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ROMR: ROBUST MULTICAST ROUTING IN MOBILE AD-HOC

NETWORKS

Gretchen H. Lynn, PhD

University of Pittsburgh, 2003

Support for multicast services is crucial for mobile ad-hoc networks (MANETs) to become

a viable alternative to infrastructured networks. Efficient multicasting in MANETs faces

challenges not encountered in other types of networks such as the mobility of nodes, the

tenuous status of communication links, limited resources, and indefinite knowledge of the

network topology. This thesis addresses these challenges by providing a framework and

architecture with proactive and reactive components to support multicasting in MANETs

emphasizing reliability and efficiency of end-to-end packet delivery. The architecture includes

the Robust Multicast Routing protocol (RoMR) to provide multicast services to multicast

applications. RoMR’s proactive component calculates multiple multicast trees based on the

prediction of future availability of the links and the assumption that the trees will become

disconnected over time. The reactive components respond to changes in the network topology

due to the mobility of the nodes and to changes in the multicast group’s membership.

Sending redundant data packets over multiple paths further enhances the reliability at

the cost of an increase in the use of network resources. RoMR uses approximations to

Steiner trees during tree formation and forward error correction encoding techniques during

packet transmission in order to counteract this increase. To avoid additional network traffic,

trees are distributed only when the existing trees cannot be easily patched to accommodate

changes in topology or group membership.

The novelty of the proposed protocol stems from integrating techniques that have not

previously been combined into a multicasting protocol and a unique method to calculate the
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relative weights of the links.

In addition to the specifications of the protocol, a simulation framework was developed

to test different implementations of the various components of RoMR. Simulations compared

the performance of the basic version of RoMR to a version that ignored link weights, and to

a link-state multicast protocol currently being considered by the Internet Engineering Task

Force. A statistical analysis of the results showed that RoMR performed better, overall, than

the other two protocols.

Keywords: multicast, mobile ad-hoc networks.
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1.0 INTRODUCTION AND PROBLEM DEFINITION

1.1 INTRODUCTION

Today the use of wireless devices is becoming increasingly popular. Many people communi-

cate using a cellular phone, often eliminating the land-based phone in their residences. Com-

puting networks, both private and corporate, are adding wireless network cards to laptop

computers and incorporating access points into their topologies. Personal digital assistants

(PDAs) with wireless network accessibility have also become popular with a variety of peo-

ple ranging from students to executives. As the devices become more prevalent, the users

will come to expect greater capabilities from the devices and networks and will also expect

services that are comparable to those received in a wire-based network such as using point-

to-point communications, receiving streaming multimedia and taking part in conferencing

capabilities.

The technical problems associated with wireless communications are different from the

problems encountered in a wire-based network. First, the transmission of a radio signal

through the air is much less reliable than transmission of an electrical signal over wires. The

wireless signals can be affected by environmental conditions such as rain and can possibly

be blocked by objects in the signal’s path. It is also affected by interference from other radio

signals in the area or interference from its own signal reflected off of objects. Second, the

devices may have limited resources such as battery life and memory. Third, the bandwidth

available to wireless communications is a precious commodity since it is limited by federal

regulations. Speeds of 11Mbps have only recently been realized in unlicensed wireless local

area networks although we may soon see speeds of 54 Mbps become more common with the

latest IEEE 802.11g standard [2]. Also, the fact that the amount of available bandwidth
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may not be constant as the network changes is another source of complication in wireless

communications.

Many of the problems have been addressed in infrastructured networks in which typically

the last hop to the user is the only wireless link the signal must traverse. An example of an

infrastructured wireless network is a cellular phone company’s network which is divided into

cells. The communications transpiring over a wireless link is handed off to another cell as

the user leaves one cell and enters another.

An ad hoc network is a network that is dynamically reconfigurable, rapidly deployable,

and does not depend on a fixed infrastructure or a central administration [36, 29]. Ad hoc

network topologies can be the basis of wireless networking in fixed or mobile environments.

For example, a set of students may be sitting at stations in a science lab sharing infor-

mation via a wireless peer-to-peer network that they quickly set up upon the start of the

investigation. This is an example of a use in a fixed environment since the students are not

moving their computers around the room. On the other hand an example of a use of an

ad-hoc network in a mobile environment would be a network that is set up to be used by

rescue personnel as they search for a missing person over a wide area that might not have

cellular communications available. Communications need to be maintained during the time

the devices are mobile whether they are being carried by a person walking at a slow speed

or by a vehicle travelling at a higher speed.

Ad hoc networks still have the problems associated with any wireless network mentioned

previously as well as problems associated with the characteristics due to the ad hoc nature.

How can a network be quickly established? How are messages forwarded without the use of

routers or switches when a destination is not within the transmission range of the sender?

Such a network is called a multihop network and uses intermediate nodes as temporary

routers between a source and a destination. How can the network be easily maintained as

users are added or deleted from the network?

An ad hoc network in which the communicating nodes can be mobile is referred to as

a Mobile Ad Hoc Network (MANET). The addition of mobility to an ad hoc network adds

even more difficulties to the communications problems. Routes are no longer static. Signal

strength varies. The network may become disconnected. A link that exists at one moment
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may not exist at the next moment since the link only exists when a node can receive a

sufficiently strong recognizable signal from its neighbor. The strength of the received signal

depends on the power of the transmitted signal, the antenna gains of both the sender and

receiver, the distance between the two nodes, the obstacles between them, and the number

of different paths the signals travel due to reflection [54]. As a consequence each node in

a multihop mobile ad hoc network must continuously monitor the radio signals it receives

in order to determine a list of one-hop neighbors composing a localized view of the network

topology to use with routing protocols. Can the problem get worse?

Communications can be categorized based on the number of senders and receivers. One-

to-one communications in which a single user communicates with another single user is

referred to as unicast communications. One-to-all communications, in which a single user

sends a message to everyone in the network, is referred to as broadcast communications.

The routing protocols that have been developed to support both unicast and broadcast

communications in wired networks have evolved into standardized protocols. A set of routing

protocols developed for unicasting and broadcasting in MANETs is in the process of becoming

standardized. In both cases the algorithms used to find the paths used in the routing of

messages are efficient. The remaining categories of communications are one-to-many and

many-to-many, both of which fall under the heading of multicast communications. Let

us examine a sequence of progressively more efficient techniques to perform multicasting

in which a message is distributed from a single user to a group of receivers in a wireless

network. Suppose the solid lines in Figure 1 represent a subset of the available links in a

communications network that have been selected to serve as a distribution tree from the

sender, node A, to each of the receivers, nodes E, F , G, and H. The dotted lines indicate

links that exist, but are not part of the distribution tree. Notice that nodes B, C, and D

have been selected to act as routers even though they are not in the set of receivers.

The first technique is one of brute force. Node A will send the message to E over the path

A,B,C,E and will then send a second copy of the message to F over the path A,B, C, F .

Node A repeats this process for each of the receivers. The link from A to B will carry four

copies of the message, the link from B to C will carry two copies, as will the link from B to

D, and each of the last hop links will carry one copy of the message. Summing over all of the
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Figure 1: A Distribution Tree

links in the distribution tree a total of 12 messages has been transmitted over the individual

links.

The second technique assumes the intermediate nodes can copy an incoming message

and forward it over the links leading to the receivers. In this case A will send one copy of

the message to B. B will then send a copy of the message down the link to C as well as

on the link to D. The latter two nodes will duplicate the message and send it to the final

receivers. In this scenario, the total number of messages over the individual links is 7.

The third technique is based on the assumption that multiple nodes can receive a message

as long as each is in the transmission range of the sender. In this case A sends one copy of the

message to all of its neighbors as a result of one transmission. B receives the message and

forwards it to all of its neighbors. C and D then forward the message via one transmission

each to the final recipients. In this final example, the total number of messages transmitted

is 4.

Thus we see that given a distribution tree, the final multicasting technique can result in a

significant reduction of the bandwidth. In the examples one particular distribution tree was

considered, but other possible trees could have been chosen. For example, the tree shown by

the solid lines in Figure 2 is an alternate distribution tree with the same number of links as

in Figure 1.
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Figure 2: An Alternate Distribution Tree

Finding an optimal distribution tree for multicasting purposes is difficult due to the

combinatorial explosion of the number of ways to use intermediate nodes as relay nodes to

forward the data to the intended set of recipients. In fact, the problem of finding an optimal

multicast tree has been shown to be NP-complete [26].

Now consider the challenges of multicasting in a mobile ad hoc network to a dynamically

changing group of receivers. All of the problems discussed above are present - complexities

stemming from the use of wireless devices transmitting through the air, mobile nodes, the

lack of an infrastructure and multicast communications. In addition we now face additional

complexity resulting from possible changes in group membership. Can all of these problems

be overcome to provide a reliable and efficient multicasting service to users in a MANET?

This thesis addresses some of these very problems and proposes a protocol to provide such

a service.
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1.2 PROBLEM STATEMENT, CHALLENGES AND RESEARCH GOALS

1.2.1 The Multicasting Problem

The goal of this research is to develop a multicast protocol to deliver the multicast data

with a high degree of reliability from a single sender to each of the receivers of a dynamic

multicast group in a mobile ad hoc network. The protocol should have proactive as well as

reactive components to increase the applicability to a variety of circumstances. The proactive

component should set up the multicasting in anticipation of future events and the reactive

component should deal with events that have not been foreseen. A secondary goal is to

perform the multicasting efficiently, using network resources, especially bandwidth, wisely.

Let us define the following:

N(t): the set of nodes in the network at time t.

E(t): a set of directed edges representing the known radio links between nodes in N(t) at

time t.

G(t) = (N(t), E(t)): a model of a time-varying network at time t as a directed graph

s(gid) ∈ N(t): the source node for group gid.

R(gid, t) ⊆ N(t): the set of receiver nodes of the multicast group with group address gid at

time t.

The problem of multicasting in a mobile ad hoc network from a sender to a dynamic group

of receivers can now be stated more formally.

Given: a time varying network modelled as a graph G(t) = (N(t), E(t)), and a multicast

group gid having a sender, s(gid), and a the set of receivers, R(gid, t), which varies over

time.

Objective: to develop a multicasting protocol to use in routing data packets from the sender

to the receivers in a dynamic multicast group gid which emphasizes reliability and efficiency.

In order to achieve the objective we need to find

• a dynamic sequence of sets of multicast trees, TS1, TS2, . . . Each TSi is active from time

ti until the number of intact trees in TSi falls below a threshold.
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• the individual multicast trees, Ti,1, Ti,2, . . . Ti,n ∈ TSi rooted at the sender connecting the

current set of receivers over which will be sent data packets.

1.2.2 Challenges

Some of the challenges facing multicasting in a MANET mentioned in the previous paragraphs

result from characteristics of the environment whereas other challenges are inherent to the

complexity of the problem itself. The challenges resulting from the environment come from

three sources: the medium, the devices, and the network organization. The multicasting

problem itself is the source of the fourth challenge.

• Network-centric Challenges: Characteristics of an ad hoc network contribute to the chal-

lenge of multicasting in such an environment. The lack of infrastructure and the lack

of dedicated routers require nodes to assume router duties and to cooperate with each

other.

• Device-centric Challenges: Limited transmission range, limited memory, limited storage

capabilities, and limited power due to the use of batteries are characteristics of the devices

acting as nodes in an ad hoc network which contribute to the challenges of multicasting

in a MANET.

• Medium-centric Challenges: Use of radio waves as the transmission medium also adds

to the problems encountered in multicasting in a MANET. The limited bandwidth, the

limited range of available frequencies due to federal regulations and interference and

packet collision caused by multiple signals are aspects that must be considered during

the development of a multicasting protocol in a mobile ad hoc network.

• Challenges due to the Multicasting Problem: The difficulty of the problem is inherent

to the nature of multicasting in a MANET. It is well known that the problem to find

an optimal multicast tree is NP-complete. This is further compounded by the need to

create and manage a group of nodes as a multicast group in which the nodes may join

and leave the group over time.

7



1.2.3 Research Questions and Goal

Techniques established for routing in fixed wired networks are not adequate for use in mo-

bile ad hoc networks in unicast or multicast communications since they do not deal with

the problems inherent to MANETs. For example, a change in the topology in a wire-based

network is assumed to be a rare event which may require the intervention of a network ad-

ministrator to update the affected routers whereas a change in the topology of a mobile ad

hoc network is a common event and needs to be handled by cooperating nodes in order to be

effective. Also consider the difference in reliability in the two different environments. The

medium in wired networks is much more consistently reliable than in MANETs so the pro-

tocols developed for the wired networks do not adequately deal with the limited bandwidth

and interference problems. Is multicasting possible in the mobile ad hoc environment? In

order to achieve the goal of delivering data packets with a high probability to members of a

multicast group in a MANET, heuristics must be developed that address the following set of

questions:

• How can we make end-to-end delivery of data in multicast group communications highly

reliable?

• How can we adapt to the variability in bandwidth limitations when sending packets to

a multicast group?

• How can we reduce the impact due to mobility to the overall performance of the multicast

protocol?

In this thesis we propose the Robust Multicast Routing protocol (RoMR) as a solution to

the problem of multicasting in a mobile ad hoc network with a dynamic group of receivers.

How does the proposed protocol address the issues of reliability and efficiency with proactive

and reactive components? RoMR includes a component which assign weights to the links in

a network to reflect the probability that the link will be available in the next time frame

given that it is available in the current time frame. It then uses these weights during

the construction of the multicast trees so that the more reliable links are chosen over less

reliable links to be included in the multicast trees. Another method RoMR uses to increase

the chance of a group member receiving the sender’s packet is through the use of multiple

8



trees. Data packets are sent down the links in all of the trees in a tree set. If a member node

receives duplicate packets, the extra packets are discarded. In order to reduce the overhead

associated with the redundancy to support increased reliability, RoMR addresses efficiency

in two ways. First, instead of recreating the set of trees as soon as one of the trees becomes

nonfunctional due to disconnectedness, RoMR waits until the number of intact trees reaches

a threshold before recalculating and redistributing the trees, thus reducing the number of

tree set packets that must be distributed. Second, RoMR uses a forward-error correction

code to encode k packets from the sender as n packets where n is the number of multicast

trees. The ith packet of the encoded group of k packets will be sent down the ith multicast

tree. The receiver only needs to receive any k of the packets in order to determine the

contents of the original k packets. Using such an encoding technique can significantly reduce

the number of additional packets injected into the network when the network is fairly stable.

Since k is computed dynamically based on the current network conditions, it is a flexible

way to control the overhead.

RoMR’s proactive component computes the multicast trees based on the weights of the

links reflecting predicted conditions in the near future. It computes multiple trees in a tree

set in anticipation that some of the trees will become disconnected and will not deliver the

packets to one or more of the destinations. The use of an underlying link state unicast

protocol also adds to the proactive nature of the protocol since the topology of the network

is readily available for use in calculations. In addition to the proactive component, RoMR

has a reactive component. When network conditions change resulting in the number of

connected multicast trees falling below a threshold level, RoMR reacts to the situation and

creates and distributes a new set of trees. RoMR also reacts to changes in group membership

as nodes join and leave the multicast group.

Thus far we have introduced the multicasting problem in mobile ad hoc networks and

have seen that solutions associated with wired networks are not adequate to the environment

under consideration. We have considered important questions that must be answered in order

to develop an adequate multicasting protocol in MANETs. The rest of the chapters will

address these issues and examine the proposed solution. In Chapter 2 background material

on routing protocols is presented as well as a discussion of several multicast protocols that
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have been proposed for use in wireless ad-hoc networks. In addition to the protocols is a

section pertaining to multicast trees, concentrating on Steiner tree heuristics. Chapter 3

gives an overview of the Robust Multicast Routing protocol (RoMR), our solution to the

multicasting problem in MANETs. Chapter 4 derives the formulas used to compute the

weights associated with the links in a network and Chapter 5 presents the algorithms of

RoMR. The parameters, results and analysis of the data generated by the simulation are

given in Chapter 6. Finally, the conclusion and future work are discussed in Chapter 7.
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2.0 RELATED WORK

In order to better understand the issues of multicasting in mobile ad-hoc networks and the

ideas behind the proposed solution to the multicasting problem, this chapter will review the

classifications of routing protocols, unicasting in mobile ad hoc networks and multicasting in

both wired and wireless networks. Unicast protocols are included in the review since some

of the multicasting protocols depend on a particular type of underlying unicast protocol

and they provide insight into the routing problem in general. Some unicast protocols are

based on calculations of link availability which is briefly discussed. The sections dealing

with multicasting include discussions of flooding, multicast trees based on Steiner trees, and

a variety of multicast protocols.

2.1 CLASSIFICATIONS OF ROUTING PROTOCOLS

2.1.1 Table-driven vs On-demand Protocols

Routing protocols are classified as either table-driven or on-demand [47, 15]. The table-

driven protocols, also referred to as proactive protocols, maintain current information on all

reachable destinations in anticipation of the use of the information. The nodes are required

to maintain one or more tables of routing information which are propagated throughout the

network as changes in the topology occur. The protocols differ in the necessary tables related

to routing and how the tables are exchanged. The on-demand methods, also known as reac-

tive protocols, wait to determine the route packets will travel at the time the communication

begins. When a route is needed, the source node initiates a route discovery process to the

destination. Once established the route must be maintained until it is no longer needed or
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the destination node becomes unaccessible. Proactive and reactive protocols each have ad-

vantages and disadvantages. In a proactive protocol the information to determine the routes

is immediately available so no additional time is needed to discover the hops in a route,

thus the delay of the first packet does not include route discovery time. This is a significant

advantage when many routes are needed within a short period of time. A disadvantage of a

proactive method is that it requires periodic updating of the routing tables, so if only a few

routes need to be determined then the overhead of table exchanges and maintenance may be

substantial. The advantages to an on-demand protocol are related to the disadvantages seen

in the proactive protocols. If only a few routes need to be determined, using an on-demand

method would incur less overhead to discover the hops than the overhead associated with

the proactive protocol’s exchange of topology information. The disadvantage of the reactive

method is that it necessitates a longer delay in getting the packets to the destination since

it must first discover the route.

2.1.2 Source Routing, Link-State, and Distance Vector Protocols

A routing protocol can be classified as either a source routing protocol, a link-state protocol

or a distance vector protocol based on the type of information the intermediate nodes keep

in order to determine the next hop when forwarding packets. A source routing protocol

requires no information to be kept in the nodes since the source node determines the route

between source and destination and lists each hop of the path in the packet header. This is

advantageous if the intermediate nodes have limited memory resources, but can be considered

a disadvantage since it can add substantially to a packet’s size. A link-state protocol, on the

other hand, requires each node in the network to maintain a database describing either the

entire network or a localized subset of the entire network. In order to maintain the database,

messages are regularly exchanged between neighbors to determine the local neighborhood

and then tables describing the local neighborhood are distributed to other nodes. Thus

the advantage is knowledge of the topology of the network so that routing decisions can

be made easily, while the disadvantage is the amount of information exchanged between

nodes may be significant when the routing tables are large. In order to address the main
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disadvantage of the generalized link-state protocol, many implementations only exchange a

subset of the routing tables, either exchanging information that applies to a localized area

or exchanging only updates that reflect changes in the topology since the previous update.

A distance-vector protocol keeps track of only the distances to reachable nodes in order

to determine the next hop. The advantage is that only next hop information is passed

between nodes instead of the entire routing table, but the disadvantage is that only one

route is known from a node to each of the accessible nodes instead of the entire or localized

topology. The proposed multicasting protocol developed in this project assumes the use of

an underlying link-state unicast protocol due to the availability of knowledge of the topology

so that multiple multicasting trees can be constructed.

2.2 UNICAST PROTOCOLS

wireless unicast protocols

©©©©©©©©©©

HHHHHHHHHH

on-demand
(reactive)

³³³³³³³³³

¡
¡

¡

@
@

@

PPPPPPPPP

source-
routing
DSR

distance-
vector
AODV
TBP

link-
reversal
TORA

other
ABR
LAR
SSA

table-driven
(proactive)

©©©©
HHHH

distance-vector
CGSR
DSDV
WRP

link-state
FSR

OLSR
STAR

ABR Associativity-Based Routing
AODV Ad-hoc On-demand Distance Vector
CGSR Clusterhead Gateway Switch Routing
DSDV Destination-Sequenced Distance-Vector
DSR Dynamic Source Routing
FSR Fisheye State Routing
LAR Location-Aided Routing

OLSR Optimized Link State Routing
SSA Signal Stability-based Adaptive Routing
STAR Source-Tree Adaptive Routing
TBP Ticket Based Probing
TORA Temporally Ordered Routing Algorithm
WRP Wireless Routing Protocol

Figure 3: Unicast Routing Protocols
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Unicast protocols are the techniques used to send data from a single source node to a

single destination node. A variety of unicast routing protocols have been proposed for ad-hoc

networks. (See Figure 3.) The protocols can be viewed as either on-demand or table-driven.

The on-demand protocols are further divided into categories based on the techniques used to

determine the routes. An on-demand protocol in which the routing is initiated by the source

is Dynamic Source Routing (DSR) [25, 24, 47]. An on-demand protocol that is based on the

use of a distance vector is Ad Hoc On-Demand Distance Vector Routing (AODV) [38, 40, 47].

Temporally Ordered Routing Algorithm (TORA) [37, 47] uses a technique in which link

reversals determine the route and Associativity-Based Routing (ABR) [52] , Signal Stability-

based Adaptive Routing (SSA) [13] and Location-Aided Routing (LAR) [27] are examples

that use information such as the past availability of the links, a signal’s strength over a

link or the location of nodes on which to base the routes. Unicast protocols that are table-

driven protocols can be further divided into those that use distance-vector tables or those

that use link-state information. The distance vector protocols include Destination-Sequenced

Distance-Vector Routing (DSDV) [39, 47], Clustered Gateway Switch Routing (CGSR) [7, 47],

and the Wireless Routing Protocol (WRP) [35, 47]. Table-driven protocols based on link-

state include Source-Tree Adaptive Routing (STAR) [15], Optimized Link State Routing

(OLSR) [8], and Fisheye State Routing (FSR) [23]. Recently, Core-Extraction Distributed

Ad hoc Routing (CEDAR) [50], Ticket-Based Probing (TBP) [6] , and an extension to AODV

have been proposed to provide Quality-of-Service (QoS) guarantees in unicast routing.

In our proposed solution to the multicasting problem discussed in Chapter 3, we assume

the availability of an underlying link-state unicast protocol by which to gather information

about the topology of the network. STAR, Fisheye State Routing and OLSR are possible

candidates due to their efficiencies and are described below. The reader is invited to refer

to the indicated sources for information about the other protocols mentioned.

2.2.1 Source-Tree Adaptive Routing

Source-Tree Adaptive Routing (STAR) [15] is a table-driven, link state unicast routing

method that can work with any current clustering mechanism. In STAR each node maintains
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a source-based tree from itself to each known destination and shares this information with

its neighbors. Initially a node only knows its adjacent links and sends this information to

neighbors. When a node has knowledge of its own adjacent links as well as those reported

by its neighbors then a partial topology of the network is formed which is used to deter-

mine preferred paths to known destinations. A node sends updates about its source tree to

neighbors when one of three cases occur: a) when a node can no longer reach one or more

previously reachable destinations, b) when a node detects a new destination, or c) when

potential long term loops are possible. When an update needs to be sent only the links that

change are sent, not the entire tree. Sequence numbers are used to validate the update being

received. STAR is a link-state protocol that does not rely on periodic updates. Simulation

showed STAR generated less control traffic than DSR while delivering the same number of

data packets in mobile networks with a relatively low number of senders. When failed nodes

were included or when the network had many destinations receiving data, STAR performed

significantly better than DSR.

2.2.2 Fisheye State Routing

Fisheye State Routing (FSR) [23] is a link state algorithm that has been modified for use

in ad-hoc networks. Since much of the overhead of link state algorithms is due to the

propagation of the link state tables, FSR sends out information regarding local nodes more

frequently than it sends out information regarding nodes that are farther away. The idea is

that a packet will start out in the correct general direction of a distant destination and as it

gets closer to the destination, nodes will have more up-to-date information and will be able

to deliver it to the destination.

2.2.3 Optimized Link State Routing

Optimized Link State Routing (OLSR) [8] is another modification of a pure link state algo-

rithm. OLSR reduces the amount of state that is periodically exchanged through the use of

multipoint relays (MPRs). MPRs are selected independently by each node so that each node

has an MPR within one hop and the set of MPRs for the node can reach all of the nodes
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within two hops of the node. A proposed heuristic to determine the MPR set for a given

node n is given below.

1. The MPR set is initialized to the set, N , of known nodes that are willing to participate

in routing.

2. Calculate the degree of each one hop neighbor node.

3. Let N2 be the set of all two-hop neighbors.

4. Add to the MPR set those nodes which are the only nodes to provide reachability to a

node in N2.

5. While there exists nodes in N2 which are not yet covered by at least one node in the

MPR set:

a. For each node in N , calculate the number of nodes in N2 which are not yet covered

by at least one node in the MPR set and which are reachable through this one hop

neighbor.

b. Select as MPR the node which provides reachability to the maximum number of

nodes in N2. If more than one node is a candidate, select the node whose degree is

greater.

In Figure 4 nodes E and F have been selected as MPRs.

A
B

C

D
E F

G

H I

Figure 4: MultiPoint Relays in OLSR

When a packet travels from a source to a receiver it will be sent over links between MPRs

whenever possible. In the pure link state protocol each node floods the network with in-

formation about all of its incident links. In OLSR the amount of flooding is reduced since
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only the MPRs forward the link information. Furthermore, the information that is forwarded

only includes links between MPRs. As a consequence, the nodes have knowledge of a partial

topology graph and thereby routes only use internal nodes that are designated as MPRs.

Any of the three described unicast protocols could be used as the underlying unicast

in the proposed multicasting protocol since all are proactive link-state unicast protocols

providing the information needed in order to construct multiple multicast trees. While

the proposed multicasting protocol is not tightly coupled to a particular unicast protocol,

Fisheye and OLSR were both used during the development stage of the project with OLSR

being implemented in the final version.

2.3 LINK AVAILABILITY - PROTOCOLS AND MODELS

While most unicast routing algorithms base the formation of routes on the number of hops

between source and destination some protocols associate numerical values with links to aid

in a prediction of the availability of the link in the near future. Associativity Based Routing

(ABR) and Location Aided Routing (LAR) are two unicast protocols which do not simply

calculate paths based on shortest path distances, but incorporate aspects of the past behavior

of the link.

Associativity Based Routing (ABR) [52] is an on-demand unicast routing protocol for

wireless networks that builds routes based on the length of time the link has been active.

The protocol selects a more stable route as opposed to a less stable shortest path. ABR

assumes the longer a link has existed the more likely it will continue to exist. It may be

the case that the longer a link survives, the less likely it is to continue to exist because the

transmitting node may be reaching the limits of the receiver’s range due to mobility.

Location Aided Routing (LAR) [27] is an on-demand unicast routing protocol that incor-

porates both the past location of a node and its mobility characteristics in order to predict

the location of the node in the next time period. After the prediction is made, the predicted

area is flooded with search messages in order to find the destination. Complications arise

due to the fact that some of the intermediate nodes that must be used in order to reach the

target may not be in the area that receives the search messages in which case a path that
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exists might not be discovered. LAR also assumes the knowledge of location which in many

cases is unobtainable.

In addition to the protocols mentioned, a model of link availability [33] has been created

based on the known mobility parameters of nodes. The parameters used in the calculations

for link availability include the average length of time called a mobility epoch during which

a node has constant speed and direction, the average speed during the mobility epoch, and

the variance in speed of each node during a mobility epoch. While this information may

be available in devices integrated into automobiles, this may not be available for simpler

handheld devices.

A model of link availability based on the strength of received signals is discussed in [49].

Although the claim is made that the method is appropriate to mobile ad hoc networks the

calculations assume that distances can be calculated based on receiving radio signals with

known transmission power levels from several base stations which are generally not available

in ad-hoc networks. Furthermore, the calculations used to determine the availability of a

link rely on an assumption which may not be valid. In the model three measurements of

signal strength are gathered from a neighboring node at three consecutive times in order

to estimate three distances to the neighboring node while the node is mobile. The method

assumes that both the neighboring node and the node performing the analysis are moving

in straight lines at constant speeds. From this information the maximum amount of time

that the link will continue to survive is computed if the nodes were to continue on their

current paths. The likelihood that the link will survive after factoring in change of direction

produces a metric for link availability. If the three successive readings did not come from

a node travelling in a straight line at a constant speed, it is possible for the calculations to

attempt to take the square root of a negative number in which case no further calculations

and predictions can be made. Such a scenario was not developed as part of the model.

Both of these models of link availability rely on the knowledge of both speed and direction

of the mobile nodes. Another aspect of these and many models is the reliance on the

assumption of a specific statistical distribution of the mobility patterns of the nodes. As

we will see in Section 4.1, our proposed multicast protocol, RoMR, decouples itself from the

dependency of a particular distribution and focuses on the most likely area to be covered by
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a node.

2.4 MULTICAST TREES

In order to successfully deliver packets to the group of receivers in a multicast group, routes

between the sender and the recipients need to be established. This set of paths forms a

multicast tree.

Definition 1 Given a set of nodes N and edges E forming a graph G = (N, E), and a subset

of the nodes Z ⊆ N , a multicast tree T is a tree subgraph of graph G such that T spans the

nodes in Z.

2.4.1 Shortest Path Trees and Steiner Trees

Efficiency is a major concern of multicasting so before proceeding with the descriptions of the

multicast protocols, we will first examine various approaches to creating efficient multicast

trees. A naive approach to multicasting is for each source node to send a separate message

to each receiver in the group of receivers. This can introduce significant overhead traffic in

the network and a delay of packet delivery as seen in the example in Section 1.1. A better

approach is to construct a tree structure as the basis of the communication distribution

system with the source node as the root of the tree and receivers attached to the source

using intermediate nodes as duplicators and relay points. Only one copy of each data packet

is sent along any branch of the tree. Designated intermediate nodes duplicate the message

and send a copy to each of its children in the tree. The message is eventually delivered to

each of the receivers in the multicast group. The tree’s structure depends on the objective

of the particular multicasting scheme. In one approach the cost of each of the paths from

sender to receiver is minimized producing a shortest-path multicast tree where the cost is

the number of hops. Another approach minimizes the total cost of all of the links in the

tree, thus reducing the use of network resources. The latter approach produces a Steiner

tree. Both approaches assume the topology of the network is known. Figure 5(a) shows an

example of a shortest-path tree and Figure 5(b) shows a Steiner tree for the same set of
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sender and receivers. In both cases we assume that all links have equal costs and that the

costs associated with the links are additive.

(a) (b)

source node

receiver node

Figure 5: Shortest Path Tree vs. Steiner Tree

A minimal cost spanning tree of the network serves as a distribution tree for broadcasting

packets throughout the network. A minimal cost spanning tree that spans all of the n nodes

in a network using a subset of the E edges can be computed in O(E ·log n) time. Thus we see

that broadcast communications can be efficiently implemented while optimizing total cost.

Can we use the minimal spanning tree in the formation of a multicast tree? Constructing

a minimal cost tree and removing branches to nodes that are not members of the multicast

group does not necessarily produce an optimal multicast tree, though. For example, in

Figure 6(a) a minimal cost spanning tree has been computed and is displayed by the thick

lines. In Figure 6(b) the links that are not part of a path to a destination node have been

removed. The remaining path from source to destination uses multiple links whereas the

optimal tree that joins the source to the destination is simply the one hop link between the

two nodes.

Multicasting methods may use Steiner trees as the underlying distribution network as

mentioned previously. Steiner tree algorithms optimize the total cost to connect a subset

of the nodes in a graph by utilizing additional nodes as relay nodes. These relay nodes are

referred to as Steiner nodes.
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source node

destination node

(a) (b)

Figure 6: Pruned Minimal Cost Spanning Tree

Definition 2 Given a graph G = (N, E), a subset of the nodes Z ⊆ N , and a cost function

c : E 7→ R on the edges of G then a Steiner Tree is a subgraph of G with minimal cost

connecting the vertices of Z [21].

The problem of constructing a Steiner tree to optimize cost is more complex than finding

shortest path trees or minimal cost spanning trees since only a subset of the nodes are to

be connected. Since the problem is NP-complete the heuristics that create approximations

of the Steiner tree in polynomial time are very important. Steiner tree problems have been

the subject of much mathematical research with the goal being to find polynomial time

algorithms that produce trees with costs that approach the cost of the optimal Steiner tree.

The algorithms have reduced the cost of the trees produced from twice the optimal tree in

1980 [51] to 1.55 times the optimal tree in 2000 [45]. In order to use Steiner tree algorithms in

realtime calculations of multicast trees, the runtime of the algorithm is extremely important.

Unfortunately, in many cases the runtime increases as the Steiner ratio decreases to the point

that the algorithms are not suitable for use in forming multicast trees in real-time computer

networks due to the amount of preprocessing of topology information that is required. Refer

to [55] for a survey of Steiner tree algorithms.

Most of the Steiner tree algorithms assume the graph has undirected edges which would

correspond to networks having bidirectional links. A version of the Steiner tree problem exists

for directed graphs corresponding to a network with unidirectional links. The directed version

is also NP-complete. The asymmetry of the links increases the complexity of finding near-
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optimal solutions. In fact, the existence of approximation algorithms that have a constant

Steiner ratio for arbitrary directed graphs is highly unlikely [42].

The Steiner tree problem described above assumes that the group of nodes Z is known

at the time of tree creation and does not vary. Another version of this problem is known

as the dynamic Steiner tree problem. A sequence of join and leave requests {r0, r1, ...rk}
represent the events of nodes being added to or removed from the multicast group. Let Zi

be the multicast group after the ith request.

Definition 3 The dynamic Steiner tree problem: Given an undirected graph G = (N, E),

a sequence of requests R, a cost function c : E 7→ R on the edges of G at the time of the ith

request, find a sequence of trees Ti each of which spans all the nodes in Zi with optimal total

cost [22].

Any Steiner tree heuristic can be applied to the dynamic Steiner tree problem if the

tree is recalculated after each change in group membership. Such an approach may be

undesirable if the requests arrive faster than the new trees can be distributed to the nodes

in the multicast tree or if the cost of distributing new trees is high. An alternative is to use

a nonrearrangeable heuristic. Nonrearrangeable methods change the existing multicast tree

by only appending links in order to process an add request and by only deleting links in

response to a remove request.

2.4.2 Steiner Tree Algorithms

In this section we examine various Steiner tree algorithms that have been proposed to create

a multicast distribution tree in computer networks. (See Figure 7.) As stated previously,

Steiner trees attempt to optimize the aggregation of some metric associated with the tree.

Usually the total cost of the tree is minimized. The algorithms we examine in this section

can be categorized as either offline or online. Offline algorithms are those in which the set of

multicast nodes is known at the time of the creation of the tree and do not change. Online

algorithms add and remove multicast nodes from the tree as the nodes join and depart from

the group during the group’s session. Offline algorithms address the Steiner tree problem

while online algorithms apply to the dynamic Steiner tree problem.
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Steiner Tree Algorithms
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Figure 7: Steiner Tree Algorithms

2.4.2.1 Offline Single Metric Heuristics Examples of offline heuristics that find ap-

proximations to Steiner trees based on a single metric include the Greedy Heuristic (GH),

the Shortest Path Heuristic (SPH), the Distance Network Heuristic (DNH), the Average

Distance Heuristic (ADH), the Selective Closest Terminal First algorithm (SCTF), and an

algorithm proposed by Kou, Markowsky, and Berman (KMB). The Greedy Heuristic [53]

starts with a randomly selected multicast node as a single node tree and adds the multicast

nodes one at a time in random order using the shortest path based on the metric being

used from any node in the current tree to the node that is being added. The Shortest Path

Heuristic (SPH) is similar to the Greedy Heuristic, but adds the multicast nodes in ascending

order of distance to any node in the current tree. The Distance Network Heuristic (DNH)

[28] is similar to SPH, but adds the multicast nodes using the shortest path from any one
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of the multicast group members (as opposed to any node) in the current tree to the node

being added. The Average Distance Heuristic (ADH) [43] iteratively finds the node that is

most central to a set of subtrees and joins the two closest trees to that central node using

the shortest paths from the central node to each of the two trees. Initially single node trees

are created from the set of multicast nodes. Any of these could be used in our solution to

the single-source multicast problem.

The Selective Closest Terminal First algorithm (SCTF) [42] is an algorithm designed

for single-metric directed graphs that is very similar to SPH. A parameter k specifies which

of the nodes in the current multicast tree to consider when finding the node closest to the

tree. A low-value of k decreases the running time, but increases the total cost of the tree.

Since the problem at hand specifically calls for the minimization of the tree, SCTF is not

considered for use with RoMR.

Many of the algorithms that result in lower Steiner ratios start with the formation of

a complete graph based on the network configuration. The KMB [48]algorithm is one such

algorithm. It is composed of five steps:

Given a graph G = (N,E),

1. Create a complete graph G′ = (Z, E ′) with the multicast nodes Z ⊆ N such that for

every pair of nodes u and v in Z, the edge (u, v) in G′ has cost equal to the cost of the

shortest path between u and v in G.

2. Find a minimum spanning tree T ′ of G′.

3. Expand each edge (u, v) of T ′ with the corresponding links in the shortest path between

u and v in G, giving G′′.

4. Find the minimum spanning tree T ′′ of G′′.

5. Prune T ′′ so that all the leaves are in Z.

The algorithms that use an approach similar to KMB have not been used in multicasting

protocols as of yet.

The Shortest Path Tree (SPT) [12] is created as the union of all the shortest paths from

the source node to each of the receiver nodes. This minimizes the individual paths from

sender to each receiver, but doesn’t attempt to use common links to reduce the total cost of
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the tree further. Dijkstra’s shortest path algorithm [10] is an efficient single-source shortest-

paths algorithm. Given one source node and n nodes in a network, the algorithm computes

shortest paths from the source node to each of the nodes in the network in O(n2) time. Using

a Fibonacci heap implementation of the priority queue in the algorithm can further reduce

this to O(n · log n + E) where E is the number of edges in the network.

SPT can be used in both offline and online computations since the shortest path from

sender s to receiver r does not depend on the existence of paths from s to the other receivers.

Either cost or delay may be used as the metric of interest. Many of the current multicasting

protocols implement some form of SPT, despite the fact that the union of shortest paths

may use more network resources than other approximations to the optimal Steiner tree.

In this section we have examined offline heuristics designed for producing trees based on

static groups. These may also be applied to dynamic groups if the tree is to be recalculated

as a result of a change in group membership. In the next section we look at online heuristics

to deal with dynamic groups.

2.4.2.2 Online Single Metric Heuristics. The set of online heuristics address the

dynamic Steiner tree problem. Online heuristics based on a single metric include the On-

line Greedy Heuristic (OGH), A Rearrangeable Inexpensive Edge-based Steiner algorithm

(ARIES), and the Edge-Bounded Algorithm (EBA). The Online Greedy Heuristic [53], also

referred to as the Dynamic Greedy Algorithm (DGA) [22], is the dynamic version of GH

using a nonrearrangeable heuristic. When a node joins the group the shortest path from the

tree to the node is added to the tree. When a node leaves the group the node is marked as a

non-multicast node. If the departing node is a leaf node then the branches of the path to it

that are not included in other paths are deleted from the tree. If the requests are restricted

to join requests then the ratio of the cost of the trees formed by OGH to the cost of the

optimal Steiner trees is less than or equal to dlg(n)e where n is the number of leaf nodes

that were added to the tree. If both join and remove requests are considered, the ratio is

unbounded[22]. OGH is implemented in the some of the multicast protocols in section 2.5.

ARIES [5] in particular is a multicast algorithm that modifies a region of the multicast tree

when the number of join and leave requests reaches a threshold.
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The Edge-Bounded Algorithm (EBA) [22] is a rearrangeable heuristic which creates a

complete graph G′ from the original graph G as in the first step of KMB. The shortest

path between nodes u and v in G is represented as a single edge between u and v in G′. A

minimum spanning tree T ′ of G′ is computed and branches leading to non-source and non-

destination nodes are pruned from the tree. For each join request, EBA finds the least-cost

path from the new node v to the closest node u in the minimum spanning tree. If the cost

of the maximum-cost edge in the path from v to any node u in T ′ is not more than α times

the cost of edge (u, v) in G′ the path is added to T ′ . If the path under consideration is more

than the bound then u and v are connected via the least-cost path. For each leave request,

the degree of the node is examined. If the degree is one then the node and branch between it

and the attachment point to the tree are removed from the tree. If the degree of the leaving

node is three or more then the node is marked for deletion. If the node has degree two, then

both of the edges incident to the node are removed from the tree creating two unconnected

subtrees. The two subtrees are connected with the least-cost path between the two trees.

One of the components in RoMR creates and maintains multicast trees. Any of the

offline or online single metric heuristics discussed could be used in the construction of a

single multicast tree. An online version of SPH, similar to OGH, is implemented in the

current version of RoMR.

2.4.2.3 Heuristics With Constraints In all Steiner trees the total cost is optimized,

but in some cases the final tree may be subject to additional constraints. For example, each

path from sender to receiver may be required to meet a certain end-to-end delay or each path

may have a minimum bandwidth requirement associated with it. The Bounded Shortest Mul-

ticast Algorithm (BSMA) [57], the QoS Dependent Multicast Routing (QDMR) algorithm

[16] , and the delay-conStrained, Low-cost, Inexpensive Multicasting (SLIM) heuristic [3]

are three examples of offline algorithms that create delay-bounded Steiner trees. The maxi-

mum delay value may be common to the group or each receiver may specify a delay bound.

B-G[20] and SELDOM [3] are examples of online constrained Steiner tree algorithms that

create multicast trees. Since the project does not incorporate quality-of-service constraints

these algorithms are not discussed here. The reader is invited to read the cited papers for
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further information.

2.5 MULTICAST PROTOCOLS

In this section we consider a variety of multicast routing protocols designed for use in wired

and wireless networks. The protocols are based on a range of methods from using flooding

techniques to disseminating the packets based on an optimal tree structure. One of two types

of trees are generally implemented - source-based shortest path trees (see SPT in Section

2.4.2.1) or shared trees. A new approach using a mesh falls between the two extremes of

flooding and optimal trees. We will discuss the generalized techniques and then cover the

multicasting protocols in both wired and wireless environments.

2.5.1 General techniques

The original techniques for multicasting were developed for wired networks and thus refer

to routers, edge-routers, and subnets. These same ideas can be applied to ad-hoc networks

where nodes take on the responsibilities of routers.

Some protocols use a general technique known as “broadcast-and-prune” in which data

packets are initially broadcast to all routers in the network, thus they are termed “data-

driven” [32]. If an edge router does not have any group members in its subnet after receiving

the broadcast data, it will request to be pruned from the multicast tree. A router that

receives pruning requests on all links other than the one towards the source sends its own

pruning request upstream. A modification of broadcast-and-prune requires nodes to keep

track of individual downstream links and to forward group data only over the links that lead

to receivers. After a specified time (minutes to hours) the pruning is no longer in effect and

the process of broadcasting and pruning is repeated. Broadcast-and-prune methods work

best on dense networks since the default action is to forward a packet and to only quit

forwarding when an explicit prune message is received on that link. The advantage of such

a technique is that shortest path trees are formed from each source to each receiver. The

disadvantages are the broadcasting consumes bandwidth in areas of the network that may
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not have any receivers and the method requires that routers not on the multicast tree keep

track of pruned branches emanating from them. Another disadvantage is that routers that

are on the multicast tree need to keep entries in the routing tables for each source in the

group so the approach does not scale well as more senders are added to the group.

Other protocols are based on the concept of shared trees which have a central node [32].

The sources send data to the central point which in turn send it to the receivers. Unlike the

broadcast-and-prune approach receivers must explicitly join a shared tree prior to receiving

data. The advantages are that non-tree nodes do not need to maintain any state information

about the group and that member nodes only need to keep track of information pertaining to

the entire group as opposed to each sender in the group. A disadvantage is that the central

node is a single point of failure for the entire group. Another disadvantage is that the path

from sender to a receiver may not be optimal.

When resources are plentiful or the time required to calculate more efficient trees is

unacceptable, flooding is a technique that can be used to disperse messages to the receivers.

The sender sends a copy of the message out on every available channel. Each node receives

a copy and forwards it to its neighbors other than the source of the previous hop. A node

caches identifying information regarding the packets received, thus recognizing duplicate

packets and discards any repeat packets that it receives. Flooding is advocated in [19] as the

preferred forwarding method in highly mobile fast-moving ad-hoc networks to increase the

chance that a node receives a packet. Some multicast routing protocols are based on limited

flooding.

2.5.2 Multicasting in Wired Networks

The generalized multicast routing techniques discussed above are used in specific protocols for

IP-based wired networks. The main protocols are Distance-Vector Multicast Routing Proto-

col (DVMRP), Protocol-Independent Multicast-Dense Mode (PIM-DM), Multicast operation

of Open-Shortest Path First (MOSPF), Core-Based Trees (CBT), and Protocol-Independent

Multicast-Sparse Mode (PIM-SM). (See Figure 8.) The first three rely on source-based trees

while the last two use shared trees. CBT is designed for use with group communication,
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where nodes can act as both senders and receivers. Networking textbooks such [32] provide

excellent coverage of these protocols.

2.5.3 Multicasting in Wireless Ad-Hoc Networks

Multicast algorithms designed for wired networks do not adequately deal with problems that

arise due to a node’s mobility or to the less reliable transmission medium. Even though the

methods for multicasting over wired networks described in the previous section allow a node

to join and leave a group, they assume that a node that remains in the tree will not move

and cause the topology of the network to change. Although some of the wired protocols can

deal with link or node failures as rare events, they would not be able to handle the increased

frequency of failures found in a wireless ad-hoc network in an efficient manner.

In this section we will examine a number of multicast protocols that have been designed

specifically to address the characteristics of a wireless ad-hoc network. Some are based

on source-rooted trees; others on shared trees. MAODV is an example of the former and

AMRoute, AMRIS, and G-S are examples of the latter. Several of the latest proposals

including MCEDAR, CAMP, and ODMRP, are based on meshes to increase the protocols’

robustness. (See Figure 8.)

2.5.3.1 MAODV Multicast operation of AODV (MAODV) [46] is not an extension of

AODV, but is considered to be an integral part of AODV which can perform unicasting,

multicasting and broadcasting.

The process of joining a multicast group is similar to discovering a route to another

node when sending a unicast message. The node wishing to join the group sends a route

request message with the join flag set to the group leader in a unicast message if the leader

is known. If the node does not know of a route to the leader or does not know the identity of

the leader the request is broadcast. All nodes that receive the request record which node sent

the request and on which link. If the node receiving the request is already part of the tree,

it sends a reply message to the requester via unicast; otherwise it rebroadcasts the request

to its neighbors. After an attachment node to the tree has sent the reply, each node that
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forwards the reply message towards the requester updates the message. By the time it is

received by the requester, the reply message indicates the number of hops from the requester

to the node on the multicast tree. Each node that relays the reply message also records the

next hop towards the multicast tree. The requester will wait an amount of time, gathering

one or more reply messages and will choose the route with the fewest hops to the tree. Once

the requester’s next hop to the tree has been selected the requester activates the branch to

the tree by sending a unicast activate message to the next hop neighbor which is forwarded

along the path to the attachment point on the tree. The nodes that receive the activation

message become part of the multicast tree. Sequence numbers in messages allow nodes to

ignore outdated information and thus to avoid the formation of loops.

If a node does not receive any reply, it becomes the group leader. A group leader

is responsible for maintaining the group’s sequence number and periodically broadcasting

group hello messages throughout the network. The information disseminated includes the

group address and the latest sequence number for each group for which the node is leader

and is recorded by all nodes in the network.

When a leaf node leaves the multicast group the node sends a prune message to its parent

node on the multicast tree which removes the link between the two nodes from its routing

table for the multicast group. The prune message continues upstream until it arrives at a

node that is either a member of the group or one that does not become a leaf node as a result

of the pruning. The failure of a link on the multicast tree causes the downstream node to

send a join request via an expanding ring search in order to find a node that is on the tree.

When the network becomes partitioned a new group leader is selected for the section

without a leader. At a later time two nodes from different trees for the same group may

be within transmission range of each other. The node in the group having the leader with

the lower IP address initiates reconnecting the trees after receiving permission to do so from

its leader. To reconnect, the node sends a route request to the other group leader with a

flag to indicate this is a repair. When the node receives a route reply the two trees become

reconnected with the node sending the reply message as group leader.
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2.5.3.2 AMRIS Ad Hoc Multicasting Routing protocol utilizing Increasing ID NumberS

(AMRIS) [56] is based on a shared tree and is geared towards long-lived multicasting sessions

so that route reconstruction is emphasized over route discovery. Each node is assigned an

ID number that increases with the number of hops from the core, usually the first source

node. In order to reduce the number of join requests that propagate through the network,

nodes only forward requests to lower numbered nodes. Each node on the tree periodically

sends a one-hop broadcast containing its ID number as well as the ID numbers for its parent

and children. When a link breaks, the higher numbered node (downstream from the core) is

responsible for recovery actions. If it knows of a neighboring node that is a potential parent,

it will send a join request to that potential parent node, otherwise it will broadcast a join

request using an expanding ring search technique. If the upstream node of the broken link

has no other downstream children on the tree then it will request to be pruned from the tree.

2.5.3.3 AMRoute Ad-hoc Multicasting Routing protocol (AMRoute) is another proto-

col based on the idea of a shared tree, but only the senders and receivers are nodes of the tree;

there are no relay nodes. This is accomplished through the use of IP-in-IP unicast tunnels.

If a tree contains a virtual link between node A and node B AMRoute uses a unicast route

between the two nodes. If the path from A to B changes, the multicast tree is not affected

as long as some path between the two nodes exists. Dynamically chosen core nodes detect

new members and manage the tree but they are not central data distribution points as in

other shared tree protocols.

Tree creation is a two-step process. Each core node sends out a join request message to

discover a close member node using an expanding ring search. (Initially each node is a core of

its own single node tree.) When another member node is discovered, the meshes are merged

and one core is designated as the unique core of the new structure. Once the mesh has been

formed, the core sends out a tree creation message to each of the group members that are

adjacent to the core by a virtual link. Group members that receive the message remember

the incoming link and forward the tree creation message to other virtually adjacent group

members. Transient loops can be formed in the tree as a result of node mobility, but are

eliminated once the network becomes less dynamic.
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Several restrictions are imposed on tree nodes - a node is not allowed to graft itself to its

own logical core, a node is only allowed to have a limited number of tree links, and a node’s

designation as a core can be changed due to characteristics of the multicast tree or an expired

time period. Disadvantages of the scheme are reduced efficiency since the intermediate nodes

between A and B do not participate in packet replication and an increase in the delay of the

receipt of a packet, although it is no more than twice the delay in a protocol in which the

unicast tunnels are not used.

2.5.3.4 Gupta and Srimani (G-S) Gupta and Srimani describe a protocol for mobile

multi-hop radio networks [17] based on the CBT protocol that increases the reliability of

a multicast message arriving at each of the intended receivers. When a node becomes

disconnected from the multicast tree, it sends a REJOIN message downstream along the old

tree branches. A REJOIN message causes a node to destroy its current routing information

for the multicast tree and to have member nodes send a join request to the core. The use

of the old path prevents loops from occurring. While the node is in the process of becoming

reattached to the tree, any messages that are sent to any of the multicast nodes in the

disconnected fragment are flooded into a selective area. The calculation of the flooding area

guarantees that the message will be delivered to the destinations if possible.

2.5.3.5 ODMRP On-Demand Multicast Routing Protocol (ODMRP) [4] is a multicas-

ting scheme which uses a mesh over which packets are forwarded through the use of scoped

flooding. Moreover, since ODMRP builds its own link state tables on demand it can function

as a unicast routing protocol as well as a multicast protocol without the need to maintain

global link state information.

As found in many of the multicast protocols, ODMRP has a request phase and a reply

phase. A source periodically broadcasts a join request throughout the network. When a join

request is first received by a non-member node, it stores the incoming link as the link from

the source and rebroadcasts the packet. When a node that wishes to become a member of the

group receives the join request, it updates its own join table and periodically broadcasts it

to its neighbors. If a node that receives a join table is listed as one of the entries, it becomes
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a forwarding node, updates its own table and sends it to its neighbors, thus propagating the

multicast group link state information. The method of joining a group produces shortest

paths from each source to each receiver. The intermediate nodes simply flood a non-cached

data packet if the node is on any one of these paths. The flooding increases the robustness

since a node that is mobile has a better chance of receiving one of the redundant data packets.

No explicit leave messages are needed since all routes are kept as soft state. If a node

wishes to leave the group it simply does not send join tables for that group. If a forwarding

node does not receive a join table within a certain time interval it will become a non-

forwarding node. If a source node wants to leave the group it quits sending out join request

packets. The timeout periods must be carefully determined in order to avoid excess flooding.

An extension of ODMRP incorporates predictions based on traffic patterns gathered from

a global positioning system (GPS) to determine how long a route is good and to compute

the timeout values for the soft state and the frequency of join request broadcasts.

2.5.3.6 CAMP Core-Assisted Mesh Protocol (CAMP) [14][31] creates a mesh of shared

trees and shortest path trees. It relies on a distance vector unicast routing protocol such as

WRP to determine paths to cores and to source nodes. Core nodes may be designated at the

time the multicast group is set up or they may be dynamically chosen. The former assumes

that a node can find out initial group information from a service similar to a domain name

server (DNS). The latter requires the core to periodically broadcast its own advertisement

messages.

A node that wishes to join a group sends a join message towards its nearest core node. If

a node that is a group member receives the join message on its way to the core, the member

node returns an acknowledgement to the new member. If the join message gets all the way

to the core, then the core returns the acknowledgement. Once a node can be attached to

the mesh, it announces this fact to its neighbors. A neighbor to a node on the mesh records

which neighbors are on the mesh in case it needs to attach itself later. This ploy reduces the

number of join/ack message pairs in the network. Another technique to reduce traffic is to

allow nodes to join the group as a sender-only node in which case data packets from other

sources are not forwarded to the node.

34



Intermediate and destination nodes accept a data packet from any incoming link; receipt

of a packet is not restricted to a particular incoming link as in other multicast tree schemes.

This feature allows a node to periodically check to see if the unicast route to a source

that sent a cached data packet is shorter than the path currently used. If so, it sends a

join message towards the source, eventually resulting in a reverse shortest path route to

the sender. During the time the new route is being constructed the data continues to be

forwarded along the existing route. Depending on the time out intervals, the node may

receive the data along two different paths increasing the robustness of the multicast.

2.5.3.7 MCEDAR Multicast Core Extraction Distributed Ad hoc Routing (MCEDAR)

[50] is a multicast version of the unicast routing protocol CEDAR. MCEDAR uses a subset

of the core nodes established by CEDAR for group communication. A “robustness factor”

controls the number of core neighbors a core may have in a multicast group’s mesh. The

group’s core nodes perform multicast tree operations on behalf of the nodes in their domain.

Communications pertinent to the multicast group are efficiently broadcast over the mesh.

Each core node implicitly determines a source-based tree from itself to the other core nodes

over the mesh established for the group as a result of the core broadcasts. Data forwarding

can be done over these trees, but an optimization is available to reduce the congestion on

the mesh and the length of the paths. In the optimization each core node determines a

source-based tree from the nodes in its domain to those in the neighboring downstream

domains.

2.5.3.8 Comparisons The multicast protocols discussed in this section can be compared

based on their reliance on a unicast protocol, the primary structure used for distributing data,

the amount of flooding that is done, and the amount of data redundancy provided. See Table

1.

What are the shortcomings of these multicast protocols? MAODV and AMRIS react

to link failures by discovering a new route to the multicast tree. Data may be lost during

the discovery period. AMRoute depends on a unicast protocol to forward data, so if the

underlying unicast method finds a route on-demand, similar packet loss will occur. G-S
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Table 1: Comparison of Wireless Multicast Protocols

MAODV AMRIS AMRoute G-S ODMRP

Does it need a unicast
protocol? If so, which one?

yes,
AODV

no yes, any
(to make
tunnels)

yes, any no

Primary Structure source
trees

shared
tree
rooted at
first
sender

shared
tree of
virtual
links

shared
tree

mesh of
shortest
paths

Is an advertisement
periodically flooded through
net? If so, from whom?

yes,
group
leader

no yes, each
core

yes, the
core

yes, each
sender

Does a member receive
(nonlooped) redundant
data?

no no no yes,
during
repair

yes
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Continuation of Table 1 CAMP MCEDAR MOLSR RoMR

Does it need a unicast
protocol? If so, which one?

yes, any
distance
vector

yes,
CEDAR

yes, OLSR yes, any
link-state
protocol

Primary Structure mesh of
shortest
paths

mesh of
cores

MPRs multiple
trees

Is an advertisement
periodically flooded through
net? If so, from whom?

yes, new
cores

no yes, the
source

no

Does a member receive
(nonlooped) redundant
data?

yes, at
times

no yes yes

reacts to a link failure that partitions the core-based tree by selective flooding so the data

will arrive at the disconnected nodes, but the use of the shared tree may cause more traffic

overall for the group. ODMRP uses the concept of a forwarding group when links fail which

results in data redundancy, but otherwise relies on shortest paths between members. CAMP

converges to shortest paths between members so if an important link fails and another path

is not active, it would have to wait for the unicast protocol to determine the new route.

The existing proposed multicast protocols react to a link failure after it occurs. None

attempt to predict link availability and provide reliability using data redundancy based on

the prediction before the link fails. Our solution to the multicasting problem in mobile ad-

hoc networks uses a proactive approach to tree creation and maintenance in order to reduce

the overhead encountered at the time of link failures without sacrificing optimality of the tree

structure. Even though we construct multiple trees, those trees are based on approximations

of optimal trees in order to counteract the effect of allocating resources to multiple trees. An

additional improvement over the current protocols is the specification of system parameters

that can be fine-tuned to specific environments and network conditions.
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In this chapter we have examined background material dealing with routing protocols in

general and related work concerned with algorithms for tree formation as well as particular

unicast and multicast protocols appropriate for use in mobile ad hoc networks. In the next

chapter we propose RoMR with variations as our solution to the multicasting problem. It

incorporates the use of a proactive link-state unicast protocol and multiple Steiner tree

approximations in a novel multicasting protocol.
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3.0 ROBUST MULTICAST ROUTING (ROMR) ARCHITECTURE

The responsibilities associated with network communications are commonly viewed as a set of

layers with the topmost layer dealing with communications between applications running on a

different hosts down to the bottom layer dealing with the details of how to put the individual

bits out onto the communications link. The first section of this chapter examines the general

layering model and how adding multicasting capabilities to the networking communications

affects several of these layers. The rest of the chapter discusses the architecture of the Robust

Multicast Routing protocol (RoMR) we developed to address the multicasting problem.

3.1 NETWORK COMMUNICATIONS FRAMEWORK

Early in the history of networking the International Organization for Standardization (ISO)

developed a 7-Layer Reference Model to describe the tasks and responsibilities needed in

network communications [9]. Here we examine the well known historic seven layer model

and show how multicasting affects various layers.

3.1.1 A Generalized Layered Framework

The seven layers of the ISO Reference Model are the application layer, the presentation

layer, the session layer, the transport layer, the network layer , the data link layer, and the

physical layer as shown in Figure 9.

• Application Layer: The topmost layer of the model deals with applications. An applica-

tion layer protocol specifies how an application program on one machine makes a request

to another machine and how the application on the other machine responds.
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Figure 9: ISO 7-Layer Reference Model

• Presentation Layer: The protocols used in the presentation layer specify how to represent

data and how to translate from one computer’s representation to another.

• Session Layer: The session layer lies between the presentation layer and the transport

layer and is responsible for maintaining aspects of communication that pertain to the

entire session from the time of establishment until the session is over.

• Transport Layer: Below the session layer is the transport layer which is responsible for

end-to-end delivery of data and delivers packets to the upper layers. Today two pro-

tocols are commonly used at the transport layer for communications over the Internet:

User Datagram Protocol(UDP) or Transmission Control Protocol (TCP). TCP provides

error-free delivery of data desired in unicast communications by using a system of ac-

knowledgements. If a packet is not received correctly, an acknowledgement is not received

by the sender and the packet is sent again. UDP, on the other hand, does not incorporate

acknowledgements. If a packet is in error or is lost UDP does not cause the packet to be

resent.

• Network Layer: Below the transport layer is the network layer which is responsible for

routing packets. A node that receives a packet must be able to determine if the packet

needs to be forwarded or not. This is done by consulting the routing tables maintained

by network layer protocols. The Internet Protocol (IP) provides this service in unicast

communications over the Internet.
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• Data Link Layer: The data link layer is responsible for the transport of data over a

particular link. The data link layer has a sublayer called the Medium Access Control

(MAC) sublayer which is responsible for determining who goes next on a multiaccess

channel.

• Physical Layer: The physical layer is responsible for putting the individual bits onto the

link using methods appropriate to the actual media used.

3.1.2 Multicasting and the Layered Framework

Multicast communication is the sending of data from a single sender to a set of recipients or

from multiple senders to a set of recipients. Multicast networking provides support in the

network so that multicast communication is able to occur. Let us consider multicasting in

relation to the layers of the 7-layer model above.

• Multicasting and the Application Layer: Multicast applications are the applications that

rely on the multicast network services to establish and maintain multicast communica-

tion. Multicast applications send data to members of a multicast group, which is a set of

nodes designated by a common group address, cooperating to achieve a common goal.

• Multicasting and the Session Layer: In terms of multicast communications, one of the

responsibilities of the session layer is to keep track of the multicast groups. It must

inform other layers of changes in group membership so that appropriate actions can be

taken.

• Multicasting and the Transport Layer: Many unicast applications that run on top of IP

use TCP as the transport protocol due to the reliability of TCP, but TCP can introduce

problems when used with multicast communications. Suppose a subset of the receivers

do not receive the packet. The sender under TCP would need to resend the packet

either to the entire group or to the individual members that did not receive it. If only

a few receivers need the copy sending it to all receivers could create network congestion

problems. The acknowledgements that are required to determine which nodes received

the packet and which did not would also add to the network congestion. Time and

delays also come into play when considering TCP for multicast. Should the need to
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resend to some of the receivers cause a delay in the transmission to the nodes which

successfully received the packet? These problems show that TCP is not adequate to

support multicasting. As a result multicast applications usually run on top of UDP,

although a few run on top of IP directly. If multicasting is not supported by any of

the protocols in the lower layers of the protocol stack, then the application will have to

provide its own set of routines for multicast communications essentially creating its own

multicast transport layer.

• Multicasting and the Network Layer: A message directed to a multicast group is ad-

dressed with a group address instead of an individual host’s address so the network layer

must be modified to work with these group addresses.

• Multicasting and the Data Link Layer: Two data link layer protocols, frame relay and

Asynchronous Transfer Mode (ATM), have been developed to support multicasting in

wired networks. The problem with data link layer multicast protocols is that the mul-

ticast groups must be set up by the network provider and changes to the groups result

in a reconfiguration of the network. Such data link layer multicast protocols are clearly

not appropriate for use in mobile ad hoc networks.

• Multicasting and the Physical Layer: The physical layer is not affected by whether or

not the communications is point-to-point unicast or if it is multicast.

In section 3.2.4 we will see which of these layers are modified by proposed multicasting

protocol, RoMR.

3.1.3 Group Management

In multicast communications the concept of the multicast group is very important. These

groups may be semi-permanent or dynamic [34] therefore we need to establish a set of

primitives to create, dissolve, and manage the group allowing nodes to join or leave a group

as desired.

status=FormGroup(grpId, grpStruct, grpType)

status=TerminateGroup(grpId, grpOwnerId)

status=JoinGroup(grpId, mbrName, ntfyList, timeout)
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status=LeaveGroup(grpId, mbrName, ntfyList)

Sometimes a multicast group manager has the additional capabilities to invite a member

to join a group or to limit group membership by excluding certain nodes from joining the

group. In this case, the command set would be extended with the following additions to the

commands list above.

status=InviteToGroup(grpId, mbrName, grpOwnrName, ntfyList)

status=ExcludeFromGroup(grpId, mbrName, ntfyList)

The arguments grpId, mbrName and grpOwnr identify the name of the group, the

name of its members, and the name of the owner. A group is created using the prim-

itive FormGroup(). Upon its creation, the group is owned by its creator who becomes

automatically a member of the group.

The grpStruct argument determines the relationship among the members of the group. In

a coordinated group, the owner of the group has a special privilege in accepting new members.

In a peer group, however, all processes are treated equally. The grpType determines whether

the group is closed, or open. In a closed group communications is restricted to only the

members of the group. In an open group, non-members may send messages to the members

of the group. The terminate primitive allows the destruction of the group. Only the owner

of the group may execute such a primitive.

The primitives JoinGroup(), and LeaveGroup() allow a process to become a member of

the group, or to leave the group. For some join methods, the knowledge of the group name

may suffice to become a member of the group. For others, the owner of the group or an

election process may be required before the process candidate can become a member of the

group.

The last primitive ExcludeFromGroup() causes the membership of a group member to

be terminated. For some applications, the right to exclude a member is only granted to

the owner. For others, a vote must be taken before a member is excluded. The argument

ntfyList contains a list of group members that need to be notified.

Certain information must be maintained to manage the group. This information includes

group names, group members, and incoming messages.

In future chapters we shall see that RoMR implements the first four of these primitives
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in a closed group setting.

3.2 OVERVIEW OF ROMR

The problems associated with multicasting in mobile ad hoc networks were introduced in

Chapter 1. The general multicasting problem was then cast as a problem to find multiple

sets of multicasting trees. The objective of the research problem at hand is to develop a

multicasting scheme with proactive and reactive features which emphasizes reliability and

efficiency to use in routing data packets from the sender to the receivers in a multicast group

of a mobile ad hoc network. Since an optimum solution to the multicasting problem is NP-

hard, due to the Steiner tree problem, the multicasting problem is difficult to solve in a static

wired environment and even more so in a dynamic mobile ad hoc network. Instead of seeking

optimal solutions we will develop heuristics to achieve the objective of reliably delivering

packets while meeting the constraints to avoid network congestion due to redundant packets

as closely as possible. In the remainder of this chapter we describe the Robust Multicast

Routing protocol (RoMR) as a set of heuristics for the problem.

3.2.1 RoMR Approach

The main goals of RoMR are to deliver packets to the recipients in a reliable and efficient

manner. First let us address the reliability factor. Instead of creating a single dynamic

multicast tree over which all of the packets from the source are routed as found in many of

the multicast protocols reviewed in Section 2.5, RoMR creates multiple multicast trees. This

approach provides alternate paths for packets to travel in the event that some of the paths

become disconnected. Packets travel down each one of the trees in the set of trees increasing

the likelihood that a receiver receives the packet sent from the sender node as the topology of

the network changes. Another aspect of RoMR which affects reliability in a positive manner

is that it does not wait until all trees become disconnected before it computes a new set.

Rather it tracks the number of trees in the current set of trees that remain connected and

when that number reaches a threshold, new trees are computed and distributed before all
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distribution paths are lost.

The second major goal of RoMR is to deliver the packets reliably without placing an

undue burden on the network. Inefficiency stems from two sources: i) routing may result

in many unnecessary redundant packets and ii) recomputing and distributing the multicast

trees may occur too often. In order to accomplish the subgoal of efficient multicasting, RoMR

incorporates two ideas into its heuristics. First it makes use of an encoding scheme whereby

k packets are encoded as n packets, where n is the number of multicast trees in the current

set of multicast trees. When k = 1 and n is large, the number of extra packets injected

into the network is high producing an n-fold increase in the number of packets travelling in

the network due to multicasting. RoMR attempts to find values of k and n such that the

reliability due to redundancy is high, yet the amount of extra network traffic is not overly

burdensome. Second, RoMR makes the trees based on the reliability of the links in hopes

that the trees will remain intact as long as possible. This second approach to efficiency must

not make the paths from sender to receiver overly long.

The questions that RoMR must answer in an effort to meet the objective and to satisfy

the subgoal as closely as possible are:

• How many trees, n, should be created in a multicast tree set?

• Should links be shared among trees in a tree set? If so, how many should be shared?

• What value of k should be used in the encoding scheme?

• How can the trees be created so that they will remain intact as long as possible while

not introducing overly long paths?

• How can weights be assigned to known links to aid in the computation of the trees?

How many trees need to be created? The actual number of trees created is a function

of the level of reliability specified by the user as well as the topology of the network at the

time of tree creation. An elastic application will specify three values when using RoMR as

its multicast routing protocol: µ, a minimum number of trees to be formed, τ , a reliability

threshold associated with the set of trees, and ρ, the percentage of links that can be reused

from one tree to the next. A value of 0 for ρ would ensure disjoint trees which may be

appropriate in networks with very few or no strongly reliable links. Default values for the
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parameters are used if the application does not specify them.

Should links be shared among trees in a tree set? RoMR shares only those links that are

deemed to be the more reliable links in the set of candidate links at the time of tree creation,

again supporting reliability as well as efficient use of network resources. When constructing

a set of trees, RoMR will reject (100−ρ) percent of the links in the most recently constructed

tree from being candidate links in the other remaining trees in the tree set.

How does RoMR determine the value of k? It starts with an initial value and then

examines the time interval between the formation of the current set of trees and the previous

set. If this is smaller than a given threshold then the recomputation of the trees has occurred

too frequently. As a result the value of k is reduced when possible so that the next tree set

will be recomputed when the number of intact trees reaches this new smaller value. If the

degree of dynamicity of the network remains somewhat constant, this should result in a longer

time interval between tree set computations. This also results in the recipient needing to

receive a smaller fraction of the packets sent along the n trees. Similarly if the time interval

between successive tree computations is extremely long, then the amount of redundancy may

be reduced, which is caused by an increased value of k. Section 5.1.5 provides more detail

in the determination of the value of k.

How can the trees be created without introducing overly long paths? When creating the

trees, we will use a Steiner tree heuristic in which we attach branches to the tree in such a

way to increase its “bushiness” as opposed to its depth when such a choice is available. The

particular algorithm is an enhancement of an online version of the Shortest Path Heuristic

(SPH) mentioned in Section 2.4.2.1. It is guaranteed to have an upper bound of twice the

number of branches as the optimal tree [51] and is easy to implement. The enhancement

addresses the question about overly long paths. The paths that are added to the tree will

maximize the degree of the relay nodes in the multicast tree when multiple choices exist for

the attachment of the next node. This minimizes the number of retransmissions and reduces

the chance for packet collision. More details of the algorithm are given in Section 5.1.3.

How are weights assigned to links? RoMR assigns weights to the known links in the

network to reflect the probability that the link will continue to exist into the next time

frame. The underlying unicast protocol must be slightly modified in order to include these
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weights of links during the exchange of topological information. During the creation of a

single multicast tree within a set of trees these weights are taken into account so that only

links that are likely to remain in existence for the longest time are eligible to be shared

among trees. The method to calculate the weights of the links is another feature unique to

RoMR and is discussed in Section 4.1.

3.2.2 RoMR Framework

3.2.3 Formal Specification of RoMR

Given:

G(t) = (N(t), E(t), W (t)): A time-varying network modelled as a directed graph with

N(t): a set of nodes that comprises the network at time t. It is assumed that all nodes in

the network have the capabilities to receive and forward transmissions so a node is able

to act as a router in a multicast tree as well as a receiver in a multicast group.

E(t): a set of directed edges representing the radio links at time t. If link (u, v) exists then

we assume link (v, u) also exists.

Q: a dynamic set of join and leave requests. Each request is a triplet (node, action, t) to

describe the action of a particular node joining or leaving the set of receivers of a group

at a given time t.

ρ: a percentage of the links that can be reused from one tree in the formation of the next

tree in a set of trees.

τ : a threshold that represents the lowest level of desired reliability of an entire set of trees.

µ: a minimum number of trees to create.

Compute:

• W (t): a set of weights we : E(t) 7→ [0.0, 1.0]. Each link e ∈ E(t) is associated with a

weight we(Ik+1) which corresponds to the probability that link e will continue to exist

over the next time interval Ik+1 given link e existed during time interval Ik.

• a dynamic graph G′(t) =
⋃m

i=1 Mi(t) for group gid of m multicast trees such that

– each tree may have at most ρ percent of its links in common with the successive tree
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– the value of m is based on the topology of the current network, as well as τ and µ.

– the set of trees are adjusted to reflect the group membership changes specified in Q.

– whenever possible, m ≥ µ

– the cumulative weight of G′(t) ≥ τ whenever possible

– the degree of interior nodes of G′(t) is as large as possible given the other constraints

• an encoding method that will encode a group of packets from the source as n packets

(where n = m, the number of multicast trees) such that a receiver that receives a subset

of a given size of the n packets will be able to decode the original source packets.

• a group management scheme that will maintain group membership information and up-

date the multicast trees when a change in membership occurs.

3.2.4 RoMR Architecture

In Section 3.1 we discussed the general 7-layer networking model. In this section we will

examine RoMR’s framework in relation to the general model.

Multicast  Application

Multicast Session

Transport Layer

Network Layer

Data Link Layer

Physical Layer

Group Management

Tree Maintenance

UDP

Multicast Routing

LS Unicast Routing

Link Monitor

Figure 10: RoMR Framework

RoMR has four main components that work together to accomplish the goal under the set

of constraints of the problem. The link component is responsible for monitoring the signal
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strengths of links, calculating weights for the links, and exchanging the link information

with neighbors using the underlying unicast protocol. The tree component is responsible

for the making, distributing, and maintaining the multicast trees, the routing component is

responsible for the routing of packets from other applications to the group members over

the multicast trees, and the membership component is responsible for servicing requests

for nodes to join and leave the group and to maintain the membership lists. The routing

component uses the trees formed in the tree component, the tree component uses the topology

tables maintained by the unicast protocol as well as the list of member nodes kept by

the membership component, and the unicast component includes the weights of the links

determined by the link component during its exchange of topology tables.

3.2.4.1 The Link Component The link component in each node monitors the strength

of the radio signal from neighboring nodes and determines the weights associated with ad-

jacent links. Using values of readings over a time interval the node will determine an area

in which the neighboring node could be located in the near future. The ratio of the over-

lapping area in which the neighbor could possibly hear the transmission from the original

node to that of the entire area of the neighbor’s locus results in a weight in the range [0, 1]

to assign to the link. This will reflect the probability that the link will exist during the next

time interval given that it existed in the most recent time interval. The link component

will work in conjunction with the underlying table-driven link-state unicast protocol to dis-

tribute these values during the exchange of topology tables. The appropriate formulas and

their derivations are given in Section 4.1.

3.2.4.2 The Tree Component RoMR computes multiple multicast trees that may be

interconnected through the sharing of reliable links and then maintains these trees as the

group membership and network topology changes. The idea is to make a set of n possibly

interconnected multicast trees connecting a single source to a set of receivers.

Figure 11 shows an example of a network with a multicast group that is connected by

two interconnected trees with a maximum of two common edges. The large circles represent

members of the multicast group and the small circles represent nodes that are possible relay
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nodes. The nodes and all possible radio links are shown in (a). The first multicast tree (b) is

created using a Steiner tree approximation algorithm. In this example the two most reliable

links in the first tree (shown as thick segments) are eligible to be included in the second

multicast tree. The other links in the tree are considered to be weaker and are removed from

the set of possible edges under consideration for the second tree. The second multicast tree

using both of the two most reliable links from the first tree is shown in (c).

(a) (b) (c)

multicast node
 (sender or receiver)

relay node

radio link

most reliable
links

Figure 11: Interconnected Multicast Trees

Specifically the functions of the tree component include:

1. Determine n, the number of trees to create.

2. Build the multiple multicast trees based on information gathered by the underlying

unicast protocol and the link component.

3. Determine the best value of k to use in the (n, k) encoding scheme based on the dynam-

icity of the network. A higher value of k results in lower overhead but reliability may be

adversely affected in highly dynamic networks, whereas a lower value of k may result in

increased reliability with a higher overhead cost. Any k of the n packets received will be

sufficient for the member node to be able to decode the k original packets.

4. Distribute the trees to the relay nodes and group members

5. Monitor the topology of the network by examining the topology tables provided by the

unicast link state protocol. The number of intact trees is expected to decrease with

time. When the number of intact trees reaches k, remake and distribute the trees.

Special actions are taken when k = 1.

6. Send messages to relay nodes to use current trees when new trees are not made within

the timeout interval, thus avoiding premature timeouts from occurring.
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The value of k mentioned above is dynamically determined as a tradeoff between the

quality of the tree set and the overhead. If the trees are being made too frequently then

the value of k will decrease resulting in the receiver nodes needing to receive fewer of the n

packets in order to decode the originals, increasing the time needed between tree creations.

Given the dynamics of the network, RoMR will strive to provide enough redundancy to

increase the likelihood that a node receives the packets according to the desired level of

performance while controlling the amount of redundancy to avoid overloading the network.

The algorithms of the tree component are given in Section 5.1

3.2.4.3 The Routing Component The routing component has two complementary

parts. The first subcomponent processes packets that come from upper layers of the protocol

stack that are addressed to a group address. In this subcomponent the router component

buffers k of the packets addressed to the group, then applies a (n, k) forward error correction

encoding scheme before sending the n encoded packets on to the MAC layer. The second

part of the routing component examines a data packet that is received from the MAC layer

from another node. If the packet is addressed to a group and if the node is a relay for

that group for one of the trees then the node forwards the packet. The use and caching

of sequence numbers prevents the occurrence of possible loop formation. If the node is a

member of the group then the node buffers the incoming packets addressed to the group

until k packets have been received at which time the routing component decodes the packets

and passes them up the protocol stack to the upper layers. All routing tables are kept as soft

state. If a node does not receive periodic updates the entries will timeout and be deleted

from the multicast part of the routing table. The algorithms associated with the routing

component are discussed in Section 5.2.

3.2.4.4 The Membership Component The membership component services the join

and leave requests for the group and keeps the tree component informed of the current

membership lists. A node sends the requests to the multicast manager. Group management

commands for creating, destroying, joining, and leaving a group were discussed in Section

3.1.3.
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3.2.5 RoMR Node States

A node may be in one of five basic states: default, multicast manager, sender, receiver, or

relay. Other composite states exist and are combinations of the last four states listed. The

state of the node reflects the responsibilities and thereby the actions of the node.

RecRelayMM

Default

Sender

Receiver
Relay

MM

SenderMM

ReceiverMM

RelayMM

ReceiverRelay Events:
a: accept MM duties
d: delegate MM duties
j:  join the group
L: leave the group
r: get tree packet designating
    node as relay
s1: start the session
s2: stop the session
t: relay time out

s1

s2

d

a

j
tr

L

a

d

t r

j
L

r

t

a

d
L

j a

d

j

L

r
t

Figure 12: RoMR State Diagram

3.2.5.1 The Default State A node in the default state is not associated with a multicast

group in any way. It is not a sender, receiver, relay node, or a multicast manager. All nodes

are in the default state before multicast communications are initiated.

3.2.5.2 The Multicast Manager State Each multicast group includes a node which

acts as the multicast manager (MM) for the group. This node is responsible for performing

the duties of the tree and membership components. Initially the first source node will be

designated as the MM. If the source becomes a bottleneck, it will advertise to its neighbors
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that it is looking for a node to take over the MM duties. The willing neighboring nodes

will respond and the current MM will select one of those willing nodes, sending it the group

information. The selection can be based simply as the lowest IP number or may involve more

sophisticated load distribution analysis. RoMR is designed on the basis of closed groups as

discussed in Section 3.1.3 although the existence of the group is public knowledge. Any node

may join a group by contacting the group’s MM. The node will be able to determine the MM

node for a group as that information will be available to all nodes through a registration

system similar to a local domain name server (DNS).

3.2.5.3 The Sending State A node switches to the sending state becoming a source

node when an application in the node begins to send data to a multicast group address. In

order to use RoMR as the multicast protocol, the application either must specify the values

of the parameters used by RoMR through an API or accept the default values for µ, τ , and

ρ which are the minimum number of trees to create, the minimum cumulative weight of

the set of trees, and the reuse factor respectively. The sender will obtain the values of k,

the number of trees that must remain intact before forming a new set of trees, and n, the

number of trees in the current set of trees, as well as current set of multicast trees from the

multicast manager. Once the values of k and n are known the network layer in the sender

node is responsible for the encoding of the outgoing packets. When the network layer of the

source node receives a packet to send to a specific group address from the transport layer

the source node proceeds as follows:

1. Buffer k successive packets addressed to that group.

2. Encode the k packets as n unique packets.

3. Broadcast the n packets to neighboring relay nodes and receivers.

3.2.5.4 The Relay State The relay nodes are determined when the multicast trees are

formed. They are the nodes that are the interior nodes on at least one of the multicast trees.

Each relay node is associated with one or more of the trees in the current tree set. If the

relay is part of the ith tree, then the relay node will forward packets designated as belonging

to the ith tree. If a relay node does not belong to tree j, then it will not forward packets
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that are designated as being routed on tree j. Note that some or all of the receivers may

also act as relays. In the simplest version of RoMR a relay node does not save a copy of the

tree in order to reduce the demands on the relay node. The responsibilities of a relay node

include:

1. Update the forwarding information when a new set of n trees arrives, recording the trees

to which it belongs.

2. Forward all tree packets to downstream relay nodes and receivers.

3. If a data packet is designated as being routed on the ith tree and if the relay node belongs

to the ith tree, then forward the packet to the neighboring nodes.

4. Delete the entry in the forwarding table for tree j of the specified multicast group if no

data or new multicast trees has arrived since the previous time-out for tree j.

3.2.5.5 The Receiver State A receiver node in the multicast group has the following

responsibilities:

1. When it receives a (nonduplicate) data packet

a. Keep track of the number of packets received for the indicated packet group.

b. If k packets have previously been received for the indicated packet group then ignore

the packet since it has already been decoded.

c. Otherwise if the received packet is the kth packet decode the group of k encoded

packets and send the k recovered packets to the application.

d. Otherwise buffer the packet until enough of the other packets in the packet group

arrive or a time out occurs.

2. When it receives a new set of multicast trees, determine the encoding scheme and create

the corresponding decoding matrix.

3.2.5.6 Composite States A node may act both a sender as well as a multicast man-

ager thus giving rise to a composite state senderMM. The other combination states are

receiverMM, relayMM, receiverRelay, receiverRelayMM.
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3.2.5.7 All States All nodes in the network will participate in the exchange of topology

information in the underlying unicast protocol regardless of their state. Thus all nodes will:

1. Gather data for link availability calculations.

2. Perform the link availability calculations.

3. Exchange the link availability information with neighbors in the unicast protocol’s topol-

ogy table exchange.
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4.0 ROMR LINK AVAILABILITY

Various approaches to predicting a link’s availability were discussed in Section 2.3. Those

either overly simplified the prediction calculations, assumed the availability of unobtainable

information, or relied on statistical distributions of mobility patterns on which to base pre-

dictions. As such, those models may be unrealistic. RoMR uses a different approach. A

node computes an area in which a neighboring mobile node is likely to be in the near future

and then examines the portion of that area which overlaps the transmission range of the

node performing the calculations. A weight is assigned to the link to the neighboring node

reflecting the ratio of the overlap area to the possible location area. In order to perform

the calculations RoMR relies on signal strength readings from neighboring nodes. Once the

link calculations have been performed, the values are distributed with the topology tables by

the underlying link-state protocol, thus RoMR requires a slight modification to the unicast

protocol.

4.1 CALCULATION OF LINK WEIGHTS IN ROMR

Link weight is a function of two accumulated measures of signal strength received from a

neighboring node. The first is the average signal strength received from the transmitting

node from time ti −∆t until time ti. In the ensuing discussions this is simply referred to as

the received signal strength at time ti. The second measure is the average signal received

during the time interval from ti to ti + ∆t from the same transmitting node. Likewise, this

will be referred to as the signal strength of the received signal at time ti + ∆t. The power

of the transmitted signal at the sender is assumed to be constant over the small interval
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of time ∆t. A locus of possible destinations for the transmitting node at time ti + 2∆t is

determined relative to the receiving node based on the strengths of the previously received

signals. The intersection of this locus set with the area in which the receiving node is able

to receive a reliable signal determines the weight of the incident link corresponding to the

probability that the link will be available over the next time interval.

Most of the reduction in a signal’s strength from the time of transmission to the time of

reception is due to the distance between the two nodes, the obstacles between them, and the

number of different paths the signals travel due to reflection. In a free space environment

the average received power at the receiving antenna is

Pr = Pt

(
λ

4πd

)n

gtgr

where Pt is the transmitted power, λ is the carrier wavelength, d is the distance between

transmitter and receiver, n is the path loss coefficient, gr is the antenna gain at the receiver

and gt is the antenna gain at the transmitter[54]. The value of n depends on the environment,

varying from 2 in a free-space environment, 4 in a typical urban environment up to 6 when

there are many obstacles in indoor transmissions.

In the idealistic free-space formula for the received power, we assume that the path loss

is a function of distance, but in reality other sources of path loss exist. Radio waves travel

over multiple paths from the source to the destination and as a consequence other more

complex models have been developed. The two-ray model assumes the radio signals travel

over two paths - one part of the signal travels in a direct line-of-sight path and the other is

bounced off of the surface of the earth. Another model incorporates the effects of shadow

fading due to the signal being blocked by objects in the environment. Several additional path

loss models based on the size of the radio cells are discussed in [36]. In addition to these

large-scale effects, rapid fluctuations in the signal result from small-scale fading. Small-scale

fading is caused by the movement of the transmitter, receiver, and/or objects between them.

Multipath fading and effects of the Doppler spectrum are two sources of small-scale fading.

For the calculations that follow we assume n = 2 and there is no other source of path

loss. For a particular pair of nodes during a short time span the values of Pt, λ, gt, and
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gr can be considered to be constant and can be combined with the 4π into one constant K

giving

Pr =

(
K

d2

)
(4.1)

Notice that the value of K may need to be recomputed periodically as the transmission

power decreases due to a node’s battery becoming depleted.

Lemma 1 If p0 is the power of the signal received by node n from node m at time ti,

p1 is the power of the signal received by node n from node m at time ti + ∆t, and

p0 < p1, then the area of the locus of the possible locations of node m at time ti + 2∆t is

K

p1

4
(
arcsin

(
1
p1

√
p1p0

))
p0 + 6

√
(−p0 (−p1 + p0)) + 2

(
arcsin

(
1
p1

√
p1p0

))
p1 + 2πp0 + πp1

p0

Proof. p0 =
(

K
d2
0

)
and p1 =

(
K
d2
1

)
from Equation 4.1

Solving for the distances:

d0 =

√
K

p0

(4.2)

d1 =

√
K

p1

(4.3)

d1 < d0 since we know p0 < p1.

Let point N be the location of node n. Let points P0 and P1 represent the perceived

locations of node m at times t0 and t1 respectively relative to node n. (See Figure 13.) P0

could be any point on circle C0 with center N and radius d0 and P1 could be any point

on circle C1 with center at node n and radius d1. The analysis is equivalent for all possible

positions of P0 on circle C0 at distance d0 from node n so fixing P0 will not affect the results.

In order to perform the analysis we assume that the net effect of the node’s mobility during

one time frame is greater than or equal to the net effect during the next time interval in

which case node m will be on or in the interior of circle C2, the circle centered at P1 with

radius P0P1 at time ti+2 = t0 + 2∆t. The union of all possible circles where node m could

be located at time ti+2 forms the interior region of a limaçon. A limaçon has two basic

shapes. When d0 ≤ d1 < 2d0 the limaçon has a dimple as in Figure 14(a) and when d1 < d0

58



C2

C0
C1

P0
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N

Figure 13: Relative Positions of Nodes

the limaçon has a keyhole as in Figure 14(b). The dimple disappears when d1 ≥ 2d0 and

the limaçon becomes convex. We will assume that the general characteristics of the node’s

movement change an insignificant amount over the interval 2∆t, that is, the node will not

experience a significant deviation in speed.

A limaçon with the orientation as shown has the formula

r = 2d1 − 2d0 sin θ (4.4)

in a polar coordinate system with the center of the two circles at (0,−d0) in rectangular

coordinates. From calculus we know the region bounded by lines θ = α, θ = β, and the

curve r = f(θ) has area A = 1
2

∫ β

α
[f(θ)]2dθ.

In the case when d0 > d1 the limaçon has a keyhole area that begins when r is first equal

to zero as θ increases from 0 and the keyhole region continues while r is negative, until the

point when r is zero once again. Let φ be the angle at the beginning of the keyhole, thus

the keyhole occurs from φ up to π − φ where φ = arcsin(d1/d0) so the formula for the area

of the limaçon that does not duplicate the keyhole is
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Figure 14: Graphs of Limaçons: (a) d0 ≤ d1 < 2d0 (b) d1 < d0

A of limaçon =
1

2

∫ φ

0

(2d1 − 2d0 sin θ)2 dθ +
1

2

∫ 2π

π−φ

(2d1 − 2d0 sin θ)2 dθ

= 4d2
1φ + 8d0d1 cos φ− 2d2

0 cos φ sin φ + 2d2
0φ + 2d2

1π + d2
0π

where φ = arcsin(d1/d0)

Replacing d0 and d1 with the expressions involving p0 and p1 from Equation 4.2 and Equa-
tion 4.3 yields

K

p1

4
(
arcsin

(
1
p1

√
p1p0

))
p0 + 6

√
(−p0 (−p1 + p0)) + 2

(
arcsin

(
1
p1

√
p1p0

))
p1 + 2πp0 + πp1

p0

2

Lemma 2 If p0 is the power of the signal received by node n from node m at time ti,

p1 is the power of the signal received by node n from node m at time ti + ∆t, and

p0 ≥ p1, then the area of the locus of the possible locations of node m at time ti + 2∆t is

A of limaçon = 2Kπ
2p0 + p1

p1p0

(4.5)
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Proof: The proof is basically the same as above changing the bounds of the integration

to match the limaçon corresponding to Figure 14(a).

A of limaçon =
1

2

∫ 2π

0

(2d1 − 2d0 sin θ)2 dθ

= 4d2
1π + 2d2

0π

= 2Kπ
2p0 + p1

p1p0

2

Suppose the minimum power at which node n can reliably read a packet is pm. Then the

maximum distance the node sending the signal can be from n is

D =

√
K

pm

(4.6)

Assume the reception area for node n to receive a signal from node m is a circle centered at n

with radius D. The intersection of the interior of this circle with the interior of the limaçon

is where node m could be at time t2 if node n were able to receive an adequate signal from

node m.

Lemma 3 Given a limaçon with center at r = d0, θ = 3π/2:

r = 2d1 − 2d0 sin θ

and a circle with center at r = d0, θ = 3π/2 and diameter D:

r2 + 2d0r sin θ + d2
0 = D2

if 1
4

4d2
1+d2

0−D2

d1d0
∈ [−1, +1] then the circle and limaçon intersect, otherwise they do not intersect.
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Proof: Solve the simultaneous equations:

r = 2d1 − 2d0 sin θ

r2 + 2d0r sin θ + d2
0 = D2





The solution of the simultaneous equations is:

θ = arcsin

(
4d2

1 + d2
0 −D2

4d1d0

)

r = −d2
0 −D2

2d1

When the argument of the arcsin function is not in [−1, +1] the arcsin is not a real number

indicating that the two shapes do not intersect. 2

Lemma 4 If p0 is the power of the signal received by node n from node m at time ti,

p1 is the power of the signal received by node n from node m at time ti + ∆t,

pm is the minimum power level that node n can receive,

p0 < p1, and 1
4

4p0pm+p1pm−p1p0

pm
√

p0p1
∈ [−1, +1] then the area of the locus of the possible locations

of node m at time ti + 2∆t that is inside node n’s receiving area is

−K
p1p0pm

(− 4βp0pm − 8
√

p0
√

p1 (cos β) pm + 2 (cos β sin β) p1pm − 2βp1pm + 4γp0pm

+ 8
√

p0
√

p1 (cos γ) pm − 2 (cos γ sin γ) p1pm + 2γp1pm −√pm
√

p0 (sin α) p1

− p1p0π + p1p0α)

where β = arcsin
√

p0

p1

γ = arcsin
(

1
4

4p0pm+p1pm−p1p0

pm
√

p0p1

)

α = arccos

(
1
8

−p1p2
m+2p1p0pm−p1p2

0+4p0p2
m+4p2

0pm

(√p0)
3
(√pm)

3

)

Proof: The receiving area for node n is assumed to be a circle with center at (0,−d0) and

radius D where D is defined in Equation 4.6. The equation for the circle in polar coordinates

is

r2 + 2r (sin θ) d0 + d2
0 = D2 (4.7)

The intersection of the circle and the limaçon is determined from the simultaneous solu-

tion of Equation 4.7 and Equation 4.4
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r = 2d1 − 2d0 sin θ

r2 + 2d0r sin θ + d2
0 = D2





The solution of the simultaneous equations is:

θ = arcsin

(
1

4

4d2
1 + d2

0 −D2

d1d0

)
,

r = −1

2

d2
0 −D2

d1

Again, we put the expressions in terms of p0 and p1 and simplify:

θ = arcsin

(
1

4

4p0pm + p1pm − p1p0

pm

√
(p0p1)

)
,

r = −1

2
K

pm − p0

p0pm

p1√
(Kp1)

= −1

2
K

pm − p0

p0pm

p1√
(Kp1)

We know from Lemma 3 if the argument of the arcsin is in the range [−1, +1] then the

circle and limaçon intersect. This is guaranteed from the assertions of the lemma.

Let P2 be the intersection point which occurs in either quadrant I or quadrant IV. Due

to the symmetry there is also an intersection point in quadrant II or III.

Since p0 < p1 the limaçon has a keyhole which begins when r = 0. Substituting 0 for r

in the equation for limaçon (Equation 4.4) we have

0 = 2d1 − 2d0 sin β

Solving for β:

d1/d0 = sin β

β = arcsin(d1/d0) = arcsin
√

p0

p1

Thus the keyhole begins at polar coordinate (0, β).

Now consider the triangle 4NP0P2, the triangle shown in Figure 15. We know

NP0 = d0 =

√
K

p0

,

P0P2 = r = −1

2

d2
0 −D2

d1

, and
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NP2 = D =

√
K

pm

The measure of ∠P0NP2 can be found using the Law of Cosines: Let m∠P0NP2 = α

r2 = d2
0 + D2 − 2d0D cos α

Solving for α yields:

2d0D cos α = d2
0 + D2 − r2

cos α =
d2
0+D2−r2

2d0D

α = arccos
d2
0+D2−r2

2d0D

Substituting the expressions using the power levels for the distances we get

α = arccos

(
1

8

−p1p
2
m + 2p1p0pm − p1p

2
0 + 4p0p

2
m + 4p2

0pm

(
√

p0)3(
√

pm)3

)

Now we can find the area of 4NP0P2 :

A of ∆NP0P2 =
1

2
Dh

=
1

2
Dd0 sin α

so area of triangle = 1
2
Dd0 sin α = 1

2
Dd0 sin

(
arccos

(
1
8

−p1p2
m+2p1p0pm−p1p2

0+4p0p2
m+4p2

0pm

(√p0)
3
(√pm)

3

))

= 1
16

1
p2

m

K
p2
0
(pm − p0)

√
(−16p2

mp2
0 − p2

1p
2
m + 8p2

mp1p0 + 8pmp1p2
0 + 2pmp2

1p0 − p2
1p

2
0)

The area of the portion of the limaçon that is inside the receiving circle consists of six

parts, three parts in quadrants I and IV and congruent corresponding parts in quadrants II

and III. Figure 15 shows the parts in quadrants I and IV: the area bounded by the limaçon

curve and the segment P0P2, the area of 4NP0P2, and the area of the sector of the circle.

Area of sector of circle = (π−α)
π

1
2
πD2 = (π−α)

2
D2 = (π−α)

2
K
pm

Let γ be the angle at start of limaçon piece: γ = arcsin
(

1
4

4p0m+p1m−p1p0

m
√

p0p1

)

Let β be the angle at the start of keyhole: β = arcsin
√

p0

p1

Area of intersection (when p1 > p0) = 2 limaçon pieces + 2 triangles + 2 sectors
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=

(
2 ∗ 1

2

∫ β

γ

(2d1 − 2d0 sin θ)2 dθ

)
+

(
2 ∗ 1

2
Dd0 sin α

)
+ (π − α) D2

After simplification and substitution we find the area of intersection to be

=
−K

p1p0pm

(− 4βp0pm − 8
√

p0
√

p1 (cos β) pm + 2 (cos β sin β) p1pm − 2βp1pm + 4γp0pm

+ 8
√

p0
√

p1 (cos γ) pm − 2 (cos γ sin γ) p1pm + 2γp1pm −√pm
√

p0 (sin α) p1

− p1p0π + p1p0α)

where β = arcsin

√
p0

p1

γ = arcsin

(
1

4

4p0pm + p1pm − p1p0

pm
√

p0p1

)

α = arccos

(
1

8

−p1p
2
m + 2p1p0pm − p1p

2
0 + 4p0p

2
m + 4p2

0pm(√
p0

)3 (√
pm

)3

)

2

Now perform the same analysis for the dimple case:

Lemma 5 If p0 is the power of the signal received by node n from node m at time ti,
p1 is the power of the signal received by node n from node m at time ti + ∆t,
pm is the minimum power level that node n can receive,
p1 ≤ p0, and 1

4
4p0pm+p1pm−p1p0

pm
√

p0p1
∈ [−1, +1], then the area of the locus of the possible locations

of node m at time ti + 2∆t that is inside node n’s receiving area is

K

p1p0pm
(2πp0pm + πp1pm − 4γp0pm − 8

√
p0
√

p1 (cos γ) pm + 2 (cos γ sin γ) p1pm − 2γp1pm

+
√

pm
√

p0 (sinα) p1 + p1p0π − p1p0α)

where γ = arcsin
(

1
4

4p0pm + p1pm − p1p0

pm
√

p0p1

)

α = arccos

(
1
8
−p1p

2
m + 2p1p0pm − p1p

2
0 + 4p0p

2
m + 4p2

0pm(√
p0

)3 (√
pm

)3

)
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Proof: The only difference in the calculations is in the limits of integration for the area

of the two pieces of the limaçon that are inside the circle. Previously the angle went from γ

to β, now it goes all the way from γ to π/2.

=

(
2 ∗ 1

2

∫ π/2

γ

(2d1 − 2d0 sin θ)2 dθ

)
+

(
2 ∗ 1

2
Dd0 sin α

)
+ (π − α) D2

= 2d2
1π + d2

0π − 4d2
1γ − 8d0d1 cos γ + 2d2

0 cos γ sin γ − 2d2
0γ + Dd0 sin α + (π − α) D2

=
1

p1p0pm

(2Kπp0pm + Kπp1pm − 4Kγp0pm − 8K
√

(p0)
√

(p1) (cos γ) pm

+ 2K (cos γ sin γ) p1pm − 2Kγp1pm + K
√

(pm)
√

(p0) (sin α) p1 + Kp1p0π −Kp1p0α)

=
K

p1p0pm

(2πp0pm + πp1pm − 4γp0pm − 8
√

p0
√

p1 (cos γ) pm + 2 (cos γ sin γ) p1pm

−2γp1pm +
√

pm
√

p0 (sin α) p1 + p1p0π − p1p0α)

where γ = arcsin

(
1

4

4p0pm + p1pm − p1p0

pm
√

p0p1

)

α = arccos

(
1

8

−p1p
2
m + 2p1p0pm − p1p

2
0 + 4p0p

2
m + 4p2

0pm(√
p0

)3 (√
pm

)3

)

2

Finally we can consider the ratio of the area of the locus of locations of node m at time

ti + 2∆t that are inside node n’s receiving range to that of the area of node m’s entire locus

to be the probability that node n will be able to receive a signal from node m at time ti+2∆t

given that it received signals at ti and ti + ∆t.

Theorem 1 If p0 is the power of the signal received by node n from node m at time ti,

p1 is the power of the signal received by node n from node m at time ti + ∆t,

pm is the minimum power level that node n can receive,

p0 < p1, and 1
4

4p0pm+p1pm−p1p0

pm
√

p0p1
∈ [−1, +1], then the probability that link (m, n) will exist at

time ti + 2∆t is

−
(
− 4βp0pm − 8

√
p0
√

p1 (cos β) pm + 2 (cos β sin β) p1pm − 2βp1pm

+ 4γp0pm + 8
√

p0
√

p1 (cos γ) pm − 2 (cos γ sin γ) p1pm + 2γp1pm

−√pm
√

p0 (sin α) p1 − p1p0π + p1p0α
)

/
(
pm

(
4βp0 + 8

√
(p1p0) cos β − 2 (cos β sin β) p1 + 2βp1 + 2πp0 + πp1

))
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where β = arcsin

√
p0

p1

γ = arcsin

(
1

4

4p0pm + p1pm − p1p0

pm
√

p0p1

)

α = arccos

(
1

8

−p1p
2
m + 2p1p0pm − p1p

2
0 + 4p0p

2
m + 4p2

0pm(√
p0

)3 (√
pm

)3

)

Proof: The probability that link (m,n) will exist at time ti +2∆t corresponds to the ratio of

the area of the locus of locations of node m at time ti +2∆t that are inside node n’s receiving

range to that of the area of node m’s entire locus so we divide the result from Lemma 4 by

the result from Lemma 1 giving the indicated expression. 2

Theorem 2 If p0 is the power of the signal received by node n from node m at time ti,

p1 is the power of the signal received by node n from node m at time ti + ∆t,

pm is the minimum power level that node n can receive,

p0 < p1, and 1
4

4p0pm+p1pm−p1p0

pm
√

p0p1
/∈ [−1, +1], then the probability that link (m, n) will exist at

time ti + 2∆t is 1.0.

Proof: If the fraction is not between -1 and +1 inclusive, then the limaçon representing node

m’s locus does not intersect node n’s receiving circle. Since node n did receive signals p0

and p1 the corresponding points must be located inside the receiving range, thus the entire

limaçon must be inside the receiving range. 2.

Likewise we can examine the case when p1 ≤ p0:

Theorem 3 If p0 is the power of the signal received by node n from node m at time ti,

p1 is the power of the signal received by node n from node m at time ti + ∆t,

pm is the minimum power level that node n can receive,

p1 ≤ p0, and 1
4

4p0pm+p1pm−p1p0

pm
√

p0p1
∈ [−1, +1], then the probability that link (m,n) will exist at

time ti + 2∆t is

=
1

2pmπ (2p0 + p1)
(2πp0pm + πp1pm − 4γp0pm − 8

√
p0
√

p1 (cos γ) pm

+ 2 (cos γ sin γ) p1pm − 2γp1pm +
√

pm
√

p0 (sin α) p1 + p1p0π − p1p0α)

where γ = arcsin

(
1

4

4p0pm + p1pm − p1p0

pm
√

p0p1

)
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α = arccos

(
1

8

−p1p
2
m + 2p1p0pm − p1p

2
0 + 4p0p

2
m + 4p2

0pm(√
p0

)3 (√
pm

)3

)

Proof: Using the same argument as in Theorem 1 we divide the result from Lemma 5 by

the result from Lemma 2 to achieve the indicated expression. 2

Theorem 4 If p0 is the power of the signal received by node n from node m at time ti,

p1 is the power of the signal received by node n from node m at time ti + ∆t,

pm is the minimum power level that node n can receive,

p1 ≤ p0, and 1
4

4p0pm+p1pm−p1p0

pm
√

p0p1
/∈ [−1, +1], and pm <

p0p1
√

p0p1

4p0
√

p0p1−4p0p1+p1
√

p0p1
then the probability

that link (m,n) will exist at time ti + 2∆t is 1.0

Proof: There are two cases when the dimpled limaçon does not intersect the transmission

circle. When pm <
p0p1

√
p0p1

4p0
√

p0p1−4p0p1+p1
√

p0p1
the limao̧n is entirely inside the circle so the prob-

ability is 1.00. 2

Theorem 5 If p0 is the power of the signal received by node n from node m at time ti,

p1 is the power of the signal received by node n from node m at time ti + ∆t,

pm is the minimum power level that node n can receive,

p1 ≤ p0, pm >
p0p1

√
p0p1

4p0
√

p0p1−4p0p1+p1
√

p0p1
and 1

4
4p0pm+p1pm−p1p0

pm
√

p0p1
/∈ [−1, +1], then the probability that

link (m,n) will exist at time ti + 2∆t is p0p1

pm(4p0+2p1)

Proof: The second case when the dimpled limao̧n does not intersect the circle is when the

circle is entirely inside the limao̧n in which case the probability is the ratio of the area of the

circle to the entire limao̧n. Area of the circle = πD2 and area of the limao̧n = 4πd1
2 +2πd0

2.

Dividing and substituting yields p0p1

pm(4p0+2p1)
2

Although the calculations are somewhat complex, since they only rely on p0, p1, and pm a

table of values for various values of p0 and p1 given the device’s receive threshold sensitivity

pm can be hard-coded into the device so that the determination of the link reliability is

simply a table lookup operation requiring constant time.

In this chapter we have derived the formulas used by RoMR to calculate the weights

associated with the links in the network topology. These weights reflect the probability that

the link will be available in the next time frame. We shall see in Section 5.1.2 that the

weights of the links are used in the computation of the multicast trees.
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5.0 ROMR MULTICAST AND TREE MANAGEMENT ALGORITHMS

In this chapter we will examine the more important algorithms used to perform the tasks

associated with each of the states of nodes under RoMR.

5.1 MULTICAST MANAGER ALGORITHMS

5.1.1 Procedure CheckTrees

When a multicast manager receives a message from the unicast protocol that the topology

has changed it needs to determine how many of the trees specified in the current tree set are

still connected. If the number of connected trees has fallen below a threshold the tree set

needs to be recalculated and distributed. Pseudocode for CheckTrees is listed in Figure 16.

5.1.2 Function MakeTrees

A node in the Multicast Manager (MM) state is responsible for creating the set of trees to

be used in RoMR when the need to do so is determined by CheckTrees. Three parameters

are associated with a multicast session when it starts: the Reuse Factor (RF ), the Weight

Threshold (WT ), and a minimum number of trees (MT ). In Section 3.2.3 these parameters

were referred to as ρ, τ , and µ respectively. Combined, these values reflect the desired

reliability level to be achieved and can be specified by the application. If the application

does not specify values for these parameters, RoMR will use default values.

The Reuse Factor (RF ) is the percentage of links in a tree that are eligible to be used

in the next tree. The RF value must be less than 1 (100%). A value of 0 would result
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Procedure CheckTrees()

for each group g this node manages do

nIntactTrees = number of intact trees in current tree set

if nIntactTrees ≤ kPacketsNeeded then

treeSetID ← NextTreeSetID(treeSetID, g)

nTrees ← MakeTrees(treeSetID, g)

kPacketsNeeded ← DetermineKPacketsNeeded(treeSetID)

distributeTrees(treeSetID)

else

minutes ← minutes elapsed since last tree message sent

if minutes > TREE INTERV AL then

send msg to continue to use tree set with treeSetID

reset tree interval timer

end if

end if

end for

schedule next time to check trees

Figure 16: Procedure CheckTrees()
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in disjoint trees, increasing the chance that a node would receive packets in an extremely

dynamic network, but at the same time also increasing the use of network resources.

The weight threshold (WT ) and minimum number of trees (MT ), similar to a Quality

of Service (QoS) parameter, are specified by the node initiating the multicast session. The

tree module will attempt to make a sufficient number of trees so that the probability of at

least MT trees existing in the next time frame is above WT .

The steps in creating a tree set are outlined in Figure 17. In Figure 18, node A is the

sender and nodes D, E, and G are the receiver nodes. The diagram shows the first tree

created as a result of the modified SPH algorithm. The order in which the nodes are added

to the first tree is A, D, E, G. This example assumes the reuse factor RF = 0.5 so the branch

from D to C, with weight 0.7, and the branch from G to E are eliminated from consideration

in the construction of the second tree. The modified SPH algorithm is once again followed

to produce the second tree.

5.1.3 Function MakeSingleTree

The MM makes a single tree in the process of creating the current tree set for the group.

The basic part of the algorithm stems from the shortest path heuristic (SPH) described in

Section 2.4.2.1 with a modification. If two paths from a given member to the existing tree

have the same hop count then the path that connects to the node in the tree with the highest

degree relative to the tree is selected. If the degrees of the nodes in the current tree are the

same and if one of the tree nodes is the sender the path to the sender is selected. The same

proof to show that SPH produces a tree having at most twice the number of links as the

optimal tree [51] applies to the modified version. The steps of the algorithm are listed in

Figure 19. The choice of SPH to create the trees addresses the concern that RoMR should

use network resources efficiently by making trees that may be closer to optimal than simply

using the union of shortest paths. The modification to attach paths to nodes having a higher

degree in the current tree prevents the branches in the tree from becoming overly long.

The computation of the best path from a single node to all of the other nodes in the

network is based on Dijkstra’s shortest path algorithm which has O(n2) complexity so the
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Function MakeTrees(treeSetID, groupID)

Returns: a set of trees

i ← 0, n ←∞, done ← false, treeSet ← φ

links ← set of known links in the network with corresponding link weights

members ← set of reachable members of group groupID

repeat

T ← MakeSingleTree(sender,members, links)

if T = φ then

done ← true

else

i ← i + 1

treeSet ← treeSet ∪ T

treeWeight ← minimum weight of edges of T

cumulativeWeight ← ProbAtLeastKAreGood(MT, treeSet)

done ← (cumulativeWeight ≥ WT ) or (i = MAX TREES)

if not done then

n ← d(1−RF ) ∗ |T |e where |T | is the number of branches in tree T

delete the n links of T having lowest weights from links

{n will be ≥ 1 so duplicate trees cannot be formed}
end if

end if

until done

return treeSet

Figure 17: Function MakeTrees()
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Figure 18: Making Two Multicast Trees

complexity of the makeSingleTree as stated is O(|R|n2) where |R| is the number of reachable

receivers in the group.

An alternative method was considered to construct the trees with the goal of producing

the most reliable tree. The above technique was modified using the greatest product of the

link weights as opposed to the least sum of distances. In dense networks this created two

problems. The first problem was the increase in the length of time a packet took to reach a

receiver. The second problem was caused by the long paths in the local area that resulted

in a large number of packet collisions due to the fact that the broadcast medium is shared

by all nodes in the local area. Figure 20 illustrates these problems. Node A is the sender

and node F is the receiver. The values on the links represent the weights of the links. The

shortest path between A and F is clearly the one hop path from A to F with the product of

the weights equal to 0.8 whereas the most reliable path based on the product of the weights

would be A, B, C, D, E, F using 5 hops with a reliability product of 0.995 = 0.95.

An enhancement was added after initial testing of RoMR. When two paths have the

same length to a node in the current tree, choose the node in the current tree that is closest

to the sender. This has the advantage of decreasing the overall path length to the member.
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Function MakeSingleTree(sender,members, links)

Returns: a set of edges making up the tree

{SP (m,n) returns the shortest path from m to n}
nodes ← {sender}, edges ← φ

while members 6= φ do

pathLength ←∞
for each m ∈ members do

for each n ∈ nodes do

if length(SP (m,n)) < pathLength then

pathLength ← length(SP (m,n))

treeNode = n

else if length(SP (m,n)) = pathLength then

if degree(n) > degree(treeNode) then

treeNode ← n

else if n = sender then

treeNode ← n

end if

end if

end for

end for

edges ← edges∪ edges of SP (m, treeNode)

nodes ← nodes∪ nodes of SP (m, treeNode)

members ← members− {m}
end while

return edges

Figure 19: Function MakeSingleTree()
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5.1.4 Function ProbAtLeastKAreGood

In the procedure MakeTrees the cumulative weight of all the trees currently in the tree set

was computed with a call to ProbAtLeastKAreGood. Recall from Section 4.1 that a weight

of a link reflects the probability that the link would continue to exist from time ti +∆t until

time ti + 2∆t. If the existence of all links in a tree continuing to exist during the same

interval were considered to be independent events then the probability of tree T remaining

intact until time ti + 2∆t would be

∏

link∈T

weight(link)

However, the duration of the links are not independent. Suppose nodes A, B, and C are

linearly arranged with B being between A and C. As B moves slowly toward A the weight

of AB increases while the weight of BC decreases. Simulation confirms that the product is a

vast underestimate of the probability. As an approximation to the probability that all of the

links in the tree will survive until the next time interval we selected the minimum weight of

all of the links in the tree to represent the probability that the tree would remain connected

until time ti + 2∆t.
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If every tree in a tree set has the same probability p associated with it, then the prob-

ability of exactly k out of the n trees in the tree set being connected at time ti + 2∆t

is (
n

k

)
pkqn−k where q = 1− p

and the probability of k or more of the n trees being connected at time ti + 2∆t is

n∑

i=k

(
n

i

)
piqn−i

=
n−k∑
i=0

n!

(n− i)!i!
pn−iqi

Changing this to a form in which each of the pi values may differ, the probability that

at least k trees will remain intact is

( n
k−1)∑
j=0

n−1∏
i=0

(
qi ∗ ji + pi ∗ ji

)

where ji is the ith bit of j

and ji = 1− ji

Clearly we can see that for a fixed value of k, the larger the value of n the larger the sum

will become while being bounded from above by 1.00.

The above formula can be stated as a recursive routine as shown in Figure 21. The

complexity of the computation is exponential in the general case due to the recursion, but

in the actual implementation the number of trees that will be created is bound by a small

constant MAX TREES thus eliminating exponential execution time concerns.
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Function ProbAtLeastKAreGood(k, treeSet)

Returns: a floating point value representing the probability that k out

of the n trees in the treeSet will be intact at the end of the next time interval

n ← number of trees in treeSet

make array p to be the weights of the trees in treeSet

return f(k, n, 1.0, 0, p)

Function f(k, n, val, i, p)

if n = 0 then

if k ≤ 0 then

return val

else

return 0

end if

else

return f(k, n− 1, val ∗ (1− p[i]), i + 1, p) + f(k − 1, n− 1, val ∗ p[i], i + 1, p)

end if

Figure 21: Function ProbAtLeastKAreGood
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5.1.5 Procedure DetermineKPacketsNeeded

Recall from Section 3.2.1 RoMR attempts to make the length of time between the creations of

tree sets through the use of forward error correction codes as large as possible while meeting

the primary goal. Every k packets that the application sends will be encoded as n unique

packets by RoMR at the routing layer. The ith packet of the group of n packets will be

sent to receivers over the ith tree. The receiver only needs to receive any k of the n packets

that were sent in order to recreate the original k packets. The encoding is performed by

a node in the sender state and the decoding by a group member in the receiving state. It

is the responsibility of the the node in the multicast manager (MM) state for the group to

determine the value of k.

Every time a new tree set is calculated the value of k is recomputed based on the previous

value of k and the length of time that elapsed since the creation of the previous tree set. The

unicast protocol specifies an interval of time, TC INTERVAL, between sequential topology

control messages. In RoMR if the elapsed time since the previous tree set was created is

greater than or equal to 4 times the TC INTERVAL then the network is considered to be stable

and will increase the the value of k if possible to reduce the overhead due to redundancy.

The unicast protocol also specifies the length of time it will maintain information about a

neighbor in the event it does not receive any update information from the neighbor. This

time interval, NEIGHB HOLD TIME, is also used in the calculation of k. If the elapsed time

since the creation of the previous tree set is less than the NEIGHB HOLD TIME then the

trees were being made too often, so decrease the value of k if possible, so that fewer of the

trees in the tree set need to remain intact before recomputing the entire set of trees.

5.2 SENDER AND RECEIVER ALGORITHMS

5.2.1 Forward Error Correction Codes

The techniques employed by RoMR to reduce the amount of packets travelling through the

network for redundancy purposes is based on Forward Error Correction (FEC) techniques

developed for use in telephone systems to recover from noise in the lines so that switching
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signals can still be understood despite the loss of some of the pieces of the signal.

5.2.1.1 Erasure Codes and Galois Fields One class of forward error correction codes

is based on erasure coding methods. This refers to a coding technique wherein the original

data may be recovered even if some of the data that was sent did not arrive at the destination

(i.e. it had been erased). Rabin [41] discusses a method based on a finite field, mentioning

the fact that Galois Fields could be used in order to avoid increasing the number of bits in

the encoded packets. Rizzo [44] provides details in using the Galois Fields.

Galois Fields, GF, are also called prime fields. GF (p) is a set of integers from 0 to p− 1

closed under + and * with p being a prime number. GF (pr) is defined to be an extension

field where p is prime and r > 1. GF (pr) is a set of integers from 0 to pr − 1 closed under +

and *. In order to do the calculations efficiently on a computer let p = 2 and define + and

* using bit operations. Rizzo recommends a value of r = 8 since two 256 × 256 tables for

the + and * operations are small enough to be hard-coded avoiding the calculation of the

values when needed.

a + b is defined to be a XOR b. Let the values of a and b be integers in the range [0,255]

a and b in order to represent a byte of data each.

The definition of * is based on the concept of a primitive polynomial, a polynomial of

degree r with coefficients in GF (p) that is not divisible by any polynomial of smaller degree

having coefficients in GF (p). x8 + x4 + x3 + x2 + 1 is an appropriate primitive polynomial

for p = 2, r = 8. This polynomial can be expressed as the bit string 100011101 where the

nth bit is the coefficient of the nth degree term. Define a ∗ b to be the multiplication of the

polynomials corresponding to a and b modulo the primitive polynomial with the coefficients

expressed modulo p.

The following is an example of multiplying two polynomials:

Let a = 100 and b = 13 be integer representations of the two polynomials to multiply.

a = 11001002 which corresponds to x6 + x5 + x2

b = 11012 which corresponds to x3 + x2 + 1
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a ∗ b = ((x6 + x5 + x2)(x3 + x2 + 1)) mod(x8 + x4 + x3 + x2 + 1)
= (x9 + (2 mod 2)x8 + x7 + x6 + (2 mod 2)x5 + x4 + x2) mod(x8 + x4 + x3 + x2 + 1)
= (x9 + x7 + x6 + x4 + x2) mod(x8 + x4 + x3 + x2 + 1)
= (x9 + x7 + x6 + x4 + x2)mod(x8 + x4 + x3 + x2 + 1)
= x7 + x6 + (−1mod2)x5 + (−1mod2)x3 + x2 + (−1mod2)x
= x7 + x6 + x5 + x3 + x2 + x

= 111011102

= 238

A property of all prime fields and extension fields simplifies the process of computing the

product of two values. There exists an element α ∈ GF (pr) such that successive powers of α

yield all of the nonzero elements in GF (pr). Therefore for each nonzero n ∈ GF (pr), there

exists an integer i ∈ [0, pr − 2] such that αi = n. Define log(αi) = i. Now multiplication of

x and y can be defined as

x ∗ y ≡ α(log(x)+log(y))mod(q−1) where q = pr

The inverse of an element x ∈ GF (pr) is defined as

1

x
≡ αq−1−log(x) where q = pr

For GF (28) with + and * as defined above, α = 2.
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Function MakeEncoderMatrix(n, k)

Returns: a n× k encoder matrix E

{Rows and columns are numbered starting with 0}
{n : number of blocks of encoded data (maximum n = 2(2r − 1) ) }
{k : number of blocks of source data (maximum k = 2r − 1 ) }
Construct a (n− k)× k matrix A with

A(i, j) = (αn−k+i)j for i = 0..n− k − 1 and j = 0..(k − 1)

Construct a k × k matrix B with B(0, 0) = 1, B(0, j) = 0 for j = 1..(k − 1) and

B(i, j) = (αi−1)j for i = 1..(k − 1) and j = 0..(k − 1)

Find the inverse of B, B−1, a k × k matrix

Calculate C = A ·B−1, a (n− k)× k matrix

Construct a n× k matrix E with the first k rows being the identity matrix and

the last (n− k) rows being matrix C.

return E

Figure 22: Function MakeEncoderMatrix

Function MakeDecoderMatrix(n, k, P )

{P is a k × 1 matrix of the k packets to decode. }
Returns: k × k decoder matrix

matrix E = MakeEncoderMatrix(n, k)

Form a k × k matrix, D, from the rows of E that correspond to the k packets in P

return D−1

Figure 23: Function MakeDecoderMatrix
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+ 0 1 2 3 4 5 6 7

0 0 1 2 3 4 5 6 7

1 1 0 3 2 5 4 7 6

2 2 3 0 1 6 7 4 5

3 3 2 1 0 7 6 5 4

4 4 5 6 7 0 1 2 3

5 5 4 7 6 1 0 3 2

6 6 7 4 5 2 3 0 1

7 7 6 5 4 3 2 1 0

* 0 1 2 3 4 5 6 7

0 0 0 0 0 0 0 0 0

1 0 1 2 3 4 5 6 7

2 0 2 4 6 3 1 7 5

3 0 3 6 5 7 4 1 2

4 0 4 3 7 6 2 5 1

5 0 5 1 4 2 7 3 6

6 0 6 7 1 5 3 2 4

7 0 7 5 2 1 6 4 3

Figure 24: Addition and Multiplication Tables for p=2, r=3

x αx log(x) 1/x

0 1 - -

1 2 0 1

2 4 1 5

3 3 3 6

4 6 2 7

5 7 6 2

6 5 4 3

7 1 5 4

Figure 25: Log and Inverse Functions for p=2, r=3
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5.2.1.2 Encoder and Decoder Matrices The encoding process takes k packets of

source data and produces n unique packets such that the original data can be determined

from any k of the n encoded packets. The product of an n × k encoder matrix E and the

k× 1 matrix of original packets yields a n× 1 matrix of encoded packets. Matrix arithmetic

operations are based on + and * defined for GF (2r). Maximum values of n and k are 2(2r−1)

and 2r − 1 respectively. The algorithm shown in Figure 22 specifies how to construct the

encoding matrix E. The decoding matrix depends on which subset of size k of the n packets

was received. The steps are outlined in the algorithm given in Figure 23. Note that
(

n
k

)

different decoding matrices are possible.

The following is an example of the encoding/decoding process with p = 2 and r = 3. The

maximum values of n and k are nmax = 2(23 − 1) = 14, and kmax = 23 − 1 = 7 respectively.

A primitive polynomial for GF (23) is x3 + x + 1 = 10112 which has an α value of 2 = 102

representing the polynomial 1x + 0. Successive powers of α are α0 = 1, α1 = 2, α2 = 4,

α3 = 3, α4 = 6, α5 = 7, and α6 = 5. The addition and multiplication tables are given in

Figure 24 and the powers, log and inverse functions are listed in Figure 25.

Let n = 5 and k = 3 be the encoding parameters. Following the steps of the algorithm

we find matrices A, B, B−1, C, and E:

A =


 (α2)0 (α2)1 (α2)2

(α3)0 (α3)1 (α3)2


 =


 1 4 6

1 3 5




B =




1 0 0

(α0)0 (α0)1 (α0)2

(α1)0 (α1)1 (α1)2


 =




1 0 0

1 1 1

1 2 4


 , B−1 =




1 0 0

4 7 3

5 6 3




C = AB−1 =


 1 4 6

1 3 5


×




1 0 0

4 7 3

5 6 3


 =


 4 3 6

1 1 1



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E =




1 0 0

0 1 0

0 0 1

4 3 6

1 1 1




Suppose each of 3 packets contain 8 values. Each value must be in the range 0..(pr−1) = 0..7

packet 0:

packet 1:

packet 2:

3 4 5 6 7 0 1 2

4 3 6 5 0 7 2 1

5 6 3 4 1 2 7 0

E ×




3 4 5 6 7 0 1 2

4 3 6 5 0 7 2 1

5 6 3 4 1 2 7 0


 =




1 0 0

0 1 0

0 0 1

4 3 6

1 1 1




×




3 4 5 6 7 0 1 2

4 3 6 5 0 7 2 1

5 6 3 4 1 2 7 0




=




3 4 5 6 7 0 1 2

4 3 6 5 0 7 2 1

5 6 3 4 1 2 7 0

3 1 2 4 7 5 6 0

2 1 0 7 6 5 4 3




← encoded pkt 0

← encoded pkt 1

← encoded pkt 2

← encoded pkt 3

← encoded pkt 4

Now suppose the receiver gets encoded pkt 4, then encoded pkt 3,and lastly encoded pkt 2.

D =




1 1 1

4 3 6

0 0 1


 corresponding to rows 4, 3, and 2 of E

D−1 =




7 4 2

6 4 3

0 0 1



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D−1× encoded packets =




7 4 2

6 4 3

0 0 1


×




2 1 0 7 6 5 4 3

3 1 2 4 7 5 6 0

5 6 3 4 1 2 7 0




=




3 4 5 6 7 0 1 2

4 3 6 5 0 7 2 1

5 6 3 4 1 2 7 0


 the original data packets!

5.2.2 FEC in the Sender State

After the n trees of a tree set have been created the source node creates an n× k encoding

matrix, E, as described in Figure 22. Since this matrix only depends on the values of k and

n it can be calculated once and used any time in the future with the same values of k and n.

In fact, if k and n are limited to a small number of values, all possible matrices that might

be needed could be computed offline and stored in memory.

When an application layer program sends a data packet, RoMR’s routing layer com-

ponent in the source node examines the destination address. If the destination is a node

address, RoMR passes the packet on to the unicast protocol with no further processing. If the

destination is a group address, the source node will buffer the outgoing packets. (A group

address has an IP address between 224.0.0.0 inclusive and 240.0.0.0 exclusive [32].) When

the number of packets in the buffer reaches k, it encodes the packets as n unique packets.

The group of k packets to encode may be viewed as a k × 1 matrix P . The matrix product

of E × P yields a n× 1 matrix of the n encoded packets. After performing the encoding, a

header is added to each packet containing information needed for the routing and decoding

processes. Specifically, the header includes the sequence number of the tree set, a value to

indicate which tree of the tree set should carry this packet, and the value of k. After the

header has been attached then the packets are broadcast to the node’s one-hop neighbors.

It may be the case that RoMR’s routing component in the source node does not receive k

outgoing packets from the application within a timeout period or that the values of k and/or

n have changed due to a new set of trees being used. RoMR will simply send these few

remaining packets out with k = 1 over the existing set of n trees so that no encoding needs
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to take place on either the sender’s or receiver’s end of the path. Thus in highly dynamic

networks with rapidly changing sets of trees RoMR degenerates into sending a copy of each

packet down each tree with none of the advantages associated with encoding. The encoding

scheme produces a n/k-fold increase in network load. For example, when k = 1, RoMR is

sending n packets for every one packet originally produced by the application. On the other

hand, when k = n, as in the case of a static network, no extra packets are injected into the

network for redundancy purposes.

The algorithm in RoMR’s network layer component that receives a data packet addressed

to a multicast group from the transport layer is given in Figure 26.

5.2.3 FEC in the Receiver State

When the network layer receives a packet from the MAC layer it examines the destination

address. If it is not a group address then the underlying unicast routing protocol routes the

packet. If the destination is a group address then RoMR performs a sequence of actions.

First, it checks a message cache to see if it is a duplicate packet. If it is a duplicate then the

packet is simply ignored. If the packet is not a duplicate, RoMR checks to see if the node

that received the packet is a member of the indicated group. If so, RoMR buffers k of the

incoming packets belonging to the indicated packet group sent by the source. It then selects

or creates the appropriate k × k decoding matrix, D as described in 5.2.1.2. The buffered

encoded packets form a k× 1 matrix, P and the matrix product D×P yields a k× 1 matrix

of the original data packets which are then sent on to the upper layers of the protocol stack.

Once k packets of a particular group of packets have been received then all of the other

possible n−k packets that are received belonging to the indicated packet group are ignored.

Since the first k packets of the group of packets are encoded using the identity matrix if the

first k packets to arrive do arrive via one of the first k trees, then no decoding is necessary,

slightly speeding up the overall delivery of the packets to the application layer.

RoMR’s network layer component’s algorithm that deals with the buffering and routing

of incoming data packets addressed to a multicast group that are received from the MAC

layer is given in Figure 27.
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Procedure getMsgFromTransport(n, k, msg)

Purpose: buffers and encodes outgoing messages {k is the number of packets to encode}
{n is the number of trees in the current set of trees}
Put the msg in the outgoing buffer

if the number of messages in the outgoing buffer ≥ k then

if n > 1 then

E = MakeEncoderMatrix(n, k);

end if

while the number of messages in the outgoing buffer ≥ k do

if n > 1 then

form the k original packets into a matrix P

compute P ′ = E × P , producing the n encoded packets

add the n− k new packets listed in P ′ to outgoing buffer

end if

add the headers and send each of the n packets to the MAC Layer

end while

end if

Figure 26: FEC in Sender
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Procedure getMsgFromMAC(n, msg)

Purpose: buffers and decodes inbound messages { n is the number of trees in the current

set of trees}
put the msg in the inbound buffer

if msg in message cache then

discard packet

else

put message into the cache

determine the tree set number from the message’s header

if this node is a relay node for any of the trees in the tree set then

send the message to the MAC layer to be forwarded to neighbors

end if

if this node is a member of the multicast group then

determine the value of k from the message

if k = 1 then

send msg up to UDP layer

else

add the message to the incoming buffer for the group

while there are k or more packets in the buffer do

arrange the k packets into a matrix P

P ′ = MakeDecoderMatrix(n, k, P )×P

deliver the packets of P ′ to the UDP layer

remove the k packets from inbound buffer

end while

end if

end if

end if

Figure 27: Procedure getMsgFromMAC
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5.3 ALGORITHMS FOR RELAY NODES

A node in the Relay state has three responsibilities. First when a node receives a tree

packet, it parses the packet to determine if it is a relay node. If so, it updates its forwarding

information and forwards the tree packet. Second, when the time since the arrival of a new

set of trees (or a message to use the current tree set) reaches a threshold, the appropriate

entries for the forwarding table are deleted, and the node’s state changes accordingly. Third,

when a node in one of the relay states associated with a particular group receives a data

packet addressed to the group from the MAC layer, it checks to see if it has already received

a copy of this packet. If not, it then checks to see if it is a relay for the tree value indicated

in the packet’s header. If so, the node forwards the packet without modification so that any

receiver or relay node that receives the packet can process it. Since RoMR does not restrict

the processing of the packet to the specific child on a given branch, a node might be able to

receive it earlier than if it went the entire path. The caching of packet ID numbers prevents

broadcast storms from occurring. The caches are periodically flushed. Since a receiver node

may also act as a relay node the algorithm for a relay is embedded in the algorithm given in

Figure 27.

5.4 JOIN AND LEAVE ALGORITHMS

When a node wishes to join a multicast group it sends a JOIN message to the multicast

manager for the group as determined by a DNS-like lookup. The MM determines the receiver

that is closest to the new member and sends an UPDATE message to the receiver. The

recipient of the UPDATE message extends all trees in the tree set to the new member over

the shortest path between the new member and the receiver by resending the packet from

the MM as a tree set packet in the same manner as in distribution of new tree sets. At the

time of the next tree set calculation performed by the source, the new nodes will be included

in the tree calculations.

When a node wishes to leave a multicast group it sends a LEAVE message to the MM.

The change in the tree occurs when the next tree message is sent from the sender due to a
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topology change or a topology time-out.

5.5 ROMR VARIATIONS

Several variations of RoMR may be considered by giving the relay nodes a more active role in

tree formation and maintenance. In the first variation the relay nodes make local repairs to

the trees as needed until a new tree set arrives. In the second variation the multicast manager

only determines the trees within a local scope and assigns proxy nodes to be responsible to

create the rest of the tree. The third variation deals with an alternate method of selecting

the multicast manager (MM) for the group. The fourth variation examines ways to reduce

the size of the packets used to distribute the tree sets to the relay nodes. The last variation

discusses an alternate way to calculate the weight of an entire tree.

5.5.1 Local Repair by Relay Nodes

A relay node records the set of downstream one-hop neighbors that act as relays or are

member nodes when it receives a new tree set. When a link to one of these neighbors

becomes unavailable, the node can determine from the topology table obtained from the

unicast protocol if a two-hop path to the former neighbor exists. If so, the relay node will

send a “mini” tree set packet to the new intermediate node to inform it that it is to act

as a relay for the given set of trees. Again, the use of sequence numbers will prevent loop

problems from occurring. The node will send a message to the multicast manager (MM)

informing of the repair. The new relay node will continue to forward the packets until a

new tree set is received. The advantage is that the tree set will remain intact for a longer

period of time reducing the number of tree set packets being sent. The disadvantage is the

requirement for relay nodes that are not group members to store the subtrees rooted at the

relay node and to monitor them.
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5.5.2 Tree Creation using Proxies

The multicast manager(MM) will calculate the trees based on the current topology tables

available from the unicast protocol. Typically in unicast link state protocols each node

knows all of the links within a certain local scope (usually 2 hops), while it may or may not

know of all of the links outside of this range. The MM will consider each of the relay nodes

on the periphery of its scope as proxy nodes and send the proxy node a list of trees to be

extended to connect the indicated members to the indicated tree. The advantage is that the

proxies will have more recent local information and can form more reliable trees than the

MM alone. The disadvantage is the increased computational demands required of the relay

nodes selected as proxy nodes.

5.5.3 Multicast Manager Selection

When the current multicast manager (MM) becomes a bottleneck and wishes to delegate

the duties to another node, how should that node be selected? Instead a merely using

neighbor nodes as in the simpler RoMR case, a more complex method could be utilized.

The MM determines the three candidate nodes that are most central to the set of receivers

and begins negotiations with those nodes to determine the new MM. Let M be the set of

senders and receivers of the multicast group and N be the set of all nodes in the network,

find v1, v2, v3 ∈ N such that
∑
m∈M

d(vi,m)2 is minimized

Once the set of candidate nodes has been determined, poll each one to see if they are willing

to assume the MM responsibilities.

5.5.4 Forwarding Tree Packets

In the simplest version of RoMR a node that receives a new set of trees examines the list

of branches in the trees and if it finds that it is a parent of a child for some branch then

it updates its records and forwards the tree packet unmodified. What are other techniques

for handling the tree packet? One packet format would omit the branches that lead to leaf
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nodes. In this situation the node would be a relay node if it found itself listed as a parent

or a child in the tree list. The result would be a reduction in the size of the tree packet.

Another packet handling technique increases the involvement of the relay nodes. In this

second method a relay node would only forward the tree information that applied to the

tree(s) rooted at that node. The disadvantage is the analysis required by the relay and the

repeated repackaging of the tree data which may slow dissemination of the trees.

5.5.5 Tree Weight

In the simplest version of RoMR, the weakest link in the tree is used as the tree’s weight.

Another technique would be to estimate the lifetime of each link based on past behavior and

to calculate the weight of the tree as being the ratio of the number of nodes with a predicted

lifetime greater than a threshold τ to the total number of links in the tree.
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6.0 ROMR SIMULATION AND RESULTS

The purpose of simulation is to study the effectiveness of the protocol in a variety of environ-

ments. Two of the freely available programming packages, ns and GloMoSim, are designed to

provide a basis for network simulations including wireless mobile ad hoc networks and their

features are given. After performing a few experiments with each, GloMoSim was selected

as the simulation package based on ease of use. Once the simulator was selected, additional

C code was added to the provided code in order to specify the algorithms of RoMR. Once

the code was written and debugged, the parameters of the simulations were determined for a

variety of network densities, multicast group sizes, and speeds of the nodes. The simulations

were run to assess the performance of the protocol and to compare it to another proposed

multicast protocol.

6.1 SIMULATORS

A number of network simulators exist, but only a few of the freely available ones are specifi-

cally designed for wireless communications in mobile networks. The two that are most often

used in the academic research community are ns and GloMoSim.

6.1.1 ns

ns (network simulator) was originally developed at the University of California (UC) at

Berkeley. Today’s version, ns − 2, is part of the Virtual InterNetwork Testbed (VINT)

Project, a collaboration between researchers at UC Berkeley, Lawrence Berkeley National

Laboratory (LBNL), the Information Sciences Institute at the University of Southern Cal-
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ifornia, and Xerox’s Palo Alto Research Center (PARC). The goal of the VINT Project is

“to build a network simulator that will allow the study of scale and protocol interaction

in the context of current and future network protocol” [18]. Carnegie Mellon University’s

Monarch Project [1] has provided wireless and mobility extensions to ns. The extensions

provide radio propagation models and a shared media model for the network interface at the

physical layer, IEEE 802.11 and carrier sense multiple access (CSMA) media access control

(MAC) protocols at the link layer, and several unicast routing protocols at the network layer.

A Tcl script runs the simulation with inputs from three files: a movement pattern file, a

communication pattern file, and a router configuration file.

6.1.2 GloMoSim

The Global Mobile Information System Simulator (GloMoSim) was developed by the Parallel

Computing Laboratory within the Computer Science Department of University of Califor-

nia, Los Angeles(UCLA) [30]. It is a simulation library for wireless networks that is built

using the Parallel Simulation Environment for Complex Systems (PARSEC), the underlying

discrete-event simulation package which was also developed at UCLA and is available on a

variety of platforms. GloMoSim closely models the OSI layered approach in the design of

network protocols and provides several options at the various layers. Simple APIs are used to

communicate between the layers which allow developers to easily integrate new models with

the existing code. Many of the environment’s parameters are specified in a configuration

file. The parameters include:

• Dimensions of the geographical area

• Number of nodes

• The placement of nodes (random, uniform, positions read from a file)

• The mobility model (random waypoint, random drunken)

• Details about the radio signals used (frequency, bandwidth, noise, power levels )

• The MAC protocol (802.11, CSMA, MACA, TSMA)

• The routing protocol

• A traffic-generating application (HTTP, FTP, CBR)

95



While both GloMoSim and ns are widely used, the former was selected as the simulator

for this project after an initial experimental period using both packages. Both provided

similar network simulator capabilities. Both have a significant learning curve. GloMoSim

seemed to have a cleaner interface, whereas ns seemed to have been patched numerous times

which led to the decision to use GloMoSim.

6.2 ROMR AND GLOMOSIM

A simulator framework was written to test the RoMR protocol as it evolved over time. The

framework included the basic simulator built on top of GloMoSim, a visualization program

written using Borland C++ Builder, as well as several additional helper program to generate

the test cases and analyze the results. The C++ code to calculate the forward error correction

codes based on Vandermonde matrices was written by Luigi Rizzo.

GloMoSim was selected as the simulator due to its being freely available and the fact

that it was designed to simulate wireless networks. The underlying unicast protocol was

initially chosen to be the Fisheye State Routing protocol since it was provided as part of

the GloMoSim package. Later simulations used the Optimized Link State Routing (OLSR)

protocol as the unicast protocol since an Internet draft detailing its operation as well as a

multicast version (MOLSR) were available which could be used for comparison purposes. The

unicast protocol was slightly modified in order to use it with RoMR. Specifically, the topology

tables were modified so they included the links’ probabilities when they were exchanged

between neighbors.

Since GloMoSim is written using APIs to communicate between layers, only files that

were directly related to the implementation of RoMR needed to be modified providing suf-

ficient hooks for the RoMR code to execute. These files are written in C which are prepro-

cessed by PARSEC and then compiled using Microsoft’s Visual C++ version 6.0 on an IBM

Thinkpad computer with a 700MHz Celeron processor running the Microsoft Windows 2000

Professional operating system.

The overall objective of the simulation is to examine and assess the performance of the

basic version of RoMR. In order to isolate the effects of the use of multiple trees, link
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weights, and the forward error correction encoding scheme, the initial simulations assume

static groups for the duration of the simulations. This assumption is quite common in the

published papers on other multicast protocols. We also assume the multicast manager is the

sender for the duration of the simulation. The main item of interest is the percentage of

the packets sent by the source node that were received by the group members. This metric

will reflect the reliability of the protocol. The delay of the packet is inversely proportional

to the overhead associated with the data redundancy. The higher the average delay, the

fewer the number of redundant packets. The performance of the protocol is to be examined

under a number of varying conditions, specifically the mobility of the nodes, the density of

the network, and the size of the multicast group relative to the size of the network. Once

the data has been gathered and examined a statistical analysis of the data will determine if

the average number of packets received in variations of RoMR is significantly different from

the number of packets received under MOLSR. The appropriate test to use in this case is a

t-test of two samples assuming unequal variances. Excel 2000 from Microsoft Corporation

is used to perform the analysis.

6.3 SIMULATION PARAMETERS

All of the simulations were run in a terrain of 1000 meters by 1000 meters. The nodes were

randomly placed within the terrain. One node was randomly selected as the sender. The

mobility was based on a random waypoint model with nodes travelling at constant speeds. In

a random waypoint model a point in the terrain is randomly selected and the node travels to

that point at the assigned speed. Once the node arrives at the point another point is selected

and travel continues to the new point at the same speed. Input files were randomly generated

for both the initial positioning of the nodes as well as the mobility trace files so that both

a RoMR simulation and the corresponding MOLSR simulation would be based on the same

initial node placements and subsequent node movements. Each group was initialized with its

members at the beginning of the simulation. The group membership did not change during

the simulation in order to reduce the number of aspects under consideration. The sender

node generated a 512 byte constant bit rate packet every 2 seconds for 9 minutes starting 30
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Table 2: Constant Simulation Parameters

Parameter Value

Terrain 1000 × 1000 meters
Mobility Model Random Waypoint
Speed constant
Radio Frequency 2.4GHz
Bandwidth 11Mbps
Transmit Power 20 dBm
Signal-to-Noise ratio 10 using the accumulated noise model
Minimum Power for Received Signal -78 dBm
Traffic Generator constant bit rate

(1 packet every 2 seconds)
Packet Size 512 bytes
Simulation Time 10 minutes

seconds into the simulation to allow time for an initial set of topology tables to be exchanged

before multicasting began. Each simulation was run for 10 minutes of simulated time.

For all of the simulations the parameters were set to reflect the radio communications of

a typical laptop computer circa 2002-2003: frequency of 2.4GHz, bandwidth of 11Mbps, and

transmit power of 20dBm. The minimum power of a received packet is set to -78dBm. A

packet is processed only if the signal to noise ratio is above 10 using an accumulative noise

model.

To narrow the number of aspects affecting the results only three factors were varied in

any given given group of simulation runs while the other parameters remained fixed. The

three factors were network density, group size relative to the size of the network, and the

speed of the nodes as suggested in RFC 2501 from the Network Working Group of the

IETF [11]. Three densities of the network were tested: a sparse network with 10 nodes,

a medium network with 30 nodes and a dense network with 50 nodes. With each of the

density values, three sizes of groups were examined: 1/10, 1/5, and 1/2 of the network

nodes. The simulations were run with the nodes travelling at six different speeds: 0.5, 1,

5, 10, 20, and 30 meters per second to test rates resembling slow walking up to highway

vehicular speeds. Finally, each configuration was run using multiple starting seed values for
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Table 3: Variable Simulation Parameters

Parameter Value

Network Density sparse with 10 nodes
medium with 30 nodes
dense with 50 nodes

Group Size 1/2, 1/5, or 1/10 of network size
Speeds (in meters per second) 0.5, 1, 5, 10, 20, 30
Minimum Number of Trees (µ) 2
Minimum Cumulative Weight (τ) 0.15
Reuse Factor (ρ) 0.5

the random number generator.

The first set of data was run with the set of multicast trees begin formed under the

condition that at least two trees must exist in the next time epoch with a cumulative weight

of at 0.10 or better. Other simulations varied the µ and τ and input parameters.

A second set of experiments was performed to investigate the advantages of the use

of the Steiner tree as the basic type of tree as opposed to a tree composed of the union of

shortest paths from each of the receivers to the sender. The percentage of packets successfully

delivered to the receivers as well as the differences in the overhead due to control packets

carrying tree set information and the duration of the tree set were examined.

6.4 SIMULATION RESULTS

The simulations tested the basic version of RoMR to investigate the performance under

varying network conditions and RoMR parameters stated in Section 6.3 and to compare the

results to the performance of MOLSR. The graphs on the following pages are arranged in

pairs. The graphs shown at the top of the pages indicate the percentage of packets that were

successfully delivered to the members with the nodes in the network moving under the set

of 6 different speeds. The graphs at the bottom show the average end-to-end delay at the

application layer for the same simulation. Each point on the graph represents the average

of five different runs of the simulation using 5 different random number seeds. The ith run
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of MOLSR used the same mobility trace files and initial positions as did the ith run of any

of the version of RoMR so that the only difference was the routing protocol.

The captions on the graphs have the following meanings:

• molsr: Multicast version of OLSR

• romrOff: An experiment in which all link were assumed to have equal weight as a test

of the effectiveness of calculating the weights and using them in the tree calculations.

In the original version of RoMR the links with the lesser weights were discarded from

consideration in the construction of the next tree. In romrOff, the links to be discarded

were chosen at random.

• romrOn: Reuse factor = ρ = 0.5, cumulative weight threshold = τ = 0.15, and minimum

number of Trees = µ = 2

• romr25Thresh: ρ = 0.5, τ = 0.25, and µ = 2

• romr3Trees: ρ = 0.5, τ = 0.15, and µ = 3

Overall, RoMR delivered more packets to the group members than MOLSR. See Figure

28. Examining the data for the individual cases, shows a general increase in the number of

packets delivered to the group members when using RoMR as opposed to MOLSR along with

an increase in the delay in the slow-moving network configurations. The increase in delay

resulted from RoMR increasing the value of k to approach n with the purpose of reducing

the overhead due to redundant packets. Since more packets comprise a packet group, the

application had to wait longer for all of the packets in the packet group to arrive in order

to decode them, but then all of the packets in the group were delivered with no delay to

the upper layers. Indirectly this can be viewed as a measurement of the efficiency of the

protocol. The higher the delay indicates a lower number of packets injected into the network

for redundancy purposes.

A number of questions can be answered by performing statistical analysis of the data.

• Did the use of the link weights affect the performance of RoMR?

• Was the performance of RoMR significantly different from that of MOLSR?

• Did increasing the value of τ result in a significant difference in the number of packets

received?
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• Did increasing the value of µ result in a significant difference in the number of packets

received?

In order to answer these questions a two-sample t-test assuming unequal variances with

a 95% confidence interval was performed on the accumulated data under each of the various

versions of the protocol. Tables 5 - 7 show the results of the tests. In all cases the differences

in the mean number of packets received was shown to be significant so the answer to each

of the above questions is “yes”.

The second set of experiments compared the effectiveness of using a Steiner tree as the

basic type of tree as opposed to a tree made up of shortest paths from each of the receivers to

the sender. The parameters were the same as used in the romrOn case described above. The

results, given in Table 4, showed that the successful delivery of packets to the receivers was

very similar in both of the two cases, but other statistics gathered indicate the superiority

of the use of the Steiner trees. The average amount of time a tree set remained active

before a new tree set was distributed was 8% shorter in the shortest paths trees than in the

Steiner tree version. This is due to the likelihood that more links are in the shortest paths

tree than in the Steiner tree and thus the tree set becomes obsolete sooner in the shortest

paths version. Another indicator that Steiner trees performed better than the shortest paths

trees was in the examination of the amount of overhead. The overhead due to the control

packets which carried the tree set information increased by an average of 16% when using

the shortest paths trees. See Figure 29.

Table 4: Steiner vs Shortest Paths Trees

Steiner Tree Shortest Paths % Increase/Decrease

Packets received 99.7% 99.7% 0.0%
lifetime 189.9 sec 174.2 sec -8.3%
# of tree sets 11.0 11.4 3.9%
# of control bytes 20,023 23,297 16.4%
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Table 5: t-tests 1 and 2

RomrOn vs RomrOff

RomrOn RomrOff
PktsRec PktsRec

Mean 269.50 253.04
Variance 4.50 553.92
Observations 2160 2160
Hypothesized
Mean Difference 0
df 2194
t Stat 32.36
one-tail
P(T ≤ t) 1.72E-188
one-tail
t Critical 1.65
two-tail
P(T ≤ t) 3.45E-188
two-tail
t Critical 1.96

RomrOn vs MOLSR

RomrOn MOLSR
PktsRec PktsRec

Mean 269.50 266.19
Variance 4.50 26.45
Observations 2160 2160
Hypothesized
Mean Difference 0
df 2874
t Stat 27.59
one-tail
P(T ≤ t) 3.93E-149
one-tail
t Critical 1.65
two-tail
P(T ≤ t) 7.87E-149
two-tail
t Critical 1.96
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Table 6: t-tests 3 and 4

RomrOn vs Romr3Trees

RomrOn 3Trees
PktsRec PktsRec

Mean 269.50 268.82
Variance 4.50 9.01
Observations 2160 2160
Hypothesized
Mean Difference 0
df 3886
t Stat 8.55
one-tail
P(T ≤ t) 8.52E-18
one-tail
t Critical 1.65
two-tail
P(T ≤ t) 1.70E-17
two-tail
t Critical 1.96

RomrOn vs Romr25Thresh

RomrOn 25Thresh
PktsRec PktsRec

Mean 269.50 269.18
Variance 4.50 40.66
Observations 2160 2160
Hypothesized
Mean Difference 0
df 2632
t Stat 2.22
one-tail
P(T ≤ t) 1.33E-02
one-tail
t Critical 1.65
two-tail
P(T ≤ t) 2.66E-02
two-tail
t Critical 1.96
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Table 7: t-tests 5

Romr3Trees vs Romr25Thresh

Romr3Trees Romr25Thresh
PktsRec PktsRec

Mean 268.82 269.18
Variance 9.01 40.66
Observations 2160 2160
Hypothesized
Mean Difference 0
df 3071
t Stat -2.34
one-tail
P(T ≤ t) 9.55E-03
one-tail
t Critical 1.65
two-tail
P(T ≤ t) 1.91E-02
two-tail
t Critical 1.96
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7.0 CONCLUSION

Multicasting in a mobile ad hoc network faces many challenges - the mobility of the nodes,

the unreliable transmission medium, the lack of dedicated routers and infrastructure, the

limited transmission range of the devices, and the limited available bandwidth. In addition

to these problems the task of finding the optimal multicasting tree is NP-complete. These

challenges and the questions that are are raised as a result of the challenges were discussed

in Chapter 1. Chapter 2 examined the areas that are related to the ideas used in the

development of the protocols and algorithms, specifically those relating to other proposed

unicast and multicast protocols designed for use in mobile ad hoc networks, and compared

the features of each to the proposed protocol. The chapter also discussed various heuristics

used in the calculations of approximations to the optimal tree known as a Steiner tree.

While RoMR could have used a number of these algorithms, an modification of the online

version of the Shortest Path Heuristics was selected based on its simplicity and the bound

of twice the cost of the optimal tree. In Chapter 3 we laid the basic foundation of the

framework into which RoMR would eventually fit, describing how the layers in a layered

model of network communications are affected by multicasting and how the architecture of

RoMR is based on these layers. Chapter 4 derives the calculations used in the data link layer

to compute link weights. The data link layer monitors of the strength of the signals from

neighboring nodes and calculates a link weight based on a ratio of the area in which the node

could receive the neighbor’s signal to the area in which the neighboring node is predicted to

occupy in the near future based on the strengths of the signals previously received. Chapter

5 provides an increasing level of detail about the algorithms use in RoMR including the steps

in formulating the sets of multicast trees and the details of the forward error correction

encoding and decoding process. Finally, Chapter 6 describes the simulations that were run
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and the results they produced.

In summary, the Robust Multicast Routing (RoMR) protocol overcomes the challenges

of multicast communications in mobile ad hoc networks and achieves the desired results of

increasing the overall delivery of packets to members of a multicast group while keeping the

number of extra data packets for redundancy purposes low and thereby conserving the use

of network resources. Any multicast protocol is not expected to work in all circumstances,

but the major strength of the RoMR lies in its flexibility to adapt to a variety of network

conditions during the course of execution as exemplified in the simulation results. The novelty

of RoMR is due to the development of the link weight calculations and the integration of

methods not previously combined into a multicast protocol including forward error correction

encoding techniques, Steiner tree approximations, and link availability estimates.

The contributions of this thesis include:

• A novel method used to compute the weights of the links in a mobile ad-hoc network

based on previous power levels of the received signal by a node.

• The development of a tree-based multicast protocol incorporating ideas of

– a modified Steiner tree approximation algorithm

– the use of multiple interconnected trees

– forward error correction codes used in the telecommunications industry

• The formulation of a simulation framework.

Work on RoMR can be continued in several areas. Simulations incorporating more vari-

ation in group membership and the change in the designation of the multicast manager

need to be written, run, and analyzed. In the future RoMR could be expanded to support

Quality-of-Service (QoS) with realtime guarantees in elastic applications. Another area is to

address the scalability issue in RoMR. In extremely large networks, seeking to compute the

set of trees based on shortest paths or Steiner trees may not be feasible. How can RoMR be

adapted to work in such an environment? One possibility that addresses this last question

is to disseminate the packets to strategically positioned nodes in the network and to have

the interested parties seek the information based on content, name or other attributes.
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