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THREE ESSAYS ON AUCTIONS

Zhiyong Tu, PhD

University of Pittsburgh, 2005

This dissertation studies new bidding behaviors in richer environments where bidders

can either communicate or intertemporally interact. We focus on such three perspectives

as collusion, strategic information disclosure and intertemporal inference. In the collusion

chapter, we propose a framework to investigate the structure of endogenous collusion and

show that an endogenously formed ring shall in general be a partial ring. In the information

disclosure chapter, we study the auctioneer’s optimal choice of interperiod information release

and show the standard sequential Dutch auction or the sequential first-price auction with

the announcement of each stage’s winning bid can generate the highest revenue among all

considered sequential auction formats. In the intertemporal inference chapter, we suggest a

resale explanation for the price path in sequential auctions with multi-unit demand.
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1.0 INTRODUCTION

Traditional auction models generally treat auctions in a static environment where there exists

neither communication nor intertemporal interaction among bidders. But in many realistic

situations, auctions are run in multiple rounds. Bidders can not only communicate, but also

obtain rivals’ private information though interperiod inference. In such richer situations,

whether bidders will display certain new behaviors is the question that this dissertation is

going to focus on.

The following three chapters will study auctions from the perspectives of collusion, strate-

gic information disclosure and intertemporal inference respectively. In Chapter 2, we endoge-

nize collusion by allowing a collusion initiator to select a particular scheme and then propose

it to a chosen number of other bidders. The main finding is that, when there are at least

three bidders, an endogenously formed ring includes at least two members and is in general

not all-inclusive. Since a partial ring creates bidder asymmetry, it makes a first-price auction

inefficient. This finding provides a basis for laws that outlaw collusion in auctions. Chapter

3 characterizes equilibria in various two-stage sequential auction formats under all possible

forms of interperiod information disclosure in an IPV model. We study the role of interpe-

riod information disclosure in affecting bidders’ intertemporal learning, bidding, and auction

revenue. Unlike Milgrom and Weber (1982), who show in their model that it is always good

for the auctioneer to commit to complete information revelation, we find that this is not

necessarily the case in sequential auctions due to bidders’ intertemporal substitution. In our

model, only selective information release can be revenue enhancing. We show that the stan-

dard sequential Dutch auction or the sequential first-price auction with the announcement of

each stage’s winning bid generates the highest revenue among all considered auction formats.

Chapter 4 studies price trends in a sequential first-price common-value auction with resale.
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It differs from the previous research in that it considers sequential auctions with multi-unit

demand. In the two-stage case, we propose a condition that guarantees the existence of a

symmetric monotonic equilibrium which exhibits a declining trend. This is because bidders

have the incentive to overbid in the first round to lower their rivals’ intertemporal inference

on the object value so that they can obtain a second-stage advantage. We also characterize

the necessary properties of symmetric monotonic equilibria in the finite N-stage and the

infinite-stage cases. In the former case, the price trend remains constant and drops only at

the last stage; in the latter case, we have a constant price trend throughout. In the final

chapter, we summarize the new results that this dissertation obtains and lay out the future

research agenda.
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2.0 ENDOGENOUS FORMATION OF A BIDDING RING

Auctions are a prevalent mechanism to allocate resources. It is natural for bidders to collude

in order to capture the surplus that should have been transferred to the auctioneer. The

format of collusion in auctions has been widely studied and the current literature follows two

major trends. The first trend applies a mechanism design approach to study different forms

of collusion in a one-shot auction game. Recent papers include McAfee and McMillan (1992),

Marshall, Meurer, Richard and Stromquist (1994), and Marshall and Marx (2004). The other

trend explores the implicit collusion of bidders in a repeated game framework. Recent works

include Blume and Heidhues (2002), Aoyagi (2003) and Skrzypacz and Hopenhayn (2004).

The auction literature on collusion is also related to the industrial organization literature on

cartel and merger, such as Salant, Switzer and Reynolds (1983), Deneckere and Davidson

(1985), Cave and Salant (1995); and to the game theory literature on coalition formation

such as Bloch (1996) and Ray and Vohra (1999). In this paper, we will adopt the mechanism

design approach to study the endogenous formation of a bidding ring in a one-shot first-price

auction. Related works are briefly discussed as follows.

McAfee and McMillan (1992) analyze collusion in the first-price auction within a homo-

geneous Independent Private Value (IPV) framework (we will refer to their paper as MM

(1992) hereafter). Their emphasis is on a surplus division game for an all-inclusive cartel.

They show that collusion is inefficient when the cartel is weak (no internal transfer) and

efficient when the cartel is strong (side payments allowed). An incomplete cartel is also

studied for a discrete special case where bidders’ valuations follow a two-point distribution.

In this special case, they analyze a cartel formation game, which suggests a way to model

the ring formation when bidders can make endogenous decisions. The major problem with

this approach, however, is that in general it may not yield a unique equilibrium outcome,
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i.e., there may be more than one coalition structure that satisfies the stipulated equilibrium

conditions. This point can be supported by a similar numerical example in Deneckere and

Davidson (1985) where merger with Bertrand competition is studied and we see that almost

all coalition sizes can satisfy the MM (1992) equilibrium conditions. Another problem of this

approach is concerned with one equilibrium condition, which requires that being an outsider

captures at least as big surplus as joining the ring. This condition aims to prevent the devi-

ation of the outsiders. But a successful deviation of an outsider not only hinges on her own

payoff comparison, but also on whether the ring will want to accept her. Even if the outsider

finds it profitable to join the ring, once her joining decreases the ring members’ surplus, the

ring may not accept her. Therefore, the above equilibrium condition is too strong for the

purpose of preventing an outsider’s deviation. Even if the condition is not satisfied, once a

ring finds it unprofitable to accept an outsider, an equilibrium will emerge.

The incomplete cartel problem in MM (1992) is not fully tackled because the bidders

become asymmetric under collusion in the first-price auction, which makes the equilibrium

bid functions analytically unsolvable. Marshall, Meurer, Richard and Stromquist (1994)

approach this analytical difficulty with numerical methods. They provide numerical results

for a K-member ring of N bidders (K ≤ N) in a homogeneous IPV setting where bidders’

valuations are drawn from a uniform distribution over the support of [0, 1]. The results

reported in their paper give us a good understanding as to how the surplus of ring members

and outsiders evolves when the ring size increases.

Bidder collusion in a heterogeneous IPV environment is studied in Marshall and Marx

(2004). They divide collusive mechanisms into two categories, the bid coordination mecha-

nism and the bid submission mechanism and carry out a characterization of collusive behavior

in the first and second-price auctions under each. One important feature of their collusive

scheme is that once a ring member deviates, the ring does not operate and all bidders bid

non-cooperatively. As they mention in their paper, this is a common, but not innocent as-

sumption. In fact, the collapse of the ring as one member defects is not a credible threat if it

is in the remaining members’ own interests to continue the collusive operation. A more com-

mon equilibrium condition adopted in the coalition formation literature is that the coalition

will still operate but with one member fewer, like in MM (1992), Bloch (1996) and Ray and
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Vohra (1999). Also, the ring setup is exogenously given and the endogenous ring formation

problem is not dealt with.

In the IO literature, Cave and Salant (1995) propose a majority-rule voting game to

endogenize the decision of cartel structure. Notice that an important variable, the cartel size

is exogenously given as all-inclusive. It is not obvious how a cartel size can be endogenized

under a voting setup. Bloch (1996) and Ray and Vohra (1999) study endogenous coalition

formation via a sequential bargaining game. Their methods however, are hardly tractable if

applied to the standard auction setup.

Our objective in this paper is thus to propose a tractable approach to analyze bidders’

collusive behavior in an environment where they can endogenously choose and implement

a mechanism for themselves. A sketch of the approach is that nature selects a collusion

initiator from N symmetric bidders. This initiator then proposes a collusive scheme that

maximizes her own ex ante surplus to a chosen number of other bidders. If these invited

bidders agree to join the ring, then collusion works according to the proposed scheme. If an

invited bidder declines the proposal, she will bid non-cooperatively along with the uninvited

bidders. Detailed description of the whole game and related discussions will be left for the

next section.

The main contribution of this paper is to propose a tractable framework to model en-

dogenous ring formation in auctions. Within this framework, we find that when there are

at least three bidders, an endogenously formed ring includes at least two members and is in

general not all-inclusive. As the first-price auction becomes asymmetric after the collusion,

the auction outcome will be inefficient. An implication is that outlawing the collusion will be

socially beneficial. The approach in this paper can be readily extended to the other auction

formats.

The remainder of the paper proceeds as follows. In Section 2, we set up the auction

environment and define the collusive scheme. Section 3 formulates the endogenous collusive

problem that bidders need to solve. Section 4 gives the solution and Section 5 concludes.
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2.1 AUCTION SETTING AND COLLUSIVE SCHEME

This is an N -bidder single object first-price auction model ( N > 1) with no reserve price.1

All bidders are risk-neutral and their private valuations, v1,v2,...vN , are independent random

variables with the same density f(vi) on the common support [v, v]. f(vi) is continuously

differentiable and bounded away from zero on [v, v].

The endogenous ring formation game consists of the following four stages.

Stage 1. Nature selects a bidder to be the collusion initiator with probability
1

N
from N

symmetric bidders.

Stage 2. Before all bidders (including the collusion initiator) observe their private valuations,

the collusion initiator selects a collusive scheme Γ, which contains a bid assignment rule and

a transfer rule, from the feasible set of schemes defined below. To a chosen number of other

bidders, she announces the collusive rules.

Stage 3. After considering the above proposal, each invited bidder decides whether to join

the ring or not. If an invited bidder agrees to join, she will commit to the scheme proposed by

the collusion initiator. If an invited bidder refuses to join, she will then bid non-cooperatively

along with the uninvited bidders in the main auction.

Stage 4. All bidders observe their private valuations and bid according to their plans decided

in stage 3.

We will address four points concerning the above collusion game. First, in the first stage,

since bidders are ex ante identical, each bidder will have an equal chance to be chosen by

nature as the collusion initiator, hence the selection probability is
1

N
. Second, in stage 3, we

assume that once an invited bidder turns down the proposal, she will bid non-cooperatively.

This means we assume only the collusion initiator has the ability to organize a ring. This

is the major simplifying assumption that makes our future analysis tractable. Finally, we

assume both the collusive proposal and the decisions to accept or decline the proposal must

be made before all bidders observe their valuations. This assumption fits into the circum-

stances where bidders will have to collude before they know exactly the object value. These

1A reserve price complicates our derivation, but does not affect our basic conclusions. We do not analyze
its effect in this paper.
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circumstances arise when bidders find that as the precise information on the object value

has been collected, it may be too late to organize a ring.

Now we will define the feasible set of schemes, from which the collusion initiator will

select one. A collusive scheme is a mechanism denoted by Γ = (K, βK , TK). K is the

number of bidders that are included in a ring. βK : [v, v]K → RK , is the function that maps

from all members’ reports to their respectively assigned bids given the ring size is K. Let

V = (v1, v2, ...vK), which denotes the vector of K ring members’ valuations. We use β̂K (V )

to denote the largest bid that βK (V ) assigns given the report vector V . So β̂K (V ) is a

mapping from [v, v]K to R. TK : [v, v]K → RK , is the payment function based on all ring

members’ reports. We impose only one restriction on the mechanism. The payment rule

TK (V ) can be decomposed into two parts: PK (V ) and XK , where PK (V ) is a function from

[v, v]K to R and XK is a scalar, for any given K. Only the member whose assigned bid is the

highest according to βK (V ) pays the amount PK (V ) to the Center. All members obtain an

equal non-contingent transfer XK from the Center. So we are employing an equal surplus

sharing rule.

2.2 FORMULATION OF THE PROBLEM

2.2.1 Optimality Criterion

Without loss of generality, we make bidder 1 the collusion initiator. So Bidder 1 will choose

the appropriate K, βK (V ), PK (V ) and XK to maximize her own ex ante payoff defined

as G1
K , where the subscript K denotes the number of ring members. Then G1

K equals the

following expression:
1

K
{XK+Ev1...vK

[(v1−β̂K(V )) Pr(bidder 1 wins the object|bidder 1 is assigned the largest bid

by βK(V )) −Ev1...vK
[ PK (V )|bidder 1 is assigned the largest bid by βK(V )]} +

K − 1

K
×XK

1

K
is the probability that bidder 1 is assigned the highest bid by the bid assignment rule

βK(V ), given that ring members’ signals are iid.
K − 1

K
is the probability that her assigned

bid is not the highest. XK is the non-contingent transfer. The term Ev1...vK
[ PK (V )|bidder
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1 is assigned the largest bid by βK(V )] is the expected payment conditional on that the

bidder’s assigned bid is the highest among all members. The expression:

Ev1...vK
[(v1 − β̂K(V )) Pr(bidder 1 wins the object|bidder 1 is assigned the largest bid by

βK(V ))] is the expected surplus captured from the main auction conditional on bidder 1 has

the highest assigned bid.

Notice that G1
K can also be rearranged as:

1

K
Ev1...vK

[(v1 − β̂K(V )) Pr(bidder 1 wins the object|bidder 1 is assigned the largest bid by

βK(V ))]− 1

K
Ev1...vK

[ PK (V )|bidder 1 is assigned the largest bid by β̂K(V )] + XK

It is easy to see that the ex ante expected surplus for the other ring members has the

same expression as G1
K because a) they have iid signals and b) the collusive proposal adopts

an equal surplus sharing rule. Both of these factors help to preserve the symmetry of ring

members.

2.2.2 Constraints

In order to make the mechanism implementable, the collusion initiator’s optimization prob-

lem will have to be subject to the following four regular constraints: budget balance, the

incentive compatibility for reports, incentive compatibility for bidding and the participation

constraint.

2.2.2.1 Budget Balance It is a standard requirement that the mechanism should be ex

ante budget-balanced. Based on the mechanism’s equal surplus sharing rule, we need that

XK =
1

K
Ev1...vK

[ PK (V )]. An immediate consequence of this budget balance constraint is

that G1
K collapses to:

1

K
Ev1...vK

[(v1 − β̂K(V )) Pr(bidder 1 wins the object|bidder 1 is assigned the largest bid by

βK(V ))]. This is because Ev1...vK
[ PK (V )] = Ev1...vK

[ PK (V )|bidder 1 is assigned the largest

bid by βK(V )].2

2Ev1...vK
[PK (V )] =

∑K
i=1 Pr (bidder i is assigned the largest bid by βK (V ))×Ev1...vK

[PK (V ) |bidder i is
assigned the largest bid by βK (V )]. As both Pr (bidder i is assigned the largest bid by βK (V ))) and
Ev1...vK [PK (V ) |bidder i is assigned the largest bid by βK (V )] are the same for all i because of the bidder
symmetry, we then have Ev1...vK [PK (V )] = Ev1...vK [PK (V ) | bidder i is assigned the largest bid by βK (V )]
for all i.

8



Notice that the term:

Ev1...vK
[(v1 − β̂K(V )) Pr(bidder 1 wins the object|bidder 1 is assigned the largest bid

by βK(V ))] is the total surplus captured by the ring, so G1
K also becomes the per member

surplus of the ring. Because of the bidder symmetry, maximizing the collusion initiator’s

own surplus now is equivalent to maximizing the per member surplus of the ring. Define

the per member surplus as GK , so GK =
1

K
Ev1...vK

[(v− β̂K(V )) Pr( β̂K(V )wins the object)],

where v is defined as the report in V that is assigned the largest bid by βK(V ).

The following lemma shows an important property of the optimal collusive mechanism.

Lemma 1 Under the defined collusive scheme, the optimal βK(V ) always assigns the largest

bid β̂K(V ) to the member with the highest report and β̂K(V ) only needs to condition on the

highest report v.

Proof. See the Appendix.

Lemma 1 tells us that there is no contradiction between optimality and efficiency inside

the ring. For any given ring size K, each ring member’s surplus will be maximized if the

member with the highest object value is assigned the largest bid to compete in the main

auction. Also, the optimal bid assigned to the highest-report member does not need to

condition on other members’ reports. This lemma largely simplifies our future analysis. The

intuition is that the highest-report member could capture more surplus for her own hence

have more surplus to share with all the other members. Since now the whole ring would

equally share the surplus captured only by the highest-report member, other members’

reports are then extraneous information in term of the ring’s surplus maximization. With

this lemma, the per member surplus GK becomes:
1

K
Ev1...vK

[(v − β̂K(v)) Pr( β̂K(v)wins the object)|v is the highest report in V ].

Another consequence from the budget balance constraint is that the payment rule PK (V )

and XK disappear from GK explicitly. It means that the payment rule will not be an element

that can affect ring members’ surplus. So the ring’s surplus will now only depend on {K,

β̂K (v)}. An implication is that various payment rules, as long as they satisfy the equal

surplus sharing and budget balance assumptions, can all be used to implement the efficient

mechanism here. For example, the first-price pre auction knockout used in MM (1992) can

be readily generalized to implement efficient collusion for any given ring size K. The second-
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price pre auction knockout in Marshall and Marx (2004) is also an effective implementation

method. It does not matter which knockout the ring chooses: it will not affect any member’s

ex ante expected surplus. This fact is summarized as the following lemma.

Lemma 2 Under the defined collusive schemes, different constructions of payment rule will

not affect the optimal collusive surplus.

Actually, the irrelevance of the payment rule to the collusive surplus can also be obtained

from the incentive comparability for reports constraint. It is easy to check that the commonly

known property in mechanism design that only the allocation rule affects the equilibrium

payoff can be applied here to produce Lemma 2. But the incentive compatibility for reports

constraint alone can not lead to the result stated in Lemma 1.

2.2.2.2 Incentive Compatibility for Bidding In order to maximize the per capita

surplus GK , we necessarily require that for any ring size K, the corresponding total ring

surplus must be maximized. As the ring can not endogenously choose the main auction rule,

it can only design an appropriate β̂K(v) to bring maximum total surplus to itself given the

outside bidders’ strategies. This leads to the following incentive compatibility for bidding

condition:

(I) β̂K(v) ∈ arg max
b

(v − b)× Pr[b ≥ maxj∈{K+1,...N} βout
K (vj)]

(II) βout
K (vj) ∈ arg max

b
(vj − b)× Pr{b ≥ max[maxj′∈{K+1,...N}\{j} βout

K (vj′ ), β̂K(v)]}
βout

K (vj) denotes the bid function for any outsider j, who competes against a ring of

size K. Since the outsiders are ex ante identical, they will follow the same equilibrium bid

function βout
K (.). Therefore, (I) and (II) simultaneously determine the collusive scheme’s

optimal bid assignment rule β̂K(v) and the outsiders’ bid function βout
K (.) as a pair of mutual

best responses.

2.2.2.3 Participation Constraint Finally, we come to the participation constraint,

which aims to ensure the stability of the proposed scheme. In our setup, the stability condi-

tion only needs to make sure that joining the ring is better than bidding non-cooperatively.

Marshall and Marx (2004) adopt a strong punishment to the deviant by collapsing the whole

ring. In this paper, we assume that when a single member deviates, the ring can still operate
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but with one member fewer. The punishment here is much weaker, and due to a free-rider

effect, an outsider may capture more surplus than a ring member. A similar effect is re-

ported in IO literature such as Salant et al (1983) and Deneckere and Davidson (1985), who

study merger under Cournot and Bertrand competition respectively. Both papers find that

outside firms can capture more surplus than coalition members by free riding on the overall

suppressed competition. The free-rider effect from collusion in auctions can also be seen in

the numerical results in Marshall et al (1994). In a similar collusive scheme with iid uniform

valuations, they show that as the ring size increases, the outsiders’ surplus also increases.

So the collusive benefit of the ring leaks out to the outsiders too. Can the free-rider effect

be so big as to disable a ring? They do not provide a numerical example in which this is the

case. But later in this paper, we will show analytically that this is a possibility.

Before we write down the specific participation constraint, let us introduce some notation.

We use DK to denote the ex ante expected deviation profit for a single member i in a ring of

size K. Since all members are ex ante identical, their deviation profits will be the same. We

will use v′ to denote the valuation of the deviating member and v
(K−1)
1 to denote the highest

order statistic among the valuations of the K − 1 remaining members. Then

DK = Ev′{(v′−βout
K−1(v

′))×Pr[βout
K−1(v

′) ≥ max[maxj∈{K+1,...N} βout
K−1(vj), β̂K−1(v

(K−1)
1 )]]}. So

the participation constraint will be: GK ≥ DK , i.e., a ring member should obtain equal or

more surplus as she stays in a ring than when she becomes a outsider. Once this constraint

is satisfied, in equilibrium all invited bidders will accept the collusion initiator’s proposal

since it is not profitable for them to reject.

2.2.3 Optimization Problem

The collusion initiator’s problem has now been largely simplified. The budget balance con-

straint narrows our search for the optimal mechanism to those efficient ones. The incentive

compatibility for bidding constraint in fact pins down the bid assignment rule. Therefore,

the number of ring members K remains as the only choice variable to maximize the ex ante

per member surplus GK subject to the participation constraint. Hence, an initially compli-

cated endogenous ring formation problem now boils down to an optimal ring size problem.
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Let us use βin
K (v) to denote the ring’s bid assignment rule β̂K(v) so that the notation βin

K (v)

can more clearly represent the ring’s bid in counter to the outsider’s bid βout
K (v) in our sub-

sequent analysis. Formally, this optimization problem can be formulated as follows:

max
K∈{1,2,..N}

GK

subject to:

βin
K (v) ∈ arg max

b
(v − b)× Pr[b ≥ maxj∈{K+1,...N} βout

K (vj)]

βout
K (vj) ∈ arg max

b
(vj − b)× Pr{b ≥ max[maxj

′∈{K+1,...N}\{j} βout
K (vj

′ ), βin
K (v)]}

GK ≥ DK

where v is the highest order statistic in the K-dimensional vector of reports V and vj is the

valuation of the outsider j.

2.3 SOLUTION

Although the endogenous ring formation problem has been much simplified, a complete

solution to it is still analytically impossible. The major difficulty is that the above incentive

compatibility for bidding constraint can not yield a pair of closed form equilibrium bid

functions. Nevertheless, our assumption that f(vi) is continuously differentiable and bounded

away from zero on the common support [v, v] will guarantee the existence and uniqueness

of a monotonically increasing pure strategy equilibrium βin
K (v) and βout

K (vj) for any given

ring size K.3 Therefore, for a given density, the above formulation can lead to a numerical

solution to the optimal ring size, hence an endogenous collusion format. This paper will only

deal with the analytical solutions, which will also bring us several important results. We will

proceed by first characterizing some properties of the equilibrium bid functions.

2.3.1 Characterization of the Bid Functions

As before, βin
K (v) denotes the equilibrium bid function of the ring and βout

K (vj) denotes the

equilibrium bid function for the outside bidder j. Let λin
K (β) and λout

K (β) denote the inverse

3 See the existence and uniqueness results in Maskin and Riley (2000b), (2003), Athey (2001) and Lebrun
(2002) etc.
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bid functions for βin
K (v) and βout

K (v) respectively. F̃ denotes the c.d.f of the highest order

statistic v of v1, ...vK . Then using the monotonicity of λin
K (β) and λout

K (β), βin
K (v) and βout

K (vj)

must satisfy:

(I ′) βin
K (v) = arg max

b
{(v − b)×[F (λout

K (b))]N−K}

(II ′) βout(vj) = arg max
b
{(vj − b)× F̃ [λin

K (b)]× [F (λout
K (b))]N−K−1}

The first-order conditions derived from (I ′) and (II ′) will establish a system of differential

equations, from which the following properties of bid functions can be easily obtained.

Lemma 3 Properties of the equilibrium bid functions:

(a) βin
K (v) = βout

K (v)=v, βin
K (v) = βout

K (v) = β∗K.

(b) βin
K (v) < βout

K (v) for all v ∈ (v, v).

(c)
dβin

K (v)

dv
|v=v = 1− 1

N −K + 1
,

dβout
K (v)

dv
|v=v = 1− 1

N
.

Proof. See the Appendix.

Property (a) is standard, which says that both bid functions have the same starting

and ending points for any given ring size K. Property (b) shows that the outsiders always

bid more aggressively than the ring for all v ∈ (v, v). Again, it is the standard weakness

leading to aggression result. Property (c) deals with the motion of bids at the lower support.

Marshall et al (1994) derive the same derivative results for the uniform distribution when

they pursue a numerical solution. Here, we find that these derivative results actually hold for

any density. All these properties will be useful for our future characterization of the optimal

ring size.

2.3.2 Unconstrained Optimal Ring Size

The following proposition is the only analytical result on the optimal ring size that we can

obtain for the general density of bidders’ valuations. That is, if we ignore the participation

constraint, the all-inclusive ring will maximize each member’s expected surplus. We follow

the common assumption that an all-inclusive ring wins the object with zero cost, which

enables the ring to capture the whole surplus in the auction. But as the surplus has to be

spread to all members, we can not immediately tell whether the per member surplus is also
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maximized. The following proposition gives us an affirmative answer.4

Proposition 1 Under the defined collusive schemes, the all-inclusive ring maximizes the

ex ante per member surplus once the participation constraint is ignored.

Proof. See the Appendix.

Does the above proposition still hold once some participation constraint is imposed?

Under the participation constraint assumption in Marshall and Marx (2004), i.e., a ring

collapses when a single member deviates, an all-inclusive ring can definitely prevent any

deviation, hence will be the optimal ring size.5 However, we rarely if ever to observe an

all-inclusive ring in practice especially when the number of bidders is large. As we argued

before, the participation constraint adopted in this paper gives rise to a free-rider effect

for outsiders. If the suppressed competition resulting from the collusion of large number of

bidders creates a big free-rider effect, the all-inclusive ring may be very hard to sustain. Then

a non all-inclusive ring will be justified as the endogenous collusion format in equilibrium.

Because of the analytical difficulties, this result will be shown in the following section only

for the uniform distribution.

2.3.3 Constrained Optimal Ring Size

The task in this section is to show that in order to guarantee the stability of the ring, the

collusion initiator may only approach a fraction of all the bidders before she announces the

collusion idea. So a non all-inclusive ring can be rationalized as bidders’ endogenous optimal

choice.

We assume now that bidders’ valuations are iid uniform over the support [0, v̄]. So the

density function is f (v) =
1

v
and the c.d.f is F (v) =

v

v
. Besides those properties of the bid

functions in Lemma 3, we will derive some additional ones for this particular density. Let

βin
N−1(v) denote the equilibrium bid functions for the ring of size N − 1, and βout

N−1(v) the

bid function for the only outsider. λin
N−1(β) and λout

N−1 (β) denote their inverse functions

4Notice that the all-inclusive ring maximizes the per member surplus even with a posted reserve price.
5The per member surplus of the all-inclusive ring is

1
N

∫ v

v
[v−v]d[F (v)]N , which is bigger than the surplus

from noncooperative bidding
1
N

∫ v

v
[v − β (v)]d[F (v)]N , where β (v) is the equilibrium bid function.
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respectively. β∗ denotes the common terminal bid at the valuation v. Then we have the

following lemma.

Lemma 4 When bidders’ valuations are iid uniform over the support [0, v], the equilibrium

bid functions βin
N−1(v) and βout

N−1(v) have the following properties:

(a) βout
N−1(v) and βin

N−1(v) are concave and convex respectively.

(b) λin
N−1(β) >

v

β∗
β for all β ∈ [0, β∗].

(c) β∗ = v
(
1− C

1
N−2

)
where C =

NN

22N−2(N − 1)N−1
.

Proof. See the Appendix.

Property (a) in the above lemma shows that both bid functions behave regularly. Prop-

erty (b) is an immediate consequence of (a), which says that λin
N−1(β) , the inverse bid

function of the ring, must lie above the line joining the origin and the common terminal

bid β∗ at the valuation v. Property (c) gives an analytical expression for the terminal bid

β∗, which can be shown to increase with the number of bidders. With these properties,

Proposition 6 gives us a sufficient condition under which a non all-inclusive ring will be the

endogenous collusive scheme.

Proposition 2 If bidders’ valuations are iid uniform over the support [0, v], a non all-

inclusive ring will be the endogenous collusive scheme when the total number of bidders is

bigger or equal to 10.

Proof. See the Appendix.

Unfortunately, we can not solve analytically for the constrained optimal ring size for an

arbitrarily given total number of bidders N . But we can be sure that it is definitely not the

degenerate single-bidder ring. This assertion is stated in the following proposition.

Proposition 3 If bidders’ valuations are iid uniform over the support [0, v], any ring with

at least two members can always capture more per member surplus than the noncooperative

bidding.

Proof. See the Appendix.

Therefore in the first-price auction a ring is very likely to exist since we show that

endogenous collusion should include at least two members. At the same time, the collusion is

generally not all-inclusive, especially when the number of bidders participating in the auction
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is large. So our conclusion is that bidders tend to form a nontrivial ring (ring size belongs

to {2, .., N − 1} when N > 2) endogenously. This gives rise to two important implications.

First, in MM (1992) the overall auction outcome is efficient under a strong cartel, which

consists of all bidders. In contrast, we show here that once the collusion is endogenized, a

nontrivial ring will be formed and it will create bidder asymmetry and consequently lead to

inefficient outcome in the main auction. Therefore, it will be socially beneficial to outlaw

collusion in auctions. The associated policy implication is that more resources need to be

devoted to the enforcement of anti-collusion laws. Second, the nontrivial ring result heavily

hinges on the free-rider effect in the first-price auction. Such an effect disappears in the

second-price auction, which means that an all-inclusive ring might be more common there.

2.4 CONCLUSION

This paper studies how collusion emerges in a first-price auction. We endogenize collusion

by allowing a collusion initiator to select a particular scheme and then propose it to a chosen

number of other bidders. The main finding is that, when there are at least three bidders, an

endogenously formed ring includes at least two members and is in general not all-inclusive.

Since a partial ring creates bidder asymmetry, it makes a first-price auction inefficient. This

finding provides a basis for laws that outlaw collusion in auctions.

This paper is only a first step to delve into the endogenous collusion problem in auctions.

There are still many open questions left for future research. For example, we could consider

cases where bidders are ex ante heterogeneous; where there is more than one collusion ini-

tiator among bidders leading to multiple rings in the auction; and other possible relaxations

of those assumptions defining the bidders’ collusive technology. With these extensions, we

might discover more intriguing or profitable forms of collusion.
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3.0 INFORMATION DISCLOSURE IN SEQUENTIAL AUCTIONS

3.1 INTRODUCTION

Many nondurable goods auctions are carried out repeatedly across periods, such as flower

auctions and fish auctions, etc. It is interesting to observe that these goods are often sold via

the Dutch auction format or its variants. The sale of flowers is a well known example for its

use of the Dutch auction (about 85% of Netherlands cut flowers are handled by the Dutch

auctions annually1). The fish auction is a natural variant of the Dutch format. Here then

comes the puzzle. In the auction literature, we know that if bidder are risk-neutral and their

valuations are independent and identically distributed, the first-price, second-price, Dutch

and English auctions are revenue equivalent; and once their valuations are affiliated, the

English auction generates the highest revenue followed by the second-price auction and then

the Dutch and first-price auctions. In both cases, the Dutch auction never beats the other

auction procedures in term of revenue. But why do people stick to it in various nondurable

goods auctions? In this paper, we provide one explanation, that is, the Dutch auction can

be revenue superior in a sequential environment that captures the essential features of the

nondurable goods sale.2

There are four important features for most nondurable goods auctions. First, those

goods are sold period by period because they are nondurable and the goods sold each period

are approximately the same. Second, bidders’ identities are the same across periods, and

these bidders tend to be large buyers in the same line of business aiming for the retail

1The figure is quoted from the International Labor Organization working paper The World Cut Flower
Industry: Trends and Prospects.

2Notice that in practice flowers are sold repeatedly via a kind of multi-unit Dutch auction. Because of
the analytical difficulties, this paper only models the sequential single-unit auction.
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resale of the auctioning goods. Third, because of the similarity of each period’s goods, the

valuations of the same bidder in two consecutive rounds tend to be correlated. Finally, due

to this valuation correlation and constant bidder identity, each bidder can always infer some

information on her rivals’ current valuations from the released bidding results of previous

rounds. This interperiod learning makes bidding behavior very different from that in a

one-shot auction.

In this paper, we analyze the sequential sale via a highly stylized independent private

value (IPV) model, where two bidders compete for two identical nondurable objects, each

per period. In connection with the flower sale, the private value can be interpreted as the

private gross profit (before deducting the bid) of each buyer in the industry. Then the goal

of the auctioneer is to select an auction format with appropriate interperiod information

release to maximize her overall revenue. We assume that the auctioneer will commit to one

auction format for both periods. The commonly adopted formats include: the first-price and

second-price auctions, the English and Dutch auctions. The choices of information disclosure

at the end of each stage auction include: announcing winning or losing status, winning or

losing bids or both.3 This in turn defines 16 sequential auction formats, most of which are

outcome equivalent as we will discuss later. The objective of this paper is to characterize the

Perfect Baysian Nash Equilibrium (PBNE) in various sequential auction formats and then

carry out the revenue comparison to find out the optimal one.

The distinction of this paper from other works on sequential auctions is briefly summa-

rized as follows. It differs from McAfee and Vincent (1997) in the following respect. McAfee

and Vincent (1997) deal with the sale of a single object, which will be resold if it can not be

auctioned when all bids in a given period are below the reserve price. This paper, however,

studies the sequential sale of two objects, each of which can always be auctioned at each

period since we will assume no reserve price. The difference between this paper and Weber

(1983) is that Weber considers a sequential auction with unit-demand and a bidder quits the

auction once she obtains one unit, while this paper studies a sequential sale where a bidder

pursues a unit every period.

3Notice that the minimum information released in each period is the winning or losing status because
bidders need to know their entitlement to the object, which is nondurable hence must be consumed in the
current period.
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There are three contributions in this paper. First, we characterize the equilibria in

various two-stage sequential auctions with multi-unit demand. Second, we analyze the effect

of interperiod information release on bidding behavior and the revenue. Finally, from the

revenue comparison of all sequential formats, we obtain the result that the standard Dutch

auction is tied with the first-price auction with the winning-bid announcement, generating

the highest revenue. Considering the implementation simplicity of the standard Dutch format

relative to its first-price counterpart, this result may explain the pervasive employment of

Dutch auctions in flowers and fish sale.

The remainder of the paper proceeds as follows. Section 2 describes the model. Equi-

librium bidding behavior will be characterized in Section 3. Section 4 carries out revenue

comparison. Section 5 concludes.

3.2 THE MODEL

This is a two-period sequential auction model with two risk-neutral bidders. The auction-

eer has two identical nondurable goods for sale, one per period. The auction formats we

consider include: sequential first-price, second-price, English and Dutch auctions with the

announcement of winning and losing status, of winning bid, of losing bid and of both bids,

at the end of the first stage. Bidder i’s valuation is vi, where i = 1, 2. Both valuations are iid

over the unit interval [0, 1] according to the density f(v), which is continuously differentiable

and bounded away from zero. After each bidder observes her valuation at the first round,

her valuation remains constant since then, i.e., her second-stage valuation will be the same

as her first-stage one. So here we assume a perfect cross-period correlation of valuations.

The discount factor is δ, where δ ∈ [0, 1]. Each bidder will maximize her discounted sum of

surplus and the auctioneer her discounted sum of revenue.
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3.3 CHARACTERIZATION OF EQUILIBRIUM

Since we assume bidders are ex ante identical, it is natural for us to focus on symmet-

ric monotonic PBNE. As we will see later, in some formats, bidders will have to adopt a

mixed strategy. In this paper, we are going to restrict ourselves to those equilibria with a

monotonicity requirement defined as follows. Let I(v) and S(v) denote the inf and sup of a

bidder’s randomized bids with valuation v at a given stage.4 Whenever v2 > v1, we should

have I(v2) > I(v1) and S(v2) > S(v1). Notice that the cost of this monotonicity requirement

is that it may rule out pooling equilibria and may give rise to a non-existence problem, which

is indeed the case as we see later. The benefit of it, however, is to ensure the revenues are

compared within the same category of equilibria (monotonic equilibria only) so that we can

maintain the maximum uniformity when discussing the ranking here relative to the other

rankings in literature that typically use monotonic equilibria.

3.3.1 Outcome Equivalence Simplification

In the sequential IPV environment, the standard Dutch auction has the same equilibrium

outcome as the first-price auction with the announcement of winning bid at each stage.

This is because when a standard Dutch auction, e.g., the flower auction, ends, all bidders

can publicly observe the winning bid. Of course, the standard Dutch auction technology

can also be altered to accommodate all other information disclosure requirements. These

variants of the standard Dutch auction are outcome equivalent to their sequential first-price

counterparts too. So there is no loss of generality for us to focus our subsequent analysis on

the sequential first-price auctions only.

Similarly, in the sequential environment, the standard English auction has the same

equilibrium outcome as the second-price auction with the announcement of losing bid at

each stage. That is because when a standard English auction ends, all bidders can publicly

observe all the losing bids. Also, the standard English auction technology can be modified to

meet all other information release requirements. Again, because of the outcome equivalence,

4A pure strategy is considered a degenerate mixed strategy.
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our analysis can only be concentrated on the sequential second-price auctions.

Therefore, we will study the sequential first-price and second-price auctions with the

announcement of winning or losing status, winning bid, losing bid and both bids in the rest

of the paper.

3.3.2 Sequential Second-Price Auctions

The bidding behavior in the sequential second-price auctions is easy to characterize because

bidders bid the same way regardless of interperiod information release structures. The

following proposition states the equilibrium strategy.

Proposition 1 In the two-stage sequential second-price auctions with perfect cross-period

correlation of valuations, bidding one’s own valuation at both stages constitutes a monotonic

equilibrium.

Proof. See the Appendix.

However here bidding one’s own valuation will not constitute a dominant strategy equi-

librium any more as in the one-shot second-price auction. Also, it is interesting to observe

that different interperiod information disclosures do not affect bidders’ bidding behavior at

all. This is because bidding one’s own valuation is still a dominant strategy for the last

stage, which gives bidders no incentive to deviate from the equilibrium at the first stage. It

is not obvious whether there exist other symmetric monotonic equilibria or not. The current

equilibrium will be the only one if we assume bidders simply want to play a stage dominant

strategy at each period.

3.3.3 Sequential First-Price Auctions

The bidding behavior in the sequential first-price auctions is much more complicated. Under

different interperiod information release structures, bidders bid differently. Consequently the

interperiod information disclosure plays a crucial role for the auctioneer’s revenue. We begin

with the analysis of information release of the first-stage winning/losing status, where the
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identity of winner or loser will be announced once the first-stage auction ends.5

3.3.3.1 Announcement of the First-Stage Winning/Losing Status We are looking

for a monotonic pure strategy symmetric equilibrium in this game and it has the following

structure.

Equilibrium beliefs and strategies:

1. At the first stage, each bidder bids according to the bid function β (v).

2. At the second stage, if the bidder wins the first stage at the valuation v, she believes

that her rival’s valuation v̂ falls in the interval of [0, v) with the conditional density
f (v̂)

F (v)
.6

Then she bids according to β1 (v). While if she loses the first stage, she believes that her

rival’s valuation v̂ will be in [v, 1] with the conditional density
f (v̂)

1− F (v)
, and bids according

to β2 (v) .

Notice that at the second stage each bidder’ belief on her rival’s valuation distribution

is parameterized by her own private signal. However, in a standard one-shot auction envi-

ronment, bidders’ beliefs on valuation distribution are common knowledge. This difference

makes it impossible to directly apply the standard equilibrium existence results in the auc-

tion literature to here. But similarity between the structure of our setting and the standard

auction environment enables us to extend established approaches to the current case. The

following proposition gives us a confirmation of the existence of the above equilibrium in the

sequential first-price auction.

Proposition 2 In the two-stage sequential first-price auction with perfect cross-period cor-

relation of valuations, there exists a monotonic pure-strategy symmetric equilibrium under

the first-stage winning/losing status announcement.

Proof. See the Appendix.

The proof makes use of the results in Landsberger, Rubinstein, Wolfstetter and Zamir

(2001), who study an auction environment with commonly known ranking of valuations.

It is exactly our second-stage problem. Theorem 1 in Landsberger et al (2001) gives us

5Notice that announcing the winner’s or the loser’s identity discloses the same information in the two-
bidder model.

6As we are looking for a symmetric monotonic equilibrium, a bidder’s winning implies her rival’s valuation
is smaller than hers.
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an equilibrium existence and uniqueness result among all differentiable bid functions for

the second-stage problem. Using this result, the existence of the first-stage equilibrium

bid function is immediate. In fact, we can further show that both stages’ equilibrium bid

functions must be differentiable drawing on the method in Maskin and Riley (2003), which

combined with Theorem 1 in Landsberger et al (2001) yields the uniqueness of pure-strategy

equilibrium for this two-stage problem. As we will not focus on the uniqueness issue in this

paper, its proof is forgone.

The symmetric monotonic pure-strategy equilibrium can not be analytically solved. This

makes a final revenue comparison impossible. But a revenue ranking is important to illumi-

nate the role of information disclosure in sequential auctions. So we assume the valuation

density f(v) = 1, i.e., we assume bidders’ valuations are iid uniform over [0, 1]. Our sub-

sequent revenue ranking will be under this simplifying assumption. In the current case the

closed-form solutions to the bid functions still can not be obtained under the iid uniform

assumption. However, we can find some qualitative features for the equilibrium bid func-

tions, which are collected in the following proposition and sufficient for our final revenue

comparison.

Proposition 3 Under the assumption that bidders’ valuations are iid uniform, the equilib-

rium bid functions have the following properties:

a) β1 (0) = β2 (0) = 0 and β1 (1) = β2 (1) = t∗, where t∗ is both bidders’ common terminal

bid.

b) β1 (v) and β2 (v) are strictly concave and convex respectively.

c)
3

4
v > β2 (v) > t∗v > β1 (v) >

1

2
v for all v ∈ (0, 1).

d)
2

3
≥ t∗ ≥ 5

8

e) β(v) =
v

2
(1− δ) +

δ

v

∫ v

0
β2 (t) dt <

v

2
for all v ∈ (0, 1).

Proof. See the Appendix.

Property a) says that two bid functions at the second stage has the same starting and

ending points. This result is standard. Property b) shows that both bid functions behave

regularly, which is a result due to the uniform distribution assumption. Property c) offers us

some bounds to approximate the two bid functions.
v

2
and

3v

4
can be shown to be tangent

to β1(v) and β2(v) at the point v = 0 respectively. So the two bid functions are enclosed by
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their respective tangent lines at the origin and separated by the line t∗v. Property d) gives

us rather narrow bounds for the common end bid t∗. Property e) gives us an expression for

the first-stage bid function, which is smaller than
v

2
for all v ∈ (0, 1), where

v

2
is just the

equilibrium bid function in a one-shot auction of two bidders with iid uniform signal. Also

from Property e), we can see that the first-stage bid function is an increasing function of δ.

These properties will be useful for our revenue comparison. Also they give us a very

intuitive understanding of bidders’ behavior in this sequential first-price auction. First,

because of information disclosure, bidders have less private information at the second stage

than in a standard one-shot auction. So they can obtain less informational rent, which

explains why both of them bid more aggressively in the second round than in a one-shot

auction. Second, after the first-stage auction, the first-period loser will believe that her rival

is stronger than her previous expectation while the winner will believe her rival is weaker

than her previous expectation. This induces the loser to bid more aggressively than the

winner at the second stage. Third, both bidders will bid less aggressively than in a one-shot

auction in the first round, which we call bid reduction in this paper. Bid reduction is a direct

result of bidders’ optimal decision of intertemporal substitution. In the second stage, the

first stage winner and loser bid quite differently, which provides an intertemporal arbitrage

opportunity for bidders. In the first stage, it is profitable for a bidder to bid less than in a

one-shot auction only. This is because by doing so at the second stage this bidder will have

a higher chance to meet a first-stage winner, who is easier to defeat than a first-stage loser.

This explains why in equilibrium a bid reduction can occur in the first stage. Finally, as to

the effect of the discount factor δ, once it becomes bigger, the second-stage payoff has higher

value for the bidder, which naturally promotes her intertemporal substitution, i.e., leading

to larger first-stage bid reduction.

3.3.3.2 Announcement of the First-Stage Winning Bid Now, we come to the anal-

ysis of bidding behavior under more interperiod information disclosure—announcing the win-

ning bid at the end of the first stage. So not only the winning and losing status, but also

the winning bid becomes common knowledge at the second stage. Again, we are looking

for a symmetric monotonic equilibrium. It is easy to show that there is no pure-strategy
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monotonic equilibrium in this game. So we focus our attention to the following equilibrium,

where both bidders follow the same monotonic pure-strategy bid function in the first stage

and the first-stage winner will adopt a mixed strategy at the second stage.

Equilibrium beliefs and strategies:

1. At the first stage, each bidder bids according to the bid function β (v).

2. At the second stage, if the bidder wins the first stage with her valuation v, then she

believes that her rival’s valuation falls in the interval of [0, v) with the conditional density
f (v̂)

F (v)
. She will randomly choose a bid b on the support (t∗, t∗] with density gv (b).7 While

if a bidder loses the first stage at the valuation v and infers that the winning valuation is ṽ

from the winning bid announcement, she will bid β ṽ
2 (v).8

There are two important features of the above equilibrium. One is that the first-stage

winner adopts a randomized strategy at the second stage. The other is that both bidders have

to condition their second-stage bids on the announcement of the first-stage winning bid. The

equilibrium existence result for general density f(.) can be shown in the similar backward

induction manner as in the Proof of Proposition 2. Notice that the second-stage equilibrium

is a generalization of the asymmetric auction example in Vickrey (1961). So by applying the

refinement argument in Vickery (1961), we will have a unique equilibrium outcome here with

an additional assumption that bidders will always choose strategies involving least mixing.

For the purpose of revenue comparison, we will derive the specific equilibrium strategies only

for the uniformly distributed valuations.

Proposition 4 Under the assumption that bidders’ valuations are iid uniform, in the two-

stage sequential first-price auction with perfect cross-period correlation of valuations, bidders

will exhibit the following equilibrium behavior under the first-stage winning bid announce-

ment: both bidders bid
v

2
in the first stage; the first-stage winner randomizes over (

v

2
,
3v

4
]

according to the c.d.f. Gv (b) =
v

2 (2b− v)
e

4b− 3v

2b− v ; the first-stage loser will not bid if her

valuation v ∈ [0,
ṽ

4
), where ṽ is the inferred valuation of the first-stage winner, and bid ṽ− ṽ2

4v

if v ∈ [
ṽ

4
, ṽ).

7Notice that for different v, the randomization density g is also different.
8Also the functional form of βṽ

2 (.) is parameterized by the announcement.
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Proof. See the Appendix.

The above is a symmetric monotonic equilibrium as we define it at the beginning of

Section 3. Notice that if the first-stage winner’s valuation is ṽ and the first-stage loser’s

valuation is v, the winner will bid above
ṽ

2
and the loser will bid ṽ − ṽ2

4v
. ṽ − ṽ2

4v
is smaller

than
ṽ

2
for all v <

ṽ

2
. This means that in equilibrium when the first-stage loser’s valuation

is smaller than a half of the winner’s, the loser always loses the second stage. Under this

contingency, other bid functions for the first-stage loser can also constitute a monotonic

equilibrium as long as the submitted bid is smaller than a half of the winner’s valuation and

at the same time prevents the winner’s deviation. Of course, these equilibria will all yield the

same outcome. But our equilibrium in Proposition 4 is the only one that can describe the

first-stage loser’s strategy in just one function, hence making the derivation of the first-stage

bid function tractable.9

The intuition for the above equilibrium bidding behavior is straight forward. First, since

the first-stage winner’s valuation is always commonly known at the beginning of the second

stage, it is not surprising that the winner will randomize in order to offset this information

asymmetry. Second, the first-stage loser obtains some informational advantage at the second

stage, i.e., knowing the winner’s valuation. As the loser is weaker than the winner in the first

place, this extra information enables both bidders to compete on a relatively level ground.

So in equilibrium no bidder’s second-stage bid function can dominate the other. In contrast,

in the previous case the loser’s bid function always lies above that of the winner. Third,

there is no bid reduction in the first stage because there exists no intertemporal arbitrage

opportunity. At the second stage, it is as hard to defeat a first stage loser as to defeat

a winner since now two bidders’ strength is brought in line with each other by the loser’s

informational advantage. So no bidder has the incentive to overbid or underbid in the first

stage. Finally, the discount factor δ does not enter the first-stage bid function. This is

natural since bidders do not need to consider the intertemporal substitution at all.

9Kaplan and Zamir (2000) derive almost the same second-stage equilibrium in their Proposition 5.2. The
only difference is that they assume that the first-stage loser bids her own valuation when her valuation is
less than a half of the winner’s inferred valuation. The equilibrium in Kaplan and Zamir (2000) truncates
the bid function βṽ

2 (v) , which makes the analytical derivation of the first-stage bid function rather difficult.
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3.3.3.3 Announcement of the First-Stage Losing Bid Now instead of announcing

the winning bid, the auctioneer can also choose to only release the first-stage losing bid in a

sequential first-price auction. Before we start to solve for the equilibrium, our intuition from

the previous analysis will lead to the following conjecture. The first-stage loser is already on

the weak side at the second stage. Announcing her bid gives further informational advantage

to the winner, which only exacerbates the loser’s position and will induce quite aggressive

bidding for the loser at the second stage. Consequently there will be a large bid reduction

in the first stage. This is because by following the same intertemporal arbitrage reasoning,

the first-stage bidder will have a high incentive to underbid so that her chance to meet an

aggressive first-stage loser can be decreased. Although the above conjecture is in the right

direction, the following proposition shows that the strength of the first-stage bid reduction

can be so big that no symmetric monotonic equilibrium can be supported regardless of the

value of discount factor δ.

Proposition 5 In the two-stage sequential first-price auction with perfect cross-period cor-

relation of valuations, there is no symmetric monotonic equilibrium under the first-stage

losing bid announcement.

Proof. See the Appendix.

It is not clear if there exist other asymmetric or non-monotonic equilibria in this case.

But the non-existence of an important class of equilibria here may shed light on the phe-

nomenon that it is very rare to observe any real world sequential first-price or Dutch auction

arrangements where the auctioneer discloses each stage’s losing bid only.

3.3.3.4 Announcement of both the First-Stage Winning and Losing Bids Under

this format, the auctioneer releases all the information available to her, i.e., both the winning

and losing bids, by the end of the first stage. If we assume a symmetric monotonic pure-

strategy bid function for the first stage, then both bidders will exactly infer each other’s

valuation from the interperiod information release. At the second stage, if a bidder loses the

first stage with a valuation v, then she will face a rival whose valuation is v̂ where v̂ > v. The

type of the second-stage equilibria we are looking for is similar to those discussed in Blume

(2003). The loser will randomize according to the density h(v) over the support [v′ − η, v′)
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where v′ ∈ [v, v̂), η > 0 and the winner with high valuation v̂ bids v′. So the sup of the

loser’s randomized bids should be between her and the winner’s valuations and the whole

randomization builds a wall that prevents the winner from bidding less than this sup. We

assume that bidders choose strategies with least mixing. This assumption will lead to a

large class of equilibria parameterized by v′, η, and the randomization density h(v). It is

analytically intractable to derive those equilibria when the parameters remain general. So

we will only focus on a subset of this class of equilibria. As we will see below, this subset of

equilibria turn out to generate the same auction revenue.

Since v′ ∈ [v, v̂), it is natural to set v′ as a weight average of v and v̂, i.e., (1− k)v + kv̂,

where k ∈ (0, 1). For analytical convenience, we set η as v′ − v, i.e., we simply let the

first-stage loser randomize over the support of [v, (1− k) v + kv̂). We also assume h(v) to

be a uniform density. So the equilibrium will be as follows:

Equilibrium beliefs and strategies:

1. At the first stage, each bidder bids according to the bid function β (v).

2. At the second stage, both the first-stage winner’s and loser’s valuations v̂ and v become

common knowledge. The loser randomizes uniformly over the support [v, (1− k) v + kv̂),

while the winner bids (1− k) v + kv̂.

The above equilibrium is a symmetric and monotonic one according to our definition.

But in order to support it, we need an extra assumption specified in the following lemma.

Lemma 1 The above equilibrium is supportable only when
1

2
≥ k ≥ δ

1 + δ
.

Proof. See the Appendix.

When k >
1

2
, the first-stage loser’s randomization density wall is not high enough to

prevent the winner’s penetration (deviation) at the second stage. While if k <
δ

1 + δ
, a

bidder can always profitably mimic the zero valuation at the first stage. This deviation can

only be prevented by asking the first-stage loser to bid sufficiently above her valuation so as

to stop the winner from bidding too leniently at the second stage, which in turn will eliminate

bidders’ incentive to underbid in the first stage. The final equilibrium is summarized in the

following proposition.

Proposition 6 Under the assumption that bidders’ valuations are iid uniform, in the two-

stage sequential first-price auctions with perfect cross-period correlation of valuations, bid-
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ders will exhibit the following behavior under both the first-stage winning and losing bids

announcement: both bidders bid
(1− δk)v

2
in the first stage, where k ∈ [

δ

1 + δ
,
1

2
]. The

first-stage loser randomizes uniformly over [vl, (1− k) vl + kvh) and the first-stage winner

bids (1− k) vl + kvh, where vl and vh are the realized valuations of the loser and the winner

respectively.

Proof. See the Appendix.

The above result has almost the same interpretation as in the case of sequential first-

price auctions with the announcement of winning/losing status. The first-stage loser bids

aggressively at the second stage. Bid reduction appears in the first stage, which becomes

more serious when discount factor δ gets bigger. We can also check that the total revenue in

this two-stage auction is
1

3
+

1

3
δ (see Lemma 4 in next section), which does not contain the

weight k. It means that bidders’ intertemporal substitution exactly cancels out the effect of

k. So the revenue remain the same within this subset of equilibria. We conjecture that this

property may be extended to the original large class of equilibria.

3.4 REVENUE COMPARISON

By now, we have either derived equilibria or their properties in all considered sequential

auction formats under the iid uniform assumption. We are ready to compare the revenue

generated from each of them. Due to the simplification at the beginning of Section 3, we

only need to consider the following four revenues. First, the revenue from the sequential

second-price auctions, which is denoted as R1. Second, the revenues from the sequential

first-price auctions with the announcement of the first-stage winning/losing status, winning

bid, and both winning and losing bids. We denote them as R2, R3, R4 respectively. Notice

that there is no symmetric monotonic equilibrium in the sequential first-price auction with

the announcement of the first-stage losing bid, so we leave it out of our revenue comparison.

From Proposition 1, we know that R1 =
1

3
+

δ

3
. The calculations for the other revenues

are much more involved. Lemma 2 gives us an upper bound for R2 although no bid functions

can be analytically obtained for the case.
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Lemma 2 The revenue R2 <
1

3
+

16

49
δ.

Proof. See the Appendix.

The bound of R3 is stated in Lemma 3.

Lemma 3 The revenue R3 >
1

3
+

1

3
δ.

Proof. See the Appendix.

Finally, we need to calculate R4. Lemma 4 states the result.

Lemma 4 The revenue R4 =
1

3
+

1

3
δ.

Proof. See the Appendix.

Proposition 7 Under the assumption that bidders valuations are iid uniform, the revenue

ranking is: R3 > R1 = R4 > R2.

The following table summarizes all the revenue results we have obtained. We use I, II and

III to denote R3, R1 and R2 respectively. So I, II and III represent revenues in descending

order. The first row of the table represents 4 different information release structures, where

from left to right more and more information is disclosed. The first column represents four

basic stage auction rules, where the first-price and second-price are outcome equivalent to

the Dutch and English auctions respectively.

Table I. Revenue from Sequential Auctions with iid Uniform Valuations

Auction Formats W/L Status W Bid L Bid W & L Bids
First/Dutch III I — II

Second/English II II II II

From the above table, we can easily see that the interperiod information disclosure is

immaterial in the sequential second-price and English auctions because the intertemporal

learning does not affect bidders’ equilibrium bidding. Notice that in sequential environment,

the first-price and Dutch formats can revenue dominate the second-price and English formats.

This is because under the first two the auctioneer has an extra device, i.e., the intertemporal

information disclosure, to affect bidders’ bidding and increase the total revenue.

It is commonly known that more information revelation from the auctioneer can further

facilitate bidders’ competition, hence increasing the revenue. A series of theorems in Milgrom

and Weber (1982), which we abbreviate as MW hereafter, show that the public reporting

policy never decreases the revenue in all auction formats. But the above table tells us that
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more information does not necessarily increase the revenue. From the announcement of

the winning/losing status to the announcement of the winning bid only, revenue from the

sequential first-price auctions increases. But as more information is released, i.e., both the

winning and losing bids are announced, the revenue drops again.

Then we might ask why our results are so different from those in MW and how to

explain the relationship between the intertemporal information disclosure and the auction

revenue in our environment. There are two critical differences between our environment

and that in MW. First, MW considers one-shot auction, while this paper studies sequential

auctions. Second, in MW, the auctioneer’s information affects both bidders’ own valuations

and their inference of their rivals’ valuations. So the information disclosure creates both

the valuation-increasing effect because bidders’ valuations are assumed to be monotonically

increasing with the announced signal, and the inference effect. But in this paper, the auc-

tioneer’s information does not change bidders’ own valuations and we only have the inference

effect here. In our setting, it is still true that more information disclosure never decreases

the stage auction revenue. Drawing on the results in the proofs of Lemma 2 to 4, it is easy

to check that the second-stage revenues in the first-price and Dutch formats are consistently

improved by more and more intertemporal information release. However, as auctions are

conducted sequentially, increased second-stage revenue does not guarantee a higher overall

two-stage revenue because of bidders’ intertemporal substitution. If the interperiod infor-

mation structure is such that an intertemporal arbitrage opportunity exists for bidders to

profitably shade their bids in the first stage, then in equilibrium a first-stage bid reduction

will occur which in turn will lead to a decreased first-stage revenue. So overall, the two-stage

revenue may not be enhanced. Therefore, the best information release structure should be

the one that not only intensifies the second-stage bidding competition but also eliminates the

intertemporal arbitrage opportunity, hence the first-stage bid reduction. The announcement

of the first-stage winning bid in the sequential first-price and Dutch auctions just satisfies this

informational requirement hence yielding the highest revenue among all considered formats.

Then we conclude that it is not the information volume but the information structure that

actually matters in term of revenue maximization in sequential auctions. The general rule

is to give the auction loser some informational advantage. If we push the above argument
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further, it is natural to ask whether there exists such an information structure that provides

an opposite intertemporal arbitrage incentive to induce overbidding in the first stage. This

is possible only when the first-stage loser bids less aggressively than the winner at the second

stage, which may happen under other valuation evolution assumptions but not in our setting.

3.5 CONCLUSION

This paper characterizes equilibria in various two-stage sequential auction formats under all

possible forms of interperiod information release in an IPV model. We study the role of

interperiod information disclosure in affecting bidders’ intertemporal learning, bidding, and

auction revenue. Unlike Milgrom and Weber (1982), who show in their model that it is always

good for the auctioneer to commit to complete information revelation, we find that this is

not necessarily the case in sequential auctions. Information disclosure does not affect the

revenue in the sequential second-price and English auctions. In the sequential first-price and

Dutch auctions, more information release can even decrease the revenue. This is because in

sequential environment bidders’ intertemporal substitution may lead to bid reduction in the

first stage, which outweighs the second-stage revenue gain from the interperiod information

release, hence decreasing the overall revenue. We show that the standard sequential Dutch

auction or the first-price auction with the first-stage winning bid announcement generates

the highest revenue among all considered formats just because their information release

structure facilitates the second-stage competition and at the same time avoids the first-stage

bid reduction. As a first step study of sequential auctions with multi-unit demand, our

results are derived in a two-stage two-bidder model. Extensions to arbitrary number of

bidders and stages; more general distribution and interperiod relation of bidders’ valuations,

etc., are left for future work.
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4.0 A RESALE EXPLANATION FOR DECLINING PRICES IN

SEQUENTIAL AUCTIONS

4.1 INTRODUCTION

The declining price trend in sequential auctions has long been a puzzle in auction research.

Empirical findings of declining prices have been reported in such papers as Milgrom and We-

ber (1982b) in transponder-leases auctions; Ashenfelter (1989) , McAfee and Vincent (1993)

and Ginsburgh (1998) in wine auctions; Ashenfelter and Genesove (1992) in real-estate auc-

tions; Beggs and Graddy (1997) in art auctions and Gerard J. van den Berg, Jan C. van Ours

and Menno P. Pradhan (2001) in flower auctions, etc. In a sequential auction of identical

objects, we normally expect a similar sale price for each object. This is analytically shown in

Weber (1983). So the phenomenon that prices decline in a repeated sale of identical objects

poses an anomaly, which is often termed as declining price anomaly in the auction literature.

A number of theoretical studies explain this declining price anomaly from various perspec-

tives. From the perspective of bidder preferences, McAfee and Vincent (1993) attribute the

declining price trend to the non-decreasing absolute risk aversion of bidders; and Branco

(1997) to synergies. From the perspective of auction structures, Milgrom and Weber (1982b)

suggest that the use of agents in auctions may explain the declining prices; Black and De

Meza (1993) explain this price trend with a buyer’s option, which is that the winner of the

first auction has the opportunity to buy the remaining objects at the winning price; Von der

Fehr (1994) and Menezes and Monteiro (1997) relate the declining price trend to the auction

participation costs. From the perspective of the nature of the objects, Engelbrecht-Wiggans

(1994), Bernhardt and Scoones (1994), and Gale and Hausch (1994) explain the declining

prices with heterogeneity of the objects.
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A common characteristic of the above theoretical literature is that almost all of them

assume bidders have single-unit demand, i.e., once a bidder obtains one unit of the object at

a given stage auction, she will not participate in following stages. However, in many cases

where a declining price path is detected, this assumption does not seem to be appropriate.

For example, in the condominium auctions (Ashenfelter and Genesove, 1992) and flower

auctions (Gerard J. van den Berg, Jan C. van Ours and Menno P. Pradhan, 2001), bidders

tend to be the investors, who purchase the objects not for their own consumption but for

the resale values. Therefore, these bidders will participate in the auction every period as

long as they remain in business. Then it is natural to ask if there are some new theoretical

explanations for the declining price anomaly that rest upon the assumption that bidders

have multi-unit demand.

The difficulty with the sequential auction with multi-unit demand is that bidders be-

come asymmetric after the intertemporal inference following the first-round auction. This

in general makes an analytical solution impossible. But if we dispose of the intertemporal

inference by allowing each bidder to have a random draw of signal in every round, the sequen-

tial auction will then be reduced to the repeated auction. This paper proposes a sequential

common-value auction framework that can both maintain certain degree of intertemporal

inference and at the same time accommodate bidder symmetry. The crucial assumption of

our model is that the common market resale price at a given period is an aggregation of both

a common fundamental and all bidders’ idiosyncratic tastes.1 The fundamental is assumed

to be a martingale and bidders’ idiosyncratic tastes are assumed to be cross-period iid. Then

for a given object, its current-stage resale price will be parameterized by the realized resale

price of the previous stage. This cross-period correlation of resale prices aims to capture the

persistence of consumer preferences in the final consumption market.2

In this paper, we obtain the following two findings. First, bidding prices decline in

expectation in the two-stage sequential auction under an sufficient equilibrium condition we

propose. Second, we characterize the necessary properties of symmetric monotonic equilibria

in the finite N-stage and the infinite-stage cases. In the former case, the price trend remains

1Notice that the declining price anomaly refers to the declining bidding prices in a sequential auction,
not the resale prices we mention here.

2Notice that here bidders are the investors who aim for the resale of the objects to the final consumers.
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constant and drops only at the last stage; in the latter case, we have a constant price trend

throughout.3

The remainder of the paper proceeds as follows. In Section 2, we set up the model.

Section 3 gives the equilibrium solutions. Section 4 concludes.

4.2 THE MODEL

We first set up the sequential first-price common-value auction model in a two-stage envi-

ronment. There is one nondurable object for sale at each period t, where t = 1, 2. There are

N risk-neutral bidders. There is no reserve price. At the end of each period t, all bidders’

bids submitted in this period will be announced. Bidders pursue the object not for their

own consumption, but aim to resell it at the current-period resale price Pt. The value of

Pt is realized immediately after the object is auctioned at period t and Pt becomes publicly

observable since then. An object can always be auctioned at a given period because there

is no reserve. We assume that it can always be resold at that period due to its perishabil-

ity. Bidder 1, 2, ...N observe their private signals X1
t , X2

t , ...XN
t respectively at period t. All

bidders’ signals are iid according to the density f (.) over the support [0, ω]. These signals

represent bidders’ idiosyncratic tastes for the object at a given period. We assume that Pt

is the aggregation of all bidders’ individual

tastes and some fundamental value.4 The fundamental value is an unobservable random

variable Θt, which is drawn from a density with mean θ̄ at period 1 and follows a martingale

process at period 2, i.e., EΘ2 = θ1. So the fundamental value itself does not exhibit any

trend in expectation. We assume Pt = αΘt + (1− α) U(X1
t , X2

t , ...XN
t ), where U (.) is both

3Weber (1983) produces a constant price trend too but in a finite-stage, single-unit demand setting.
4Ashenfelter and Genesove (1992) produce a time-series plot of the condominium auction bids, which

reflects bidders’ private signals, and the associated resale prices. They discover that there exists a strong
correlation between the resale prices and the bids submitted in auctions. It seems that these two variables
are linked and we assume here that the linkage is through an unobservable fundamental.
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symmetric and increasing in each of its arguments. The resale price Pt is a weighted average

of the fundamental and an aggregation of the collective signals represented by U (.) .5 We

assume the fundamental value and bidders’ tastes are statistically independent. We will

use the lower case notations pt, θt and xi
t to denote the realized values of Pt, Θt and X i

t

respectively hereafter. The discount factor is δ.

The generalization of the setup to arbitrary stages is straightforward—just change EΘ2 =

θ1 to EΘt+1 = θt where t is any natural number smaller than the total number of stages.

4.3 EQUILIBRIUM

4.3.1 The Two-stage Problem

In the two-stage sequential auction, we are looking for a monotonic symmetric equilibrium.

The equilibrium will take the following form:

Time 1. At the first stage, bidder i observes a signal xi
1 and bids according to β1 (xi

1) .

Time 2. The object is awarded to the bidder with the highest bid and all bids are announced.

Then all bidders’ private signals become common knowledge from the bid function β1 (xi
1).

Whenever a bid not belonging to the support [β1 (0), β2 (ω)] is observed, its associated signal

will always be inferred as zero.6

Time 3. The unobservable fundamental value Θ1 is realized as θ1. The resale price p1 is

formed according to p1 = αθ1+(1− α) U(x1
1, x

2
1, ...x

N
1 ) and then becomes publicly observable.

Time 4. The first-stage winner resells the object at the price p1.

Time 5. At the second stage, bidder i observes a signal xi
2 and bids according to

β2

(
p1, x

1
1, x

2
1, ...x

N
1 , xi

2

)
, where the second-stage bid function conditions on all available in-

formation.

5We can make more general assumption for Pt like Pt = Û(Θt, X
1
t , X2

t , ...XN
t ). While in such situations,

once Û(.) is not linear in Θt, Û(Θt, .) tends to exhit certain trend even when Θt is a martingale. For example,
if Û(.) is concave or convex in Θt, Û(Θt, .) turns out to be a submartingale or supermartingale respectively.
To avoid a price trend brought by the evolution of the fundmental vaule itself rather than bidders’ strategic
interactions, we choose to focus on Û(.) being linear in Θt in this paper.

6Since we can freely specify the off-equilibrium path belief, this assumption helps to restrict the equilib-
rium bids to a closed interval in the simplest way.
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We will start to solve for the above equilibrium from the second stage.

4.3.1.1 The Second-stage Problem Let us assume for the moment that all bidders

follow a symmetric monotonic pure-strategy bid function truthfully at the first stage. With

the disclosure of all bidders’ bids, the first-stage private signals x1
1, x2

1, ..., x
N
1 become common

knowledge. Since p1 is publicly observable at the second stage, the unobservable θ1 can be

inferred from the equation of resale price formation described above. Bidders’ signals are

cross-period independent, while Θ1 is correlated with Θ2, so the only valuable information

bidders will condition on at the second stage is the inferred true value of θ1. The first-stage

information p1, x
1
1, x

2
1, ...x

N
1 will affect the bid only through the aggregated variable θ1. Then

the second-stage problem becomes a standard one-shot auction with public information. Now

we introduce some new notation: X−i
t = {X1

t , X2
t , ...XN

t }\{X i
t}; x−i

t = {x1
t , x

2
t , ...x

N
t }\{xi

t};
Y i

t = max
s 6=i

Xs
t . Then the following proposition is immediate.

Proposition 1 Assuming that a symmetric monotonic equilibrium exists, the second-stage

equilibrium bid function β2

(
p1, x

i
1, x

−i
1 , xi

2

)
equals :

p1 − (1− α) U(xi
1, x

−i
1 ) + (1− α) EY i

2
{EX−i

2
[U(Y i

2 , X−i
2 )|Y i

2 ]|Y i
2 < xi

2} .

Proof. See the Appendix.

It is easy to see that the above second-stage bid function is monotonically increasing in

a bidder’s second-stage signal but decreasing in all bidders’ first-stage signals. In our model,

this feature is the key that leads to a declining price path as we will see soon.

4.3.1.2 The First-stage Problem Now we start to solve for the first stage equilibrium

bid function. According to the second-stage bid function in Proposition 1, we observe that

if bidder i mimics a higher type than her true one in the first stage, her opponents will

bid lower in the second stage. This fact can be understood through bidder i’s opponents’

intertemporal inference of the unobservable fundamental. Once the opponents observe a

high bid at the first stage, i.e., a high signal from bidder i, their inference of the first-stage

fundamental value will be low for a given resale price p1 according to its functional form.

Since the fundamental is a martingale, the opponents will be induced to believe that the

mean of the second-stage fundamental is low hence bid low.
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So bidder i’s logic for mimicking a higher type at the first stage can be described as

follows: “I know that I may bid a little bit higher than the expected resale value of the

object at the first stage. But I just want to create a false image of narrow margin between

my bid and the realized resale price. Then my opponents will believe that this object’s resale

value does not quite live up to my high taste, hence may have a low fundamental. They

then bid low at the second stage under their pessimistic expectations and I can easily win

the object with a low bid at that time. So my loss from overbidding in the first stage can be

compensated by the gain from underbidding in the second stage.” In equilibrium of course,

each bidder will have to bid truthfully. The above argument on bidders’ intertemporal

incentives explains why in equilibrium the truthful bidding in the first stage can turn out to

be more aggressive than that in the second stage.

The formal equilibrium derivation is outlined as follows. At the first stage, bidder i

with a private signal xi
1 will maximize the expected overall two-stage payoff Π = Π1 +

δEX2
1 ,...,XN

1 ,Θ1,X1
2
Π2, where Π1 and Π2 are the first and second-stage payoffs respectively. We

assume bidder i mimics a type z 6= xi
1 at the first stage. Then following any pair of (z, xi

1),

there is an expected continuation optimal second-stage payoff EX2
1 ,...,XN

1 ,Θ1,X1
2
Π2(z, x

i
1) for

bidder i. So the first-stage bid function will be derived in such a way that setting z = xi
1

will maximize the overall payoff Π. Let [EX−i
1

U(., .)]′ represent the derivative with respect to

the first argument of the function U(., .). Then the following proposition gives the first-stage

equilibrium bid function.

Proposition 2 Assuming that a symmetric monotonic equilibrium exists, the first-stage

equilibrium bid function β1 (xi
1) equals :

αθ̄ + (1− α) EY i
1
{EX−i

1
[U(Y i

1 , X−i
1 )|Y i

1 ] +
δ[EX−i

1
U(Y i

1 , X−i
1 )]′

N [FN−1 (Y i
1 )]′

|Y i
1 < xi

1}.
Proof. See the Appendix.

We have derived both stages’ bid functions by assuming a symmetric monotonic equilib-

rium exists, the key point that remains to be checked is whether this pair of bid functions

indeed constitute a symmetric monotonic equilibrium. The following proposition gives the

answer.
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4.3.2 A Sufficient Equilibrium Condition

This section shows that a symmetric monotonic equilibrium exists for certain types of dis-

tribution F (.) and aggregation function U(.). The following proposition states a sufficient

equilibrium condition and confirms the declining equilibrium price trend.

Proposition 3 When the expression
[EX−i

1
U(X i

1, X
−i
1 )]′

[FN−1 (X i
1)]

′ is increasing in X i
1, the bid func-

tions derived in the above two propositions constitute a symmetric monotonic equilibrium.

Also, EXi
1
β1 (X i

1) > EP1,Xi
1,X−i

1 ,Xi
2
β2

(
P1, X

i
1, X

−i
1 , X i

2

)
.

Proof. See the Appendix.

Mathematically, the monotonicity of
[EX−i

1
U(X i

1, X
−i
1 )]′

[FN−1 (X i
1)]

′ guarantees the monotonicity of

the first-stage bid function, which in turn ensures the monotonicity of the second-stage bid

function. Under the above equilibrium condition, the bidding prices will exhibit declining

trend. Intuitively, this sufficient equilibrium condition can be understood through the anal-

ysis of bidders’ incentives. On the one hand, as we argued in Section 3.1.2., bidders have the

incentive to ”overbid” in the first stage in order to obtain the second-stage advantage. The

term [EX−i
1

U(X i
1, X

−i
1 )]′ is just reduced from the expression that measures the gain from the

first-stage over-bidding. On the other hand, it is commonly known that bidders should shade

their bids sufficiently below their signals in a common-value auction to avoid the winner’s

curse. The term [FN−1 (X i
1)]

′ represents the winning probability and can be considered as a

measure for the loss from the first-stage over-bidding due to an exacerbated winner’s curse.

The first-stage bidders then face these two conflicting incentives and they need to evaluate

their aggregated effect, which is measured by the quotient of these two terms. To preserve

the pure-strategy solution to the monotonic decision problem at the first stage, it is natural

to require that this overall effect to be monotonic in each bidder’s type. At the second stage,

there is no such conflicting incentives, hence the equilibrium solution is standard.

It is easy to check that the difference between EXi
1
β1 (X i

1) and EP1,Xi
1,X−i

1 ,Xi
2
β2

(
P1, X

i
1, X

−i
1 , X i

2

)

is
δ (1− α)

N
EXi

1,Y i
1
{
[EX−i

1
U(Y i

1 , X−i
1 )]′

[FN−1 (Y i
1 )]′

|Y i
1 < X i

1}. From the expression of this difference, we

can see that the price drop tends to be more severe when we have a larger δ or a smaller α.

Bigger δ means that gaining the second-stage advantage is more important for the overall

payoff. In order to obtain bigger second-stage advantage, bidders should bid more aggres-
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sively in the first stage, leading to a larger price decline. Smaller α implies that the individual

tastes are more important in the formation of the resale price. So the strategic revelation of

bidders’ types can affect the total payoff in a higher degree, which in turn generates a larger

price drop. The above result of declining prices will still remain valid in a sequential second-

price common-value auction and other auction variants as long as the incentive structure

described in Section 3.1.2 is preserved.

4.3.3 Generalization

We then ask whether the above framework can be generalized to finite N (N>2) or infinite

stages and whether the declining price trend is still preserved there. In principle, our setup

can accommodate an analytical solution for the finite-stage problem since bidders remain

symmetric at any given round after processing the information from all previous rounds.

Then a backward induction will derive each stage’s bid function. However, this backward

induction is tractable only when we know the specific forms of the aggregation function U(.)

and the density f(.). In a two-bidder three-stage example, where f (.) is a uniform density

over [0, 1] and Pt =
1

3
(X1

t + X2
t ) +

2

3
Θt, we can find that the equilibrium bid functions are

β1 (x1
1) =

1

3
x1

1 +
2

3
θ̄ +

δ

6
, β2 (x1

2, θ1) =
1

3
x1

2 +
2

3
θ1 +

δ

6
and β3 (x1

3, θ2) =
1

3
x1

3 +
2

3
θ2. Replacing

2

3
θt with pt − 1

3
(x1

t + x2
t ) for t = 1, 2, we can obtain the final expressions for the three bid

functions.

When U (.) and f (.) remain general, the backward induction becomes intractable as the

number of stages is more than 2. It is not clear whether a symmetric monotonic equilib-

rium exists for the more-than-two-stage problem. But we can still obtain some equilibrium

properties if an equilibrium exits, which are summarized in the following proposition.

Proposition 4 When a symmetric monotonic equilibrium exists in the finite N-stage (N >

2) sequential auction, the equilibrium has the property: Eβ1 (.) = Eβ2 (.) ... = EβN−1 (.) >

EβN (.); when a stationary symmetric monotonic equilibrium exists in the infinite-stage se-

quential auction, the equilibrium has the property:Eβt (.) = Eβt+1 (.) ∀ t ∈ {1, 2, ...∞}.
Proof. See the Appendix.

The above proposition shows that for a finite-stage problem, the bidding price drops in
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expectation only at the last stage. The reason for this phenomenon hinges on the Markovian

property of the fundamental and the cross-period independence of bidders’ signals. These

two factors make a bidder able to affect her rivals’ intertemporal inference only one period

ahead. Then in equilibrium, the gain from affecting future payoff will be the same for all

periods (since only the next period matters) except the last one (since there is no next

period), hence generating a constant price trend with a price drop only at the last stage. In

the infinite-stage case, there is no last stage throughout, so the price trend remains constant.

The intuition derived from the analysis of Proposition 4 gives rise to the following con-

jecture, which will be left for future study. We conjecture that the length of the cross-period

persistence of the object fundamental plays an important role in determining the declining

price trend. In a two-stage sequential auction, the fundamental is persistent across both

stages and the intertemporal inference generates a definite declining price trend. Now let us

consider a more general model where Pt = U
(
Θt.θt−1, ...θt−s, X i

t , X
−i
t

)
, i.e., the resale price

not only depends on the current period fundamental but also the fundamentals in previous

periods. Then if the fundamental is more persistent than a martingale, the current funda-

mental will be affected by the realized fundamentals from more-than-one previous rounds.

This general model seems to be hard to solve analytically at the moment. But its solution

may be conjectured from the learning interpretation obtained from the martingale case. For

example, if the fundamental is persistent across all stages, then at stage t, bidders can al-

ways affect more future stages hence bigger future payoff than at stage t + 1. Therefore,

bidders will have higher incentives to raise their bids at stage t than stage t + 1, which

may lead to a continuously declining price path. In another example, if the fundamental is

persistent only for 3 stages while the sequential auction has 5 rounds, then we would expect

Eβ1 (.) = Eβ2 (.) = Eβ3 (.) > Eβ4 (.) > Eβ5 (.). This is because bidders can affect future 2

rounds’ payoff (high future payoff) at stage 1, 2 and 3, while at stage 4 they can only affect

1 future round (medium future payoff) and at stage 5 zero round (low future payoff), then

bidders’ intertemporal decisions similar as those discussed in Section 3.1.2 tend to yield the

stated price trend. In a third example, if the auction rounds are far more than the length

of the persistence of the fundamental, like 50 rounds with a martingale fundamental, we

should then expect an relatively constant price trend. Therefore, price trends with varying
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degrees of declining can all be generated from adjusting the length of the persistence of the

fundamental.

4.4 CONCLUSION

This paper studies price trends in a sequential first-price common-value auction with resale.

It differs from the previous research in that it considers sequential auctions with multi-unit

demand. In the two-stage case, we propose a condition that guarantees the existence of a

symmetric monotonic equilibrium which exhibits a declining trend. This is because bidders

have the incentive to overbid in the first round to lower their rivals’ intertemporal inference

on the object value so that they can obtain a second-stage advantage. We also characterize

the necessary properties of symmetric monotonic equilibria in the finite N-stage and the

infinite-stage cases. In the former case, the price trend remains constant and drops only at

the last stage; in the latter case, we have a constant price trend throughout.

Future work will be devoted to showing the existence of equilibrium in general N-stage

(N>2) sequential auction and to investigating price trends when the fundamental is more

persistent than a martingale.
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5.0 CONCLUSION

This dissertation studies new bidding behaviors in such richer environments as with collusion,

strategic information disclosure and intertemporal inference. We first find that an endoge-

nously formed ring will include at least two members and is in general not all-inclusive. We

then show that in various two-stage sequential auctions, the standard sequential Dutch auc-

tion or the first-price auction with the first-stage winning bid announcement shall generate

the highest revenue. Finally, we propose a resale explanation for the declining price path in

sequential auctions with multi-unit demand.

Future research agenda aims to extend the current frameworks to more general settings.

For example, in the collusion analysis, we could consider cases where bidders are ex ante

heterogeneous; where there is more than one collusion initiator among bidders leading to

multiple rings in the auction; and other possible relaxations of those assumptions defin-

ing the bidders’ collusive technology. In the information disclosure investigation, we could

extend the two-bidder two-stage setting to arbitrary number of bidders and stages; more

general distribution and interperiod relation of bidders’ valuations. In the sequential auc-

tions’ intertemporal inference study, future work will be devoted to showing the existence

of equilibrium in general N-stage (N>2) sequential auction and to investigating price trends

when the fundamental is more persistent than a martingale.
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APPENDIX

Proofs for Chapter 2

Proof of Lemma 1.

Consider a contingency, where V is realized such that v1 is not the highest element and

v2 is, but βK(V ) assigns the largest bid β̂K(V ) to member 1. Now look at another bid

assignment rule β∗K(V ), which is the same as βK(V ) except that under the previously stated

contingency, β∗K(V ) assigns the largest bid β̂K(V ) to member 2. Notice that the largest bid

assigned under these two rules is still the same, the only difference is who obtains this bid.

The outsiders will bid the same under these two rules since they always compete against the

same bid function β̂K(V ) of the ring. Given the outsiders bid the same, Pr( β̂K(V )wins

the object) is the same under both rules. Since β∗K(V ) assigns the largest bid to member 2,

conditional on winning member 2 can capture more surplus v2 − β̂K(V ) for the ring than

what member 1 can, i.e., v1 − β̂K(V ). Therefore, the rule β∗K(V ) outperforms βK(V ) under

this particular contingency. It follows that the bid assignment rule that maximizes the per

member surplus GK must always assigns the largest bid to the highest report.

So GK becomes
1

K
Ev1...vK

[(v− β̂K(V )) Pr( β̂K(V )wins the object)|v is the highest report

in V ]. Consider two contingencies where the valuations V = (v1, ...vK) and V ′ = (v′1, ...v
′
K)

are realized such that max{v1, ...vK} = max{v′1, ...v′K} = v and V \{v} 6= V ′\{v}, i.e., the

highest report in V and V ′ is the same but the other reports are not all the same. Assume

β̂K(V ) assigns different bids to the highest-report member under these two contingencies. If

the per member surplus GK is different under these two bids, then there exists a profitable
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deviation from β̂K(V ) in at least one of the contingencies. If GK is the same under these two

bids, assigning either bid to both contingencies does not change the surplus. Therefore, to

constitute an equilibrium, an optimal β̂K(V ) (if there exists one) shall have such a property

that for the same highest report v, the assigned bid shall be the same regardless of other

reports. It implies that β̂K(V ) is solely determined by the element v, where v is the highest

report in V . Hence Then there is no loss of generality for us to focus on the bid assignment

rule that conditions on v only. Q.E.D.

Proof of Lemma 3.

From the results of Maskin and Riley (2000b), (2003), Athey (2001) and Lebrun (2002)

etc, we know that there exists a unique pair of equilibrium bid functions βin
K (v) and βout

K (v)

that solves equations (I ′) and (II ′) in Section 4.1. Furthermore, βin
K (v) and βout

K (v) are

monotonic and βin
K (v) = βout

K (v)=v, βin
K (v) = βout

K (v) = β∗K . So Property (a) is the standard

boundary result.

Since all the properties that we are going to prove should hold for any given ring size

K, we can drop the subscript K to simplify the notation without causing confusion. We let

λ1 (β) and λ2 (β) denote λin
K (β) and λout

K (β) respectively. The first-order conditions of (I ′)

and (II ′) lead to:

(1)
(N −K) f (λ2 (β))

F (λ2 (β))
× λ

′
2 (β) =

1

λ1 (β)− β

(2)
(N −K − 1) f (λ2 (β))

F (λ2 (β))
× λ

′
2 (β) +

Kf (λ1 (β))

F (λ1 (β))
× λ

′
1 (β) =

1

λ2 (β)− β
We will first show λ1 (β) > λ2 (β) holds in a neighborhood of β∗. Substituting β = β∗ into

equation (1) and (2), we obtain:

(3)
(N −K) f (λ2 (β∗))

F (λ2 (β∗))
× λ

′
2 (β∗) =

1

λ1 (β∗)− β∗

(4)
(N −K − 1) f (λ2 (β∗))

F (λ2 (β∗))
× λ

′
2 (β∗) +

Kf (λ1 (β∗))
F (λ1 (β∗))

× λ
′
1 (β∗) =

1

λ2 (β∗)− β∗

Since λ1 (β∗) = λ2 (β∗) = v, by combining (3) and (4) we have:

(5)
(N −K) f (λ1 (β∗))

F (λ1 (β∗))
× λ

′
2 (β∗) =

(N −K − 1) f (λ2 (β∗))
F (λ2 (β∗))

× λ
′
2 (β∗) +

Kf (λ1 (β∗))
F (λ1 (β∗))

×
λ
′
1 (β∗)
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Equation (5) can be reduced to:

(6) Kλ′1 (β∗) = λ′2 (β∗)

So for any K > 1, we must have λ
′
1 (β∗) < λ

′
2 (β∗), hence there exists a neighborhood of

β∗ where λ1 (β) > λ2 (β) for all β belong to this neighborhood. Suppose λ1 (β) and λ2 (β)

first cross at β
′ ∈ (v, β∗) such that λ1(β

′
) = λ2(β

′
). Then with the continuity of the inverse

bid functions, we must have λ′1 (β′) > λ′2 (β′). However, through the same derivation as the

above, we can obtain λ′1 (β′) < λ′2 (β′), which is a contradiction. Therefore, λ1 (β) and λ2 (β)

will never cross over the support (v, β∗). Consequently, we must have λ1 (β) > λ2 (β) hold

for all β ∈ (v, β∗), i.e., βin(v) < βout(v) for all v ∈ (v, v).

For Property (c), we can take the limit from both sides of (1) and (2), which yields:

(7) lim
β→ v

¯

(N −K) f (λ2 (β))

F (λ2 (β))
× λ

′
2 (β) = lim

β→ v
¯

1

λ1 (β)− β

(8) lim
β→ v

¯

(N −K − 1) f (λ2 (β))

F (λ2 (β))
× λ

′
2 (β) +

Kf (λ1 (β))

F (λ1 (β))
× λ

′
1 (β) = lim

β→ v
¯

1

λ2 (β)− β
Rearranging (7) and (8) and using L’Hospital’s Rule and the fact that βin

K (v) = βout
K (v) =v,

we can easily obtain λ
′
1(v) = 1 +

1

N −K
and λ

′
2(v) = 1 +

1

N − 1
. Hence,

dβin
K (v)

dv
|v=v =

1− 1

N −K + 1
,

dβout
K (v)

dv
|v=v = 1− 1

N
. Q.E.D.

Proof of Proposition 1.

Again, λ2 (β) denotes the inverse function of βout
K (v) in this proof. Then the ex ante per

member surplus of a ring with size K < N is:

GK =
1

K
Ev, vK+1,...,vN

[(v − βin
K (v)) 1

βin
K

(v)≥maxj∈{K+1,...N} βout
j

(vj)
]

=
∫ v

v
{ [v − βin

K (v)]× [F (λ2 (βin
K (v)))]N−K

K
×Kf(v)[F (v)]K−1}dv

=
∫ v

v
{[v − βin

K (v)]× [F (λ2 (βin
K (v)))]N−K × f(v)[F (v)]K−1}dv

By Property (b) in Lemma 3, we have βin
K (v) < βout

K (v), which leads to the fact that:

GK <
∫ v

v
{[v − βin

K (v)]× [F (λ2 (βout
K (v)))]N−K × f(v)[F (v)]K−1}dv.

The right hand side of the above inequality equals
1

N

∫ v

v
[v − βin

K (v)]d[F (v)]N , which is less

than
1

N

∫ v

v
[v− v]d[F (v)]N . Since

1

N

∫ v

v
[v− v]d[F (v)]N is the per member surplus for the all-

inclusive ring assuming that the all-inclusive ring can obtain the object by only submitting v,

we can conclude that the all-inclusive ring maximizes the unconstrained ex ante per member
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surplus. Q.E.D.

Proof of Lemma 4.

For a deviating member from an all-inclusive ring, she bids βout
N−1(v) to compete a ring

of N − 1 members following the bid function βin
N−1(v). The density is f (v) =

1

v
and c.d.f is

F (v) =
v

v
. We use λ1 (β) and λ2 (β) to denote the inverse function of βin

N−1(v) and βout
N−1(v)

respectively. Then the first-order conditions for the incentive compatibility of bidding lead

to:

(9)
1

λ2 (β)
× λ

′
2 (β) =

1

λ1 (β)− β

(10)
(N − 1)

λ1 (β)
× λ

′
1 (β) =

1

λ2 (β)− β
From Lemma 3, we know that λ1 (0)=λ2 (0)=0 and λ1 (β∗)=λ2 (β∗)=v̄, where β∗ is the

common terminal point for two bid functions. We now start to show the monotonicity of

λ
′
1 (β) and λ

′
2 (β). Rearrange (9) and (10) as (11) and (12):

(11) λ
′
2 (β) λ1 (β)− λ

′
2 (β) β = λ2 (β)

(12) λ
′
1 (β) λ2 (β)− λ

′
1 (β) β =

λ1 (β)

N − 1
Differentiating both sides of (11) and (12), we have:

(13) λ′′2 (β) =
λ
′
2 (β)

(
2− λ

′
1 (β)

)

λ1 (β)− β

(14) λ′′1 (β) =

λ
′
1 (β)

(
1 +

1

N − 1
− λ

′
2 (β)

)

λ2 (β)− β

From Lemma 3, we know that λ
′
1 (0) = 2, λ

′
2 (0) = 1 +

1

N − 1
and λ1 (β) > λ2 (β) . Also

λ1 (β) > β and λ2 (β) > β. Suppose λ
′
1 (ε) ≥ 2 for a small increment ε from 0. We have

λ′′2 (ε) ≤ 0 from (13), so λ
′
2 (ε) ≤ 1+

1

N − 1
, which implies that λ′′1 (ε) ≥ 0 from (14). Iterating

this law of motion for each small increment starting from 0 makes it impossible for λ1 (β)

and λ2 (β) to meet at a common terminal point. So we must have λ
′
1 (ε) < 2, which implies

λ
′′
1 (ε) < 0 and λ

′′
2 (ε) > 0. This initial condition combined with the law of motion defined in

equation (13) and (14) gives us the fact that λ
′′
1 (β) < 0 and λ

′′
2 (β) > 0 for all β ∈ (0, β∗].

Consequently, λ1 (β) always lies above the line joining the origin and the common terminal

bid at the valuation v. Then λ1 (β) >
v

β∗
β is immediate. We next look for β∗. Notice
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that (9) and (10) are the same system as (2) and (3) in Marshall et al (1994) except the

terminal condition. Follow the same calculation in Appendix A in Marshall et al (1994),

we can obtain β∗ in our setting, which equals v
(
1− C

1
N−2

)
where C =

NN

22N−2(N − 1)N−1
.

Q.E.D.

Proof of Proposition 2.

Again, we use λ1 (β) to denote the inverse function of βin
N−1(v). The per member surplus

for an all-inclusive ring when the total number of bidders is N is
∫ v

0
v[F (v)]N−1f (v) dv =

v

N + 1
. The corresponding deviation profit is DN , which equals:

∫ v

0
[v−βout

N−1 (v)]×[F (λ1

(
βout

N−1(v)
)
)]N−1f(v)dv. Since βout

N−1 (v) is the best response to βin
N−1 (v),

we must have [v−βout
N−1 (v)]× [F (λ1

(
βout

N−1(v)
)
)]N−1 > [v−(1− 1

N
)v]× [F (λ1((1− 1

N
)v))]N−1

when we replace βout
N−1 (v) with its upper bound (1 − 1

N
)v in the bidder’s payoff function.

Also, we have λ1 (β) >
v

β∗
β from Lemma 4, then we can obtain a lower bound for the

deviation profit by replacing λ1 (β) with
v̄

β∗
β. Notice that

[v− (1− 1

N
)v]× [F (λ1((1− 1

N
)v))]N−1 > [v− (1− 1

N
)v]× [F (

v

β∗
((1− 1

N
)v))]N−1. Therefore,

we have DN >
∫ v

0
[v − (1− 1

N
)v]× [F (

v

β∗
(1− 1

N
)v))]N−1f(v)dv =

(N − 1)N−1 vN

NN (N + 1) β∗N−1
.

A sufficient condition for DN > GN is that
(N − 1)N−1 vN

NN (N + 1) β∗N−1
>

v

N + 1
. Substitut-

ing the expression for β∗ into the left hand side of the inequality and rearrange, we need
(N − 1)N−1

NN
(
1− C

1
N−2

)N−1
> 1. As 1 − C

1
N−2 < 1, the left hand side will increase dramatically

as N gets large. Substituting the expression for C into the left hand side of the inequal-

ity, we need
(N − 1)N−1

NN [1− (
NN

22N−2 (N − 1)N−1
)

1
N−2 ]N−1

> 1. Let α =
NN

22N−2(N − 1)N−1
. It is

easy to show that
dα

dN
< 0 when N > 1. So α

1
N−2 decreases with the increase of N. Also,

lim
N→+∞

α
1

N−2 =
1

4
. Then 1 − α

1
N−2 monotonically converges to

3

4
from below. Therefore,

(N − 1)N−1

NN
(
1− α

1
N−2

)N−1
>

(N − 1)N−1

NN(
3

4
)N−1

. The term
(N − 1)N−1

NN(
3

4
)N−1

is monotonically increasing when
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N > 4 and bigger than 1 when N > 13. That means
(N − 1)N−1

NN
(
1− α

1
N−2

)N−1
is bigger than 1

at N ≤ 13. We can evaluate
(N − 1)N−1

NN
(
1− α

1
N−2

)N−1
up to N = 13 and easily see that when

N ≥ 10, the all-inclusive ring will not be stable. Q.E.D.

Proof of Proposition 3.

We use λ2 (β) to denote the inverse function of βout
K (v). From the proof of Propo-

sition 1, we know that the per member surplus of a ring with K members is: GK =
∫ v

v
{[v−βin

K (v)]×[F (λ2 (βin
K (v)))]N−K×f(v)[F (v)]K−1}dv, which equals:

1

vN

∫ v

0
{[v−βin

K (v)]×
[λ2 (βin

K (v))]N−K × vK−1}dv for the uniform distribution on the support [0, v]. Use G1 to de-

note the surplus for each bidder under the noncooperative bidding, then G1 =
1

vN

∫ v

0
{[v −

(
N − 1

N
v)]×vN−1}dv. As βin

K (v) is the best response to βout
K (v), we must have [v−βin

K (v)]×

[λ2 (βin
K (v))]N−K > [v−(

N − 1

N
v)]× [λ2(

N − 1

N
v)]N−K when replacing βin

K (v) with
N

N − 1
v in

the bidder’s payoff function. So if we can show that λ2 (β) >
N

N − 1
β, we can immediately

obtain GK > G1 for K ≥ 2. Again, we have the system of differential equations for the

uniform distribution with the ring size K ≥ 2:

(15)
N −K

λ2 (β)
× λ

′
2 (β) =

1

λ1 (β)− β

(16)
(N −K − 1)

λ2(β)
× λ

′
2 (β) +

K

λ1 (β)
× λ

′
1 (β) =

1

λ2 (β)− β

From Lemma 3, we know that λ
′
1(0) = 1 +

1

N −K
and λ

′
2(0) = 1 +

1

N − 1
. Now we are

ready to show λ2 (β) >
N

N − 1
β, which consists of the following two steps.

Step 1. We will show that for a small increment ε from 0, λ
′
1 (ε) ≤ 1 +

1

N −K
. Let us

prove by contradiction and suppose that λ
′
1 (ε) > 1 +

1

N −K
. Similar as in the proof of

Lemma 4, we can obtain λ′′2 (β) =

λ′2 (β)

(
1 +

1

N −K
− λ′1 (β)

)

λ1 (β)− β
from (15). Then λ′′2 (ε) < 0,

which implies that λ2 (ε) < (1+
1

N − 1
)ε. So

1

λ2 (ε)− ε
>

N − 1

ε
. Combine (15) and (16), we
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can derive that:
(N −K − 1)

(N −K)
× 1

λ1 (ε)− ε
+

K

λ1 (ε)
×λ

′
1 (ε) >

N − 1

ε
. This inequality together

with the fact that
λ1 (ε)

ε
= λ′1 (ε) when ε is sufficiently small, gives us λ

′
1 (ε) < 1 +

1

N −K
,

which is a contradiction to our hypothesis. So we must have λ
′
1 (ε) ≤ 1 +

1

N −K
and

λ′′2 (ε) ≥ 0.

Step 2. We will show that for all β ∈ (0, β∗K), if
λ1 (β)

β
≤ 1 +

1

N −K
and

λ2 (β)

β
≥

1 +
1

N − 1
, then λ′1 (β) ≤ 1 +

1

N −K
. This assertion is proved as follows. Merge (15) with

(16), we obtain

(17) λ′1 (β) =
1

K
[

λ1 (β)

β
λ2 (β)

β
− 1

−
λ1 (β)

β
λ1 (β)

β
− 1

× N −K − 1

N −K
]

If
λ1 (β)

β
≤ 1 +

1

N −K
and

λ2 (β)

β
≥ 1 +

1

N − 1
, then it is immediate that:

λ′1 (β) ≤ 1

K
[

1 +
1

N −K

1 +
1

N − 1
− 1

−
1 +

1

N −K

1 +
1

N −K
− 1

× N −K − 1

N −K
] = 1 +

1

N −K
by replacing

λ1 (β)

β
and

λ2 (β)

β
with their upper and lower bound respectively in equation (17).

The result in step 1 gives the initial condition and the one in step 2 stipulates the law of

motion of bids. Combining these two steps and the fact that both bid functions meet at the

same ending point, we must have λ′′2 (β) > 0 for all β ∈ (0, β∗K). So we obtain the desired

result λ2 (β) >
N

N − 1
β. Q.E.D.

Proofs for Chapter 3

Proof of Proposition 1.

Given bidder 1 follows and believes her rival also follows the equilibrium strategy, if

bidder 2 mimics the valuation other than her own, she does not gain in the first round. In

the second round, bidder 1 still bids her valuation, which is optimal even though the inferred

valuation from bidder 2 is wrong because bidding one’s own valuation in a single second-price

auction is an ex post equilibrium. So the optimal response for bidder 2 at the second stage is

to still bid her own valuation. Then there is nothing to gain for bidder 2 to mimic the other

valuation at the first stage, which leads to the conclusion that in equilibrium both bidders
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will bid their own valuations. Q.E.D.

Proof of Proposition 2.

The existence proof consists of two standard steps. The first step produces the equilib-

rium candidate and the second step verifies that the candidate is indeed an equilibrium.

Step 1. Producing the equilibrium candidate. We start from the second stage. Let us

assume that a bidder observes a valuation v and submit a bid β (z) at the first stage, i.e.,

she mimics z type, while the other bidder follows the specified strategy truthfully. Let λ(β),

λ1(β) and λ2(β) denote the inverse functions of β (v) , β1 (v) and β2 (v) respectively.

If the bidder loses at the bid β (z), then she bids β2 (m), i.e., she mimics type m at

the second stage, and her rival will bid β1 (v̂). The losing bidder believes that v̂ is in (z, 1]

with density
f (v̂)

1− F (z)
. So the second-stage expected payoff for the first-stage losing bidder

who mimics type m is π2 = (v − β2 (m)) Pr(β2 (m) > β1 (v̂)). Pr(β2 (m) > β1 (v̂)) is the

probability of winning at the second stage for the first-stage losing bidder. In our case,

Pr(β2 (m) > β1 (v̂)) =
F [β−1

1 (β2 (m))]− F (z)

1− F (z)
. In a standard auction environment, this

probability is only a function of the current stage bid, while here the probability is also

parameterized by her previous stage bid.

If the bidder wins at the bid β (z), then she bids β1 (n) , i.e., she mimics type n, and her

rival will bid β2 (v̂), where the winning bidder believes that v̂ is in [0, z) with density
f (v̂)

F (z)
.

So the second-stage expected payoff for the first-stage winning bidder who mimics type n is

π1 = (v− β1 (n)) Pr(β1 (n) > β2 (v̂)). Pr(β1 (n) > β2 (v̂)) is the probability of winning at the

second stage for the first-stage winning bidder. Here Pr(β1 (n) > β2 (v̂)) =
F [β−1

2 (β1 (n))]

F (z)
.

We then start to consider the first-period bid function. The first-period bid function has

to balance the second-period payoff. Since we have assumed that the bidder mimics type z

at the first stage, her overall expected payoff for two stages is:

π (v) = F (z)[(v − β(z)) + δπ1] + (1− F (z))[δπ2]

= F (z){(v − β(z)) + δ[(v − β1 (n))
F [β−1

2 (β1 (n))]

F (z)
]}

+ (1− F (z))[δ(v − β2 (m))
F [β−1

1 (β2 (m))]− F (z)

1− F (z)
]

= F (z)(v − β(z)) + δ(v − β1 (n))F [β−1
2 (β1 (n))] + δ(v − β2 (m))[F [β−1

1 (β2 (m))]− F (z)]

The optimality of the symmetric bid functions requires that truthful bidding is optimal for
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all three bid functions simultaneously. Then we can use the following conventional method:

The first-order condition of z is:

(1) f (z) v − f (z) β(z)− F (z) β
′
(z)− δf (z) (v − β2 (m)) = 0

The first-order condition of m is:

(2) (v − β2 (m))β−1
′

1 (β2 (m)) f [β−1
1 (β2 (m))]− {F [β−1

1 (β2 (m))]− F (z)} = 0

The first-order condition of n is:

(3) (v − β1 (n))β−1
′

2 (β1 (n)) f [β−1
2 (β1 (n))]− F [β−1

2 (β1 (n))] = 0

Since the truthful bidding is the equilibrium solution to the above three equations, we replace

m, n and z with v. Then (2) and (3) become:

(4) (v − β2 (v))β−1
′

1 (β2 (v)) f [β−1
1 (β2 (v))]− {F [β−1

1 (β2 (v))]− F (v)} = 0

(5) (v − β1 (v))β−1
′

2 (β1 (v)) f [β−1
2 (β1 (v))]− F [β−1

2 (β1 (v))] = 0

Let λ(β), λ1(β) and λ2(β) denote the inverse functions of β (v) , β1 (v) and β2 (v) respectively.

The equations (4) and (5) can be transformed into:

(6) (λ2 (t)− t)λ
′
1 (t) f (λ1 (t)) = F [λ1 (t)]− F [λ2 (t)]

(7) (λ1 (t)− t)λ
′
2 (t) f (λ2 (t)) = F [λ2 (t)]

The equilibrium boundary conditions must be λ1 (0) = λ2 (0) = 0 and λ1 (1) = λ2 (1) = t∗

as usual, where t∗ is the common terminal bid when a bidder observes the valuation 1.

Theorem 1 in Landsberger et al (2001) gives the existence result of a monotonic solution to

the system (6) and (7). The first-stage bid function can be directly solved from the equation

transformed from equation (1) by imposing the equilibrium condition, i.e., replacing z and m

with v. Let y and y′ denote β(v) and β′(v) respectively. Then the transformed equation can

be rewritten as: y′ = − f (v)

F (v)
y +

f (v) v

F (v)
− δf (v) v

F (v)
+

δf (v)

F (v)
β2 (v). This is a nonhomogeneous

first-order linear differential equation. Given the boundary condition β (0) = 0, the unique

solution is:
1

F (v)

∫ v

0
[f (t) t − δf (t) t + δf (t) β2 (t)]dt. It is easy to check that β′(v) =

f (v)
∫ v

0
F (t) (1− δ + β′2 (t))dt

F 2 (v)
. Given the fact that β′2 (t) > 0 as we have obtained above,

β′(v) > 0 is immediate.

Step 2. Verifying the equilibrium. Since the three bid functions produced above are

all monotonic, the application of the standard verification approach, i.e., to show that all

other mimicking types will lead to less payoff, is straight forward. So we forgo its detailed
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derivation here. Q.E.D.

Proof of Proposition 3.

Under the assumption that f(v) = 1, the differential equation system (6) and (7) can be

transformed into:

(8) (λ2 (t)− t)λ
′
1 (t) = λ1 (t)− λ2 (t)

(9) (λ1 (t)− t)λ
′
2 (t) = λ2 (t)

Property a) is just the standard boundary conditions. The following graph helps us to see

the proof for the rest of the properties.

Figure 1. Bounds of Inverse Bid Functions
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In the above figure, from the left to the right, the three lines are 2t,
t

t∗
and

4t

3
respectively.

We need to show that λ1(t) and λ2(t) behave regularly within the regions between 2t and
t

t∗
,

t

t∗
and

4t

3
respectively. Property b) and c) are proved by ruling out all other possibilities

by contradiction, which is a tedious process. First, we can easily show that λ
′
1 (0) = 2 and

λ
′
2 (0) =

4

3
. Second, we can show that λ

′
1 (t∗) = 0 and λ

′
2 (t∗) =

1

1− t∗
. Third, differentiate

both sides of equation (9), we have λ
′
1 (t) λ

′
2 (t) + (λ1 (t)− t) λ

′′
2 (t) = 2λ

′
2 (t), i.e., λ

′′
2 (t) =

2λ
′
2 (t)− λ

′
1 (t) λ

′
2 (t)

λ1 (t)− t
. As λ1 (t)−t > 0, we can obtain the following relations: (i) If λ

′
1 (t) < 2,

then λ
′′
2 (t) > 0. (ii) If λ

′
1 (t) > 2, then λ

′′
2 (t) < 0. The above results prepare us to show the

bounds for λ1 (t) and λ2 (t) with the following steps.

A. Suppose λ1 (t) lies entirely above the line 2t. Notice that λ′1 (0) = 2 and λ′1 (t∗) = 0,
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which combined with the fact that λ1 (t) lies entirely above 2v implies that λ
′
1 (t) must have

first increased above two and then decreased to zero. Given the smoothness of λ1 (t) , this

means that there exists at least a t > 0 such that λ
′
1 (t) = 2. Let t̄ be the inf of the set of

such t . Then λ
′
1 (t̄) > 2 for all t < t̄. By relation (ii) , we must have λ

′′
2 (t̄) = 0 and λ

′′
2 (t) < 0

for all t < t̄. Then from equation (8), we can obtain the equation 3λ2 (t̄) = λ1 (t̄) + 2t̄.

From equation (9), we have the equation (λ1 (t̄) − t̄)λ
′
2 (t̄) = λ2 (t̄) . Combining these two

equations, we obtain 3(λ2 (t̄) − t̄)λ′2 (t̄) = λ2 (t̄) . Notice that λ′2 (t̄) <
4

3
because λ′2 (0) =

4

3

and λ
′′
2 (t) < 0 for all t < t̄. Then λ2 (t̄) <

4

3
× 3(λ2 (t̄) − t̄). So we must have

λ2 (t̄)

t̄
>

4

3
,

which is a contradiction to the fact that until t̄, λ2 (t) still lies below the line
4

3
t. So λ1 (t)

can not lie entirely above 2t.

B. Suppose λ1 (t) crosses 2t from above first. Suppose the crossing happens at the point

t̂, where t̂ > 0 and λ′1(t̂) < 2. Again there exists a t̄ such that 0 < t̄ < t̂ and λ
′′
1 (t̄) = 2 and

λ
′
1 (t̄) > 2 for all t < t̄. The above argument can be applied in exactly the same way here.

So we can rule out this case too.

C. Suppose λ1 (t) crosses 2t from below first at t̄ > 0. Then λ′1 (t̄) > 2 and λ1 (t̄) = 2t̄.

From the equation (8), we have (λ2 (t̄)− t̄)λ′1 (t̄) = 2t̄− λ2 (t̄). So we must have
λ2 (t̄)

t̄
<

4

3
,

i.e., λ2 (t) goes below
4

3
t at the point t̄. As λ′1 (t) must first decrease below 2, λ′2 (t) will

first increase above
4

3
from relation (i) . Then, there must exist a t̂ < t̄ such that λ2 (t)

crosses the line
4

3
t from the above at the point t̂. So λ′2

(
t̂
)

<
4

3
. From equation (9), we have

(
λ1

(
t̂
)− t̂

)
λ′2

(
t̂
)

=
4

3
t̂. So we obtain

λ1

(
t̂
)

t̂
> 2, which is a contradiction to the fact that

λ1 (t) lies low the line 2t until t̄. So this case is also impossible. To sum up the step A to C,

we show that 2t > λ1 (t) .

D. It is easy to obtain λ1 (t) > λ2 (t) and their monotonicity from the differential equation

system (8) and (9).

E. Suppose λ1 (t) lies entirely under 2t and crosses
4

3
t from above. Then λ′2 (t) must

rise above
4

3
first and λ2 (t) must cross

4

3
t from above at least once due to relation (i).

Let the crossing happen at t̄. So λ′2 (t̄) <
4

3
and λ2 (t̄) =

4

3
t̄. From equation (9), we have

(λ1 (t̄)− t)λ′2 (t̄) =
4

3
t̄. Then we can obtain

λ1 (t̄)

t̄
> 2, which contradicts the fact that λ1 (t)
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lies entirely under 2t. So λ1 (t) must lie above the line
3

4
t.

F. Suppose λ2 (t) crosses
4

3
t at least once. Since 2t > λ1 (t), there exits a neighborhood

around zero such that λ′1 (t) < 2 for all t belong to this neighborhood. Then λ′′2 (t) > 0 in

this neighborhood from relation (i). Suppose the inf of the set of all crossing points of
4

3
t

is t̄, where t̄ > 0 and λ′2 (t̄) <
4

3
. From equation (9), we have (λ1 (t̄)− t̄) λ′2 (t̄) =

4

3
t̄. So we

obtain
λ1 (t̄)

t̄
> 2, which is a contradiction to our obtained conclusion at the end of step C

that 2t > λ1 (t). Then λ2 (t) must lie entirely above
4

3
t.

G. Actually, the essence of the above argument can be used to show that λ′′2 (t) > 0.

Suppose not, then there must exist a line αt (2 > α >
3

4
) from the origin cutting λ2 (t)

from below at such a t̄, where t̄ > 0 and λ′2 (t̄) < α. Again from equation (9), we have

(λ1 (t̄)− t̄) λ′2 (t̄) = αt̄. So we obtain
λ1 (t̄)

t̄
> 2, which is a contradiction.

H. Similarly, suppose λ′′1 (t) < 0 does not hold, then there must exist a line αt (2 > α >
3

4
) from the origin cutting λ2 (t) from above at such a t̄, where t̄ > 0 and λ′1 (t̄) > α. From

equation (8), we have (λ2 (t̄)− t̄) λ′1 (t̄) = αt̄ − λ2 (t̄) , which gives us
λ2 (t̄)

t̄
<

4

3
. This is a

contradiction. So λ′′1 (t) > 0.

I. Since λ′′1 (t) > 0 and λ′′2 (t) < 0, the result that
t

t∗
separating λ1 (t) and λ2 (t) is

immediate.

J. To sum up all the above steps, we prove property b) and c).

As to Property e), by replacing f(v) with 1 and F (v) with v in the general formula of

β(v) derived in the proof of Proposition 2, we obtain the unique solution:

β(v) =
1

v

∫ v

0
(t− δt + δβ2 (t))dt =

v

2
(1− δ) +

δ

v

∫ v

0
β2 (t) dt. Using the fact that

3

4
v > β2 (v) ,

it is easy to see that β (v) is smaller than
1

2
v, where

1

2
v is the equilibrium bid function for

a single auction.

Finally, we show Property d). Its upper bound is shown as follows. At the valuation

1, the second-stage equilibrium payoff for the bidder is 1 − t∗. Given bidders bid truthfully

in the first stage, it is necessary for the second-stage bid function to prevent any second-

stage deviation. Let the second-stage payoff π = (1− b) λ2 (b), where b is the choice of the

bid. Then π ≤ 1 − t∗ for all b ∈ [0, 1]. Notice that π > (1− b)
4

3
b because of the fact that
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λ2 (b) >
4

3
b and max (1− b)

4

3
b =

1

3
when b =

1

2
, so we must have

1

3
≤ 1 − t∗, i.e. t∗ ≤ 2

3
.

The lower bound of t∗ will be derived in the step B in the proof of Lemma 2 later. Q.E.D.

Proof of Proposition 4.

A. We start with the second-stage bid functions by assuming both bidders follow the

same pure strategy bid function at the first stage. We will use bidder 1 to denote the generic

bidder for our derivation of the equilibrium bid functions. If bidder 1 wins at the valuation

v, then she randomly chooses a bid b on the support (t∗, t∗] with p.d.f. gv (b) and c.d.f. Gv (b).

Her rival will bid according to βv
2 (v̂), where v̂ is the first-stage loser’s valuation and the win-

ner believes that v̂ is in [0, v) with density
1

v
. The optimality of the randomization requires

(v − b) Pr(b > βv
2 (v̂)) to be a constant Kv for all b ∈ (r∗, r∗). Let λv

2 (v̂) = βv−1

2 (v̂). We have

Pr(b > βv
2 (v̂)) =

βv−1

2 (b)

v
=

λv
2 (b)

v
and (v − b) Pr(b > βv

2 (v̂)) = (v − b)
λv

2 (b)

v
. Hence we

need that:

(10) (v − b)
λv

2 (b)

v
= Kv

The optimality of bidder 1’s rival’s strategy requires that: βv
2 (v̂) = arg max

b̂

(
v̂ − b̂

)
Pr

(
b̂ > b

)

for all v̂ ∈ [0, v). Let t = βv
2 (v̂). Since Pr(b̂ > b) = F v(t), the above expression can be rewrit-

ten as t = arg max (v̂ − t) Gv (t) for all v̂ ∈ [0, v). The first-order condition leads to:

(11) (λv
2 (t)− t) f v (t) = F v (t)

It is almost the same asymmetric auction case examined by Vickrey (1961). It is easy

to check that both bidders should have the same ending (maximum) bid. Let the ending

bid be t∗. From equation (10), we obtain λv
2 (b) =

vKv

v − b
. By symmetry, this implies that

the bid function for bidder 1’s rival is βv
2 (v̂) = v − vKv

v̂
. Notice that βv

2 (Kv) = 0. So

in order to obtain a monotonic bid function, we assume that when v̂ ∈ [0, Kv), bidder

1’s rival will not bid at all. Similarly, λv
2 (t∗) = v, so

vKv

v − t∗
= v, then t∗ = v − Kv.

We adopt the stability refinement argument by Vickrey (1961) and choose the particular

equilibrium where λv
2 (b) =

vKv

v − b
is tangent to the 45 degree line. This implies that Kv =

v

4
.

So t∗ =
3v

4
and λv

2 (b) =
v2

4(v − b)
and βv

2 (v̂) = v − v2

4v̂
. Substitute the functional form

of λv
2 (.) into equation (11), we have

gv (t)

Gv (t)
=

4(v − t)

(v − 2t)2
. Integration on both sides leads

56



to: ln Gv (t) = − ln (2t− v) − v

2t− v
+ C. For all values of C, we have Gv (t) → 0 when

t → v

2
. So

v

2
is the lower bound of the support of the randomized bids. Also Gv (t∗) = 1,

i.e., ln Gv (t∗) = 0, so − ln(2 × 3v

4
− v) − v

2× 3v

4
− v

+ C = 0. Then C = ln v + 2 − ln 2.

So Gv (t) =
v

2 (2t− v)
e

4t− 3v

2t− v . We have shown that when v̂ ∈ [0, Kv), bidder 1’s rival will

not bid. Since we find that Kv =
v

4
and bidder 1 will randomize on the support (

v

2
,
3v

4
], we

can see that bidder 1’s rival will not win at all when v̂ ∈ [ Kv,
v

2
) either. With the bidder

symmetry, by now we have found the second-stage bid functions.

B. Now we start to derive the first-stage bid function. Given a valuation v, bidder 1

bids β (z) where z > v. So we first consider the situation when bidder 1 mimics a higher

type and the other bidder truthfully follows β (.). Then she wins with probability z and

loses with probability 1− z. If bidder 1 wins, at the second stage, she believes that her rival

has the valuation v̂ distributed on [0, z) with density
1

z
. Her rival believes that she faces a

first-stage winner with valuation z, hence if i) v̂ ∈ [0,
z

4
), then she will not submit a bid.

ii) if v̂ ∈ [
z

4
, z), then she will bid according to the bid function βz

2 (v̂) = z − z2

4v̂
. Then

the second-stage best response for the first-stage winner given she mimics type z will be to

submit a bid b satisfying the following conditions. If b = 0, then her second-stage payoff is
v

4
. If she submits a nonzero bid, her payoff is (v − b) Pr (b > βz

2 (v̂)) , which equals
(v − b) z

4 (z − b)
.

This term is maximized by choosing b = 0. In this case, her second-stage best payoff is

again
v

4
. So we can see that under all instances, if bidder 1 mimics z at the first stage and

wins, she can get
v

4
at most in the second stage given the other bidder follows the specified

equilibrium strategy. Now consider what if bidder 1 loses the first stage by mimicking type

z. She knows exactly her rival’s valuation v̂, where v < z < v̂. Her rival will randomly choose

a bid b from the interval (
v̂

2
,
3v̂

4
] according to the c.d.f. Gv̂ (b) =

v̂

2 (2b− v̂)
e

4b− 3v̂

2b− v̂ . Then

the best response for the bidder will be i) if v ∈ [0,
v̂

4
), then she will not submit a bid. ii)

if v ∈ [
v̂

4
, v̂), then she will bid according to the bid function β v̂

2 (v) = v̂ − v̂2

4v
. Next we need

to determine the appropriate integration regions for payoff functions under different values

of v. First, if v <
z

2
, she will obtain zero second-stage payoff when she loses the first stage
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according to the stated strategies. Then we can be sure that she never needs to mimic such

a z that v <
z

2
because a) it does not bring her any higher second-stage payoff following

winning the first stage due to the fact that a bidder can always obtain
v

4
at the second stage

given winning the first stage no matter what z she mimics and b) it does not bring her any

higher second-stage payoff following losing the first stage either since other mimicking type

can always bring her nonnegative second-stage payoff. Second, when
1

2
> v >

z

2
, she will

not bid when v̂ ∈ (2v, 1] and bid v̂ − v̂2

4v
when v̂ ∈ (z, 2v]. So her second-stage payoff when

v̂ ∈ (z, 2v] is [v− (v̂− v̂2

4v
)] Pr(v̂− v̂2

4v
> b). Pr(v̂− v̂2

4v
> b) = F v̂(v̂− v̂2

4v
) =

v

2v − v̂
e

2v − 2v̂

2v − v̂ .

Then [v − (v̂ − v̂2

4v
)] Pr(v̂ − v̂2

4v
> b) =

2v − v̂

4
e

2v − 2v̂

2v − v̂ . So her overall expected second-

stage payoff following she losing the first stage is π1 (v, z) =
∫ 2v

z
(
2v − v̂

4
e

2v − 2v̂

2v − v̂ × 1

1− z
)dv̂.

Finally, in the case where
1

2
< v, her overall expected second-stage payoff following losing

the first stage is πz (v, z) =
∫ 1

z
(
2v − v̂

4
e

2v − 2v̂

2v − v̂ × 1

1− z
)dv̂. Notice that if we can find a

first-stage bid function to implement truthful bidding, i.e. z = v, then at v =
1

2
, we will

have π1(
1

2
) = π2(

1

2
) and π

′
1(

1

2
) = π

′
2(

1

2
) according to the above derived expressions of π1(.)

and π2(.), which ensures the continuity of the first-stage bid function at v =
1

2
. Now we are

ready to derive the first-stage bid function. The bidder’s first-stage payoff if she observes a

valuation v while mimics z > v when the other bidder follows the equilibrium bid functions

is:

i) v ≤ 1

2
Π1 (v, z)

= z[(v − β(z)) + δ
v

4
] + (1− z) [δπ1 (v, z)]

= z[(v − β(z)) + δ
v

4
] + (1− z) [δ

∫ 2v

z
(
2v − v̂

4
e

2v − 2v̂

2v − v̂ × 1

1− z
)dv̂]

= z[(v − β(z)) + δ
v

4
] + δ

∫ 2v

z
(
2v − v̂

4
e

2v − 2v̂

2v − v̂ )dv̂

= z[(v − β(z)) + δ
v

4
]− δ

∫ z

2v
(
2v − v̂

4
e

2v − 2v̂

2v − v̂ )dv̂

58



The first-order condition w.r.t. z yields:

(12) v − β(z)− zβ
′
(z) +

1

4
δv − δ

2v − z

4
e

2v − 2z

2v − z = 0

In equilibrium z = v, so we can have:

(13) v − β(v)− vβ
′
(v) = 0

The unique solution is β(v) =
1

2
v.

ii) v >
1

2
Π1 (v, z) = z[(v − β(z)) + δ

v

4
] + (1− z) [δπ2 (v, z)] and we can obtain the same bid function.

The above is the solution when the bidder mimics a type bigger than her own valuation.

Also, we need to check when the bidder mimics a lower type whether the bid function still

remains the same. It is easy to check that it is indeed the case. Q.E.D.

Proof of Proposition 5.

Let I1 (0) denote the inf of the randomized bids for type zero at the first stage where the

subscript represents the number of the stage. We know that I1 (v) > I1 (0) for all v > 0 from

the monotonicity requirement. Once the zero type bids I1 (0) in the first stage, she will lose

with probability one and her zero valuation can be inferred with probability one too. Under

this contingency, we have a subsequent second-stage auction where type zero competes with

the type uniformly distributed over [0, 1]. In this subgame, suppose first that the zero type

randomizes over zero. Let S2 (0) > 0 denote the sup of her randomized bids at the second

stage. We claim that this zero type must be defeated with probability one. Otherwise, the

zero type will win with positive probability bringing her negative payoff, which is impossible

in equilibrium. Therefore, all her rival’s bids must be above S2 (0). However, this will not be

optimal for those of her rivals whose types fall in the interval [0, S2 (0)] since these types will

obtain negative payoff with probability one in this particular subgame. Hence we obtain that

the zero type can not randomizes above zero at the second stage. Then suppose S2 (0) < 0,

the zero type’s rivals can always win with negative bids, which is impossible for any normal

auction rule. So finally we consider the only case left where S2 (0) = 0. In this case, we can

argue that the zero type must be defeated with probability one as before. Then any of type

zero’s rivals who has a valuation v > 0 must bid above zero. But this makes the optimal bid
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non-existent because whenever the bidder bids b > 0, it is always better for her to bid
b

2
. So

no equilibrium can exist in the subgame. Then we can conclude that there is no symmetric

monotonic equilibrium for the whole two-stage first-price auctions with the announcement

of the first-stage losing bid game. Q.E.D.

Proof of Lemma 1.

The equilibrium will be derived in the following step A and B, which at the same time

yields the necessary equilibrium condition.

A. To support the second-stage equilibrium, we need to show that k ≤ 1

2
. The loser

definitely does not want to deviate. We need to further show that the winner does not

want to decrease the bid. If the winner decrease the bid by ε > 0, her second-stage payoff

will be π = (v̂ − ((1− k) v + kv̂ − ε))
(1− k) v + kv̂ − ε− v

(1− k) v + kv̂ − v
, where

(1− k) v + kv̂ − ε− v

(1− k) v + kv̂ − v

is the probability of winning. We need
dπ

dε
≤ 0. So we have (v̂− v) (2k − 1) ≤ 2ε. Since this

inequality needs to hold no matter how small ε is, we then need k ≤ 1

2
.

B. To support the first-stage equilibrium, we need to show that k ≥ δ

1 + δ
. To show

this, we have to derive the first-stage bid functions first. Let us assume bidder 1 observes

a valuation v while mimics z < v. Then her first-stage payoff is z (v − β (z)). Conditional

on bidder 1 wins the first stage, her rival will have valuation t uniform over [0, z) with

density
1

z
and randomize over [t, (1− k) t + kz). It is easy to check that the best response

for bidder 1 will be to bid (1− k) t + kz to win the object for sure. Then her payoff is
∫ z

0
[v − ((1− k) t + kz)]

1

z
dt = v − z

2
− kz

2
. Conditional on bidder 1 loses the first stage, her

rival will have valuation t uniform over [z, 1) with density
1

1− z
and bid (1− k) z+kt. Then

bidder 1’s best response will be to bid (1− k) z + kt + ε as long as (1− k) z + kt < v. The

deviation of z will be analyzed in the following two categories.

First, we consider a z deviation such that (1− k) z + kt > v when t = 1, i.e., z ∈
(
v − k

1− k
, v), which represents a small deviation as bidder 1’s rival may bid above v for some

realizations of t. We assume bidder 1 can win the object only with (1− k) z+kt at the second

stage. If we can obtain an equilibrium under this assumption, the equilibrium will still remain

valid under such assumption as bidder 1 needs to win with (1− k) z + kt + ε. Notice that
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bidder 1 will only bid when (1− k) z + kt < v, which implies that t <
v − (1− k) z

k
. So her

second-stage payoff is
∫ v−(1−k)z

k
z

[v − ((1− k) z + kt)]
1

1− z
dt =

(v − z)2

2k

1

1− z
.

Then her overall two-stage expected payoff is:

π = z (v − β (z)) + δz(v − z

2
− kz

2
) + δ (1− z)

(v − z)2

2k (1− z)

= zv − zβ (z) + δ(zv − z2

2
− kz2

2
) + δ

(v − z)2

2k
Differentiate π w.r.t. z and set the first-order condition to zero, we obtain:

(14) v − zβ′ (z)− β (z) + δ(v − z − kz)− δ (v − z)

k
= 0

In equilibrium, z = v, so we have v − vβ′ (v) − β (v) − δkv = 0. With usual boundary

condition β (0) = 0, we have β (v) =
(1− δk)v

2
.

Second, we then require the above derived bid functions can also prevent a large z

deviation such that (1− k) z + kt ≤ v when t = 1, i.e., z ∈ [0,
v − k

1− k
] where bidder 1’s

rival will always bid under or equal to v. Following the above specified strategy and truthful

bidding, a bidder’s total payoff is
v2

2
+

δv2

2
, whose derivation is in the proof of Lemma 4.

We next will show that bidder 1 will not deviate to zero at the first stage, which requires

that the deviation profit δ
∫ 1

0
(v − kt)dt ≤ v2

2
+

δv2

2
. This inequality can be rearranged

as (v − δ

1 + δ
)2 − (

δ

1 + δ
)2 +

δk

1 + δ
≥ 0 for all v including v =

δ

1 + δ
. Hence we must

have k ≥ δ

1 + δ
. We then need to show that under the condition k ≥ δ

1 + δ
, all other big

deviations can be prevented too. The total deviation profit is:

π = (zv− (1− δk) z

2
)+(δzv−z2

2
−kz2

2
)+δ (1− z)

∫ 1

z
(v−(1− k) z−kt)

1

1− z
dt. Setting

dπ

dz
=

0, we find the best z deviation is
v + δk − δ

1 + δk − δ
. While, we can check that this best deviation

fails the large deviation constraint (1− k) z + k < v. This means that π is monotonic in z

for all z ∈ [0,
v − k

1− k
]. It is straight forward to check that when z =

v − k

1− k
, the deviation

profit π is smaller than the profit from truthful bidding. Therefore all large deviations can

be prevented. Similarly, we can analyze the situation where bidder 1 mimics a type z > v in

the first stage, which yields the same equilibrium bid functions and equilibrium conditions.

So we can conclude that the necessary condition for the above derived bid functions to be

an equilibrium is
1

2
≥ k ≥ δ

1 + δ
. Q.E.D.
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Proof of Proposition 6.

It is straight forward to check that the derived bid functions in Lemma 1 constitute an

equilibrium. Q.E.D.

Proof of Lemma 2.

The proof consists of the following three steps.

A. We need to find an appropriate expression for the revenue. The expected payment

for one bidder in the first stage is
∫ 1

0
[
v2

2
(1− δ)+δ

∫ v

0
β2 (t) dt]dv. The second-stage expected

sum of payment can be rearranged as
∫ 1

0
[β1 (v) β−1

2 (β1 (v))+β2 (v) β−1
1 (β2 (v))− vβ2 (v)]}dv.

So the total revenue is:

R3 = 2{∫ 1

0

v2

2
(1− δ) dv+

∫ 1

0
δ[

∫ v

0
β2 (t) dt+β1 (v) β−1

2 (β1 (v))+β2 (v) β−1
1 (β2 (v))−vβ2 (v)]dv}.

Let P =
∫ 1

0
[
∫ v

0
β2 (t) dt + β1 (v) β−1

2 (β1 (v)) + β2 (v) β−1
1 (β2 (v))− vβ2 (v)]dv.

Since
∫ 1

0

∫ v

0
β2 (t) dtdv =

∫ 1

0
(1− v) β2 (v) dv, P can then be rewritten as:

P =
∫ 1

0
{β2 (v) + β1 (v) λ2 ((β1 (v)) + β2 (v) λ1(β2 (v))− 2vβ2 (v)}dv

B. We need to find a bound for P . As there is no closed form solution to the bid functions,

our approach is to use their bounds to bound P . We claim that P < 1− 5

3
t∗+t∗2− 1

3
t∗4+

1

3
t∗5

and t∗ >
5

8
, where t∗ is the common end point of two second-stage bid functions. To show

this, we will first obtain some auxiliary results. Here we abbreviate the terminal bid t∗ as t.

Result 1.
∫ t

0
sλ2 (s) λ′2 (s) ds = sλ2 (s) λ2 (s) |t0 −

∫ t

0
λ2 (s) (λ2 (s) + sλ′2 (s)) ds

= t− ∫ t

0
λ2 (s) λ2 (s) ds− ∫ t

0
sλ2 (s) λ′2 (s) ds

So 2
∫ t

0
sλ2 (s) λ′2 (s) ds = t− ∫ t

0
[λ2 (s)]2ds

Result 2.

Multiply s to both sides of equation (9) and integrate, we have
∫ t

0
sλ1 (s) λ′2 (s) ds− ∫ t

0
s2λ′2 (s) ds =

∫ t

0
sλ2 (s) ds, which leads to:

∫ t

0
sλ1 (s) λ′2 (s) ds− [s2λ2 (s) |t0 −

∫ t

0
2sλ2 (s) ds] =

∫ t

0
sλ2 (s) ds

So
∫ t

0
sλ1 (s) λ′2 (s) ds = t2 − ∫ t

0
sλ2 (s) ds

Result 3.
∫ t

0
λ2 (s) λ′1 (s) ds

= λ2 (s) λ1 (s) |t0 −
∫ t

0
λ′2 (s) λ1 (s) ds = 1− ∫ t

0
(λ2 (s) + sλ′2 (s)) ds

62



= 1− [
∫ t

0
λ2 (s) ds +

∫ t

0
sλ′2 (s) ds] = 1− [

∫ t

0
λ2 (s) ds + sλ2 (s) |t0 −

∫ t

0
λ2 (s) ds] = 1− t

It is easy to see that
∫ t

0
λ1 (s) λ′2 (s) ds = t.

Result 4.

λ1 (s) λ′2 (s) + λ2 (s) λ′1 (s) = λ1 (s) + sλ′1 (s) + sλ′2 (s) by adding equation (6) and (7).

So
∫ t

0
[λ1 (s) + sλ′1 (s) + sλ′2 (s)]ds = 1

∫ t

0
λ1 (s) ds + sλ1 (s) |t0 −

∫ t

0
λ1 (s) ds + sλ2 (s) |t0 −

∫ t

0
λ2 (s) ds = 1

Then
∫ t

0
λ2 (s) ds = 2t− 1

Result 5.
∫ t

0
sλ′2 (s) ds = sλ2 (s) |t0 −

∫ t

0
λ2 (s) ds = t− ∫ t

0
λ2 (s) ds = 1− t.

Using the above results, we can find the new expression and the bound for P as follows.

I.
∫ 1

0
β2 (v) dv =

∫ t

0
sλ′2 (s) ds = 1− t. Then 1− t <

∫ 1

0

3

4
vdv because β2 (v) <

3

4
, leading to

t >
5

8
.

II.
∫ 1

0
β1 (v) λ2 ((β1 (v)) dv <

∫ 1

0
tv2dv =

t

3
because β1 (v) < tv and λ2 (β1 (v)) < v.

III.
∫ 1

0
[β2 (v) λ1(β2 (v))− 2vβ2 (v)]dv =

∫ t

0
sλ1 (s) λ′2 (s) ds− ∫ t

0
2sλ2 (s) λ′2 (s) ds

= t2 − ∫ t

0
sλ2 (s) ds− t +

∫ t

0
[λ2 (s)]2ds < t2 − t +

∫ t

0
ts (ts− s) ds = t2 − t +

1

3
t5 − 1

3
t4

IV. Therefore, P < 1− t +
t

3
+ t2 − t +

1

3
t5 − 1

3
t4

C. We are ready to find the final bound. P − ∫ 1

0

v2

2
dv <

5

6
− 5

3
t∗+ t∗2− 1

3
t∗4 +

1

3
t∗5. The

expression on the right hand side of the inequality is monotonically decreasing for t∗ ∈ [
1

2
,

3

4
]. Using the fact that t∗ >

5

8
, we obtain a upper bound of P − ∫ 1

0

v2

2
dv as

8

49
. Since

R3 =
1

3
+ 2δ(P − ∫ 1

0

v2

2
dv), we then have R3 <

1

3
+

16

49
δ. Q.E.D.

Proof of Lemma 3.

We need to show that the overall revenue has the following expression:

R4= 2× {∫ 1

0

v2

2
(1 + δ) dv +δ[

∫ 1
2

0
(e2

∫ v
2

0

v2 − t2

t
e
−
v

t dt)dv +
∫ 1

1
2
(e2

∫ v
2

v− 1
2

v2 − t2

t
e
−
v

t dt)dv]}
Once this result can be obtained, we can immediately reach the conclusion that R4 >

1

3
+

1

3
δ

because

2×∫ 1

0

v2

2
(1 + δ) dv =

1

3
+

1

3
δ and

∫ 1
2

0
(e2

∫ v
2

0

v2 − t2

t
e
−
v

t dt)dv+
∫ 1

1
2
(e2

∫ v
2

v− 1
2

v2 − t2

t
e
−
v

t dt)dv >

0. Now we start to derive the expression of R4. At the valuation v, if bidder 1 loses the
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first stage and the winner’s valuation is inferred as v̂, where v̂ is uniformly distributed

in (v, 1] with density
1

1− v
, then she will bid β v̂

2 (v) = v̂ − v̂2

4v
. Her rival will random-

ize over (
v̂

2
,
3v̂

4
] with c.d.f. Gv (b) =

v̂

2 (2b− v̂)
e

4b− 3v̂

2b− v̂ . If v >
1

2
, the probability for

bidder 1 to win the second stage is Pr(v̂ − v̂2

4v
> b) = Gv(v̂ − v̂2

4v
) =

v

2v − v̂
e

2v − 2v̂

2v − v̂ .

Her expected payment is
∫ 1

v

4vv̂ − v̂2

4(2v − v̂)
e

2v − 2v̂

2v − v̂ (
1

1− v
)dv̂. Similarly if v ≤ 1

2
, her expected

payment is
∫ 2v

v

4vv̂ − v̂2

4(2v − v̂)
e

2v − 2v̂

2v − v̂ (
1

1− v
)dv̂. Next consider the case where bidder 1 wins

the first stage at the valuation v. Then her rival will have valuation v̂ distributed over

the support [0, v) with density
1

v
. The probability for bidder 1 to win the second stage is

Pr(b > v − v2

4v̂
) = Pr(v̂ <

v2

4 (v − b)
) =

v

4 (v − b)
. So the expected payment for bidder 1

following her winning the first stage is:

∫ 3v
4

v
2

b× v

4 (v − b)
d(

v

2 (2b− v)
e

4b− 3v

2b− v ). We use Tv> 1
2

and Tv< 1
2

to denote the overall expected

payments for bidder 1 at the second stage when v >
1

2
and v <

1

2
respectively. Then we

have:

Tv> 1
2

= v
∫ 3v

4
v
2

b× v

4 (v − b)
d(

v

2 (2b− v)
e

4b− 3v

2b− v ) + (1− v)
∫ 1

v

4vv̂ − v̂2

4(2v − v̂)
e

2v − 2v̂

2v − v̂ (
1

1− v
)dv̂

= v
∫ 3v

4
v
2

b× v

4 (v − b)
d(

v

2 (2b− v)
e

4b− 3v

2b− v ) +
∫ 1

v

4vv̂ − v̂2

4(2v − v̂)
e

2v − 2v̂

2v − v̂ dv̂

Tv> 1
2

can be rearranged as:

Tv> 1
2

=
e2

8
v3

∫ v
2

0

v + t

t3
e
−
v

t dt + e2
∫ v

2

v− 1
2

v2 − t2

t
e
−
v

t dt

=
e2

8
v3[

∫ v
2

0

v

t3
e
−
v

t dt +
∫ v

2

0

1

t2
e
−
v

t dt] + e2
∫ v

2

v− 1
2

v2 − t2

t
e
−
v

t dt

Notice that
∫ v

2

0

v

t3
e
−
v

t dt = −1

v

∫ v
2

0
−v

t
e
−
v

t d(−v

t
) = −1

v
(−v

t
e
−
v

t−e
−
v

t )|
v
2
0 =

3

v
e−2 and

∫ v
2

0

1

t2
e
−
v

t dt =

1

v

∫ v
2

0
e
−
v

t d(−v

t
) =

1

v
(e
−
v

t )|
v
2
0 =

1

v
e−2. Therefore, Tv> 1

2
=

v2

2
+ e2

∫ v
2

v− 1
2

v2 − t2

t
e
−
v

t dt. With

similar method, we can find Tv≤ 1
2

as follows.

Tv≤ 1
2

= v
∫ 3v

4
v
2

b× v

4 (v − b)
d(

v

2 (2b− v)
e

4b− 3v

2b− v ) + (1− v)
∫ 2v

v

4vv̂ − v̂2

4(2v − v̂)
e

2v − 2v̂

2v − v̂ (
1

1− v
)dv̂
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=
v2

2
+ e2

∫ v
2

0

v2 − t2

t
e
−
v

t dt

To sum up, the expected payment T for bidder 1 at the second stage is:

T =
v2

2
+ e2

∫ v
2

0

v2 − t2

t
e
−
v

t dt when v ≤ 1

2

=
v2

2
+ e2

∫ v
2

v− 1
2

v2 − t2

t
e
−
v

t dt when v >
1

2
Then it is straight forward to obtain the desired expression for R4. Q.E.D.

Proof of Lemma 4.

The expected payment for a bidder with valuation v at the second stage is: Q2 =

v
∫ v

0
[(1− k) t + kv]

1

v
dt =

1

2
v2 (1 + k). The expected payment for a bidder with valuation

v at the first stage is: Q1 = v[
(1− δk)v

2
] =

(1− δk)v2

2
. So R5 = 2 × ∫ 1

0
(Q1 + δQ2)dv =

2× ∫ 1

0
(
(1− δk)v2

2
+

1

2
δv2 (1 + k))dv =

1

3
+

1

3
δ. Q.E.D.

Proofs for Chapter 4

Proof of Proposition 1.

Let bidder 1 be the generic bidder for our derivation of the equilibrium bid functions.

Since bidders’ signals are cross-period independent, while Θ1 is correlated with Θ2, the only

valuable information the bidders will condition on is the inferred true value of θ1. Then the

second-stage bid function will take the form of β2 (x1
2, θ1), where the first-stage information

p1, x
1
1, x

2
1, ...x

N
1 affects the bid only through the aggregated variable θ1.

Let v1
2 (x1

2, y
1
2, θ1) = E[P2|X1

2 = x1
2, Y

1
2 = y1

2, Θ1 = θ1], where Y 1
2 = max

s 6=1
Xs

2 and y1
2 is

its realized value. The c.d.f. of Y 1
2 is FN−1 (.) and the p.d.f of Y 1

2 is (N − 1) FN−2 (.) f (.) .

Then

E[P2|X1
2 = x1

2, Y
1
2 = y1

2, Θ1 = θ1]

= E[αΘ2 + (1− α) U(X1
2 , X

2
2 , ...X

N
2 )|X1

2 = x1
2, Y

1
2 = y1

2, Θ1 = θ1]

= αθ1 + (1− α) E[U(x1
2, X

2
t , ...XN

t )|Y i
2 = y1

2]

Let us assume bidder 1 mimics type z at the second stage given her true signal is x1
2 .

Then her second-stage payoff is:

Π2 (z, x1
2, θ1) =

∫ z

0
[v1

2 (x1
2, y

1
2, θ1)− β2 (z, θ1)] (N − 1) FN−2 (y1

2) f (y1
2) dy1

2
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The first-order condition w.r.t. z leads to:

(1) [v1
2 (x1

2, z, θ1)− β2 (z, θ1)] (N − 1) FN−2 (z) f (z)− β′2 (z, θ1) FN−1 (z) = 0

The equilibrium condition z = x1
2 leads to:

(2) [v1
2 (x1

2, x
1
2, θ1)− β2 (x1

2, θ1)] (N − 1) f (x1
2)− β′2 (x1

2, θ1) F (x1
2) = 0.

The solution to equation (2) is standard, which gives:

β2 (x1
2, θ1)

=
1

FN−1 (x1
2)

∫ x1
2

0
v1

2 (y, y, θ1) dFN−1 (y)

= E (v1
2 (Y 1

2 , Y 1
2 , θ1) |Y 1

2 < x1
2)

= αθ1 + (1− α) E{E[U(Y 1
2 , X2

t , ...XN
t )|Y 1

2 ]|Y 1
2 < x1

2}
We can obtain the final equilibrium bid function by replacing θ1 with

p1

α
−(1− α) U(x1

1, x
2
1, ...x

N
1 )

α
.

Q.E.D.

Proof of Proposition 2.

Let us assume all bidders follow the monotonic bid functions β1 (.) and β2 (.) truthfully

except bidder 1. At the signal x1
1, let us assume bidder 1 mimics z 6= x1

1 at the first stage. Let

v1
1 (x1

1, y
1
1) = E[P1|X1

1 = x1
1, Y

1
1 = y1

1], where Y 1
1 = max

s 6=1
Xs

1 and y1
1 is its realized value. Then

her first-stage payoff is: Π1 (x1
1, z) =

∫ z

0
(v1

1 (x1
1, y

1
1)− β1 (z)) (N − 1) FN−2 (y1

2) f (y1
2) dy1

1

At the second stage, all other bidders will follow β2

(
xi

2, θ̂1

)
, where i 6= 1. Notice that the

true θ1 =
p1

α
− (

1

α
−1)U(x1

1, x
2
1, ...x

N
1 ), where θ1 is increasing in p1 and decreasing in all other

arguments. But bidder 1 mimics type z, so all other bidder will be induced to believe that the

realized fundamental is θ̂1 =
p1

α
− (

1

α
− 1)U(z, x2

1, ...x
N
1 ) 6= θ1. Therefore, bidder 1’s second-

stage payoff is: Π2

(
x1

2, τ, θ1, θ̂1

)
=

∫ τ

0
[v1

2 (x1
2, y

1
2, θ1)− β2(τ, θ̂1)] (N − 1) FN−2 (y1

2) f (y1
2) dy1

2

Notice that we let bidder 1 bid according to β2(., θ̂1) rather than β2(., θ1) even though

she knows the true value θ1. This is because it is never optimal for bidder 1 to bid outside

the support of β2(., θ̂1), according to which all her rivals bid. Then Bidder 1’s decision is

simply to choose a bid within this particular support, which corresponds to a certain type

τ ∈ [0, ω]. So τ ∗ = arg max
τ

Π2

(
x1

2, τ, θ1, θ̂1

)
. The FOC w.r.t. τ leads to:

(3) [v1
2 (x1

2, τ, θ1)− β2

(
τ, θ̂1

)
] (N − 1) f (τ)− β′2

(
τ, θ̂1

)
F (τ) = 0

Let v1
2 (y, y, θ1) (N − 1) FN−2 (y) f (y) = V (y, θ1). Then β2 (x1

2, θ1) =
1

FN−1 (x1
2)

∫ x1
2

0
V (y, θ1) dy.
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So β′2 (x1
2, θ1) =

V (x1
2, θ1)

FN−1 (x1
2)
− (N − 1) f (x1

2) β2 (x1
2, θ1)

F (x1
2)

. Substituting the functional form of

β′2 (x1
2, θ1) into the above equation (3), we have:

(4) v1
2 (x1

2, τ, θ1) = v1
2

(
τ, τ, θ̂1

)

Equation (4) can be transformed into:

(5) αθ1 +
1− α

FN−1 (τ)

∫ τ

0
...

∫ τ

0
U

(
x1

2, x
2
2...x

N
2

)
f (x2

2) ...f
(
xN

2

)
dx2

2...dxN
2

= αθ̂1 +
1− α

FN−1 (τ)

∫ τ

0
...

∫ τ

0
U

(
τ, x2

2...x
N
2

)
f (x2

2) ...f
(
xN

2

)
dx2

2...dxN
2

Equation (5) can be reduced to:

(6) −U(x1
1, x

2
1, ...x

N
1 ) +

1

FN−1 (τ)

∫ τ

0
...

∫ τ

0
U

(
x1

2, x
2
2...x

N
2

)
f (x2

2) ...f
(
xN

2

)
dx2

2...dxN
2

= −U(z, x2
1, ...x

N
1 ) +

1

FN−1 (τ)

∫ τ

0
...

∫ τ

0
U

(
τ, x2

2...x
N
2

)
f (x2

2) ...f
(
xN

2

)
dx2

2...dxN
2

Given that U (.) is both monotonic and symmetric in each of its components, we can

obtain that for any z together with the set of realized signals {x1
2, x

1
1, x

2
1, ...x

N
1 }, there is a

unique optimal τ ∗
(
x1

2, z, x
1
1, x

2
1, ...x

N
1

)
that corresponds to z. Also, τ ∗

(
x1

2, z, x1
1, x

2
1, ...x

N
1

)
is

monotonic in x1
1. When z → x1

1, τ
∗ → x1

2, so τ ∗ will not be a corner solution over the support

[0, ω] with probability 1.

The overall two-stage payoff is: Π = Π1 + δEX2
1 ,...,xN

1 ,Θ1,X1
2
Π2. Π1 is bidder 1’s first-stage

payoff given she mimics type z. Π2 is her optimal second-stage payoff by mimicking type

τ ∗
(
x1

2, z, x1
1, x

2
1, ...x

N
1

)
after processing all the interperiod information. Then the FOC. w.r.t.

z is:

(7)
∂Π1

∂z
+ δ

dEX2
1 ,...,xN

1 ,Θ1,X1
2
Π∗

2

dz
= 0

It is easy to see that
∂Π1

∂z
= [v1

1 (x1
1, z)−β1 (z)] (N − 1) FN−2 (z) f (z)−β′1 (z) FN−1 (z) and

dEX2
1 ,...,xN

1 ,Θ1,X1
2
Π2

dz
= EX2

1 ,...,xN
1 ,Θ1,X1

2
(
dΠ2

dz
). Using the envelope theorem without constraint

(since we argue before that the optimal τ ∗ will not be a corner solution with probability 1),

we have:
dΠ2

dz
=

∫ τ∗

0
−∂β2(τ

∗, θ̂1)

∂θ̂1

∂θ̂1

∂z
(N − 1) FN−2 (y1

2) f (y1
2) dy1

2

= (1− α)
∂U(z, x2

1, ...x
N
1 )

∂z
FN−1

(
τ ∗

(
x1

2, z, x1
1, x

2
1, ...x

N
1

))

So
dΠ2

dz
> 0 and EX2

1 ,...,xN
1 ,Θ1,X1

2
(
dΠ2

dz
) > 0. Let EX2

1 ,...,xN
1 ,Θ1,X1

2
(
dΠ2

dz
) = H (z, x1

1). Then we

have

H (x1
1, x

1
1) = EX2

1 ,...,xN
1 ,Θ1,X1

2
(
dΠ2

dz
)|z=x1

1
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= (1− α)EX1
2
{EX2

1 ,...,xN
1
[
∂U(z, x2

1, ...x
N
1 )

∂z
FN−1

(
τ ∗

(
x1

2, z, x1
1, x

2
1, ...x

N
1

))
]}|z=x1

1

From the above derivation, we know that τ ∗
(
x1

2, z, x
1
1, x

2
1, ...x

N
1

) |z=x1
1

= x1
2, H (x1

1, x
1
1) can

thus be further simplified as:

H (x1
1, x

1
1)

= (1− α)EX1
2
{EX2

1 ,...,xN
1
[
∂U(z, x2

1, ...x
N
1 )

∂z
FN−1 (x1

2)]}

= (1− α)EX2
1 ,...,xN

1
[
∂U(z, x2

1, ...x
N
1 )

∂z
EX1

2
FN−1 (x1

2)]

=
1− α

N
EX2

1 ,...,xN
1
[
∂U(x1

1, x
2
1, ...x

N
1 )

∂z
]

=
1− α

N
[
∂EX2

1 ,...,xN
1
[U(x1

1, x
2
1, ...x

N
1 )]

∂x1
1

]

In equilibrium, we need z = x1
1, so the FOC of equation (7) becomes:

(8) [v1
1 (x1

1, x
1
1)− β1 (x1

1)] (N − 1) FN−2 (x1
1) f (x1

1)− β′1 (x1
1) FN−1 (x1

1) +δH (x1
1, x

1
1) = 0

Equation (8) can be rearranged as

(9) [(v1
1 (x1

1, x
1
1) +

δH (x1
1, x

1
1)

(N − 1) FN−2 (x1
1) f (x1

1)
)− β1 (x1

1)] (N − 1) f (x1
1)− β′1 (x1

1) F (x1
1) = 0

Let V̂ (y1
1, y

1
1) = [v1

1 (y1
1, y

1
1) +

δH (y1
1, y

1
1)

(N − 1) FN−2 (y1
1) f (y1

1)
]. Then β1 (x1

1) = E[V̂ (Y 1
1 , Y 1

1 ) |Y 1
1 <

x1
1].

Replacing v1
1 (y1

1, y
1
1) with αEΘ1 +(1− α) E[U(Y 1

1 , X−1
1 )|Y 1

1 = y1
1], we can obtain the desired

expression. Q.E.D.

Proof of Proposition 3.

The monotonicity of
[EX−i

1
U(X i

1, X
−i
1 )]′

[FN−1 (X i
1)]

′ ensures the monotonicity of the derived first-

stage bid function. Now we will check whether the bid functions derived in Proposition 1 and

2 indeed constitute an equilibrium. We need to show that given all other bidders follow these

monotonic bid functions, bidder 1 has no incentive to mimic a false type. Let us assume bid-

der 1 observe a type y while decide to mimic type z in the first stage and let her total expected

payoff (the first-stage payoff plus the expected second-stage optimal continuation payoff) be

Π. Then
dΠ

dz
= [v1

1 (y, z)−β1 (z)] (N − 1) FN−2 (z) f (z)−β′1 (z) FN−1 (z)+ δH (z, y) accord-

ing to equation (7) in the proof of Proposition 2. The right-hand side of the above equation

can be rearranged as (N − 1) FN−2 (z) f (z) [v1
1 (y, z) +

δH (z, y)

(N − 1) FN−2 (z) f (z)
− β1 (z)] −

β′1 (z) FN−1 (z). We next need to show that the term v1
1 (y, z) +

δH (z, y)

(N − 1) FN−2 (z) f (z)
is
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monotonic in y. Since both v1
1 (y, z) and H (z, y) are monotonic in y as we can see from the

proof of Proposition 2, the whole term is monotonic in y too. Then using equation (8) in the

proof of Proposition 2, it is easy to show that setting z < y makes
dΠ

dz
> 0 and z > y makes

dΠ

dz
< 0. So Π is maximized by choosing z = y. The off-equilibrium path belief also elimi-

nates a bidder’s incentive to bid above β1 (ω) in the first stage because she will be inferred

as zero type, which always makes her rivals bid more aggressively at the second stage hence

lowering the bidder’s overall payoff. Given that bidders bid truthfully in the first stage, the

second-stage problem is a standard common-value auction with public information, whose

equilibrium check is standard hence omitted.

A comparison of each stage’s bid function shows that for the same signal, the first-stage

bid function is bigger than the second-stage one by the term

δ (1− α)

N
EY i

1
{
δ[EX−i

1
U(Y i

1 , X−i
1 )]′

[FN−1 (Y i
1 )]′

|Y i
1 < xi

1}. Q.E.D.

Proof of Proposition 4.

We will first consider the finite N-stage case. Again, we let bidder 1 be our generic

bidder and assume a symmetric monotonic equilibrium exists. Then in equilibrium, i.e.,

given truthful bidding, we must have EβN−1 (.) > EβN (.) (N is the last stage) from

our proof for the two-stage problem. Now at period t + 1, where t ∈ {1, 2, ...N − 1}, if

bidder 1 observes a signal x1
t+1 and mimics a type z, given all other bidders follow the

equilibrium strategy, she can obtain a best continuation payoff c(x1
t+1, z, pt, x−1

t ). Let

v1
t (x1

t , y
1
t , θt−1) = E[Pt|X1

t = x1
t , Y

1
t = y1

t , Θt−1 = θt−1], where Y 1
t = max

s6=1
Xs

t and y1
t is

its realized value. Then bidder 1’s stage payoff of period t + 1 is:

Πt+1

(
z, x1

t+1, θt

)
=

∫ z

0
[v1

t+1

(
x1

t+1, y
1
t+1, θt

)− βt+1 (z, θt)] (N − 1) FN−2
(
y1

t+1

)
f

(
y1

t+1

)
dy1

t+1

At period t, if bidder 1 observes a signal x1
t and mimics a type γ, given all other bidders

follow the equilibrium strategy, she will mimic a type z at period t + 1 given signal x1
t+1 and

obtain a best continuation payoff c(x1
t+1, z, pt, x−1

t ).1 Bidder 1’s stage payoff of period t is:

Πt (γ, x1
t , θt−1) =

∫ γ

0
[v1

t (x1
t , y

1
t , θt−1)− βt (γ, θt−1)] (N − 1) FN−2 (y1

t ) f (y1
t ) dy1

t

Given bidder 1 mimics γ at period t, her rivals’ inference of θ̂t will be
pt

α
− (

1

α
− 1)U(γ, x−1

t )

1Note: the continuation payoff from period t+1 remains the same no matter there is mimicking in period
t or not because the inference of z at period t + 1 will not be affected.
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and her stage payoff of period t + 1 will become:

Πt+1

(
z, x1

t+1, θt, θ̂t

)
=

∫ z

0
[v1

t+1

(
x1

t+1, y
1
t+1, θt

)−βt+1

(
z, θ̂t

)
] (N − 1) FN−2

(
y1

t+1

)
f

(
y1

t+1

)
dy1

t+1

Then bidder 1’s total payoff starting from period t on is:
∫ γ

0
[v1

t (x1
t , y

1
t , θt−1)− βt (γ, θt−1)] (N − 1) FN−2 (y1

t ) f (y1
t ) dy1

t

+δE,X1
t+1,X−1

t ,Pt

∫ z

0
[v1

t+1

(
x1

t+1, y
1
t+1, θt

)− βt+1

(
z, θ̂t

)
] (N − 1) FN−2

(
y1

t+1

)
f

(
y1

t+1

)
dy1

t+1

+δ2EX1
t+1,X−1

t ,Pt
c(x1

t+1, z, pt, x−1
t )

Then the FOC w.r.t. γ leads to:

(10) [v1
t (x1

t , γ, θt−1)− βt (γ, θt−1)] (N − 1) FN−2 (γ) f (γ)− β′t (γ, θt−1) FN−1 (γ)

−δEX1
t+1,X−1

t ,Pt
[
∂βt+1(z, θ̂t)

∂θ̂t

∂θ̂t

∂γ
(N − 1) FN−2

(
y1

t+1

)
f

(
y1

t+1

)
dy1

t+1]|z∗ = 0

Equation (10) is a necessary condition for any equilibrium. Setting γ = x1
t , then the optimal

z∗ must equal x1
t+1 as in the proof of Proposition 2. So equation (10) can be transformed to:

(11) [v1
t (x1

t , x
1
t , θt−1)− βt (x1

t , θt−1)] (N − 1) FN−2 (x1
t ) f (x1

t )− β′t (x1
t , θt−1) FN−1 (x1

t )

+δEX1
t+1,X−1

t ,Θt
[
∂βt+1(z, θ̂t)

∂θ̂t

(
1

α
− 1)

∂U(x1
t , x

−1
t )

∂x1
t

FN−1
(
x1

t+1

)
] = 0

In the finite N-stage case, βN(x1
N , θN−1) can be obtained in the same way as in the proof

of Proposition 1, where θN−1 is linearly separable with coefficient α from all other parts of

the expression of the bid function. So
∂βN(x1

N , θ̂N−1)

∂θ̂N−1

equals the constant α. Similarly, from

equation (11) we can show that
∂βt(x

1
t , θ̂t−1)

∂θ̂t−1

= α for all t < N with backward induction.

This leads to the conclusion that E βt(.) will be the same for all period t except the last one

since the last stage does not have a continuation payoff anymore.

We then consider the infinite-stage case. We assume there exists a stationary symmetric

monotonic equilibrium, then the payoff from period t on under valuation x1
t with mimicking

type γ equals:
∫ γ

0
[v1

t (x1
t , y

1
t , θt−1)−βt (γ, θt−1)] (N − 1) FN−2 (y1

t ) f (y1
t ) dy1

t +δEX1
t+1,X−1

t ,Pt
c(x1

t+1, γ, pt, x
−1
t ).

Since the equilibrium is assumed to be stationary, the functional form of the expected contin-

uation payoff EX1
t+1,X−1

t ,Pt
c(x1

t+1, z, pt, x−1
t ) will be the same for any period t. Then standard

FOC w.r.t. γ plus setting γ to x1
t method gives us a constant price path. Q.E.D.
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