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The preBötzinger complex located at the ventrolateral medulla in the brainstem is believed

to have an important role in generating the respiratory rhythm in mammals, specially the

inspiratory process [56]. Keeping this in mind, we will study a small network of such cells

by means of a minimal model suggested and experimentally tested by Butera et al [6, 7]. A

thorough analysis of the Butera model was done for two very small networks of pre-Bötzinger

cells: a self coupled single cell and a network of two coupled cells [5]. In order to understand

the role of coupling and heterogeneity in these two particular networks we reduce the self

coupled single cell network to a one dimensional map using a similar approach as in [37].

Using this one dimensional map, some analytical conditions for switching from one regime to

another are determined and numerical results are shown. Using the same idea as for the self

coupled single cell case, two identical coupled cells are reduced to a two dimensional iterated

map which is a composition of many one dimensional maps. Using the form of these maps,

mechanisms for the transition between previously observed regimes [5] are determined and

linear analysis is performed for a particular set of parameters.

Introducing heterogeneity on the network of two coupled identical cells, for a fixed level

of synaptic input, shows that depending on the level of the synaptic input some different

behaviors arise which were not previously observed in a network of homogenous cells [5].

These results suggest that introducing heterogeneity can increase the range in the parameter

space for which cells are bursting. This is desirable, since from experiments it is observed

that bursting is associated with the inspiratory rhythm of respiration.
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1.0 INTRODUCTION

Breathing is a deceptively simple yet remarkable behavior in vertebrates [17]. It is one of

the most vital processes of our bodies, occurring continuously and automatically from the

time we are born until the day we die. Any disruption in our breathing process can cause

irreversible damage to our brain and put our life at risk [58].

Motivated by earlier evidence suggesting that, somewhere in the brainstem, there was

a site responsible for generating the rhythm of our breathing process [16], Smith et al [56],

performed a series of in vitro experiments in slices of the brainstem of rats and found a site

in the ventrolateral medulla which is believed to play an important role for controlling the

respiratory rhythm in mammals, especially the inspiration process. This site was named the

pre-Bötzinger complex (preBötC)[56].

Later, experiments in vivo, found that another structure, also located in the brain-

stem, the parafacial respiratory group/retrotrapezoid nucleus (pFRG/RTN)[24, 26], could

be another site for rhythmogenesis. There is not yet enough evidence to characterize the

pFRG/RTN as one single structure or 2 distinct structures and so far, the pFRG/RTN has

not been captured in in vitro experiments [17, 24].

Studies suggest that the preBötC and the pFRG/RTN work as coupled oscillators to

regulate the respiratory process [40, 24, 25], providing our body with the ability to change

breathing frequency after a given stimulus while maintaining the robust rhythmicity of the

network. However, the preBötC seems to take control of the rhythmicity of our breathing

system over the pFRG/RTN group, although some recent evidence suggests that, at birth

[24], the absence of the pFRG/RTN causes apnoea (in rats) and does not activate the

preBötC causing death [17]. Although the pFRG/RTN may have an important role in the

respiration process, from now on our attention will be focused on the preBötC.
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The importance of the preBötC is supported by experiments in vivo and in vitro, in

rats, showing that any damage to the preBötC causes disturbances in the inspiratory phase

of breathing. Among other things, damages to the preBötC can cause breathing disorders

during sleep which can evolve to troubled breathing when awake [36]. Similar disturbances

are observed when pharmacologically killing preBötC cells [19, 36]. Although, experiments in

rats show such problems, in normal, healthy humans, breathing problems during wakefulness

are rare, meaning that in our life span not enough preBötC cells will die in order to cause such

a problem [17]. Diseases which attack the neurosystem responsible for breathing, in humans,

include: Parkinson’s disease, multiple syndrome atrophy and amyotrophic lateral sclerosis.

The first two occur due to depletion of the ventromedullary NK1 receptor-immunoreactive

neurons [4]. The latter occurs due to loss of calcium-binding proteins and, in later stages of

the disease, can kill during sleep [1].

The preBötC participates in dictating the rhythm of our breathing process and it is

an example of so called pacemaker systems. It has been shown that single neurons may

not necessarily have pacemaker-like properties. However, intrinsic properties of each neuron

together with coupling give the whole system a group pacemaker-like property [11, 45]. In

both cases, bursting pacemaker-like properties of the preBötC complex depending on INaP

(persistent sodium current) have an important role in rhythm generation [56, 29]. There

is also some evidence showing that Ca+2-activated inward cationic current ICAN influences

pacemaker activity[11]. Other examples of pacemaker systems include hormonal secretion

and digestion [20].

Experiments at the network level show that cells within the preBötC may not all be

active or silent at the same time. That is, while a group of cells are active another group

of cells may not present any activity at all. Within the active state, different groups of cells

exhibit different behaviors [6, 7]. Cells engaged in the same pattern of activity are said to

be synchronized. Experiments also suggest that the strength of connections between cells

(coupling) and intrinsic properties of the cells such as concentration of calcium, sodium or

potassium channels present in each cell (heterogeneity) play a role in determining in which

state a given cell will be [6, 44, 28, 10, 31]. Given that breathing has to be adaptable over

changes in the environment and physiological state, it is reasonable to believe that coupling
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and heterogeneity are some of the mechanisms responsible for such adaptability. Most of

these predictions were confirmed when a slice of brainstem of a neonatal rat was prepared

in vitro with the preBötC and the inspiratory-related motor activity intact [12].

Understanding mechanisms that underlie inspiratory rhythm generation in the slice will

serve as a foundation for unraveling the mechanisms in more intact preparations, including

en bloc and in vivo [17].

In recent years, more and more attention has been given to the study of neural networks,

such as the preBötC, using mathematical models. A common framework in which these

neural networks are modeled uses the Hodgkin-Huxley equations [22]. These equations model

the dynamics of the membrane potential of the cell, together with the inflow and outflow of

several substances such as calcium, potassium and sodium that contribute to this potential.

Many neural functions, and diseases that disrupt these functions, cannot yet be completely

understood either because experimenting is too expensive or because experimental techniques

are still too limited. Developing good mathematical models allows us to clearly distinguish

the roles of the network components, to efficiently generate predictions to guide subsequent

experimental studies, and to understand general mechanisms of neural network dynamics.

Experiments in vivo have been done in connection with mathematical models suggesting that,

considering the right models, we can accurately imitate and generate relevant predictions

about what happens in these neural networks [23].

As observed in experiments in vitro, during inhalation, cells in the preBötC are in their

active phase and during exhalation, cells go silent. These alternating phases of activity and

silence form a rhythm called bursting. During each active phase, cells experience two or more

abrupt changes in the membrane potential (that is, the difference in charge across a cell’s

membrane) followed by a period of recovery (where we do not see any activity) . Each of

these abrupt changes is called a spike.

Applying the Hodgkin-Huxley formalism, Rybak et al [52] model respiratory neurons in

the brainstem looking for mechanisms to explain oscillations and firing patterns. Based on

data from in vivo experiments, they develop two models for single neurons. Model 1 shows

an adapting firing pattern in response to synaptic excitation. Model 2 shows a ramp firing

due to depolarization after a period of synaptic inhibition. The differences between the two
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models arise due to the different types of calcium channels that each one has. In a second

paper, Rybak et al [53] develop two- and three-phase models of the central respiratory

pattern generator (CRPG) using experimental data. The former models the inspiratory

phase of respiration and its termination mechanism is via late-I neurons; the latter models

the expiratory phase which has a different mechanism for termination.

The inspiration process is connected to synchronized oscillatory bursting behavior of the

preBötC cells. Butera et al [6, 7] develop a nonlinear differential equation model network of

cells exhibiting synchronized bursting activity consistent with that observed experimentally

in respiration. For a model network composed of identical cells, they [6, 7] systematically

changed some relevant parameters of the model and found that changing these parameters

could give rise to a variety of behaviors which include bursting, spiking and quiescence.

These different regimes were found for a significantly large range on the parameter space,

implying that the system is robust.

They also found that bursting becomes even more robust in simulations of a network of

nonidentical (heterogeneous) coupled cells relative to that seen in a single cell. In the model,

mechanisms responsible for the adaptability of the respiratory patterns have to preserve these

patterns over a broad range of parameters and frequencies, that is, over a large dynamic

range. Simulations show that some of the mechanisms that confer such adaptability are

coupling and heterogeneity, complying with experiments in vitro. In their model of bursting

neurons with excitatory coupling, bursting occurs via fast activation and slow inactivation

of the persistent sodium INaP . In a later work by Rubin and Terman [49], a small preBötC

network of heterogeneous cells was analyzed. In this context, conditions for synchrony and

break down of synchrony of the network were found.

Using Butera’s model as a baseline, Rybak et al [54] determined that transitions between

different regimes may occur through changes in extracellular concentration potassium or an

elevation of the conductance of the persistent sodium current and discussed the role of these

currents in triggering or abolishing bursting activity in the preBötC in a model and by means

of experiments in vivo [55].

Best et al [5] explores a network of a single self-coupled cell and a model network with

two coupled identical cells from the preBötC, based on the Butera model. In their work,
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they found regions for some key parameters, namely gsyn and gton, where the cells are either

silent, bursting or continuously spiking (tonically active). These two parameters represent,

respectively, the maximal strength of excitatory synaptic connections from one neuron to

the other and the conductance of external excitatory synaptic current into the network from

elsewhere in the brainstem. In an experiment, these quantities can be changed and can

affect the dynamic behavior of the network. The methods used in [5] include fast/slow

decomposition and bifurcation analysis. Fast/slow decomposition analysis takes into account

the disparate time scales of the network, treating the slowest variable as a constant and

studying the dynamics of the fast subsystem as a function of the parameters. After the

analysis is complete, the slow and fast subsystems are recombined to obtain the full dynamics

of the network. Bifurcation analysis is performed by finding values of a key parameter at

which the fast subsystem has an abrupt change in behavior. Each value of the parameter

in which the system has these abrupt changes is called bifurcation point. At the bifurcation

point possible changes in the dynamics of the system include: from stable fixed point to

periodic solutions; from no fixed point to two fixed points (one stable and another unstable)

and so on [43].

In order to model preBötC cells, a set of nonlinear differential equations was used. Analy-

sis of such systems of equations is often complicated and relies on sophisticated tools [43]. In

order to simplify such analysis some methods were developed to reduce the number of equa-

tions to be solved, yet maintaining important characteristics of the whole system. One such

method relies on maps. Roughly speaking, maps are obtained by fixing a local transverse

section to a continuous oscillatory system, letting the system evolve in time and recording

each passage through the local section. These points form a map which can be related to the

dynamics of the full system and help to describe important characteristics of the full system

[27, 59]. This idea of reduction of systems differential equations to maps has been applied

to models in neuroscience [15, 37, 8, 50, 51] as well as in many other areas [18, 2, 13, 41, 48].

In many models used in neuroscience and other areas as well, high dimensional systems of

differential equations are often reduced to the study of one dimensional maps. In this context,

we can cite the reduction of a three-dimensional model for the Belousov-Zhabotinskii reaction

in a continuous flow stirred tank reactor (CSTR) [47] to a piecewise linear, discontinuous one
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dimensional map. Analysis of the map shows that the full (excitable) system, as observed

before [47], can present a variety of behaviors such as stable fixed point, bistable bursting

solutions and irregular behaviors [48].

Other examples include, a pharmacologically isolated leech oscillatory heart interneu-

ron which was reduced to a map and then, temporal characteristics of spiking and bursting

patterns as well as transitions between them were studied [8]. In a network of two neurons

coupled by inhibition [33], a five dimensional system of voltage-gated equations is reduced

to a one-dimensional map through slow/fast decomposition analysis and slow manifold in-

formation.

In all of these models, the reduction to a one dimensional map helped to unravel some

characteristics of the full model which would be otherwise harder to explain or find. Some-

times the dynamics of the full system cannot be fully understood through a one dimensional

map setting yet it may not be possible to reduce the system of equations to a higher di-

mensional map. Higher dimensional maps have been constructed phenomenologically to

reproduce some novel characteristics of a given problem [57]. Once the parameters of the

system are calibrated, the study of this higher dimensional map is often more easy than

the study of the full network. In particular we can cite a two dimensional map with one

slow and one fast variable which reproduces different regimes of a single uncoupled neuron

including bursting, spiking and synchronized states [50]. A variation of the model in [50]

tries to replicate the behavior a complex neurobiological system for which a Hodgkin and

Huxley formalism has been used to represent the full dynamics of the system. So far, to the

best of our knowledge, there has been no reduction of a network of coupled preBötC neurons

to a two or higher dimensional map.

Certain details about transitions between activity patterns are not analytically tractable

in a network setting. As a first step to better understanding the role of heterogeneity in ex-

panding the dynamic range of inspiration we will use a reduction based on maps. Medvedev

[37] used fast/slow decomposition and bifurcation analysis to develop a one dimensional map

expressed in terms of the slow dynamics and averaging over the fast subsystem to study the

dynamics of a physiological model of a pancreatic β-cell [9]. Using the method defined in

[37], which was developed for a class of models which includes all square wave models (e.g.
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[38, 39]), we obtained a one dimensional map for a single preBötC cell with self-coupling.

Considering the structure of our map some information about the transitions between dif-

ferent states was extracted. Our main result determines some analytical conditions for the

transition between spiking and bursting when for small values of the parameter gsyn the cell

is spiking. Numerical results corroborate our findings.

In chapter 4, a two dimensional map for the 2-cell network with identical cells was

obtained. The two dimensional map resembles the one dimensional map in its derivation

but, in terms of the analysis, it is more complicated due to the fact that 2 slow variables

are used in the derivation of the map and these variables are coupled together. Thus, the

dynamics of one affects the other in every point in the range of definition of the maps.

Another difference between the two dimensional map and the one dimensional map is

the presence of branch points in the two dimensional case. Branch points refer points from

which multiple branches of the map converge. A branch point is not a fixed point of the

two dimensional map but rather represents a change in the direction of flow for one of the

cells. Due to the presence of branch points an analysis of the conditions for the transition to

another branch were also discussed. Taking one value on parameter space (gsyn, gton) for each

of the four regions found in [5], several predictions about the structure of the map were made

and some numerical results were obtained. In order to determine the stability of the fixed

points of the map, a linear analysis of the map was attempted in which the eigenvalues were

computed numerically for the case when the cell presents synchronous behavior. Numerical

difficulties arose in obtaining the eigenvalues of the system due to the instability of the

synchronous solution and due to the fact that the synchronous and asynchronous are really

close to each other, meaning that a very small perturbation to synchronous state takes us

to the asynchronous state. Discussion about these numerical difficulties is also included.

In Chapter 5, the role of heterogeneity and coupling in the pre-BötC, is studied by means

of simulations of a minimal two cell network to isolate key mechanisms of the full system.

Although, numerically we can see how heterogeneity and coupling change the behavior of the

network, the specific mechanisms through which these effects occur remain to be understood.

Using fast/slow decomposition and bifurcation analysis, numerical analysis was performed

by perturbing slightly the degree of heterogeneity of the sodium current, namely δ, across
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the two cells and analyzing the behavior of the network. We determined the behavior of the

network for fixed values of gsyn and δ, under systematic changes in gton and gained, besides

the improvement in the dynamic range of bursting for increasing δ, an understanding of the

effect of δ into the network. In this heterogeneous context, each of the cells may be engaged

in a different activity pattern. To the best of our knowledge, this type of behavior has not

previously been analyzed in the study of small neural networks in the brainstem.

Lastly, in chapter 6, we summarize all the work done and suggest possible extensions

and future directions this work can take.
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2.0 MODEL EQUATIONS AND REVIEW OF SOME RESULTS ON

SMALL NETWORK OF PREBÖTC

In this chapter, Butera’s minimal model [6, 7] of a network of preBötC cells modeling the

inspiratory phase of respiration and a review of some of the relevant results previously

obtained are presented. Butera’s model followed the usual Hodgkin-Huxley formalism using

voltage-gated variables to account for the different behaviors experimentally seen. Butera’s

numerical results are consistent with what has been seen in experiments in vitro [6, 7]. It is

also noticed in [6] that preBötC cells are purely excitatory, that is, inhibition does not play

an important role in the process of inspiration for experiments in reduced preparations [24].

Using Butera’s model, Best et al [5] analyzed the smallest possible networks of preBötC cells:

a single self coupled cell and two identical synaptically coupled cells, which are reviewed here.

At last, a slight modification of Butera’s model is suggested which is going to be used for

the rest of this thesis.

2.1 MODEL EQUATIONS

The set of equations describing the dynamics of a small network of preBötC cells using

voltage-gated variables is given by [5, 6, 7]
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v′i =
−INaP (vi)− INa(vi, ni)− IK(vi, ni)− IL(vi)− Iton(vi)− Isyn(vi)

C
(2.1.1)

h′i = ε
h∞(vi)− hi

τh(vi)
(2.1.2)

n′i =
n∞(vi)− n

τn(vi)
(2.1.3)

s′i = αs(1− si)s∞(vj)− si

τs

, (2.1.4)

where C is the capacitance of the cell ; vi represents the membrane potential of the cell; hi

and ni are inactivation and activation variables, respectively; si is the synaptic coupling; τs

is a positive time constant and ε is a small and positive constant. The right-hand side of

(2.1.1) is the sum of all inward and outward currents and their expressions are given below:

INaP (vi) = ḡNaP mP,∞(vi)h(vi − ENa), INa(vi) = ḡNam∞(vi)
3(1− ni)(vi − ENa),

IK(vi) = ḡKn4
i (vi − EK); IL(vi) = ḡL(vi − EL),

Iton(vi) = ḡton(vi − Esyn), Isyn(vi) = ḡsynsi(vi − Esyn).

Above, ENa, EK , EL and Esyn are resting potentials for the sodium, potassium, leakage and

synaptic currents, respectively; ḡNaP , ḡNa, ḡK , ḡL, ḡton and ḡsyn are the maximal conduc-

tances for the persistent sodium, sodium, potassium, leakage, tonic and synaptic currents,

respectively. Their values with respective units are given in table 1. Finally,

mP,∞(vi) =
1

1 + e
vi+40

−6

, n∞(vi) =
1

1 + e
vi+29

−4

, m∞(vi) =
1

1 + e
vi+34

−5

, h∞(vi) =
1

1 + e
vi+48

6

,

s∞(vi) =
1

1 + e
vi+10

−5

, τh(vi) =
τ̄h

cosh
(

vi+48
12

) , τn(vi) =
10

cosh
(

vi+29
−8

) ,

for i = 1, 2, where y∞(vi) with y ∈ {m,n, h, s} are steady-state voltage-dependent functions

and τh(vi) and τh(vi) are voltage-dependent time constants. Also τ̄h

ε
= 10000msec. For more

details about the connection with biological experiments, see for example [6].

In the single cell case, i = j = 1 and, for simplicity, the subscripts and bars in the above

equations will be omitted. For the 2-cell coupled case, i = 1, 2 and j = 3 − i. The model

described by the set of ordinary differential equations (2.1.1)-(2.1.4) was proposed by [6] as
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ḡNaP ḡNa ENa ḡK EK ḡL EL ḡton Esyn ḡsyn

2.8 nS 28 nS 50 mV 11.2 nS -85 mV 2.8 nS -65 mV [0;1] nS 0 mV [0;15] nS

Table 1: Values of some parameters as given in [5] with respective units

the minimal model, built out of existing currents, that reproduces a variety of experimental

results. For a given set of the parameters, this model gives silence, bursting and spiking as

ḡton is varied. In this model, bursting can be started and terminated through fast activation

and slow inactivation of the INaP current. Another way to initiate and terminate bursting

is through fast activation of the INaP current and slow activation of the potassium current,

IK [5, 6].

2.2 SOME PREVIOUS RESULTS ON SMALL NETWORKS OF PREBÖTC

CELLS

Looking into equations (2.1.1)-(2.1.4), for the single self coupled case, as a system of ordinary

differential equations evolving with time, one can decompose the system based on its different

time scales. This idea of breaking down in different time scales is also called the fast/slow

decomposition analysis [27, 5]. In this set of equations, note that the coefficient of (2.1.2),

ε
τh

, for ε sufficiently small is much smaller that 1
C

and 1
τn

. Thus, the dynamics of equation

(2.1.2) will be much slower than the dynamics of the remaining equations. Therefore, we

shall refer to equation (2.1.2) as the slow subsystem and refer to equations (2.1.1), (2.1.3)

and (2.1.4) as the fast subsystem.

Using the fact that h moves much slower than any other variables, h can be used as a

control parameter and a bifurcation analysis [32, 59] on the fast subsystem can be performed

in order to infer some properties of the full system [46].

In figure 1, the bifurcation diagram and the h-nullcline (ḣ = 0) are shown for some fixed

parameters of the fast subsystem for the single self coupled case. The intersection of the
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Figure 1: Bifurcation diagram for gsyn = 0 and gton = 0.2 [5](Copyright (c)2005 Society for

Industrial and Applied Mathematics. Reprinted with permission. All rights reserved )

.

h-nullcline with the critical manifold S is a fixed point of the whole system. A homoclinic

point (HP), indicated as homoclinic in the figure, is the point where the curve of periodic

orbits P ends. At this point, the period of the periodic orbits tends to infinity. If the curve of

periodics P loses stability before the period goes to infinity then the intersection of the stable

branch of P with its unstable branch is a saddle point for P , denoted by SNp. Another way

of seeing how dramatic changes in period are near HP is shown in figure 2. In this figure,

one can see that far enough from HP the period of P does not change much, but closer to the

homoclinic it grows relatively fast with small changes of the control parameter h. The curve

S, in figure 1, represents the curve of fixed points for the fast subsystem. For fixed values

of h, the fast subsystem may have up to 3 fixed points which can be stable or unstable.

In order to determine stability of a fixed point, fix h = h∗ and draw a vertical line passing

through it. Any intersection of h = h∗ with S occuring on the dashed part of S, represents

an unstable fixed point. Similarly, an intersection of h = h∗ with S on the solid part of S

represents a stable fixed point. Moreover, the point where the stable and unstable branches

12



of S meet is called a saddle node point (SN). Finally, there is a (subcritical or supercritical)

Hopf bifurcation (HB) which gives rise to P [32]. The curve S divides the curve P in two

branches. The top and bottom branches represent, respectively, the maximum and minimum

voltages of a given periodic orbit for a particular value of h. Note that, as h decreases the

amplitudes of the periodic orbits increase along with the periods of the oscillations.
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Figure 2: Example of how fast frequency grows near the homoclinic point HP , for gsyn = 3

and gton = 0.91 and all other parameters fixed as in table 1.

From the full set of parameters involved in this system of differential equations, it has

been determined numerically that the parameters gsyn, gton, gNaP play an important role in

the dynamics of the whole system for the preBötC [6]. Figure 3 illustrates, in a bifurcation

diagram, how changes in gNaP affect the dynamics of the cell when all other parameters are

fixed. It is clear from this picture that, as gNaP is increased, the curve of periodic orbits

moves to the left. Analogously, when gsyn or gton are varied with all other parameters fixed,

the curve of periodics P moves to the left [5]. As for the curve S, it moves leftward when

gNaP and gton increase whereas it remains practically constant when gsyn is varied [5]. This

means that, the range of values for which a cell is active will strongly depend on changes in

the parameter set.

In figure 4, an experiment in vitro with slice preparations of a rat’s brainstem shows
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Figure 3: Bifurcation diagram corresponding to all parameter values fixed except gNaP . The

reference values for this plot were taken from [6]. Here gsyn = 4 and gton = 0.4.

that some bursting activity in the preBötC, without any stimulus, can be observed [12]. In

this experiment, macropatch electrodes were applied to the pre-BötC and XIIn regions and

readings of consecutive inspiratory bursts were obtained. These readings are shown directly

as they were obtained in the experiment as well as after some filtering of these data.

As mentioned before, Butera’s minimal model [6] can reproduce experimental results

when two parameters, gsyn and gton, are varied, giving rise to a variety of behaviors: quies-

cence - cell shows no sign of activity, i.e., the system goes to a stable solution without action

potentials; bursting - cell has action potentials, followed by a period of recovery without

spikes; and spiking, where the cell is firing constantly. In the bursting regime, if for a certain

parameter value h the cell is firing, then h decreases, until it reaches a minimum value for

which the cell falls to the lower branch of the curve S. Then, the parameter h starts increas-

ing until it reaches the SN point and it jumps back to the active phase, continuing this cycle

over and over again. The frequency of such action potentials can last from a few miliseconds

to up to hundreds of miliseconds depending on the parameter set. In all simulations, gsyn

and gton are varied but are the same for the two homogeneous cells, and can be equal or
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Figure 4: Figure 1 from [12] showing a slice preparation of a rat’s brain in vitro . In this

picture is also shown the hypoglossal nerve XIIn from where inspiratory motor discharges

has been recorded(used with permission from Journal of Neurophysiology).

different for two heterogeneous cells. How changes in the synaptic and tonic input promote

different types of dynamics in a network of two coupled cells is depicted in figure 5.

In figure 5(A)-(C), gton = 0.77, and gsyn = 0.28, 3, 8.4, respectively. In these plots,

notice that for a low value of gsyn, the network is spiking. With increasing gsyn, the network

presents bursting solutions and for a big enough synaptic input the network goes back to

spiking again. In figure 5(C)-(E), fixing gsyn = 8.4 and decreasing gton, the network goes

from spiking to bursting and then to silence. This picture shows the important role of gsyn

and gton on determining the different regimes a small network of cells may be engaged. In

the figure 5 (F), a cartoon shows how gsyn and gton can influence the dynamics of the two

cells.
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Figure 5: Pictures showing how varying gsyn and gton with all other parameters fixed can

give rise to quiescence, bursting and spiking for a network of two cells. (A) − (C) Fixing

gton = 0.77 and varying gsyn from 0.28 to 3 and then to 8.4, the system goes from spiking

to bursting and back to spiking. (C)-(E) Fixing gsyn = 8.4 and decreasing the value of gton

from 0.77 to 0.42 and then to 0.20, the system goes from spiking to bursting and then, for

low enough gton the cells are silent. (F) A cartoon show how gsyn and gton contribute to the

dynamics of the two cells

.
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In order to fully understand the role of these two parameters in a small network of

preBötC cells, Best et al [5] made a thorough analysis in the self coupled single cell case and

two-cell case. For the self coupled single cell case, the region in the parameter space (gton,

gsyn) where the cell could be silent, burst or spike was determined. In the analysis, [5] used

the slow variable h and took the limit of the parameter ε tending to zero.

This singular perturbation analysis [30, 42], for the self coupled single cell case signifi-

cantly underestimated the region of bursting for the case of two coupled cells.

Consider now the two-cell case. In order to determine a curve in the parameter space

(gton, gsyn) separating regions where the two cells could be bursting, spiking or silent, Best

et al [5] used the averaged slow variables

ḣi =
1

Ts(h1, h2)

∫ Ts(h1,h2)

0

gi(vi)dξ i = 1, 2, (2.2.1)

where gi(vi) ≡ ε (h∞(vi)−hi)
τh(vi)

and Ts(h1, h2) is the period of the periodic orbit being averaged.

The averaged nullclines can be computed numerically as in [5], using the following procedure.

First, regarding h1 and h2 as parameters, compute, on the (h1, h2)−plane, O and Ω

defined as the oscillatory region and the boundary of the oscillatory region, respectively, as

follows. Without loss of generality, suppose that for a fixed pair (h∗1, h
∗
2) the fast subsystem is

active. Keep h∗1 fixed and vary systematically h2 from h∗2 to lower values, in small steps, until

the fast subsystem falls into quiescence. Record the pair (h1u
1 , h1u

2 ) for which this transition

happened (h1u
1 = h∗1). Fix another pair (h1, h2) for which the fast subsystem is active with

h1 = h1u
1 −∆, 0 < ∆ ¿ 1. Vary h2 until the fast subsystem falls into quiescence and again

record this new pair (h2u
1 , h2u

2 ) with h2u
1 = h1u

1 −∆. Perform this procedure until for a given

initial pair (h1, h2) the system gives you quiescence for all h2 and a fixed h1. At this stage, you

have a sequence of points (h1u
1 , h1u

2 ), (h2u
1 , h2u

2 ), . . . , forming a curve separating the active and

silent regions. Start again this whole process, at say (h∗1, h
∗
2) again but this time fix h∗2 and

systematically vary h1 in order to find another sequence of points (h1f
1 , h1f

2 ), (h2f
1 , h2f

2 ), . . . ,

forming another curve separating the active and silent regions. All these computed pairs

form what [5] called the boundary of the oscillatory region and which we denoted by Ω. The

region to the right of Ω is the oscillatory region O and on the left there is the silent region,

denoted here by Qf . A cartoon depicting these regions is shown in figure 6.
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Now, let’s describe how to get the h1 and h2 averaged nullclines. Fix a pair (h1, h2) in

O . Compute the period of the corresponding periodic orbit Ts(h1, h2). Integrate the fast

subsystem together with equations (2.2.1). Vary systematically one of the parameters while

keeping the other fixed, to find pairs (h1, h2) within O such that either ḣ1 = 0 or ḣ2 = 0 or

both.

 

Q

Q

2

1

p
0

h −nullcline

h −nullcline

f

f

h

h2

1

Ω

Ο

Figure 6: Cartoon of a typical region on the (h1, h2) for fixed values of the parameters. In

blue and red are the averaged h1 and h2 nullclines intersecting at a point p0, which, if it

exists, can be either stable or unstable. The regions denote by Qf are regions where the cell

is silent. The region containing the nullclines and inside the green region Ω, the boundary

of oscillatory region, is a region where both cells are active and it will be denoted by O .

The set of pairs (h1, h2) for which ḣ1 = 0 forms the h1 averaged nullcline and the pairs

(h1, h2) such that ḣ2 = 0 forms the h2 averaged nullcline. If for no pairs (h1, h2) ḣi = 0

i = 1, 2, then the averaged nullclines are outside O .

The numerical computation of the averaged nullclines helped [5] in distinguishing between

the different regimes. These different regimes were defined based on whether the averaged

nullclines were inside or outside O; on the number of intersections of these averaged nullclines

within the active region along with their stability; whether trajectories in O leave or not O

as well as whether trajectories were oscillating around the identity line.
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Varying systematically gsyn(gton) for fixed gton(gsyn), Best et al [5] determined curves

in the parameter space (gton, gsyn) for which two identical coupled cells were either silent,

bursting or spiking, with all other parameters fixed. The 4 different regions found are shown

in figure 7 and are described below. One representative of each region in figure 7 is shown

in figure 8. For all examples in figure 8, gsyn = 3.

Figure 7: Boundaries for different regimes of activity on the parameter space (gton, gsyn)[5]

(Copyright (c)2005 Society for Industrial and Applied Mathematics. Reprinted with permission.

All rights reserved )

.

1. Symmetric Bursting (SB)(figure 8(A)): In this region, ḣ1 < 0 and ḣ2 < 0 for all pairs

(h1, h2) ∈ O . After a transient, trajectories of the full system (2.3.1)- (2.3.4) in O

oscillate symmetrically around the identity line leaving O through Ω. At this time, the

cell falls to the lower branch of S and h starts increasing again until SN is reached and

then the cells enter the active phase again;

2. Asymmetric Bursting (AB)(figure 8(B)): Averaged nullclines come inside O and intersect

at a point p0 on the h1 = h2 line and p0 is unstable, due to the configuration of the

nullclines. Starting with initial conditions such that h2 > h1 (h2 < h1), trajectories of

the full system in O will remain above (below) the identity line and cross either ḣ1 = 0
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or ḣ2 = 0 or perhaps both, leaving O through Ω;

3. Asymmetric Spiking (AS)(figure 8(C)): Averaged nullclines are still inside O , but this

time they intersect at 3 distinct points, p0 (unstable) and qA and qB (stable). Trajectories

of the full system starting in O with initial conditions such that h2 > h1 stay above the

identity line and go to qA, never leaving O whereas if initial conditions are such that

h2 < h1 then trajectories of the full system go to qB;

4. Symmetric Spiking (SS)(figure 8(D)): Only a fixed point p0 exists with h1 = h2. Tra-

jectories of the full system in O oscillate symmetrically around the identity line and get

trapped in the stable fixed point p0, never leaving O .
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Figure 8: Plot of the 4 cases mentioned above for gsyn = 3 and gton = 0.56, gton = 0.83,

gton = 0.87 and gton = 0.91, respectively. Figure reproduced from [5](Copyright (c)2005

Society for Industrial and Applied Mathematics. Reprinted with permission. All rights reserved )

.
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The fact that there are 3 fixed points in O in the AS region dropping down to a single

fixed point in SS when gton is increased suggests the presence of a pitchfork bifurcation of

periodics.

As a final remark, in all simulations of the full system (2.1.1)-(2.1.4), the action potentials

for each cell could theoretically occur exactly at the same time for the duration of the

simulation, in which case, we say that the cells are in synchrony or in-phase (IP ); or the

action potentials for one cell could occur exactly when the other cell is at its minimum voltage

in which case we say that the cells are not in synchrony or anti-phase AP . As noted in [5],

for mostly every initial condition cells are AP . The only case when an IP solution exists is

when starting with initial conditions such that v1 = v2, n1 = n2, s1 = s2 and h1 = h2, in

regions AB, AS and SS. That is, for all t > 0, v1(t) = v2(t), n1(t) = n2(t), s1(t) = s2(t)

and h1(t) = h2(t), is required to achieve IP behavior. Any slight perturbation on the initial

conditions brings the IP to the AP solution. In figure 9, a bifurcation diagram for gsyn = 3

and gton = 0.91 shows on a vmax
1 versus h plot, how close the IP and AP solutions are.
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−40
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Figure 9: Bifurcation diagram for the full system (2.1.1)-(2.1.4) with h1 = h2 = h for gsyn = 3

and gton = 0.91 showing the IP and AP solutions, for h = h1 = h2. Notice how close to

each other these solutions really are.

.
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2.3 MODIFICATIONS OF THE ORIGINAL SYSTEM

In this section, the change of variables t = 10T , v = 100V , and ḡ∗i = ḡi

ḡNa
(maximal

conductances) is applied to the original set of equations (2.1.1)-(2.1.4). There is no particular

justification for this change of variables except that it keeps voltages on the interval (-1,1).

Equations (2.1.1)-(2.1.4) become:

dVi

dT
=

−INaP (Vi)− INa(Vi)− IK(Vi)− IL(Vi)− Iton(Vi)− Isyn(Vi)

ρ
(2.3.1)

dhi

dT
= ε∗τh(Vi)(h∞(Vi)− hi) (2.3.2)

dni

dT
=

n∞(Vi)− ni

τn(Vi)
(2.3.3)

dsi

dT
= αs(1− si)s∞(Vj)− s

τs

(2.3.4)

for i, j = 1, 2 and j = 3− i where

ρ =
C

10ḡNa

= 7.5× 10−2; ε∗ = 10−3; αs = 2; τs =
τ̄s

10
= 0.5

All other equations are as before, replacing v by 100V and the Ei’s with i ∈ {Na, L,K, syn},
as defined in table 1, were all divided by 100. In equation (2.3.2), notice that τh(Vi) is now

multiplying instead of dividing (h∞(Vi) − hi) as it occurred in equation (2.1.2). So, τh(Vi)

has been written as

τh(Vi(t)) = cosh

(
Vi(t) + 0.48

0.12

)
(2.3.5)

Some parameter values of the nondimensional system shown above are summarized in

table 2.

ḡ∗NaP ḡ∗Na E∗
Na ḡ∗K E∗

K ḡ∗L E∗
L ḡ∗ton E∗

syn ḡ∗syn

0.1 1 0.5 0.4 -0.85 0.1 -0.65 [0;0.0357] 0 [0;0.5357]

Table 2: Nondimensional form of parameters in table 1. Here, ḡ∗i = ḡi

28
and E∗

i = Ei

100

.

Henceforth, we will be using and referring to the set of equations (2.3.1)-(2.3.4) for our

analysis and map reductions, unless otherwise noted.
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3.0 THE ONE DIMENSIONAL MAP

In the last chapter a brief review was made on numerical results on a minimal model for

preBötC cells relating some important parameters of the system with what is experimentally

being seen. Also a review was given of the results of a thorough analysis in parameter space by

[5] that determined regions associated with different regimes. In this chapter, a background

on the relation between maps with the dynamics of systems of ordinary differential equations

modeling neuronal activity in the brainstem is shown. A mathematical reduction of the 4

dimensional system of ordinary differential equations (2.3.1)-(2.3.4) with i = j = 1 to a one

dimensional map is derived. After the map is obtained an analysis follows explaining some

properties of the map. Some analytical results are shown along with numerical corroboration.

3.1 BACKGROUND

In figure 10, let Φ(t) be a time-dependent oscillatory solution of a system of differential

equations ẏ(t) = f(y) where f(y) is a function modeling, for instance, a particular neural

network and y ∈ <n. Suppose that at time t = 0, Φ(0) is at the cross-section Σ. Let Φ(t)

evolve in time. Then, after a time t = t1 is elapsed, Φ(t) crosses Σ for the first time. Suppose

that each subsequent oscillation takes a time ti for i = 2, 3, . . . to return to the cross section

Σ. Then, for each return to Σ a new point is drawn. The resulting set of points forms, on

Σ, what is called a first return map, or simply a map. Mathematically, this map can be

described as

xn+1 = P (xn) (3.1.1)
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where P (xn) is a linear or nonlinear continuous function which takes xn into xn+1, x ∈ <n−1

with n ∈ ℵ. Here we are assuming that f(y) is a continuous function with a continuous

dependence on its parameters. As we will see later, the nth dimensional flow could have been

projected to a lower dimension map than n− 1, for n ≥ 3. This map allows one to extract

information from the flow Φ(t) by studying the dynamics of the map P . Depending on the

system it is not always possible to determine a closed form for the map P .

Suppose that, for the sake of the argument, one knows a closed form for the map P (xn).

Then use the formula for P (xn), starting with x0 and compute x1 = P (x0) and the next

iterates x2, x3, x4, . . . of the map using x1, x2, . . . , respectively. If, for a given n ∈ ℵ, one

finds that P (xn) = xn, then xn is called a fixed point of the map P . In terms of Φ(t), this

implies that the return to the cross section takes place every t = T units of time. In other

words, Φ(t) is periodic with period T . Denote the fixed point of P by x∗. Then, the stability

of x∗, on Σ, determines whether the oscillatory solution is stable or not. Furthermore, the

advantage of using the map is that the analysis of P is in general easier than the study of

the full dynamical system, due to the lower dimension of P .

 

Σ Φ(t )
1

Φ(0)

n

 Φ(t)

V

s

Figure 10: Sample of a time-dependent oscillatory solution Φ(t) on the (V,n)-plane for a

fixed value of h. Starting with a initial condition Φ(0) on a cross-section Σ, a second point

Φ(t1) is recorded on Σ signaling a return to the section after a time t = t1 has elapsed.
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Among many studies studies of continuous systems of equations through maps, we can

cite a one dimensional discontinuous map obtained from a three dimensional system de-

scribing the Belousov-Zhabotinskii reaction [47]. The study of this map yielded analytical

explainations for some features of the three dimensional model as well as predictions of some

bursting behavior [48]. In [37], a one dimensional map is obtained for a model of the pan-

creatic β-cells using fast/slow decomposition and bifurcation analysis in terms of the slow

variable and averaging over the fast subsystem. In the next section, using a similar method-

ology as in [37], an analytical expression for a one dimensional map is derived by separating

the full system of equations (2.3.1)-(2.3.4) into its slow (h) and fast (V , n and s) components

[27].

3.2 OBTAINING THE MAP

Consider the slow subsystem (2.3.2) for a fixed gsyn. Define t(T ) such that d
dt

= 1
τh(V )

d
dT

.

Then, t(T ) =
∫ T

0
τh(V (ξ))dξ and equation (2.3.2) simplifies to,

dh

dt
= ε(h∞(V )− h) (3.2.1)

In the (V, n, s)-space, let Σ be a local transversal section to the fast dynamics on this space

and Φ(t) = (V (t), n(t), s(t)), be the solution of the fast subsystem Φ̇(t) = (V̇ (t), ṅ(t), ṡ(t)).

Suppose that on Σ, V̇ = 0 and without loss of generality, assume that V is at its minimum.

We also need, at this point that, ṅ(t) 6= 0 or otherwise we will never cross transversely

through Σ on the (V, n)-plane.

Proposition 3.2.1. Suppose that at some time t = t0, V̇ = 0. Without loss of generality,

suppose that V is at its minimum at t0, that is, V = Vmin. Then, ṅ 6= 0 at t = t0.

Proof. By contradiction, assume that V̇ = 0 and ṅ = 0 at t = t0. Without loss of generality

assume that both are at their minimum values. Then, differentiating equation (2.3.3) with
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respect to t gives

d

dt

(
dn

dt

)
=

d
dt

(n∞(V )− n) τn(V )− (n∞(V )− n) dτn(V )
dt

τn(V )2
(3.2.2)

=

(
dn∞(V )

dV
dV
dt
− dn

dt

)
τn(V )− (n∞(V )− n) dτn(V )

dV
dV
dt

τn(V )2
. (3.2.3)

Now, evaluating this last expression at t = t0 gives us that

d2n

dt2
= 0. (3.2.4)

Contradiction, since in a sufficiently small neighborhood of t = t0, n(t) is concave up and,

therefore, the second derivative of n with respect to t should be always positive there.

Numerical evidence also show that V̇ = 0 implies ṅ 6= 0. Suppose that at t = 0,

Φ(0) = (V (0), n(0), s(0)) is on Σ. Let ts be the time that it takes for Φ(t) to reach Σ again.

Define the first return map by

P (η) = h(ts(η)) (3.2.5)

where η = h(0) and ts(η) is defined as

ts(η) = min{t > 0 | (V (t), n(t), s(t)) ∈ Σ and ṅ < 0}.

Adding εh on both sides of equation (3.2.1) and multiplying it by its integrating factor

eεt we get

d

dt
(eεth) = eεtεh∞(V ) (3.2.6)

Integrating the last equation from 0 to ts(η),

eεts(η)h(ts(η))− h(0) = ε

∫ ts(η)

0

h∞(V )eεtdt

But, according to our previous definition, h(ts(η)) = P (η) and h(0) = η. Thus, we obtain

the equation for the first return map for the self coupled case

P (η) = e−εts(η)η + ε

∫ ts(η)

0

h∞(V )eε(t−ts(η))dt. (3.2.7)
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Define a function [37],

F (η) =

∫ ts(η)

0
h∞(V )eε(t−ts(η))dt

∫ ts(η)

0
eε(t−ts(η))dt

. (3.2.8)

Some algebraic manipulations allow us to write equation (3.2.7) as

P (η) = e−εts(η)(η − F (η)) + F (η) (3.2.9)

If η 6= F (η), that is, if η − F (η) = ∆ 6= 0, then the right hand side of (3.2.9) becomes

e−εts(η)(η − F (η)) + F (η) = e−εts(η)∆−∆ + η = η + ∆(e−εts(η) − 1) 6= η. (3.2.10)

It is clear from equation (3.2.9) that the behavior of P (η), depends on F (η). Therefore,

it becomes helpful to look at F (η) and check its properties first, before drawing conclusions

about P (η).

3.2.1 Some properties of F (η)

First, assume that the curve of periodic orbits ends in a HP (homoclinic point). Denote

the value of η at HP by ηHC . Assume also that gsyn is fixed. In chapter 2, figure 2, it is

shown that far enough from the HP , the period of the periodic does not vary much with

changes in h. As a consequence, the time that the periodic orbit takes to return to Σ will

be approximately the same as η varies, that is, ts(η) ≈ t0s = constant. Then, we can write

the numerator of equation (3.2.8) as

∫ ts(η)

0

h∞(V )eε(t−ts(η))dt =

∫ t0s

0

h∞(V )eε(t−ts(η))dt +

∫ ts(η)

t0s

h∞(V )eε(t−ts(η))dt (3.2.11)

These 2 terms on the right hand side (RHS) correspond, respectively, to the dynamics far

away and close to HP . If we are far enough from the homoclinic then the second term on the

RHS of equation (3.2.11) is small, since the period of the periodic orbits is approximately

t0s. Near the homoclinic, the first integral on the RHS of (3.2.11), can be written as

∫ t0s

0

h∞(V )eε(t−ts(η))dt = eε(t0s−ts(η))

∫ t0s

0

h∞(V )eε(t−t0s)dt (3.2.12)
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The second integral on the RHS, since we are close to the homoclinic and the V values do

not change very much, we will assume, without loss of generality, that h∞(V ) ' h∞(VHC),

where V = VHC is the value of V at HP . Then, equation (3.2.11) becomes

∫ ts(η)

0

h∞(V )eε(t−ts(η))dt ≈ eε(t0s−ts(η))

∫ t0s

0

h∞(V )eε(t−t0s(η))dt + h∞(VHC)

∫ ts(η)

t0s

eε(t−ts(η))dt

Some more algebra, simplifies the equation for F (η) to

F (η) =
e−ε(ts(η)−t0s)A(η) + h∞(VHC)

(1− e−εts(η))
(3.2.13)

where A(η) = εt0sF0(η)− h∞(VHC) and the equation for F0(η) is given by.

F0(η) =

∫ t0s
0

h∞(V )eε(t−t0s)dt

(1− e−εt0s)
.

Differentiating (3.2.13) with respect to η yields

dF

dη
= ε

e−ε(ts(η)−t0s)
[
t0s

dF0

dη

(
1− eεts(η)

)− dts(η)
dη

(
A(η) + h∞(VHC)e−εt0s

)]

(1− e−εts(η))2

(3.2.14)

In (3.2.13), ts(η)− t0s can be written as

ts(η)− t0s =

∫ Ts(η)

0

τh(V )dξ −
∫ T 0

s

0

τh(V )dξ =

∫ Ts(η)

T 0
s

τh(V )dξ. (3.2.15)

where Ts(η) and T 0
s are defined similar to ts(η) and t0s, respectively. Near HP , τh(V ) ≈

τh(VHC) where VHC = V (t) |η=ηHC
, since V (t) does not change much with t. Then,

ts(η)− t0s ≈ τh(VHC)(Ts(η)− T 0
s ) = −(log(d(η − ηHC)))µτh(VHC) + h.o.t. (3.2.16)

where µ−1 is the positive eigenvalue of the matrix of linearization of the fast subsystem

near HP [37]; d = |f ′(ηHC)| 6= 0, where f(η) is the split function which measures the

distance between the branches of the stable and unstable manifolds corresponding to the

fast subsystem near HP [37, 32].

Let σ = εµτh(VHC).Then,

e−ε(ts(η)−t0s) ≈ (d(η − ηHC))σ. (3.2.17)
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Note that when ε → 0, (d(η − ηHC))σ → 1. Near the homoclinic we also have,

ε

∫ ts(η)

t0s

h∞(V )eε(t−ts(η))dt ≈ h∞(VHC)(1− (d(η − ηHC))σ). (3.2.18)

Thus, we can write (3.2.14) as

dF

dη
=

ε[d(η − ηHC)]σ
[
t0s

dF0

dη
(1− e−εts)− dts

dη

(
εt0sF0 + h∞(VHC)(e−εt0s − 1)

)]

(1− e−εts(η))2
(3.2.19)

Let’s take a close look into equation (3.2.19). According to previous analysis, dσ(η−ηHC)σ >

0 (see equation (3.2.17)). Clearly, t0s > 0 and 1 − e−εts(η) > 0. It can be easily shown using

equation (3.2.8) that, 0 < F (η) < 1 and F (η) is a continuous and smooth function of η on

some bounded interval [η0, η1], and ηHC < η0.

At last, differentiating ts(η) with respect to η, up to first order terms, yields

dts
dη

= −µτh(VHC)

η − ηHC

= − σ

ε(η − ηHC)
< 0 (3.2.20)

where ηHC < η for all η ∈ [η0, η1].

Proposition 3.2.2. If, for η sufficiently close to ηHC, V (t) > VHC ∀ t then dF
dη

< 0 in

(3.2.19), for ε sufficiently small. Moreover, as η → η+
HC, dF

dη
→ −∞.

Proof. What remains to be shown is that under the assumptions of Proposition 3.2.2 the

term multiplying dts(η)
dη

is negative. Moreover, this term takes over the other the first term

since both t0s and dF0

dη
are finite and dts

dη
→ −∞ as η → η+

HC . Recall that,

F0(η) =
ε
∫ t0s
0

h∞(V )e−ε(t−t0s)dt

1− e−εt0s
< h∞(VHC)

ε
∫ t0s

0
e−ε(t−t0s)dt

1− e−εt0s
= h∞(VHC) if V (t) > VHC ,

since h∞(V ) is a non-increasing function of V . Thus,

εt0sF0(η) + h∞(VHC)(e−εt0s − 1) = εt0sF0(η) + h∞(VHC)(1− εt0s − 1) + O(ε2)

= εt0sF0(η)− εt0sh∞(VHC) + O(ε2)

< εt0sh∞(VHC)− εt0sh∞(VHC) = 0, (3.2.21)
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for ε sufficiently small. Since dts(η)
dη

< 0 then the second term on the RHS of (3.2.19) is

negative and it takes over the first term because

(η − ηHC)σ dts(η)

dη
= ε(η − ηHC)σ − σ

ε(η − ηHC)
= −σ(η − ηHC)σ−1

ε
→ −∞ (3.2.22)

as η → η+
HC .

Moreover, when η → η+
HC , ts(η) →∞ and equation (3.2.13) gives us that

F (η) → h∞(VHC) < 1 (3.2.23)

0.3 0.4 0.5

0.1

0.3

0.5

η

F(η)

F(η)=η

Figure 11: F (η) for gton = 0.025 and gsyn = 0.1 (equivalent to gton = 0.70 and gsyn = 2.8,

on the original system).

In summary F (η) has the following properties, which were obtained either analytically

(An) or numerically (Nu):

1. 0 < F (η) < 1 for all η (An);

2. F (η) is a monotone decreasing function of η for all η < ηHC (Nu); (see figure 11)

3. F (η) → h∞(VHC) as η → η+
HC (An);

4. For ε sufficiently small, dF
dη
→ −∞ as η → η+

HC (An).
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If our assumption about the existence of HP is false, then our curves of periodics can be

observed numerically to end in a saddle node of periodics SNp. At SNp, the period of any

stable oscillation achieves its maximum value and it does not go to infinity. Of the properties

of F (η) mentioned above, only the first two still hold true. The last two properties do not

necessarily hold.

3.3 ANALYSIS OF THE MAP

According to the previous section, the analysis of the map has to take into account whether

there exists a homoclinic point or not. This analysis will parallel what was previously done

in [37].

Suppose there is a HP . Let ηHC be the value of η at the HP and ηL and ηR be the

minimum and maximum values of η in the active phase. Suppose that the fast subsystem

on the interval (ηL, ηR] with ηR ≥ ηHC and ηR > ηL is on the active phase. In the case HP

exists, 3 distinct regions of the map are found and which will be discussed below.

3.3.1 Linear region Ilinear = [η0, ηR] with η0 > ηL

Recall figure 2. Assume that within Ilinear, for all values of η, the period of the periodic

orbits does not change much with η. So, by continuous dependence of solutions of equations

(2.3.1)-(2.3.4) on ε, ts(η) can be approximated by

ts(η) = t0s + O(ε) (3.3.1)

where t0s is constant throughout the interval. As a consequence of equation (3.3.1), the

corresponding periodic orbit can be written as

(V (t), n(t), s(t)) = (V0(t), n0(t), s0(t)) + O(ε) 0 ≤ t ≤ ts(η) (3.3.2)

where (V0(t), n0(t), s0(t)) with t > 0 is a periodic solution of the fast subsystem (2.3.1),

(2.3.3) and (2.3.4) with initial conditions Φ(0).
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Equations (3.3.1) and (3.3.2) allow for a linear analysis of the map P (η). So, plugging

in (3.3.1) and (3.3.2) into (3.2.9) and Taylor expanding the exponential function about t0s

yields

P (η) = (1− εt0s)η + εt0sF0(η) + h.o.t.

where F0(η) is defined as before. According to the definition of F0(η), εF0(η) is a O(ε2) term,

which can be eliminated from linear analysis. Therefore,

P (η) = (1− εt0s)η + O(ε2) (3.3.3)

Differentiating (3.3.3) with respect to η yields:

dP

dη
≈ 1− εt0s < 1 (3.3.4)

From this linear analysis of P (η), it can be concluded that, there exists η0 far enough from

HP such that
dP

dη
< 1 and P (η0) < η0.

3.3.2 Nonlinear region Inonlinear = (ηHC , η0] with ηHC ≥ ηL

In this region, it is assumed that small changes in η may imply a significant change in the

period of the oscillations of the fast subsystem (2.3.1),(2.3.3) and (2.3.4) due to the closeness

to HP , that is, ts(η) grows without bound, since Ts(η) grows without bound. Let Σ1 and

Σ2 be two two-dimensional cross sections dividing the periodic orbits of the fast subsystem

near the homoclinic bifurcation, in the (V, n, s)-space, into two parts:

1. Starting at Σ1 and going towards Σ2 (away from HP ), the time of flight is approximately

t0s;

2. between Σ2 and Σ1 (near the homoclinic), we need to come up a way of determining a

map connected to the map in the first part.
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That is, starting at Φ(0) on Σ1, integrate the fast subsystem until we hit Σ2 at approx-

imately time t0s, since we are far away from the homoclinic point . Define this map as P u,

as in equation (3.3.3). Let P u = η1. Starting with this initial condition on Σ2 at time t0s

integrate the fast subsystem until you reach Σ1 again. In order to set the map for this second

flight rewrite equation (3.2.15),

ts(η1)− t0s = −µlog(d(η1 − ηHC)) + h.o.t. (3.3.5)

where µ, d are defined as in equation (3.2.16).

Using equation (3.2.16), the map P in equation (3.2.7) can be written as

P l(η1) = e−ε(ts(η1)−t0s)η1 + ε

∫ ts(η1)

t0s

h∞(V )eε(t−ts(η1))dt (3.3.6)

This equation can be further simplified if expressions (3.2.17) and (3.2.18) are used,

P l(η1) ≈ (d(η1 − ηHC))σ(η1 − h∞(VHC)) + h∞(VHC) (3.3.7)

From (3.3.7), when η1 → η+
HC

P l(η1) → h∞(VHC) (3.3.8)

And, from (3.3.6), when η1 moves towards Σ1, ts(η1) → t0s and

P l(η1) → η0. (3.3.9)

Therefore, it can be concluded that the map can be extended continuously from Ilinear

to Inonlinear for all η ∈ (ηHC , ηR).
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3.3.3 Constant region Iconst for η < ηHC

In this case, all trajectories of the fast subsystem (except the unstable fixed points) converge

to a unique attracting equilibrium (V ∗(h), n∗(h), s∗(h)) for some h. The following equations

to obtain n∗(h) , s∗(h) and V ∗(h) have to be satisfied simultaneously





n∗ = n∞(V ∗)
s∗ = s∞(V ∗)

1−s∞(V ∗)

0 = INaP (V ∗) + INa(V
∗) + IK(V ∗) + IL(V ∗) + Igton(V ∗) + Igsyn(V ∗).

The above combined with (2.3.2) gives us

dh

dt
= ε(h∞(V ∗)− h) (3.3.10)

One can show that Φ∗(h) = (V ∗(h), n∗(h), s∗(h)) evolves near the stable branch of the

fixed points parameterized by h, as h slowly increases according to (3.3.10) until it reaches

h = hSN . Therefore, for h = η define P (η) for η < ηHC by

P (η) = ηSN (3.3.11)

As an important remark, notice that if the curve of periodic orbits does not end in a

homoclinic point, that is, it ends in a saddle node of periodics SNp, then some of the analysis

carried out for the map on this section will not be valid. This is true, since at SNp, before

the periodic orbits go unstable, the period of these orbits is finite, i.e., ∃ M ∈ < such that

ts(η
∗) < M for all η∗. Therefore, the period of the oscillations varies relatively little with

small changes in η. Note also that this transition between HP to SNp is a continuous

process, that is, with increasing gsyn, the periodic orbits with high period gradually become

unstable with increasing gsyn. Therefore, for some values of gsyn we have a SNp but the

period is still large but finite. Therefore, there exists the Inonlinear but the rate of change of

F with η does not go to infinity. So for some values of gsyn the curve of periodics end in a

SNp and the period is small then, our 3 regions above reduce to only 2: Ilinear and Iconst. In

the Ilinear, replace η0 by ηSNp and the rest of the analysis carries over. In Iconst, replace ηHC

by ηSNp , so that, you get again P (η) = ηSN .
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3.3.4 Properties of P (η)

After the above analysis one can summarize some of the properties of our map. For a fixed

gsyn, if there exists an η∗ such that

F (η∗) ≥ η∗ (3.3.12)

then there exists a fixed point, η̄(gsyn), of the map P (η). If η̄(gsyn) exists, then it must

satisfy the following relation:

P (η̄(gsyn)) = η̄(gsyn) ⇔ F (η̄(gsyn)) = η̄(gsyn). (3.3.13)

Once existence is established, uniqueness of η̄(gsyn) comes as a consequence of the prop-

erties of F (η) discussed above, where it is observed numerically that F (η) is a monotone

decreasing function of η, for all η < ηHC or η < ηSNp , as appropriate.

Stability of the fixed point is obtained by computing the derivative of P with respect to

η at the fixed point and checking whether this derivate is smaller than 1, in absolute value.

In other words, it is required for stability that

∣∣∣∣
dP̄

dη

∣∣∣∣ < 1 where the bar on top of P represents

its evaluation at the fixed point [27].

Suppose we are in the regime where HP exists. Differentiating equation (3.2.9) with

respect to η gives

dP

dη
= e−εts(η) +

dF

dη

(
1− e−εts(η)

)
+ e−εts(η)ε

dts(η)

dη
(F (η)− η). (3.3.14)

At η̄, the last term in (3.3.14) vanishes and then,

dP̄

dη
= e−εt̄s +

dF̄

dη

(
1− e−εt̄s

)
. (3.3.15)

At η → η+
HC , all of the following take place:

1. ts(η) → ∞;

2. dF
dη

→ −∞;

3. e−εts(η) dts(η)
dη

= −e−εts(η)
(

σ
η−ηHC

)
→ 0.
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The last property is true, since the exponential function goes much faster to zero than the

rational function goes to infinity. Therefore, dP
dη
→ −∞ as η → η+

HC .

Some additional properties of P (η) are summarized below, which hold when HP is

present:

1. P (η) → h∞(VHC) as η → η+
HC , since, in equation (3.2.9), e−εts(η) → 0 and F (η) →

h∞(VHC) as η → η+
HC ;

2. 0 <
dP

dη
< 1 and P (η) < η both hold, sufficiently far from ηHC (see equation (3.3.4));

3.
dP

dη
< 0 near η = ηHC ;

Property 3 holds true assuming that inequality (3.3.12) is satisfied and using proposition

3.2.2 and the fact that dts
dη

< 0 near HP . If the branch of periodic orbits doesn’t end in

a homoclinic, the condition that
dP

dη
< 0 may not hold and this derivative may not change

signs at all. In figure 12, an example is shown for which a curve of periodics does not end

on a HP . At the SNp, for this example, the period of the stable periodic orbits vary from

approximately from 0.70 to 1.816. In the right panel, the top part of the figure represents the

stable branch of the curve of periodics whereas the bottom branch represents the unstable

branch. The fact that the period does not change much on the stable branch could also be

seen in a frequency versus h plot (figure not shown).

According to our analysis, the loss of stability of η̄(gsyn) takes place only through,

dP̄

dη
= −1 ⇔ dF̄

dη
=

−1− e−εt̄s

(1− e−εt̄s)
(3.3.16)

where the value of the derivative of F with respect to η is negative for any value of η̄.
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Figure 12: Bifurcation diagram for gsyn = 0.47 and gton = 0.025 showing that for these

parameter value we do not end in a homoclinic point as it can be clearly seen in the zoomed

plot on the right panel. In the right panel, the top branch is stable and the bottom branch

is unstable. The period at SNp is approximately 1.816.

3.4 SPIKING VS BURSTING

In this section, conditions for the transition between bursting and spiking will be stated and

some numerical results will show the accuracy of such conditions. The conditions derived

here will hold true for small values of gsyn, since we observe numerically that for sufficiently

large gsyn, the curve of periodics does not necessarily end in a homoclinic point (see figure

12).

Recall that a unique fixed point exists provided that

F (η∗) ≥ η∗ for some η∗ ∈ (ηHC , ηR) (3.4.1)

Suppose that for some given (small) value of gsyn, the cell exhibits tonic spiking. Recall

that, as shown earlier, the derivative of P (η, gsyn) with respect to η goes from positive to
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negative if η is decreased toward ηHC . Then, by the Intermediate Value Theorem [34], there

exists η = η∗(gsyn) ∈ (ηHC , ηR) such that

dP

dη
(η∗(gsyn), gsyn) = 0 (3.4.2)

The transition to bursting will occur if there exists a g∗syn such that the map P (η, gsyn)

falls below ηHC , that is,

P (η∗(g∗syn)) < ηHC (3.4.3)

for some η∗ ∈ (ηHC , ηR).

Finally, we are guaranteed to cross the line given by (3.4.3) if

dP

dgsyn

(η∗(g∗syn), g∗syn) 6= 0 (3.4.4)

We can summarize all this in the following result:

Proposition 3.4.1. Suppose that for some small gsyn ≥ 0 the cell is spiking. Then, the

onset of bursting occurs, as gsyn increases through g∗syn, if the following conditions hold. For

each gsyn ∈ (g∗syn − ξ, g∗syn + ξ) and 0 < ξ ¿ 1, there exists η(gsyn) ∈ (ηHC , ηR) such that

1. dP
dη

(η∗(gsyn), gsyn) = 0;

2. P (η∗(g∗syn)) = ηHC, ;

3. dP
dgsyn

(η∗(g∗syn), g∗syn) < 0.

The conditions on proposition 3.4.1 are also sufficient for the onset of bursting because if

the fixed point of the map is unstable, then bursting exists on some interval [g∗syn, g∗syn + ∆]

for some ∆ > 0 and increasing gsyn. This makes sense due to continuity of the map with

respect to the parameters.

Analysis and numerical results suggest that, for increasing gsyn, if the map has a fixed

point before the transition from spiking to bursting occurs, then it will persist after the

transition as long as the fixed point is not at η∗(g∗syn). But, this cannot happen since

η∗(g∗syn) > ηHC and P (η∗(g∗syn)) = ηHC imply that η∗(g∗syn) > P (η∗(g∗syn)).

Considering all analysis above, P (η) can be described by one of the 4 situations depicted

in figure 13 when the cell is either bursting or spiking.
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The top cartoons represent the case when the cell is either bursting or spiking and the

curve of periodics ends in a homoclinic point. The cartoons at the bottom also represent

bursting and spiking but, this time, when the curve of periodics ends in a saddle node of

periodics, with some pretty small period that P remains monotone increasing. Let SHC ,

BHC , BSNp and SSNp denote, in figure 13, spiking with HP , bursting with HP , bursting

with SNp and spiking with SNp, respectively. For a fixed gton and increasing gsyn, the

transition from one of these regimes to another occurs :

SHC → BHC → BSNp → SSNp

The transition SHC to BHC occurs because increasing gsyn moves the values for which

our cells are active to lower values of η and this brings the map P below ηHC , that is

P (η∗, g∗syn) < ηHC . Continuing to increase gsyn makes the periodic orbits with higher periods

unstable, that is, we lose HP and gain SNp and, in this case, dP
dη

may not change signs at all.

At this point we went from BHC to BSNp , since the map P also goes below ηSNp for some

values of η. Finally, increasing gsyn even further the map P moves above the line P = ηSNp

for all η and, at this point cells are spiking again. Transition directly from SHC to SSNp is

also possible since with increasing gsyn the map stays above the line P = ηSNp but loses HP .

The transition between BHC to BSNp is possible to since the map stays below the identity

line and loses HP .

There are 2 transitions that cannot happen without the cell passing through some in-

termediate transition: BHC → SSNp and SHC → BSNp . The transition BHC → SSNp is not

possible due to the fact that it would have to happen in a nongeneric point for which

lim
η→η+

HC

P (η) = ηHC and
dP

dη
> 0 ∀η > ηHC . (3.4.5)

This is equivalent to lose HP and to move below the line P = ηHC at the same time. Similar

explanation holds true for why the transition from SHC to BSNp cannot occur. The condition

of existence of a HP and SNp used here to help characterize the different regimes, was not

used in [5] to distinguish between different regimes.
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Figure 13: Cartoon showing the four possible forms of the map and related regimes by

varying gsyn with a fixed gton. Here, SHC , BHC , SSNp and BSNp represent, respectively,

spiking with HP , bursting with HP , spiking with SNp and bursting with SNp.
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3.5 SOME NUMERICAL RESULTS

All numerical results shown in this section and throughout this thesis were obtained using a

combination of the XPPAUT [14] and MATLAB [35].

In figure 14, some numerical results for gton = 0.025 and gsyn = 0.10, 0.11, 0.47, 0.48 de-

termining with some accuracy the transition from spiking (SHC) to bursting (BHC)(top) and

the transition from bursting (BSNp) to spiking (SSNp) (bottom). Note that, the conditions

for the onset of bursting for small gsyn are satisfied.
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Figure 14: P (η) for gton = 0.025 (equivalent to gton = 0.70 on the original system), for

a single self-coupled cell. At the top, transition from SHC (gsyn = 0.10) (left) to BHC

(gsyn = 0.11)(right). At the bottom, transition from BSNp (gsyn = 0.47) (left) to SSNp

(gsyn = 0.48) (right). Note that our Proposition 3.2.2 only covers the transition at the top.
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In figure 15, the dynamics of the full system (2.3.1)-(2.3.4)for each one of the cases in

figure 14 is shown illustrating that for each of the values of gsyn the map predicts the behavior

of the full system. Let’s observe some differences between the different solutions obtained

in figure 15. For the 2 bursting solutions (top right and bottom left), it can be seen that

the duration of the burst and frequency are quite different. This is due to the fact that

for gsyn = 0.11 (upper right) we have a fixed point close to the homoclinic and this implies

that it is needed a long excursion to get back to the starting point given that the period is

growing fast near the homoclinic. In the bottom left panel, there is not a fixed point and the

curve of periodics end in SNp. This means that it take less time to move around the orbit.

Similar explanation can be given for the difference between figure on top left and bottom

right. Finally, table 3 shows the values ηHC and the minimum value of the map for the cases

in figure 14. As expected, these values are very close to each other, but they are consistent

with the solutions for the full system.

In figure 16, cobwebbing the maps for gsyn = 0.1 and gsyn = 0.11 shows the dynamics of

the spiking and bursting solutions, respectively, that they represent. For the tonic spiking

solution, starting at η0 one obtains the next point by reflecting the point to the identity line

horizontally and to obtain the next point on the iteration just reflect it vertically until you

intersect the graph of P . Doing this procedure over and over again gives you the iterated

map and the dynamics of the solution over time.

gsyn ηHC P (ηmin)

0.10 0.2680692 0.26819

0.11 0.26588065 0.26579

0.47 0.07978 0.07976

0.48 0.07368 0.073686

Table 3: Values of ηHC computed with AUTO [14] and the lowest value of P (η) indicating

whether a transition to a different regime occurred.
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Figure 15: Full system for all 4 maps plotted in figure 14 showing that the transition from

spiking to bursting and bursting to spiking occurred as the map predicted

.
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Figure 16: Cobwebing of the maps on figure 14 for gton = 0.025 (equivalent to gton = 0.70

on the original system), for a single self-coupled cell and gsyn = 0.1 and gsyn = 0.11. These

results match with what is seen for the transition from spiking to bursting for the full system.

For tonic spiking, the cobwebbing gets trapped by the fixed point meaning that the

solution will stay there forever, oscillating (due to fast subsystem). For bursting, once the

cobwebbing iteration gets close to the minimum value of P (η), it escapes from the curve of

periodics and moves to the branch of stable fixed points and as soon as it gets to the saddle

node point ηSN , the cell jumps to the active phase starting the whole process again. This

cobwebbing solution was implemented in MATLAB [35].

In summary, we derived, in this chapter, a one dimensional map from a four dimensional

system of ordinary differential equations. Using this map, we determined conditions for

the transition from bursting to spiking with a continuous increase of gsyn and numerically

corroborated our predictions. Moreover, we determined what possible forms transitions

between bursting and spiking can take in general.

Using a similar approach, we derive, in the next chapter, a two dimensional map for a

network of two coupled identical cells and determine conditions for the transition between

different regimes, if possible.
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4.0 TWO DIMENSIONAL MAP

Sometimes it is not possible to represent all important characteristics of a particular model

described as a set of ordinary differential equations using a one dimensional map. Instead,

two or higher dimensional maps are required to describe the behavior of the network. Some

two dimensional maps are not derived directly from the system, these maps are rather built

to fit in to a certain set up to describe novel characteristics of a particular system [50, 51].

In this chapter, system (2.3.1)-(2.3.4) with i = j = 1, 2 and j = 3− i, defined in chapter

2 will be reduced to a two dimensional map, building on the same ideas and results from

chapter 3. The analysis of the resulting map is expected to be more difficult than for the

one dimensional map due to coupling and nonlinearities. Using this two dimensional map,

we want to determine, in a compact form, what dynamical regimes are possible and how the

transitions between the different regimes, including those found in [5], occur.

4.1 OBTAINING THE MAP

Let Φ(T ) = (V1(T ), n1(T ), s1(T ), V2(T ), n2(T ), s2(T )) be the solution of fast subsystem

Φ̇(T ) = f where f is the right hand side of equations (2.3.1), (2.3.3) and (2.3.4) with

i = 1, 2. Let Σ ⊂ <6 be a 5-dimensional cross section such that, the intersection of the

V1 nullsurface and the family of periodic orbits takes place at a point on each orbit where

V̇1 = 0. Without loss of generality let’s assume that we are at the minimum of V1, that is,

V1 = V min
1 on Σ. Integrate the system (2.3.1)-(2.3.4) starting at a point Φ0 on Σ at T = 0.

Define c = sign(ṅ2(0)). It was shown in chapter 3 that V̇1 = 0 implies ṅ1 6= 0. Moreover, at
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V1 = V min
1 , ṅ1 < 0. The first return map can be written as

P(η1, η2) =


 P1(η1, η2)

P2(η1, η2)


 =


 h1(Ts(η1, η2))

h2(Ts(η1, η2))


 (4.1.1)

where Ts(η1, η2) is the time of first return to Σ. For simplicity, write Ts = Ts(η1, η2), P1 =

P1(η1, η2) and P2 = P2(η1, η2). The time of flight (return) can be defined as

Ts = min{T > 0 | Φ(T ) ∈ Σ and ṅ1 < 0 and sgn(ṅ2(T )) = c} (4.1.2)

Recall that,





dh1

dT
= ετh(V1) (h∞(V1)− h1)

dh2

dT
= ετh(V2) (h∞(V2)− h2)

(4.1.3)

Using the same strategy as in chapter 3, the two dimensional first return map can be written

as

P(η1, η2) =


 P1

P2


 =


 e−α1(Ts)(η1 − F1) + F1

e−α2(Ts)(η2 − F2) + F2


 (4.1.4)

where η1 = h1(0) and η2 = h2(0) and

τ̄h(Vi) =
1

Ts

∫ Ts

0

τh(Vi(ξ))dξ, αi(Ts) = ετ̄h(Vi)Ts, gi(V1, V2) = εh∞(Vi)τh(Vi)(4.1.5)

Fi = Fi(η1, η2) =

∫ Ts

0
gi(V1, V2)e

αi(T )dT

eαi(Ts) − 1
(4.1.6)

for i = 1, 2. Each of the components Pi(ηi, ηj) of the map P = P(η1, η2) has a similar

structure as the one dimensional map derived in chapter 3 if ηj is fixed, but due to coupling

the analysis of the two dimensional map derived here is harder than for the one dimensional

case. In terms of the dynamics, coupling between the 2 cells, although it is not explicit

in the expressions, will affect the behavior of each component of the map. The functions

Fi = Fi(η1, η2) for i = 1, 2 can also be written in a somewhat simplified form, if we are in

the neighbohood of a homoclinic point for the the 2-cell system, as

Fi ≈ (F 0
i − h∞(V i

HC))(eαi(T
0
s ) − 1)

eαi(Ts) − 1
+ h∞(V i

HC)
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where T 0
s is the first return time to the section Σ, for some fixed η in a region where the rate

of change of period of the oscillations with respect to η1 and η2 is approximately constant,

V i
HC is the value of V1 and V2 evaluated at the homoclinic point and F 0

i = F 0
i (η1, η2) is

defined as

F 0
i =

∫ T 0
s

0
gi(V1, V2)e

αi(T )dT

eαi(T 0
s ) − 1

. (4.1.7)

If there is no homoclinic point for the system, then Fi, for i = 1, 2 will be used as in equation

(4.1.6). In the formulas for P1 and P2, τh was averaged over one oscillation for each fixed

pair (η1, η2), for convenience of notation and in order to simplify the analysis of the map.

Before we start the analysis of the map, let’s take a look at a numerical example, using

equation (4.1.4) for some fixed values of the parameters.

4.2 A NUMERICAL EXAMPLE

Let’s use the formula obtained for the map P in equation (4.1.4) and numerically determine

P1 and P2 for gsyn = 0.107143 and gton = 0.0275 with all other parameters fixed, as in table

2. For these values of the parameters the two cells are bursting. Figure 17 shows trajectories

of the full system on the (h1, h2)-plane and how the slow variables (h1, h2) vary on each burst

after a long enough transient has passed for a given set of initial conditions. Now, let η1 = h1

and η2 = h2. Then , according to figure 17, since the position of η1 will strongly depend

on the position of η2 (and vice-versa), then we can imagine that the components P1 and P2

will also strongly depend on the position of both η1 and η2. In this case, both η1 and η2 are

varying whereas on the one dimensional map P only one control parameter was varying.

In order to determine the form of P1 and P2, let’s do the following. Pick a point (η1, η2)

on the trajectory of the full system (2.3.1)-(2.3.4), say (η1
1, η

1
2) ' (0.2045, 0.2095) (see figure

18(A)). Compute P1(η
1
1, η

1
2) and P2(η

1
1, η

1
2) using (4.1.4). On the (η1, P1) and (η2, P2) planes

plot the points (η1
1, P1(η

1
1, η

1
2)) and (η1

2, P2(η
1
1, η

1
2)), respectively.
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Figure 17: Trajectories of the full system (2.3.1)-(2.3.4) for a bursting solution for gsyn =

0.107143 and gton = 0.0275 on the (h1, h2)-plane. This trajectories were obtained after

eliminating a transient of approximately 8s and the next 500ms of the simulation were

plotted.

Cobweb P1 and P2 at the same time. That is, on the (η1, P1)-plane plot a horizon-

tal line parallel to the η1 axis from (η1
1, P1(η

1
1, η

1
2)) to (P1(η

1
1, η

1
2), P1(η

1
1, η

1
2)). Similarly,

on the (η2, P2)-plane plot a horizontal line parallel to the η2 axis from (η1
2, P2(η

1
1, η

1
2)) to

(P2(η
1
1, η

1
2), P2(η

1
1, η

1
2)). At this time, we moved from point (η1

1, η
1
2) to the point (η2

1, η
2
2) '

(0.2042, 0.2092). Repeat same procedure as for (η1
1, η

1
2) to find P1(η

2
1, η

2
2) and P2(η

2
1, η

2
2). Note

that the values of P1 and P2 on the second iterate depend on the values of P1 and P2 on the

first iterate.

Repeating this procedure over and over again, we found numerically P1 and P2 for the

pairs (η3
1, η

3
2), (η4

1, η
4
2), . . . , (η25

1 , η25
2 ), (η26

1 , η26
2 ), . . . , (η34

1 , η34
2 ) using equation (4.1.4). At

(η34
1 , η34

2 ) the two cells fall to the curve of steady states S and η1 and η2 start increasing until

they reach SN where they jump back to the active phase. From iteration 1 to 25, both, η1

and η2 are decreasing monotonically. But, at iteration 26, we have that (η26
2 , P2(η

26
1 , η26

2 )) is

above the identity line as opposed to (η25
2 , P2(η

25
1 , η25

2 ))(figure 19(C)).
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Figure 18: First two approximations of P1 and P2, computed using equations (4.1.4). Parts

(B) and (D) show a zoom in a very small neighborhood near the computed maps from

figures (A) and (C), respectively. These zooms show that decreasing either η1 or η2 the

corresponding map moves upward.
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Figure 19: (A)-(B) Curves P1(η1, η
25
2 ) and P1(η1, η

26
2 ) are still below the identity line. (C)

Curves P2(η
25
1 , η2) and P2(η

26
1 , η2) showing that P2(η

26
1 , η2) is now above the identity line and

the next iteration of the map has to move to larger values of η2.

This means that the following iterations of P2 will have to be performed upward as

opposed to what we were doing so far. As for P1, it remains below the identity line for all

iterates. (see figure 19(A)-(B)). Before we go any further let’s note a few things.

If we fix η1 = η1
1 then P2(η

1
1, η2) is a one dimensional map in η2. By continuity of the

parameters involved on the system of differential equations, the graph of P2(η
1
1, η2) passes

through (η1
2, P2(η

1
1, η

1
2)). Similarly, for fixed η2 = η1

2 plot P1(η1, η
1
2) for variable η1 passing

through (η1
1, P1(η

1
1, η

1
2)). In general, for fixed ηi = ηj

i for i = 1, 2, we plotted the curves (one

dimensional maps) P1(η1, η
j
2) and P2(η

j
1, η2) for j ∈ {1, 2, . . . , 34}.

In figure 18(D), note that P2(η
2
1, η2) is slightly shifted upward with respect to P2(η

1
1, η2).
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Also, figure in 18(B) P1(η1, η
2
2) is also slightly shifted upward with respect to P1(η1, η

2
2). So,

the first two iterates (points) of the maps P1 and P2 belong to two different curves. In this

numerical example, for each j ∈ {1, 2, . . . , 34} the curve P1(η1, η
j+1
2 ) was shifted upward with

respect to P1(η1, η
j
2) for fixed η2 for j ≤ 25. For j > 25, the curve of P1 moves downward

due to the fact that at this point η2 started increasing. The curve P2(η
j+1
1 , η2) was shifted

upward with respect to P2(η
j
1, η2) for fixed η1 for all j.

Let’s look at P2(η
1
1, η2) and P2(η

2
1, η2) on the (η2, P2) plane. Since P2(η

1
1, η2) < P2(η

2
1, η2)

for all η2 and η1
1 > η2

1 then, for this particular example, dP2(η1,η2)
dη1

< 0. Similarly, dP1(η1,η2)
dη2

< 0.

In fact, computations of the map show that, for this particular example, dP2(η1,η2)
dη1

< 0 for

every fixed η2 and dP1(η1,η2)
dη2

< 0 for every fixed η1.

Back to the sequence of points we got before. Connecting, on the (η1, P1) and (η2, P2)

planes, the values of the maps P1 and P2 at each (ηj
1, η

j
2), j = 1, 2, . . . , 34, by using linear

interpolation between each two consecutive points, we form two one dimensional maps.

The curve obtained by linear interpolating (ηi
1, P1(η

i
1, η

i
2)) and (ηi+1

1 , P1(η
i+1
1 , ηi+1

2 )), i =

1, 2, . . . , 33 will be called the iterated map Γ1 = Γ1(η1). In an analogous way, we obtain the

iterated map Γ2 = Γ2(η2). These two maps together form a two dimensional map which

will be denoted by Γ. We can also define Ψ1 = Ψ1(η1) and Ψ2 = Ψ2(η2) as the linear

interpolation of the points (ηi
1, F1(η

i
1, η

i
2)) with (ηi+1

1 , F1(η
i+1
1 , ηi+1

2 )) and (ηi
1, F2(η

i
1, η

i
2)) with

(ηi+1
1 , F2(η

i+1
1 , ηi+1

2 )), i = 1, 2, . . . , 34.

Since in our numerical example it is hard to see the whole iterative procedure, we show

in a cartoon figure (figure 20) how this iterated process work throughout the computation of

the map and how at the end we obtain one of the components of the iterated map Γ. Note

that, although in our numerical example the one dimensional curves computed for fixed

values of ηj were linear, for some choices of ηi for some ηj fixed the one dimensional curves

could be qualitatively similar, for example, to figure 16.

A plot of the iterated maps Γ1 and Γ2 for gsyn = 0.107143 and gton = 0.0275 generated

numerically is shown in figure 21. These maps can vary slightly depending on the initial

conditions. In this example, a sufficiently long transient passed before the components of

the iterated maps were computed.
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Figure 20: Dynamic cobwebbing to generate an iterated map

.
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In light of these numerical results, let us define lower branch, upper branch, branch point

and a true fixed point for the iterated maps Γ1 and Γ2.

Definition 4.2.1 (Lower branch, Upper branch). Suppose, without loss of generality that

the iterated map Γ1, on the (η1, Γ1) plane, has a portion of its graph below the identity line

and a portion which is above the identity line. Then, we shall refer to the portion of the

iterated map below the identity line as the lower branch of the iterated map and denote it

by LB and, the portion of the map above the identity line as the upper branch and denote

it by UB. Similar definition holds true for Γ2.
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η
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Γ
2

Γ
2
 = η
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Figure 21: Numerical computation of the iterated maps Γ1 and Γ2, for gsyn = 0.107143 and

gton = 0.0275

.

Definition 4.2.2 (branch point, fixed point). For a fixed set of parameters, a point (η∗1, η
∗
2)

is a branch point of either Γ1 or Γ2 if at (η∗1, η
∗
2) either Γ1 = η∗1 or Γ2 = η∗2, but not both.

If at (η∗1, η
∗
2) both Γ1 = η∗1 and Γ2 = η∗2 hold true, then (η∗1, η

∗
2) will be called a fixed point

of the iterated map Γ.
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If a branch point exists, it connects the lower and upper branches of the corresponding

iterated map Γ1 or Γ2. A fixed point of the iterated map Γ corresponds to a fixed point of

the full original system (2.3.1)-(2.3.4).

In figure 22, a cartoon gives a more complete description of other possible shapes that

the iterated maps for Γ1 and Γ2 can have, besides the 2 depicted in the above numerical

example. In this figure, only shown the final iterated maps without the intermediate steps

are shown.

As mentioned before, the cobwebbing process is finished either when a stable fixed point

is reached (in case the cells are spiking , figure 22(C)-(E)) or until it exits the oscillatory

region (in case the cells are bursting, figure 22(A)-(B)).

In the cartoons corresponding to bursting solution there is a reinjection point ηre which

can vary depending on η1 and η2. The reinjection point is obtained as follows. For the one

dimensional map, we know that if the cell is in a bursting regime then at some finite number

of iterations the cell will fall below the line P (η) = ηHC or P (η) = ηSNp , where HC and

SNp correspond to the homoclinic or the saddle node of periodics. SO, the cell jumps down

to the lower branch of the curve S and it gets back to the active phase through the saddle

node point ηSN .

In the two dimensional case, for each fixed ηj, there exists a η∗i , which corresponds to a

bifurcation on the fast subsystem, such that the graph Pi(ηi, ηj) in the next iterate will fall

into the silent phase. For each ηj, η∗1 maybe different, since η1 and η2 are moving at the same

time. Suppose now that for a given ηj, the next value of Pi(ηi, ηj) falls below η∗i . Then, there

are two possible situations to consider. One in which the two cells fall into the silent phase

exactly at the same time. So, both cells will fall below the line Pi = η∗i and reinject, as in

the one dimensional case, at (ηSN
1 , ηSN

2 ), which maybe a curve, since this reinjection point

depends on ηj. The second possibility refers to the case when only one cell falls down to the

silent phase. The sudden fall of one of the cells to the silent phase may have two different

effects on the other cell. Either, fast threshold modulation causes the cell to fall into the

silent phase on the next iteration and reinject to the active phase again as in the previous

case, or while one of the cells is in the silent phase the other cell hangs on the active phase

for a while.
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Figure 22: Five possible scenarios of cobwebbing for Γ1 and Γ2.
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The latter case has a more complicated dynamics and it is not going to be dealt with in

this work.

Finally, consider figure 8 and equations (4.1.4). In figure 8 for a pair (h1, h2) to the

right of each of the averaged nullcline, numerical evidence shows that ḣi < 0 for i = 1, 2, to

the left of both nullclines, ḣi > 0 for i = 1, 2 and for (h1, h2) in between the nullclines, the

derivatives of the hi with respect to time have opposite signs. This suggests, together with

our numerical example, that ∂Pi

∂ηj
< 0 i, j = 1, 2 for all pairs (η1, η2) near entry into the active

phase. From the equations (4.1.4) not much can be concluded given that we do not know

exactly how each of the functions involved in the formulas are behaving.

In summary, for a pair (η1, η2) where both η1 and η2 decrease we have initially ∂Pi

∂ηj
< 0;

if a branch point occurs, then for the corresponding map with branch point ηi increases and

∂Pi

∂ηj
may or may not change signs.

Among some questions that remain to be answered is: What are conditions that allow

a switch from iterating on the LB to iterating on UB for the iterated map? This question

will be addressed next.

4.2.1 Condition(s) to switch from lower branch (LB) to the upper branch (UB)

of either Γ1 or Γ2

Before addressing the condition for changing branches, let’s define a few important things.

Definition 4.2.3 (Existence of nullclines). Let

Ni(h1, h2) =
1

T (h1, h2)

∫ T (h1,h2)

0

g(Vi(h1, h2, t), hi)dt i = 1, 2 (4.2.1)

where g(Vi(h1, h2, t), hi) = ετh(Vi(h1, h2, t))[h∞(Vi(h1, h2, t) − hi)] for i = 1, 2 is the right

hand side of (3.2.1). Let H1 = [hmin
1 , hmax

1 ] and H2 = [hmin
2 , hmax

2 ] where hmin
i hmax

i are the

minimum and maximum value of hi, i=1, 2 on the active phase. Then, for i = 1 or i = 2

the hi averaged nullclines exist if there exist h̃1 ∈ H1 and h̃2 ∈ H2 such that

Ni(h̃1, h̃2) = 0. (4.2.2)

56



Numerically we know that the h1 and h2 averaged nullclines exist in some parameter

regimes (except in SB) [5]. Numerics also show that we cannot write the averaged nullclines

as a function of either h1 or h2. Numerically, it seems that close to the identity line the

nullclines could be written as functions. Thus assuming that trajectories of the full system

(2.3.1)-(2.3.4) cross the nullclines close to the identity line we will assume that we can write

the nullclines locally hn
2 (h1) and hn

1 (h2), there.

Let ht
2(h1) denote the trajectory of the full system (2.3.1)-(2.3.4) near the nullcline. A

condition for going from the lower branch to the upper branch is crossing the averaged

nullcline, since at this point the h2 or h1 change directions. In terms of the map, with

η1 = h1 and η2 = h2,

P i+1
2 (ηi+1

1 , P i
2(η

i
1, η

i
2)) > P i

2(η
i
1, η

i
2) for some i ∈ ℵ. (4.2.3)

This means that for a give i ∈ ℵ the next iteration of the map will be performed above

the identity line (figure 23).
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Figure 23: Cartoon showing the transition from the lower to the upper branch of the iterated

map.
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4.3 POSSIBLE OUTCOMES FOR THE ITERATED MAPS Γ1 AND Γ2 AND

SOME NUMERICAL RESULTS

Suppose that the averaged nullclines exist. The numerical example together with the dy-

namics of the the system (2.3.1)-(2.3.4) depicted in the regions defined in the (gsyn, gton)

parameter space by [5] suggest several possible outcomes for the shape that each of the

iterated maps can take for a given set of parameters, if our network is either bursting or

spiking.

The partition of the parameter space determined in [5] allows one to take a representative

of each region and infer properties of the map in this region based upon the properties that the

map will have for this particular value of (gsyn, gton). One also can use this map to determine

conditions for the transition between two given regimes based upon the configuration of the

iterated map. Finally, one can relate the corresponding iterated map to what is observed for

the full system (2.3.1)-(2.3.4).

Assume that in the region of activity of the cells include values of η1 = h1 and η2 = h2

such that η1 ∈ [ηmin
1 , ηmax

1 ] and η2 ∈ [ηmin
2 , ηmax

2 ], where max and min indicate, respectively,

the maximum and minimum values for each of the ηi on the active phase. As it is known

from [5], the max and min for η1 and η2 are related and they will depend upon the level of

tonic and synaptic inputs given to both cells. Except for the parameter values in region AB,

all other choices of parameters were made based on figure 8 from Best et al [5]. These choices

were made to compare our results to what was observed in their work. For all numerical

simulations shown below, the network was initialized with non-identical initial conditions.

4.3.1 Possible mechanisms for the transition between regimes

In this section, we would like to give a description of possible forms the iterated map can

take. Here we will assume an initial shape for the iterated map and using this initial state

we will give (derive) possible forms that the iterated maps can take and conditions for the

transition between different maps in a compact way. These conditions will be later related

to the four regions described in [5].
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For all the cases discussed below, we consider that when one cells jumps to the active

phase or goes to the silent phase, the other cell also will do it right away.

Assume that for a given pair (gsyn, gton), close to the boundary with the quiescence region,

the two iterated maps look like the iterated maps in figure 24. According to these pictures,

the cells are bursting given that there is no fixed point of the iterated maps and, therefore,

the two cells have to fall into the lower branch of the critical manifold and reinject back to

the active phase to a larger value of ηj.
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Figure 24: Cartoons describing possible representatives of a region where both iterated maps

do not have true fixed points or branch points. Here (ηmin
1 , ηmin

2 ) are the minimum values of

η1 and η2, respectively, for which the two cells are still in the active phase. Also, (ηre
1 , ηre

2 )

are the η1 and η2 values for which the two cells are reinjected back to the active phase after

a period of recovery.

Proposition 4.3.1. If there exists a pair (η∗1, η
∗
2) such that (P1(η

∗
1, η

∗
2), P2(η

∗
1, η

∗
2)) = (η∗1, η

∗
2)

and this fixed point is stable, then Γ1(η
∗
1) = η∗1 and Γ2(η

∗
2) = η∗2.

Proposition 4.3.2. If (Γ1, Γ2) is the iterated map generated by P = (P1(η1, η2), P2(η1, η2))

with initial condition (η0
1, η

0
2) and there exists η∗1, not a branch point, such that Γ1(η

∗
1) = η∗1,

then there exists η∗2 such that Γ2(η
∗
2) = η∗2 and such that (η∗1, η

∗
2) is a stable fixed point of P.
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Making use of these propositions, let’s determine possible forms that the iterated maps

can take if we increase gton.
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Figure 25: Possible outcome for iterated maps in figure 24, if the iterated maps remain linear

for increasing gton.

Assuming that both iterated maps remain linear for all the time when inside the active

region then, the only possible qualitative change of the map is the presence of a fixed point

(figure 25). In this case, both iterated maps get trapped into a stable fixed point and stay

there and the cells are spiking. This is similar to what is seen for region SS in [5].

Another possibility is to have one of the iterated maps, say Γ2 in figure 24, to stay linear

and below the identity line and the other map Γ1 to cross the identity line in a nonlinear

fashion. Then, before the map reaches the point where Γ1 = η1, the values of the iterated

map are decreasing given that ∂P1

∂η2
< 0 for all η2. As soon as we cross the identity line,

we have the iterated map increasing with η2 decreasing. In this case, the two dimensional

iterated map still does not have a fixed point and the cells must leave the region of activity

as before. The cells are still bursting but there is a qualitative change in the type of the

bursting seen. This setup is similar to the description of region AB in [5] and it is shown in

figure 26. Also, if the two iterated maps have the same form as Γ1 in figure 26, then we are

still in region AB (figure 27).
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Figure 26: Possible outcome for Γ1 and Γ2 with the presence of at least one of the maps with

a branch point.
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Figure 27: Possible outcome for Γ1 and Γ2 with the presence of at least one of the maps with

a branch point.
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With increasing gton, a qualitative change in the form of the iterated maps in figure 26

would be the presence of a fixed point(figure 28). In this setup the fixed point is stable and

as soon as the iterates reach the fixed point they will stay trapped in there. This situation is

equivalent to region AS described in [5]. Similar explanation holds true when determining

a possible form for the iterated maps in figure 27. That is, the two iterated maps will have

a branch point and a fixed point and the cells are also spiking.
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Figure 28: Transition from figure 26.

Finally, increasing gton even further can make the branch point and fixed point in figures

28 and 29 to come together and the map will qualitatively similar to figure 25. In this case,

the two cells will still be spiking but this time the cells will go directly to the fixed point

instead of crossing the identity at distinct times and then going to the fixed point. This case

represents the transition from region AS to SS.

We claim that the forms of the map discussed above are the only possible forms that the

map can assume and they well described the possible scenarios for the transition between

different regimes.
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Figure 29: Transition from figure 27.

Below, we show one numerical example along with cartoon representation for the iterated

map in each of the four regions described in [5] and how above description fits what has been

observed before.

4.3.2 Region SB

In this region, trajectories of the full system (2.3.1)-(2.3.4) on the (h1, h2) plane will os-

cillate symmetrically around the identity line until the cells leave the oscillatory region O.

Trajectories never cross the averaged nullcines inside O since they are outside O. Thus, it is

expected that the iterated maps Γ1 and Γ2 do not have fixed points or branch points, that

is, Γ1(η1, η2) 6= η1 and Γ2(η1, η2) 6= η2 for all pairs (η1, η2) in O.

Proposition 4.3.3. Consider intervals (η1
0, η

1
R) and (η2

0, η
2
R) for η1

0 ≥ η1
L and η2

0 ≥ η2
L where

ηi
R and ηi

L i = 1, 2 are the maximum and minimum values of ηi in the active phase. Then,

if there exists η1 and η2 such that η2 = η1 + O(ε) with ε positive and small, then

Γ1 = Γ2 + O(ε) (4.3.1)
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Proof. Taylor expanding the exponential e−α1(Ts) up to O(ε2) and some simple algebra on

Γ1(η1, η2) = e−α1(Ts)(η1 −Ψ1) + Ψ1 (4.3.2)

yields

Γ1(η1, η2) ≈ (1− α1(Ts))η1 + O(ε2) = η1 −O(ε). (4.3.3)

where α1(Ts), defined as in equation (4.1.5), is a O(ε) term. A similar argument produces

Γ2(η1, η2) ≈ (1− α2(Ts))η2 + O(ε2) = η2 −O(ε) (4.3.4)

But, using the assumption η1 = η2 + O(ε), then equation (4.3.1) is obtained.

If the above hold true one can also conclude that Γ1 < η1 and Γ2 < η2 for all η1 and η2,

since α1(Ts) and α2(Ts) are both positive. In figure 30 (top), a cartoon shows how typical

iterated maps in this region appear. For comparison, a numerical plot of the iterated maps

Γ1 and Γ2 are shown in the same figure in the bottom panels. In the numerical examples,

gsyn = 0.107143 and gton = 0.02036 were used to obtain the given iterated maps. As one can

see, the numerical results and the predictions are a very good match.

4.3.3 Region AB

In this parameter region, the averaged nullclines are inside the oscillatory region. Trajectories

of the full system (2.3.1)-(2.3.4) on the (h1, h2) space after some transient will follow the

identity line and after some time will cross one of the averaged nullclines, but may not

necessarily cross both. After an averaged nullcline is crossed then there will be a change in

drifting direction for either h1 or h2. Unless trajectories hit a fixed point of the system, the

averaged nullclines will be crossed at distinct times. After leaving O, trajectories follow the

lower branch of the curve of steady states S, for increasing h1 and h2, until SN is reached.

At this point the 2 cells jump back to the active phase. As a final note, it is known from

[5] that the averaged nullclines cross each other on the identity line, but since the resulting

fixed point is unstable it will be reached only for very special initial conditions. This case

with be discussed later.
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Figure 30: top - Cartoons describing possible representatives of a region where both iterated

maps do not have true fixed points or branch points. bottom - Figures show numerically

compute iterated maps for the gsyn = 0.107143 and gton = 0.02036 for all other parameters

fixed. These values of gsyn and gton correspond to gsyn = 3 and gton = 0.57 in [5] (see figure

21).
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So, in this region we expect that at least one of the iterated maps will have a branch

point, due to the change in drift direction after the nullcline is crossed. Therefore, one or

both iterated maps will deviate from linear near the branch point. Since trajectories initially

remain approximately close to the identity line, then the iterated map is expected to have

also a region where it behaves linearly.

In figure 31, cartoons show what we expect as some possible forms of the iterated maps

in this region. Roles of Γ1 and Γ2 may be reversed, depending on initial conditions.

In figure 21 (shown in section 4.2), numerically generated iterated maps Γ1 and Γ2 are

shown for gsyn = 0.107143 and gton = 0.0275. These results are as expected for iterated

maps in this region.

4.3.4 Region AS

In region AS, trajectories of the full system (2.3.1)-(2.3.4) move toward two stable (h1 6= h2)

and one unstable fixed point (h1 = h2) on the (h1, h2) space inside the oscillatory region for

the averaged nullclines. Starting with initial conditions close to the identity line, trajectories

will cross the h1 or h2 nullclines and will go to the stable fixed points [5]. Depending if we

start above or below the identity line, the solution of the full system will go to one or the

other stable fixed point. Starting with initial conditions such that h2 > h1, trajectories of

the full system will go to the fixed point above the identity line whereas initial conditions

such that h1 < h2 will take trajectories to the fixed point below the identity line.

In terms of iterated maps, at least one of the iterated maps Γ1 or Γ2 will have a branch

point, and both will have a stable fixed point. For the iterated map with both a branch

point and true fixed point, one expects that the map would go through the branch point and

move on until it gets stuck in a small neighborhood of the fixed point. If one of the iterated

map has only a fixed point then, iterates of the map will close in the true fixed point and

stay there. Figures 26 and 27 show possible shapes for the iterated maps.
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Figure 31: Each row represents a possible outcome for Γ1 and Γ2 with the presence of at

least one of the maps with a branch point.
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Figure 32 show numerical results for the iterated maps corresponding to gsyn = 0.107143

and gton = 0.03107. The top 2 pictures show Γ1 versus η1. The top left figure shows how

close the iterated map is from the identity line and on each iterate we get closer and closer

to the fixed point, according to the zooming on the right panel. The bottom 2 figures show

Γ2 versus η2. This map was expected to have a fixed point and a branch point. It has a

branch point and after 200 iterates of the map it seems to get closer and closer to the fixed

point. A closer look into the branch point region reveals that the iterates seem to be very

close to the identity line. We cannot reach the fixed point due to the fact that the averaged

nullclines are very close to each other and the iterates of the map somehow go back and

forth, crossing the 2 nullclines simultaneously (figure 32(bottom)). Although we do not have

exactly the form we expected, qualitatively figure 32 is similar to what is expected. That is,

the iterated map Γ1 is tending to a fixed value of η1 whereas Γ2 has a branch point and it is

tending to a fixed point.

This behavior is expected due to the fact that trajectories of the full system, stay lose

to the fixed point but do not necessarily reach it.

4.3.5 Region SS

In this region, the averaged nullclines intersect exactly once inside the oscillatory region, on

the h1 = h2 line, and the fixed point is stable. The 2 other fixed points collapsed into the

previously unstable fixed point to give rise to a stable fixed point. Trajectories of the full

system (2.3.1)-(2.3.4), after some transient has passed, will wiggle around the identity line

and will converge to this stable fixed point. As for the iterated map, we expect them to have

only true fixed points. No branch points are expected for the iterated maps in this region.

Figure 33(top) shows cartoon for typical representatives of iterated maps in this region.

Figure 33(bottom), shows iterated maps obtained numerically for gsyn = 0.107143 and

gton = 0.0325). It can be seen that both iterated maps go to their fixed points and stay

there. A closer look in the region close to the tip of the map indicates that the iterates of

both maps wiggle around the identity line never leaving this region (figures not shown).
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Figure 32: Numerical results for parameters in region AS for gsyn = 0.107143 and gton =

0.03107.
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Figure 33: top - Typical iterated maps for region SS; bottom- Numerical example show how

close the solutions of the numerically iterated maps and our predictions are.
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This behavior could be expected due to that after a transient trajectories of the full

system (2.3.1)-(2.3.4) wiggle around the fixed point never actually reaching it exactly.

An important question to be answered at this point is: what are the mechanisms for the

transition between the different regions described above?

In the iterated maps, going from AB to AS implies the appearance of a true fixed point,

with at least one of the iterated maps having a branch point.

Finally, the transition from AS to SS, for the original system takes place when the three

fixed points of the averaged nullclines collapse into a single stable fixed point located on the

identity line. In terms of the iterated map, the transition from AS to SS will occur when

the branch point and the true fixed point collapse together to give rise to a single true fixed

point for the iterated map Γ.

As remark, it seems reasonable to assume that adding heterogeneity to the full system

will likely change the structure of the iterated maps, and the resulting iterated map will likely

be some combination of the 4 cases mentioned above. It is also likely that initial conditions

will play an important role in determining the different regimes the network may enter.

4.4 SYNCHRONOUS SOLUTIONS

When full system (2.3.1)-(2.3.4) is simulated with the two cells at different initial conditions

for a given set of parameters, the action potentials of the two cells are fired in anti-phase

(AP ), no matter whether the cells are spiking or bursting. Now, suppose the two cells

start with exactly the same initial conditions,that is, at T = 0, V1 = V2, n1 = n2, s1 = s2

and h1 = h2. Then, for all T > 0, V1(T ) = V2(T ), n1(T ) = n2(T ), s1(T ) = s2(T ) and

h1(T ) = h2(T ). This solution matches the solution for the self coupled single cell case. In

this case, the 2 cells are said to be synchronized or that the given solution is synchronous

or in-phase (IP ). But, in terms of stability analysis, the stability of the fixed point for the

one dimensional map P requires only to determine dP
dη

. However, in order to determine the

stability of the fixed point for the IP solution for the two cell network, it is necessary to

compute the eigenvalues of the Jacobian matrix of the two dimensional map about the fixed
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point.

In region SS there are two possible solutions: nonidentical initial conditions take tra-

jectories of the full system to the stable fixed point p0. Identical initial conditions take

trajectories of the full system to the the fixed point of the self coupled single cell case, and

the two cells are firing action potentials exactly at the same time.

An example of the difference between the IP and AP solutions, in region SS is shown

in figure 34 (left panel), after some transient has been eliminated for gsyn = 0.107143 and

gton = 0.0325. In this figure, the full system of equations were simulated to give rise to both

solutions with slightly different initial conditions. Here, Vs represents the voltage for the

IP solution and V a
1 and V a

2 represent the voltages for cells 1 and 2, respectively for the AP

solution. Note how different these solutions are from each other. In figure 34 (right panel),

it is shown how the corresponding dynamics of the hi’s are also different. This difference in

the hi’s is due to coupling effects which tend to push the dynamics of the cell(s) to lower

values of h in the 2 cell case [5].

As shown in figure 9 (chapter 2), the IP and AP solutions are close to each other for

gsyn = 0.107143 and gton = 0.0325. With a perturbation of 10−5, the AP solution barely

changes whereas the IP solution may significantly differ from the unperturbed state (figure

not shown).

For gsyn = 0.107143 and gton = 0.0325, with non-identical initial conditions, the (stable)

fixed point of the system for the 2 cell case takes place for h1 and h2 approximately 0.1415.

However, starting the 2 cells with identical initial conditions one finds that the (unstable)

fixed point is h1 = h2 ≈ 0.1662, which matches exactly the fixed point for the self coupled

case [5]. For any initial condition, the system is spiking.

As a remark, not always the IP and AP solutions correspond to the same type of solution

on a given region. For gsyn = 0.2857 and gton = 0.02857, the synchronous solution corre-

sponds to bursting whereas the asynchronous solution corresponds to spiking, as expected

(pictures and results not shown).

In table 4, it is shown the location of the fixed points for the one and two dimensional

iterated maps for gton = 0.0275, 0.03107, 0.0325 and gsyn = 0.107143. For all these values of

gton, the full system (2.3.1)-(2.3.4)is spiking.
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Figure 34: Comparison between solutions for the single self coupled case and two coupled

cell case for gsyn = 0.107143 and gton = 0.0325. In the top left Vs, V a
1 and V a

2 correspond

respectively to the solution for the self coupled single cell case and the voltages of the

asynchronous solution. At the bottom hs, ha
1 and ha

2 represent, respectively the gating

variables for the self coupled single cell case and the gating variables for the asynchronous

solution.

gton h∗ h∗ = (h∗1, h
∗
2)

0.0325 0.16629 (0.16622, 0.16622)

0.03107 0.18328 (0.18325,018325)

0.0275 0.23042 (0.23042,0.23042)

Table 4: Fixed points for the one and two dimensional maps for gsyn = 3 and several values

of gton. These values of gton are representative of the regions (from top to bottom): SS,

AS and AB . The fixed points for the two dimensional map were obtained by starting with

identical initial conditions for the two cells, that is, V1 = V2, n1 = n2, s1 = s2 and h1 = h2.
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Due to some numerical error, the values of the fixed points do not match exactly with

differences arising on the fifth decimal place.

4.5 STABILITY ANALYSIS OF THE FIXED POINTS OF THE 2D MAP

A fixed point (η̄1, η̄2)for the 2D iterated map exists if

P(η̄1, η̄2) =


 η̄1

η̄2


 ⇐⇒ F(η̄1, η̄2) =


 η̄1

η̄2


 . (4.5.1)

Uniqueness of (η̄1, η̄2) will depend on whether the iterated functions F1 and F2 are mono-

tone. So far, numerical results do not seem to show that monotonicity of F1 and F2 is the

case, as a general rule (figures not shown).

4.5.1 Some preliminaries

Let (η̄1, η̄2) be a fixed point of the iterated map. Then, there are 2 cases to be analyzed:

η̄1 = η̄2 and η̄1 6= η̄2. The case η̄1 = η̄2 can be further divided in to 2 subcases: the 2 cells

can be IP or AP .

In general, for a system of ordinary differential equations, a fixed point is stable if small

perturbations in the neighborhood of the fixed point results in returning to the fixed point

again. Otherwise, the fixed point is unstable. For a two dimensional map, a fixed point is

stable if |λ1| < 1 and |λ2| < 1, unstable if |λ1| > 1 or |λ2| > 1 (see [27], p.16), where λ1 and

λ2 are the eigenvalues of the linearized system about the fixed point. For the synchronous

solutions, we conjecture that the eigenvalues will be such that |λ1| < 1 and |λ2| > 1, since

the IP solution relates to the single self coupled case and the fixed point there is stable

meaning that in at least one of the directions the fixed point should be attracting. For the

asynchronous solution, stability of the fixed point will depend on the particular regime and

the parameter set.
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4.5.2 Jacobian matrix and eigenvalues

Suppose that for some fixed value of gsyn, the fixed point (η̄1, η̄2) exists. Let ¯ denote the

evaluation of a given function at (η̄1, η̄2).

In order to determine stability of the fixed point, we linearize about (η̄1, η̄2) and com-

pute the eigenvalues of the Jacobian matrix. The Jacobian matrix for P1, P2, denoted by

DP (η1, η2), is given by:

DP (η1, η2) =




∂F1

∂η1

∂F1

∂η2

∂F2

∂η1

∂F2

∂η2


 +


 e−α1(Ts)

(
1− ∂F1

∂η1

)
e−α1(Ts)

(
−∂F1

∂η2

)

e−α2(Ts)
(
−∂F2

∂η1

)
e−α2(Ts)

(
1− ∂F2

∂η2

)



+




∂e−α1(Ts)

∂η1
(η1 − F1)

∂e−α1(Ts)

∂η2
(η1 − F1)

∂e−α2(Ts)

∂η1
(η2 − F2)

∂e−α2(Ts)

∂η2
(η2 − F2)


 . (4.5.2)

The eigenvalues of the linearized system are obtained by solving for λ, the following

determinant

det(DP̄ − λI) = 0 (4.5.3)

where I is a 2× 2 identity matrix.

4.5.2.1 Case 1 : η̄1 = η̄2 At (η̄1, η̄2), assume that ∂F̄1

∂η1
= ∂F̄2

∂η2
and ∂F̄1

∂η2
= ∂F̄2

∂η1
and

ᾱ1(Ts) = ᾱ2(Ts)( since at (η̄1, η̄2), V1 = V2). These assumptions only hold true for the fixed

points of the iterated maps corresponding to synchronous solutions.

Let a = ∂F̄1

∂η1
, b = ∂F̄1

∂η2
, c = (1− a)e−ᾱ1(Ts) and d = −be−ᾱ1(Ts). Then, the Jacobian matrix

in (4.5.2) can be written as

DP =


 a + c b + d

b + d a + c


 . (4.5.4)

The eigenvalues for DP are given by:

λ1 = (a + b)(1− e−ᾱ1(Ts)) + e−ᾱ1(Ts) (4.5.5)

λ2 = (a− b)(1− e−ᾱ1(Ts)) + e−ᾱ1(Ts) (4.5.6)
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with corresponding eigenvectors,

u =


 1

1


 and v =


 1

−1




Notice that u and v are orthogonal to each other.

Considering the similarities of the solutions for the self coupled single cell case and the

synchronous solution, it is easy to believe that the eigenvalues λ1 and λ2 must related to dP
dη

in some way. To compute the rate of change of P with respect to η, η is varied horizontally.

In the 2 cell case, this is equivalent of moving along the diagonal, that is, whenever η1 varies,

η2 varies by the same amount and in order to compute the stability of the fixed point we

must take in to account changes in η1 and η2 when the other parameter is fixed.

4.5.2.2 Case 2 : η̄1 6= η̄2 and η̄1 = η̄2 (asynchronous solution) In this case, no

simplification to the Jacobian matrix can be made, except for the fact that at the fixed point

η̄i = F̄i i = 1, 2. Let a = ∂F̄1

∂η1
, b = ∂F̄1

∂η2
, c = ∂F̄2

∂η1
and d = ∂F̄2

∂η2
. Then,

DP =


 a + e−ᾱ1(Ts) (1− a) b

(
1− e−ᾱ1(Ts)

)

c
(
1− e−ᾱ2(Ts)

)
d + e−ᾱ2(Ts)(1− d)


 (4.5.7)

The eigenvalues in absolute value are:

|λ1| = |γ + aψ1 + dψ2 + β(ad + cd)|
|λ2| = |γ + aψ1 + dψ2 + β(ad− cd)|

where γ = e−ᾱ1(Ts)e−ᾱ2(Ts), ψ1 = e−ᾱ2(Ts)β1, ψ2 = e−ᾱ1(Ts)β2 and β = β1β2 with β1 =
(
1− e−ᾱ1(Ts)

)
and β2 =

(
1− e−ᾱ2(Ts)

)
are all positive (and smaller than 1). The magnitude

of λ1 and λ2 is going to depend on the magnitude of the derivatives of the Fi’s with respect

to η1 and η2.
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4.5.3 Numerical computation of eigenvalues

In the previous section, some analytical expressions for λ1 and λ2 were given along with

some predictions and connections with the self coupled single cell case. Now, making use

of numerical differentiation, the eigenvalues corresponding to the synchronous solution will

be numerically computed. The numerical differentiation is needed due to the fact that we

cannot computed closed forms for the quantities a and b, defined above.

In equation (4.5.8), the terms a = ∂F̄1

∂η1
and b = ∂F̄1

∂η2
will be compute using centered

differences according to the following equations:

a =
∂F1

∂η1

=
1

2

F1(η1 + ξ, η2 + ξ) + F1(η1 + ξ, η2 − ξ)− 2(F1(η1 − ξ, η2 + ξ) + F1(η1 − ξ, η2 − ξ))

2ξ

=
1

2

dP

dη
+

F1(η1 + ξ, η2 − ξ)− F1(η1 − ξ, η2 + ξ)

4ξ
(4.5.8)

Similarly,

b =
∂F1

∂η2

=
1

2

dP

dη
+

F1(η1 − ξ, η2 + ξ)− F1(η1 + ξ, η2 − ξ)

4ξ
(4.5.9)

where ξ is a small and positive constant. In our computations we use ξ = 10−5. Also, in the

above equations, dP
dη

corresponds to the eigenvalue of the self coupled single cell case. These

expressions for a and b were computed taking into account that η1 and η2 vary simultaneously.

Using these approximations for a and b plugged into equations (4.5.5) and (4.5.6), the

eigenvalues for gton = 0.0325 and gsyn = 0.107143 corresponding to the fixed point (η̄1, η̄2) =

(0.16622, 0.16622) are given by λ1 = 0.99994 and λ2 = −11.54. For these values of the

parameters a = −2.215e + 03 and b = 2.216e + 03. The eigenvalues computed here match

what we expect for the eigenvalues for the synchronous solution, since the synchronous

solution can be only achieved by means of identical initial conditions.

Other attempts to compute the eigenvalues for gton = 0.0325 and gsyn = 0.107143 to

corroborate what we found above were made. We used forward, backward and centered

differences in various ways but, none of the results matched the values for the eigenvalues

shown here. There are possibly several sources of error in the computation of the eigenvalues.

One of these sources refers to the fact that numerical differentiation in some cases is highly

unstable [3].
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5.0 SIMULATIONS FOR TWO HETEROGENEOUS CELLS

In the previous chapters we analyzed the effects of coupling on networks of one self coupled

single cell and two identical coupled cells using first return maps. In this chapter, we will

study the effect of having gNaP different for the two cells, say gNaP 1 and gNaP 2 . In the two

cell case with the two cells with the same parameters, [5] determined all possible regimes

and transitions on the (gsyn, gton) parameter space. Here for fixed gsyn and δ = 2.8−gNaP 1 =

gNaP 2−2.8 with δ > 0, we will see how the dynamics of the cell changes with (gton, δ) and we

will compare our results to [5]. In this set up, δ measures the level of heterogeneity present

in the network.

In the first two sections, we will revisit some of the concepts we saw earlier in this thesis

and determine the effect of changing gNaP for the self coupled single cell case. In the rest of

the chapter, we will explain the effects of δ on the dynamics of the network.

5.1 BACKGROUND

Suppose we are in the self coupled single cell case and consider figure 35.

Let’s recall a few things from chapter 2. We determine if a cell is quiescent, bursting or

spiking depending on where the intersection of the h nullcline and the curve of fixed points

S is and the position of the curve of periodics. Let’s fix a value of gsyn for which the cell may

undergo all different regimes (quiescence, bursting or spiking) and let χ be the intersection

of the h nullcline and S with lowest value of v.

Case 1: Quiescence - In this case, h nullcline intersects S below lower knee (Lk). That

is, for a sufficiently small gton when h increases on the lower branch of S it converges to a
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Figure 35: Bifurcation diagram for gsyn = 0 and gton = 0.2 [5](Copyright (c)2005 Society

for Industrial and Applied Mathematics. Reprinted with permission. All rights reserved. )

stable fixed point χ. In this case, we are in the quiescent region Q of the parameter space.

Case 2: Bursting - The h nullcline intersects S close to lower knee (Lk), but on the

middle branch, with the curve of periodic still intersecting with the curve S. So, increasing

gton makes the point χ migrate to the middle branch of S. χ loses stability there. From

the neighborhood of the lower branch as h increases until it reaches Lk where it jumps to

an active state. Now, the trajectory oscillates and the values of h drift to the left until the

trajectory reaches an h value where it jumps down to the lower branch of S (hits the end of

P ). If this happens we say that our cell is bursting.

Case 3: Spiking - The h nullcline intersects S close to lower knee (Lk), still on the middle

branch, but in this case the curve of periodics does not intersect S. That is, when gton is big

enough the cell jumps to the active phase and stays there. The net drifting of the cell in h

is very small. The cell is tonically spiking.

For all cases the position of the curve of fixed points S and P vary with gton (see [5]).
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5.2 EFFECTS OF CHANGES IN GNAP ON THE DYNAMICS

5.2.1 Self coupled single cell case

Recall from chapter 2 that changes in gton and gsyn affect the position of the curve of fixed

points S and the curve of periodics P . Fixing all parameters and varying gsyn moves the

curve P to lower values of h whereas the curve S remain practically unaltered; if gton is

varied then both S and P move to lower values values of h [5]. These changes affect the

equilibria of the system, since the intersection of the curve S and the h nullcline determine

the steady states of the system, whereas changes in P affect the range of h values where the

cell is active. In this section, all parameters of the system will be fixed except gNaP in order

to see how changes in this parameter change the dynamics of the cell. Figure 36 shows that

both curves S and P move to lower values of h when gNaP is increased. That is, the range

of h values achieved on the trajectory moves to lower values of h.
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Figure 36: top - Bifurcation diagram corresponding to all parameter values fixed except

gNaP . The reference values for this plot were taken from [6]. Here gsyn = 4 and gton = 0.4.

This figure also appears as figure 3 in chapter 2.
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5.2.2 Coupled Cells

Define δ = 2.8 − gNaP 1 = gNaP 2 − 2.8 be the level of heterogeneity of the network, where

gNaP 1 and gNaP 2 ≥ 0 refers to the values of gNaP for cell 1 and cell 2, respectively and 2.8

is the reference value for gNaP taken from [6]. The definition of δ implies that the maximal

conductance of the persistent sodium will be varied symmetrically from the reference value

2.8 for the two cells at the same time.

Similar to what was done in chapter 3, all the analysis done here includes computing the

averaged nullclines

Ni(h1, h2) =
1

Ts(h1, h2)

∫ Ts(h1,h2)

0

gi(vi)dξ i = 1, 2, (5.2.1)

where gi(vi) ≡ ε (h∞(vi)−hi)
τh(vi)

and Ts(h1, h2) is the period of the fast subsystem periodic orbit

being averaged for each fixed (h1, h2) inside the oscillatory region O.

The goal here is, starting from the 4 regions found in [5], to determine how the dynamic

range of bursting is affected by heterogeneity in gNaP . Based on the configuration of the

nullclines, on whether the averaged nullclines intersect inside O and on the stability of any

resulting fixed points inside the O , we will determine changes in the dynamical behavior for

different gNaP .

In figure 37, the averaged h1 and h2 nullclines are shown for 3 different values of δ,

namely, δ = 0, 0.001, 0.01. Notice in this figure that an increase in δ implies that both

averaged nullclines move to the right and down. The overall effect of increasing δ is to move

the nullclines to larger values of h1 and lower values of h2. Some other tests were performed

and similar results were obtained (not shown here).

Most of the analysis and studies done from now on include only the two cell case, unless

some analogy with the one cell case is needed for comparison purposes.
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Figure 37: Changes in the averaged nullclines h1 and h2 when for three different levels

of heterogeneity, namely, δ = 0(red), δ = 0.001(black) and δ = 0.01(green) and all other

parameters fixed. (A) Changes in h1 averaged nullcline; (B) changes in h2 averaged nullcline.

5.3 CLASSIFYING DYNAMIC REGIMES

In order to possibly determine boundaries for the transition between different regimes similar

to figure 7 in [5], we fixed gsyn and varied gton and δ. This procedure had the intent to check

how changes in these 2 parameters would move the boundaries of the different regimes and

if the appearance of a new regime was possible at all.

In the next three sections, we consider the effect of fixing gsyn and varying gton and δ.

5.3.1 Different regions of bursting and spiking for gsyn = 3

Before proceeding further, let us set up some notation and make some connections to the

homogeneous case. In the homogeneous case, the averaged nullclines can intersect 1 or 3

times in O depending on the value of the parameters. Moreover, a pitchfork bifurcation of
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periodics occurs as the parameter gton is increased, due to the symmetry of the fixed points

on the (h1, h2) plane. In the heterogeneous case, it is possible to have 1, 2 or 3 intersections

of the nullclines inside O , and each possibility will lead to a different behavior. The fixed

points will be defined as follows: f 0
p denotes a fixed point near the line h1 = h2; f 1

p denotes

a fixed point for h1 > h2 and f 2
p denotes a fixed point for h2 > h1. When the three fixed

points are present in O , they correspond, respectively, to p0, qB and qA in the homogeneous

case. Due to effects of heterogeneity the fixed point f 0
p is not anymore at h1 = h2 as was p0,

but it should be close to the symmetry line for small δ.

In figure 38, a cartoon shows a generic result of symmetry breaking applied to a pitchfork

bifurcation when different levels of heterogeneity are applied to this small network for gsyn =

3 and gton as a bifurcation parameter. Next, consider numerical results to assess the details

of the transitions in the heterogeneous case.

AB ASSB SS

BS

gton

h1

homogeneous

heterogenous 

AB AS AS
~

Figure 38: Cartoon representing the pitchfork bifurcation for the cells in the homogeneous

case and another bifurcation diagram showing the break in symmetry when heterogeneity is

introduced. In the picture, gton is the bifurcation parameter and gsyn = 3. Note that the

choice of δ = 2.8− gNaP 1 = gNaP 2 − 2.8 influences the form of this bifurcation diagram. The

regions AB, BS, AS and ÃS are discussed in the text.
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In figure 39, we show numerically how varying gton and δ with gsyn = 3 affected the

dynamics of the 2 cells. In this picture, δ = 0 represents the homogeneous case and gton =

0.856 and gton = 0.898 represent the values for the transition from AB to AS and AS to SS,

respectively. For δ > 0, the transitions between different regimes were determined as follows.

Fixing δ = 0.01, we systematically varied gton from lower to higher values and for various

initial conditions. If 2 consecutive values of gton were giving completely different results on

the (V1, t), (V2, t) and (h1, h2) planes, then the boundary for the transition from one regime

to another was determined. We were not able to determine numerically the precise transition

from SB and AB by direct numerical simulations in this way.
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C
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Figure 39: Different types of bursting and spiking for gsyn = 3. Values for δ = 0 represent the

values for which the transition for one regime to another takes place for a pair of homogeneous

cells. Curve CSN is a curve of saddle node points and C01 indicates that a fixed point enters

the oscillatory region. In this figure (if.p.) indicates the presence of 1, 2or3 fixed points on

a given region.

In figure 40 we show a more complete description of the different regimes we expect to

find for gsyn = 3. This cartoon is based on the numerical results presented on figure 39 and

numerical simulations for various values of gton and δ using XPP/AUTO [14].

Now, let’s describe what each of the regions presented on figures 39 and 40 represent

for increasing gton. Since the notation is the same for both figures, I will describe all the

elements in figure 40. In figure 40, Q represents the values of gton and δ, on the (gton, δ) plane
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Figure 40: Cartoon showing all possible different types of bursting and spiking for gsyn = 3.

This complements the numerical results obtained in figure 39.

so that the two cells are silent. We can see that for δ 6= 0, the boundary of Q (dark blue

curve) moves slightly to the left indicating that the transition from quiescence to bursting

will occur for a lower value of gton as we increase δ, as observed numerically. The appearance

of bursting activity for lower gton is likely to be due more excitation given to one of the cell

with increasing δ, which can also be seen when we increase gNaP in figure 36.

In region SB the cell is bursting. For all initial conditions trajectories of the full system

approach reasonably close to the identity line and deviate from the identity line at the end

of the active phase (figure not shown). In this region, we do not expect to find the average

nullclines inside the oscillatory region. A typical bursting solution on the region SB is shown

in figure 41.

In region AB, trajectories of the full system may approach one of two different solutions

in the (h1, h2) plane. Initial conditions starting on or above the identity line go to a tra-

jectory that stays above the identity line and initial conditions below the identity line yield

trajectories of the full system that stay below the identity line for all time. In this region,

based on perturbation of the homogeneous case, we expect the presence of the averaged

nullclines inside the oscillatory region intersecting at a single (unstable) fixed point near the
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Figure 41: Typical bursting solution for gsyn = 3, gton = 0.50 and δ on region SB.

identity line. Transition from SB and AB is defined by the averaged nullclines entering the

oscillatory region. The type of solution in this region is similar to the region AB described

in [5].

In the following subsections is a description of the other regions.

5.3.1.1 Region B̃S As illustrated in figure 42(A), f 0
p and f 1

p are in O. For any IC, the

system leaves the boundary of the computed oscillatory region through O. If IC are such

that h2 < h1, then trajectories of the full system will exit the boundary Ω as shown in part

(B) of figure 42. For IC with h1 < h2, trajectories of the full system cross Ω at some point

above the line h1 = h2 (figure not shown). In figure 42(B), we show trajectories of the full

system hang around f 1
p inside O . For this initial conditions the cells are transitional from

bursting to spiking. This type of solution we will call bursting with pause, and denote it

by Bp to differentiate from the other types of bursting present in the system. According to

our numerics, it seems that both f 0
p and f 1

p are unstable for these values of the parameters

(figure 42(D)).

86



0.16 0.17 0.18 0.19 0.2
0.16

0.17

0.18

h
1

h
2

(A)

h
2
 nullcline

h
1
 nullcline

f
p
0

f
p
1

Ω
0.17 0.18 0.19 0.2

0.16

0.17

0.18

h
1

h
2

(B)

h
1
 nullcline

h
2
 nullcline

trajectories full system

Ω

0.196 0.198 0.2

0.166

0.168

0.17

h
1

h
2

(C)

2 2.2 2.4 2.6 2.8 3

x 10
4

−40

−20

0

t

V
1

(D)

Figure 42: Example of (h1, h2) averaged dynamics from region B̃S with gton = 0.84 , gsyn = 3

and δ = 0.01. (A) Boundary of oscillatory region Ω with averaged nullclines h1 and h2

showing two fixed points in O . (B) Same as in (A), but with trajectories of the full system

plotted together. (C) Trajectories of the full system after a sufficiently long transient has

passed; (D) Plot of V1 versus time showing a solution which we call a bursting with pause.

This solution is transitional from bursting to spiking.
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The transition from AB to B̃S happens with an unstable fixed point entering O for

h1 > h2 through Ω. For δ big enough some numerical simulations of the full system show

that a transition from SB to B̃S is also possible given that two unstable fixed points can

enter the oscillatory region at the same time. This transition has to be further explored.

5.3.1.2 Region BS In this region, there are 2 fixed points inside O: f 0
p and f 1

p . In this

region, if one starts above h2 = h1, with h2 > h1, then trajectories of the full system (2.3.1)-

(2.3.4) leave the oscillatory region above the identity line, fall through the silent phase and

are reinjected to the active phase for some higher value of (h1, h2). Initial conditions below

h2 = h1, with h2 < h1 take trajectories to f 1
p and the system spikes. Now, f 0

p is unstable

and f 1
p is stable, if we analyze the structure of the nullclines. In figure 43, a plot is shown

for a representative of this region displaying the boundary of the oscillatory region Ω and

the averaged nullclines along with the locations of the two fixed points. Also in the same

figure, trajectories of the full system for different initial conditions. Note that, for initial

conditions below the identity line, trajectories converge to f 1
p and stay there forever and the

system is spiking. For initial conditions above the identity line, trajectories leave O through

Ω and after a transient has passed with see Bp type of bursting. Bursting solutions in BS

are similar to the one shown in figure 45, except for some difference in burst duration which

may decrease with increasing δ.

Note also in figure 43, the presence of a new region Õ . This region on the (h1, h2)parameter

space correspond to pairs (h1, h2) for which the fast subsystem has Bp. A typical bursting

solution for the fast subsystem is shown in figure 44.

5.3.1.3 Region B0 For gsyn = 3 and δ > 0.03 there is another place where one can find

bursting, for any initial condition. The region B0 is between BS and ÃS. Our conjecture

is that the averaged nullclines do not intersect inside the oscillatory region. In this region,

for any initial condition trajectories of the full system leave O through Ω above the identity

line. In figure 45, plots of the voltages versus time show that indeed we have bursting with

a period of recovery of about 100 ms. This is what we call bursting with pause, or Bp. We

believe that the transition from BS and B0 occurs through a saddle node bifurcation.
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Figure 43: Solutions corresponding to region BS with gton = 0.859, gsyn = 3 and δ = 0.01.

Note the presence of the oscillatory region Õ in which the fast subsystem is bursting with

pause.
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Figure 44: Typical bursting with pause solutions of the fast subsystem for gsyn = 3, gton =

0.859, δ = 0.01, h1 = 0.149 and h2 = 0.177. Note that there are only four spikes per burst

for both V1 (blue) and V2 (green).
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Figure 45: Plots showing solutions gton = 0.87 (top), gsyn = 3 and δ = 0.06 on the region

B0. (A) V1 and V2 versus time showing the bursting solution. (B) Zoom of part (A) showing

that there is a approximately 100ms of recovery period before the two cells start bursting

again.
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In this case, we go from two fixed points inside the oscillatory region in BS to no fixed

points in region B0.

5.3.1.4 Regions AS and ÃS For region S the nullclines intersect each other in three

distinct places. Two of the fixed points, f 0
p and f 1

p are inside O whereas f 2
p is in Õ . No

matter which initial condition is selected, the system exhibits tonic spiking. If you start with

initial conditions above the h1 = h2 line, then the system goes to f 2
p . For initial conditions

starting below the identity line the system goes to f 1
p . One representative of this region is

shown in figure 46. Note that according to trajectories of the full system f 2
p should be inside

Õ and not outside as it is shown in the picture. For initial conditions starting above the

identity line we show trajectories of the full system with all transients until we get to the

fixed point. In this region, f 1
p and f 2

p are stable where as f 0
p is unstable.

For low values of δ, the transition from BS to AS will take place through C01 when a

stable fixed point f 2
p enters the region Õ . The transition from AS to B0 when at the cusp f 2

p

exits through Õ and f 0
p and f 1

p are lost due to the saddle node (codimension 2 bifurcation).

Increasing gton further we see that f 0
p and f 1

p get closer and closer together and eventually

h2 and h1 nullclines do not intersect anymore below the h2 = h1 line (inside O) and, thus,

the only intersection left is f 2
p . For δ = 0.02 and gton = 0.88 according to figure 47, f 2

p is

in Õ and it is stable. Inside O the 2 nullclines are very close together for some values of

h1 and h2. For all initial conditions, trajectories of the full system (2.3.1)-(2.3.4) converge

to the fixed point. For some initial conditions the trajectories of the full system may hang

around the two averaged nullclines for a while before it moves toward the fixed point. Notice

that our fixed point is not exactly a match with the trajectories, but we are very close to

it. This difference is due to error in the numerical computation of the averaged nullclines.

This transition from 3 fixed points to only 1 fixed point, i.e., from AS to ÃS, can only occur

if the system passes through a saddle node point. Therefore, the curve CSN , in figure 40,

represents a curve of saddle node points for increasing δ.

Finally, the transition from B0 to ÃS occurs due to a fixed point entering Õ through

C01. Note that the fixed point f 2
p in ÃS can, in theory, move to region O . In table 5, we

summarize all different regimes believed to be take place for gsyn = 3.
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Figure 46: Representative of region AS for gton = 0.88, gsyn = 3 and δ = 0.01, along with

the trajectories of the full system for initial conditions with h2 > h1. These trajectories show

that the fixed point f 2
p was computed with some error and it should be inside Õ .
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Figure 47: Representative of region ÃS for gton = 0.88, gsyn = 3 and δ = 0.02
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regime picture fixed point and stability dyn. full system

SB

Ω

C

O

O
~

No fixed points in O or Õ bursting

AB

f
p
0

Ω

C

O

~
O

f 0
p - unstable bursting

B̃S

f

f 1

p
0

p

Ω

C

O

O
~





f 0
p − unstable

f 1
p − unstable





bursting if h2 > h1

bursting with pause if h2 < h1

BS

f

f 1

p
0

p

Ω

C

O

O
~





f 0
p − unstable

f 1
p − stable





bursting with pause if h2 > h1

spiking if h2 < h1

AS

f

f

f

1

p
0

p

p
2

Ω

C

O

O
~





f 0
p − unstable (in O)

f 1
p − stable (in O)

f 2
p − stable(inÕ)

spiking

ÃS

f
p
2

Ω

C

O

O
~

f 1
p - stable spiking

B0

Ω

C

O

O
~

no fixed points bursting with pause

Table 5: Summary of the different regions described in figure 40 and described in the text.
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5.3.2 Different regions of bursting and spiking for gsyn = 6

For gsyn = 6, three regions were characterized: B1, B2 and S. These regions are equivalent

to regions SB, AB and SS found in [5]and are shown in figure 48. One important difference

of the region found in the heterogeneous case and the homogeneous case was the fact that

the fixed point of the averaged nullclines did not take place on the identity line as it was

happening before. This is expected due to the fact that the averaged nullclines move when

δ is increased.
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Figure 48: Different types of bursting and spiking for fixed values of gsyn = 6. Values for

δ = 0 represent the values for which the transition for one regime to another takes place for

a pair of homogeneous cells. In this figure (if.p.) indicates that there could be i = 0, 1 fixed

point inside the oscillatory region.

5.3.2.1 Regions B1 and B2 According to our computations these two regions are similar

to regions SB and AB found in [5]. That is, in B1 averaged nullclines do not enter O . For

any initial condition, trajectories of the full system exit O through Ω, fall into the lower

branch of the curve S and the values of h1 and h2 increase until they reach the SN where

trajectories enter O again (figures not shown). For B2, the averaged nullclines enter B2

where they intersect at f 0
p , an unstable fixed point. Trajectories of the full system starting

in O exit the oscillatory region through Ω. Figure 49(top), shows the boundary of the
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oscillatory region together with the trajectories of the full system for region B2 to illustrate

what happens in general with trajectories in this region.

Some numerical difficulties arose here in order to determine precisely the location of

each nullcline, although further computation showed us that these nullclines are reasonably

positioned (not shown here). By numerical difficulties it is meant that when determining the

averaged nullclines convergence to zero for the averaged nullclines was not precisely obtained.

What was observed instead was a sudden jump from positive to negative (or vice-versa) of

both nullclines at the same time making it hard to determine when ḣ1 = 0 and ḣ2 = 0.

5.3.2.2 Region S For gsyn = 6, opposite to what happened with gsyn = 3 we have only

one region of spiking. In this region as it happened for the other value of gsyn we have only

one fixed point to which all IC converge to (see figure 49)(bottom).

5.3.3 Different regions of bursting and spiking for gsyn = 9

Boundaries for the transition between different regimes were determined also for gsyn = 9

and no significant difference was found from the transitions for the homogeneous case, at

least for the level of heterogeneity applied to the system. The reason for such invariance can

be the fact that the system coupling is quite strong when compared to the previous cases,

not allowing changes in dynamical regimes. These results are not shown here. The transition

from quiescence to bursting was barely affected by heterogeneity, again considering the level

of heterogeneity that was applied to the system. Higher heterogeneity levels may or may not

make a significant change in this boundary.
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Figure 49: Representative of region B2 with gton = 0.70 (top); region S2 with gton = 0.74

(bottom). For these cases, gsyn = 6 and δ = 0.02
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5.4 HOMOGENEOUS × HETEROGENEOUS

Many differences arose when comparing the homogeneous (gNaP 1 = gNaP 2) and heteroge-

neous (gNaP 1 6= gNaP 2). First, for the heterogeneous case we could not make the same

analysis for general values of gton and gsyn as Best et al [5] did in the homogeneous case. We

had to compute boundaries of spiking and bursting for particular values of gsyn and different

values of δ when varying gton.

For the homogeneous case, we have that for any given value of gsyn the boundary between

quiescence and bursting had a value of gton that was almost the same for all values of gsyn.

More specifically, gton ' 0.26 (see [5]). For δ = 0.1, the transition between quiescence and

bursting takes place for some gton between 0.23 and 0.24. Therefore, the two cells in the

heterogeneous case tend to become active for lower external inputs.

In theory, with increasing of heterogeneity we have chance to have bursting for a bigger

interval of gton. That is, bursting should start with smaller external inputs applied to the

system. This change in the boundary Q-SB was observed for gsyn = 3 and gsyn = 6.

For gsyn = 3, if we consider all the regions where the cell presents some type of bursting,

the range of gton for which we have bursting is bigger than for the homogeneous case, although

we have some dependency on initial conditions and one type of bursting is transitional. This

shows that heterogeneity increases our chances of having a larger range of parameters where

bursting is possible [7].

For gsyn = 6 we see an increasing of the bursting region independent of IC by 0.01 when

we increased δ by 0.04, that is, for δ = 0.0 the boundary of B2−S occurs for gton ' 0.718 and

for δ = 0.04 this boundary was shifted to gton ' 0.728. Once again, we have improvement of

bursting, but up to now we couldn’t find a ”island” of bursting after we started having the

appearance of spiking. This is probably due to the fact that the synaptic input is too big to

allow this kind of behavior.

Finally, for gsyn = 9 we don’t have any improvement in the transition of bursting-spiking

for δ varying from 0.0 to 0.04(results not shown here). In the homogeneous case this value

of gsyn gives us just symmetric bursting and tonic spiking. This is similar to what was found

in [5] for this level of synaptic input.

97



6.0 CONCLUSIONS

In this thesis, we used one and two dimensional maps and direct numerical simulations to

determine how heterogeneity and coupling could be affecting the behavior of a small network

of preBötC cells.

A one dimensional map was derived from an approach given by [37], using the slow

dynamics and averaging over the fast subsystem. Analysis was used to establish certain

features of the form of map, which in turn allowed us to determine the possible transition

mechanisms for different levels of synaptic input and external drive. With the analytical

results and numerical analysis, conditions for the onset of bursting for the self coupled single

cell case were determined. The analytical conditions were numerically tested and proved

to be accurate in determining such transition from spiking to bursting for small values of

gsyn. For larger values of the synaptic input the transitions between bursting and spiking

was numerically determined. For all these transitions information about the presence of

homoclinic point was also used. The results obtained for the one dimensional map were an

improvement on the transition from bursting to spiking and spiking to bursting determined

in [5] for the singular limit case ε = 0.

Using some of the ideas as for the one dimensional map, we derived for the network of

two coupled identical cells a two dimensional iterated map. In the derivation of the map we

used the two slow variables of the system and we averaged over the fast subsystem. The

idea of the iterated map was introduced via a numerical example and together with the

averaged nullclines a form of the iterated map was determined via a mix of analysis and

numerics, and the form of the map was used to derive possible dynamical regimes for the

two cell network. The iterated map obtained is a composition of one dimensional maps

and its shape is determined depending whether or not the trajectories of the full system
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intersect the averaged nullclines. For one set of parameters considered, gsyn = 0.107143

and gton = 0.3107, corresponding to the AS region, we could not determine the map as we

predicted, in part due to the numerical error and for the fact that, as shown in [5], the two

averaged nulllclines are really close to each other, making computations difficult to perform.

Qualitative the form of the map was as predicted.

For the case when the network is spiking in synchrony, a linear analysis was performed

and analytical expressions for the eigenvalues of the linearized system were found. However,

once again numerical error prevented us from computing numerically the exact values for

the eigenvalues. Therefore, we were not able to conclude anything about the stability of

the fixed point of the iterated map. According to our analytical expressions we should have

found that the fixed point corresponding to the synchronous state had to be unstable.

However, overall this analysis gave us a good understanding of the dynamics of this small

network of preBötC cells in terms of the map. Although, we made a significant progress in

understanding the dynamics of the network, some work still remains to be done. In this

thesis, we only computed the map in the homogeneous case. Including heterogeneity, we

expect to find interesting solutions which include what has been observed before for the

homogeneous case plus possibly some other novel behaviors.

Using direct numerical simulations, when heterogeneity was added to our network for

fixed values of the synaptic input, we determined in the (gton, δ) parameter space boundaries

for transition between different regimes, for gsyn = 3, 6, 9. For these fixed values of gsyn

we observed some very interesting behaviors. For gsyn = 3, a region where the 2 cells could

either burst or spike, depending on the initial conditions was observed for a significant region

in parameter space for low heterogeneity levels. Another region where cells were bursting

was found after enough heterogeneity was applied to the network. The region where bursting

and spiking coexist, may give us some insight in how applying certain levels of heterogeneity

can improve significantly the range of bursting.

For the other 2 values of the synaptic input studied, the regions of activity did not

change very much with heterogeneity. This could imply that an optimal level of heterogene-

ity, synaptic input and tonic current can maximize the region where bursting can be seen

numerically for a large range of parameters. This certainly has to be studied in more detail.
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For the heterogeneous system no analytical studies were performed. We strongly believe

that an analysis of this heterogeneous system would give us some more insight on how

heterogeneity is affecting the range of bursting for a network of cells. Another path that this

study can take is the study of bigger networks of preBötC neurons. Although ambitious, this

would provide us with even more understanding of the network mechanisms. Analytical work

on synchrony and clustering in neuronal networks has already been done and related ideas

could be implemented for this particular neural network, which has recently been discovered

to have certain structured synaptic architecture [21].

We hope that this mathematical approach on studying a small network of preBöTC

neurons combined with some experimental results is able to predict and help in finding

mechanisms to prevent some aspect of diseases which are associated with the damaging of

the neuronal cells responsible for respiratory rhythmogenesis, such as the preBötC cells.
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	42. Example of (h1,h2) averaged dynamics from region  with gton=0.84 , gsyn= 3 and =0.01. (A) Boundary of oscillatory region  with averaged nullclines h1 and h2 showing two fixed points in O. (B) Same as in (A), but with trajectories of the full system plotted together. (C) Trajectories of the full system after a sufficiently long transient has passed; (D) Plot of V1 versus time showing a solution which we call a bursting with pause. This solution is transitional from bursting to spiking.
	43. Solutions corresponding to region BS with gton=0.859, gsyn= 3 and =0.01. Note the presence of the oscillatory region  in which the fast subsystem is bursting with pause.
	44. Typical bursting with pause solutions of the fast subsystem for gsyn=3, gton=0.859, =0.01, h1=0.149 and h2=0.177. Note that there are only four spikes per burst for both V1 (blue) and V2 (green).
	45. Plots showing solutions gton=0.87 (top), gsyn= 3 and =0.06 on the region B0. (A) V1 and V2 versus time showing the bursting solution. (B) Zoom of part (A) showing that there is a approximately 100ms of recovery period before the two cells start bursting again.
	46. Representative of region AS for gton=0.88, gsyn=3 and =0.01, along with the trajectories of the full system for initial conditions with h2 > h1. These trajectories show that the fixed point fp2 was computed with some error and it should be inside .
	47. Representative of region  for gton=0.88, gsyn=3 and =0.02
	48. Different types of bursting and spiking for fixed values of gsyn=6. Values for =0 represent the values for which the transition for one regime to another takes place for a pair of homogeneous cells. In this figure (i f.p.) indicates that there could be i=0,1 fixed point inside the oscillatory region.
	49. Representative of region B2 with gton=0.70 (top); region S2 with gton=0.74 (bottom). For these cases, gsyn= 6 and =0.02
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