid layout. 

 

3.3.2 Texture Feature Matching 

Texture is the characteristics of the spatial distribution of gray level among neighboring 

pixels. The texture features capture the repeating patterns of local variations in image 

intensity which is too fine to be distinguished as separate objects at the observed 

resolution. Texture is very important in human perception of the optical characteristics of 

discrete objects and provides important clue in reconstructing 3-D structure from 2-D 

image. Thus, it is a topic under extensive investigation for a variety of purposes, including 

image segmentation, computer vision, and content-based image retrieval. 

There are two major approaches in studying the texture property of image: 

statistical approach, and model-based approach. The statistical approach exploits the 

statistical properties of image or image regions in a bottom up fashion, starting from the 
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pixel values in the neighborhood. The co-occurrence matrix is in wide use in representing 

the dependence in the distributions of gray-level [haralick73]. The co-occurrence matrix is 

a function of: 1) the image region, 2) a displacement vector d = (dx, dy), and 3) the number 

of gray-levels after quantization. The matrix contains frequencies of co-occurrence of two 

gray-levels. After normalization, it becomes a probability matrix with all the elements 

summing up to 1. Viewing these elements from a signal processing perspective, some 

feature values can be defined as: 
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where Pij is the probability of grey level i co-occurring with grey level j --- after a 

quantization step. 

Experiments have suggested that contrast, inverse deference moment, and entropy 

have the biggest discriminatory power [gotlieb90]. Other features based on the subjective 

measure of human visual perception have also been defined. Tamura et al. [tamura78] 

defined six basic textural features as coarseness, contrast, directionality, line-likeness, 

regularity, and roughness. This system has been used in QBIC system [niblack93] and the 

MARS system [huang96] [ortega97]. Some researchers used only a subset of the above 

features including only contract, coarseness, and directionality [liu94] [niblack93] 
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[niblack97]. Another study identified repetitiveness, directionality, and granularity as the 

three most important orthogonal dimensions in human texture perception [rao93]. 

Sometimes, when the image primitives are big enough, it is more appropriate to separate 

the image primitives first and describe them individually, before texture analysis. 

Another way to describe the texture features is through modeling, where a model is 

constructed with parameters determined so that the model can be used to generate the kind 

of texture to be described. Markov random field model (MRF) and fractal analysis have 

been used for this purpose [cross89] [pentland84] [kashyap81]. Taxonomy for texture 

description and identification can be found in [rao90]. 

Like color features, texture features can also be used for image segmentation. The 

generated regions can support different texture features. Recent progresses in image 

compression techniques have provided new possibilities in image feature extraction. Many 

of the features that result from the transformation algorithms are related to the image 

texture. The application of region-based matching and image transformation in CBIR will 

be discussed later in this chapter. 

The figure below shows retrieval based on texture feature [shapiro01]. 
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5 Figure 3.3. Retrieval based on texture feature 

A query is specified in the format of a texture pattern. Texture 

features are extracted from the query and compared with those 

extracted from the images, while the color differences are ignored. 

 

The similarity measure with regards to the representation is: 
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where T(i) is the texture description vector at pixel i of image i, and T(Q) is that of 

the query. 
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3.3.3 Shape and Sketch Features 

Shape description is also an active research area [li94] [mehtre97]. There are three ways to 

describe shape feature, boundary-based, region-based, or a mixture of two. Unlike color 

and texture, which provides information in image segmentation step, correct image 

segmentation is instead a prerequisite for generating meaningful shape descriptor. The 

shape descriptors are usually required to be invariant for translation, scaling, and rotation. 

Fourier descriptors and moment invariants have proved to be successful in the two 

approaches respectively. 

Three mathematical formulations are useful for boundary feature representation, 

including chain code, Fourier descriptor [zahn72] [persoon77] [gonzalez92], and UNL 

descriptor [lee97] [jain86]. They describe only the outer boundary of a region while 

ignoring the area inside. In the former method, the signal that defines the boundary is 

Fourier transformed and the extracted features are compared in the frequency domain. 

Following are four commonly used shape feature descriptors: 

a. Unit vector: 
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d. Fourier distance measure: 
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In all above formulas, Vi is a vector representing a minimal segment of the 

boundary of the region; aI
n and aQ

n in formula d is defined in formula c. 

A more relaxed matching than shape feature-based matching is boundary matching, 

including polygon representation-based boundary description, and elastic boundary 

matching. In the polygon representation, matching is based on the lengths of the sides of 

the bounding polygon of an object and the angles between them. 

Region-based representations focus on the changes of the area inside the boundary. 

The descriptors developed along this approach include the early moment invariants [hu62], 

Zernike moments [jain86], the morphological descriptor [prasad97], and pseudo-Zernike 

moments [mehtre97]. New methods in shape feature description include finite element 

method (FEM) [pentland96], turning function [arkin91], and wavelet descriptor 

[chuang96]. 

Sketch is another useful feature that usually focuses on the contour as well as 

skeleton structure of the objects in image [leung02] [leung02-2]. In a query session, the 

outline of an object can also be specified by the user as a sketch as proposed in [hirata93], 

and implemented in QBIC [niblack93] [flickner95]. The feature can be derived by edge 

detection, line thinning techniques, and compared based on the correlation between the 
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user-defined sketch, and the feature extracted from the image. Following is a formula for 

sketch-based feature matching and a query example using the matching criteria. 

 

[ ]∑
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))()),(((ˆmax

1),(  

 

 

where LQ(g) and AI(g) are sketch feature specified in the query and that derived 

from the image from the database respectively. One of them needs to be shifted and the 

maximal similarity score is used to determine the distance measure. 
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6 Figure 3.4. Sketch matching 

The user sketches the outline of a horse as a query. The system needs 

to identify all the images with at least one object with the same shape. 

In this implementation, the sketch feature is not orientation invariant. 

Please notice that the algorithm can tell the rider on the horse apart 

from the horse and identify the correct contour of the horse. Color 

and texture features are ignored in this case. 
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3.3.4 Image Feature Matching in Compressed Domain 

Signal transformation algorithms are primarily used for image compression purpose. For 

example, the JPEG encoding and decoding standard employs the discrete cosine 

transformation (DCT) algorithm to transform the raster representation in the spatial domain 

into DCT coefficients in the frequency domain. In this process, the color information is 

concentrated in one channel thus high compression rate is achieved in other two channels. 

Besides, high frequency signals are further quantized so as to take less storage space 

[wallace91]. Wavelet transformation also concentrates signal in a subset of wavelet 

coefficients thus achieve its compression goal. These advantages of compressed image 

format have become the incentive for compressed domain manipulation to avoid dealing 

with the much larger raster format image file. These algorithms provide new types of 

feature in addition to the three discussed above, although, there are efforts in deriving 

primitive features, such as texture, from wavelet transformed images [boggess01] [kuo93] 

[unser95] [wouwer]. Despite of the advantages, the algorithms working in the compressed 

domain could be more difficult to develop. It is hard to relate the less intuitive coefficients 

in the transformed domain to the higher level visual perception in the spatial domain. The 

characteristics of indexing images in the compressed domain have made it a distinct topic, 

abbreviated as CDI (compressed domain indexing). It usually covers transform domain 

techniques such as discrete Fourier transformation (DFT), discrete cosine transformation 

(DCT), Karhumen-Loeve transformation (KLT), sub-band and wavelet transformations, 

and image vector quantization. Good review papers that cover CDI include [mandal97] 

[mandal99]. 
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a. Discrete cosine transformation 

DCT is closely related to the discrete Fourier transformation (DFT) but with certain 

advantages in handling signals with finite elements and computational simplicity. With an 

information packing capability close to the optimal KLT, and with advantages such as all 

the coefficients guaranteed to be real numbers [gonzalez92], DCT is also the basic 

compression algorithm underneath the MPEG 1, 2 H.261/H.263 standards. Indexing JPEG 

format images is desirable for storage, computation efficiency, and availability of JPEG 

images on the web. Similar researches in image/video manipulation and feature extraction 

have made progress, and the algorithms developed have been used in real-time video 

processing, motion estimate, and the signal processing circuit in color TV set [koc95] 

[liupatent98]. 

One way to handle DCT compressed images is to reconstruct the image from the 

DCT coefficients (IDCT: inverse discrete cosine transformation) either completely or 

partially using only a small subset of the coefficients (partial IDCT) so as to save 

processing time [armstrong01]. Better yet, image features can be derived directly from the 

DCT coefficients [feng02] [jiang02] [jiang02-2]. A very simple statistical modeling of the 

DCT coefficients by computing the means and variants of the AC components followed by 

Fisher discriminant analysis was used in [smith94] [reeves97]. 

Another technique that exploits the DCT coefficients is to use the within-image 

block-wise correlation of the coefficients in the query image or the target image as a key. 

The overall image similarity is the similarity of keys from both images [shneier96]. 
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However, in that paper, no semantic significance could be established corresponding to the 

similarity assessment. DCT coefficients have also been used in face recognition. In 

[pan99], the information capacity of only a few (as little as 35 from a human face image) 

DCT coefficients from a facial image is demonstrated, and the effect of the block size on 

the sample images analyzed. Artificial neural network is then used as a supervised learner 

to generate a classifier, with the selected DCT coefficients as input, and the object ID as 

output. 

Edge detection can also be simulated in the DCT transformed domain. Different 

subsets of DCT coefficients measure the gradient in the change of the intensity in vertical, 

horizontal, and diagonal directions, respectively. A straight line of slope m in spatial 

domain is represented in DCT transformed space by a straight line with a slope of 

approximately 1/m in the DCT domain [ng92]. The approximation of more features with 

DCT coefficients was described in [shen96], covering edges, edge orientation, edge offset 

from center, and edge strength. Due to the fact that DCT is also the underlying coding 

scheme for video, there is a strong interest in it in the content-based video retrieval 

community. The topic will not be covered any further in this writing. 

 

b. Singular value decomposition 

Singular value decomposition (SVD) or under another names as Karhunen-Loeve 

transformation (KLT) or principal component analysis (PCA) or latent semantic indexing 

(LSI), has been applied successfully in face image classification. The feature extracted by 

KLT/PCA/SVD/LSI method is called eigen face [pentland94]. It is a method for 
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compression, feature extraction, feature weighting, dimensionality reduction, data mining, 

relevance feedback processing, and retrieval modeling. 

The theorem of singular value decomposition says that it is always possible to 

(almost) uniquely decompose any M x N matrix A with M ≥ N into the product of 3 

matrices: 

 

A = U Λ VT

Where: 

1. U (M x K) and V (N x K, K ≤ N ≤ M) are column orthonormal matrices (i.e., 

columns are unit vectors, orthogonal to each other). 

2. Λ is a diagonal matrix, and its elements (aka eigenvalues) are non-negative, and 

sorted in decreasing order. 

A more tableau representation of the formula is in the following format: 

 

 

 

SVD is the method of choice to solve most linear least-squares optimization 

problems. The first eigenvector represents the best dimensional to project to that generates 

the minimal sum of squared errors. Elements of W represent the variances of points when 
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projected to the corresponding eigenvectors, while UΛ give coordinates of points in that 

axis. The eigenvector associated with the largest eigenvalue has the same direction as the 

first principal component. The eigenvector associated with the second largest eigenvalue 

determines the direction of the second principal component. The sum of the eigenvalues 

equals the trace of the square matrix and the maximum number of eigenvectors equals the 

number of rows (or columns) of this matrix. When performing dimensionality reduction, 

the smallest eigenvalue correspond to the least significant features, which can be removed 

while conserving the most discrimination power. 

SVD has special implication in content-based image retrieval. If we use each row 

in vector A to represent an image feature vector, with every column representing one 

feature, then the following can be inferred: 

1. The value K represents the number of concepts in these images; 

2. The elements of each row in U represent the membership strength of the 

corresponding image to the respective concepts; U is an “image-to-concept” 

similarity matrix. 

3. The diagonal elements in W are the representation of the concepts in these M 

images; W is a “concept strength” diagonal matrix. 

4. The elements in V are the weights of the features that contribute to the 

classification decision on an image bearing an individual concept; V is a “feature-

to-concept” similarity matrix; the columns of V are called eigenvectors, with the 

most prominent ones appearing on the left most columns. 
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The complexity of SVD is O(N*N*M), but can be reduced if only eigenvalues are 

needed, or if only first a few eigenvectors are needed, or if the matrix A is sparse. The 

algorithm is available in most linear algebra software packages such as LINPACK (and its 

modern version, LAPACK, http://www.netlib.org/lapack/), MatLab, S-plus, and 

Mathematica. The application of SVD can be found in multi-lingual IR, compression, PCA 

(“ratio rules”), Karhunen-Lowe transform, query feedbacks, and the recent 

google/Kleinberg algorithms [fukunaga90] [press92, chap2] [http://www.cs.utk.edu/~lsi/]. 

 

c. Discrete wavelet transformation 

Discrete wavelet transformation (DWT) has gained wide popularity due to its higher 

compression ratio, its hierarchical representation structure that allows progressively 

transmission of images of different magnification, the localization information it carries 

and its adoption as a part of the JPEG 2000 standard. Data sets without obviously periodic 

components cannot be processed well using Fourier techniques. For example, the United 

States FBI compresses their fingerprint data base using wavelets 

(http://www.c3.lanl.gov/~brislawn/FBI/FBI.html). 

Like Fourier transformation and other signal transformations, wavelet 

transformation also involves convolution of target signal and base functions that satisfy 

certain restraining conditions. Unlike DCT, which needs to divide images into small 

blocks, DWT transformation processes over the whole image, thus avoids the blocking 

artifact. At least, dividing image into smaller blocks is not practically required for any 

reason. The coding bit rate is also better adapted to the change of the image signal over the 
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complete image, rather than assigned evenly as with DCT blocks. With DWT, image is 

passed through a filter that is defined by a base function, and decomposed into a low-pass 

component and a high-pass component. The low-pass component is then passed through 

the same filter again, and the process goes on recursively [mallat89] [antonini92]. It has 

also been shown that DWT is better adapted to the signal by choosing different base 

functions. There are an infinite number of base functions to choose from, while making the 

tradeoff between how compact they can be localized in the space and how smooth the 

functions are. A good base function should resolve more wavelet coefficients in the low 

frequency sub-bands. For this reason, Daubechies' wavelets are preferred over the earliest 

Haar's wavelet in processing 2-D natural images, for its continuous derivatives provide 

better modeling of continuous functions of image [wang98]. But Haar’s wavelet still has 

some usage. 

 

 

7 Figure 3.5. Wavelet popularity 
Many areas of science, engineering, and mathematics have contributed to the 
development of wavelets (Wim Sweldens and Peter Schröder, “Building 
your own wavelets at home.”) 
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8 Figure 3.6. Wavelet functions 
 

 (Press92, Numerical Recipes, Chap13) 

• Left: single basis functions from the wavelet families: upper: DAUB4: 

inverse DWT of a unit vector in the 5th component of a vector of length 

1024; lower: DAUB20: inverse of the 22nd component. 

• Right: sum of two unit vectors, e10 + e58, which are in different 

hierarchical levels of scale, and at different spatial positions: upper: 

DAUB4 wavelets defined by a filter in coordinate space; lower: Lemarie 

wavelets defined by a filter written in Fourier space. 
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The (one dimensional) wavelet transformation is defined in its continuous form by 

the following formula: 

∫
−

=Ψ= dt
s

ttx
s

ssCWT xx )()(1),(),( * τψττ ψψ
 

where: 

τ is the translation factor; 

s is the scaling (or dilation) factor; 

Ψ(t) is called the mother wavelet; 

Ψ denotes the wavelet base function; 

χ denotes the test signal. 

According to the above definition of the inner product, the CWT can be thought of 

as the inner product of the test signal with the basis functions, and takes the form as 

following: 

 

∫=Ψ= dtttxssCWT sxx )()(),(),( *
,τ

ψψ ψττ  

 

where: 
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t
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τψψτ
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=  

 

(Robi Polikar, The Wavelet Tutorial, the engineer’s ultimate guide to wavelet analysis, 

http://engineering.rowan.edu/~polikar/WAVELETS/WTtutorial.html). In a space 
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defined by orthonormal vectors, the coefficients can be calculated using the following 

formula: 

 

∫ ⋅>==< dtttff kkk )()(, *φφμ  

 

where: 

<f, φk> denotes inner product of the two functions: signal function and the base 

function; 

φk are orthonormal vectors of that space, where k = 1, 2, …, N, with N as the 

dimension of that space; the orthonormality holds when the following equation is satisfied: 

 

∫ =
b

a lk dttt 0)()( *φφ    lk ≠   (orthogonality condition) 

and 

∫ =
b

a k dxt 1|})({| 2φ  

or equivalently: 

∫ =
b
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where the Kronecker delta function is defined as: 
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In the discrete version, the signal is decomposed into different frequency bands by 

successive highpass and lowpass filtering of the time domain signal. The low frequency 

component can be sub-sampled by 2, according to Nyquist’s rule: 

 

∑
∞

−∞=

−⋅=
k

knxkhny ]2[][][  

 

The process is called lifting scheme and generates pyramidal representation. The two 

filters satisfy the following equation: 

 

][)1(]1[ nhnLg n ⋅−=−−  

 

where g[n] is the highpass, h[n] is the lowpass filter, and L is the filter length. This kind of 

orthogonal filters is known as the Quadrature Mirror Filters (QMF). The filtering and sub-

sampling operations can thus be expressed by: 

 

∑ +−⋅=
n

high kngnxky ]2[][][  
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n
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The lifting scheme is shown in the following diagram: 
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9 Figure 3.7. Diagram of Haar’s wavelet transformation 

 

Haar’s wavelet is the first wavelet, and the simplest wavelet base discovered by 

Haar, in which the highpass filter is a differencing function and the low-pass filter is an 

averaging function. Daubecies’ wavelets are a group of wavelets with base functions of 

similar properties. DAUB4 is one of them with relatively compact support. 

The wavelet transformation’s spatial localization property and the multi-resolution 

construction of the pyramidal model make it a very popular scheme for texture feature 

classification. Much work has been done towards this direction [chang93] [smith94] 

[chen94]. DWT has shown superior performance over other compressed domain or pixel 

level processing for texture classification [smith94]. Hidden Markov model (HMM) has 
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been applied to exploit the co-occurrence patterns among wavelet sub-bands. The texture 

features extracted from different wavelet sub-bands were analyzed and modeled separately. 

Image comparison and retrieval decision is based on the comparison of parameters of the 

models [chen94]. A more common approach to classify texture features based on wavelet 

sub-band coefficients is through histogram analysis [mandal96] [mandal99]. Gabor 

wavelets were used in multiple directions to achieve better directional discrimination 

[manjunath96]. Correlation of the spatial domain features and the wavelet coefficients was 

induced in [wang96]. After careful down-scaling of the images, the wavelet coefficients 

extracted from the smaller, normalized version of the images were used for direct 

comparison [jacob95] [wang97]. Other efforts in achieving rotation, translation, and 

scaling invariance have seen various success [qi94] [rashkovskiy94]. 

 

d. Other image transformation techniques 

Other image transformation/compression/decomposition methods are used for image 

content description and feature extraction. Discrete Fourier transform is closely related to 

DCT and sees limited use in image feature extraction: 

 

∑=
j

ijj ecH ωω)(  

 

Vector quantization (VQ) can usually achieve very good compression ratio based on the 

fact that it encodes vectors (or data structure of higher dimensions) rather than scalars. It 

has been used to code both grey level and color image content for content-based retrieval 
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purpose [vellaikal95] [idris96] [lu99]. At the beginning of the coding process, a codebook, 

which consists of the most representative pixel block-wise patterns (or patterns in the 

processed features) in the image, is generated either manually or through unsupervised 

learning [kohonen95]. Then, image blocks or regions are coded with indices to the most 

similar blocks. The code set is used as the vocabulary of the images. Techniques such as 

histogram, vector space model-based distance measure, and co-occurrence measure can be 

combined with the image vocabulary analysis. The whole scheme bears much similarity 

with the text retrieval paradigm using indices as counterparts of indexing terms in text 

retrieval, with one exception that two dimensionality property is important for image in 

forming image layout, texture, etc, which relates to the one dimensional term proximity in 

text. The idea of vector quantization plus the concepts and retrieval models (plus co-

occurrence analysis) from text retrieval was formalized in [zhu01] [zhu02]. The authors 

named the approach "keyblock-based image retrieval" in a series of their publications. 

Besides being applied directly to the image pixels, these transformations are also used on 

generated image features for the purposes such as dimensionality reduction, data structures 

for fast search and retrieval. 

3.3.5 Composite Image Features and Region Based Matching 

As the computation power becomes more accessible and cheaper than ever before, a CBIR 

system tends to use more than one feature and more than one technique, and the retrieval 

decision is based on the summation of the contributions from all the features so as to 
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achieve better accuracy and accommodate more types of image content [antonini92] [li97] 

[idris95] [swanson96] [podilchuk96]. 

A further step beyond image feature extraction and indexing is image 

understanding that bridges the semantic gap between machine vision and human visual 

perception. ("Semantic features aim at encoding interpretations of the image which may be 

relevant to the application.") Usually, understanding an image requires clear identification 

of the objects in the image, and the spatial relationships among them. This further requires 

accurate image segmentation to separate the objects, which is, despite of the successes in 

the restrained domains [podilchuk96], in a broad sense, an unsolved problem. On the other 

hand, it is usually not necessary to carry out an accurate segmentation that captures 

individual objects, if we can get enough information about the object from other, more 

general image features that can be related to the objects [smeulders00]. 

Along the track towards object feature extraction and image understanding, but 

with a fuzzy, non-deterministic approach, a region is a rough match of an object. Without 

ignoring the structural grouping of the pixels, a region is usually formed by homogeneous 

properties such as color, texture [gevers00] [wang98]. Different from the approaches of 

constructing histograms and exploiting statistical parameters such as mean, variants, levels 

of moments, and treating images as "bags of pixels", the pixels in an image are first 

grouped to form regions according to their spatial proximity and homogeneity in intensity. 

Then the layout of multiple regions in the image along with the regions' individual 

properties is combined to form a measure of the similarity between images. One of the 

possible representations of the spatial relationship is attributed relation graphs (ARGs) as 
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described in a textbook [chang89] and a recent paper [petrakis02imagemap]. Due to the 

distortions in the shapes, shift in the color, variations in the relative positions among 

objects, etc, of the object/region in the image, fuzzy logic is often used in combining 

multiple features rather than deterministic measures. One of the earlier region-based 

retrieval systems used color and texture as region defining features. EM was then used to 

cluster pixels and/or image blocks into regions [carson97]. WALRUS (WAveLet-based 

Retrieval of User-specified Scenes) was wavelet/region based, in which wavelet features 

from small sliding windows were used to cluster the windows to form regions. Regions 

were indexed and the index adopted an R*-tree structure to increase retrieval speed. 

Similar regions from two images were compared in pairs [natsev99]. In the WindSurf 

(Wavelet-based INDexing of imageS Using Region Fragmentation) system, wavelet 

coefficients were clustered with k-mean, regions with homogeneous features were 

identified, and spatial information extracted. Then a distance measure was derived, which 

was later coupled with an R*-tree like distance-based access method (DBAM) for indexing 

and fast retrieval [ardizzoni99] [bartolini00]. The wavelet features and k-mean clustering 

method were again used in a later research in [chen02]. Image segmentation was achieved 

by dividing an image into blocks and the blocks were grouped by k-mean based on their 

low frequency wavelet coefficients in LUV color space. Each image was coded with a k-

dimensional vector representation by k-mean method, based on the kinds of blocks used to 

cover the complete image. The concepts of fuzzy feature and fuzzy model for fuzzy feature 

matching were defined. Further fuzzy feature vector matching was based on the fuzzy 
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model. Another recent paper that adopted a similar wavelet-based texture analysis 

approach is [suematsu02]. 

Bayesian framework is another approach adopted by some researchers [vasconcelos98] 

[vasconcelos00]. It has also been extended to process users' relevance feedback under the 

same framework [su01]. 

3.3.6 Conclusions 

From the above brief survey of a variety of features used for CBIR, a few trends are 

obvious: 

1. More features are under investigation than before. 

2. New features are more complex than the simple color, texture schemes. 

3. Combination of multiple features, and combination of processing techniques in 

processing one features are common in defining an image or a region in an image. 

4. Compressed domain processing, such as wavelet coefficients and DCT coefficients, 

has drawn wide attention and gained popularity. 

5. Machine learning/data mining techniques are used in extracting sensible image 

features 

6. With the increase in the complexity of the constitution of the feature sets, and the 

realization of the uncertainties in the image feature processing, researchers start to 

exploit mathematical/statistical models to support better retrieval decision making, 

instead of resort to simple classification rules. The incorporation of other 

information retrieval techniques, such as relevance feedback, query expansion, will 
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take more advantage of those theories and techniques developed in text retrieval 

but applicable to general retrieval problems. This will be further discussed in the 

next chapter. 

3.4 FEATURE WEIGHTING, FEATURE SELECTION, AND RELEVANCE 

JUDGMENT 

With multiple features or single multi-dimension feature, an optional step that improves 

the features' distinguishing power is to provide a weighting scheme so that relevant, high 

quality features can have more contribution to the retrieval decision than not so relevant, 

noisy features. Traditionally, the measure of the similarity of two feature values can be 

adjusted by the statistical distribution. The Mahalanobois distance is such an example, and 

it has been used in CBIR as well as many classification tasks. The different color channels 

are weighted by representing the color in different color models, which have different 

properties and information concentration in three channels [wallace91].  However, data-

dependent feature weighting is not commonly seen. Feature bagging and selection are 

usually based on empirical data. This is commonly seen with compressed domain feature 

processing, in which a small subset of all DCT and wavelet coefficients are used as 

features and the rest majority are thrown away. In other cases, some of these coefficients 

are grouped together so that only a few concentrated feature values need to be dealt with. 

Due to the general absence of gold standard image databases to facilitate supervised 

learning, most learning process targeted to assign weights for the features are either 
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unsupervised or empirical. However, one exception is seen in the user-system interaction 

process when the feature weights can be tailored to users' information needs, based on the 

users' relevance feedback on a per query session base. The topic of relevance feedback will 

be discussed in the next chapter. 

Feature selection is related to the issue of feature weighting but with an objective to 

reduce the dimensionality of the feature set. A systematic approach is to eliminate the 

feature that has the least impact to the correct classification. The process is iterative until a 

threshold error rate is reached and the process can not be carried on any more, or the set 

has reached a satisfactory number of dimensions, and the process stops voluntarily. 

Another opposite approach is to select the most significant features first. This is usually 

preceded by a transformation of the feature space. Many of the image transformation 

methods surveyed above can be used here for this purpose. The most important method 

that has been reinvented in solving many similar problems is KLT/PCA/ SVD/LSI, which 

stands for Karhumen-Loeve Transformation/Singular Value Decomposition/ Latent 

Semantics Indexing. The method is highly efficient in identifying only a few feature values 

while retaining most of the distinguishing information. 

Various information retrieval models take the features prepared from above 

procedures as input, and project the image features from the feature space to the concept 

space, so that the retrieval decision can be made based on the models' individual relevance 

judgment: 
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1. The presence or non-presence of the features satisfies a first order logic (FOL) that 

the query specifies. The Boolean retrieval model is not very useful in image 

retrieval as the image features are usually numerical and the Boolean representation 

of the features loses the information. 

2. The document is in proximity of the query in the concept space, according to a 

distance formula with feature values as variables. The vector space model is most 

widely used in text retrieval, and is also favored by the image retrieval community 

for its adaptability to features of different natures. 

3. There is a certain probability that the document may be relevant to the query based 

on the features it has: P(Rel | query, document) > threshold. The probabilistic 

model is theoretical sound, gives quite good retrieval accuracy in text retrieval, and 

provides a sensible way to unify features of all kinds of nature under the general 

scheme of probability of relevance. Yet, works need to be done to make it feasible 

to deal with image features. 

4. Fuzzy model is very similar to the probabilistic model but without the constraints 

from the probability theory, such as all cases of an instance should sum up to 1. 

The implementation is quite similar to the probability model. It was recently used 

in [chen02]. 

There exist other retrieval models that shine in the domains that fit them. The kind 

of retrieval model in use plays an important role in the retrieval decision making process 

and the way how the image features should be represented. 
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4.0  SYSTEM IMPLEMENTATION AND PERFORMANCE EVALUATION 

This chapter covers three major topics that are not directly related to the image 

classification but are important to the system performance and evaluation: 1) data structure 

for feature indexing, 2) relevance feedback, and 3) evaluation. 

4.1 FEATURE INDEXING 

There are two important aspects in implementing a good CBIR system: effectiveness and 

efficiency. Effectiveness emphasizes on the function of the system to satisfy users' 

information needs, which is mostly concerned by the retrieval accuracy. Efficiency is the 

performance-wise characteristics that allow the retrieval tasks to be accomplished in a 

predictable amount of time with reasonable resources, and the scalability of the design. 

After proper features have been identified, an image document surrogate that is 

used for direct comparison is usually a feature vector. A Boolean example is an extreme 

case where each element of the vector takes a value of either 1, or 0, or undefined, 

indicating whether a feature is present, non-present, or undefined. A signature file can be 

generated for the database with K binary vector, where K is the number of features. Each 

vector is N bits long, with N as the number of total documents in the database. The bit i in 
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vector j indicates the value of i-th feature in j-th document. The retrieval process is as 

simple as Boolean AND operation: all binary vectors corresponding to the query terms are 

aggregated with Boolean AND operation, documents that have 1 in the resulting vector are 

qualified for retrieval. 

However, binary features are not commonly used and provide harsh granularity in 

feature quantization. When feature values are scalars, an image is more likely to be 

represented as a point in a high dimensional feature space. The problem of retrieving 

similar images is then transformed into the problem of searching for points within 

proximity of the query in the high dimensional space. Unlike the case in Boolean kind of 

feature and query, the comparison between images gives a similarity (or dissimilarity) 

value. Users are usually interested in related images with similarity value above a certain 

threshold. This translates into two kinds of queries, nearest-neighbor query (k-NN) and 

range query. k-NN asks for the k images that are most similar to the query, while range 

query asks for the images with certain similarity score. The easiest solution is sequential 

search that compares every database image with the query. This approach doesn't require 

any special data structure and search strategy, and is used by small systems and test-bed 

with small collection of images. 

With a large collection of images to search through, the performance of sequential 

search is not acceptable. Tree-like data structures are used to break down the search 

complexity. For a single feature, or features that can be mapped to one single index, many 

conventional search algorithms are available, such as B-tree. Insertion, deletion, searching, 

and concurrency issues have been well studied. For feature space of higher dimensionality, 
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multi-key indexing methods are often used. Quad-tree is especially useful in decomposing 

image into regions hierarchically [smith94] [vellaikal95] [chang95] [lin97] [natsev99]. K-

D tree is designed to search in multi-dimensional space with multiple attributes [white96]. 

Spatial access methods (SAMs) are file structures for managing high dimensional 

points in large scales, either in the main memory or on the disk [gaede98]. One of the 

strengths of SAMs is that it provides a means to process range query. R-tree is such a SAM 

method that can be viewed as an extension of the one dimensional B-tree. In R-tree, multi-

dimensional objects (such as a range, nearest neighbors of a query) are represented by their 

minimal bounding rectangle (MBR). Intermediate nodes contain the definitions of range 

and pointers to the corresponding child nodes, while leaf nodes have the object ID and the 

range defining information of the MBR of that object. The intermediate nodes of an R-tree 

are allowed to overlap with each other. In particular, range queries and nearest neighbor 

queries are easily represented as such objects in R-tree [guttman84] [brinkhoff93]. R-tree 

has been used with images with multiple objects/regions that have been successfully 

segmented and their spatial relationships clearly modeled with ARGs or editing distance 

[petrakis02fast] [petrakis02ImageMap]. Variants of R-tree include R+-tree [sellis87] and 

R*-tree [beckmann90].  

As in text retrieval, image features could also be indexed to build inverted indices 

to facilitate locating images with particular features [voorhees86] [squire99] [squire00]. 

The indices are usually built as B-trees or hashing tables. Images can also be clustered 

together to facilitate retrieval and browsing. 
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4.2 USER-SYSTEM INTERACTION: RELEVANCE FEEDBACK 

Another goal in CBIR implementation is to provide interaction between the system and the 

users, during which the users can express their information needs through an iterative 

refining process. Due the existence of "semantic gap", low level features alone are not 

sufficient in defining image content in a general scope. The input of the users' assessment 

to the retrieved images in a retrieval session helps to adjust the users' specification of the 

query and/or the behavior of the system, to provide a context for how the image features 

should be interpreted. One of the most important user-system interactions in information 

retrieval is relevance feedback, first developed for vector space model in text retrieval 

[rocchio71] [buckley95]. After a query session is complete and the system returns a list of 

relevant images, the user can review the retrieved images and give assessment of their 

relevance back to the system. With this information, the system carries out another session 

with added input in the hope that better retrieval accuracy can be achieved. The process 

goes on iteratively until the user gets what he/she wants. 

There are three ways in which users' relevance feedback can be used to improve 

retrieval accuracy: through query refinement, or through feature weighting, or through a 

mixture of both. In the first approach, a new query is formed based on the old query by 

enhancing the feature components that are significant in the retrieved images that are 

classified as relevant, and at the same time, decreasing the ones from the non-relevant 

[rocchio71]. An important method of this approach in text document retrieval is query 

expansion. 
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The second approach is to adjust the feature weights in the favor of those in the 

relevant images, against those present in the non-relevant ones. In the IRIS (Interactive 

Retrieval of Images System), the variance of a feature is used as a measure for the 

importance for classification -- the feature receives a lower weight if it sees big variance 

across the images that are considered relevant according to users' feedback, or if it sees the 

same level of variance both in the relevant and non-relevant image groups [yang98]. In 

[rui98], the weight adjustment is based on the ranks of the relevant images and non-

relevant images along each feature axis. MindReader adopts the Rocchio formula from the 

text document retrieval [ishikawa98] and refines query iteratively. 

Heuristic methodology described above were mostly adaptations from the text 

document retrieval. Recent progresses have been made in the direction of viewing the user-

system interaction as an optimization, learning, classification, or density estimation 

process, the goal of which is to improve the classification based on a small number of 

examples [rui00]. In PicHunter, a "stochastic comparison search" was proposed to search 

for the desired images with feedback as "relevance judgment" [cox98]. Boosting technique 

is used to learn the classification function from 45,000 features in [tieu00]. DCT 

coefficients are modeled in a Gaussian mixture model, and then Bayesian inference is 

applied for region based matching and learning in [vasconcelos00]. Self-Organizing Map 

(SOM) is used to group relevant and non-relevant images based on the user feedback in 

[laaksonen00]. Other important learning methods that have been used include support 

vector machine (SVM) [chen01]. Expectation-maximization (EM) is used in [yong01]. 

[huang01] has a good review on various approaches. Besides, [su00] introduces a Bayesian 
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framework to handle relevance feedback assuming different context for positive feedback 

and negative feedback.  In [bang02], instead of adjusting the weights of the features or 

refining the query, the feature space is warped, i.e. the features of the database images are 

changed in order to reflect the relevance judgment in user's feedback. In each iteration, the 

positive images are brought closer to the query, while the negative images are moved away 

from the query. This effort is expected to correct the errors in the feature identification 

process. 

4.3 PERFORMANCE EVALUATION 

The evaluation of a CBIR system can focus on different components and aspects, such as 

ease of query formation, speed of retrieval, required resources, document presentation, and 

the ability to find relevant documents. The most important and common evolution measure 

is the retrieval effectiveness, which turns out to be a difficult task for image retrieval. First, 

a relevant image is one that is judged useful in the context of a query image. The judgment 

varies from person to person. The usefulness is also hard to define. Sometimes, an image 

database might be used to answer queries that are not expected to be common. The human 

judgers are not consistent throughout the time, and from one judger to another. The 

retrieval model the system adopts also comes with its intrinsic definition of relevance, be it 

a FOL statement, a distance measure, or a probability estimate. In short, judgment depends 

on more than document and query. In image retrieval, we are yet to establish standard test 

sets of images for evaluation/comparison purpose. Current, researchers usually use one of 

 66



the test image sets that are easily accessible from the web, such as the one at 

http://corel.digitalriver.com/commerce/photostudio/catalog.htm, which includes 70.000 

images in 500 categories. In real world cases, the complete set of relevant images from an 

image database is hard to examine individually. 

Performance of CBIR is typical evaluated by empirical visual inspection as seen 

even in some publications, where query images and the respective retrieved images are laid 

out side by side. When necessary, two metrics, recall and precision, are used following the 

tradition of text retrieval. Precision is defined as the proportion of a retrieved set that is 

relevant; recall is defined as the proportion of all relevant documents in collection that also 

appear in the retrieved set. In ranked retrieval, precision and recall are displayed in the 

form of P/R curve [squire99] [squire00] [zhu02]. This is an easy way to compare the 

performances of different systems/algorithms over the same image database. However, 

evaluation centric works are scarce in the literature. A discuss of various CBIR evaluation 

issues in the light of text retrieval evolution methodology can be found in 

[müller01performance] [squire01design]. The important issues discussed include standard 

benchmark test image collections, relevance judgments, single-valued metrics, and 

graphical representations. The proposed methods were late used in [müller01automatic]. 

There is an effort to put together a CBIR benchmark portal on the web at (The 

benchathlon Network, home of CBIR benchmarking, http://www.benchathlon.net/) with a 

standard test image collection. The evaluation methodology is mostly borrowed from text 

document retrieval side. The metrics include ranks of the first match and average rank, 
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precisions at 20th, 50th, and of all the relevant images, recall with half precision scores 

0.5, and finally, the P/R plot [müller01automatic]. 

A very recent work takes a very different perspective than above. Various 

application scenarios of image retrieval are discussed in the light of the retrieval task, 

users' very special information needs, and the interactions between system and users 

[jermyn02]. 

A new approach targeting at verifying the distance measure of CBIR engine within 

a domain context was used in [zheng03]. The pair-wise similarity scores among selected 

sample images from a medical image database were used for evaluation rather then the 

precision/recall scores to take advantage of the numerical output directly from the search 

engine. Clustering algorithm is applied to the similarity matrix to build a dendragram, 

which was then compared against the medical taxonomy to ensure correct classification. 

This approach helps in difficult situations where massive case-by-case evaluation is 

prohibited due to insufficient relevant images in the database (one sample image per 

category might be all that is required for clustering algorithm), but domain knowledge can 

provide a gold standard. The complexity of the retrieval problem was then estimated using 

multi-dimensional scaling. 
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5.0  METHODOLOGY: COLOR QUANTIZATION OF PATHOLOGY 

MICROSCOPIC IMAGE,FEATURE EXTRACTION, AND CONTENT INDEXING 

5.1 BACKGROUND 

Automated image classification and content-based image retrieval (CBIR) have attracted 

wide attention from academic research as well as from commercial development. 

However, the most important driving force behind the strong trend is the rapid 

accumulation of digital images in a few particular domains, such as satellite imaging, 

medical imaging, and other special purpose picture archiving and communication systems 

(PACS). The digital images generated by modern imaging devices in these special sections 

have virtually run out of human experts’ manual indexing capability. Understanding and 

solving problems in these particular domains requires special knowledge and careful 

research effort, and the result can be better adapted to that domain and lead to superior 

solutions to the real world problems. Domain context also provides a rich and stable 

resource for identifiable image features and a ground truth knowledge base for 

performance evaluation. 

Pathology diagnosis, as a tradition, heavily relies on morphological analysis of 

microscopic images. Diagnosing an image in many ways resembles the process of 

classification, in which, each sample is labeled with one or more class names. The goal of 
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content-based microscopic pathology image retrieval is to mimic the intelligence of human 

pathologists as a classifier. A well-designed retrieval algorithm is expected to retrieve the 

images that bear the same class label as the query image. What is more, this classification-

based retrieval algorithm is also expected to “understand” the taxonomy of the class labels 

and the histological/pathological phylogeny of the different tissues so that the tissues with 

similar origin and morphological structure will also be ranked higher than the other tissues 

[zheng03]. Hence, the relevance judgment of content pathology microscopic image 

retrieval is based on classification correctness. A positively retrieved image should bear the 

same class label as the query image. In this design, all images are collected from diagnosed 

cases, and each labeled with a short text descriptor. As a matter of fact, the images within 

the same category usually have very consistent morphological appearance. A good 

retrieval algorithm should focus on these common features and generate a relatively small 

within-group variation in classification. This indicates that a relatively small population of 

each category may be sufficient to achieve statistical significance in the evaluation process. 

There are two major objectives and approaches for image feature extraction: 1) to 

identify strong features that are directly associated with a kind of object/concept of 

interest; 2) to pack/concentrate image information and to identify weak features, and at the 

same time, remove noises in order to allow further image data mining for discovery of the 

statistical correlation between the features and the concepts of interest. Modern content-

based image retrieval techniques that deal with images of multiple different classes often 

resort to the latter approach, for it is inefficient or near to impossible to identify individual 

features for every potential classification in a large number of, and sometimes unexpected, 
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image collection following the first approach. General features allow for more entropy 

reduction than those features that are present only in a few particular cases, and thus are 

potentially more discriminative. 

Principal component analysis (PCA) is one of the most important and powerful 

methods in feature extraction and information packing. Techniques based on the same 

mathematical formulation include KLT, SVD, and LSI under different names in different 

domains. It provides optimal information packing capacity that usually leads to significant 

reduction of problem complexity without significant loss of information. A data point can 

be represented by its projections on a few eigenvectors and still conserving 80-90% of the 

total information.  However, the process is un-supervised and the technique is data 

dependent rather than classification driven. That means the derivation of the eigenvectors 

is affected by the statistical distribution of the sample data, rather than taking into account 

the classification of the data. The process is optimal in data representation, but may not be 

optimal for class representation/classification purposes. As a result, the dimensionality 

reduction may neglect features that are critical for classes with fewer representation of the 

total sample population, and in some cases, blind dimensionality reduction is harmful to 

classification. 

Vector quantization has been used for image compression and the method usually 

gives a compression ratio much higher than other general-purpose compression methods. 

This is due to two important facts: 1) it is possible to encode a vector of features or a block 

of pixels (or coefficients if the image is in its transformed format already) at a time rather 

than a scalar value -- either an individual pixel or a single coefficient; 2) the codebook can 
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be learned from the images to be coded thus covers a reduced code space with improved 

accuracy. In some sense, the process bears some similarity with PCA in its first stage. The 

coded blocks can be treated as terms or keywords of an image document as in text 

information retrieval, and a rich set of proven feature extraction techniques, distance 

metric, and retrieval models can be employed to accomplish the retrieval task in the 

discrete domain. The fact that all the subsequent processing, feature extraction, content 

indexing are carried out in the discrete domain brings about reduction in the algorithm 

complexity and gain in processing performance, especially on modern computer hardware 

with longer word length, and more random access memory (RAM). Some success has been 

reported along this track [idris95] [lu99] [zhu00] [zhu02]. However, there are several 

drawbacks to this new image coding scheme: 1) the arbitrary dividing of the image into 

small, square blocks makes the transformation not robust against various affine 

transformations; 2) the effectiveness of vector quantization for the purpose of image 

content indexing is thus questionable; 3) vector quantization is very computation intensive 

in both codebook design and code vector searching. 

But in implementation, VQ still suffers from significant computation overhead in 

generating the codebook, which is NP-hard in its non-heuristic version, and from the 

coding process, which involves searching in the codebook. The bigger the codebook is, the 

less information distortion can be achieved, and yet, the longer time and more memory 

space the codebook generation and coding processes take. To make a balance between the 

compression ratio and the information fidelity is critical in applying VQ to real problems. 

The decoding is fast and simply a table lookup process. 
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There are attempts to pack the image information through color space 

transformation and color quantization prior to feature extraction, the most significant of 

which include: 1) median cut, 2) octree algorithm, 3) Kohonen neural network 

quantization, and 4) k-means [Verevka95]. 

The prevalent color quantization method is based on median-cut algorithm. The 

algorithm is computationally simpler and easier to implement, the clustering boundaries 

are parallel, and it coding scheme is only roughly adaptive to a particular image and not 

targeted to minimize the coding error. When the size of the codebook is small, it generates 

serious color distortion. 

In this dissertation, an EM-based (Expect-Maximization) color quantization 

approach is used to encode color information in H&E stained pathology microscopic 

images. The reasons for adopting this clustering-based color quantization over alternatives 

such as median-cut, octree, or self-organizing map (SOM) are based on several 

considerations. 

Using a clustering algorithm has the advantage of the capability of classification of 

pixels based on their color intensity and the classification can be easily fine tuned by 

introducing extra parameters or by switching to a supervised version of the clustering 

algorithm that better reflects the nature of the classification problem and takes advantage 

of our knowledge about the image content. Many variations, modifications and 

improvements have been made to clustering algorithms like k-means to make them more 

suitable for particular problems and objectives. Special techniques that are potentially 

relevant to pathology image feature extraction. The number of clusters can be optimized 
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according to the data distribution. There are ways to change the unsupervised k-means 

clustering into supervised clustering with prior knowledge about the staining property and 

the class densities of the sample. The clustering is based on distance measure, which can 

also be modified to generate better clustering results. There are rooms for improvement in 

the E-M iterations. The result of k-means clustering is also easy to interpret in the light of 

our knowledge about image content, so that problems in the process can be easily 

identified to improve the efficiency of clustering and color quantization. 

Alternative color quantization algorithms including median-cut, octree, and self-

organizing map are either not an explicit classification algorithm, or difficult to incorporate 

prior knowledge about the data into the algorithm. Their quantization performances are 

also difficult to access. Octree and SOM are also less scalable to large image size, and not 

so flexible to allow improvement when compared with most clustering algorithms. The k-

means clustering is also better modeled mathematically. 

The k-means algorithm used here is a simple VQ algorithm optimized for 

minimizing squared error of Euclidean distance. K points are selected through an iterative, 

expect-maximization process so that they are optimal in representing all the pixels 

assigned to each of the k groups with minimal distortion. K-means algorithm for color 

encoding can be implemented as following: 

1. Assign k initial centroids of k groups with the values of k random pixels from the 

image 

2. E-step: assign each pixel to the centroid with the shortest Euclidean distance 
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3. M-step: recomputed each of the centroids as the average of the pixel values of the 

group 

4. If any centroid changes location, loop to E-step; otherwise, stop. 

Nevertheless, theoretically, the strategy adopted in this dissertation doesn’t impose 

any restriction on what kind of color quantization algorithms to be used. The adoption of 

k-means clustering is mainly for practical reasons such as flexibility, efficiency, and clear 

interpretation of the result. This doesn’t exclude the possibility of using other color 

quantization algorithms, or any other classification, coding algorithms to derive a symbolic 

representation of an original image, which is suitable for subsequent morphological feature 

extraction. 

For the same reason, the proposed strategy doesn’t necessarily rely on run-length 

probability distribution as morphological feature descriptors for image content. Many 

morphological feature extraction algorithms have been used with image objects, regions, or 

other entities that are rough matches of an object. These features include basic 

measurements based on area, boundary, radius, bounding rectangles, and any ratios, 

derivatives of them, to complicated concepts such as moment invariants, fractal features. 

All these may be appropriate if they find their use in solving a particular problem. 

There are reasons that make run-length probability distribution an attractive idea to 

try out and a candidate for good solution here. First, code run-length, a basic concept in 

coding theory, has long been used for encoding and compression for a broad variety of 

images, and has been incorporated into several popular image file standards, such as BMP, 

GIF, PNG, TIFF, and TGA. Although this serves as a strong indication that it can be used 
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as a good image feature, it has not been reported of such usage for the purpose of content-

based retrieval of color images. A texture feature description method was proposed by 

Galloway [galloway75] [tang98]. It has been mainly applied to black-and-white images 

with different shades, such as radiology images. It is mathematically simple, easy to 

derive, and the computation is efficient after the previous color quantization. Simple 

statistical models can be used to define distance metric without much modification, which 

is in accordance with the general guideline of the research design. The fact that run-length 

feature is only one-dimensional should not be a problem with most pathology microscopic 

images as the images are not considered directional. The run-length feature should be 

invariant regardless of the direction in which the image is captured and processed. 

Another consideration is that other previously mentioned morphology feature 

extraction algorithms were developed as attributes of image entities that are better defined, 

such as objects identified by object recognition algorithms, image regions that are result of 

image segmentation. These tend to carry over various assumptions and prior knowledge 

that those preprocessing algorithms are built upon but may not hold true in the situation 

with k-means color quantization which doesn’t carry out the promise of object recognition 

or image segmentation. The symbolic representation of the original image consists of color 

code blocks that do not necessarily resemble objects or regions. Specifically, the color 

codes may not aggregate to form discrete geometry shapes to allow morphometric 

measures. Instead, they form low-level distribution patterns. 

Run-length feature is a kind of low-level feature that relies on minimal assumptions 

or prior knowledge about data set and thus remains valid across a broader range of data set. 
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The more specific a feature is, the more assumptions it makes about the data it handles, the 

higher probability it will fail with different data under different circumstances. So, those 

high level features may work well for objectives such as object recognition, image 

segmentation, with specific image content, but low level features are more suitable for the 

purpose of content-based image retrieval where it is expected to work well with many 

image types that it has no chance to be trained with. Such a search engine is usually 

expected to use only a relatively small number of general features and deliver sustainable 

performance over a broad range of content.  

The adopted methodology treats all features as global to the whole image rather 

than as associated to particular objects, although it is possible to apply the same feature 

extraction algorithm after regions or objects have been identified. The combination of k-

means color quantization and run-length probability distribution feature is a choice in favor 

of automated extraction of low-level, low-cost, weak features that do not rely on many 

assumptions about the nature of the two-dimensional image content and prior knowledge 

about interpreting and understanding the image content. 

5.2 SCIENTIFIC CONTRIBUTIONS 

5.2.1 Major Scientific contributions 

Since early last decade when the term content-based image retrieval was coined, there have 

been various attempts in tackling the challenge using individual approaches with various 

levels of success. These efforts, however, are far less systematic when compared with text 
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information retrieval, which has matured in the same time period. The published surveys 

about the research area mostly focus on technical issues. Theoretical components of a 

general framework are not adequately defined. Few general guidelines can be found about 

how to select effective image features, and many times technologies are borrowed from 

other specialized image science and engineering areas that may not be suitable for building 

an image search engine. The problems of such technologies are that they make many 

invalid assumptions about the data and thus make the algorithms over-complicated, 

inefficient, and invalid. 

First of all, this dissertation makes an effort to address some of the issues by 

defining key theoretical components, defining the relationships among them. Then, 

following these general guidelines, a new approach of defining morphological features for 

pathology microscopic images, feature comparison, and content-based retrieval is 

proposed. A brief summarization of these major findings is provided below. Other related 

issues are discussed in the following sections. 

Unlike with text information retrieval where word roots, phonemes, terms are 

inherently meaningful, the fundamental unit of image information is not obvious. A 

pragmatic definition of image feature is proposed as a numeric value generated by human 

experts or computer programs according to given criteria or following certain algorithms, 

which is also very different from the feature concept as used with image processing. 

Through defining the concept of feature in the context of image information retrieval, a 

three-layer framework -- including an image document space, a feature space, and a 

concept space -- for context-based image retrieval is proposed (figure 2.1). The framework 
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indicates that while there are usually algorithmic methods to extract image features from 

an original image, the projection from feature space to concept space is generally non-

deterministic but rather based on statistics. The “semantic-gap” issue is not addressed with 

this model as it, like any other data mining approaches, relies on a data centric, bottom-up 

approach to explore the regularity in the distribution of data and their correlations with the 

distribution in the concept space. No restrictions have been imposed on the way how image 

features are derived. This allows the flexibility to ensure all classifying features can be 

included in the final feature set for image content description. It is not necessary for a 

feature derivation methodology to mimic any concepts in the process of human vision and 

image understanding. Weak features are especially favored by such an approach as they 

usually impose few assumptions regarding the distribution either in the feature space or in 

the concept space, and remain valid across different image types and image content. This is 

an approach that relies on feature extraction procedures to preserve all essential 

information for image content description, hopefully in a compact representation, and then 

statistical methods will be capable of finding the regularities among the features that can 

be used for the purpose of image content indexing, comparison, and content-based image 

retrieval. This can be achieved through modeling, data mining, or other methods. 

The adopted k-means clustering based color quantization and run-length probability 

distribution algorithm exemplify the theoretical framework as summarized above. Both k-

means clustering and run-length probability distribution are simple, popular methods in 

their respective area, and are mathematically well defined. Color code run-length is used 

for raster image compression and internally supported by several image file formats. 
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Although there is no previous report of using them as feature extraction and comparison 

method for the purpose content-based image retrieval, they are capable of modeling the 

tissue morphology effectively without resorting to morphometric measure, hence, the 

requirement of domain knowledge in the designing process is minimal. The method 

doesn’t require any training, nor does it require human assistance when applied to new 

image types. The process is highly automated, with only one simple global parameter to 

decide on. 

The results as shown later in the chapter indicate the effectiveness of the proposed 

k-means color quantization and run-length probability distribution as a feature extraction 

and comparison method for the purpose of content-based image retrieval, which 

demonstrates the feasibility of the forward-mentioned content-based image retrieval 

framework. Based on the lessons learned from this research, further improvements on the 

detail of the algorithms and future works are elaborated in detail in the last chapter. 

5.2.2 How many colors do we need?  

For most other imaging applications, the rapid advancing hardware technologies always 

push software development to handle more colors. More color depth also provides more 

subtle visual details for image content description and feature extraction. This is a major 

reason most researchers in building content-based image retrieval systems would prefer 

high quality images, some would even go beyond 24-bit color depth to adopt multi-

spectrum imaging apparatus. 
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On the contrary, other evidences exist that show human visual perception relies 

more on the transformed domain image features and relatively tolerant to color changes, 

such as color shift, color distortion. The number of colors that human visual system can 

discern at one time is also far less than the state-of-the-art hardware can provide. Some 

reports of extreme tests also show that experts can work with digital images with 

extremely reduced number of colors and still give the same performance. In one report, 

pathologists worked with digital microscopic images of only 256 colors could make 

accurate diagnosis just as well as with more colors. The reduced color pallet didn’t impair 

the accuracy of diagnosis at any significant level, and this was achieved using generic 

color quantization method that is not optimized for any particular purposes, and thus less 

efficient for the task. 

Some image processing practice also contents with limited colors in many ways. 

Early image format standards, such as GIF, allow a maxim number of 256 colors at a time, 

yet, GIF has become one of the two earliest, most popular image formats of the Internet. 

Many image-processing routines involve the process of reducing the number of colors in 

the image. 

In some of the major domains of imaging and image analysis, such as those satellite 

images and medical images, the color spectrum is inherently limited, where the colors are 

either artificially generated, stained, or digitally assigned. In many cases, human experts 

dealing with these images actually require only a limited number of colors compared with 

that the images are captured with. The domain specific context and the limited color 

spectrum also make it possible for algorithms to produce a color pallet that is much more 
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efficient than existing generic color quantization schemes can do, while maintaining the 

visual quality to human perception and minimizing the distortion during transformation, 

both criteria that are important in determining how far the color quantization algorithm 

should go. 

This research will apply k-means clustering algorithm to H&E stained pathology 

microscopic images to derive a compact pallet with minimal number of colors under the 

constraint of maintaining reasonable image quality through visual inspection, as well as 

keeping minimal image distortion, which will be measured by numeric metric. According 

to the preliminary results, it is possible to achieve the goal with only 16 carefully selected 

colors, a color depth of only 4 bits, which is a significant reduction from the original 24-bit 

color depth. The expert visual inspection and close monitoring of quantitative distortion 

measure ensure that most of the visual information is well preserved just with these 16 

colors. 

5.2.3 Discrete domain processing 

A successful color quantization step can open the door to some novel methods in the 

discrete domain, other than the traditional continuous domain processing. It is much 

anticipated that discrete domain processing is more efficient in patterns recognition, 

feature extraction, in content description, coding, classification, and searching. After the 

image is represented with only a limited number of codes, a diversity of data structures are 

available to facilitate further processing. Discrete domain processing is also less 

ambiguous and less error would be introduced in the subsequent processing. The advantage 
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of the new scheme with highly efficient color quantization followed by discrete domain 

processing is that the one-time price paid at the initial color quantization is under careful 

control and easily optimized to retain most visual information and adapted to the particular 

type of image. In the methodology proposed in this report, and as show in the preliminary 

results in the appendix, the k-means clustering generates codebook according to the color 

distribution of that particular image type and the transformed image can be both visually 

inspected by human experts and also monitored by statistical metrics. In the continuous 

domain, the error could be amplified in every involved step. 

One important problem in image processing and image understanding is image 

segmentation. In most cases, a segmented region is a rough approximate of an object, or a 

part of an object. Many image segmentation approaches divide arbitrarily the image into 

small blocks, classify the blocks, and merge those that are similar to each other to form 

regions. A different approach uses VQ algorithm to code those blocks and use the 

distribution pattern, or frequency of the code as image content descriptor for content-based 

retrieval [zhu00] [zhu02]. The major weakness of both approaches lies in the arbitrarily 

dividing of image blocks, which is not tuned to adapt to the scale or location of the image 

objects. The k-means based color image coding naturally provides a simpler setting for 

image segmentation in the discrete domain through adaptive pixel clustering. 

One most commonly used image feature in CBIR is color feature, which is used to 

produce color histograms. Many researchers have investigated the use of color histogram 

or its improved variants as image content descriptor. In solving some problems, color 

feature alone is sufficient to give satisfactory image classification and content-based 
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retrieval performance. However, the image color is susceptible to many environmental 

conditions and imaging hardware. It usually takes careful calibration at image capturing 

time or pre-processing routine to compensate the variance. This problem is addressed by 

adaptive color quantization as in k-means based color coding. 

In this proposed project, the tissue samples are stained with chemical dyes that 

render the color difference according to the biochemical constitution of the tissue objects. 

After coding, the codes’ run length correlates much to the scale and distribution of the 

tissue objects of various magnitudes.  By investigating the run length probability 

distribution of the code, it’s very likely to derive efficient content descriptors that are 

compact and adaptive to the type of images. For image classification and content-based 

image retrieval purpose, this could be more efficient than image segmentation and object 

recognition approach in the domain with continuous color value or transformation 

coefficients, and much more effective than the simple color histogram descriptors. 

It can also be speculated that many other unconventional discrete domain methods 

can be applied directly to the coded images, without any need to intermediate processing. 

Such techniques include hashing based image block indexing, Hidden Markov Model 

(HMM). Although this approach could be limited in the kind of tasks it handles best, it 

provides a novel access point to solving many domain-specific image classification and 

content-based retrieval problems, and bring about a very rich and powerful set of discrete 

domain processing tools to solve the problems they can do best, and this approach to this 

problem has not been reported in literature before, and is author’s major theoretical 

contribution. More detail will be explained in the rest of this chapter 
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5.3 HYPOTHESIS AND EVALUATION 

In content based image retrieval, for the purpose of effective feature processing and fast 

searching through the signature file, image features are usually further quantized from their 

original version. It is expected that a data dependent, weighted quantization and 

classification-aware encoding should give better performance than the blind, uniform 

quantization. In the highly packed feature representation, less useful information would be 

filtered out, and high classification accuracy can be maintained. 

A high quality codebook provides a set of essential image content descriptors for 

feature extraction and representation, and noise reduction, and thus, is crucial in improving 

retrieval accuracy and efficiency. Three important factors that determines the quality of the 

encoding process is the coding error, the information packing capability that is related to 

the size of the codebook, and the CPU time it requires. Using the same coding algorithm, a 

bigger codebook can usually minimize the coding error at the expense of a bigger coded 

file size and longer coding time, while a codebook with a limited vocabulary generates a 

compact coded representation, which is beneficial to efficient content indexing, in short 

time, but with bigger coding error. It desirable to obtain a relatively small codebook that 

contains the most important image features while leave out those less significant ones. This 

often translates into minimizing the coding error for a particular kind of images under the 

constriction of a fixed codebook size. 

The error in the process of image VQ encoding comes from two sources: 1) shift in 

the color space caused by variation in the objects themselves or in the imaging process, 

such as uneven staining and light illumination; and 2) variations of image composition in 
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the spatial domain, including affine transformation and image warping. Under the 

constraint of codebook size, minimizing these errors can significantly improve the coding 

efficiency and accuracy. 

This report proposes a color space information packing method using the k-means 

method that aims to adaptively reduce the complexity of color representation. The benefit 

of this includes better quality of color quantization and improved accuracy of image 

content classification based on the improved codebook, when compared with linear color 

quantization. This is especially true when the pixels from the image are not distributed 

evenly in the color spectrum. Such cases can be found in image collections with limited 

scope, or those images that are artificially colored, such as those images in GIS systems, 

and those medical images that are stained with chemical reagents, captured under 

unconventional illumination condition to induce photonic reaction only in certain 

bandwidth, or some of those images that are artificial colored during digital processing. 

This proposal focuses on pathology microscopic images that are H&E stained with blue 

and purple colors. More details will be provided in the next chapter. 

Both the image distortion resulting from a transformation and the classification-

based retrieval performance can be evaluated by methods and metrics that have been 

established in their respective domains. To measure image distortion, standard error is 

defined as the average squared difference between the pixels from the original image and 

those from the reconstructed version: 
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where N is the total number of pixels examined, d( ) is the distance function, d(pi, 

qi) is the distance between two representations of pixel i; pi and qi are different vector 

representations of pixel i from the original image and the transformed image respectively. 

A better transformation algorithm with less distortion should give a smaller error value. 

In statistical formulation, if we view the original image as a true data set with each 

pixel as a data point, the color quantization can be viewed as a sampling process. 

Assuming that the error follows normal distribution, and Euclidean distance is used to 

measure the distance between two pixels as following: 
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where j is the index to the vector representing the color depth. Thus, the evaluation 

of the relative performance of two quantization algorithms is equivalent to the inference 

about two independent variances. This leads to the following hypothesis for the statistical 

testing: The null hypothesis represents the situation that there is no significant difference 

between the levels of fidelity of the two color quantization approaches, so that, their error, 

which is calculated with the same formula as variance here, won’t show significant 

difference. Alternatively, the hypothesis to be proved is that the proposed new method 

generates smaller error (variance) than the old one. Thus we have following hypothesis for 

a one-tail test, assuming the observed error should not be larger for the proposed method 

than that for the control method: 
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The test statistic for testing H0 against H1 is the ratio, F, of the two sample 

variances: 
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In this project, GIF color quantization scheme will be used as control. The Errorold 

and sold denote the error in the GIF color coding. Detailed explanation of the proposed 

quantization method and the hypothesis testing can be found in the second part of the next 

section [glass96]. 

The retrieval performance of both approaches can be compared graphically using 

precision-recall curve (P/R curve). Precision is defined as the portion of retrieved 

documents that are relevant. Recall is defined as the portion of all relevant documents that 

have been retrieved. The results from both methods can be plotted in the same graph. 
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Using the same query set and image collection, the better performing method will generate 

a curve with higher precision and better recall in comparison with the other. This is a 

standard practice in image retrieval performance evaluation as well as in more general 

information retrieval scenario. More detail will be discussed in the next chapter. 

5.4 MATERIAL AND METHODS 

5.4.1 Materials 

The vast majority of pathology microscopic images are stained with a dye consisting of 

Hematoxylin (blue color) and Eosin (red color) (aka H&E staining). The two chemical 

reagents bind to protein molecules with different affinity according on their electronic 

charge. Hematoxylin binds to basic proteins with a positive charge, while Eosin binds to 

acidic proteins with a negative charge. This renders the originally thin, almost transparent 

tissue sample slice a purplish color with a spectrum spanning from purple red to dark blue. 

Tissue micro-array is an emerging revolutionary technique that assembles a large 

array of samples from different sources on one single glass slides to facilitate uniform, 

simultaneous processing with various techniques, quality control, and better 

reproducibility. As a result, it is expected to improve productivity, quality, and save 

precious tissue samples and biochemical reagents. It also brings about new frontiers in 

biomedical research and diagnosis. Both hardware and software image processing 

techniques for automated tissue micro-array data analysis have started to gain momentum. 

Technically, one of the major reasons to use tissue micro-array is that all the images on the 
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same glass slide are stained through exactly the same process and using the same reagents, 

which means, the color variation is under control across different images. Besides, other 

variations due to the defects or difference in the optical property of the glass slides are also 

reduced to a minimum.  

The proposed research will use digital images captured from the H&E stained 

tissue micro-array glass slides. A typical capturing station is an optical microscope, a 

digital camera hooked on top of it, and a computer that controls the microscope and also 

stores the captured images. So far, most image content description methods that have been 

carefully studied are sensitive to the image scale. For pathology microscopic image, 20x 

combined objective and ocular magnification captures enough detail of sub-cellular 

structure. An image size with 1 million pixels and a color depth of 24 bits (1000 x 1000 x 

24 bits) should provide a field with enough scope to ensure statistical stability in feature 

extraction. At this magnification level, the object is captured at roughly 1 micron per pixel. 

These estimates are based on visual inspection of common pathology specimens, previous 

experience in CBIR system design, and the nature of the image data mining and feature 

extraction algorithms described below. It has been shown that human pathologists can still 

make diagnosis with a color depth of about 8 bits, when dealing with digital microscopic 

images. However, previous experiences also show that machine vision can distinguish and 

take advantage of more subtle color details, and some image processing/feature extraction 

algorithms are very sensitive to color variations caused by disturbance in the staining 

process and the variation in light sources of the capturing station. The image will be saved 
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in uncompressed RGB TIFF format, a format that is popular in various imaging 

applications. 

Real medical cases will be used for both algorithm design and performance testing. 

Each case will include a digital image captured according above specification, a class tag, 

and an optional more elaborated description explaining any differentiation under the 

general class umbrella, both of which are assigned by the pathologists as a part of the 

diagnostic process. 

 
1 Table 5.1 Images and tissue types 

 

Tissue Type Case 

Brain 12

Fibrous tissue 13

Heart 73

Kidney 23

Prostate 26

Prostate Cancer 30

Brain* 23

Thyroid* 23

Total 225

 

More than 250 images have been captured from tissue micro-array slides, 217 of 

which are of good quality and have been diagnosed. Six most abundant types with a total 

of 179 images are selected. Besides, additional brain and thyroid images (brain* and 

thyroid* in the table) have been captured from normal glass slides. These add to a total of 
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225 images from 7 diagnosis categories, near 900 MB of image data. Following criteria are 

used for image quality control: 

1. Images are inspected visually while capturing 

2. Images captured from a micro-array spot that is not intact are stored but not 

diagnosed later 

3. Images that are difficult to make an unbiased diagnosis for based on the content 

information within the captured scope are left out 

4. The tissue types that have less than 10 quality cases each are not included 

5.4.2 Methods 

a. Color Coding and Image Transformation 

There are various color models, each has special properties for different applications (see 

review of image color feature. One of the simplest and also one enjoys great popularity is 

the RGB color model. In RGB model, the color of a pixel is defined by values of three 

primary color channels, namely Red, Green, and Blue. Every unique color can be defined 

as a linear combination of three primary colors, or in a spatial analogy, a point in the RGB 

color cube. The color difference of two pixels can thus be defined as the Euclidean 

distance in the three dimensional RGB color space. This distance metric is suitable for k-

means algorithm without the need for any modification when computing the centroids of 

the k-means classes. 

After the distance metric has been determined, the single tunable parameter to 

decide upon is the value of k. K-means in general doesn’t impose any particular restrictions 
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to the value of k. However, in this special case as for quantization purpose, it is more 

reasonable to assign k value with one from the series of 2n, where n is the number of bits to 

be used to represent each code. For the kind of H&E stained pathology microscopic 

images, to find the optimal value for k that generates minimal image distortion while 

keeping the size of the codebook small, there are only a few reasonable candidates as will 

be used in this research. They are 4, 8, 16, 32, 64, and 128, as 2, 3, 4, 5, 6 and 7 bits are 

chosen as the bit number respectively. A k value of 2 degenerates the 24-bit color image 

into a binary image and loses essential details, because there are far more than 2 

constituents in any kind of tissue. Previous study has shown that digitally captured 

microscopic images with a color depth of 8 bits (as the maximum that GIF format allows) 

are sufficient for human pathologists to perform diagnosis without significantly impairing 

accuracy. It is the goal of using k-means algorithm here to generate a more compact color 

representation than previous methods. 

The method for determining the k value using the color distribution of sample 

images is summarized as following: 

1. Read digital image file in TIFF format using libtiff (http://www.libtiff.org/) 

library function. 

2. Draw a small portion of random pixels from the image. 

3. Apply k-means clustering algorithm to the sample pixels with a selected values of 

k as 4, 8, 16, 32, and 64 

4. Transform the image to represent each pixel with the centroid it belongs to in the 

k-means cluster 
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5. Compute the distortion (the formula for squared distortion is given) of the 

transformed image using formula: ∑ −=
i

ii qp
N

error 22 ||1  

6. Plot the distortions, e, against n, the number of encoding bits, which is log2(k). 

Pick the bit number corresponding to the point with the biggest derivative. Thus 

the corresponding optimal k value is determined. 

This is a crude solution for picking a characteristic value from a very sparse series 

of a limited number of choices. With the chosen value of k and the determined codebook 

through k-means clustering, the image is coded by representing the RGB value of each 

pixel with the one of the k codes from the codebook.  

 

b. Feature Extraction and Distance Measure 

After the image has been coded as described previously, feature extraction is achieved by 

finding statistical pattern in the code distribution in the coded representation. The 

coloration of tissue is mostly according to its affinity to the dye based on its biochemical 

composition. The transformed H&E stained microscopic image will have limited number 

of kinds of pixels rather than a wide range of almost continuous spectrum of color values. 

A much more anticipated consequence than the reduction of codebook size is that the 

transformed image is segmented into small patches of same code that are roughly 

corresponding to the functional tissue, cellular, and sub-cellular components, which are 

important for medical diagnosis. This results in code distribution patterns of very high co-

occurrence, with a much higher probability for a code to be used at the location with 

neighboring pixels represented by the same code. In a simplified one- dimensional 
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representation, it reveals very regular and characteristic code run lengths distributions 

rather than one that is totally random (see figure below). Different codes also bear different 

characteristics what can be attributed to the morphological properties of the various 

functional components the codes represent. The distribution pattern of the code in the 

image is a function of the k value, the magnification level, and is also characteristic to that 

image and, hopefully, other images of the same class.  

In this research, a simple pattern descriptor based on code run length is proposed 

for image feature extraction. For each code in the codebook of size k, one distribution 

(actually a histogram without being normalized to sum up to 1, due to its one-dimensional 

nature) of code run length, L, can be derived; for each image, a total of k discrete 

distributions can be derived. Assuming l elements are actually used from a series of L, and 

all k distributions are used for image comparison, an image can be represented by a feature 

vector of l*k elements. The distance between two images, D, can be defined as linear 

combination of all pair-wise distances between the corresponding code distributions: 
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where k is the size of the code book and a parameter of k-means algorithm, wi is the 

weight assigned to code i according to its relative contribution to the image content 

representation, di is the distance between two run length probability distributions, and is a 

function of the two series L1i and L2i. It is expected that di, when i = 1, 2, 3,…, k, are not 

independent to each other due to the nature of k-means as a clustering algorithm. However, 
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when the codebook size is minimized to approach the number of essential pathological 

components in the image, the inter-dependency is expected to be kept to minimal. 

There are a few different methods in computing the distance between two discrete 

probability distributions. The two most popular ones are L1-norm, which sums up all the 

differences between the corresponding probabilities, and Kullback-Liebler distance, 

including its variances and metrics that based on the theory of information distance 

[weeds02]. Some previous researches also tested kurtosis as a measure for the skewness of 

a distribution. The difference between the two kurtosis values was then used as the 

distance of the two distributions. However, Kullback-Liebler distance is widely used to 

measure mutual information, and is the method used for this research. 

For a given code density pc, the estimated probability, prob(n), for run length n is 

computed using following formula: 

 

)1()( c
n
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Using this formula, a plot of probability distribution of different run lengths of 

random pixels (with density pc = 0.06) is shown below. 
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10 Figure 5.1. A typical run-length probability distribution for a random code. 

Assuming k value equals 16 here, the average probability density is 

roughly 0.06. Only the first 10 run lengths are shown. 

 

The code run length probability distributions from actual images are very different 

from the above curve and show the particular characteristics of different functional 

components in the image. Also, different codes have very different probability density 

values in the image. 

The original form of Kullback-Liebler distance is defined as: 
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The unmodified version of Kullback-Liebler distance formula has problem when 

p(x) = 0, and this is not uncommon with sparse data and using Maximum-Likelihood 

Estimate (MLE) without preprocessing such as smoothing. There exist many improved 
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information distance measures that fix this problem. In this research, however, the run 

length data is not really sparse, especially with shorter run lengths. With the run length 

probability distribution of random pixels, the first 2 run lengths add up to more than 0.99 

when p=0.06. With the average run length probabilities of a real image, the first 5 run 

lengths could add up to 0.9 (see the results shown in appendix). By using only the first 

several run length probability values, the sparse data problem with Kullback-Liebler 

distance can be avoided. In this research, the probability values will be computed from all 

the pixels of the image using MLE. 

Image retrieval is based on this distance measure D. The images from the database 

with the shortest distance to the query image are returned to the user as the answer to the 

query. 

The feature extraction step is summarized as following: 

1. Encode the image using k-means algorithm with the k value determined in the 

previous step 

2. For each of the k codes, derived the run length probability distribution; the code 

and its probability distribution is defined as a feature; k such distributions are used 

as the signature of the image. 

3. The similarity of two images is determined based on their signatures and 

according to the distance functions given above. Image retrieval is achieved based 

on the distance measure. 

 

c. Algorithm Tuning 
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There are three kinds of parameters to be determined: 

1. The value of k as described in the previous section. 

2. The weight of each code in the distance formula in computing D. This is the same 

process also called feature selection/weighting. In many simplified cases, all 

features are assigned the same weight so that each of them contributes equally to 

the distance measure. The preliminary results have shown that this solution may 

work well with the data collected. A more reasonable solution for complicated 

situations with a less complicated approach is to group those features based on the 

similarity of their probability distribution and assign the same weight to each 

group. This is called “bagging” in information retrieval, and is also a technique 

related to dimensionality reduction in the feature space, where several features 

with similar probability distributions are combined to form a complex feature. 

3. The probability coefficients sj in the formula for di. It is a function of run-length, j, 

and the probability density of code i, which can be estimated from the query 

image.  

 

For efficiency consideration, since the goal is to estimate the distance between two 

run-length probability distributions, not all probability values are necessary to be taken into 

account during signature generation. Those run length probabilities that have the most 

representation in the pixel population and most characteristic to the image content are more 

important. The first factor emphasizes on those corresponding to the shorter run lengths, 

which is shown as peak in the above estimated run length probability distribution plot; the 
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second usually refers to those run lengths that are of the scale of the functional tissue, 

cellular, and sub-cellular components, which is represented by the part of the real 

probability distribution summarized from an image that is inconsistent to that of random 

pixels (see the preliminary results). This could vary from tissue to tissue and should be 

determined according to the particular cases. However, since the size of most human cells 

remains relatively constant, the sub-cellular components that are significant for diagnostic 

purpose are usually under 20 pixels in diameter under the specified magnification of 1 

micron per pixel. The run length probability values that are in that scale should be most 

significant for content description. 

The following flowchart shows the steps involved in: a) color quantization, and b) 

feature extraction, processing, and retrieval algorithm. 
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11 Figure 5.2 Flowchart 

From glass slides to digital image retrieval, digital imaging, image data 

mining, classification, numeric feature extraction, dimensionality 

reduction, and distance measure. 

 

 101



5.5 EVALUATION 

5.5.1 Information Packing Capability 

An important measure of the performance of feature extraction algorithm is the amount of 

visual information that has been conserved during transformation, or in other words, the 

distortion of the transformed image. To evaluate the performance of k-means based color 

quantization, distortion formula given in the previous section is used, and the result will be 

compared against that of the popular, general purpose median cut algorithm (such as the 

one used in GIF compression) using the same codebook size. Each test image will be 

coded using both color quantization methods. The encoded version should have much 

smaller uncompressed file size due to reduced color number: 

 

KN 2logSize File ⋅=  

 

where N is the number of pixels in the image; K is the size of the codebook. The 

result is in the number of bits. A 1280x1024x24 bits color image of almost 4 MB can be 

compressed into 650 KB using a codebook with 16 words, and yet, the original image can 

be reconstructed, given the codebook. The distortion is computed by the error function: 
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where N is the total number of pixels in the image; pi and qi are pixels from the 

original image and the reconstructed images respectively; d(p,q) is the distance function 

between the two pixels. In the proposed research, Euclidean distance in the RGB color 

space will be used to compute the difference between the original image and the 

reconstructed version, so that the error formula takes the same format as variance in 

statistics: 
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and in our particular case: 
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Based on this formulation, the hypothesis to be tested is that the new method 

doesn’t reduce the error in vector quantization: 

 

22
0 : oldnew ErrorErrorH =  

22
1 : oldnew ErrorErrorH <  

 

Assuming that the new method does actually give smaller error than the old one 

does, one tail F test will be used here: 
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the hypothesis is rejected at 0.95 confidence level if F < .05FN-1,N-1, where N is the 

number of pixels in the image. In this research, the median cut color quantization scheme 

used in GIF image format will be used for comparison. The same image as used in k-means 

coding is transformed into GIF format using a color pallet of size k, which is the same as in 

k-means coding. The GIF image will then be transformed back to bitmap representation 

and compared with the original image to compute the coding error. Only color mapping is 

carried out in the process, and the error is brought in by the color quantization algorithm 

only. The Errorold in the above formula donates that error. Images from different classes 

will be tested using the above statistic to assess the performance of the new method across 

different kinds of images. An image of a dimension of 1000 x 1000 contains 1 million 

pixels. This sample size should be sufficient for statistical significance. 

5.5.2 Content-Based Image Retrieval Performance 

A microscopic image set consisting of 20 different pathological classes, each of which 

consists of at least 10 unique images, will be built. The images will be captured from H&E 

stained, classified tissue micro-array slides in the tissue sample repository at the 

department of pathology, University of Pittsburgh Medical Center. The capturing condition 

will be carefully controlled to maintain uniformity with following specification: 1) 

magnification: 20x objective lens; 2) image dimension: 1280 x 1024. Each image in the 

 104



collection will be assigned a unique ID. Then, the image is coded using the 256-code 

codebook. By comparing the histograms of the code usage in each of the images, a 

distance measure between two images can be derived. For example, in a simple situation, a 

Euclidean distance can be computed between two histograms. Given a sample image as 

query, retrieval of similar images is a process of searching for the images in the database 

with the smallest distances to the query. 

The relevance judgment of content pathology microscopic image retrieval is based 

on correct classification. In this design, all images will be used have already be diagnosed, 

and each labeled with a short text descriptor. A correctly retrieved image should bear the 

same class label as the query image. Otherwise, the retrieval is false. In some cases, a 

normal tissue image can lead to retrieval of cancerous images of the same kind of tissue. 

This is especially common when the sample is of lower cancer grade [zheng_thesis]. This 

phenomenon could be a very interesting research topic by itself. But in this proposed 

research project, these cases will be counted as false retrieval. 

The performance of the k-means based color quantization in image retrieval will be 

evaluated by Precision and Recall based on the following formulae: 
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The retrieved images are ranked according to their distance to the query. The 

results will be plotted graphically. The precision at a fixed recall point, say, 20% recall, 

will also be used as a criterion. 

The majority of the published CBIR research works lack a quantitative evaluation 

part. The performance is usually demonstrated by empirical visual inspection of the query 

images and the retrieved images from sample query sessions. In a few more carefully 

worked out projects, evaluation process follows the Precision/Recall, and P/R curve 

approaches, which have been used as a standard in text information retrieval for more than 

three decades, but was just proposed as a standard for image retrieval in 2001 [muler01] 

[muler01_2] [zhu02]. In pathology, CBIR projects usually lack a formal evaluation part 

[korn98] [wang], or the classification accuracy is used in place of the performance measure 

[foran98]. This design will follow the evaluation methodology used in [zheng_thesis] with 

standard Precision and Recall measures. 
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6.0  RESULTS AND INTERPRETATIONS 

6.1 PRINCIPAL COMPONENT ANALYSIS 

 

 

  Figure 6.1a     Figure 6.1b 
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Figure 6.1c 

 

Random pixels were selected from all images in the collection, 100 pixels from each. The 

results mainly reflect the color space distribution of the pixels. Figure 6.1a displays scatter 

plots, each along two out of the three color (RGB) dimensions a time. Figure 6.1b shows 

variances along three directions after transformation. Figure 6.1c have histogram plots for 

three components (R package (http://www.r-peoject.org/) was used for all processing and 

plotting.). 

The results show that the distribution of the pixels in the RGB color space is 

extremely uneven, and this is a common characteristic of H&E stained microscopic image, 

regardless of the tissue type and the diagnosis. 
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6.2 K-MEANS CLUSTERING OF COLOR PIXELS 

12 Figure 6.2 K-means clustering 

 

Figure 6.2a K-means clustering of image pixels with k = 8 
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Figure 6.2b K-means clustering of pixels with k = 16 

 

Coding efficiency is achieved at the price of image distortion. The coding 

efficiency is measured by the size of the codebook, while the distortion at each pixel is 

defined as error in the coding process, which is the Euclidian distance of RGB vector 

between the pixel in the original image and that in the transformed version. In the black-

white subtraction images (figures 5a, 5b, 5c), the error is displayed after multiplied by 10, 

thus, a darker image indicates smaller error, while a brighter image indicates bigger error. 

K values are chosen as k = 2n, where n = 2, 3, 4, … The result shows that, while a k value 
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of 16 gives a very faithful depiction of the characteristics of the tissue, a k value of 4, 

although segmenting the whole image into four different kinds of regions quite effectively, 

causes loss of important detail. It also shows that more error occurs in the regions under 

represented in the pixel population, such as nuclei. Other sub-cellular compartments see 

lower error levels. 

6.3 K-CODING 

2Table 6.1 Comparison of distortion 

 

IMAGE ID 
K-CODE 
ERROR 

MEDIAN-
CUT ERROR 

F TISSUE DIAGNOSIS 

ha01_01 11.58  23.33 0.2473  Kidney Autolysis 

ha03_02 9.61  16.78 0.3518  Heart Heart Muscle 

ha06_02 10.97  22.53 0.2437  Kidney Kidney Tubules 

ha08_03 7.83  14.73 0.3264  Brain Brain 

he01_02 9.80  23.06 0.2049  Prostate Prostate Cancer Gleason 3 

he01_09 9.55  16.93 0.3314  Prostate Fibrous Tissue 

he03_05 11.02  22.51 0.2602  Prostate Benign Prostate 

he04_07 9.02  18.11 0.2569  Prostate Fibrous Tissue 

hu03_08 9.38  19.16 0.2650  Fibrous Tissue Fibrous Tissue 

hu03_09 8.74  15.17 0.3320  Fibrous Tissue Fibrous Tissue 

  

All original images are of dimension 1315 x 1033 = 1358395 pixels, and 24-bit color depth. 

Transformation error is defined as the average Euclidean distance between the original pixel 

value and the pixel value after transformation in the RGB color space, as defined in section 

5.4.2. “Optimized median-cut” color reduction was performed using the “Decrease Color 

Depth” function in Paint Shop Pro 7.05, along with “nearest color”. K-coding was 

performed using the author’s modified k-means clustering code. All images are processed to 
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reduce the size of color pallet to sixteen (16) different colors, with both tiffmedian and k-

coding. F statistic is computed as  
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For one-tail F test, 0.01F1000,1000 = 1.112, 0.01F∞,∞ = 1.001. The above F values in 

the table are all bigger than 1.112, which indicates that k-coding performs better than 

tiffmedian for all the tested images at 99% confidence level. The error per pixel is only 

a half with k-coding as with tiffmedian. 

 

One sample image is transformed using k-code as described above, with k=4, 8, 16 

respectively. The result is shown in figure 5.5. The coding error is computed as the 

difference between the original image and the k-coded version. In figure 5.6, the 

corresponding coding error is magnified by 10 times and displayed as pixel 

intensity/brightness. The original version of k-means clustering assumes equal weight for 

all the sample points, thus clusters with a smaller population sees greater within-class 

variation than those with a higher sample density. As with pathology microscopic images, 

the nucleic regions that are darkly stained by Hematoxylin suffer from bigger coding error 

than cytosolic regions, as highlighted in figure 5.6, especially when the codebook size is 

limited. 
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(6.3a) 

Figure 6.3 and Figure 6.4. K-coding is performed exactly as 
described above with k values pre-assigned as k=2n, n = 2, 3, 4. 
The coding error is calculated according to equation (3). 

5.5a) Original image; 5.5b) k = 4; 5.5c) k = 8; 5.5d) k = 16.  

5.6a) k = 4; 5.6b) k = 8; 5.6c) k = 16. 

 

 

(6.3b) (6.3c) 
 

(6.3d)

13 Figure 6.3. K-coding of pathology microscopic image 
 

(6.4a)  
 

(6.4b) 

 

(6.4c) 

 

14 Figure 6.4 K-coding error 
showing the difference between the original image and the k-coded version 
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6.4 K-CODE RUN LENGTH PROBABILITY DISTRIBUTION 

The run length probability distributions of k-codes from a real image are very different from 

those from an array of random pixels. Different tissue types, through different k-means 

clustering process, may generate slightly different codebooks. To maintain pair-wise comparison 

consistency across multiple tissue types, k-codes are ordered according to the centroid pixel color 

intensities they represent. Since each pixel in the RGB color model has three color intensity 

values, we define that the relative order between two arbitrary pixels is determined by any two of 

the three values with the same ordering. A pixel takes precedence if two out of its three color 

channels take precedence in relative to another pixel, i.e., one of the two pixels is considered 

“bigger” if two of its three R, G, B intensity values are bigger. This ordering is guaranteed to be 

unique with the RGB color model. 

Since the images used in this study are not considered directional, a run-length of any k-

code is defined as a continuous, horizontal run of pixels of the same code. Vertical patterns 

should carry the same information, and are therefore redundant and not taken into account. This 

assumption will not always hold true with other image types under different conditions. Code run 

length probability distribution is a function of code density and collocation pattern. Under a 

particular condition, i.e. at a given image magnification, with the same number of pixel clusters, 

code run length probability distribution is a property of the image content itself. 
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15 Figure 6.5. K-code run-length probability distribution of one image 

Plot of run length probability distributions of the k-coded image with k = 16. All run length 

probability values in this plot have been multiplied by the corresponding run length l, so that 

they represent the relative probabilities of pixels to be a part of run length l. The purpose of 

doing this is to show the small probability values clearly. The raw values of all the run-

length probabilities of a code should sum up to 1. 
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6.5 RUN-LENGTH PROBABILITY DISTRIBUTION FEATURE FOR CONTENT 

CLASSIFICATION 

To test the usefulness of run-length probability distribution feature for the purpose of tissue 

classification, two tissue types, brain and thyroid, were chosen and images were captured from 

routine glass slides. On one single slide, multiple, non-overlapping fields could be captured. The 

images were processed with k-coding using a k value of 16, and run length probability 

distributions have been computed. The two figures below show both average values (dots) and 

confidence intervals (bars), which indicate the within-group distances. Only the first 8 run-length 

probability values from each k-code distribution are shown. All distributions appear one-by-one 

in a row. The probability values are multiplied by 1000 before plotting. 

The result as shown in Figure 6a and 6b indicates that the differences between the 

averages of the corresponding probability values are significant enough when compared with the 

within-group differences, so that the two tissue types can be readily distinguished from each 

other using the run-length feature alone. 
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16 Figure 6.6. K-code run-length probability distribution 
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Figure 6.6a. K-code run-length probability distribution of images from one tissue: brain 
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Figure 6.6b. K-code run-length probability distribution of images from one tissue: thyroid 
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6.6 CONTENT-BASED IMAGE RETRIEVAL PERFORMANCE 

To assess the overall performance of k-code run-length probability distribution as image content 

descriptor across multiple tissue types and to investigate the possibility of using the feature for 

the purpose of content-based retrieval, the feature from different images were compared and the 

dissimilarity was measured quantitatively according to a distance metric. Images were captured 

from tissue micro-array slides with one image from each of the spots, and processed as above in 

section 6.5. Pixel run-length was counted up to 40, and maximum likelihood probability 

distribution was computed for each pixel code of the image. C code was developed to batch-

process all the images and the generated the probability distribution data was stored in files. 

Each image in the collection was used as query to compare against all the rest of the 

images and the distances were computed according to the original Kulback-Liebler distance 

formula. The top ten (10) images that showed the lowest scores in distance metric were recorded 

and used to compute the precision and recall scores. Class-wise precision and recall were 

computed as the average of the images of that tissue type. A Python script was used to take the 

probability distribution data from the previous stage, compute the pair-wise Kulback-Liebler 

distances, and then, using diagnoses as a gold standard to quantify the precision/recall retrieval 

performance metric. 

Meanwhile, to allow examination of individual cases interactively, a simple graphical 

user interface has also been developed to show individual query sessions, using Python and 

wxWidgets (http://www.wxwidgets.org/), an “open source, cross-platform native user interface 

framework”, a suite known as wxPython (http://www.wxpython.org/). The interface allows user 

to select a query image from the archive by choosing from a list of displayed icons, then, execute 

the search command. The query, image as well as the ten (10) best match images with the 
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smallest distance measures, are displayed for each query session. 

The results from batch mode processing are summarized in the Table 6.2 and Figure 6.7. 

Individual cases are further analyzed using the graphical interface to interpret the results in the 

light of pathology domain knowledge, and the findings are discussed in detail in the following 

section. 

 

3Table 6.2. Content-based Image Retrieval Performance 

 

Tissue Type R10 / Max P10 Images 
Autolysis 0.32 / 1.0 0.22 8 

Autolyzed Renal Tubules 0.08 / 1.0 0.02 4 

Brain 0.18 / 0.91 0.21 12 

Fibrous Tissue 0.06 / 0.83 0.07 13 

Heart Muscle 0.11 / 0.15 0.73 68 

Heart Muscle and Fat 0.05 / 1.0 0.02 5 

Kidney 0.33 / 1.0 0.06 3 

Kidney Tubules 0.19 / 1.0 0.13 8 

Benign Prostate 0.05 / 0.66 0.08 16 

Prostate Cancer Gleason 3 0.09 / 0.5 0.19 21 

Prostate Cancer Gleason 4 0.04 / 1.0 0.02 7 

Prostate Cancer Gleason 5 0 / 1.0 0 2 

Prostate Fibrous Tissue 0.10 / 1.0 0.09 10 

  

Every image in the collection was used as query to retrieval similar images and the 

results were averaged for each of the different tissue types. The precision and recall 

values, referred to as P10 and R10, are the class-wise average of first ten (10) retrieved 

images. Max is the maximum possible recall value at the top 10 retrieval point, defined as 

= 10 / (total number of images – 1) or 1.0, whichever is smaller. The last column shows 

the numbers of cases for the tissue types. 
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4Table 6.3. CBIR performance confusion matrix 

 
Tissues A B C D E F G H I J K L M 

A 2.3 1.4 0.0 1.4 0.4 4.4 0.0 0.0 0.0 0.0 0.1 0.0 0.1

B 0.0 0.3 0.3 0.3 0.5 8.0 0.0 0.0 0.0 0.5 0.0 0.0 0.3

C 0.0 0.0 0.8 0.0 1.1 3.9 0.1 0.3 0.1 2.6 0.1 0.0 0.9

D 1.7 0.3 0.0 2.2 1.1 4.2 0.1 0.0 0.0 0.1 0.2 0.0 0.3

E 0.6 0.0 0.3 0.9 0.8 5.0 0.5 0.2 0.0 0.6 0.2 0.0 0.8

F 0.1 0.0 0.3 0.1 0.4 7.4 0.3 0.3 0.0 0.4 0.0 0.0 0.8

G 0.0 0.0 1.0 0.0 0.6 6.4 0.2 0.0 0.0 1.0 0.2 0.0 0.6

H 0.0 0.0 0.3 0.0 1.0 4.3 0.3 0.7 1.7 0.7 0.3 0.3 0.3

I 0.0 0.0 0.4 0.0 0.5 3.0 0.9 1.5 1.4 1.4 0.0 0.9 0.1

J 0.0 0.0 0.8 0.0 0.5 4.6 0.3 0.4 0.3 1.9 0.0 0.0 1.1

K 0.0 0.0 0.4 0.1 0.6 6.0 0.1 0.0 0.0 1.6 0.3 0.0 0.9

L 0.0 0.0 1.0 0.0 0.5 5.0 0.0 0.5 0.5 1.5 0.0 0.0 1.0

M 0.0 0.0 0.6 0.0 0.6 5.9 0.0 0.3 0.0 1.6 0.1 0.0 0.9

  

Only top 10 retrieved images are counted. The number is the average of all query sessions 

of the tissue type. Tissue labels: A) Autolysis; B) Autolyzed Renal Tubules; C) Benign 

Prostate; D) Brain; E) Fibrous Tissue; F) Heart Muscle; G) Heart Muscle and Fat; H) 

Kidney; I) Kidney Tubules; J) Prostate Cancer Gleason 3; K) Prostate Cancer Gleason 4; 

L) Prostate Cancer Gleason 5; M) Prostate Fibrous Tissue 
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17 Figure 6.7. Content-based Image Retrieval Performance 

Box-whisker plot of class-wise P10. Tissue types: 1) Autolysis; 2) Autolyzed Renal 

Tubules; 3) Benign Prostate; 4) Brain; 5) Fibrous Tissue; 6) Heart Muscle and Fat; 7) 

Heart Muscle; 8) Kidney Tubules; 9)  Kidney; 10) Prostate Cancer Gleason 3; 11) 

Prostate Cancer Gleason 4; 12) Prostate Cancer Gleason 4; 13) Prostate Fibrous Tissue. 

 

6.7 PERFORMANCE ANALYSIS AND INTERPRETATION 

6.7.1 Interpretation of Performance Metric 

Precision and recall are two canonical performance evaluation metrics that have been long 

accepted in text information retrieval as well as in image information retrieval. One routine to 

measure precision and recall is to compute percentage of correctly retrieved documents and the 
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percentage of qualified documents present in the top ten retrievals. This method was adopted for 

it was not appropriate to plot the precision/recall curves in extended test ranges with remarkable 

variation in total number of images available in each of the tissue types. 

In this particular research, extra attention should be paid when interpreting the final 

results of the retrieval performance. Due to the scarce availability of certain tissue samples, the 

collected tissue micro-array slides fail to provide enough cases for some of the tissue types or 

subtypes (see Table 6.2). The size of the tissue spots on the tissue micro-array slides imposed 

restriction in selection of a representative field of the intended tissue type. The captured views 

often consisted of more than one tissue. Some organs (from autopsy) might have undergone 

autolysis to various degrees with changed morphological feature at the histological and/or 

cellular level, before the tissue sample was processed. The data collection, including imaging and 

diagnosis, was completed well before the beginning of algorithm development and testing. In 

fact, the data was used to test the algorithm design rather than to train the algorithm or tune the 

parameters. All these would affect the behavior of the retrieval system and its performance 

evaluation metrics, which are not commonly seen in other retrieval systems with a sufficiently 

large corpus. 

One important consequence of the distribution of sample images is that several tissue 

types with a small number (sometimes less than 10) of total cases would never see a high P10 

value. One example is brain images, which displays one of the higher precision scores averaged 

over 21% for all 12 cases, 3 of which reach P10 = 50%, another three reach P10 = 33%. 

Considering the low sample density of brain tissue in the population, the precision measure is a 

positive proof of retrieval performance for the brain tissue. The R10 is averaged at 18%. 

 Recall value could be very different if the tissue samples are abundant in the image 

 122 



collection. Quite the opposite of the case with brain tissue, over 1/3 of the all the images are 

heart muscle (total 68 cases), which means assuming random distribution, the background 

precision would be around 30% at any given point. While the precision metric shows an average 

value of 73%, 15 heart muscle images measure 100% for P10, another 12 images see a P10 value 

of 90%, etc., which is proof of the effectiveness of the retrieval algorithm. However, due to the 

density of heart muscle images in the population, even with a P10 value of 100%, the biggest 

possible R10 value is still below 15%. In the performance test, the average R10 is only 11%, much 

lower than that of brain images. In this particular case, the relatively low R10 doesn’t reflect the 

actual retrieval performance of the algorithm. 

 

 

18 Figure 6.8. Query session: brain 

This is a screen crop of the GUI showing a query session using a brain image as query. The 
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query image is always at the upper left corner. Top ten retrieved images with the smallest 

distance values to the query are displayed from top to bottom, left to right. Under the image, the 

first string shows the image ID, which is assigned at the image capturing time and unique to each 

individual image. The next string is the tissue type tag from the diagnoses made by pathologist at 

UPMC (kind help from Dr. John Gilbertson) right after image capturing, well before the 

algorithms were developed. For those retrieved images, the there is a third number, which is the 

summation of the Kulback-Liebler distances between the corresponding features from the query 

image and those from the retrieved image. This particular query session shows P10 = 50%, R10 = 

45%. The top 10 retrieved images see contamination of 5 autolysis images besides 5 brain 

images. 

 

 

19 Figure 6.9. Query session: heart muscle 

P10 = 100%, R10 = 11%. In this case, the relatively low R10 doesn’t reflect the algorithms’ 

performance. Total 15 heart muscle images achieve 100% for P10, and 90% for another 12 

images. 
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6.7.2 Pathology Classification and Specificity of Image Feature 

As a matter of fact, pathologists are trained to find diagnostic evidences from the complication 

and multiplication of visual features, while individual machine vision algorithms are either 

highly specific for one kind of image content or effective across a wider range of image contents 

but with low accuracy when evaluate the performance individually. Algorithms can be developed 

to recognize one kind of object, such as to identify cell nucleus, or to measure only one visual 

feature from objects across multiple types, such as to measure the chromaticity of the stained 

tissues of various sources and processing protocols. 

In the problem of medical image classification, one example of such difficulty is that 

many diagnostically different tissue cases, or images may actually look very similar, and 

different terms may actually refer to almost the same thing, so that the machine vision algorithms 

tend to identify two or three visually similar tissue types as one group with satisfactory accuracy, 

and yet, the performance evaluation could still indicate disappointing metrics. 

One possibility is that the image feature could actually be of high accuracy and 

specificity and effective when handling several tissue types as a super-class. Further research is 

needed to find extra, second features for finer grain classification. Another possibility is that, 

sometimes, it is quite reasonable to combine two classes with different name tags and treat them 

as one, considering the fact that ambiguity is not uncommon among human pathologists dealing 

with similar cases. It is often important to look into the individual cases to better understand the 

behavior of machine vision algorithms. 

In figure 6.8, when searching with the brain image, the particular P10 and R10 values, as in 

this case, are 50% and 45% respectively, which indicates that half of the top 10 matches are 

correctly brain images and about half of all the brain images in the collection are recognized. 
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Taking a closer look at those incorrect matches, we see that the other five mismatches are all 

images labeled as “autolysis”, with P10 and R10 values of 50% and 62% respectively, if the query 

session were to be treated as an autolysis session. All the images labeled as autolysis are clearly 

not of brain origin, and the morphology of autolyzed tissues as in this study doesn’t represent 

any natural existence of biological structure. However, the chromaticity and the scale of some 

structural elements, both of which the k-coding feature is expected to measure, of both brain 

images and autolysis images do bear certain similarity as oppose to other tissue types. The 

retrieval performance analysis indicates that the algorithm shows certain degree of specificity 

and accuracy for two of them but is not sufficient to tell them a part when used alone. Autolysis 

images also appeared with certain probability in other query sessions employing brain image as 

query, and this appears to be a common phenomenon. 
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20 Figure 6.10. Query session: autolysis 

P10 = 50%, R10 = 70% (retrieved 5 out of total 7 autolysis images). 

 

Figure 6.11 shows a session using an autolysis image as query. The retrieved images 

include 5 autolysis images, 1 autolyzed renal tubules, 3 brain images, and 1 heart. This is in 

accordance with the observation and interpretation discussed previously. 
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21 Figure 6.11. Query session: kidney tubules 

P10 = 10%, R10 = 14%, (retrieved 1 out of total 7 kidney tubules cases), plus 2 out of total 3 

kidney images. 

 

Another less obvious example is one kidney tubules query session as shown in Figure 

6.11. According to the result automatically computed by the Python script, only one image is 

labeled as “kidney tubules” as the query among the top 10 retrieved images. However, there are 

two other images labeled as “kidney” (out of total three kidney images in the entire collection, 

R10 = 67%), which are morphologically very similar to kidney tubules images and also of the 

same origin. The fact that four other images are of prostate origin prompts that some 

morphological features are shared among the tissues of these two origins. 
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22  Figure 6.12. Query session: prostate cancer Gleason’s grade 3 

P10 = 40%, R10 = 20%, (retrieved 4 out of total 20 kidney tubules cases), plus 4 other tissue 

samples of prostate origin. 

 

The query session as in figure 6.12 shows that although 4 Gleason’s grade 3 images bring 

the P10 value to 40%, there are 4 extra tissue samples of prostate origin that bear similar features 

as the query image. During the preprocessing step, any white spaces were intentionally ignored. 

Prostate fibrous tissue images are also found in other prostate cancer query sessions. 

6.7.3 Within-Class Divergence  

Just like what has been observed as can be called between-class convergence, in which two or 

more kind of images with different class labels share similar image features, it is no surprise to 

find examples of within-class divergence, where images with the same diagnostic label actually 
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show very different responses to the same feature detection algorithm. The fact is that the visual 

features of some of the images bearing one particular tissue type tag are actually very different 

from the rest of the images from the same class. This contributes to the varying retrieval 

performance. 

Two possible situations may contribute to the ambiguity. The boundary between two 

tissue types, as seen in the collection of images in this dissertation, is not defined well enough. 

This brings arbitrariness to the determination of some difficult cases.  Sometimes, the meaning of 

two different terms may not be very different after all, such as shown in “kidney” and “kidney 

tubules”. Another part of the ambiguity arises from the fact that many tissue images are not pure 

with only one single type of cells, and/or one single type of arrangement of cells. One organ may 

consist of multiple tissue types. Every spot on a tissue micro-array slide, every image field may 

contain one diagnostically significant tissue type that the sample is labeled after, and other 

auxiliary tissues, such as fat tissue, and fibrous tissue, both of which are present in many of the 

images. 

The scale of the image features that are important for tissue classification sometimes may 

be bigger than the other so that the dimension of the image used for this study is not sufficient 

for the features to be statistically stable. All images were captured at the same magnification 

which might overlook some important features that were better examined at different detail 

levels. 

Artifacts were also introduced when the tissue sample was not processed correctly as in 

the case of tissues with autolysis. All these bring in noise to the features of interest so as to blur 

the classification boundary of different tissue types as well as make the images of the same 

classification display significant variation in their response to feature detection. The within-class 
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variation of image features is shown as the within-class variation of P10 values. Some images 

allow retrieval of far less relevant images than some other from the same class. 

All the issues and interpretation discussed above have been observed in other image 

retrieval system performance evaluation analysis using precision and recall as metrics, and may 

reflect the deficiency in higher level reasoning capability of machine vision. 

 

6.8 SUMMARY 

The image retrieval performance analysis is performed to evaluate the efficacy of k-coding and 

run-length probability distribution as a complex image content description feature across 

multiple tissues with various levels, different natures of pathology. Some of tissue types give 

better performance than the other. Generally, the feature set works better with heart muscle, 

brain, works reasonably with kidney (including kidney and kidney tubules) tissues, and with sub 

tissue types or special morphology as in tissue with autolysis (including autolysis and autolyzed 

renal tubules) and Gleason’s grade level 3 prostate cancer. In some cases, the performance is 

considered good for an image content description algorithm using one single image feature and 

the simplest distance measure. Overall, these show a satisfactory coverage of tissue morphology 

that is beyond what have been observed with the two-class classification task in the first stage of 

this research. 

The better performance with tissues such as heart muscle, brain, and even autolysis 

indicates that the feature set shows its advantage dealing with images with relatively consistent 

cell type and homogeneous morphology. The histology and pathology of the rest of the tissue 
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types form relatively complex structures with more boundaries, and hierarchy of regions. This 

may complicate the behavior of the feature detection in two ways: 1) the complicated image 

patterns are of bigger scale than the dimension of individual cells, and thus, require a bigger 

image dimension to maintain the statistical stability of the run-length probability distributions; 2) 

complex patterns in biological structure form hierarchy, while the simplest run-length model 

treats an image as “a bag of pixels”. High level morphological change that is important for the 

tissue histology and pathology are not reflected in the run-length feature. It is possible to build 

up extra run-length features at multiple scale levels similar to a tree-like structure or a pyramidal 

representation as in wavelet transform. 

The performance also degraded in tissues with irregular morphology or tissues with 

surrounding tissue contamination, such as fibrous tissue, heart muscle and fat. Cancerous tissues 

suffer from dramatic morphological change tend to confuse with other tissue types with 

unrelated origin.  

Several factors may contribute to the performance degradation: 

1) The stability of feature suffers from the restriction imposed by the selected (or un-

selected) field of view of the tissue. The tissue micro-array samples didn’t allow any 

flexibility for selection of view as one spot is only slightly larger than a captured field at 

20x magnification with >1 mega pixels. Some tissue samples contain surrounding tissues 

that are not meant to be a part of image content, as well as artifacts before and during the 

course of tissue processing. The size of the image doesn’t support enough statistical 

stability and the scale and magnification is fixed so that some important features for 

tissue classification are not easily identifiable. 

2) The pathology classification system used to label the images doesn’t reflect the 
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underlying connections. While two or more class labels may connect to one tissue origin, 

there could be morphologically very different sub-types in one class. Both could hurt the 

performance metrics greatly. 

3) The morphological feature that the algorithm captures may be shared by two or more 

tissue types. The result is that the algorithm does a good job in picking out two different 

tissues but the performance measure of this mixed retrieval doesn’t reflect the actual 

efficiency. Single image feature can never be enough to solve all the problems. 

Machine vision is hampered by general deficiency of reasoning capability compared with human 

visual perception, which allows us to solve the above issues and to deal much more complicated 

situations. 
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7.0  CONCLUSION AND FUTURE WORK 

7.1 PATHOLOGY MICROSCOPIC IMAGES AND RUN-LENGTH FEATURE 

The goal of this thesis is to research on a new kind of feature extraction and similarity measure 

that is suitable for pathology microscopic images, adaptable to multiple image types, and yet 

simple and efficient thus make it suitable for the task of content-based image retrieval. Instead of 

customizing for specific image content for the purposes such as morphometric analysis, object 

recognition, content-based retrieval is oriented to design algorithms that take few assumptions 

about the image content so that they can be applied to a relatively broad range of image types. 

Besides, like other information retrieval systems, computational efficiency is important for 

content-based image retrieval in order to handle large data sets. 

The design is based on the fact that the tissue morphology consists of the scale and 

arrangements of cellular components and of cells. With H&E stained tissue samples, the image 

components are artificially colored according to their physic-chemical properties, which 

determine their affinity to two chemicals, Hematoxylin and Eosin. The components stained with 

Hematoxylin appear purple, and those with Eosin, red. Many important pathology diagnoses are 

based on the morphology change by examining the H&E stained tissue samples. Color 

quantization and color code run-length probability distribution feature is designed to target such 

displayed morphology in a global scale. Code run-length distribution is a way to model objects, 

and regions in image, the scale and distribution of them, in a one-dimensional fashion. 
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7.2 FEATURE EXTRACTION AND SIMILARITY MEASURE 

Image feature extraction is, to a significant degree, tied to the particular hardware platform, and 

the targeted image content. The performance often varies when there is a change in the imaging 

system, or the algorithm is to be used to handle a different kind of images. To automatically 

adapt to a broader range of tissue types and different capturing systems, the same k-means 

unsupervised clustering technique is applied to all tissue types in the collection in the same 

fashion. As an unsupervised algorithm, k-means clustering is able to adapt to the data 

distribution of individual images when generating an essential palette as the codebook. The only 

system-wide parameter chosen with certain arbitrariness is the number of total clusters in the k-

means. 

It is assumed that different types of images should have different codebooks with color 

codes representing different image components. Because of this, it is also assumed that, in most 

cases, the resulting color code distributions would be very different across different tissue types, 

as they are not strictly comparable. The images from the same class with similar coloration and 

geometry are most likely to display similar patterns in codebook composition and in code run-

length probability distributions. Thus, average Kulback-Liebler distance is used as a measure for 

the matching of the codebook composition and the similarity of the corresponding probability 

distributions. This is defined, rather than “learned” from the distribution of the data itself, based 

on the theory of mutual information measure of the distributions. 

The combination of an unsupervised feature extraction algorithm and a mathematically 

defined distance measure has the implication that the whole process is automated without much 

human intervention or data dependent training. Without a training stage, the data collected was 

used for the purpose of testing the performance of the system. Such an approach imposes few 

restrictions in applying the algorithms to include more tissue types, or even to other artificially 
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colored images, such as microscopic medical images stained with other biochemical dyes or 

probes. 

7.3 RUN-LENGTH FEATURE FOR TISSUE CLASSIFICATION AND CONTENT-

BASED IMAGE RETRIEVAL 

Overall, the described run-length feature performed well with certain tissue types as shown in the 

classification test with brain tissue and thyroid tissue, and also in the content-based retrieval test 

with brain tissue, and heart muscle, both of which are relatively homogeneous in the morphology 

of differentiated cells – neuronal cells and heart muscle cells with few contamination of other 

cell types – and the cells are laid out in regular patterns with few complication with extra 

structures such as sinusoid, gland, and fibrous tissue. The feature also performed reasonably well 

with kidney and prostate cancer tissues. 

Besides the complication of tissue structures, it is possible that when the number of 

classes grows larger, due the problem of dimensionality curse in dimensional feature space, the 

efficiency of the distance measure may also degrade. 

The most important observation in the performance analysis is the variation of response 

of the images from the same tissue type to the feature detection algorithm. While the retrieval 

performance of some images was very satisfactory, the rest was poor. The reasons for such a 

variation were attributed partially to the particular nature of pathology diagnosis, partially to the 

limitation of the system, such as the chosen image standard, the limitation of the feature 

extraction algorithm when dealing with complex histological structures. Further research is 

necessary to address this problem in order to improve performance and stability. 
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7.4 FUTURE WORK 

This dissertation represents an initial effort in solving the complex content-based image retrieval 

problem along a new path. Many aspects of the new approach are worth further investigation. 

Especially, three major issues deserve further research effort in order to achieve better 

performance. 

7.4.1 Image quality control 

Image quality is important to almost every image processing and content analysis research 

project. Digital image analysis techniques are sensitive to the quality and standard the images are 

recorded and digitized. The statistical stability of the feature values is an important quality 

measure of the features. Larger image size improves the statistical quality of the features without 

changing other parts of the feature extraction algorithms by reducing the within-group variation. 

The results as shown in the previous chapter indicate that tissue types that are better 

characterized with simpler morphological features see better retrieval performance than tissue 

types that are known for more complex morphological features. This suggests that it is possible 

to obtain better results for some of the tissue types by increase image dimension. This is based on 

the morphological nature of the content of pathology microscopic images. 

With the advances in imaging hardware, it is possible to use bigger CCD chip to capture 

a bigger field of view at a time. This is important in order to compensate for the increased 

complexity in morphology in tissues other than the simplest ones, such as brain and heart 

muscle. Software tools can also be used to stitch small fields into a big image. This is expected to 

make the features statistically more stable and also allows for extraction of complex features to 
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be explored based on the basic run-length features. In this research, a magnification of 20 x, 

which translates to about 1 micron per pixel, was used exclusively for all images. While there 

have been no obvious problems with this, different magnifications can also be tested to find the 

best parameter combinations for each of the different tissue types. An organized diagnostic 

classification scheme can also help to better interpret the results and maintain consistency. 

7.4.2  Rotation invariant and two-dimensional features 

One-dimensional single run-length probability distribution, as described in this thesis, is the 

simplest form of a class of possible morphological feature descriptors for the purpose. It takes 

into account only the one-dimensional run-length of the codes. This is a good characteristic in 

many ways and suitable for many tasks such as with medical images. However, many other 

images, such as natural scenic images, are directional, which means the run-length features 

would be very different if images are analyzed in different directions. This can be used to design 

a simple method to show the effect, with which run-length features are extracted from the same 

image but rotated by a series of degrees from the original. It can be anticipated that if the image 

content is directional and is not rotation invariant in a global sense, the run-length feature will 

show periodic changes with magnitude corresponding to the degrees of the rotation. This is not 

expected from the majority of pathology microscopic images in this research, as neither the 

tissue morphology (with only a few exceptions, such as muscle tissues) at the magnification level 

they are imaged nor the preparation and imaging procedures imposes any directional properties 

to the image. 

One way to extend run length feature to image content that is not rotation invariant is to 

align images to be compared along the same canonical direction. The canonical direction can be 
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defined according to the direction of the features so as to allow maximum regularity patterns and 

least random interruptions in that direction, such as a direction that maximizes overall code run-

lengths. This can be carried out in the compressed domain using a frequency domain 

representation of the image. After the canonical direction has been identified, images are then 

rotated to align with that direction and run-length features are analyzed. All the feature extraction 

and feature comparison techniques as described before can be applied to the rotated images 

without change. If necessary, the images can be rotated to align with more than one directions 

and multiple sets of the run length features can be analyzed to reflect the two dimensional nature 

of the image content. 

Based on the same color quantization methodology, it is also possible to extend the 

scheme to model two-dimensional or even three-dimensional distributions of color code blocks. 

This allows for better approximation of objects and regions using code runs and/or code blocks. 

However, by defining higher dimensional features, extra assumptions have been made about the 

geometrical and topological properties of the image content which may not hold with the actual 

image. For example, if a method is used to measure the geometry of a region, then it is implied 

that the object has a defined close boundary. With one-dimensional run-length feature, it doesn’t 

require any definition of boundary or shape for the features to be meaningful and operable. Still 

it represents a very attractive approach to expand the original idea of run-length feature and 

deserves in-depth research and innovation. It will be a challenge to improve the algorithm while 

maintaining the computational efficiency, theoretic simplicity, and generality, which have been 

important goals of this research. 

First paragraph. 
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7.4.3 Feature extraction and modeling 

K-means clustering is capable of adapting to the distribution of the image pixels in the color 

space. As an unsupervised algorithm, it is data dependent, which means, it is optimizes for the 

data population rather than for the classification. Final clustering result is affected by the 

distribution of global population. It is possible to use other clustering/classification algorithms 

for the initial codebook design to achieve better coding efficiency. It is also possible to pre-

process the image so that the subsequent clustering is less subject to the distribution of the data, 

but better suited for the purpose of classification. One possible technique is to use an alternative 

color representation than RGB color space. 

Although Kulback-Liebler distance is solid in theory and is one of the most widely used 

measure for mutual information, there have been a few criticisms about the original version of 

Kulback-Liebler distance when applied to solve real world problems. A most common one is that 

Kulback-Liebler distance is not symmetric, which may not be critical when used as a distance 

measure for retrieval. Theoretically, the relationship between the query and the retrieved 

documents can be viewed as asymmetric, too. There are several modified versions of Kulback-

Liebler distance that are commonly used to address the issue. Modifications have also been made 

to make the Kulback-Liebler distance smoother when dealing with a sparse distribution. This can 

potentially help to statistically stabilize the content-based retrieval performance. 

The contribution of this research is that it has developed and tested a new methodology 

that provides a measure for such features that are difficult to approach using conventional 

methodology. From a greater perspective, k-means clustering and run-length probability 

distribution is a simplest form of a novel image feature extraction and comparison approach that 

is particularly suited for images that are artificially colored. It aims to adaptively model the scale 

 140 



and distribution of objects and regions in the image based on the coloration in an efficient way. 

When used alone for the purpose of pathology microscopic image classification and content-

based retrieval, it has demonstrated good performance for some of the tested tissue types, while 

the performance is less satisfactory and stable for other tissue types. This is comparable to the 

general performance of many basic image feature extraction algorithms. It is greatly anticipated 

that future work will improve the feature extraction algorithm, extend it to two-dimensional 

block pattern and multi-code co-occurrence, and apply it to solve more real world problems. 
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