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Two problem solving strategies, forward chaining and backward chaining, were compared to see 

how they affect students’ learning of geometry theorem proving with construction.  It has been 

claimed that backward chaining is inappropriate for novice students due to its complexity.  On 

the other hand, forward chaining may not be appropriate either for this particular task because it 

can explode combinatorially.  In order to determine which strategy accelerates learning the most, 

an intelligent tutoring system was developed.  It is unique in two ways:  (1) It has a fine grained 

cognitive model of proof-writing, which captured both observable and unobservable inference 

steps.  This allows the tutor to provide elaborate scaffolding.  (2) Depending on the student’s 

competence, the tutor provides a variety of scaffolding from showing precise steps to just 

prompting students for a next step.  In other words, the students could learn proof-writing 

through both worked-out examples (by observing a model of proof-writing generated by the 

tutor) and problem solving (by writing proofs by themselves).  52 students were randomly 

assigned to one of the tutoring systems.  They solved 11 geometry proof problems with and 

without construction with the aid from the intelligent tutor.  The results show that (1) the 

students who learned forward chaining showed better performance on proof-writing than those 

who learned backward chaining, (2) both forward and backward chaining conditions wrote 

wrong proofs equally frequently, (3) both forward and backward chaining conditions seldom 

wrote redundant or wrong statements when they wrote correct proofs, (4) the major reason for 

iii 



the difficulty in applying backward chaining lay in the assertion of premises as unjustified 

propositions (i.e., subgoaling).  These results provide theoretical implications for the design of 

tutoring systems for problem solving.   
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1. Introduction 

Geometry theorem proving is one of the most challenging subjects for students to learn.  

When it requires construction as a part of a proof, the difficulty of the problem drastically 

increases.  The term “construction” here means drawing additional lines and points onto the 

problem figure using a compass and a straightedge.  In this study, we attempted to determine 

effective instruction to teach proof writing for geometry theorems that require construction.  The 

target students in this study are at an intermediate level.  They know the geometry knowledge 

necessary to write some proofs and learn more postulates, but their problem solving strategy is 

not fully stabilized, hence they need a tutor’s aid while they practice problem solving.   

The difficulties of geometry theorem proving with construction may lie in a lack of 

knowledge about selecting construction, namely, the lack of an algorithm to find appropriate 

construction.  Indeed, in an educational context, construction is thought to be “creative” and 

“intuitive” hence best taught as heuristics (see for example, Polya, 1957).   

When people encounter a problem that seems unfamiliar like finding a proof with 

construction, they tend to use the so-called weak methods.  Two major weak methods for 

geometry theorem proving are forward chaining and backward chaining (Newell & Simon, 

1972).  When applied to theorem proving, the former calculate a deductive closure, which is a set 

of true propositions that hold within a given configuration of the theorem to be proven.  Starting 

from given propositions, which constitute an initial database, forward chaining finds all 

propositions that are logically derived from the database, adds them to the database, and repeats 

this cycle until the to-be-proved goal is eventually added to the database.  Backward chaining, on 

the other hand, starts from the goal to be proved, identifies premises that support the goal, and 

proves that those premises also hold in the given problem configuration.  Construction can be 
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taken place at anytime during these weak methods.  For forward chaining, one can draw 

arbitrarily many lines to draw new geometric objects (such as triangles, quadrangles, etc) and 

draw arbitrary many inferences from the modified configuration, which in turn blows up the 

database.  For backward chaining, one can pick an arbitrary postulate that has a consequence that 

matches with the goal to prove, draw segments so that the postulate would apply, and subgoal the 

postulate’s premises, which could lead one to infinite subgoaling.   

Because these two methods are the most straightforward strategies, the students might 

benefit from using them as a vehicle for learning geometry theorem proving.  However, there has 

been no theoretical account provided to predict which problem-solving strategy facilitates the 

students’ ability to write geometry proofs (see Section 2.4 for a review on teaching and learning 

these week methods).  Thus, the current study addresses the following research questions: 

(1) Given a fixed set of training problems including construction problems, which 

problem-solving strategy, forward vs. backward chaining, facilitates students’ ability 

to write proofs?   

(2) If there is a difference in the learning gain between the forward and backward 

chaining groups, then what seems to cause that difference?  

To answer these questions, we built two versions of an intelligent tutoring system; one 

teaches forward chaining and the other teaches backward chaining.  We then assigned students to 

each tutoring condition, let them learn theorem proving under the assistance of the intelligent 

tutor, and compared their performance on pre- and post-tests as well as during the tutoring 

sessions.   

The contributions of the current dissertation include (1) gaining a better understanding of 

the educational benefits of teaching geometry theorem proving with a certain problem solving 

2 



strategy (i.e., forward or backward chaining) particularly as it relates to construction, 

(2) revealing student’s difficulties in working forwards and backwards, (3) providing guidance 

for future designs of learning environments to support students in learning geometry theorem 

proving.   

Section 2 provides a review of the task, namely, geometry theorem proving with 

construction.  It also discusses students’ difficulties in learning proof writing, and the theoretical 

implications in teaching geometry theorem proving.  Section 2 also provides a review on 

teaching and learning forward / backward chaining.  Section 3 then shows the structure of our 

geometry tutor, the Advanced Geometry Tutor (AGT).  It first summarizes cognitive theories 

that we know best to design out tutor.  Detailed explanations of the underlying cognitive model, 

scaffolding strategy, and graphic user interface follow.  Section 4 explains an experiment 

conducted to evaluate the effectiveness of the tutor, and Section 5 shows its results.  We then 

discuss general lessons learned through this study in Section 6.  Finally, in Section 7, we discuss 

implications for the design of a tutoring system for problem solving and other issues for future 

works.   

2. Issues in Learning and Teaching Geometry Theorem Proving 

This section first introduces a target task, geometry theorem proving with construction.  It 

then discusses the students’ difficulties in learning this task.  We then summarize pros and cons 

in teaching and learning forward / backward chaining.   

2.1. Task: Geometry Theorem Proving with a Two-column Proof 

The target domain is elementary Euclidean geometry.  In this study, we deal only with 

proofs of equality and congruence that do not involve arithmetic operations (i.e., sums and 
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multiplications).1  This restriction is required by GRAMY, an automated geometry theorem 

prover that is capable of construction (Matsuda & VanLehn, 2004), which was built as a part of 

the Advanced Geometry Tutor project (see Section 2.2 for details of GRAMY).  The problems 

(i.e., geometry theorems) used in this study may require construction as a part of the proof.  

Although GRAMY is capable of finding all kinds of construction that can be done with a 

compass and a straightedge, AGT only deals with constructions that can be done by connecting 

two existing points.   

A problem consists of (1) a set of given propositions, (2) a proposition to be proved, and 

(3) a diagram called the problem figure that represents generic configuration of the problem.  We 

call a problem figure that is originally given to a problem the initial problem figure to 

discriminate it from a problem figure after some constructions were took place.  In this study, the 

term “postulate” refers to statements that are known to be true such as definitions, axioms, and 

proved theorems.  A postulate consists of premises and a consequence that are represented as 

propositions.  Each postulate is associated with a generic diagram that represents topological 

information that may or may not be represented in the premises and the consequence.  This 

generic diagram is called the configuration of the postulate.    

The students are taught cognitive skills for composing two-column proofs as shown in 

Figure 2.1.  A two-column proof is represented as a table where a row corresponds to a proof 

statement, which consists of a proposition and a justification.  A proposition is a geometric 

assertion that appears in the left column in the proof table.  Every proposition must be justified 

by providing a valid justification on the right column in the table.  A proposition is justified in 

                                                 
1 This restriction implies that the proofs of inequalities, ratios, and coincident intersection (i.e., to 
prove that three or more segments intersect at one point) are also excluded from the present 
study.   
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one of two ways.  (1) Providing an associated keyword in the justification cell for an obvious 

proposition.  Obvious propositions are true propositions whose truth value do not depend other 

propositions.  For example, “Given” is the associated keyword for given propositions, “VerAng” 

for vertical angles, “Identical” for congruence of identical elements (say, ∠ABC = ∠CBA), and 

so on.  (2) Specifying the name of the postulate that logically derives the proposition.  For the 

latter case, the premises of the postulate must be also mentioned by listing their line numbers.   

 

Figure 2.1: An example of a proof table 

The proof shown in Figure 2.1 was written by forward chaining: the proof table starts with 

givens at the top and ends with the to-be-proved goal (AC=BC) at the bottom.  When composing 

a proof forwards, the students are provided with a proof table that only contains givens at the 

first few rows (the first 2 rows in the case of Figure 2.1).  Those rows have “Given” as their 

justifications.  The students are then supposed to extend the proof table by asserting a new 

proposition into an empty proposition cell.  They then need to provide a justification for the new 

proposition by filling in an empty justification cell.  The students continue this process until a top 

level goal is eventually asserted into the proof table.   

When composing a proof backwards, the students are provided with a proof table that only 

contains the to-be-proved goal at the first row.  The goal has an empty justification.  Students are 

then supposed to fill in empty justifications.  To use a postulate as a justification, they must 
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assert the postulate’s name into the empty justification cell next to the proposition being 

justified.  The student then assert premises of the justification into the empty proposition cells 

one at a row starting immediately beneath the row that contains the proposition being justified.  

Finally, the student writes the line numbers of the premises into the justification cell of the 

being-justified proposition.  They continue this process until all the empty cells are filled in.   

In some case, a universal proof must be conditional, thus requiring different problem 

figures that are consistent with the given propositions.  However, in most cases, classroom 

instruction only requires students to find a proof for a particular problem figure and does not ask 

them to generate conditional proofs, so that is all GRAMY does.  That is, GRAMY finds proofs 

and constructions that hold for the give problem figure.  So does AGT; the tutor only finds a 

proof, often with a construction, for the initial problem figure and ask students to write that 

particular proof.   

2.2. Theorem Proving with Construction 

This section describes a procedure for theorem proving with construction that has been 

developed through working with GRAMY.  The procedure is believed to be comprehensible for 

students and is embedded in the cognitive model utilized by AGT.   

2.2.1. Theorem proving with construction as a state-space search 

Geometry theorem proving with construction can be viewed as a state-state search.  The 

initial state holds a set of propositions assumed to be true (givens), a proposition to be proved 

(the goal), and the initial problem figure.  To change a state, one can either apply a postulate 

forwards to assert a new proposition or backwards to make new subgoals, or apply construction 

operators to add new segments and points to the problem figure.  The goal state holds a proof 

that is a sequence of postulate applications and constructions.  In sum, theorem proving with 
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construction can be formalized as a state-space search where a postulate application (with or 

without construction) is the basic mean of state transition.   

2.2.2. Finding a useful postulate for construction 

If students are to apply a postulate, they must be able to overlap the configuration of the 

postulate onto the problem figure.  This overlapping must be done so that the premises and 

consequence of the postulate are quantitatively satisfied, which by definition means that the 

relations stated in the proposition are consistent with the measurements of the corresponding 

geometric elements in the problem figure.  For example, a proposition XY = WZ in the postulate 

is quantitatively satisfied if two segments, say, AB and CD, in the problem figure on which XY 

and WZ are overlapped respectively are approximately the same length.   

Since a proof is a sequence of postulate applications, if a proof exists for a problem that 

requires a construction, there exists at least one postulate application in the proof that does not 

perfectly overlap with the initial problem figure.  The key idea behind our construction technique 

is to find such a postulate.   

Let’s call a postulate useful if its consequence unifies with the goal to prove and all 

premises that match the problem figure are quantitatively satisfied but some premises might not 

match the problem figure.  For example, when a goal is to justify an angle congruence ∠ABC = 

∠DEF, the postulate CPCTC (Corresponding Parts of Congruent Triangles are Congruent), 

which says “if ∆xyz ≡ ∆uvw then ∠xyz = ∠uvw,” is useful as long as the problem figure points 

bound to x, y, z, u, v, and w form quantitatively congruent triangles.  The appropriate triangles 

may not completely exist in the problem figure.  For instance, the student may have to draw the 

segment connecting x to y.  So, the question of how to make appropriate construction is reduced 

to the question of how to find a useful postulate.  Finding a useful postulate is indeed rather 
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straightforward.  One can first pick a postulate that has a consequence that matches the goal to be 

proved and then test if the postulate partially overlaps the problem figure. 2   

2.2.3. Identifying target segments by partial overlapping  

Once a useful postulate is found and a partial overlap is identified, the rest of the procedure 

is fairly straightforward.  Since we only deal with construction for connecting existing points, the 

partial overlapping must be the one that has all the points in the postulate bound to some point in 

the problem figure.  For each of the missing segments, one can then simply connect their 

endpoints.   

2.3. Students’ Difficulties in Learning Proof Writing 

Geometry theorem proving is a challenging subject for students.  In a large scale classroom 

evaluation with 1520 students, Senk (1985) showed that only 20% of the students could do 

complex proofs at the end of a year-long geometry class, that 30% could find proofs only for 

problems that were similar to the ones in textbook, and that 25% could only do trivial proofs.   

Studies have suggested many difficulties that the students suffer when learning proof 

writing.  They include lacking a commonsense meaning of proofs as mathematical 

argumentation (Dreyfus, 1999), a difficulty in communicating in mathematical language 

(Laborde, 1990; Landa, 1975), in transforming descriptive (conceptual) knowledge into 

operational (procedural) knowledge (Dreyfus & Hadas, 1987; Greeno, 1983; Tubridy, 1992), and 

in applying abstract and formal reasoning (Algarabel & Dasi, 1996; Lovell, 1971; Renner & 

                                                 
2 In general, there may be multiple postulates that are useful for a particular goal.  One must 
learn a selection schema (i.e., a search control).  AGT, however, does not teach search control 
explicitly.  Students just follow the shortest proof that the tutor provided.  See Sections 3.2 for 
details on how AGT helps students solve problems.    

8 



Stafford, 1976), search skills (Schoenfeld, 1985); and misconceptions (Chaiyasang, 1989; 

Schoenfeld, 1988).   

Especially remarkable issue is that the students fail to write proofs even when they have 

conceptual mastery of geometric propositions and postulates.  Koedinger (1990) reported that the 

students had only 35.5% accuracy on proof writing at a pre-test even though they showed 67% 

accuracy on the test items for judgment of geometric statements.  Chaiyasang (1989) showed that 

less than 15% of the students could achieve “good” in proof writing even though they are ranked 

as the van Hiele level 4, which means that they understood geometric concepts necessary to write 

a proof.   

These studies show that teaching geometric concepts is not enough to have students master 

proof writing.  Students apparently need deliberate practice in writing proofs.  The question is 

how to make such practice effective and efficient.  The next section provides theoretical insight 

into a desired learning environment for geometry theorem proving by comparing two strategies: 

forward and backward chaining.   

2.4. Teaching and Learning Forward / Backward Chaining 

As mentioned earlier, the primary interest in the current study is to investigate the 

difference between teaching forward chaining (FC) and backward chaining (BC) as a strategy 

for theorem proving.  This section provides literature review on the studies that address this issue 

by highlighting two different aspects of teaching and learning those strategies: cognitive theories 

and computational theories.   

First of all, majority of cognitive studies on problem-solving performance of novices 

showed that they tend to prefer FC to BC.  For example, Koedinger mentioned about classroom 

experience with a geometry proof tutor that provided hints based on BC where “[t]he average 
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student found this very confusing” hence “such hints were eliminated so that the current version 

of the tutor [called ANGLE] only tutors forward chaining” (Koedinger, 1991).  Anderson et al. 

(1993) also reported that “all but gifted students had great difficulty with backward reasoning 

facility (p.172).”  In a study of a LISP tutor, GIL, Trafton and Reiser (1991) observed that on the 

post test, 95% of the steps taken by the students who had been trained for both FC and BC (so 

called “Free” tutor condition) were FC.   Also, in a study comparing performance of novices and 

experts solving Physics problems, Priest and Lindsay reported that they observed “[all the 

participants] show[ed] the same overwhelming bias towards the employment of forward 

inference” (1992, p.401).  They concluded that a potential theoretical account for the novice-to-

expert shift in the performance is not due to shift in problem-solving strategy (e.g., from BC to 

FC), but a shift from so called unguided FC to schematic FC.  These studies support teaching FC 

rather than BC for students learning problem solving skills.   

On the other hand, there are some conflicting studies that claim that the novices rely on 

backward chaining whereas the experts prefer to forward chaining.  When observing novices 

solving Kinematics problems, for example, Larkin et al found that the novices tend to apply 

backward chaining (Larkin, McDermott, Simon, & Simon, 1980).  “The management of goals 

and subgoals [is] deciding periodically what to do next” (Larkin et al., 1980, p.1338).  Unlike the 

experts, the novices do not apply schematic knowledge (M. T. H. Chi, Feltovich, & Glaser, 

1981), hence tend to rely on analytic goal-directed strategy.  This strategy apparently affects the 

experts’ performance as well so that the “experts work forwards only on easy problems” (Larkin 

et al., 1980, p.1338).  There is also a computational model of novice-expert shift from backward 

to forward chaining called  EUREKA (Elio & Scharf, 1990).  The EUREKA model predicts that 

the strategy change occurs when the content of the problem solving principles (or schemas, if 
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you will) changed so that discriminating features of problem description reflect more 

fundamental physics principles.  These studies support that it may be natural for the students to 

use backward chaining to learn geometry theorem proving.   

Above studies do not directly compare difference in teaching FC and BC.  Not so many 

studies have been conducted that directly address the difference between teaching FC and BC.  

However, when those strategies were compared, the results were rather neutral.  In the GIL 

study, Trafton and Reiser (1991) compared strict FC, strict BC, and bidirectional conditions.  In 

the strict FC/BC conditions, the students could only use FC or BC.  In the bidirectional 

condition, the students could use both strategies freely.  After solving 14 training problems, all 

conditions tied on the post-test, although the BC students made more errors and require more 

time to write a program during the training session than other conditions.  Scheines and Sieg 

(1994) also compared learning gains for students learning logic proof by either strict FC, strict 

BC, and bidirectional conditions.  In this study, the students used computerized tutor (Carnegie 

Proof Tutor, or CPT) for 5 weeks.  Quite similar to the GIL study, there was no significant 

difference between FC and BC conditions, but the bidirectional chaining condition outperformed 

the other conditions only on the hard problems.   

Although the overall performance on the post-test did not differ over the tutor (i.e., the 

strategy) conditions, there may be a difference in certain sub skills.  Through the GIL project, 

Reiser et al. (1994) replicated the result of not having main effect in the tutor condition (i.e., BC 

vs. FC vs. bidirectional), but also found that the students in the bidirectional condition scored 

significantly higher on debugging (but not repairing) tasks than BC and FC students.   

If the theories found in above studies could apply to the current study, then we might also 

hit a null effect on the tutor conditions.  However, there is a reason that learning with FC and BC 
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would differ from each other especially for geometry theorem proving with construction, which 

is inspired by a computational model of geometry theorem proving.  A study with GRAMY 

(Matsuda & VanLehn, 2004) revealed that forward chaining is much more efficient than 

backward chaining for geometry theorem proving that do not require construction.  Table 2.1 

shows a comparison of search complexity between forward and backward chaining for proof 

problems without construction performed by GRAMY.  GRAMY applies forward chaining to 

calculate a deductive closure, which is called exhaustive forward chaining.   As shown in the 

table, exhaustive forward chaining is superior to backward chaining for all non-construction 

problems with different complexities (i.e., the length of the shortest proof).  On the other hand, 

due to high branching factors, backward chaining blew up for the hard problems.  Especially, 

backward chaining could not find a proof for P011 and P005 hence was terminated manually.  

These findings suggest that one must be taught forward chaining when learning geometry 

theorem proving when it does not involve constructions.   

Table 2.1: Comparison of search complexity 

#Prop. #State #Prop. #State ABF

P001 3 2 1.54 22 6 2 1.54 2 30 5.03

P008 4 2 4.40 34 7 3 4.56 3 57 6.16

P010 6 4 9.40 57 15 5 8.84 2 7104 6.84

P006 7 2 29.55 146 6 6 31.03 4 360 2.26

P004 10 5 28.23 111 42 9 106.56 5 1267388 3.89

P011 40 12 41.19 198 2259 14+ - 6 40378455+ -

P005 55 10 37.02 199 498 9+ - 7 53324115+ -

ABF: Average Branching Factor

Forward Chaining Backward Chaining

Problem
Proof

Length
Depth Time

Space
Depth Time

Space

 

What about theorem proving with construction?  Forward chaining, even exhaustive 

forward chaining, suffers from search explosion when finding proofs that involve construction.  

For example, for a simple geometric theorem regarding a simple quadrangle (i.e., a theorem 
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involves only four segments), there are about 78 different “meaningful” constructions3 possible 

every time one draws a segment to the problem figure with a compass and a straightedge.  On the 

other hand, when constructions are supported by backward chaining, the number of constructions 

drastically decreases.  Table 2.2 shows a search complexity to find proofs with construction 

supported by backward chaining.  Although ratio of successful construction to unsuccessful ones 

are still quite low, the table implies that backward chaining must be taught for geometry theorem 

proving with construction.  The essential difference is that BC only draws a line (or other 

construction) that will make a useful postulate match, whereas FC’s construction is 

unconstrained.  Any possible construction may be drawn at any FC step.  Therefore, here, again, 

is a conflict between FC and BC; FC is quite efficient for proofs without construction, but BC 

must be taught for proofs with construction.   

Table 2.2: Search complexity with construction supported by backward chaining 

Length State Prop. Time All Const Suc. Const State Prop. Time

P132 3 4 12 11 40 40   40 1342 76

P127 3 296 70 1529 101 7   189 12252 2381

P123 4 15 38 35 5 1   9 200 3

P109 5 198 91 322 76 3   149 2414 512

P101 5 313 72 1764 109 8   205 13075 2573

P116 6 130 79 109 76 1   151 3303 392

P131 6 492 63 2156 122 16   228 12880 2027

P111 6 81 146 544 135 14   256 18229 3967

P115 8 26 65 61 55 1   109 2785 329

P112 8 23 79 151 181 14   348 21584 3908

P117 9 48 178 54 17 1   33 1642 205

P129 10 13 349 278 36 1   71 15095 5268

P142 10 13 127 84 95 7   183 16251 3356

P128 11 93 103 770 146 2   290 20255 2951

P108 14 112 92 185 49 1   97 2137 432

P144 19 85 152 146 61 6   112 2691 472

Problem
First Proof All Proofs

5

 

                                                 
3 The meaningful constructions involve drawing a parallel line, drawing a perpendicular line, 
drawing a median line, drawing an extension line, etc.   
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In sum, students might learn geometry theorem proving better with FC, but it could only be 

an efficient strategy for proofs without construction.  BC might be much more efficient for 

theorem proving with construction, but it could be too challenging for students to learn.  Indeed, 

as discussed in Section 3.3, backward chaining is more complicated than forward chaining in 

terms of the number of inference steps to be performed.  Backward chaining also involves more 

tacit inference steps than forward chaining.   Therefore, it is not surprising that the students 

showed difficulties in learning backward chaining hence resulted in poor performance on post-

test.  Yet, we are lacking theoretical support to determining which one of these strategies 

facilitates students learning the target task – geometry theorem proving with construction.   

3. The Advanced Geometry Tutor 

This chapter describes the architecture of AGT.  First we discuss theoretical issues in 

designing a tutor.   A brief survey on cognitive theories of teaching and learning problem solving 

is given to provide insight into an effective and efficient tutor.  We then describe details of AGT.   

3.1. Theoretical Implications in Teaching Geometry Theorem Proving 

This section reviews studies on teaching and learning problem solving, especially those 

that have theoretical implications in designing our intelligent tutor.  More specifically, we focus 

on the following factors that might have a significant impact on students’ learning: (a) learning 

from worked-out examples and problem solving, (b) articulating tacit inference steps, and (c) 

teaching operationalization.  The following sections explain these instruments and why we think 

they will be effective.   
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3.1.1. Learning from worked-out examples and problem solving 

Most tutoring systems ask students to solve problems.  These tutoring systems assume that 

the students have learned the knowledge necessary to solve problems and yet they need to 

stabilize their knowledge through practice.  However, as VanLehn (1998) mentioned, when the 

students reach an impasse, they often go back to the examples and do analogical reasoning from 

them.  The advantage of learning with worked-out examples has been observed in many studies 

(M. T. Chi, Bassok, Lewis, Reimann, & Glaser, 1989; Sweller & Cooper, 1985; Zhu & Simon, 

1987).  Nonetheless, most computer tutors do not allow students this kind of retrograde reference 

to the examples.   

The worked-out examples can be written in a textbook or generated by the tutor on the fly.  

Namely, based on the underlying cognitive model of proof writing, the tutor can perform all the 

inference steps, no matter if they are observable or not, and explicitly show them to the students.  

This type of tutor’s aid for novice students is called modeling in a context of cognitive 

apprenticeship learning, which involves modeling, coaching, scaffolding, and fading (Collins, 

Brown, & Newman, 1989).   

At the beginning of the tutoring session, when the students are not familiar with solving 

problems, the effect of modeling would be maximized because it provides students with 

opportunities to learn domain principles.  As learning proceeds, however, the benefit of modeling 

may decrease (Kalyuga, Chandler, Tuovinen, & Sweller, 2001).  Hence the tutor must gradually 

elicit more steps from the students.  This switching from worked-out example to problem 

solving, which is often called fading (Collins et al., 1989), has been investigated in several of 

studies (Renkl, Atkinson, & Grose, 2004; Renkl, Atkinson, Maier, & Staley, 2002).   

These studies emphasize the importance of fading, but what if the students eventually get 

stuck after the worked-out examples are faded away?  The tutor must resume providing modeling 
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again for such situation.  That is, problem solving must be replaced with worked-out example 

once again when students show poor performance.  In sum, the studies mentioned above suggest 

that modeling is useful for students who are just beginning to learn proof writing.  The amount of 

scaffolding must be controlled based on the student’s competence level.   

3.1.2. Articulating tacit knowledge 

As discussed in the previous section, the benefits of worked-out examples can be seen in 

many studies.  However, as mentioned in VanLehn et al. (1992), many inferences taken in 

solving a problem are not displayed in worked-out examples.  Asking students to self-explain 

worked-out examples increases the learning  in part because they are filling the missing 

information (M. T. Chi et al., 1989; Renkl, Stark, Gruber, & Mandl, 1998; VanLehn et al., 1992).   

Let us define an inference step as a primitive component of the problem-solving procedure.  

An inference step can be either mental, which is not observable, or physical, which is observable.  

The objective of tutoring in this study is to make students acquire all those inference steps 

necessary to write proofs.  A cognitive task analysis of geometry theorem proving, presented in 

Section 3.3, demonstrates that only about 30% of the inference steps correspond to observable 

steps, that is, some kind of operation with a GUI component (i.e., to press a button, to enter an 

equation, etc).  The remaining 70% are unobservable, and might be a major source of the failure 

of learning for low competent students, who can not uncover such tacit knowledge even when 

they try to self-explain the example’s steps.   

Once a cognitive model has been created that involves detailed inference steps then we can 

utilize a well-known effective tutoring strategy, model tracing, which assesses students’ 

competence on each inference step while they solve problems and provides appropriate feedback 

so that students can learn correct problem solving skills (Anderson, Boyle, Corbett, & Lewis, 
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1990; Koedinger, 1991; Koedinger & Anderson, 1993).  The Geometry Proof Tutor is one of the 

most successful tutoring systems for geometry theorem proving (Anderson et al., 1990).  The 

model tracing tutor represents a model of theorem proving as a set of production rules.  Each 

production rule is a unit of instruction for the model tracing tutors.  The tutor monitors whether 

students can apply a particular production rule in a particular situation, and if they fail, the tutor 

gives instruction on how to apply the production rule.  An empirical evaluation showed that 

when students use the Geometry Proof Tutor individually, their performance was more than one 

standard deviation higher than that of the traditional classroom instruction (Anderson, Corbett, 

Koedinger, & Pelletier, 1995).   

Although one can build a cognitive model of problem solving at an extremely find grain 

size including all perceptual and motor skills, we have yet to know what exactly is the right grain 

size for such a cognitive model.  Because there are several studies that support the importance of 

teaching geometric postulates in a conditional form, which clearly emphasizes premises and 

consequence (Dreyfus & Hadas, 1987; Greeno, 1983; Tubridy, 1992), we have included an 

inference step that articulates premises and the consequence of a postulate being applied.  The 

next section discusses this issue.   

3.1.3. Teaching operationalization 

One of the unobservable inference steps that have been occasionally reported to be 

particularly important for proof writing is to transform geometry statements written in a 

declarative form into a conditional form.  For example, a theorem taught in a declarative form 

“two base-angles of an isosceles triangle are equal” must be translated into a conditional form “if 

a goal is to prove ∠ABC=∠ACB in a triangle ABC, then set the goal to prove that AB = AC.”  

We hereafter call such transformations operationalization.   
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Several successful methods teach geometric postulates as conditional statements, which 

have conditions as an IF-part and consequences as a THEN-part.  Tubridy (1992) taught students 

conditional statements in conjunction with the so-called three-part-format, which consists of (1) 

a configuration of the postulate, (2) a consequence of the postulate, and (3) a verbal explanation 

of the postulate.  The evaluation showed that the Tubridy’s instructional strategy led low- and 

middle-level students to better performance on proof writing.  Greeno (1983) emphasized IF-

THEN structure of conditional statements when he taught students proof-checking where the 

students judge the correctness of written proofs.  After four 1-hour training sessions, the students 

showed better performance on proof writing.  Dreyfus and Hadas (1987) articulated six 

principles for teaching geometry theorem proving: (1) a theorem has no exceptions, (2) even 

“obvious” statements have to be proved, (3) a proof must be general, (4) the assumption of a 

theorem must be clearly identified and distinguished from the conclusion, (5) the converse of a 

correct statement is not necessarily correct, and (6) complex figures consist of basic components 

whose identification may be indispensable in a proof.  The fourth principle emphasizes the 

premises and consequence of postulates.  Two hours of instruction per week for one full school 

year produced a significant effect on proof writing for the mid-year and post-year tests.   

These studies suggest that students need to learn operationalization explicitly as a part of 

the cognitive skills for proof writing.  Hence we assume that the underlying cognitive model of 

proof writing should include operationalization as an inference steps.   

3.1.4. Summary 

We have reviewed empirical studies that provide evidence for a learning environment to be 

effective and efficient.  The survey in the previous section suggests that an ideal learning 

environment for our target students (those who are at an intermediate level) should provide 
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modeling that fades away as the student get familiar with proof writing, but also fades in when 

necessary.  Modeling must articulate problem-solving steps in great details including inference 

steps that are unobservable as well as those that transform geometric postulates in declarative 

form into conditional form, namely operationalization.   

3.2. Overview of the Advanced Geometry Tutor 

AGT teaches how to compose a proof.  More precisely, it teaches how to complete a proof 

table, which requires asserting propositions, justifications (i.e., postulate names), and premises.  

There are two versions of AGT: the forward chaining tutor (FC tutor for short) teaches only a 

forward inference procedure.  On the other hand, the backward chaining tutor (BC tutor) teaches 

only a backward inference procedure.  In either direction, a postulate application may or may not 

involve construction.   

In order to write a proof statement, the student must make several inference steps, such as 

selecting a postulate, matching its configuration to the problem figure, testing its conditions, etc.   

AGT has a cognitive model that represents which inference steps are required for which kind of 

proof statement.  The tutor requires the students to follow the exact sequence of inference steps 

in the cognitive model every time the student asserts a proof statement into the proof table.  

When a student made an inappropriate (or erroneous) inference step, the tutor immediately 

provides feedback.  The content of immediate feedback serves as a hint.  When a student makes 

multiple unsuccessful attempts of the same inference step, the tutor provides more and more 

specific feedback.  After the student made a certain number of false trials on a particular 

inference step, the tutor gives the so-called bottom-out hint (Koedinger & Anderson, 1993), 

which both performs the inference step for the student and provides a specific instruction on 

what to do.   
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One of the most prominent features of AGT is that it starts the tutoring session by showing 

how to compose a proof table.  That is, the tutor first provides the students with the worked-out 

examples of proof writing.  The tutor then gradually decreases the amount of modeling (i.e., 

fading takes place) and starts asking students to perform the inference steps by themselves.  The 

degree of modeling is determined based on the student’s performance on each of the inference 

steps.    

3.3. A Cognitive Task Analysis of Geometry Theorem Proving 

This section presents a cognitive task analysis of backward and forward reasoning for 

proof writing.  The unit of analysis is a postulate application, namely, the assertion of a proof 

statement.  The study with GRAMY revealed that for the most of the problems used in the 

textbooks, construction can be implemented as a substep of a postulate application (i.e., a 

construction procedure can be described as a part of the inference steps that assert a proof 

statement into the proof table).  Hence our model of proof writing delineates the cognitive skills 

of applying postulates with and without construction.   

The cognitive model of applying a single postulate is comprised of a hierarchy of goal-

subgoal relations whose top level goal is making a backward or forward postulate application 

(see Figure 3.1).  Each goal in the model corresponds to a single inference step involved in a 

postulate application.  The leaves of the hierarchical model represent operations that the students 

must perform.  Some of them are the observable manipulations upon a proof table (e.g., to enter 

a propositions), whereas others are unobservable mental steps (e.g., to see if a proposition about 

to be asserted is already in the proof or not).   

For the sake of tutoring, separate goal hierarchies were developed for postulate application 

with and without construction and with either forward or backward chaining (e.g., backward-
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inference and backward-inference-with-construction).  Also, a proposition 

with “obvious” justifications such as “Given” or “Identical,” is modeled with a unique top-level 

goal (e.g., forward-obvious).  Another example of a proposition with an obvious 

justification is asserting two angles that form vertical angles, which in AGT, can be justified by 

simply stating “VerAng.”   

As an illustration of one of the goal hierarchies, Figure 3.1 shows a cognitive model of 

backward chaining with construction.  The italicized steps are observable ones.  Backward 

chaining consists of two major goals: “Select a proposition to justify” and “Apply a postulate 

backwards.”  The former corresponds to selecting an unjustified proposition in the proof table.  

The latter step has three sub-steps: “Select a postulate,” “Construction,” and “Execute the 

postulate.”  These three sub-steps are further broke down as follows.   

When selecting a postulate, students must check that the selected postulate overlaps with 

the problem figure and that it is indeed effective, namely, its consequence matches the 

proposition to be justified.   

If needed, construction takes place immediately after selecting a postulate.  As described in 

Section 2.2, construction is done to complete a partial overlapping between the postulate 

configuration and the problem figure.   Hence the construction consists of two substeps: (1) 

Finding missing segments and (2) constructing the missing segments.   

Finally, to execute the postulate, students first identify premises to be asserted (Instantiate 

premises), verify if they already appear in the proof table (Check Duplication), and assert only 

those premises that are not in the proof table as goals, namely, propositions that need to be 

justified.   
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Backward inference construction
Select a proposition to justify
Apply a postulate backwards

Select a postulate
Pick a postulate
Overlap configurations
Transform the postulate into a conditional form

Construction
Find missing segments
Construct missing segments

Execute the postulate
Instantiate premises
Check Duplication
Assert premises as unjustified propositions  

Figure 3.1: Cognitive model of backward inference with construction 

As can be seen in Figure 3.1, to make a single backward chaining postulate application 

with construction, students do nine operations where four operations are observable and five are 

unobservable.  APPENDIX L lists all other cognitive models used in AGT.    

3.4. The Solution Graph 

Prior to a tutoring session, the tutor invokes GRAMY to find the shortest proof for the 

target problem.  It then builds a solution graph from the output of GRAMY.  This section 

describes how solution graphs are built from proofs. 

The solution graph represents a sequence of proof steps, each of which corresponds to 

asserting a proof statement into the proof table.  For the proof steps that do not involve 

construction, a step consists of (1) a proposition to be asserted, (2) the name of the postulate that 

justifies the proof step, and (3) the premises that support the postulate application.  For proof 
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steps that require construction, a step also contains information about the construction, namely 

the segments to be constructed.   

The backward chaining tutor builds a solution graph by traversing the proof depth first 

from the goal.  A proof step for construction is asserted into the solution graph as a node 

immediate before an application of the postulate that requires construction.   

The forward chaining tutor builds a solution graph by traversing the proof bottom-up.  

Namely, starting from given propositions in the proof, it makes a proof step that contains all 

propositions in the proof that are immediate consequences of a set of propositions in a solution 

graph built so far.  A proposition p is an immediate consequence of a set of propositions P, if p 

can be derived by single postulate application with a subset of P.  A proof step for construction is 

asserted into the solution graph when no proposition can be an immediate consequence without 

construction.   

3.5. The Scaffolding Strategy 

The tutor simply follows the solution graph in order to provide scaffolding for students to 

complete a proof table.  Scaffolding only focuses on helping students follow inference steps 

necessary to perform proof steps.  In other words, scaffolding provided by AGT is carefully 

designed to provide local feedback and hints on each postulate application, not for a global 

search strategy.   

As mentioned in Section 3.3, there are different types of proof statements: with and 

without construction, and the obvious proof steps.  Those proof statements are embedded into the 

solution graph as proof steps hence there are different types of proof steps in the solution graph.  

Each type of proof step in the solution graph is associated with a particular scaffolding dialogue.  

Thus the scaffolding dialogue is hierarchical and its entire structure is identical to the goal 
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hierarchy for the corresponding proof step.  Associated with each inference step in the goal 

hierarchy is a dialogue script that defines tutor’s reaction to the student’s input.   

To control the amount of scaffolding on an inference step, the behavior of the step’s 

dialogue script depends on the student’s competence level for the step.  There are three levels of 

scaffolding: 

Show-tell: the tutor tells students what to do and actually performs the step. 

Tell: the tutor tells students what to do, but asks the student to perform the step. 

Prompt: the tutor only prompts the student to perform the step. 

The student’s competence level for a step is maintained as follows.  When the student correctly 

performs an inference step, the tutor increases the competence level.  Conversely, when the 

student commits an error on an inference step, then the competence level of that step is 

decreased.   

When the scaffolding level is “Tell” or “Prompt,” the tutor asks the student to perform the 

step, and if the student’s response is wrong, the tutor immediately provides feedback and asks 

the student to enter a correct input.  At first, the tutor says that the student has made an error and 

provides minimal feedback (e.g., “Try again”).  If the student repeatedly fails to perform the 

inference step correctly, the tutor provides more specific feedback until it eventually reaches 

bottom-out hint, which is equivalent to the show-tell scaffolding.    

There is no way for students to seek help even when they get stuck.  The students must do 

some kind of action to receive the tutor’s feedback.  In other words, an incorrect response at the 

impasse triggers a tutor’s help that varies according to the student’s competence level.   

For example, for an inference step for construction the tutor would say “Draw segments so 

that the postulate has a perfect match with the problem figure.”  When the student still fails to 
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draw correct segments, the tutor lowers the competence level of that inference step and then 

provides a “Tell” dialogue, which generates a feedback message like “Draw new segments by 

connecting two points.”  If the students yet can not make a correct construction, then the tutor 

provides more specific “Show-Tell” dialogue that would say “connect points A and B.”  Note 

that this sequence roughly corresponds to a sequence of hints that starting from a general idea 

and becoming more concrete until very specific instruction (bottom-out hint).   

APPENDIX A and APPENDIX B show an example of scaffolding dialogue provided by 

the forward and backward AGT respectively.    

In sum, cognitive skills of proof writing are modeled as hierarchical inference steps for 

each type of postulate application, which corresponds to asserting a single proof statement into 

the proof table.  Associated with the individual inference steps are three competence levels of 

dialogue scripts that are used both to initiate the tutor’s message and to provide feedback for a 

student’s input.  The tutor dynamically changes the competence level that is also associated with 

each of the inference steps.  Changing competence levels controls the amount of scaffolding, 

which in turn realizes fading as well as generating a hint sequence.   

3.6. The AGT Learning Environment 

AGT consists of several GUI components.  Figure 3.2 shows a screen shot of the tutor.  On 

the left side from top to bottom, the tutor provides the Problem Description window and the 

Proof Table window.  On the right hand side, there are the Message window, the Postulate 

Browser window, and the Inference Steps window.  The next section provides brief descriptions 

for each window, and Section 3.6.2 explains how learning proceeds in this learning environment.   

Most of the AGT components are written in Common-LISP running on a PC.  The graphic 

user interface (GUI) was written as a Java applet that can run on a variety of web browsers.  The 
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LISP modules and GUI components had a socket communication channel to exchange various 

messages.   

 

Figure 3.2: The Advanced Geometry Tutor 

3.6.1. GUI components  

Problem Description window:  This window shows a problem statement and a problem 

figure.  The problem figure displayed in this window is used for construction.  That is, the 

student can draw lines on the problem figure when it is time to do so.   

Proof window:  A proof is realized as a two-column table where each row consists of a 

proposition and its justification.  A justification consists of a name of a postulate and, for the 

proof statements with a non-obvious justification, a list of line numbers for the propositions that 
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match the premises of the postulate.  The Proof window shown in Figure 3.2 shows a complete 

proof for the problem displayed in the Problem Description window.   

Message window:  All kinds of messages from the tutor appear in this window.  When the 

tutor provides modeling, the instructions that the student must follow appear here.  When a 

student makes an error, feedback from the tutor appears here.  More importantly, this window is 

used for the students’ turn in the dialogue, which sometimes consists of merely clicking the [OK] 

button.   Dialogues are stored, and the student is free to browse back and forth by clicking a 

backward [<<] and a forward [>>] button.   

This window is also used unobservable inference steps, which by definition do not have 

actions onto the proof window.  An example of such unobservable response is for “Check 

Duplication” step shown in Figure 3.2.  For this step, the student must answer if the premises for 

the postulate application are already in the proof table or not.  The tutor may ask the student “Is 

AB=CD already in the proof table?” and awaits students response.  At that time, additional 

buttons appear in the Message window allowing the student select a [Yes] or [No] response.   

Postulate Browser window:  The student can browse the postulates that are available for 

use in a proof.  When the student selects a postulate listed in the browser’s pull down menu, the 

configuration of the postulate, its premises, and its consequence are displayed.   

This window is also used by the tutor.  As shown in Figure 3.2, when the tutor provides 

Show-tell or Tell level scaffolding on how to apply a particular postulate to a particular 

proposition, the configuration of the postulate changes its shape so that the student can see how 

the postulate’s configuration should be overlapped with the problem figure.   

Inference Step window:  The Inference Step window reifies the relevant goal hierarchy of 

postulate application as indented texts where each line corresponds to a single inference step.  
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The tutor highlight the inference step that is about to perform.  The Inference Step window in 

Figure 3.2 shows inference steps for forward chaining without construction.   

3.6.2. Students’ activities and tutor’s behavior 

The tutor first shows a problem in the Problem Description window.  The tutor then starts 

to guide the student’s problem solving by displaying messages in the message window.  

Depending on the student’s competence on an individual inference step, the tutor provides 

messages at one of the three levels of scaffolding described in Section 3.5.  The student is 

supposed to read these messages and press [Ok] button to proceed the tutoring session.    

Also as described in Section 3.5, since there is no facility to seek a hint, the students must 

enter something wrong even if they do not know what to enter.  The tutor then starts a hint 

sequence.    

When the student needs to input an equation, (e.g., ∠ABC = ∠DEF), an inline equation 

builder appears at the place where the equation must be asserted (Figure 3.3).  The student can 

select a template of the equation (e.g., ∠ ___ = ∠ ___ for an angle congruence) then just enter 

point labels to compete the equation.   

 

Figure 3.3: The equation builder 

Since AGT only deals with construction that can be done with connecting two existing 

points, the student only needs to specify two points in the problem figure to make a new 

segment.  
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4. Evaluation of AGT 

An evaluation study was conducted in the spring of 2004 to test the effectives of AGT and 

to compare the FC tutor to the BC tutor.  This chapter describes an overview of the evaluation 

study followed by its results in Chapter 5 and general discussion in Chapter 6.   

4.1. Subjects and Design 

We recruited 52 students for monetary compensation from the University of Pittsburgh.  

There were 24 male and 28 female students at the average age of 23.3 (SD=5.4).  The students 

were randomly assigned to conditions.  The sessions were run individually.   

4.2. Procedure 

After completing a consent form for the study, students were asked to read a 9-page 

booklet describing basic concepts and skills of geometry theorem proving.  Then they took a pre-

test for 40 minutes, which was open-book.  Immediately after the pre-test, each student used 

AGT and solved 11 problems.  The tutor sessions were split in two or three days based on the 

students’ preference.  On the last day of the tutoring sessions, immediately after solving the last 

problem, the students were asked to take an open-book post-test for 40 minutes.   For all 

students, the entire study sessions completed within 7 days.   

4.3. Materials 

Since the BC tutor and the FC tutor taught different strategies, the materials used in the 

study differed across conditions.  The difference of materials was localized to the difference in 

the strategies, for example, the materials for the forward tutor condition only showed inference 

steps relevant to forward inference.  
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4.3.1. The booklet 

The booklet contained (1) a review of geometry proofs that explains the structure of 

geometry proofs and the way they are written, (2) a technique for making a construction, and (3) 

explanations of all postulates used in the study.   For each postulate, the explanation consists of a 

general (English) description of the postulate, the configuration of the postulate, a list of 

premises, and the consequence of the postulate. APPENDIX C and APPENDIX D show the 

geometry booklet for the BC tutor and the FC tutor respectively.   

4.3.2. Pre- and post-test 

The FC and BC tutoring conditions used equivalent but slightly different tests.  They were 

equivalent in their solution structures on each test items; regardless of the strategy used, they 

both required the same knowledge to solve corresponding test items.  The difference was the 

direction of writing proofs.  For the FC tutoring condition, the students were asked to fill the 

table from top to bottom by starting with the givens.  So, in a correct proof table, the givens were 

placed at the top of the table and the goal to prove was placed at the bottom.  On the other hand, 

the students in the BC tutoring condition were asked to fill the table from top to bottom starting 

with the goal to be proved.  Namely, they placed the to-be-proved goal at the top of the proof 

table and the givens at the bottom.  

For both tutoring conditions, two tests, Test-A and Test-B, were used for the pre- and post-

tests.  Their use was counterbalanced so that the half of the students were assigned to use Test-A 

as the pre-test whereas the other half used Test-B as the pre-test.  Test-A and Test-B were 

designed to be isomorphic in both the surface structure of test items and their solution structures 

and the item order on the test.  That is, both tests were intended to require exactly the same 

geometry knowledge to be applied.   
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Regardless of the tutoring condition and the test version, a test consisted of 3 fill-in-blank 

items and 3 proof-writing items.  The fill-in-blank items showed proofs with blanks that the 

students were supposed to fill in.  There were two, one, and two blanks, respectively, on each of 

the three fill-in-blank items.  The proof-writing items consists of one non-construction problem, 

one construction problem, and one far transfer problem that required a construction that is not 

just to connect two existing points but to extend segments.  Overall, three problems in the test 

require construction; one fill-in-blank item and two proof-writing items.   

The proof-writing test items for the FC tutoring condition showed the given propositions at 

the top of proof tables, hence the students in the FC condition did not have to assert given 

propositions into the proof table.  On the other hand, the proof-writing test items for the BC 

tutoring condition showed a to-be-proven goal at the top of the proof tables hence the students in 

that condition did not have to assert a proposition to be proven.   

APPENDIX E and APPENDIX F show Test-A and Test-B used for the backward tutor 

condition, and APPENDIX G and APPENDIX H show those for the forward tutor condition.   

4.3.3. Proof problems used in the study 

Besides the six problems used in the pre- and post-tests, 11 problems were used during the 

tutoring session.  Among the 11 training problems, six required construction, which could be 

done by connecting existing two points.  APPENDIX I shows the 11 problems used in this study.   

There were 11 postulates taught in the tutoring sessions.  All 17 problems (11 training 

problems and 6 test problems) could be solved with only those postulates.  Table 4.1 shows the 

postulate applications necessary to solve each of the problems.  In the table, an “o” shows that 

the corresponding postulate was used to solve the problem.  An “X” shows that a postulate 

application required a construction.   For the problems in the tests, a “?” indicates that the 
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corresponding postulate application was the subject of a blank to be filled.  For the question #5 in 

the test, Test-B required additional applications of CPCTC and SSS, which appear in the 

parenthesis.   Test-A did not require these two postulate applications.  This imbalance was 

accidental and not a part of the experimental design.   

Table 4.1: Proof problems used in the study 

CPCTC Identity SAS SSS VerAng Z Mtri ASA Trans TriM Coll-para C-CP C-EX

Tutoring 1 o o o

2 X o o X

3 o o o

4 X o o X

5 o o o

6 X o o X

7 X o o o o X

8 o o o o o

9 o o o o o

10 X o o X

11 X o o o X

Test A/B 1 ? ? o

2 o ? ? ? o o X

3 o ?

4 o o o o

5 X (o) o o (o) o X

6 X o o o o X X  

5. Results 

Random assignment appears to have balanced the incoming student competence across 

conditions.  A post-evaluation analysis showed that there was no statistically significant 

difference in SAT math scores or in the pre-test scores between the two tutor conditions.   

As shown in Table 4.1, the question #5 (a proof-writing problem) in Test-A and Test-B 

were not exactly identical.  A post-evaluation analysis revealed that the students who took Test-

B made more errors than those who took Test-A on the question #5, hence where was a main 
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effect for the test version on the pre-test: t(50)=2.32; p=0.03.  When we excluded the question #5 

from the analysis (both in pre- and post-tests) the main effect in the test version disappeared.  

Hence, the following analyses were done excluding question #5 from pre- and post-test unless 

otherwise stated.   

5.1. Learning Time 

During the tutoring sessions, students spent almost the same amount of time for each of the 

problems regardless of the condition.  Figure 5.1 shows the average time spent on each problem 

comparing BC and FC tutor groups.   A double asterisk (**) shows that the difference is 

statistically significant (p<0.05), whereas a single asterisk (*) shows a marginal difference 

(p<0.1).  When there were differences, the FC students were faster than the BC students.   
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Figure 5.1: Average time spent on a problem 

For the first two problems, the tutor, both BC and FC, fully provided students with 

modeling that showed every single inference steps, and the students merely watched the tutor’s 

performance and clicked [OK] button to proceed the steps.  Since backward chaining requires 
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more steps to be performed than forward chaining, it took considerably longer for BC condition 

to go through first two problems.   

5.2. Pre- and Post-Test Scores 

Even though Test-A and Test-B are designed to be isomorphic, there was a slight 

difference in the length of proofs between those two tests.  Also, the proofs written by backward 

chaining tended to be longer than those written by forward chaining, because only backward 

chaining must write givens as a part of the proof (those are written in the first few rows in the 

test for the FC condition).  Hence, we used a ratio of correct proof statements to the length of a 

correct proof as a score of a proof-writing problem.4  For the fill-in-the-blank problems, correct 

answers were counted.  The test score on fill-in-the-blank problems was then calculated as the 

proportion of problems answered correctly.  The overall test score was the average of the proof-

writing and fill-in-the-blank scores.   

Figure 5.2 shows the test scores on both pre- and post-tests across the tutor and the test-

version conditions.  There was no main effect for the tutor on Pre-test scores.  On the other hand, 

in the post-test, there was a main effect for the tutor: F(1,48)=10.13; p<0.01.  The FC students 

scored higher.  There was no main effect for test (Test-A vs. Test-B) nor was there an interaction 

with condition for either pre-test or post-test.   

                                                 
4 Precisely speaking, “correct” proof statements here means those that were coded as “on-path” 
or “off-path” defined in Section 5.5.1.  Both on-path and off-path proof statements are true 
statements.  The difference is that only the on-path statements are in a model proof, whereas the 
off-path statements are not.  In other words, off-path proof statements are “reasonable,” but not a 
part of a correct proof.   
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Figure 5.2: Pre- and post-test scores 

A regression analysis revealed that the multiple regression equation of the post-test score 

upon the pre-test score and the tutor condition was: 

Post-test = 0.50 + 0.52 * Pre-test – 0.14 (if BC) 

In an ANCOVA using pre-test score as the covariate, the mean adjusted post-test scores 

were 0.58 and 0.72 for BC and FC conditions respectively.  The effect size in the difference of 

those scores was 0.72.5     

In order to determine why FC students gained more than BC students, the two parts of tests 

(i.e., fill-in-blank and proof-writing) were examined separately.  Figure 5.3 shows the average 

scores on the fill-in-blank test items.  There was no significant difference in those scores between 

FC and BC on both pre- and post-test scores.  There was a main effect in the test (pre- vs. post-) 

for both FC and BC conditions: paired-t(25)=-2.74; p=0.01 for FC, paired-t(25)=-3.43; p<0.01 

for BC.  That is, the students gained, but the FC and BC students gained the same amount.   

                                                 
5 (MFC – MBC) / SDBC where MFC and MBC are the mean adjusted post-test scores of FC and BC 
students, and SDBC is the standard deviation of BC students. 
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Figure 5.3: Average subscores on fill-in-blank questions 

Figure 5.4 shows the average test scores on the proof-writing test items.  There was no 

significant difference in the pre-test scores between FC and BC: t(50)=-0.91; p=0.37.  On the 

other hand, there was a significant difference in the post-test scores between FC and BC: t(50) = 

-2.53; p=0.02.  The effect size was 0.93.   
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Figure 5.4: Average subscores on proof-writing questions (excluding question #5) 
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The difference in the overall post-test scores between BC and FC was thus mainly from the 

difference in their performance on proof-writing questions.  The FC students wrote better proofs 

than the BC students.  To understand why the FC students outperformed the BC students in proof 

writing, we further conducted two more detailed analyses on (1) an aptitude-treatment 

interaction, and (2) a comparison between proofs with and without construction.   

To see if there was any difference in the proof-writing performance between high and low 

competent students, we have conducted an ANCOVA on the post-test scores on proof-writing 

questions (#4 and #6) with the pre-test scores on proof-writing questions as a covariate.  We used 

the median of the pre-test scores on proof-writing (0.72) to split the students into HIGH and 

LOW competent groups.  Figure 5.5 shows estimated marginal means on the proof-writing 

questions for HIGH and LOW competent students in both BC and FC tutor conditions.  The 

interaction between the tutor condition (FC vs. BC) and the competence level (HIGH vs. LOW) 

was not significant: F(1, 47)=1.18; p=0.28.   
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Figure 5.5: ATI analysis for proof-writing scores on the post-test  
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Since we exclude the question #5 for this overall analysis, there is only one proof-writing 

problem (the question #4) that does not involve construction and only one proof-writing problem 

(the question #6) that involves construction.  Figure 5.6 shows mean scores on those questions.  

The difference in the non-construction problem between FC and BC students were not 

significant: t(50)=0.66; p=0.51, whereas the difference in the construction problem was 

significant: t(50)=2.89; p<0.01.  Both FC and BC performed equally well on the non-

construction problem, but the FC students outperformed the BC students on the construction 

problem.  That we did not see difference on non-construction problems may be due to a ceiling 

effect; the non-construction problem was very easy for the students in both conditions.  The 

difference in the overall proof-writing scores shown in Figure 5.4 originated in the difference in 

their performance on the construction problem.   
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Figure 5.6: Mean scores on proof-writing for 
non-construction and construction problems  
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Remaining sections provide exploratory analysis for the superior performance of FC 

students.  First, we analyze how the students learned the postulates, and then we analyze how 

they wrote proofs.   

5.3. Learning the Postulates  

This section summarizes students’ learning on the geometric postulates.  There were 11 

postulates used in the study.  We first show how students improve their performance on postulate 

applications during the tutoring sessions.  We then show the difference in their skills on postulate 

applications between pre- and post-tests.   

5.3.1. Improvement of students’ performance in postulate applications 

How could the students improve their skills in applying postulate?  AGT recorded various 

sorts of students’ activities during the tutoring sessions.  Here we show the time and the accuracy 

of postulate applications.  Figure 5.7 shows the average time, in seconds, to apply a postulate.  

Figure 5.8 shows the average number of errors made within a single postulate application.  Both 

figures show two separate graphs each for postulate applications with construction (a) and 

without construction (b).  The figures show an aggregated average across all students and all 

postulates in each category.  The X-axis of the graphs is the occurrence of postulate applications; 

the left most data point in Figure 5.7, for example, shows the average time to apply a postulate at 

the first opportunity measured across all students and all postulates.  A bar at each data point in 

the graphs shows a two-standard error interval.   
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b) Without construction 
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Figure 5.7: Average duration for postulate applications 
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b) Without construction 
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Figure 5.8: Average number of errors made during single postulate application 

As shown in the figures, both tutor conditions showed a similar pattern in learning 

postulate applications, with a few differences.  Overall, one can see gradual drop in all four 

graphs with a few exceptional jumps.   

The irregular jumps were caused by a particular postulate.  To have better understanding 

on learning individual postulates, APPENDIX J shows learning curves for individual postulates 

with and without constructions.  For example, a jump at the fourth occurrence in postulate 
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application with construction was due to the fourth occurrence in CPCTC applications, which 

took place on the 7th training problem (see Table 4.1).  We have not conducted any detailed 

analysis to identify what exactly cause such a jump, but the 7th training problem required two 

segments to be constructed while all other problems only required one segment (APPENDIX I, 

#7).  There was also a jump at the 4th occurrence in the average number of wrong response for 

CPCTC without construction.  Again, we have not inspected this particular phenomenon, but this 

CPCTC application also took place in the 7th training problem, which required two CPCTC 

applications, one with construction and the other one without construction.  Apparently, the 

students had a difficulty to apply CPCTC to the 7th training problem.   

5.3.2. Pre- and post-test difference 

How well did the BC and FC students apply postulates?  How did they improve their skills 

on postulate applications during the tutoring sessions?  To see changes in their performance on 

postulate applications, the mastery level of individual postulate applications was calculated 

where the mastery level of postulate P is defined, for each test, as the ratio of the number of 

correct application of P made by a student to the total number of application of P in the correct 

proofs for the proof-writing problems.   

First, we compared the difference between the tutor conditions.  Figure 5.9 shows the 

comparison between BC and FC conditions on pre- and post-test in the mastery level of each 

postulate (again, excluding question #5).  A double asterisk shows a statistically significant 

difference, and a single asterisk shows a statistically marginal difference.  On the Pre-test, the FC 

students applied postulates better than the BC students: t(50)=-2.05; p=0.05.  On the post-test, 

the tendency was weakened, but the FC students were still better at applying postulates: t(50)=-

1.95; p=0.06.   
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Figure 5.9: Difference between tutor conditions in accuracy of postulate applications 

Second, we compared gains in the mastery level of postulate applications from the pre-test 

to the post-test.  Figure 5.10 compares the mastery level of postulate applications between pre- 

and post-tests for each tutor condition.  A double asterisk shows that the difference was 

statistically significant and a single asterisk shows a marginal difference.  As can be seen in the 

figure, both tutor conditions showed significant improvements for most of the postulates.   
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Figure 5.10: Difference in accuracy of postulate applications between tests 

Averaging over all 11 postulates, the BC students improved the accuracy of their postulate 

applications from 0.48 on the pre-test to 0.65 on the post-test.  The difference was significant: 

t(50)=-4.35; p<0.01.  On the other hand, the FC students improved from 0.59 on the pre-test to 

0.73 on the post-test.  The difference was also significant: t(50)=-3.91; p<0.01.  In an ANOVA, 

there was no main effect for the difference in the amount of gain between BC and FC: F(1, 

48)=0.50; p=0.48.  Thus, BC and FC students equally improved the mastery level of postulate 

application.   

It must be noticed that the mastery level used in this section does not necessarily reflect 

students’ competence on each postulate’s application.  This is because a failure in applying one 

postulate may hinder other postulate applications that are “descendants” of the failed postulate 

application.  For example, consider a simple chain of reasoning A → B, B → C, C→ D.  If one 

failed to carry out the first derivation, then it is likely that he/she would also fail to apply the 
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second and the third derivation.  The mastery level defined above suffers from this problem.  

Nonetheless, we can still read trends in the improvement made by the students.   

5.4. Strategy Used to write Proofs in the Post-test 

Some students who had been assigned to the BC tutoring condition used a forward 

chaining strategy for some proof-writing questions on the post-test, and vice versa.  The direction 

of a proof was considered to be inconsistent with the assigned tutoring condition when one of the 

following conditions was met: 

(1) The order of propositions in the proof table:  Sometimes the order of propositions was 

reversed.  For example, in the FC tutoring condition, correct proofs have givens on the top and 

the goal on the bottom.  If a proof table showed the goal at the top of the proof table, then that 

proof was considered to be written with backward chaining.   

(2) A gap between the top lines and the “body” of the proof:  Since the given or the to-be-

proven propositions were placed at the top of a proof table according to the assigned problem 

solving strategy, when the students took an inconsistent strategy, they tended to start writing at 

the bottom.  As a consequence, there was often a big gap between the givens, in the case of 

forward chaining, or the to-be-proven goal, in the case of backward chaining, and the first line of 

the proof written by the student.   APPENDIX K shows examples of inconsistent proofs.   

Figure 5.11 shows the number of proofs written in a discrepant strategy to the assigned 

tutoring condition (e.g., BC students used forward chaining).  As shown in the figure, 17 out of 

52 (33%) of the pre-test proofs in the BC tutor condition were written in forward chaining by ten 

(out of 26) different students.  Three of those ten students plus one new student in BC condition 

used the FC strategy on the post-test.  On the other hand, there was only one student in FC tutor 

condition who used the BC strategy on the pre-test (i.e., the two proofs shown in figure were 
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written by this student).  It was the same student who applied a discrepant strategy on the post-

test problems in the FC tutor condition.   
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Figure 5.11: Number of proof written in opposite strategy (Max=52) 

The above observation suggests that the students preferred forward chaining to backward 

chaining.  This could be either because that they found forward chaining easier than backward 

chaining, or they were simply more familiar with forward chaining.  An unofficial interview for 

some students indicated that they were taught forward chaining when they learned geometry 

theorem proving in a high school.   

5.5. Students’ Performance in Proof Writing 

This section provides a detailed analysis on performance on proof writing on the post-test.  

Since the difference in the test versions (Test-A and Test-B) is not an issue for the analysis here, 

we included the question #5, which lacks the isomorphism in Test-A and Test-B.  However, 

since we want to concentrate only on those who used the proof strategy taught during the 
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tutoring sessions (not something that they happened to have learned in the past), we only deal 

with proofs that were written with the proof strategies with the assigned tutor.  Namely, the 

proofs shown in Figure 5.11 are excluded from the analyses in this section.  We call the proof 

strategies with the assigned tutor the TStrategy hereafter.  In sum, on the post-test, the BC 

students wrote 69 proofs with their TStrategy (BC) and the FC students wrote 75 proofs with 

their TStrategy.  Of those, the BC students wrote 27 (39%) correct proofs and the FC students 

wrote 46 (61%) correct proofs.   

What does a “correct” proof mean?  We first provide the basic definitions of terms used to 

codify students’ proofs.  We then provide detailed analysis of those proofs.  

5.5.1. Basic definitions for coding schema 

A proof consists of proof statements, and those are the unit of analysis used in the 

following subsections to analyze students’ performance on proof writing.   

Proof statements, each of which consist of a proposition, a justification, and premises (see 

2.1), were coded as follows: 

On-path: The proof statement is a part of a correct proof.   

Off-path: The proof statement is not a part of correct proof, and the following conditions 

hold: the proposition may or may not be true, but the postulate used as a 

justification has a consequence that unifies with the proposition, and the 

premises support the proposition.  The individual premises may or may not be 

true.   

Wrong: The proof statement is neither on-path nor off-path.  

Missing: We also took into account the proof statements that are supposed to be in the 

proof, but were not mentioned at all.  Those statements were coded as missing.   
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The on-path and off-path proof statements are often called reasonable hereafter, because 

they are equally plausible at the time they were entered due to the nondeterministic characteristic 

of the task.   

Based on those coding, which are italicized in the description below, the proofs were coded 

as follows:  

Correct:  The proof contained a chain of on-path proof statements from given 

propositions to the goal.  The proof may include extra off-path and wrong 

statements that have no connection to the chain of on-path proof statements.   

Wrong: The proof contained a chain of proof statements from given propositions to the 

goal, but the chain involves at least one not on-path proof statement.   

Stuck:  The proof did not contain a chain of proof statements.  The proof may contain any 

type of proof statements.   

Incomplete:  All proof statements in the proof were reasonable, but the proof lacks a 

chain from given propositions to the goal due to a lack of one and only one 

proof statement.  An example incomplete proof involves a proof statement 

that applies the SSS axiom for triangle congruent and concluded segment 

congruence instead of triangle congruence, and the triangle congruence is 

not in the proof table.    

Blank:  No attempt was made at all. 

The incomplete proofs could be coded as “stuck,” but we treated them separately because 

(1) they only contained reasonable statements hence (2) the student could have just made a slip, 

which means that the student probably did not get stuck.   
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5.5.2. Analysis of proofs 

What types of incorrect proofs did they write?  Figure 5.12 shows the number of 

occurrence of each type of the proofs in each of the tutor conditions.  “OD” shows the number of 

proofs in each tutor conditions that were not written in TStrategy.  Hence the remaining part of 

the figure actually shows the number of proofs written in TStrategy.  The figure clearly shows 

that the FC students wrote more correct proofs than the BC students.  It also shows that both BC 

students and FC students were equally likely to commit “Wrong” proofs.  Aggregating “Stuck” 

and “Blank” proofs, however, BC students were more likely to get stuck.   
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Figure 5.12: Classification of incorrect proofs 

To see if the performance of the BC students writing correct proofs was inferior to the FC 

students, we ran a t-test on the individual student’s number of proofs that were not correct, which 

varied from 0 to 3.  Figure 5.13 shows the average number of incorrect proofs written by the 

students in each tutor condition.  The difference is statistically significant: t(50)=2.01; p=0.02. 
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Figure 5.13: Portion of incorrect proofs on the post-test 

Again, we ran a comparative analysis on students’ performance in proof-writing between 

construction and non-construction problems.  Table 5.1 shows three 2x2 Contingency Tables 

comparing correctness of proofs and the strategy used (TStrategy) for each of the proof-writing 

problems (NO).  For correctness, the variable Correct is coded as 1 for the correct proofs and 0 

for all other type of proofs.   We ran a Chi-squire test for each of the three Contingency Tables 

separately.  The Chi-squire tests did not revealed statistically significant relationship between the 

correctness and the strategy used for the problem #4 (non-construction problem: χ2=0.94, 

p=0.33) and #5 (construction problem: χ2=2.62, p=0.11).  On the other hand, for the problem #6 

(construction problem) there was a significant relationship between the correctness of the proofs 

and the strategy used (χ2=7.13, p<0.01).  Both BC and FC students performed equally well on 

the non-construction problem (#4).  Their performance on a construction problem (#5) was not 

significantly different, but the trend was that the FC students wrote more correct proofs than the 

BC students.  On the other hand, the FC students outperformed BC students on another 

construction problem (#6).  The question #6 involved a construction technique (to extend a 
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segment).  It also required applying postulates (Z, MTri, and ASA) that were introduced late in 

the training sessions hence had fewer opportunities to practice.  Hence, the question #6 might be 

more “difficult” for students to solve, and that difficulty might be a potential source of difference 

in students’ performance.   

Table 5.1: 2x2 Contingency Table on the correctness of the proofs 

STRATEGY * Correct * NO Crosstabulation

8 17 25

6.5 18.5 25.0

5 20 25

6.5 18.5 25.0

13 37 50

13.0 37.0 50.0

14 8 22

11.2 10.8 22.0

10 15 25

12.8 12.2 25.0

24 23 47

24.0 23.0 47.0

20 2 22

15.9 6.1 22.0

14 11 25

18.1 6.9 25.0

34 13 47

34.0 13.0 47.0

Count

Expected Count

Count

Expected Count

Count

Expected Count

Count

Expected Count

Count

Expected Count

Count

Expected Count

Count

Expected Count

Count

Expected Count

Count

Expected Count

BC

FC

STRATEGY

Total

BC

FC

STRATEGY

Total

BC

FC

STRATEGY

Total

NO
4

5

6

0 1

Correct

Total

Problem NO = 4 is a 

non-construction 

problem.   

Problems NO = 5 & 

6 are construction 

problems.  

 

 

We also ran same kind of Contingency Table analyses on the other type of proofs (e.g., 

Wrong, Stuck, Blank, and Incomplete), but there were no statistically significant relationship 

between the tutor conditions and the type of proofs other than the one shown in Table 5.1 

In sum, both FC and BC students performed equally well on the non-construction problem, 

but the FC students did better than BC students on the construction problems.  The next sections 

discuss what part of backward chaining makes it more likely fail to find a correct proof.   
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5.5.3. Analysis of proof statements 

There were 479 proof statements (215 and 264 in the BC and FC conditions respectively) 

appearing on the post test.  Of those 479 proof statements, 400 were reasonable and 79 were 

wrong statements.   180 statements were missing (92 and 88 in the BC and FC conditions).  

Figure 5.14 compares the number of proof statements of each type made by FC and BC students.   
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Figure 5.14: Classification of proof statements 

Surprisingly, the students seldom made off-path statements.  Since AGT did not teach 

search control or heuristics, even when they ended up with a correct proof, the students could 

make off-path proof statements, which by definition are reasonable proof statements but are not a 

part of correct proofs.  Still the number of off-path statements shown in Figure 5.14 is fairly 

small compared to on-path statements.  When the students eventually wrote correct proofs, did 

they struggle at all?  To answer this question, we conducted a Contingency table analysis (Table 

5.2) to compare the difference in off- and on-path statements across the TStrategies.   
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Table 5.2: 2 x 2 Contingency tables on on-path and off-path proof statements 

a) All proofs 

TStrategy * PS Crosstabulation

7 160 167

12.1 154.9 167.0

22 211 233

16.9 216.1 233.0

29 371 400

29.0 371.0 400.0

Count

Expected Count

Count

Expected Count

Count

Expected Count

BC

FC

TStrategy

Total

Off-path On-path

PS

Total

 

b) Correct proofs 

TStrategy * PS Crosstabulation

0 111 111

1.1 109.9 111.0

3 178 181

1.9 179.1 181.0

3 289 292

3.0 289.0 292.0

Count

Expected Count

Count

Expected Count

Count

Expected Count

BC

FC

TStrategy

Total

Off-path On-path

PS

Total

 

c) Incorrect proofs 

TStrategy * PS Crosstabulation

7 49 56

13.5 42.5 56.0

19 33 52

12.5 39.5 52.0

26 82 108

26.0 82.0 108.0

Count

Expected Count

Count

Expected Count

Count

Expected Count

BC

FC

TStrategy

Total

Off-path On-path

PS

Total

 

There was a significant difference in the appearance of on-path and off-path statements 

when all proofs were aggregated (Table 5.2 a); χ2 = 3.99, df = 1, p = 0.046.  The difference was 

not significant for correct proofs (Table 5.2 b); p on Fisher’s Exact Test = 0.29, but remains 

significant for incorrect proofs (Table 5.2 c); χ2 = 8.52, df = 1, p < 0.01.   

In the 46 correct proofs written by the FC students, there were only 3 off-path statements.  

In the 27 correct proofs written by the BC students, there were no off-path statements.  

Surprisingly, when the students wrote correct proofs, they seldom wrote off-path proof 

statements.  When they wrote incorrect proofs, the students in both conditions made off-path 

statements, but FC students made more off-path statements than BC students.  This observation 
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agrees with our initial prediction that forward chaining would produce more off-path statements.  

Yet the number of off-path statements made by FC students was quite small (19).   

Did the proof statements for construction differ from the ones for non-construction?  More 

precisely, when the students apply postulates, did they make more off-path statements for the 

postulate applications that involve constructions than those that do not?  Do FC students made 

more off-path statements than BC students on the postulate applications with constructions?  To 

answer those questions, we broke down the 2 x 2 Contingency tables shown in Table 5.2 to 

compare the appearance of on-path and off-path proof statements that do and do not involve 

constructions.   

Table 5.3: 2 x 2 Contingency table on on-path and off-path statements 
comparing construction vs. non-construction problems 

TStrategy * PS * CONST Crosstabulation

7 140 147

12.2 134.8 147.0

22 180 202

16.8 185.2 202.0

29 320 349

29.0 320.0 349.0

20 20

20.0 20.0

31 31

31.0 31.0

51 51

51.0 51.0

Count

Expected Count

Count

Expected Count

Count

Expected Count

Count

Expected Count

Count

Expected Count

Count

Expected Count

BC

FC

TStrategy

Total

BC

FC

TStrategy

Total

CONST
 

Yes

Off-path On-path

PS

Total

 

No 

Table 5.3 shows number of on-path and off-path statements appeared in the post test (both 

correct and incorrect proofs), comparing the ones that involve construction (CONST = Yes) and 

that do not (CONST = No).  As shown in the table, there were 349 postulate applications that did 

not involve constructions (they may or may not be a part of a construction problem), whereas 51 

postulate applications required constructions to apply.  For the proof statements that do not 

involve construction, the difference in appearance of on-path and off-path statements was 
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significant: χ2 = 4.20, p=0.04.   Surprisingly, when the students apply a postulate with 

construction, they did not make any off-path attempt, that is, when they made constructions, the 

students always apply postulates in the way a model proof does.   

Table 5.4: 2 x 2 Contingency tables on on-path and off-path statements comparing 
construction vs. non-construction problems in correct and incorrect proofs  

a) Correct proofs 

TStrategy * PS * CONST Crosstabulation

0 101 101

1.2 99.8 101.0

3 152 155

1.8 153.2 155.0

3 253 256

3.0 253.0 256.0

10 10

10.0 10.0

26 26

26.0 26.0

36 36

36.0 36.0

Count

Expected Count

Count

Expected Count

Count

Expected Count

Count

Expected Count

Count

Expected Count

Count

Expected Count

BC

FC

TStrategy

Total

BC

FC

TStrategy

Total

CONST
 

Yes

Off-path On-path

PS

Total

 

No 

b) Incorrect proofs 

TStrategy * PS * CONST Crosstabulation

7 39 46

12.9 33.1 46.0

19 28 47

13.1 33.9 47.0

26 67 93

26.0 67.0 93.0

10 10

10.0 10.0

5 5

5.0 5.0

15 15

15.0 15.0

Count

Expected Count

Count

Expected Count

Count

Expected Count

Count

Expected Count

Count

Expected Count

Count

Expected Count

BC

FC

TStrategy

Total

BC

FC

TStrategy

Total

CONST
 

Yes

Off-path On-path

PS

Total

 

No 

Table 5.4 shows the similar Contingency tables with comparison between construction and 

non-construction problems.  The relationship between the appearance of on-path/off-path 

statements and the tutor condition (TStrategy) was not significant for the correct proofs (Table a: 

p for Fisher’s Exact Test = 0.28), but it was significant for incorrect proofs (Table b: χ2 = 7.34; p 
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< 0.01).  When the postulate application did not involve construction, the FC students wrote 

more off-path statements for incorrect proofs.   

5.5.4. False subgoaling in backward chaining 

Unlike forward chaining, backward chaining could apply a postulate with the premises that 

are false (i.e., the propositions that would never be justified) while its consequence matched with 

a proposition being justified.  The proof statements in this type were coded as “off-path” in our 

coding schema shown in section 5.5.1.   

It must be emphasized that this type of off-path statement does not appear in forward 

chaining.  This is because forward chaining always apply a postulate with true premises, hence 

never enters false proposition into the proof table.  Backward chaining, on the other hand, enters 

unjustified propositions that could be false.  Especially, students could enter false propositions 

that look like they are true in the problem figure.   

One could hypothesize that this false subgoaling might be the source of the difficulty in 

backward chaining.  In other words, the students could enter many false propositions as the 

premises of backward postulate applications, and that could make a proof intractable.   

Surprisingly, there were no false subgoaling occurred in the BC students’ proofs at all.  All 

the off-path statements made by BC students involved only true propositions.  One possible 

account for not observing false subgoaling is that since we had provided a problem figure in 

which all the given propositions are quantitatively satisfied (see section 2.2.2), there were 

coincidentally few false propositions that looked true hence the propositions that the students 

guessed to be true were indeed true.    
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5.6. Analysis of Postulate Applications 

One of the interesting findings is that the BC students wrote less reasonable proof 

statements than the FC students (Figure 5.14).  The BC students tended to write wrong proof 

statements more often than the FC students, but most of the time, the BC students apparently just 

gave up a proof (Figure 5.12).   

In order to understand why the BC students made fewer reasonable proof statements, we 

coded each of the 79 wrong statements identified in the preceding section as a triplet of 

independent codes of (1) the proposition, (2) the justification, and (3) the premises, which are 

three constituent of a proof statement.  For each proof statement, we coded each instance of a 

proposition, a justification, and the premises independently as follows:  

On-path: A proposition, justification, and premise were coded independently as “on-path” 

when they appeared in the correct proof.  

Off-path: A proposition was coded as “off-path” when it was true in the given problem 

configuration, but not a part of the correct proof.  A justification was coded as 

“off-path” when it was relevant to proving a proposition to be justified (i.e., its 

consequence unifies with the proposition), but does not indeed appear in the 

correct proof.  “Off-path” premise(s) correctly support a justification, but are 

not a part of proof (e.g., a different combination of side-angle-side for triangle 

congruence).  In backward chaining, off-path premises may or may not be true 

propositions.   

Wrong: A proposition was coded as “wrong” when it does not hold in the problem 

configuration.  “Wrong” justifications do not have a consequence that matches 
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with a proposition being justified.  “Wrong” premises do not support a 

justification.   

Blank: A proposition and justification were coded independently as “blank” if they 

were not written (left blank).  Premises, which were supposed to be the line 

numbers of the corresponding proof statements, were coded as “blank” only 

when the appropriate statements were not in a proof table.  This means that even 

when a proof statement did not have the line numbers that indicate premises, if 

the premise statements were all in the proof table, then the premises were coded 

as “On-path.”  This conservative coding schema was adopted to prevent that 

were carelessly forgotten from being coded as “Blank.”   

The unit of analysis here is an instance of a proposition, a justification, or premises in the 

proof statements.  Hence a proof statement can have a triplet of any combination of the codes of 

these instances.  For example, a reasonable proof statement may have both a proposition and a 

justification coded as “on-path,” but the premises coded as “off-path.”  The rest of the current 

section describes the difference in appearance of proposition, justification, and premises 

separately.    

Figure 5.15 shows the frequency of each type of proposition.  To test the difference in the 

usage of propositions, we built a 2 x 3 contingency table (Table 5.5 a); two rows of Forward and 

Backward chaining, and three columns of On-path, Off-path, and Wrong usage of the proposition 

(there was no proof statement with no proposition).  A Chi-Square test on the 2 x 3 contingency 

table showed no significant difference in the type of propositions (p of Fisher’s Exact 

Test=0.48).  The lack of difference remained when the proof statements were further broken 
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down into the ones that did and did not involve constructions (Table 5.3 b): p of Fisher’s Exact 

Text = 0.38.   
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Figure 5.15: Type of propositions 

Table 5.5: A 2 x 3 Contingency table on the type of propositions 

a) All proof statements TStrategy * Proposition Crosstabulation

9 33 6 48

10.3 30.4 7.3 48.0

8 17 6 31

6.7 19.6 4.7 31.0

17 50 12 79

17.0 50.0 12.0 79.0

Count

Expected Count

Count

Expected Count

Count

Expected Count

BC

FC

TStrategy

Total

Off-path On-path Wrong

Proposition

Total

 

b) Comparison between 
statements that do and 
do not involve 
constructions. 

 
 The statements may or 

may not be a part of a 
construction problem. 

TStrategy * Proposition * Construction Crosstabulation

9 27 6 42

10.5 24.1 7.4 42.0

8 12 6 26

6.5 14.9 4.6 26.0

17 39 12 68

17.0 39.0 12.0 68.0

6 6

6.0 6.0

5 5

5.0 5.0

11 11

11.0 11.0

Count

Expected Count

Count
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Count
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Count
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Count
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Count
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Construction
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Total
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Figure 5.16 shows the frequency of types of justifications.   A Fisher’s Exact Test on a 2 x 

4 contingency table (Table 5.6 a) did not show a significant difference in the usage of 

justification between forward and backward chaining (p=0.18).  The trends remained when the 

proof statements were further broke down into the ones that did and did not involve 

constructions (Table 5.6 b): p for Fisher’s Exact Test = 0.16 for non-construction proof-

statements, and 1.00 for construction proof-statements.   
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Figure 5.16: Type of justification 
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Table 5.6: A 2 x 4 Contingency table on the type of justification 

a) All proof 
statements 

TStrategy * Justification Crosstabulation

1 17 19 11 48

.6 18.8 15.2 13.4 48.0

0 14 6 11 31

.4 12.2 9.8 8.6 31.0

1 31 25 22 79

1.0 31.0 25.0 22.0 79.0

Count

Expected Count

Count

Expected Count

Count

Expected Count

BC

FC

TStrategy

Total

Blank Off-path On-path Wrong

Justification

Total

 

b) Comparison 
between 
statements that 
do and do not 
involve 
constructions. 

TStrategy * Justification * Construction Crosstabulation

1 15 16 10 42

.6 17.3 11.7 12.4 42.0

0 13 3 10 26

.4 10.7 7.3 7.6 26.0

1 28 19 20 68

1.0 28.0 19.0 20.0 68.0

2 3 1 6

1.6 3.3 1.1 6.0

1 3 1 5

1.4 2.7 .9 5.0

3 6 2 11

3.0 6.0 2.0 11.0

Count

Expected Count

Count

Expected Count

Count

Expected Count

Count

Expected Count

Count

Expected Count

Count

Expected Count

BC

FC

TStrategy

Total

BC

FC

TStrategy

Total

Construction
No

Yes

Blank Off-path On-path Wrong

Justification

Total

Figure 5.17 shows the frequency of types of premises.  A Fisher’s Exact test on a 2 x 4 

contingency table (Table 5.7 a) revealed a significant difference: Fisher’s Exact Test = 7.25; 

p=0.04.  The BC students left more blank premises than the FC students.  That is, BC students 

were more likely to fail to provide premises.  This trend is especially prominent when the 

postulate application involves construction (Table 5.7 b) whose p-value for the Fisher’s Exact 

Test is 0.06 whereas the one for postulate applications that do not involve construction is 0.16.   
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Figure 5.17: Usage of premise 

Table 5.7: A 2 x 4 Contingency table on the use of premises 

a) All proof 
statements 

TStrategy * Premises Crosstabulation

27 2 1 18 48

21.9 3.6 .6 21.9 48.0

9 4 0 18 31

14.1 2.4 .4 14.1 31.0

36 6 1 36 79

36.0 6.0 1.0 36.0 79.0

Count

Expected Count

Count

Expected Count

Count

Expected Count

BC

FC

TStrategy

Total

Blank Off-path On-path Wrong

Premises

Total

 

b) Comparison 
between 
statements that 
do and do not 
involve 
constructions. 

TStrategy * Premises * Construction Crosstabulation

23 2 1 16 42

19.8 3.7 .6 17.9 42.0

9 4 0 13 26

12.2 2.3 .4 11.1 26.0

32 6 1 29 68

32.0 6.0 1.0 29.0 68.0

4 2 6

2.2 3.8 6.0

0 5 5

1.8 3.2 5.0

4 7 11

4.0 7.0 11.0

Count

Expected Count

Count
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Count
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Count

Expected Count
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Total
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Total
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Total
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To see the use of premises in details, we conducted a Chi-square test on a 2 x 2 

contingency table whose columns consists of the blank premises and the aggregation of 

remaining types.  The analysis revealed that BC students tended to leave the premises blank 

more often than FC students (χ2 = 5.63; p=0.02 for all proof statements, χ2 = 2.61; p=0.11 for 

proof-statements without construction, and p for Fisher’s Exact Test is 0.05 for the proof-

statements with construction).  A similar 2 x 2 Chi-square test showed that the BC students also 

tended to use wrong premises more often than FC (Fisher’s exact test = 3.21, p=0.06).  Other 2 x 

2 analyses showed no significant difference in the use of neither off-path or on-path premises 

between the FC and BC students.    

6. Discussion  

After proving 11 geometry theorems with intensive aid from AGT, the students in the FC 

and the BC conditions showed different performance on proof writing in the post-test.  This 

chapter discusses those differences in both theoretical and pedagogical aspects.  More 

specifically, the following sections discuss the relationship between conceptual and strategic 

knowledge, the source of difficulties in backward chaining, a relation between the cognitive load 

theory and the current study, and the complexity of the search.   

6.1. Learning Domain Concept does not secure Proof-writing Skills 

There were no significant between-condition differences in the accuracy of postulate 

applications on the post-test (Figure 5.9).  FC and BC students improved their accuracy of 

postulate applications equally well (Figure 5.10).  Both conditions showed a similar pattern in 

learning progress (i.e., the learning curve; Figure 5.7 and Figure 5.8).  Still, the FC students 

outperformed the BC students in writing proofs.    
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These findings support a claim that it is not sufficient to understand domain principles, 

namely, the concept of each geometric postulate.  Knowing about the knowledge to apply is one 

thing; knowing how to apply it is another.  Learning strategic skills (how to write a proof, how to 

apply postulates, etc) apparently requires more elaborate practice.  And this is indeed the place 

where the difference between forward and backward chaining took place.  The following 

sections discuss potential source of difficulties in backward chaining.   

6.2. Difficulty in Thinking Backwards: Subgoaling  

Like other studies mentioned in Section 2.4, the students in this study showed better 

performance on FC than BC.  However, the current study narrowed down the factors of students’ 

difficulty on working backwards.  The most striking finding is that a potential source of the 

difficulty in backward chaining lies in the difference between the ways forward and backward 

chaining assert proof statements.   

The BC students tended to get stuck at proving premises even when they picked a correct 

proposition and a postulate.  In other words, it seems to be difficult for BC students to specify 

subgoals as the to-be-justified propositions to support a postulate application.  As mentioned in 

the definition of coding schema for premises (Section 5.6), the students could just forget to write 

line numbers even when they indeed asserted corresponding propositions in the proof table.  

However, premises were coded as “On-path” if all corresponding propositions appeared in the 

proof table, which happened only once in the BC condition.  Although we can not totally 

disregard the possibility that the students had simply forgotten to enter and specify premises, it is 

also unlikely that only the BC students had suffered from such carelessness.  Hence, the BC 

students apparently have indeed had difficulty in subgoaling.   
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Subgoaling requires the students to write into the table one or more propositions (i.e., 

premises) that have yet to be proved.  At the time they are entered into the proof table, those 

propositions are not “true” assertions, but just hypothesis to be proved.  This uncertainty may 

increase the chance of failure in backward chaining.  Furthermore, those propositions are new in 

the proof table unless the same proposition has been used in different subgoaling in the past.  In 

other words, the students must enter new propositions whose truth value is not known.  Forward 

chaining, on the other hand, always enter propositions that are derived from known facts (i.e., 

justified propositions) in the proof table.  Backward chaining differs mostly from forward 

chaining in this guess-and-try fashion in entering proof statements.    

The booklet for the BC students (see APPENDIX C) only showed the entire structure of a 

proof table.  It did not tell students any procedures (i.e., the inference steps) to complete a proof 

table.  The BC tutor taught details on how to assert premises, but it did not emphasize that the 

premises are unjustified assumptions.  Explicating guess-and-try fashion in backward chaining 

might be a key issue for designing an effective tutor.   

6.3. Implication of the Cognitive Load Theory 

As mentioned in Section 2.4, backward chaining is apparently more challenging for 

students to learn than forward chaining.  One possible theoretical account for this issue is the 

cognitive load theory advocated by Sweller (1988), which basically predicts that the more 

working memory load the students have, the more cognitive capacities required hence the 

learning would be hindered due to a deficit of the cognitive capacity.  Compared to forward 

chaining, backward chaining may require storing more information in working memory, which 

raises cognitive load, resulting in less learning.   
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Since the students followed the exact sequence of inference steps described in Section 3.3, 

we can estimate the working memory load as a number of the piece of information that must be 

stored in students’ mind during problem solving.  When we examined the cognitive model 

shown in APPENDIX L, it turned out that the cognitive load is rather small for both forward 

chaining and backward chaining.  This is because AGT provides a proof table and the way it is 

filled is straightforward (i.e., a line at a time from top to bottom).  Indeed, the only things that the 

FC students must store in their working memory is (1) the mapping for a postulate configuration 

being overlapped onto the problem figure, and (2) the conditional description of a postulate, i.e., 

the consequence and the premises of a postulate with labels used in the Postulate Browser 

window.  The BC students also had to store these two things in their working memory; the 

mapping and the conditional description.  In addition, the BC students needed to store in working 

memory a set of premises of the postulate, because the premises must be tested for duplication 

before they were asserted to the proof table.  However, since the test for duplication took place 

immediately after the premises were stored in working memory, cognitive load during the 

training for BC students should be fairly small.   

Based on the above observation, cognitive load theory predicts that FC and BC students 

should have the same learning gains hence should have shown the same performance on the 

post-test.  Still our data showed that the FC students outperformed BC students.  Thus, it might 

be either that (1) cognitive load theory does not explain why the FC students learned more than 

the BC students, or that (2) the BC students suffered from other kind of cognitive load that was 

not captured in our cognitive model of proof writing.   

66 



6.4. Complexity of the Search 

That both FC and BC students seldom assert off-path proof statements was a surprising 

finding.   

BC students could have created more unsuccessful subgoaling (both off-path and wrong), 

resulting in having irrelevant propositions in a proof table.  If this had taken place, then the 

students would have had more difficulties in keeping their proofs straight, because now they 

needed to keep track of which postulates they must cross out when they hit an impasse and back 

up.  Indeed an average branching factor in backward chaining measured by running GRAMY 

backwards on 11 training problems is 5.47 (SD=2.07).  Although this could account for the 

difficulty in backward chaining, unsuccessful (both false and reasonable) subgoaling statements 

were not observed in this study.   

Similarly, FC students could have asserted many off-path proof statements, because they 

are equally plausibly the constituents of the proof at the time they were asserted.  We calculated 

average number of possible assertions for forward chaining by running GRAMY on each of the 

11 problems used in the training sessions.  For each proof statement in each of the proofs, we 

counted the number of correct assertions that could have made.   The average of those counts is 

20.84 (SD=10.11).  The chance for the FC students to make off-path statements was indeed very 

high.  And yet they made few such statements.   

That both FC and BC students did not make large number of unsuccessful constructions 

weakens a claim that the students must learn backward chaining because it reduces the search for 

appropriate constructions.  This is a particularly important contribution of the current study.  

Indeed, the FC students wrote more on-path statements for construction than BC students (Table 

5.3).  Furthermore, there was no instance of off-path constructions, a postulate application with 
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construction that is “reasonable,” but not a part of correct proof.  This is a clear contradiction to 

our prediction that forward chaining could produce enormous amount of off-path constructions.   

The students used a pencil on the post-test.  Thus they could erase off-path statements, 

which could have lowered the count of off-path statements.  Unfortunately, we could not test this 

hypothesis.  However, we were able to count the number of proof statements that were 

apparently erased in correct proofs.  More precisely, we counted proof statements that once had 

all three constituents (i.e., a proposition, a justification, and premises), but were erased.  There 

are five erased proof statements written by the BC students, and 15 by the FC students.  Because 

it is hard to read the contents of the erased statements, we can not really tell much about these 

erased proof statements, but that there were only 20 out of 479 proof statements erased is a 

surprising observation.  

Since the major focus of this study is on figuring out what makes backward chaining 

difficult to learn, we have not fully analyzed successful proofs.  However, the reason of having 

few off-path search can be accounted by the theory of analogical search control advocated by 

VanLehn (1998).  The theory predicts that once the students acquired a search control from 

problem-solving experience in the past, they can effectively retrieve such search control to solve 

new problems.  Hence if the questions in the post-test were similar to the training problems, 

which is true in the current study, the students might have utilized episodic memories to select 

only on-path postulates.   

Another account for not observing off-path statement is that the students in both conditions 

might have applied a bidirectional search; they applied some mental BC or some mental FC in 

order to find a connection between the givens and the goal.  Unfortunately, we do not have any 
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factors in our data to test this hypothesis.  We will discuss a possible extension of the experiment 

in Section 7.2.   

6.5. Concluding Remarks 

As mentioned in Section 2.4, most of the previous studies comparing FC and BC failed to 

show the main effect for the tutor condition.  The current study showed that the FC students 

outperformed to the BC students in proof-writing, especially proofs with construction.  We have 

not yet to know why our study has met such a difference while others did not, but we consider 

two potential explanations. 

The effect of modeling:  AGT not only have a detailed cognitive model of proof-writing, 

but also provides modeling prior to students’ own problem solving.  This modeling might not be 

as effective for BC as FC.  Especially, the last steps of the BC model, i.e., asserting premises and 

line numbers, could have not been confusing hence not comprehensible for students. 

A potential preference on forward chaining:  As discussed in Section 5.1, the students 

apparently knew forward chaining prior to the experiment.  The familiarity with the strategy may 

be the reason that the FC students made fewer errors on the post-test.  Recruiting students who 

have no experience in geometry theorem proving for the exact same experiment conducted in the 

current study could test this hypothesis.   

 The difficulty in subgoaling and the effect of modeling are not specific only in geometry 

theorem proving.  Thus, we conjecture that a similar result (i.e., forward chaining leads to better 

learning) would be obtained in other domains where one can describe domain principle as a set 

of production rules and the students learn how to apply them either forwards and/or backwards.  

Since many studies have indeed showed that the novices prefer forward chaining, the more 

carefully designed studies should be conducted to examine to what extent the each of the 
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problem solving strategies facilitates students’ learning.  The subskills that are part of the target 

cognitive skills (e.g., construction in the current study) must also be carefully designed and 

examined.   

7. Future Work 

Based on the lessons learned through this study, this section discusses implications to 

enhance effectiveness and efficiency of the tutor, and some open questions that would be of 

interest for future studies.   

7.1. Implications for a Tutor Design 

A potential way to improve the BC tutor’s efficacy is to intensify modeling and scaffolding 

on subgoaling for backward chaining.  Although asserting unjustified propositions into a proof 

step was explicitly stated in the cognitive model of backward chaining utilized in AGT, the 

model was not effective in supporting the BC students in learning subgoaling.   The Postulate 

browser allowed the students to read a description of a postulate that contains its premises and a 

consequence.  The cognitive model of backward chaining also captured an inference step to 

convert those descriptions into a conditional form (i.e., an IF-THEN form) that explicitly holds 

the premises in the condition part (the IF part).  Unfortunately, those aids were not effective 

enough to enhance students’ ability to deal with subgoaling.   

The inadequacy of the BC tutor may also be due to a lack of instruction on backtracking.  

Backward chaining is essentially nondeterministic.  For some goals, there are multiple equally 

plausible postulates whose consequences unify with the goal.  Therefore, one must choose one of 

the postulates, try it, and if it does not work well, back-up to the choice point and choose another 

postulate.  AGT acted as a more restricted tutor.  Instead of allow students to choose a postulate 
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and possibly backup to this choice later, the tutor only allows them to choose an on-path 

postulate, so they never had to back up during training.  This design principle is supported by 

Anderson et al. (1995)’s observation that the more the students flounder, the less opportunity 

they have for each cognitive skill to be exposed hence they achieve less learning.  For 

subgoaling, however, it might be necessary for students to understand that they are asserting 

hypotheses that could be wrong.  Moreover, when applying backward chaining during the post-

test, students may have to choose among equally plausible postulates.  This could cause 

confusion and consternation.  Thus, it might be necessary to let students backtrack during 

training.   

A related issue is to teach students to recover when they get stuck.  Since the backward 

chaining strategy may lead them to an impasse, they should be taught what to do when they get 

stuck.  AGT did not do this.  Perhaps that is why the BC students often got stuck during the post-

tests (see Figure 5.12).  AGT should train an ability to analyze the situation to identify an 

impasse, to diagnose the cause of the impasse, and to figure out an alternative way to avoid it by 

selecting a different path.    

7.2. Research Questions for Future Studies 

Probably the most interesting inquiry to investigate is about the students’ ability to plan for 

a proof.  That the students seldom asserted off-path proof statements in correct proofs may be 

evidence that they had a plan in their mind and rejected those off-path statements during the 

planning phase.  Koedinger and Anderson (1990) advocated a theory of abstract planning that 

predicts that the experts plan in the so-called abstract space hence needed less search effort than 

planning in the execution space (as the novices do) where the unit of inference corresponds to 

proof statements and algebraic operations.  The students in the current study may have applied 
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abstract planning or other type of planning strategy in their mind during the post-test in our 

study.  In any case, probing students’ reasoning during problem solving via verbal protocols or 

other methods may reveal why they wrote so few off-path proof statements.   

Since subgoaling is the key issue for learning backward inference for geometry theorem 

proving, we could design a tutoring system that emphasizes the nature of guess-and-try when 

applying a postulate.  In other words, backing up must be explicitly taught.  An investigation is 

needed on whether explicitly teaching backup techniques facilitates learning backward chaining.   

Is backing up really a challenging issue for students learning backward problem solving?  

To answer this question, one can observe a correlation between the average branching factor of 

proof and measures of performance.  For instance, if backing up actually matters, then the bigger 

the branching factor, the more off-path statements the students should make, or the more likely 

the students get stuck, or the longer they should take to assert the proof statement.  If the post-

test had more problems with a large variety of branching factors but similar complexity 

otherwise, then we could test this hypothesis.   
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APPENDIX A: An Example of Scaffolding of the Forward AGT 
 

Participant FC020 working on the problem #7 
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0021.0 T "Let's make an assertion by applying a postulate to the known 
facts." 

0046.9 S :CLICK-OK 
0047.6 T "This is done by 2 steps, which are [Assert a new proposition] 

and [Justify Proposition]." 
0048.8 S :CLICK-OK  
0049.4 T "It's time to assert a new proposition that can be logically 

concluded either from the proposition already in the Proof Table 
or the problem figure itself." 

0050.1 S :CLICK-OK 
0050.6 T "Now, it's your turn.  Enter a proposition that can be justified 

with the propositions already in the Proof Table." 
0083.0 S (:STRING (:EQ (:S B D) (:S B D))) 
0083.5 T "Well, BD = BD is not a proposition that I want you to consider 

now." 
0085.9 S :CLICK-OK 
0086.5 T "Please try again." 
0088.1 S :CLICK-OK 
0088.7 T "Now, it's your turn.  Enter a proposition that can be justified 

with the propositions already in the Proof Table." 
0109.8 S (:STRING (:EQ (:A D M Q) (:A P M B))) 
0110.1 T "Good.  ∠DMQ = ∠PMB is an appropriate proposition to assert now.  

Keep going." 
0112.3 S :CLICK-OK 
0113.9 T "Next step is to justify vertical angles" 
0114.7 S :CLICK-OK 
0115.3 T "Now it's your turn.  Please enter a justification of ∠BMP = ∠DMQ 

into the highlighted cell in the Proof Table." 
0121.1 S (:STRING VERANG) 
0121.5 T "Good.  Keep going." 
0123.4 S :CLICK-OK 
0125.0 T "It seems we need some construction to complete a proof" 
0125.7 S :CLICK-OK 
0126.3 T "This is done by 2 steps, which are [Pick a postulate for 

construction] and [Do construction]." 
0126.7 S :CLICK-OK 
0127.6 T "Select a postulate that helps you complete the proof." 
0128.0 S :CLICK-OK 
0128.6 T "A construction is done by finding a postulate that partially 

matches with the problem figure.  The idea is that once a 
construction is properly done, then the postualte would apply and 
you can assert a new proposition into the Proof Table." 

0128.9 S :CLICK-OK 
0129.5 T "Now, enter a postulate name, in the text box below, that you 

think would be useful for the proof." 
0154.0 S (:STRING SAS) 
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0154.6 T "Well, good guess.  But, SAS is not an appropriate postulate in 
this situation.  I'd recommend you to use CPCTC instead." 

0158.0 S :CLICK-OK 
0158.6 T "So, keep it in your mind, and think about how you can make a 

construction with CPCTC." 
0162.0 S :CLICK-OK  
0162.9 T "Look at the Postulate Browser window, it now shows how the 

postulate CPCTC would help to make a construction.  You need to 
draw segments that are not in the problem figure to make 
overlapping shown in the Postulate Browser window." 

0164.9 S :CLICK-OK 
0165.5 T "Make a construction based on the overlapping" 
0168.9 S :CLICK-OK 
0169.8 T "Draw new segments by connecting two points.  To connect two 

points, click -- no dragging, no double clicking -- on the first 
point, move the mouse, and then click on the second point." 

0187.5 S (:CONNECT-POINTS (:S D P))) 
0187.8 T "Hum, good try, but that sounds not right for me.  Why don't you 

draw a line by connecting B and P instead.  That way, you can 
make a parfect overlap for the postulte you have been selected.  
Remember, a construction is done so that a desired postulate 
would have a parfect match with the problem figure." 

0197.4 S :CLICK-OK 
0198.0 T "Draw new segments by connecting two points.  To connect two 

points, click -- no dragging, no double clicking -- on the first 
point, move the mouse, and then click on the second point." 

0203.5 S (:CONNECT-POINTS (:S B P))) 
0203.8 T "You are right on the target.  Click [OK] to draw more lines." 
0206.5 S :CLICK-OK 
0207.1 T "Draw new segments by connecting two points.  To connect two 

points, click -- no dragging, no double clicking -- on the first 
point, move the mouse, and then click on the second point." 

0216.4 S (:CONNECT-POINTS (:S D Q))) 
0216.7 T "You are right on the target.  Click [OK] to proceed." 
0217.8 S :CLICK-OK 
0218.4 T "Okay, that completes the construction we need." 
0218.9 S :CLICK-OK 
0219.5 T "Okay, we have completed a necessary construction.  Go ahead to 

the next proof step." 
0220.7 S :CLICK-OK 
0221.6 T "Let's make an assertion by applying a postulate to the known 

facts." 
0222.4 S :CLICK-OK 
0223.0 T "This is done by 2 steps, which are [Assert a new proposition] 

and [Justify Proposition]." 
0223.4 S :CLICK-OK 
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0224.1 T "It's time to assert a new proposition that can be logically 
concluded either from the proposition already in the Proof Table 
or the problem figure itself." 

0224.4 S :CLICK-OK 
0225.0 T "Now, it's your turn.  Enter a proposition that can be justified 

with the propositions already in the Proof Table." 
0248.2 S (:STRING (:CONG (:TRIANGLE (:P A) (:P P) (:P B) (:TRIANGLE (:P C) 

(:P Q) (:P D)))) 
0248.6 T "∆APB ≡ ∆CQD is actually a part of the proof.  However, it's too 

soon to assert it.  You need to assert some other propositions 
before ∆APB ≡ ∆CQD" 

0258.8 S :CLICK-OK  
0259.4 T "Now, it's your turn.  Enter a proposition that can be justified 

with the propositions already in the Proof Table." 
0271.0 S (:STRING (:EQ (:S B P) (:S Q D))) 
0271.4 T "BP = QD is actually a part of the proof.  However, it's too soon 

to assert it.  You need to assert some other propositions before 
BP = QD" 

0274.3 S :CLICK-OK 
0274.9 T "Now, it's your turn.  Enter a proposition that can be justified 

with the propositions already in the Proof Table." 
0348.8 S (:STRING (:EQ (:A B M Q) (:A P M D))) 
0349.3 T "Oops, wrong again.  Please enter a proposition that must be a 

part of the proof and that can be concluded only from the 
propositions that are already in the Proof Table.  You can not 
skip a proof step neither." 

0352.7 S :CLICK-OK 
0440.0 S (:STRING (:CONG (:TRIANGLE (:P B) (:P A) (:P P) (:TRIANGLE (:P D) 

(:P Q) (:P C)))) 
0440.4 T "Well, you need to enter ∆BMP ≡ ∆DMQ in the highlighted cell." 
0451.9 S :CLICK-OK 
0452.6 T "Please input a right proposition, which is ∆BMP ≡ ∆DMQ, in the 

Proof Table." 
0454.7 S :CLICK-OK 
0467.2 S (:STRING (:CONG (:TRIANGLE (:P B) (:P M) (:P P) (:TRIANGLE (:P D) 

(:P M) (:P Q)))) 
0467.6 T "Good." 
0468.8 S :CLICK-OK 
0471.3 T "Now, we need to find and apply a postulate to justify ∆BMP ≡ ∆DMQ 

that has been just asserted." 
0471.8 S :CLICK-OK 
0472.4 T "This is done by 2 steps, which are [Select a postulate] and 

[Execute the postulate]." 
0472.9 S :CLICK-OK 
0473.7 T "Next step is to select a postulate that can be a justification 

of ∆BMP ≡ ∆DMQ" 
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0474.0 S :CLICK-OK 
0474.6 T "This is done by 3 steps, which are [Pick a postulate], [Overlap 

configuration], and [Transform conditional]." 
0475.1 S :CLICK-OK 
0475.8 T "The justification cell in the Proof Table is about to have a 

postulate's name." 
0476.2 S :CLICK-OK  
0476.8 T "Now, it's you turn to pick a postulate.  Enter a postulate name 

into the highlighted justification cell." 
0498.1 S (:STRING CPCTC) 
0498.6 T "You could try to apply CPCTC, but there is a better one.  Try 

again.  Enter a postulate name that can justify ∆BMP ≡ ∆DMQ." 
0500.6 S :CLICK-OK 
0511.7 S (:STRING SAS) 
0512.0 T "Good.  Go on to the next step." 
0514.0 S :CLICK-OK 
0514.8 T "To apply SAS, overlap it onto the problem figure." 
0515.2 S :CLICK-OK 
0516.1 T "There is nothing to do with the Proof Table for this step.  But, 

remember you need to overlap the configuration of the postulate 
SAS onto the problem figure.  Please do so in your mind.  When 
finished, click [OK] button to go on the next step." 

0516.4 S :CLICK-OK 
0517.0 T "Now, it's time to recall the premises and a consequence of SAS." 
0517.4 S :CLICK-OK 
0518.4 T "There is nothing to enter into the Proof Table.  But, remember 

you need to identify the premises and the consequence of the 
postulate SAS.  Please do it now in your mind.  When finished, 
click [OK] to go on to the next step." 

0518.7 S :CLICK-OK 
0519.3 T "This is done by 2 steps, which are [Instantiate premises] and 

[Assert line numbers]." 
0520.0 S :CLICK-OK 
0520.6 T "Now, let's see what we exactly need to justify ∆BMP ≡ ∆DMQ.  

Namely, state the premise with the labels appearing in the 
problem figure." 

0521.0 S :CLICK-OK 
0521.6 T "There is nothing to enter into the Proof Table for this step.  

But, remember you need to describe the postulate's premises XY = 
UV, YZ = VW, and ∆XYZ ≡ ∆UVW with the labels used in the problem 
figure.  Please do so in your mind.  When finished, click [OK] to 
proceed to the next step." 

0522.8 S :CLICK-OK 
0523.5 T "The next step is to enter the line numbers of the premises." 
0524.5 S :CLICK-OK 
0525.1 T "It's your turn to do this step." 
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0531.0 S (:STRING 5) 
0557.1 S (:STRING 3) 
0563.2 S (:STRING 2) 
0563.6 T "Gook job!!  You have entered all the premise numbers.  Click 

[OK] to proceed to the next step." 
0565.1 S :CLICK-OK 
0565.7 T "We've completed enough to justify proposition ∆BMP ≡ ∆DMQ.  Go on 

to the next proof step." 
0566.0 S :CLICK-OK  
0567.5 T "Let's make an assertion by applying a postulate to the known 

facts." 
0568.0 S :CLICK-OK 
0568.6 T "This is done by 2 steps, which are [Assert a new proposition] 

and [Justify Proposition]." 
0569.0 S :CLICK-OK 
0569.7 T "It's time to assert a new proposition that can be logically 

concluded either from the proposition already in the Proof Table 
or the problem figure itself." 

0570.0 S :CLICK-OK 
0570.6 T "Now, it's your turn.  Enter a proposition that can be justified 

with the propositions already in the Proof Table." 
0587.7 S (:STRING (:EQ (:S P B) (:S D Q))) 
0588.0 T "Good.  PB = DQ is an appropriate proposition to assert now.  

Keep going." 
0589.2 S :CLICK-OK 
0591.8 T "Now, we need to find and apply a postulate to justify BP = DQ 

that has been just asserted." 
0592.2 S :CLICK-OK 
0592.8 T "This is done by 2 steps, which are [Select a postulate] and 

[Execute the postulate]." 
0593.1 S :CLICK-OK 
0593.7 T "Next step is to select a postulate that can be a justification 

of BP = DQ" 
0594.2 S :CLICK-OK 
0594.9 T "This is done by 3 steps, which are [Pick a postulate], [Overlap 

configuration], and [Transform conditional]." 
0595.9 S :CLICK-OK 
0596.6 T "The justification cell in the Proof Table is about to have a 

postulate's name." 
0597.0 S :CLICK-OK 
0597.7 T "Now, it's you turn to pick a postulate.  Enter a postulate name 

into the highlighted justification cell." 
0603.6 S (:STRING CPCTC) 
0603.9 T "Good.  Go on to the next step." 
0605.3 S :CLICK-OK 
0606.1 T "To apply CPCTC, overlap it onto the problem figure." 
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0606.6 S :CLICK-OK 
0607.5 T "There is nothing to do with the Proof Table for this step.  But, 

remember you need to overlap the configuration of the postulate 
CPCTC onto the problem figure.  Please do so in your mind.  When 
finished, click [OK] button to go on the next step." 

0607.8 S :CLICK-OK  
0608.4 T "Now, it's time to recall the premises and a consequence of 

CPCTC." 
0608.8 S :CLICK-OK 
0609.6 T "There is nothing to enter into the Proof Table.  But, remember 

you need to identify the premises and the consequence of the 
postulate CPCTC.  Please do it now in your mind.  When finished, 
click [OK] to go on to the next step." 

0609.9 S :CLICK-OK 
0610.5 T "This is done by 2 steps, which are [Instantiate premises] and 

[Assert line numbers]." 
0611.1 S :CLICK-OK 
0611.8 T "Now, let's see what we exactly need to justify BP = DQ.  Namely, 

state the premise with the labels appearing in the problem 
figure." 

0612.3 S :CLICK-OK 
0612.9 T "There is nothing to enter into the Proof Table for this step.  

But, remember you need to describe the postulate's premise ∆XYZ ≡ 
∆UVW with the labels used in the problem figure.  Please do so in 
your mind.  When finished, click [OK] to proceed to the next 
step." 

0613.5 S :CLICK-OK 
0614.2 T "The next step is to enter the line numbers of the premises." 
0615.7 S :CLICK-OK 
0616.3 T "It's your turn to do this step." 
0709.0 S (:STRING 6) 
0709.3 T "Gook job!!  You have entered all the premise numbers.  Click 

[OK] to proceed to the next step." 
0711.1 S :CLICK-OK 
0711.7 T "We've completed enough to justify proposition BP = DQ.  Go on to 

the next proof step." 
0712.0 S :CLICK-OK 
0713.4 T "Let's make an assertion by applying a postulate to the known 

facts." 
0714.0 S :CLICK-OK 
0714.6 T "This is done by 2 steps, which are [Assert a new proposition] 

and [Justify Proposition]." 
0714.9 S :CLICK-OK 
0715.5 T "It's time to assert a new proposition that can be logically 

concluded either from the proposition already in the Proof Table 
or the problem figure itself." 
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0715.9 S :CLICK-OK 
0716.5 T "Now, it's your turn.  Enter a proposition that can be justified 

with the propositions already in the Proof Table." 
0727.8 S (:STRING (:EQ (:A B A P) (:A D C Q))) 
0728.2 T "∆BAP ≡ ∆DCQ is actually a part of the proof.  However, it's too 

soon to assert it.  You need to assert some other propositions 
before ∆BAP ≡ ∆DCQ" 

0731.3 S :CLICK-OK  
0732.0 T "Now, it's your turn.  Enter a proposition that can be justified 

with the propositions already in the Proof Table." 
0749.2 S (:STRING (:CONG (:TRIANGLE (:P B) (:P A) (:P P) (:TRIANGLE (:P D) 

(:P C) (:P Q)))) 
0749.5 T "Good.  ∆BAP ≡ ∆DCQ is an appropriate proposition to assert now.  

Keep going." 
0751.2 S :CLICK-OK 
0753.9 T "Now, we need to find and apply a postulate to justify ∆BAP ≡ ∆DCQ 

that has been just asserted." 
0754.4 S :CLICK-OK 
0755.0 T "This is done by 2 steps, which are [Select a postulate] and 

[Execute the postulate]." 
0755.3 S :CLICK-OK 
0755.9 T "Next step is to select a postulate that can be a justification 

of ∆BAP ≡ ∆DCQ" 
0757.3 S :CLICK-OK 
0757.9 T "This is done by 3 steps, which are [Pick a postulate], [Overlap 

configuration], and [Transform conditional]." 
0758.4 S :CLICK-OK 
0759.1 T "The justification cell in the Proof Table is about to have a 

postulate's name." 
0759.7 S :CLICK-OK 
0760.3 T "Now, it's you turn to pick a postulate.  Enter a postulate name 

into the highlighted justification cell." 
0770.3 S (:STRING CPCTC) 
0770.7 T "You could try to apply CPCTC, but there is a better one.  Try 

again.  Enter a postulate name that can justify ∆BAP ≡ ∆DCQ." 
0772.2 S :CLICK-OK 
0778.9 S (:STRING SSS) 
0779.2 T "Good.  Go on to the next step." 
0781.0 S :CLICK-OK 
0781.7 T "To apply SSS, overlap it onto the problem figure." 
0782.3 S :CLICK-OK 
0783.2 T "There is nothing to do with the Proof Table for this step.  But, 

remember you need to overlap the configuration of the postulate 
SSS onto the problem figure.  Please do so in your mind.  When 
finished, click [OK] button to go on the next step." 

0783.4 S :CLICK-OK 
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0784.0 T "Now, it's time to recall the premises and a consequence of SSS." 
0784.5 S :CLICK-OK 
0785.4 T "There is nothing to enter into the Proof Table.  But, remember 

you need to identify the premises and the consequence of the 
postulate SSS.  Please do it now in your mind.  When finished, 
click [OK] to go on to the next step." 

0785.7 S :CLICK-OK  
0786.3 T "This is done by 2 steps, which are [Instantiate premises] and 

[Assert line numbers]." 
0786.9 S :CLICK-OK 
0787.6 T "Now, let's see what we exactly need to justify ∆BAP ≡ ∆DCQ.  

Namely, state the premise with the labels appearing in the 
problem figure." 

0787.9 S :CLICK-OK 
0788.5 T "There is nothing to enter into the Proof Table for this step.  

But, remember you need to describe the postulate's premises YZ = 
VW, XY = UV, and XZ = UW with the labels used in the problem 
figure.  Please do so in your mind.  When finished, click [OK] to 
proceed to the next step." 

0791.5 S :CLICK-OK 
0792.1 T "The next step is to enter the line numbers of the premises." 
0793.8 S :CLICK-OK 
0794.4 T "It's your turn to do this step." 
0799.2 S (:STRING 7) 
0803.4 S (:STRING 4) 
0806.9 S (:STRING 1) 
0807.3 T "Gook job!!  You have entered all the premise numbers.  Click 

[OK] to proceed to the next step." 
0808.7 S :CLICK-OK 
0809.3 T "We've completed enough to justify proposition ∆BAP ≡ ∆DCQ.  Go on 

to the next proof step." 
0809.6 S :CLICK-OK 
0811.1 T "Let's make an assertion by applying a postulate to the known 

facts." 
0811.5 S :CLICK-OK 
0812.1 T "This is done by 2 steps, which are [Assert a new proposition] 

and [Justify Proposition]." 
0812.4 S :CLICK-OK 
0813.0 T "It's time to assert a new proposition that can be logically 

concluded either from the proposition already in the Proof Table 
or the problem figure itself." 

0813.3 S :CLICK-OK 
0813.9 T "Now, it's your turn.  Enter a proposition that can be justified 

with the propositions already in the Proof Table." 
0819.7 S (:STRING (:EQ (:A B A P) (:A D C Q))) 
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0820.0 T "Good.  ∆BAP ≡ ∆DCQ is an appropriate proposition to assert now.  
Keep going." 

0821.6 S :CLICK-OK 
0824.4 T "Now, we need to find and apply a postulate to justify ∆BAP ≡ ∆DCQ 

that has been just asserted." 
0826.0 S :CLICK-OK  
0826.6 T "This is done by 2 steps, which are [Select a postulate] and 

[Execute the postulate]." 
0826.9 S :CLICK-OK 
0827.6 T "Next step is to select a postulate that can be a justification 

of ∆BAP ≡ ∆DCQ" 
0828.5 S :CLICK-OK 
0829.1 T "This is done by 3 steps, which are [Pick a postulate], [Overlap 

configuration], and [Transform conditional]." 
0829.4 S :CLICK-OK 
0830.1 T "The justification cell in the Proof Table is about to have a 

postulate's name." 
0830.4 S :CLICK-OK 
0831.0 T "Now, it's you turn to pick a postulate.  Enter a postulate name 

into the highlighted justification cell." 
0836.9 S (:STRING CPCTC) 
0837.3 T "Good.  Go on to the next step." 
0839.4 S :CLICK-OK 
0840.1 T "To apply CPCTC, overlap it onto the problem figure." 
0840.8 S :CLICK-OK 
0841.7 T "There is nothing to do with the Proof Table for this step.  But, 

remember you need to overlap the configuration of the postulate 
CPCTC onto the problem figure.  Please do so in your mind.  When 
finished, click [OK] button to go on the next step." 

0842.0 S :CLICK-OK 
0842.6 T "Now, it's time to recall the premises and a consequence of 

CPCTC." 
0843.2 S :CLICK-OK 
0844.1 T "There is nothing to enter into the Proof Table.  But, remember 

you need to identify the premises and the consequence of the 
postulate CPCTC.  Please do it now in your mind.  When finished, 
click [OK] to go on to the next step." 

0844.4 S :CLICK-OK 
0845.0 T "This is done by 2 steps, which are [Instantiate premises] and 

[Assert line numbers]." 
0845.5 S :CLICK-OK 
0846.2 T "Now, let's see what we exactly need to justify ∆BAP ≡ ∆DCQ.  

Namely, state the premise with the labels appearing in the 
problem figure." 

0846.5 S :CLICK-OK 
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0847.1 T "There is nothing to enter into the Proof Table for this step.  
But, remember you need to describe the postulate's premise ∆XYZ ≡ 
∆UVW with the labels used in the problem figure.  Please do so in 
your mind.  When finished, click [OK] to proceed to the next 
step." 

0847.4 S :CLICK-OK  
0848.1 T "The next step is to enter the line numbers of the premises." 
0848.4 S :CLICK-OK 
0849.0 T "It's your turn to do this step." 
0852.9 S (:STRING 8) 
0853.2 T "Gook job!!  You have entered all the premise numbers.  Click 

[OK] to proceed to the next step." 
0854.6 S :CLICK-OK 
0855.2 T "We've completed enough to justify proposition ∆BAP ≡ ∆DCQ.  Go on 

to the next proof step." 
0855.5 S :CLICK-OK 
0856.5 T "Good job!!!" 
0857.0 S :CLICK-OK 
0857.6 T "We've complete the proof.  Now, go ahead to the next problem. 
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0645.4 T "Let's make one step toward a complete proof. Namely, justify an 
unjustified proposition in the Proof Table." 

0927.1 S :CLICK-OK  
0927.7 T "This is done by 2 steps, which are [Select proposition to 

justify] and [Apply a postulate]." 
0928.3 S :CLICK-OK   
0928.9 T "The first step is to specify an unjustified proposition in the 

Proof Table." 
0929.4 S :CLICK-OK  
0930.0 T "It's your turn to do this step." 
0931.1 S (:MOUSE-CLICK PROOFTABLE (:EQ (:S A H) (:S D H))) 
0931.5 T "Good.  Go on to the next step." 
0932.4 S :CLICK-OK 
0933.2 T "Next step is to select a postulate and apply it to justify the 

proposition AH = DH." 
0937.9 S :CLICK-OK 
0938.5 T "This is done by 2 steps, which are [Select a postulate] and 

[Execute the postulate]." 
0939.2 S :CLICK-OK 
0939.9 T "Next step is to select a postulate that can be a justification 

of AH = DH" 
0940.3 S :CLICK-OK 
0940.9 T "This is done by 4 steps, which are [Pick a postulate], [Overlap 

configuration], [Do construction], and [Transform conditional]." 
0941.5 S :CLICK-OK 
0942.3 T "The justification cell in the Proof Table is about to have a 

postulate's name." 
0943.0 S :CLICK-OK 
0943.6 T "Please enter a postulate's name into the highlighted cell in 

the Proof Table.  You are welcome to use the Postulate Browser 
to remember each postulate." 

1045.0 S (:STRING TRIM) 
1045.4 T "Well, you made a good guess, but unfortunately, TRIM won't 

justify AH = DH in this case.  Why don't you apply MTRI 
instead." 

1049.3 S :CLICK-OK 
1050.3 T "To apply MTRI, overlap it onto the problem figure." 
1055.5 S :CLICK-OK 
1056.4 T "There is nothing to do with the Proof Table for this step.  But, 

remember you need to overlap the configuration of the postulate 
MTRI onto the problem figure.  Please do so in your mind.  When 
finished, click [OK] button to go on the next step." 

1191.5 S :CLICK-OK 
1192.1 T "As you see, the postulate MTRI can not be overlapped onto the 

problem figure since some segments are missing.  Draw segments 

88 



so that the postulate have a perfect match.  You may need to 
draw more than one line to make a perfect match." 

1193.8 S :CLICK-OK 
1194.4 T "Draw new segments by connecting two points.  To connect two 

points, click -- no dragging, no double clicking -- on the first 
point, move the mouse, and then click on the second point." 

1203.0 S (:CONNECT-POINTS (:S F H)) 
1203.4 T "Hum, good try, but that sounds not right for me.  Why don't you 

draw a line by connecting B and D instead.  That way, you can 
make a parfect overlap for the postulte you have been selected.  
Remember, a construction is done so that a desired postulate 
would have a parfect match with the problem figure." 

1214.0 S :CLICK-OK  
1214.7 T "Draw new segments by connecting two points.  To connect two 

points, click -- no dragging, no double clicking -- on the first 
point, move the mouse, and then click on the second point." 

1220.7 S (:CONNECT-POINTS (:S B D)) 
1221.0 T "You are right on the target.  Click [OK] to proceed." 
1222.1 S :CLICK-OK 
1222.7 T "Okay, that completes the construction we need." 
1224.0 S :CLICK-OK 
1224.6 T "Now, it's time to recall the premises and a consequence of 

MTRI." 
1226.3 S :CLICK-OK 
1227.2 T "There is nothing to enter into the Proof Table.  But, remember 

you need to identify the premises and the consequence of the 
postulate MTRI.  Please do it now in your mind.  When finished, 
click [OK] to go on to the next step." 

1238.6 S :CLICK-OK 
1239.2 T "Now, it's time to apply the selected postulate backwards on AH 

= DH, namely identify premises of the postulate and put them 
onto the proof table as unjustified propositions." 

1239.5 S :CLICK-OK 
1240.2 T "This is done by 4 steps, which are [Instantiate premises], 

[Check duplication], [Assert premises], and [Assert line 
numbers]." 

1240.6 S :CLICK-OK 
1241.6 T "Now, let's see what we exactly need to justify AH = DH.  Namely, 

state the premise with the labels appearing in the problem 
figure." 

1241.9 S :CLICK-OK 
1242.5 T "There is nothing to enter into the Proof Table for this step.  

But, remember you need to describe the postulate's premises WX = 
WZ and VW // YZ with the labels used in the problem figure.  
Please do so in your mind.  When finished, click [OK] to proceed 
to the next step." 
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1242.8 S :CLICK-OK 
1243.4 T "For each of the premises, check if it has been asserted in the 

proof table or not." 
1243.8 S :CLICK-OK 
1244.4 T "Again, there is nothing you need to enter into the Proof Table 

here.  You need to check if the premises of the justification 
you are about to make are already in the Proof Table.  Please do 
so in your mind, and click [OK] when finished." 

1244.7 S :CLICK-OK  
1245.3 T "Now, we need to assert the premises that are not yet in the 

proof table." 
1245.6 S :CLICK-OK 
1281.0 S (:STRING (:EQ (:S A E) (:S E B))) 
1281.3 T "Good.  AE = EB must be asserted in the Proof Table.  Enter more 

premises." 
1325.3 S (:STRING (:PARALLEL (:S E H) (:S B D))) 
1325.6 T "Good.  EH // BD must be asserted in the Proof Table.  Enter 

more premises." 
1326.2 T "The next step is to enter the line numbers of the premises." 
1328.3 S :CLICK-OK 
1328.9 T "It's your turn to do this step." 
1335.9 S (:STRING 2) 
1337.8 S (:STRING 3) 
1338.2 T "Gook job!!  You have entered all the premise numbers.  Click 

[OK] to proceed to the next step." 
1341.3 S :CLICK-OK 
1341.9 T "We've completed enough to justify proposition AH = DH.  Go on 

to the next proof step." 
1342.2 S :CLICK-OK 
1343.3 T "Let's make one step toward a complete proof. Namely, justify an 

unjustified proposition in the Proof Table." 
1344.5 S :CLICK-OK 
1345.2 T "This is done by 2 steps, which are [Select proposition to 

justify] and [Justify given proposition]." 
1345.8 S :CLICK-OK 
1346.4 T "The first step is to specify an unjustified proposition in the 

Proof Table." 
1347.0 S :CLICK-OK 
1347.7 T "It's your turn to do this step." 
1349.6 S (:MOUSE-CLICK PROOFTABLE (:EQ (:S A E) (:S E B))) 
1349.9 T "Good.  Go on to the next step." 
1352.2 S :CLICK-OK 
1353.1 T "Justify a given proposition" 
1353.5 S :CLICK-OK 
1354.1 T "Now, it's your turn.  Please enter a justification of the 

postulate AE = BE into the highlighted cell." 
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1360.8 S (:STRING GIVEN) 
1361.1 T "Good.  Go on to the next step." 
1362.8 S :CLICK-OK 
1364.7 T "Let's make one step toward a complete proof. Namely, justify an 

unjustified proposition in the Proof Table." 
1365.4 S :CLICK-OK  
1366.0 T "This is done by 2 steps, which are [Select proposition to 

justify] and [Apply a postulate]." 
1366.6 S :CLICK-OK 
1367.2 T "The first step is to specify an unjustified proposition in the 

Proof Table." 
1367.9 S :CLICK-OK 
1368.6 T "It's your turn to do this step." 
1369.9 S (:MOUSE-CLICK (:PARALLEL (:S E H) (:S B D))) 
1370.2 T "Good.  Go on to the next step." 
1371.7 S :CLICK-OK 
1372.7 T "Next step is to select a postulate and apply it to justify the 

proposition BD // EH." 
1373.3 S :CLICK-OK 
1374.0 T "This is done by 2 steps, which are [State transitive 

substitution] and [Execute the postulate]." 
1374.4 S :CLICK-OK 
1375.1 T "The target proposition BD // EH can be justified by the 

transitive-substitution postulate.  There is no configuration 
associated in the Postulate Browser, but you can apply this 
postulate in the similar way as the other ones.  Just no 
overlapping is required." 

1375.9 S :CLICK-OK 
1376.5 T "The proposition BD // EH that we are trying to justify can be 

justified by transitive substitution.  So, I'd enter TRANS as 
its justification." 

1387.3 S :CLICK-OK 
1388.1 T "Now, it's time to apply the selected postulate backwards on BD 

// EH, namely identify premises of the postulate and put them 
onto the proof table as unjustified propositions." 

1681.8 S :CLICK-OK 
1682.4 T "This is done by 4 steps, which are [Instantiate premises], 

[Check duplication], [Assert premises], and [Assert line 
numbers]." 

1684.6 S :CLICK-OK 
1685.5 T "Now, let's see what exactly we need to justify BD // EH.  

Namely, state the premise with the labels appearing in the 
problem figure." 

1686.2 S :CLICK-OK 
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1686.8 T "There is nothing you have to enter or click on the screen for 
this step.  But, you need to mentally identify which two 
propositions are combined to conclude BD // EH." 

1688.9 S :CLICK-OK 
1689.5 T "In this case, BD // FG and FG // EH are the propositions that 

we need." 
1736.9 S :CLICK-OK  
1737.5 T "For each of the premises, check if it has been asserted in the 

proof table or not." 
1739.3 S :CLICK-OK 
1740.0 T "Again, there is nothing you need to enter into the Proof Table 

here.  You need to check if the premises of the justification 
you are about to make are already in the Proof Table.  Please do 
so in your mind, and click [OK] when finished." 

1742.3 S :CLICK-OK 
1742.9 T "Now, we need to assert the premises that are not yet in the 

proof table." 
1744.1 S :CLICK-OK 
1760.0 S (:STRING (:PARALLEL (:S B D) (:S E H))) 
1760.5 T "You are mentioning point names that are not consistent with 

overlapping :TRANS onto the problem figure." 
1767.6 S :CLICK-OK 
1768.2 T "Please try again." 
1768.8 S :CLICK-OK 
1878.0 S (:STRING (:PARALLEL (:S B D) (:S F G))) 
1878.3 T "Good.  BD // FG must be asserted in the Proof Table.  Enter 

more premises." 
2000.7 S (:STRING-S PROPOSITION (:EQ (:S A E) (:S E B))) 
2001.1 T "You are mentioning point names that are not consistent with 

overlapping :TRANS onto the problem figure." 
2005.1 S :CLICK-OK 
2005.7 T "Please try again." 
2006.1 S :CLICK-OK 
2065.0 S (:STRING (:PARALLEL (:S E H) (:S F G))) 
2065.4 T "Good.  EH // FG must be asserted in the Proof Table.  Enter 

more premises." 
2066.2 T "The next step is to enter the line numbers of the premises." 
2068.7 S :CLICK-OK 
2069.3 T "It's your turn to do this step." 
2074.8 S (:STRING 4) 
2075.8 S (:STRING 5) 
2076.1 T "Gook job!!  You have entered all the premise numbers.  Click 

[OK] to proceed to the next step." 
2077.5 S :CLICK-OK 
2078.1 T "We've completed enough to justify proposition BD // EH.  Go on 

to the next proof step." 
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2078.4 S :CLICK-OK 
2080.5 T "Let's make one step toward a complete proof. Namely, justify an 

unjustified proposition in the Proof Table." 
2083.0 S :CLICK-OK 
2083.6 T "This is done by 2 steps, which are [Select proposition to 

justify] and [Apply a postulate]." 
2083.9 S :CLICK-OK  
2084.5 T "The first step is to specify an unjustified proposition in the 

Proof Table." 
2084.9 S :CLICK-OK 
2085.7 T "It's your turn to do this step." 
2087.2 S (:MOUSE-CLICK (:PARALLEL (:S B D) (:S F G))) 
2087.5 T "Good.  Go on to the next step." 
2096.4 S :CLICK-OK 
2097.7 T "Next step is to select a postulate and apply it to justify the 

proposition BD // FG." 
2109.8 S :CLICK-OK 
2110.4 T "This is done by 2 steps, which are [Select a postulate] and 

[Execute the postulate]." 
2111.9 S :CLICK-OK 
2112.6 T "Next step is to select a postulate that can be a justification 

of BD // FG" 
2112.9 S :CLICK-OK 
2113.5 T "This is done by 3 steps, which are [Pick a postulate], [Overlap 

configuration], and [Transform conditional]." 
2114.0 S :CLICK-OK 
2114.7 T "The justification cell in the Proof Table is about to have a 

postulate's name." 
2115.1 S :CLICK-OK 
2115.7 T "Please enter a postulate's name into the highlighted cell in 

the Proof Table.  You are welcome to use the Postulate Browser 
to remember each postulate." 

2137.4 S (:STRING MTRI) 
2137.8 T "Well, you made a good guess, but unfortunately, MTRI won't 

justify BD // FG in this case.  Why don't you apply TRIM 
instead." 

2151.3 S :CLICK-OK 
2152.3 T "To apply TRIM, overlap it onto the problem figure." 
2152.9 S :CLICK-OK 
2153.9 T "There is nothing to do with the Proof Table for this step.  But, 

remember you need to overlap the configuration of the postulate 
TRIM onto the problem figure.  Please do so in your mind.  When 
finished, click [OK] button to go on the next step." 

2154.2 S :CLICK-OK 
2154.8 T "Now, it's time to recall the premises and a consequence of 

TRIM." 
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2156.6 S :CLICK-OK 
2157.5 T "There is nothing to enter into the Proof Table.  But, remember 

you need to identify the premises and the consequence of the 
postulate TRIM.  Please do it now in your mind.  When finished, 
click [OK] to go on to the next step." 

2157.8 S :CLICK-OK  
2158.5 T "Now, it's time to apply the selected postulate backwards on BD 

// FG, namely identify premises of the postulate and put them 
onto the proof table as unjustified propositions." 

2158.9 S :CLICK-OK 
2159.6 T "This is done by 4 steps, which are [Instantiate premises], 

[Check duplication], [Assert premises], and [Assert line 
numbers]." 

2160.5 S :CLICK-OK 
2161.4 T "Now, let's see what we exactly need to justify BD // FG.  

Namely, state the premise with the labels appearing in the 
problem figure." 

2161.8 S :CLICK-OK 
2162.4 T "There is nothing to enter into the Proof Table for this step.  

But, remember you need to describe the postulate's premises WX = 
WZ and VX = VY with the labels used in the problem figure.  
Please do so in your mind.  When finished, click [OK] to proceed 
to the next step." 

2163.0 S :CLICK-OK 
2163.6 T "For each of the premises, check if it has been asserted in the 

proof table or not." 
2164.0 S :CLICK-OK 
2164.6 T "Again, there is nothing you need to enter into the Proof Table 

here.  You need to check if the premises of the justification 
you are about to make are already in the Proof Table.  Please do 
so in your mind, and click [OK] when finished." 

2165.3 S :CLICK-OK 
2166.0 T "Now, we need to assert the premises that are not yet in the 

proof table." 
2166.3 S :CLICK-OK 
2216.5 S (:STRING (:EQ (:S B F) (:S F C))) 
2216.9 T "Good.  BF = FC must be asserted in the Proof Table.  Enter more 

premises." 
2256.7 S (:STRING (:EQ (:S D G) (:S G C))) 
2257.1 T "Good.  DG = GC must be asserted in the Proof Table.  Enter more 

premises." 
2258.1 T "The next step is to enter the line numbers of the premises." 
2275.2 S :CLICK-OK 
2275.9 T "It's your turn to do this step." 
2283.0 S (:STRING 6) 
2283.8 S (:STRING 7) 
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2284.1 T "Gook job!!  You have entered all the premise numbers.  Click 
[OK] to proceed to the next step." 

2286.5 S :CLICK-OK 
2287.1 T "We've completed enough to justify proposition BD // FG.  Go on 

to the next proof step." 
2287.4 S :CLICK-OK  
2288.6 T "Let's make one step toward a complete proof. Namely, justify an 

unjustified proposition in the Proof Table." 
2289.3 S :CLICK-OK 
2289.9 T "This is done by 2 steps, which are [Select proposition to 

justify] and [Justify given proposition]." 
2290.2 S :CLICK-OK 
2290.9 T "The first step is to specify an unjustified proposition in the 

Proof Table." 
2291.4 S :CLICK-OK 
2292.3 T "It's your turn to do this step." 
2294.6 S (:MOUSE-CLICK (:PARALLEL (:S E H) (:S F G))) 
2294.9 T "Good.  Go on to the next step." 
2302.2 S :CLICK-OK 
2303.6 T "Justify a given proposition" 
2305.2 S :CLICK-OK 
2305.9 T "Now, it's your turn.  Please enter a justification of the 

postulate FG // EH into the highlighted cell." 
2325.3 S (:STRING-S TRANS) 
2325.6 T "It's not what I expect to hear from you.  The justification of 

the proposition FG // EH is GIVEN.  Enter it into the Proof 
Table." 

2355.9 S :CLICK-OK 
2356.5 T "Now, it's your turn.  Please enter a justification of the 

postulate FG // EH into the highlighted cell." 
2365.9 S (:STRING-S GIVEN) 
2366.3 T "Good.  Go on to the next step." 
2367.6 S :CLICK-OK 
2368.9 T "Let's make one step toward a complete proof. Namely, justify an 

unjustified proposition in the Proof Table." 
2369.6 S :CLICK-OK 
2370.2 T "This is done by 2 steps, which are [Select proposition to 

justify] and [Justify given proposition]." 
2370.6 S :CLICK-OK 
2371.2 T "The first step is to specify an unjustified proposition in the 

Proof Table." 
2371.9 S :CLICK-OK 
2372.8 T "It's your turn to do this step." 
2374.1 S (:MOUSE-CLICK (:EQ (:S B F) (:S F C))) 
2374.4 T "Good.  Go on to the next step." 
2376.9 S :CLICK-OK 
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2378.3 T "Justify a given proposition" 
2378.6 S :CLICK-OK 
2379.2 T "Now, it's your turn.  Please enter a justification of the 

postulate BF = CF into the highlighted cell." 
2387.4 S (:STRING-S GIVEN) 
2387.7 T "Good.  Go on to the next step." 
2390.0 S :CLICK-OK  
2391.3 T "Let's make one step toward a complete proof. Namely, justify an 

unjustified proposition in the Proof Table." 
2392.0 S :CLICK-OK 
2392.7 T "This is done by 2 steps, which are [Select proposition to 

justify] and [Justify given proposition]." 
2393.3 S :CLICK-OK 
2393.9 T "The first step is to specify an unjustified proposition in the 

Proof Table." 
2394.4 S :CLICK-OK 
2395.3 T "It's your turn to do this step." 
2396.9 S (:MOUSE-CLICK (:EQ (:S D G) (:S G C))) 
2397.2 T "Good.  Go on to the next step." 
2400.6 S :CLICK-OK 
2402.0 T "Justify a given proposition" 
2402.6 S :CLICK-OK 
2403.2 T "Now, it's your turn.  Please enter a justification of the 

postulate CG = DG into the highlighted cell." 
2413.3 S (:STRING-S GIVEN) 
2413.7 T "Good.  Go on to the next step." 
2416.3 S :CLICK-OK 
2417.0 T "Good job!!!" 
2430.6 S :CLICK-OK 
2431.2 T "We've complete the proof.  Now, go ahead to the next problem. 
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APPENDIX C: The Geometry Booklet (Backward Tutor) 
 

The booklet used for the backward chaining tutor condition.   
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APPENDIX D: The Geometry Booklet (Forward Tutor) 
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APPENDIX E: Test-A (Backward Tutor) 
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APPENDIX F: Test-B (Backward Tutor) 
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APPENDIX G: Test-A (Forward Tutor) 
 

 

133 



134 



135 



136 



137 



138 



139 



140 



 

APPENDIX H: Test-B (Forward Tutor) 
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APPENDIX I: Problems used in Tutoring Sessions 
 

#1 

C

A D B  

 

Given: AD = BD 

 ∠CDA = ∠CDB 

Goal: AC = BC 

 

#2 

H

A
B

C  

 

Given: AH = CH 

 AB = CB 

Goal: ∠HAB = ∠HCB 

 

#3 

H

A

B

C

 

 

Given: AH = CH 

 ∠AHB = ∠CHB 

Goal: AB = CB 

 

#4 

D

A

B

C

 

 

Given: AD = CD 

 ∠ADB = ∠CDB 

Goal: AB = CB 

 

#5 

H

B

F RA

 

 

Given: AF = FR 

 HF = BF 

Goal: AB = HR 

 

#6 

A D

B

C

E

 

Given: AB = DE 

 AC = DC 

 BC = CE 

Goal: ∠ABD = ∠DEA 
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#7 

A

B C

M

Q

P D

 

Goal: AP = CQ 

 BM = MD 

 PM = QM 

 AB = DC  

Goal: ∠PAB = ∠QCD 

 

#8 

A D

B C

P Q

E

 

Goal: DP = PB 

 AD // EC 

 PQ // BE 

Goal: AQ = QC 

 

#9 

D

BA

P
M

C

 

 

Given: AP = PC 

 MP // AE 

 CD // AB 

Goal: AM = MD 

 

#10 

A

D
H

G

CB F

E

 

 

Given: AE = EB 

 BF = FC 

 CG = GD 

 GF // HE 

Goal: AH = HD 

 

#11 

A

N

M

B Q

P

C  

 

Given: BQ = QC 

 AN = NM 

 NM = MB 

Goal: AP = PQ 
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APPENDIX J: Learning Curves  
 

This appendix shows two types of learning curves: (1) average duration for postulate 

applications with and without construction, and (2) average number of error made during single 

postulate application with and without construction. 
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Postulate application with construction  
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Postulate applications without construction  
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APPENDIX K: Example of Proofs written in an Inconsistent Strategy 
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Example 1: Beginning a proof by 
placing given propositions from 
the 2nd line.   
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Example 2: Beginning a proof by 
placing given propositions at the 
bottom of the proof table.  



 

APPENDIX L: Cognitive Model of Proof Writing 
 

(a)  

Forward chaining without construction
Assert Proposition
Justify Proposition

Select a postulate
Pick a postulate
Overlap configurations
Transform the postulate into a conditional form

Execute the postulate
Instantiate premises
Assert Line Numbers  

(b)  

Forward chaining with construction
Pick a postulate
Do construction  
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(c)  

Backward chaining without construction 
Select a proposition to justify
Apply a postulate backwards

Select a postulate
Pick a postulate
Overlap configurations
Transform the postulate into a conditional form

Execute the postulate
Instantiate premises
Check Duplication
Assert premises as unjustified propositions
Assert line numbers of the premises  

(d) 

Backward chaining with construction
Select a proposition to justify
Apply a postulate backwards

Select a postulate
Pick a postulate
Overlap configurations
Transform the postulate into a conditional form

Construction
Find missing segments
Construct missing segments

Execute the postulate
Instantiate premises
Check Duplication
Assert premises as unjustified propositions
Assert line numbers of the premises  
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