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ABSTRACT 
 

Prostate cancer is the most common cancer in males, and the second leading cause of cancer 

deaths in American men.  Most of the mortality associated with this disease is a result of widespread 

dissemination of tumors cells from the primary tumor mass.  In order for metastasis to occur, the 

cancer cell must overcome multiple barrier which include development, neovascularization, 

intravastion, adherence or attachment, extravasation, and ectopic growth. As dissemination from the 

primary tumor mass is a rate-limiting step during metastasis, tumor cells undergo an epithelial to 

mesenchymal transition (EMT) to acquire enhanced invasiveness and increased motility.  A key step 

within EMT is a loss of cadherin mediated cell-cell adhesion. Unfortunately, current understanding 

of the regulatory mechanism of this decreased cell-cell adhesion is poorly understood.  Herein 

this work utilizes the LHRH antagonist Cetrorelix to investigate the regulation of E-cadherin 

expression in invasive prostate cancer cells.  We provide direct evidence that E-cadherin expression 

can be reinstated upon abrogation of EGFR signaling via LHRH antagonist Cetrorelix or specific 

inhibitors of EGFR signaling thereby limiting the invasiveness of these cells.   

In concert, we developed a microscale liver perfusion culture system that provides a 

tissue-relevant environment to assess metastasis behavior of human prostate cancer cell line DU-

145 in the liver capillary bed as a model system. This system offers the currently unavailable 

features of real time observation of in vivo microenvironment with the manipulation of in vitro 

cultures. Within this system we were able to observe three dimensional growth and invasion of 

 iii



prostate cancer cells juxtaposed to hepatic tissue, revealing an exceptionally defined cell border 

at the interface of prostate cancer cells and hepatic tissue. Although not completed defined 

within this system, we hypothesize that exists heterotypic cell-communication between prostate 

cancer cells and hepatocytes. 

 The very distinct cell border observed within our liver microreactor, coupled with our 

previous findings of reexpression of E-cadherin expression lead us to investigate the involvement of 

E-cadherin in this heterotypic communication.  Consequently, prostate cancer cells utilize E-cadherin 

at the point of initial adherence to parenchymal hepatocytes (heterotypic interaction) and throughout 

the development of the metastatic tumor mass (homotypic interaction).  Our observed expression 

pattern of E-cadherin has not been reported before. These findings constitute a new paradigm in the 

adhesiveness or lack there of in cancer cells during tumor invasion. The differentiation or 

redifferentiation (EMT) of the cancer cell during the pathophysiological events of metastasis is likely 

a characteristic of adaptability to the microenvironment. The term epithelial mesenchymal 

transition (EMT) only summates the dedifferentiation of epithelial cells to escape the primary 

tumor, although we have provided evidence of phenotypic reversion. Therefore we provide the 

impetus that Epithelial Mesenchymal Transition (EMT) should be renamed “Meschenymal 

Epithelial reverting Transition (MErT)” to underscore the dynamics of the cancer cell 

progression. 
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1. INTRODUCTION 

 
Normal development, growth and survival of the prostate epithelium are regulated by androgen 

and paracrine production of growth factors from the surrounding stroma.  Similarly early prostate 

cancer is dependent on androgen and locally synthesized growth factors. Androgen-deprivation 

therapy, usually with combined androgen blockade, is standard initial treatment for androgen 

dependent prostate cancer. However the effectiveness of this initial treatment invariably yields to 

the emergence of androgen independent cells with increased capability to disseminate from the 

encapsulated tumor to distal site such as lungs, bone, lymph nodes and liver (Ewing 1922; Shah, 

Mehra et al. 2004). This presents a significant medical problem as available therapies have 

shown little success and low patient survival. 

The molecular basis for tumor progression is unclear despite years of study and effort.  

Although acquired processes such as invasiveness and migration of tumors have been the focus 

of recent studies, very few targeted approaches have lead to successful intervention.  This is 

partially due to the limitations of available two-dimensional assays that follow the complete 

metastatic program within appropriate environments. Acquired cellular behavior such as 

increased growth factors, decreased cell adhesion, and the presence of angiogenic properties 

facilitate the progression of the cancer. For that reason, mechanisms of acquired cellular 

behavior in cancer cells should be examined within three dimensional environmentally 

appropriate assays. 
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1.1. THE PROSTATE 

The prostate is an exocrine male accessory sex gland that is located just beneath the 

urinary bladder and is associated with the urethra (Cunha and Donjacour 1987).  The prostate is 

found exclusively in mammals and produces a fluid rich in fructose, zinc ions, growth factors 

and prostaglandins.  The mature mammalian prostate is a glandular organ consisting of epithelial 

and stromal cell types that are hormonally regulated. The epithelium consists of a single layer of 

polarized columnar epithelial cells together with basal and neuroendocrine cells. The epithelial 

cells supply secretions that empty through ducts into the urethra to form the major component of 

the seminal plasma of the ejaculate. The surrounding stromal compartment comprises of 

fibroblasts, smooth muscle cells and loose collagenous extracellular matrix (ECM), in addition to 

neuronal, lymphatic and vascular components. Despite the prostate’s stable growth in adulthood, 

the gland may continue to become enlarged in size slightly after the age of fifty in men 

(Cunningham 1990; Morganstern and Abrahams 1994).  Although enlargement of the prostate is 

not necessarily associated with benign prostatic hyperplasia (BPH) or prostate cancer, it could 

play a role in these expansions. 

1.1.1. Prostate Cancer Epidemiology 

In the United States, prostate cancer remains the most common solid tumor malignancy in men, 

causing ~30,000 deaths in 2004 (Jemal, Murray et al. 2003).   In the year 2003, approximately 

220,990 new prostate cancer cases were diagnosed (ACS: Cancer facts and figures, 2003), with 

more than 70 % of prostate cancers being diagnosed in men over 65. This equates to an incidence 

rate of 1 in 7 after the age of 60 as compared to a risk of 1 in 44 between the age 40 and 59 years 

(Haas and Sakr 1997; Bruckheimer, Gjertsen et al. 1999).   These data highlight the prevailing 
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medical wisdom that progression of localized prostate cancer advances slowly, with survival 

lasting over a decade, even in untreated cases. As the probability of incidence greatly increases 

in elderly men, surgical and radiological ablation of the tumor (and the prostate) carry significant 

morbidity and even subsequent mortality. Although there has not been an identified cause of 

incidence, family history, age and ethnicity are well-established risk factors in prostate cancer. 

 African American males in the United States have the highest prostate cancer rates of any 

population in the world (Ross, Pike et al. 1998; Underwood, Jackson et al. 2004).  Incidence of 

this disease is 37% higher than in white Americans, whereas mortality is an even more serious 

problem, with an increase of 140% in African Americans when compared to the mortality in 

Caucasian Americans (Farkas 1997).  The disease, common in North America and Northwestern 

Europe, is rare in Asia, Africa, and South America.  The geographical preference of prostate 

cancer incidence has led researchers to investigate genetic, environmental, and social factors as a 

basis for epidemiological differences noted between African Americans and whites (Cude, Dixon 

et al. 1999). 

  A major contributor to the increased identification rate is the development of more 

sensitive detection methods.  Since the late 1940’s, the rate of identification of prostate cancer 

cases has increased 67% or about 1.8% per year (Hsing, Tsao et al. 2000).  This dramatic 

increase is in part due to the greater availability and use of detection methods, which include 

digital rectal examination, the use of a serum tumor marker called prostate-specific antigen 

(PSA), transrectal guided needle biopsy, and ultrasonography (Steenland, Rodriguez et al. 2004).  

PSA, the most widely practiced diagnostic test, has been attributed with the rise in cancer 

incidences.  The data suggest that it is not so much the prevalence of prostate cancer that is 

increasing but that we may be diagnosing more cases from a pool of men with latent, previously 
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unsuspected disease and that these diagnoses occur at an earlier, more localized stage of the 

disease (Haas and Sakr 1997; Hernandez and Thompson 2004).    

Options to managed diagnosed prostate cancers are limited.  Among the effective 

treatments is chemical or physical castration to induce an androgen-withdrawal apoptosis of the 

tumor cells. Typically, an initial response to androgen ablation therapy is observed in 70% of 

patients but most patients relapse within 2 or 3 years.  The failure of androgen ablation therapy is 

attributed to the growth of androgen-unresponsive tumors. The progression to invasion and 

metastasis is thus only slowed and not blocked. 

As prostate tumors progress extracapsular invasion presents a significantly greater 

problem.  Invasion of the adnexia results in compromised function of the renal and genital 

systems with significant physiological and psychological morbidity. Additionally, metastatic 

spread carries a high mortality burden. Bone (83%) was the most common site of metastasis, 

followed by liver (66%), lymph nodes (63%), lungs (50%), soft tissues (40%), dura (26%), and 

adrenal glands (23%) (Shah, Mehra et al. 2004). Once in bone, the prostate carcinoma cells 

induce an osteoblastic response that is responsible for debilitating bone pain. Liver metastasis, 

usually only detected at autopsy, also produces a conducive environment for sustained growth 

via liver’s robust production of prostate cancer stimulating growth factor, EGF, and TGF-α. 

Brain metastasis is rare (1-2 %) but carries the worst prognosis, with a maximum life expectancy 

of 6 – 7 months.  
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Cascade of Metastatic Events

Intravasation Extravasation

Primary Tumor Metastasis

 

Figure 1.  Cascade of Metastatic Events.  Tumor cells invade basement membrane and intravasate into 
blood vessel or lymphatics.  Tumor cells must then extravasate from circulation to colonize at distant 

metastatic foci. 

 

 

1.1.2. Benign Prostatic Hyperplasia 

Benign Prostatic Hyperplasia (BPH) is a disease in which the prostate resumes growth late in 

life.  It is a common condition in men that increases steadily with age.   Approximately 85% of 

all men older than 50 years have symptoms arising from BPH and 50% of all American men 
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require treatment for symptomatic relief of clinical BPH by the ninth decade of life. Benign 

prostatic hyperplasia (BPH) is defined as hyperplasia associated with both the stromal and 

epithelial compartments of the gland (Shah and Getzenberg 2004). Morphologically, it is 

characterized by the formation of new architecture by budding of the epithelium from preexisting 

ducts (Lee and Peehl 2004).  This new architecture resembles the appearance of the mesenchyme 

in periurethral nodules, which during the earliest manifestation of BPH, is reminiscent of 

embryonic mesenchyme (Chatterjee 2003; Lee and Peehl 2004). In contrast, prostate carcinoma 

arises nearly exclusively from the peripheral zone and BPH from the transition zone of the gland 

(Castro, Giri et al. 2003).  

The pathophysiology of BPH indicates that pharmacological agents that decrease the size 

of the prostatic adenoma or the tone of prostatic smooth muscle are effective treatment for 

intravesical obstruction in BPH (Diaz and Patterson 2004). Therefore most therapies target 

reduced of 5 alpha-dihydrotestosterone the major androgen in BPH for essentially shrinking the 

prostate’s size or relaxing prostatic smooth muscle. Androgen receptor and its ligand have been 

shown to be extremely viable target for systematic regression of the prostate’s size. 

  Despite current efforts directed toward establishing linkages between hyperplasia and 

clinical prostate cancer, BPH has been shown to be neither a premalignant lesion nor a precursor 

of prostate cancer.  However, useful comparisons have been made using cell populations of BPH 

and prostate cancer to analyze differences or similarities between gene and phenotypic 

expression, in an effort to identify molecular markers that drive malignancy in prostate cancer 

but spares BPH. 
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1.2. Androgens 

Androgens are central to prostate cancer progression, controling the development, growth, 

differentiation and function of the prostate gland (Cunha and Donjacour 1987; St-Arnaud, Poyet 

et al. 1988). The androgen receptor (AR) belongs to the superfamily of nuclear receptors that 

mediate the actions of steroids, retinoids, vitamin D3 and thyroid hormones (Zilliacus, Wright et 

al. 1995). The AR is a ligand activated transcription factor that mediates the biological responses 

of androgens. ARs have the ability to stimulate cell proliferation and inhibit cell death of normal 

prostatic glandular epithelial cells (Kyprianou, Martikainen et al. 1991), as well as maintain of 

cell morphology and functional activity in the adult prostate (Cunha and Donjacour 1987; 

Dirnhofer, Berger et al. 1998).  In all stages of male development, androgens act upon specific 

intracellular AR (Cunha and Donjacour 1987; Wilding 1992).  The AR is expressed throughout 

the pathophysiological process of prostate cancer progression.  Results from 

immunohistochemistry studies have concluded that the AR is present in primary and metastatic 

prostate cancer regardless of stage and grade.  It is also expressed in androgen independent 

cancers (Ruizeveld de Winter, Trapman et al. 1991) thus implicating it’s relevance during 

prostate cancer progression. 

Current therapies for prostate cancer are aimed at either reducing androgen levels or to 

prevent binding to the androgen receptor.   The effectiveness of androgen ablation in the 

management of  prostate cancer progression is hampered by limited duration; the median length 

of response is generally only 18-24 months (Diaz and Patterson 2004; Taplin and Balk 2004). 

Due to the heterogeneity of tumors consisting of various subpopulations of cells that respond 

differently to androgen withdrawal therapy, prostate cancer often progresses to a fatal, androgen 

independent or refractory state (Chatterjee 2003). The transition of the prostate cancer cell to an 

androgen independent phenotype is a complex process that involves selection and outgrowth of 
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pre-existing clones of androgen-independent cells (clonal selection) as well as adaptive up-

regulation of genes that help the cancer cells survive and grow after androgen ablation 

(adaptation).  The loss of androgen sensitivity is generally considered to have four causes: 

selection of cancer clones; adaptation of cells to an environment without androgen; an alternative 

pathway of signal transduction; and reduced involvement of ARs (Grossmann, Huang et al. 

2001; Gelmann 2002; Navarro, Luzardo et al. 2002).  Castrated neonatal mice demonstrated 

regression of prostate growth and maturation; however, administration of exogenous 

testosterone, the major physiological androgen, reversed this effect (Cunha and Donjacour 1987). 

During the pathophysiology of cancer in castrated humans, prostate cancer cells develop a 

growth advantage by amplifying or mutating AR, thus altering AR co-regulatory molecules and 

developing ligand-independent AR activation pathways (Suzuki, Ueda et al. 2003).  

Amplification of the AR gene or increased protein expression, in prostate tumors is a potential 

mechanism to utilize low levels of androgens, which are present in castrated patients. Therefore, 

ARs might play an important role in the progression of androgen independence in prostate 

cancer. 

A cascade of events that begins in the hypothalamus and results in the production of 

testosterone achieves activation of the androgen receptor.  The hypothalamus releases LHRH 

into the hypophyseal portal system, which provides the pathway for substances to enter the 

anterior pituitary gland.  The pituitary controls the secretion of gonadotropins (Velduis 1991).  

The anterior pituitary is stimulated by LHRH to release follicle stimulating hormone (FSH) and 

luteinizing hormone (LH) (Haas and Sakr 1997).  In turn, LH stimulates the Leydig cells in the 

testicles to produce testosterone; FSH, in accordance with testosterone, stimulates the Sertoli 

cells and the spermatogonia causing spermatogenesis (Audersirk 1999).  
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Testosterone diffuses freely into the prostate gland via the bloodstream (Ross, Pike et al. 

1998).  Upon entrance, molecules of testosterone are metabolized by the enzyme 5-alpha (5-α) 

reductase into dihydrotestosterone (DHT).  This active form of testosterone binds to androgen 

receptors due to selective preference.  DHT acts to stimulate protein production, which results in 

cell division and inhibition of programmed cell death (Garnick 1997). 

 In summary, patients with metastatic prostate cancer will experience a predictable 

progression of their disease from an androgen responsive state to a relentless androgen-

independent phenotype. The AR is central to growth signaling in prostate cancer cells and 

compiled data suggest that the AR remains active in progressive androgen-independent prostate 

cancer through a variety of mechanisms aimed at increasing the growth response to lower levels 

and a wider variety of compounds.  Once androgen independence has been achieved, however, 

prostate cancer cells rely on other, often locally synthesized, factors to provide the proliferative 

signals required for growth (Dondi, Limonta et al. 1994; Suzuki, Ueda et al. 2003). 

1.3. Growth Factors 

Aggressive tumors consist of a multitude of perturbations including dsyregulation of oncogenes 

and tumor suppressor genes. Although genetic alterations are a precursor to a tumor lineage, 

growth factors and other extracellular signaling agents such as hormones and regulatory peptides 

drive the progression of tumor cell proliferation and differentiation.  Invasive tumors secrete 

numerous growth factors and chemokines; commonly implicated are the epidermal growth factor 

(EGF), hepatocyte growth factor (HGF), fibroblast growth factor-1 (FGF-1, aFGF), keratinocyte 

growth factor (KGF, FGF-7), insulin like growth factor 1 (IGF1), interleukins (IL)-6, IL-8, and 

vascular endothelial growth factor (VEGF). The biology of these factors differ as neither their 

site of synthesis nor site(s) of action are restricted to defined tissues.  Autonomous secretion of 
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ligands creates self-stimulatory autocrine signaling loops.  Increased intracellular signaling 

stimulates tumor cell proliferation and migration, resulting in a more aggressive phenotype. 

Various strategies for treatment of prostate cancer involve blockage of EGF receptor and/or 

inhibition of it’s intracellular signaling, thus implicating its importance in prostate tumor 

progression (Camp, Summy et al. 2005; Pal and Pegram 2005; Vallbohmer and Lenz 2005).   

1.3.1. Epidermal Growth Factor Receptor and Activating 

The epidermal growth factor receptor (EGFR) is a 170-kDa single chain transmembrane 

glycoprotein composed of 1186 amino acids (Carpenter and Cohen 1990; Sherwood, Van 

Dongen et al. 1998).  It has been identified in normal, hyperplastic and malignant prostatic 

epithelium (Harari 2004).   The EGFR consists of an extracellular domain with high cystine 

content and N-linked glycosylation, and binding sites for its ligands.  Its intracellular domain 

consists of protein kinase activity and tyrosine residues (Singer, Hudelist et al. 2004).    

 EGFR has been implicated in epithelial cell malignant transformation and is found in all 

prostate cancer cell lines, with androgen-independent cells expressing 10 times more EGFR than 

the androgen dependent lines (De Miguel, Royuela et al. 1999).  Enhanced expression of the 

EGFR on cancer cell coupled with paracrine/autocrine stimulation from activating ligands TGF-

α and EGF has been associated with excessive proliferation and metastasis.   In primary tumors, 

evidence of a paracrine situation between activating ligands and their receptors have been 

extensively studied (Kim, Turner et al. 1999; Maheshwari, Wiley et al. 2001; Singh and Harris 

2005).  The selective response of epithelial cells to paracrine stromal TGF-α and not autocrine 

EGF has led to the suggestion that EGFR is located on the basolateral surface of the cells, though 

the epithelial cell tight junctions prevent luminal EGF from reaching the surface. In the paracrine 

situation, TGF-α is expressed in the adjacent stromal cells while the EGFR location is in the 
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epithelial cells (Chen, Xie et al. 1994; Gioeli, Mandell et al. 1999).  The transition from a 

paracrine to an autocrine stimulatory stage is correlative to advanced prostate cancer progression 

(Arteaga 2002).  During the shift to the autocrine stage, EGFR and TGF-α are coproduced by the 

prostate tumor cells in order to support continuous proliferation, however this requires a 

disruption in cell tight junctions (Hazan and Norton 1998; Gioeli, Mandell et al. 1999; Thiery 

2002). This has been shown to be a necessary step in aggressive cancers ability to acquire 

enhanced cell motility and invasiveness.  It is worth noting that disruption of the TGF-α 

stimulated EGFR autocrine stimulatory loop by an EGFR antibody diminished EGFR-driven 

DU-145 cell invasion in vivo (Turner, Chen et al. 1996); and in vitro (Xie, Turner et al. 1995). 

 

 

1.4. Invasion and Metastasis 

 The process of cancer metastasis consists of a series of sequential interrelated steps, with the 

outcome depending on both the intrinsic properties of the tumor cells and the host.    Metastatic 

dissemination of neoplasia cells to secondary sites is the primary cause of death among cancer 

patients (Hanahan and Weinberg 2000; Zijlstra, Mellor et al. 2002). Both experimental 

investigations and clinical observations have established that, in order for a tumor cell to 

hematogenously disseminate, it must intravasate into the circulation, arrest at a secondary site, 

and initiate secondary growth (Chambers, MacDonald et al. 1995; Al-Mehdi, Tozawa et al. 

2000; Comoglio and Trusolino 2002) (Figure 1). Prostate tumor cells disseminate mainly via 

bloodstream or lymphatics. After dissemination, cancer cells must avoid ankiosis and reform 

tumor mass at target tissue. Secondary tumor formation is not a guaranteed process.  The 
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sequential nature of this metastatic cascade implies that failure to complete even one of these 

steps eliminates the possible development of secondary colonization.  

As cells commit to the metastatic paradigm, they have an increased capability to loosen 

their connections to the substratum and break cell-cell adhesions. Integrin receptors that mediate 

the cell-substratum adhesion and cadherins that mediate cell-cell adhesion are essential for cells 

to migrate and invade.  While previous hypothesis contained the idea that cell-cell and cell-

substratum adhesion were separate events, it has been recently proposed that these events are not 

mutually exclusive and in fact are coordinated events (Hinck, Nelson et al. 1994; Nelson and 

Nusse 2004). Integrins, act as adhesion receptors to the substratum during tumor cell migration 

through extracellular matrix (ECM), however cell-cell contacts must be decreased for invasion to 

occur resulting in matrix remodeling by various proteases including matrix metalloproteinases. 

This motile strategy is used both to invade local adnexia and gain access to conduits for distant 

dissemination.  

After breaking off from the primary tumor, cancer cells travel through the blood vessels. 

Those that reach a secondary site, such as bone, lung, and liver, may colonize and form a 

metastasis.  Recent imaging work by Chambers and colleagues (Chambers, Groom et al. 2002) 

have shown in skin cancer that only 1 in 40 melanoma cells arriving at  the liver will form 

micrometastases, suggesting cell proliferation is a rate limiting factor at metastatic foci.  

Therefore, it raises the question as to what makes this subpopulation of cells capable of avoiding 

designed barriers of inhibition. The underlying mechanisms for metastasis and invasion are not 

well understood, but appear to surround the transition from epithelial to a mesenchymal 

phenotype.  At the central core of this transitional process is the loss of cell-cell contact which 

enables enhanced cell migration. Therefore, any knowledge gained towards understanding the 
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metastatic process will promote the development of therapeutics that target the acquired tumor 

properties needed for metastasis and invasion to occur.    

 

 

1.5. Adhesion Molecules in Prostate Cancer 

 
As prostate cancer progresses and migrates to distal organs, cells undergo fundamental changes 

that allow them to ignore regulatory signals which tightly control their growth and motility, 

within their local environment. Unregulated growth and migration of cells is partially  due to an 

alteration of integrin expression, accompanied with a loss of cell-cell adhesion molecule 

expression, characteristic of the phenotype of malignant tumors. The development of metastatic 

disease encompasses a complex cascade of events in which cells dislodge from the primary 

tumor mass, migrate through the extracellular matrix, and eventually enter and establish tumors 

at secondary sites in the body.  At the core of this process lie the changing cell adhesion 

molecular profiles of the tumor cells that dictate their interactions with the surrounding 

extracellular matrix and neighboring cells. 

Cell adhesion molecules bind specifically to cell surface molecules which in turn can 

bind specifically to additional cell surface molecules (receptors) on another cell (Mendelson, 

Howley et al. 1995).  A cell adhesion molecule can bind to itself (homophilic interaction) or to 

unrelated cell surface molecules (heterophilic interaction) and many cell adhesion molecules can 

do both (Takeichi 1993).  Likewise, adhesion molecules mediate adhesion between two cells of 

the same type (homotypic adhesion) as well as between cells of different tissue origin 

(heterotypic adhesion).  Most cell adhesion molecules have multiple receptors and these are 

functionally identified as mediating cell-cell binding or aggregation.  Structurally, many different 
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kinds of molecules can mediate cell adhesion, however many studies involving cancer cell 

adhesion have concentrated on the cell-cell and cell substratum adhesion molecules known as 

integrins and cadherins  (Mareel, Behrens et al. 1991; Lowy, Knight et al. 2002; Chunthapong, 

Seftor et al. 2004). For this study, we will concentrate on the cadherin superfamily and its 

associated molecules.   

1.5.1. Cadherins 

Cadherins are a superfamily of molecules that form a group of cell-cell adhesion molecules 

which are calcium-dependent transmembrane glycoproteins (Mason, Davies et al. 2002).  These 

molecules are required for cell-cell recognition, tissue morphogenesis, inhibition of apoptosis 

(Alahari, Reddig et al. 2002), cell signaling, and maintenance of tissue integrity in both 

vertebrates and invertebrates (Bogenrieder and Herlyn 2003; Perez-Moreno, Jamora et al. 2003; 

Takeichi 2004).  They mediate cell-cell adhesion mainly through homotypic interactions, 

although heterotypic binding between different cadherin molecules is possible (Jiang 1996).  The 

typical mammalian cadherin is a transmembrane glycoprotein consisting of between 723 to 748 

amino acids; the fully mature forms of which have a molecular mass of approximately 120 kDa 

(Behrens 1999).  Cadherins are classified according to their structural and functional similarities: 

classical or type-I cadherins, atypical or type-II cadherins, desmocollins, desmogleins, and 

protocadherins.  Types I cadherins are:  4-11, B-(Mila glia), C-(blastula and early gastula), EP- 

(homologue to both E- and P-cadherin), N-(neural), P-(placental), R-(retinal), T- (truncated), 

OB-(osteblast), K-(kidney), M-(muscle), desmogleins 1-3 and desmocollins 1-3 (desmosomal 

cadherins) (Jiang 1996).  These mediate homophilic adhesion between cells in a Ca2+-dependent 

manner. Type 2 cadherins include VE-, OB, F and cadherins 6, 7, 8, 10, 11, 12, among others. 
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Although all of these cadherins play essential roles in cell adhesions, E-cadherin is one of the 

most frequently identified cadherins of the metastatic cascade in most human cancers.   

E-cadherin is confined to all epithelia originating from ectodermal, mesodermal and 

endodermal tissue.  It is synthesized as a precursor polypeptide that is processed to the mature 

polypeptide (120kDa) shortly after the addition of complex carbohydrate groups in the late Golgi 

complex.  The mature form is then delivered to the cell surface.  Induction of Ca2+-dependent 

cell-cell contact results in the rapid localization of surface E-cadherin molecules to the regions of 

contact, where they form homophilic junctions with neighboring cells.  Structural analysis of 

cadherin-mediated cell-cell adhesion indicates that cadherins act as a cell adhesion zipper 

(Shapiro, Fannon et al. 1995).  This zipper is made by E-cadherin forming cell-to-cell adhesion 

complexes in the cellular membrane with itself and the following cytoplasmic proteins, α-, β-,γ-

catenins, and p120 (Shibamoto, Hayakawa et al. 1995; Jiang 1996).  However, loss of this E-

cadherin mediated zipper is common to most carcinomas.  No real consensus exists on how 

inactivation occurs, however the following epigenetic mutations have been implicated: 

mutational inactivation of the E-cadherin gene, hypermethylation of the promoter, transcriptional 

repression by SIP1 or snail, transactivation of other cadherins, tyrosine phosphorylation of 

intercellular catenins, and ectodomain shedding of E-cadherin by matrix metalloproteinases 

(MMP) (Van Aken, De Wever et al. 2001; Hajra, Chen et al. 2002; Reynolds and Carnahan 

2004; Wheeler 2005). 

α-Catenin is a 102-kDa multifunctional protein with multiple interaction sites, including 

amino-terminal β-catenin-binding site, homodimerization sites, and amino-terminal as well as the 

carboxyl-terminal actin-binding sites (Ozawa 1998).  α-Catenin influences adhesive stability 

through linking the β-catenin-E-cadherin complex to the actin cytoskeleton and promoting cell-
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cell interactions (Richmond, Karayiannakis et al. 1997; Kallakury, Sheehan et al. 2001).  

Decreased expression results in instability of the complex and decreased cell adhesion 

(Kallakury, Sheehan et al. 2001; Kallakury, Sheehan et al. 2001; Moon, Choi et al. 2001).  

Moreover, α-catenin expression inhibits ß-catenin-dependent activation of TCF-mediated 

transcription (Simcha, Shtutman et al. 1998; Giannini, Vivanco et al. 2000; Giannini, Vivanco et 

al. 2000).  

The gene for β-catenin, a 92-kD protein, has been localized to chromosome 3p22.21.  β-

Catenin binds directly to the cytoplasmic tail of E-cadherin followed by the linkage by α-catenin 

to the actin microfilaments of the cytoskeleton. β-Catenin is a multifunctional protein that plays a 

complex pivotal role in orchestrating various cell responses, thus can be categorized as an 

oncogene  (Kim, Crooks et al. 2002; Minamoto, Ougolkov et al. 2002; Kielhorn, Provost et al. 

2003; Schneider, Finnerty et al. 2003).   Its cellular behavior includes cell-adhesion at the plasma 

membrane and involvement in the Wnt signaling cascade.  When Wnt receptors are not engaged, 

kinases in the APC complex phosphorylate β-catenin, thus targeting the latter protein for rapid 

destruction. However when the Wnt receptors are activated by their ligands or integrin linked 

kinase (ILK) (Wu 1999), the intrinsic kinase activity of the APC complex is inhibited. As a 

consequence, stable non-phosphorylated β-catenin accumulates and makes its way into the 

nucleus triggering inappropriate activation of transcription factors, oncogenes, and cell cycle 

regulators causing tumor cell proliferation and promoting oncogenesis.  β-catenin sequestering 

from the E-cadherin complex is in part a consequence of increased accumulation in the nucleus.  

This is accomplished by tyrosine phosphorylation of the cytoplasmic kinases Src or Fer.   Fer 

phosphorylation causes disruption of b-catenin to α-catenin (Piedra, Miravet et al. 2003) whereas 

phosphorylation by Src or the epidermal growth factor receptor (EGFR) disrupts binding to E-
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cadherin  (Gomez, del Mont Llosas et al. 1999; Roura, Miravet et al. 1999).  Therefore, Wnt 

signaling and E-cadherin mediated adhesion both act as negative regulators of β-catenin 

translocation to the nucleus (Nelson and Nusse 2004).  The dynamics of β-catenin expression 

and signaling in human malignancies such as carcinomas of esophagus, head and neck, and 

prostate offers promising avenues for therapeutic intervention. 

The membrane-associated protein termed p120, originally identified as a tyrosine kinase 

substrate (Anastasiadis and Reynolds 2000), phosphorylated at the tyrosine, serine, and threonine 

residues in src-transformed cells, or in response to growth factor stimulation (Jawhari, Farthing 

et al. 1999).  It shares structural similarity with the Drosophila Armadillo protein and the 

vertebrate β-catenin and α-catenin proteins.  This is evidenced by its characteristic Arm domain 

that is composed of repeats of a 42-amino acid motif.  In the cell, p120 is localized to the E-

Cadherin/catenins cell adhesion complex (Shibamoto, Hayakawa et al. 1995).  Like α and β-

catenin, p120 is directly associated with the cytoplasmic C-terminus of E-Cadherin via its Arm 

domain and may similarly interact with other cadherins (Behrens 1999).  Initially, the importance 

of p120 in the cell adhesion complex was understated as only being required for clustering of 

cadherins and strong cell–cell adhesion (Yap, Stevenson et al. 1997; Thoreson, Anastasiadis et 

al. 2000). However, recent evidence suggests that p120’s core function in the complex is to 

regulate cadherin turnover (Ireton, Davis et al. 2002; Davis, Ireton et al. 2003). Evidence 

supporting the dynamic relationship was discovered when restoring p120 expression efficiently 

rescues proper epithelial morphology by stabilizing E-cadherin and increasing its abundance 

approximately 10-fold (Ireton, Davis et al. 2002).  

 
1.5.2. Expression of Cadherins in Cancer Progression 
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EMT (epithelial-mesenchymal transition or EMT) has been shown to be a necessary step in the 

dissemination of cancer cell from the primary tumor mass.  During this progress there have been 

documented changes in the phenotypic expression of the cancer cells including a reduction in the 

cell adhesiveness.  The mechanisms responsible for such changes in adhesion include mutations 

in the E-cadherin gene (CDH1) that compromise the adhesive capacity of E-cadherin (Hajra and 

Fearon 2002), hypermethylation of the E-cadherin promoter (Graff, Herman et al. 1995; Hennig, 

Behrens et al. 1995), or a combination of mutations in one allele with loss or inactivation (by 

DNA methylation) of the remaining allele (Berx, Becker et al. 1998; Machado, Oliveira et al. 

2001).  However, in many types of cancer including breast and prostate cancers, E-cadherin 

expression is lost without mutations in the gene (Hirohashi 1998), due to transcriptional 

repression of E-cadherin (Batlle, Sancho et al. 2000; Cano, Perez-Moreno et al. 2000; 

Grooteclaes and Frisch 2000; Comijn, Berx et al. 2001; Perez-Moreno, Locascio et al. 2001; 

Poser, Dominguez et al. 2001; Hajra and Fearon 2002. A family of zinc finger proteins of the 

Slug/Snail family, EF1/ZEB1, SIP-1, and the basic helix–loop–helix E12/E47 factor that interact 

with E-box sequences in the proximal E-cadherin promoter have been implicated as the 

transcription factors triggering repression [Bolos, 2003 #488; Nieto 2002). Of the transcriptional 

repressors mentioned above, Slug expression demonstrated a much stronger correlation with loss 

of E-cadherin in breast cancer cell lines than did SNAIL expression, suggesting Slug is a likely 

in vivo repressor of E-cadherin expression in breast carcinoma (Come, Arnoux et al. 2004). 

During EMT, cancer cells acquire phenotypic advantages that are imperative to their 

dissemination from the primary tumor mass (Comoglio and Boccaccio 2001; Conacci-Sorrell, 

Zhurinsky et al. 2002). Decreased cell-cell adhesion in many cancers may not only be genetic but 

a consequence of receptor tyrosine kinase signaling. Autocrine stimulation of EGFR signaling 
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and c-Met receptor by HGF have been show to influenced the downregulate E-cadherin 

expression with subsequent increased cell proliferation, dedifferentiation, and induction of cell 

motility (Downing and Reynolds 1991; Hazan and Norton 1998; Andl, Mizushima et al. 2003).  

As noted earlier, EGFR mediated downregulation of E-cadherin in breast carcinoma and prostate 

carcinoma cells are a direct result of phosphorylated catenins.  Extensive investigations have 

revealed that increased phosphorylation of the preferential catenins, β-catenin and p120, 

destabilize the cadherin complex thus inducing scattering of cancer cell lines to a more invasive 

phenotype (Nakashiro, Okamoto et al. 2000).  The underlying pathophysiology of these events 

reveal a situation where decreased E-cadherin levels concede the tight junctions and enable 

apically-secreted EGF to establish an autocrine loop with the basolaterally sequestered EGFR 

(Kassis, Moellinger et al. 1999). Decreased E-cadherin levels also promote increased HGF 

production, in a reinforcing cycle. In addition to disrupting the cell-cell junctions and enabling a 

more migratory phenotype (Hiscox and Jiang 1999), HGF/SF upregulates secretion of matrix 

metalloproteinases that degrade the extracellular matrix aiding in tumor dissemination. HGF 

upregulates matrilysin (MMP-7) that mediates extracellular cleavage of E-cadherin, thereby 

further disrupting cell-cell adhesion and switching of prostate cells from a lesser to a highly 

invasive phenotype (Davies, Jiang et al. 2001).  

 Concomitant with the loss of E-cadherin, N-cadherin levels increase during the EMT 

noted in carcinomas. This increased expression of N-cadherin has also been observed in invasive 

prostate cancer cell lines (Tran, Nagle et al. 1999; Seidel, Braeg et al. 2004). The decreases in E-

cadherin expression and increases in N-cadherin expression have been shown to correlate with 

increased metastatic ability  (Tran, Nagle et al. 1999; Suyama, Shapiro et al. 2002; Hazan, Qiao 

et al. 2004; Kang and Massague 2004).  Although several reports have implied a switch from E 
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to N-cadherin during cancer progression, N-cadherin functions have primarily been associated 

with angiogenesis (Nakashima, Huang et al. 2003). 

 

 

1.6. Luteinizing Hormone Releasing Hormone 

Among the therapeutic approaches to prostate cancer are bilateral orchiectomy, treatment with 

synthetic estrogens, diethylstilbestrol (DES), prostatectomy, radiation therapy, chemotherapy and 

androgen deprivation.  However, each of these approaches incurres side effects that reduce their 

therapeutic efficiency.  Clinicians have begun to carefully weigh the potential benefits of 

recommending  hypothalamic luteinizing hormone releasing hormone (LHRH) analogs as an 

approach to therapy for advanced prostate cancer (Teillac, Bono et al. 2005) GnRH (also known 

as luteinizing hormone-releasing hormone or LHRH) is produced in the hypothalamic area of the 

brain under the influence of norepinephrine, dopamine, histamine, and other neurotransmitters 

(Cook and Sheridan 2000). The practice of hormone replacement began in the 1700s with the 

discovery a short-lived decapeptide known as Gonadotropin-releasing hormone (GnRH).  

Modifications in the amino-acid sequence of the native decapeptide resulted in the production of 

literally thousands of derivatives to maximize various potent, long-acting analogs that have the 

potential to be used therapeutically. 

  LHRH analog consists of both agonist and antagonist.  LHRH receptor agonists such as 

leuprolide, bruserelin, and goserelin (with or without an antiandrogen) have been used for the 

treatment of prostate cancer (Moretti, Marelli et al. 1996; Schally, Comaru-Schally et al. 2001; 

Wells, Souto et al. 2002). Chronic administration of these LHRH agonists exhibited eventual 

decreases in the number of GnRH receptors (termed down-regulation) and suppresses 
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gonadotropin synthesis. However, this is preceded by a variable period ‘flare’ of pituitary 

gonadal stimulation in which existing gonadotropin stores are liberated. This flare period 

generally lasts for 10–20 days and may be associated with a 10-fold rise in luteinizing hormone 

(LH), resulting in increased testosterone levels.  LHRH agonists are therefore combined with 

antiandgrogens to minimize these effects. To alleviate the initial and harmful surge in 

testosterone seen with administration of LHRH agonists, LHRH antagonists which bind 

immediately and competitively to GnRH receptors in the pituitary gland were developed. Within 

8 to 24 hours after the initial dose of LHRH antagonists, LH concentrations are reduced by 51–

84%, the FSH concentrations by 17 to 42%. The competitive blocking of the GnRH receptor 

results in a rapid, but reversible decrease in LH, FSH and testosterone without any flare. This 

lack of testosterone surge prevents a temporary worsening of the cancer (Schally, Comaru-

Schally et al. 2001; Moul and Chodak 2004).   

 Although the signaling mechanisms of these analogs has not yet been elucidated, new 

investigations into mode of action of these drugs been initiated.  Initially the effectiveness of 

LHRH analogs were thought to be limited to decreased LH secretion from the hypothalamic-

hypophyseal portal blood system with a subsequent  decrease serum testosterone levels 

(McDougal and Skerrett 1996) making LHRH agonists (Dondi, Limonta et al. 1994; Mongiat-

Artus and Teillac 2004) and antagonists (Jungwirth, Pinski et al. 1997)  highly effective for the 

treatment of the androgen-dependent prostatic carcinoma.  However, these studies did not 

explain LHRH analog’s reciprocal effectiveness in androgen- independent prostate cells.  It was 

later discovered that LHRH receptors were located directly on the prostate and could possibly 

offer therapeutic value (Qayum, Gullick et al. 1990; Halmos, Arencibia et al. 2000).    More 

recently, numerous reports have shown that LHRH analogs directly inhibit tumor cell 
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proliferation in androgen-dependent and androgen-independent prostate cancer cell lines (Dondi, 

Limonta et al. 1994; Jungwirth, Pinski et al. 1997; Wells, Souto et al. 2002). 

 The LHRH antagonist Cetrorelix, now used in clinical trials to treat patients with prostate 

cancer (Verschraegen, Westphalen et al. 2003), also inhibits the pituitary gonadal axis without 

the initial surge in LH leading to a dramatic fall in serum testosterone levels (Stricker 2001).  

This hormone has also inhibited the growth of the androgen-independent rat prostate cancer cell 

line Dunning R-3327 AT-1 and the OV-1063 human epithelial ovarian cancer cell line in vivo 

and in vitro, highlighting the direct effects of the LHRH antagonist on tumors (Jungwirth, Pinski 

et al. 1997; Jungwirth, Schally et al. 1997). 

 Evidence that the effects of the LHRH antagonist are through interactions with the EGFR 

was provided by the work of Dondi and colleagues  (Moretti, Marelli et al. 1996; Dondi, Moretti 

et al. 1998; Limonta, Pratesi et al. 1998).  In these studies, they demonstrated that EGF 

stimulation of androgen-dependent prostatic cell line LNCaP causes cell proliferation; however, 

simultaneous treatment with the LHRH antagonist Cetrorelix counteracts this effect (Moretti, 

Marelli et al. 1996).  Moreover it was later discovered that a LHRH agonist mediating 

downregulation of EGFR was much less effective than the LHRH antagonist Cetrorelix 

(Jungwirth, Pinski et al. 1997; Jungwirth, Schally et al. 1997).  Since these data demonstrate that 

the LHRH antagonist, Cetrorelix, has more significant inhibition of EGFR levels, this author 

believes a cascade of events resulting from this may in turn decrease phosphorylation of 

catenins, thus positively affected cell adhesion.  The eventual outcome of such a cascade could 

lead to the decreased detachment of cell adhesion molecule E-cadherin, which may ultimately 

result in inhibition of prostate tumor progression. 
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1.6.1. Mechanisms of LHRH Signaling 

The rationale for our proposed mechanism of LHRH signaling stemmed from signaling carried 

out in the pituitary gland or with cultured pituitary cells (Mobbs, Kaplitt et al. 1991).  In these 

studies, binding of LHRH to its receptor induces very rapid hydrolysis of phosphatidylinositol 4, 

5-biphosphate (PIP2) by phospholipase C (PLC); thus yielding the two messengers, inositol 

triphosphate (IP3) and diacylglycerol (DAG) that commence two distinct paths (Berridge 1985; 

Mobbs, Kaplitt et al. 1991).  IP3 causes an increase in intracellular Ca2+ (Blobe, Stribling et al. 

1996); DAG activates protein kinase C (PKC) (al-Mazidi, Kleine et al. 1998).  PKC then 

phosphorylates select enzymes that, along with the elevated intracellular Ca2+, are responsible 

for the final biological effects of the hormone (Berridge 1985).  Although the exact mechanism 

by which LHRH directly affects prostate cancer cell proliferation is controversial, it is likely that 

LHRH activates identical pathways in prostate cells as these enzymes are found in all tissues. 

Thus, from our experimental evidence, we have generated a model whereby Cetrorelix will 

activate LHRH receptors which result in disruption of known EGFR-mediated cell proliferation 

through activation of PKC.  PKC activate results in negative transmodulation the EGFR, 

subsequently resulting in decreased kinase activity, inducing increased stability catenin 

expression.  This results in re-expression of E-cadherin promoting cell-cell adhesiveness (Figure 

2). 
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Figure 2.  Proposed mechanism of action of the EGFR and cell adhesion molecules in prostate 
cell 
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1.7. SUMMARY 

In summary, cancer cell metastasis is a result of a multistep mechanism which is not completely 

understood at the cellular level.  The importance of growth factors and their interactions with 

cell-cell adhesion molecules has been shown to be critical to the maintenance of normal and 

pathogenic epithelial function.  A variety of adhesion molecules and growth factor receptors 

communicate via signal transduction pathways to either maintain epithelial homeostasis or 

induce its pathological transition (Jawhari, Farthing et al. 1999; Roura, Miravet et al. 1999; Andl, 

Mizushima et al. 2003).  Thus use of the LHRH antagonist, Cetrorelix which is currently under 

evaluation for clinical treatment of prostate cancer, should provide insight into possible 

mechanism of pathopysiological events leading to increase aggressiveness of prostate cancer 

cells.
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2.1. ABSTRACT 

 
Cetrorelix, a luteinizing hormone releasing hormone (LHRH) analog, has been shown to limit 

growth of the human androgen-independent prostate cell line DU-145, though other inhibitory 

actions may also be effected. Both growth and invasion of DU-145 cells are linked to autocrine 

epidermal growth factor receptor (EGFR) signaling. Invasiveness requires not only cells to 

migrate to conduits, but also reduced adhesiveness between tumor cells to enable separation from 

the tumor mass. Thus, we investigated whether Cetrorelix alters the DU-145 cell-cell adhesion 

and if this occurs via altered EGFR signaling. Pharmacologic levels of Cetrorelix limited the 

invasiveness of a highly invasive DU-145 subline overexpressing full-length EGFR (DU-145 

WT). Extended exposure of the cells to Cetrorelix resulted in increased levels of the cell-cell 

adhesion complex molecules E-cadherin, α- and β-catenin, and p120. Puromycin blocked the 

increases in E-cadherin and β−catenin levels, suggesting that de novo protein synthesis is 

required. The Cetrorelix effect appears to occur via transmodulation of EGFR by a protein kinase 

C (PKC)-dependent mechanism, as there were no changes in DU-145 cells expressing EGFR 

engineered to negate the PKC trans-attenuation site (DU-145 A654); down-regulation of EGFR 

signaling produced a similar up-regulation in adhesion complex proteins further suggesting a role 

for autocrine signaling. Cetrorelix increased the cell-cell adhesiveness of DU-145 WT cells to an 

extent similar to that seen when autocrine EGFR signaling is blocked; as expected DU-145 A654 

cell-cell adhesion also was unaffected by Cetrorelix. The increased adhesiveness is expected as 

the adhesion complex molecules moved to the cells’ periphery. These data offer direct insight 

into the possible cross-talk pathways between the LHRH and EGFR receptor signaling. The 
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ability of Cetrorelix to downregulate EGFR signaling and subsequently reverse the anti-

adhesiveness found in metastatic prostate cancer highlights a novel potential target for 

therapeutic strategies. 
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2.2. INTRODUCTION 

Adhesion between normal epithelial cells is usually strong and stable limiting cell movement. In 

carcinomas, these tight cell associations must first be disrupted or prevented from forming before 

tumor cells are able to disseminate and metastasize.  Cell-cell association is often disorganized in 

tumors, and has been linked to tumor invasiveness and metastasis (Pignatelli and Vessey 1994; 

Shino, Watanabe et al. 1995; Richmond, Karayiannakis et al. 1997).  Acquisition of invasive 

potential by malignant cancer cells results from an accumulation of characteristics, including 

increased cell motility, secretion of proteolytic enzymes, and alterations of cell-substrate and 

cell-cell adhesion (Fidler 2003; Grunert, Jechlinger et al. 2003).  The molecular mechanisms 

responsible for this latter process, altered cell-cell adhesion in invasive cancer cells are poorly 

understood (Comoglio and Trusolino 2002). However, the net result is a reduction in 

cadherin/catenin complexes at the cells’ periphery (Morita, Uemura et al. 1999; Davies, Jiang et 

al. 2000). Thus, to better understand the mechanisms of tumor cell dissociation, the role of 

cadherins must be taken into account, as they are crucial in cell-cell adhesion (Takeichi 1993; 

Kim, Turner et al. 1999; Suyama, Shapiro et al. 2002). 

Cadherins comprise a family of transmembrane cell surface glycoproteins that mediate 

calcium (Ca++)-dependent, homotypic cell–cell interactions through their extracellular domains, 

and regulate a variety of biological processes during development, morphogenesis, and tumor 

metastasis (Gumbiner 1996; Yap, Stevenson et al. 1997; Conacci-Sorrell, Zhurinsky et al. 2002). 

Ca++-dependent cell-cell adhesion usually consists of rapid localization of surface E-cadherin 

molecules to the regions of contact resulting in homotypic binding that fosters the maintenance 
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of normal cellular structure. However, metastatic cancer cells are able to override or avoid 

contact inhibition signals employed by normal epithelial cells to control proliferation and cell 

movement. 

The linkage between E-cadherin and the cellular cytoskeleton is a complex interaction 

involving a number of structural and signaling cytoplasmic proteins such as α- and β-catenin and 

p120 (Van Aken, De Wever et al. 2001; Mason, Davies et al. 2002). Early studies identified E-

cadherin/catenin interactions as imperative for cell-cell adhesion (Chitaev and Troyanovsky 

1998). β-catenin binds with high affinity to the carboxyl-terminal region of the cadherin 

cytoplasmic tail while α-catenin serves as an anchor, by bridging to α-actinin, to link the 

complex to the actin cytoskeleton (Aberle, Butz et al. 1994; Hulsken, Birchmeier et al. 1994; 

Funayama, Fagotto et al. 1995; Jou, Layhe et al. 1995; Rimm, Sinard et al. 1995). These 

molecules not only play structural roles but also alter cell responses and phenotypes. β-Catenin is 

also found to immunoprecipate with the APC tumor suppressor protein (Su, Vogelstein et al. 

1993; Hulsken, Birchmeier et al. 1994; Shibata, Gotoh et al. 1994), and has been recently 

identified as an oncogene (Kim, Crooks et al. 2002; Minamoto, Ougolkov et al. 2002; Kielhorn, 

Provost et al. 2003; Schneider, Finnerty et al. 2003). It is also central to cell signaling, as upon 

dissociation from E-cadherin, it transits to the nucleus to alter transcriptional profiles (van de 

Wetering, Sancho et al. 2002). Reduction in β-catenin expression decreases the stability of the 

adhesion complex and likely results in impairment in E-cadherin function (Willert and Nusse 

1998; Lowy, Knight et al. 2002). Similarly, a reduction in E-cadherin often results in β-catenin 

degradation (Liu, Ikeguchi et al. 2002). Another protein associated with E-cadherin, p120 

(Thoreson, Anastasiadis et al. 2000), is phosphorylated on both tyrosine and serine residues in 

response to a variety of growth factors such as epidermal growth factor (EGF), platelet derived 
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growth factor (PDGF), and colony stimulating factor (CSF)-1, suggesting involvement in active 

signaling (Downing and Reynolds 1991; Shibamoto, Hayakawa et al. 1995). Thus, cell-cell 

adhesion serves not only a structural role but dictates cellular behavior. 

As carcinomas progress to the invasive and metastatic stages, select adhesive epithelial 

cells usually undergo a mesenchymal-like transition that enables their movement from the 

primary tumor mass (Comoglio and Boccaccio 2001; Conacci-Sorrell, Zhurinsky et al. 2002). 

During this process in breast, gastric, and pancreatic metastatic carcinomas, E-cadherin 

expression is frequently downregulated or even undetectable (Birchmeier and Behrens 1994; 

Lowy, Knight et al. 2002). This pattern of E-cadherin expression also persists in disseminated 

prostate carcinomas when compared to non-metastatic prostate cells (Umbas, Schalken et al. 

1992; Davies, Jiang et al. 2000). In addition, the loss of E-cadherin expression has been shown as 

a consequence of autocrine activation of epidermal growth factor receptor (EGFR) signaling 

(Jawhari, Farthing et al. 1999). This combination of autocrine EGFR signaling and loss of E-

cadherin expression leads to cell proliferation, dedifferentiation, and induction of cell motility 

(Hazan and Norton 1998). Such an association has been suggested in the progression of breast 

carcinoma cells to a more invasive phenotype, which correlates with downregulation of E-

cadherin and overexpression of EGFR (Sorscher, Green et al. 1995; Hazan and Norton 1998). On 

a molecular level, EGFR signaling leads to tyrosine phosphorylation of the catenin complex with 

subsequent breakdown of cell adhesion (Jawhari, Farthing et al. 1999; Mariner, Davis et al. 

2004). 

In this study, we examined whether the beneficial anti-cancer effects of Cetrorelix 

include effects in addition to the established anti-proliferative effects. LHRH receptors have 

increased expression in many cancers compared to normal cells (Emons, Muller et al. 1998; 
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Schally, Comaru-Schally et al. 2001; Straub, Muller et al. 2001), with increased expression in 

begin prostate hyperplasia (BPH) as well (Straub, Muller et al. 2001).  The presence of these 

receptors enables LHRH analogs to directly affect prostate tumor cells (Qayum, Gullick et al. 

1990; Halmos, Arencibia et al. 2000) in addition to the indirect central androgen suppression. In 

addition, it has been shown that LHRH agonists directly inhibit cell proliferation of DU-145 and 

LNCaP prostate cancer cell lines (Dondi, Limonta et al. 1994; Dondi, Moretti et al. 1998; 

Limonta, Montagnani Marelli et al. 2001). In line with these observations, the LHRH analog 

Cetrorelix has been shown to have direct antiproliferative actions on DU-145 cells (Jungwirth, 

Pinski et al. 1997). As a consequence of this exposure, LHRH analogs have caused decreased 

levels of EGFR expression (Moretti, Marelli et al. 1996; El-Bahrawy and Pignatelli 1998; 

Lamharzi, Halmos et al. 1998). Previously we have shown DU-145 WT, a subline of the human 

prostate carcinoma cell line DU-145, presents autocrine EGFR signaling that is critical to both 

cell proliferation and invasion (Xie, Turner et al. 1995; Turner, Chen et al. 1996). Recently we 

demonstrated under both in vivo and in vitro conditions that a LHRH agonist inhibited enhanced 

invasiveness of EGFR-dependent proliferation in DU-145 WT through interference with EGFR 

signaling (Wells, Souto et al. 2002). Therefore, these data taken together lead us to hypothesize 

that the LHRH analog, Cetrorelix, would abrogate EGFR signaling. This abrogation would in 

turn decrease phosphorylation of the associated catenins; thus leading to upregulation of the cell 

adhesion molecule E-cadherin, which may ultimately result in inhibition of prostatic tumor 

progression. 
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2.3. MATERIAL AND METHODS 

LHRH analog Cetrorelix ([Ac-D-Nal (2)1, D-Phe (4Cl)2, D-Pal (3)3, D-Cit6, D-Ala10] LH-RH) 

was obtained from ASTA Medica (Frankfurt/Main, Germany) and dissolved in serum-free  

DMEM media. The primary antibodies used were mouse monoclonal antibodies to E-cadherin, 

α- and β−catenin, and p120 (Transduction Laboratories, California), phosphorylated-MARCKS 

(Cell Signaling, Massachusetts), phosphorylated-EGFR (Cell Signaling, Massachusetts) and 

EGFR (Zymed Laboratories, California). FITC conjugated secondary antibodies were obtained 

from (BD Biosciences). Secondary antibodies for the Immunofluorescence were obtained from 

(Molecular Probes, Oregon). Inhibitors included the EGFR specific tyrosine kinase inhibitor 

PD153035 (CalBiochem, California), monoclonal antibody (528) EGFR, (Oncogene, 

Massachusetts), EGFR siRNA (Upstate, Virginia) and the transcriptional and translational 

inhibitor puromycin (Sigma, Missouri). Other reagents were obtained from Sigma. 

2.3.1. DU-145 Cell lines 

The cell line DU-145 was originally derived from a brain metastasis of a human prostate 

adenocarcinoma (Stone, Mickey et al. 1978); it retains the androgen independence of the original 

tumor and does not express a functional  androgen receptor (Dondi, Moretti et al. 1998). This 

cell line possesses both LHRH and EGF receptors and produces EGFR ligands, TGF-α and EGF 

(Xie, Turner et al. 1995; Jungwirth, Pinski et al. 1997). We have expressed exogenously-encoded 

EGFR in DU-145 cells (Xie, Turner et al. 1995). Utilizing established protocols, DU-145 cells 

were transfected by retroviral-containing EGFR constructs (Wells, Welsh et al. 1990). The Wild 

Type (WT) EGFR construct is a full-length cDNA derived from a placental cDNA library. Cells 
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expressing WT EGFR at levels which escape down-regulation, demonstrate enhanced 

invasiveness in vitro (Xie, Turner et al. 1995) and in vivo (Turner, Chen et al. 1996). 

The DU-145 WT subline express EGFR that are phosphorylated and negatively 

modulated by PKC; thus, we have generated an additional DU-145 subline which is not 

negatively modulated by PKC (Wells, Souto et al. 2002).  This subline is identical to DU-145 

WT except it contains a full length EGFR in which the target site for PKC phosphorylation, 

amino acid threonine 654 (T654), has been replaced with alanine (DU-145 A654) by site 

directed mutagenesis; this construct is resistance to PKC phosphorylation and negative 

transmodulation (Welsh, Gill et al. 1991; Chen, Xie et al. 1996).  

The DU-145 WT and A654 cells were maintained in Dulbecco’s Modified Eagle’s 

Medium (DMEM) (4.5g/ml glucose) (Cellgro, Virginia) containing 10 % FBS and supplemented 

with L-glutamine (2 mM), penicillin/streptomycin (100 units/ml), nonessential amino acids (0.1 

mM), and sodium pyruvate (1 mM) (37˚C, 90% humidity, 5% CO2 and 95 % air). For stable 

selection of WT or A654 EGFR, cells were grown in G418 (1000µg/ml) (Gibco, New York), 

though all experiments were performed in the absence of G418. 

2.3.2. Invasion Assay 

Cell invasiveness in vitro was determined by the ability of cells to transmigrate a layer of 

extracellular matrix, Matrigel, in a Boyden Chamber assay.  Matrigel invasion chamber plates 

were obtained from Becton Dickinson Labware (Bedford, Massachusetts).   20,000 cells were 

plated in the Matrigel-containing chamber in serum-free media containing 1% BSA for the first 

24 hours; this was then replaced with Cetrorelix serum-free media for the remaining 24 hours.  

Enumeration of the cells that invaded through the matrix over a 48 hour-period was 
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accomplished by visually counting cells on the bottom of the filter.  All experiments were 

performed in triplicate chambers. 

2.3.3. Flow Cytometry 

3 x 105 cells were grown for 2 days or to 80% confluency in 60mm plates. LHRH analog 

Cetrorelix (10-5M) was added for time intervals of 6, 12, and 24 hours and compared to diluent 

alone. Samples were washed with PBS and fixed with paraformaldhyde, and permeabilized with 

1% Triton X 100.  Samples were blocked with 5% BSA and incubated with the appropriate FITC 

conjugated primary antibody or primary antibody (anti-EGFR, anti-E-cadherin, anti-α−catenin, 

anti-β−catenin, and anti-p120) at 37˚C for 1 hour. For unconjugated samples FITC-conjugated 

secondary antibody was added.  Fluorescence was measured by a flow cytometer (Coulter, 

Florida). 

2.3.4. Immunoblotting 

3 x 105 cells were grown for 2 days or to 80% confluency in six-well plates. LHRH analog 

Cetrorelix (10-5M) was incubated for 6, 12, and 24 hour time intervals and compared to diluent 

alone. Protein lysates were prepared from cultured cells in the following buffer: 50 mM Tris, pH 

7.5, 120 mM NaCl, 0.5% Nonidet p-40, 40 µM phenylmethylsulfonylfluoride (PMSF), 50 µg/ml 

leupeptin, and 50 µg/ml aprotinin (all from Sigma). Cells were allowed to lyse for 1 hour on ice; 

the lysed cell solution was centrifuged and the resulting supernatants extracted and quantitated 

using a Bradford assay. 30 µg of protein lysates were separated by 7.5% SDS PAGE, 

immunoblotted and analyzed using chemiluminescence (Amersham Biosciences, New Jersey). 

Primary antibodies used included anti-EGFR (Zymed Diagnostics, California), anti-E-cadherin, 

anti-β-catenin, and anti-p120 (Transduction Laboratories, Kentucky), and anti-α-catenin (Santa 
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Cruz Biotechnology, California). The staining was visualized by a secondary anti-mouse IgG or 

anti-rabbit antibody linked to horseradish peroxidase (Promega, Wisconsin). 

2.3.5. siRNA for EGFR 

2 x 105 cells were plated in six well plates equaling 60-70% confluency. 160 pmole of EGFR 

siRNA was diluted in 200 µl of Opti-MEM (Invitrogen, California).  4µl of Lipofectamine 2000 

(Invitrogen, California) was diluted in 200µl of Opti-MEM and incubated for 5minutes at room 

temperature.  The diluted siRNA and Lipofectamine 2000 were mixed and incubated for 20 

minutes at room temperature.  Complexes were added to each well and incubated for 24 hours.  

Media was changed and incubated for an additional 24 hours.  Cells were lysed according to 

established protocols. 

2.3.6. Immunofluorescence Microscopy 

3 x 105 cells were grown for 2 days or to 80% confluency on glass coverslips and then treated 

with or without Cetrorelix (10-5M) and compared to diluent alone. Cells were then fixed in 4% 

paraformaldehyde, permeabilized with 100 mM Tris-HCl pH 7.4, 150 mM NaCl, 10 mM EGTA, 

1% Triton X-100, 1 mM PMSF, and 50 µg/ml  aprotinin (all from Sigma), and subsequently 

blocked with 5% BSA for 1 hour at room temperature. Samples were incubated with indicated 

primary antibodies diluted in blocking buffer at 4°C overnight. FITC-conjugated secondary 

antibody was then added (BD Biosciences, California). Cells were then stained with propidium 

iodine for nuclear staining. Cells were analyzed with laser confocal microscopy using a Leica 

TCSNT 3 laser 4 PMT system (Olympus, NY).  
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2.3.7. Cell Aggregation Assay 

Calcium-dependent aggregation of the DU-145 sublines was measured as previously described 

by (Shibamoto, Hayakawa et al. 1995) with the following modifications. Cell monolayers grown 

to 80% confluence were incubated for 24 or 48 hours in 10 % FBS in DMEM with or without 10-

5 M Cetrorelix. Cell monolayers were detached from the culture dishes by incubating in cell 

stripper (Cell Gro, Virginia) for 5-10 minutes at 37˚C. Any remaining cells were detached using 

a rubber policeman, washed once with PBS and collected by centrifugation.  Cells were 

resuspended in 10% FBS in DMEM and single cell suspensions made by trituration with a 

Pasteur pipette.  Cell number was determined in the Coulter Counter Z1 (Coulter, Florida). Cells 

were plated in triplicate wells of a 24-well plate at 2 x 105 cells/well in 10% FBS in DMEM with 

1 mM CaCl2 and allowed to aggregate for 60 minutes on a gyratory shaker at 80 rpm at 37˚C. 

Assays were stopped at 0 and 60 minutes by fixing the cells in 0.5% paraformaldehyde. The 

extent of cell-cell binding was monitored by measuring the disappearance of single cells using 

the Coulter Counter Z1. The index of the degree of aggregation was measured utilizing the 

formula 100 x (N0/N60), where N0 is the total cell number per well and N60 is the total number of 

particles after 60 minutes of incubation as determined by counting in a Coulter Counter Z1. 

2.3.8. Statistical Analysis 

Statistics for all experiments were performed using the Sigma Plot statistical program (Jandel 

Scientific, California).  Independent Student’s T-test was utilized to determine a statistical 

difference between experimental and the controls for individual experiments. 
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2.4. RESULTS 

2.4.1. LHRH Analog Cetrorelix Decreases Invasion in DU-145 Sublines 

To confirm and extend the inhibitory effects of Cetrorelix on prostate carcinomas we utilized a 

genetically engineered human androgen-independent prostate carcinoma cell line that over 

expresses a full length EGFR, DU-145 WT.  This subline is highly invasive in response to 

upregulation of autocrine EGFR signaling (Xie, Turner et al. 1995; Turner, Chen et al. 1996) that 

exists in practically all prostate carcinomas (Kassis, Moellinger et al. 1999). In determining the 

utilized dose of Cetrorelix, we selected the pharmacologic dose of 10-5M based on literature 

reports for Cetrorelix (Tang, Yano et al. 2002) and a related LHRH analog goserelin (Dondi, 

Limonta et al. 1994; Jungwirth, Pinski et al. 1997; Dondi, Moretti et al. 1998; Wells, Souto et al. 

2002). In addition, growth studies from our laboratory utilizing Cetrorelix at 10-5M inhibited 

DU-145 WT proliferation without causing cell death (data not shown). 

To probe the extent of effectiveness of Cetrorelix against prostate cancer progression, we 

determined whether invasion was abrogated. Cetrorelix exposure reduced the invasiveness of the 

DU-145 WT sublines through a Matrigel barrier from 100% down to 23 ± 14 % (Figure 8; n = 4, 

P < 0.05). This level of inhibition is comparable to the decreases noted when either EGFR 

motility signaling via PLCγ or calpain signaling is abrogated (Xie, Turner et al. 1995; Turner, 

Chen et al. 1996; Kassis, Moellinger et al. 1999; Mamoune, Luo et al. 2003). 

2.4.2. Cetrorelix Increases Levels of Cell Adhesion Molecules  

To determine to the effectiveness of Cetrorelix treatment on altering protein expression levels, 

we measured EGFR, E-cadherin and its associated adhesion molecules (α- and β-catenins, and 
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p120) by flow cytometry.  After six hours of Cetrorelix exposure, EGFR levels were 

significantly reduced in DU-145 WT cells when compared to non-treated, control levels. This 

significant reduction in EGFR levels continued throughout the 24 hour experimental time-period 

(Figure 3A; P < 0.05). While Cetrorelix decreased EGFR surface expression, it induced an 

increase in E-cadherin levels (Figure 3B). Likewise, the E-cadherin associated molecules α-

catenin, β-catenin and p120 also demonstrated a continual increase in their expression, with all 

showing significant increases after 24 hours of Cetrorelix exposure (Figures 3C-E; p<0.05%).   

 
To confirm results obtained from the flow cytometry experiments, we immunoblotted for whole cell protein 

content of total EGFR and adhesion molecules E-cadherin and β-catenin.  Again a similar pattern was seen with a 

reduction in EGFR levels and an increase in E-cadherin and β-catenin levels (data not shown).                      

              To thoroughly examine if the increase in protein and expression levels of E-cadherin and 

β-catenin were associated with upregulation in transcription, we used the protein synthesis 

inhibitor puromycin. Puromycin exposure was able to completely block the enhanced ability of 

Cetrorelix to restore the E-cadherin and β-catenin expression levels (Figure 4). 

2.4.3. Reversal in Adhesion Molecule Profile is Related to EGFR Signaling 

 A role for Cetrorelix in the stimulation of PKC activity was determined by 

phosphorylation of the MARCKS substrate for classical and novel PKC isoforms or by probing 

for generalized increased phosphorylation of canonical PKC-target serines (Figure 5) (Fujise, 

Mizuno et al. 1994; Nishikawa, Toker et al. 1997).  This was further confirmed through the use 

of chelerythrine, a pan-PKC inhibitor (Wells, Souto et al. 2002), to prevent such phosphorylation 

(data not shown).  

 If Cetrorelix acts via PKC-mediated attenuation of EGFR signaling, then an EGFR 

variant lacking the PKC target site should be resistant. We utilized a DU-145 subline expressing  
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Figure 3.  Expression levels were measured as the mean of percent positive fluorescence at time zero ± 
SEM at various time intervals. A, DU-145 WT cells labeled with FITC conjugated anti-E-cadherin were 
analyzed by flow cytometry. B, DU-145 WT cells labeled with FITC conjugated anti-alpha catenin were 
analyzed by flow cytometry. C, DU-145 WT cells labeled with FITC conjugated anti-beta-catenin were 
analyzed by flow cytometry.  D, DU-145 WT cells labeled with FITC conjugated anti-p120 were 
analyzed by flow cytometry. E, DU-145 WT cells labeled with FITC conjugated anti-EGFR were 
analyzed by flow cytometry.  Data are the mean ± SEM of 3 experiments each performed in triplicate. * 
indicates P < 0.05 compared to untreated. 
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an EGFR construct in which the target PKC site, threonine 654, was replaced by an alanine (DU-

145 A654). Since Cetrorelix decreased EGFR surface levels (Figure 3A) and increased surface 

levels and protein levels of cell adhesion molecules (Figures 3B-E & 4), cells expressing this 

EGFR A654 construct should be at least partly resistant to Cetrorelix. Through the use of 

immunoblotting techniques, we examined the protein levels of the cell adhesion molecules after 

24 hours of Cetrorelix exposure.  Phosphorylated and total EGFR levels, as well as total E-

cadherin, and β-catenin levels were not extensively altered in the DU-145 A654 cells when 

compared to changes observed in DU-145 WT cells (Figure 6).  These findings indicate that 

direct abrogation of EGFR signaling by various means should yield a similar increase in E-

cadherin and β-catenin levels. Both the specific tyrosine kinase inhibitor, PD153035, and the 

anti-EGFR antibody (mb528), increased E-cadherin and β-catenin levels similarly to those 

observed in DU-145 WT after Cetrorelix treatment (Figure 7 A, B).  Finally, exposure of DU-

145 WT cells to EGFR siRNA resulted in the down-regulation of EGFR levels and an increase in 

E-cadherin levels when compared to cells exposed to the non-relevant siGFP (Figure 7 C).  

2.4.4. Cetrorelix Diminished Prostate Cancer Cell Invasiveness 

 The functional consequences of EGFR signaling cross attenuation by Cetrorelix extend to 

the invasive potential of the prostate carcinoma cells. While Cetrorelix significantly reduced the 

invasiveness of the DU-145 parental and WT cells, the invasiveness of DU-145 A654 was 

limited to a lesser extent (Figure 8: P < 0.05, comparing Matrigel invasion after Cetrorelix 

treatment of DU-145 A654 and WT cells). These findings suggest that the effects of Cetrorelix 

on both cell-cell adhesion molecules and cell invasiveness are mediated through its interference 

with the EGFR signaling cascade.   

2.4.5. Cetrorelix Exposure Increases Cell-Cell Aggregation 

1 



 

To further assess the functional consequences of the concurrent Cetrorelix-related 

decrease in EGFR levels and the increase in E-cadherin and its associated proteins observed in 

the DU-145 WT subline, a calcium-dependent aggregation assay was used after 48 hours of 

Cetrorelix exposure (Figure 9).  In these experiments, the aggregation index of DU-145 WT and 

A654 cells treated with Cetrorelix was compared to that of non-treated cells. We observed that 

DU-145 WT cells exposed to Cetrorelix formed significantly more cell-cell aggregates compared 

to either non-treated WT cells or treated and non-treated A654 cells, while Cetrorelix-induced 

DU-145 A654 aggregation was indistinguishable from non-treated cells (Figure 9; P < 0.05). We 

were also able to see similar results when we exposed DU-145 WT cells to PD153035 to block 

EGFR signaling (Figure 9B: p<0.05%). 

 Cell-cell aggregation requires E-cadherin to be present on the cell surface and its 

associate molecules at the inner face of the plasma membrane. In DU-145 WT cells, these 

adhesion complex molecules were distributed throughout the cytosol (Figure 10). Upon 

Cetrorelix treatment, not only did the levels increase, but the molecules were redistributed to the 

cells’ periphery; this was particularly evident at sites of cell-cell contacts, regardless of the 

degree of cell confluence. In aggregate, these data further confirmed with functional application 

that the increases observed in E-cadherin, α− and β-catenins, and p120 levels in Cetrorelix-

exposed DU-145 WT cells are the results of a reversal of the cells invasive phenotype to one that 

resembles a more normal phenotype and that Cetrorelix exerts at least some of its effects via 

abrogation of autocrine EGFR cell signaling. 
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Figure 4.   A, DU-145 WT cells were challenged with  ± puromycin (40 �M) in the presence of 
Cetrorelix (10-5M) for 24 hours.  Lysates were collected and separated by SDS-PAGE, transferred, and 
immunoblotted with antibody to E-cadherin. B, DU-145 WT cells were challenged as in A, except 
immunoblotted with antibody to β-catenin. Shown are representative blots of two experiments. 
 

 

2.5. DISCUSSION 

The LHRH analog Cetrorelix is undergoing evaluation for prostate cancer treatment. 

While initially considered for treatment due to its central androgen suppression mechanism, 

direct cancer cell efficacy has been shown. Cetrorelix has been demonstrated to limit 

proliferation of a variety of human cancer cell lines, including breast, ovarian, endometrial 

[Schally, 1999 #64;Yap, 1997 #98] and prostate cancer cell lines [Qayum, 1990 #60;Halmos, 

2000 #29]. Herein, we examined whether Cetrorelix altered an important phenotype of tumor 

cells, decreased cell-cell adhesion. We found that Cetrorelix exposure increased the levels of cell 

adhesion molecules and enhanced the resultant cell-cell adhesion. Furthermore, Cetrorelix 

appears to function, at least in part, by cross attenuation of signaling from the EGFR. 
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 Several studies have long established that the loss of the homotypic E-cadherin binding 

machinery correlates with an invasive phenotype in prostate carcinomas [Behrens, 1989 

#6;Bussemakers, 1992 #9;Vleminckx, 1991 #89]. Thus, it is logical that this cell-cell zipper  

would disappear concomitant with increased cellular invasion [Shibata, 1994 #69]. This 

disappearance of E-cadherin and/or any of the major adhesion components affiliated with it, is 

noted in most advanced carcinoma cells [Takeichi, 1977 #79;Takeda, 1999 #78;Hazan, 1998 

#31]. In fact, re-expression of E-cadherin has been shown to reduce the tumorigenicity of some 

carcinoma cell lines [Lowy, 2002 #47;Jawhari, 1999 #33].  Interestingly, Cetrorelix exposure 

increases the levels of all of the major adhesion molecules probed; this could be secondary to 

either increased transcription or decreased degradation. This should subsequently lead to the 

reforming of the zipper. This was corroborated in our invasion (Figure 8) and aggregation studies  

 

 

 

 

 

 

 

 

 

 

Figure 5.   Top immunoblot, DU-145 WT cells were exposed to Cetrorelix (10-5M) from 30 min to 4 
hours.  Lysates were collected and separated by SDS-PAGE, transferred, and immunoblotted with 
antibody recognizing phosphorylated MARCKS. Bottom immunoblot, DU-145 WT cells were challenged 
as in A, except immunoblotted with antibody recognizing phosphorylated serine in the context of 
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canonical PKC target sites.  Increases observed in figures A and B are comparable to PMA positive 
control. Shown are representative blots of three experiments.
 
 
 
 (Figure 9A,B) where, after extended Cetrorelix exposure, the highly invasive WT cell line 

became less invasive and aggregated to a greater extent than non-treated cells.    

The ability to exploit the findings that Cetrorelix-treatment increases both cell-cell 

adhesion and the levels of the key molecules involved in the adhesion process is vastly improved 

by defining the underlying basis for this occurrence. Other LHRH analogs have been shown to 

limit prostate carcinoma cell growth secondary to down-regulation of EGFR (Moretti, Marelli et 

al. 1996; Jungwirth, Pinski et al. 1997) or through interference with signaling pathways initiated 

by the EGFR (Wells, Souto et al. 2002). This occurred via PKC-mediated cross attenuation 

(Wells, Souto et al. 2002) secondary to phosphorylation on threonine 654 of EGFR (Lin, Chen et 

al. 1986; Welsh, Gill et al. 1991). In this study, we show direct activation of PKC substrates 

MARCKS by LHRH receptors in a time-dependent manner (Figure 5). These findings led us to 

believe that DU-145 cells engineered to express the PKC-resistant A654 EGFR should be 

impervious to Cetrorelix treatment. This was borne out by our findings that EGFR levels 

remained high and cell adhesion molecule levels low in these cells in the face of Cetrorelix 

exposure (Figure 6). The importance of EGFR signaling was further demonstrated in a time 

dependent manner from the exposure of the DU-145 WT subline to an EGFR specific tyrosine 

kinase inhibitor, PD153035 and a monoclonal antibody against EGFR (mb528) (Figure 7 A,B). 

Cetrorelix and PD153035 both increased cell-cell adhesion in DU-145 WT, but had little effect 

on DU-A654 cells (Figure 6). The results of all of our findings taken together indicates that the 

ability of the LHRH analog, Cetrorelix to alter the adhesive profile of these cells is at least partly 

mediated through altered EGFR signaling. 
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           That Cetrorelix restores cell-cell adhesion secondary to disrupting EGFR signaling would 

be supported if EGFR signaling could be shown to down-regulate cell-cell adhesion. This was 

shown to occur at least in the DU-145 WT cells by their increased aggregation upon disruption 

of autocrine EGFR signaling (Figure 9). EGFR signaling, upregulated in an autocrine manner in 

prostate carcinomas (Kassis, Moellinger et al. 1999), was shown to be responsible, at least in 

part, for the down-regulation of cadherin-mediated adhesion and levels of molecules noted in 

these tumors as it is in many other carcinomas (Sorscher, Green et al. 1995; Wilding, Vousden et 

al. 1996; Jawhari, Farthing et al. 1999; Andl, Mizushima et al. 2003). Another report indicated  

 

Figure 6.  DU-145 WT (left immunoblots) and A654 (right immunoblots) cells were expose 
Cetrorelix (10-5M) for up to 24 hours. Lysates were collected and separated by SDS-PAGE, 
transferred, and immunoblotted with antibodies to E-cadherin, �-catenin, and EGFR 
respectively. Similar data were seen with �-catenin and p120 (data not shown).  Shown are 
representative examples of 3 experiments.  
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that EGFR down-regulation resulted in decreasing E-cadherin and catenins in ovarian carcinoma 

cells (Alper, De Santis et al. 2000). Although the reason for this opposite effect in these cells was 

not obvious, it may be related to the distinct nature of some ovarian cell types. Presumably, such 

a reduction in the levels of adhesion molecules plays a major role in prostate cancer progression 

(Wells 2000). How EGFR signaling limits cadherin-mediated adhesions is still being deciphered 

(Ackland, Newgreen et al. 2003; Cozzolino, Stagni et al. 2003). However, this appears to involve 

both acute phosphorylation of PKC and the dissociation and subsequent degradation of key 

adhesion components. Regardless of the actual mechanism, the end result is witnessed in the 

long-term downregulation of these molecules.  

 In summary, we found Cetrorelix restored the adhesiveness of the human prostate 

carcinoma cells (and significantly inhibited cellular proliferation) at similarly high 

pharmacologic doses used by others (Jungwirth, Pinski et al. 1997; Tang, Yano et al. 2002). 

Additionally, the LHRH agonist Zoladex was shown to only inhibit in vitro cell proliferation of 

androgen-dependent (LNCaP) and androgen-independent (DU-145) cell lines at similarly high 

concentrations (Moretti, Marelli et al. 1996; Wells, Souto et al. 2002). 

Thus it seems that higher concentrations of LHRH analogs are needed to accomplish direct cell 

growth inhibition than to achieve androgen suppression. There are obvious speculative reasons 

for this, but regardless of the mechanism, these studies serve as proofs of concepts that this 

signaling axis can be exploited to limit prostate tumor progression. It remains to be determined 

whether therapeutic interventions will exploit this using higher affinity analogs or indirect 

augmentation of the described pathway that cross attenuates the autocrine EGFR signaling 

pathway in tumor promotion. 
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Figure 7.   A, DU-145 WT cells were exposed to PD153035 for 6, 12, and 24 hours. B. DU-145 
WT cells were exposed to monoclonal antibody (528) against EGFR for 6, 12, 24 hours. C, 
EGFR siRNA was exposed to cells for 24 hours and compared to GFP siRNA. Lysates were 
collected and separated by SDS-PAGE, transferred, and immunoblotted with antibodies 
recognizing EGFR and E-cadherin and β-catenin. Shown is one of two experiments.   
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Figure 8. Cetrorelix reduced the invasiveness of the DU-145 Parental (  ) and DU-145 WT ( ) 
cells while only partly affecting that of DU-145 A654 ( ) cells. Invasiveness was measured by 
(continued Figure 8)  the cells’ ability to transmigrate the extracellular matrix, Matrigel, in a 
Boyden Chamber assay. Data is the mean ± SEM (n=4). *, P < 0.05, Cetrorelix-treated (48 
hours) groups versus Controls (Diluent only), without drug; also P < 0.05 between the extent of 
decreased invasiveness of WT and A654 cells in the presence of Cetrorelix.   
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Figure 9.  A, Cetrorelix increased the cell-cell aggregation of the DU-145 WT ( ) cells after 48 
hours of exposure, while not effecting DU-145 A654 ( ) cells. B, EGFR inhibitor PD153035 
increased the cell-cell aggregation of the DU-145 WT after 48 hours of exposure. Results are 
expressed as the mean of the index of the degree of aggregation versus time zero ± SEM at one 
hour (n = 3, each in triplicate).  *, P < 0.05, Cetrorelix-treated (+) groups versus Controls (-), 
without drug.   
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Figure 10.  Cells were exposed to Cetrorelix for up to 48 hours prior to immunofluorescent localization 
of E-cadherin (top panels), �- and �–catenins (second and third panels, respectively), or p120 (bottom 
panels) and compared to 48 hours diluent alone (right panel). Shown are representative photomicrographs 
of two independent experiments; the target molecules are green and nuclei are red.  
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A variety of in vivo animal models are used to study metastasis.  The most common models 

involve tumors in animal hosts; these are often xenografts of human tumor cells or fragments, 
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animal allografts, or in situ tumors. In vivo assays provide for the integrated process or subparts 

thereof (such as for tail-vein seeding of lung fields) and have revealed many general phenomena 

involved in metastasis, such as the roles of endothelial cells and resident macrophages in host 

tissue invasion and for evaluation of potential inhibitors (Mook, Van Marle et al. 2003; Liang, 

Wu et al. 2004; Timmers, Vekemans et al. 2004; Wyckoff, Wang et al. 2004). The advent of new 

imaging methods to follow behavior of individual cells and metastases in vivo in real time offers 

even greater possibilities.  Still, in vivo models do not completely fulfill all the desired features 

for replicating human metastasis. First, in xenografts, many key cytokine and matrix signals do 

not cross species barriers, and most rodent tumors are of limited generalizability to human 

tumors (Rangarajan, Hong et al. 2004).  Thus, some phenomena representative of human 

metastasis may be easily found and studied in animal models, while others may be missed.  In 

vivo assays, especially those that involve imaging at the individual cell level, are cumbersome, 

often inefficient for metastases, and time-consuming limiting the number of parameters that can 

be studied. Still, we have learned much from these models as a result of great effort on the part 

of the individual investigators. 

Intravital and whole body imaging are increasingly being used to study establishment and 

early growth of metastases in situ in animals. Intravital imaging relies on confocal or multi-

photon imaging to follow the behavior of individual fluorescently-labeled cells within a 

particular target organ, allowing dissection of cell-cell interactions involved in penetration of the 

target tissue and providing a dynamic picture of tumor cell morphology as it moves between the 

vascular space and the tissue. The depth of focus is less than 0.5 mm and thus to gain images a 

portion of a target organ is exposed and placed on the microscopy viewing platform. This 

approach has been especially useful for characterizing primary-tumor, properties, growth rates 
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and mechanisms of metastasis to target organs (Condeelis and Segall 2003). With fluorescence 

markers, direct imaging of intravasation at the single-cell level within the primary tumor has 

been observed and related mechanistically to metastatic potential. For example, this approach has 

revealed that tumor cell arrest in the vasculature is distinct from the hematopoietic rolling 

mechanism (Chambers, MacDonald et al. 1995). Segall and Condeelis and colleagues 

(Condeelis, Wyckoff et al. 2001; Condeelis and Segall 2003) have imaged cells with confocal 

microscopy after establishment of a mass  in the tissue and demonstrated that tumor cell 

lamellipodia are oriented towards vasculature and have increased activity and motility.  They 

have also further used intravital imaging to reveal cross talk between macrophages and tumor 

cells in tissue invasion (Wyckoff, Wang et al. 2004). Multiphoton laser scanning microscope 

allows for deeper penetration of tissue than does confocal imaging, and has been used to follow 

vascular and lymphatic vessel size and tortuosity in a quantitative during growth of a tumors 

arising in a dorsal skin flap from single cells injected into the animal (Jain, Munn et al. 2002). 

Whole body imaging is also emerging as a powerful tool in determining metastatic 

behavior of cancer cells and is becoming more widely used as the instrumentation becomes more 

available and the probes and host systems become more varied and well-characterized  (Hoffman 

2004; Iyer, Salazar et al. 2004; Gross and Piwnica-Worms 2005; Michalet, Pinaud et al. 2005).  

Typically the cancer cells are manipulated to express a reporter gene that allows tracking 

position, and in some cases functional behavior, following metastasis from the primary tumor. 

Reporter genes include GFP, RFP and other variants detected by fluorescence imaging; 

luciferase genes from firefly and other organisms detected by luminescence of the products of 

the oxidative cleavage of their substrates; endogenous transferrin receptor, detected by magnetic 

resonance imaging of iron accumulation; and a variety of metabolic genes that allow intracellular 
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trapping of radiolabelled substrates that can be detected with high resolution by positron 

emission spectroscopy (Gross and Piwnica-Worms 2005). Reporter genes can also provide a 

real-time window into the effectiveness of treatment modalities, including gene therapy 

approaches (Yaghoubi, Barrio et al. 2004). Whole body imaging can also provide insights into 

the role of host stromal and immune tissues, either by introduction of labeled cells that home to 

tumor (Kim, Dubey et al. 2004), tissue level imaging of nonluminous angiogenic blood vessels 

that appear as sharply defined dark networks (Hoffman 1999; Hoffman 2002) or using animals 

engineered to express a contrasting fluorescent label in stromal cells, (Yamamoto, Jiang et al. 

2004).   

Our focus here is the advent of ex vivo metastasis assays that seek to recapitulate features 

of the in vivo environment.  Such assays allow often provided enhanced access to molecular-

level information, are more accessible (particularly in a context of drug discovery and 

development), and offer the potential to provide a window into how human tumor cells behave in 

the context of underlying human tissue.  We highlight recent advances in complex 3D in vitro 

models involving heterotypic cell cultures with an emphasis on tissue engineering approaches.  

 

 

3.1. Static Culture Invasion and Growth Assays 

The most accessible approaches to modeling metastasis employ static culture assays as a means 

to dissect molecular events in a reasonably controlled way.  An example of an invasion assay is 

the invasion chamber, which in its simplest form is a thin (~0.1 mm) matrix barrier (typically 

collagen or Matrigel) on a large pore-containing support in a modified Boyden chamber, with the 

tumor cells placed on top of this barrier. After a period of time, and in response to factors in the 
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originating top or targeting bottom compartment, the number of tumor cells that transmigrate this 

barrier is determined.  These assays can be used to assess response to soluble factors or to parse 

the roles of various cell-matrix interactions; for example, Mercurio and co-workers used 

fluorescent beads embedded in Matrigel to assess the tractile forces exerted by cancer cells on 

the extracellular matrix, thus implicating basement remodeling during tumor invasion 

(Rabinovitz, Gipson et al. 2001). Although, a predominance of in vitro metastasis assays have 

concentrated on metastatic cancer cells invading the basement membrane in situ, a similar design 

has been successful in identifying molecular cues during extravasation. Extravasation is 

evaluated by forming an endothelial cell monolayer, typically with intact endothelial cells; tight 

junctions are verified by electrical resistance or dye exclusion.  Both assays have been useful in 

defining cells that have invasive potential and parsing key regulatory switches and cell 

behaviors.  

 Obviously, each in vitro assay is limited by simplification.  The matrices presented are 

not truly representative of target organs having different components and growth factors.  The 

endothelial cell barriers are not necessarily organ-specific.  Other cellular elements, chiefly 

stromal cells consisting of underlying epithelial cells, are lacking.  Lastly, only invasiveness is 

evaluated since there is no underlying parenchyma for assessment of metastatic growth. 

Beyond initial tumor cell invasion events, subsequent events in the early stages of 

metastatic growth are also being examined in 3D monocultures and cocultures of normal cells 

with tumor cells. One of the most universally accepted forms of 3D model systems for cancer 

research are the monotypic 3D cell culture assays, which are possible to reproduce in almost any 

laboratory.  Spheroidal aggregates of cells have been used for decades to create 3-D spheroids of 

tumor cells, using the spheroids as models of the primary tumors and also to model the process 
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of metastasis by shedding of tumor cells. (Deakin 1975; Durand and Olive 1976; Mueller-Klieser 

and Sutherland 1982; Franko and Koch 1983; Santini and Rainaldi 1999).  Spheroidal aggregates 

of tumor cells in suspension are an enduring model, and whereas early methods typically resulted 

in a broad range of spheroid sizes, new methods of creating near monodisperse-sized spheroids 

in a reasonably high throughput fashion have recently been described (Kelm, Timmins et al. 

2003), and these and other methods are being adapted to early stage screening of anticancer drug 

efficacy (Kunz-Schughart, Freyer et al. 2004). 

 While monocultures of spheroids in suspension provide a more realistic phenotype than 

monolayer culture, the interplay between tumor cells and matrix is also a strong determinant of 

tumor phenotype and thus culture systems that provide an in vivo-like matrix milieu are 

becoming favored for dissection of basic disease processes (Muthuswamy, Li et al. 2001; Jacks 

and Weinberg 2002) A central theme of these assays is the use of ECM to create a tissue relevant 

environment. Matrigel is typically used for assays of  epithelial behavior as includes many 

components of basement membrane. A number of cell models have been coupled with 

appropriate 3D matrices and show promising results in recapitulating tissue functions in 3D 

(Schmeichel and Bissell 2003). Studies have been reported for liver, salivary gland, vasculature, 

bone, lung, skin, intestine, kidney, and mammary and thyroid glands, but arguably  the most well 

characterized models have been with the mammary gland. Both mouse and human mammary 

cells embedded in or cultured on Matrigel adopt a spherical, polarized structure that resembles 

the normal mammary alveolus (or acinus) that is capable of mammary-gland-specific function 

(e.g., producing milk in response to lactogenic hormones) (Stoker, Streuli et al. 1990; Petersen, 

Ronnov-Jessen et al. 1992; Howlett, Bailey et al. 1995; Weaver, Petersen et al. 1997; Fata, Werb 

et al. 2004).  Pathophysiological behaviors that are similar to those observed in vivo are also 
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captured in this in vitro system, for example loss of polarization and aberrant proliferation in the 

center of acini when signaling by epidermal growth factor receptor (EGFR) family members is 

perturbed through overexpression or mutations (Muthuswamy, Gilman et al. 1999; 

Muthuswamy, Li et al. 2001).  The mechanical environment – rigidity of the matrix – can also be 

systematically controlled using synthetic gels to which matrix proteins are cross-linked, and 

changes in cell signaling and down-stream behaviors resulting from matrix compliance changes 

are now being correlated with in vivo changes in tumor mechanical properties (Val Weaver, 

personal communication).   A powerful aspect of this assay is the potential to adapt it to 

moderate or high-throughput screens for metastasis (Martin, Wendt et al. 2004).    

Tumor-stromal interactions are emerging as a critical factor in growth of metastatic 

tumors (Bhowmick, Chytil et al. 2004; Bhowmick and Moses 2005).  At a basic histological 

level, stroma appears as a matrix-rich tissue populated by fibroblasts and permeated by a blood 

vessel network.  Many approaches have been described in the literature for creating 3D cultures 

of either fibroblasts or endothelial cells and using these cultures to examine the interactions with 

cancer cells. To model tumors, the stromal cells are typically mixed in a gel or cultured in a 3D 

scaffold, and the tumor cell might be added directly on top of the gel containing fibroblasts or 

endothelial cells, mixed in another gel layer on top, or various other configurations (Donovan, 

Brown et al. 2001; Feraud, Cao et al. 2001; Masso-Welch, Zangani et al. 2002; Parmar, 

Mahadeva et al. 2002; Velazquez, Snyder et al. 2002). 3D in vitro co-cultures have been 

particularly useful in revealing the profound effects of tumor-derived versus normal stroma in 

contributing to malignant behavior of epithelial tumors (Atula, Grenman et al. 1997; Kunz-

Schughart, Freyer et al. 2004; Bhowmick and Moses 2005), and in identifying profiles of 

18 



 

molecules secreted by tissue-specific stroma that may foster tissue-specific growth of certain 

kinds of carcinomas (Nakashiro, Okamoto et al. 2000; Martin, Ridgeway et al. 2004).  

 

 

 

3.2. 3D Organiods Culture Under Flow Conditions 

Most tissues comprise a hierarchical arrangement of cells permeated by capillary blood vessels.  

Tissue homeostasis is maintained in part by a symphony of communication between the different 

cell types in tissue; each cell receives signals from neighbors via direct cell-cell interactions, 

cell-matrix interactions, and via soluble signaling molecules (cytokines and growth factors).  In 

addition, mechanical forces -- such as shear stress on endothelium from flowing blood -- are 

converted to chemical signals that are necessary for normal tissue function. As discussed above, 

both 3D culture and heterotypic cell cultures are useful tools in dissecting dynamic processes in 

tumor progression.  Such models fulfill an important connection between the well-defined 

cultures of single cell types and the complexity of the whole animal. They also provide 

experimental models of human tissue responses, where in vivo models are usually unavailable. A 

distinguishing feature of the in vivo cell environment is that cells are typically within a few tens 

or hundreds of microns from a nutrient capillary perfused with blood.   

Thus various bioreactor configurations have been developed to provide enhancement of 

mass transfer, shear stress, or both, by providing fluid flow on or through cells.  Bioreactors also 

offer the possibility of monitored and tightly controlled environmental and operating conditions 

(e.g. pH, temperature, pressure, nutrient supply and waste removal) (Martin, Wendt et al. 2004).  
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They also have been proposed as the excellent models to more fully recreate the complex in vivo 

environment ex vivo.   

 Tissue engineered model systems provide and promote a fundamental understanding of 

structure–function relationships in normal and pathological conditions, with possible commercial 

applications in molecular therapeutics (e.g. drug screening) (Powers, Domansky et al. 2002).  

Recent advances have been made in the development of engineered tissue for repair of cartilage, 

bone, liver, kidney, skeletal muscle, blood vessels, the nervous system, and urological disorders 

(Atala 2001; MacNeill, Pomerantseva et al. 2002; Powers, Domansky et al. 2002; Vunjak-

Novakovic 2003; Sharma, Lansdell et al. 2004). These systems, repair being their primary 

function, also offer relevant target organs study cancer metastasis and invasion.   

Among the simplest bioreactors are fluid-filled spinner flasks, which have been used for 

decades to create 3-D spheroids of tumor cells and create environments which provide controlled 

mass transfer to the outside of the spheroid (Deakin 1975; Durand and Olive 1976; Mueller-

Klieser and Sutherland 1982; Franko and Koch 1983; Margolis, Hatfill et al. 1999; Santini and 

Rainaldi 1999) (Schmeichel and Bissell 2003).  Spheroid formation of cancer cells are cell type 

specific and time-dependent, since smaller spheroids may be relatively homogenous when small 

or may have a necrotic center due to nutrient and oxygen deprivation when larger (Kunz-

Schughart 1999; Santini and Rainaldi 1999)   

The rotating wall vessel bioreactor (RWV) is an alternative spinner flask design for three-

dimensional culture of cells, and was developed to simulate microgravity conditions. In this 

system, a cylindrical vessel filled with cells and culture medium is rotated about an axis parallel 

to the ground, thus balancing gravity with fluid drag forces and creating a low-shear stress, high 

mass transfer environment (Schwarz, Goodwin et al. 1992). The environment in the RWV has 
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been shown to foster tissue-like structures of mullerian tumor cells of the ovary and prostate 

(Margolis, Hatfill et al. 1999) and melanoma cancer cells (Goodwin, Prewett et al. 1997) as 

assessed by histology. Inclusion of human umbilical vein endothelial cells with cervical tumor 

cell cultures resulted in tubular structures penetrating the tumor cell masses, forming aggregates 

larger in size than the monocultures and typically with greater cell mass and number (Chopra, 

Dinh et al. 1997) cervical tumor cells and human umbilical vein endothelial cells (HUVEC). Of 

particular interest was that these 3D cell cultures to show biochemical markers known to be 

involved with cellular function and cancer progression.  Cell aggregates formed in RWV 

bioreactors have also been used as model systems to test therapeutic options which include 

radiation resistance, phenotypic differentiation, and response to anti-cancer drugs.  Among the 

potential limitations of the RWV are the polydispersity of spheroid sizes and the barriers to in 

situ imaging of cell behavior. 

Microfluidic bioreactors offer the potential for more homogeneous, controlled formation 

of 3D structures and thus potentially better-controlled exposure of cells to agents that affect cell 

behavior in the context of a 3D environment.  A step in this direction is the recent report by 

Torisawa and co-workers, where 3D culture of MCF-7 breast cancer cells in a collagen gel was 

controlled in tiny chambers in a microfluidic device, and could be used in a multiplexed format 

to assess efficacy of anti-tumor compounds (Torisawa, Shiku et al. 2005).  Although it remains 

to be demonstrated that this approach will work well on a large scale, the success of  “lab on a 

chip” chemical assays suggests the barriers are not insurmountable. 
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3.3. Flow Perfusion Bioreactors 

 
Although a rich array of three dimensional co-culture models have been developed for 

investigations of behaviors ranging from tumor angiogenesis and embryonic differentiation to 

skin permeation of drugs, the available models lack one crucial feature of most tissues - a 

perfused microvasculature.  Inclusion of endothelial cells in the RWV or in static cultures 

provides some features of tissue structure, but the lack of flow through the vessels limits the 

ability of these systems to mimic tissue physiology. 

Thus an organotypic system would ideally include several features 1.)  an integrated 

epithelial/stromal/endothelial cell architecture representing the key target organ; 2.) long-term 

(weeks) stability to allow tumor cell survival and growth; 3.) controlled local perfusion of the 

organoid structures over length scales comparable to a capillary bed; 4.) direct visualization 

throughout the process to discern subprocesses such as extravasation versus growth; 5.) easy 

manipulation and intervention; and 6.) assay robustness in reproducibility and moderate or high 

throughput.   

As a step toward creating true physiological mimics of human and animal tissues that 

recapitulate the features of a capillary bed, we have developed a microfabricated bioreactor 

system that facilitates perfusion of 3D heterotypic co-cultures at the length scale of the capillary 

bed in an arrangement that also allows in situ analysis of cell behavior via microscopy (Powers, 

Domansky et al. 2002; Torisawa, Shiku et al. 2005).  This system circumvents rapid loss of liver 

specific functions that normally occurs when hepatocytes are maintained under standard culture 

conditions thus providing a reasonable model system for the testing of tumor-host interactions in 
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ex vivo environment. The liver is a major site of metastasis for many carcinomas, and its 

anatomically relevant for metastasis models due to a simplified architecture of hepatocytes 

covered with an endothelial lining, and can be recreated in vivo via selective cell adhesion and 

cell self-assembly (Powers and Griffith 1998; Poser, Dominguez et al. 2001; Powers, Domansky 

et al. 2002).   

Our cross-flow perfusion reactor is designed to address several needs for 3D liver tissue 

culture (Powers, Domansky et al. 2002).   The classical challenges in reactor design for three 

dimensional perfusion culture – ensuring a relatively homogeneous distribution of flow and mass 

transfer throughout the system to meet the metabolic demands of the cells – are augmented in the 

case of three dimensional cultures of primary cells by the need to provide a scaffold appropriate 

for tissue morphogenesis. Varying degrees of histotypic reorganization have been observed in 

several types of three dimensional liver cell cultures, particularly those incorporating perfusion 

through the tissue mass  (Gerlach, Schnoy et al. 1995; Bader, Knop et al. 1996; Griffith, Wu et 

al. 1997; Michalopoulos, Bowen et al. 1999; Kaihara, Kim et al. 2000).  Distinguishing features 

of our design include: an appropriate scaffold for tissue morphogenesis; uniform distribution of 

fluid flow and nutrients throughout the 3D culture; and an optical window to allow repeated in 

situ observation of cells via light or 2-photon microscopy during perfusion culture.  

A photo and schematic cross-section depicting the major design features of our current 

reactor (as used for liver culture) is shown in Figure 11. The heart is the cell scaffold, comprising 

a thin (~230 µm) silicon sheet permeated from top to bottom by a regular array of ~300 µm 

channels (created by deep reactive ion etching) and seated atop a microporous filter, which is in 

turn mechanically supported by a second scaffold. The morphogenesis of cells into tissue-like 

structures following seeding into the channels is guided in part by scaffold surface chemistry, 
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which controls the relative values of cell-cell and cell-substrate adhesion strength, and by the 

channel geometry and dimensions. The scaffold is maintained between the upper and lower 

chambers of a flow-through housing. Each chamber has a pair of ports to allow flow of culture 

medium across the surfaces of the chip. The arrangement of the ports allows for several modes of 

operation. Under our current mode of operation for liver tissue, the fluid in the upper chamber is 

initially maintained at a higher pressure than that in the lower chamber, thus creating a driving 

force for perfusion of culture medium through the tissue in the channels immediately after cells 

are introduced. Cells seeded into the channels are initially held in place by the filter, and after 

initial attachment and reorganization (~ 1 day), by adhesion to the channel walls. After 1-2 days 

in culture, fluid flow through the channel is reversed (i.e., to flow upward through the filter and 

then through the tissue mass), dislodging any dead or unattached cells. This reverse flow is 

controlled by a peristaltic pump throughout the remainder of the culture period, and in the case 

of liver, stable tissue structures are maintained for weeks, thus creating appropriate environment 

for cancer cells.  

Metastasis is a highly orchestrated series of events comprised of many “sub-processes” 

whereby cancer cells must attach, proliferate, and invade the parenchyma of specific target tissue 

(Figure 12a).  Using our cross-flow perfusion bioreactor we were able to recreate the progression 

of invasion and metastasis with the added advantage of real-time visualization by fluorescence 

microscopy over several weeks.  GFP expressing cancer cells were introduced into previously 

seeded, and established hepatic parenchymal spheroids. Initially, individual cancer cells occupy 

the hepatic wells, but overgrow the hepatic wells and the rest of the chamber by day 14 (Figure 

12b). During this rapid and visually apparent growth of cancer cells, invasion into hepatic 

24 



 

parenchyma also occurs, with very distinct heterotypic cell-cell interactions observed upon 

histology and electron microscopy (Yates, Wells et al. 2005; Yates, Papworth et al. Submitted).  
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Figure 11:  Photo of the silicon-chip scaffold (lower left) and polycarbonate microreactor housing that 
holds the scaffold and provides four ports for continuous flow of culture medium across the top of the 
scaffold and through the tissue mass held within the scaffold.  An optical window at the top allows in-situ 
observation of the tissues by two-photon microscopy. Right:  Schematic of scaffold and reactor housing 
shown in cross-section, indicating the connections to recirculation loop and observation window.  The 
main flow of culture medium is across the top of the chip in the upper chamber (pump 1).  Flow through 
the tissue mass in the chip is maintained at a constant rate by either pulling medium through or pumping 
medium in reverse flow through with the second pump. 
 

 

3.4. SUMMARY 

Unlike enclosed bioreactors, this bioreactor allows for repeated visualization and affords the 

opportunity to examine critical processes underlying the metastatic program over time, such as 

cell specific proliferation, death and tissue organization.  Interaction of metastases with the 

parenchymal cells of the target organ, as well as resident ECM and endothelial cells are required 

to fully recapture the microenvironment presented to and modified by the metastatic cancer.  As 
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more advanced tissue engineered models are generated to determine cellular responses of many 

organs, research should include alternative applications, as these systems could possibly represent 

the leading models for metastasis and invasion. 
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4.1. ABSTRACT 

Most methods available to study the behavior of metastatic tumors at the resolution of individual 

cell events are indirect or capture only brief periods. Therefore we developed a microscale 

perfusion culture system that provides a tissue-relevant environment to assess metastasis 

behavior, using the human prostate cancer cell line DU-145 in the liver capillary bed as a model 

system. Real-time behavior of the co-culture system was observed by 2-photon microscopy of 

RFP-labeled DU-145 cells against a GFP-labeled hepatic tissue bed over a 14 day period. 

Fluorescent intensity of co-cultures revealed ongoing cell proliferation of the DU-145 cells, 

which resulted in tumors visible to the naked eye by day 25. Histological analysis of the resulting 

tumors revealed intact cellular structures and no evident necrosis in the ~0.5 mm tumor mass, 

which was perfused at a local level during culture. The DU-145 cells failed to grow in the 

absence of the supporting hepatic tissue structure, suggesting a paracrine or stromal support 

function for the liver microtissue in tumor progression.  The overt tumor mass resulted in a 

decline in hepatocyte tissue structure.  TEM also revealed DU-145 cells invading the hepatocyte 

parenchyma by 14 days with very distinct cell-cell interaction.  Therefore, our 3D ex vivo 

organotypic liver tissue system presents a critical vehicle to examine tumor-host interactions 

during cancer metastasis/and or invasion.  It also circumvents current limitations in metastasis 

assays, and provides new approaches to the problem of tumor progression. 
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4.2. INTRODUCTION 

 Metastasis leads to the major part of mortality and morbidity in cancer patients. As novel 

therapies are being developed to target molecular steps that contribute to metastasis, the 

development of new analytical methods to study development of metastatic lesions at the cellular 

level are needed. Currently, few modes are available to evaluate this critical progression in the 

target organ. Newer three-dimensional, mixed tumor and stromal cell models have yielded 

invaluable information about carcinogenic transformation (Kenny and Bissell 2003; Seton-

Rogers and Brugge 2004), but these do not elucidate the events at the sites of metastasis. End-

point animal models of metastasis, which have been the most common assays thus far, have 

yielded important information for the size of metastases and the number of cells at the target 

organ, but have failed to provide information about the cellular processes that occur during the 

development of metastasis. This information has evaded study due to the difficulties in 

identification of single cancer cells or micrometastases in tissues and the ability to follow their 

evolution over time. To overcome this limitation, some investigators have developed real time in 

vivo systems that allow for short-term imaging and evaluation of the tumor cell behavior 

(Chambers, MacDonald et al. 1995; Condeelis, Wyckoff et al. 2001). These have lead to new 

appreciation for the roles played by non-tumor cells and the matrix (Wyckoff, Wang et al. 2004). 

Still, the window of examination is in hours at most and the systems are not easily manipulated 

preventing higher throughput investigations. 

 Herein, we report using a microscale bioreactor that fosters three dimensional liver tissue 

formation and culture under perfusion that mimics flow through the liver capillary bed and 
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allows for in situ observation of the interactions of human prostate cancer cells within the 

capillary bed-sized tissue units.  This system affords for the recreation of an in vivo environment 

for in vitro observation and provides for an optimal device for the study of physiological events 

(Powers, Domansky et al. 2002).  With the liver being a preferred ectopic site for metastasis of 

many cancers including prostate cancer (Paget 1989; Fidler 2003; Shah, Mehra et al. 2004), we 

propose that tumor growth and invasion at the metastatic target organ can be observed at the 

cellular level in real-time with the use of fluorescent markers for visualization. Further, tumors 

grown under perfusion conditions, where fluid flow through the tumor mass is sited within the 

tissue and controlled at the scale of tens of microns, have non-necrotic cores, unlike tumor cells 

grown in standard spheroid culture. We demonstrate our approach using rodent cells as the host 

tissue, however, the ultimate advantage of this system is the potential to create human perfused 

tissue structures for supporting human tumor growth allowing for an easily manipulatable 

procedure for visualizing in real-time invasion and growth of a target organ capillary bed during 

metastasis. 

4.3. Materials and Methods 

The cell line, DU-145, was originally derived from a brain metastasis of a human prostate 

adenocarcinoma (Stone, Mickey et al. 1978); it retains the androgen independence of the original 

tumor, does not express a functional  androgen receptor, and forms invasive and metastatic 

tumors in athymic mice (Turner, Chen et al. 1996; Dondi, Moretti et al. 1998). This cell line 

possesses EGF receptors and produces EGFR ligands, TGF-α and EGF (Xie, Turner et al. 1995; 

Jungwirth, Pinski et al. 1997). DU-145 cells were made to express the red fluorescence protein 

(RFP) by stably transfecting cells with dsRED vector from Clontech (Palo Alto). The vector 

expresses rapid expression of RFP and neomycin resistance gene. For selection, the cells were 
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sorted by flow cytometry and then maintained in the presence of 1000 mg/ml G418 until used for 

experimentation.  

4.3.1. Seeding and Maintenance of Liver Microtissue Bioreactor 

Hepatocytes were obtained from EGFP-transgenic and WT Sprague-Dawley (SD) rats, 

originally generated by Dr. Masaru Okabe (Genome Information Research Center, University of 

Osaka, Osaka, Japan) and were generously provided by Japan SLC, Inc. (Hamamatsu, Japan).  

The expression of EGFP was under the control of the cytomegalovirus enhancer and the chicken 

β-actin promoter derived from an  expression vector, pCAGGS (Ito, Suzuki et al. 2001).  

Animals were maintained in laminar flow cages in a specific pathogen-free animal facility at the 

University of Pittsburgh, fed a standard diet, and provided water ad libitum. All procedures in 

this experiment were performed according to the guidelines of the Council on Animal Care at the 

University of Pittsburgh and the National Research Council’s Guide for the Humane Care and 

Use of Laboratory Animals.  

 Hepatocytes were isolated from 150-g to 230-g male rats by a modification of Seglen’s 

two-step collagenase perfusion procedure as described previously (Block, Locker et al. 1996). 

The resulting cell suspension was centrifuged three consecutive times at 50 X g (2 min each). 

After the final centrifugation the pellet was resuspended in hepatocyte growth medium (HGM), 

based on the medium described (Block, Locker et al. 1996) with the exception of hepatocyte 

growth factor and several typographical errors in the original medium formulation.  The correct 

formulation for HGM is as follows: 0.03g/l L-Proline;  0.10g/l L-Ornithine;  0.305g/l 

Niacinamide; 2.25g/l D-(+)-Glucose; 2g/l D-(+)-Galactose; 2g/l Bovine Serum Albumin Fraction 

V; 0.0544 mg/l ZnCl2, 0.0750mg/l ZnSO47H2O, 0.020mg/l CuSO45H2O, 0.025mg/l MnSO4;10 
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mM Hepes; 0.1µM Dexamethasone; 5mg/l Insulin-Transferrin-Sodium Selenite; 20ng/ml 

Epidermal Growth Factor; penicillin/streptomycin (100 units/ml), 5mM L-Glutamine.  

 Cell viability before cell seeding was 90–95% as determined by trypan blue exclusion. 

The fraction of non-parenchymal cells that was typically observed in this suspension was 

approximately 5%. Spheroids were formed in suspension culture similar to the methods of  

Powers  and co workers (Powers, Domansky et al. 2002). Cells were suspended in HGM 

immediately after isolation at a concentration of 3 X 105 viable hepatocytes per milliliter. One 

hundred milliliters of this solution was then added to a 250-mL spinner flask (Bellco Glass, 

Vineland, NJ), which was stirred at 85 rpm for up to 72h. After the prescribed culture period, 

100- to 300-µm spheroids were selected from the suspension by filtration through 300- and 100-

µm nylon meshes (SEFAR America, Kansas City, MO). Spheroids of the desired size were 

resuspended in 25 mL of rinse medium and centrifuged at 40 X g for 3 min, and then 

resuspended in 30 mL of HGM. 

4.3.2. Three Dimensional Co-culture Assembly 

The heart of the reactor is a 230-mm-thick silicon scaffold containing an array of 100 

round-edge square channels; each of cross-sectional dimensions 300 X 300 mm (Powers, 

Domansky et al. 2002). The walls of the channels are cell adhesive whereas the top and bottom 

of the silicon scaffold are poorly adhesive for liver cells. A microporous filter and supporting 

scaffold beneath the cell scaffold provide for initial retention of cells in the channels under 

perfusion flow through the cell mass; cell retention at times greater than 1 day is governed by 

cell adhesion to the channel walls. Reactors were primed with rinse solution to passivate the 

reactor, connector, and tubing surfaces, and to remove bubbles from the flow paths. The rinse 

solution comprised phenol red-free Dulbecco’s modified Eagle’s medium (DMEM) with sodium 
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pyruvate (110 mg/mL) and glucose (1 g/L) (Life Technologies, Rockville, MD) supplemented 

with bovine serum albumin (2 g/L; Sigma, St. Louis, MO) and penicillin–streptomycin (100 

U/mL). Before seeding, reservoir bottles were aspirated and refilled with 25 mL of HGM. 

 For seeding, a syringe filled with 1 mL of cell suspension was placed at the inlet of the 

upper reactor chamber.  Cells or spheroids were manually injected into the upper chamber of the 

reactor at a flow rate of 1 mL/min and allowed to enter the scaffold channels through a 

combination of settling and the slight amount of pressure introduced in the upper chamber from 

the resistance in the waste syringe, which drove fluid into the lower chamber. After seeding, 

medium was pumped into the chamber at 0.5mL/min and collected in a waste container for 2 min 

to clear off the cells from the top surface of the chip. The upper recycle tubing was then 

reconnected to the reactor. After 1 h the reservoir bottle was replaced with a new reservoir bottle 

containing 25 mL of fresh HGM (removing any residual cells/debris). Following introduction of 

the cells, flow was maintained in a forward direction (down through the chip and filter) for 24 

hours, and then reversed to provide a constant flow rate of 40 ml/min through the cell mass 

throughout the culture period Reactor cell medium was changed every 4 days by replacing with 

25 mL of fresh HGM.  

 After five days of hepatic tissue morphogenesis, human prostate cancer cells ~150,000 

DU-145 endogenously expressing the RFP, were introduced in the microreactor by microsyringe 

using HGM media containing cells in the mode of forward flow and cross flow stopped. Forward 

flow resulted in variable attachment of a low number of DU-145 cells to hepatocytes. DU-145 

RFP cells were imaged at various time periods. The cross flow fluid was restored to the direction 

of hepatocytes after 24 hours. The shear stress in the channels under normal flow conditions is at 

the lower end of the physiological microvascular range (Powers, Domansky et al. 2002).  At the 
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first imaging after attachment, channels that contained only a few (<10) individual tumor cells 

were chosen for sequential imaging.  

4.3.3. In Situ Imaging of DU-145 – Hepatic Tissue Interactions 

Tissue structures were imaged using a two-photon microscope comprising a titanium-sapphire 

ultra fast tunable laser system (Coherent Mira Model 900-F), Olympus Fluoview confocal 

scanning electronics, an Olympus IX70 inverted system microscope, and custom-built input-

power attenuation and external photomultiplier detection systems. Single-plane image 

acquisition used two-photon excitation at 850 nm with Olympus water-immersion objective dry 

X20 LMPlan IR, 0.4NA. Emission filters (Chroma, Brattleboro, VT) comprised a Q535/50m 

filter (green emission), a 565dclp dichroic mirror, and a HQ610/75m filter (red emission). 

4.3.4. Two Dimensional Cell Proliferation Assay  

2000 Prostate cancer cells per cm2 were measured for fluorescent intensity by fluorescent 

microplate reader (Tecan) excitation 558 and emission 620.  The reported values for each well 

were measured and correlated to growth of cells.  Experiments were performed in triplicate, and 

repeated at least two times. 

4.3.5. Two Dimensional Co-cultures 

We attempted to create a co-culture environment to mimic our three dimensional culture 

system.  Intimate co-cultures consisting of 50, 000 cells per cm2 hepatocytes and 2,000 cells per 

cm2 prostate cancer cells were plated on 1% collagen and compared to non-collagen co-cultures. 

Transwell co-culture consisting of .4um pore inserts were utilized with prostate cancer cells in 

the insert and hepatocytes on the 2D surface and assayed for 6 days.  Cell viability was measured 

by fluorescence intensity using a Tecan according to above protocol. 
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4.3.6. TEM Protocol   

 Bioreactor scaffolds were fixed in 2.5% glutaraldehyde in PBS for 24 h, washed three 

times with PBS, and postfixes for 1 h with aqueous 1% osmium tetroxide. After three PBS 

washes, scaffolds were dehydrated through a graded ethanol series, and then further dehydrated 

in four 15-min changes of 100% ethanol. Scaffolds were subjected to two 10-min incubations in 

propylene oxide, and then preembedded with a 1:1 mix of propylene oxide:Polybed 812 epoxy 

resin (Polysciences, Warrington, PA) for 1 h. Scaffolds were then incubated in 100% Polybed 

overnight at 4°C. The following day, resin was changed four times before embedding chips in a 

thin layer of resin, just enough to fill the channels, and curing at 37°C overnight and then at 

65°C for an additional 2 days. Cells growing within the channels were removed from embedded 

chips by rapid, alternating treatments in liquid nitrogen and boiling water. This treatment 

shattered the scaffolding and allows for embedded cells and channels to be removed intact. 

Blocks of cells were reembedded in rubber molds and cross-sectioned perpendicular to channel 

flow. Thin sections (60 nm) were collected on copper grids and stained with 4% uranyl acetate in 

50% methanol for 7 min and with 1% lead citrate for 10 min. Cells were viewed with a JEOL 

(Tokyo, Japan) JEM 1210 transmission electron microscope (TEM) at 80 kV. 

 

 (a) 
       Day 2              Day 4             Day 6              Day 9               Day 11            Day 14   
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Figure 13. RFP-expressing DU-145 human prostate cancer cells were introduced to primary 
hepatocytes obtained from GFP transgenic rats. (a) 2-photon Images were taken of DU-145 
prostate cancer (red) in the presence of hepatic tissue (green). DU-145 growth was assessed over 
a 14 day period. (b) Bioreactors with only liver cells demonstrate hepatocyte structure and 
function stabilility over this time period. Shown are one of more than a dozen experiment. (c) 
Magnified view of days 2 and 4 to demonstrate presence of single cells as points of origin of 
subsequent tumor mass.  Shown are two representative channels from experiments repeated five 
times. 

 

 

4.4. RESULTS 

 
To determine whether human prostate cancer cells could grow in serum-free medium in the 

context of the three dimensional liver bioreactor, we introduced a single cell suspension of RFP-

expressing DU-145 carcinoma cells into a bioreactor containing stable liver microtissue units 
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formed 5 days previously (Powers, Domansky et al. 2002). These bioreactor cocultures were 

then imaged at the same sites with 2-photon microscopy at regular intervals from day 2 until day 

14 (Figure 13, upper row).  Initial attachment of RFP expressing DU145 is apparent by day 2.  

Three dimensional reconstruction of day 2 and day 4 images demonstrate that expanded growth 

is from single cell origin (Supplementary Figure 13 c). By day 6 there was apparent growth and 

invasion into the parenchyma of the hepatic tissue, which resulted in overgrowth of individual 

channels in the bioreactor by cancer tissue by day 14. As a control, bioreactors that had not been 

seeded with DU-145 cells were imaged through the 14 day period (Figure 13, lower row) and 

beyond to 30 days (data not shown); these bioreactors showed stable persistence of the liver 

microtissue units.  

 After 14 days of growth and invasion, the cocultures were stopped and assessed for tissue 

morphology and integrity of the tumor cell mass by transmission electron microscopy (TEM) 

and Immunofluorescence.  By differential color expression of the endogenous GFP and RFP 

proteins, we were able to detect prostate cancer cells invading the hepatic parenchyma (Figure 

14a). Histologically, viable prostate cancer cells alone with viable hepatocytes were observed 

after 14 days.  Although we observed, as expected, obvious overgrowth of prostate cancer cells, 

we also observed necrotic hepatocytes surrounded by non-necrotic cancer cells (Figure 14b). 
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necrosis from the center to the perimeter, despite exceeding 300um in diameter (Kunz-

Schughart, Freyer et al. 2004) (Figure 15b).  This demonstrated the existence of an adequate 

supply of oxygen and nutrients, avoiding the formation of necrotic centers in experimental 

tumors of this mass.   

    With the demonstration that prostate cancer cells grow in the experimental hepatic 

environment we asked whether this obvious growth was intrinsic to structural environment 

provided by our three dimensional system, or simply due to the ability of a tumor cell line to 

grow autonomously. Seeding the prepared, but liver-devoid, bioreactor with DU-145 prostate 

tumor cells failed to result in any tumor cell adhesion let alone growth, with the cross-flow 

clearing all the tumor cells.  Therefore we sought to recapture the environment found in the three 

dimensional cultures in two-dimensional cultures (2D). Prostate cancer cells were plated in 

identical growth media used for the hepatocytes bioreactors.  As expected, prostate cancer cells 

in their usual 10% FBS supplemented DMEM media showed significant growth as early as day 

2, however prostate cancer cells in the HGM media exhibited only marginal growth throughout 

the six day period examined (Figure 16a).   
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Figure 15. (a) Digital image of visible tumor in bioreactor >300um in diameter. (b). Tumors were 
removed from reactor and stained with toludine blue.  (c) Removed tumor were also imaged by 
electron microscopy. Tumor-parenchymal heterogeneity remained intact throughout tumor. 
Shown are images from one of three similar experiments. 
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To further demonstrate the requirement of a three dimensional environment for cancer cells to 

elicit their in vivo characteristics we utilized two different 2D co-culture systems consisting of 

transwells co-culture and direct cell contact co-culture.  In the transwell and direct contact co-

cultures, RFP-expressing prostate cancer growth was measured by fluorescence intensity.  

Neither assay report any significant growth up to six days (Figure 16b).   However, during 

intimate co-cultures, “homing” of the cancer cells to the hepatocytes could be seen as early as 

day 2 and migration of the prostate cancer cells directionally to the hepatocytes was evident by 

day 4 (Figure 16c).  This occurrence was enhanced in the presence of collagen coated plates, 

suggesting a matrix is necessary to induce at least a migratory response of the prostate cancer 

cells. Notably, however,   cell proliferation was missing, similar to that seen in the bioreactor.  
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Figure 16. (a) Growth of DU-145 human prostate cancer cells was assessed by fluorescent 
intensity in the presence of Hepatocyte Growth Medium (HGM), 10% FBS DMEM, or serum-
free DMEM over a 6-day period. (b) Fluorescence images of hepatocyte (green) and DU-145 
cells (red) on polystyrene or collagen-coated surfaces in the presence of HGM. (c) Growth of 
DU-145 prostate cancer cells in HGM on polystyrene, collagen-coated or 4µM pore transwell 
plates in co-culture systems.  All experiments were performed in triplicate and repeated three 
times; in the graphs the data were normalized to Day 1 and are presented as percent growth 
±SEM.  
 
 
 
 

4.5. DISCUSSION 

Currently, most methods available to study the behavior of metastatic tumor cells are outside of 

target organ systems or are snapshots in time that capture only brief periods. To better 

understand the cell biology of metastasis, the key events must be isolated in appropriate organ 

context and over the dynamic periods that are critical to establishment and growth of metastases. 
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Studies in experimental metastasis systems and correlative evidence from human cancer patients 

strongly suggest that dissemination to ectopic sites is not the only or even main rate-limiting step 

(Luzzi, MacDonald et al. 1998; Cameron, Schmidt et al. 2000; Condeelis, Wyckoff et al. 2000). 

Rather, establishment in the ectopic parenchyma and further tumor cell expansion appear to 

select the rare metastatically-capable cells. In this study we utilized the liver, second only to the 

bone for prostate cancer metastases (Ewing 1922; Shah, Mehra et al. 2004), in the context of a 

bioreactor that provides an appropriate environment for the morphogenesis of hepatocytes into 

functional liver tissue (Powers, Domansky et al. 2002). Such a system puts the tumor cells in the 

appropriate organ environment. 

 Attempts have been made to dissect the individual aspects of the metastatic process.  

There are established assays for cell proliferation, migration, adhesion and survival, as well as 

specific assays for key regulatory molecules.  However, these are limited in that the process of 

metastasis requires a constellation of individual cell properties and molecular activations; no one 

assay is full predictive either positive or negative. Furthermore, as these cellular and molecular 

events are interdependent, assays designed to isolate each may provide a panel of responses not 

indicative of the integrated situation. For this reason, investigators seek experimental systems 

that recapitulate this integrated process. 

 Our bioreactor system, upon establishment of a functional liver parchencyma including 

non-hepatocyte support cells, addresses the concerns of an appropriate environment to study 

molecular events of metastasis (Powers, Domansky et al. 2002). DU-145 human prostate cancer 

cells, stably expressing RFP, were introduced into the established liver bioreactor and attachment 

was seen by day 2 with subsequent growth noticeable by day 4 (Figure 13a).  This was not 

observed on 2D culture plates, when DU-145 cells were incubated in the presence of the 
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bioreactor medium HGM alone or co-cultured with hepatocytes. Possibly the inefficient growth 

of DU-145 cells is a result of the absence of fetal calf serum in the HGM, leaving the DU-145 

cells at the quiescent stage, although this media is adequate for hepatocytes function. 

Interestingly, DU-145 cells exhibited increased proliferation in the bioreactor, with growth 

dominating the visually observed events (Figure 13a).  Not only was cell proliferation supported 

but other integrated cell responses such as the relocation/migration of DU-145 cells across the 

tissue mass was seen in the early days after inoculation.  

 The fact that tumor cells only proliferated in the bioreactor and not under tissue culture 

conditions, even in the presence of close contact co-cultures (Figure 16), suggests a form of 

liver-tumor communication. TEM investigations revealed invasion of DU-145 cells juxtaposed 

to hepatic tissue. Distinct cell-cell interactions among the hepatocytes and cancer cells were 

observed (Figure 14b).  While the nature of such communications are under examination, and lie 

beyond the scope of the present communication, these micrographs provide evidence for 

heterotypic cell communication during establishment of metastases.  

As expected, after 14 days cancers cells completely engulfed the bioreactor and hepatic 

tissue (Figure 13a).  This corresponds with previously published reports that inoculation of DU-

145 into the peritoneal cavity result in invasion into the parenchyma of various organs such as 

lung, diaphragm, and liver by day 14 (Turner, Chen et al. 1996).  What was not expected was 

that tumor growth would become visible with naked eye, by day 25, with intact non-necrotic 

cellular structures throughout the tissue mass (Figure 15a). Central necrosis has plagued spheroid 

cultures and other approaches to generating large tumor or liver structures ex vivo. For a tumor of 

this size (>350 µm diameter) to avoid central necrosis suggests maintenance of an adequate 

supply of nutrient, which has previously not been accomplishable in in vitro environments. 

47 



 

 Our successful establishment of this organotypic liver system that supports tumor cell 

invasion and/or metastasis, opens many avenues for future investigation. Current approved 

therapies aim at cell proliferation and do not expressly target the stages of metastasis 

establishment and progression.  Thus, an integrative model of tumor progression including the 

target environment would be a significant advancement to highlight total systemic responses. 

Lastly, by utilizing a fully functional liver bioreactor, the ability to intimately link drug 

metabolism in real time to target actions opens up new possibilities for the development and 

testing of agents. 
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5.1. ABSTRACT 

Metastasis is a multi-step processes were tumor cells must be able to detach, migrate, gain access 

to conduits and disseminate throughout the body. At the molecular level, during invasion cells 

undergo epithelial mesenchymal-like transition where there is loss of E-cadherin accompanied 

by increased motility (Savagner 2001; Thiery 2002). Because this transition is a requirement in 

prostatic neoplasia, correlations to epithelial differentiation during embryogenesis have been 

made (Bates, DeLeo et al. 2004; Bates and Mercurio 2005). However, we and others have shown 

that abrogated growth factor signaling results in reexpression of E-cadherin, highlighting the 

plasticity of these cells (Jawhari, Farthing et al. 1999; Yates, Wells et al. 2005).  Furthermore, 

previous unpublished data from a three dimensional perfusion microreactor show heterotypic 

communication between prostate cancer cells and hepatic tissue.  Therefore we hypothesize that 

there is phenotypic variability throughout prostate cancer progression.  Immunofluorescence 

staining for E-cadherin in co cultures of GFP expressing hepatocytes and RFP DU-145 prostate 

cancer cells reveal E-cadherin expression at the peripheral regions of contact by day 2 of 

coculture with eventual gain of homotypic expression as the cancer cluster become denser. These 

findings were supported by significant reexpression of E-cadherin in paraffin embedded tissue 

from human prostate metastasis to the liver.  Therefore we conclude that the term epithelial 

mesenchymal transition only summarizes the transient down regulation E-cadherin for invasion, 

and that reexpression of E-cadherin is physiological consequence of metastatic tumor 

development.  Therefore we propose that Meschenymal Epithelial reverting Transition (MErT) 

as the term that fully describes this process in tumor progression. 
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5.2. INTRODUCTION 

Metastatic cancers are responsible for most of the morbidity and mortality associated 

with cancer patients.  However our understanding of the multistep cascade of events that must 

occur for successful attachment and subsequent metastasis has not been completely elucidated.  

An essential step for cells to migrate from the primary tumor mass is a loss of epithelial 

differentiation and a gain of mesenchymal-like phenotype generally defined as epithelial 

mesenchymal transition (EMT) (Bates, DeLeo et al. 2004; Bates and Mercurio 2005). This 

transition is necessary for cells to invade their surrounding adnexia and gain access to conduits 

(Mareel, Behrens et al. 1991; Thiery 2002; Ackland, Newgreen et al. 2003). E-cadherin is a 

calcium (Ca++)-dependent transmembrane cell surface glycoprotein and is most notably known 

as a suppressor of mesenchymal transition.  Normal E-cadherin function usually consists of rapid 

localization of surface E-cadherin molecules to the regions of contact, resulting in homotypic 

binding, thus fostering the maintenance of normal cellular structure. Aberrant loss of E-cadherin 

expression has been well documented and even clinically defined as an invasive marker for many 

cancers including lung cancer, prostate cancer, gastric cancer, colorectal carcinoma, and breast 

cancer (Al-Mehdi, Tozawa et al. 2000; Davies, Jiang et al. 2000; Lowy, Knight et al. 2002; Lind, 

Thorstensen et al. 2004).   

Altered E-cadherin expression, which is a key factor during epithelial mesenchymal 

transition (EMT) has been shown to be the result of epigenetic reversible (Graff, Herman et al. 

1995; Lind, Thorstensen et al. 2004) or growth factor mediated down regulation (Kallakury, 

Sheehan et al. 2001; Hurtubise and Momparler 2004; Wheeler 2005). However, abrogation of 
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EGFR signaling, reverses decreased E-cadherin expression, thus highlighting the plasticity of 

cancer cells (Hazan and Norton 1998; Jawhari, Farthing et al. 1999; Yates, Wells et al. 2005). 

Previous unpublished data utilizing a real-time microtissue perfusion culture demonstrate that 

DU-145 prostate cancer cells that invade the hepatic tissue are juxtaposed to the hepatic 

interface, thus creating a very distinct cell border (unpublished data).  This would suggest some 

type of heterotypic communication, at the least, if not involving E-cadherin interactions. 

Therefore we sought to determine the expression pattern of E-cadherin throughout the 

progression of prostate cancer cells within an appropriate metastatic microenvironment, the liver. 

Herein we propose that decreased E-cadherin expression; a necessary process to 

disseminate beyond the encapsulated primary tumor mass, is reverted in order for cancer cells to 

adhere and develop at metastatic target organ.   In order to examine the phenotypic transition, we 

utilized in vitro cocultures of primary rat hepatocytes and DU-145 human prostate cancer cells, 

as liver is a preferred ectopic site for metastasis of many cancers including prostate cancer (Paget 

1989; Fidler 2003; Shah, Mehra et al. 2004) demonstrate that as DU-145 cells “home” to the 

liver cells, there is an increase in E-cadherin at the point of peripheral cell-cell contact, resulting 

in DU-145 cells adhering to the host hepatocytes. As the prostate cancer cells progress to more 

dense clusters surrounding the hepatocytes we observed homotypic binding of prostate cancer 

cells among DU-145 cells and hepatocytes. As a physiological correlate to our in vitro findings, 

human liver tissue, with prostate cancer metastasis, were analyzed for reexpression of cell 

adhesion molecules.  These tumors we observed significant reexpression of E-cadherin and 

associated catenins, with a lack of the differentiation marker, vimentin. Therefore we propose 

that modulation of E-cadherin expression is a result of the cancer cells environment that can be 

reverted to allow acquired or diminished cellular behavior. 
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5.3. MATERIAL AND METHODS 

The primary antibodies used were mouse monoclonal antibodies to E-cadherin, α- and 

β−catenin, and p120 (Transduction Laboratories, California). FITC conjugated secondary 

antibodies were obtained from (BD Biosciences). Secondary antibodies for the 

Immunofluorescence were obtained from (Molecular Probes, Oregon). Cy5-conjugated 

secondary antibody was then added (Jackson Laboratories). Other reagents were obtained from 

Sigma 

 
5.3.1. DU-145 Cell Lines 

 
The cell line DU-145 was originally derived from a brain metastasis of a human prostate 

adenocarcinoma (Stone, Mickey et al. 1978); it retains the androgen independence of the original 

tumor and does not express a functional androgen receptor (Dondi, Moretti et al. 1998). This cell 

line possesses both LHRH and EGF receptors and produces EGFR ligands, TGF-α and EGF 

(Xie, Turner et al. 1995; Jungwirth, Pinski et al. 1997). 

The DU-145 cells were maintained in Dulbecco’s Modified Eagle’s Medium (DMEM) 

(4.5g/ml glucose) (Cellgro, Virginia) containing 10 % FBS and supplemented with L-glutamine 

(2 mM), penicillin/streptomycin (100 units/ml), nonessential amino acids (0.1 mM), and sodium 

pyruvate (1 mM) (37˚C, 90% humidity, 5% CO2 and 95 % air). For stable selection of RFP cells, 

cells were grown in G418 (1000µg/ml) (Gibco, New York), though all experiments were 

performed in the absence of G418. 
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5.3.2. Tissue Specimens 

Formalin-fixed paraffin-embedded tissues were obtained from the University of Pittsburgh tumor 

bank.   Only well-differentiated prostate adenocarcinomas with liver metastastis were included, 

irrespective of other criteria.  

5.3.3. Immunohistochemistry/Immunocytochemistry 

Frozen tissue or cells from culture were stained by established protocol with anti-E-cadherin, 

anti-α and β-catenin, p120 catenin, vitmentin antibodies.  Appropriate secondary antibodies was 

used for primary antibody. 

5.3.4. Two Dimensional Co-cultures 

Intimate co-cultures consisting of 50, 000 cells per cm2 hepatocytes and 2,000 cells per cm2 

prostate cancer cells were plated on 10% collagen.  Co-cultures were processed for 

immunofluorescence at designated time intervals. 

5.3.5. Immunofluorescence Microscopy 

Cocultures  were then fixed in 4% paraformaldehyde, permeabilized with 100 mM Tris-HCl pH 

7.4, 150 mM NaCl, 10 mM EGTA, 1% Triton X-100, 1 mM PMSF, and 50 µg/ml  aprotinin (all 

from Sigma), and subsequently blocked with 5% BSA for 1 hour at room temperature. Samples 

were incubated with indicated primary antibodies diluted in blocking buffer at 4°C overnight. 

Cy5-conjugated secondary antibody was then added (Jackson Laboratories). Cells were analyzed 

with laser confocal microscopy using a Leica TCSNT 3 laser 4 PMT system (Olympus, NY).  

 

 

 

54 



 

 

 

 

DU-145   

   (b) 
(a)   

 
  

  
 

  
  

Hepatocyte 
   (c) 
 

 Coculture
 

 

 

 

 

 

 

 

Figure 17. (a) E-cadherin staining of coculture of primary rat hepatocytes and human DU-                145 
prostate cancer cells after 14 days in presence of HGM (b) E-cadherin staining of single culture of DU-
145 cells after 14 days of in HGM (c) E-cadherin staining of hepatocytes only culture after 14 days in 
HGM.  
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5.4. RESULTS 

To determine the intimate interactions between prostate cancer cells and hepatocytes we utilized 

an in vitro co-culture assay.  Freshly isolated GFP expressing primary rat hepatocytes were 

allowed to adhere 24 hours prior to seeding of the RFP expressing prostate cancer cells.  To 

determine if DU-145 cells reexpress E-cadherin only in the presence of hepatocytes we allowed 

coculture to progress to day 14. These cultures revealed heterogeneous staining for E-cadherin 

throughout the cluster mass, although staining was irrespective of cell type (Figure 17a). 

However, DU-145 cells that were not juxtaposed to the hepatocytes lacked E-cadherin 

expression (Figure17b). To determine to if our observed heterogeneous E-cadherin expression 

was cancer cells driven, we analyzed the cocultures by differential color expression. After 2 

days, reexpression of E-cadherin was observed as DU-145 cells directionally extend toward the 

hepatocytes (Figure 18a).  E-cadherin binding among different cells has not been seen before, 

and therefore we characterized this interaction as heterotypic binding. During the co-culture 

period, differential color expression of E-cadherin in hepatocytes and DU-145 cells revealed that 

DU-145 cells predominately expressed E-cadherin in these co-cultures (Figure 18b).  

 To confirm our in vitro coculture findings that E-cadherin is reexpressed during the 

progression of DU-145 cells, we obtained human liver tissue with prostate cancer metastasis and 

examined the expression of E-cadherin in these tumors by immunohistochemistry. E-cadherin 

expression was significantly upregulated, when compared to adjacent normal hepatic tissue 

(Figure 19c).  This increased expression was accompanied by increased in E-cadherin associated 

adhesion molecules α, β, and p120 as well (Figure 19 d-f).  To determine whether these cells 

reverted from the mesenchymal phenotype, we stained for mesenchymal marker vimentin.  
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Vimentin was negatively expressed in these tumors suggesting the reversion to an epithelial 

phenotype (Figure 19b). 
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Figure 18   (a) Day 2 fluorescence image of endogenous GFP hepatocytes (green) and RFP DU-145 cells 
(red) with staining for E-cadherin (blue) in the presence of HGM show heterotypic binding of DU-145 
cells to hepatocytes. (b)  Day 14 fluorescence image of endogenous GFP hepatocytes (green) and RFP 
DU-145 cells (red) with staining for E-cadherin (blue) show homotypic binding among RFP DU-145 cells 
and in the presence of HGM  
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5.5. DISCUSSION 

The multistep process of metastasis suggests that cancer cell must undergo changes at the 

molecular level that influence phenotypic behavior.  This transition can be compared to the 

central theme of migrating cells during embryogenesis (EMT) (Bates and Mercurio 2005).  

Mesenchymal cells have an increased advantage to migrate and invade local surrounding. 

Imperative to migrating cells is the loss of cell-cell adhesion. The role of E-cadherin expression 

in various cancers has been inversely correlated to increased invasive and metastatic behavior.  

This is impart due to it’s malignancy- associated parameters such as loss of differentiation, 

invasiveness and metastatic potential of a broad range of carcinomas that are often associated 

with down-regulation of E-cadherin expression or function (Mareel, Behrens et al. 1991; Mareel, 

Boterberg et al. 1997).  Herein we report that decreased cell adhesion is transient during cancer 

progression and reexpression is required for reestablishment at the metastatic target organ.  In 

order to examine these events, we utilized differential color expression of RFP DU-145 prostate 

cancer cells and GFP hepatocytes. Immunofluorescence staining for E-cadherin revealed 

reexpression of E-cadherin as DU-145 prostate cancer cells extend to adhere to parenchymal 

hepatocytes, thus exhibiting heterotypic binding (Figure 18a).  However as these cocultures 

continue to day 14, there is clustering of the RFP DU-145 cells around the hepatocytes with 

mainly E-cadherin homotypic binding of the RFP DU-145 cells (Figure 18b). This is in direct 

contrast to previously published results from our lab that confluent monolayers of DU-145 cells 

lack E-cadherin staining (Yates, Wells et al. 2005).   
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 Since in vitro cocultures of DU-145 cells and hepatocytes emphasize the transient 

expression of E-cadherin during prostate cancer progression we sought to correlate this with 

human tissue specimens of prostate cancer metastasis to the liver.  Two tissue specimens were 

examined and reveal significant expression of E-cadherin, even greater than that of adjacent 

parenchymal hepatocytes (Figure 19c).  The increased E-cadherin expression was further 

supported by increases in E-cadherin intercellular associated molecules α-catenin, β-catenin, and 

p120 catenin (Figure 19 d-f).  Since E-cadherin is a marker of normal epithelium, we sought to 

determine if this reexpression of cell adhesion is associated with a complete reversion to 

epithelial phenotype.  Vimentin, a well-defined marker of differentiation was deficient in both 

tumors (Figures 19b). With E-cadherin and the E-cadherin/complex completely present and 

vimentin absence, these tumors closely resemble a more normal epithelial phenotype.  

On the basis of these observations, we propose a model for the progression of 

differentiated tumors, which includes the transition from epithelial to mesenchymal phenotype, 

and takes into consideration the ability of tumor cells to detach and migrate form the primary 

tumor mass into the circulation.  What follows is at least a partial reversion of the epithelial 

phenotypic, necessary to allow E-cadherin heterotypic binding and avoid ankosis.  This then 

progresses to a complete redifferentiation to epithelial phenotype to form the tumor mass (Figure 

20). Therefore we propose that we formally name this MErT (Mesenchymal epithelial reverting 

Transition).   

  Although are model has effectively identified that redifferentiation of prostate cancer 
cells at metastatic organ is a pathophysiological occurrence, determining if reexpression of cell 
cell adhesion is a requirement to attach the liver parenchyma is a point of interest.  Unpublished 
data from our lab using a centrifugal adhesion of fluorescent cell adhesion assay (CAFCA) 
demonstrates that MCF-7 breast cancer cells adhere to hepatocytes is as early as 10 min and 
maximizes at 60 minutes.  However, inactivation of E-cadherin binding by depletion of Ca 2++ or 
knock down of E-cadherin levels by siRNA significantly decreases the adhesiveness to 
hepatocytes (personal communication Christopher Shepherd).  This would propel that 
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reexpression of E-cadherin is an early event of disseminated prostate cancers and a requirement 
for ectopic seeding. It if of interest to note that normal homophilic binding of cadherins results in 
an increase in survival signals initiated by nascent cadherin interaction (Kovacs, Ali et al. 2002; 
Verma, Shewan et al. 2004).  If the newly reexpressed E-cadherin on the cancer cells operates in 
a similar function as normal E-cadherin binding, then this could possibly be the initial survival 
signal required to establish residence among the parenchymal tissue.

(d)        (e)            (f)   

(a)        (b)            (c)   
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Figure 19.  Correlation of the expression patterns of cell adhesion molecules in distant metastasis 
of prostate adenocarcinomas. Shown are central areas (first column) (a) H&E, (b) Vimentin and 
(c) and E-cadherin staining of tumor metastasis at the liver. Images are 1.4 mm2. (c-e) are 
immunohistochemical staining for E-cadherin, β-catenin, and p120.  Images are 300um2.   
 

In summary, our proposed model of cancer redifferentiation (MErT) presents a novel 

view of the progression of cancer in its entirety.  Previous reports have identified the 

reexpression of cell adhesion during metastatic tumor formation in other cancer types (Brabletz, 

Jung et al. 2001; Kowalski, Rubin et al. 2003), yet none have identified the role of E-cadherin in 

the establishment of cancer cells after dissemination.  Although, these results are preliminary and 

need further investigation, it correlates with reports that a large percentage of cancers 

downregulate E-cadherin expression through epigenetic mechanisms (Machado, Oliveira et al. 

2001; Lind, Thorstensen et al. 2004),.  Therefore other environmental factors, including the 

modulation of growth factor signaling, transcription factors, and matrix components also need to 

be deciphered and considered in the context of our findings. 
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Figure 20.  Proposed model for Metastatic events during Prostate Cancer Progression
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6. SUMMARY AND DISCUSSION 

The totality of these studies outlines significant advances to our understanding of cancer 

progression.  To this author’s knowledge, the current study is the first to investigate the 

reversible expression of E-cadherin in aggressive prostate cancers.  Our first approach to 

elucidate the signaling pathways associated with these changes utilized Cetrorelix, a hormonal 

treatment under clinical evaluation.   We were able to demonstrate that activation of the LHRH 

receptor by Cetrorelix, results in up-regulation cell adhesion molecules E-cadherin, α-, β-, and 

p120 catenins, but also restores the cell adhesiveness in human DU-145 prostate cancer cells.  

We were further able link growth factor signaling, specifically EGFR, with decreases in cell-

adhesion in aggressive prostate cancer.  This work provided the basis for identifying a 

mechanism of reversible E-cadherin expression, and serves as a proof of concept that the EGFR 

signaling axis can be exploited for therapeutic intervention in prostate tumor progression. 

   As in vivo verification of any molecular pathways identified in vitro is required, 

available in vivo systems seemed inappropriate to monitor the molecular changes of individual 

cells over time.  This prompted us to develop a new ex vivo system that replicates a relevant 

microtissue environment to better assess cancer cell behavior.  This system, formally named a 

Micro-fabricated Array Bioreactor, affords for the recreation of an in vivo environment for in 

vitro observation in real-time and provides for an optimal device for the study of physiological 

events.  Within our system, proliferation coupled with invasion of DU-145 cells juxtaposed to hepatic 

tissue was observed.  The juxtaposition of the DU-145 cells was also present in close contact co-cultures 

suggesting a form of heterotypic liver-tumor communication.  To elucidate the nature of this 

communication, we first utilized the close contact DU-145/ hepatocyte cocultures and stained for 
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E-cadherin expression. Positive staining for E-cadherin at the regions of contact was apparent as 

DU-145 cells immediately adhered to hepatocytes. As the cancer progressed, DU-145 cells 

surrounded and isolated the hepatocytes.  These events were observed in the later stages with 

mainly homotypic expression of E-cadherin among the DU-145 cells the coculture clusters.  This 

was an unexpected observation given that heterotypic cell-cell adhesion of cancer cells to the 

target metastatic organ has not been seen before. The homotypic reexpression of E-cadherin 

along with absence of mesenchymal marker, vimentin, was verified in human liver tissue with 

prostate cancer metastasis obtained from autopsy patients.  Lack of vimentin staining emphasizes 

a reversion from the mesenchymal phenotype to epithelial phenotype.  Although we are not the 

first to report reexpression of E-cadherin in distant organ tumor development (Weaver, Petersen 

et al. 1997; Kowalski, Rubin et al. 2003), these finding are significant in that we show that 

reexpression of E-cadherin is an initial requirement in the reversion of dedifferentiated cancer 

cells to a more normal phenotype.  Loss of E-cadherin is critical during embryonic development 

as cells adopt a more amenable phenotypic for increased cell movement (Bates and Mercurio 

2005).   Although comparisons have been made to cancer, regain of epithelial phenotype has not 

been included in these comparisons. If cancer cell plasticity is a consequence of aggressive 

cancer progression, then it seems very applicable that developing tumors at the metastatic organ 

be viewed in this context.  It would also suggest that the cancer cells plasticity would extend to 

various other regulators of cancer differentiation based on situational or environmental ques.  
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6.1. Prospective Uses of LHRH Analogs 

Hormonal intervention has been the choice of therapy for many cancer patients to avoid 

prostatectomy. Since the introduction of LHRH analogs as a viable cancer therapeutic numerous 

clinical trials have found the efficacy of the drug to be safe and show signs of management of 

progression.  However the molecular pathways that are targeted by these hormones and the 

mechanism of action have not been fully revealed.  We show activation of LHRH receptor with 

the LHRH analog, Cetrorelix results in up-regulation of cell adhesion via PKC mediated down-

regulation of EGFR.  This report confirmed with previous experiments from our lab that mice, 

inoculated with a DU-145 subline resistance to PKC negative attenuation of EGFR, show 

minimal effects after administration of LHRH analog Zoladex.  However, PKC mediated 

downregulation of EGFR is not the only downstream signaling pathway activated.  Previous 

reports have suggested that LHRH administration results in activation of the cAMP dependent 

pathway with subsequent activation of PKA (Limonta, Montagnani Marelli et al. 2001) mediates 

the antiproliferative effects of Cetrorelix. Although observed decreases in EGFR expression are 

consistently reported, a correlation to the mechanism by which this occurs has not been made.  

Our findings are significant in that we highlight a direct pathway of EGFR mediated down-

regulation via activation of PKC.  This was further supported with establishment of the linkage 

between EGFR and E-cadherin.  If Cetrorelix does indeed activate both the PKC mediated 

pathway and the cAMP pathway, the question would be to determine are the pathways 

functioning independently of, or in synergy.  Determination of cellular response to activation of 

LHRH receptor would be a very helpful in the identification of specific downstream molecules 

that are involved in the cancer progression. 
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6.2. Prospective Applications for the Bioreactor 

Within our present three dimensional perfusion system, there is a broad spectrum of applications 

were this system would be applicable.  Models systems that incorporate environmental quest are 

more relevant to assay different aspects in tumor biology.   Compounded with direct visualize of 

cellular responses to inhibitory drugs such as our above described LHRH analog Cetrorelix, will 

certainly highlight previously identifiable processes of tumor behavior.  Also individual cancer 

cells and or hepatic tissue within the system (personal communication Artemis Kalezi) can be 

manipulated prior to introduction into our system. Assays such as these, should provide an 

invaluable tool to gain insight into the immediate and long-term effectiveness of therapeutics 

relative to tumor behavior and host environment. 

 Future experiments in development of the model will include the addition of a greater 

fraction of non parenchymal endothelial cells. The importance of vasculature has been 

understated in numerous cancer assays.  Addition of endothelial cells would be a step toward 

creating true physiological mimics of tissues that recapitulate the features of a capillary bed.  The 

relationship of tumor cells; endothelium and stromal hepatocytes would hopefully open avenues 

for novel investigations of tumor cell behavior relative to their metastatic microenvironment with 

molecular level sensitivity.  A similar combination of factors is not currently available.   

 Although in vivo models will ultimately have to be utilized to assess systemic responses, 

this system offers a quick manipulitable analysis with real-time visualization. With liver being a 

site of metastasis for many cancers, our successful establishment of this organotypic liver system 

will be quickly amenable to tumor cell invasion and/or metastasis of other cancers.  Although the 
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greatest advantage of this bioreactor system is the ability to scale to an all human system.  With 

access to primary human hepatocytes and primary human cancer cells, an integrative all-

humanized bioreactor system would provide the most applicable model system available.  Other 

possibilities such as initial testing of therapeutic agents and drug metabolism would also increase 

clinically applicable correlates to tumor biology. 

 

 

6.3. Prospective: Transient expression of E-cadherin 

Herein we have presented a new hypothesis of reexpression of E-cadherin during the process of 

metastasis. We have previously shown evidence that E-cadherin expression can be regulated via 

EGFR signaling. In our hands, abrogation of EGFR mediated downregulation of E-cadherin has 

been reversed by addition of antibody, siRNA to EGFR, and LHRH receptor activation by 

Cetrorelix. This would suggest that control of expression is at least in part due to growth factor 

signaling.   We have also shown preliminary evidence that E-cadherin expression is involved in 

the initial adhesion/attachment of prostate cancer cells to hepatocytes with increased expression 

in human prostate cancer metastasis to the liver.  This would imply that E-cadherin expression is 

transient and subject to therapeutic control.  These new findings provide valuable insight into the 

metastatic process, but are preliminary and need further examination.  Further questions worth 

addressing, surround the dynamic interplay of molecules transiently expressed during 

transformation and implementation of oncogenesis. If previously noted EGFR-E-cadherin 

interactions are the primary control of E-cadherin expression, then mediators of this signaling 

pathway need to be examined to determine the dynamics of E-cadherin regulation.  As these 
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interactions are likely acute extending from days to weeks, our microtissue system would be a 

very appropriate assay to observe these processes.   

Many different signaling pathways have been found to inhibit cell-cell adhesion during 

cancer progression, although none have been shown to support cancer cell survival.  For this we 

turn investigations involving homophilic cadherin interactions in normal cells.   During normal 

cell-cell contact E-cadherin binding is considered as a ligand-receptor interaction, with a net 

result of increased signals for survival (Kovacs, Ali et al. 2002; Pang, Kraemer et al. 2005). 

Homotypic ligation of E-cadherin mediates signals through its cytoplasmic domain seems to 

recruit PI 3-kinase to the membrane.  PI 3 kinase signaling is reflected through its 

phosphorylation of Akt and translocation to the nucleus. Although cell type specific events have 

impeded the designation of a single mode action of E-cadherin ligation in homophlic interactions 

(Kovacs, Ali et al. 2002), it would be helpful to determine the involvement of these implicated 

molecules in cancer heterotypic adhesion. 

 

   

6.3.1. Final Word 

This research represents the culmination of years of effort on the part of various Investigators 

and myself. Within it, we have discerned a new role for cell adhesion during the progression of 

prostate cancers. We have developed an ex vivo model for real time determination of metastasis 

related events and uncovered a signaling cascade that can be exploited for therapeutic 

intervention.  Future investigations will hopefully utilize this microreactor system to map key 

regulator events previously unavailable in in vitro systems and imaging of whole body animal 

models.  Finally, further identification the role of cell-cell adhesion at metastatic target organ, 

68 



 

will hopefully uncover future rate limiting steps in cancer progression. Hopefully these results 

will lead to new innovations in the battle against cancer and cancer related deaths. 
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