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Coordination of large numbers of agents to perform complex tasks in complex domains is a

rapidly progressing area of research. Because of the high complexity of the problem, approxi-

mate and heuristic algorithms are typically used for key coordination tasks. Such algorithms

usually require tuning algorithm parameters to yield the best performance under particular

circumstances. Manually tuning parameters is sometimes difficult. In domains where char-

acteristics of the environment can vary dramatically from scenario to scenario, it is desirable

to have automated techniques for appropriately configuring the coordination. This research

presents an approach to online reconfiguration of heuristic coordination algorithms. The

approach uses an abstract simulation to produce a large data set to train a stochastic neural

network that concisely models the complex, probabilistic relationship between configura-

tions, environments and performance metrics. The final stochastic neural network, referred

as the team performance model, is then used as the core of a tool that allows rapid online or

offline configuration of coordination algorithms to particular scenarios and user preferences.

The overall system allows rapid adaptation of coordination, leading to better performance

in new scenarios. Results show that the team performance model captured key features of a

very large configuration space and mostly captured the uncertainty in performance as well.

The tool was shown to be often capable of reconfiguring the algorithms to meet user requests

for increases or decreases in performance parameters. This work represents the first practical

approach to quickly reconfiguring complex sets of algorithms for a specific application.
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1.0 INTRODUCTION

In the field of multi-robot research, it is very challenging for a human operator to effectively

coordinate with the robots performing very complex tasks in a large-scale multi-agent system

[104]. In a large-scale system, there are usually an extremely large number of parameters,

the relationships between which are very complex. This situation prevents human operators

from receiving their intended results from the robots. The ultimate goal of research in this

area, consequently, is to find an approach that helps humans working with robot teams to

be able to obtain results from the robot teams that are as close as possible to the humans’

intentions. This dissertation proposes the new idea on the method used to capture the

very complex relationships of a large number of parameters, as well as the way to use these

captured relationships to make a model to help users to configure the system. The method

that has been developed from this research can also generally apply to any complex, nonlinear

interacting system of algorithms, or complex, nonlinear interacting physical processes.

1.1 CHALLENGES

In order to best understand the importance of this work, major related challenges in the

research area are explored below. The research, when done, will contribute to the solutions

to these challenges.

1



1.1.1 Large Team Coordination Is Very Complex

Sophisticated, complex coordination allows large groups of agents to perform complex tasks

in domains such as space [57], the military [36] and disaster response [54]. Cooperation

between heterogeneous robot teams is very complex when the tasks cannot be completely

divided and assigned a priori and when the robots must work together, dynamically inter-

acting to achieve common goals; for example, see the work of [79]. For a large-sized team

[105], the teamwork algorithms include several coordination algorithms, such as task allo-

cation, communication, and planning. The relationships between these algorithms and the

behaviors of the team are highly non-linear, stochastic, and extremely complex. Knowing

only a part of the system well, a human operator is not likely to understand how the team

can be controlled to yield the best performance. Therefore, it is critical for human operators

to have a better understanding of the teamwork algorithms [106].

However, this broad understanding cannot easily be obtained by running a few real

missions. In multi-robot systems, it is usually impossible to run several physical experi-

ments. Therefore, simulations are used to gain a better understanding of the developing

system [24][39][33][65]. Nevertheless, using simulations is more challenging when the system

is highly non-linear, stochastic, and extremely complex because a simulation can only pro-

vide information on one setting at a time. Fortunately, simulations can be run at fast speeds

to create large amounts of data about the relationships between parameters and team per-

formance. To represent these complex relationships, a meta-model of teamwork algorithms

[64] was then created from the teamwork simulation. As a result, the team meta-model plays

a large role in facilitating the process of gaining a better understanding of the system.

In practice, a software tool with graphic user interfaces can be created based on the team

meta-model, making it possible for human operators to quickly explore the relationships be-

tween coordination algorithm parameters and team performances. Thus, the developers can

perform experiments by tuning the input parameters and observing how the team perfor-

mance changes. Moreover, it is possible to allow the developers to specify the expected results

of team performances and to receive a coordination configuration that best meets these spe-

cific performance constraints. This tool is also very helpful during the design process. When

2



developing the team, the developers may have different algorithms for each component of

the team architecture. For example, there are several algorithms for task allocation. The

team meta-model can determine which algorithm for task allocation is better in a particular

configuration setting. When dealing with a new problem domain, users have the opportunity

to experiment with different coordination configurations and determine which one is most

preferred.

1.1.2 Complex Algorithms Are Required to Work Together

In cooperative control, selecting the right coordination strategy can have a significant impact

on the team performance. In many multi-robot applications (e.g., [35], [77], [79], [78]),

collaborative robots must coordinate their plans or actions. Selecting the right action, plan,

or resource to resolve a problem can have a significant impact on the team performance,

particularly in larger multi-robot systems. Unfortunately, selecting the right strategy is

difficult. Often a wide diversity of strategies is available, and these strategies can lead to

significant variations in the team performance of multi-robot systems.

Due to the high computational complexity of coordination, critical coordination algo-

rithms typically use heuristics that are parameterized and need to be tuned for specific

domains to yield the best performance. When several coordination algorithms are used

together, the performance of one algorithm will likely affect the performance of the other

algorithms. Consequently, the parameters of the individual algorithms must be tuned as a

group. Moreover, the relationship of coordination configurations, environmental conditions,

and team performance is highly non-linear and extremely complex. Hence, obtaining the

best performance from a set of coordination algorithms often involves a complex parametric

tuning process that must be performed on a per-problem basis.

The process of tuning control parameters for better team performance is performed not

at the level of the coordination algorithm, but also at the level of the individual robot. For

example, Parker [77] demonstrated an approach to allow a heterogeneous group of robots

to adapt their actions while environmental conditions changed over time. L-ALLIANCE

architecture was proposed with a learning capability for controlling parameter adjustments
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that makes it possible for the robots to adapt their behaviors over time in response to dynamic

changes in team capabilities and the environment. These global control parameters, such

as threshold of activation, robot impatience, and robot acquiescence, are set according to

the task and the different types of robots used in the system. In order to obtain good

performance, tuning these control parameters is required. Parker used initial learning for

parameter settings before measuring performance. In her work, the approach of dynamic

task allocation was demonstrated with real heterogeneous robots on cooperative box-pushing

experiments. In [78], she demonstrated a distributed approach using the potential field

technique for a cooperative team of robots tracking multiple moving targets by considering

actions that keep moving objects under surveillance. The L-ALLIANCE architecture was

used to provide mechanisms for fault-tolerant cooperative control and allows robot team

members to adjust their actions in response to the actions of teammates. The results show

success in achieving the target task. However, in order to determine optimal parameters,

the system required considerable tweaking.

Controlling a team of robots with complex coordination architecture requires human

operators to compromise when setting algorithm parameters. Each parameter has its own

advantages and disadvantages. When considering all parameters simultaneously, selecting

each value becomes even more complicated. Although some parameters are fixed, such as

domain parameters, some parameters have a wide range of possible values. Some parameters

relate to selecting different strategies at the global or local level. Some parameters change

over time, such as the number of remaining UAVs. In any given situation, keeping all of

these parameters in mind and knowing how each parameter affects the outcomes of the robot

team is quite impossible for human operators.

The meta-model of teamwork architecture plays a significant role in solving this problem

[64]. This meta-model refers to a model of an abstract teamwork simulation model. The

team meta-model can be used to find the best configuration of the team to meet specific

performance constraints, e.g., the tradeoff between communication bandwidth and a good

allocation of resources. Using the team meta-model in reverse allows users to specify per-

formance tradeoffs and rapidly receive a configuration that best meets those constraints.

Reviewing the changeable configuration parameters could yield a configuration that best
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meets the required performance tradeoffs. Furthermore, the team meta-model could be uti-

lized to allow the team to be reconfigured online by determining appropriate parameters for

ongoing situations. When executing a mission, human operators can simply specify the re-

quirements and allow the team meta-model to determine new configurations that best meet

those requirements. This approach provides a powerful and effective way to manipulate

the team meta-model during execution time and provides an additional mechanism for the

supervisory control of executing teams.

1.1.3 Humans Need Intelligible Interactions

When executing a mission, it is essential for human operators to monitor online coordination

and preemptively take actions that improve the overall performance. For a review of signif-

icant human factors, particularly human workload and situation awareness, see [22]. In the

field of human-robot collaboration, many current researchers, including [31], [28], [76], and

[70], are focused on implementing interactive control systems that are capable of increasing

situation awareness, decreasing human control skill, and balancing human mental workload

while yielding an improved performance. It would be helpful for interactive team control if

ongoing critical situations could be detected and referred to human operators so that overall

team performance could be improved, for an example see [103].

The team meta-model can be utilized as an Intelligent Team Assistance (ITA) system

that monitors online situations and gives suggestions or warning messages related to changing

configurations. During a mission, the system gathers all available information related to the

ongoing situation of the team in the field. When a critical situation occurs, the ITA system

uses the team model to provide useful suggestions or warning messages about how the team

can change to improve the situation. For example, network communication bandwidth may

be reduced, limiting the time-to-live for information tokens to two hops and requiring another

team reconfiguration to lessen the degradation in performance. The ITA system may suggest

that the user consider one of the following actions: lowering the role threshold, increasing

the instantiation rate, or changing the instantiation rule strategy to local. These suggestions

have a high probability of improving team performance.
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1.1.4 Modeling Very Complex Relationships Is Hard

Many interesting complex systems generally are stochastic and nonlinear. In order to un-

derstand such complex systems, much ongoing research is studying how to precisely model

uncertainties in such complex systems. To accurately characterize a complex system requires

a model of the system as well as a model of the uncertainty impacting the system[3]. That

inherent uncertainty leads to uncertainty in the performance of the system. The importance

of modeling uncertainty in system performance has been recognized in many fields, such as

complex biochemical systems especially in genetic regulatory systems [1, 108, 48], robotic

systems performing in real world environment [113], robust control systems [6], and data

mining [16]. Notice that for many of these systems, the uncertainty can not be captured

as a normal distribution and will often not have been characterized at all. While a range

of techniques exist to describe a system and its performance, techniques for capturing the

uncertainty in that performance are not as readily available. In order to provide human

users with tools for intelligible interactions with complex system, it is necessary to have a

novel approach to capturing both the performance of a system and the uncertainty related

to that performance in a concise, easy to use form.

1.2 RESEARCH OBJECTIVES

With these research challenges in mind, a new approach is intended to assist human users

interacting with a complex system. The goal in the field of multi-agent system is to design a

intelligible way for human users to effectively interact with a large-scale multi-agent system.

To accomplish this goal, the main objective is to model the relationship between the configu-

ration parameters of coordination algorithms and the performance measures for large teams.

To complete this main task, the new concept of stochastic neural networks is applied. The

next task is to exploit the learned model for assisting human users to successfully cooperate

with the actual system. To achieve this task, an interactive user interface that works with

the learned model is developed. Initial experiments [86] show that the proposed approach
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has promisingly helped human users to achieve the intended team performance in a smaller

version of a coordination teamwork algorithm.

1.3 RESEARCH STATEMENT

In this research, I have demonstrated that the new approach effectively provides human

users with tools for interacting with a large-scale multi-agent system. This means that, with

this approach, the human user will be more effective in cooperating with a very complex

system. To achieve that, the primary challenge is how to model the very complex, nonlinear

relationships. Another challenge is how to develop a tool that helps a user to quickly get

coordination configurations for best performance by specifying preferences on output pa-

rameters and environmental conditions. In this section, a proposed approach is described

through three key ideas.

1.3.1 Approach

Previous approaches to configuring coordination for a team in a particular domain typically

required hand-tuning [29] or learning [10] in the domain. Hand-tuning parameters is a time-

consuming process that typically requires extensive experience with the algorithms in order

to obtain good performance. Learning requires that the team performs many trials under

the specific circumstances in which it is used. If the environment can vary dramatically,

e.g., the specific characteristics of a disaster response scenario can vary greatly, but the same

team will respond to each environment, learning may be infeasible [93]. Thus, previous work

does not provide a good solution to the problem of rapid team configuration. This research

proposes an approach to configuring coordination algorithms that incorporates the following

three key concepts.

1.3.1.1 Creating a Team Performance Model The first concept is very important to

create a team performance model that captures the relationships between the environment,
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team configuration parameters, and performance measures in a way that allows rapid explo-

ration by users. Due to the non-determinism of environments and coordination algorithms,

these relationships are highly non-linear and stochastic. To create a team performance

model, an abstract simulation of the coordination algorithms with a highly configurable en-

vironment is developed first. Because the simulation can be run at high speeds, it can be

used to create large amounts of data on the relationships between parameters. These data

are treated as training data. Then, to create a precise model of the data, the new concept of

neural networks with stochastic features [84] is applied. Then, the team performance model

is generated from the method of genetic algorithms. At the end, a team performance model

is a result that represents complex relationships between the environment, configuration,

and team performance.

1.3.1.2 Searching For the Best Configuration The second concept in this research

is to make use of the team performance model to search for the best configuration of the

team that meets specific performance constraints, e.g., the tradeoff between enough commu-

nication bandwidth and better allocation of resources. Using the team performance model

in reverse allows users to specify performance tradeoffs and rapidly receive a configuration

that best meets those constraints. Since not all parameters are configurable, e.g., the ob-

servability of the domain cannot be changed during execution, an ordinary back propagation

method of the neural network cannot be used to find input parameters that meet our output

requirements. Instead, a search over the changeable configuration parameters is performed

to discover a configuration that best meets the required performance tradeoffs.

1.3.1.3 Allowing Online Reconfiguration The third concept is to allow the team

to be reconfigured online, using the team performance model to determine the appropriate

parameters for the prevailing conditions. When users have changing preferences or know

of changing constraints, they can simply specify these requirements and allow the team

performance model to find algorithm parameters that will best meet those requirements.

This approach provides a powerful and effective way to manipulate team performance during

execution time and provides an additional mechanism for the supervisory control of executing
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teams.

1.4 RESEARCH QUESTIONS

Designing the approach is intended to solve the following important research questions.

1. How to effectively model a complex, nonlinear system?

2. What is the proper way to collect training data so that they are sufficient to represent a

large configuration space and to use in the learning process?

3. How well does the concept of a stochastic neural network represent the complex relation-

ship between the configuration parameters of coordination algorithms and performance

measures for large teams?

4. What is an effective learning algorithm to train the stochastic neural networks so that

uncertainties in training data are captured?

5. Is this new tool useful for supporting human users for working with a large-scale multi-

agent system?

1.5 PROBLEM DESCRIPTION

In this section, the problem model is defined. The problem that we are considering is

determining the best coordination configuration according to user constraints. The team

performance model is used as a function to map a set of input parameters to a set of

output performances. Using the user preference function, the best configuration is identified.

However, the process of constructing the team performance model is much more difficult. To

model a relationship between the configuration parameters of coordination algorithms and

the team performance measures for large teams is not an easy task. The complexity of this

relationship is described.
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1.5.1 Team Coordination Problem

In this section, some details of the team coordination algorithms for cooperative multi-

agent teams used to develop our modeling approach are described. First, we consider the

team behavior at a high level. To achieve the high level goal of the team, team members

start plans upon detecting particular states/events in the environment. Then, sub-teams

are formed to execute those instantiated plans. Later, to maintain accurate mutual belief

models guaranteeing cohesive behavior, it is crucial for all sub-team members to update

state information relevant to the plans within the sub-teams. In addition, to detect and

resolve the possible conflicts between plans, members of sub-teams communicate information

about their goals across different sub-teams. Finally, allowing the entire team to leverage

the local sensing capabilities of each team member, agents share locally sensed information

through an acquaintance network, which connects all agents in the team independently from

sub-team relationships. The acquaintance network usually follows a small world network

architecture which means any two teammate agents are separated by a relatively small

number of neighboring agents.

The general details of team organization and coordination problem are: A team of a

large number of agents, A = {a1, a2, · · · , an}, work together to achieve a high level com-

mon goal, G. To achieve the ultimate goal G requires achieving a number of sub-goals,

{g1, g2, · · · , gi, · · · }. In addition, the entire team will receive a reward (rewardi), a construct

similar to utility used for team control and learning, when any sub-goal gi is satisfied. For

example, in a football team, sub-goals of a high level goal for winning the game might be to

score points and prevent another team from scoring. Because of this predefined relationship

the football team collects a reward whenever they manage to score points or prevent another

team from scoring. In the teamwork algorithms, to satisfy these sub-goals the team utilizes

plan templates, Plan = {plan1, plan2, · · · , plani, · · · }, stored in a team library. Each plan

template consists of four elements as plani =< gi, conditionsi, rolesi, rewardi >. The first

element in the template indicates the sub-goal gi. The second element specifies the condi-

tions under which the plan is to be executed, conditionsi = event1 ∩ event2 ∩ · · · ∩ eventl.

The third element lists the possible individual roles, rolesi = {r1, r2, · · · , rk}, required to
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achieve the sub-goal gi. Each role is specified by its task, ri =< taski, abilityi, resourcei >,

i.e., a explanation of the task, the required capabilities to complete the task and the needed

resources to execute the role. The last element indicates the values of rewardi the team will

receive on successful satisfaction of the sub-goal gi.

For example, a possible plan template for a sub-goal (scoring points) can be defined as:

<Plan-Score= (Throw a ball for a touchdown), (A free receiver is in the end zone∩Quarterback

can throw), {r1, r2, r3}, (120) >. This plan template can be instantiated if two conditions

are present: the quarterback can throw and a free receiver is in the end zone. When this

plan is instantiated, there are three roles to be assigned. If this plan succeeds, the team will

get a reward 120 reward units. The possible three roles in this template are: throwing a

ball, receiving a ball and protecting the one who throws the ball, i.e., r1 =< (Throwing a

ball), (Skillful in throwing a ball), (Gloves) >, r2 =< (Receiving a ball), (Skillful in receiving

a ball), (Gloves) > and r3 =< (Protecting the one who throws the ball), (Quick and strong

in tackling), (Protection gears) >. To perform r1, an agent is required to be able to throw a

football very well and perhaps wear gloves.

The coordination of the team can be configured in many possible way according to the

coordination parameters, as shown in Table 1.1. The details of these parameters are described

as follows. First, the Number of Team Members is a configuration parameter that specifies

how many agents are in the team. In this case, the minimum and maximum numbers of

agents in the team are 10 and 1000 agents respectively. The Number of Plan Templates is

used to specify a total number of plan templates that might be instantiated by the team,

e.g., if this parameter is set to be 20, the team will have totally of 20 plan templates in the

team library. The Roles Per Team Member indicates the number of roles a team member

can simultaneously perform, e.g., if this parameter is set to be 3, team members have the

ability to perform 3 roles at once. The Total Number of Preconditions specifies the number

of possible preconditions the system can test, e.g., if this parameter is set to be 50, there are

a total of 50 possible preconditions that can be used. The Preconditions Per Plan specifies

the average number of preconditions per plan, e.g., if this parameter is set to be 5, on the

average, each plan requires five preconditions for instantiation. The Roles Per Plan indicates

how many roles the plan requires, e.g., if this parameter is set to be 2, there are two required
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roles in the plan. The Plan Template Policy specifies who has the plan templates, e.g., this

parameter is usually set to be 1.0, it means that every team member knows every templates.

The Number of Capability Types indicates numbers of different capability types in the team,

e.g., if this parameter is set to be 5, there are five different capabilities. The Percent Capable

specifies the percentage of available capabilities that an agent has, e.g., if this parameter

is set to be 0.5, an agent will have the ability to fill roles for 50 percent of the capability

types. The New Precondition Rate indicates the rate at which preconditions are satisfied,

e.g., if this parameter is set to be 0.2, preconditions become true twice in 10 steps on the

average. The Precondition Detection Rate defines the probability that a particular team

member locally senses a particular new precondition, e.g., if this parameter is set to be

0.05, an agent might sense a new precondition approximately five times in 100 steps. The

Associate Network Density specifies an average number of links connecting a team member

with its neighbors, e.g., if this parameter is set to be 2, the average connected neighbors

of any agent will be 2 links. The Role Threshold specifies the minimum value of capability

required for performing a role, e.g., if this parameter is set to be 0.8, it requires an agent to

have at least 80 percent of all required capabilities to perform the role. The Instantiation

Rule indicates the policy governing how a team member instantiates a plan. Options are:

ALWAYS-whenever it can, LOCAL-instantiate if at least one condition is locally sensed, or

PROBABILISTIC-instantiate in a particular step at rate specified by Instantiate Rate. The

Instantiate Rate indicates the probability that a plan will be instantiated if conditions match

and Instantiation Rule is PROBABILISTIC. Finally, the Information Token Time To Live

indicates how many steps the information token can be passed among agents before it is

removed. Moreover, all measures of performance are listed with their descriptions in Table

1.2.

1.5.2 Problem Model

Table 1.1 and Table 1.2 list an example of system and configurable parameters and measures

of performance which are used in particular domain. Other domains may be different or

have a larger set. The system parameters are fixed by the environment, but may change
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Table 1.1: List of example configuration parameters with their possible ranges and types

(S=system, C=configurable).

Configuration Parameters Ranges Types

Number of Team Members (NTM) 10. . . 1000 S

Number of Plan Templates (NPT) 1. . . 20 S

Roles Per Team Member (RPT) 1. . . 5 S

Total Number of Preconditions (TNP) 20. . . 120 S

Preconditions Per Plan (PPP) 1. . . 10 S

Roles Per Plan (RPP) 1. . . 10 S

Plan Template Policy (PTP) 0.0. . . 1.0 S

Number of Capability Types (NCT) 1. . . 20 S

Percent Capable (PCP) 0.0. . . 1.0 S

New Precondition Rate (NPR) 0.0. . . 1.0 S

Precondition Detection Rate (PDR) 0.0. . . 1.0 S

Associate Network Density (AND) 1. . . 16 S

Role Threshold (RTH) 0.0. . . 1.0 C

Instantiation Rule (IRU) 0.0. . . 1.0 C

Instantiate Rate (ISR) 0.0. . . 1.0 C

Information Token Time To Live (ITL) 1. . . 10 C
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Table 1.2: List of example measures of performance.

Performance Parameters Description

Percentage Possible (PP) probability that a plan is instantiated by team

Reward (RE) the total reward received by the team

Messages Per Agent (MA) number of information token moves

Conflicts Detected (CD) number of conflicts detected

Plans Instantiated (PI) number of plans created

Conflict Resolution Messages (CR) number of conflict detection messages sent

Role Allocation Messages (RA) number of messages sent to perform role allocation

Figure 1.1: An example of relationship between 2 configuration parameters (NTM ,AND)

to 2 performance measures (RA,MA) in an environment setup.
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during the mission, e.g., communication networks might become congested. The configurable

parameters are allowed to change. From Table 1.1, we define S and C, which are a set of

all possible configurations of twelve system parameters, (NTM, NPT, RPT, TNP, PPP, RPP,

PTP, NCT, PCP, NPR, PDR, AND) and a set of all possible configurations of four configurable

parameters, (RTH, IRU, ISR, ITL) respectively. Possible ranges of these parameters are listed

in table 1.1. Next, let us define P , which is a set of seven system performance measures,

(PP, RE, MA, CD, PI, CR, RA). The sets S, C and P will depend on mission domain and

coordination algorithms. We define the target function M : M(s, c)→ P to indicate that this

function accepts as a vector of input parameters from the set of environmental parameters

(s ∈ S) and the set of configurable parameters (c ∈ C) and produces as a vector of output

parameters from the set of system performances P . In other words, M is the team perfor-

mance model we are trying to find. In addition, we define a user preference function as a

linear equation of 7 performance measures, f(P ) → w1∗PP + w2∗RE + w3∗MA + w4∗CD +

w5∗PI + w6∗CR + w7∗RA. Finally, with the user preference function, the aim of this work is

to find arg maxc∈C f(M(s, c)).

For an example, in a particular system configuration: sp=(200, 20, 1, 100, 5, 5, 1.0, 10, 0.1,

0.3, 0.11, 0.03), assume that we are interested in finding the best configuration from these

four configurations as follows: c1 = (50, 0, 0.3, 3), c2 = (10, 0, 0.3, 3), c3 = (50, 1, 0.3, 3), and

c4 = (10, 1, 0.3, 3). In case we have the team performance model, applying the model with

these configurations, we get: M(sp, c1) →(89, 76, 230, 116, 25, 365, 24), M(sp, c2) → (91, 85,

302, 145, 28, 49, 25), M(sp, c3)→(88, 75, 265, 117, 22, 370, 21), and M(sp, c4)→ (85, 81, 242, 79,

16, 240, 18). Assume that we are only considering the first measure of performance in set P ,

doing so by setting w1 = 1.0 and others are zero, then, the best configurations is c2=(10, 0,

0.3, 3).

1.5.3 System Complexity

The major challenge to the present research is the complexity of the relationship between the

configuration parameters of coordination algorithms and the performance measures for large

teams. For example, with a total of 16 input parameters and their possible ranges (as shown
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in Table 1.1), the combination of these parameters, which imply coordination configurations

for this problem, yield more than 1025 cases. In addition, not only does each configuration

have a high uncertainty in performance caused by non-determinism in algorithms, but also

different configurations have different levels of uncertainties in output performances caused

by interactions with the domain. Figure 1.1 gives an example of the complex non-linear

relationships that occur in coordination systems. On the x-axis the number of agents in the

team is varied and on the y-axis two performance variables are measured. The 6 lines, three

with solid lines, three with dashed lines, show how changes in two configuration parameters

effect average performance as the team size is changed. Clearly, the changes are non-linear

and even vary for different values of the same configuration parameter. For the current target

coordination algorithms, there are a minimum of 16 important environmental and algorithm

parameters implying 1025 possible configurations. Each configuration will lead to a distri-

bution of performance, with the nature of the distributions varying from configuration to

configuration. For example, some configurations will have normally distributed performance,

while others will have multi-modal performance.

To determine whether it was likely to be possible to find relatively simple reconfiguration

rules, decision tree induction (C4.5) [91] was used to try to capture the relationship M . With

a reduced problem using 14 input attributes, only four distinctive output classes (LOW,

MEDIUM, HIGH, VERY HIGH), and 30,000 cases, the result was 573 classification IF-

THEN rules. On test data, these rules performed with only 74.2% correct classification.

Classification into these coarse output classes is simpler than required here, yet the very

large number of rules was unable to even do this reasonably correctly. From this initial

experiment, it was concluded that a rich, expressive model was required to capture the

complex relationships.
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2.0 RELATED WORK

In this section, related research is discussed. This research is classified under different topics

related to the proposed research. Most of the topics relate to modeling complex systems, as

the proposed research does. First, previous research related to stochastic neural networks

is described because this is the main proposed approach. As genetic algorithms are used

in the model training process, some works connected with evolutionary neural networks are

reviewed. Next, aspects of meta-modeling are reviewed. Then, research related to parameter

tuning is surveyed. The relevant research on uncertainty in systems is presented. Finally,

some robotic researches that required coordinating as a team in order to achieve their tasks

are reviewed.

2.1 STOCHASTIC NEURAL NETWORKS

Stochastic neural networks are very powerful for approximating complex non-linear systems

[119]. Recently, this kind of neural network has been utilized as the model of many complex

systems. For example, Tian and Burrage [116] used stochastic models of neural networks in

representing complicated gene regulatory networks. Krynsky et al. [59] applied the idea of

stochastic models in electric distribution networks. Janer et al. [46] investigated stochastic

neural networks in logic implementation. Bryant and Miikkulainen [9] introduced stochastic

neural networks for multi-agent systems, especially in game control systems.

Supporting evidence for stochastic neural networks is found in the work of Arkin et al. [1].

They have demonstrated that stochastic properties play an important role in cell activities

at the molecular level. Although stochastic neural networks are commonly referred to as
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Figure 2.1: Two abstract examples of neural networks are shown. On the left, a traditional

network maps input-output pairs as shown in the table below. On the right, a dynamic

network maps all input patterns with all possible output patterns with different probabilities

to occur. By feeding random signals through additional input nodes, it allows internal active

nodes to change stochastically (depicted by dash lines). With the same input pattern, during

a period of time, the network internally changes and dynamically produces all possible output

patterns, which finally represents a non-deterministic model.
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Figure 2.2: Each BM consists of three main parts: input signal unit, output signal unit and

matching unit. There are two different input signals: external and internal. The external

input signals usually are the sensing and status signals, but the internal signals are binomial

random signals. The matching unit consists of an input mask and an output mask. An input

mask is used to filter a certain subset of the input signals for matching process. The output

mask is used to determine the output signals.
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Figure 2.3: There are four BIs. (Note: A and B are represented BMs.) (a) Combination

(+): output signals from two BMs are combined (XOR) bit by bit into the resultant signals:

(b) Sequence (∗): the output signals from behavior A or behavior B are passed through

the output lines in turn with respect to their active statuses; (c) Inhibition (−): the output

signals of behavior A inhibit output signals bit by bit from behavior B only when behavior

A is active; and (d) Suppression (/): the output signals from behavior A suppress all output

signals from behavior B only when behavior A is active. These BIs are expressed as (+AB),

(∗AB), (AB) and (/AB) respectively.
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networks with stochastic components, presenting stochastic elements within neural networks

has been implemented in many different ways. The most common approach is using neural

networks with stochastic weights. Zhao and Shawe-Taylor [133] [134] represent the weights

as a random binary sequence with the input signals. Simulated annealing is then used to

train the networks by gradually reducing randomness until the network reaches the optimal

state. Kim and Shanblatt [53] also applied this idea at the VLSI logic gate level by using

random noise signals that make the weights change stochastically. Turchetti et al. [119]

used the random coefficients in a specific kind of neural network, called the Approximate

Identity Neural Network. These random coefficients perform a function similar to that of

the stochastic weights. Kondo and Sawada [56] proposed the idea of stochastic logic in

which random signals are presented as reference thresholds with all weight data. These

random thresholds produce the signals of stochastic weights. By using a time periodic

signal as a stochastic element, Nobori and Matsui [75] introduced the neural networks with

stochastic resonance. In addition, these stochastic neural networks can be trained by the back

propagation method, which is extended to stochastic resonance features. Patan and Parisini

[80] proposed the idea of inserting a linear dynamic mechanism at the output part of the

network. The two stochastic learning methods, which are called Adaptive Random Search

(ARS) and Simultaneous Perturbation Stochastic Approximation (SPSA), are introduced

to overcome the local minima problem. Pavlovic et al. [81] [82] introduced the stochastic

Hopfield neural network by using the random threshold vectors. These random threshold

vectors are used as the bias parts in activation functions of the networks. Finally, a very

good review on the stochastic features of neural networks can be found in [7] and [8].

Stochastic neural networks can be implemented with any form of networks; for examples,

a neural network in Figure 3.5 or a network of Behavioral Modules (BMs)[84][85] in Figure

2.1. In this case, the network of BMs is the appropriate choice to represent the robot con-

troller. Assume that a complex behavior can be decomposed into several simpler behaviors.

Therefore the target behavior is first analyzed into a network of simpler behaviors. Then

the execution of these simpler behaviors and their systematic interactions will produce the

target behavior. Therefore, a complex behavior can be obtained from primitive behaviors by

means of composition mechanism. However, there is no general rule for composing complex
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behaviors from primitive behaviors and determining the needed interactions among behav-

iors. The concept of Behavior Programming (more details in [84][85]) basically consists of a

network of Behavioral Modules (BMs) and Behavioral Interactions (BIs), as shown in Figure

2.2 and Figure 2.3 respectively. BMs and BIs are used as terminals and functions in a LISP-

like programming language respectively. A program usually represents a structured control

system, as shown in Figure 2.1. BMs are designed to represent the simplest controller archi-

tectures as primitive behaviors. A BM contains simple structures and processes for linking

sensing with actions. Each BM senses the world from its particular point of view and ex-

tracts only the information from the sensors of its concern in order to issue actions. BIs are

designed to internally link all BMs together. Analogically, if we refer to BMs as variables,

the BIs are referred to as operations. As an automatic programming, Genetic Programming

methodology is introduced to manipulate these programming structures and carry out target

robot controllers in an adaptive way without explicitly programming it. Regarding to the

assigned task, complex behavior systems can be created automatically from combinations of

a number of simple or primitive behaviors. The terminal set consists of all possible combi-

nations of BMs. All BIs are the members of the function set. With availability of simulation

of robotic platform and data recorded from the physical robot, candidate robot controllers

are generated. Then, the candidates are tested with the real robot for physical evaluation.

Improving the performance of the candidate controllers can be done by updating simulation

information and physical data. In addition, to learn complex behaviors, learning process

may be built up from simple behaviors to final behaviors hierarchically.

2.2 EVOLUTIONARY NEURAL NETWORKS

To solve non-deterministic problems, using artificial neural network with standard back-

propagation technique [71][97] is considered not possible[111]. Stochastic approximation

techniques are typically accepted to be more effective to cope with the problems. Especially,

evolutionary computation approaches are the most prominent one. Many researchers have

shown that using evolutionary algorithms for training or designing neural networks is an
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effective combination. Gonzalez-Seco [38] and Sun et al. [114] have implemented neural

network controllers in which the architectures of the controllers are fixed and the network

weights are evolved by genetic algorithms. Sato and Nagaya [100] demonstrated that re-

current neural networks generated by an evolutionary algorithm can be trained to represent

behaviors of chaos dynamics.

Many efforts have been applied evolutionary neural networks as tools for decision support

system and data mining. A decision support system was developed with the combination of

neural networks and genetic algorithms for prediction the future highest and lowest values

of Japan’s stock exchanges[4]. The system made effective predictions with the simulation

experiments. Moreover, in order to extract rules from a neural network, genetic algorithms

were used to prune the connections between inside nodes that are not significant toward the

outputs of the model[132]. Then, the extracted rules were converted from the pruned neural

model. This approach made possible to understand the activities of the networks toward

solving the designed problem. As a data mining process to extract rules from databases[130],

neural networks were used with genetic algorithms for constructing a feature extraction

network. Genetic algorithm was applied for selecting the best sets of features for training

a neural network with backpropagation. Then, classification rules were extracted from the

trained neural network.

Various works have tried to enhance the effectiveness of evolutionary neural networks

by proposing new approaches for very complex problems. A modified three layer neural

network[61], in which all hidden nodes are interconnected, was used to learn hand writing

patterns for electronic books. This new architecture of neural networks enhances the network

abilities for handling various numbers of input data with different hidden neural parts in a

network. Because of the complexity this neural network, genetic algorithms were utilized

for searching over all possible network parameters for an appropriate network. To predict

behaviors of a time series system[74], neural networks were trained with various periodic

time series data. The width of repeated time priors was used to determine the input layer

of the network. The best neural network was generated by the genetic algorithm process.

The final model was used for forecasting the learned data series. An new approach called

Hybrid Taguchi Genetic Algorithms[118]was adapted the signal to noise ratio technique for
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selecting optimum offspring. Results showed that this approach offers more robust and fast

converse in tuning the structure and parameters of artificial neural networks.

Several works have tried to improve the efficiency of evolutionary neural networks by

altering the standard procedure of genetic algorithms. Srivastava et al. [112] proposed a

new genetic operator in which three individuals are selected to perform multi-point crossovers

[112]. By increasing the search performance of the evolutionary process, experimental results

show that this new operator outperforms traditional operators. To improve the local search

capability of genetic algorithms in training neural networks, a Guassian mutation[34]was

proposed. This genetic operator diffuses the current values with normal distribution with

zero mean. In addition, for effectively coding any artificial neural networks into the form

that can be used by genetic algorithms, an optimum binary coding [5] for artificial neural

networks was designed allowing various binary operations for generating valid networks.

Evolving neural network topology and parameters with hierarchical genetic algorithm was

proposed and tested successfully in solving complex problems[128]. This approach encodes a

neural network into a chromosome of three-level genes: layer, neural, and parameter genes.

These three levels represent the topology of network. The weights in parameter genes are

also evolved at the same time. Pujol and Poli[89] used a graph representation for network

structure. A chromosome consists of two types of genes: function gene (neural) or terminal

gene (variable). However, a work of Siddiqi and Lucas[109] has demonstrated that using

directly encoding of neural networks can produce the same effective results.

A lot of works were utilized an evolutionary process only to supplement the implemen-

tation of neural network applications. An combination of neural networks and genetic algo-

rithms was implemented to improve a transformer production[26]. First, the neural network

was trained for predicting iron loss of transformers. Then, genetic algorithms searched for

reducing iron loss and generating an optimization group of transformer cores. The process of

genetic algorithm was adapted to help back propagation neural network improving learning

performance for recognition of Chinese speeches[62]. Pratap et al. [88] integrated genetic

algorithms and neural networks in designing and modeling multi-layer RF passives in two

stages. First, the neural networks were utilized in the modeling process. Then, the ge-

netic algorithms were used in the optimization process to determine the preferred electrical
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characteristics of the circuit boards.

Genetic algorithms were used in many applications for searching over all possible neural

network topology and parameters that accurately create an optimal neural network model,

e.g. for solving a nonlinear digital driver circuit. [96], for determining an error compensation

in welding robot[122] and for estimating of the condition of power transformers[44]. Following

are various applications that were applied with evolutionary neural networks. To design

a neural network controller for control of flexible-link manipulators [98], modified genetic

algorithm processes were validated successfully in simulation studies. To solve the analysis

of electronic circuits[125], neural networks were used with genetic algorithms for modeling the

PN junction diodes, in which they possess nonlinear and linear characteristics. To create an

accurate nonlinear mathematical model of switched reluctance motor[123], evolution neural

networks showed quicker convergence than backpropagation neural networks. In a digital

image processing task[99], evolutionary process was used to train neural networks to classify

objects in images. To predict traffic flow[115], a genetic neural network was applied for

generating a simple and accurate forecasting model for short-term traffic flow simulations.

To model microwave systems with neural networks[120], genetic algorithms were utilized for

determining interconnection models, weights, and transfer functions for helping the design

of the final neural networks. For helping doctors in prediction of peritoneal dialysis, a

genetic algorithm embedded in neural network (GAENN) trained with experimental data

has shown better performance than standard neural networks[131]. In robotic control system,

a hybrid process of neural network and genetic algorithms with multi objective optimization

techniques were applied effectively in simulations for time-optimal control [13] and friction

compensation [14]. To solve the English character identification problem, Hintz and Spofford

[42] made use of genetic algorithms in creating neural networks almost from the outset. In

their work, nearly every neural network’s elements including number of nodes, structures of

interconnection, weights, and biases are evolved by a genetic algorithms process. Finally,

an approach called Neurogenetic model [50] was effectively applied to model the muscle

EMG-torque relation in a human motor control task.

An interesting approach toward challenging complicated tasks, co-evolutionary genetic

algorithms [41, 107] have been demonstrated promising results to solve complex problems,
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see [11]. Co-evolutionary genetic algorithms use either competitive [95, 49, 66] or cooperate

[87, 17] interactions of two or more populations to maintain diversity in the populations.

These populations usually are different degrees of difficulties. However, resource sharing

mechanism between populations is verified to be the main reason for encouraging variety in

populations [124].

2.3 META MODELS

To model a complex system is a very difficult task, especially when the system has compo-

nents and characteristics of which the structure and behavior cannot be described in a single

comprehensive format. Meta-models are models that represent classes of models [101]. Al-

though most of meta-models are in formats or structures different from the original models,

the meta-model is also considered to be a model [121]. The concept of a meta-model is used in

many different fields. Scalzo and Roth [101] used a meta-modeling technique as a framework

to improve a process of IEEE standard development. Another framework of meta-modeling

is utilized in designing business processes, especially in cooperative decision-making [94].

Caeiro-Rodriguez et al. [12] developed a meta-modeling system as a coordination model

in educational learning systems. Finally, as commonly known, XML is a meta-modeling

framework in web technology that exists as a neutral model exchange format [121].

A few efforts have been made to utilize neural networks as the meta-modeling method.

Meghabghab and Nasr [69] utilized the RBF neural networks as meta-models for computer

simulations. These simulation models, designed in industrialized domains, are complex and

stochastic. An iterative approach is used as the learning method during training to adjust

the RBF networks’ weights, centers, and spreads. In addition, two test sets are used for

termination and evaluation processes. Cohen and Hudson [21] developed a meta-model

of neural networks in a form of meta-knowledge targeting for medical decision systems.

However, this system requires that domain experts design the hierarchical structure of the

model.

Much research has been done to develop standards and frameworks for facilitating the
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meta-modeling approach. A selection of these follows. UML and OML (see [2]) are standards

of modeling languages, which other work has been based on. AALAADIN [30] is designed

to describe task organizations in multi-agent systems. EKD [94] is designed to describe

decision-making systems. ATOM3 [121] is designed to describe complex system simulations.

2.4 PARAMETER TUNING

Selecting values for all necessary parameters has been essential in controlling complex sys-

tems, especially when the relationship between a parameter change and the corresponding

change in performance is non-linear, time-varied, and uncertain. For this reason, manually

selecting parameters such that a desired output pattern emerges is quite impractical. Many

studies have focused on parameter optimization. Kwong and Jacob [60] used an evolution-

ary approach to discover the desired swarm formations from a list of a swarm simulation’s

parameters. Users are allowed to explore a small population of swarm behaviors, each of

which represents a particular set of system parameters created by the evolutionary process.

By assigning score points to those swarm behaviors, designed swarm behaviors emerge at

the end. Santos Coelho et al. [20] used a hybrid learning algorithm for parameter tuning

in controlling a robot manipulator. The hybrid approach consists of using an evolutionary

algorithm for global optimization and using a simulated annealing algorithm for local op-

timization. Kim et al. [52] applied an optimization method, called Sequential Quadratic

Programming (SQP), for AVR (Automatic Voltage Regulators) parameter tuning.

Several researchers have studied parameter tuning for improving the performance of

machine learning algorithms. To solve the traveling salesman problem, Ramos et al. [92]

utilized a statistical approach to tuning an evolutionary algorithm’s parameters. Yuan and

Gallagher [129] applied a meta-learning approach to parameter tuning in evolutionary al-

gorithms. Krink and Ursem [58] proposed a hybrid concept of a multi-agent system and

a special kind of evolutionary algorithm. In this learning model, an agent, representing a

possible solution, can move along the space of an evolutionary algorithm’s parameters such

that the parameters are converted into part of the learning process. For improving the
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learning performance of any induction algorithms, Yang and Wu [126] proposed a way to

effectively tune parameters by using the feature elimination approach. Guo and Uhrig [40]

used genetic algorithms to select a proper set of input variables that yield good results when

these parameters are used with neural networks in monitoring a nuclear power plant.

For determining the optimal initial process parameter settings for plastic injection mold-

ing production, an optimization process involved with neural networks and genetic algorithms

was used/citeChen2007. First, the neural network was trained and tested by backpropaga-

tion method. Then, genetic algorithm process was utilized for searching the best parameter

settings. The approach produced successful results for optimizing process parameters.

2.5 UNCERTAINTY MODELING

A complex system generally consists of two types of information: required information for

describing the system and needed information for resolving any uncertainty in the system

[3]. Belcastro [6] used this general distinction to separate his multi-variable control systems

into two models such that an uncertainty model and a nominal model are utilized together

for representing nonlinear systems. In the genetic regulatory field, Arkin et al. [1] have

demonstrated that the uncertainty of gene expression reactions play an important role in

cell activities at the molecular level. In order to understand these complex biochemical

systems, many researchers are investigating how to precisely model the systems. Shmulevich

et al. [108] used probabilistic Boolean networks to model uncertainty for gene regulatory

networks. Smolen et al. [110] and De Jong [48] reviewed many modeling approaches and

simulations in gene network modeling. In the problem of autonomous mobile robots, Stone

et al. [113] used a robotic system that took uncertainty into account for all components. As

a result, running with real robots in dynamic environments yielded effective performances.

To model uncertainty in general, but especially in both data mining and statistical aspects,

a good fundamental review can be found in Chatfield [16].
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2.6 COORDINATION ROBOTIC TEAM

Based on observing police SWAT teams in four training exercises, Jones and Hinds[47] pre-

sented a new design of coordinating system for team of robots. They found that the critical

basis for coordinating system was establishing common ground among team members. Team

leaders have to form overall models of team status and build shared situation understand-

ing among distributed team members. Moreover, using dialogue interaction between team

members was also importance. Grabowski et al.[39] presented the design of a team of small,

heterogeneous, resource-limited robots that work collaboratively to explore and map un-

known areas. Since the knowledge of the position and orientation of each robot is important

to achieve accurate mapping and exploration of the environment, a new localization has

developed by utilizing dead reckoning and sonar data from multiple robots to compute the

position and orientation of each robot. A series of experiments have been conducted to

test the effectiveness of a team of Millibots to explore and map a given area. Parasuraman

et al.[76] presented empirical evidence for the efficiency of delegation type interfaces to in-

crease the human-robot team performance for controlling multiple robots in the RoboFlag

capture-the-flag simulation. This delegation type interfaces allow flexible control for mul-

tilevel interface with only small increase in human mental workload. The results showed

that the multilevel interaction provided by this flexible control system allowed for effective

coordination between human supervisor and robots, as confirmed by numerous successful

executions in the experiments. Miller and Parasuraman[70] developed a flexible interaction

interface called Playbook, designed to provide the flexibility by providing a supervisor and

subordinates the ability to collaborate flexibly about delegating tasks at different levels and

instructions to perform those tasks. This interaction presents several advantages for human-

robot collaboration such as increased situation awareness, decreased human skill condition,

balanced mental workload etc.

Madhavan et al.[32, 68] proposed an approach for cooperative localization and terrain

mapping for a team of robots operating in rough outdoor environments. First, depth ranges

to a number of objects in the area are calculated from vision depth information. Then,

the robots’ relative positions are connected with vision depth information. Finally, the
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terrain map is updated by combination of vision-based depth information and fusing elevation

gradient data. Parker et al.[79] proposed a behavior-based control approach for multi-robot

systems to solve the site preparation task on Mars. Cooperative control framework called

ALLIANCE was used to enable team of robots to automatically perform appropriate actions

effectively even in uncertain conditions. The efficiency of this cooperative control approach is

established on the concept of motivational behaviors, based from two internal measurements

of evaluation its own current task performance and evaluation other robots performance

associated with their tasks. Parker[77] demonstrated an approach to allow a heterogeneous

group of robots to adapt their actions while environmental conditions are changing over time.

L-ALLIANCE architecture was proposed with learning capability for parameter adjustment

that makes possible for the robots to adapt their behaviors over time in response to dynamic

changing of team capabilities and environment. In this work, this approach of dynamic task

allocation was demonstrated with real heterogeneous robots on cooperative box pushing

experiments. However, the success of this architecture relied on the presence of global

communication between robots, so that the system can precisely exchange knowledge among

team members. Parker[78] demonstrated a distributed approach using the potential field

technique for cooperative team of robots to track multiple moving targets by considering

actions to keep moving objects under surveillance. The ALLIANCE architecture is used to

provide mechanisms for fault tolerant cooperative control, and allows robot team members to

adjust their actions based upon the actions of their teammates. The results show successful

in achieving the target task. However, in order to get a good solution, the system required

considerable tweaking of parameters.

Many researches have been focused on developing system architectures and frameworks.

Chamberlain et al.[15] presented an initial idea of a control architecture that allows the

humans to conduct strategy descriptions based on lower-level strategies. Dixon et al.[24]

developed a software framework with graphical user interface that allows the abilities to ex-

plore rapid configuration and designing of cooperating teams of heterogeneous robots (real

or simulated). This software framework also provides dynamic linking of libraries that allow

the same robot code to execute on a simulated or real-world robot. The virtual simulation

environments provide realistic mobility characteristics, sensory data, and tactical behav-
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iors for each vehicle. They points out that a significant amount of low-level infrastructure

is required to support the communication, control, and simulation of multiple agents in

high-fidelity virtual environments. Gerkey and Mataric[35] have proposed a fundamental

framework for analyzing any task allocation approaches in multi-robot systems. Taxonomy

of multi-robot task allocation problems has been proposed as well, based on three aspects of

robot capabilities, task requirements and nature of available information. This taxonomy is

quite useful in the way to classify types of task allocation problem. In addition, in order to

be able to analyze the task allocation problem, the utility function is introduced by projected

from the difference of anticipated quality of task and anticipated resource cost. Fu et al.[33]

developed an authoring tool for modeling intelligent agent-based behaviors. Familiar visual

representations, which are easy to understand, are used to describe complex behaviors and

also allow novices to be part of the process of behavior authoring.

Many researches in human-computer interaction have been studied how effective to in-

clude human into the system. A mediation hierarchy of human supervisory in robotic control

system has been defined by Adams and Paul[45]. The intention of this hierarchy is to allow

the human supervisor to interact with all levels of system, when necessary, in order to main-

tain the system in a stable state. Four hierarchical levels of supervisory interaction between

human and robots have been proposed. The highest level of interaction allows the supervi-

sor to specify the proper set of actions to complete the task. The next level, the supervisor

has different ways to interact with robotic agents for controlling, monitoring, or providing

information. Next, the process level permits the supervisor to provide assistances when the

agent is unable to make a proper action or a decision. The lowest level is the data level,

which permits the supervisor to reconfigure the system, when need, and also make sure that

the system uses the correct data for the processing. Basically, this hierarchy was designed

to provide human with the ways to interact with all levels of a multiagent system while

permitting the agents to work autonomously until supervisory interaction is need. Endo et

al.[28] conducted a research in a usability evaluation of a robot mission-planning wizard for

a hybrid deliberative and reactive control system. By simplifying the user planning process,

the results reported that the wizard helped reducing planning time and increasing accuracy

of the plan. The guidelines for how to make usability experiments in robot mission planning
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system also introduced. Crandall et al.[22] demonstrated how estimates of neglect tolerance

can be used to help a designer to create a system with multiple robots/tasks that a single

human can manage. Basically, neglect tolerance refers to neglect time, time that a robot can

be ignored before reaching an unacceptable performance, and interaction time, time that a

human must interact with a robot to get maximum performance. This estimate method-

ology can be used to identify if a particular team configuration is sufficient to maximize

performance or predict the performance of a robotic team controlled by a human operator.

Fong et al.[31] presented a significant research on human interactions with a team of two

autonomous robots by allowing human and robots work together as a collaborative control.

Dialogue interactions between human and robots are introduced as a way to naturally get

human’s attention. In addition, waypoint-based interface has been adapted for controlling

robots. This kind of control interface comes with some advantages of an easy to use, small

bandwidth, and suitable for time delay. This work was also designed for reducing the burden

of task monitoring from human resulted in better performance.
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3.0 ALGORITHMS AND APPROACHES

An approach has been developed to facilitate users’ understanding and manipulation of

the relationship between configurations of coordination algorithms and team performance.

This approach has several steps. Figure 3.1 shows the outline of the approach. It begins

with the process of collecting large data sets generated by our abstract teamwork simulation.

Simulation clients are executed generating training data, in which they are collected centrally

at a database server. Then, at the server, collected data is preprocessed so that it is in the

right form for use in the learning process. To model the team performance model, a novel

type of stochastic neural network is utilized, in which dynamic features are added to the

input layer allowing any non-deterministic system to be modeled. The stochastic neural

networks capture randomness from the additional input nodes fed with internal random

signals. These random signals, combined with weights between the additional nodes and

the hidden nodes, allow stochastic output even though the network is deterministic. To

train stochastic neural networks for representing uncertainty of a very complex system, an

adapted approach of genetic algorithms is used with a new technique of fitness function

called distribution comparison. Next, by means of an evolutionary computation approach,

the learning process utilizes the collected data sets to generate team performance models.

In addition, team control interface is designed as an intelligible tool allowing users to use

team performance models for rapid configuration exploration. The interface is also utilized

to connect with the target system for actual interactions. Finally, experiments are performed

using the team control interface with the simulation to investigate the performance of the

team performance model. In the following sections, each of these steps is described in

additional detail.
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Figure 3.1: High level view of overall process.

Figure 3.2: Interface of TokenSim.
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3.1 ABSTRACT SIMULATION

TokenSim is an abstract teamwork simulation developed by the Intelligent Software Agents

Lab at Carnegie Mellon University to investigate coordination algorithms in cooperative

multi-agent teams within simulated environments. The capabilities of this simulation con-

sist of the most fundamental features of coordination algorithms including, role allocation,

resource allocation, task planning, sensor fusion, and information sharing. TokenSim ab-

stractly omits the effects on environment from consideration; however, it simulates the ef-

fects on the team’s coordination intervention directly. In brief, an agent acquires knowledge

by perceiving through its sensors or communicating with its teammates. In the team, an

agent or some agents receive uncertain sensor readings randomly at a configurable rate. At

any time step, an agent is only allowed to access a particular simulated resource created

specifically for the assigned tasks. Resources can be transferred with no cost and cannot be

destroyed or lost. The layout of tasks are generated and distributed randomly in an open

environment. In the simulation, all agents move at the same speed so that they are allowed

to think and act at each time step and so the effects of their actions are abstractly simulated

accordingly. Communication is provided for passing objects between agents. When a task is

allocated to an agent, the agent has exclusive access to all required resources and has no cost

in moving to the task location. The team receives a reward every time an agent is allocated

a task. The reward is given while the agent is executing the allocated task, which takes only

one time step. Figure 3.2 shows an interface of this simulation. TokenSim allows a number

of parameters to be varied and team performance statistics to be recorded. This feature is

mainly used in the data collection process. TokenSim has 49 input parameters that can be

varied and 10 team performance measures.

TokenSim is the simulation that is used in creating the team performance model. The

team performance model is used with the team control interface in order to help users in-

teract with the testing scenario. Before that, a verification test is conducted to confirm

how effectively the team performance model predicts team performances using the abstract

simulation from which the model was created. TokenSim is used as the target system. A

number of scenarios will be set to provide situations that would require automatic recon-
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figuration assistance in order to reconfigure the team and meet performance targets. Each

scenario is executed in various environment settings so that the initial configurations differ.

Team performance measures are recorded throughout the execution, providing data for result

analysis.

3.1.1 Parameters and Performance Measures

In TokenSim, there are totally 49 input coordination parameters and 10 output performance

measures. However, 17 input parameters related with simulation environment setting, un-

limited resources, constant time step, and unlimited network bandwidth, are fixed as shown

in Table 3.1 along with their preset values. The main reason for allowing every agent in

the team to have all needed resources and unlimited network bandwidth is the abstract

simulation, TokenSim, was primarily built to investigate how the coordination algorithms

work together. Therefore, these environment parameters are abstracted out. As a result,

for using in the process of modeling coordination configurations, 32 varied input parame-

ters are available as shown in Table 3.2 along with their possible ranges. However, only 31

input parameters (excluding SIMULATION LENGTH) are used in the team performance

model. Because there is a constraint that each configuration should have enough time steps

to start its first plan, a flexible simulation length scheme is utilized. This scheme starts

SIMULATION LENGTH with 500, and allows increasing the length every 500 steps if the

first plan does not start yet until it reaches 5000 steps. As a result, the possible values of

SIMULATION LENGTH are 500, 1000, 1500, 2000, 2500, 3000, 3500, 4000, 4500, and 5000.

After 5000 steps, if the first plan does not start yet, no more increasing. To solve a problem

that different simulation lengths produce unequal outcomes of the output performance mea-

sures, the actual SIMULATION LENGTH is used to normalize the output parameters to

be in a form of per-simulation-step parameters (e.g., TOKEN MOVES per-simulation-step).

Thus, all output performance measures are recorded in the form of per-simulation-step pa-

rameters. In this work, although there are 10 output performance measures as shown in

Table 3.3, only 4 output performance measures: TOKEN MOVES, PLANS STARTED,

REWARD, and UNIQUE SENSOR FUSION, are exploited. One reason is that measur-
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Table 3.1: List of fixed parameters

# Varied Parameters Value

1 MIN TASK DURATION 0

2 MAX TASK DURATION 1

3 NO RESOURCES 0

4 MIN REQD RESOURCES 0

5 MAX REQD RESOURCES 0

6 MIN USEFUL RESOURCES 0

7 MAX USEFUL RESOURCES 0

8 RESOURCE TOKEN TYPE STATIC

9 AVG INTERCHANGEABLE RESOURCES 5

10 GEOGRAPHY TYPE NONE

11 ENV X DIMENSION 500

12 ENV Y DIMENSION 500

13 AGENT BASE SPEED 1

14 QUIET TRUE

15 NETWORK BANDWIDTH -1

16 ROLE TOKEN TYPE LADCOP

17 TIMESTEP SIZE 1
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Table 3.2: List of varied parameters

# Varied Parameters Min Max

1 NO PLAN TEMPLATES 1 50

2 NO PRECONDITIONS PER PLAN 1 5

3 MIN ROLES PER PLAN 1 5

4 MAX ROLES PER PLAN 1 15

5 MIN RELATED INFO PER ROLE 0 10

6 MAX RELATED INFO PER ROLE 1 25

7 NO CAPABILITY TYPES 1 100

8 MIN CAPABILITIES PER AGENT 1 5

9 MAX CAPABILITIES PER AGENT 1 50

10 NO BELIEF TYPES 1 1000

11 USE UNCERTAIN SENSING FALSE TRUE

12 BELIEF OCCUR RATE 0.0001 0.01

13 BELIEF SENSE RATE 0.0001 0.5

14 READINGS FOR HIGH CONFIDENCE 1 20

15 READINGS PRODUCED 1 100

16 NO AGENTS 8 500

17 BELIEF TOKEN TTL 1 800

18 SENSOR TOKEN TTL 1 800

19 MESSAGE LOSS RATE 0 0.1

20 LADCOP INITIAL THRESHOLD 0 0.99

21 SIMPLE ROLE TOKEN MOVE LENGTH 1 500

22 ROLE TOKEN SLEEP RULE NEVER FIXED

23 ROLE SLEEPS AFTER HOPS 20 1000

24 UNFILLED ROLE SLEEP TIME 20 1000

25 NETWORK TYPE ”0” ”5”

26 NETWORK DENSITY 2 8

27 ROUTING MODEL TYPE P RANDOM

28 PROBABILISTIC P CHOICE FALSE TRUE

29 REL FOR PRECOND SAME PLAN 0 1

30 REL FOR INFO FOR PRECOND FACTOR 0 1

31 REL FOR ROLES SAME CAPABILITY 0 1

32 SIMULATION LENGTH 500 5000
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Table 3.3: List of output parameters

# Output Parameters

1 TOKEN MOVES

2 BELIEF TOKEN MOVES

3 ROLE TOKEN MOVES

4 JI TOKEN MOVES

5 RESOURCE TOKEN MOVES

6 PLANS STARTED

7 REWARD

8 SENSOR TOKEN MOVES

9 SENSOR FUSION

10 UNIQUE SENSOR FUSION

ing TOKEN MOVES is enough, since TOKEN MOVES represents total sum of BELIEF

TOKEN MOVES, ROLE TOKEN MOVES, JI TOKEN MOVES, RESOURCE TOKEN

MOVES, and SENSOR TOKEN MOVES.

3.2 DATA COLLECTION

The initial step in modeling a very complex system is the collection of a large volume of data.

This data either already exists or needs to be gathered and is stored in various forms. Data

preprocessing techniques are then utilized to convert the data into a format which stochastic

neural network can accept.

The process of creating and preprocessing training sets for stochastic neural networks is

atypical. Because, in the learning process part, distributions of target outputs and actual

outputs are required in fitness function, as is described in section 3.4. A set of distributions

of target outputs is needed for using in the evaluation process. Subsequently, each set
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training data is made up of two subsets: a set of every input value and a set of every output

distribution. A simple way for creating output distributions may be executed as follow.

First, each output is partitioned its all possible range into a number of disjoint subset or

slots. However, the partitioning process can be done by any means; however it has to be

the same process when partitioning the output of stochastic neural networks. Then, by

collecting output data with the same input values for a number of times, the distribution of

the outputs is computed by counting how many times the output values fall into each slot.

The same procedure is applied when obtaining the distributions of outputs for the stochastic

neural networks during learning process.

3.2.1 How Much Data Is Enough?

In this work, we are trying to model team performance for coordination algorithm config-

uration of large multi-agent teams. The major difficulty is the complexity of interactions

between parameter setting in the system. With more than 32 input parameters and their pos-

sible ranges, the combination of these parameters, which imply coordination configurations

for this problem, are very huge: more than 1032 cases. In addition, not only does each con-

figuration have high uncertainty in performance caused by non-determinism in algorithms,

but different configurations also have different levels of uncertainties in output performances

caused by interactions with the domain. Changing in one parameter may affect in changing

in performances non-linearly in various ways.

Because the space of all eligible configurations is very huge and we can only work with

relatively small portion of it, it would be nice if we know how many samples are reasonable

to statistically represent the system properties. The possible approach is reducing the size of

the data in such a way that the reduction does not change the result drastically. Fortunately,

working with a smaller set of sample data is applicable, for the reason that roughly optimal

solutions are acceptable in many machine learning applications.

The most widely used methods to determine appropriate sample size for given accuracy

and confidence parameters use Hoeffding bounds (or the additive Chernoff bounds). The

good examples can be found in [55], [117], [19] and [25]. The Hoeffding bounds characterize

40



the deviation between the true errors and observed errors over m independent trials, as

P
{
Errortrue > Errorm−trials + ε

}
≤ e−2mε2 (3.1)

This characteristic gives us a way to assure that any consistent learner using a finite

hypothesis space H, with probability 1− δ, output a hypothesis within error ε of the target

concept, we have

m ≥ 1

2ε2

(
ln|H|+ ln(

1

δ
)

)
(3.2)

However, this equation can not be applied to infinite hypothesis spaces. [72]

For neural networks, [72], especially Perceptron networks containing s Perceptions, each

with r inputs, we can bound the number of training examples sufficient to learn (with

probability at least 1− δ) any target concept within error ε. We have

m ≥ 1

ε

(
4log2(

2

ε
+ 16(r + 1)slog2(es)log2(

13

ε
)

)
(3.3)

However, this approach fails to apply for Backpropagation networks. [72]

The method that is employed calculating the number of samples that will guarantee a

desired accuracy in an estimate σ̂x (calculated based on the samples) of a parameter σx

called the support threshold. The parameter σx is a measure of the prevalance of a pattern

given by x in the space of configurations T , in which T = S × C (S and C are the sets

of all possible configurations of the environment, and a set of all possible configurations of

the coordination algorithms, respectively.) Where x ⊂ t for t ∈ T . This is a useful way to

measure the accuracy with which a set of samples L represents the configuration space T

because we want important patterns to occur in L with the same frequency that they occur

in T and hence we want low error in the estimate σ̂x.

Formally, Let t = {t1, t2, t3, · · · , tm} be a set of configuration parameters and T be the

set of all possible configurations. Each configuration t ∈ T is a set of values of all parameters.

Given a sub-configuration x and a configuration t, we say that t contains x if and only if

x ⊆ t. We define σx as the number of configurations in T that contain sub-configuration x.

The probability that a configuration t randomly selected from T contains x is px = σx/|T |.
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Lee et al use this to determine a sample size[63] m = |L| that will guarantee a desired

accuracy in the estimate σ̂x obtained from samples. The analysis of Lee et al. is valid for

σx < |T | × sp%, where sp is a parameter which gives an upper bound on the prevalence of

a pattern x in the space of configurations T .

Let α be a variable used to control the desired accuracy in the estimate of σx such that

there is a 100(1 − α)% chance that the estimate is correct (lay in a confidence interval).

Furthermore, if we assume that the error in σ̂d is normally distributed, let zσ/2 be a critical

value of σ̂x such that the area under the error curve beyond zσ/2 is exactly α/2. With the

parameters of importance thus described Lee et al. showed that the number of samples to

obtain the desired accuracy in σ̂x, is given by:

2|T |zα/2

√
sp%(1− sp%)

m
≤ |T | × sp%

5
(3.4)

or

m ≥
(10zα/2)

2(1− sp%)

sp%
(3.5)

With independent of |T |, the sample size can be estimated from a user-specified upper bound

support threshold of sp% and the value of α.

For example, with sp = 2% and α = 0.05, if we randomly select 19, 000 configurations

from all possible eligible configurations, so that there is 95% chance that estimation of

proportions of any sub-configuration x ⊆ t would lay within the confidence interval (which

has the width of upper bound support threshold less than 2% the total possible space).

Likewise, with sp = 5% and α = 0.05, if we randomly select 8, 000 configurations from all

possible eligible configurations, so that there is 95% chance that estimation of proportions

of any sub-configuration x ⊆ t would lay within the confidence interval (which has the

width of upper bound support threshold less than 5% the total possible space). Since this

number is independent of the size of all possible configurations, a sample set around 19, 000

configurations are big enough to represent the entire system with the preferred accuracy.

Above methods are so called the batch sampling methods, in which the sample size is

calculated before execution. Usually, the sample size is overestimated to ensure against the

worst case situations. To get a tight sample size, an on-line sampling is proposed by [25].

The samples are obtained adaptively depending on its current situation.
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Figure 3.3: A TokenSim database server provides a centralized data storage for data collec-

tion and learning process.

3.2.2 Online Database

A database server1 of TokenSim is designed to facilitate data collecting process. Allowing

for running TokenSim clients on remote machines, as shown in Figure 3.3, all results are

stored at a central database for further data preprocessing. Statistical analysis and data

distributions of output performance are computed at the server before utilizing by learning

process machines.

3.2.3 Collecting Procedure

To create a training data set, data are collected by running TokenSim clients on many

computers. All results are stored in the central database server. Then, data preprocessing

is performed on the server transferring collected data into a right form for the next process

1The database server was originally implemented by Gregor Kronenberger. For more details, please visit
https://athiri.cimds.ri.cmu.edu/twiki/bin/view/Machinetta/TokenSimDatabase
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of model learning. The details of data collection process are described as follows.

1) Create a small set of coordination configurations for executions This

process has to be uniformly distributed over all possible parameter space. The method is done

by dividing parameters into two groups. The first group consists of all enumerated, boolean,

or small number parameters, e.g., USE UNCERTAIN SENSING, ROLE TOKEN SLEEP

RULE, NETWORK TYPE, ROUTING MODEL TYPE, PROBABILISTIC P CHOICE.

The second group consists of real value or large number parameters, e.g., NO PLAN TEM-

PLATES, NO BELIEF TYPES, NO AGENTS, BELIEF OCCUR RATE, etc. Next, a small

set of configurations is created, relying mainly on the parameters in the first group. The

set contains a list of configurations for all combination of the possible values of the first

group. This number of configurations is not a big number. For example, if the first group

parameters are listed above, there are only 96 possible configurations in the set. Thus, in

each configuration in the set, the configuration contains fixed values from combination of the

first group and the rest of parameters in the second group are selected by randomly from

within their possible ranges. This way, every time the set is created, it contains the same

lists of combination in the first group and uniformly random values in the second group.

2) Run a coordination configuration 30 times A coordination configuration

in the set is executed with a TokenSim client for 30 times. Each time, all the results are stored

at the database server. However, since there is a limited time for data collection process, some

configurations that spend a very long time to finish must be terminated. Allowing a very

long process to run 30 times is undesirable. Therefore, the process of checking duration is

performed on the first execution on every configuration. If the first execution is quicker than

a time threshold, the execution proceeds through for 30 times. Otherwise, that configuration

is terminated. In this work, depending on the speed of machines, different thresholds are

used, e.g., 5 minutes, 10 minutes, and 30 minutes.

3) Do step 2 until the set of coordination configurations is finished If there

are more configurations in the set of coordination configurations, the next configuration is

executed in step 2.

4) Execute step 1-3 many times until reaching the target number of training

data To have an enough training data set, processes in step 1-3 are repeatedly ex-
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ecuted. For example, with a small set of 96 configurations with some possible terminated

configurations, it normally requires more than 300 iterations to get 20000 eligible training

data. This step can be executed in parallel on different running computers.

5) Execute data preprocessing on database server After finishing collecting

the data, a data preprocessing routine is called on the database server to transform all 30

recorded data in each configuration to a data distribution form that can be used in the learn-

ing process. Generally, each output performance measure is divided into a possible range of

100 slots. Then, the 30 recorded data are distributed among these slots. Finally, frequencies

in the slots are used as the output data distributions. These output data distributions are

stored on the database server, so that learning machines are able to access and use them in

the future.

3.3 STOCHASTIC NEURAL NETWORK MODELS

A standard artificial neural network is sometimes referred to as a black box, which is able

to forecast an output pattern from a given input pattern. Normally, the generated output

patterns are static, which means that unless the observed input patterns change, the output

patterns does not change at all. Therefore, a traditional neural network usually limits its

applications to deterministic problems, where the outcomes of any possible input pattern

can be calculated with certainty. However, most complex problems are non-deterministic, in

which the outcomes are uncertain even with the same input patterns. To make it possible

for a traditional neural network to represent non-deterministic relationships, the network is

augmented with extra input nodes supplied with internal stochastic signals. As shown in

Figure 3.4 a, a simple neural network consists of five input nodes, two hidden nodes, all

interconnection weights, and an output node. This neural network looks like any traditional

neural network, except that there are three special input nodes feeding with three different

random signals generated uniformly between 0.0 and 1.0, named R1, R2 and R3. All these

random numbers are generated internally so that their values are changed stochastically in

every execution. While the first two input values are static, at 0.8 and 0.1, when the neural
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network is executed for 100 times without all extra input nodes, the outcomes are certain

(around 0.3), as shown in Figure 3.4 b. When the network is executed for 100 times with

only one extra node, the outcomes are 0.3 and 0.4 for 16 and 84 times respectively, as shown

in Figure 3.4 c. In Figure 3.4 d and e, the produced outcomes are more uncertain, when

the network is executed for 100 times with two and three extra input nodes respectively.

With different combinations and connection weights of extra input nodes, the outcomes of

the networks can be generated with different shapes of distributions as shown in Figure 3.4

c, d, and e. In summary, the new concept allows outcomes to be uncertain even while input

is held constant and internal nodes execute deterministically.

To capture the team performance model, with the non-linearities, output distributions

and a very large size, a concise, flexible representation was required. Neural networks were

chosen because of the particularly concise way they can capture and reproduce an arbitrarily

complex function. However, typical neural networks map precisely from input to output

variables and do not allow distributions of possible outputs. To make neural networks

appropriate for capturing the team performance model, it was necessary to develop Stochastic

Neural Networks.

In this section, details of its abstract model and its capabilities are described. At the

end, an initial result for attempting to represent team performance models is shown.

3.3.1 Conceptual Idea

Eggenberger et al. [27] introduced the idea of the dynamic rearrangement of biological

nervous systems to accommodate learning in non-stationary environments. Their approach

allows neural networks an additional mechanism to dynamically change synaptic weight mod-

ulations and neuronal states during execution. This capability of changing the modulation

types allows the control networks to change their structures when the environment changes.

With inspiration from the dynamic rearrangement [27], a concept of Stochastic Neural

Networks (called Dynamic Networks in [84], [85] and [86]) is presented here. This concept

allows output nodes to act stochastically even while input is held constant and internal nodes

act deterministically. In general, an artificial neural network is an interconnected, layer by
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Figure 3.4: An example of a simple neural network is shown in a, consisting five input nodes,

two hidden nodes, all interconnection weights, and an output node. R1, R2 and R3 are extra

input signals with different random numbers generated uniformly between 0.0 and 1.0. When

the network is executed 100 times without R1, R2, and R3, possible outputs are shown in

b. When the network is executed 100 times with one (R1 only), two (R1 and R2), three(R1,

R2, and R3) extra input nodes, possible outputs are shown in c, d, and e, respectively.
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layer, chain of simple processing nodes, where each node receives a number of inputs and

sends an output to other nodes. Each node is deterministic in that its output is based

entirely on its input values. To make output nodes act effectively stochastic, an internal

stochastic component is included in the network, which is responsible for producing random

signals. These internal random signals are simply treated as additional input signals of

the artificial neural network, i.e., they are connected to every internal node by adjustable

weights. Changing weights result in changing the behaviors of the stochastic networks. Thus,

it makes possible to manipulate the neural network’s stochastic behavior by adjusting the

weights inside the network.

If a target system has a high variation in outputs even for the same input configuration,

in non-deterministic cases, the stochastic neural network adapts their weights to match

these variances by being stochastic. If the target system is deterministic, which means the

outputs are static, the stochastic neural network adapts the weights to ignore stochastic

components. Figure 3.5 shows two examples of networks. On the left, a traditional artificial

neural network is used to map input-output pairs as shown in the table below it. On the

right, a stochastic neural network is used to map all input patterns with all possible output

patterns with different probabilities of occurrence. The stochastic neural network captures

uncertainly from the additional input nodes fed with internal random signals.

As shown in Figure 3.6, a typical artificial neural network network can be transformed

into a stochastic neural network by adding extra input nodes to the input layer and feeding

them with internal random signals. These random signals are stochastically changed every

time the network is executed. Executing the network for a number of times, a distribution

of possible outputs can be generated. The random signals that we normally use are random

numbers internally generated from a uniform distribution between 0 and 1. All nodes in

the network use sigmoid units. In addition, a three-layer feed-forward network is typically

preferred since it is capable of representing any arbitrary function [83].

The concept allows output nodes to act stochastically even while input is held constant

and internal nodes act deterministically. In general, an artificial neural network is an in-

terconnected, layer by layer, chain of simple processing nodes, where each node receives a

number of inputs and sends an output to other nodes. Each node is deterministic in that its
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output is based entirely on its input values. The internal random signals are simply treated

as additional input signals to the artificial neural network, i.e., they are connected to every

internal node by adjustable weights. Changing weights result in changing the distributions

of values on the output nodes. Thus, it makes possible to manipulate the neural network’s

stochastic behavior by adjusting the weights inside the network. If the target system is de-

terministic, which means the outputs are always the same for the same input, the stochastic

neural network adapts the weights to ignore stochastic components.

Effectively, the network maps a given input and range of random values to output values

proportional to how often that output occurs in the output distribution. For example, in a

simple case, if input 1 corresponded to output 1 20% of the time and to output 2 80% of the

time, the neural network would map input 1 and 20% of the possible random values to an

output of 1 and map an input of 1 and 80% of the possible random values to an output of

2. Notice that externally, it will not be known which range of random values map to which

output value. Arbitrarily complex output distrbutions simply correspond to more complex

mappings from input and random ranges to output values.

More than one random input node may be required to capture particularly complex un-

certainty distributions, but our results show that approximately three random input nodes

will effectively capture even the most complex distributions. However, more random nodes

can speed up the learning process, apparently by providing more options for constructing

a mapping. In contrast to previous approaches, this technique is straightforward to imple-

ment and can be trained simply with pairs of system configuration and system performance

instances.

To represent the highly non-linear relationship between environment, configuration, and

team performance, stochastic neural networks are used. The network topology consists of

31 nodes in the input layer (one input node representing each varied parameter, see Table

3.2), 5 random signal nodes, 16 nodes in the first hidden layer, 8 nodes in the second hidden

layer, and 4 nodes in the output layer.
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Figure 3.5: Two examples of artificial neural networks are shown. On the left, a traditional

network maps input-output pairs as shown in the table below. On the right, a dynamic

network maps all input patterns with all possible output patterns with different probabilities

of occurrence.
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Figure 3.6: A traditional neural network can be transformed to a stochastic neural network

by adding extra input nodes and feeding them with internal random signals to the input

layer. These random signals are stochastically changed every time the network is executed.

By executing the network a number of times, a distribution of possible outputs can be

generated.
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3.3.2 What Is New?

To accurately characterize a complex system requires a model of the system as well as

a model of the uncertainty impacting the system [3]. That inherent uncertainty leads to

uncertainty in the performance of the system. The importance of modeling uncertainty in

system performance has been recognized in many fields, such as complex biochemical systems

especially in genetic regulatory systems [1, 108, 48], robotic systems performing in real world

environment [113], robust control systems [6], and data mining [16]. Notice that for many of

these systems, the uncertainty can not be captured as a normal distribution and will often

not have been characterized at all. While a range of techniques exist to describe a system

and its performance, techniques for capturing the uncertainty in that performance are not

as readily available. This work presents a novel approach to capturing both the performance

of a system and the uncertainty related to that performance in a concise, easy to use form.

Previous approaches have shown significant potential for representing uncertainty as a

form of stochastic neural networks. A special kind of stochastic neural network, called

Approximate Identity Neural Networks (AINN) [119], is very powerful and effective in ap-

proximate, complex, non-linear systems. However, implementation of an AINN is very com-

plicated and becomes significantly more difficult as the number of input parameters grow.

Alternatively, neural networks with stochastic resonance were introduced, using a time peri-

odic signal as a stochastic element[75]. Although such stochastic neural networks are trained

with an extended back propagation method, their performance is limited to very simple tasks.

Recently, stochastic models of neural networks were used to representing complicated gene

regulatory networks by using Poisson random signals[116]. However, such stochastic neu-

ral networks only capture Poisson and Normal uncertainty distributions. Thus, although

promising neural networks have no effective way of handling arbitrary uncertainty distribu-

tions.

This work presents a new approach to stochastic neural networks that incorporates three

key ideas. The first idea is to expand traditional artificial neural networks by adding extra

input nodes to the input layer and feeding them with internal random signals. These random

signals are uniformly varied between 0 and 1. The rest of the artificial neural network remains
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unchanged and deterministic. Effectively, values of the random signal are mapped to possible

output values for the system configuration represented by the normal input nodes. More

than one random input node may be required to capture particularly complex uncertainty

distributions, but our experiments show that approximately three random input nodes will

effectively capture even the most complex distributions. In contrast to previous approaches,

this technique is straightforward to implement and can be trained simply with pairs of system

configuration and system performance instances.

The second key to this technique is to train the stochastic neural networks with a genetic

algorithm. An evolutionary process is utilized to shape a population of stochastic neural

networks, generation by generation, in accordance with fitness function. Genetic algorithms

can overcome a huge number of local minima when relationship between variables is highly

non-linear as is the case with many complex systems [38]. In addition, the unit of adaptation

is not an individual point, but a population of individual points, which is appropriate for

dealing with large and noisy training data. However, significant care is required in the

design and use of the fitness function, because it is infeasible to compare an stochastic

neural network against every training datum to determine its fitness. Fortunately, not all

examples to be seen for a distribution to be accurately captured[119].

The third key to this approach is to allow stochastic neural networks to generate an

uncertainty distribution, once it has been trained. The stochastic neural network captures

system performance and uncertainty, hence when the system configuration is provided on the

input nodes of the stochastic neural network, one possible performance case will be present

on the output nodes. The output nodes will represent a system performance with probability

proportional to the probability of getting the performance in the system being modeled. By

executing a stochastic neural network a number of times, a distribution of possible outputs

can be generated.

3.3.3 An Initial Result

The objective of the team performance model is to capture the relationship between a vast

space of possible system and configuration parameters and the team performance measures.

53



Figure 3.7: Example plots show comparisons between target data and learned results of six

output performance measures from a particular setting. The error bars can be viewed as the

distributions of output data. The x-axis represents the number of agents.
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To obtain high resolution for comparisons, a small reference data set was created, consisting

of data obtained from running our previous abstract simulation (called TeamSim) by varying

only three input parameters leaving other input parameters fixed. The data sets were used

to train new team performance models, which in turn generated graphs that were compared

with those plotted from the original reference data set.

As shown in Figure 3.7, graphs are plotted between six performance measures and the

number of team members. In each row, two graphs are plotted. The graphs on the left

are plotted from the reference data set. The graphs on the right are plotted from the team

performance model yielded by the reference data set. By using fitness function in Equation

3.9, in which actual and target distributions are compared, the team performance model

has good performance in capturing uncertainty of the target system, as shown in Figure 3.7.

After running for 1000 generations (about 2 hours), the learned results are approximately the

same as the target data, especially the means. There are close correspondence between the

team performance models and reference data set in all performance measures and number

of agents. However, there still need more time and data for improvement.

Although these comparisons are qualitative, they support our approach by demonstrating

that team performance models can be learned for large parameter sets that perform well,

even when examined closely over a small range of settings.

3.4 LEARNING PROCESS

Our main objective is to create an input-output model that approximately represents the

very complex relationship between coordination algorithm parameters and performance mea-

sures for large scale multi-agent teams. Because it is infeasible to collect sufficient data from

such a system in real time, an abstract simulation has been created that simulates only the

coordination aspects of team behavior. In simulating the behavior of a UAV team, for ex-

ample, the abstract simulation would still instantiate plans, allocate roles, pass information

tokens, etc. but would eliminate the computationally expensive steps of searching the envi-

ronment to match preconditions or simulating actual execution. Thus, running the abstract
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Figure 3.8: Overall learning process diagram
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simulation makes it possible to quickly collect data representing target relationships. Even

though the target relationships are very huge and very complex, we have found ways to col-

lect sample data that is statistically adequate for use as training data to create a model, we

have called team performance model. We have, additionally, developed a new neural network

architecture, stochastic neural networks, that is capable of representing arbitrary complex

relationships for this model. Although this team performance model is capable of represent-

ing the target relationships, it is not compatible with conventional learning methods such as

back propagation, so separate training methods are needed to fit the model. In this section,

we describe our training method. The learning process of genetic algorithms is adapted as a

learning process to train stochastic neural networks. First, a population of stochastic neural

networks is randomly created as the possible candidates for the final model at the end of

the learning process. An important and new idea that makes this possible is the new fitness

function that utilizes a method of comparing target output distributions and actual output

distributions. In order to capture uncertain outcomes, we should not match only one specific

output (such as the mean), but rather match a distribution of various possible outputs, so

the idea of fitness function for distributions was developed in this work. In addition, a tech-

nique, called the hall of fame approach, was created and applied to help speed up the process

by selecting and retaining good candidates in a hall of fame to be used to generate the new

generations of possible candidates in the learning process. After the final team performance

model has been trained, a graphic user interface, called team control interface, is designed

to exploit the team performance model for rapid coordination configuration exploration and

online reconfiguration.

In this section, details of the modified genetic algorithm are described, especially its

adaptation, learning procedure and genetic operations. The ”hall of fame” approach is

introduced and its contribution to learning speed-up discussed.

3.4.1 An Adapted Genetic Algorithm

A genetic algorithm[43][37] is a search technique loosely based on the mechanism of natural

selection and genetics. Given an environment and a goal formulated as a fitness function,
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an initial population is generated at random and a set of genetic operators defined. New

generations of individuals are generated using three common genetic operators: reproduction,

crossover, and mutation. This process repeats until either a sufficiently fit individual is found

or time has expired. The solution of the problem is found in the final population.

For this work, each generation of the population contained 2,000 individuals. The chro-

mosomes of each individual defined the weights of the stochastic neural network connection.

All weights were randomly generated at the start. After evaluation of the training data set,

the 100 best performers were kept and used to produce the 1900 new individuals, via genetic

operations. Genetic algorithms were chosen for training because the relationship between

input variables was not only non-linear, but also stochastic, which is problematic for back

propagation methods due to the large number of local minima.

Genetic algorithms utilize a fitness function which measures, in this case, the accuracy

of the stochastic neural network to the target data in order to determine which individuals

to propagate to the next generation. Determining fitness fits more technically challenging

than for vanilla neural networks because for a stochastic neural network the random internal

node causes the output to be different each time the input is presented. To evaluate each

individual in every generation, every stochastic neural network is required to execute with the

same input values (excluding all stochastic signals) a number of times, so that distributions

of actual outputs can be measured. These actual output distributions are compared in the

evaluation process against the target output distributions from the training sets via the

goodness-of-fit test or Pearson Chi-square (χ2) test [51] :

χ2 =
n∑
i=1

(
(fs − f ∗s )2

f ∗s

)
, n = na + nt, (3.6)

where n denotes the number of all slots, na denotes the number of slots in actual distribution,

nt denotes number of slots in target distribution, fs denotes observed frequency in a particular

slot s, and f ∗s denotes predicted frequency in a particular slot s. The predicted frequency in

a particular slot s can be calculated from:

f ∗s =
to · ts
T

, (3.7)
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where T denotes the total number of observations, to denotes the total number of observations

in actual or target distributions, and ts denotes the total number of observations in the same

slots combined. From [51], we can get an index of the strength for the relation between these

two distributions, by using the formula:

V =

√
χ2

N(k − 1)
, (3.8)

where N is the total frequency and k = 2 in this case. Then, this index is used to estimate

the percentage of error between actual and target distributions. In addition, we need to add

an admissible constraint, which is an absolute difference between means of actual and target

distributions, to the fitness function for directing the learning process to convert. Thus, the

fitness function of individual i in population is:

Fitnessi =

∑
d∈D

∑
p∈P

(
χ2
d,p + |µd,pa − µ

d,p
t |
)

|D| · |P |
, (3.9)

where D is the set of training data (d ∈ D), P is the set of output nodes (p ∈ P ), χ2
d,p is

the χ2 of the pth output of the data entry d, µd,pa is a mean of actual distribution of the pth

output of the data entry d, µd,pt is a mean of target distribution of the pth output of the data

entry d, |D| is the size of training data and |P | is the number of output nodes.

To compute fitness value for a stochastic neural networki in a particular generation, the

process is as follows:

1) for each datak in training data set,

a. execute a stochastic neural networki with the same input values from datak ta times

b. set Score = 0

c. for each outputj:

i. compute distributions of actual outputj and its actual mean (µk,ja )

ii. use target outputj distribution from datak to compute the target mean (µk,jt )

iii. compute predicted frequency f ∗s in every slot s (Equation 3.7)

iv. compute χ2
k,j (Equation 3.6)

v. compute Score = Score+ χ2
k,j + |µk,ja − µ

k,j
t |
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d. Score = Score/|P |

2) Fitnessi = Score/|D|

Then, Fitnessi is assigned to the ith stochastic neural network in the current population.

These values are used in a part of ranking process for generating the new population of

stochastic neural networks in the next generation.

3.4.2 Learning Procedure

The outline of the learning procedure is shown in Figure 3.8. The details are described as

follows.

Create an Initial Population

generation = 0

do

Sub-sampling New Training Data

Start New Generation

Execute All Individual Stochastic Neural Networks

Evaluating All Individual Stochastic Neural Networks

Compute Ranking

generation = generation + 1

until Terminate The Process

return

Create an Initial Population : An initial population of stochastic neural networks is

created. If it is at the beginning of the learning procedure without previous saved stochastic

neural networks, all individual stochastic neural networks are generated from totally random

numbers. Otherwise, the previous saved stochastic neural network files are loaded. Usually,

the best 50 stochastic neural networks are stored in files periodically during the process.
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That means if the process was terminated and started again, the first 50 stochastic neural

networks are loaded from saved files and the rest of stochastic neural networks are randomly

created.

Sub-sampling New Training Data : Since there is a potentially huge volume of col-

lected data, it is infeasible to allow stochastic neural networks to train with all the data, so

instead a smaller set is employed for training stochastic neural networks in each generation.

In every new generation, a small set of new training data is randomly picked from the total

collected data. This ensures the stochastic neural networks are tested in an unpredictable

way, which improves robustness in dealing with uncertainty. Our criteria for selecting how

many data sets are needed is dependent on execution time of the learning process in a gen-

eration, since diversity of stochastic neural networks generated between generations is the

most important factor for the learning process. These training data consists of two data,

input parameter data and their attached output performance measure data. There is an

option that the same training data are used repeatedly for a specific number of generations

before a new training data are selected again.

Start New Generation : The new generation of stochastic neural networks is gener-

ated based on the performance of all stochastic neural networks in the previous generation.

First, the 5 percent top performance stochastic neural networks are reproduced to be in the

new generation. Then, the rest of the population is created by crossover operations. In

addition, mutation operations are applied occasionally with probability 0.001.

Execute All Individual Stochastic Neural Networks : By using input parameter data

from each training datum, each individual stochastic neural network is executed for a pre-

specified number of times, ∼ 30. As results, output distributions are computed. In addition,

the means of output distributions are also determined.

Evaluating All Individual Stochastic Neural Networks : Each stochastic neural net-

work is evaluated with the fitness function in (Equation 3.6). Basically, the fitness function

is computed from actual output distributions, target output distributions, means of actual

output distributions, and means of target output distributions.

Compute Ranking : After fitness values of all individual stochastic neural networks

are computed, these values are converted to each individual performance score. Then, all
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stochastic neural networks are ranked by their performance scores. This ranking information

is mainly used for generating new generation.

Terminate The Process : The learning procedure is terminated when a low percent

for error of the best individual stochastic neural network is reached. In other cases, the

process is terminated if maximum generation is reached or by user.

3.4.3 Genetic Operations

As the common Genetic Algorithms’ process [43][37], there are three genetic operations: re-

production, crossover, and mutation. The reproduction is a simple operation for duplicating

an individual in the previous population into a new population of the next generation. The

crossover is an operation of recombining randomly chosen parts of two of the previous in-

dividuals. The mutation is an infrequent operation that randomly changes a part or some

parts of an individual. In this work, even though an individual presents a network structure

of neural nodes and values of weights that link neural nodes together, the crossover and

mutation are designed to operate only on the values of weights, since the structure of the

network is unchangeable.

There are two types of crossover operations. The first crossover randomly chooses a link

between any two nodes in the network and then uses this link position as a point to swap

two neural networks, referred as one point crossover, as shown in Figure 3.9(a). The second

crossover, referred as multi-point crossover [112], as shown in Figure 3.9(b), operates on

three cutting points, in which each point is in three different weight layers. The swaps are

also done separately in all three layers.

The mutation is an operation with a low probability to happen with any individual.

When an individual is chosen to mutate, the mutation scans the neural network inside and

randomly selects some weights to change their values. In this work, there are three ways to

change the values of weights. The first way, the new value is replaced with a new random

value between -0.5 and 05. The second way, the new value is an addition between the old

value and a random value between -0.5 and 0.5. The third way, the new value is an addition

between the old value and a Gaussian noise value. These three ways of value changing are
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Figure 3.9: Abstract model of a neural network is shown (above) with three weight areas and

four columns of nodes. Abstract examples of two types of crossover operation are shown. In

(a), the crossover operates with a cut. In (b), the crossover operates with three cuts in three

different weight layers.
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randomly chosen to apply with an individual when the mutation occurs.

3.4.4 A ”Hall of Fame” Approach

As Genetic Algorithms method is used to train the team performance model, a problem

arises when dealing with complex and uncertain training data. Since each generation dif-

ferent training data are used for guiding discovery promising models, any good models in a

particular generation might not be good enough to be kept in a next few generations but

might be useful in the future. It is very importance to find a way to keep these candidate

models for future benefit. In [127], a special population of local good individuals is employed

to keep only better performance individuals in one place. These good individuals are also

utilized in the process of creating new generation as well.

A hall of fame approach is an additional procedure designed to keep the promising

models for future improvement during a learning process. The basic idea is that the best

performance model in every generation is considered to be kept. However, the best one in

every generation can not be reserved, the hall of fame should contain with a small number of

good ones not another way round. A possible method is simply using probability approach.

For example, the best model out of fifty generations is randomly selected to be in the hall of

fame. Using some additional criterions for selection consideration is possible; however they

may contain biases that guide into wrong learning directions.

In addition, being in the hall of fame, all kept models are considered to be out of ac-

tion but useful. Therefore, these reserved individuals are not directly used as any current

individuals in any generation during learning process. The only way to be able to use these

individuals is by selecting them to be available candidates for possible crossover operations

during the process of creating new generation. In each time, some reserved ones from the

hall of fame are randomly picked and applied with the mutation operations, and then they

are listed as accessible candidates for breeding.

The hall of fame approach provides many additional features for the learning process, as

follows.

Preserving Good Individuals : This feature is a basic feature of the approach. Ran-
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domly keeping the best performance in each generation preserves good models that can be

used in the future.

Keeping Progress Tracking : The progression of the learning process is monitored

by evaluating reserved individuals in the hall of fame. Using information embedded with the

kept models, it is possible to track the learning performance. Moreover, if there are increasing

numbers of members in the hall of fame, the members that have been outperformed by recent

newcomers can be removed from the list.

Running with Different Settings : With many options for learning parameter set-

tings, the hall of fame approach allows the learning process to run with different settings at

the same time. By keeping the best performances of all settings together, every running can

take advantages from other settings’ runs. If a particular run has achieved very good results

toward solving the problem, other operations will get benefits and learn from those results

as well.

Interrupt-able Learning : By keeping the up-to-date good performances, the learning

process can be stopped and started again at any time. When the learning process starts the

members in the hall of fame provide a head start for the process to pick up from the point

where it stopped.

Speeding Up Learning Process : As a result of all above features, the hall of fame

approach is intended to speed up the learning process. Keeping good performances saves

time for learning those ones again. Running different approaches in the learning process

makes possible of parallel searching for possible solutions, which they can be executed on

different computer machines or different processes.

3.5 TEAM CONTROL INTERFACE

The stochastic neural network does not solve the reconfiguration problem on its own, it

simply forms the core of a tool which the user can use to reconfigure the team. The user

specifies the environment and preferences over output parameters and gets options for possi-

ble configurations. The user can then request that the tool sends messages to each member
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of the team to arrange the reconfiguration. The exact mechanism for doing this is dependent

on the specific coordination algorithms.

The team control interface is designed to be used with the team performance model.

The team control interface is shown in Figure 3.10. The top part of the interface is used for

displaying messages. On the right of the top part is a choice of backward search speeds. The

bottom part is a place for command buttons, e.g. load model button, load configuration

button, backward execute button, exit button, etc. Between the top and bottom parts,

there are three display areas. The left side is a list of all input parameters with their current

values. Each input parameter uses a check box to indicate whether it is a system (shaded

background) or configurable (white background) parameter. The parameters listed only

display their current values. To change these values, arrow buttons (> or <) next to the

values are used to select which parameters are displayed in the middle of the screen where

user can change their values. However, only configurable parameters are able to be changed,

therefore if the system parameters need to be changed, they have to switch to be configurable

parameters first. Then, later after their values are changed, they have to switch back to the

system parameters.

The middle panel gives the user the ability to explore various configurations. They simply

select values on the sliders and the expected performance of that configuration is shown on

the right hand side. This usage of the model, referred to as “forward mode” because the

underlying stochastic neural network is used in a normal feed forward manner, allows an

expert user to explore various options very quickly without using either a real team or even

the abstract simulator.

Four output performance measures are shown on the right side. These outputs are

displayed in two formats: data distributions and box plots. The data distributions are

histograms of output values when the current team performance model is executed for one

hundred times. The box plots indicate output minimum values, lower quartile, median,

upper quartile, and maximum values. These values show statistical distributions of the

outputs generated from the current model. There are two check boxes for each performance

measure. The left check box is used to switch between displaying a result distribution with

all available slots or with only non zero slots. The right check box is used to specify backward
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search constraints identifying whether which performance measures are chosen to be used

as constraints for backward searching. When this check box is checked, pull down menus

are also used to specify the constraints whether to increase or to decrease those selected

performance measures. When a model is loaded, current input parameters are shown on the

left side and output results are instantly presented on the right side. If any parameter in the

middle is changed the updated results are displayed instantaneously.

3.5.1 Features

The team control interface has many features that allow users to utilize team performance

models toward better understanding and controlling the coordination configuration of large

multi-agent teams. All features are described as follows.

Loaded Model : A team performance model can be loaded only one model at a time

to the team control interface. All models generated from the learning process are eligible

for use with the interface. If there is no model presented, the team control interface will not

operate any features.

Load and Save Configuration : A preset configuration can be loaded into the team

control interface from a configuration file. The configuration file contains not only all values

of every parameters but also information about which parameters are system or configurable

parameters. When a user is exploring the team control interface, the current working con-

figuration can be saved into a file and used again later.

In addition, the team control interface can be used in two modes: offline and online. Of-

fline mode is designed for interacting with the team performance model to help users develop

a better understanding of the relationship between coordination configuration parameters

and team performance. The offline mode has two features, which are described as follows.

Input-to-Output Feature : Using the team performance model in this forward mode,

users can experiment with changing input parameters and observing how output parameters

change instantaneously. In this mode, only configurable parameters, which are selected for

displaying in the middle of the screen, are allowed to change values. If system parameters

have to to be changed, they have to switch to be configurable parameters first. Users can
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type in new values, use sliders, or use pull down menus for changing parameter’s values, see

Figure 3.10.

Output-to-Input Feature : Using the team performance model in backward mode,

the team control interface allows the user to choose constraints on output parameters (either

increase or decrease) and receive a list of configurations that meets specific performance

constraints, as shown in Figure 3.11.

Backward Execution : When the ”backward execution” button is clicked, the team

control interface performs a search over the changeable configuration parameters using the

team performance model to find a configuration that yields the required performance trade-

offs. The search space covers all changeable configuration parameters and the search con-

straints are all output performance parameters. Guided by a sensitivity analysis technique

[67] on the team performance model, the searching process performs very quickly. The user

can choose three different speeds of backward searching, as shown in Figure 3.12. This option

indicates how many times the backward search is used for finding a list of good matches.

The search result window, in Figure 3.11, contains a list of ten best matches with different

configurations in which users can examine which one they would like to use.

Apply Setting : A configuration from the list can be selected and applied to the

interface by using an ”apply setting” button. Then, the current configuration is replaced

with the selected configuration and the outputs are updated with the new setting, as shown

in Figure 3.13.

Run with TokenSim : In online mode, the team control interface is connected

with TokenSim. The interface allows the user to display team performances and to change

configuration during execution. When running in this mode, an additional window is used

to display the online output performance parameters in graphical plots, as shown in Figure

3.14. In each plot, an anticipated box plot is presented showing the distribution range of

values predicted by current team performance model.

Re-Configuration : During execution in online mode, the user is allowed to use

offline interface features, such as output-to-input, to aid in selecting new configuration pa-

rameters. By using the ”re-config” button, new configurable parameters are sent to replace

the old values in TokenSim, as shown in Figure 3.15.
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Figure 3.10: Team control interface displays all input parameters on the left side, perfor-

mance measures on the right side, selected editable parameters in the middle, and command

buttons in the bottom.
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Figure 3.11: A window of search results is shown a list of possible configurations along with

their possible outcomes. Users might select one of these configurations to apply into the

interface.

Figure 3.12: A pull down menu has three choices of backward search speeds.
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Figure 3.13: A new configuration is updated from the results of backward search.
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Figure 3.14: A plotting window displays four output values when it is running with Token-

Sim.
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Figure 3.15: When the re-configuration command is issued, the plotting display changes to a

new color and draws a line indicating a point where a new configuration has been executed.
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3.5.2 Backward Search Procedure

In this work, the backward search utilizes a Genetic Algorithms search technique. The pro-

cedure is described as follows.

Create an Initial Population

generation = 0

do

Evaluate All Individual Configurations with Current Team Performance Model

Generate New Population

generation = generation + 1

repeat Search for a Specific Number of Generations

return List the Top Ten

Create an Initial Population : Initial population of possible distinctive configurations

is created partly guided by a sensibility analysis technique [67] on the team performance

model.

Evaluate All Individual Configurations with Current Team Performance Model : The

current team performance model is applied with each individual configuration to generate

distributions of performance measures. According to output constrains specified by the user,

the fitness function is calculated. Thus, all individual are ranked in proportion to their fitness

values.

Generate New Population : A new population is created by randomly perturbing[18]

the top ten best scores. In addition, the newly generated configurations have to be distinctive

from other members in the population.

Search for a Specific Number of Generations : The search proceeds for a specific

number of generations. The user chooses the speed of backward search from the interface.

Each speed has a different number of generations to repeat. In this work, the quick, slow,
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and more options are assigned with 100, 500, and 1000 generations respectively.

List the Top Ten : When the search is finished, the final top ten distinctive config-

urations are revealed as the results for selection.
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4.0 EXPERIMENTS AND RESULTS

This section, experiments were conducted to verify the proposed approach. First, a pre-

liminary experiment was carried out for demonstrating the capability of stochastic neural

networks to represent the model beta distribution, indicating the potential to represent

uncertainty. Then, a main experiment was performed for verifying the approach by model-

ing team performance models, in which they represent the relationships between configura-

tion parameters of coordination algorithms and performance measures for large multi-agent

teams. Details of experiment settings and procedures are described. Finally, results are

presented with discussions.

4.1 MODELING A BETA DISTRIBUTION

A beta distribution is a versatile distribution that has been commonly used for modeling

data with uncertainty in many applications [23, 73]. The probability density function of the

beta distribution can be calculated with the following equation [73] :

f(x;α, β) =
1

Beta(α, β)
xα−1(1− x)β−1, (4.1)

0 < x < 1,

where α > 0, β > 0 and Beta(α, β) denote the beta function defined by

Beta(α, β) =

∫ 1

0

tα−1(1− t)β−1dt.
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Figure 4.1: The network architecture for the first experiment consists of three layers. The

input layer has α, β and internal random signals. The output layer has only a variable x.

The hidden layer usually has two layers of nodes.

The key feature of a beta distribution is that different density function shapes can be

obtained by changing α and β. For instance, uniform distribution can be obtained when

α = 1 and β = 1 and when α = 1/2 and β = 1/2, a U-shape distribution called arc-

sine distribution is produced [23]. When α = β > 1, the distribution generates a symmetric

normal distribution. When α 6= β, α > 1 and β > 1, an asymmetric distribution is generated.

4.1.1 Experiment Setup

To model the beta distribution, multilayer feed-forward neural networks were used as shown

in Figure 4.1. The network topology consists of five nodes in the input layer (two input

nodes representing α and β parameters, and three stochastic signal nodes), sixteen nodes in

the first hidden layer, eight nodes in the second hidden layer, and one node in the output

layer. The ranges of α and β are limited to 0 < α ≤ 10 and 0 < β ≤ 10. All stochastic

signals are uniformly distributed between 0.0 and 1.0. All nodes in the networks are sigmoid

units.
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Figure 4.2: A set of 20 plots with different values of α and β was produced by one of the

best generated stochastic neural networks comparing with target distributions. The target

distributions are shown in solid black bars and actual distributions are shown in white bars.

There is an average of less than 10 % error.
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Figure 4.3: Average learning times (to reach 25 percent of distribution error) of stochastic

neural networks with different numbers of random inputs.

To create training sets, data were collected by using Equation 4.1. The data collection

process is described as follow.

1) First, to get a target distribution of x, we divided variable x into 11 slots, where

x = 0.0, x = 0.1, x = 0.2, · · · , x = 1.0.

2) Values of α and β were randomly generated.

3) Using Equation 4.1, the values of α and β were used with values of x in all 11 slots to

get its target distribution.

4) If not done, go to step 2.

In this experiment, the training set consisted of 20 data records, which were randomly

generated. The training set was changed to a new set in every generation. The learning

process terminated when the best individual achieved less than 10 % error.
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Figure 4.4: After trained using data with 11 possible output slots, stochastic neural network

can be expanded from 11 slots (black bars) to 21 slots (white bars) by modifying process of

output discretization.
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4.1.2 Results and Discussions

After running about 2000 generations (approximately 20 hours, using PC-Intel Celeron

1.4GHz, 480MB), the results are shown in Figure 4.2. The target distributions are shown in

solid black bars and actual distributions are shown in white bars. These plots are generated

from one stochastic neural network by changing values of α and β. Each plot is a result of

executing the network 110 times and counting frequencies of 11 slots of the output node x.

It is clear stochastic neural network can handle symmetric normal distributions and asym-

metric distributions well (when α > 1 and β > 1). Uniform distributions (when α = β = 1)

and U-shape distributions are more difficult. It was found that the learning process adapted

quickly to match the symmetric normal distributions and asymmetric distributions, but took

much more time to adapt to the more difficult ones.

A second experiment was run to determine the optimal number of additional random

inputs that were needed to solve the problem. We found that without any additional random

input, the stochastic neural networks learned only to represent the means of the target

distributions. Having only one additional random input present the stochastic neural network

took a very long time to reach the error threshold whereas having two or five present the

threshold could be met in about 2000 generations (approximately 20 hours) on average.

Figure 4.3 compares the time taken in hours to reach a 25 percent of distribution error

threshold and shows the optimal time was achieved with three additional random inputs.

Having too few inputs makes it difficult to convert into complex input-output relationships

while having too many means more time is required to adjust more weights. This number

must be determined on a per problem basis. As shown in Figure 3.4, it suggests that more

numbers of random input nodes might effectively lead to a Gaussian input being fed to the

internal nodes, so that the more the output signal is approximating a Gaussian, the more

multiple random input nodes will be useful and the more is it uniform or something else, the

more a single random input will be appropriate, perhaps even with non-uniform distribution.

This number of extra random inputs must be determined on a per problem basis.

An interesting feature of stochastic neural networks is that the networks can modify the

density of possible outputs and still get the same distributions. As shown in Figure 4.4,
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a trained stochastic neural network was modified its output discretization by doubling its

possible output ranges and still get the same shape of distribution. The size of distribution

is smaller because there are more possible outcomes.

4.2 MODELING TEAM PERFORMANCE MODELS

The stochastic neural network approach was applied to create a team performance model

that captures the relationships between the environment, team configuration parameters,

and performance measures in a way that allows rapid exploration by users. Due to the non-

determinism of environments and coordination algorithms, these relationships are highly

non-linear and stochastic. To create a team performance model, an abstract simulation

of the coordination algorithms with a highly configurable environment is developed first.

Because the simulation can be run at high speeds, it can be used to create large amounts of

data on the relationships between parameters. That data can then be used as training data.

Then, the team performance model is used to search for the best configuration of the

team that meets specific performance constraints. Using the team performance model in

”reverse” allows users to specify performance tradeoffs and rapidly receive a configuration

that best meets those constraints. Since not all parameters are configurable, a search over

the changeable configuration parameters is performed to discover a configuration that best

meets the required performance tradeoffs.

In this section evidences are presented that the approach achieves the primary goal which

is to capture the effects of configuration parameters on performance measures in the team

performance model.

4.2.1 Training Data

After almost 2 months of data collection with more than 10 running computers, training data

have been collected, containing 20767 configurations. While attempting to represent a very

large space of possible configurations, these data were sampled randomly and designed to use
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all possible ranges of parameters equally. The sampling distributions of input parameters

are shown in Figure 4.5 and 4.6.

4.2.2 Number of Training Instances

An initial experiment has been done to investigate how many training instances are a suffi-

cient amount for using in the learning process. This number is a tradeoff between precision

and speed of the process. With a small number of training instances the learning process can

be very fast, but training instances in each generation might be very different. At one time,

training instances might contain almost the same training patterns, which do not represent

the whole training data that have numerous different patterns. As shown in Figure 4.7,

learning with 30 or 50 training instance sample levels to low variety in learning. However,

using 50 training instances can achieve more precision. When considering elapsed time, as

shown in Figure 4.8, learning from 30 training instances is twice as quick as using 50 training

instances. Results indicate that using 30 training instances the learning process is quicker

but less precise than using 50 training instances. Fortunately, in this work, using of the hall

of fame technique, the learning process could use 30 training instances at start for rapid

filtering and use 50 training instance samples at the end to obtain good precision.

4.2.3 Examination of The Hall of Fame

To investigate the usefulness of the hall of fame approach, an experiment was performed.

In this experiment, short start up learning processes were executed with the same learning

settings with a single exception in runs with or without the existence of the hall of fame.

Before the experiment started, preliminary quick experiments were conduced for to collect

good performance models. Then, these models were selected for the hall of fame.

All learning processes began with randomly generated initial values. Only a short period

of learning times was recorded. Results were measured from ten executions for both two

settings. After running all learning process, the learning graphs of both settings are shown in

Figure 4.9. From the graphs, the normal learning processes start to perform with high percent

of distribution error and then quickly drop and stay at roughly 50 percent of distribution
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Figure 4.5: Sampling distributions of input parameters in training data (Part 1)
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Figure 4.6: Sampling distributions of input parameters in training data (Part 2)
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Figure 4.7: Plots display a comparison of learning results with different numbers of training

instances using in each generation. Values in y-axis are learning performance (fitness values

as Chi-square errors) and values in x-axis are numbers of generations.
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Figure 4.8: A plot display elapsed time of learning process in a generation when using with

different numbers of training data.
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Figure 4.9: Two learning graphs are shown in which learning runs with the hall of fame

feature (below) much improved performances than normal runs (above) have. The values

were measured from 1200 executions for generating actual distributions.
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error. At the same time, with the hall of fame present, the learning processes start to perform

at about 30 percent of distribution error and drop a little to 28 percent of distribution error,

taking advantage the models in the hall of fame that have performances around 26-34 percent

of distribution error. These results show that the hall of fame helps guiding the learning

process to quickly start at about the same level of the reserved high performance models.

4.2.4 Test Sets

For evaluation of the team performance model, two test sets were created. The first test

set is a set of 500 different configuration runs that were randomly picked from the training

data. The second test set was a set of another 500 different configuration runs randomly

generated outside the training data. For convenience, the first and the second test sets are

referred as test set A and test set B respectively. Each configuration run consisted of input

parameters for a configuration and its output distributions. In order to investigate how the

team performance model handles uncertainty of output performance measures, each test set

was separated into 5 groups of 100 configuration runs ranking from most stable outputs to

most unstable outputs, as shown in Table 4.1. Sub test sets A-1 and B-1 are considered

to have most stable outputs in their test sets for the reason that their numbers of possible

values of any output in average are 1.62 and 1.59 respectively. On the other hand, sub test

sets A-5 and B-5 are considered to have most unstable outputs in their test sets for because

their averaged numbers of possible values of any particular output are 6.49 and 4.84 values

respectively.
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Table 4.1: Two tables show numbers of possible values for an output performance measure

of two test sets (A and B). These numbers are used to separate the test sets into 5 groups

of 100 configuration runs.
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4.2.5 Team Performance Model Verifications

After executing the learning process for some time (about two months), some good team

performance models have been collected. At the end, the best model from this collection

was chosen to verify the performance for representing the target system, coordination con-

figurations of large multi-agent teams. In this experiment, there are two main verification

processes as follows.

4.2.5.1 Examination With Test Data In this verification, there are two examinations.

First, an examination was performed on a test set A, a set of 500 different configuration runs

collected from the training data. Second, an examination was performed on a test set B, a

set of 500 different configuration runs collected outside the training data. Details of test sets

are on section 4.2.4. These two verification processes evaluated the team performance model

in term of percent of distribution error. The percent of distribution error was computed by

the Equation 3.8. To get this percent of distribution error, the team performance model

was executed for a number of executions to generate actual output distributions. Then, the

percent of distribution error was calculated from these actual output distributions and the

target output distribution from test sets. Because the more numbers of executions, the more

accuracy of output distributions, the results are shown in different number of executions.

4.2.5.2 Verification With Team Control Interface In this verification, because of

time limitation, only 10 percent of each test set were used to verify the results in the pre-

vious verification by using the online testing feature of team control interface. First, the

team control interface was loaded with the team performance model. Then, configuration

data were loaded for generating statistical information of output performance measures. The

statistical information consists of the smallest value (MIN), lower quartile (Q1), median (M),

upper quartile (Q3), and largest value (MAX) from 100 executions. This information was

then used in the ”run with TokenSim” feature to measure prediction errors. To compute the

prediction error, a special method was used as follows.
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Run With TokenSim For 500 Steps

Determine The Final Values of All Four Output Performance Measures

Compute The Prediction Error

TotalError = 0

for each V aluei,o of four output performance measures do

Erroro = 0

if (V aluei,o >= Q1o)and(V aluei,o <= Q3o),

then Erroro = Erroro+0

else, if (V aluei,o>=MINo)and(V aluei,o <= MAXo),

then Erroro = Erroro+1

else, if (V aluei,o>=MINo − (MAXo −MINo))and(V aluei,o < MINo),

then Erroro = Erroro+1+24(MINo − V aluei,o)/(MAXo −MINo)

else, if (V aluei,o<=MAXo + (MAXo −MINo))and(V aluei,o > MAXo),

then Erroro = Erroro+1+24(V aluei,o −MAXo)/(MAXo −MINo)

else, Erroro = Erroro + 25

TotalError = TotalError + Erroro

end for

In each configuration in a test set, the prediction error measurement started by running

each configuration with TokenSim for 500 steps. The reason for running the simulation

500 steps is because the team performance model was trained by training data that were

recorded proportionally based on the simulation length of 500 simulation steps. Thus, the

simulation length of 500 simulation steps was used to measure the prediction error. After

finishing the run, the final values of all four output performance measures were recorded

as V aluei,o, where i = 1, 2, 3, . . . , N and N denotes the size of a test set, o indicates the

output performance measure, o = 1, 2, 3, 4. Then, by using the team performance model,

five statistical information, consisting of MINo, Q1o, Mo, Q3o, and MAXo, were generated

for all four output performance measures by executing the model for 100 times. At the end,

the V aluei,o was used to compare with MINo, Q1o, Mo, Q3o, and MAXo for computing
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the prediction error for each output performance measures. Basically this method measures

the percent of prediction error by computing how far the actual executions with TokenSim

were from the prediction of the team performance model. If the final value (V aluei,o) was in

between the lower quartile (Q1o) and upper quartile (Q3o), it was considered no error. If the

value missed that inner range but still was in the bound of minimum (MINo) and maximum

(MAXo) values, the error was considered to be a prediction error. Then, if the value missed

the total prediction range, the error was computed in proportion to how far it was from

the bound of the prediction range. In worse case, if the value was too far, more than the

width of the range (MAXo −MINo), the error (Erroro) is totally 25 percent of prediction

error. Because there are four output values to measure, each output has maximum error as

25 percent of prediction error. Totally, the final prediction error (TotalError) is summed

up to 100 percent.

4.2.6 Reconfiguration Validation

In this validation, the performance of the team performance model and its use through the

team control interface were examined. TokenSim, the abstract simulation, was used as the

target system. The team control interface was connected directly with TokenSim so that

a user could set team configurations and monitor team performance measures online. The

user configured the team at the beginning of the mission. Team performances measured

from the simulation were graphically displayed on the user interface at every time step.

When performance changes were requested, the backward searching feature of the team

performance model was used to find suitable reconfigurations.

The team control interface and reconfiguration assistance were evaluated over eight con-

figurations. These configurations were selected from Table A1 to provide situations that

would require a user to reconfigure the team in order to meet performance targets. From

Table A1, the first 16 input parameters (1-16) are system parameters that could not change.

Thus, only the next 15 parameters (17-31) are considered changeable. The backward search-

ing feature utilizes these changeable parameters to find new configurations.
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4.2.7 Results and Discussions

In this section, results are presented to validate three aspects of the approach. First, in the

first experiment, results are presented that show how the stochastic neural network is able to

model a wide range of distributions of outputs. Second, results are provided that show how

well the stochastic neural network was able to model the team performance data. Finally,

results show how the user interface tool is able to reconfigure a running team.

To create the team performance mode, the learning processes were executed on a number

of machines at the same time. Even though the speed of learning was very slow, the progress

of learning was persistent. An example of a learning plot is shown in Figure 4.10. In this

plot, the performances of generated team performance models were measured with test set

A using 1200 executions for generating actual distributions. The results demonstrated that

the performance errors were gradually decreasing over time from about 26 to 21 percent of

distribution error.

To measure the efficiency of generated models, chi-square errors were used for assessing

the fit between the actual output distributions and target output distributions. The smaller

this number is the better. However, because this number is not in the form of percentage, the

number is converted to percentage form by equation 3.8. Because the number of executions

to generate output distributions was small (30 executions each), the reported percent of

distribution error is approximate. To present a more accurate picture of likely error, results

are shown in five values calculated from five different numbers of executions for generating

actual output distributions.

For verification of team performance model with test data, results are shown in Table

4.2. As shown in Table 4.2, results are presented with five different numbers of executions

of the model both in test set A and B. When using 30 executions for generating actual

output distributions, the percent of distribution error between the actual and target output

distributions for test set A and B are 47.74% and 48.46% in average, respectively. When

using 300 executions for generating actual output distributions, the percent of distribution

error between the actual and target output distributions for test set A and B are 31.42%

and 31.89% in average, respectively. When using 1200 executions for generating actual
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output distributions, the percent of distribution error between the actual and target output

distributions for test set A and B are 20.76% and 20.81% in average, respectively. Results

show that the more uncertainty in the test sets, the more errors. Sub test set A-1 and B-1

got lowest numbers of percent of distribution error. Likewise, sub test set A-5 and B-5 got

highest numbers of percent of distribution error. These results indicate that the model has

difficulty capturing high uncertainty. The 21 percent of distribution error produced after

1200 executions is quite good compared to 50 percent of distribution error found from a

model producing only average values of outputs without distributions. In fact, if further

learning time was allowed, the performance of models at this level might improve beyond 20

percent of distribution error.

Verification results from the team performance model with the team control interface

are shown in Table 4.3. Ten configurations were randomly picked from each sub-group for

two test sets for testing with the team control interface. Every configuration in this test was

performed 30 times to get these averaged results. From 100 configurations from test set A

and B, the final assessments of the team performance model were averaged 15.38 and 15.55

percent of prediction error respectively. On average, each sub test set made approximately

the same prediction errors. In test set A, the maximum error was 28.77% and minimum error

was 5.01%. In test set B, the maximum error was 32.47% and minimum error was 3.33%.

In this case, the prediction errors of 25-30% were mostly caused by the completely wrong

prediction of one output performance measure. For 15%, generally, the model was correct

in all output values, but sometimes the values were unpredictable in one output, especially

the reward. The reward values were the most uncertain output in this work. The prediction

errors below 10% indicated that the predictions were almost correct in all outputs. In this

experiment, there are about 22% (10 and 12 cases in test set A and B respectively). These

results are good evidence for verifying the efficiency of team performance model toward

prediction of values of output performance measures.

A number of graphic examples of these verification experiments are shown in Appendix A.

By using a selected set of example configurations, several plots of target output distributions

and actual output distributions and their values of percent of distribution error are revealed.

In addition, a number of graphs from the verification experiments with team control interface
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are shown as well.

For validation of reconfiguration, first, examinations with one constraint were conducted.

Each configuration with its four output parameters was reconfigured eight times by backward

execution fixing a single constraint for increasing and decreasing each output parameter. A

total of 64 reconfiguration cases were performed. Results were averaged from five to ten

executions for each case. These averaged results are shown in Table 4.4. Highlighted results

are the ones for which the backward searching failed to find new configurations achieving

the constraints. Results show that 12 cases out of 64 cases are unsuccessful. When the user

asked some performance measures to increase, it did in 25 cases out of 32 cases, increasing

on average 435 percent (however, without one outlier, the average increase was 73 percent).

When the performance measure did not increase as requested, the decline was only 24 percent

(excluding one outlier only 20 percent). When the user asked for a decrease in a single

performance measure, a decrease was observed in 28 cases out of 32 cases. Only 3 of the 4

times a requested decrease was not observed were for the same configuration, hinting that

its performance measures may have already been very low. When performing correctly, the

average decrease was 35 percent and when performing incorrectly, the measure went up on

average 115 percent (removing one outlier change this to 29 percent). These test show that

the tool generally has the ability to meet simple user requests, although there is significant

room for improvement.

Those results that have percent of changes lower than 20 percent (except 0 percent) were

considered toss up situations, in which the results were unpredictable. Those results with

higher percent of changes were easy to find a new configuration with the backward execution.

Second, examinations with two or more constraints were conducted. Eight cases of

different conditions with more constraints were set for searching new configurations. With

the same eight start configuration, 64 reconfigurations were performed. As show in Table 4.5,

results show that outcomes of 19 reconfigurations were wrong, 10 reconfigurations were not

applicable, and 35 reconfigurations were correct. Because all 10 not-applicable results are also

predicted by the team performance model, they were considered to be correct predictions.

However, in 141 constraints out of the 160 constraints, the change requested by the user was

observed correctly. These results show how the system handles more complex requests as
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well as simple requests.

Notice that in both experiments, in some cases, it may have been impossible to meet the

requested change, e.g., a value cannot be increased beyond it maximum, and in other cases,

on average the new configuration might have given the correct result, but uncertainties in

the outputs led to the observation. Since the configuration space is so large, it is infeasible

to determine what percentage of the failures above were due to these reasons.

Finally, examinations with constraints in sequence were conducted. However, these ex-

aminations were not for accuracy assessment but demonstrations of the reconfiguration pro-

cesses. Four examples of reconfigurations are shown in appendix B. All results demonstrate

the usefulness of team control interface toward facilitating the user in finding proper config-

urations in accordance with user requests.
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Figure 4.10: A learning plot of a continuous learning execution with the hall of fame approach

is shown. The values were measured from 1200 executions for generating actual output

distributions. At start, models in the hall of fame have their performance around 26-30

percent of distribution error. This learning process took about three weeks of execution

time.
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Table 4.2: Two tables show efficiencies (in term of percent of distribution error) of team

performance model when they were evaluated with two test sets using different numbers of

executions for generating output distributions. The top table shows results from the test set

A. The bottom table shows results from the test set B.
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Table 4.3: Results from verification experiments with team control interface are shown in

two tables. The top table shows results in percent of prediction error from the test set A.

The bottom table shows results in percent of prediction error from the test set B.
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Table 4.4: Eight configurations were reconfigured by backward executions with one constraint

searching, either to increase or to decrease. Averages results are shown comparing with the

normal averaged values, percent of changes, and prediction results (
√

= correct or × =

wrong).
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Table 4.5: Eight cases with two or more constraints, either to increase or to decrease, were

applied to eight configurations for reconfigurations. Results are shown if the backward

execution is able to suggest new configurations that meet the specific output conditions.

(Note,
√

= Correct Predictions, × = Wrong Preditions, − = Not Applicable)
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5.0 CONCLUSIONS

In this section, final conclusions of this research are discussed in greater detail. Then, several

aspects of the error measurements used in the experiments are discussed. At the end, possible

future work in this research area are recommended.

5.1 RESEARCH CONCLUSIONS

Large scale coordination has become increasingly important as robots and agents become

more effective and less expensive. The coordination algorithms controlling the teams need

to be heuristic since several key coordination problems are known to be NP-Complete or

harder. Thus, to get effective performance in a particular scenario, the algorithms must be

carefully tuned. This research presented an approach to online reconfiguration of heuristic

coordination algorithms. The approach uses a simulation to produce a large data set which

is learned by a stochastic neural network that concisely models the complex, probabilis-

tic relationship between configurations, environments and performance metrics. The final

stochastic neural network, referred to as the team performance model, is then used as the

core of a user interface tool that allows rapid online and offline configuration of coordination

algorithms to particular scenarios and user preferences. The overall system allows rapid

adaptation of coordination, leading to better performance in new scenarios. Results show

that the team performance model captured key features of a very large configuration space

and mostly captured the uncertainty in performance well. In addition, the user interface tool

with the learned model was shown to be often capable of reconfiguring the algorithms to

meet user requests for increases or decreases in performance parameters. In summary, this
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work represents the first practical approach to quickly reconfigure complex sets of algorithms

for a specific application.

The performance of the approach has been demonstrated by two verification experiments

on the learned team performance model. First, on the measurement of how well the team

performance model captures target output distributions, the model approximated target dis-

tributions with an average error of only 20 percent for a very large configuration space (more

than 1032 possible configurations). This level of performance is quite good when compared

with an early attempt to model this complex relationship with decision tree induction (C4.5).

The decision tree induction was used with a reduced problem using 14 input attributes, only

four distinctive output classes (LOW, MEDIUM, HIGH, VERY HIGH), and only 30,000

cases, to generate 573 classification IF-THEN rules. On test data, these rules performed

with only 74.2% correct classification. Even though the task was very simple, the generated

tree was considered useless for any further applications. Furthermore, considering the huge

variability of the data, having 20 percent of distribution error was quite significant compared

with the level of 50 percent of distribution error measured from a particular model that gen-

erates only average values of outputs without variation. Basically, this level of performance

signifies that the team performance model was capable of capturing most of outputs with

normal uncertainty but had trouble in capturing high variation especially for outputs with

irregular behaviors. From the collected training data, a number of irregular cases were

found in this research. These difficulties may result from the inadequacy of neural network

architecture[61]. With a traditional topology of multi-level feed forward neural networks

as used in this research, the network has to struggle in representing unsmooth (irregular)

relationships, e.g., in a case when one of all parameters is changed by a little bit, but the new

corresponding results are very different from the previous results. An experiment for model-

ing the beta distribution was conducted to show the stochastic neural network’s basic ability

for representing uncertainty. This beta distribution is a very special mathematical model

that is widely considered an ideal tool for uncertainty modeling. Because the process of

collecting training data is quick and it has a smooth relationship between input parameters,

the experimental setup offered a good ground truth of verification of the proposed approach.

From the experiment, the learning process adapted quickly to match the symmetric normal
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distributions and asymmetric distributions, and later took more time to adapt to the more

irregular ones. These results show evidence of those distributions that are commonly found

in nature are learned very fast. The final model achieved very good results, less than 10

percent distribution error. Finally, results from this initial experiment validated the basic

feasibility of the approach, that it is feasible for stochastic neural networks to represent any

real world system with regular relationships.

Second, to measure how accurate the team performance model was in predicting the final

output performance measures, the final assessments of the team performance model were

15.465 percent of prediction error on average. This level of performance, was quite excellent

because 15 % performance indicates that the team performance model made predictions

correctly in almost all output performance measures, but that occasionally one output value

was incorrect. The most uncertain output performance measure that was difficult to predict

was the reward. In the experiment, there about 22 % of the test results indicate the percent

of prediction errors lower than 10 %, which means that the predictions were almost correct in

all output performance measures. Moreover, only 12 % of the test results indicates a percent

of prediction error in between 25-33 %. These prediction errors were mostly caused by the

completely wrong prediction of one output performance measure while the others were fine.

These results are excellent evidence for the efficiency of the team performance model for

prediction of values of output performance measures.

At the end, the significance of team performance model was verified in the reconfigu-

ration experiments, in which the team control interface was used as a tool for facilitating

users in controlling the system. The team control interface was designed to exploit the team

performance model for rapidly exploring and providing users with possible configurations

that make the target system achieve preferred outcomes. In the team control interface, the

team performance model was an important key, so that all features in the interface operated

by making use of the team performance model. If we could demonstrate that the team

control interface and its functions were useful, the team performance model would have

demonstrated its significance. The results of these experiments provide evidence for valu-

able assessment of team performance model as the backward execution has shown effective

outcomes for finding new possible preferred configurations. The results were 81.25 % and
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88.125 % corrections for one constraint reconfigurations and multiple constraint reconfig-

urations respectively. Moreover, the results of sequential reconfigurations with constraints

demonstrated the generality of the approach. The only problem was that when the results

indicated that the differences of the change were lower than 20 percent, the outcomes might

not be as predicted. Since this problem occurred only when the differences are small, they

might be caused by system uncertainty. In summary, if the search results indicated more

than 20 percent of changes both increasing cases and decreasing cases, most of them will

likely be observed.

To achieve this level of performance, the learning process took about 2 months with five

computing machines (most of them are PC-Intel Celeron 1.4GHz, >526MB, with Windows or

Linux OS) running in parallel independently. Because the proposed learning process requires

a lot of computing resources for each generation, the next challenge is how to speed up the

learning process. For this reason, it is crucial to find ways to allow good potential models to

emerge as fast as they can. First, the number of training instances used in each generation

was examined. The study found that even though, with concern about elapsed time, using

50 training instances were determined to give a good trade off between learning performance

precision and elapsed time, other lower numbers of training instances also proved useful

for identifying initial team performance models and stepping up the learning process as

well. An additional technique, called a ”hall of fame” approach (for details please read

section 3.4.4), was used for speeding up the learning process and made it possible to run

on different machines allowing possible parallel training processes. Running a number of

learning processes at the same time, sometimes with different settings, provides a huge

variety of possible models generated from every run. In general, the hall of fame was used to

collect good learned team performance models from each learning step, so that every learning

process could get benefit from other processes. In the future, to expedite the learning process

even more, it would be a great improvement if a parallel computer or a quantum computing

machine were available because the learning process used in this research was designed to

take advantage of different computing machines running in parallel and Genetic Algorithms

process can use quantum properties in order to evaluate each individual model more quickly

and effectively.
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To model the very complex relationship for coordination configurations of large multi-

agent teams, it is a very challenging task to obtain enough training data from a huge pa-

rameter space within a limited time. Referred from section 3, the initial step of the over

all process is the collection of a large volume of training data. This training data either

already exists, e.g., from many training exercises, or needs to be gathered. In this research,

training data was collected from an abstracted simulation environment. Several computer

years were used to generate simulation data, with each run taking between 1 second and

ten minutes, depending on the complexity of the configuration. The process of creating

and preprocessing training sets for the learning process is atypical, because distributions of

outputs are required. Each training datum was made up of two parts: the input vectors

(system parameters, s and configurable parameters, c) and a set of output vectors, p. For

the purposes of computing a fitness function during the evolutionary algorithm, the output

values are discretized into some number of slots. In this work, 100 slots were typically used.

Furthermore, these training data have to be able to represent the entire relationship in some

aspect. Unfortunately, it is impossible to collect perfect training data because it takes too

long to collect them all. Fortunately, with a statistical analysis, described in section 3.2.1, a

smaller number of training data can be collected that can be statistically shown to represent

the entire relationship within a confidence interval. With the additional assumption that

this complex configuration relationship forms a smooth surface, training data can be simply

sampled randomly if the intention is to use all possible ranges of parameters equally. For

this work, training data were collected in roughly 21000 samples.

In summary, this work has demonstrated that the new approach effectively provides

human users with tools for interacting with a large-scale multi-agent system. The new ap-

proach consisting of three key ideas has been successfully implemented and verified. First,

the proper training data collection has been designed and implemented to assemble a num-

ber of training data that are statistically sufficient to represent a large configuration space

and are used in the learning process. The concept of a stochastic neural network has been

effectively used to represent the complex relationship between the configuration parameters

of coordination algorithms and performance measures for large teams. An effective learning

algorithm to train the stochastic neural networks has been developed so that uncertainties
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in training data are captured. A team performance model has been created for representing

the relationships between the environment, team configuration parameters, and performance

measures in a way that allows rapid exploration by human users. Then, a team control in-

terface has been designed to use with the team performance model in searching for possible

best configurations. Finally, the interface has been used successfully allowing online recon-

figurations when human users are working with a large-scale multi-agent system. The main

contribution of this research is the development of a new idea for stochastic neural net-

works that concisely models the complex, probabilistic relationship between configurations,

environments and performance metrics. A genetic algorithm is used with a new fitness func-

tion for determining whether the output distribution matches the data distribution. The

stochastic neural network is then used as the core of the tool that allows rapid online or

offline configuration of coordination algorithms to particular scenarios and user preferences.

As the results, the overall system allows rapid adaptation of coordination, leading to better

performance in new situations. Importantly, the approach that has been developed from this

research can also generally apply to any complex, nonlinear interacting system of algorithms,

or complex, nonlinear interacting physical processes.

5.2 ERROR MEASUREMENT DISCUSSION

In this work, two error measurements were used for verifying the team performance model.

The first method is the percent of distribution error computed by using Pearson Chi-square

test [51]. This test is utilized for measuring statistical differences between two output dis-

tributions, in this case, actual output distributions and target output distributions. The

actual output distributions were obtained from executing the team performance model for a

specific number of times. On the other hand, the target output distributions were obtained

from the collected training database, in which they were collected by executing TokenSim

30 times per configuration. To get the percentage of difference error, equation 3.8 was used.

This equation mainly depends on the values of Chi-square test (χ2) and total number of

frequencies from the two output distributions (N = na + nt). In a case that the actual
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output distributions are made from executing team performance model for 30 times, i.e.,

na is 30, since nt is always 30, and then N is 60. In another case that the actual output

distributions are made from executing team performance model for 300 times, i.e., na is 300,

and then N is 330. In general, if the output distributions are made from high numbers of

executions, better precision is expected. Unfortunately, while actual output distributions

can be obtained from executing team performance model many times to gain better preci-

sion, target output distributions cannot. As a result, the results of verification in Table 4.2

are shown with different numbers of executions for the actual output distributions. Results

show that the larger the sample of actual distributions the less of percentage of error. While

this method is a statistical assessment for the team performance model toward representing

the target system, it is not certain which value is the real error assessment for the team

performance model, since the target output distributions have very small samples for com-

parison. However, in this research, I mainly used the actual output distributions produced

after 1200 executions considering error precision and execution time. Overall results show

excellent potential of the approach for representing a very complex system. However, from

the experiments showed there was a training difficulty in that the learning process took a

long time to capturing high uncertainty outputs. Even though the final averaged percent of

distribution error was around 21 and 16 percent for output distributions produced after 1200

and 2500 executions respectively, if further learning time were allowed, the performance of

models might improve significantly.

In addition, the second error assessment was implemented as the percentage of prediction

error. This method measures how accurate the team performance model was in predicting

the actual final output performance measures in a form of possible ranges of possible output

parameters. The predictions are based on the statistical information of possible output

performance measures generated by executing the team performance model for 100 times

with test coordination configurations, i.e., the smallest value (MIN), lower quartile (Q1),

median (M), upper quartile (Q3), the largest value (MAX). The measure utilizes a reasonable

plausible measurement to get the percentage of prediction error, as described in section

4.2.5.2. In general, if the final performance outputs are in the ranges predicted by the team

performance model, the errors are very small. If the final performance outputs fall outside
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the ranges, the errors are computed from their distances from the bounds of the range. Figure

5.1 depicts how to assess the percent of prediction error from an error bar. The idea behind

this method is to use the range between Q1 and Q3 as the primary target prediction and

the range between MIN and MAX as the secondary target prediction, so that the difference

between primary and secondary target prediction is determined to be 1% prediction error.

Other than that, the percent of prediction error is determined from the distance between

the final performance outputs and the boundary of the error bar. However, if the distance

is far beyond the length of MAX-MIN, the maximum prediction error is applied. Normally,

a prediction error is computed from all output performance measures independently. Since

there are totally four output performance measures for each configuration, each one has the

maximum 25 percent of prediction error so that the total percent of prediction error of all four

outputs are summed up to 100 percent of prediction error. The decision to use summation

of all fours prediction errors for representing the total percent of prediction error is to give

a better impression of the relative results across four performance outputs. For example,

see Figure A4 in Appendix A, configuration]5 got 6.82 percent of prediction error, in which

the number gives an impression that all final performance outputs were just a bit off. On

the other hand, configuration]6 got 26.0 percent of prediction error, in which the number

provides an impression that one performance output was completely wrong and the others

were fine. In Figure A5, configuration]10 got 33.75 percent of prediction error, in which

the number presents an impression that two performance outputs were somewhat off. While

this method is an ad hoc measurement, it provides a good assessment for the usefulness of

the team performance model toward searching possible configurations. Results, in Table 4.3,

show that the team performance model is reliable for predicting the possible ranges of output

performance measures. From the experiments, the team performance model performed about

15% prediction error on average, in which the model was correct in all output values, but

sometimes the values were unpredictable in one output.

To give a better impression of the difference between these two error assessments, Table

5.1 shows a comparison among six different team performance models. These six team

performance models were picked during the learning process, so that they have different levels

of presentation for representing the target system. The first team performance model was
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picked at the early stage of learning process, so that it has a very poor representation model of

the target system. The second, third, fourth and fifth team performance models are generated

from the learning process accordingly. Finally, the sixth team performance model was the

best model generated from the learning process, i.e., it has a best representation model of

the target system so far. From the Table 5.1, it is noticeable that all team performance

models are in order of their levels of representation in which the model]1 is the worse and

the model]6 is the best. First, considering the first error assessment, with different number of

executions, the values of percent of distribution error are decreased accordingly when better

team performance models were used. When using 30 executions for generating actual output

distributions, the values of percent of distribution error were stuck at 47 percent. This effect

is probably caused by having a small number of frequencies from the two output distributions.

When using more numbers of execution, e.g., 300, 1200 or 2500 executions, the values of

percent of distribution error are improved as the number of execution increases. Each of them

gives different values of percent of distribution error, in which it was not sure which one is

the real error assessment since the target distributions are based on small samples. However,

the results in this research were shown mainly by using 1200 executions. Furthermore, the

values of percent of prediction error are very close to percent of distribution error generated

from 2500 executions, except when the values of percent of distribution error were higher

than 50% the percent of prediction errors were nearly 100%. The possible reason is that

the good team performance models normally have their means of actual output distributions

very close to the means of target output distributions, and when using more numbers of

executions (2500 executions), the widths between the minimum and maximum values of

output distributions spread out wider, resulting in getting better percent of distribution

error and lowering the percent of prediction error. On the other hand, the models, which

have percent of distribution error lower than 50%, normally produce the prediction ranges

very far from the actual values, so that the percent of prediction errors were nearly 100%.

Interestingly, even though these two error assessments were used differently for verification

of team performance model in this research, they are connected when using high number of

executions (2500) for computing percent of distribution error results were much closer to the

results computed from percent of prediction error.
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Figure 5.1: Percent of prediction error is computed from the error bar generated from team

performance model.
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Table 5.1: Six different team performance models are shown with their error assessments,

both percent of distribution error with different numbers of executions and percent of pre-

diction error. Columns with shaded highlight show two error assessments that were mainly

used in this research.

5.3 RECOMMENDATIONS FOR FUTURE RESEARCH

While this research shows the potential for using stochastic neural networks to model complex

coordination behavior, significant work remains. One question is how to obtain greater

precision in presenting the complex relationships within such large dynamic models. One

possible way to enhance the capability of stochastic neural networks is to modify the neural

network as proposed in [61]. In [61], the new architecture of neural networks enhances the

network abilities for handling various numbers of input data with different hidden neural

parts in a network. This architecture consists of a three layer neural network, in which all

hidden nodes are interconnected, making it possible for the network to learn relationships

with a non smooth surface. Consequently, in theory, any complex system could be modeled

with this new stochastic neural network. However, the technique to train this network

still is a big question. Even though using an adapted genetic algorithms approach with

distribution comparisons has shown promising results in this work, it does not guarantee
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optimal solutions. In fact, to model a very complex system with uncertainty present, it is

difficult to guarantee optimal solutions. One possible improvement is to speed up the learning

process so that it is practical to implement in real applications, e.g., genetic regulatory

systems[48] and prediction of trading values in stock markets [4]. Another issue is how

well results or even modeling approaches may generalize between application domains. The

approaches should find an effective way to adapt when target algorithms have been changed

so that the entire process does not start from the beginning again. For example, a small group

of five mobile robots has been trained to effectively explore and create a map for a particular

area. Later, the robots have added an additional capacity to use video for searching for

injured people. The approach should be able to use the first learned model to adapt for the

second task more easily. In this case, new additional input nodes and output nodes could be

added to the model connecting to the nearest hidden layer with zero weights. The new model

would preserve the functioning of the old model before training with new training data, so

that the new task can be learned faster. While the results have qualitatively demonstrated

that this approach produced a model that behaves as we believe it should, quantitative

measures and comparisons with alternate approaches are needed to support this claim with

greater certainty. By using complex common tasks that have been used in literatures, e.g.,

forecasting of the sunspot numbers[118, 74], hand writing interpretation[61], the approach

can be applied and made quantitatively comparisons with other approaches.

To evaluate the results of this work with a high fidelity simulation, a scenario involving a

large-scale multi-agent system could be used. This testing scenario is a military simulation,

which runs on the Machinetta [90] platform. The proxies provide the general purpose coor-

dination infrastructure that connects the assets in the environment, the human commander,

and the terrain analysis agent. The environment simulation, called Sanjaya [102], is a con-

structive simulation supporting the simulation of ground, air, and unmanned aerial vehicles.

This simulation can be designed to present the uncertainty and confusion that can occur in

large-scale coordination in real-world environments. The human commander is a member

of the team represented by a proxy. The proxy handles the coordination for the teamwork,

but a domain-specific interface is required between the commander and his proxy to ensure

that the proxy represents the commander’s intentions effectively during the coordination of
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team activities. The terrain analysis agent is a special member of the team who provides a

tactical analysis of the terrain to the rest of the team. With this multi-agent infrastructure,

a challenging scenario can be designed for evaluating the proposed approach with a human

commander. A user study can be conducted, investigating aspects of how the system helps

users to achieve improved task performance.

In addition, evaluation of the design of interactive user interface that facilitates intelligible

interactions between the user and the multi-agent system is an interesting issue for future

development.

115



APPENDIX A

EXAMPLES OF TEAM PERFORMANCE MODEL VERIFICATIONS

While quantitative results have been shown in the experiments and results section, to get

an idea what the results look like visually, examples are shown in this section. Twelve con-

figurations were selected, as shown in Table A1, representing all levels of learning difficulty.

Configuration 1 was recognized as the easiest one and configuration 12 was recognized as the

hardest one.

As shown in Figure A1 and A2, all twelve example configurations are plots with their four

output distributions. Target distributions are displayed as arrow poles. Actual distributions

generated by team performance model are displayed as diamond poles. Out1, out2, out3,

and out4 represent four output performance measures; token moves, plant started, reward,

and unique sensor fusion, respectively. Figure A1 shows the first half of twelve example con-

figurations that receive good learning performance with lower percent of distribution error.

On other hand, Figure A2 demonstrates the second half of twelve example configurations

that receive poor learning performance with higher percent of distribution error.

For verification experiments with team control interface, examples are shown in Figure

A3, A4, and A5. In Figure A3, the first four configurations (1-4) are shown with their

prediction error assessments. Then, the next four configurations (5-8) and the last four

configurations (9-12) are shown with their prediction error assessments in Figure A4 and

Figure A5, respectively. The total prediction errors were summed up from four prediction

errors of output performance measures. The box plots represent the output predictions at

current step of execution.
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Table A1: Twelve configurations are listed for using as examples for verifications.
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Figure A1: Six plots of the first six example configurations are shown with their percent of

distribution error. Each configuration consists of four output distribution plots. Target dis-

tributions are displayed as arrow poles. Actual distributions generated by team performance

model are displayed as diamond poles.
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Figure A2: Six plots of the last six example configurations are shown with their percent of

distribution error. Each configuration consists of four output distribution plots. Target dis-

tributions are displayed as arrow poles. Actual distributions generated by team performance

model are displayed as diamond poles.
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Figure A3: Examples of the first four configurations (1-4) are displayed when they are verified

with team control interface.
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Figure A4: Examples of the next four configurations (5-8) are displayed when they are

verified with team control interface.

121



Figure A5: Examples of the last four configurations (9-12) are displayed when they are

verified with team control interface.
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APPENDIX B

EXAMPLES OF RECONFIGURATION VALIDATIONS

In this section, four examples of reconfigurations were demonstrated with constraints in

sequence. In each example, there were two points of reconfiguration. At start, at point

A, a configuration was set, then the first reconfiguration was executed at point B, and

the final reconfiguration was performed at point C. Thus, there were three configurations

assessed. Each point of assessments all input parameters and predicted output parameters

were recorded. At the end, the actual output performance measures were recorded. In all

figure, on the left, there configurations are shown with all input parameters at point A,

B, and C, respectively. The first 16 input parameters are system configurations that can

not be changed. The last 15 input parameters are configurable configurations that can be

changed during execution. On the top right, output parameters are shown. The prediction

of four output values at point A, B, and C are listed for their maximum, median, minimum.

The final actual output values are shown as well. On lower right, four plots of four output

performance measures are displayed. At point A, it is a start point. At point B, and C,

there are lines indicating the point of reconfigurations. The maximum step of execution

is 500. The scales of the plots are automatically adjusted to display all information. The

maximum output value of each plot is shown on the upper right side of the plot. The box

plots represent the output predictions at current step of execution.

The first example is shown in Figure B1. At point A, the start configuration was set

with the third configuration in Table A1. At point B, with intention to increase the number

of token moves, a new configuration was searched and reconfigured by the team control

123



interface. Then, with intention to increase the number of plans started, the team control

interface was used to find a new configuration. At point C, the new configuration was

reconfigured. At the end, comparing with the original configuration, the results showed high

number of token moves and plans started. In addition, other outputs were very close to

predictions.

The second example is shown in Figure B2. At point A, the start configuration was set

with the fifth configuration in Table A1. At point B, with intention to increase the number

of token moves and plans started, a new configuration was searched and reconfigured by the

team control interface. Then, with intention to decrease the number of token moves but

still increase the number of plans started, the team control interface was used to find a new

configuration. At point C, the new configuration was reconfigured. At the end, comparing

with the original configuration, the results showed that the number of token moves did

increase not much even it started to increase a lot at point B, but it slowly increased after

point C. The number of plans started was relatively increased from the start. In addition,

other outputs were very close to predictions.

The third example is shown in Figure B3. At point A, the start configuration was set

with the sixth configuration in Table A1. At point B, with intention to increase the number

of token moves, a new configuration was searched and reconfigured by the team control

interface. Then, with intention to increase the number of plans stared, the team control

interface was used to find a new configuration. At point C, the new configuration was

reconfigured. At the end, comparing with the original configuration, the results showed the

number of token moves started to increase at point B and got a high number. The number

of plans started was not increased at all before point C, and started to increase after point

C. In addition, other outputs were very close to predictions.

The fourth example is shown in Figure B4. At point A, the start configuration was

set with the eighth configuration in Table A1. At point B, with intention to increase the

number of token moves, a new configuration was searched and reconfigured by the team

control interface. Then, with intention to increase the number of reward, the team control

interface was used to find a new configuration. At point C, the new configuration was

reconfigured. At the end, comparing with the original configuration, the results showed the
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number of token moves started to increase a lot at point B and got slower increase after

point C as the effect of the third configuration. The final number of token moved was still

high. The number of reward was not increased at start until the start of point C, and then

it started to increase and got the range of predicted values. The number of plans started

was not increased at all before point B, and started to increase after point B. Even though

this number of plans started was too high than the predicted values, other outputs were very

close to predictions.
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Figure B1: The first example of reconfiguration. At point B, a new configuration was used

to increase the number of token moves. At point C, a new configuration was used to increase

the number of plans started.
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Figure B2: The second example of reconfiguration. At point B, a new configuration was used

to increase the number of token moves and plans started. At point C, a new configuration

was used to decrease the number of token moves and still increase the number of plans

started.
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Figure B3: The third example of reconfiguration. At point B, a new configuration was used

to increase the number of token moves. At point C, a new configuration was used to increase

the number of plans started.
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Figure B4: The fourth example of reconfiguration. At point B, a new configuration was used

to increase the number of token moves. At point C, a new configuration was used to increase

the number of reward.
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