
 i 
 

Arts & Sciences in partial fulfillment  

of the requirements for the degree of 

Doctor of Philosophy 
 
 
 
 
 
 
 
 
 

University of Pittsburgh 
 
 

2007 

 
 
 
 
 
 
 
 

Submitted to the Graduate Faculty of 

Bachelor of Arts, University of Massachusetts Amherst, MA 

Donald J. Bolger 

 
by 

  

A Cognitive Neuroscience Investigation of Reading Skill 
 
 

The Development of Orthographic Knowledge: 

CORE Metadata, citation and similar papers at core.ac.uk

Provided by D-Scholarship@Pitt

https://core.ac.uk/display/12210164?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


UNIVERSITY OF PITTSBURGH 

FACULTY OF ARTS & SCIENCES 
 
 
 
 
 
 
 
 

This dissertation was presented 

 
by 

 
 

Donald J. Bolger 
 
 
 

It was defended on 

August 28, 2006 

and approved by 

Isabel Beck, Ed.D. Instruction & Learning  

Julie A. Fiez, Ph.D. Psychology  

Erik Reichle, Ph.D. Psychology 

Walter Schneider, Ph.D. Psychology 

 Dissertation Advisor: Charles Perfetti, Ph.D., Psychology 

 

 ii 



 

Copyright © by Donald J. Bolger 

2007 

 iii 



The Development of Orthographic Knowledge: 
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 Donald J. Bolger, PhD 

University of Pittsburgh, 2007

  

This investigation compared the effects of explicit letter-sound training to holistic word 

training on the development of word recognition in a novel orthography paradigm.  In a between-

subjects design, participants were trained to read spoken English words printed in the alphabet 

script of Korean Hangul.  Training took place over four separate sessions with assessment 

measures conducted throughout. Compared to the holistic training, the component training 

condition resulted in significantly better transfer to novel word forms and retention of previously 

learned items.   Furthermore, compared to component training, holistic training yielded greater 

sensitivity to frequency.  Variability in the holistically trained condition revealed bimodal 

distribution of performance: a high and low performing subset.  Functional MRI measured 

cortical responses to the training conditions.  Imaging results revealed generally greater 

responses in the “reading network” overall for the explicit component-based training compared 

to holistic training, in particular, regions of the inferior and superior parietal gyri as well as the 

left precentral gyrus.  In a comparison of readers within the holistic group, we found that readers 

who implicitly derived the sublexical patterns in the writing system activated more of the reading 

network than those who did not sufficiently acquire this knowledge.  This latter group primarily 

activated ventral visual regions.  We conclude that explicit training of sublexical components 

leads to optimal word recognition performance in alphabetic writing systems due to the 

redundant mechanisms of decoding and specific word form knowledge. 
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1.0  INTRODUCTION 

The specific aims of this investigation are to track the cognitive development of word 

reading and the underlying cortical variations resulting from differential training methods.  We  

discuss in detail the cognitive mechanisms involved in visual word recognition in alphabetic 

writing systems and how variations in instructional methods result in different learning 

outcomes.  Particularly, we emphasize the comparison of explicitly training the letter-sound 

correspondences of the writing system contrasted with holistic word form training in which this 

decoding knowledge must be implicitly derived.  We argue that explicit training results in more 

efficient word learning through internalization of the underlying code whereas holistic training 

can lead to failures in deriving these sublexical structures.  One implication of failing to learn the 

underlying code is that this results in logographic reading performance similar to that seen in 

reading disability (phonological dyslexia).  Our goal is to track behavioral performance 

throughout training and to uncover training-related differences in the neural mechanisms that 

support word recognition.  We briefly discuss the cortical structures known as the “reading 

network” and the different pathways that are hypothesized to support grapheme-phoneme 

decoding compared to word-form processing (Paulesu et al., 2000).  We also discuss similar 

differences in cortical structures that are  believed to account for reading disability (Shaywitz et 

al., 2002; Pugh et al., 2001) and variations in alphabetic compared to logographic writing 

systems (Bolger et al., 2005).  We then present a cortical framework that accounts for skilled 
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word recognition and how this system develops.  Based on this framework, we make specific 

predictions on the cortical outcomes of our experimental paradigm.   

1.1 BACKGROUND 

The study of the development of reading ability and disability over the past thirty years has 

emphasized the necessity to acquire the principles of mapping aspects of the written language 

system onto the corresponding components of the spoken or oral language system (Perfetti, 

2003).  Whereas the Universal principle of all writing systems is that they represent visually the 

fundamental unit of communication, the spoken word (Perfetti, 1994), writing systems vary in 

the way in which they encode the spoken language and also in the optimal means for developing 

skilled word recognition.  In particular, intensive study of the alphabetic writing system of 

English has shown that the successful acquisition of spelling-sound correspondences, which, in 

general, map graphemes (letters) to phonemes (letter sounds), determine reading proficiency and 

conversely relate to impaired reading ability (Stanovich & Seigel, 1994; Shankweiler et al., 

1995).  

Evidence that phonics-based training, explicit training of the grapheme-phoneme 

correspondences of the writing system, yields better transfer, retention, and overall learning rates 

comes from the extensive literature on reading development and instruction (NRP, 2002).  

Although there are many studies showing benefits of systematic phonics training (for review, 

Bus & Ijzendoorn, 1999; Ehri et al., 2001; NRP, 2002), there is limited understanding of the 

mechanism of this benefit.  Alternatively, it has been argued that minimal instructional energy 

should be spent on explicitly training these letter-sound relationships since the overall goal is the 
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acquisition of a highly developed vocabulary, that is, a visual lexicon (Goodman, 1967; 1996).  

One of the most recognized models of word reading, the dual-route hypothesis (Coltheart, 1978, 

1999), proposes that there are two mechanisms for word recognition: the primary mechanism of 

addressed phonology in which a stimulus is compared to items in a visual lexicon, and the 

secondary mechanism of assembled phonology in which a stimulus is decoded via letter-sound 

correspondence until a phonological word form is generated.  Evidence for the primary route or 

lexical route is that although non-words can be read via a phonological system, exception words 

by this rule cannot.  Exception words like pint and colonel cannot be readily identified by 

activating the corresponding phonological representations of the letters or graphemes, because 

they are not informative actual pronunciation or meaning of the words (Coltheart, 1978).  The 

primacy of the holistic word mechanism of this model suggests that training which is targeted at 

such a level will result in optimal word recognition performance.  The primary goal of this 

investigation is to determine whether explicit training in the letter-sound components of an 

alphabetic writing system, compared to a holistic word-form based training model, will result in 

more effective and efficient word recognition skills.  In an experiment using a novel orthography, 

we controlled the feature similarity and practice experience of the learners to identify whether 

these training methods yield differential learning outcomes and if they rely on unique cortical 

mechanisms.   

Separable cortical mechanisms subserving addressed (lexical lookup) versus assembled 

(sublexical grapheme-phoneme mapping) processing have been postulated in the literature 

(Rumsey et al.,1997; Paulesu et al., 2000; Jobard, Crivellor, & Tzourio-Mazoyer, 2003).  

Specifically, a “ventral” route involving anterior aspects of the left ventral inferior temporal and 

inferior frontal regions have been suggested as serving as the lexical processing route; whereas a 
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dorsal route involving angular gyrus, the superior posterior temporal region, and the posterior 

inferior frontal region is considered as the sublexical print-sound processing pathway.  The 

second goal of this investigation is to understand the cortical mechanisms implicated in explicit 

component-based compared to holistic word based training methods.  An fMRI component of 

this experiment measured cortical activity following the behavioral training paradigms to track 

training-related differences in the network of regions associated with word recognition.   

Reading Instruction 

The strong relationship between learning to read and the explicit awareness of the 

segmental structure of the spoken language has been extensively studied since Liberman and his 

colleagues (1974), receiving ubiquitous support over the past 30 years.  The ‘phonemic 

awareness’ hypothesis generally posits that if a child cannot segment the units of a syllable into 

separate sounds, then they will never acquire the ‘alphabetic principle,’ that is, the fact that 

letters represent individual sounds in words.  The ability to parse and manipulate the 

phonological units of words is well correlated with literacy skills from word recognition to text 

comprehension (Bradley & Bryant, 1983, Share & Stanovich, 1995), and the alphabetic principle 

is thought to be at the foundation of acquiring proficient word reading skill.  

Instructional interventions focusing on the relationship between letters and sounds have 

proven effective for the remediation of reading deficits (Temple et al., 2001; McCandliss Beck, 

Sandak, & Perfetti, 2003; Shaywitz et al., 2003; 2004).  For example, by providing an hour of 

phonics-based intervention per day for one school year, Foorman (et al., 1997) found significant 

increases in decoding and word identification skills. In a similar study of children at-risk for 

academic failure, Foorman (et al., 1998) found that phonics training had a substantial impact on 

word identification (increase in standard deviation above control group, d=1.63), decoding 
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(d=1.14), spelling (d=0.56) and comprehension (d=0.32).  To illustrate one example, a child at 

the end of the second grade was unable to decode words after two years of normal instruction 

and one year of reading remediation by the school system.  With a targeted reading treatment 

program that focused attention on visual and phonological segmentation of words (McCandliss et 

al., 2003), a fifty hour intervention program resulted in a five grade-level advancement in 

standardized reading test performance.  This recent intervention program conducted at the 

University of Pittsburgh attempted to directly train impaired readers to attend to these 

consistencies.  It was successful in remediating decoding abilities, producing an average of one 

grade level advancement in less than twenty-four hours of instruction on word recognition and 

comprehension scores (McCandliss et al, 2003).   

But reading development is not solely determined by the level of letter-sound knowledge 

that is acquired.  According to the developmental frameworks of reading that we espouse (see for 

example Perfetti, 1992; Ehri, 1992; Share, 1995), children begin to utilize letter-sound 

knowledge as a bootstrapping mechanism in the development of fully specified orthographic 

“word forms.” That is, at the outset of learning, children must acquire sufficient letter-sound 

knowledge to enable them to decode familiar and novel words in isolation. These isolated 

decoding events enable the instantiation of a “word form” representation that becomes 

increasingly specified with each successful exposure to the item.  Thus, reading development, 

even in alphabetic writing systems requires the instantiation of a holistic word form as well as 

the letter-sound knowledge of which the system is composed.  Furthermore, as their knowledge 

of word forms grows, children’s knowledge of spelling-sound correspondences becomes 

increasingly sophisticated, going from one-to-one mappings of a grapheme to a phoneme (e.g. 

‘c’ to /k/), to one to many mappings  (c to /k/ and /s/), eventually  learning contingent rules.   

 5



Studies have reported that less skilled readers do, in fact, have difficulty with variable consonant 

sounds such as the hard/soft “c” or “g” (Venezky & Johnson, 1973), and with complex 

consonants such as ‘–nt’ or ‘–rst’ at the end position of words (McCandliss et al., 2003a; Bolger, 

Van Dyke, Landi, Perfetti & Foorman, 2002).  Difficulty in learning vowels (Fowler et al., 

1977), where the mapping between letter and sound is roughly 0.58 (Treiman et al, 1995), 

supports the expectation that the lack of consistency in the spelling sound correspondence 

hinders reading acquisition.  Thus, differences in reading ability are marked by refinements in 

the way that print-sound relationships are represented, which are fundamental driven by the 

ability to access the stored representations of holistic word forms. The development of this 

coding structure can be implemented as an emergent pattern in a parallel-distributed network 

(Harm & Seidenberg, 1999; Plaut et al., 1996, Harm, McCandliss, & Seidenberg, 2003). 

Several lines of evidence suggest that word forms can be learned in holistic fashion.  

Reading interventions conducted by Royer et al (1994) suggest that increasing fluency through 

systematic whole word training results in the strengthening of reflexive phonology (Perfetti, 

1992), the process of deriving print-sound correspondences implicitly, in struggling readers.  

Bolger et al. (2002) found that the frequency of repetition of orthographic rime patterns within 

words embedded in a story significantly predicted performance on isolated novel word and 

pseudoword reading with items containing those same patterns.   Findings from Ehri & Wilce 

(1985) reveal that pre-readers with limited decoding knowledge perform well on learning visual 

forms which have arbitrary relationships with paired phonological words (e.g. “qDjK” for the 

word “scissors”).  However, several studies using manipulated orthographies have uncovered the 

limitations of deriving letter-sound correspondences from whole words.  For instance, Byrne and 

colleagues (Byrne, 1992; Byrne & Carroll, 1989) have shown that learners, particularly 
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preliterate children, when confronted with the task of associating linguistic forms with graphic 

symbols will tend to map forms at the lexical and not the sublexical level.  Thus, whole word 

training can in some instances provide the environment to acquire sublexical letter-sound 

knowledge; however, the effectiveness of this learning may be limited to particular levels of 

reading skill. 

Reading Skill & Disability    

Based on the evidence from studies of skill development, preliterate and low skilled 

children have greater difficulty parsing the speech stream into individual phonemes which enable 

the letter-sound relationships to be acquired (Ehri & Wilce, 1985; Ehri, 1992; Liberman et al., 

1967) and thus these readers tend to reflect more holistic knowledge of word forms (Ehri, 1992; 

Adams, 1990).  Impairments in reading disability have also been shown to reflect differences in 

the ability to acquire letter-sound relationships or the ability to store holistic representations of 

lexical items.  The more common form of reading disability is developmental or phonological 

dyslexia, which is characterized by failure to read pronounceable pseudowords and low 

frequency words via letter-sound decoding, but maintain some ability to read high frequency 

words.  The less common form of disability is surface alexia, which is characterized by impaired 

ability to read irregular/exception words that do not follow standard letter-sound 

correspondences, but retain the ability to read ‘regular’ words that follow consistent letter-sound 

mappings (Castles & Coltheart, 1996).  The assumption here for the dual route models is that the 

direct lexical route is damaged, thus leading to over-reliance on the grapheme-phoneme 

correspondence of the non-lexical route.  Whereas in the case of phonological dyslexia, it is the 

sub-lexical (letter-sound knowledge) route that is impaired causing a reliance on the holistic, 

lexical route.  This phonological form of the disability is argued to stem from a failure to 
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“develop” the ability to parse the speech stream and sufficiently acquire the decoding knowledge 

(Lieberman et al., 1990).  As we discussed earlier, explicit instruction of decoding knowledge 

enables the remediation of deficits in word and non-word reading (McCandliss et al., 2003a).  

Thus, it may be argued that this developmental form of reading disability may come from 

failures in instruction methods to adequately address explicit grapheme-phoneme relationships 

(Adams, 1990; Beck, 2005).   

A fundamental question that we address in this study is whether training in a holistic 

fashion produces the deficiencies seen in developmental dyslexia: failure to read low frequency 

and novel words and to decode pronounceable non-words.  Thus, the effects of holistic training 

may result in a variety of learning outcomes.  In the optimal case, learners may implicitly derive 

the sublexical knowledge necessary for decoding words similarly to those trained explicitly on 

the pattern.  In the less optimal case, learners insufficiently derive sublexical knowledge 

resulting in generally poor learning and performance on decoding word forms.  And in the 

extreme case, learners may acquire no sublexical knowledge resulting in logographic type 

reading patterns in which no ability to decode is evident—we will expand on this hypothesis 

later.       

Training Paradigms 

Several paradigms have been devised using artificial or novel orthographies to test the 

differential effects of component and holistic training on acquiring knowledge (Bishop, 1964; 

Jeffery & Samuels, 1967; Byrne & Carroll, 1989; McCandliss, Schneider, & Smith, 1997).  

These investigations vary along several dimension including the age of participants, (from pre-

literate children to adults), orthography used (natural orthographies such as Arabic to artificial 

graphs), and training stimuli (pseudowords, words, etc.).  In all but one instance (Xue et al., in 
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press), the authors compared some form of component-based learning to a holistic word learning 

condition.  For instance, Bishop (1964) conducted one of the earliest novel orthography studies 

training adult subject to read words in Arabic script.  The findings of his study revealed that 

letter training compared to whole word training lead to better transfer performance to reading 

novel words.  However, the holistic condition faired better than the untrained control group at 

this task suggesting that these learners were picking up on some of the regularities in the letter-

sound pattern even if they could not explicitly state them.  Jeffrey & Samuels (1967) conducted a 

similar study using an artificial script on pre-literate children to test if they had the capacity for 

analytic phonology, the decomposition of letter-sound relationships from whole word 

experiences.  They also found that explicit training on the letters of this script lead to better 

transfer to novel word items (using only 2-phoneme word stimuli such as, /m/ + /ay/) than the 

holistic group, but unlike Bishop’s (1964) work, the holistic group did not outperform the 

untrained control group.  Byrne and colleagues (Byrne, 1992; Byrne & Carroll, 1989; Byrne & 

Fielding-Barnsley (1989) conducted a series of studies with pre-literate children using geometric 

patterns and colors that were associated with a) whole lexical items in two word phrases, b) 

syllable units in di-syllabic words, and c) individual phonemes in pseudowords.  They found that 

preliterate children could map symbols to whole word items (Byrne, 1992) and could map 

symbols to syllables (Byrne & Fielding-Barnsley, 1989), but they were completely incapable of 

mapping symbols to individual phonemes (both studies).  These findings suggest that phonemic 

awareness is a result of, not a precursor to, literacy training (Byrne, 1992).   

In a more recent study, Bitan & Karni (2003) trained adults to read words using a morse-

like script in which multiple symbols corresponded to a single letter.  They manipulated three 

training conditions within-subject: a) explicit training of letter-sound correspondences, b) 
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implicit training on holistic words, and c) an arbitrary mapping condition to mimic logographic 

reading.  The results of this study found that the acquisition of letter-sound components of the 

language only occurred when participants were exposed to the code explicitly prior to implicit 

(holistic) training.  Thus, the performance on transferring the letter-sound knowledge to reading 

new words only occurred for the explicitly trained group.  On the other hand, they found that 

explicit training did not transfer to learning words in a completely novel orthographic system; 

whereas implicit and arbitrary training conditions transferred well to these novel situations.  

Bitan & Karni (2003) found that these training conditions generally did not differ in learning rate 

in terms of retention and conclude that the same basic learning mechanisms subserve the 

acquisition of the lexical knowledge for these systems, but that a unique mechanism subserves 

decoding knowledge of letter-sound relationships.   

The investigation reported here is based largely on a paradigm developed by Bruce 

McCandliss (McCandliss, Schneider, & Smith, 1997) in which adults were trained to read words 

in an artificial script via a component phonics-based as compared to a holistic method.  In the 

original study, participants were tested and trained on a new set of words in 4 separate sessions 

allowing for the measurement of transfer and retention across time.  As opposed to Bitan & 

Karni (2003), the results of this study showed differential learning curves for the holistic 

compared to component group.  McCandliss et al. (1997) found that despite the high degree of 

within-session learning for the holistic group, these subjects showed poor retention of knowledge 

from session-to-session and poor overall transfer of knowledge to novel items.  In contrast, the 

component group showed a slower overall learning curve with a high rate of retention and 

positive transfer to novel items.  After the completion of the 4 sessions, subjects were asked to 

report their knowledge of the letter-sound code.  Like Bitan & Karni’s (2003) stimuli, the 
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stacked vertical grapheme units used in McCandliss et al’s (1997) study were difficult to visually 

segment without explicitly highlighting the visual components.  Subjects in the holistic condition 

failed to produce any of the visual components nor could they associate the proper phonemes 

with any semblance of a visual letter; whereas the component group performed at ceiling for the 

task.  The complete lack of awareness of an underlying code suggests that the McCandliss 

paradigm was successful at creating a logographic compared to alphabetic training environments.  

Thus, we chose to replicate this basic paradigm in our own investigation in order to test the 

differential effects of training in alphabetic systems on word recognition and the underlying 

cortical network.        

Summary 

We hypothesize that skilled reading in an alphabetic writing system requires that the 

learner a) acquire the set of individual orthographic units that make up the system, b) be able to 

isolate the units of speech corresponding to these orthographic units, c) systematically map the 

orthographic and phonological units in the context of words, and d) acquire holistic word-

specific representations of the items encountered.  Second, optimizing word recognition skill 

requires that each of the sub-skills listed above can be achieved with a level of automaticity that 

enables fast and accurate recognition of familiar items as well as transfer of skill to novel word 

items (and pronounceable pseudowords).   The determining factor of both skilled word reading 

and reading impairment is the fluency that is achieved in recognition of items holistically and 

decoding of unfamiliar items (Zeigler et al., 2003; Stanovich & Seigel, 1994).  Thus, we further 

hypothesize that instructional methods for reading in alphabetic systems which ignore the 

grapheme-phoneme components of the writing system will fail to develop the decoding sub-

skills necessary to read novel and pseudowords.  However, the subsequent ability to implicitly 
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derive the letter-sound patterns from identifying words fluently relying on quality holistic word 

forms (reflexive phonology, Perfetti, 1992) is hypothesized to be critical to the development of 

skill as well.  Therefore, an important component to this inquiry is to understand the effects of 

explicit instruction of components of the alphabetic writing system as compared with holistic 

training without this explicit component knowledge.    

The implications of these assumptions are that, when training of the mapping principles 

in an alphabetic system are explicit, the knowledge is internalized, enabling the reader to better 

retain knowledge of the word forms encountered and to transfer this knowledge to novel words.  

In contrast, training an alphabetic system in an holistic manner is likened to a logographic 

writing system in that, unless the components are implicitly derived, the mapping principles will 

not be internalized, resulting in poor retention of word knowledge and an inability to transfer this 

knowledge to novel forms.  The third goal of this investigation is to test whether direct training 

of the mapping principles of a writing system result in better retention and transfer than more 

holistic lexical training, and whether this latter training can result in logographic type reading 

in written word forms are mapped to their lexical, but not sublexical constituents.  

1.2 COMPARING ALPHABETIC AND LOGOGRAPHIC WRITING SYSTEMS 

Does learning to read in an alphabetic system invoke a fundamentally different set of cognitive 

processes and underlying neurological mechanisms than learning to read in a logographic 

system?  The fourth goal of this investigation is to determine whether holistic processing of 

alphabetic writing systems can result in logographic reading and determine variations in 

cortical activation underlying alphabetic compared to logographic reading.  Examining the 
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cortical processing of writing systems across languages, affords us the opportunity to compare 

whether alphabetic and logographic systems rely on a common set of neural regions or on 

distinct specialized regions emphasizing the unique mappings to phonology and lexicosemantics.       

Different writing systems represent the spoken language in very different ways.   

Alphabetic writing, which, in its visual form, encodes spoken units at the level of the phoneme, 

does vary in how consistently it maps graphemes to phonemes, with “shallow” orthographies, 

such as Italian and Finnish, having more consistent mappings than the “deep” orthography of 

English, and its notorious irregularities. But even the deepest alphabetic orthography maps 

graphemes to phonemes.  By contrast, the writing system in Chinese is often characterized as 

logographic, assuming each character maps to a spoken word, or ideographic, assuming each 

character corresponds to semantic representation; however, closer scrutiny of the orthography 

reveals that graphemic units known as radicals encode information about pronunciation, 

semantics, or both (for an in-depth account of Chinese word processing see Tan et al., 2005).  

Although, in principle, one could read Chinese directly for meaning without using pronunciation, 

the behavioral research on reading suggests that Chinese reading, like alphabetic reading, 

involves phonology as well as meaning (Perfetti et al, 2005). The reason for this is that the 

character is connected to a syllable pronunciation as well as to a meaning, leading to the 

activation of a spoken syllable when a character is read.  In the case of Japanese, two writing 

systems have been developed: katakana (or Kana), in which a single grapheme corresponds 

directly to a spoken syllable, and katakanji (or Kanji) in which a single grapheme corresponds to 

a morpho-semantic unit.  Despite the strong association between visual and semantic codes, the 

output of the Chinese and katakanji writing systems, as all writing systems, ideally reflect the 

spoken forms of words (Perfetti, 2004).   

 13



English, Japanese (Kana), and Chinese writing systems differentially map onto 

phonological and semantic aspects of language.  However, does this differential mapping result 

in variations in cortical specialization for writing systems?  From the standpoint that writing 

systems share a universal principle, specifically that all writing systems encode spoken word 

forms, we would predict that all writing systems rely upon a common network of cortical regions 

which map visual forms to spoken word forms.  However, because writing systems differ with 

respect to how the encode spoken language (i.e. at the level of the phoneme, syllable, or 

morphology/lexical in the present cases), we predict that cortical activation differences between 

writing systems (beyond the basic visual features) are due to these differences in how the spoken 

language is encoded/decoded from the visual form.   

Reading in a logographic system like Chinese or Japanese Kanji requires a set of 

principles mapping print to speech that differ dramatically from alphabetic writing systems like 

English and Korean.  In the former case, the printed forms or graphs readily map on to structures 

of meaning and the phonological word forms, which are single syllables.  While there are 

caveats—compound forms in Chinese can have components (radicals) for which the sole purpose 

is pronunciation—the general structure of the mapping system between print and sound is at the 

level of the word form.  On the other hand, the visual graphs in alphabetic writing systems 

represent speech sounds at the level of the individual phoneme, and to establish a word form 

representation it is necessary to be able to decode the letter-sound principles of the language.  

The differences in mapping principles between these two writing systems have implications for 

the way in which words are learned, that is, in order to learn a new visual word form in a 

logographic system one must see the graphic unit paired with the spoken word form (assuming 

the meaning of the phonological word form is already known).  Thus, the learning task is 
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essentially a paired-associate process requiring repeated pairings in order to establish the print-

sound relationship between the written and spoken word.  Optimal learning in alphabetic systems 

requires that the reader learn that the printed code underlying word processing reflects individual 

phonemes.  Therefore, identifying written words does not necessarily require constant paired 

exposure with the phonological form, rather by learning the relatively limited number of letter-

sound principles a learner can decode almost any lexical item in the language.  In sum, learning 

to read in logographic systems requires pairings of visual and phonological word forms and the 

knowledge of prior forms will not aid in the learning of future forms; whereas in alphabetic 

systems learning to understand the letter-sound code within words enables the underlying 

decoding principles to be acquired allowing for unknown written word forms to be easily 

decoded and acquired.  Greater experience with decoding known words allows for better 

acquisition of the underlying code and thus enables better decoding of unknown word forms.  

Moreover, because the underlying code is being learned as well as the word form fewer 

exposures to the spoken word are required to establish a quality representation of the word form 

which leads to better retention.  To summarize, compared to logographic systems, alphabetic 

systems lead to faster learning, better retention, and transfer or generalizability across items in 

the system.   

1.3 CORTICAL MECHANISM OF READING 

The study of reading is well represented in the neuroimaging literature with over 150 

scientific articles covering visual word recognition in skilled and impaired adults and children  

(see for reviews: Bolger, Perfetti, & Schneider, 2005; Fiez & Petersen, 1998; Jobard, Crivello, & 
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Tzourio-Moyer, 2003).  The process of deriving a neuro-anatomical model of the reading process 

has developed over the past decade revealing a reliable set of cortical regions associated with 

orthographic, phonological and lexical/semantic processing (Fiez & Petersen, 1998; Price, 2000; 

Jobard et al., 2003; Bolger et al., 2005) and models of cortical development are beginning to 

emerge (Pugh et al., 2001; McCandliss et al., 2003). A vast number of early studies set out to 

disambiguate the cortical mechanisms underlying the cognitive components necessary for word 

identification (i.e., orthography, phonology, and lexicon).  A comprehensive study by Pugh et al. 

(1996) laid the initial groundwork in identifying the cerebral organization of word identification 

processes using fMRI techniques.  They used a complex methodology of subtraction in order to 

single out the active neural structures corresponding to the particular cognitive functions being 

performed (previously listed above).  The Pugh study identified broad regions in the left 

prefrontal cortex associated with lexico-semantic processing using a categorization task.  

Regions in the superior and medial temporal gyrus were active in both rhyme and semantic tasks 

while extrastriate regions in the ventral visual cortex were active during the orthographic tasks.   

There is general agreement as well as quantitative evidence across studies (Bolger et al., 

2005) for a specific network of regions associated with visual word recognition.  To reiterate, the 

general cortical network for word reading includes the left ventral occipito-temporal region, the 

left superior posterior temporal region, the left parietal lobe (superior and inferior aspects), and 

the left inferior frontal region (from superior posterior to ventral inferior aspect).  These broad 

regions are characterized by the particular functions that they are believed to subserve.  We will 

briefly discuss the structure-function relationships for the anterior aspects of this network which 

are associated with both spoken and written language (Price, 2000) then discuss a more detailed 

framework for the left occipito-temporal region associated with visual orthographic processing.   
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Several studies have focused on the multi-faceted role that the superior temporal gyrus 

region plays in spoken language (Simos et al., 2000; Price, 2000), reading (Temple, 2002; 

Temple et al., 2003; Booth et al., 2003) and verbal working memory (Paulesu et al., 1993; Chein 

et al., 2002; Ravizza et al., 2004).  Many of these studies suggest a distinction between the more 

posterior temporo-parietal boundary region (including angular and supramarginal gyyi) involved 

in phonological analysis and grapho-phoneme conversion (Booth et al., 2003; Temple et al., 

2003), and a more anterior perisylvian region (Heschl’s gyrus and Planum Temporale) that is 

involved in more complex aspects of speech comprehension.   In their meta-analysis, Tan et al. 

(2005) found activation and greater convergence in the dorsal extent of the inferior parietal lobe 

(BA 40) for Chinese than for English/alphabetic studies, but the converse is true in the ventral 

aspect of this region.  Thus, the superior posterior temporal/inferior parietal region may show 

functional distinctions according to alphabetic and logographic learning.  

A meta-analysis of verbal working memory tasks performed by Chein et al. (2002), found 

functional heterogeneity in the left inferior frontal region of cortex.  More specifically, they 

found that the more superior posterior aspect of inferior frontal gyrus is associated with level of 

difficulty (e.g. load manipulations), whereas the anterior ventral aspect of inferior frontal gyrus 

was associated with contrasts of words and pseudowords.  This finding is consistent with that of 

Poldrack et al. (1999) which found that the superior posterior aspect of inferior frontal gyrus is 

involved in phonological processing, whereas the ventral anterior region is engaged in more 

semantic processing.  The inferior frontal region has also been implicated in terms of skill 

differences (Shaywitz et al., 2003) and manipulations of word frequency (Fiez et al., 1999).  

Whereas the superior posterior region of IFG has been implicated for all writing systems (Bolger 

et al., 2005), activation spreading from this region to the anterior lateral portion of middle frontal 
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gyrus is consistently found for Chinese, but not Japanese or English word reading (Bolger et al., 

2005; Tan et al., 2005) leading to the suggestion of this region’s involvement with cross-modal 

integration of lexical information.   

Just as the set of cognitive components are assumed to work interactively to enable 

successful word recognition, the cortical mechanism underlying these components are also 

believed to interact in a set of cortical pathways similar to the functional “routes.”  A study by 

Judith Rumsey and colleagues (1997) identified similar regions associated with phonological and 

orthographic processing components of word reading by investigation the frequency by 

regularity interaction.  That is, they factorally manipulated words of high and low frequency with 

consistent and inconsistent letter-sound correspondences.  This interaction is the basis for the 

notion of two mechanisms for word recognition (addressed vs. assembled phonology) since, 

compared to high frequency words, low frequency items tend to be read slower unless they 

follow consistent spelling patterns.  Thus, the frequency effects support the primacy of the 

holistic addressed mechanism, and the interacting role of consistency supports the use of a 

second sublexical mechanism of assembled phonology (Coltheart, 1978, 1999).  Using the dual-

route model as the framework for their predictions, Rumsey et al. (1997) concluded that the 

lingual/fusiform gyri in the visual cortex was responsible for holistic/visual word identification, 

whereas the posterior superior-temporal gyrus and adjacent posterior temporo-parietal boundary 

were responsible for more phonological recoding (or grapheme to phoneme mapping) in reading.    

Cortical Pathways & Reading Disability 

The earliest evidence for the neural basis of reading disability comes from Dejerine 

(1891, 1892) who described patients with impairments in both reading (alexia) and writing 

(agraphia).  These deficits were associated primarily with lesions to left angular/supramarginal 
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gyrus leading to the suggestion that this area was responsible for the storage and retrieval of 

visual word forms.  However, the syndrome of ‘pure alexia’ (alexia without agraphia) was 

associated with lesions to the left ventral visual processing stream or between this region and the 

angular gyrus (Dejerine, 1892).  More specifically, white matter deficits between left posterior 

occipito-temporal cortex and left angular gyrus produce disconnections between visual and 

linguistic representations.  Dejerine reasoned that angular gyrus in conjunction with Wernicke’s 

area (Wernicke, 1874) comprised a network of associating visual word with spoken word forms 

respectively.  The evolution of models of pure alexia have posited a more central role to the 

ventral posterior temporal region as an abstract word form processor, and thus named the 

“VWFA” (Warrington & Shallice, 1980; Geschwind, 1970).  Lesions to the VWFA region have 

resulted in impairments in recognizing and naming words and pronounceable nonwords, but are 

relatively spared in the identification of digits, objects, and, in some cases, letters themselves; 

thus suggesting a more abstract computations for candidate word forms (McCarthy & 

Warrington, 1990; Miozzo & Caramazza, 1998).   

Two further subtypes of alexia have since been posited (Kay & Patterson, 1982, Castles 

& Coltheart, 1996). Surface alexia is characterized by impaired ability to read 

irregular/exception words that do not follow standard letter-sound correspondences, but retain 

the ability to read ‘regular’ words that follow consistent letter-sound mappings.  This surface 

form deficit is allegedly localized in the left posterior temporal region disconnected from anterior 

regions of ventral temporal cortex (McCarthy & Warrington, 1990).  Phonological alexia is 

characterized by failure to read pronounceable pseudowords and low frequency words via letter-

sound decoding, but maintain some ability to read high frequency words.  This phonological 

deficit is thought to arise from deficits to the left angular gyrus and the superior posterior 
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temporo-parietal junction affiliated with computing print-sound correspondences (Black & 

Behrmann, 1994).  The structural dissociation has lead to the notion of two processing routes in 

the brain: a dorsal route reflecting the computation of sublexical print-sound correspondences, 

and a ventral route representing holistic lexical/semantic information (Henderson, 1986; Rumsey 

et al., 1996).  

Evidence from neuroimaging studies have reported that dyslexics fail to engage posterior 

aspects of cortex that account for the visual and auditory perception involved in word reading 

(Shaywitz et al., 2001; Pugh et al., 2002).  Importantly, many studies have revealed deficits in 

the temporo-parietal region encompassing superior posterior temporal gyrus (SPTG), inferior 

parietal lobule (and sulcus), angular and supramarginal gyri (Paulesu et al., 1996; Brunswick et 

al., 1999; Horowitz et al., 1998; Pugh et al., 2000; Shaywitz et al., 1998).  As discussed earlier, 

structural connectivity of white matter fiber tracts has been shown to be deficient in poor versus 

skilled readers (Klingberg et al., 2000).  Studies correlating activity of the angular gyrus to 

frontal and ventral fusiform regions of the reading network reveal strong functional connectivity 

between these regions for healthy but not impaired readers (Horowitz et al., 1998).  Pugh et al 

(2001) conducted their own functional connectivity study of the angular gyrus, which revealed 

that, in disabled readers, connectivity is weak for word and pseudoword reading, but not for 

purely phonological or purely orthographic tasks.  These findings further suggest that the angular 

gyrus is the gateway to ‘phonological assembly’ or mapping orthographic to phonological forms 

sublexically, whereas the ventral inferior temporal region is the gateway to ‘word-form’ 

processing (Perfetti & Bolger, 2004).   
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Development of Word Recognition Skill in Cortex  

While there has been a recent surge in neurobiological studies of the development of 

reading (Turkeltaub et al., 2003; Shaywitz et al., 2002; 2003), as of yet there is no generally 

accepted theory of how cortex develops with skill.  Imaging studies of reading intervention 

programs  that highlight spelling-sound relationships (McCandliss et al., 1999 reported in Casey 

et al., 2001; Temple et al., 2003; Small, Flores, & Noll, 1998) find training related increases in 

posterior temporo-parietal regions associated with phonological processing as well as left 

occipito-temporal regions associated with orthographic processing.  Thus, in addition to the 

development of cognitive skill, a goal of this investigation is to understand the developmental 

trajectory of the cortical reading network, particularly the ventral visual pathway for word 

recognition.  Our aim is to measure the plasticity of particular regions associated with visual 

word recognition along as a function of reading skill and frequency of exposure to trained items.  

This investigation critically focuses on a well-studied region of the left posterior temporal 

cortex known as the visual word form area (VWFA).  McCandliss, Cohen, & Dehaene (2003) 

proposed that the VWFA “constitutes a special case of perceptual expertise” and that “extensive 

visual experience with a class of stimuli drives enhancement of perceptual mechanisms and 

changes in the supporting functional architecture in the left fusiform gyrus” (p. 296).   

The underlying framework we propose in this investigation hypothesizes that 

visual/orthographic processing of written language in cortex is hierarchically organized as a set 

of perceptual processing components in the ventral visual system. We argue that much of the 

ventral visual processing stream is well equipped for invariant recognition processes at the level 

of foveal acuity, and thus the emergence of visual word expertise is subject to the same 

competition for neural tissue within this region as any other class of objects.  We specifically 
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hypothesize that there are distinct regions along the occipital-temporal processing stream that are 

responsible for orthographic processing, starting with early medial visual regions (V1/V2) 

sensitive to any visual input; a posterior region on the occipito-temporal boundary (roughly V4: 

BA 18,19) specialized for the feature-based perception of abstract orthographic units 

(graphemes—letters in English); a mid fusiform/IT region (VWFA: BA 37) specialized for 

abstract processing of orthographic word forms; and, an anterior region of fusiform/IT gyrus 

extending into middle temporal gyrus and the temporal pole (BA 37/21).   A similar posterior-to-

anterior hypothesis within ventral temporal cortex has been identified by Cohen (et al., 2002) in 

a review of 25 neuroimaging studies of word reading, and has been subsequently specified in 

recent work (McCandliss et al., 2003; Dehaene et al., 2005). They report that activation in the 

anterior region (y = -43, [range -54 – -32]) is responsive to verbal stimuli in visual and non-

visual tasks; all associated with semantic vs. non-semantic comparisons.  They report that 

contrasts of alphabetic strings with non-alphabetic stimuli (e.g. false fonts, fixation, 

checkerboards, etc.) are localized in a significantly more posterior region (y = -60 [-43 – -70]). 

Cohen et al. (2002, 2000) refer to this posterior region, located in the mid-fusiform (not to be 

confused with the posterior fusiform, which is part of the lateral occipital region) as the VWFA.  

The authors identify the more posterior region of fusiform (V4; y < -72) as a general perceptual 

region specialized in recognizing complex patterns and shapes, but not specifically for 

orthography.  This last region is consistent with the lateral occipital complex (Grill-Spector & 

Malach, 2001) which is responsive to complex visual patterns (letterstrings, digit strings, and 

visual objects) but not responsive to abstraction or individuation of these patterns such as 

transposition (Grill-Spector & Malach, 2001), case change (Cohen et al., 2002), etc.   
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The framework proposed above dictates that early/posterior regions (V4 bilaterally) 

should engage early in the process of learning to read words due to a lack of specificity for visual 

stimuli—for example, this region is engaged in false font tasks.  However, findings from several 

studies of reading skill (Poldrack et al., 1999, 2000) suggest that as skill increases so does 

lateralization to the left.  This is also suggested by the McCandliss et al (2003) framework in 

which word/letterstring processing becomes increasingly left lateralized at the V4 level.  The 

sum of these findings suggests that the VWFA is late developing and strongly associated with 

skill development (see for example Shaywitz et al., 2003).  As part of this investigation, we 

tested the predictions of this developmental framework.  Employing a novel orthography training 

paradigm, in combination with fMRI, we attempt to identify training-related effects in the 

reading network, and in particular, the left ventral pathway.  

Cortical Variations across Writing Systems        

In a neuroimaging study comparing more and less transparent alphabetic orthographies 

which are thought to rely differentially on lexical/addressed versus sublexical/assembled 

mechanisms, Paulesu and colleagues (2001) found that the more transparent orthography of 

Italian relied more heavily on the dorsal pathway of the superior posterior temporal region 

compared to the less transparent English orthography which relied more on the ventral pathway 

of the VWFA and inferior frontal gyrus.  Neuroimaging investigations of non-alphabetic writing 

systems suggest that separate processing pathways exist for different systems.  For example, 

studies of Japanese Kana and Kanji processing have enabled a within-subject, within-language 

comparison of two writing systems with differential mapping properties.  In the katakana (or 

Kana), a single grapheme corresponds to a spoken syllable; the kana are combined to produce 

multi-syllabic words. The katakanji (or Kanji) system, borrowed from Chinese, uses characters 
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that correspond directly to words, pronounced either in Japanese or in Chinese.  Several 

neuroimaging studies of Japanese reading reveal differential processing routes for Kana and 

Kanji processing (Sakurai et al., 1994; Hamasaki et al., 1995).  Similar to studies of English 

reading, Japanese researchers have postulated a ventral route that maps graphemic forms to 

lexical-semantic information for the processing of Kanji (logographic) and a dorsal route for the 

processing of Kana (syllabo-graphic) (Nakamura et al., 2002).   

The study of Chinese reading in neuroimaging has often revealed idiosyncrasies from 

other writing systems, particularly in the visual processing system.  For example, Tan et al. 

(2000) found right-lateralized occipital activation in processing simple and complex Chinese 

characters. On the other hand, others found generally similar patterns of activation in Chinese 

and English reading in bilingual subjects (Chee et al., 1999) and similar activation patterns have 

been found for Chinese character and pinyin (an alphabetic system for Chinese commonly used 

in early childhood) reading (Fu et al., 2002).  However, Perfetti & Liu (2005) have shown that 

cortical activity in learning to read in a second language is often largely determined by the 

primary language.  Recently, studies of Chinese reading have focused on the left dorso-lateral 

frontal region (Siok et al., 2003; 2004).  According to Tan et al. (2005), this region is unique to 

Chinese reading and strongly predicts reading ability in Chinese (Siok et al., 2004).         

       As we noted above, English, Japanese (Kana), and Chinese have developed different 

levels of mapping to the phonological and meaning components of language.  From the 

standpoint that writing systems share a universal principle—all writing systems encode spoken 

word forms—one expects a common network of cortical regions which map visual forms to 

spoken word forms to emerge from convergent evidence.  From the standpoint of the different 

levels of mapping used by writing systems, one expects some accommodation of this universal 
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network to specific differences    At the core of this universal network, based upon the findings 

of Jobard et al. (2003), lies a visual word form system responsible for recognizing the graphic 

forms of words and relaying that information on to those regions central to phonological and 

lexical/semantic processing.  Regions unique to each language will reflect the language-specific 

nature of phonological and semantic decoding (Bolger et al., 2005; Tan et al, 2005).   

In a meta-analysis of neuroimaging findings for word recognition across writing systems 

as diverse as Chinese characters, Japanese Kana, and the English alphabet, we (Bolger et al., 

2005) found a predictable network of regions associated with reading is well-replicated across 

languages and writing systems.  Despite the variability in mapping between orthography and 

phonology and between orthography and lexical/semantics, the results suggest that writing 

systems activate a strong network of common regions including: a) the left occipito-temporal 

region, b) the left superior posterior temporal and inferior parietal region, and c) the inferior 

frontal region .  The meta-analysis conducted for studies of Kana and Kanji reading revealed that 

regions recruited for processing the individual writing systems with their unique mappings are in 

large part common to both writing systems. Similarly, the meta-analysis of Chinese character 

reading when overlaid with Japanese and English writing systems again revealed more regions 

that are common across than distinct to individual writing systems.  In particular we found that 

the region of the left mid-fusiform gyrus which has been identified as the target visual word form 

processor and labeled the visual word form area (hereafter VWFA; Cohen et al., 2000; 2002; 

McCandliss et al., 2003) is highly consistent across languages and writing systems.  Based on a 

series of findings, McCandliss et al (2003) characterized this region as performing abstract, pre-

lexical computations, and Perfetti & Bolger (2004) referred to as a “gateway” region to lexico-

semantic and phonological processing.   
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This study also revealed several regions of divergence across writing systems in the 

following regions: 1) superior temporal gyrus (posterior aspect), 2) left anterior dorsal frontal 

region, and 3) right occipito-temporal cortex (inferior occipital and posterior fusiform).  For 

instance the meta-analysis did reveal English and Japanese Kana-specific activations in the left 

superior posterior temporal gyrus that were more extensive (from medial posterior to lateral 

anterior aspects) consistent with the idea of a more dorsal processing route; however, there was 

focal activity in anterior aspects of this region (BA 22) for Kanji  and Chinese as well.  This 

study confirmed the notion that Chinese character reading elicits stronger activation in bilateral 

striate and extrastriate regions, and the role of the left middle frontal gyrus in Chinese word 

processing.  Thus, the findings of Bolger et al (2005) exhibit a network of regions common to 

reading across languages, and also identify divergences likely reflecting the variations of how the 

spoken language is specifically mapped to the written language.  A final goal of this study is to 

potentially determine the source of these convergent and divergent regions by providing 

evidence from direct manipulations of the two most orthogonal mapping principles, alphabetic 

and logographic (or lexicographic).   

To summarize, the primary goal of this study is to determine whether explicit training of 

sublexical letter-sound components compared to holistic lexical training in an alphabetic writing 

system result in differences in word recognition skill.  The second goal of this investigation is to 

track cortical variations due to these variations in training.  Particularly, we set out to test directly 

whether the dorsal extent of the reading network reflects processing of the sub-lexical 

components, namely grapheme-phoneme correspondences, and the ventral aspect reflects the 

lexical processing prescribed for all writing systems.  Lastly, we investigated whether holistic or 

lexical training results in logographic processing of visual word forms in terms of behavioral 
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performance and underlying cortical mechanism.  Regions associated with the “logographic” 

processing of Chinese, such as the right occipito-temporal system and middle frontal region are 

responding to the putative holistic nature of word processing in Chinese reading.  In this 

endeavor, we seek not only to understand the process of acquiring orthographic knowledge as a 

function of explicit alphabetic training as compared to a holistic logographic training, but also to 

understand the cortical outcome measures of the variations in mapping principles. 
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2.0  NOVEL ORTHOGRAPHY TRAINING STUDY: COMPARING THE EFFECTS 

OF COMPONENT AND HOLISTIC LEARNING 

In the sole study of this investigation, we compare the effects of training of two methods of word 

recognition in a novel (alphabetic) orthography paradigm: a) a component or phonics-based 

method in which participants are trained explicitly on the letter-sound patterns within the context 

of a whole word item, and b) a holistic or logographic method in which participants are not made 

aware of the component forms explicitly. 

The primary goal of the behavioral measures of the experiment is to determine whether 

component training, compared to holistic training, will result in more efficient word learning.  

We hypothesize that the explicit nature of the component training enables the internalization of 

the letter-sound code leads to greater ability to transfer knowledge to novel word stimuli and 

pseudowords, leads to the establishment of more high quality lexical representations as measured 

by retention and reading speed, and a lack of sensitivity to word frequency.   Thus, we predict 

that compared to holistic training, the component training group will result in greater accuracy 

and response time on transfer tasks (novel words and pseudowords) and tasks of retention.  

Because component training results in more effortful decoding of each letter of a word, holistic 

learning should be more efficient at the outset.  However, as the decoding knowledge becomes 

internalized and automatic the component training should become more efficient as learners use 

redundant mechanisms of decoding knowledge with more specified lexical word form 
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knowledge (Perfetti, 1992). We predict that holistic training will result in initially faster 

performance than component training but that after several sessions the component training will 

result in not only more accurate, but overall faster performance.    

The second goal of this training paradigm is to test whether holistic training enables the  

implicit decoding of the letter-sound principles of the writing system or if the underlying code 

will fail to be acquired leading to more logographic type word learning.  Training words in an 

alphabetic system holistically is not synonymous with logographic writing systems which have 

no componential graphic-phonological relationship.  As we stated above, even Chinese is not a 

true logographic system because there are component radicals that cue phonological word forms.  

However, this paradigm attempts to produce logographic word recognition in an alphabetic 

writing system since it is our contention that holistic training without awareness of the 

components leads to logographic-type performance outcomes.  Thus, we have two competing 

hypotheses: a) letter-sound correspondences can be derived implicitly in holistic training as 

demonstrated by Bitan & Karni (2003), or b) holistic training yields logographic word learning 

in which the letter-sound code cannot be derived as demonstrated by McCandliss et al. (1997).   

Based on the findings of McCandliss et al. (1997), holistic-based training, in which 

learners have limited knowledge of component forms beyond visual patterns (i.e. no relation to 

sublexical phonological forms) leads to poor retention of word form knowledge and almost zero 

transfer of prior knowledge to novel word forms.  Learners in this holistic method report having 

learned the word items through pure lexical association, linking the phonological word with the 

whole visual pattern.  The visual forms used in the McCandliss et al. (1997) study were almost 

impossible to parse without explicit awareness of these component forms; a drastic difference in 

comparison to naturally occurring writing systems.  However, in the study by Bitan & Karni 
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(2003), they trained participants in a within-subject design to learn words in an explicit 

component, implicit holistic, and arbitrary mapping conditions and found that the implicit group 

performed similarly to the explicit group in terms of overall transfer and retention.  Whereas the 

McCandliss orthography was vertically based and difficult to parse, the Bitan & Karni script was 

linear in nature and not as visually difficult to individuate “letter” forms.   

In order to address this issue, we adapted the McCandliss paradigm using a natural 

alphabetic orthography, Korean Hangul, which is easy to parse yet has dramatically different 

spatial characteristics than the Roman alphabet (see Figure 2).  Since most native English 

speakers remain largely unaware of the variations in Eastern Asian writing systems, they can not 

distinguish between Chinese characters, Japanese katakana, and Korean Hangul and the fact that 

each of these systems represents the spoken language in very unique ways.  Based on the sample 

of subjects used in this study, we inquired about their knowledge of Korean orthography and 

found that not one of our thirty subjects were aware that Korean was an alphabetic system.  

Participants assumed, as do much of the population at large, that the Hangul system is 

logographic as Japanese Kanji and Chinese based largely on the phenomena of the square-like 

spatial arrangement of the stroke patterns.  Thus, Korean was used in this study because of this 

logographic bias in naïve speakers of English.   

The details of our study are largely adapted from the McCandliss paradigm.  Participants 

were trained on a new set of words each session for four individual sessions and tested 3 times 

per session (beginning, middle, and end) to assess transfer and retention.  We used a completely 

transparent orthography (1-1 grapheme-phoneme correspondence) with 12 letters (8 consonants 

and 4 vowels) to create 80 CVC structured training words (McCandliss et al. only trained on 64 

words).  Unlike McCandliss et al., we manipulated the frequency of trained items by exposing 
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half of the words from each session in each of the following sessions such that high frequency 

words were trained 4, 3, and 2 times more than low frequency words.  We assessed learning via a 

production procedure, in which subjects were asked to read aloud an isolated word, and a 

recognition procedure, in which subjects were asked to choose the visual word stimulus that 

matched an auditory cue.  Prior to the scanning session subjects were assessed on the 

identification of novel words and the decoding of pseudowords.  Participants were than scanned 

in an fMRI blocked-design where they were asked to perform a 1-back recognition task on a 

variety of stimulus conditions in the native (English) and novel (Hangul) orthographies.  

Participants were then given a grapheme-phoneme production task in the exit interview and 

probed to describe the strategies used during training.   

The goal of our design was to test the hypotheses we discussed regarding the cognitive 

and behavioral outcomes, and to subsequently identify cortical mechanisms that differentiate 

between training conditions.  The secondary question was whether we can create logographic 

and alphabetic reading using the novel orthography paradigm.  Under the assumption that 

logographic reading entails no or limited understanding of an underlying sublexical structure 

leading to poor transfer of knowledge to novel and pseudoword items, we argue that using a 

holistic training paradigm with Korean Hangul orthography that we can create such readers.  We 

look to compare the effects of this type of training compared to explicit alphabetic training to 

determine the differences in behavioral and cortical outcomes.   

Participants  

Thirty right-handed, native English speaking, participants (18 female and 12 male) 

recruited from the University of Pittsburgh campus and surrounding region volunteered to 

participate in this experiment.  The mean age of the participants was 26.4 (ranging from 19-48).  
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These participants were naïve to the project hypotheses but were given brief details that they 

would be learning to read words in a different language during recruitment.  Participants gave 

informed written consent and were rewarded monetarily for their cooperation.  All subjects 

reported normal hearing, no history of learning or reading disability, and normal, or corrected-to-

normal, vision.  

Design  

The primary variable in the experiment, Holistic versus Component training, was 

manipulated between-subjects.  A third “Control” group was also provided an abridged version 

of the training paradigm to serve as a training baseline group for the fMRI portion of the 

experiment.  Ten subjects were randomly assigned to each of the three groups; however, two 

subjects from the component condition did not complete the scanning session due to technical 

difficulties.  Frequency of trained word items was manipulated as a within-subject factor.  

Participants in the Holistic and Component conditions were trained in 4 separate Sessions and 

assessed at three intervals within each session.  A fifth session assessed performance on a range 

of tasks occurring on the day of the MR portion of the experiment.  Participants in the Control 

group received one brief training session on the day of the MR experiment.  Learning was 

assessed across sessions in two separate procedures: a Word Identification and a Forced-Choice 

Recognition.  At the fifth session, the generalizability of knowledge was tested in a Novel Word 

and Pseudoword Identification task.             

Materials & Procedure 

 In this novel orthography training paradigm, we utilized the Korean Hangul writing 

system, which is alphabetic but visually distinct from Roman-based linear alphabetic writing 

systems.  We adapted the Hangul alphabet to further reduce the similarity from native to novel 
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writing systems in the learning paradigm.  Subjects were trained to read words written in Korean 

Hangul containing graphs that correspond to phonemes of the native spoken language (English).  

We attempted to preserve the grapheme-phoneme relationship of the Korean graphs used in the 

study since it has been suggested that the graphemes reflect the articulatory aspects of labial and 

velar positions of the phonemes themselves.  The composition of Hangul letters follows a square 

structure, or Kulja, in which the letters are arranged both left-to-right and/or top-to-bottom, as 

illustrated in Figure 2.  This Kulja package corresponds to a single, typically C-V-C syllable. 

We took advantage of this varied stacking to encourage treating this as a novel encoding 

task and thus reducing interference from mapping the linear form of the Roman alphabet to this 

novel orthography. In contrast to other writing systems, Hangul was more invented than 

developed, and its letter-phoneme correspondences are completely transparent.  Thus, we used 

this characteristic to create a perfect orthography (a single letter maps to a single phoneme) with 

a subset of letter-sound units consisting of 8 consonants and 4 vowels.  Certain phonemes such 

as /k/ and /i/ (long E sound) were selected to make the mapping to the native English 

orthography difficult, for example, the letter corresponding to /k/ is presented in the words “cat” 

and “kit” making a strict mapping difficult.  

We created 80 word stimuli with simple consonant-vowel-consonant (CVC) structures 

for the set of training items. Of the 80 word stimuli, each of the four vowel units were 

represented equally such that there were twenty words containing each vowel in the middle 

position.  Initial consonant units were also equated with 10 words created for each of the eight 

consonant unit in the word onset position. Final consonants were roughly equated in that each 

consonant was represented between 8-12 times in the final position.  To reduce the likelihood 

that participants would implicitly derive the alphabetic code, words with repeating consonants 
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(e.g. bib) were disallowed in the training portion of the experiment.  These words do appear in 

the novel word assessments in Session 5 and the fMRI scanning stimuli. The resulting words 

were assigned to four sets (A, B, C, and D) pertaining to the 4 training sessions, 1 per day, in 

which a new set is introduced each session.  Each set contained equal number of word items for 

each vowel unit and were roughly equivalent for consonant onset units.  We manipulated the 

frequency of exposure to word items by exposing a subset of words learned in previous session 

in all future session, such that half of the Set A words (n=10) encountered in Session 1 also 

appeared in training Sessions 2-4 and half of the words in Set B were presented in Sessions 3-4 

and so on (see Table 5 for details).   

Pre-Training 

Prior to training, we assessed word decoding ability by administering the Woodcock-

Johnson (Woodcock & Johnson, 1989) Word Attack—pseudoword battery to all participants.  

The battery consists of 45 pronounceable non-words in order from simple two-phoneme 

sequences to four syllable complex stimuli.  Items are to be pronounced based on common rules 

or consistencies of the English language.  Pronunciation errors in any portion of the items were 

scored as incorrect responses.  Individual accuracy scores were compiled for each subject out of 

a possible total score of 45.        

Training  

All subsequent training and assessment measures were administered using E-Prime 

experimental software (Psychology Software Tools, Inc.) on 800+ GHz PC computers.  

Participants were pseudorandomly assigned to the two conditions, holistic and component 

(phonics-based) training, based on an A-B-B-A permutation.  Participants were trained in four 

separate Sessions across four days (1 per day). Each session lasted approximately one-hour.  
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Participants were instructed that they were to learn spoken English word forms (e.g. cat, bit, etc.) 

printed in a novel orthography, namely Korean Hangul.  In each session, participants were 

trained on a unique set of words and presented with a subset of words learned from previous 

sessions that made up the high frequency (HF) set of items. Training took place in 2 Learning 

Blocks per session; each training block was followed by a testing block.  In sessions 2-4, 

participants were tested at the start of the session prior to the learning trial to measure retention 

of previous items and transfer of knowledge to novel items (i.e. items to be learned in the current 

session).  At the final session, participants were given several dependent measures to assess level 

of retention and overall skill.  The diagram in Figure 1 illustrates the general procedure within 

and across sessions for participants in both training conditions. 
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Figure 1. Diagram of Session Procedure for Experimental Training Groups.  A new set of training words 
(TRAIN SET) are introduced at each session; however, participants are tested (TEST SET) on previous and 
current trained items.  Training occurs over two blocks for each session and testing occurs at intervals before 
and after the training blocks 

 

 35



In each session, participants were to learn 20 new word items repeatedly presented in the 2 

Learning Blocks mixed in with trials for the HF items from previous sessions.  In each Learning 

Block, new and HF items were each randomly presented 8 times, such that each word was 

presented a minimum of 16 exposures (See Table 1 for frequency of word items).  Each training 

trial lasted for a duration of 4 seconds.  In the holistic training condition, a whole word stimulus 

appeared in red followed 500ms later by its pronunciation (“cat”).  The visual word stimuli 

remained on the screen for at least 4 seconds (see Figure 2 Bottom).  When the trial expired, the 

next item appeared.  In the component training situation, the entire word symbol was presented 

with the first component highlighted in red for 1000 msec with the other letters in light blue, 

followed by the second then third components, after which the entire stimulus was highlighted in 

red for the remainder of the trial (see Figure 2 Top) total time 4 seconds.  As each individual 

grapheme was presented, the corresponding phonemes (/k/+/a/+/t/) were heard through 

headphones simultaneously with the onset of the visual stimuli.  Then, the phonological word 

(“cat”) was presented simultaneously with the onset of the whole visual word, which remained 

on screen for the remaining (1) second or until the participant pressed the spacebar.  Again, after 

the trial was terminated, the screen advanced immediately to the next word trial. 
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Component Training Trial

“kuh”

“tuh”

“a”

“cat”

ㅋ

ㅋ

ㅏ
ㅌ ㅋ

ㅌ ㅋㅏ

4 sec

1000ms

1000ms

1000ms

1000ms

ㅏ

ㅌ ㅏ
ㅌㅌ

 

Holistic Training Trial

“cat”

ㅋㅏ
ㅌㅌ

4 sec
 

Figure 2. Diagram of Training Trial Procedures for the Component Group (Top) and the Holistic Group 
(Bottom).   
 

Training conditions were matched for exposure duration to each word stimulus (4sec).For 

the purposes of investigating the overall impact of training on the plasticity of cortical regions, a 

third training condition was developed to serve as a low-trained group.  Ten participants were 

randomly assigned to this Control group.  These participants were also administered the 
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WordAttack pseudoword battery prior to training.  They were trained in a single Training Block 

on all 80 word items presented 8 times each via the holistic (whole word) training method.  The 

effects of training for these participants were assessed at a single Testing Period following the 

training block.  These participants were assessed via the Recognition task only (described below) 

and not on the Identification task due to the difficulty of the latter task.  The training session was 

conducted on the same day of the fMRI scan.  Control group participants were also required to 

fill out the Exit Interview as described below.    

Testing  

Two dependent measures were collected throughout the training sessions to assess word 

learning at regular intervals.  The first test, the word identification task, required the participant 

to read aloud a word (printed in Korean orthography) from the training materials that was 

visually presented in isolation for a maximum of 8 seconds or until the participant made a 

response. Verbal responses made by participants were recorded via audiotape and by the 

experimenter, who also coded the accuracy of the utterance on a scoring sheet for analyses.  

Following the verbal response, the participant hit the spacebar to advance to the next trial.  

Words were each presented one time in pseudorandomized order using 4 randomized lists which 

were randomly assigned to participants by subject number prior to the study.  For each session, 

words that were presented on the current training set and all prior training sets were assessed as 

shown in Figure 1 and Table 1.  Thus, at Session 1, only words from Word Set A were 

administered in the task, at Session 2, words from Set A and B were administered, and so on (see 

Figure 2 for details).  Participants were tested in each training session at 3 separate intervals: 1) 

before training, 2) after the first training block, and 3) after the second training block—at Session 

1, participants were not assessed before training and thus only received 2 testing periods.  At 
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each testing period, each trained item was presented once in this task resulting in an increasing 

test duration from 20 trials at each period in Session 1 to 40 trials in Session 2, 60 trials, in 

Session 3, and 80 trials in Session 4.    

Table 1. Number of Training Trials for High Frequency words in each WordSet by Session  

  Training Session Total Occurrences 

Training 
Set Session 1 Session 2 Session 3 Session 4 Hi Freq Low Freq 

Set A 16 8 8 8 40 16 

Set B   16 8 8 32 16 

Set C     16 8 24 16 

Set D       16 16 16 

Test Set A A+B A+B+C A+B+C+D     

 

Following the Identification task, a second assessment measure, a forced-choice (match-

to-sample) recognition task, was collected.  This task required participants to select the 

appropriate matching visual stimulus to an auditory cue.  Participants were presented with an 

auditory word stimulus followed by four visual word stimuli (a trained word and three foils) and 

asked to identify the matching word stimulus. Three conditions of visual word foils were created 

for each trained word, each sharing two of the following grapheme-phoneme units: first 

consonant, middle vowel, or final consonant with the target word.  In this task, the auditory 

stimulus was presented for a maximum duration of 35-50ms.  After 500ms, the four visual word 

choices were then presented horizontally across the screen (each item presented with the 
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response number 1-4 immediately to the left) for a maximum duration of 8 seconds or until the 

participant responded by making a keyboard response of 1 through 4.  The target words, 

presented auditorally, were drawn from the identical list of items as in the Identification task (i.e. 

all current and prior trained items).   

Assessment measures were collected at three separate intervals during each session.  The 

first testing interval occurred prior to the training blocks in each session.  These tests consisted of 

words that were to be trained in that session enabling us to acquire a measure of transfer from the 

previous set(s) of words to the untrained words.  These tests also consisted of words trained in 

the prior sessions which allowed us to measure the retention of knowledge between sessions for 

the previous set of words without the confounding influence of practice effects and interference 

effects from the new training set.   

A fifth “Session” was conducted prior to the imaging portion of the study.  In this 

session, participants were administered the Word Identification and Forced-Choice Recognition 

tasks for all trained words.  These tasks were followed with a Novel Word Identification task and 

a Pseudoword Identification task under the identical procedure for the Word Identification task.  

For the Novel Word task, participants were presented with 40 legal English CVC words using 

the same set of twelve Hangul graphemes (and corresponding phonology) as in the training set.  

Items were matched for initial consonant (5 items per consonant) and middle vowel (10 items 

per).  The participants were asked to read the set of novel word items aloud as in the Word ID 

tasks.  Presentation of the stimuli followed the same parameters as the Word ID task as well.  In 

the Pseudoword ID task, 40 non-lexical (for English) CVC items were created using the same 

procedure as the novel words.  Stimulus presentation was also the same as in the previous task.    
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 The fMRI portion of the experiment occurred after the completion of Session 5.  The 

detailed methodology is described in the next chapter. 

Exit Interviews 

Following the fMRI scanning portion of the experiment, the participants were 

administered an Exit Interview which consisted of two components. The first task required the 

subject to a) produce the 12 visual symbols or graphemes of which the words were composed 

and then b) produce the appropriate sound or phoneme for that symbol.  The second question 

prompted the participants to subjectively describe the strategy(ies) they employed in the training 

component of the study.  They were prompted by the experimenter to be as descriptive as 

possible detailing any changes in strategy and when they occurred during training.    

Analyses 

The dependent measures of interest are transfer to new words and retention of knowledge 

across session, and generalizability to novel and pseudoword reading.  We measured transfer by 

looking at performance on novel word and pseudowords created using the learned units.  

Retention was measured word recognition performance at +1, +2, +3, +4 sessions.  Transfer was 

assessed by examining performance on novel words not previously encountered on the 

Identification and Recognition task.  We examined both reaction time and accuracy data to 

assess the amount of word learning achieved from training conditions.    

Results 

Behavioral Task Analysis  

Analyses of the two behavioral tasks, Word Identification and Forced-Choice 

Recognition task, were conducted to test training-related differences in a) transfer of knowledge, 

b) retention of knowledge, and c) the interaction of training with frequency of exposure 
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comparing high (HF) and low (LF) frequency words.  The data reported for these tasks are based 

on the participants who participated in the entire experiment including the scanning portion.  

Thus, a series of Mixed model repeated-measures ANOVAs were conducted on the dependent 

measures comparing the component-based (n=8) and holistic (n=10) training groups.  The 

Control group is not included in these analyses because the nature of this group’s experience is 

so distinct from the other training conditions.  Because a voice-key was not used to provide 

appropriate latency data, accuracy is the sole dependent variable in the Word ID task.  In the 

Recognition task, both accuracy and response time were used as dependent measures.  After the 

first set of analyses were conducted, variance observed in the Holistic training group revealed a 

non-homogeneous set of subjects, rather evidence of a bimodal distribution in participant 

performance emerged (see Figure 3B).  Accuracy for a subset of the holistic training group (n=5) 

performed at ceiling on the WordID and Recognition tasks, whereas the second set (n=5) 

performed far less accurately on these tasks.  In a separate set of analyses, we subdivided the 

holistic group according to this bimodal distribution, a high skill group (HS) and a low skill 

group (LS), and compared the performance of these subsets.       

Word Identification  

Accuracy, in terms of proportion correct, was compiled for individual Word Sets 

according to the Test Periods of each Session.  The data displayed in Figure 3A show the means 

for each Training Method according to Word Set at each Test Period (by Session).  The data 

displayed in Figure 3B exhibits the mean accuracy for high and low performing participants 

within the holistic training condition.   
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Figure 3. Word Identification accuracy comparing groups for each Word Set by Test Period.  The top graph 
compares means for the Holistic compared to Component training conditions.  The bottom graph compares 
the high performing with the low performing participants in the Holistic Training condition.  Each series 
(line) represents performance for a single Set of words. 
 

Effects of Training on Transfer 
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We hypothesized that the component group would internalize the letter-sound code 

sufficiently to enable transfer in terms of accurate decoding of novel words.  In order to test the 

effects of transfer, subject means were analyzed from the initial Testing Period for each Word 

Set (Session 2 Set B, Session 3 Set C, and Session 4 Set D) prior to actual training on those 

items.   A mixed model repeated-measures ANOVA was conducted with training condition as a 

between subjects factor and WordSet (at Test1 in respective sessions) as the within-subject 

variable.  The results of this test revealed a main effect of Training Method in which the 

Component group was far more accurate (mean=0.88) than the Holistic Group (mean=0.43) on 

these unknown items, F(1,17)=10.80, p<0.005. This test also revealed a significant effect for 

WordSet F(2,16)=7.893, p<0.005, such that overall subjects were more accurate on Set 4 (mean 

proportion correct = 0.76) than Set 3 (mean=0.70) which was more accurate than Set 2 

(mean=0.51).  Post-hoc comparisons confirm this result: Set 4 > Set 3 (p<0.01) and Set 3 > Set 2 

(p<0.01).  There was no interaction between Training Method and WordSet, suggesting that, 

despite the gap in overall accuracy, groups made relatively equal gains from session to session. 

Effects of Training on Retention   

We also hypothesized that learning the sublexical components explicitly would enable 

more efficient acquisition of word forms because of the redundant mechanism of decoding 

knowledge would enable the ‘bootstrapping’ of lexical forms.  We predicted that the component 

group would better retain word form knowledge over time than the holistic group.  In order to 

test the rate of retention, the subject-wise accuracy values were calculated for Word Sets A-C in 

the following Session (all 3 Testing Periods per Session).  A mixed model repeated measures 

ANOVA was conducted with Training Method as the between-subjects variable and WordSet 

and Test Period (1, 2, and 3) as within-subject factors.  Results of this test revealed a main effect 
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of Test Period, F(2,54)=11.36, p<0.001, with participants performing more accurately at Test3 

(mean=0.85) and Test2 (mean=0.83) compared to Test 1 (mean=0.78).  Planned comparisons 

reveal significant finding between Test 3 and Test1 (p<0.001) and between Test2 and Test1 

(p<0.001) suggesting that the latter testing periods are likely confounded by subsequent training 

on Set items in the HF condition as well as from novel Set items.  Thus, all future tests of 

Retention consisted of means at Test Period 1 of the following Session after initial training on 

those words (i.e. Set A at Session 2, Set B at Session 3, etc.).  The ANOVA model was re-run 

with Test Periods 2 and 3 removed from the analyses.  The results of this model found no effect 

of WordSet and no interaction between WordSet and Training Method.   However, a main effect 

of Training Method was found, F(1,17)=9.43, p<0.01, with Component trained subjects 

performing more accurately (mean=0.94) than Holistic group subjects (mean=0.65).  Thus, our 

predictions regarding retention were confirmed.  This effect supports our prediction that 

component training results in more reliable acquisition of word form knowledge and thus better 

retention performance than holistic training. 
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Figure 4. Effect of Transfer (Top) and Retention (Bottom) for Word Identification Accuracy by Group.  The 
graphs on the left (A & C) display the main effects by group.  Statistical comparisons were done contrasting 
Component and Holistic training groups (blue bars) and contrasting High and Low performing subsets of the 
Holistic training condition (red bars) for Transfer (Top) and Retention (Bottom).  The graphs on the right (B 
& D) depict the effects of transfer and retention as a function of time via Word Set performance.  Mean 
accuracies are displayed for the component group (pink), the holistic group overall (blue dotted), the high 
performing holistic subset (solid royal blue) and low performing holistic subset (solid light blue). 

 

Frequency Effects by Training Condition 

Based on previous findings in the literature, we argued that explicitly trained participants 

internalize the letter-sound components of the system providing them with redundant systems of 

phonological decoding knowledge and specified word form knowledge to identify words 

(Perfetti, 1992).  In English, frequency effects are not observed for words with highly consistent 

spellings (McClelland & Seidenberg, 1989; Jared, McRae, & Seidenberg, 1990).  Thus, we 

predicted that explicitly training on components would result in no effects of frequency 
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compared with holistic word training which would be more susceptible to these effects.  To test 

the overall effect of frequency of exposures to word items and the interaction with Training 

Method, we combined the mean accuracy for each subject at the final two Test Periods (Session 

4 Test3 and Session 5) for individual Word Sets.  In these analyses, it is important to note that 

the effect of WordSet is critical since HF words in Sets A, B, and C are exposed in training trials 

across all session 64, 48, and 32 times respectively.  We conducted a repeated measures ANOVA 

to compare performance on HF and LF word for WordSets A, B, and C between Training 

Methods.  There was also a main effect of frequency, F(1,34)=6.99 p<0.05, with subjects 

performing more accurately on HF (mean=0.89) compared to LF (mean=0.87) items.  The effect 

of frequency significantly interacted with Training Method, F(2,34)=7.17 p<0.05, in such a way 

that the Component group elicited no change in performance from HF to LF words (mean=0.98 

for both conditions) whereas the Holistic group was affected by frequency (means=0.80 for HF 

and 0.75 for LF).  A significant main effect between Component and Holistic training groups 

was also found, F(1,17)=4.32 p<0.05, with the former group (mean=0.98) outperforming the 

latter group (mean=0.77).  The results of this tests revealed a trend of WordSet (p=0.06) with 

subjects performing better on Set A (mean=0.90) compared to Set B (mean=0.88), p<0.05, and 

generally better than Set C (mean=0.86)—however, no statistical significance shown.  The 

means for this comparison are displayed in Figure 5.   
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Figure 5. Effect of Frequency on Word Identification Accuracy by Training Group for WordSets A,B,C 

Effects of Transfer from Holistic Training 

 We asked whether holistic training would result in implicit derivation of the 

letter-sound code or if it would lead to logographic reading.  Based on the data when can 

strongly argue in favor of both outcomes, that is, holistic training revealed both implicit learning 

of components and more logographic outcome in different participants.   A primary mode of 

distinguishing whether these performance differences reflect underlying knowledge of the 

sublexical components is to test the transfer of knowledge to new items.  When the holistic group 

was divided into two skill groups HS and LS, the analyses revealed unique patterns in transfer 

performance.  We conducted a repeated-measures ANOVA on the ten participants in the holistic 

group with Skill as a between-subjects factor.  The difference between Skill levels was 

substantial, F(1,8)=94.04, p<0.001.  The mean proportion correct for the HS group moved 

quickly to ceiling (0.80) whereas the LS group performed poorly (mean=0.03).  The resulting 

means of these groups are displayed in Figure 4(A-B), which shows the clear differences 

between these groups as well as the positive gains across sessions.  The statistical tests revealed a 
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marginal effect for word set, F=4.47 (p=0.059), which showed a positive linear trend from Set 2-

4, F(1,8)=6.47, p<0.05.   There was no interaction between Skill Level and WordSet.   

Holistic Training Differences on Retention 

If the participants in the holistic condition were able to acquire the letter sound code, we 

argued that it is the internalization of the letter-sound code that enables more accurate formation 

of word form representations.  Thus, we predict that those that acquire the code will perform 

better on tasks of retention than those holistically trained participants that do not.  We again the 

differences in retention between Skill levels within the Holistic Group in a repeated measures 

ANOVA with Skill as a between-subjects factor that revealed that the high skill group 

(mean=0.88) outperformed the low skill group (mean=0.39) [F(1,9)=22.15, p<0.005].  We also 

found a significant interaction between WordSet and Skill Level F(1,9)=5.57, p<0.05.  This 

interaction, displayed in Figure 4 (D) by the solid blue lines, is reflected by gains made from 

WordSet A to B to C for the high skill group (means=0.77, 0.93, and 0.94 respectively) whereas 

the low-skill group show losses in subsequent WordSets (means=0.50, 0.35, and 0.33 

respectively).  Thus, not only do the high performing participants outperform the low 

performance group on the retention task as predicted, but the retention of word knowledge 

increases for those that implicitly derive letter-sound knowledge, and decreases over time for 

those who do not derive the code.  

Frequency Effects on Holistic Training Group 

If the letter-sound code is implicitly derived in holistic training the internalization of the 

letter-sound code would result in minimal impact of frequency.  On the other hand, we argued 

that the logographic reading in which sublexical components are not acquired is heavily 

dependent on paired-associate learning mechanisms and thus highly susceptible to effects of 
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frequency.  We compared the effect of Frequency across Skill level within the Holistic group in a 

repeated-measures ANOVA.  These analyses revealed a marginal interaction between frequency 

and skill level, F=4.52 p=0.07 in which participants in the Low skill group were more affected 

by frequency (mean=0.57 for HF compared to 0.49 for LF items) than the high-skill group 

(mean=0.98 compared to 0.97 respectively).  An overall effect of skill level was observed, 

F(1,8)=9.41 p<0.01, where high skill participants (mean=0.97) outperformed low skill 

participants (mean=0.53) across items.   These results also revealed a main effect of WordSet as 

seen in the previous test, F(2,16)=4.91 p<0.05, with performance on Set A (mean=0.79) 

marginally better than performance on Set B (mean=0.75), p=0.06, and better than Set C 

(mean=0.72), p<0.05.  Therefore items which were seen more often were more likely to be 

identified correctly.  An overall main effect of frequency was also present, F(1,8)=11.31 p<0.01, 

as participants in this analysis performed better on HF (mean=0.78) compared to LF 

(mean=0.73) items.  These analyses confirmed the notion that internalizing the letter-sound code 

reduces the effects of frequency.   

Forced-Choice Recognition Task 

For the Recognition Task, the dependent measures of proportion correct and mean 

decision times were tested separately. Each of these dependent variables were analyzed using 

repeated-measures ANOVA models for between and within-subject effects as conducted in the 

Identification task.  As for response time, the reported results reflect performance on all 

responses due to the limited set of data by condition.  The data displayed in Figure 5 show the 

mean accuracy for each Training Method according to Word Set at each Test Period (by Session) 

and Figure 6 displays the response time data for these same conditions.  The data for the Holistic 

group reflected the bimodal distribution seen in the Word Identification task.  A separate set of 
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tests were run for the dependent measures of this task as well to test for transfer, retention, and 

frequency effects as a function of skill.  
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Figure 6. Recognition Task accuracy comparing Component and Holistic groups by Test Period The top 
graph compares mean accuracy for the Holistic compared to Component training conditions.  The bottom 
graph compares mean response time for the Holistic compared to Component training conditions.  Each 
series (line) represents performance for a single Set of words.  Initial performance for each set are marked by 
red circles for the Component group and by yellow squares for the Holistic group.  These points represent the 
effect of transfer from session to session.     
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Effects of Training on Transfer 

We tested the prediction that component training leads to better transfer than holistic 

training for recognition accuracy. In order to test the effects of transfer, subject means were 

analyzed from the initial Testing Period for each Word Set (Session 2 Set B, Session 3 Set C, and 

Session 4 Set D) prior to actual training on those items.   A mixed model repeated-measures 

ANOVA was conducted for mean accuracy with training condition as a between subjects factor 

and WordSet (at Test1 in respective sessions) as the within-subject variable.  The results of this 

test revealed a main effect of Training Method, such that the Component group was far more 

accurate (0.90) than the Holistic Group (0.61) on these unknown items, F(1,17)=9.65, p<0.01. 

This test also revealed a significant effect for WordSet F(2,32)=4.62, p<0.05, such that overall 

subjects were more accurate on Set D (proportion correct = 0. 84) and Set C (0.77) than Set B 

(0.71).  Planned comparisons of the three sets confirms this trend, Set D > Set B (p<0.05) and 

Set C > Set B (p=0.06).  There was no interaction between Training Method and WordSet. 

We tested the prediction for differential training effect on transfer performance for 

recognition decision times.  The repeated-measure ANOVA test was employed for the response 

time data.  The interaction between WordSet and Training Method was marginally significant, 

F=3.13 p=0.06.  As shown in Figure 7(D), Component group response times drop considerably 

from SetB to SetC to SetD (5458, 4429, and 3987ms) whereas the overall performance of the 

Holistic group remains relatively unchanged (4923, 4913, and 4639ms respectively).  Because 

the Component group is comparatively slower at SetB but faster at SetD than the Holistic group, 

no main effect of skill is seen.  This effect is entirely consistent with our stated hypotheses 

regarding these training differences.  The tests also revealed an overall effect of WordSet, 

 52



F(1,16)=5.91, p<0.01, with longer latencies for SetB (5191ms) compared to SetC (4671ms), 

p=0.08, which were longer than SetD (4313ms), p<0.05.   
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Figure 7.  Effect of Transfer for Recognition Task Accuracy (top) and Response Time (bottom) by Training 
Group. The graphs on the left (A & C) display the main effects by group.  Statistical comparisons were done 
contrasting Component and Holistic training groups (blue bars) and contrasting High and Low performing 
subsets of the Holistic training condition (red bars) on mean Accuracy (Top) and Response Time (Bottom).  
The graphs on the right (B & D) depict the dependent measures as a function of time via Word Set 
performance.  Mean accuracies and response times are displayed for the component group (pink), the holistic 
group overall (blue dotted), the high performing holistic subset (solid royal blue) and low performing holistic 
subset (solid light blue). 
 

Training-related effects on Retention 

We predicted that component training, compared to holistic training, will result in greater 

retention in terms of more accurate performance on trained items.  Retention was analyzed by 

comparing mean accuracy for Word Sets A-D at Test Period 1 of the Session occurring 24 hours 

after initial training on those words (i.e. Set A at Session 2, Set B at Session 3, etc.).  A mixed 

model repeated measures ANOVA was conducted for WordSets A, B, and C with Training 
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Method as the between-subjects variable.  Results of this test revealed a main effect of Training 

Method, F(1,16)=7.76 p<0.05, with the Component group performing more accurately (mean 

=0.94) than their Holistic group counterparts (mean=0.76; see Figure 8A).  This test also 

revealed a main effect of WordSet, F(2,32)=5.76 p<0.01, as participants were more accurate on 

Set C words (0.90) compared to Set B (mean=0.83) words, p<0.01, or Set A words (mean=0.82), 

p<0.01 (see Figure 8B). There was no interaction between WordSet and Training Method.  These 

results confirmed our overall hypothesis that the component training yields better performance 

than holistic training on trained items.  

We tested the predictions regarding training-related differences in recognition decision 

times for recently learned words.  Statistical tests were conducted to determine differential 

effects of Training Method on the retention of knowledge based on the RT data.  As shown in 

Figure 8D, the data reveal that the component group is initially slower than the holistic group on 

Word Set A (mean=4926ms compared to 4550ms), becoming faster on Sets B and C for the 

component group (means=3966ms and 3829ms) while remaining stable for the holistic group 

(means=4422ms and 4330ms).  However, no main effect of training method or interactions are 

found.  This is likely due to the variability in the Holistic group (SE=373ms) compared to the 

Component group (SE=141ms).  These analyses revealed only main effects of WordSet, 

F(2,32)=4.21 p<0.05.  Participants were slower to respond to Set A words (4738ms) than they 

were to either Set B (4194ms), p<0.05, or Set C (4080ms) items, p<0.05.  Thus, decreases in 

responses times are observed for the component group but not the holistic group; however, due 

to the variability this interaction was not significant. However, as we will see below, when the 

holistically trained group are divided by skill our predictions are supported.   
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Figure 8. The Effect of Retention for Recognition Task Accuracy (top) and Response Time (bottom) by 
Training Group.  The graphs on the left (A & C) display the main effects by group.  Statistical comparisons 
were done contrasting Component and Holistic training groups (blue bars) and contrasting High and Low 
performing subsets of the Holistic training condition (red bars) on mean Accuracy (Top) and Response Time 
(Bottom).  The graphs on the right (B & D) depict the dependent measures as a function of time via Word Set 
performance.  Mean accuracies and response times are displayed for the component group (pink), the holistic 
group overall (blue dotted), the high performing holistic subset (solid royal blue) and low performing holistic 
subset (solid light blue). 
 

Effects of Frequency for Training    

We tested the prediction that training conditions would differ with respect to the effect of 

training frequency on word items for recognition accuracy.  We conducted separate tests with 

Training Method and Skill level within the Holistic Group as between-subject factors.  These 

tests reveal no significant effects for frequency suggesting that, unlike the Word Identification 

task, accuracy on the Recognition task is relatively insensitive to this factor.   

 We tested the same prediction that, compared to component training, holistic training 

would result in better performance for high versus low frequency words in terms of faster 
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recognition response times.  Thus, we predicted an interaction between training method and item 

frequency such that the holistic group would show sensitivity to frequency whereas the 

component group will not.  The statistical tests frequency effects on response time did produce a 

number of significant findings.  A repeated-measures ANOVA testing the effect of frequency 

between Testing Methods revealed an overall effect of frequency [F(1,16)=4.69, p<0.05] for HF 

items (mean=3441, SE=168) compared to LF items (mean=3578, SE=197).  The predicted 

interaction was supported by the trends in the means such that the component group was equally 

fast at HF (mean=3312ms) and LF words (mean=3386ms) whereas the holistic group performed 

more slowly for LF (mean=3770ms) compared to HF (mean=3571ms).  However, this 

interaction was not statistically significant.  Other results revealed a main effect of WordSet 

[F(2,32)=7.80, p<0.005] with participants performing more slowly on Set C items 

(mean=3698ms, SE=217) compared to SetB (mean=3414ms, SE=181, p<0.005) and SetA 

(mean=3418ms, SE=154, p<0.05) in pairwise comparisons. A significant interaction was found 

between frequency and WordSet [F(12,32)=3.933, p<0.05] such that for SetA there is a 

significant difference between HF (mean=3266, SE=149) and LF items (mean=3596,SE=181, 

t(17)=4.11, p<0.001 two-tailed pairwise comparison) and   Despite mean differences between the 

Component (mean=3350, SE=207) and Holistic (mean=3671, SE=297) groups, there was no 

overall effect of Training Method (p>0.05).        

Effects of Transfer for Holistic Training 

We tested the competing hypotheses that: a) holistic learning would result in failure to 

acquire the alphabetic knowledge necessary to decode novel words, or b) that the code would be 

derived implicitly in the holistic learning condition as reflected in recognition accuracy and 

response time data.  Two subsets of the holistic training group appear to support each hypothesis, 
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that is, a high performing subset appear to have learned the code whereas the low performing set 

appear to have limited knowledge of the alphabetic code.  We tested whether these groups 

differed in their acquisition of the alphabetic principle of the writing systems by comparing 

transfer performance   on novel words. A repeated measures ANOVA was employed for 

recognition accuracy with Skill as a between-subjects factor revealing a substantial main effect 

of Skill level, F(1,8)=51.80 p<0.001, with high skill subjects performing at ceiling (0.91) and 

low skill subjects performing no better than chance (0.30).  Figure 7(A-B) displays the mean 

accuracy as a function of WordSet for the high (royal blue) and low (light blue) skill groups 

within the Holistic training condition.  The results of these analyses revealed no effects of 

WordSet or interaction with WordSet and Skill. 

When we employed these same statistical tests for skill differences in recognition 

response times, we found that there were surprisingly no effects of Skill level or interactions 

WordSet.  While the mean data (displayed in Figure 7C-D) appear to reflect strong differences 

between these groups (HS mean=4597ms compared to LS mean=5441ms), the error variance due 

to low numbers of observations (HS SE=171ms and LS SE=713ms) obscures any possible 

effects which may be evident.      

Effects of Retention in Holistic Training  

We tested the hypothesis that high and low performing subsets of the holistic group differ 

in their acquisition of the letter-sound code by comparing performance on word form retention.  

We argued that learning of this code results in better acquisition of word form knowledge 

because redundant mechanisms of word identification are enabled.  Thus, we predict that the 

high skill group should perform faster and more accurately than the low skill group on recently 

trained words.  A repeated measures ANOVA was employed for recognition accuracy with Skill 
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as a between-subjects factor revealing a main effect of Skill level, F(1,8)=33.90 p<0.001, with 

high skill participants outperforming the low skill components, 0.93 compared to 0.60.  These 

data are displayed in Figure 8A-B.   

Tests comparing the effect of skill level on mean recognition decision times revealed no 

main effect of Skill or interactions.  Again the predicted patterns were revealed in the differences 

between the means of the high performing (mean=4123ms) and low performing (mean=4732ms) 

subsets. However, high variance (SE=513ms and 427ms for HS and LS respectively) precluded a 

statistically significant effect.  Means for the RT data for all groups are plotted in Figure 8C-D.    

Effects of Frequency on Holistic Training Performance 

 A repeated-measures ANOVA for proportion correct was run on the subset of this data to 

compare the differences between skill within the Holistic group.  As shown in Figure 9, there 

was a main effect of skill [F(1,8)=5.73, p<0.05].  Interestingly, the High Skill participants 

actually performed slower (mean=4165ms, SE=348) than Low Skill participants (mean=3021, 

SE=349) overall. This test also revealed a significant effect for WordSet [F(2,8)=4.75, p<0.05] 

with participants performing more slowly on Set C items (mean=3804ms, SE=295) compared to 

SetB (mean=3527ms, SE=270, p=0.05) and SetA (mean=3447ms, SE=194, p<0.05) in pairwise 

comparisons.  An interaction between WordSet and Skill level was found to be marginally 

significant [F(2,16)=3.39, p=0.06].  Response time latencies increased as a function of WordSet, 

which reflect increasing numbers of exposures, for High skill participants (SetA: mean=3878ms, 

SE=274; SetB: mean=4068ms, SE=381; and SetC: mean=4548ms, SE=417), whereas Low skill 

participants showed no change (means=3015, 2986, and 3060ms for Sets A, B, and C 

respectively).  There was no overall effect of frequency but a marginal interaction between 

frequency and WordSet [F(2,16)=3.36, p=0.06] such that for SetA there is a significant 

 58



difference between HF (mean=3285, SE=164) and LF items (mean=3608, SE=228, t(9)=3.59, 

p<0.01 two-tailed pairwise comparison).   
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Figure 9. The effect of frequency on mean response times for the Recognition Task are shown for High and 
Low skilled readers within the Holistic Training Group are shown for Word Sets A, B, and C.  Compared to 
Low skilled performers, High skilled performers show overall slower response times and a moderate effect of 
frequency; whereas the Low skilled performers show no effects of frequency even across Word Sets.       
 

Novel & Pseudoword Assessments 

At Session 5, participants were assessed on their ability to decode Novel Words and 

pronounceable Pseudowords in a Read Aloud/Identification task similar to that for trained words.  

We conducted several mean comparisons to test the effect of Training Method and a second set 

of comparisons to the effect of Skill within the Holistic group.  According to our hypotheses, 

explicit training of letter-sound component should result in more accurate decoding of novel and 

pseudowords compared with holistic training.  In the Novel words task, the Component group 

was significantly more accurate (mean=0.96, SE=0.02) than the Holistic group (mean=0.67, 

SE=0.12) [t(16)=2.33, p<0.05, two-tailed independent samples] (see Figure 10A).  Similar 

results were shown for the Pseudoword task with the Component group (mean=0.97, SE=0.01) 
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outperforming the Holistic group (mean=0.71, SE=0.12) [t(16)=2.02, p<0.05, one-tailed 

independent samples] (See Figure 10B).   

We tested our predictions regarding the ability of participants in the holistic group to 

derive the letter-sound structures of the language and enable decoding of novel and 

pseudowords.  The results were largely the same as previous tasks.  The HS (mean=0.96, 

SE=0.04) group significantly outperformed the LS group (mean=0.37, SE=0.15) [t(8)=4.37, 

p<0.005, two-tailed independent samples].  Results of the Pseudoword task showed a significant 

difference between the high performers (mean=0.98, SE=0.01) and the low performers 

(mean=0.44, SE=0.17) [t(8)=3.07, p<0.05, two-tailed independent samples] within the holistic 

training condition. 
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Figure 10. Identification accuracy comparing Component and Holistic and Skill groups for Novel words (A) 
and Pseudowords (B) that were administered in Session 5.  Comparisons of the overall training conditions are 
shown by the blue bars on the left.  Comparisons of the skill groups within the holistic condition are shown on 
the right by the red bars.   
 

Exit Interviews 

In the Exit Interviews, participants were asked to draw the 12 “symbols” corresponding 

to the visual components of which the Hangul words were composed.  They were also asked to 

provide the appropriate sound for each symbol.  These symbols or graphemes were scored as 

correct if they basically resembled the general visual features of the target forms.  The 
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corresponding Sounds were scored as correct only if they were matched with the correct 

grapheme.   

Comparisons across Training Method enabled us to directly assess the degree to which 

the graphemes and the corresponding phonemes were acquired by the participants in including 

the Control group were conducted via a series of independent samples T-tests.  As shown in 

Figure 11, the resulting means for accuracy (proportion correct) on the Symbol generation task 

for the Component, Holistic, and Control groups were 0.91 (SE=0.03), 0.73 (SE=0.11), and 0.34 

(SE=0.13).  Comparisons revealed no reliable difference between Component and Holistic 

groups (p=0.09), but significant differences between Component and Control groups [t(16)=3.67, 

p<0.005, two-tailed] and between Holistic and Control groups [t(18)=2.17, p<0.05, two-tailed].  

Because the Sound task is dependent on Symbol performance, the results of these comparisons 

are nearly identical to the previous task.  Mean proportions for accuracy (shown in Figure 11) on 

the Sound task for three training groups are 0.91, 0.70, and 0.32 for Component, Holistic and 

Control (SEs=0.03, 0.12, and 0.13 respectively).  Again, independent sample comparisons reveal 

no difference between Component and Holistic groups (p=0.08), but reliable differences between 

Component and Control [t(16)=3.98, p<0.001, two-tailed] and between Holistic and Control 

[t(18)=2.14, p<0.05, two-tailed].        
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Figure 11. Accuracy on Exit Interview Symbol and Sound tasks comparing Component and Holistic and 
Control groups.  

 

We subsequently made predictions regarding the ability to acquire letter-sound 

knowledge implicitly from the holistic training condition.  We argued that holistic training could 

lead to logographic reading performance in which participants map visual to phonological word 

forms without awareness of sublexical patterns.  We argue that a subset of the participants in the 

holistic condition do, in fact, fit this criterion.  These individuals show limited ability to 

generalize information from learned items to novel items and poor retention of learned items.  

We contend that, compared to their higher performing counterparts, these readers have failed to 

sufficiently acquire the letter-sound code. This prediction was directly tested by comparing mean 

accuracies for High and Low skill subjects on the Symbol task.  The high performing subjects 

identified on average 97% of the symbols accurately (SE=0.02) whereas the low performing 

group identified only 48% (SE=0.17) resulting in significant difference [t(8)=2.80, p<0.05, two-

tailed].  Similarly, the mean accuracies of the Sound task are 0.97 and 0.43 for the High and Low 

skill groups (SEs=0.02 and 0.19) yielding a significant difference between groups [t(8)=2.86, 

p<0.05, two-tailed].  Thus, the set of low skill participants in the holistic training identified less 
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than half of the 12 letter-sound correspondences in the writing system.  Given that they were 

trained on 80 word items, it is arguable that these readers invoked logographic strategies to learn 

to read the trained items.   

Word Decoding Skill 

Raw scores on the Woodcock-Johnson WordAttack Pseudoword battery were compiled 

for each subject.  Comparisons across groups revealed a significant difference in decoding ability 

between the Component group (mean=38.9, SE=1.75) and the Holistic group (mean=43.0, 

SE=0.75) [t(16)=2.40, p<0.05].  However, neither the Holistic nor the Component group differed 

from the Control group (mean=41.6, SE=1.81).   

Overall performance scores for each subject in the Holistic and Component groups were 

computed by averaging the final two test periods (Session4 Test3 and Session5 Test1) for the 

dependent measures of WordID Accuracy, Recognition Task Accuracy, and Recognition Task 

Response Time.  Performance scores for the Symbol and Sound task of the Exit Interview and 

the Novel Word and Pseudoword accuracy measures were tabulated to compute subsequent 

correlations with decoding ability.  A correlation matrix was computed to determine whether 

decoding ability predicted subsequent performance on the dependent measures for participants in 

the main Training condition (excluding Control group).  No significant correlations were 

observed.  The highest correlations occurred for accuracy on the Recognition task (r=0.27, 

p=0.23) and response time on the same task (r=0.19, p=0.62).  Thus, decoding ability in the 

native orthography was not a significant predictor of overall performance.   

We computed a second correlation matrix on the same measures for the Holistic subjects 

only.  In this analysis, decoding ability significantly predicted performance on two measures and 

resulted in non-significant but still relatively high correlation values for other tasks.   Decoding 
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ability as measured by the raw scores on the Word Attack significantly predicted accuracy on the 

Word ID task (r=0.67, F(9)= 6.54, p<0.05) and accuracy on the Recognition task (r=0.68, 

F(9)=6.82, p<0.05).   Relatively high positive correlations were observed with accuracy on the 

Pseudoword identification task in Korean (r=0.51), accuracy on the Novel Word identification 

task in Korean (r=0.48), and the Sound/Phoneme generation test of the Exit interview (r=0.48).  

These results suggest that the underlying ability to decode letter-sound correspondences in 

English are strongly related to the ability to implicitly decode these relationships in a completely 

novel orthographic code.  We compared the Word Attack scores of the participants assigned to 

High and Low skill levels within the Holistic training, which was solely based on their 

performance on the training assessment measures, and found a significant difference between 

these two groups (HS mean=41.8, SE=1.07; LS mean=44.2, SE=0.37) [t(8)=2.12, p<0.05, one-

tailed independent samples].  Thus, the Skill groups in our Holistic training condition were 

predicted by performance on the Word Attack battery.      

Discussion 

The primary goal of our training experiment was to determine whether explicit training of 

the sublexical components of alphabetic writing systems leads to more efficient word learning 

than a holistic word-form approach.  We argued that the mechanism responsible for faster and 

more accurate recognition of words is the internalization of the letter-sound correspondences of 

the alphabetic writing system.  The results of the Identification and Recognition dependent 

measures collected throughout training revealed that overall the component group was more 

accurate than the holistic group, at decoding novel words particularly in the ‘transfer’ 

comparison.  These findings replicate those of McCandliss et al. (1997) as well as other training 

studies using novel orthography paradigms (Bitan & Karni, 2003; Jeffrey & Samuels, 1967; 
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Bishop, 1964) and are also consistent with studies of explicit phonics based instruction 

(McCandliss et al., 2003; Foorman et al., 1997; 1998).   

We hypothesized that explicit training of the alphabetic coding system would enable 

more accurate decoding of novel words than holistic training.  We argued that this is because 

explicit training is more reliable at enabling learners to automatize or internalize the letter-sound 

structures of the spoken language, whereas holistic training relies on the learners ability to derive 

this letter-sound knowledge implicitly which is a fundamentally more difficult task.  The results 

of our training study found that readers in the component based training were faster and far more 

accurate than the holistic group at transferring knowledge from session to session and at 

decoding pseudowords in Session 5.  Again, these finding replicate those of other novel 

orthography paradigms (McCandliss et al., 1997; Bishop, 1964; Bitan & Karni, 2003).   

We also hypothesized that explicit component training would yield better retention of 

word form knowledge than holistic training.  We argued that internalization of the letter-sound 

code enables a bootstrapping mechanism through which a reader can acquire visual word form 

representations.  In contrast, without decoding knowledge a reader must rely on the cooccurence 

of a visual word form with its phonological counterpart in order to store and maintain the 

specific knowledge.  Thus, we argue, as Share (1995), that decoding knowledge serves as a self-

teaching mechanism to reliably encode novel and unfamiliar word forms.  In addition, we argue 

that this decoding knowledge serves as a redundant mechanism with word form knowledge, in 

that it serves to support identification for items in which these lexical representation are weak 

and incomplete (Perfetti, 1992).   In terms of our investigation, we predicted that retention of 

word knowledge would be greater for the component group for precisely these reasons; the 

internalized letter sound code enables redundant mechanisms to establish word representations 
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which enable fluent reading.  The outcome of our study shows that the component group does 

indeed perform more accurately on previously learned items.  The explicitly trained component 

group consistently outperformed the holistic group on measures of word identification and 

recognition accuracy.  Furthermore, at the outset of training, the component training requires 

more time to make recognition decisions; however, by the end of the Session 4, these 

participants are significantly faster than their holistically trained counterparts.  On the other 

hand, the holistically trained group shows relatively little change in overall speed from Session 1 

to 4.  This change in overall recognition speed reflects the notion that the explicitly trained 

readers are acquiring and using word form representations as opposed to relying on their 

decoding knowledge with each encounter with a word.  These response time findings for the 

component group are consistent with those of McCandliss et al. (1997), who found shorter 

latencies in a slightly different paired match-to-sample recognition task, and Bitan & Karni 

(2003), who found decreases in RT for a nearly identical task.  Performance of the holistic 

condition varies across these studies, whereas Bitan & Karni (2003) find improvement in speed 

of performance for the holistic/implicit group as well, McCandliss et al found increases in RT on 

subsequent sessions and our study finds no change across sessions.  These variations are likely 

due to the variations in the way items were trained across subjects with Bitan & Karni repeating 

all stimuli, McCandliss et al repeating no stimuli, and this study repeating half of the stimuli on 

all subsequent trials.   

We also hypothesized that component readers would be less affected by the frequency of 

items.  We argued that the redundancy of decoding knowledge compensates for weaker word 

form knowledge.  Perfetti (1992) argues that this mechanism can explain the frequency by 

regularity interaction that occurs in English.  Furthermore, Frost et al (1983) show that in 
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transparent orthographies like Serbo-Croatian, in which there are limited irregular spellings of 

words, there are no frequency effects since all words can be decoded.  The set of letter-sound 

relationships in this study were completely transparent.  Thus, if readers sufficiently learned the 

component structure of the system, there should be no effect of frequency.  We found that the 

component group performed identically on high compared to low frequency items; whereas the 

holistic group showed significant differences between high and low frequency items on 

identification accuracy and recognition response times.  This frequency manipulation has not 

been attempted in prior studies using novel orthographies and is the first finding using an 

artificial laboratory method for orthographic training.       

Unlike the original study by McCandliss et al. (1997), the holistic group was not an 

homogeneous group.   The second question that we addressed in our behavioral study was 

whether the underlying alphabetic structure of the writing system could be decoded implicitly 

from the holistic/logographic training method. The critical finding in response to this inquiry was 

the bimodal distribution on Word Identification accuracy in the holistic training condition which 

led to the subsequent skill level group differences that we analyzed in our data. Half of these 

subjects performed at ceiling for the transfer and retention measures suggesting that these readers 

have implicitly derived the letter-sound relationships of the orthography used; whereas the other 

half of the subjects had almost no success at decoding novel words in the four training sessions 

and a lack of retention for trained words, suggesting that they had little to no knowledge of the 

underlying alphabetic code.  Direct evidence that these groups differed in knowledge of the 

letter-sound structure comes from the Symbol and Sound test which revealed that the high skilled 

group recognized on average 97% of the symbols and corresponding sounds whereas the low 

skilled group could only produce on average 48% of the symbols and 43% of the corresponding 
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sounds.  In comparison to the component trained group, this high skilled who have derived the 

code implicitly perform nearly identically on all measures of transfer and retention including 

response time.  

High and low skilled groups also differed in terms of the effects of frequency.  Low skill 

subjects were more accurate in identifying high frequency compared to low frequency words, 

whereas high skill subjects performed at ceiling for both word types.  These findings confirm the 

hypothesis that logographic reading is more sensitive to frequency of exposure to establish 

quality word representations.  However, decision times on the recognition task showed the 

opposite pattern where high skilled subjects were slower to respond to low frequency words 

compared to high frequency words.   

It could be argued that these low skilled readers can not be characterized as logographic 

since they were somewhat successful at picking up on some regularities of the system.  On the 

other hand, when we looked at the descriptions that subjects provided of the strategies used in 

the training phase, only 1 of the 5 described having started to attempt to decode the words via the 

alphabetic code.  The remaining four subjects reported having noticed some regularities in the 

structures of the words, but not being confident in their knowledge of the exact relationships.  It 

is crucial to take into account the fact that performance on the Word Attack pseudoword reading 

battery for the holistic group participants prior to training significantly predicted subsequent 

performance on Word Identification and Recognition accuracy in the novel orthography.  In fact, 

there was a significant predictive difference between high and low skill readers on this measure 

of decoding ability with high skill readers scoring at ceiling for the task.  Thus, the ability of a 

learning to implicitly derive the letter-sound code from holistic word training is determined by 

there ability to decode letter-sound correspondences in their native language.  Consistent with the 
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hypothesis of Perfetti (1992) regarding the nature of phonological coding, an underlying ability 

of reflexive phonology can determine overall skill with decomposing written forms into 

phonological components to better shape and refine store of print-sound correspondences.  It is 

this reflexive ability which is thought to determine general reading ability and reading deficits; 

and in turn, the deficits exhibited in reading ability and why as discussed in our introduction 

explicit, systematic phonics training results in greater learning and remediation scores (Bus & 

Ijzendorn, 1999; Ehri et al., 2001; NRP, 2003).    

The differential performance of the holistic group was not present in the study by 

McCandliss et al. (1997) whose orthographic stimuli was nearly impossible to parse without 

explicitly attending to particular features.  Bitan & Karni (2003) employed a similar design in 

which the units representing letters were difficult to parse and thus they found that the learners in 

their implicitly trained condition (similar to our holistic) failed to generalize the stimuli 

compared to their explicitly trained group.    

Theoretical Impact 

As shown by Liberman et al. (1967; 1999), the ability to map graphemes to phonemes is 

largely dependent on individual differences in awareness of the phonological structures in the 

speech stream.  The ability of the participants in the holistic training condition to derive the 

letter-sound patterns appears to be driven by individual differences in decoding ability in their 

native language.  Previous studies have shown that the decoding ability in determined by this 

phonemic awareness (Sandak, unpublished dissertation).  Several studies have shown that 

phonological analysis at the level of the phoneme is not available prior to experience with 

literacy training (Byrne, 1992), rather emerges later in the process of literacy development (Ehri, 

1992; Ehri & Wilce, 1987).   Byrne (1989) argues that compared to the syllabic awareness this 
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level of phonemic analysis is not a natural phenomena, but emerges from the process of 

acquiring the alphabetic principle.  According to Share (1995), children begin to utilize 

sublexical structural information as a bootstrapping mechanism in the development of fully 

specified orthographic word forms. In accordance with an “Interactive” hypothesis, these 

sublexical forms are acquired by constraints from both alphabetic knowledge (knowledge that 

each letter represents an individual sound) and from structural knowledge of the lexicon, (i.e., 

knowledge that lexical items in a particular language system have a particular phonetic 

composition).  

As knowledge of these structural units increases, the computational system has greater 

generative power to produce and recognize an unlimited number of words.  That is, a child can 

generate more accurate candidate word forms from the lexicon when identifying novel or 

familiar words.  Chall (1996) claims that this knowledge of structural features expands children’s 

abilities to recognize words and to gain fluency and speed in reading.  These frameworks (Share, 

1995; Perfetti, 1992; Ehri, 1992) postulate an automatic stage of word recognition; however, they 

vary dramatically on what that system entails.  For example, Adams (1990) suggests that 

automaticity is achieved as a function of built-up associations among the form-based constituents 

(orthography and phonology) triggering recognition.  “As the reader encounters more and more 

words, the associations between the letter units will ultimately come to reflect the more general 

orthographic structure of the printed language” (p. 129).  Whereas Ehri (1991) concludes that all 

students learn to read words by sight but that there are different ways to achieve this goal 

dependent upon instruction.  

While direct evidence for the acquisition of word-specific representations remains 

somewhat elusive, a number of studies have reported experimental data consistent with this 
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hypothesis.  For example, Reitsma (1983, Experiment 2) found that 2nd graders were able to 

discriminate previously taught pseudowords from homophonic foils after 8 exposures.  Reitsma 

(Experiment 3) also found that skilled First graders (but not level-matched disabled readers) 

were able to read target spellings for recently taught words versus similar homophonic spellings.  

In a recent test of his self-teaching hypothesis, Share (1999) taught normal 2nd graders to read 

novel pseudowords by embedding them in short texts where meaning could be derived by 

context.  These subjects were able to recognize and name target spellings more quickly then 

homophonic foils.  Share (Experiments 2-4) also found that phonological recoding, but not visual 

presentation or contextual factors, determined the quality of the word-specific representation and 

subsequent performance of the child.  So while exposure-frequency is important to Share’s 

thesis, the development of access routes in terms of decoding mechanisms is fundamental. 

One of the fundamental distinctions that has been made in the reading literature, 

especially following the publication of Perfetti’s (1991) and Share’s (1995) models, is that of 

word recognition strategies as sight-word vs. decoding based strategies.  Since Coltheart’s dual-

route model (1978), there has been a tendency to describe word recognition as occurring via the 

dichotomous cognitive mechanisms of direct visual access (sans phonology) versus addressed 

phonology (or phonological decoding).  However, researchers such as Ehri (1991, 1992), 

Foorman (1994), and Goswami (1990), have all supported the framework we have described 

which describes the relationship of orthographic and decoding knowledge as functionally 

interdependent with the latter serving as a bootstrapping mechanism for the former.  This 

framework predicts that an influence of lexical knowledge will be secondary to that of decoding 

knowledge, but will subsequently increase in relation to skilled reading. 
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3.0  FMRI EXPERIMENT: THE EFFECTS OF TRAINING ON CORTEX 

The primary aim of this experiment is to investigate cortical differences resulting from the 

training manipulations reported in the behavioral portion of the study.  We hypothesized that 

Component and Holistic training would result in the reliance on separable regions of cortex.  

Specifically, we argued that both training methods would converge on a set of common regions 

associated with lexical processing of visual word forms, but that the explicit alphabetic training 

would rely on a set of regions associated with grapheme-phoneme processing.  Based on 

evidence from previous studies such as Paulesu et al (2000), we predict that these regions would 

be localized in the left posterior superior temporal region including inferior parietal and angular 

gyrus.   

A second aim of the behavioral study attempted to assess whether holistic lexical training 

would produce logographic reading behavior or if the alphabetic knowledge would be derived 

implicitly.  The underlying goal of this attempt was to enable us to measure variations in cortex 

due to the differences between logographic and alphabetic orthographies as those discussed in 

Bolger et al. (2005).  We attempted to identify patterns of logographic reading in individuals 

from the holistically trained group and identify variations in the cortical activity of these 

participants compared to those who have sufficiently learned the letter-sound components.  

Specifically, we compared activation in the low-skill subset of the holistic group to the high 

skilled and explicitly trained participants.  We predict that a similar pattern as discussed earlier 
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should emerge in which alphabetic reading, compared to logographic, should rely more heavily 

on the dorsal route of the STG, whereas both systems would rely on the ventral route associated 

with lexical processing.  However, we predict that the visually demanding nature of holistic 

processing may elicit greater activity in the RH homologue of the VWFA and the left middle 

frontal gyrus as seen in studies of Chinese.       

The third aim of this portion of the experiment was to uncover variations in cortical 

activity associated with developing reading skill.  We argued that the region central to visual 

word form processing, the VWFA, located in the left mid fusiform region develops as a function 

of reading skill.  Our fMRI paradigm, included a Control Group, which we described earlier in 

the behavioral section, that received minimal training on all 80 novel orthography words to 

function as a low experience control group to measure the plasticity of target cortical regions.  

This group was provided minimal training as opposed to serving as a naïve baseline, because our 

target hypothesis was that target regions of the VWFA and inferior frontal gyrus should activate 

as a function of skill and not just basic familiarity with the stimuli.  Thus, we predict that both 

experimental training groups (Component and Holistic) should activate the VWFA and inferior 

frontal gyrus more reliably than the control group.   

In the neuroimaging portion of the experiment, we examined cortical activation with 

fMRI of the reading network during a simple visual recognition task using various stimuli from 

the native English and novel Korean Hangul orthographies in the participants from the 

behavioral portion of the experiment following the and fifth (or only in the case of the Control 

group) session.  We employed a 1-back visual match task in order to examine automatic 

activation of the network that occurs in a relatively passive recognition task.  In this fMRI 

 74



design, we compared cortical activation to stimuli from both the newly learned orthography and 

the native orthography, Roman alphabet.   

In addition to our target hypotheses, we attempted to use our stimulus condition to 

localize particular structure-function relationships found in the literature.  Our stimuli consisted 

of several levels of orthographic processing across the two orthographies: single letters, 

pseudowords, and words of low and high frequency.  In the native orthography condition, we 

included a consonant string condition to enable localization of legal/pronounceable compared to 

illegal/unpronounceable letter strings.  These levels in the native orthography served to enable 

mapping of frequency (high vs. low word items) lexicality (words vs. nonwords), legality (words 

and pseudowords vs. consonant strings), and orthographic length (consonant strings vs. 

individual letters).  We also tested whether training in the novel orthography reveal the same 

effects of frequency and lexicality.  We also tested decoding ability in the novel orthography 

comparing novel and pseudowords to a fixation baseline to compare differences across training 

groups.  We argue that the cortical response to high and low frequency words will follow 

similarly to that of English words.  That is, compared to high frequency items, low frequency 

words will elicit more activation in representation based regions such as the occipito-temporal 

and ventral inferior frontal regions.  Regions of the superior temporal gyrus and dorsal inferior 

frontal region may show more activation as well, but given there phonological nature, these areas 

may interact with training performance; meaning that logographic readers may be less likely to 

activate these regions for high or low frequency words.  

Lastly, because training results in the acquisition of skill and the induction of 

automaticity, we postulate that high performing subjects will show reduced activation in central 
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executive regions including the dorsal lateral prefrontal cortex, anterior cingulate, and posterior 

parietal region as proposed by the CAP3 architecture Schneider & Chein (2003).       

3.1 FMRI DESIGN AND METHODS 

This fMRI experimental design consisted a blocked box-car design (see Chein & Schneider, 

2003).  Each run was composed of 11 stimulation blocks interspersed with 12 fixation blocks 

(runs begin with 18 seconds of fixation of which the first 6 are discarded to allow tissue to settle 

into a steady state).  Stimulation blocks lasted 18 seconds with a single stimuli presented for 

1500ms followed by a 300ms fixation (SOA = 1800ms) for a total of 10 stimuli occuring in each 

block.  The duration of each run was approximately 6 minutes (5:48).  A lag time of 

approximately 60 seconds  between runs enabled the experimenter to instruct subjects, comment 

about movement, and set-up the subsequent run.  The stimulus conditions included several 

dimension of Native Orthography: high frequency words, low frequency words, pronounceable 

pseudowords, consonant strings, and individual letters, as well as several dimension of the Novel 

Orthography: high frequency trained items, low frequency trained items, novel words, 

pseudowords, and individual Hangul letters.  Arabic letter strings were used as a visually-based 

orthographic control stimulus.  These eleven conditions were presented once per run composing 

the eleven stimulation blocks per run.  The scan session for each participant consisted of seven 

runs resulting in 7 replications or observations for each condition.   

In the fMRI boxcar stimulation design, each 18sec stimulation block was followed by a 

12 sec fixation block in which subjects must press a button when the fixation point blinks.  In the 

1-back decision roughly 10% of stimuli were target stimuli (repeated item), resulting in about 1 
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repetition (target word) per stimulus block.  Similar to the 1-Back stimulation blocks, the fixation 

blinks occurred roughly 10% of the time or about once each block.      

Stimuli 

 The stimuli used in this fMRI design for the Novel Orthography conditions were 

created from those presented in the behavioral training part of this experiment.  The single 

Letter condition was straightforward using the 12 graphemes (letters) of the Korean Hangul.  

The Novel Word and Pseudoword conditions consisted of the 80 (40 for each condition) CVC-

structured stimuli utilized in Session5 as described above.  The High Frequency (HF-Korean) 

word condition consisted of the subset of trained words from Sets A, B, and C that were 

presented in subsequent Sessions (for a total of 64, 48, and 32 training trials respectively); 

whereas the Low Frequency (LF-Korean) words consisted of those words from Sets A, B, and 

C which only presented (in terms of training trials) in their respective training Sessions (a total of 

16 exposures).  Thus, both HF and LF conditions consisted of 30 stimuli.  Since there were 10 

stimuli per block (9 unique stimuli + 1 repeated target word) and each condition repeated 7 times 

(once per run), words in each condition were repeated at least one time.  We avoided using Set 4 

stimuli in order to avoid having recency affect the cortical signal.   

The Native Orthography stimuli are directed, in part, to be comparable to Novel 

Orthography stimuli.  The sixty High Frequency (HF-English) and Low Frequency (LF-

English) word stimuli were composed of 4-7 letters (to control for length) were selected from 

the MRC database (Coltheart, 1981).  High frequency English words occurred more than 100 per 

million and low frequency words occurred between 1 and 10 per million (Francis & Kucera, 

1982).  Both HF and LF words had average concreteness and imageability rating of less than 3.0 

on a 7-point scale using the MRC corpora.  This was done to reduce the visualization of word 
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referents and the related cortical activity.  Pseudoword (PW-English) stimuli were created 

based on permuting 1-2 letters of the High and Low Frequency word items to create illegal but 

pronounceable letter strings.  Consonant String (CS) stimuli were adapted from a set of letter 

strings with high bi-gram frequencies used in a prior study (Phillips, Laurent, Geudiche, Bolger, 

Perfetti, & Fiez, in press) and varied from 4-6 letters in length. All 26 letters in the English 

language were utilized in the Letter (L-English) condition.  All native orthography stimuli were 

presented in 36-point Arial font.  Therefore, almost all word stimuli in both frequency conditions 

were repeated only one time.  Sixty Arabic letter strings 4-6 letters in length were created using 

legal patterns of letters created using Microsoft Word language tools. Figure 12 displays the 

stimulus conditions and sample stimuli used in the fMRI stimulation blocks.   

Pseudowords

빕 (bib)
Novel Words

맛(mat)Low Frequency

ㅂ (b)
Individual 
Letters
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Arabicفغٻ

Novel Orthography:
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lrfrConsonant 
Strings

bilpPseudowords
hueLow Frequency
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Letters

buyHigh Frequency
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ㅣㅁ
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Figure 12. Stimulus Conditions presented in the 1-back task presented in a blocked fMRI design.  Samples of 
the Novel Orthography Korean stimulus conditions are shown on the left, of the Native Orthography English 
stimulus conditions on the right, and of the Arabic Control stimuli on the bottom.   
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fMRI data acquisition 

The imaging portion of this experiment was run at the Univeristy of Pittsburgh’s Brain 

Imaging Research Center (BIRC) on the 3-Tesla (Siemens Allegra) scanner.  Functional images 

were collected with a T2* weighted gradient-echo EPI sequence (TR = 2000ms, TE = 35m) with 

34 axial slices at 3.0mm (skip 0) starting at the base of the temporal pole for nearly whole-brain 

coverage.  A 34 slice oblique-axial structural series was acquired, collected parallel to the AC-

PC plane with a standard T1-weighted spin-echo pulse sequence (TE = 12 ms, TR = 500 ms, 

FOV = 210, slice thickness = 3.0 skip 0), as an “in-plane” anatomical reference.  The functional 

series were acquired in the same plane as the structural series.  Lastly, we acquired a high-

resolution (256x256; FOV 110) 3D structural image (Seimens MPRAGE) with voxel size equal 

to 1mm for acute  ROI analysis of functional data.  

fMRI Data Analysis  

Analyses were conducted off-line using the NeuroImaging Software package 3.5 

(developed at the University of Pittsburgh and Princeton University, Fissel et al., 2003), 

BrainVoyager, and SPM.  Images were corrected for subject motion using a 6-parameter rigid-

body automated registration algorithm, and were linearly detrended.  To form a group composite, 

the structural images collected from each subject were co-registered to a common reference 

anatomy using a 12-parameter affine transformation algorithm.  Functional images were 

transformed into common space. The statistical maps resulting from each analysis were 

transformed into stereotaxic space (Talairach and Tournoux, 1988) for final reporting.  

Analyses of the fMRI data were conducted using voxel-based statistical techniques. Each 

analysis employed a random effects model, wherein subject was treated as a random factor.   All 
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initial statistical tests were subjected to a False Discovery Rate (FDR) corrected alpha of 0.05, 

and a clustering criterion of six contiguous active 3mm3 voxels.     

3.2 FMRI RESULTS 

The functional data were analyzed using a least squares estimate general linear model 

(GLM) approach which accounts for the temporal shift of the fMRI BOLD signal as a function 

of the model predictors (see Zarahn, Aguirre, & D'Esposito, 1999). The full model included the 

eleven stimulation conditions (shown in Figure 11) plus the fixation control condition.  The 

predictors of the conditions were modeled using a standard deconvolution algorithm of the 

hemodynamic response (Boynton, Engel, Glover, & Heeger, 1996) with a double gamma 

function time-locked to the onset of the stimulation block.  We report several analyses based on 

this full model: a) the activation of the network involved in the native orthography, b) the 

activation of this native region by the novel orthography, and c) the contrast of regions activated 

by the novel compared to native orthography.  In order to directly test the effects of training, we 

conducted a set of three group-based ANCOVA analyses with subject as a random factor for 2-

way comparisons between 1) Component and Holistic groups, 2) Component and Control 

groups, and 3) Holistic and Control groups.  The critical analysis to test the hypotheses regarding   

Lastly, we conducted a random effects ANCOVA model on the 10 participants in the Holistic 

group to assess the covariance of performance on the Word Identification task (accuracy) with 

the cortical activation associated with processing trained Korean orthography conditions.      

Native Orthography Reading Network 
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The first goal of our analysis was to localize the network of regions supporting word 

recognition in the native orthography (English).  In order to achieve this, an activation map was 

obtained from the contrast of all English stimuli conditions (HF-E, LF-E, PW-E CS-E, and 

Letters) with the fixation blink condition.  This test resulted in large clusters of activation in 

predictable regions across cortex at an FDR corrected alpha level of 0.05.  Regions of interest 

(ROIs) were localized within these clusters using a watershed algorithm (FIDL) which identified 

unique clusters surrounding a peak voxel.  To achieve this, a cortical mask was created for all 

voxels above the stated statistical threshold (FDR: q=0.05).  By gradually reducing the statistical 

threshold from the highest to lowest statistical value, individual peaks are identified and ROIs 

are drawn that include all voxels (of lesser value) in the mask (thus above the overall threshold) 

within a predefined 10mm radius of the peak.  To insure unique regions, peaks occurring within 

a 10mm radius of each other are merged according to voxel of highest value.  This procedure 

resulted in 29 regions of interest which are detailed in Table 2.   

Activation of these regions was assessed using random effect GLMs for each of the 29 

ROIs with planned contrasts for each of the five English conditions as well as the Arabic Control 

condition compared to the fixation control task—Novel orthography conditions were also 

assessed in the same test and are reported in the following section.  The results of these tests are 

reported in Table 2.  Several regions in the ventral visual stream from cuneus to inferior occipital 

and inferior temporal were significant for all stimulus conditions.  These include the bilateral 

regions in the mid fusiform gyri (BA37), the mid and inferior occipital gyri (BA18/19), and 

cuneus (BA17) as well as regions in left parahippocampal gyrus (BA19).  Anterior regions of the 

right fusiform gyri extended medially (x=27, BA 20) compared to the left fusiform activation 

(x=-37).  Several regions of the superior and middle temporal gyri bilaterally were strongly 
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activated for LF-E condition and moderately for PS-E and HF-E conditions.  However, 

Consonant String and Letter stimuli failed to activate right hemisphere regions and, in general, 

only weakly activated regions in the left hemisphere.  The control (Arabic) stimuli failed to 

activate any these regions.  The only other posterior region which fell into this criterion was the 

left angular gyrus (BA39) which was significantly active for all conditions.  Moving anteriorly, 

regions in the left frontal cortex were found including several peaks in precentral gyrus (BA4/6), 

inferior frontal gyrus (BA9 and BA13), as well as a region in medial frontal gyrus (BA6) and 

insular cortex (BA13).  Regions of the precentral gyrus were largely active for all stimulus 

conditions with the exception of the most anterior region which showed no activation for Letters 

and weak activation for HF-E items.  The two inferior frontal regions were activated for all 

English stimuli except for Letters, and the anterior portion failed to activate for Arabic stimuli.  

The medial frontal region also elicited activation to all English and Arabic control stimuli as 

well.  Two additional regions of interest include: a) the left Lentiform nucleus, which activated 

for LF-E, PW-E, CS-E stimuli, weakly for HF-E and Arabic stimuli, and not at all for Letters, 

and b) the right Anterior Cingulate (BA32) which activated for the LF-E and PS-E stimuli only.    
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Table 2. Activations of Regions of Interest for the Native Orthography reading network by Stimulus Condition in both Native and Novel Orthographies  

  English Korean
Region x y z Arabic HFWords LFWords CString Pseudo Letter HFWord LFWord Novel Pseudo Letter 

L fusiform gyrus (BA37) -37 -42 -18 9.34 10.52 7.59 10.87 7.35 4.11 7.75 6.44 7.05 7.56 7.77 
L fusiform gyrus (BA37) -43 -50 -20 7.23 7.40 6.29 8.33 6.31 5.47 11.18 10.68 6.99 9.58 8.91 
L fusiform gyrus (BA37) -39 -55 -14 15.24 7.79 8.26 10.56 6.25 7.44 11.62 10.72 9.11 10.72 10.13 
L Parahippocampal gyrus -40 -43 -7 5.66 6.40 5.28 6.18 3.20 3.50 4.68 4.92 4.07 3.43 4.67 
L Parahippocampal gyrus -39 69 -9 12.59 8.76 7.63 9.56 7.84 7.91 10.82 11.51 10.17 11.61 10.56 
L Post fusiform (BA19) -35 -80 -17 8.21 8.74 8.50 8.11 7.30 5.10 7.83 8.33 6.98 9.02 6.13 
L inf occip gyrus (BA18) -25 -86 -12 9.78 11.97 12.02 12.15 11.05 7.14 12.89 11.10 9.15 10.73 8.48 
R fusiform (BA20) 27 -38 -17 10.85 5.71 4.39 7.14 6.43 3.95 8.31 5.90 8.20 6.50 7.01 
R fusiform (BA37) 35 -56 -15 11.41 7.66 6.05 9.78 7.83 6.71 12.65 11.66 11.90 11.81 11.73 
R inf occip gyrus (BA19) 39 -72 -9 12.07 8.86 6.49 9.49 6.36 7.57 10.38 11.06 9.86 10.13 13.02 
R mid occip gyrus (BA18) 30 -82 -9 10.61 9.82 8.05 10.88 8.64 7.49 11.19 9.48 10.52 10.15 11.75 
R cuneus (BA17) 22 -91 -1 10.49 11.22 9.27 8.37 9.10 5.47 12.04 12.51 10.39 10.76 8.32 
L SPTG (BA22) -56 -41 7 - 7.20 3.57 3.47 3.81 - - - - - - 
L mid temporal gyrus  -56 -32 2 - 6.80 3.50 - 3.36 - - - - - - 
L sup temporal gyrus (BA21) -56 -19 1 - 5.13 3.12 - 3.04 - - - - - - 
L sup temporal gyrus (BA39) -46 -46 11 - 7.04 2.58 2.44 2.78 - - - - - - 
L angular gyrus (BA39) -26 -61 32 5.68 5.27 2.95 7.04 4.69 4.55 7.21 7.06 8.21 7.37 8.48 
R sup temporal gyrus 50 -30 6 - 7.45 - - 2.79 - - - - - - 
R sup temporal gyrus 48 -21 4 - 5.39 - - 2.83 - - - - - - 
L precentral gyrus (BA4) -51 -12 41 4.66 6.04 4.45 7.93 7.14 5.89 5.01 5.78 5.54 6.37 6.72 
L precentral gyrus (BA6) -46 1 34 6.26 7.34 4.35 6.99 6.35 4.20 6.79 6.99 5.64 5.65 7.10 
L precentral gyrus (BA6) 38 6 1 4.70 5.11 3.31 6.76 5.31 3.99 5.47 6.03 5.50 5.58 6.44 
L precentral gyrus (BA6) 34 3 3.89 5.16 2.56 4.49 4.31 - 4.29 3.97 2.91 3.20 4.53 
L inf frontal gyrus (BA9) 47 3 4.03 5.31 3.76 3.51 5.35 - 3.37 3.57 2.99 3.39 3.99 
L inf frontal gyrus (BA13) 45 3 - 4.28 3.70 4.97 4.23 - 2.66 2.73 2.18 2.73 - 
L insula (BA13) 27 8 5.46 4.27 - 4.78 4.06 2.91 5.50 7.27 4.81 5.91 4.97 
L medial frontal (BA6) 7 3 4 5.53 6.02 2.85 6.36 6.30 4.65 6.96 6.66 6.58 6.51 6.73 
R ant cingulate (BA32) 0 4 1 - 4.46 - - 3.24 - - 2.82 - - - 
Lentiform (BA) 26 2.80 4.24 2.31 4.42 3.81 - 5.14 5.21 3.81 3.92 4.71 
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Effects of Novel Orthography  

The effects of the various Novel Orthography conditions on the regions of the native reading 

network (as determined above) across all subjects were assessed using random-effects GLMs for each of 

the 29 ROIs described above.  As for the native orthography stimuli, the regions of the ventral visual 

processing stream activated strongly for all stimulus conditions.  The superior temporal regions did not 

show reliable activations for any of the Novel orthography conditions; however, as was the case for the 

previous conditions, the angular gyrus was active above fixation for all conditions.  Regions in left Frontal 

cortex were also active for all conditions with the sole exception of the anterior IFG (BA13) which failed to 

activate for the Korean Letter condition similar to the finding for English letters.  The left Lentiform 

nucleus was also active for all conditions, whereas the right Anterior Cingulate (BA32) was only active for 

the LF-K condition, again similar to the finding for English.     

Direct Comparison of Native vs. Novel Orthography  

To better understand the overall difference between Native and Novel orthographies, we directly 

compared the (known) word conditions in the English and Korean stimuli (HF and LF).  We conducted a 

planned comparison of Korean over English stimuli which revealed a series of bilateral regions in ventral 

visual cortex including: Middle Occipital, Fusiform, Precuneus, and Cuneus as well as frontal regions 

including the Precentral gyrus and Insula bilaterally and importantly left middle frontal gyrus.  Those 

regions that were more active for English than Korean stimuli include: bilateral superior temporal gyrus 

(BA22), right precentral gyrus, and left middle temporal gyrus and left anterior cingulate.   
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Table 3.  Contrasts of cortical activation for Novel and Native Orthography words 

Region BA x y z T 
Korean vs. English      
Middle Occipital Gyrus BA 37 -46 -66 -6 7.34 
Middle Occipital Gyrus BA 18 -31 -84 5 4.50 
Fusiform Gyrus BA 37 38 -59 -10 9.18 
Fusiform Gyrus BA 37 25 -50 -10 8.35 
Middle Occipital Gyrus BA 18 30 -82 5 8.66 
Inferior Parietal Lobule BA 40 -35 -53 39 8.08 
Superior Parietal Lobule BA 7 30 -53 43 8.10 
Precuneus BA 7 -24 -70 40 8.25 
Precuneus BA 7 21 -70 41 8.59 
Cuneus BA 18 -24 -78 23 7.21 
Precuneus BA 31 25 -74 25 8.25 
Insula BA 13 32 18 7 6.14 
Insula BA 13 -32 18 7 4.36 
Precentral Gyrus BA 6 -47 -5 39 5.02 
Precentral Gyrus BA 6 41 2 34 4.77 
Middle Frontal Gyrus BA 9 -46 19 33 4.41 
      
English vs. Korean      
Precentral Gyrus BA 43 51 -6 14 5.33 
Superior Temporal Gyrus BA 22 51 -5 -5 6.24 
Middle Temporal Gyrus BA 21 -53 -13 -6 5.62 
Middle Temporal Gyrus BA 22 -54 -38 3 4.81 
Superior Temporal Gyrus BA 22 -53 -9 7 4.10 
Anterior Cingulate BA 24 -2 34 -2 5.97 
      

 

Group Comparisons  

A series of three 2-way group effect ANCOVA models tested the differences between the two 

experimental training groups and the control group on the five Novel orthography stimulus conditions.  

Because the data from these comparisons could not meet the stringent FDR corrected alpha level of 0.05, 

we set the cluster threshold to 180mm (or 20voxels) and the p-value to 0.001 to find regions of interest.  

Comparing the primary experimental groups to one another revealed only a small set of regions meeting 

our criterion that were more active for the Component than the Holistic group: the right inferior parietal 
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lobule (BA40), the right superior frontal gyrus (BA 9), and the left superior posterior temporal gyrus 

(BA22).  There were no regions more active for Holistic compared to the component group.  The contrast 

of the Component group to the Control group revealed several regions including the right insula (BA22), 

cuneus (BA18), and the left precentral gyrus (BA 4/6). Two mid brain regions were also found for this 

comparison including the left thalamus and the substantia nigra.     

 Table 4. Resulting cortical activations for comparisons of Training Conditions  

Region BA x y z T Voxels 

Component vs. Holistic     t(17)  

Inferior Parietal Lobule BA 40 41 -50 36 -4.87 954 

Superior Frontal Gyrus BA 9 12 55 30 -3.74 183 

Superior Temporal Gyrus BA 22 -33 -48 26 -4.76 377 

Component vs. Control     t(17)  

Insula BA 22 43 -31 -4 4.68 622 

Cuneus BA 18 6 -76 28 4.27 261 

Substania Nigra  -5 -16 -9 4.65 266 

Thalamus  -12 -17 6 4.64 898 

Precentral Gyrus BA 6 -44 -10 26 4.90 433 

Precentral Gyrus BA 4 -59 -5 18 4.39 330 

Holistic vs. Control     t(19)  

Inferior Parietal Lobule BA 40 60 -30 37 5.13 568 

Superior Frontal Gyrus BA 6 12 15 52 5.30 194 

Cingulate Gyrus BA 31 -19 -29 42 4.33 155 

Inferior Parietal Lobule BA 40 -45 -58 36 5.11 1259 

Inferior Parietal Lobule BA 40 -58 -48 41 4.58 195 
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Figure 13. Activation maps for Trained Korean word stimuli (HF-K+LF-K > Fix) for the Holistic Training Group (Red) 
and the Component Training Group (Blue).  The top row show activation in the left putative word form region in the 
sagital slice (top left).  The axial slice (top right) shows activation in the bilatereal (left hemisphere is shown on right) 
inferior occipital-temporal boundary region including the mid-fusiform VWFA in the crosshairs.  The bottom row shows 
activation in the left inferior parietal lobe activated for the Component Group in the sagital slice (bottom left) and in the 
axial slice (bottom right) in which the right hemisphere homologue can be seen.   
 

ROI Based Analyses of Experimental Groups 

The fundamental goal of the fMRI experiment was to isolate regions of the “reading network” or 

the set of regions commonly activated across tasks of visual word recognition (Bolger et al., 2005; Fiez & 

Petersen, 1998; Jobard et al., 2003).  Our goal was to uncover the differential activation in these regions for 
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the Component and Holistic training conditions.  For this analysis, we subdivided the Holistic training 

condition into High and Low performing groups to compare the cortical effects of logographic reading (the 

Low performing groups failure to derive letter-sound code sufficiently), deriving the letter-sound code 

implicitly (the High performing group), and the explicitly trained group (Component condition).   

In order to identify these region, we used a data-driven method of isolating ROIs.  From the overall 

random-effects GLM model, an activation map was created from the contrast of all orthographic conditions 

compared to the fixation baseline condition with an FDR corrected alpha of 0.01.  We isolated individual 

ROIs from the resulting map by employing the watershed methodology described earlier.  Again, 

individual peaks occurring within 10mm were merged and extents of the ROIs were drawn at a radius of 

10mm from peaks.  Excluding regions occurring in white matter and medial regions of the brainstem and 

cerebellum, a total of 36 ROIs were found in regions commonly discussed as part of the reading network: 

ventral occipito-temporal, superior posterior temporal regions including inferior and superior parietal areas, 

and inferior frontal regions including precentral gyrus, insula, and middle frontal cortex.  While these 

regions have been commonly found in the left hemisphere, based on the data from our activation maps, we 

included right hemisphere homologues of these classical.  We also included regions of the cingulate cortex, 

particularly the anterior cingulate gyrus, that are associated with executive functioning (Chein & Schneider, 

2003).  After isolating the ROIs, we conducted random-effects GLMs on each ROI with planned contrasts 

comparing each of the novel Korean orthography conditions (HF words, LF words, Novel words, 

Pseudowords, and Letters) to the fixation baseline for the Component training condition, and the High and 

Low performing Holistic groups.   

The results of these analyses are displayed in Table 5.  The component training condition activated 

all target regions for most conditions with the exception of the ventral aspect of the precentral and middle 

frontal gyri, which failed to activate for novel and pseudoword reading.  Both the component and high skill 
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holistic readers activated the anterior cingulate for high frequency words only.  In comparison to the 

component training group, high skilled holistic performers activated much of the reading network for both 

low and high frequency items as well as novel and pseudoword items with the exception of the bilateral 

insula regions and which were only active for high frequency items.  On the other hand, low skilled 

responded to high but not low frequency items including the left anterior fusiform (BA37), right inferior 

and superior parietal regions (BA40/7), and left precentral (BA6) and middle frontal regions (BA9).  
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Table 5. Performance Groups activations for Korean Stimulus Conditions in ROIs derived from both Native and Novel orthographies. 
 

 Holistic Low  Holistic High  Component 
Region x y z #Vxls HF LF Nov Psd Lett HF LF Nov Psd Lett HF LF Nov Psd Lett 
L Inf Occipital G (BA18) -38 -86 -8 2325 2.15* 2.36* 2.17* 2.11* 2.21* 1.89 2.17* 2.08* 2.04* 1.95 3.06** 2.72* 3.00** 2.87* 3.02** 
L Post Fusiform G (BA18) -21 -88 -18 1641 2.07* 2.10* 1.95 1.96 1.94 2.31* 2.34* 2.35* 2.34* 2.14 2.48* 2.02* 1.96 2.22* 2.37* 
L Post Fusiform G (BA18) -31 -85 -17 1928 2.20* 2.33* 2.16* 2.17* 2.18* 2.24* 2.31* 2.30* 2.29* 2.14 2.80* 2.27* 2.46* 2.69* 2.64* 
R Post Fusiform G (BA19) 23 -83 -16 2415 - - - - 2.07* 2.34* 2.35* 2.25* 2.16* 2.00 2.56* 2.23* 2.30* 2.44* 2.59* 
R Fusiform G (BA19) 35 -75 -9 3762 2.17* 2.05* 2.24* 2.22* 2.40* 2.08* 2.16* 2.03* 2.01* 2.29 2.87* 2.82* 2.87* 2.81* 2.96* 
L Fusiform G (BA19) -39 -73 -12 3191 1.90 2.11* - 2.17* 2.10* 1.93 2.09* 2.06* 1.98 1.95 3.04** 2.78* 2.94* 3.08** 2.97* 
L Fusiform G (BA37) -44 -63 -10 3346 2.07* 2.16* 1.92 2.15* 2.09* 2.22* 2.29* 2.30* 2.19* 1.99 3.09** 3.15** 3.10** 3.15** 3.10** 
R Fusiform G (BA37) 38 -60 -12 3723 2.35* 1.94 2.27* 2.19* 2.38* 2.27* 2.38* 2.31* 2.15* 2.18 3.06** 3.13** 3.12** 3.14** 3.09* 
L Fusiform G (BA37) -39 -52 -18 3907 2.04* - 1.93 2.27* 2.23* 2.11* 2.10* 2.05* - - 3.06** 2.99* 2.94* 2.79* 2.99* 
R Fusiform G (BA20) 30 -41 -18 2460 - - - - - 2.33* 1.92 - - - 3.03** 3.16** 3.02** 2.87* 2.97* 
R Parahippocampal G (BA36) 23 -34 -19 550 - - - 2.06* 2.28* 2.05* - - - - 2.63* 2.44* 2.49* - 2.73* 
R Inf Parietal Lob (BA40) 33 -53 43 2459 2.04* - 1.95 - 2.00* 2.09* 2.28* 1.93 1.91 2.17 2.51* 2.77* 2.55* 2.53* 2.40* 
L Inf Parietal Lob (BA40) -36 -50 38 3397 - - - - 2.03* - 2.33* 2.19* - - 3.01** 2.99* 3.01** 2.70* 3.06** 
L Inf Parietal Lob (BA40) -46 -42 39 2449 - - - - 1.91 - - - - - 2.98* 3.00** 3.02** 2.70* 3.06** 
R Inf Parietal Lob (BA40) 40 -42 40 1599 2.02* - - - - 2.14* - - - - 2.39* 3.08** 2.73* 2.57* 2.63* 
R Sup Parietal Lob (BA7) 28 -65 51 829 - - - - - 2.11* 2.06* - - - 2.30* 2.60* 2.22* 2.34* - 
R Sup Parietal Lob (BA7) 24 -64 43 3185 2.19* - 2.30* - 2.21* 2.04* 2.11* - - - 2.56* 2.99* 2.72* 2.99* 2.81* 
L Sup Parietal Lob (BA7) -30 -62 48 2718 2.15* - - - - 2.18* 2.24* 2.26* 2.05* - 2.45* 2.75* 2.56* 2.55* 2.74* 
R Insula (BA13) 36 17 5 1396 - - - 2.18* - 2.09* - - - - 2.84* 2.72* 2.55* 2.67* 2.07* 
L Insula (BA13) -33 20 13 2619 - - - - - 2.08* - - - - 2.51* 3.04** 2.84* 2.64* 3.00** 
L Precentral G (BA4) -48 -9 43 1639 - - 2.04* 2.22* 2.15* 2.24* 2.02* 2.17* - - 2.96* 3.02** 2.98* 3.03** 2.85* 
L Precentral G (BA4) -41 -14 53 807 - - - - - 2.27* 1.90 2.28* - - 2.45* 2.78* 2.12* 2.74* 2.45* 
L Precentral G (BA6) -28 -12 53 1064 - - - - - 1.90 2.15* 2.00* - - 1.93 2.79* 2.15* 2.05* 2.34* 
R Precentral G (BA6) 26 -11 50 1320 - - - - - 1.94 2.04* - - - 2.92* 3.14** 2.40* 2.93* 2.24* 
R Precentral G (BA6) 42 -2 34 1491 - - - - - 2.13* 1.93 2.14* 2.18* - 2.21* 2.76* - 2.61* 2.63* 
L Precentral G (BA6) -45 -2 31 2906 2.08* - - 1.99 2.29* 2.19* 2.29* 2.22* 2.04* 2.05 2.98* 3.12** 2.84* 2.94* 3.08** 
L Precentral G (BA6) -54 2 37 1240 - - - 2.12* 2.04* 2.19* - 2.25* - 1.99 2.37* 2.40* 2.54* 2.15* 2.29* 
L Precentral G (BA6) -30 2 28 372 - - - - 2.03* - - - - - 2.20* 2.30* - - 1.99 
R Inf Frontal G (BA9) 41 8 30 1744 - - - - - 2.25* 2.04* 2.35* 2.19* - 2.49* 2.65* 2.27* 2.70* 2.62* 
L Middle Frontal G (BA9) -45 17 29 1709 2.09* - - - 1.99 2.15* 2.28* 2.32* 2.29* 1.93 2.48* 2.98* 2.72* 3.01** 2.97* 
L Middle Frontal G (BA46) -42 24 22 232 - - - - 2.05* 2.00* 2.19* 2.19* 2.28* - 2.06* 2.66* 2.58* 2.25* 2.43* 
R Middle Frontal G (BA9) 33 24 27 342 - - - - - - - - - - 2.64* 2.55* - 2.20* - 
L Middle Frontal G (BA10) -43 41 10 147 - - - - 2.00* - - 1.92 2.20* 1.98 - 2.09* - - 2.31* 
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 Holistic Low  Holistic High  Component 
Region x y z #Vxls HF LF Nov Psd Lett HF LF Nov Psd Lett HF LF Nov Psd Lett 
R Middle Frontal G (BA9) 35 45 27 672 - - - - - 2.35* - 2.07* - - 2.37* 2.28* 2.51* 2.18* - 
L Anterior Cingulate (BA32) -22 39 4 90 - - - - - 2.20* - - - - 2.48* - - - - 
R Cingulate G (BA32) 8 14 37 862 - - - - - 1.97 1.97 1.92 1.99 - 2.64* 2.73* 2.41* 2.29* 2.45* 



Skill Based Effects 

In order to test the effects of Skill within the Holistic group, we employed an analysis of 

covariance model to determine the relationship between overall performance on the training 

component of the experiment and the cortical response to those trained items in the fMRI task.  

We computed average performance on the Word Identification task for each subject on the final 

two testing periods (Session4 Test3 and Session 5) for each subject.  These scores were entered 

into the voxel-wise GLM model as covariates to be compared the planned comparison of trained 

Korean words (HF-K and LF-K) to the fixation control.  Because these data could not meet the 

stringent FDR corrected alpha level of 0.05 yield a critical r-value of 0.98, we set the cluster 

threshold to 180mm (or 20voxels) and the p-value to 0.05.  The resulting regions and correlation 

values are displayed in Table 6.  From posterior to anterior these region include: a) ventral visual 

regions in right inferior occipital gyrus (BA17), left Cuneus (BA17), and bilateral fusiform gyrus 

(BA37); b) dorsal visual regions in right precuneus (BA7), superior parietal lobule (BA7); c) 

temporo-parietal regions in superior temporal gyrus (BA13) and inferior parietal lobule (BA40); 

d) anterior temporal regions in right fusiform gyrus (BA20) and left superior temporal 

gyrus/temporal pole (BA38); and frontal regions in left precentral gyrus (BA6), right middle 

frontal (BA6), left inferior frontal gyrus (BA9), right insular cortex (BA13), and left middle 

frontal gyrus.  Several midbrain regions were also significantly correlated with performance 

including cingulate gyrus from the posterior portion bilaterally (BA31/23) to the medial anterior 

aspect (BA24).  Other regions of interest include thalamus and caudate tail as well as the left 

Lentiform nucleus seen in previous analyses.     
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Table 6. Regions correlated with Word Identification Accuracy in the Holistic Training Group for Trained 
Novel Orthograpy words (HF-K + LF-K > Fixation) 
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Region BA x y z r Voxels 

Positive Correlations      
Inferior Occipital Gyrus 17 16 -89 -7 0.73 567 
Cuneus 17 -14 -74 9 0.71 440 
Precuneus 7 4 -72 38 0.75 2620 
Superior Parietal Lobule 7 -31 -67 50 0.71 271 
Posterior Cingulate 31 -21 -63 17 0.71 224 
Fusiform Gyrus 37 -40 -60 -24 0.72 372 
Fusiform Gyrus 37 34 -58 -20 0.72 1365 
Fusiform Gyrus 37 -42 -55 -13 0.72 300 
Cingulate Gyrus 31 20 -50 23 0.72 955 
Superior Temporal Gyrus 13 -35 -46 13 0.72 1087 
Inferior Parietal Lobule 40 -44 -46 37 0.70 371 
Caudate  31 -40 12 0.72 663 
Fusiform Gyrus 20 -27 -39 -19 518 
Posterior Cingulate 23 -8 -33 23 0.73 984 
Thalamus * -3 -23 4 0.71 2529 
Thalamus  9 -18 14 0.72 418 
Thalamus  17 -13 7 0.70 212 
Caudate  15 -9 28 0.71 460 
Fusiform Gyrus 20 58 -9 -25 0.77 269 
Precentral Gyrus 6 -41 -9 35 0.74 5128 
Middle Frontal Gyrus 6 22 -9 47 0.71 489 
Temporal Pole 38 -30 0 -35 0.72 186 
Cingulate Gyrus 24 -3 5 38 0.75 4543 
Lentiform Nucleus  -22 7 7 0.71 1326 
Inferior Frontal Gyrus 9 25 9 27 0.72 613 
Insula 13 37 15 5 0.72 1463 
Middle Frontal Gyrus 9 -39 16 27 0.74 1084 
      
Negative Correlations      
Medial Frontal Gyrus 8/9 -7 30 43 0.75 1102 
Medial Frontal Gyrus 8 8 26 38 0.72 885 
Inferior Frontal Gyrus 46 -46 42 2 0.76 2012 

      



3.3 FMRI DISCUSSION 

In terms of the neuroimaging results, our first goal in our analyses was to isolate the 

effects of native orthography conditions within the reading network.  We wanted to isolate 

effects of frequency, lexicality, pronounceablility or legality that occur from native orthography 

stimulus conditions.  As shown in Table 2, the results of our contrasts revealed an effect of word 

frequency in for English words in bilateral superior temporal gyrus (BA 21/22/39), the left insula 

(BA 13) and the right anterior cingulate (BA 32).  Contrary to previous studies that have shown 

greater activation for low compared to high frequency words (Fiez et al., 1999; Assadollahi & 

Pulvermuller, 2003; Poldrack et al., 1999), the finding of our study reveal that high frequency 

words activated these regions more than low frequency words.  Bilateral region of STG also 

showed effects of lexicality (BA 22/21/39) finding that words activated these areas to a larger 

extent than nonwords stimuli.  Again, several studies have shown results to the contrary in which 

pronounceable nonwords activated this region to a larger extent (Paulesu et al., 2000; Pugh et al., 

1996; Fiez et al., 1999); however, many studies have not shown this distinction (Tagamets et al., 

2000; see Fiez et al., 1999 for discussion of this contrast).   We failed to show any statistically 

significant differences between pronounceable/legal letterstrings compared to consonant strings.   

We failed to support the posterior-anterior processing model in ventral inferior occipital-

temporal cortex that was described in the introduction.  Previous findings in support of this 

model (Cohen et al., 2000; 2002; Vorobyev et al., 2004) have shown that the posterior aspects of 

this network in the lateral occipital regions activate to all letterstring stimuli, whereas regions at 

the temporal junction/mid fusiform region activate to legal/pronounceable letterstrings, and more 

anterior regions of the inferior and middle temporal gyri activate to lexical stimuli (independent 

of modality).  These contrary findings may have occurred as a result of the visual nature of the 1-
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back memory task employed in this study.  For instance, Tagamets et al. (2000) used a similar 

visually-based decision task as opposed to semantic or rhyme judgment tasks used in other 

studies of word reading (see for example Pugh et al., 1996; Paulesu et al., 1996) and failed to 

reveal differences between legal and illegal letterstrings particularly in superior and inferior 

temporal regions.  Another reason for the failure to replicate these findings may have been the 

unusually long stimulus duration used in our study.  Several findings have shown that letterstring 

differences particularly in the ventral visual processing stream can vary depending on duration of 

stimulus presentation (Price et al., 1996; Mechelli et al., 2003; Phillips et al., submitted).  In 

particular, Phillips et al. (submitted) compared words and consonant strings at stimulus durations 

of 17, 35, 55, and 500ms followed by a visual mask.  They found larger activation for words 

above nonwords at the three short durations (17, 35, and 55); however, at the 500ms duration a 

reversal of activation occurred with nonwords significantly more active than words in these same 

ventral visual regions including the putative word form region.  We used a stimulus duration of 

1500ms for both Korean and English words to enable identification of the novel orthography 

stimuli.  Thus, more work is needed to understand how duration and task effects may produce the 

variations in findings for the comparisons of legality and lexicality of stimuli.   

Comparison of Native and Novel Orthographies 

In order to understand the impact of the novel Korean orthography compared to the 

native English orthography in our subjects, we performed a direct contrast of words in the two 

conditions.  The results of this analysis, shown in Table 3, revealed larger overall activation for 

the novel compared to native orthography stimuli.  That is, the novel Korean words activated 

most regions of the reading network bilaterally to a significantly greater extent than English 

words.  These effects of novelty have been seen in studies involving training on new or variable 
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stimuli (Poldrack et al., 1998; 2000; Chee et al., 2001).  For example, Poldrack et al. (1998) 

trained subject on a mirror reading task and found that early in skill acquisition these participants 

activated a large network of bilateral regions particularly in inferior occipital-temporal regions as 

well in inferior frontal and prefrontal regions encompassing much of the reading network.  They 

found that as training continued, activation of this network became less diffuse and more left 

lateralized particularly in these target regions of the reading network.  They also found that as 

word recognition became less effortful, weaker activation was shown in the anterior cingulate 

and dorsal lateral prefrontal cortex (DLPFC) associated with executive functioning.   

Of particular interest in our study is the activation of the left middle frontal gyrus for 

Korean compared to English stimuli.  This region has been found to be particular active in 

Chinese word reading especially when compared with English word reading (Tan et al., 2005; 

Bolger et al., 2005; Nelson et al., submitted).  According to Tan (et al., 2005) this region is 

hypothesized to function as a cross-modal integration mechanism that functions to select among 

generated lexical candidates to visually associated forms.  That is, in Chinese, a given visual 

character is typically associated with a particular morpho-semantic concept but can cue several 

phonological candidate word forms.   The middle frontal gyrus is presumed to integrate the 

visual information from the character with contextual semantic and phonological information to 

arrive at a particular spoken word form.  Several studies of English word reading have also 

isolated this region for word reading compared to a resting baseline (Cohen et al., 2000; Jernigan 

et al., 1998; Price, 1996), for semantic priming and semantic decision making (Kotz et al., 2002; 

McDermott et al., 2003; Poldrack et al., 1999; Wagner et al., 2000), for pseudoword processing 

(Poldrack et al., 1999; Hagoort et al., 1998), for cross-modal priming (Carlesimo et al., 2004; 

Buckner et al., 2000) and for selective attention while reading (Cabeza et al., 2003; Shaywitz et 
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al., 2001).  Thus, the involvement of the middle frontal gyrus in this array of tasks and conditions 

together with its role in Chinese word reading suggests that cross modal integration may be 

involved.  We also identify training and performance related differences in our study which we 

will discuss below.  As for the comparison with Korean and English stimuli, given that this 

analysis included both component and holistically trained individuals and that we’ve highlighted 

a number of studies in English word recognition that do activate this region argues against the 

assumption that this region is involved in logographic word form processing.   

The contrast of activation for English greater than Korean word stimuli revealed a large 

extent of left superior and middle temporal gyrus (BA 22/21) including much of the perisylvian 

region as well as the homologous region on the right hemisphere.  This result suggests that 

activation of phonological information from the visual word stimuli was more facile for the 

English compared to Korean word stimuli.  The specific role of the left STG has been largely 

debated particularly among models of word reading (see Temple, 2003) and verbal working 

memory (see Chein, 2004); however, this region has generally been implicated in 

auditory/phonological and receptive language processes (Paulesu et al., 1993; Pugh et al., 1996).  

In the 1-back fMRI task used in this study, some demands are placed on the episodic memory 

system in which storage of the corresponding phonological form would enable optimal 

performance.  Given the relatively weak representations for the Korean word forms that the 

participants had, the ability to use this storage mechanism may have favored English stimuli over 

Korean stimuli, leading to the differences in activation.  That is, because the task requires active 

storage of each stimuli to make a correct response, participants may have been more likely to 

activate the phonological form of the English words, but less capable of doing so in the case of 
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Korean in which case they may have used a more visual strategy—as evidenced by the larger 

bilateral visual processing discussed below.   

Compared to the English stimuli, the Korean stimuli more strongly activated the bilateral 

ventral occipito-temporal region particularly the right fusiform, but more so for the right 

compared to the left mid-anterior fusiform.  Bilateral activity in this region for word recognition 

has been largely associated with lower levels of recognition skill (Turkeltaub et al., 2004; 

Shaywitz et al., 2003; Poldrack et al; 2000; 2001; Simos et al., 2003); however, right hemisphere 

activation has also been exhibited for processing Chinese even in readers of both high and low 

skill (Tan et al., 2000; 2001; Bolger et al., 2005; Nelson et al., in press).  This higher level of 

activation may be due to more domain general visual regions being recruited for weaker 

processing skill; however, in the skill based covariate analysis both right and left hemisphere 

fusiform regions were correlated positively with skill.  Thus, the activation may have more to do 

with the visual-spatial processing required for the non-linear stroke patterns in the Korean 

orthography as has been suggested for Chinese character processing (Bolger et al., 2005; Nelson 

et al., in press).   In contrast to the superior temporal region, there was an advantage for Korean 

processing in the superior and inferior parietal regions bilaterally suggesting greater demands on 

the orthographic-phonological decoding system.  The role of the inferior and superior parietal 

cortices has been associated with the storage of phonological information (Pugh et al., 1996; 

Ravizza et al., 2003). However, this region has also been associated with the decoding of 

orthographic information (Pugh et al., 1996; Clark & Wagner, 2003) and has been shown to be 

more active for pseudowords compared to words (Clark & Wagner, 2003) and more active for 

low compared to high frequency items (Fiez et al., 1999).  Greater activation was also shown for 

Korean stimuli in bilateral frontal regions including the insula and premotor cortex and 
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importantly the left middle frontal gyrus.  These results together suggest that the Korean stimuli 

required higher processing demands on systems involved in phonological decoding and output as 

suggested by the greater activation of the parietal and inferior frontal regions; whereas English 

stimuli more readily activated speech related regions of the STG.   

Direct Comparisons of Training Conditions  

One clear disappointment of this study was the lack of overall group differences in the 

individual contrasts between Component and Holistic and between each of these groups 

compared to the Control group.  The lack of clear unique activations suggest that, in general, all 

three conditions are activating the reading network to a large extent as shown in the overall 

activation values across all groups.  After reducing the stringent threshold values of the FDR 

correction, we did find a number of regions that differentiate between groups.  Several regions 

were found to be more active for the Component compared to the Holistic group; however, no 

regions were more active for Holistic than Component training.  Of particular importance is the 

left superior temporal gyrus.  We postulated that holistic and component training both require the 

integration of visual and phonological lexical forms, but that the training of components requires 

the additional process of sublexical analysis and synthesis of letter-sound components.  The left 

superior temporal gyrus has been implicated in the component processing of phonological forms 

(Paulesu et al., 1996; Temple et al., 2001; Booth et al., 2002; 2003).  Thus, we conclude that this 

region is performing the phonological computations of letter-sound correspondences explicated 

in the component training.   

In comparison to the Control group, the Component group activated the left insula and 

premotor regions that, as discussed earlier, are associated with phonological output processing 

(Poldrack et al., 1999; Fiez & Petersen, 1998; Pugh et al., 1996).  Thus, the greater activation in 

 99 



this region may reflect the fact that the Component group used a more linguistic-based reading 

strategy to perform the 1-back task, whereas the Control group which received an abbreviated 

version of holistic training may have used a more visually based strategy.  There was also more 

activation of the left substantia nigra and Thalamus both of which are associated with reward and 

learning processes.  While there were no direct rewards or feedback provided in the task, the 

activation may reflect the internalized reward process from successfully decoding the word items 

for the Component group.   

In comparison to the Control group, the Holistic group activated bilateral regions of the 

inferior parietal lobule.  In addition to being associated with orthographic-phonological 

translation, the IPL has also been implicated for phonological processing of holistic word forms 

(Warrington & Shallice, 1979) and verbal working memory (Ravizza et al., 2003) suggesting that 

this result may be due to the attempt to generate and/or rehearse phonological word forms in the 

1-back task.  The Holistic group also showed greater activation for cingulate cortex than the 

Control group.  This is consistent with the notion that the participants in the Holistic group may 

have employed more effortful processes to attempt to retrieve word form information from 

verbal working memory as opposed to the Control group with minimal training who may have 

used a purely visual process to perform the functional task.    

ROI Analysis 

We hypothesized that the Component group would internalize the letter-sound code and 

predicted that this would result in the Component group performing better on novel and 

pseudoword reading.  These results were confirmed by the behavioral measures.  We 

hypothesized that this effect of training would be reflected by cortical differences between the 

Component training and the Holistic training subsets.  Differences between these groups are 
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apparent for the conditions involving decoding knowledge (Novel words, Pseudowords, and 

Letters) particularly in the “dorsal” stream including bilateral regions of the superior and inferior 

parietal lobe (BA40 and BA7), left precentral and insular cortex (BA4/6 and BA13), and left 

anterior cingulate (BA32).   

We presented two competing hypotheses that the holistic training would result in 

logographic reading or alternatively result in implicit derivation of the letter sound code.  We 

hypothesized that given holistic training results in logographic processing, that differential 

cortical regions underlying letter-sound processing, such as the “dorsal” processing stream would 

be absent from logographic readers and that regions associated with logographic processing, 

such as the right ventral visual region and middle frontal regions would be present in logographic 

reading and absent in component reading.  The findings of our behavioral study suggest that 

holistic reading produces both logographic reading (Low performers) and implicit component 

reading (High performers).  The higher skilled readers performed more similarly to the 

component group on tasks of transfer, retention, and the effects of frequency.  Thus, we 

hypothesized that differences between these high and low performers would reveal regions 

associated with alphabetic and logographic reading.  Low skill readers activated only a limited 

set of regions overall for word reading, and these regions responded to high but not low 

frequency items including the left anterior VWFA (BA37), right inferior and superior parietal 

regions (BA40/7), and left precentral (BA6) and middle frontal regions (BA9).  High skill 

readers activated much of the reading network for both low and high frequency items as well as 

novel and pseudoword items with the exception of the bilateral insula regions and which were 

only active for high frequency items.  The component training condition activated all target 

regions for most conditions with the exception of the ventral aspect of the precentral and middle 
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frontal gyri, which failed to activate for novel and pseudoword reading.  Both the component and 

high skill holistic readers activated the anterior cingulate for high frequency words only.   

With respect to the hierarchical model of the ventral inferior occipital-temporal regions, 

we found that the poor performing participants failed to activate more anterior regions of the 

right fusiform (BA20) and parahippocampal gyri (BA36) for words (however some activation 

was seen for pseudoword and letter stimuli) compared to high performing holistic participants 

who activated these regions particularly for HF word items.  The component training group 

reliably activated the target ventral visual ROIs for all conditions (except for pseudowords in the 

parahippocampal region).  Thus, our hypothesis that the right hemisphere homologues of the 

VWFA are more responsive for logographic reading is not supported.  Rather, this region 

appears to respond to skill in learning novel orthography word stimuli, particularly for high 

frequency items.  The left VWFA (BA37 at y=52) is active for HF word items for all three 

groups, and active for all conditions in the component training conditions; however, the high and 

low skill groups show differential patterns of activation with the latter group activating this 

region to pseudowords and letters and the former group to LF and novel words.  Overall, the 

results of this analysis generally show that component training activates the entire network of 

reading related regions, whereas holistic training results in generally fewer, but critical, activated 

regions for the higher skilled group and limited activity localized in bilateral ventral visual 

regions in the lower skilled group.   

Skill-based Correlational Analyses 

Lastly, the skill based analysis conducted on the holistic group performance revealed a 

large portion of the reading network that was positively associated with reading skill.  This 

activation consists of all of the regions discussed earlier: a) bilateral occipito-temporal regions 

 102 



including the VWFA and it’s right hemisphere homologue, b) the left superior temporal region, 

c) the left inferior parietal region, d) left anterior temporal regions including the anterior 

fusiform/middle temporal gyri and the temporal pole, e) inferior frontal regions stretching into 

premotor cortex including the insula, and f) the middle frontal gyrus bilaterally.   

Of particular interest is the activation of the left middle frontal gyrus, a region discussed 

earlier as having a greater presence in Chinese compared to English word processing (Tan et al., 

2005).  The fact that this region is more active for Korean stimuli than English stimuli in our 

results suggests that this region may in fact be recruited for effortful integration of multi-modal 

information.  The question is whether this region is more active for holistic/logographic 

processing than for explicit or even implicit processing of letter-sound components.  In the 

comparison between the Component and Holistic training groups, no differences are shown for 

this particular region; however, in the ANCOVA model correlation of skill within the holistic 

group, this middle frontal region has a strong positive correlation with skill.  In the ROI analysis 

between training conditions, we find that the middle frontal region is strongly activated for the 

component group as well as the high performing holistic group suggesting that this region is 

performing an integration process and is responsive to skill.  Therefore, this region is not 

associated with “logographic” reading per se, but appears to be correlated with skill in reading in 

the Korean orthography based on knowledge of the grapheme-phoneme structure of the writing 

system. 

There were also negatively correlated regions in the left medial frontal region bordering 

the anterior cingulate and the left anterior lateral portion of the inferior frontal gyrus bordering 

on dorsal lateral prefrontal cortex.  These negative correlations implicate regions associated with 

the central executive processes of response monitoring and selection (Cohen et al., 2000; Chein 
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& Schneider, 2003).  Thus, skill acquisition in the (Holistic) training task involves increased 

activation in the network of regions associated with visual word recognition as well as decreases 

in activation of the central executive suggesting less effortful, more automatic processing.   
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4.0  GENERAL DISCUSSION 

In order to understand the differences between alphabetic and logographic processing, we 

created a novel orthography training paradigm in which an alphabetic system (Korean) that is 

often confused with similar logographic systems (Chinese) is used to explore the behavioral and 

cortical differences between these two writing systems.  We trained naïve native English 

speakers to learn to read (English) words in Korean Hangul script via a holistic (visual and 

phonological) word method or a component (phonics-based, letter-sound correspondences within 

word) method.  We observed that compared to the holistically trained group, the component 

training resulted in faster learning, better retention of trained words, and better transfer to novel 

words.  In addition, we found that the component training, compared to holistic training, was 

initially slower in terms of performance on a simple recognition task, after 4 sessions of training, 

this group was faster than the holistic group which did not significantly gain in recognition 

speed.  In a manipulation of item frequency in training, we found that while the component 

training exhibited no sensitivity to frequency, the holistic training resulted in better accuracy and 

faster recognition time for high frequency compared to low frequency items.   

Not all participants in the holistic training condition remained naïve to the alphabetic 

structure in the Korean Hangul script.  As we predicted, at least half of the holistic training group 

acquired the letter-sound code.  The performance of this group appeared similar to that of the 

Component training group in that they were faster learners, had better retention, and the ability to 
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transfer knowledge to novel word items.  Furthermore, this group of participants was nearly 

perfect at explicitly identifying the letter-sound relationships of the system.  The group that 

failed to acquire this code exhibited extremely poor retention with decreasing trend lines were 

unable to transfer knowledge to novel items, and, after 4 sessions of training, could only 

explicitly identify less than half of the letter-sound relationships in the system.  Thus, the 

difference between breaking the code or not reflects similar behaviors of alphabetic compared to 

logographic reading.           

In order to fully understand how word recognition is achieved by the brain, it is critical to 

understand the way in which the network of cortical regions responds before and after learning 

occurs.  Pugh et al. (2001) suggests that in the development of reading ability the dorsal (left 

posterior temporo-parietal) circuit predominates early learning reflecting effortful phonological 

decoding of orthographic stimuli, and that a word form region (VWFA) develops later in skill 

(possibly through feedback) as word recognition becomes increasingly automatic.  This 

neurobiological account is similar to cognitive development accounts of reading that pose that 

decoding knowledge is a bootstrapping mechanism to establishing orthographic word forms 

(Share, 1995).  The impact of training studies in fMRI such as this one is that they enable us to 

observe these changes in cortex associated with orthographic learning and skill development.    

According to our cognitive framework of reading development (Share, 1995; Perfetti, 

1992), mapping of visual letters to their corresponding phonological features in the spoken 

language, the alphabetic principle, is the initial stage of word recognition.  In our neurobiological 

model, the lateral ventral occipital regions such as the bilateral posterior fusiform (V4) are found 

to be activated by all letterstrings invariant of case, font, and position (McCandliss et al., 2000; 

Gauthier et al., 2000).  This region is suited for abstract letter processing, in that it does not 
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exhibit sensitivity to legal compared to illegal orthographic forms.  This region is believed to 

project to left angular/supramarginal gyrus in the inferior parietal-occipital region.  Among other 

functions, this region of cortex has been argued to perform letter-sound computations (Booth et 

al., 2003; 2004; Pugh et al., 2001; Paulesu et al., 1993; Crosson et al., 2004).  This region also 

has functional relationships (Horowitz et al., 1997; Pugh et al., 2000; Rumsey et al., 1997) as 

well as structural relationships (Klingberg et al., 2001) with posterior inferior frontal gyrus and 

inferior temporal regions correlating with reading skill.  This pathway is argued to be the early 

developing dorsal route for decoding orthography to phonology (Pugh et al., 2001).  The findings 

in our study suggest that the inferior parietal cortex is strongly related to skilled performance and 

acquisition of the letter-sound code for both the component trained group and the high 

performing holistic group who derived this knowledge implicitly.  This region was also more 

active for the component and holistic group compared to the low trained control group.    

 The second component of our cognitive framework is the development of word form 

representations of the words encountered and successfully decoded.  According to this 

framework, the specificity of these representations depends on the number of encounters a reader 

has with the word, thus this component can be slow developing considering the large number of 

lexical items in a given language and the amount of experience a reader has with them (Perfetti, 

1992).  In the same way, the cortical word form network in the left inferior temporal region 

develops more slowly over time with word recognition (Pugh et al., 2000; 2001; Shaywitz et al., 

2002; McCandliss et al., 2003).  This VWFA has been shown to be sensitive to abstract, 

prelexical legal word forms (Cohen et al., 2000; 2002; Dehaene et al., 2001; Farah et al., 2002; 

Vorobyev et al., 2004).   
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 The expertise hypothesis (McCandliss et al., 2003; Gauthier, 2000) suggests that this 

sensitivity difference may be driven by experience with a particular class of stimuli.  More 

specifically, expertise with a class of stimuli results in increased sensitivity to form within a class 

of stimuli, and thus is posited to drive more abstract form-based processing in anterior regions of 

IT (Gauthier, 2000).  In fMRI investigations of visual expertise, Gauthier et al (1999, 2001) 

found that an area in the right fusiform gyrus that elicits particular sensitivity to faces, the 

fusiform face area (refered to as the FFA; Kanwisher et al., 1997), became increasingly sensitive 

to a novel class of stimuli, “greebles”, which share similar spatial frequencies and visual 

contours to faces, after training subjects to identify individual greeble forms and classifications 

of forms (i.e. gender and family).  Longitudinal studies of learning to read using fMRI (Shaywitz 

et al., 2002; 2003) have found that activation within the region of the VWFA correlates highly 

with reading skill emerging around 9-10 years in age.  Similarly, remediation studies in fMRI of 

poor and impaired readers (Temple et al., 2002; Shaywitz et al., 2004; McCandliss et al., 

unpublished findings) finds increases in activation of the VWFA following intensive training.  

These patterns persist 1-3 years post-training (Shaywitz et al., 2004).   

In terms of the findings of this study, the left VWFA does correlate with reading skill in 

the holistic training condition; however, no differences were exhibited in this region for 

component compared to the low trained control group suggesting it may not be progressing with 

reading skill in our study.  Furthermore, the Arabic control stimuli in this study showed equally 

strong activation in this region compared to word forms even in the native orthography.  In a 

recent study by Xue et al. (in press), they trained native Chinese speakers to read Korean as a 

logographic writing system.  They found that the highest activations in the VWFA for Korean 

stimuli occurred before training suggesting that this region responds to novelty and shows 
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decreases with experience with orthographic features.  Similar results obtained in a study by 

Bolger & Schneider (2002) also found that the putative VWFA responded to Greek letter strings 

as strongly as to English words and pseudowords; however, this region only exhibited neural 

adaptation to repeated English stimuli but not to Greek letter strings.  Thus, these findings 

suggest that the VWFA and similar regions of cortex may elicit fine tuning with experience, 

primarily by decreasing noise as opposed to increasing signal (Gotts, 2001; Macotta & Buckner, 

2004; Carlesimo et al., 2004).  Tagamets et al (2000) also failed to find word form preferences in 

the VWFA, but found that the ventral occipital-temporal region exhibited more bilaterally 

activation for linguistically illegal structures (consonant strings and false fonts) and more defined 

activation in anterior left lateralized regions of inferior temporal cortex particularly the VWFA 

for legal forms (words and pseudowords).   

One argument is that right hemisphere ventral visual regions function to support domain-

general visual recognition processes and thus are recruited for processing less familiar word 

forms.  Several findings have shown activation in the right fusiform region to decrease as a 

function of reading skill (Turkeltaub et al., 2003; Shaywitz et al., 2002; 2003; Poldrack et al., 

1998; 2000).  However, studies of reading in Chinese have shown this region to be consistently 

active for skilled reading (Tan et al., 2001; 2002; Bolger et al., 2005) and to activate for native 

English speakers learning to read Chinese (Liu et al., in press; Nelson et al., submitted).  

Furthermore, activation centered in the right medial temporal regions have been shown to predict 

successful encoding of words (Ranganath et al 2004; Wise et al.,2000).  The findings in our 

fMRI study reveal strong skill related effects in the right fusiform and parahippocampal regions 

for the component group, the high performing holistic group, and the low performing holistic 

group on high frequency words.  Thus, as suggested by Gauthier et al (2001) this right 
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hemisphere region may play a role in discriminating among a series of similar visual forms, 

possibly by enabling episodic traces to remain active.  That is, our Korean learning paradigm, 

like Chinese reading, contains a limited set of graphic features that compose a larger set of word 

items.  In order to maintain the episodic traces of these visual forms long enough to enable 

accurate word form selection these right hemisphere regions remain active until lexical selection 

can occur.   

Both the early developing dorsal route and the later emerging ventral route project to the 

left inferior frontal/premotor region that is implicated in articulatory output and semantic 

integration.  The role of posterior inferior frontal cortex has been associated with verbal working 

memory (Chein et al., 2002; Paulesu et al., 1993), with phonological decoding of orthographic 

forms (Pugh et al., 1996; Fiez & Petersen, 1998; Poldrack et al., 1999), and with phonological 

judgments (Price et al., 1997; Zatorre et al., 1996).  In our study, this region was found to be 

significantly more active for the component compared to the control group, correlated with 

reading skill in the holistic group, and active for the component and high skill, but not low skill 

holistic group.  Thus, this region appears to reflect learning of the letter-sound code in our 

experimental paradigm.   

The other region in our task that appears to correlate with skilled reading performance is 

the left middle frontal gyrus.  As we discussed, this region has been shown to be more active for 

native Chinese compared to native English speakers reading in their respective languages (Tan et 

al., 2005; Bolger et al., 2005).  In Chinese this region appears to correlate with reading skill (Tan 

et al., 2001) and to show deficits in Chinese dyslexics (Siok et al., 2003).  This region is 

suggested to serve cross-modal lexical selection (Tan et al., 2005).  However, it has been shown 

to be activated for English pseudowords and semantic judgments suggesting that it may be 
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integrative at the sublexical level as well.  In our study, this region was more active for Korean 

than for English stimuli.  Activation was more widespread in this region for the component and 

high skilled holistic compared to low skill holistic learners, which was replicated in the 

correlational analysis within the holistic group.  Thus, according to our findings, the middle 

frontal region is also a skill based region for novel orthography learning, particularly for readers 

who have sufficiently acquired the letter-sound correspondences of the writing system.   

 In sum, our study suggests that acquisition of decoding knowledge is critical to learning 

to read in an alphabetic writing system and is most efficiently acquired through explicit training 

of the components.  Implicit acquisition of this decoding knowledge fundamentally relies on 

individual differences in the ability to attend to the sublexical structures of the phonological 

system and readily map them onto the corresponding orthographic units.  The ability to decode 

the component structures of the writing system leads to the ability to generalize knowledge to 

novel words and to subsequently bootstrap into word form representations leading to greater 

retention and fluency of word recognition.  Several cortical structure appear to subserve the 

process of acquiring this sublexical knowledge and lead to privileged word form identification.  

These structures are consistent with the ‘dorsal route’ of the left inferior parietal and superior 

temporal gyrus along with the posterior inferior frontal/premotor region.  Also implicated in this 

skilled reading network are the left middle frontal gyrus and the right inferior and medial 

temporal regions.  The former region is presumed to play a role in integrating information across 

modalities while the latter region is presumed to play a role in the episodic encoding of the visual 

word form information to enable accurate lexical selection.    
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4.1 CONCLUSION 

In order to understand the differences between alphabetic and logographic processing, we 

created a novel orthography training paradigm in which an alphabetic system (Korean) that is 

often confused with similar logographic systems (Chinese) is used to explore the behavioral and 

cortical differences between these two writing systems.  We trained naïve native English 

speakers to learn to read (English) words in Korean Hangul script via a holistic (visual and 

phonological) word method or a component (phonics-based, letter-sound correspondences within 

word) method.  We observed that compared to the holistically trained group, the component 

training resulted in faster learning, better retention of trained words, and better transfer to novel 

words.  In addition, we found that the component training, compared to holistic training, was 

initially slower in terms of performance on a simple recognition task, after 4 sessions of training, 

this group was faster than the holistic group which did not significantly gain in recognition 

speed.  In a manipulation of item frequency in training, we found that while the component 

training exhibited no sensitivity to frequency, the holistic training resulted in better accuracy and 

faster recognition time for high frequency compared to low frequency items.   

Not all participants in the holistic training condition remained naïve to the alphabetic 

structure in the Korean Hangul script.  As we predicted, at least half of the holistic training group 

acquired the letter-sound code.  The performance of this group appeared similar to that of the 

Component training group in that they were faster learners, had better retention, and the ability to 

transfer knowledge to novel word items.  Furthermore, this group of participants was nearly 

perfect at explicitly identifying the letter-sound relationships of the system.  The group that 

failed to acquire this code exhibited extremely poor retention with decreasing trend lines were 

unable to transfer knowledge to novel items, and, after 4 sessions of training, could only 
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explicitly identify less than half of the letter-sound relationships in the system.  Thus, the 

difference between breaking the code or not reflects similar behaviors of alphabetic compared to 

logographic reading.           

In order to fully understand how word recognition is achieved by the brain, it is critical to 

understand the way in which the network of cortical regions responds before and after learning 

occurs.  Pugh et al. (2001) suggests that in the development of reading ability the dorsal (left 

posterior temporo-parietal) circuit predominates early learning reflecting effortful phonological 

decoding of orthographic stimuli, and that a word form region (VWFA) develops later in skill 

(possibly through feedback) as word recognition becomes increasingly automatic.  This 

neurobiological account is similar to cognitive development accounts of reading that pose that 

decoding knowledge is a bootstrapping mechanism to establishing orthographic word forms 

(Share, 1995).  The impact of training studies in fMRI such as this one is that they enable us to 

observe these changes in cortex associated with orthographic learning and skill development.    

According to our cognitive framework of reading development (Share, 1995; Perfetti, 

1992), mapping of visual letters to their corresponding phonological features in the spoken 

language, the alphabetic principle, is the initial stage of word recognition.  In our neurobiological 

model, the lateral ventral occipital regions such as the bilateral posterior fusiform (V4) are found 

to be activated by all letterstrings invariant of case, font, and position (McCandliss et al., 2000; 

Gauthier et al., 2000).  This region is suited for abstract letter processing, in that it does not 

exhibit sensitivity to legal compared to illegal orthographic forms.  This region is believed to 

project to left angular/supramarginal gyrus in the inferior parietal-occipital region.  Among other 

functions, this region of cortex has been argued to perform letter-sound computations (Booth et 

al., 2003; 2004; Pugh et al., 2001; Paulesu et al., 1993; Crosson et al., 2004).  This region also 
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has functional relationships (Horowitz et al., 1997; Pugh et al., 2000; Rumsey et al., 1997) as 

well as structural relationships (Klingberg et al., 2001) with posterior inferior frontal gyrus and 

inferior temporal regions correlating with reading skill.  This pathway is argued to be the early 

developing dorsal route for decoding orthography to phonology (Pugh et al., 2001).  The findings 

in our study suggest that the inferior parietal cortex is strongly related to skilled performance and 

acquisition of the letter-sound code for both the component trained group and the high 

performing holistic group who derived this knowledge implicitly.  This region was also more 

active for the component and holistic group compared to the low trained control group.    

 The second component of our cognitive framework is the development of word form 

representations of the words encountered and successfully decoded.  According to this 

framework, the specificity of these representations depends on the number of encounters a reader 

has with the word, thus this component can be slow developing considering the large number of 

lexical items in a given language and the amount of experience a reader has with them (Perfetti, 

1992).  In the same way, the cortical word form network in the left inferior temporal region 

develops more slowly over time with word recognition (Pugh et al., 2000; 2001; Shaywitz et al., 

2002; McCandliss et al., 2003).  This VWFA has been shown to be sensitive to abstract, 

prelexical legal word forms (Cohen et al., 2000; 2002; Dehaene et al., 2001; Farah et al., 2002; 

Vorobyev et al., 2004).   

 The expertise hypothesis (McCandliss et al., 2003; Gauthier, 2000) suggests that this 

sensitivity difference may be driven by experience with a particular class of stimuli.  More 

specifically, expertise with a class of stimuli results in increased sensitivity to form within a class 

of stimuli, and thus is posited to drive more abstract form-based processing in anterior regions of 

IT (Gauthier, 2000).  In fMRI investigations of visual expertise, Gauthier et al (1999, 2001) 
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found that an area in the right fusiform gyrus that elicits particular sensitivity to faces, the 

fusiform face area (refered to as the FFA; Kanwisher et al., 1997), became increasingly sensitive 

to a novel class of stimuli, “greebles”, which share similar spatial frequencies and visual 

contours to faces, after training subjects to identify individual greeble forms and classifications 

of forms (i.e. gender and family).  Longitudinal studies of learning to read using fMRI (Shaywitz 

et al., 2002; 2003) have found that activation within the region of the VWFA correlates highly 

with reading skill emerging around 9-10 years in age.  Similarly, remediation studies in fMRI of 

poor and impaired readers (Temple et al., 2002; Shaywitz et al., 2004; McCandliss et al., 

unpublished findings) finds increases in activation of the VWFA following intensive training.  

These patterns persist 1-3 years post-training (Shaywitz et al., 2004).   

In terms of the findings of this study, the left VWFA does correlate with reading skill in 

the holistic training condition; however, no differences were exhibited in this region for 

component compared to the low trained control group suggesting it may not be progressing with 

reading skill in our study.  Furthermore, the Arabic control stimuli in this study showed equally 

strong activation in this region compared to word forms even in the native orthography.  In a 

recent study by Xue et al. (in press), they trained native Chinese speakers to read Korean as a 

logographic writing system.  They found that the highest activations in the VWFA for Korean 

stimuli occurred before training suggesting that this region responds to novelty and shows 

decreases with experience with orthographic features.  Similar results obtained in a study by 

Bolger & Schneider (2002) also found that the putative VWFA responded to Greek letter strings 

as strongly as to English words and pseudowords; however, this region only exhibited neural 

adaptation to repeated English stimuli but not to Greek letter strings.  Thus, these findings 

suggest that the VWFA and similar regions of cortex may elicit fine tuning with experience, 
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primarily by decreasing noise as opposed to increasing signal (Gotts, 2004; Macotta & Buckner, 

2004; Carlesimo et al., 2004).  Tagamets et al (2000) also failed to find word form preferences in 

the VWFA, but found that the ventral occipital-temporal region exhibited more bilaterally 

activation for linguistically illegal structures (consonant strings and false fonts) and more defined 

activation in anterior left lateralized regions of inferior temporal cortex particularly the VWFA 

for legal forms (words and pseudowords).   

One argument is that right hemisphere ventral visual regions function to support domain-

general visual recognition processes and thus are recruited for processing less familiar word 

forms.  Several findings have shown activation in the right fusiform region to decrease as a 

function of reading skill (Turkeltaub et al., 2003; Shaywitz et al., 2002; 2003; Poldrack et al., 

1998; 2000).  However, studies of reading in Chinese have shown this region to be consistently 

active for skilled reading (Tan et al., 2001; 2002; Bolger et al., 2005) and to activate for native 

English speakers learning to read Chinese (Liu et al., in press; Nelson et al., submitted).  

Furthermore, activation centered in the right medial temporal regions have been shown to predict 

successful encoding of words (Ranganath et al 2004; Wise et al.,2000).  The findings in our 

fMRI study reveal strong skill related effects in the right fusiform and parahippocampal regions 

for the component group, the high performing holistic group, and the low performing holistic 

group on high frequency words.  Thus, as suggested by Gauthier et al (2001) this right 

hemisphere region may play a role in discriminating among a series of similar visual forms, 

possibly by enabling episodic traces to remain active.  That is, our Korean learning paradigm, 

like Chinese reading, contains a limited set of graphic features that compose a larger set of word 

items.  In order to maintain the episodic traces of these visual forms long enough to enable 
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accurate word form selection these right hemisphere regions remain active until lexical selection 

can occur.   

Both the early developing dorsal route and the later emerging ventral route project to the 

left inferior frontal/premotor region that is implicated in articulatory output and semantic 

integration.  The role of posterior inferior frontal cortex has been associated with verbal working 

memory (Chein et al., 2002; Paulesu et al., 1993), with phonological decoding of orthographic 

forms (Pugh et al., 1996; Fiez & Petersen, 1998; Poldrack et al., 1999), and with phonological 

judgments (Price et al., 1997; Zatorre et al., 1996).  In our study, this region was found to be 

significantly more active for the component compared to the control group, correlated with 

reading skill in the holistic group, and active for the component and high skill, but not low skill 

holistic group.  Thus, this region appears to reflect learning of the letter-sound code in our 

experimental paradigm.   

The other region in our task that appears to correlate with skilled reading performance is 

the left middle frontal gyrus.  As we discussed, this region has been shown to be more active for 

native Chinese compared to native English speakers reading in their respective languages (Tan et 

al., 2005; Bolger et al., 2005).  In Chinese this region appears to correlate with reading skill (Tan 

et al., 2001) and to show deficits in Chinese dyslexics (Siok et al., 2003).  This region is 

suggested to serve cross-modal lexical selection (Tan et al., 2005).  However, it has been shown 

to be activated for English pseudowords and semantic judgments suggesting that it may be 

integrative at the sublexical level as well.  In our study, this region was more active for Korean 

than for English stimuli.  Activation was more widespread in this region for the component and 

high skilled holistic compared to low skill holistic learners, which was replicated in the 

correlational analysis within the holistic group.  Thus, according to our findings, the middle 
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frontal region is also a skill based region for novel orthography learning, particularly for readers 

who have sufficiently acquired the letter-sound correspondences of the writing system.   

In sum, our study suggests that acquisition of decoding knowledge is critical to learning 

to read in an alphabetic writing system and is most efficiently acquired through explicit training 

of the components.  Implicit acquisition of this decoding knowledge fundamentally relies on 

individual differences in the ability to attend to the sublexical structures of the phonological 

system and readily map them onto the corresponding orthographic units.  The ability to decode 

the component structures of the writing system leads to the ability to generalize knowledge to 

novel words and to subsequently bootstrap into word form representations leading to greater 

retention and fluency of word recognition.  Several cortical structure appear to subserve the 

process of acquiring this sublexical knowledge and lead to privileged word form identification.  

These structures are consistent with the ‘dorsal route’ of the left inferior parietal and superior 

temporal gyrus along with the posterior inferior frontal/premotor region.  Also implicated in this 

skilled reading network are the left middle frontal gyrus and the right inferior and medial 

temporal regions.  The former region is presumed to play a role in integrating information across 

modalities while the latter region is presumed to play a role in the episodic encoding of the visual 

word form information to enable accurate lexical selection. 
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