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EXAMINING THE NATURE OF INSTRUCTIONAL PRACTICES OF SECONDARY 

MATHEMATICS PRE-SERVICE TEACHERS 

 

Jennifer L. Mossgrove, Ed.D. 

University of Pittsburgh, 2006  

 

 

The purpose of this study was to describe the instructional practices of two pre-service secondary 

mathematics teachers, Paige Morris and Keith Nichols, during their internship experiences.  

Specifically, the study aimed to examine the cognitive demands of the tasks as selected and 

enacted by the pre-service teachers, the mathematical representations used during the lesson, and 

the questions asked by each pre-service teacher.  Additionally, the study aimed to describe the 

ways in which the contextual settings, particularly the curriculum and mentor, appeared to 

influence the instructional practices of the pre-service teachers as they planned for and enacted 

mathematics lessons in their field placements.   

 

The analysis of the data indicated that the instructional practices of the pre-service teachers were 

quite different.  Keith planned for and enacted more high-level tasks than did Paige.  While both 

Paige and Keith provided their respective students with opportunities to consider multiple 

representations of a mathematical idea, the use of the representations differed.  Paige focused on 

procedural aspects of making connections between representations, whereas Keith used the 

representations as a way for the students to build meaning of the mathematical concepts.  

Additionally, Keith asked more questions that provided the students with opportunities to think 
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and reason about the mathematics as well as to make meaningful connections between 

representations.   

 

An analysis of the contextual settings in which Paige and Keith worked point to key differences 

in the opportunities that Paige and Keith had during their field experience to learn about student-

centered instructional practices.  Two specific areas that were targeted in this study were the 

curriculum and the mentor.  A review of the data indicated that the curriculum used in field 

experience and the mentoring that Paige and Keith received from their mentor teachers and 

university supervisors appeared to affect aspects of their practice.  That is, Keith was greatly 

influenced by his use of a reform-oriented curriculum, whereas Paige did not have access to such 

a curriculum.  Additionally, Keith’s mentors consistently used specific instances form the lesson 

as a means to identify key areas for Keith to focus on improving.  In contrast, Paige typically 

received feedback that was broad and general.   
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1.0 CHAPTER ONE 
 
 
 
 

1.1 INTRODUCTION 
 

 
Over the past two decades mathematics assessments at both international and national levels 

have indicated that United States students’ performance is inadequate.  Results from assessments 

such as the Trends in International Mathematics and Science Study (TIMSS) and the National 

Assessment of Educational Progress (NAEP) point to the fact that students in this country are not 

performing well in mathematics.  In 1999, the United States average mathematics score for the 

eight grade on TIMSS ranked 19th out of 38 participating countries.  In 2003, the United States 

average math score ranked 15th out of 27 participating countries (NCES, 2000, 2003).  At the 

national level, results from the seventh NAEP, which was administered in 1996, indicate that 

38% of 8th graders and 31% of 12th graders performed below the basic level of mathematical 

achievement (Dossey, 2000).  While students do struggle somewhat with basic computation 

problems (Dossey, 2000), performance is notably low on extended-constructed response (ECR) 

tasks.  These tasks involve solving a problem and providing justification for the given solution, 

thus providing insight into students’ thinking and reasoning.  Silver, Alacaci, and Stylianou 

(2000) found that “students generally omitted or performed poorly on most extended-constructed 

response tasks….with as little as 2 percent, and no more than about 30 percent, of the students 

responding satisfactorily across twenty-three tasks at three grade levels” (p.303).  The eighth 

NAEP was administered in 2000. Results indicate that there was improvement at the 8th grade 

level, but not at the 12th grade level.  The average mathematical scale score (e.g. 0-500) for 8th 
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grade increased from 272 in 1996 to 275 in 1998.  Only 34% of 8th graders performed below the 

basic level of mathematical achievement, a decrease of 4% from the previous NAEP.   At the 

12th grade level, however, the average scale score declined from 304 to 301, and the percent of 

students performing below the basic level of mathematical achievement increased by 4%; that is, 

35% of the 12th graders did not demonstrate a basic or proficient knowledge of mathematics 

(Braswell et al, 2001).  

One explanation for U.S. students’ poor performance on these assessments, especially on 

the ECR tasks that require a deeper understanding of mathematical concepts, might be the 

opportunities students have to learn mathematics.  Several studies (e.g. Grouws & Smith, 2000; 

Hiebert and Wearne, 1993; McCaffrey et al, 2001; Stigler & Hiebert, 1999; Stein & Lane, 1999) 

have examined the link between instructional practices of mathematics teachers and student 

learning.  The findings indicate that differences in instructional practices lead to differentiated 

student learning.  Specifically, student learning gains are highest when students are engaged in 

tasks and classroom practices that provide opportunities to think and reason about mathematics.  

That is, the instructional practice of teachers is one possible indicator of student performance.    

It is important then that teacher education programs provide pre-service teachers with 

opportunities both in the university setting and in the field experience classroom to develop 

instructional practices that support students’ development of mathematical understanding.  This 

study examines the instructional practices of two pre-service secondary mathematics teachers 

who are enrolled in a teacher education program that focuses on providing pre-service teachers 

with opportunities to develop instructional practices that support students as they engage with 

challenging mathematical tasks.  In addition, this study seeks to identify aspects of the pre-

service teacher’s field placement that appear to influence the instructional practices. 
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The following sections examine the opportunities students are provided to learn 

mathematics, particularly with respect to the instructional practices in mathematics classrooms. 

Next, recommendations for tasks, tools, and normative practices that promote understanding are 

explored.  Then, curricula that support the recommended instructional practices are described.  

Finally, the opportunities for pre-service teachers to learn about new instructional practices are 

discussed.    

 

1.2 STUDENTS’ OPPORTUNITIES TO LEARN 
 

Students learn what they have the opportunity to learn (Stigler & Hiebert, 1999; Hiebert, 2003).  

Stigler and Hiebert (1999) state, “both the level and nature of the content to which students are 

exposed set boundaries on students’ learning opportunities” (p.56). When the focus of instruction 

is memorizing and using procedures, students develop a procedural understanding of 

mathematics; however, if, for example, students are given the opportunity to explore the 

concepts underlying a procedure, then the learning will be more conceptual in nature. Students 

with a solid conceptual understanding of mathematics are better able to solve novel problems 

(Skemp, 1976), which is a critical skill needed by students in today’s society (Hiebert et al, 1997; 

NCTM, 2000).  Conceptual understanding involves connecting pieces of knowledge in a 

meaningful way (Skemp, 1976; Hiebert et al, 1997) so that one can move flexibly between and 

among various mathematical representations (Dreyfus & Einsberg, 1996; NRC, 2001; Lesh, 

Post, Behr, 1987; NCTM, 2000; Pape & Tchoshanov, 2001), communicate mathematical ideas 

(Hiebert et al, 1997; Carpenter & Lehrer, 1999; NCTM, 2000) and make connections between 

various mathematical ideas (NRC, 2001).  Therefore, if students are expected to develop a 

conceptual understanding of mathematics, they need opportunities to do this in their mathematics 
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classrooms.  However, large-scale international and national studies show U.S. teachers are 

rarely providing students with opportunities to develop conceptual understanding.   

  The TIMSS video study (Stigler & Hiebert, 1999) paints a less than desirable portrait of 

mathematics classrooms in the United States.  The study found that U.S. students were not 

engaging in the same level of mathematics as countries such as Germany and Japan.  The overall 

focus of mathematics lessons in the U.S. was on memorizing and performing procedures instead 

of developing concepts.  Almost 90% of the U.S. lessons observed were coded as having low 

quality of mathematical content, compared to only 11% in Japan and 34% in Germany. Further 

analysis revealed a lack of mathematical coherence throughout US lessons; that is, lessons often 

addressed various unrelated mathematical topics and failed to build on prior knowledge in a 

meaningful way.  The tasks used in the classroom as well as the enactment of those tasks focused 

students on practicing procedures and skills.  This is also supported by data from the 1999 

TIMSS questionnaire.  Nearly all of the U.S. students (94%) reported that their teachers 

consistently model how to solve mathematics problems (NCES, 2000).  Overall, the U.S. 

students were not being asked to think and reason about mathematics in a meaningful way.   

Data from the NAEP also substantiate the fact that a majority of U.S. students are not 

provided with opportunities to engage in activities that promote conceptual understanding. 

Grouws and Smith (2000) summarized findings from the teacher questionnaire portion of the 

1996 NAEP.   They indicated that 79% of eighth-grade students have teachers who report 

focusing instructional practices on procedural aspects of mathematics “a lot”, while only 

approximately 50% of the students have teachers who report focusing on more conceptual 

aspects such as reasoning and communication “a lot”. Those students whose teachers reported 

providing more opportunities to engage with the conceptual aspects of mathematics had 
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significantly higher average scale scores than those students whose teachers reported little or no 

focus on conceptual aspects; in addition, the more focus teachers reported on developing 

procedural aspects of mathematics, the lower the students’ average scale scores.  Data from the 

eight NAEP indicate that students in 8th and 12th grade who viewed mathematics as useful tool 

for solving problems scored highest, while the students who viewed mathematics as memorizing 

facts believed that there was only one method to solve mathematical problems scored the lowest 

(Braswell et al, 2001).   

Together, data from both the TIMSS and the NAEP provide insight into why students in 

the United States tend to have a largely procedural knowledge of mathematics. While procedural 

knowledge is a critical part of mathematical understanding, it is only one strand of knowledge 

needed to be proficient in mathematics (NRC, 2001).  Students in the U.S. can, and must, learn 

more mathematics (Hiebert, 2003).  In our rapidly changing technological society, the level of 

mathematical understanding needed for day-to-day life as well as in the workplace is at an all 

time high. Mathematical understanding is critical for success in a changing world. Students need 

to apply knowledge and understanding to novel situations, communicate mathematically, and use 

a variety of tools (i.e., graphing calculators and computers) to solve complex mathematical 

problems (NCTM, 1989, 2000; Hiebert et al, 1997), all of which involve a conceptual 

understanding of mathematics.   Therefore, teachers must provide students with opportunities to 

develop a conceptual understanding of mathematics.   
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1.3 NEW OPPORTUNITIES FOR STUDENT LEARNING 
 

We are in the midst of a reform in mathematics teaching and learning.  The impetus behind the 

current reform has strong roots in the assessments described earlier that portray dismal student 

progress in mathematics as well as a lack of opportunity for students to move beyond procedural 

knowledge.  A leading force in the current reform is the National Council of Teachers of 

Mathematics (herein referred to as NCTM). A key goal of the reform outlined by The 

Curriculum and Evaluations Standards for School Mathematics (referred to as Standards) and 

the Principles and Standards for School Mathematics (referred to as PSSM) is to influence both 

what mathematics students learn and how they learn it (NCTM, 1989, 1991, 2000). Both the 

documents advocate a shift away from the traditional format of a teacher-directed classroom that 

focuses on learning procedures and towards a student-centered classroom that focuses on 

developing a deeper, conceptual understanding of the mathematics.   

In order to accomplish this goal, the instructional practices of teachers must change.  

Carpenter and Lehrer (1999) identify three “critical dimensions” of instructional practice that are 

essential to examine when considering the opportunities students are provided to learn 

mathematics: 1) tasks, 2) tools, and 3) normative practices.  The following sections define each 

dimension and describe the types of instructional practices that have potential to provide students 

with the opportunity to develop a conceptual understanding of mathematics. 

1.3.1 Tasks 
 
 
Stein and Lane (1996) define a task as “an activity engaged in by teachers and students during 

classroom instruction that is oriented toward the development of a particular skill, concept, or 
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idea” (p.54).   A task could be one complex problem or a series of related problems.  Tasks form 

the basis for students’ opportunities to learn mathematics since the types of tasks students work 

on focus their thinking towards particular mathematical ideas (Hiebert et al., 1997).  However, 

“not all tasks are created equal, and different tasks will provoke different levels and kinds of 

student thinking” (Stein et al., 2000, p. 3).  Research suggests that the tasks in which students 

engage during a mathematics class and the methods used to implement the tasks are critical 

factors in the students’ learning of mathematical concepts, as well as in their learning of what it 

means to “do” mathematics (Doyle, 1983; Hiebert et al., 1997; Lappan & Briars, 1995; Stein & 

Lane, 1996; Stein, Grover, & Henningsen, 1996).  

When selecting tasks for instruction, then, teachers need to consider the mathematical 

“residue” (Hiebert et al., 1997, p.22) a task will leave with the students.  That is, teachers need to 

determine the potential the task has for allowing students to engage in thinking, reasoning, 

communicating, and making connections between mathematical concepts and representations, as 

these are fundamental characteristics of conceptual understanding.  Tasks that provide these 

opportunities are referred to as high-level tasks because the tasks place a great deal of cognitive 

demand on the students.  Conversely, tasks that focus students’ attention on memorization and 

using procedures without understanding are referred to as low-level tasks (Henningsen & Stein, 

1997; Stein & Lane, 1996; Stein, Grover, & Henningsen, 1996).    

High-level tasks provide students with opportunities to develop and deepen conceptual 

knowledge in a variety of ways.  High-level tasks often have multiple solution paths, which 

allows for communication, reflection, and analysis of various methods (Carpenter & Lehrer, 

1999).   High-level tasks often use multiple representations and require students to make 

connections between and among various representations.  The focus of the task is on 
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understanding an underlying mathematical idea rather than on purely memorizing a procedure. 

The mathematics of a high-level task is problematic for the students.  The challenge of the task 

for the students lies in grappling with and coming to a better understanding of the mathematics, 

rather than deciphering the context of the problem or convoluted directions.  High-level tasks 

allow students to use and build on their prior knowledge in a meaningful way, reflect on their 

learning, and communicate with others about the mathematics (Carpenter & Lehrer, 1999; 

Hiebert et al, 1997; Henningsen & Stein, 1997; Stein & Lane, 1996; Stein, Grove, & 

Henningsen, 1996).  

One high-level task alone, however, does not solidify conceptual understanding.  Rather, 

the greatest potential to elicit and solidify conceptual understanding involves the careful 

sequencing of lessons that center on cognitively demanding tasks.  The mathematical coherence 

of lessons is a critical factor in providing students the opportunity to develop a solid 

understanding of the mathematics (NCTM, 2000; Stigler & Hiebert, 1999), since  

student understanding is built up gradually, over time, and through a variety 
of experiences. This means that the selection of appropriate tasks includes 
thinking about how tasks are related, how they can be chained together to 
increase opportunities for students to gradually construct their understanding 
(Hiebert et al. 1997, p.31).  
 

1.3.2 Tools 
 
 
As students work on tasks, they should have the opportunity to draw on various tools to aid in 

their engagement with the mathematics (Carpenter & Lehrer, 1999; Hiebert et al, 1997).  Tools 

include physical materials such as paper and pencil, technological aides (i.e., calculator), and 

different representations. Lesh, Post, and Behr (1987) identified 5 types of representations in 

mathematical learning:  1) real-world contexts, 2) manipulative models, 3) pictures/diagrams, 4) 
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spoken language, and 5) written symbols.   Each representation is independently important since 

each focuses a student’s attention on separate characteristics of the underlying structure of the 

concept (Lesh, Landau, & Hamilton, 1983; NCTM 2000).  However, understanding each 

representation independently is not enough to develop a conceptual understanding.   Translating 

between the representations as well as transforming within the representations is critical in 

developing a flexible and fluid understanding of a mathematical concept (Lesh, Landau, & 

Hamilton, 1983; Lesh, Post, & Behr, 1987; Pape & Tchoshanov, 2001).    Using different tools 

provides students with a variety of ways to think about and explore a mathematical concept, thus 

providing students opportunities to create an integrated web of understanding around that 

concept.   

Hiebert et al (1997) describe tools as “learning supports” (p.20) that can be used to 

facilitate learning in three specific ways.  First, tools allow students to create a record of their 

thinking and reasoning.  This may involve a written notation (either using standard notation or 

student designed) or the use of manipulatives.  These tools may then be used for a second 

purpose, as an effective means of communication.  Communication is critical in developing 

understanding.  As students discuss and reflect on their thinking process as well as the thinking 

of others, they have the opportunity to develop a deeper understanding of how different 

representations model the same situation, and tools greatly facilitate these conversations. Finally, 

tools provide students with a means to think through difficult tasks.   Tools support student 

thinking by connecting to prior knowledge, extending “mental capabilities”, and influencing the 

way one views or thinks about a particular task. 

Tools may be introduced by either the teacher or the student.  There is no “right” tool to 

use in every situation.  Instead, it is critical that the teacher “thinks carefully about the way in 
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which students’ thinking might be shaped by using particular tools” (Hiebert et al, 1997, p.63), 

since this will impact the residue that is left behind from engaging with the task. 

1.3.3 Normative Practices (Norms) 
 

Stigler and Hiebert (1999) warn, “challenging content alone does not lead to high achievement.  

The same content can be taught deeply or superficially” (p.58).   The teacher plays a critical role 

in how tasks will materialize in the classroom.  The events of the classroom provide students 

with opportunities to engage with and learn mathematics (Hiebert et al, 1997; Stein & Lane, 

1996; NCTM, 2000).   While the selection of a cognitively demanding task is important, the way 

in which the students actually experience the task is what essentially impacts student learning 

(Ball & Cohen, 1996; Stein & Lane, 1996).  Conceptual understanding is not something that is 

directly taught.  As the types of tasks change from the procedural, or low-level tasks, to tasks that 

require a high-level of cognitive demand, the teaching methods needed to support student 

learning must also change (Hiebert et al, 1997).  As a result, the normative practices, or norms, in 

the classroom will also change.  The norms in a classroom involve the role of the teacher and 

students; that is, “how students and the teacher are expected to act or respond in a particular 

situation” (Carpenter & Lehrer, 1999, p.25).  The norms of a classroom dictate how tasks and 

tools will be made use of during the class.  Norms can be either explicitly stated or learned 

implicitly through interactions (Carpenter & Lehrer, 1999).  Identifying the norms of a classroom 

is important, as the norms determine the way a task will be enacted, and ultimately, the way 

students will come to learn about and view mathematics.   

Hiebert et al (1997) identify four norms that promote conceptual understanding in 

classroom: 
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1) discussions are about methods and ideas,  

2) students choose their own methods and share them with others,  

3) mistakes are sites for learning, and 

4) correctness is determined by the logic of the mathematics (p.46-49). 

As previously stated, discussing the relationship between and among various representations is 

critical in developing a conceptual understanding of a particular mathematical idea.  When 

students decide how to approach a problem, they are able to draw on their prior knowledge in a 

meaningful way.  In sharing solutions with others, students are given the opportunity to reflect 

on and evaluate the effectiveness and correctness of their own work as well as the methods and 

tools used by other students.  While the students are engaging with and communicating about the 

task, mistakes should be seen as a “natural and important part of the process of improving 

methods of a solution” (Hiebert et al, 1997, p.48).  Rather than being seen as a sign of lack of 

knowledge, mistakes should be seen as a way to build a better understanding.  Students should 

come to learn that they, not the teacher, are the mathematical authority in the classroom.  One 

way of achieving this shift in authority is to use the logic of mathematics to ultimately determine 

the correctness of a method and solution.   

Traditionally, the role of the teacher in a mathematics classroom is that of a “didactic 

leader” (Leinhardt, 1993, p.4). The teacher is seen as the mathematical authority, the one who 

determines the correctness of a method and solution. The teacher directs the classroom by 

instructing students on how to correctly perform a procedure, and then students work 

individually to practice the procedure on similar problems (Lloyd, 1999; Senk & Thompson, 

2003b). Little, if any, emphasis is placed on developing a deep understanding of the rationale 

behind or connections among various procedures (Stigler & Hiebert, 1997; Stigler & Hiebert, 
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1999; Hiebert, 2003). Students are rarely provided with the opportunity to reflect on or 

communicate their thinking.  This method of teaching typically does not address “the way in 

which either the teacher or the student might develop the meaning and the structure of the 

material being learned” (Leinhardt, 1993, p.5).  While this type of teacher-centered instruction 

dominated mathematics classrooms in the U.S. for nearly all of the 20th century (Hiebert, 2003), 

it is contrary to current thinking on how students best learn and understand mathematics.   

In a reform-oriented classroom, the class structure is very student-centered and the 

teacher is viewed as a “facilitator” (Leinhardt, 1993, p.3).  The teacher role shifts from the 

“teller” in the traditional classroom to the “questioner” in the reform-oriented classroom.  

Questioning is a critical component in creating norms that support the development of 

conceptual understanding among students since questions provide the teacher with a vehicle to 

assess and advance understanding, promote communication, and focus on the logic of the 

mathematics.   

Effective lessons are built around students’ prior knowledge rather than a particular page 

in a textbook (Van de Walle, 2004). The typical reform-oriented class format involves the 

teacher posing a high-level task and allowing students to work in groups to solve the task using a 

method that makes sense to that particular group of students (Senk & Thompson, 2003b).  As the 

students work on the task, the teacher moves around the classroom asking questions about 

students’ thinking and reasoning.  After students have explored the task, the class typically 

reconvenes as a group to discuss various methods and solutions.  During the discussion, students 

explore misconceptions, the efficiency of various methods, and ultimately they determine the 

correctness of solutions by using mathematical reasoning.   The teacher is the facilitator of the 

discussions between groups and the class, rather than a lecturer who passes on knowledge to 
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quiet, passive students. Through careful planning, sequencing of tasks, and questioning, the 

teacher guides students along a particular mathematical trajectory by providing opportunities to 

engage in high-level tasks, communicate with other students, reflect on various methods, and to 

use tools in a meaningful way.   

 
 
 

1.4 USING REFORM-ORIENTED CURRICULUM AS MEANS TO PROVIDE 
STUDENTS WITH OPPORTUNITIES TO DEVELOP CONCEPTUAL 

UNDERSTANDING  
 

 

In order for students to develop more than a procedural understanding of mathematics, the 

instructional practices of mathematics classroom must change from the traditional format of a 

skills-based teacher-centered classroom to that of conceptually-oriented student-centered 

classroom.  As discussed in the previous section, this shift involves using cognitively demanding 

tasks, an assortment of tools in a meaningful way, and redefining the norms of a mathematics 

classroom. Research suggests, however, that implementing these new instructional practices is 

often a struggle for teachers (Cohen, 1990; Manouchehri & Goodman, 2000; Orrill & Anthony, 

2003; Wilson & Lloyd, 2000).   

There are various factors documented in the literature (e.g., Brown & Borko, 1992; 

Fennema & Franke, 1992; Henningsen & Stein, 1997; Thompson, 1992) that influence a 

teacher’s instructional practices. One critical factor that influences the instructional practices 

used by the teacher is the textbook. Students’ opportunities to learn mathematics are directly 

related to the tasks in which they engage, and teachers are the critical determinants of those 

tasks. The primary resource teachers use to select tasks is the textbook being used in the 
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classroom (Senk & Thompson, 2003b; Van Zoest & Bohl, 2002).  Research indicates that 

teachers rely quite heavily on textbooks for planning and teaching mathematics (Brown & 

Edelson, 2004; Ball & Cohen, 1996; Remillard, 2004). Van Zoest & Bohl (2002) claim, 

“textbooks can strongly influence both what and how teachers teach” (p.268).  That is, the 

textbook is a key factor in determining the instructional practices of a mathematics classroom.   

Since the advent of the Standards (NCTM, 1989), there has been an effort to develop 

curriculum materials (i.e., textbooks, computer software, and teacher resource books) that are 

more closely aligned with the goals of the Standards (McCaffrey et al, 2001; Senk & Thompson, 

2003b).  One notable effort occurred two years after the release of the Standards when the 

National Science Foundation (NSF) stated that it would fund the development of such materials.  

The NSF initially funded 12 large-scale projects that together spanned from kindergarten through 

12th grade (McCaffrey et al, 2001; Senk & Thompson, 2003b) and has subsequently funded 

revisions of three curricula, one each at the elementary, middle, and high school levels.  In 

addition to the NSF funded curricula, several other reform-oriented curricula (ROC) have been 

published that embody the ideals of the Standards.    

ROC are different from traditional curricula with respect to tasks, tools, and norms 

(Lloyd, 1999; Lloyd & Frykholm, 2000, NCTM, 1989; NCTM, 2000; Senk & Thompson, 

2003b). ROC are designed to support the use of the instructional practices identified as critical to 

the development of a conceptual understanding of mathematics.  As a result, ROC provide 

students with different opportunities to learn mathematics than do traditional textbooks.  

Tasks in a traditional mathematics textbook focus students’ attention on skills and 

becoming efficient with various procedures.  These traditional textbooks have “few references to 

mathematical principles, very little to read, and thousands of exercises to practice skills.  There 
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[are] virtually no problems showing how mathematics is used in daily life or in other fields and 

no challenging problems in these texts” (Senk & Thompson, 2003b, p.9).  Overall, the majority 

of tasks in traditional textbooks would be classified as low-level.  In addition, the teaching 

suggestions in traditional textbooks typically focus on the teacher showing students how to use a 

particular procedure for the problems in the lesson. Thus, as a whole, traditional textbooks 

provide little opportunities for students to engage with tasks that promote conceptual 

understanding.   

In contrast, the tasks in ROC are largely high-level tasks and the suggested instruction in 

the teacher’s manual focuses on providing students with opportunities to grapple with the 

cognitively challenging aspects of the tasks.  That is, the tasks often involve real-world 

situations, allow for multiple solution paths, require students to make connections between and 

among various representations, and focus students’ attention on understanding the underlying 

mathematical ideas of the task rather than on purely memorizing a procedure. While procedures 

are not absent in ROC, the method used to learn the procedures is different from the traditional 

curriculum.  Often, the problems are structured to begin with students’ informal knowledge of 

the concept.  Then through methods such as discussing various solution methods, the teacher 

helps guide the students’ learning of the concept.   

Given the tradition of mathematics instruction in the U.S., it is not surprising that ROC 

“challenge strongly held beliefs about what mathematics is most important as well as how it is 

taught and learned most effectively” (Senk & Thompson, 2003b, p.15).  With that in mind, 

Brown and Edelson (2003) emphasize the importance of examining how teachers select and 

implement tasks from ROC.  They note that the use of a ROC alone does not imply that teachers 

are using the curriculum in the way it was intended.  That is, teachers may appropriate tasks and 
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use them as they appear in the curriculum (Remillard, 1999), modify tasks in some way (Smith, 

1999), or invent new tasks to replace the tasks from the curriculum (Remillard, 1999).  The 

modified or invented tasks may be similar to or different from the original task.  One risk with 

curricular reforms is that while using the curriculum materials, “practitioners will ‘mutate’ the 

core aims of the reform to take on the characteristics the reforms seek to change” (Remillard, 

1999, p.1).   Sometimes, this mutation is done knowingly, while other times, the teacher does not 

recognize the mutation of the goals.  Therefore, new curriculum materials are not a panacea, but 

rather a starting point.  They provide a source for good tasks, but in order to enact tasks as 

intended, new instructional practices will be required.   

One key place where teachers have an opportunity to learn about new instructional 

practices is in pre-service teacher education programs.  Teacher education programs play a 

critical role in the reform efforts in that the programs are preparing the next generation of 

teachers, and these teachers will be expected to help their future students develop a conceptual 

understanding of mathematics.   In the next section, ways in which pre-service teachers begin to 

learn about new instructional practices will be explored. 

 

1.5 PREPARING TEACHERS TO MEET THE DEMANDS OF TEACHING FOR 
UNDERSTANDING 

 
 

As teachers enter the profession, they may already have well-defined beliefs regarding the 

instructional practices of a mathematics classroom.  This is what Lortie (1975) calls the 

“apprenticeship of observation”; that is, the teachers learn what teaching mathematics looks like 

through their own schooling experiences.   As previously noted, the last century was dominated 

by teacher-centered classrooms in which procedural tasks were the main focus of classroom 
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activity.  As a result, most teachers have a traditional view of mathematics instruction. This 

creates the need to provide teachers, both new and veteran, with opportunities to learn about and 

engage in the primary tenants of the reform outlined by documents such as the Standards and 

PSSM.   This is challenging because teachers will need to redefine “good” instructional practices 

in a mathematics classroom (Ball, 1988).  There are two primary places where teachers may have 

an opportunity to learn about instructional practices that are student-centered:  during pre-service 

teacher education experiences (ie., coursework and field placements) and through on-going 

professional development opportunities.  

Shortly after the introduction of the Standards, many researchers began to call for 

mathematics pre-service teacher education programs to restructure the coursework and field 

experience components to align with the instructional practices recommended by the reform.  For 

example, Wilson (1994) encourages teacher educators to provide pre-service teachers with an 

opportunity to engage in cognitively demanding tasks and to reflect on their learning.  The 

premise is that “such an approach will allow [pre-service] teachers to make important 

connections in their own mathematical understanding and improve the chances that such an 

integrated approach will be reflected in their future teaching” (p.369).  One resource teacher 

educators can use to achieve this goal is ROC.  In addition to coursework, other researchers 

focus on the importance of the field experience component.  For example, Eisenhart et al (1994) 

and Frykholm (1996) claim that the pre-service teacher’s field experience greatly impacts the 

pre-service teacher’s future instructional practices.  As a result field experiences should model 

the student-centered instructional practices that pre-service teachers are expected to learn.  The 

following sections further elaborate on the influence of ROC and the field experience in pre-

service teacher education. 
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1.5.1 ROC and Pre-Service Teacher Education   
 

A growing trend in pre-service teacher education is to use tasks and lessons from ROC in 

methods classes as a means to engage pre-service teachers in thinking about teaching (Behm & 

Lloyd, 2003; Lloyd & Frykholm, 2000; Smith et al, 2001; Smith et al 2003; Spielman & Lloyd, 

2004).  ROC may serve as a resource for teacher learning as well as student learning.  Through 

engaging with ROC in a variety of ways, teachers have opportunities to begin to overcome the 

“apprenticeship of observation” by participating in and reflecting on new instructional practices. 

For example, Smith and her colleagues (Smith et al, 2001; 2003) used high-level tasks from a 

variety of ROC in order to provide pre-service teachers with the opportunity to do mathematics 

and think critically about the planning of lessons surrounding high-level tasks.  The pre-service 

teachers also engaged in analyzing teaching episodes from lessons based on tasks from ROC.  

Several researchers (e.g., Behm & Lloyd, 2003; Lloyd & Frykholm, 2000; Spielman & Lloyd, 

2004) have a different approach-- to use ROC as the textbook for a methods course.  This 

provides pre-service teachers with the opportunity to experience a particular ROC, examining 

both the mathematical content as well as the pedagogical methods suggested in the text.  

Research indicates that the use of ROC positively impacts pre-service teachers’ knowledge of 

mathematics and beliefs about the teaching and learning of mathematics (Behm & Lloyd, 2003; 

Lloyd & Frykholm, 2000; Spielman & Lloyd, 2004).  These findings are notable since other 

research indicates that beliefs and content knowledge are factors that influence both what and 
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how a teacher teaches (Clarke,1997;  Thompson, 1992;  Fennema & Franke, 1992; Remillard, 

1999; Senk & Thompson, 2003b; Van Zoest & Bohl, 2002). 

The vast majority of the work described above, however, has been done at the elementary 

and middle school levels; little research examines pre-service teachers at the high school level.  

In addition, little research explores how the knowledge gained in methods courses influence 

instruction in the student teaching setting. That is, further research is needed to examine the 

extent to which pre-service teachers plan and teach lessons that reflect instructional practices 

aligned with the reform, such as the implementation of high-level tasks as a means to develop 

conceptual knowledge among students (Lloyd & Frykholm, 2000; Orrill & Anthony, 2003). This 

is critical since the teacher ultimately shapes the learning opportunities and experiences of the 

students (Ball & Cohen, 1996; Hiebert et al, 1997; Lloyd & Frykholm, 2000; NCTM, 2000; 

Stein & Lane, 1996).   

1.5.2 The Field Experience: The Role of the Mentor 
 

The experiences in pre-service teachers’ coursework are critical to developing knowledge and 

beliefs that encourage the use of reform-oriented instructional practices; however, the 

coursework alone is “ultimately a weak intervention” in that pre-service teachers often revert to 

traditional teaching methods during their field experiences (Ebby, 2000, p.70).  One possible 

reason that pre-service teachers may teach in a way that contradicts the methods they are 

learning in the methods courses is that while in the field placements the pre-service teachers 

“feel almost no pressure” from their mentor teachers to use instructional practices aligned with 

the reform (Frykholm, 1996, p.671).  Frykholm also observed that over half of the pre-service 

teachers in his study claimed that their mentor teacher most impacted their own teaching 
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philosophies.  In addition, almost two-thirds of the pre-service teachers stated that their teaching 

style mimicked their mentor’s style to a high degree.  It is not surprising, then, that in the lessons 

Frykholm observed, approximately two-thirds were categorized as “traditional” lessons.  

Data from such studies point to the profound influence a mentor teacher may have on the 

instructional practices of the pre-service teacher.   An important aspect for teacher education 

programs to consider, then, is the alignment between their program and the field placement, 

particularly the beliefs and practices of the mentor teacher.  Eisenhart et al (1994) claim that the 

most important aspect of a pre-service teacher education program is that the field placements for 

the pre-service teachers be in classrooms that “provide the opportunity and support to teach in 

ways that match the NCTM’s vision” (p.37).  

   There is evidence that creating this alignment between the program and field placement 

is effective.  For example, a study by Van Zoest & Bohl (2002) of an intern and mentor teacher 

demonstrates a clear impact of the mentor teacher on a pre-service teacher’s instructional 

practices.  Through their joint planning sessions, the pre-service teacher grappled with both 

mathematical and pedagogical decisions regarding how to use the materials in the ROC in a way 

to best serve the students’ learning.  The willingness, commitment, and support of the mentor 

impacted the pre-service teacher’s use of and interaction with the ROC materials.  Ebby’s (2000) 

work also highlights the positive impact on pre-service teachers’ instructional practices when 

there is an alignment between coursework and the field experience.  While there is a growing 

body of research that continues to examine the impact of the mentor-pre-service teacher 

relationship on the pre-service teacher’s instructional practices, the research that focuses on the 

impact of the alignment of a pre-service program and field placement, including the curricula 

used in the classroom and the instructional practices of the mentor teacher, is still in its infancy.   
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1.6 PURPOSE OF THIS STUDY 
 

 
This study used a case study design to investigate the instructional practices used by two 

secondary mathematics pre-service teachers who participated in a reform-oriented teacher 

education program and the ways in which aspects of the context within which they work, 

particularly the mentor teacher and the curriculum used in the classroom, appear to influence the 

practices used by each of the two pre-service teachers.  Specifically, this study seeks to address 

the following questions: 

1) What is the nature of instructional practices used by two pre-service secondary teachers 

in their field placement classrooms?   

2) In what ways do the contexts within which each pre-service teacher works influence their 

instructional practices? 

The purpose of the first research question is to describe the selection and enactment of tasks by 

pre-service teachers in their field placement. In particular, the nature of the tasks, the tools, and 

normative practices will be explored.  The second research question aims to examine the impact 

of aspects of the contextual setting on instructional practices.  In particular the question seeks to 

compare the instructional practices of a pre-service teacher who uses traditional curricula with 

one who is exposed to a reform-oriented curricula.  Additionally, the second questions seeks to 

explore the influence of mentors who regularly use high-level tasks, provide students with 

appropriate and meaningful tools, and whose classroom norms promote conceptual 

understanding on the instructional practices of the pre-service teachers.   
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1.7 SIGNIFICANCE OF THE STUDY 

 
  

The current study builds on prior studies that have informed the field about the critical 

dimensions of instructional practices.  Specifically, this study is informed by prior research that 

examined the tasks used in elementary classrooms (Hiebert & Wearne, 1993) and middle school 

classrooms (Stein & Lane, 1996; Stein et al, 1996; Henningsen & Stein, 1997), the use of 

representations as a tool to promote understanding (Even 1993, 1998; Knuth, 2000; Sanchez & 

Llinares, 2003; Wilson 1994), and the use of questioning as a normative practice (Hiebert & 

Wearne, 1993; Boaler & Brodie, 2004; Martino & Maher, 1999; Moyer & Milewicz, 2002).  

While each of the studies provides insight into a particular aspect of the critical 

dimensions of instructional practices, the studies do not address how all three aspects are 

combined during instruction, particularly at the secondary level with pre-service teachers.  The 

studies on representations as tools focus on pre-service teacher’s content knowledge, but do not 

address how this knowledge translates into instruction in the classroom.  Three of the studies 

about questioning involve classroom practices of practicing teachers (i.e., Hiebert & Wearne, 

1993; Boaler & Brodies, 2004; Martino and Maher).  While Moyer and Milewicz (2002) do 

focus on pre-service teachers, the study examines elementary teachers as they interview students 

in a non-instructional setting.  This study will expand this research base by characterizing the 

instructional practices of two secondary pre-service teachers who are participating in a program 

that promotes student-centered instructional practices as a means of developing conceptual 

understanding among students.   

Improving student learning is a central goal of mathematics education. As discussed 

previously, to achieve this goal the instructional practices of teachers must improve.  Several 
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studies (e.g., Clarke, 1997; Henningsen & Stein, 1997; Lloyd, 1999; Remillard, 1999; Van Zoest 

& Bohl, 2002) have identified factors that influence teacher’s use of high-level tasks.  However, 

research is sparse regarding the influences on the use of tools and normative practices.  In 

addition, little research examines the influences on pre-service teacher’s instructional practices, 

particularly at the secondary level. We need to understand how the context of the pre-service 

teachers’ experiences influence their instructional practices so that teacher education programs 

can be designed to produce teachers who have developed instructional practices that promote 

understanding.  Therefore, this study will document ways that various aspects of the context, 

particularly the mentor and curriculum, appear to influence the instructional practices of 

secondary pre-service teachers. This study then has implications for pre-service teacher 

education programs in that it will explore how aspects of the context appear to support or inhibit 

pre-service teachers’ implementation of student-centered instructional practices.   

 

1.8 LIMITATIONS OF THE STUDY 
 

 
While this study aims to inform the mathematics education field about the instructional practices 

of secondary pre-service teachers, there are some limitations to consider.  First, a case study 

design is used to provide rich detail regarding two pre-service teachers.  The study, then, may not 

be generalizable to all secondary pre-service teachers.  Instead, this study will add to the growing 

body of literature to help create a more robust picture of the instructional practices of pre-service 

teachers. A second limitation is that the two participants in the current study are teaching related, 

yet different mathematics content.  Therefore, it may be the case that the observed instructional 

practices may differ based on the course content. 
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1.9 ORGANIZATION OF THE DOCUMENT 
 

 
This document is organized into five chapters. This first chapter provided an overview of the 

study, including a discussion of the larger context of mathematics education reform and 

implications of how the current study will add to the current literature base.  The second chapter 

examines in more depth the literature relevant to this study.  In particular, research relating to the 

use of cognitively demanding tasks, representations of mathematical concepts as tools to aid 

understanding, and normative practices in reform-oriented classrooms will be examined.  In 

addition, research relating to pre-service teacher education and instructional practices will also 

be described.  Chapter three delineates the methodology of the study, including the larger context 

of the study, the participants, data sources, and analysis procedures.  Chapter four presents the 

results from the analysis of the data.  Chapter five is comprised of a discussion of the results and 

of conclusions drawn from the results. 
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2.0 CHAPTER TWO: LITERATURE REVIEW 
 
 
 
 

2.1 INTRODUCTION 
 

 
This study seeks to describe the nature of the instructional practices of two secondary 

mathematics pre-service teachers.  That is, the study aims to examine the pre-service teachers’ 

selection and implementation of tasks, the availability and use of tools, and the normative 

practices.  In addition, factors that appear to influence the instructional practices will also be 

explored.  Three main bodies of relevant literature will be discussed in this chapter.  First 

pertinent studies regarding the critical dimensions of instructional practices (i.e., tasks, tools, and 

norms) are reviewed.  Specifically, literature on the cognitive demands of tasks is discussed.  In 

addition, this study focuses on a particular tool as support for student learning-- representations 

of functions.  Therefore, research regarding the role of representations and pre-service teachers’ 

understanding of representations of functions is discussed.  A critical norm of student centered 

classrooms is discussions that focus students on developing meaning for the mathematics.  In 

order for such discussions to occur, the teacher must find ways to assess and advance the 

students’ understanding.  One method to accomplish this goal is through questioning.  

Consequently, literature related to questioning and its impact on student learning is also 

explored.  The second body of literature reviews studies regarding teachers’ use of ROC and 

factors that affect the use of the ROC.  The third section draws on the literature about pre-service 

teacher education projects that sought to support pre-service teachers in thinking about and 
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implementing reform-oriented instructional practices.  Finally, the chapter ends by addressing 

the implications of the literature for the current study. 

 

 

2.2 CRITICAL DIMENSIONS OF INSTRUCTIONAL PRACTICE 
 

 
 

2.2.1 Tasks 
 
 
The academic work students do in a classroom is dependent upon the tasks in which they engage 

(Doyle, 1983).  Doyle defines tasks “by the answers students are required to produce and the 

routes that can be used to obtain these answers” (p.161). To that end, Doyle identified four types 

of general academic tasks: 1) memory tasks, 2) procedural or routine tasks, 3) comprehension 

tasks, and 4) opinion tasks.  Each of these types of tasks requires a different type of thinking 

from students, thus resulting in different types of learning.  For example, both memory and 

procedural tasks involve students reproducing given information.  Little, if any, understanding is 

needed to be successful on such tasks.  In contrast, comprehension tasks require a deeper level of 

knowledge that involves understanding the concepts that underlie the task.    

Traditionally, the general curriculum in schools in this country has included more tasks 

that focus on routinized basic skills and procedures than on comprehension and opinion, which 

are fundamental for understanding (Findell, 1996; Stanic & Kilpatrick, 1992; Resnick & 

Resnick, 1992).  Data from TIMSS indicate that eighth-grade students in this country are not 

exposed to quality mathematics that prompt thinking and reasoning.  In fact, 89% of the lessons 

from the United States were rated as having a low quality of mathematics, and no lesson was 
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rated as being high quality.  This stands in contrast to the Japanese and German counterparts in 

which only 11% and 34% of the lessons were rated as low quality, respectively (Stigler & 

Hiebert, 1999). 

Today’s students need to go beyond a curriculum comprised of tasks that focus primarily 

on memorization and rote skills towards a “thinking curriculum” that is designed to prepare 

students for the challenging demands of our increasingly complex society (Resnick & Resnick, 

1992).  A critical focus of the reform in mathematics education is shifting emphasis from “drill 

and skill” tasks to challenging and worthwhile tasks (NCTM 1989, 1991, 2000). This section 

examines relevant literature regarding the use of tasks in mathematics classrooms. 

2.2.1.1 Tasks at the elementary level  Hiebert and Wearne (1993) examined two facets of the 

instructional practices of all the second-grade math classrooms (total of 6) in one rural/suburban 

school: tasks and discourse.  The classrooms were selected for study since there was a large 

enrollment.  At the beginning of the school year, each of the 147 students was assigned to a 

mathematics classroom based on their comparative rank on a teacher-constructed skills and facts 

test. The 60 students who scored highest were grouped into two higher tracks (classrooms E & 

F), while the remaining students were randomly distributed across the remaining four classrooms 

(classrooms A, B, C, and D).  Observations spanned the course of the year, but occurred during 

units on place value, multidigit addition, and multidigit subtraction.   

Two of the six classrooms in the study, classrooms D and F, received “alternative 

instruction” during the observations in the units described above.  The purpose of the alternative 

instruction was to provide students with opportunities to “construct relationships-- relationships 

between their current knowledge and new information, relationships between different forms of 

representation, and relationships between alternative procedures” (p.398).  The project, however, 
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employed two experienced elementary teachers to implement the alternative instruction rather 

than using the regular classroom teacher.  This was done to try to ensure a more faithful 

implementation of the alternative instruction lessons.  The method and the tasks used in these 

classrooms stand in sharp contrast to the conventional method and tasks of the second-grade 

textbook used in the other four classrooms in that the focus in the alternative instruction 

classrooms was on “constructing relationships between place value and computation strategies 

rather than practicing prescribed procedures” (p.393). 

Written assessments were administered to all students at the beginning and end of the project.  

The results of the task analysis will be discussed here, while the results of the discourse analysis 

will be discussed in a later section. 

In examining the nature of the tasks used in the classrooms, nine lessons from each of the six 

classrooms were selected for consideration.  All tasks from each lesson were coded in two ways.  

First, tasks were coded with respect to the mathematical content, distinguishing between 

“problems that involved place value ideas but did not require conventional computation and 

computation problems” (Hiebert & Wearne, 1993, p.406).  Then, tasks were coded for the 

contextual features.  The context of the task was identified as one of the following five 

categories: “(a) problems presented and solved using only written symbols; (b) problems 

presented using pictures or diagrams; (c) problems solved with the aid of physical materials; (d) 

problems presented through a story and solved using paper and pencil only; and (e) problems 

presented through a story and solved with the aid of physical materials” (p.406-407).  

Results for the content analysis did not show any strong differences between each of the six 

classes regarding both the emphasis on place value and the number of problems actually 

completed.  However, strong profiles emerged regarding the contextual features of the tasks 
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used.  While there were slight differences between each classroom, two distinct categories were 

noted.  The tasks in classrooms A, B, and C emphasized the use of written symbols and 

procedures whereas the tasks in classrooms D, E1, and F focused on concepts and were situated 

in story problems.  These profiles that emerged with respect to the contextual features of the task 

proved to be a critical factor when examining student achievement.  The results indicated that 

tasks that focused on concepts and used multiple representations seemed to positively impact 

student learning.   

2.2.1.2 Tasks at the middle school level: The QUASAR Project  QUASAR was a national 

project that sought to “demonstrate the feasibility and responsibility of designing and 

implementing meaning-oriented, high-level instructional programs” in middle school classrooms 

in economically disadvantaged schools where prior instruction typically focused heavily on 

mastering procedures (Stein & Lane, 1996, p.53).  The six schools involved in the project 

differed with respect to “size, geographic location, and ethnic make up of their student 

populations” (p.53).  Most of the teachers involved in the project were elementary certified, and 

their experience ranged from one to twenty years of teaching, with an average of 13 years (Stein 

et al, 1996). Each of the QUASAR schools received support from resource partners at a local 

university as well as the project staff as the teachers worked to develop instructional practices 

that provided students with opportunities to think and reason about mathematics (Stein & Lane, 

1996).  

One facet of instructional practices that the QUASAR team investigated was the 

cognitive demands of the tasks used in the classrooms.  According to Stein, Grover, and 

                                                 
1 Although classroom E was not one of the alternative instruction classrooms, the profile that emerged with respect 
to the instructional tasks (i.e., number of problems, time spent per problem, contextual features of problems, and 
time spent on class discussion) tended to consistently fall between the extremes of classrooms A, B, C and 
classrooms D, F.  
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Henningsen (1996), tasks can be generally classified as either requiring a high-level of cognitive 

demand (i.e., procedures with connection to meaning or doing mathematics) or a low-level of 

cognitive demand (i.e., memorization or procedures without connection to meaning) from the 

students.  Procedures with connections and doing mathematics tasks focus students’ thinking on 

developing meaning for the underlying mathematics of the task.  For example, tasks of this 

character may require that students solve a problem in multiple ways or make connections 

between representations.  In contrast, both procedures without connections and memorization 

tasks focus students’ thinking on reproducing previously learned material such as facts or 

procedures and do not require that students make connections to meaning.   

Building on Doyle’s (1983) notion of different types of tasks, Stein et al (1996) 

developed a framework (see figure 1) for analyzing the cognitive demands of a mathematical 

task as the task progresses through three phases.  The first phase of the framework examines the 

task as it appears in the curriculum or instructional materials.  Next, the task is again analyzed as 

the teacher sets-up or introduces the task in the classroom.  The third phase, implementation, 

examines the “cognitive processes in which students actually engage as they go about working 

on the task” (Stein et al, 1996, p.461).   According to the framework, the cognitive demands of a 

task can change between each of the phases.  The QUASAR research (Stein, Grover, & 

Henningsen, 1996; Henningsen & Stein, 1997) examined the cognitive demands of tasks at the 

set-up and implementation phases of the framework and the factors that influenced the 

maintenance or decline of the demands during the enactment of the lesson.  
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Figure 1. The Mathematical Task Framework (Stein et al, 1996) 
 
 

In a study of 144 tasks, Stein et al (1996) analyzed the characteristics of tasks (i.e. source, 

topic and context), the features of tasks at set-up (i.e., solution strategies, representations, 

communication) cognitive demands at the set-up, and the features and cognitive processes used 

by the students during implementation.  The authors found that most tasks were created by the 

project participants (39% of the tasks) and or found in reform oriented curricula (30% of the 

tasks).  The remaining tasks were taken from various resource books (19% of the tasks) or the 

classroom textbook (11% of the tasks)2.   At set-up, approximately two-thirds of the tasks 

allowed for multiple solution paths, promoted the use of multiple representations, and required 

an explanation; all features that are in line with the tenants of the reform. In addition, nearly 

three-fourths of the tasks were set-up with high-level cognitive demands.  In other words, the 

project teachers were selecting and setting-up tasks in a way that had the potential to provide 

students with the opportunity to think and reason in ways that could build and strengthen their 

conceptual understanding of the mathematics of the lesson.  

During the implementation, the features of the tasks (i.e., multiple solution paths, 

multiple representations, and explanations) stayed relatively consistent.  That is, tasks that 

allowed for multiple solutions tended to generate such and tasks that required an explanation 
                                                 
2 ROC were being developed during the time of the QUASAR project and therefore were not as readily available as 
now.  
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tended to have one produced.  However, these features alone do not indicate the extent to which 

the cognitive demands of the lesson were maintained.  While a high percentage of procedures 

without connections tasks were maintained (96%), this was not true of the tasks set-up at high 

levels of cognitive demand. Approximately half (53%) of the tasks set-up as procedures with 

connection were not maintained because there was no connection made to the underlying 

concepts of the task.  Similarly, only 38% of the tasks set-up as doing mathematics were 

maintained.  The findings indicate that as students engage with cognitively demanding tasks, “it 

appears fairly easy for students to slip into the rote application of formulas and algorithms” 

(Stein et al, 1996, p.476).   

Each lesson in which the task declined from high-level at set-up to low-level during 

implementation (61 tasks) was further analyzed for factors that appeared to influence the decline 

in cognitive demands.  The researchers identified six factors. The first factor, challenges become 

nonproblems, was the most commonly identified reason for a decline (64%).  This occurred 

when the teacher did the thinking on the task rather than allowing the students to grapple with 

the mathematics.  For example, a teacher may provide students with the procedure to follow in 

order to reduce the ambiguity of the task or the anxiety level of the students. The second factor is 

the inappropriateness of the task for students.  This factor was selected in 61% of the lessons for 

a variety of reasons, including motivation and students’ prior knowledge.  The third factor, focus 

shifts to correct answer, was identified in 44% of the lessons.  A fourth factor noted that in 38% 

of the lessons that declined the students were given too much or too little time to effectively 

engage with the task.  Students’ lack of accountability to engage with the task at high-levels was 

cited as a factor in 21% of the lessons.  Only 18% of the lessons declined as a result of classroom 
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management problems.  Overall, approximately 2.5 factors were identified for each lesson in 

which the cognitive demands declined (Stein et al, 1996; Henningsen & Stein, 1997). 

 The researchers also identified factors associated with the maintenance of the cognitive 

demands from set-up through implementation.  Interestingly, an average of four factors for each 

lesson were identified.  The most common factor was that the task built on students’ prior 

knowledge (82%).  Allowing the appropriate amount of time and modeling of high-level 

performance by either the teacher or a student both were cited in 71% of the lessons.  

Continually pressing for explanations, justifications, and meaning was a factor in 64% of the 

lessons.  Scaffolding in a way that supported students’ engagement with the task without 

removing the challenging aspects was identified as critical in 58% of the lessons.  The final two 

factors in maintaining the high-level demands of the task were student self-monitoring (27%) 

and the teacher drawing conceptual connections (13%) (Stein et al, 1996; Henningsen & Stein, 

1997).   

An analysis of the set-up and implementation of tasks as they related to student learning 

gains on the QUASAR Cognitive Assessment Instrument (QCAI) at the four QUASAR sites 

provides evidence that the thinking required of the students during the implementation of the 

lesson does impact students’ understanding and learning. Of the four QUASAR sites, site A had 

the highest learning gains, site D the lowest, and sites B and C in the middle.  Stein and Lane 

(1996) examined the patterns of task set-up and implementation across each site to determine if a 

relationship existed between the cognitive demands of the lessons and student learning gains on 

the QCAI.   

Indeed, the tasks at site A tended to be consistently set-up and implemented at high-

levels, with a majority of tasks set-up at the “doing mathematics” level of cognitive demand. In 
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contrast, about half the tasks at site D were set-up with low-levels of cognitive demand and all 

but one of the tasks set-up at a high-level of cognitive demand declined in the thinking required 

of the students.  Sites B and C also used a large number of high-level tasks, but unlike site A, 

these tasks were more even distributed between “doing mathematics” tasks and “procedures with 

connections” tasks.  Of these tasks, less than half were implemented in a way that maintained the 

level of cognitive demand; specifically, only 43% of the tasks at site B and 33% of the tasks at 

site C remained high-level as the students engaged with the task. 

Student learning gains were highest when the tasks were consistently set-up and 

maintained at a high-level of cognitive demand and lowest when the tasks were set-up and 

implemented at a low-level.  Interestingly, moderate learning gains were associated with tasks 

that were set-up at a high-level, but were implemented inconsistently.   That is, even if the tasks 

weren’t all implemented to the full potential, it appears that students still benefited from being 

exposed to tasks that provide opportunities to think and reason (Stein & Lane, 1996).   

2.2.1.3 Tasks at the middle school level: The TIMSS Video Study    The TIMSS Video Study 

was first conducted in 1995 and represented the first time that video was used to examine 

teaching practices at such a large scale (NCES, 2003).  The project had three goals: 

1) to learn how eighth-grade mathematics is taught in the United States;  
2) to learn how eighth-grade mathematics is taught in the two comparison    
     countries; and 
3) to learn how American teachers view reform and to see whether they are  
    implementing teaching reforms in their classrooms (Stigler & Hiebert, 1997). 

 
Germany and Japan were chosen as the two comparison companies since they were both 

economic competitors of the U.S.; Japan was also chosen since the students’ scores from Japan 

were consistently among the top scores.  A random subsample of the original TIMSS classrooms 
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was selected for videotaping, with the final sample including 81 classrooms in the U.S., 50 in 

Japan, and 100 in Germany.  One lesson from each classroom was videotaped.   

 The results from the study found that U.S. students were not engaging in the same level 

of mathematics as countries such as Germany and Japan; that is, the tasks that students were 

engaging with in the U.S. did not provide the same opportunities for students to think and reason 

as did the tasks in Germany and Japan.  For example, almost 90% of the U.S. lessons observed 

were coded as having low quality of mathematical content, compared to only 11% in Japan and 

34% in Germany (Stigler & Hiebert, 1999). This is further illustrated when the focus of the 

lesson is examined.  In both Germany and Japan, approximately 80% of mathematical concepts 

were developed in a way that allowed students to think and reason about the mathematics.  In 

contrast, only 20% of the concepts were developed in the U.S., with the remaining 80% of 

concepts being stated.  Additionally, the study described the kinds of tasks the students worked 

on during seatwork using three categories: practicing procedures, applying concepts, or 

inventing/thinking/analyzing.   Japan had the most even balance between the three categories, 

with approximately 40% of the tasks focused on procedures, 15% focused on applying 

procedures in a novel situation, 45% of the tasks focused on analyzing new situations or creating 

new procedures.  This is in stark contrast to the U.S., where approximately 96% of the tasks 

students worked on involved practicing routine procedures, and less that 1% of the work engaged 

students in analyzing the mathematics (Stigler & Hiebert, 1997; 1999).   

 A second video study was conducted in 1999.  This study built on the ideas and methods 

of the 1995 study, but expanded the participating countries to include Australia, the Czech 

Republic, Hong Kong SAR, the Netherlands, Switzerland, and the United States.  Although Japan did 

not participate in the 1999 study, the videos from the 1995 study were analyzed again and included in 

the results (NCES, 2003).  The portrait of mathematical instruction in the U.S. from the 1999 study is 
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similar to the 1995 study.  Approximately 67% of the lessons were identified as low-level 

complexity, meaning that students were able to solve the problem with few steps (less than four) and 

little reasoning. Only 6% of U.S. lessons were identified as high-complexity.  The majority of tasks 

required students to use procedures (69%) or state concepts via providing an example (13%), while 

only 17% of the tasks prompted students to think, reason, and make connections to the underlying 

mathematics.  Similar to the 1995 portrait, Japan’s lessons focused on analyzing, thinking, reasoning, 

and developing concepts.  Only 17% of the Japanese lessons analyzed in the 1999 study were 

categorized as low-level complexity.  Additionally, 54% of the tasks were focused on making 

connections (NCES, 2003).   

Japan’s average mathematics scale score was 89 points higher than the U.S. in 1995 (581 

and 492, respectively) and 77 points higher in 1999 (579 and 502).  One explanation for the 

differences in the scores could be the level of mathematical tasks that students in each country 

are exposed.  The overall focus of mathematics lessons in the U.S. was on memorizing and 

performing procedures instead of developing concepts, where as Japan classrooms tend to focus 

more on developing concepts.   

2.2.2 Tools: Representations 
 
 

Tools can support students as they engage with tasks in that the tools provide a way for students 

to explore the mathematics in a task, record their thinking, and discuss their thinking and 

reasoning with others (Carpenter & Lehrer, 1999; Hiebert et al, 1997).  The meaning and impact 

of a particular tool can only be developed by the students as they use the tool; that is, “meaning 

developed for tools and meaning developed with tools both result from actively using tools” 

(Hiebert et al, 1997, p.55).  One particular tool that is useful in providing students with 

36 
 



opportunities to think, record, and communicate about mathematical concepts is representations.  

Representations allow students to focus on how the same mathematical concept can be 

represented in various forms (i.e., context, manipulative models, pictures/diagrams, spoken 

language, and written symbols) and also provide a variety of ways to document and 

communicate about a student’s thinking and reasoning on a task. 

A review of the literature on mathematical representations presents various yet related 

definitions of the term representation.  The definitions can be separated into three categories: 

internal, external, and object-oriented.  An internal representation involves a student’s mental 

organization of a mathematical concept or process (Pape & Tchoshanov, 2001; Goldin, 2003).  

By their nature, internal representations are not directly observable.  As a result, more emphasis 

is placed on external representations, which are the visible and observable materialization of a 

student’s cognitive schemata of the mathematical concept (Goldin & Kaput, 1996; Lesh, Post, & 

Behr, 1987; Pape & Tchoshanov, 2001).  For example, written numerals and a grouping of 

blocks are an external representation of a student’s internal schema of counting and numeracy.  

The external and internal components of representations are directly connected; however, the 

external representations are only valuable if they correspond meaningfully with a person’s 

internal representations (Goldin & Kaput, 1996).  Greeno & Hall (1997) warn that there is a 

difference between the potential and actual representations in that the external component is only 

a true representation of a student’s internal schemata of a concept if the student interprets the 

representation in such a way to give it meaning.  For example, a 3x3 array is only an external 

representation of a multiplication concept if the student is able to interpret the array in a 

meaningful way.    
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According to the NCTM (2000), “the term representation refers both to process and to 

product—in other words, to the act of capturing a mathematical concept or relationship in some 

form and to the form itself” (p.66).  This definition builds on the interconnectedness of the 

internal and external notions of representation. Smith’s (2003) definition also focuses on this 

connection. He characterizes representation as the combination of a student’s mental 

construction of an idea with any physical representation used to display or communicate that 

understanding.  While these definitions have potential to provide a complete picture of a 

student’s understanding, one disadvantage is the need to rely on the external representation as the 

indicator of a student’s internal representation or understanding.    

Brinker (1996) broadens the idea of external representation beyond student-created 

representations to also include structured or instructional materials, such as algebra tiles and pre-

printed worksheets.  While Brinker’s definition still includes “students’ notations and pictures” 

(p.1), his focus is only on the form of the product rather than what the product may represent 

mentally for the student. Smith (2003) refers to this as an object-oriented definition because the 

focus is removed from the student and placed on the “physical embodiments” of the concept 

(p.264).   

Brinker’s (1996) definition is advantageous in that a small number of categories can be 

created to classify representations with little ambiguity.  For the purposes of the current study, 

Brinker’s definition of representation will be used.  The representation may be constructed by the 

teacher or student either prior to or during a lesson.  For example, a graph on a worksheet as well 

as a graph spontaneously drawn by a student both constitute the use of a graphical representation.  

The following sections more closely examine how representations are used in classrooms. 
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2.2.2.1 The importance of representations  The overall goal of classroom instruction is for 

students to develop an understanding of various mathematical concepts.  Research indicates that 

a critical factor in a student’s understanding is recognizing a mathematical concept in various 

representations and being able to flexibly move between these representations (Lesh, Post, & 

Behr, 1987; Dreyfus & Eisenberg, 1996). A representation of some form must be used to state or 

convey a mathematical concept (Dreyfus & Eisenberg, 1996). Emphasizing the use and 

connections among various representations, though, is different from the traditional teaching of 

mathematics (Clark, 1997; Carroll, Fuson, & Diamond, 2000; NCTM, 2000).  Traditionally, 

students engage primarily in maneuvering within only one representation, namely, written 

symbols (Carroll, Fuson, & Diamond, 2000).  This concentration on only one representation 

limits students’ ability to develop conceptual understanding (Pape & Tchoshanoz, 2001).  

Instead, students need to explore and analyze various forms of a mathematical concept in order 

to develop firm associations between representations and be able to navigate through the 

representations (Dreyfus & Einsberg, 1996; Greeno & Hall, 1997). This, in turn, will provide 

students with “a set of tools that significantly expand their capacity to think mathematically” 

(NCTM, 2001, p.67). 

To that end, key reform documents such as the PSSM (NCTM, 2000) are drawing 

attention to the need to expand the use of multiple representations in mathematics classrooms at 

all grade levels.  One of the five process standards in the PSSM is representation.  This standard 

states that all students must be able to   

• create and use representations to organize, record, and communicate mathematical 
ideas; 

• select, apply, and translate among mathematical representations to solve 
problems;  and 

• use representations to model and interpret physical, social, and mathematical 
phenomena (NCTM, 2000, p.67). 
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Pape and Tchoshanov (2001) note that the recognition of representation as a separate process 

standard is significant and characteristic of the growing interest among researchers in the role of 

representations in the mathematics classroom.  

Lesh, Post, and Behr (1987) identify 5 types of general mathematical representations: 1) 

experience-based scripts, 2) manipulative models, 3) pictures/diagrams, 4) spoken language, and 

5) written symbols.   Each representation is independently important since each focuses a 

student’s attention on separate characteristics of the underlying structure of the concept (Lesh, 

Landau, & Hamilton, 1983; NCTM 2000).   Again, though, it is a student’s ability to move 

fluidly between representations that demonstrates a solid understanding of the concept (Lesh, 

Landau, & Hamilton, 1983; Lesh, Post, & Behr, 1987; Pape & Tchoshanov, 2001).  This requires 

that teachers provide students with a variety of ways to think about and explore a concept, thus 

allowing the students the opportunity to create an integrated web of understanding around that 

concept.   

2.2.2.2  A specific example: Representations of functions  One particular area of focus is the 

literature surrounding the use of different representations of functions.  The emphasis on 

understanding functional relationships across the grades has continually increased over the past 

two decades (Leinhardt, Zaslavsky, & Stein, 1990; NCTM, 2000).  In fact, Dubinsky (1993) 

argues, “functions form the single most important idea in all mathematics, at least in terms of 

understanding the subject as well as for using it” (p.527).  Understanding functions involves 

being able to translate between graphs, equations, real-world contexts, tables, and language (Van 

de Walle, 2004). 
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Students do not, however, spontaneously make connections between different 

representations. Knuth (2000) examined high-school students’ ability to connect equations and 

graphs; more specifically, he sought to see if students could see “the connection that the 

coordinates of any point on a line will satisfy the equation of the line” (p.502).  Of the 178 

students in the study, 44 were in algebra one, 19 in geometry, 65 in algebra two, 32 in 

precalculus, and 18 in advanced placement calculus.  Each of the student participants were given 

one of six problems that had both an equation and graphical representation of a specific function.  

For example, one task asked if it is possible to find a solution to the given equation in which the   

coefficient of one variable was unknown. Knuth found that students relied on the equation 

representation to solve over 75% of the tasks, even when using the graphical representation was 

more efficient.  In trying to explain the underlying cause of this phenomenon, Knuth points to the 

classroom instruction as the greatest influence.  He claims that manipulating equations 

overshadows instruction in the typical high school mathematics classrooms.  As a result, students 

do not see other representations as meaningful or useful.  This reinforces the work of Leinhart et 

al (1990).  In reviewing the literature on the tasks and teaching of functions, they found that 

students are predominately exposed to tasks that focus on translations from the equation to the 

graph. 

Studies with pre-service secondary mathematics teachers reveal a similar trend in that the 

pre-service teachers also struggle with moving flexibly between different representations of 

functions, which in turn, impacts their instructional practices (Even, 1993, 1998; Sanchez & 

Llinares, 2003; Wilson, 1994).  Even (1998) studied 152 pre-service secondary mathematics 

teachers.  Similar to Knuth’s (2000) finding, the participants in Even’s study relied heavily on 

manipulating equations to solve a given problem.  For example, on one problem only 14% of the 
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participants correctly solved the problem.  A notable finding is that those who solved the 

problem correctly also created graphical representation to solve the task.  Over 80% of the pre-

service teachers relied only on the equation representation and were unable to solve the problem. 

Wilson (1994) more explicitly explored the development of one pre-service teacher’s 

understanding of functions as she progressed through a mathematics education course, of which 

the second half of the course focused on functions.  Molly, a junior in college, had a strong 

interest in mathematics and had taken a variety of mathematics and mathematics education 

courses prior to her enrollment in the methods course.  Wilson traced changes in both Molly’s 

content knowledge and pedagogical choices throughout the term.  Of particular importance was 

Molly’s understanding of different representations and how that understanding influenced her 

thinking about the teaching of functions.   

At the beginning of the course, Molly had a limited view of functions, and was not able 

to make meaningful connections between the various representations.  In one interview she was 

presented with cards that each had a different representation, such as a table, graph, or equation. 

Molly was asked to sort the cards in some way.  She first chose to sort by representation (i.e., put 

all the graphs together); however, when pushed to do it again, Molly struggled to see how some 

of the cards were different representations of the same function.  For example, while examining a 

table of values she stated that the values were “’just ordered pairs, you really don’t know 

anything about them…. You don’t know if x is squared, or if y is half of x”’ (p.357).   In 

addition, she did not connect the real-world contexts to any other representation in the card sort 

activity.  The same was true when she was specifically asked to solve a contextualized problem.  

Rather than developing an equation or sketching a graph, she would work through a series of 

computations.  
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As the course progressed through the functions unit, Molly’s understanding of the 

concepts began to change.  The course provided her with opportunities to strengthen her ability 

to move between the representations.  At the end of the course, she was able to generate an 

equation and a table for a real-world situation, as well as see how the three representations were 

related.   

Sanches and Llinares (2003) examined how a pre-service teacher’s knowledge of 

functions influences the teacher’s pedagogical choices.  One specific focus was on the pre-

service teacher’s use and understanding of multiple representations and how that impacts 

instructional decisions.  Each of the four participants (Jose, Juan, Rafael, and Alberto) had 

degree in mathematics (or its equivalent) and were enrolled in a general methods graduate 

course, of which approximately 17% of the course was devoted to issues in mathematics 

education.  The pre-service teachers were also involved in a tutoring program in a secondary 

mathematics classroom under the direction of the classroom teacher. 

Through a series of four interviews that focused on gaining insight into each pre-service 

teacher’s beliefs about teaching, knowledge of functions, and pedagogical content knowledge 

about functions, Sanches and Llinares (2003) determined that the pedagogical choices each pre-

service teacher made were linked to his own understanding of functions.  With respect to 

representations, both Juan and Rafael relied primarily on equations when solving problems, 

seeing the use of equations as the best method to solve any task.  While planning a hypothetical 

set of lessons on functions, both Juan and Rafael used tasks that emphasized equations and 

computation.  In contrast, Jose and Alberto used tasks with a larger variety of representations in 

meaningful ways.  For example, both “incorporated the use of graphs as an ‘instrument’ for 

solving real situations” (p.21). 
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2.2.2.3 Cautions with representations  Research indicates, however, that even when students 

are frequently exposed to various representations, the importance of these representations is 

often underestimated and treated superficially (Boulton-Lewis, 1998; Kaput, 1987).  In some 

instances, the representations as well as the relationships between them are not explored in a 

meaningful way. For example, students may be taught a mathematical procedure such as using 

the point-slope formula without meaningfully connecting the symbolic notation to other 

representations such as a graph.  By the same token, “real-world” situations are often created in 

ways that may not be meaningful to the students.  This, in turn, limits students’ abilities to 

connect their existing knowledge and experiences with the mathematics in the problem 

(Leinhardt, 1988).  

The power of representations is also undermined when the goal of the lesson centers on 

the superficial use of representations rather than viewing the representations as a vehicle for 

developing understanding (Greeno & Hall, 1997; NCTM, 2001; Pape & Tchoshanov, 2001).  For 

example, teachers often use concrete manipulatives under the assumption that the use of such 

materials alone will aid in the students developing a deeper understanding of the mathematical 

concept (Boulton-Lewis, 1998); however, student’s may not independently make meaningful 

connections between the representation and the mathematical concept which it represents 

(Leinhardt, 1988; Pape & Tchoshanov, 2001).  

Therefore, teachers play a vital role in influencing students’ mathematical thinking, 

reasoning, and ultimate understanding. Lesh, Post, and Behr (1987) found that “successful 

teachers” structure the class to aid students in developing connections between representations.  

This structuring involves both the selection of the task and organization of the related 

mathematical discussions.  As previously discussed, the task a teacher selects impacts students’ 
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opportunities to think mathematically and make connections between representations. In 

addition, teachers need to engage students in quality mathematical discussions that focus on the 

use of various representations (Dreyfus & Einsberg, 1996; Greeno & Hall, 1997; Carroll, Fuson, 

& Diamond, 2000).  One vehicle for developing such conversations is by asking students 

questions that promote mathematical thinking.   

2.2.3 Normative Practices: Questioning 
 

Discussions around mathematical concepts should be a normative practice of a mathematics 

classroom since this type of talk  “helps build meaning and permanence for ideas and makes 

them public”, which then allows for others to reflect on and learn from what was said (NCTM, 

2000, p. 60). According to Newton (2002), the talk in a classroom can support students’ learning 

by connecting to their prior knowledge and experiences, and pushing the students to make 

meaningful connections.  Additionally, the talk in a classroom provides the teacher with a way to 

assess the students’ understanding (Newton, 2002).    Various studies (e.g., Chapin et al, 2003; 

Lampert & Rittenhouse, 1996; Forman et al, 1998; Martino & Maher, 1999; O’Connor, 2001) 

indicate that talk in a mathematics classroom is a critical factor in conceptual learning.  

Additional studies (Kieran, 2001; Sfard & Kieran, 2001), however, point to the fact that 

students may struggle to communicate on their own.  That is, without effective prompts, it may 

be challenging for students to describe and discuss their thinking and reasoning in a productive 

way.  An important role of the teacher, then, is to facilitate meaningful mathematical discussions.  

These discussions may occur between the teacher and student, a small group of students, or a full 

class conversation.  In order to facilitate such discussions, the teacher needs to assess students’ 

knowledge of the concept being explored, understand the students’ thinking and strategies, 
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prompt students to make mathematical connections (i.e., between representations, to prior 

knowledge, etc), and push students to think and reason beyond their current understanding.  

Questioning is an effective means to promote such activities.  This section describes four studies 

that examined the use of questioning in both classroom and student interview settings.   

In analyzing the discourse in six second grade classrooms, Hiebert and Wearne (1993) 

identified four basic types of questions teachers asked during whole group discussions.  The 

differences in the categories revolves around the “the amount of self-explanation and the kind of 

cognitive activity they elicit” (p. 403).  The first type was recall.  The second type, describe 

strategy, asked students to either explain their thinking on a problem or to provide an additional 

method to the problem at hand. The third type of question, generate problem, prompted students 

to construct a problem given a number sentence or other conditions.  The final type, examine 

underlying features, focused students’ attention on the mathematical concepts of the problem. 

Questions of this nature typically asked for a conceptual explanation or a deeper analysis of the 

problem or solutions.   

After finalizing the question categories, two lessons from each of the six classrooms were 

then randomly selected for further analysis.  One prominent difference between classrooms that 

emerged was the use of different question types.  While results indicated that most of the 

questions asked in all of the classrooms were focused on recall, the average percent of recall 

questions asked in each lesson ranged from approximately 49.5% in classroom F to 96% of all 

questions in classroom B.   In addition, the teachers in classrooms D and F (both of the 

alternative instruction classrooms) both asked a number of additional questions from the 

remaining categories.  Of the questions the teacher in classroom D asked per lesson, 

approximately 15% were describe strategy questions and 21% were examine underlying features 
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questions.  Similarly, of the questions teacher in classroom F asked, an average of approximately 

28% of the questions asked students to describe a strategy and 22% of the questions focused on 

examining the underlying features. Less than one percent of the questions asked in classrooms D 

and F asked students to construct a story or problem.  

This diversity in questions stands in stark contrast to the types of questions asked in 

classrooms A, B, and C.  The overwhelming majority of questions in each classroom were of the 

recall type: 92% in classroom A, 96% in classroom B, and 95% in classroom C. The remaining 

questions in classroom A involved describing strategies (2.7%) and examining the underlying 

features (5.2%).  In addition to the recall questions, the teacher in classroom B only asked 

questions that focused on the underlying features (4%).  The teacher in classroom C did ask 

questions of each type- approximately 2% of the questions were describing, 2% generating 

stories, and the remaining 1% asked about the underlying features of the task.  As with the 

profile that emerged for the tasks used, classroom E fell between the two extremes with respect 

to the questions asked.  The teacher asked a range of questions (i.e., 81.6% recall, 4.2% 

describing, 5.5% generating, and 8.7% examining underlying features).  The percentages of each 

type of question fell between classrooms A, B, and C and classrooms D and F. 

The researchers further explored the relationship between the types of questions asked 

and student learning.  At the beginning and end of the year, the students in each school were 

assessed on place value and computation knowledge with a written assessment. A comparison of 

the results from each assessment provides insight into the impact of the differences in the 

question types used in the classrooms as described above.  At the beginning of the year, 

classrooms A, B, C, and D clustered together as did E and F, with the latter having higher scores.  

At the end of the year, classrooms A, B, and C were still clustered together while classrooms D, 
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E, and F now clustered together with scores higher than the other cluster. The findings indicate 

that the types of questions asked, as well as the tasks used,  does in fact impact student learning.  

The classrooms that had the highest student learning gains were those in which a greater variety 

of questions were asked.   

Boaler and Brodie (2004) examined instructional practices of teachers in three high 

schools.  Two of the high schools, Hilltop and Greendale, provided students with a choice 

between a traditional mathematical sequence and curriculum (i.e., algebra, geometry, and 

advanced algebra) and the reform-oriented curriculum Integrated Mathematics Project (IMP).  

The third school, Railside, used a teacher constructed curriculum that the researchers classified 

as reform-oriented since it was exploratory in nature and focused on developing and 

understanding concepts rather than just following prescriptive procedures.  The study focused on 

seven teachers, 2 from Hilltop and Railside and three from Greendale. Two of the teachers from 

Greendale and one from Hilltop used IMP.  One teacher from Hilltop and one from Greendale 

each used a traditional curriculum.   

 One aspect of the analysis focused on the questions asked in the classrooms. After 

reviewing various teaching episodes, the researchers identified nine types of questions asked in 

mathematics classrooms (see figure 2).  The results indicated the types of questions asked were 

related to the curriculum used in the classroom. Nearly all (97% and 99.5%) of questions asked 

in the classrooms using a traditional text were of type 1; that is, purpose of the question was 

“gathering information [or] leading students through a method” (p.776).  The teachers using a 

ROC also asked a large percentage of type one questions (i.e., 71%, 69.5%, 63.5%, and 61%); 

however, these teachers also asked a variety of additional questions that focused on assessing 

and advancing students’ understanding.  These questions (types 3-9), provided opportunities for 
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students to compare and analyze their solutions, make generalizations, and communicate their 

thinking and reasoning to the teacher and other students.  Boaler and Brodie (2004) also note that 

the types of questions asked by the teacher seem to influence the types of questions students ask 

of themselves and their groups.  In analyzing the IMP classrooms, the researchers found that the 

students also learned to ask conceptually oriented questions.  For example, one group knew that 

the teacher would press them to justify where the number in their solution came from, so one 

student asked, “’Where did we get it?’”(p.780).    
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Question Type Description Examples 
1. Gathering 
information, leading 
students through a 
method 

Requires immediate answer 
Rehearses known facts/procedures 
Enables students to state 
facts/procedures 

What is the value of x 
in this equation? 
How would you plot 
that point? 

2. Inserting terminology Once ideas are under discussion, 
enables correct mathematical 
language to be used to talk about 
them 

What is this called? 
How would we write 
this correctly? 

3. Exploring 
mathematical meanings 
and/or relationships 

Points to underlying mathematical 
relationships and meanings.  Makes 
links between mathematical ideas and 
representations 

Where is this x on the 
diagram?  
What does probability 
mean? 

4. Probing, getting 
students to explain their 
thinking 

Asks students to articulate, elaborate 
or clarify ideas 

How did you get 10? 
Can you explain your 
idea? 

5. Generating 
Discussion 

Solicits contributions from other 
members of class. 

 Is there another 
opinion about this? 
What did you say, 
Justin? 

6.  Linking and applying Points to relationships among 
mathematical ideas and mathematics 
and other areas of study/life 

In what other 
situations could you 
apply this?  Where 
else have we used 
this? 

7. Extending thinking Extends the situation under 
discussion to other situations where 
similar ideas may be used 

Would this work with 
other numbers? 

8. Orienting and 
focusing 

Helps students to focus on key 
elements or aspects of the situation in 
order to enable problem-solving 

What is the problem 
asking you? 
What is important 
about this? 

9. Establishing context Talks about issues outside of math in 
order to enable links to be made with 
mathematics 

What is the lottery? 
How old do you have 
to be to play the 
lottery? 

 
Figure 2. Categories of questions (Boaler and Broodie, 2004, p.776) 
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      Martino and Maher (1999) found that the timing of a question as well as the purpose of the 

question itself is a critical factor on the impact of the question on student learning.  The study 

describes how one teacher influenced the learning of 3 students (two third graders and one fourth 

grader) through the use of well-timed questions that prompted the students to justify, re-organize, 

and generalize their solutions to two problems.  The researchers state that prior to the teacher 

interacting with the students, the “students indicated satisfaction with their original solutions 

obtained by trial and error methods” (p.74).  As the teacher asked the students to compare 

solutions and justify their responses, the students often restructured and expanded their thinking 

on the problems.  For example, after Meredith and Jackie completed the tower problem3, the 

teacher asked, “How do you know you don’t have any (towers) in here that are the same?” (p. 

61).  Although the students had the correct solution, this question prompted the students to find a 

method to reorganize their thinking in a way that would be more convincing.   

Martino and Maher (1999) claim that effective questioning is an “art” that develops over 

time.  One point in time that is critical point for building a strong foundation for questioning is in 

pre-service teacher education programs.  To that end, Moyer and Milewicz (2002) examined 48 

elementary pre-service teachers’ questions while interviewing a student about fraction concepts 

as a part of their math methods course. The students interviewed spanned the K-6 grade levels. 

Prior to conducting the interviews with students, the pre-service teachers watched a videotape of 

an interview with two second-grade students.  The purpose of the activity was to provide the pre-

service teachers with the opportunity to analyze the questions asked by the interviewer to 

determine the effectiveness of the question on assessing students’ understanding of the concepts.  

                                                 
3 According to Martino and Maher (1999), “the task required students to build as many towers as possible of a 
certain height (for example, all possible towers four cubes tall) when plastic cubes (Unifix cubes) in two colors were 
available” (p.59) 
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The pre-service teachers were then provided a protocol that included tasks and sample questions 

to use during the completion of the interview assignment.   

A review of the transcripts of each of the interviews revealed patterns of questioning 

techniques used by the pre-service teachers.  Moyer and Milewicz (2002) distinguished three 

categories.  The first, checklisting, involved reading the questions in order directly from the 

protocol with no follow-up questions.  The student’s response seemed to be of no use to the pre-

service teacher.   

The second category was “instructing rather than assessing”.  Unlike checklisting, this 

category did involve using the student’s responses; however, the follow-up questions posed were 

focused on the students getting the right answer rather than attending to student’s thinking.  That 

is, the questions were leading, sometimes even to the point that the wording of the question 

provided the steps needed to complete the problem correctly. In addition, some of the pre-service 

teachers abandoned questioning altogether when a student answered a question incorrectly.  

Instead of questioning, the pre-service teachers began to instruct the student on how to correctly 

solve the problem, thus overlooking the purpose of the interview. 

Pre-service teachers in the third category, probing and follow-up questions, demonstrated 

an ability to ask questions that focused on the students’ thinking.  This type of questioning is 

critical in the classroom in that it provides the teacher with a way to assess students’ 

understanding.  However, Moyer and Milewicz (2002) noted that not all probing and follow-up 

questions were the same, and that there were inconsistencies as to when this technique was 

applied.  For example, some of the pre-service teachers only probed when students provided an 

incorrect response.  This is problematic in that this style assumes that a correct response means 

the student understood the concept.  Some pre-service teachers, however, did follow up on all 
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answers.  Yet even among those that did, some of the follow up questions were generic and did 

not then provoke a sound mathematical response.  Others, however, constructed appropriate 

follow up questions that built on the student’s particular response to a particular problem.   

Even though the pre-service teachers in Moyer and Milewicz’s (2002) study were not 

teaching a lesson, the need to construct an effective question based on a student’s solution is a 

skill that will be needed when the pre-service teachers are teaching a lesson.  Some of the 

situations the pre-service teachers encountered during the interview (i.e., unexpected responses, 

rapid pace) will be similar to those they will encounter when enacting full lessons in the 

classroom.  The study, then, does provide valuable information regarding the process of starting 

to learn to question.  However, additional research is needed that would continue to inform the 

mathematics teacher education community about the questions pre-service teachers ask in 

instructional settings and how the work in pre-service teacher courses supports pre-service 

teachers in developing effective questioning techniques.   

 

2.3 USING REFORM ORIENTED CURRICULA 
 

 
As stated earlier, the types of tasks in which students engage impacts the mathematics students 

learn.  If students only work on low-level tasks, the learning that occurs is procedural in nature; 

whereas students who solve cognitively demanding tasks develop a conceptual understanding 

(Stein, Grover, & Henningsen, 1996; Stein & Lane, 1996).  Various studies (e.g., Huntley et al, 

2000; Riordan & Noyce, 2001; Senk & Thompson, 2003a; Schoen & Hirsch, 2003; Thompson & 

Senk, 2001) indicate that students who are engaged in ROC often outperform students who 

experience more traditional curricular on problem-solving tasks that require a more conceptual 
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understanding of the mathematics.  The typical tasks in ROC focus students’ thinking on 

understanding concepts rather than memorizing procedures.  

The next sections examine more closely four studies of teachers using ROC and the 

factors that influence the use of the curriculum.  Each provides insight into the current study. 

First, each study is explored individually, then a discussion of what can be gained from the 

examining similarities and differences across the studies is presented. 

 

2.3.1 Clarke’s study 
 

Clarke (1997) studied two sixth grade teachers, Anne Bartlett and Tim Martin, as they taught a 

pilot unit from the ROC Mathematics in Context (MIC) for the first time.  Both teachers had 

taught sixth grade at the school for approximately 20 years and were currently involved in a six-

week professional development program.  As part of the professional development, the teachers 

taught a six week unit from MIC.  This unit, which focused on measurement concepts, was 

comprised of high-level tasks.   

One particular finding related to the use of the tasks is that the teachers initially planned 

to use the tasks as they appeared in the curriculum.  However, as the unit progressed the teachers 

became more comfortable with using their own knowledge of students as a guidepost to modify 

the tasks. Clarke (1997) noted that the modifications tended to either maintain or increase the 

cognitive demands of the task.  He noted only one instance in which the teacher lowered the 

demand of a fraction task so that the task was in her personal “pedagogical or mathematical 

‘comfort zone’” (p.289).   
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2.3.2 Remillard’s study 
 

Remillard’s (1999) study focuses on two fourth grade teachers, Catherine and Jackie, in the same 

working class Midwest elementary school district.  Both teachers “had grown up locally, had 

received their professional preparation from the same university, and were veteran teachers of 

almost 30 years” (p.320).  There were, however, differences between the two, both in 

philosophies of teaching and learning as well as in professional development opportunities. 

Catherine was a rather traditional teacher.  In her classroom, she focused on students’ 

mastery of the basic facts and operations.  She had few opportunities to participate in 

professional development, so her knowledge of the reform was from sources such as textbooks 

and conversations with her colleagues.  She wanted to incorporate problem solving in her 

classroom, but not at the expense of computational mastery.  When first exposed to the ideas of 

the NCTM Standards, she latched onto the “problem of the day” approach.  When she eventually 

began to use the reform-oriented text, she used it for typical suggestions, such as topics to cover 

and problems to assign.  She did not, however, apply other ideas such as the use of manipulatives 

or group discussions. 

In contrast to Catherine, Jackie was more reform-minded even before being introduced to 

a reform-oriented text.   Jackie taught in a school that encouraged and supported teacher growth. 

She was already making changes similar to those suggested in the reform text in her classroom.  

She wanted her students to focus on making sense of the mathematics and communicating their 

thinking and reasoning. 
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Remillard (1999) distinguishes between two ways of using a text:  appropriating and 

inventing. Appropriation involves taking or using the tasks as they appear in the curriculum. 

Invention involves some form of adapting or modifying the tasks from the text.  Remillard found 

that Catherine and Jackie used the texts differently. Catherine appropriated tasks from the text.  

She “trusted the text to provide tasks that embodied [reform-related topics]” (p.323).  She would 

set-up and use the tasks as they appeared in the text, even when she did not quite understand the 

purpose of the task or agree with the intent. However, she often lowered the demand of the task 

during enactment by focusing the students on producing the correct answer. Jackie invented her 

own tasks.  She used the text as a means of determining what Van de Walle (2001) refers to as 

the “big idea” of the lesson or set of lessons.  She would then design her lessons around those 

ideas, often designing her own tasks.  

2.3.3 Lloyd’s study 
 

Lloyd (1999) studied two high school teachers who chose to implement the reform-oriented 

curriculum Core-Plus Mathematics Project (CPMP).  Mr. Allen, a 14-year veteran teacher, was a 

traditional teacher for the majority of his career.  During the 1994-95 school year, he volunteered 

to pilot the CPMP materials for the school.  Ms. Fay joined the high school math department in 

the fall of 1996 because of her interest in teaching CPMP.  She had taught for ten years, but prior 

to accepting a position at the high school, she worked for the state government.  This position 

provided her with the opportunity to visit various classrooms using reform-oriented curriculum.   

 Upon using the CPMP materials, Mr. Allen quickly distinguished them from the 

traditional curricula in that the CPMP problems “engaged students in sense making activities” 

(Lloyd, 1999, p.232).  He stated that the students developed a better understanding of the 
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material using CPMP.  He did, however, have concerns about the open-endedness of the tasks. 

While he made no changes to the printed tasks in CPMP, he often supplemented the curriculum 

with review problems for the students to complete at the end of the investigation.  He felt more 

“tied to” the curriculum than he had with the traditional curriculum, stating, “They [CPMP] are 

putting together the real-world application that they want you to use so you are tied to that.  It is 

hard to get away from it” (p.236).  Mr. Allen sometimes reduced the demands of the task by 

providing oral directions rather than allowing the students to fully explore the task as intended.   

 Ms. Fay viewed the curriculum differently than Mr. Allen.  She felt that the CPMP 

materials were too structured and led the students to the solution too quickly.   Similar to Mr. 

Allen, Ms. Fay also did not make any changes to the written tasks.  However, she often presented 

various solution strategies and would pose questions that she felt pushed students to think 

beyond the ideas of the written task.  Interestingly, though, the solutions presented were often her 

own.  Lloyd notes that the “thinking” in the lesson occurred mainly during the class discussion; 

the group work still focused on producing the correct answer.  

 Like Mr. Allen, Ms. Fay also noted “she felt very constrained” in her ability to 

supplement the CPMP materials (p.241).  She gave three reasons though for remaining very 

close to the curriculum.  First, she lacked experience with the curriculum. This was her first time 

using the CPMP materials, so she was not comfortable making adjustments for fear of 

eliminating a critical investigation. Second, she was not confident in her own content knowledge.  

She stated that she had not explored some of these concepts in years. Finally, she felt she did not 

have the freedom within the department to go at her own pace.   
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2.3.4 Van Zoest and Bohl’s study 
 

Recognizing the reliance teachers often have on textbooks, Van Zoest and Bohl (2002) wanted to 

examine the role the textbook plays in the field experience, and ultimately, the learning, of pre-

service teachers.  They studied Gregory, a mentor teacher, and Alice, his intern in high school 

mathematics, as they both implemented the Core-Plus curriculum. 

  Gregory had 31 years of teaching experience and had recently made a commitment to 

teach in a way that was consistent with the NCTM (2000) standards. Gregory’s personal 

commitment led him to use the Core-Plus curriculum. During the year in which Alice interned, 

Gregory was using the first course in Core-Plus for only the second time, and it was the first time 

he was using the second course. Gregory wanted to implement the curriculum in a way that 

would maintain the cognitive demands of the tasks in the text. 

Alice had always received high marks in mathematics, but during her undergraduate 

work she realized that her knowledge was purely procedural and that she lacked a solid 

conceptual understanding. As a result, she decided that she would work to ensure that when she 

had her own classroom her students would understand the concepts, not just memorize the 

procedures. Alice enrolled in a reform-based math methods course that included critical 

examinations of textbooks.   

The authors found that the Gregory and Alice relied heavily on the text while planning, 

“walking through each of the next day’s investigations in order to determine which parts students 

could answer without guidance, which parts might be skipped or glossed over to increase the 

pace of student progress, and how to avoid being overly directive while at the same time 

maintaining student focus on the day’s main mathematical concerns” (p.274).  Since some of the 
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content, or at least its presentation, was new to both Gregory and Alice, the text often served as a 

means to strengthen their own content knowledge.  Because the text focused heavily on the 

process standards, Gregory and Alice also found that they needed to redefine their roles as 

teachers.  They needed to shift from being the giver of knowledge to one who facilitated the 

learning by asking the students questions that pushed the students’ thinking.  Van Zoest and Bohl 

(2002) claim that this shift was “definitely supported by, and in some senses determined by, the 

CPMP textbooks” (p.278).  

2.3.5 Looking across the studies:  influences on teachers’ instructional practices  
 

Each teacher used the text differently and with a different purpose.  For example, Catherine 

viewed the curriculum as a place to gather “good” tasks (Remillard, 1999).  This is consistent 

with Russell’s (1996) notion of curriculum as a reference.  Jackie also viewed the curriculum as 

a reference, but not for tasks; rather, she viewed the curriculum as a place to determine the 

concepts that the students needed to learn.  She then developed her own tasks based on those 

concepts.  The teachers from the Clarke (1997) and Van Zoest and Bohl (2002) studies wanted to 

use the curriculum as it was intended, viewing the curriculum as a guide that might direct the 

mathematics and learning along a productive path.  This is consistent with the view of 

curriculum as “teacher-proof” (Russell, 1996) in that the teachers expressed an idea that if they 

could just implement the curriculum as intended, the student learning gains would be high. One 

might wonder why these differences in how the teachers used the curriculum occurred.  That is, 

what are some of the influences on teachers’ instructional practices when they are using ROC?  

This section discusses possible influences that emerge from the studies discussed above:  beliefs, 
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mentor of an intern, coursework/professional development, content knowledge, knowledge of 

students, and curriculum structure. 

2.3.5.1 Beliefs    Clarke (1997) noticed a difference between the two teachers in his study 

regarding their views of mathematics and the way in which they implemented the MIC unit.  For 

Martin, his need to tell students how to solve a problem versus the philosophy of letting students 

struggle continued throughout the unit.  He soon began to see the value of allowing students to 

struggle with cognitively demanding tasks.   He mentioned in an interview that he realized that 

he should make a variety of materials available to students as they solve the tasks, not just the 

materials he thinks are the “best” to use on the task.  Martin’s beliefs about teaching and learning 

began to change as a result of the MIC unit, and accordingly, the change in beliefs began to 

impact how he taught the unit.   In contrast, Bartlett seemed unable to move away from a 

traditional view and understanding of mathematics towards a more integrated view that involves 

big ideas and reflection on solutions.   She tended to emphasize “individual techniques or tasks 

in a lesson, with few attempts to get at any of the connected, big ideas that the teachers’ guide 

emphasized” (p.292). 

In Remillard’s (1999) study, Catherine and Jackie each held different views about the 

teaching and learning of mathematics. Catherine believed students learned by being told; she also 

expected a similar relationship between herself and the text.  She anticipated that the reform text 

would tell her how to teach in a new way.  This belief impacted her appropriation of tasks.   She 

wanted a step-by-step format, and was often frustrated when the text was not as clear as she 

wanted it to be.  She felt that it did not meet her needs and expectations.  Jackie, on the other 

hand, believed math to be a “body of related ideas and relationships that needed to be 

understood” (p.321).  She believed that learning occurred in students struggling with complex 
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tasks, developing methods that made sense to the individual student and communicating about 

the mathematics and methods.  These beliefs influenced her invention and the use of the text as a 

resource for the big ideas, not a set of prescribed tasks.   

Both teachers in Lloyd’s (1999) study volunteered to implement the CPMP curriculum.  

Although Mr. Allen’s prior teaching was more traditional, he stated he valued the ideals of 

CPMP.  He felt that the students would learn more if they were pushed to think more critically 

about the mathematics than traditional texts had required.  He viewed CPMP as a vehicle to help 

him accomplish this goal.  He valued the more investigative approach that allowed students to 

produce multiple solution methods.  Ms. Fay was looking for a curriculum that more closely 

aligned with her beliefs.  She stated that prior to using CPMP, she had “’always used groups and 

…always had a project focus’” (p.231).  She felt the philosophy of CPMP closely aligned with 

her own goals and ideas regarding the “best” approach towards engaging students in the learning 

of mathematics. 

2.3.5.2 Coursework/Professional Development   Both teachers in Clarke’s (1997) study were 

involved in a professional development program while they implemented the MIC unit.  The 

program consisted of four meetings.  The first two meetings occurred prior to the start of the unit 

and focused on the philosophy of MIC as well as involving the teachers in solving and discussing 

tasks from the unit.  The third meeting occurred halfway through the unit and served as a means 

of discussing methods of assessment.  The purpose of the final meeting, which occurred near the 

end of the unit, was to debrief the experience.  The teachers also had the support of a project staff 

member as they taught the unit.  These professional development experiences provided the 

teachers with a degree of familiarity with the goals, both mathematical and pedagogical, of the 

unit as well as the actual tasks in unit prior to teaching.  Martin indicated that the awareness of 
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the underlying principles of the project allowed him to more freely attempt the curriculum as it 

was intended. 

The availability of professional development was a critical difference between Catherine 

and Jackie in Remillard’s (1999) study.  Jackie had many more opportunities for professional 

development that supported the reform than did Catherine; however, Catherine’s involvement in 

Remillard’s study did begin to influence her teaching.  So while Jackie may have had a head 

start, Catherine began to change as she participated in development opportunities.  She states that 

her interactions with Remillard during the study prompted her to “look at more of the 

suggestions in the book” (p.327). 

2.3.5.3 Mentor of an intern  Van Zoest & Bohl’s (2002) study demonstrates a clear impact of 

the mentor teacher on a pre-service teacher’s use of a curriculum.  The willingness, commitment, 

and support of Gregory impacted Alice’s use of and interaction with the Core-Plus materials.  

Through their joint planning sessions, Alice grappled with both mathematical and pedagogical 

decisions regarding how to use the materials in the text in a way to best serve the students’ 

learning. 

2.3.5.4 Content knowledge Previous research indicates that a teacher’s content knowledge 

impacts the enactment of lessons (Fennema & Franke, 1992).  Clarke (1997), Remillard (1999) 

and Van Zoest and Bohl’s (2002) studies also point to the impact content knowledge has as a 

teacher interacts with the text and begins to plan a lesson.  Clarke (1997) noted that as the MIC 

unit progressed, some of the tasks “were moving into ‘mathematical territory’ that seemed 

somewhat uncomfortable for Bartlett” (p.292).  For example, Bartlett often questioned if the 

correct operation was being used to convert between units of measurement.  This became more 

problematic as she attempted to spontaneously pose an additional task.  Her lack of content 
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knowledge also impacted her ability to fully capitalize on one of the key ideas of the unit:  “the 

strengths and weaknesses of a variety of different models for approximating body-surface area” 

(p.292).   Instead of discussing and analyzing the strengths and weaknesses of various methods, 

as Martin did successfully, Bartlett presented each method as an independent way to solve the 

problem.   

Catherine and Jackie had different understandings of what mathematics is and what it 

means to do mathematics. As a result they each related to or “read” the text differently. For 

example, Jackie had a conceptual understanding of the mathematical ideas she taught. This led 

her to invent her tasks, using the text mainly as a means to identify the key concepts that should 

be taught.   

Mr. Allen’s notion of function and the link to his teaching was explicitly discussed in 

Lloyd and Wilson (1998).  Prior to teaching a unit from CPMP on functions, Mr. Allen 

participated in a series of interviews and function-sorts.  During the function sort, he separated a 

variety of cards into piles that he determined.  Through the card sort and interviews, Lloyd and 

Wilson determined that Mr. Allen preferred a rather traditional view of functions.  He selected a 

correspondence definition of function rather than a covariation definition as his formal definition 

of a function.  However, he viewed highly the covariation-centered concept and graphical 

representations of functions.  The authors point to this belief and knowledge of functions as a 

critical factor in his ability to use and feel comfortable with the CPMP curriculum, noting that 

his  “conceptions contributed to an instructional practice that encouraged students to utilize a 

variety of representations and connections among them to investigate real-world occurrences of 

different families of functions” (p.261).  His views of functions also led him to supplement the 
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CPMP activities.  While CPMP moves gradually towards explicitly using equations, Mr. Allen 

created worksheets that focused students towards the use of recursive rules at the start of the unit. 

In the Van Zoest & Bohl (2002) study, while Alice and Gregory’s content knowledge allowed 

each of them to engage with the tasks during the planning sessions, the presentation and level of 

understanding required for many of the ideas of the Core-Plus curriculum were new.  As a result 

Alice and Gregory actually used the text as a means to strengthen their own content knowledge. 

2.3.5.5 Knowledge of students    The teachers in Clarke’s (1997) study both stated that they 

intended to use the tasks in the MIC unit as they appeared; however, shortly into the unit, both 

drew on their knowledge of the students as they began to make modifications to the tasks. Both 

teachers stated that the changes were based on the class as a whole rather than on knowledge of 

an individual student.  

Remillard (1999) also found that the teacher’s knowledge of students impacted how they 

used the curriculum.  Jackie adjusted the tasks used in the classroom as she developed a better 

understanding of how her students thought about and understood the mathematics.  For example, 

after Jackie noticed that her students were not approaching a combination problem in a 

productive way, she posed a new question (thus adapting the task) that focused the students on 

what Jackie considered a more systematic approach.  Remillard notes, “when Jackie felt pulled 

between following the text and following students, she always followed students” (p.335). 

2.3.5.6 Restrictions from the department/district     Lloyd (1999) stated that Ms. Fay felt 

constrained in how she used the curriculum in part because of a “sense of obligation to 

colleagues” (p.242).  Ms. Fay wanted the freedom to do more projects with the students and 

allow the understanding of the students to determine the pace.  However, she felt that the math 
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department in her school wanted everyone to be on the pace, to be uniform in their use of the 

curriculum.  This struggle led Ms. Fay to feel that she could not fully control the curriculum.  

2.3.5.7 Curriculum structure   One critical factor in the teacher-text relationship is the structure 

of the text (ie., a traditional text versus a reform-oriented text). Remillard’s (1999) study showed 

that Catherine’s decisions about the lesson were directly steered by the textbook.  She used the 

curriculum as a means of establishing the “topic’s mathematical content, sequence, and pace” 

(p.335).  Interestingly, as Catherine interacted more with the reform-text, she began to make 

more significant changes to her planning and teaching.  She allowed more time for exploring 

rather than skipping the tasks that took too much time, as she did in the beginning of the year. 

As stated earlier, Mr. Allen did not make any changes to the printed tasks in the CPMP 

curriculum, despite the fact that he was originally concerned about the open-endedness of the 

tasks.   He felt that unlike traditional curriculum, the CPMP curriculum did not allow the teacher 

to “personalize” the tasks (Lloyd, 1999, p.236).   

In Van Zoest and Bohl’s (2002) study, Alice and Gregory’s determination to attempt to 

use the tasks in the curruciulum as they were written was a strong factor in how they envisioned 

their lesson plan playing out in the classroom.  It begs the question: would Alice and Gregory 

have made the same pedagogical decisions if they were using a traditional text? 

 

2.4 PRE-SERVICE TEACHER EDUCATION 
 

 
Learning how to teach mathematics in a way that promotes and supports students’ mathematical 

thinking and reasoning is not a trivial task (Brown & Borko, 1992).  Various studies have 

examined the process of becoming a mathematics teacher and factors that both support and 

inhibit developing instructional practices that align with the reform.  These factors include 
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individual aspects such as one’s mathematical content knowledge and beliefs as well as 

programmatic aspects such as methods courses and field experiences.  This section describes 

pertinent research from three projects- Cognitively Guided Instruction, Project START, and 

Learning to Teach Mathematics- as they were implemented with pre-service teachers.    

2.4.1 Cognitively Guided Instruction 
 

Cognitively Guided Instruction, or CGI, is an approach that focuses on helping elementary 

teachers use knowledge of students’ mathematical thinking gained from research as well as the 

teacher’s questioning in the classroom to make informed instructional decisions (Carpenter & 

Fennema, 1991).  In general, a student in a CGI classroom spends time solving problems in a 

way that is meaningful to that student and sharing, questioning, and discussing solutions with 

other students and the teacher until the student understands the solutions to the problem.  The 

teacher facilitates this process by listening to the student, asking questions to clarify the student’s 

thinking, and making instructional decisions that are based on the mathematical needs of the 

student (Fennema et al, 1996). 

Originally, CGI was geared towards practicing teachers; however, Vacc and Bright (1999) 

examined the impact of the CGI principles on pre-service elementary teachers’ beliefs and 

instructional practices when the principles were integrated into the math methods courses.  

During the methods course, the students were introduced to “problem types for the basic 

operations and children’s solution methods… and knowledge of children’s geometrical thinking” 

(p.94-95).  Discussions during the CGI sections of the course (5 classes) centered on making 

instructional decisions based on knowledge of students’ thinking.   
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Vacc and Bright’s (1999) study focused specifically on two of the 34 pre-service teachers in 

the course, Helen and Andrea, because of the similarities between their field-experience 

placements.  Both were student teaching in third grade classrooms in the same school.  One 

difference, however, was that Helen’s mentor teacher had significant experience with CGI, 

whereas Andrea’s mentor had only attended “a 2-hour ‘awareness’ workshop about CGI” (p.93).   

During the course of the study, Helen and Andrea each completed the CGI Belief Scale at the 

beginning of the program, beginning of the methods course, beginning of student teaching, and 

the end of student teaching.  While both Helen and Andrea’s scores increased from their initial 

score at the beginning of the program (thus indicating a stronger alignment with the principles of 

CGI over time), the factors that influenced the changes differed for each individual.  The 

methods course seemed to positively impact both participants; however, Helen’s score continued 

to increase through her student teaching experience whereas Andrea’s scores leveled off after the 

methods course.  Further examination of their instructional practices also indicates differences in 

the implementation of CGI principles.  Helen’s classroom had some qualities of a CGI 

classroom, in that students consistently solved and discussed problems; however, Helen didn’t 

effectively use her knowledge of students’ thinking to make instructional decisions.  When 

Andrea’s students engaged in problems solving, they, too, would share and discuss solutions; but 

these types of lessons only occurred sporadically.  

One possible factor Vacc and Bright identify as an influence on Helen and Andrea’s CGI 

Belief Scale score and instructional practices is the knowledge and support of the mentor teacher 

in using CGI principles.    While the both Helen and Andrea agreed at the end of the methods 

course “that children’s mathematical thinking is important and that instruction needs to be based 

on problem solving”, their field experience classrooms did not equally support or cultivate these 
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beliefs further.  The lack of coherence between the coursework and the field experience for 

Andrea may have caused her to question the applicability of her knowledge gained in the 

methods course.  

2.4.2 Project START 
 

Project START focused on elementary pre-service teachers in a one-year master’s certification 

program at the University of Pennsylvania. Ebby (2000) studied how three elementary pre-

service teachers in the project “made sense of their own experiences” (p.75) in their math 

methods course and subsequent teaching experiences in their math classrooms during their field 

experience.  In general, all three teachers shifted away from a traditional model of the teacher as 

the giver of knowledge towards a more student-centered model of the teacher as the facilitator of 

student interactions to promote learning.  However, each pre-service teacher experienced this 

shift at different times prompted by different factors.  

Julia entered the methods course feeling confident in her ability to do mathematics; however, 

engaging with challenging tasks soon led Julia to realize that she did not fully grasp the concepts 

behind the procedures she could quickly and accurately perform.  She soon came to realize the 

power of seeing other’s solutions to a problem and communicating about the different methods. 

As she continued to grow in her own understanding of mathematics in the methods course, she 

began to see the students in her mentor’s classroom have similar experiences.  Her mentor used 

tasks that allowed for multiple solutions and the mentor encouraged students to discuss their 

thinking, particularly in small groups. The student’s experiences in Julia’s field placement 

classroom emulated her own experiences in her methods course.  This prompted her to rethink 

the notion of teaching by telling.  Instead, Julia wanted to continue to provide her student with 
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opportunities to communicate about sound mathematics. When Julia began teaching, she 

“assessed the effectiveness of her lessons based on whether she felt that students had been able to 

construct meaning” (p.80).    

The methods course was also influential for Amy.  In fact, the course was more defining for 

Amy than the field placement.  Amy enjoyed seeing and discussing various solutions (both 

correct and incorrect) to problems in the course.  The idea of a problem being solved in more 

than one way was new to Amy and greatly impacted her teaching.  She became fascinated with 

her students’ thinking and soon realized that traditional methods, such as those used by her 

mentor, did not provide the teacher with adequate knowledge of how students are thinking about 

and solving problems.   

Unlike Julia and Amy, Michelle was not at all confident in or comfortable with her own 

mathematical knowledge.  Her own experiences as a student in mathematics courses were 

unpleasant.  After taking the required number of courses in high school, Michelle avoided 

additional math courses.  Upon entering the methods course, she was very apprehensive.  As a 

result, she rarely participated in the methods course.  However, she soon realized that the 

students in her field placement classroom were not experiencing mathematics in the same way 

she did in elementary school.  The students were provided with opportunities to problem solve 

and communicate their understanding with other students. Through her observations and own 

teaching, Michele noticed that the students seemed confident in their own abilities to do 

mathematics and talk about their thinking and reasoning.  Her experiences in her field placement 

broadened her own view of mathematics as well as her view of what students know and are able 

to do mathematically. This caused her to reassess her role as a teacher, recognizing that she was 
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actually capable of doing mathematics, as were her students.  As a result, “she began to envision 

a more active role for the student[s]” in her classroom (p.90).  

2.4.3 Learning to Teach Mathematics 
 

Learning to Teach Mathematics (Borko et al, 1992; Eisenhart et al, 1993) examined the process 

of becoming a middle school teacher by tracking a small group of pre-service teachers from their 

final year of the teacher education program through their first year of teaching. The researchers 

sought to understand the “novice teachers’ knowledge, beliefs, thinking, and actions related to 

the teaching of mathematics” along a variety of domains, including mathematical content, 

pedagogy, and curriculum (Borko et al, 1992, p.199). One particular facet of the program was the 

focus on the relationship between the university coursework and field placement experience.   

The eight participants in the study were a subset of a cohort of 38 pre-service teachers in a K-

8 teacher education program.  Each of the participants had a concentration in mathematics that 

required approximately 20 semester hours of coursework.   Both Borko et al (1992) and 

Eisenhart el al (1993) focus primarily on one pre-service teacher- Ms. Daniels- as she 

experiences mathematics as a learner in her methods course and then attempts to enact 

conceptually based lessons in her field placement classrooms.   

Ms. Daniels was confident in both her own procedural knowledge and her ability to directly 

instruct students on how to use various procedures; however, the same was not true for 

conceptual knowledge.  She often struggled during interviews and in her math methods course 

with problems that were conceptually based.  In addition, “she had difficulty articulating how she 

would teach for conceptual knowledge” even though she viewed conceptual knowledge as a 

critical component of mathematical understanding (Eisenhart et al, 1993, p.17).   
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Her uneasiness with conceptual knowledge was evidenced in her teaching.  She often began 

with a purely procedural task or on several occasions lowered the cognitive demands of the 

lesson by proceduralizing the task or providing memorization aides (Eisenhart et al, 1993).  For 

example, while working with her sixth graders on division of fractions, she began by reviewing 

the traditional algorithm of “multiply by the reciprocal”.  When a student questioned the 

reasoning behind the procedure, Ms. Daniels attempted to provide a conceptual explanation, it 

was, however, both teacher-directed and mathematically incorrect (Borko et al, 1992).  While 

she later reflected on the fact that the explanation was lacking, her main focus of the reflection 

was that she spent too much time with the explanation, a sentiment that was also emphasized by 

her mentor teacher in his feedback on the lesson (Eisenhart et al, 1993).  

In addition to her knowledge base hindering her instructional practices, Ms. Daniels also felt 

a tension between the ideas espoused in the methods course and her experience in her field 

placement classroom.  In her fourth grade placement, Ms. Daniels stated that she felt a great deal 

of pressure to “[cover] all the topics in the mathematics curriculum” in order to prepare her 

students for the end of the year standardized test (Eishenhart et al, 1993, p.19).  According to Ms. 

Daniels, teaching conceptually would take too much time and not permit adequate coverage of 

the curriculum. 

The “tension” between teaching in a procedural manner versus using a conceptually based 

approach evidenced in Ms. Daniels teaching may have, in fact, mirrored the tension felt by her 

methods course instructor.    Feeling the pressure to be “realistic” about what the pre-service 

teachers would be able to do in their field placements, he hoped to provide the pre-service 

teachers with meaningful ways to teach algorithms, such as using manipulatives.  He spent the 

first part of each class lecturing on and demonstrating such methods to the whole class and then 
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used the second part of the class as a time for the pre-service teachers to practice the newly 

learned skill.   This method, however, may have backfired in that “many of the [pre-service] 

teachers perceived the demonstrations and practice sessions as routines to memorize, rather than 

explanations to understand” (Eisenhart et al, 1993, p.27).  They were interpreting the lectures as 

a step-by-step procedure to follow in their own classrooms.   

However, even with the instructor’s efforts to alleviate the tension between the ideals of the 

coursework and the reality of the field placements, the pre-service teachers still expressed a 

concern towards the end of the course that what they were experiencing in the coursework did 

not, in fact, help them teach.  At a larger level, the school districts and schools may actually be 

critical factors that contributed to the pre-service teachers’ apprehension.  At the district level, 

informal communication and in-service activities did emphasize that students should develop a 

conceptual understanding and meaning behind the mathematical procedures; however, the 

adhered to objectives and tests of accountability were both very procedural in nature.  In the 

same respect, the local schools also presented conflicting messages about what effective 

mathematics instruction looks like in the classroom.  As a result, Ms. Daniels (as well as the 

other pre-service teachers) did not have strong models of conceptually based teaching in their 

field placements (Eisenhart et al, 1993).  

2.4.4 Frykholm’s study 
 

Frykholm’s (1996) study also found that pre-service teachers feel tension between their 

coursework and field placements.  Over a two year period, he observed 44 pre-service teachers in 

a secondary (9-12) certification program, which included two math methods courses that focused 

on the NCTM Standards documents.  The first course used the Curriculum and Evaluation 
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Standards (NCTM, 1989) and emphasized modifying traditional curriculum to provide students 

with additional opportunities to think and reason about mathematics in a meaningful way.  The 

second course utilized the Professional Standards for Teaching Mathematics (NCTM, 1991) as a 

means to explore pedagogical issues such as alternative methods of teaching and assessing 

students’ understanding.  During the course of the study, Frykholm was the university supervisor 

for 41 of the 44 pre-service teachers.   

Three key findings arise from Frykholm’s study.  First, although the pre-service teachers 

claim that their teaching at least somewhat parallels the ideas of the Standards, Frykholm found 

little evidence to support their claims.  Of the 153 lessons he observed, only 15 were coded at 

“innovative” while 88 were coded as traditional.  Of the remaining 50, six were unclassifiable 

and 44 were labeled as “traditional-plus”, meaning that the lesson was primarily traditional, but 

incorporated some superficial standards-like feature, such as allowing “students to work on the 

homework problems in a group” (p.675).  

The second key finding is that, as in other studies, the pre-service teachers felt a tension 

between the university and field placement with respect to implementing a student-centered 

approach to teaching that stresses thinking and reasoning.  Again, the ideas explored in the 

methods courses were often in conflict with the messages from the schools.  While 

approximately 77% of the students felt a good amount or great deal of pressure from the 

university to “teach like the Standards recommend”, only 20% felt the same pressure from their 

mentor teacher (p.672).  One dimension that Frykholm’s study adds is the inclusion of the 

university supervisor as a factor on the pre-service teachers’ dilemma.  He notes that the students 

often felt the need to let him know that he “would ‘not be seeing much of the Standards today’” 

(p.671).  However, the influence of the supervisor may have been minimal since only 3 of the 
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pre-service teachers reported that the supervisor was a strong influence on their teaching 

philosophy.   

The final finding is that the pre-service teachers reported that the mentor teacher is the 

greatest influence on their development as a teacher, both with respect to their instructional 

practices and underlying teaching philosophies.  Very few of the pre-service teachers reported 

discussing the Standards documents with their mentors.  This is not surprising, considering that 

31 of the pre-service teachers claimed to mirror the instructional practices and philosophies of 

their mentor to a moderate degree or more.   

 

 

2.5 SUMMARY 
 

The instructional practices in a classroom can greatly impact student learning.  For example, the 

tasks with which students engage, the representations made available throughout the lesson, and 

the discourse may all combine to create an opportunity for students to think and reason in 

complex ways; or, one aspect of this framework may play out in such a way that the students’ 

opportunities to learn are inhibited.   

While there is a growing body of research surrounding practicing teacher’s use of 

instructional practices that align with the ideas of the reform, very little is know about pre-

service teachers’ instructional practices.  Much of the current research has focused on what pre-

service teachers learn from coursework at universities that inform pre-service teachers about 

current understandings of “best practices” in teaching mathematics. Again, though, little is 

actually known about how pre-service teachers, particularly secondary pre-service teachers, 

make use of the information in their field placements.    
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This study, then, seeks to describe the instructional practices of two pre-service secondary 

mathematics teachers as they plan for, enact, and reflect on lessons in their field placement 

classrooms.  In addition, this study seeks describe how aspects of the contexts appear to 

influence the selection and implementation of tasks, the use of representations, and the 

questioning used by the pre-service teachers. 
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3.0 CHAPTER THREE: METHODOLOGY 
 

 
 
 
 

3.1 INTRODUCTION 
 

 
The purpose of this study was to describe the instructional practices of two pre-service secondary 

mathematics teachers during their internship experience.  Specifically, the study aimed to 

examine critical dimensions of instructional practices: the cognitive demands of the tasks as 

selected and enacted by pre-service teachers, the mathematical representations used as a tool 

during the lesson, and normative practices of questioning used to prompt mathematical thinking, 

reflection, and discussion of the students.  Additionally, the study aimed to examine and describe 

the ways in which the contextual settings, particularly curriculum and the mentor, appeared to 

influence the instructional practices of the pre-service secondary teachers as they planned for and 

enacted mathematics lessons in their field placements.  

This study employed a qualitative case study method (Merriam, 1998) as a means of 

capturing detail over time in multifaceted and “situated relationships” (Stake, 2004, p.440) in 

which the behaviors cannot be controlled (Yin, 1994).   More specifically, the current study used 

an embedded multiple-case study design since there were two cases with multiple units of 

analysis (Yin, 1994). A strength of this case study method was the “ability to deal with a full 

variety of evidence- documents, artifacts, interviews, and observations” (Yin, 1994, p.8), all of 

which were critical to the present study. Ethnographic techniques were used during data 

collection and analysis.  The researcher was a passive participant (Spradley, 1980); that is, the 
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researcher observed the participant in different situations during the school day (e.g., during 

teacher meetings, during lunch time, while teaching classes) and interactions with the 

participants were limited. The following sections provide further descriptions of the 

methodology of this study. In particular, the context, participants, data sources, and analysis 

techniques are described.    

 
 
 

3.2 CONTEXT 
 

 
This investigation focused on two pre-service teachers enrolled in the Master’s of Arts in 

Teaching program (MAT) at a large urban university in the northeast (hereafter referred to as 

University) during the 2005-2006 school year.  In addition to the required coursework for the 

program, both of the pre-service teachers were also participating in a professional development 

initiative, Enhancing Secondary Mathematics Teacher Preparation (ESP), with their mentor 

teachers.  This section describes the larger context of the study- the MAT program and the ESP 

project. 

3.2.1 The MAT program 
 
   
The MAT program is a fifth-year certification program that culminates in a Master’s degree in 

Teaching and Instructional 1 certification in secondary (7-12) mathematics. Acceptance into the 

program requires a bachelor’s degree in mathematics (or equivalent course experience) with a 

minimum 3.0 QPA.  The program consisted of coursework and an internship (ie., field 

placement).  The coursework spanned a 12-month period, beginning the summer prior to the start 

of the internship and finishing the following summer.  In addition to the coursework taken at the 
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university in the late afternoon and early evening, pre-service teachers also completed a full-time 

internship at a local public school classroom.  The coursework and internship components are 

further described below.   

3.2.1.1 Coursework     The MAT program focused on providing the pre-service teachers with 

rich experiences in their coursework that aimed to prepare them to develop lessons that were 

cognitively demanding, enact student-centered instructional practices, and reflect critically on the 

enactment of the lessons.  To that end, throughout the year the pre-service teachers took seven 

mathematics education courses:  a teaching lab that focused on lesson planning, a methods 

course focused on algebra teaching and learning, a methods course focused on curriculum, a 

methods course focused on the appropriate use of technology in the classroom, a methods course 

focused on the teaching and learning of proportional reasoning, a course designed to support 

students’ creation of a professional portfolio of practice that is focused on reflection, and a 

research seminar during which individuals completed an action research project.  Table 1 

outlines the courses taken by semester.  Throughout each of these courses, the pre-service 

teachers engaged in a variety of activities that compelled them to expand their own 

understanding of mathematics, how children learn mathematics, and how to facilitate a student-

centered lesson that focuses on exploring and discussing significant mathematical concepts and 

ideas.  
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Summer 
 

 
Fall 

 
Spring 

 
Summer 

 
Internship 

 

 • Full day in 
schools 

• Full day in 
schools 

• Full day in 
schools 

Methods 

 
• Teaching Lab 

 
• Algebra  
• Curriculum 
• Technology 

   
• Proportional 

Reasoning 

Other 
Courses 

with Math 
focus 

  
• Psychology of 

Learning and 
Development 

 
 

 
• High School 

Mathematics 
course (via 
math 
department) 

 
• Disciplined 

Inquiry 

 
 

Seminars 

  
• Internship 

seminar 

 
• Internship 

seminar 

 
• Research 

seminar 
• Internship 

seminar  
•  

General 
Education 
Courses 

 
• Education and 

Society 

  
• Students with 

Disabilities in 
Secondary 
Classrooms 

 

 

Table 1. Overview of classes taken by the MAT students 
 

In addition to the mathematics education courses, the pre-service teachers took two 

courses that provided a focus on mathematics: 1) a course in the mathematics department that 

focused on the big ideas in high school mathematics and 2) a course in the education department 

that introduced psychological theories and research that has impacted the teaching of secondary 

mathematics and science.  Additionally, the pre-service teachers participated in an internship 

seminar once a week during the fall and spring semesters that provided them with an opportunity 

to discuss issues such as classroom management, parent-teacher conferences, and job searching 
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with their colleagues. Two general education courses completed the course requirements for the 

pre-service teachers.   

The MAT program is grounded in a practice-based approach to teacher education (Smith, 

2001).  That is, the activities in which the pre-service teachers engaged were set in the everyday 

work of teaching such as lesson planning and assessment of students’ understanding.  Authentic 

artifacts of practice (e.g., tasks, student work, classroom episodes) were used and analyzed 

through various lenses.  This notion of teacher education is different from the traditional view in 

that “instead of learning theories and applying them later to practice, teachers witness the 

emergence of theories from the study of practice” (Smith, 2001, p.16).   

While engaged in activities such as those described above, the pre-service teachers were 

introduced to a set of tools and frameworks that formed the core of the mathematics education 

program. The tools and frameworks (see appendix A) included the Thinking Through a Lesson 

Protocol (Smith & Bill, 2004; Hughes & Smith, 2004), Math Task Analysis Guide (Stein et al, 

2000), Math Task Framework (Stein & Lane, 1996; Stein, Grove, & Henningsen, 1996), Cycle 

of Teaching, Boaler and Brodie’s (2004) categories of questions, and the five representations of a 

function (Van de Walle, 2004).  These tools and frameworks were used in multiple courses as 

well as in the supervision process (which will be described in section 3.2.1.2) thus promoting 

consistency across the program and focusing the pre-service teachers on what the mathematics 

education program identifies as the critical aspects of teaching mathematics.  

For example, three of the courses (the teaching lab, algebra methods, and proportional 

reasoning methods) required that the pre-service teachers complete a Planning, Teaching, and 

Reflecting (PTR) assignment.  The purpose of the PTR was to provide the pre-service teachers 

with the opportunity to plan a lesson using the Thinking Through a Lesson Protocol.  The 
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Thinking Through a Lesson Protocol is designed to provide support when planning a lesson that 

revolves around a high-level task.  The protocol focuses on anticipating what students will do 

and how the teacher will respond. The emphasis is on supporting students’ thinking and 

reasoning about key mathematical ideas. In all three courses, the pre-service teachers received 

feedback on the lesson plans.  In two of the courses, , the pre-service teachers then taught the 

lesson.  Since the teaching lab occurred in the summer, the lesson was taught to a small group (4-

5 pre-service teachers) of peers.  The lesson taught during the algebra course was taught in the 

internship classroom.  The lessons were videotaped as a way to allow the pre-service teachers to 

reflect on the enactment of the lesson.  The final part of the PTR assignment involved writing a 

paper where the pre-service teacher identified ways in which the students’ learning was 

supported and/or inhibited by the pre-service teacher’s actions during the lesson.   Also during 

the algebra methods course, the pre-service teachers completed an assignment that involved the 

analysis of their questioning.  The pre-service teachers each audio taped and transcribed a 10-

minute segment of their teaching, coded each question using Boaler and Brodie’s (2004) 

categories, and completed a written reflection of what was learned as a result of the analysis.     

  As part of the Disciplined Inquiry course in the spring semester, the pre-service teachers 

created a portfolio of practice that provided evidence of their reflection and growth over the year.  

The portfolio consisted of five entries.  For each entry, the pre-service teachers made claims 

about their teaching practices (e.g. change over time, use of formative assessment, and use of a 

theory to guide their teaching).  The claims were supported with evidence gathered throughout 

the year, such as student work, lesson plans, and written observations from the mentor teacher.   

The tools and frameworks introduced in other courses provided a lens for the pre-service 

teachers to reflect on their teaching while creating the portfolio.  Additionally, the pre-service 
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teachers were encouraged in the research seminar to use the tools and frameworks as a way to 

identify an area of interest as well as to collect and analyze the data.   

3.2.1.2 The Internship     The internship portion of the MAT program involves a field 

placement at a local public school for the duration of that school’s academic year.  The 

internship requires a minimum of 20 hours per week in the field placement; however, the time 

each district requires varies from 20-40 hours per week.  The pre-service teacher is aware of each 

district’s requirements prior to placement4.    The University outlines a “phase-in process” that 

serves as a guideline for the field placement experience (see appendix B).  The pre-service 

teachers begin the internship by attending the field placement school’s teacher in-service days 

prior to the first day of school for students.  The phase-in progresses from the pre-service 

teacher’s role being that of an observer during the first few weeks, to teaching one class 

preparation during week 5 of the internship, to two class preparations during week 12, to 

assuming half of the mentor’s schedule (including school duties) by week 18.  The pre-service 

teacher is only expected to take on the full schedule for a two week period.  While teaching, the 

pre-service teacher is “expected to prepare written lesson plans for every lesson taught.  The format 

of the lesson plan may depend upon the subject, grade level, and learner population being taught” 

(University intern handbook, 2006, p. 29).  The University has no required format of the lesson 

plan; however, the handbook states that mentors and supervisors may have specific formats.  

Additionally, the University recommends that each lesson plan contain certain elements: “(a) 

objectives tied to [the state] Academic Standards, (b) content coverage, (c) teaching styles, (d) 

                                                 
4 In the spring prior to the start of the program, the University hosts an orientation for the incoming MAT students 
(interns).  As part of this orientation, the pre-service teachers interview with the school districts who will be 
accepting interns.  Following the interviews, the students indicate the three schools in which they would like to be 
placed, the school districts state whom they would like to accept as an intern, and then matches are made. 
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instructional materials, (e) organization and management, and (f) evaluation criteria and 

procedures” (University intern handbook, 2006, p.29)”. 

 The University has identified 9 goals of the internship experience.  These goals are 

programmatic; that is, they focus on the MAT program at large (which includes elementary and 

other secondary certification programs) and not just mathematics.   The goals of the internship 

experience are:   

   1.  To provide the intern5 with an intensive field-based clinical  
  experience that develops the knowledge, skills, and  
  dispositions required for a career in teaching. 
 2.  To introduce the intern to the auxiliary services of the school 

and community and explain how these services support the 
total education process. 

 3. To provide the intern with opportunities to observe and assist 
experienced master teachers. 

 4. To provide the intern with experiences in planning 
instructional activities, designing curriculum materials, 
practicing appropriate styles of teaching, experimenting with 
advanced technology, and evaluating learners' progress and 
achievement. 

 5. To provide the intern with opportunities to engage in 
reflective self- analysis of their own teaching performance, as 
well as to use constructive feedback from others to refine 
their teaching skills. 

 6. To involve the intern in the academic and extracurricular 
activities of the school. 

 7. To encourage the intern to draw upon theories of instruction 
and learning covered in graduate theory/methods courses in 
order to solve practical problems. 

 8. To sequentially provide the intern with increasingly 
comprehensive and complex experiences in classroom 
instruction. 

 9. To permit the intern to demonstrate pedagogical performance 
skills that warrant recommendation for a teaching certificate 
in his/her specialty area (University intern handbook, 2006,  
p.11). 

 

                                                 
5 The University uses the term “intern” to refer to the pre-service teachers who are in the MAT program.   
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 The University views the internship as “a collaborative venture directly involving the 

intern, the mentor teacher and the university supervisor” (University intern handbook, 2006, p.9).  

The mentor and supervisor are expected to orient the pre-service teacher to the profession, providing 

feedback, and supporting the professional growth of the pre-service teacher.  A more detailed 

description of the roles as defined by the University can be found in appendix C.   The University 

suggests that the supervisor should  

visit the cooperating school early in the term, usually once during the 
first week, and then schedule subsequent visits on a biweekly basis.  
In some cases, visits will be scheduled more or less frequently 
depending upon the intern's progress (University intern handbook, 
2006, p.31).   

 

3.2.2 Enhancing Secondary Mathematics Teacher Preparation (ESP) 
 
 
In addition to the coursework and the internship, the pre-service teachers and their mentors were 

involved in ESP.  ESP is an NSF-funded sustained professional development initiative that 

focuses on  “improving the quality of mathematics teacher preparation” (Smith, 2003-2004, p. 

39) by creating opportunities for pre-service teachers and their mentors to reflect on and 

critically analyze both the mathematical content needed for teaching as well as the instructional 

practices that support students’ learning of quality mathematics.  In particular, a primary goal of 

ESP is to educate “teacher leaders who can nurture and support pre-service teachers during their 

internship and student teaching experiences” (Smith, 2003-2004, p.39).    To that end, in the year 

prior to having an intern, mentor teachers engage in a series of six professional development 

sessions during the school year and an intensive one-week session during the summer as a means 

to begin to refine their own instructional practices. The mentors are introduced to and use the 

same tools and frameworks that are central to the coursework of the pre-service teachers.  
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Additionally, the sessions also focus on the roles and practices of mentoring.  To that end, the 

mentors discussed and practiced structuring conversations with the interns as a way to provide 

feedback based on evidence collected during an observation.  Once the internship begins, the 

mentor and the pre-service teacher together attend five professional development sessions 

between September and March.  These sessions provided opportunities for the mentors and pre-

service teachers to engage in joint planning and reflecting on the enactment of specific lessons 

from their classroom.  The focus of the sessions built on the ideas the pre-service teachers were 

learning about in the university mathematics education courses (i.e., cognitively challenging 

tasks, questions, etc). 

 

 

3.3 PARTICIPANTS 
 

 
This study focused on the instructional practices of two pre-service secondary mathematics 

teachers, Keith Nichols and Paige Morris.  Keith and Paige were selected as participants in this 

study because the circumstances of their internships were very similar with respect to the schools 

in which they were placed and the courses taught, yet differed with respect to the curriculum 

used in the classroom. This provided an interesting backdrop for analyzing the instructional 

practices and contextual influences on the instructional practices of each pre-service teacher.  

Table 2 provides an overview of key elements of the internship placements. The details of each 

internship placement, including the school setting, mentors, and the curriculum, are further 

delineated below.       
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Table 2. Summary of key elements of internship placements 

 School  Mentor Supervisor Curriculum 

Keith  Baskerville 
Middle 

Michelle Fermat, 
Darcy Dunn 

Nicole Thomas Connected 
Mathematics; 
Prentice Hall 
Algebra 1   

Paige New Carroll 
Middle 

Madeline Larose Derrick Greene McDougal 
Littell’s Integrated 
Mathematics 1 

 

3.3.1 The school setting 
 

Baskerville Middle School and New Carroll Middle School are similar along a variety of 

dimensions.  Both districts are predominately middle-class suburban communities who take pride 

in the achievements of the schools.  The schools in each district have been recognized with 

various awards for academic achievement.  Both schools made adequate yearly progress in the 

2004-2005 school year in mathematics as determined by the No Child Left Behind Act.  On the 

state assessment, 60% of the 8th graders at Baskerville Middle School scored at the advanced 

level and 23% at the proficient level.  Similarly, 70% of the eighth graders at New Carroll 

Middle School were at the advanced level with an additional 20% at the proficient level.  

During the course of the study, Keith was teaching 6th and 7th grades, as well as algebra to 

advanced eighth graders at Baskerville Middle School.  He had two mentor teachers- Michelle 

Fermat for his 6th and 7th grade classes, and Darcy Dunn for this 8th grade algebra class.  Paige 

was teaching various sections of Integrated One, which focuses largely on algebraic topics, to 

eighth grade students at New Carroll Middle School. Madeline Larose served as Paige’s mentor 

teacher.  One algebra-focused class for each pre-service teacher (an honors class for Paige and 

the 8th grade class for Keith) served as the focus class for this study 
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3.3.2 The mentors 
 

Keith’s mentor teachers, Darcy Dunn and Michelle Fermat, and Paige’s mentor teacher, 

Madeline Larose, have similarities in their backgrounds.  Darcy received a Bachelor’s degree in 

Secondary Mathematics in 1999 from a local college.  Both Michelle and Madeline completed 

their bachelor’s degrees at the University.  Michelle graduated in 1998 with an Interdisciplinary 

Studies degree and then completed her teacher certification, earning an MAT in Elementary 

Education at the University in 1999. Michele recently added certification in middle school 

mathematics to her credential by taking and passing the PRAXIS.   Madeline graduated with her 

bachelor’s in mathematics in 1999, earning her MAT in Secondary Mathematics Education and 

teaching certification in 2000.  The MAT certification program for mathematics at the University 

had changed considerably since Madeline had graduated.  Specifically, the frameworks that are 

foundational to the current program were not used at the time Michelle and Madeline attended. 

Darcy, Michelle, and Madeline all interned during their certification programs at schools that are 

similar to their current schools.   Immediately following their certification programs, Darcy, 

Michelle, and Madeline accepted teaching positions at their current schools.  Darcy has taught 8th 

grade math and algebra for seven years.  Michele has taught a variety of courses at the 6th, 7th, 

and 8th grades during her seven years of teaching.  Madeline has primarily taught the Integrated 

One course for eighth grade, but also taught Integrated Two at the high school for part of the 

1999-2000 school year as part of her internship. 

Additionally, all three mentors have participated in various professional development 

opportunities, including attending NCTM national conferences.  Of particular importance is the 

fact that all three participated in the ESP project as a means to prepare for mentoring an intern.  
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Darcy was a member of the first ESP cohort, beginning in the fall of 2003; Michelle and 

Madeline were both members of the second cohort, beginning in the fall of 2004. 

During their involvement in ESP, both Michelle and Madeline participated in a study that 

examined both the teachers’ ability to analyze the cognitive demands of tasks and the actual 

tasks used in their classrooms6 (Boston, 2006).  Using a middle-school task sort (Smith et al, 

2004) as the pre/post-measure, Boston determined the teacher’s ability to correctly identify the 

cognitive demands of a task and provide an appropriate rationale for the categorization of the 

task.  Both Michelle and Madeline individually made improvements in their ability to identify 

and justify the cognitive demands of tasks from the pre-test to the post-test.  As shown in table 3, 

Madeline’s scores were consistently close to the sample average while Michelle’s scores were 

well above average, thus indicating Michelle was better able to correctly categorize the cognitive 

demands of tasks.  

 Pre-Test Score Post-Test Score 
Michelle 32 37 
Madeline 25 28 
Sample Average 24.2 28.7 

Table 3: Scores on task sort activity (highest possible score = 35) 
 

Boston also examined the cognitive demands of the actual tasks the teachers used for 

classroom instruction.  Each teacher submitted “task packets” at three points during the year- 

fall, winter, and spring.  A task packet included the main instructional task of each day for five 

consecutive days.  The tasks were then scored according to the Mathematics Academic Rigor 

Rubric of the Instructional Quality Assessment Toolkit (Boston & Wolf, 2004).  Tasks scored as 

a 3 or 4 indicated that the task, as written, was high-level, while a task that was scored as a 1 or 2 

                                                 
6 Since Darcy was not a member of the second cohort, she was not eligible to participate in the study.  However, 
Darcy’s instructional practices were highly regarded by faculty and instructors in the mathematics education 
department at the university. 
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indicated that the task was considered to be low-level.  The data, as shown in table 4, indicated 

that both Michelle and Madeline use high-level tasks for the main instructional task, with 

Michelle’s data indicating she consistently did and Madeline doing so approximately 70% of the 

time.  Specifically, of Michelle’s main instructional tasks, 5 out of 5 were high level; Michelle 

did not complete a winter or spring task packet.  Of Madeline’s main instructional tasks, 10 out 

of 15 tasks were high level.  Of particular interest is that as the year progressed, Madeline’s use 

of high-level tasks increased. 

  
 

 
 
 
 
 
 
 
 
 
 
 
 

 Fall Winter Spring 
 
Michelle 

 
3.2 

( 5 out of 5 tasks were 
High-level) 
 

 
(no data) 

 
(no data) 

 
Madeline 
  

 
2.4 

(2 out of 5 tasks were  
High-level) 
 

 
3.0 

( 3  out of 5 tasks were  
High-level) 

 
3.7 

 (5  out of 5 tasks were  
High-level) 

Table 4: Average score (highest score = 4) on task packets and number of tasks that were high 
level 

 
 
 In addition to the classroom mentors, both Keith and Paige also met regularly with their 

university supervisors.   Nicole Thomas served as Keith’s supervisor.  She is a leading 

mathematics educator who works with both pre-service and practicing teachers.  She is the 

Principal Investigator of the ESP project.  She also taught two of the courses which Keith and 

Paige took during the school year, one of which occurred prior to data collection, and the other 

after.  Derrick Greene, Paige’s supervisor, worked for 33 years as a mathematics teacher at a 

local school district before becoming involved in supervising pre-service teachers for the 
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university.  He is well known and respected in his district, which has a very similar population to 

that of New Carroll Middle School.  He has been supervising for the University for six years. 

3.3.3 The curriculum 
 
 

Baskerville Middle School uses two textbooks.  The Connected Mathematics Program (CMP), a 

reform-oriented NSF funded curriculum, is used in the 6th and 7th grades, and for one unit (linear 

functions) in the 8th grade algebra.  CMP “emphasizes inquiry and discovery of mathematical 

ideas through the investigation of rich problem situations” (Lappan et al, 1998).  In the algebra 

courses, content is primarily taught from Prentice Hall Algebra 1 textbook (2004).  The Prentice 

Hall book is a traditional text, both in format and in content.  For example, each section begins 

by stating the objectives, a skills review, worked out example problems followed by a few 

problems for the students to practice and “check understanding”.  Finally, the exercises at the 

end of the lesson are divided into three sections:  “practice by example”, “apply your skills”, and 

“challenge”.    

The curriculum used at New Carroll is McDougal Littell’s Integrated Mathematics 1, the 

first book in a three-year course that addresses “the same concepts and skills found in an 

Algebra1/Geometry/Algebra 2 sequence”.  Integrated 1 focuses primarily on algebraic concepts 

through the use of problems that are set in a real-world context.  Most sections begin with a 

sample problem that provides a worked out response.  This is followed by section titled “talk it 

over”, which is a series of questions aimed to extend students’ thinking about the sample 

problem.  The sections end with a series of exercises and problems (usually between 20-30 

problems) that provide opportunities for students to practice the skills outlined in the sample 

problems.  While the text has elements of a reform-oriented curriculum (i.e., contextual 
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problems, suggestions for group work, the “talk it over” section), these elements are rather 

surface-level and fade in comparison to the overall focus of the book- practicing skills.  Thus, the 

text is viewed as a traditional textbook.   

 
 

3.4 DATA SOURCES 
 

 
This section describes the data that were collected to explore the two research questions (1. What 

is the nature of instructional practices used by two pre-service secondary teachers in their field 

placement classrooms?  2. In what ways do the contexts within which each pre-service teacher 

works influence their instructional practices?).  In order to strengthen the internal validity and 

reliability, two types of triangulation were used: data triangulation and methodological 

triangulation (Denzin, 1978).  That is, a variety of data (i.e., interviews, lesson plans, curricula, 

and video tapes of instruction) was collected via different methods (ie., interviews, document 

analysis, observation), thus providing an opportunity to clarify (Stake, 2000) and corroborate the 

emerging findings (Merriam, 1998).  A mapping of data sources and research questions is shown 

in table 5. 
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 RQ#1 RQ#2 
Videos of instruction in focus class
           (5 per pre-service teacher) 

X  

Copies of curricula from observed 
lessons in focus class 

X  

Copies of lesson plans from 
observed lessons in focus class 
            (5 per pre-service teacher) 

X  

Lesson centered interviews for 
focus class 
             (5 pre-lesson and 5 post lesson per    
             pre-service teacher) 

 X 

General interviews   
    - #1   X 
    - #2   X 
Contextual interviews 
             (interviews with the mentors and   
              other identified informants) 

 X 

Field notes X X 
Table 5: Data sources mapping to the research questions 

3.4.1 Data sources for examining instructional practices 
 

Four main data sources were collected in order to describe the instructional practices of each pre-

service teacher: videotapes of classroom instruction, copies of the curricula or other print 

materials that provide the source and/or support for the videotaped lessons, copies of the pre-

service teacher’s lesson plans for each videotaped lesson, and field notes.   This data was 

collected from the focus class (as identified above in section 3.3.1) over the course of five 

consecutive days between late March and early May at the beginning of an instructional unit.  

The mentor teachers conducted the videotaping, thus allowing the researcher to collect field 

notes.  The mentors were instructed that the focus of the videotaping was on the pre-service 

teacher, but also to capture the activities of the classroom.  The researcher and mentor discussed 

using wide-angle shots for whole class discussions, close shots for group interactions with the 

teacher, and zooming in on information written on the board or overhead.   
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3.4.2 Data sources for examining contextual influences 
 

In order to understand how the contextual settings influenced Keith and Paige’s instructional 

practices, each pre-service teacher participated in two types of interviews at multiple points in 

time:  general interviews and lesson-centered interviews.  In addition, contextual interviews were 

conducted with the mentors and other key players identified in the general interviews. The 

researcher conducted all the interviews, which were audio taped and then transcribed.    

The purpose of the general interviews was two-fold.  First, the interviews provided a way 

for the researcher to gain insight (Merriam, 1998) into how Keith and Paige viewed their 

respective teaching situations (ie., internship school setting, role of the mentor, coursework, etc.).  

In addition, the general interviews explored how Keith and Paige made instructional decisions 

regarding the planning and enactment of a lesson. The general interviews were semi-structured 

(Fetterman, 1998; Merriam, 1998) and used what Spradley (1980) referred to as descriptive, 

grand-tour questions (i.e., “Tell me about Baskerville Middle School” or “So I noticed that 

students did ____.  Why did you decide to have students do this during this set of lessons?”) and 

mini-tour or probing questions (i.e., “Could you say more about what you meant by ____?”).   

Stein, Remillard, and Smith (in press) note that curricular materials may be transformed 

as a teacher plans for and enacts a lesson in the classroom.  Drawing on previous research, the 

authors identify four main categories that influence transformations: the teacher, the students, the 

context, and the curriculum.  These categories of influence on curricular transformations were 

used as a lens to design the questions for the general interviews.  The categories provided a 

framework that allowed for the exploration of the ways in which different areas influenced the 

instructional practices of pre-service teachers. While all the larger categories of the framework 

were addressed, only sub-categories that directly related to the research questions were used in 
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the creation of the interview questions.   For example, questions such as “What does your mentor 

expect from you?” and “What interactions do you have with other math teachers?” were aimed to 

examine the support available to and utilized by the pre-service teacher.  These interviews 

occured at two time points: 1) before the videotaping of any lessons that were used in the study; 

and 2) in May, after the collection and initial analysis of all data (see appendix B for a copy of 

the general interview protocols.) Each general interview lasted an average of 90 minutes.  

The purpose of the initial general interview was to gather both contextual and 

instructional information.  The first part of the interview focused on collecting background 

information from each pre-service teacher in order to provide the researcher with some insight 

into how each pre-service teacher made sense of the contextual settings. The questions were 

aimed at gathering information about the school, the students, and the pre-service teacher’s 

relationship with the mentor.   The second part of the interview focused on the upcoming lessons 

to be videotaped in the focus class.  These questions focused on what would happen in the set of 

lessons, how decisions about planning were made, and the anticipated roles of both the pre-

service teacher and students. 

The second general interview focused primarily on gaining insight into each pre-service 

teacher’s instructional decisions.  In preparation for this interview, the researcher watched each 

of the videotaped lessons and reviewed related documents and data sources (i.e., videos, lesson 

plans, curricula, previous interviews, field notes) as a means to identify key areas to discuss in 

the interviews (i.e., interesting decisions, modifications, and instructional moves). Conducting 

the second general interview shortly after the instructional practices data collection allowed the 

researcher to ask specific questions that pertained to the videotaped lessons within a reasonable 

time frame.  
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Each pre-service teacher also participated in a series of lesson-centered interviews for the 

focus class (see appendix C).  Immediately prior to the start of each lesson, the pre-service 

teachers were asked to summarize the upcoming lesson, including the goals.  This interview 

provided insight into the pre-service teacher’s actual agenda for the lesson (Leinhardt, 1993).  

After the completion of the lesson, the pre-service teacher was asked to briefly reflect on the 

lesson.  Each lesson-centered interview lasted approximately 2-3 minutes. 

Contextual interviews (see appendix D) were conducted throughout the study in order to 

triangulate the data gathered from the interviews with the pre-service teachers.  Previous research 

(i.e., Ebby, 2000; Frykholm, 1996; Van Zoest & Bohl, 2002) has indicated that the mentor can 

greatly influence a pre-service teacher’s practices.  As a result, each of the mentor teachers 

participated in a semi-structured interview following the data collection in the focus class as well 

as informal interviews throughout the data collection.  Informal interviews are not structured, but 

rather conversational in nature (Fetterman, 1998); so while the informal interviews were driven 

by the researcher’s observations of the instructional practices and interactions of the pre-service 

teacher, unlike the semi-structured interviews, there was not be a specified interview protocol to 

follow.  In addition to the mentor teacher, other “key players” (e.g., university supervisor) 

identified by the pre-service teacher as an influence on instructional practices were interviewed 

following the second general interview with the pre-service teacher.   

A school is a complex setting with many nuances that may not be captured through an 

interview or on the video of the focus class.  In order to gather additional information about the 

context, the researcher became immersed in the school setting of the pre-service teacher for a one 

week period by shadowing the pre-service teacher at the school.  The researcher was in the 

“observer-as-participant” role (Angrosino & Mays de Perez, 2000, p. 677) since the primary 
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purpose was to observe, but by the nature of the observations, the researcher also interacted 

casually with the participants.  During this time, field notes were collected as a means to provide 

a written account of the observations (Merriam, 1998).  The purpose of shadowing was to 

provide insight into the daily routines and interactions of the pre-service teacher. The field notes 

were comprised of two parts: 1) general notes regarding the setting and interactions of the staff, 

teachers, and students and 2) notes regarding the actions of the pre-service teacher.  For example, 

a description and map of the school and classroom was included as a means to establish the 

context.  A daily log of the pre-service teacher’s actions included information such as time and 

location of the pre-service teacher throughout the day as well as descriptive data (i.e., 

conversations, people) surrounding the events. All field notes were gathered in a field journal 

during the observations, then converted into electronic format immediately following the 

observation to facilitate coding.  

 

 
 

3.5 DATA ANALYSIS 
 

 
The general analysis scheme for the current study is what Yin (1994) refers to as “relying on 

theoretical propositions” (p.103) since the data collection and analysis were greatly informed by 

relevant literature. That is, the research was conducted primarily from an etic, or outsiders, 

perspective (Fetterman, 1998; Merriam, 1998). 

For each pre-service teacher, the data set included audiotapes of interviews, lesson 

artifacts (i.e., pages from the teacher’s edition, the teacher’s lesson plans), videotapes of five 

lessons, and field notes.  Prior to analysis, all videos and interviews were transcribed into a 

format that is compatible with the N6 version of the qualitative data analysis program NUD*IST 
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(Non-Numerical Unstructured Data: Indexing, Searching, and Theorizing).  N6 is a “toolkit” that 

provides a framework for organizing and systematically coding data using indexed categories for 

researchers who are examining qualitative data (Gahan & Hannibal, 1998).   Since the video 

transcript served as a tool to supplement viewing the video, only the audio portion of the videos 

were transcribed; that is, movements and time stamps were not included on the transcript.  The 

teacher was identified, and each new student speaker was simply identified as “student”.  

Pseudonyms were assigned to ensure anonymity. This section outlines the method of analysis for 

the data sources with respect to each research question. 

3.5.1 Instructional practices   
 

The first research question investigates the nature of instructional practices used by each pre-

service teacher in the field placement classroom.  In order to create individual portraits for Keith 

and Paige, each videotaped lesson was analyzed with respect to the cognitive demands of the 

tasks, the representations used by the teacher and/or student, and questions asked.  This 

facilitated comparisons within each pre-service teacher’s instructional practices.  In addition, the 

coding allowed for a variety of comparisons between pre-service teachers regarding the tasks, 

tools, and norms of the classrooms.  One video of each pre-service teacher’s classroom 

instruction was independently coded for the critical dimensions of instructional practices as 

described in the following sections by both the researcher and a trained coder in order to ensure 

inter-rater reliability. The coder received approximately two hours of training from the 

researcher surrounding the coding scheme for each dimension of instructional practice.  The 

reliability (stated in percent agreements) for the cognitive demands of the task was 100%, 90% 
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for the representations, and 82% for the questions.  Disagreements regarding the questions were 

resolved through consensus coding and each question was assigned a single code. 

3.5.1.1 Tasks   The Math Task Framework (Stein, Grover, & Henningsen, 1996) was used as a 

guide for analyzing the cognitive demands of the tasks as they progress from the published 

curriculum to the enactment of the tasks in the classroom. Prior research indicates that the 

thinking required of the students may change as the task progresses from the written form to the 

lesson plan (Wagner, 2003), and from the set-up through the enactment in the classroom 

(Henningsen and Stein, 1997). Therefore, the cognitive demands of all tasks were analyzed at 

four particular times (as shown in figure 3): 1) in the published curriculum 2) in the lesson plan, 

3) as set-up in the classroom, and 4) as enacted in the classroom.  The Academic Rigor Rubrics 

of the Instructional Quality Assessment tool developed by Boston and Wolf (2004) (see 

appendix E) was used to categorize the demands of the task at each of the four points described 

above, thus allowing for the assignment of a code that corresponds to the level of the task at each 

point of analysis.  These rubrics draw heavily on the Math Task Analysis Guide (Stein et al, 

2000) as a means to determine the type of thinking a task has the potential to elicit as well as the 

type of thinking implemented by the students in the classroom while engaging with the task. For 

example, a score of one or two represents a low-level of cognitive demand, while a score of a 

three or four represents a high-level of cognitive demand.  The distinction between the scores at 

each level focuses on the explicitness of evidence of the potential or observed thinking and 

reasoning by the students.  For example, a task is coded as a four during the implementation if 

there is clear data that indicates students were thinking and reasoning in complex ways; a task is 

coded as a three if the task has the potential for such thinking and reasoning, but there is not clear 

evidence of the students’ reasoning and understanding, the task is too easy or too hard for the 
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particular group of students, the students did not make generalizations, or there is no explicit 

evidence that students made connections between various strategies or representations (see 

appendix E for the full description of each category). 
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Figure 3. Four points of analysis of cognitive demands of the task 
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Research indicates that actions by both the student and teacher in a classroom can impact 

the cognitive demands of the task during the set-up or enactment of a task (Henningsen & Stein, 

1997).  For the present study, if the cognitive demands of a task declined during the set-up or the 

enactment, the videotaped lesson was further analyzed for factors associated with the decline of 

cognitive demands as outlined by Henningsen and Stein (1997).  In addition, lessons in which 

the tasks sustained a high level of cognitive demand from set-up through enactment were coded 

for factors associated with the maintenance of cognitive demands (Henningsen and Stein, 1997)   

(see Appendix F). 

In addition to analyzing the cognitive demands of tasks, the source of the task was coded 

as appropriated from the curriculum, adapted, or invented. Appropriation (Remillard, 1999) 

involves using a task exactly as it appeared in the curriculum. A task was coded as adapted when 

changes were made to the original task.  Specifically, the task will be coded as adapted-demands 

maintained (Smith, 1999), adapted-demands increased, or adapted-demands decreased.   If the 

planned task was similar to the task in the published curriculum, but slight changes were made 

and these changes do not change the overall intended ideas of the publisher, the task was coded 

as adapted-demands maintained.  For example, this could involve changing the numbers in a 

problem. If the task was changed in such a way that the cognitive demands compared to the 

original task changed, the task was coded as adapted-increased demands or adapted-decreased 

demands.  For example, adapted-increased demands involved modifying directions to a 

procedural task to encourage students to use multiple representations as a means of developing a 

conceptual understanding.  In contrast, adapted-decreased demands could involve adding 

directions to a conceptually based task that focused the students only on the procedural aspects 
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of the task. Tasks were coded as invented (Remillard, 1999; Smith, 1999) when the pre-service 

teacher did not use a task from the curriculum, but instead created a new task on their own or 

utilized resources outside of the published curriculum.  Similar to adapted tasks, there are three 

levels of invention when the planned task is compared to the original task in the curricular 

materials: maintained demands, increased demands, and decreased demands.   

In summary, each lesson was coded for the cognitive demands of the task in the 

curriculum, the lesson plan, the set-up, and the enactment.  Factors that influenced the 

maintenance or decline of a high-level task were identified.  Finally, the source of the planned 

task was described.  This analysis also allowed for comparisons between the pre-service 

teachers.   

3.5.1.2 Tools    Transcripts of the classroom videos were coded for the tools available to the 

students while engaging with a task. The transcripts were divided into conversations, or 

exchanges between teachers and/or students about a particular problem or representation.  

Representations are a critical tool in supporting mathematical understanding in general (Hiebert 

et al, 1997; Lesh, Landau, & Hamilton, 1983; Lesh, Post, & Behr, 1987; Pape & Tchoshanov, 

2001), and are of particular importance in developing an understanding of functions. Therefore, 

each lesson was coded for the use of representations of functions along two dimensions: 

availability and connections.  First, the lessons were analyzed for use of the 5 representations of 

a function as described in Van de Walle (2004).  As noted in figure four, these representations 

include 1) real-world contexts, 2) graphs, 3) equations, 4) tables, and 5) language.  The pre-

service teachers had the opportunity to explore these representations in the fall methods class, 

algebra teaching and learning, and were introduced to the same tool used for coding in this study. 
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Figure 4. Five representations of a function (Van de Walle, 2004, p.440) 
 

 

While using a representation is a component of mathematical understanding, a critical 

aspect of understanding conceptually is “seeing” the connections or relationships between and 

among the various representations of a mathematical concept or idea (Lesh, Landau, & 

Hamilton, 1983; Lesh, Post, & Behr, 1987; Pape & Tchoshanov, 2001).  As a result, each lesson 

transcript was coded for connections between and among the representations, as well as who 

made the connection (i.e., the teacher or the student).  This is important since one of the driving 

forces of the reform is a classroom that is student-centered; that is, the students are grappling 

with the mathematical concepts rather than the teacher telling the students the key ideas.  For 
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example, during a class discussion in Mr. Entigar’s7 class, a student presented the equation 

y=2x+4 as the equation that modeled the cost of posters.  Mr. Entigar then asked: “That two 

times the x, there? What was it in the problem that kind of gave that away for you?” (Entigar, 

2004, Lesson 3, segment 106-107).  In doing so, he is asking the student to make a connection 

between the equation and the context of the problem.  The students’ response made public the 

connection between the two representations, thus allowing all students access to this connection. 

Later in that same class, Mr. Entigar worked with a small group and facilitated their connection 

between the graph and the context of the same problem. 

Mr. Entigar:   “So, think back to the problem. What’s making that line go up?” 
Student:        “The values are increasing….the posters ordered increases…then the  

cost goes up.” 
Mr. Entigar: “Now, as the posters ordered increase, so does the cost, and that’s  

what’s making the line go up? (Entigar, 2004,  Lesson 3, segment  445-461) 
   

    
While the teacher’s question prompted the connections in both examples, it is the students who 

actually made the connection. 

Following the coding, a description of each representation available, the function of those 

representations, connections made, and who made the connections were complied for each 

videotaped lesson.  This aided in developing the portrait of each pre-service teacher’s 

instructional practices with respect to what thinking was happening in the classroom and who 

was doing the thinking.   

3.5.1.3 Norms    The norms in a classroom involve the stated and perceived roles of both the 

students and the teacher. One way of capturing the norms of a particular classroom is by 

examining the questions posed by the teacher. Questions provide the teacher with a vehicle to 

                                                 
7 Bruce Entigar is an algebra one teacher whose videotaped lessons served as a basis for developing the coding 
scheme for the current study.  The videotaping of his lesson occurred under the auspices of ASTEROID (A Study of 
Teacher Education: Research on Instructional Design). 
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guide student thinking (Newton, 2002), promote mathematical communication (Heibert et al, 

1997), and facilitate connections between representations.  The type of questions asked over time 

are critical to the thinking and ultimate understanding a student will develop. Newton (2002) 

states “if you ask for facts, the mind will tend to concern itself with facts, but if you ask for 

relationships, reasons and causes, then thinking is more likely to be aimed at constructing 

relationships, reasons and causes” (p.33).    

In order to more fully understand the normative practices of the participants in the present 

study, each videotaped lesson was analyzed for the types of “academic questions” (Hiebert and 

Wearne, 1993) the teacher asked.  An academic question could be in the form of a question or an 

utterance that served the purpose of a question (Boaler & Brodie, 2004) that revolved around the 

mathematical ideas of the lesson.  However, questions or utterances that were rhetorical “space 

fillers” (i.e., “ok?”) were not counted as questions.  Consider the following example, “In our 

table so far we have negative numbers and we do need to account for that.  Ok?” (Entigar, 2004, 

lesson 1, segment 274). While the question “ok”, is connected to a statement focused on the 

mathematics of the lesson, it is not intended to invoke a response from the students; rather, it is a 

colloquialism used as a space filler in talk.   

This study adapted Newton’s (2002) talk framework as a means to analyze the academic 

questions posed by the teacher. While Newton focuses on talk, this study altered the unit of 

analysis from conversations to individual questions posed by each pre-service teacher. This is an 

important shift since questions are one way to provoke students’ thinking, reasoning, and 

reflecting on and about mathematics. Newton’s framework provides a general way to classify 

questions while encompassing more specific question types identified by other researchers such 
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as Hiebert and Wearne (1993), Driscoll (1999), and Boaler and Brodie (2004).  Each question 

was coded as tuning, monitoring, or connecting.  The categories are further described below. 

The first question type is tuning.  Questions of this type focus the students’ attention on 

the given task by setting the scene for the lesson and “focusing attention on those specific aspects 

of the topic where [the teacher] will begin” (Netwon, 2002, p.35).  This may be accomplished in 

one of two ways:  by establishing the context (Boaler & Brodie, 2004) or linking to prior 

mathematical knowledge.  The number of tuning questions can vary, depending mainly on the 

students’ prior knowledge (Newton, 2002).  

Examples of tuning questions that establish the context include a teacher asking about 

cell phones when the task is to analyze cell phone plans, or polling the class for their favorite 

candy if the context of the task involves candy.  Linking to the context of a task may also occur 

in a different format that does not directly link to the real-world setting of the task.  For example, 

Mr. Entigar began a class by asking a tuning question aimed at establishing the context of the 

lesson- naming something that has always been done.  He was setting up a task where the 

students will be formally introduced to the term “slope”, although they have informally worked 

with the concept of slope throughout the past few months. He asked, “Has anyone ever done 

anything their entire life, or done something for a long period of time, and like they just didn’t 

even know what was called?” and then continued to discuss dances such as the funky chicken 

(Entigar, 2004,  Lesson 1, segment 15-22).   

Tuning questions can also draw students’ attention to their prior mathematical knowledge 

that will be necessary or useful for the task at hand.  For example, in the beginning of another 

lesson, Mr. Entigar pointed to the statement on the overhead, “y=3x-5 is a linear equation”.  He 
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asked, “Do you believe it?” (Entigar, 2004,  Lesson 4, segment 33) as a way to activate students’ 

prior knowledge of linear equations, which was needed for the upcoming task.   

The second type of question, monitoring, provides the teacher with an opportunity to 

assess a student’s thinking and understanding.  In doing so, the students are again provided with 

an opportunity to further their own understanding in that “having children express their thoughts 

probably makes them think more carefully and completely” about the mathematical ideas of the 

task (Newton, 2002, p.47).  The main purpose of a monitoring question, however, is for the 

teacher to gain insight into the student’s thinking and reasoning rather than to push the students 

to make connections.  Monitoring questions may take many forms, such as asking students to 

recall basic information (Hiebert & Wearne, 1993), checking for understanding, and asking 

students to explain their thinking (Driscoll, 1999; Boaler & Brodie, 2004). 

Mr. Entigar used a variety of monitoring questions during lesson one.  Students were to 

recall basic information when he asked questions such as, “What if you want to make a very 

accurate line, how many points did we say to use?” (segment 267) and “What is the proper 

terms? What are they called?” (segment 295).   He checked students’ understanding by asking 

questions such as “What’s it mean?” (segment 210), “You can’t have negative posters?” 

(segment 484), and “Where’s the x and the y-axis on your graphs?” (segment 518).  Questions 

such as, “What do you think?” (segment 278), “Could you show [your group] how you got 18?” 

(segment 395), and “What did you do for this one?” (segment 627) are all geared at having 

students explain their thinking. 

The final type of academic question is connecting.  The purpose of this type of question 

is to facilitate the students in making connections to the mathematical idea of the lesson, and/or 

conceptual connections between various representations (Newton, 2002).  Questions of this type 
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provide students with an opportunity to advance their current thinking and understanding of the 

topic by prompting further reflection, exploration, application, or analysis of mathematical 

relationships (Hiebert & Wearne, 1993; Driscoll, 1999; Boaler & Brodie, 2004).   

Connecting questions may occur at any point in the lesson, and may be directed to an 

individual student, a group of students, or to the entire class.  For example, as Mr. Entigar’s 

students were working in groups, he approached a particular group.  In facilitating students’ 

connection between the graph and context of the problem, he asked the group, “What does this y-

intercept, this one point, what does it mean?….What does it mean in the problem?” (Entigar, 

2004, lesson 1, segments 870, 874).  Similarly, Mr. Entigar prompted the class to further analyze 

the graph in their groups by asking two connecting questions, “What is it that’s happening in 

your graph?  Ok? What do you notice?” (Entigar, 2004, lesson 1, segment 730).  These questions 

were prompting the students to determine how information such as the cost per poster and 

shipping costs were represented on the graph. 

In summary, effective lessons involve all three types of questions since each type of 

question has a different purpose.  It is important that students “tune in” to the lesson by relating 

the task to their own prior experiences, either personal (i.e., relate to the context) or 

mathematical (i.e., prior knowledge), and tuning questions provide this opportunity. Teachers 

must also understand what students are thinking and how they are approaching the problem.  

Monitoring questions provide a chance for students to explain their thinking, thus allowing the 

teacher to assess that student’s understanding.  Finally, if true conceptual learning is to occur, 

students need to be given opportunities to connect mathematical ideas, representations, and 

strategies for solving problems.  This is the purpose of connecting questions. However, Boaler & 

Brodie (2004) note that questions of this type are least likely to occur in a lesson.  
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While there is no formula of how many questions of each type is desirable, research 

suggests that to promote students’ learning along a mathematical trajectory, a teacher should ask 

a variety of questions.  After all questions in the current study were coded, counts for each type 

of question in each lesson were tallied.  Percentages of each type of question were computed to 

allow for easier comparisons.  The level of cognitive demand of the lesson was compared to 

percentages of question types asked as a means to identify any trends in questioning patterns; 

this comparison was made within each individual pre-service teacher’s instructional practices as 

well as between both pre-service teachers’ practices. 

3.5.2 Contextual influences on instructional practices 
 

The second research question sought to document ways in which the context supported and 

influenced the pre-service teachers’ instructional practices.  The analysis occurred both during 

and after data collection (Miles & Huberman, 1994).  As noted earlier, the primary data sources 

for this question were the field notes and the interviews (i.e., general, lesson-centered, and 

contextual).  The coding was guided by features that have previously been identified in the 

literature as influencing various aspects of the critical dimensions of instructional practice such 

as the curriculum used in the field placement, coursework, and the mentor teacher, and factors 

that influenced the maintenance of high-level tasks (i.e., Clarke, 1997; Henningsen & Stein, 

1997; Lloyd, 1999; Remillard, 1999; Van Zoest & Bohl, 2002).   This provided a focus while 

conducting the interviews and collecting data in the field (Miles & Huberman, 1994; Ryan & 

Bernard, 2003).  In addition, new features and concepts that emerged from the data were 

identified by reading the transcripts of the interviews, transcripts of the focus classes, and field 

notes.  Miles and Huberman’s (1994) three components of data analysis were employed.  First, 
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data reduction occurred through the constant review of the data as a way to focus the analysis.  

Second, the data was then organized by grouping similar examples of concepts as a way to 

clarify patterns and possible explanations.  Finally, these clusters of examples were identified as 

“themes” (Miles & Huberman, 1994).  All data were the coded again with respect to these 

themes. 

The transcripts were coded in 2 chunks related to the time of data collection: 1) the initial 

general interview, lesson-centered interviews, informal contextual interviews with the mentor 

and other key players, and the field notes; and 2) the second general interview and contextual 

interviews with the mentor teacher and other key players.  This provided the researcher with an 

opportunity to both use the information gained in each chunk for future interviews as well as the 

opportunity to begin to identify consistent contextual influences.  

 
 
 
 

3.6 PRESENTATION OF RESULTS 
 

 
The current study aimed to create a portrait of the instructional practices of each pre-service 

teacher.  The study also looked to examine the influences on the instructional practices of each 

pre-service teacher as perceived by that pre-service teacher.  In order to create this portrait, the 

study employed a pattern matching approach (Yin, 1994). A narrative account of each pre-

service teacher was compiled by combining the rich, descriptive, qualitative detail with the 

quantitative counts.  Each portrait provided insight into the tasks, tools, and norms that were 

characteristic of a typical lesson in each pre-service teacher’s classroom as well as how aspects 

of the context impacted the instructional practices.   Additionally, issues that emerged during the 
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analysis of the data were described. Artifacts such as lesson plans, videotapes, and interview 

transcripts were used to provide evidence.   

After each pre-service teacher’s portrait was compiled, the two portraits were compared 

for similarities and differences of instructional practices.  This analysis allowed the researcher to 

determine if certain supports and aspects of the context seem to be consistent across field 

placement sites, or if each pre-service teacher experienced different influences on instructional 

practices.   

111 
 



 
 

4.0 CHAPTER FOUR: RESULTS 
 

 
 
 
 

4.1 INTRODUCTION 
 

 
The intention of this study was to examine two pre-service secondary mathematics teachers’ 

instructional practices.   Drawing on Carpenter and Lehrer’s (1999) framework, three critical 

dimensions of the pre-service teachers’ instructional practice were examined: the tasks, tools, 

and norms.  Specifically, for each pre-service teacher, the study sought to analyze the cognitive 

demands of the tasks, the availability and use of representations of a function, and the academic 

questions asked by the pre-service teacher in five consecutive lessons.  Additionally, the study 

aimed to explore how the context within which each pre-service teacher worked influenced those 

practices.  The study focused primarily on two aspects of the context that are noted to have an 

effect on instructional practices, namely the mentor and the curriculum used in the classroom. 

This chapter presents the results from the analysis of the data, with Paige and Keith’s 

stories told individually.  Drawing on the richness of the data set, each story begins by describing 

relevant aspects of the pre-service teacher’s field placement setting.  Next, the details of each 

day’s instructional practices are delineated.  Each story concludes with a discussion of issues that 

emerged from the data regarding the pre-service teacher’s instructional practices and aspects of 

the context that influenced those practices.  Paige’s story is told first, followed by Keith’s. 
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4.2 THE STORY OF PAIGE MORRIS: BUILING A COMFORTABLE COMMUNITY 
 
 

4.2.1 The Community 
 
“And remember, our school is built on communication, cooperation, and caring. Have a great 

day!”  Students at New Carroll Middle School are dismissed from homeroom to begin each day 

with this parting thought from the student anchors on the student-run televised announcements.  

This quote is indicative of the overall atmosphere at New Carroll Middle School: teachers, 

parents, and students working together to create a community where academic achievement is 

valued.    This section further details the school, department, and team settings in which Paige 

Morris worked as well as her experiences at New Carroll Middle School. 

4.2.1.1 New Carroll Middle School   Paige describes New Carroll Middle School as a “typical 

middle school with middle school-type problems.  The kids are wound up and things like that” 

(Paige, General Interview #1, March 26, 2006).  One area that Paige sees as more unique to New 

Carroll Middle School is the high expectation of academic success for all students that is instilled 

by the parents.  The students are “pushed to really excel” and “take really advanced math classes 

at the high school”.   She attributes this to the parents’ background.  

It’s a very wealthy area so most of the students come from that kind 
of background and their parents have, you know, high-powered jobs 
and are very involved in the district and within the community....I 
think that it’s kind of just the atmosphere of that school in general; is 
that, you know, school is very important. I think also having their 
parents all have higher educations and [the students] realize, “Well, 
I’m going to have to go to college” and “I need to do well.” and 
things like that (Paige, General Interview #1, 16-19).  
 

This sentiment is echoed by her mentor, Madeline, who sees the parents’ expectations and 

influence playing out in the level of math the students take.  There are three levels of math at 

grade 8: 1) the technology enhanced class, which uses Carnegie Learning’s Cognitive Tutor 
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program,  2) Academics, and 3) Honors.  Both the Academic and Honors classes use the 

Integrated 1 textbook.  Madeline noted that while more than half of the students are enrolled in 

the Honors course, she was “not sure a lot of them should be there”.  She noted that the 

enrollment is high in those classes because of the parent’s expectations and influence: 

That’s like what the parents push for….When the kids register in 
seventh grade, when they do their course selection, it’s based on 
teacher recommendation...teachers don’t recommend over 50% of 
the kids for honors. Parents have the last say and [their decision] 
overrides [teacher recommendations]” (Madeline, Contextual 
Interview,32, 49-50).  

 
4.2.1.2 The Math Department   Paige considers both “student-centered activities” and 

technology to be highly valued in the mathematics department at New Carroll Middle School.  

She cites the textbooks that are used at each level as evidence. “They (sixth and seventh grades) 

use the Connected Math and then we use an integrated” (Paige, General Interview #1, March 26, 

2006).  In addition, the students have access to computer labs, mobile laptop carts, and smart 

boards in various classrooms.  Madeline agrees with the focus on technology; however, she 

describes the department as “divided” regarding the philosophy of desired teaching practices. 

You know, there are four eighth grade teachers. Half of us are very 
much like...we think a lot like what they’re doing at [the 
University]...you know, they should be given like...given some open-
ended tasks. They should be, you know, it’s okay to be 
confused...that’s part of math. And the other half is very traditional. 
Teacher stands up front, the kids don’t...you know, there’s no group 
work, the kids should be in rows (Madeline, Contextual Interview, 
April 11, 2006). 
 

 The discrepancy in views between Paige and Madeline regarding the valued teaching 

practices of the New Carroll Middle School math department may be due, in part, to the fact that 

Paige has limited interactions with other math teachers beyond her mentor.  While the 

department meets once a month after school, Paige rarely attends the meetings because of her 
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class schedule at the University.  Paige feels that the meetings are “not relevant” for her to attend 

since the issues discussed are “more general” (Paige, General Interview #2, April 11, 2006).  

Madeline also describes the typical meeting as informational rather than substantive.  For 

example, the agenda may include reminding teachers about upcoming events such as 

conferences.  She agreed that Paige does not need to attend these meetings, particularly since she 

does attend the department meetings that occur on teacher in-service days.   During these 

meetings, the teachers “work on curriculum or things that the math department needs to get 

done”.  According to Madeline, during the course of the school year, the math department had 

been working on “backwards planning”; that is, identifying the desired student learning (the end 

product) and then working to create lessons (the beginning) from that point rather than working 

forward from a topic list (Contextual Interview). 

 While Paige does talk with the other 8th grade math teacher, these conversations are 

typically about “trivial things” and rarely about mathematics, teaching, or learning.  The 

exception was when Madeline was out for a six weeks on maternity leave during November and 

December.  At that point, Paige took over the full course load.  According to Derrick, Paige’s 

university supervisor, she was ready to assume full responsibility for the classes at this early 

stage in the year.  He stated, “I felt very comfortable with her doing it. Some of the other people 

I had I would have said ‘No. It’s not a good idea’…. she’s just a natural teacher” (Derrick, 

Contextual Interview, lines 106-108, 110).  Paige stated that during this time she would “actually 

talk to [other math teachers] about important stuff just because, you know, I wanted someone to 

help me out” (Paige, General Interview #1, line 439).   Paige noted that it is difficult to talk with 

other math teachers during the school day because they do not have the same free periods.   This 

is an artifact of the team format used at the school.  The team format facilitates discussions 
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among teachers across subject areas who teach the same students rather than the same subject.  

As a result, the vast majority of Paige’s interactions with other teachers occur within her team, 

the Steel Squadron.  The next section further describes the format and function of the team as 

well as Paige’s role on that team.  

4.2.1.3 The Steel Squadron Team     The 8th grade students are divided among 2 teams.  Each 

team is comprised of one teacher from math, science, social studies, language arts, and special 

education.  A banner bearing the team’s name greets everyone who walks down hallway where 

all the teachers on the team are located.  The hallway is decorated with student work from recent 

projects in various classes.  Next to Paige’s classroom is the team room where the team gathers 

twice a day, once for the 3rd period team meeting and once for lunch.  

  The team meeting provides an opportunity for Steel Squadron teachers to share concerns 

about students (e.g., academic progress, plagiarism, change in behavior), discuss upcoming 

events at the classroom and school level (e.g., the diorama projects in Language Arts or the 

upcoming teacher evaluations), and to meet with parents.  The teachers sit around a table during 

the meeting and often multi-task by participating in the discussions while grading papers.  It is a 

collegial atmosphere where everyone’s input was valued, including Paige’s.  She is viewed as a 

member of the team whose opinion on students and various upcoming events is encouraged and 

valued (Madeline, Contextual Interview).  

  While discussions about teaching did occur, they were often general and informational. 

For example, teachers often talked about the topics they would be teaching the next day.  

Madeline, who also serves as the team leader, indicated that this is an important function of the 

team meeting so that they can make “cross-curricular ties”.  She used a recent example of her 

conversation with the science teacher to further explain: “When he was doing um...projectile 
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motion I, you know, said ‘well honor students just did tangent. You could tie in tangent here’.  

You know, so we kind of talk about stuff like that” (Madeline, Contextual Interview, 232-234).   

Both Madeline and Paige stated that they plan more with the science teacher since science 

utilizes mathematics as a tool to solve scientific problems.   

But...like at least with the science teacher, like, I know we’ll let him 
know what’s going on and he let’s us know what’s going on just to 
see if we can ever match up what we’re doing or to see if, you know, 
you know, “Hey, did they learn slope yet in your class?”, you know, 
because we just did that or...you could do this project with this now 
because we just taught them this kind of thing. So we do...we talk a 
lot with the science teacher about, I guess, more specific math stuff 
(Paige, General Interview #1, 449-450). 
 

This relationship between the math and science teachers also provided Paige with an opportunity 

to align the math and science curriculums; that is, Paige identified the mathematical knowledge 

students would need to engage in various science activities.  She then created a chart that 

displayed the information and made her work available to the other teachers. Madeline viewed 

this as valuable both to Paige and the science teachers.   

So she kind of looked at the science curriculum and math curriculum 
to see where there were overlaps.  Um and the science teachers 
actually took and decided...he used that...her project to decide what 
order they should be teaching things in based on when it’s 
introduced in the math (Madeline, Contextual Interview, lines 193-
194).  
 

  In addition to the team meetings and lunch, Paige also interacts with the Steel Squadron 

teachers informally in the hallways or when they stop in the room to ask a question. Paige views 

the teachers on the team as a resource, her source of support, and her connection to the school 

community.  In the first interview, she described the team as, “really great people, I mean, even 

though they’re different subjects like, I still, you know, get ideas from them...you know, can ask 

them about other stuff so it’s not like I’m secluded from the rest of the school” (441-450). 
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4.2.2 Paige’s Day 
 

Paige described her planned and enacted lessons as being student-centered, which she described 

as when “almost daily [the students] have to do something in their groups, so...it might just be a 

simple calculator activity or finishing a couple of questions (Paige, General Interview #1, line 

159).  She stated that her role as the teacher is to help the students understand the mathematics, 

and the students role is to participate by “answering and asking good questions” and being ready 

and able to “explain how they got something or why they’re doing what they’re doing” (Paige, 

General Interview #1, lines 675, 678).  Paige’s goal is for the students to eventually be able to do 

the problems on their own (Paige, General Interview #1).   

This section presents the results from the analysis of Paige’s instructional practices.  In 

order to establish the context, the typical structure of Paige’s day at New Carroll Middle School 

is described, followed by an exploration of how Paige planned for, enacted, and reflected on 

lessons in the classroom, focusing on the 6th period honors class that served as the focus class.  

Specifically, the tasks, tools, and normative practices of this classroom are explored. 

4.2.2.1 Beginning the school day at New Carroll     The day begins for Paige at approximately 

7:30 am.  Upon arrival to the school, she enters the office to sign in and says hello to the 

secretary and anyone else in the office.  All of the teachers follow this same general procedure.  

Paige heads up to the classroom to get ready for the day.  The desks in the classroom are 

arranged so that the students can work in 6 groups of 5, although no class had 30 students.  The 

daily topics and homework assignments are listed for the week on the side chalkboard, near 

Paige’s desk.  The back bulletin boards display the students’ grades by identification number, the 
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problem of the week (current problem and solution to the previous week’s problem), and 

announcement fliers.   

  During the 15 minutes in the classroom before homeroom begins, Paige and Madeline 

talk about general issues related to teaching (e.g., getting papers graded or printing out the 

weekly lesson plan sheet) as well as personal matters.  A few students generally drop in before 

homeroom to get clarification on a homework question. This is rather common place since the 

students at New Carroll walk to school, so they are able to arrive at any time.  The homeroom 

teacher arrives at approximately 7:50am each morning.  Since Madeline is the team leader, she is 

not responsible for a homeroom; however, a homeroom does meet in her classroom.  Paige 

remained in the room during this time, but Madeline often did not.  These 10 minutes of 

homeroom were the primary interaction Paige had with any teacher outside of the Steel 

Squadron.  Interestingly, the exchanges with the homeroom teacher were less collegial than 

interactions Paige had with other Steel Squadron teachers.  In every interaction Paige had with 

other Steel Squadron teachers, she was viewed as an equal; however, that was not the case with 

Paige’s interactions with the homeroom teacher.  For example, on the third day of observations, 

Madeline was at the high school for the day working with a few other math teachers planning for 

the next school year.  When the homeroom teacher asked Paige if there would be a substitute 

teacher in for Madeline, Paige responded “no” and reminded the homeroom teacher that she 

“subbed the whole time [Madeline] was off” for maternity leave.  The homeroom teacher replied, 

“I know, I think that’s crazy” (fieldnotes, day 3, page 2).   The homeroom teacher implied that 

Paige should not have been given such a responsibility and put in a position of such authority as 

an intern in the school. 
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  Madeline is given first period off to compensate her for duties as team leader; so while 

the other teachers on the team only have one block available for planning (7th period), Paige has 

two planning periods (1st and 7th). During these times, she grades papers, works on the computer, 

and talks with Madeline.  These conversations are similar to those that occur before homeroom 

and have a very relaxed feel.  For example, during first period on day 4, Paige sat at a student 

desk against Madeline’s desk (the seat is referred to as the “sidecar” by the teachers and 

students) while they both graded the portfolios the students handed in the previous day.  During 

the 42 minutes of the period, the conversation shifted between how students were doing on their 

portfolios and general chit-chat about their personal lives, the Language Arts teacher’s upcoming 

last day (she is going on maternity leave), and siblings of students Madeline has had in the past.  

The comments about the portfolios tended to focus on students not following the directions 

regarding the inclusion of special items. 

4.2.2.2 Planning lessons     Paige has had the opportunity to think about and plan lessons for 

each of her classes at the year, unit, and daily levels.  New Carroll Middle School provides the 

math teachers with a curriculum guide that outlines a broad scope and sequence for the teachers 

to follow throughout the year.  Both Paige and Madeline stated that the teachers have a lot of 

individual flexibility regarding what, when, and how topics are taught.    

If we don’t finish something or if we get through something too 
quickly or...it doesn’t matter. Or if I find something...if we just feel 
like doing something different one day, we’ll just do it....you know, 
no one’s kind of hunching over our shoulders saying, “You’re gotta, 
you know, finish this.” (Paige, General Interview #1, lines 482- 487)   

 
Madeline added that there is communication between teachers regarding the topic pacing and 

coverage, both within and across grade levels.  For example, the 8th grade teachers communicate 

with the high school teachers to ensure that the students are exposed to the necessary topics and 
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mathematical ideas.  In addition, during the school year, New Carroll Middle School began use 

selected units from the Discovering Algebra series (Murdock, Kamischke, & Kamischke, 2002).  

Paige was involved in the discussion at the beginning of the year regarding which units would be 

used to supplement the current textbook. 

 When planning a unit, Paige begins by sitting down with Madeline and looking through 

Madeline’s plans from the previous year, “just to get a feel for how long things maybe took or 

what kids had a hard time with” (Paige, General Interview #1, line 470).   After discussing 

various options, Madeline lets Paige make the final decision regarding the pacing and content of 

the unit as a way to provide Paige with an opportunity to reflect on how her decision played out 

in the classroom.  Paige completes the lesson plan sheet, which is turned into the principal at the 

beginning of each week.  This sheet outlines the objectives, warm-up, procedures, and 

homework for each day (see figure 5 for an example).  Paige’s university supervisor, Derrick, 

commented that while she did provide more detailed plans when he observed her earlier in the 

year, he felt that she was at a point now where this level of planning was acceptable.  He 

clarified, 

the second semester…she never really showed me anything because 
most of the classes aren’t a formal class. So when you have group 
work there’s not much of a lesson plan to write up. She’d have it in 
her head or whatever….I knew the kind of class she taught and I 
wasn’t going to make her take the time to write up one just for me” 
(Derrick, Contextual Interview, lines 299-302;  309). 
 
 

 Periods 4 & 6 Honors: QUARTER 3 PORTFOLIOS ARE DUE TODAY 
Objective Graphing systems of linear inequalities 
Warm-up Review linear inequalities 
Procedures pp. 30-31 
Homework pp. 464-466 (1,2,4,6,9,11,13,18) 

Figure 5. Sample of Paige’s daily written lesson plan sheet 
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  After clarifying the unit structure, Paige plans more specifically for the daily lessons.  

Paige uses the disposable unit “green notebooks” both as her main resource for planning and as a 

guide for how to structure the lesson.  She described the green notebooks as “stuff from the 

textbook retyped with maybe some more notes added” (Paige, General Interview #1, line 461) 

that are copied and distributed to each student to use with their textbook.  The additional notes 

typically involved a fill-in-the-blank definition or steps for a procedure.  When asked why they 

use the green notebooks over the Integrated 1 textbook, she replied, “I mean, come on...like no 

one wants to read their math book. No one understands it, no one’s going to read the actual 

words so if they have the outline they can just plug the words in and be good” (Paige, General 

Interview #2, lines 194-196). 

  To plan, Paige stated that she often works through the problems in the students’ green 

notebooks and then writes questions that she wants to ask in the margins.  She added that solving 

the problems in this way is helpful in planning because 

usually whatever I screw up they’ll screw up so it helps me figure 
out what’s gonna be difficult or um...you know just to figure out 
what questions do I need to ask to get them to do this. Or, you know, 
how much trouble are they going to have doing this? Should I 
introduce, you know, this as a class? Should I give them individual 
notes? Should they work this through as a group? Um...it basically 
just helps me plan out, you know, how things are going to go that 
day by doing it.... it actually helps me remember how to do [the 
problems] (Paige, General Interview #1, lines 563-569). 

 

While Paige claimed that she “always [goes] through the notes and [does] the work” (Paige, 

General Interview #1, line 558), there was no written evidence of this practice.  Additional 

evidence collected during observations also indicated that Paige did not seem to solve the 

problems prior to the lesson.  For example, during day three of the observations, the honors 

students were reviewing for a test.  Paige was pulling problems from the review sheets in the 
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green books (see appendix I) and writing them on the overhead for the students to solve.  Twice 

she commented to a student that she had not yet solved the problems.  Similarly, as students 

worked on a project during the 4th and 5th days of observations, students asked questions about 

using the technology, an integral part of the project.  Her responses indicated that she had not 

completed the task herself before class.  For example, when a student asked her how to use the 

graphing calculator to draw the line of best fit (problems #2 and #3 on the project sheet in 

appendix J), Paige responded, “I don’t remember how off the top of my head….Maybe try...I 

mean, you could try searching the ‘Help’ and see if you could find something (Paige, focus class 

transcript, day 5, lines 913-915).  In neither of these instances, though, did the lack of 

preparation appear to interrupt the flow of the lesson.  On day three, Paige solved the problems 

on the overhead as the students solved them at their desks.  On day five, another student came to 

show the group how to use the graphing calculator.   

  As previously stated, Paige has the freedom to plan her own daily lessons.  As table 6 

indicates, an analysis of the tasks she used in the focus class indicated that she appropriated tasks 

either from the green notebook or from activities Madeline used the previous year.  When asked 

why she made the decision to use the tasks, she stated that, 

the book does a really nice job of...you know, of explaining  these so 
I think it was probably okay just to stick with it. Also, I’ve noticed 
that when we pull stuff from other textbooks and the kids don’t 
really have a resource so it’s kind of nice for something like this 
that’s kind of procedural for them to have their book to kind of look 
at instead of us just giving them something from another place 
(Paige, General Interview #1, lines 602-603). 
 

She explained that while she does refer to the textbook at times when planning, it is more to 

clarify what is in the green notebooks rather than to gain additional tasks or ideas for the lesson 

(Paige, General Interview #2).   
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Day: topic 

 
Source of 
Task 

 
IQA rating of 
source 

Paige’s 
Planned 
task 

Relation to 
source of 
task 

 
1: review procedure of graphing 
linear inequalities then groups 
present homework problems 
 

 
Green 

notebook 2 2 

appropriated- 
demands 
maintained 

 
2: solving systems of linear 
inequalities 
 

 
Green 

notebook 2 2 

appropriated- 
demands 
maintained 

 
3: review for test 
 

 
Green 

notebook 
2 2 

appropriated- 
demands 
maintained 

 
4: begin project 

Activity used 
by Madeline 

last year 
4 4 

appropriated- 
demands 
maintained 

 
5: continue to work on project 

Activity used 
by Madeline 

last year 
4 4 

appropriated- 
demands 
maintained 

 
Average Score on IQA 

 
2.8 2.8 

 

Table 6: Summary of the IQA score for the original and planned task 
 

  Interestingly, Paige did not realize that the project the students worked on during days 

four and five was actually adapted from the textbook.  She stated that it came from Madeline, but 

she was not clear “if [Madeline] found it or if she made it up” (Paige, General Interview #1, line 

643).  An examination of the chapter in the textbook showed that the “project” is spread 

throughout the chapter; that is, the problem from the project sheet that corresponds with a 

particular section of the chapter is located at the end of that section.  The context and purpose of 

the project is the same in that the students are to analyze trends in Olympic swimming winning 

times data using the mathematics developed in the chapter. The primary difference is that the 

project used in Paige’s classroom combined all the questions into one packet that was completed 

at the end of the unit rather than spread throughout the unit.  For example, figure 6 shows the 
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introduction of the project as it appears in the Integrated 1 textbook, and figure 7 is the task for 

the unit project from the textbook that appears at the end of section 8.7, systems of linear 

equations (the topic of days one and 2 of observations). The project sheet that Paige distributed 

to her students is in Appendix J. 

 

  

Figure 6. Introduction to unit project from the Integrated 1 textbook 
 

 

 

Figure 7. Unit project task at the end of section 8.7 from the Integrated 1 textbook 
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  Since Paige appropriated all of the tasks, the cognitive demands of the tasks in her lesson 

plans were the same as the demands of the source of the task (see table 6). For example, on day 

two the focus of the class was to identify the solution region for systems of linear inequalities.  

The source of the task (the green notebook) and the planned task were both scored as a 2 on the 

IQA rubric, representing a low-level of cognitive demand from the students.  Prior to solving any 

problems, the task calls for students to fill in a blank (i.e., “The ____ of two lines indicate the 

solution of a system if you were graphing the equation of two lines.”) and complete a sentence 

(“The solution for a system of inequalities consists of:  ”).  Paige completed both in her notes as, 

“intersection” and “the overlapping shaded regions”, respectively.  The task then instructs 

students to graph the system of inequalities, a procedure they learned in the previous section. The 

focus is solely on producing the correct answer by identifying the solution as the section where 

the two shaded regions overlap.   

  This aligns with how Paige described her plan for the lessons.  During General Interview 

#1, she noted that, “this is more procedural stuff so hopefully I can kind of get them to 

understand the procedures and why they work, and then they can do them on their own” (line 

658).  She planned to help the students towards this goal by “just modeling the problems. So I’ll 

help them...I’ll walk them through the notes for the...for a lot of it” (lines 661-662).  

  The task as it appeared on the project sheet (see appendix J) and in the lesson plan for 

days four and five were scored as a 4 on the IQA rubric, representing a high-level of cognitive 

demand from the students. While there were some explicit procedures for the students to follow, 

the focus was on using the information from those procedures to identify patterns, make 

conjectures, and justify the conclusions by using appropriate mathematical evidence.  For 

example, Project Problem #2 was as follows: 
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Using a TI-83 calculator, create a scatter plot of the data.  Use the years after 
1960 as the control variable and the women’s 400m freestyle swimming 
times as the dependent variable.  Use the graphing calculator to find the 
equation of the line of best fit. 

 
After completing additional graphs, the students had to analyze the trends in the swimming 

record data, make predictions about when the women’s winning times would equal the men’s , 

and finally predict the new record breaking time for the women’s event. 

4.2.2.3 Enacting lessons      Paige’s mathematical goals for the series of lessons in the focus 

class are summarized in table 7.  During the set-up and enactment of the lesson, Paige 

maintained the cognitive demands of the task as established in the lesson plan.  The tasks for 

days 1-3 were each set-up and enacted at a low-level of cognitive demand; that is, the lessons 

focused on using a given procedure for the purpose of producing the correct answer rather than 

developing a conceptual understanding of the underlying mathematics.  On the other hand the 

tasks for days four and five- the Olympic Swimming project- was set-up and implemented at a 

high-level of cognitive demand. Paige’s average IQA score for both the set-up and enactment of 

the tasks was 2.4.  These results are summarized in table 8.  This section further examines each 

of the tasks as set-up and as enacted in the focus class.  Specifically, the cognitive demands of 

the tasks, the questions, and the representations available and used in the lesson will be explored. 

127 
 



 

Day Goal 

1 

 
My goal is to finish graphing linear inequalities and have them understand the solution 
region and just the general procedures of graphing. 
 

2 
We’re graphing systems of linear equations so to understand what the...I guess, shaded 
regions mean. 
 

3 

 
My goal [is] to review kind of the concepts we did earlier in the chapter. So, modeling 
situations with equations and creating equations for a line based off of different 
information, horizontal/vertical lines. Just things they hadn’t seen in a while. 
 

4 

 
PM: Oh...Um...just to introduce them to the project…And then get them started on the 
research.  
 
JM: What’s the project about again? 
 
PM: It kind of just groups together a lot of the stuff we did in this chapter  
um...like systems and uh, using data representation, things like that. 
 

5 
 
(Time constraints did not allow for a pre-lesson interview on day 5.) 
 

Table 7: Paige’s goals for each day as given in the lesson centered interview 
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Day: topic 

 
Original 

 
Planned 

 
Set-up 

 
Enacted 

 
1: review procedure of graphing 
linear inequalities then groups 
present homework problems 
 

2 2 2 2 

 
2: solving systems of linear 
inequalities 
 

2 2 2 2 

 
3: review for test 
 

2 2 2 2 

 
4: begin project 4 4 4 3  

 
5: continue to work on project 4 4 4 3  

 
Average Score on IQA 2.8 2.8 2.8 2.4 

Table 8: Summary of the IQA scores for the original task, planned task, set-up, and enactment of 
the task 

 

4.2.2.3.1 Day One: low-level of cognitive demand    Both the set-up and the enactment on day 

one were scored as a 2 on the IQA rubric since the focus of each was on practicing a specific 

procedure regarding the graphing of linear inequalities (see appendix G for a copy of the task).  

Additionally, students were not pressed to provide anything more than the correct answer.  

During day one, Paige launched the lesson by reviewing with students the steps for graphing 

linear inequalities they learned in the previous lesson.  Students then were assigned specific 

problems from the corresponding homework to put onto chart paper.  After approximately 17 

minutes, each group presented their solution to the given problem.  Four groups presented their 

solutions, with each explanation outlining the same steps reviewed in the launch: find two points 

from the equation; plot them on the graph, using the sign of the equation to determine if the 
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boundary line is solid (great/less than or equal to) or dashed (greater or less than); use a test-

point to determine whether to shade above or below the boundary line. Following the 

explanations, Paige would ask for questions.  If there were none (3 out of the 4 times), the next 

group would present.   

 The graph, equation, and table were the main representations used throughout the lesson, and 

the students had access in the class discussion to 4 sets of tables, graphs, and equations.  There 

were 12 conversations where the students made connections between these representations; 

however, 10 of the connections were procedural in nature.  For example, the students determined 

if the boundary line on the graph should be solid or dashed based on the sign of the inequality 

when it is written in slope-intercept form.  There were 2 conversations, however, where Paige 

asked connecting questions that provided the students with an opportunity think critically about 

the underlying mathematics.  For example, a group presented an incorrect solution in that they 

did not identify the correct boundary line. This prompted another student to ask about using 

points on the boundary line to determine the solution region to the linear inequality.  Paige began 

the discussion by asking two connecting questions that provided the students with the 

opportunity to think and reason about the role of the boundary line and the rationale that 

underlies the procedure of testing points not on the line to determine the solution region. 

PM: Why shouldn’t you test a point that’s on the line? Why do you think 
you shouldn’t test one of those?   

St: ‘Cause it’s on the line, it doesn’t show you whether...if it’s true or 
false it doesn’t matter because then …it’s gonna be on the line (focus 
class transcript, day 1, lines 889-891).  

 
The discussion continues with students stating that the points on the line are always solutions to 

the boundary equation.  Paige summarized the conversation, adding that the convention of 

making the boundary line solid or dashed based on the inequality sign (i.e., greater  than is 
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dashed, greater than or equal to is solid) is used to decide if in fact the points on the line are 

included in the solution.  

 During the lesson, Paige asked a total of 64 questions (see table 9).  Almost two-thirds of the 

questions were monitoring, such as “So...how are you going to figure out where to shade?” and 

“So here...What’s the boundary line of 4y-3x<12? How do you figure out the equation for the 

boundary line?” (Paige, focus class transcript, day one, lines 540, 828-829).   Few questions 

(4.7%) asked the students to make connections to the underlying mathematical ideas of the task. 

   

Day: topic  Tuning  Monitoring Connecting Total
1: launch to review procedure, then students 
present HW problems 

218

(32.8%)9
40 
(62.5%) 

3 
(4.7%) 

64 

 
Table 9: Questions asked during the set-up and enactment in Paige’s classroom on day 1 

  

4.2.2.3.2 Day Two: low-level of cognitive demand     Paige’s goal for day two was for the 

students to “understand what the...I guess, shaded regions mean” for systems of linear 

inequalities (Pre-lesson interview, day 2).  To accomplish this goal, she focused students’ 

attention on a procedure very similar to the one students practiced on the previous day for 

graphing one linear inequality.  As a result of the lesson again focusing on practicing a 

procedure, the IQA score for both the set-up and enactment was a 2 (see appendix H for a copy 

of the task).   

 Paige began the class by asking tuning questions linked to students’ prior knowledge, such as 

“So...remind me...the solution to a system of equations is what?” and “So the line is either solid 

or dotted depending on the inequality symbol but then what did we have to do after that to show 

                                                 
8 Number of questions coded as such – ie. 21 questions out of 64 total coded on day 1 were tuning 
 
9 Percent of questions asked that day- ie., 32.8% of questions on day 1 were tuning 
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where the solutions were?” (focus class transcript, day 2, lines 60 & 96).  She then proceeded to 

tell the students (language representation) the goal for the day: 

So we’re going to combine what we know about linear inequalities 
and combine what we know about systems of equations. And what 
happens is, that the solution to a system of inequalities will be an 
overlapping shaded region. So you’ll have two inequalities with two 
different shadings and your solution region will be wherever those 
intersect. And that will make much more sense once we do an 
example. So that will be the overlapping shaded region (focus class 
transcript, day 2, lines 101-106). 

 

  Similar to day one, the graph and equation were the main representations used throughout 

the lesson. The students had access in class via the green notebooks to 4 equations from which 

they followed the same procedure to make the 4 corresponding graphs.  The first two problems 

were completed as a whole class activity, while the last two were completed individually as 

Paige walked around the room.  While Paige gave the option of creating a table from the 

equation to make the graph, the majority of students (and the preference of the teacher) was to 

use the “short-cut” method of using the slope and y-intercepts from the equations to go directly 

to the graph.  As a result, a table was only utilized once.  The student stated that the table was her 

preferred method, because she didn’t like the short cut.  This occurred in a private discussion 

between Paige and a student, and this discussion was not made available to the whole class.  The 

purpose of the table during this discussion was to create points from which the student could then 

follow the procedure for graphing a line.   

  A contextual problem was available in the textbook for homework; however, there were 

no connections made to the context during this class discussion during this or proceeding days.  

In addition, the context was not needed to answer the homework question.  The remaining 

homework problems from the textbook also involved the graph and equation.  For three of the 
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problems, students were given a graph and equation and asked to determine if the given point is a 

solution to the system.  For the last four problems, students were given equations and asked to 

graph the systems to find the solution region by following the steps outlined in class. 

Overall, there were 22 conversations where the student made connections between 

representations, 7 of which were prompted by connecting questions.  Most of the connections 

were between the equation and graph and focused on a procedure rather than a concept, as did 

the monitoring questions she asked during the whole class discussion and individual work.  For 

example, the following exchange occurred during the set-up of the task: 

 PM: So to graph it, the y intercept is positive four. One, two, three, four. Okay? And 
before I figure out the line, I need to know how to draw it. Should it be dashed or 
should it be solid? Kyler? Should this one be dashed or solid?  

 St: Solid. 
PM: Why? 

 St: Because it’s [the sign in the equation] a...greater than or equal to.  
PM: Good (focus class transcript, day 2, lines 125-135). 
 

  This exchange was typical of the conversations that focused on monitoring the students’ 

knowledge of a procedural connection between the representations.   

  Additionally, there were 14 conversations where the teacher made connections between 

the representations, typically the equation and graph.  These connections were in the form of 

statements, and again focused largely on the procedural aspects of the connections.  An 

exception occurred during a class discussion about the inequality “y < x + 4”.  A student 

indicated that the boundary line is dashed, which prompted the following exchange: 

 
PM: What does the dashing mean?  
St: Well, it means that y is less than, like it’s not greater than or 

equal to. 
PM: Okay. So the points on that line are not going to be solutions 

(focus class transcript, day 2, lines 297-300). 
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During this exchange, Paige, not the student, stated a key mathematical idea regarding the 

interpretation of the dashed line on the graph--whether or not the points on the line satisfy the 

conditions of the equation.    

 Paige asked the most academic questions on day two, asking 121 questions.  This is 

almost double the amount of the next highest daily total (64 questions on day one).  As indicated 

in table 10, approximately 80% of the questions served to monitor students’ understanding of the 

procedure.  As stated earlier, the tuning questions occurred at the beginning of the lesson.  The 

remaining 10% of the questions asked were connecting questions.  For example, while students 

worked at their tables to graph two parallel linear inequalities (see figure 8) Paige circulated the 

room.  She stopped at one student’s desk, looked at her paper, and asked the student why there 

was no solution to the system of linear inequalities.  After the student responded by stating the 

shaded regions do not overlap, Paige asked, “So you think if I picked...do you think there’s a 

point I could pick, x, y that would make both of those true?” (focus class transcript, day 2, line 

693).  After pausing, the student simply responded, “nope”.  However, it is not clear from the 

student’s response if the student did, in fact, make connections as to why there would be no point 

to satisfy the conditions about which Paige asked.  While Paige accepted the student’s response 

and did not push her to further clarify or explain her reasoning, the initial question did provide 

the student with an opportunity to advance her current thinking and understanding by prompting 

further reflection and analysis of mathematical relationships.   
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Day: topic  Tuning Monitoring Connecting Total
2: solving systems of equations (teacher 
directed “lecture”) 

12 
(9.9%) 

97 
(80.2%) 

12 
(9.9%) 

121 

Table 10: Questions asked during the set-up and enactment in Paige’s classroom on day 2 
 

 

Figure 8. Problem #2 from day two of Paige Morris’ class 
 

 

4.2.2.3.3 Day Three: low-level of cognitive demand     The focus of day three was to review for 

the test the following day.  To accomplish this goal, Paige presented a total of nine problems 

from the review sheets in the back of the green notebooks throughout the class.  After the 

students solved the problem, either individually or with a partner of their choosing, they wrote 

their answer on an individual white board.  Paige would call for “white boards up”, at which 

point she scanned the room to check the students’ answers.  The task was scored as a 2 on the 

IQA since the focus was on applying previously learned procedures to obtain the correct answer 

(see appendix I for a copy of the task).   

  The equation was the main representation used throughout the lesson. The students had 

access in the class discussion to eight different equations.  Five times the equations were the 

starting point of the problem: three equations in standard form from which the students had to 
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write in slope intercept form; two equations in standard form from which the students were to 

find the x and y intercepts.  The remaining three equations were produced as the solution to a 

problem:  twice the students were given two points and they were to determine the equation for 

the line containing both points; and once the students were to determine an equation that model a 

given situation.  Language and graphical representations were used once, both on a problem that 

required finding the intercepts.   The discussion centered on the axis on a graph, but originally, 

no graph was available, since the expected method to find the intercepts was to work with the 

equation rather than locate the intercepts on the graph.  Eventually Paige did sketch a graph, but 

she made the connections between the graph and the equation by focusing on the procedure.  A 

contextual representation was available one time at the end of the lesson.  The purpose of the 

problem (see figure 9) was for students to write an equation that modeled the situation.  The bell 

to end class rang approximately one minute after the problem was given, so the students gave the 

solution as they were walking out of the classroom.  As a result, even though the given equation 

was correct, there was no discussion that revealed students understood the relationship between 

the information in the problem (i.e., starting temperature and rate of increase) and the equation 

(y-intercept and slope). There were no meaningful connections made between any 

representations by the students during the lesson.  

   
The temperature of a laboratory is -210º C, and it is rising at 
7ºC each minute. (control variable: time; dependant variable: 
temperature) 
 

 

Figure 9. Contextual problem used on day 3 
 

  As illustrated in table 11, Paige asked a total of 48 questions during the lesson, 46 of 

which served the purpose of monitoring the students’ understanding.  These questions occurred 
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after the students showed their answer on the white boards and focused on recalling the steps for 

procedures, such as “What’s the second step to get y by itself?”, or on determining the answer to 

a computational problem, such as “What’s 7 divided by 4?” (focus class transcript, day 3, lines 

192, 114).  Additionally, Paige also provided “hints” at various times and even directly told the 

students how to do the problems.  For example, on the third review problem the students were to 

find the x- and y-intercepts for the equation, “-2x + 7y = -28”.  Approximately 30 seconds after 

presenting the problem, Paige provided the following hint:  

For those of you who are stuck, remember x-intercept will always 
look like this...over an  x value, up zero. Y-intercept will always look 
like this...over zero, up a certain amount in the y direction.  That may 
be a clue on what you need to do to that equation. Look for the x 
intercept (focus class transcript, day 3, lines 407-410). 

 

As she talked, she wrote the corresponding ordered pairs on the overhead (i.e., (x, 0) for the x-

intercept and (0, y) for the y-intercept).  Later, as she scanned the white boards to check the 

students’ answers, she noticed a few students had combined the intercepts into one coordinate.  

She stated,  

One of your values has to be setting at zero. For an x-intercept, you 
need to make y a zero. You have a y-intercept you make x zero. Two 
separate coordinates. One has to be over x up zero. Two...no, 
that’s...that’s not gonna cross either the x or the y axis. You’re 
combining your x and y intercept into one coordinate where there 
should be two separate ones (focus class transcript, day 3, lines 431-
437). 

 
 
 
Day: topic  Tuning Monitoring Connecting Total
3: review for test- use problems from green 
book review and show answers on whiteboard 

0 
 

46 
(95.8%) 

2 
(4.2%) 

48 

Table 11: Questions asked during the set-up and enactment in Paige’s classroom on day 3 
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4.2.2.3.4 Days Four and Five: high-level of cognitive demand     The focus of days four and five 

was to introduce the chapter project (see appendix J) and provide students with an opportunity to 

work with their group on the project.  This task represents the only task that was planned, set-up, 

and implemented at a high-level of cognitive demand.  On both days, Paige set-up the task in a 

way that provide students with opportunities to solve a cognitively demanding task that required 

the students to identify patterns, make generalizations, support their claims with mathematical 

evidence, thus scoring a 4 on the IQA rubric for the set-up.  However, while the cognitive 

demands of the task remained high during the enactment (i.e., there was potential for the students 

to engage in complex thinking as they progressed through the project sheet), there was no 

explicit evidence of student’s thinking and reasoning made public since there was no class 

discussion and Paige’s interactions with the students about the mathematics was limited.  Since 

there was no evidence of the cognitive demands declining, the implementation for both days 

scored a 3 on the IQA.  The details of both days are further explained below. 

 On day four, Paige spent approximately seven minutes introducing the project by having a 

student read the directions, which included the context of the problem, directions, and timeline 

for the project.  Students then created self-selected groups of 2-3 students, gathered laptops and 

other materials, and began to work on the project.  

  The representations available while students worked on the project included graphs, 

equations, context, and tables.  On the project sheet, the students had access to the context 

(Olympic 400m Freestyle Swimming), a table that had the years and winning times for men and 

women from 1960 – 2004, and 2 equations for a high school swim team’s data.  The directions 

asked the students to make 2 graphs- one for the Olympic data and one for the high school data.  

The table served as the “jumping off point” for the project in that the graph and subsequent line 
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of best fit were developed from the table.  The students are asked to make general observations 

about the data in the table and to make predictions as a way to enter the problem (the 

brainstorming section). Students were then asked to make sense of the trends in the table in terms 

of the real life context (e.g., “Do you think the records can continue to improve forever? Why or 

why not?”).  The project provided multiple opportunities to connect representations and make 

sense of and extend students mathematical reasoning and understanding.  For example, Question 

1d on page 5 of the project sheet prompted students to make connections between the graph and 

table; question 4 prompted students to interpret the solution of the linear system (graphically or 

equations via substitution) in terms of the context; and the final part of the project required 

students to “analyze trends” and “make predictions”.  However, very few representations were 

discussed by Paige throughout the class.  In fact, Paige was more “hands-off” during these two 

days, asking a total of only 44 questions between both days (see table 12).  

  

Day: topic  Tuning Monitoring Connecting Total
4: begin project (students work individually or 
in groups) 

0 28 
(93.3%) 

2 
(6.7%) 

30 

5: continue to work on project 0 14 
(100%) 

0 14 

Table 12: Questions asked during the set-up and enactment in Paige’s classroom on days 4-5 
 

  The conversations between Paige and the students during the group work focused on  

class activities not related to the mathematics of the task (e.g., feedback on the graded tests, 

getting groups set), non-academic talk (e.g., daylight savings time), or technology conversations 

that came about because of the project (e.g., discussing the graphing website the students found 

on-line).  When the conversations were about the mathematics of the project, Paige tended to 

initiate them with questions.  The vast majority (93.3% on day 4, and 100% on day 5) of 
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questions asked during the two days was monitoring and served the purpose checking in on 

groups’ progress.  Paige usually accepted the student’s response of “fine”, “ok” , etc. and moved 

on to another group.    For example, the following exchange between Paige and a student was 

typical of the conversations: 

 
PM:  So you understand what that question is asking?  
St: I think so.  
PM: So they just mean, if you had...how could you get two 

intersecting, two parallel or like the shaded region? (focus 
class transcript, day 4, lines 1071-1073).   

 
After Paige restated the question from the project sheet, she moved to another group.   

   

4.2.3 Emerging issues from the analysis  
 

Paige’s story began with a quote from the student announcements that reminded students about 

the community of New Carroll Middle School.  The theme of “building a comfortable 

community” was pervasive throughout Paige’s experiences with both her mentor teacher and 

university supervisor.   Paige, Madeline, and Derrick each noted that Paige has developed a good 

relationship with the students and staff at New Carroll Middle School.  As discussed previously 

in section 4.2.2.1, Paige was viewed as an equal in the community by the vast majority of 

teachers.  Overall, everyone- Paige, Madeline, Derrick, and the other teachers- expressed that 

Paige was doing a “good job” teaching.  Derrick stated that ‘[Paige] was on top of things right 

from the very beginning” (Contextual Interview, line 75).  For example, he commented that 

when Paige took over all the classes while Madeline was on maternity leave, “Paige did an 

excellent job. I was very impressed, as a beginning teacher, of the job she did handling all that” 

(Contextual Interview, lines 39-40).  Similarly, Madeline expressed that she also was confident 
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in Paige’s ability to take over 2 ½ months after beginning her internship.  Madeline noted that 

“[Paige has] got the basics right off the bat so I was not worried about her taking over when I left 

at all” (Contextual Interview, line 387). 

  Following each of the focus lessons, Paige felt confident that she met her intended goals 

for each day.  For example, at the end of day one, Paige stated that the students “did a really 

good job of explaining their work so I feel like they probably got it” (lesson centered interview, 

day one).  She described both her role as the teacher and the students’ role as going “pretty much 

as I planned” during the lessons (Paige, General Interview #2, line 478).  Throughout the focus 

lessons and interviews, a few issues emerged regarding Paige’s instructional practices.  These 

issues, which are discussed in the next section, were identified by reviewing the fieldnotes for 

common themes.  The transcripts of interviews and focus classes were then coded for evidence 

of each theme: co-teaching, having fun, remembering, telling, and feedback. 

4.2.3.1 “Co-teaching” during the day     One theme that permeated the observations was the 

notion of “co-teaching”.  This was most apparent in the technology enhanced class during second 

period.  Paige stated that the technology enhanced class is “supposed to be another academic 

level” class, but that it is different because, “for the most part, all of the special ed kids are in the 

cognitive tutor class” (Paige, General Interview #1, lines 93-94).  As a result, the special 

education teacher is present for every class.   

  As the students entered the room, all three teachers walked between groups to remind 

them to open their books to a particular page, to hand in homework, or to get a laptop.  Both 

Paige and Madeline made general comments to the class at the beginning of each day.  For 

example, on day five, Madeline announced that students should turn in their homework and get a 

participation sheet for the week.  This was immediately followed by Paige reminding the 
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students to write their homework assignment in their agendas (calendars given to each student 

from the school for this purpose).  Madeline began the class by “review[ing] the big idea about 

the distributive property that [the students] talked about on Thursday” (fieldnotes, day 5, p.8). As 

Madeline progressed through the review, the special education teacher interjected with questions 

for the students to answer.  For example, Madeline asked the students what it means to combine 

like terms.  After a pause with no response from the students, she writes “6x+2x” on the board. 

   Madeline:   Can we combine them? 
   SpEdT:  (after another long pause) Are they like terms? 
   Student: Yes. 
   SpEdT: So can you combine them? 
   Student: Yes. 
 
Madeline continued the discussion by looking at another example where the terms cannot be 

combined (6x+2) and comparing the two expressions.  The students then began working at their 

desks and all three teachers circulated to help groups and individual students.   

  This idea of one teacher interjecting while another was teaching also occurred in the 

academic classes (5h and 8th periods) and the honors classes (4th and 6th periods), although it 

looked somewhat different in each class.  Madeline was the main teacher in the academic class, 

and while Paige did interject while she was teaching, it was more with respect to focusing a 

student’s attention or repeating directions.  Typically during the academic classes, Paige sat at 

Madeline’s desk and graded papers or worked on the computer.   

  Paige was responsible for the honors classes.  Similar to the way Paige interacted with the 

academic classes, Madeline often re-focused students, clarified a question from a group, or 

worked with a student during honors classes.  However, one difference between the interjections 

of Paige and Madeline was that each day, with the exception of day 3 since Madeline was not in 

the school, there was at least one instance (seven times total) where Madeline interjected during 
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the class discussion to further push or clarify the mathematics.  For example, during the lesson 

on day two in 6th period, Paige was leading a discussion on the solution region of systems of 

linear inequalities.  After the students graphed both linear inequalities, Paige asked them what 

they though the overlapping region represented.  It was this point that Madeline pushed further 

by interjecting. 

Paige: So anything in the blue region would make that first 
inequality true. So what do you think about the 
overlapping region that I kind of trapazoided in here? 
What do you think about that region...where it 
overlaps? If I picked a point from in there? Go ahead, 
[female student].  

Student: It would be true for both of them? 
Paige: It would be true for both of them. So this, this whole 

section in here are the solutions to the system of 
inequalities. Did I spell that right? In...okay. 

Madeline: How many solutions are there? 
Student: Infinite? 
Student: A lot. 
Student: How ever many points there are? 
Madeline: A lot. [male student] said, “A lot.” and [female 

student] said, “However many points there are.” How 
many points are there in this, you know, purple 
solution region? 

Student: (inaudible). 
Madeline:   Why? 
Student: (inaudible) 
Madeline:   Sure.  
Student: Alright. Because it’s not...just straight...it’s 

continuous because of the way that a block can be an 
infinite amount of points (xxx). 

Paige:  Nice! 
Madeline: Did everyone understand what she said?  
Student: Yeah. 
Student: Yeah. 
Paige: So in between each of those, you know, tick marks 

they might each represent one but you know there are 
tons of little decimals right there that we could split 
them up into (Focus class transcripts, day 2, lines 
253-274). 

 

143 
 



  Paige and Madeline see this type of “co-teaching” as beneficial both to the students and 

to them as teachers.  Madeline expressed that having at least “two experts” in the room allows 

for a smaller student to teacher ratio during group work as well as provides opportunities for 

individualized instruction, particularly if a student has missed a few days of school.  While she 

sometimes tries to hold back to allow Paige the full experience of teaching, she noted that, “we 

do a lot of co-teaching….We’re both working together and I’ll sort of jump every once a 

while...and the kids feel comfortable going to either one of us” (Madeline, Contextual Interview, 

lines 353-356).  Paige echoed this idea of working as a team and its benefit to her.   

It’s like having someone to cover your back cause like, “Oh, I forgot 
that” or “Oh, that’s a great way of thinking about that” so...it’s 
always nice to have...I mean, when you’re up there and you’re like, 
“Oh…no one understands me” and someone can maybe just see it 
from, you know, standing back and say something or...I like it, it’s 
nice (Paige, General Interview #2, line 97). 
 

  Madeline stated that her primary role as a mentor teacher is to “provide [Paige] with a 

model in good teaching, which I hope I’m doing” (Madeline, Contextual Interview, line 406).  

One way of accomplishing this is to use the co-teaching model.  Paige does in fact view her 

teaching practices as very similar to Madeline’s, from the organization of the lesson to the way 

in which she enacts the lesson in the classroom; however, she further clarified that she doesn’t 

purposely try to model what Madeline does, “it just kind of worked out that way” (Paige, 

General Interview #1, line 332).  Paige explained that she “never really just sat and observed”, 

but rather was “pretty involved in all the classes” from the beginning of her internship (Paige, 

General Interview #1, lines103, 108).  Paige also added, though, that over the course of the year 

she felt that Madeline’s role changed from providing a model of how to enact a lesson to being a 

resource on which she can draw when needed.  “I think more now I would seek her out to ask her 
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something than maybe her show me something” (Paige, General Interview #2, line 65).  The next 

section further described Paige’s instructional practices.  

4.2.3.2 Two repeated phrases: “Have fun” and “remember”     One non-mathematical focus 

for Paige was for the students to have fun.  During the first general interview, there were five 

instances where Paige mentioned designing activities or lessons for the students to have fun and 

twice during the second general interview.  To accomplish this goal, Paige planned to use the 

Smartboard, graphing calculators, and colored pencils, stating that, “we try to do things that they 

think are cool or just using a colored pencil makes them excited so, if we can find something 

little to trick them into thinking they’re having fun then, they’re okay” (line 57).  The focus was 

not on using the tools for enhancing mathematics, but rather to present the material in a different 

way to grab the students’ attention.  This idea was also evident in the implementation of the 

lessons.  For example, during day two in the focus class, a student stated that he did not want to 

graph the inequalities.  Paige responded, “but you can use colored pencils” (Focus class 

transcript, day 2, line 802). 

  Paige also emphasized the notion of “remembering”.  Throughout the focus classes there 

were 30 instances of Paige prompting the students to remember either a classroom procedure, 

mathematical procedure, or a prior experience.  This theme was also apparent in the other classes 

Paige taught (field notes).  Of most interest was the use of “remember” in reference to the 

mathematics of the lesson.  This involved Paige either prompting the students to recall a 

procedure or encouraging them to memorize a new procedure or short-cut.  For example, at the 

beginning of class on day five, Paige worked with a student to review the problems he missed on 

the test.  She told the student, “if you remembered ‘undefined’ means it’s a vertical line, you 

could just look at this and say, ‘Oh, it’s x = negative 4’” (focus class transcripts, day 5, line 266).  
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During this exchange, the focus is on “remembering” or recalling from memory a specific 

characteristic of a vertical line.   

4.2.3.3 Teacher as teller A third theme that emerged from Paige’s instructional practices was 

Paige telling the students the mathematics, thus being the owner of the mathematical knowledge.  

During the five focus classes, there were 294 statements made by Paige that were coded as 

telling.  The majority of these statements focused on telling the students how to solve a particular 

problem.  Typical examples include statements such as, “a good way to graph...to figure out what 

the boundary line is, you can make a table and graph that line”, (focus class transcript, day 1, line 

473) and “you wanna see the rate of increase so you’d wanna start with the higher year.  Right. 

And see how much up it goes from this year to this year” (focus class transcript, day 4, lines 805-

807).  There were a few occasions that Paige told the students the key mathematical concepts or 

connections.  For example, during day two, students are independently solving a system of linear 

inequalities with the same slopes.  Paige discussed the solution with student at her desk: 

PM: So, what do you think about this one then. Where is the 
solution?  

St: Um...there isn’t one? 
PM: There isn’t one. How come? 
St: Um...because they don’t...like...touch each other. 
PM: Exactly! There’s no overlap, so there’s no solution. Okay?  
St: Okay. 
PM: So there’s no point that will make both of those true at the 

same time. Good. Yep (focus class transcript, day 2, lines 
661-672) 

 
In this example, while the student identifies that solution regions for each inequality do not 

touch, it is Paige who tells the student what this lack of overlap means mathematically.  While 

there were 28 instances where Paige did encourage the students to take ownership or make 

decisions, they tended to revolve around providing the students with two procedures to solve a 

problem and letting them choose one (e.g., create a table to graph the line or use the “shortcut” 
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with the slope),  encouraging students to ask questions if they did not understand, or non-

mathematical issues such as choosing groups. 

4.2.3.4 Feedback The final theme that emerged was the idea of the amount and type of feedback 

that Paige receives from both her mentor and her supervisor.  Both Madeline and the supervisor 

stated that Paige was receptive to feedback.  Madeline stated that while she does formal 

evaluations as required by the University,  

most of [the feedback] is informally, though, you know, just kind of 
like on a day to day basis. Like, “You did that really well” or 
“Maybe tomorrow you should re-emphasize this” or “Maybe 
tomorrow the kids need some extra time to do this”, that sort of thing 
(Madeline, Contextual Interview, lines 430-431). 

 
 
Paige also noted that the typical conversations between them about her teaching are helpful, and 

usually start out with like, something like, “Wow! They really, you 
know, understood this, this and this. Or they didn’t get this certain 
point.”  and you know, it’ll go from there maybe and, “Well, maybe 
tomorrow we could do this.” Or, “Maybe we’ll you know, skip that 
and only test them on this.” or, you know, something like that. And 
then try to...it’s usually just kind of quick reflection on what 
happened and try to figure out where to go from there (Paige, 
General Interview #1, lines 381-384).      

 

This aligns with the conversations between Paige and Madeline that were noted during the 

observations.  

  Additionally, Paige receives feedback from Derrick, her university supervisor.  Both 

Paige and Madeline describe Derrick as a “nice guy”.  Paige stated that “he always gives me a, 

you know, a good perspective on what’s going on” (Paige, General Interview #2, line 133).  

Derrick thought Paige readily accepted and acted on his feedback.  He stated that while Paige 

was pretty good, she could always use some advice so I’d talk to her 
maybe about handling a problem student or maybe a different way to 
present something….we’d sit down afterwards and...we would talk 
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about the lesson and we’d talk about anything else that came up 
(Derrick, Contextual Interview, lines 153-154). 

 

Madeline felt that Derrick did provide Paige with “good reinforcement and then...usually one or 

two things that she should work on for the next time” (Madeline, Contextual Interview, line 551).  

However, she also noted that sometimes the feedback was not focused on the particular lesson. 

She discussed a time when Paige shared with her Derrick’s written comments from an 

observation, noting that “she gave me the paper that he sent and it said... ‘Work on getting job 

interviews done’ Real good feedback, I had to laugh” (Madeline, Contextual Interview, line 

549).   

 
 
 
 
 
4.3 THE STORY OF KEITH NICHOLS: BEING HELD TO HIGH STANDARDS OF 

SUCCESS 
 
 

4.3.1 High Standards 
 

Success is emphasized and expected at Baskerville Middle School by teachers, parents, and 

students.  For example, Keith noted that the students “have high expectations...[and] I’m sure 

that comes from the parents. Most students are motivated by academic success” (Keith, General 

Interview 1.1, lines 35-37).  Darcy emphasized that “we take education very seriously 

here…that’s a high standard that we possess” (Darcy, Contextual Interview, line 11).  The notion 

of high standard of success permeated Keith Nichols’ experience at Baskerville Middle School.  

148 
 



This section further details the school, department, and classroom settings in which Keith 

worked as well as his experiences at Baskerville Middle School.  

4.3.1.1 Baskerville Middle School     Keith described Baskerville Middle School as having a 

reputation of being “a very wealthy district and that’s true. But there...I guess there’s a wide 

range of [socio-economic] backgrounds” (Keith, General Interview #1.1, lines 31-21).  He 

explained that some of the students are from extremely wealthy backgrounds, while others 

cannot afford basic necessities, mentioning that one of his students was homeless for a period of 

time.  Both of his mentors, Darcy and Michelle, described the school similarly. Michelle noted, 

though, that one advantage of the school is that, “if we need something as a teacher for a 

resource for our kids, we can usually get it pretty easily” (Michelle, Contextual Interview, line 

354).  The resources she discussed ranged from eye glasses for students to technology to use in 

the classroom. 

 All three teachers discussed the expectations the vast majority of parents have for their 

children.  Keith stated that “parents push [the students] pretty hard for the most part” (Keith, 

General Interview #1.1, line 27).   For example, parents have input on a student’s placement in a 

particular course; that is parents can, and sometimes do, override teacher recommendations in 

order to place the student in a “higher” math class.  Darcy explained that while she definitely 

sees the influence of the parents, she also sees a lot of motivation coming from the students 

themselves.  Michelle described the students as “highly motivated” (Michelle, Contextual 

Interview, line 42).  However, Keith views the way the motivation plays out in the classroom as 

different across classes.  He described the differences between the classes he teaches: 

Algebra kids are motivated by learning. They just want to learn, 
learn, learn, learn, learn. They wanna do problems, do problems, 
figure out how to do a harder problem and they are motivated to talk 
with each other and help each other solve problems. Whereas the 
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seventh graders are a lot less active in their learning. They’re more 
willing to just sit there and wait for you to tell them how to do 
something. You have to motivate them a little more. Also there is a 
much wider range of ability in my seventh grade class. There are 
some kids that I think should probably be a little lower or at least 
could be helped by being lower based on their effort, and there are 
some that I know could have been higher but chose not to be (Keith, 
General Interview #1, lines 104-111). 
 

He attributed this difference in motivation to the fact that the algebra students are “better at math. 

They’ve traditionally, they have done very well in school and they’re motivated by that to do...to 

continue doing well” (Keith, General Interview #1.1, line 132). 

4.3.1.2 The Math Department      Michelle stated that the math department at Baskerville 

Middle School has two meetings per month.  The first meeting involves all the teachers in the 

department.  Keith described these meetings as a forum for general issues, with “the head of the 

math department just telling us what we need to do and people asking questions if they don’t 

understand.”  He noted that his role is “more of an observer” during these meetings (Keith, 

General Interview #2, lines 21-22).   Both of his mentors indicated that this lack of involvement 

at the larger meeting was not surprising for a pre-service teacher since the issues discussed often 

transcend one particular school year.  The second monthly department meeting involves 

groupings of math teachers by subject (i.e., 6th grade or algebra).  The focus of the subject 

meetings is to  

talk about where everyone is in the curriculum and what we thought 
was particularly good or bad in something. What we thought maybe 
we could skip or what we thought we needed to back up and do over 
(Michelle, Contextual Interview, lines 55-56). 

 
For this reason, Michelle noted that Keith’s participation would be appropriate in this venue; 

however, similar to Keith’s description of his own participation, she noted that, “he doesn’t 

usually have much to say” (Michelle, Contextual Interview, line 128).   
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 During the last few years the mathematics department at Baskerville Middle School has 

undergone a transition.  The changes have impacted the general philosophy of valued teaching 

practices within the department, the composition of the staff, and the curriculum used in the 

classrooms.  The shift centers around moving away from traditional teaching practices towards 

those that are more reform oriented (Darcy, Contextual Interview; Keith, General Interviews 1 & 

2; Michelle, Contextual Interview; Nicole, contextual Interview). Darcy stated that there is a 

large focus on 

providing high level tasks. You know, we’re promoting multiple 
representations....try to make the connections to real life,…. working 
with other individuals, being able to express 
mathematically,…verbally, written,…formula or… stuff like that 
(Darcy, Contextual Interview, lines 88-92). 

 

Darcy has been a central figure in the change.  She admits to being a leader in the department, 

but describes herself as “more of a quiet leader” (Darcy, Contextual Interview).  She compared 

her way of facilitating change in the department to the way the district had tried previously:  

a lot of times when they try do stuff here as... a whole district, they 
tried to just like throw it on us, like a whole big thing and...people 
are just not going to deal with that....I try to make my connections 
with like individuals first versus the department and try to...kind of 
see my project or my thing along….If I can help a couple of other 
people and try to show them some things that I’ve learned or some 
things I’ve discovered, some techniques I’ve found,…then I 
feel…then maybe they’ll keep using it and it’ll…spread (Darcy, 
Contextual Interview, lines 106-108). 
 

Three years prior to having Keith as an intern, Darcy took a class from Nicole at the university.  

During that time, Darcy began using some of the pattern tasks from that course in her own 

classroom.  She described the transition from only doing the tasks in her room to leading 

professional development activities for the staff. 
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When I was learning about the pattern task when I first came to [the 
university] … I just did it on my own and ... people would come 
observe me and I would do...one of those for that day...and they’re 
like, “Ooh, can I have that?” and I’m like, “Okay. Sure.” And then 
the next thing you know people are observing me more and they’re 
like, “I want those.” and the next thing you now I’m giving like all 
my tasks that... that I’ve collected to other people and they start 
doing it but they weren’t sure how to do it because they thought they 
could just kind of whip it up there and do it … because they’re 
math...so then I was doing little mini- workshops… showing them 
some techniques and some kind of questioning skills to do with that 
(Darcy, Contextual Interview, lines 103-112). 

 
 In addition to working with the veteran teachers in the building, Darcy also works with the 

new teachers.  She explained that during the current school year, the mentors of the new teachers 

arranged for them to observe Darcy’s classroom.  Darcy felt “that’s a good compliment, …that 

they want to come see me teach and they respect me enough that they’re not...I’m not gonna 

show some ridiculous thing up there (Darcy, Contextual Interview, lines 115-116). 

 The shift in the philosophy of the Baskerville Middle School math department has led the 

staff to reconsider the curriculum used in the school.  Over the last four years, the teachers have 

used selected units from the reform-oriented curriculum, Connected Mathematics, or CMP 

(Lappan et al, 1998); beginning next school year, they will fully implement Connected 

Mathematics 2 (Darcy, Contextual Interview; Michelle, Contextual Interview).  Darcy feels that 

the youth of the staff (i.e., all but one teacher has less than ten years of teaching experience) has 

created this “new flare of willingness to try the new curriculums” (Darcy, Contextual Interview, 

line 27).  Keith also viewed the youth of the staff as contributing to the general philosophy of the 

department.  He stated that, “since most of the teachers are a little bit younger they have a more 

modern education so they’re more into using activities and tasks rather than just lecturing all day 

(Keith, General Interview #1, line 18).  Nicole also discussed the assistant chair of the 

mathematics department’s role in the changes in the department, particularly regarding the 
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adoption of CMP.  The assistant chair participated in ESP with Darcy, and according to Nicole, 

“she has been a proponent of Connected Math and has tried to help move things along,” further 

noting that she deserves “some of the credit for the…changes that have happened” (Nicole, 

Contextual Interview, lines 44-45).   

 Michelle described the department as being “as unified as it can get”, given that there is a 

staff of 14 math teachers (Michelle, Contextual Interview, line 19).   Darcy noted that this shift in 

beliefs about teaching and learning was slow to take hold, but that through opportunities such as 

peer observations and departmental meetings, the staff has been working towards a cohesive 

approach.  Nicole also discussed how one teacher at the school with whom she has worked “has 

come full circle” from being “adamantly opposed” to the use of reform-oriented curricula to 

embracing the underlying principles and implementing them in the classroom (Nicole, 

Contextual Interview, line 47).   

 Interestingly, though, the algebra course primarily used a traditional textbook for the current 

school year, with the exception of one unit from CMP that focused on linear functions.  Darcy 

explained that this was a compromise between the middle school and high school.  

We’ve been told to use a very standard book, the Prentice Hall, 
which is, … in my eyes, a little step up of Dolciani....at the middle 
school here, we wanted Core Plus which is like a connected math but 
for high school level kids, ....we’re in a battle with the high school 
and it just...you came down to, ‘Well, this will satisfy everybody, 
we’ll just throw in some Connected Math activities (Darcy, 
Contextual Interview, line43). 

 

Keith uses CMP in the 6th and 7th grade classes he teaches.  He describes CMP as “all open-

ended…. for the most part, it’s exploratory learning” (Keith , General Interview #2, line 318).  

Keith views the Prentice Hall text as “more traditional.  It tells you how to do something and 

then gives you a bunch of examples” (Keith, General Interview #1.1, 153-154).  For Keith, this 
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contrast between the mathematics of the two curricula creates a different understanding among 

the students.  He stated that, “Prentice Hall is easier but I think that they get a better 

understanding from Connected Math” (Keith, General Interview #1.1, line 157).  He clarified by 

describing his algebra students’ understanding from the one CMP unit used in the class as 

compared to his own experiences from a textbook similar to the Prentice Hall:  

I’ve noticed that they tend to understand why things work in terms of 
slope whereas when I was in school I thought of slope as changing y 
over changing x, rise or run, y2-y1 over x2-x1…they understand that 
as a per unit rate of change (Keith, General Interview #1, line158). 

 

Keith also discussed how the style of the Prentice Hall book is not in line with the valued 

teaching practices in the department.  He stated that  

the way we kind of combat that is to pull out certain things that lends 
itself well to activities and we just assume the kids won’t look ahead 
because kids usually don’t if they don’t have to and then we’ll make 
it...make something into an activity where we take away some 
information or just create a larger problem for them to solve (Keith, 
General Interview #1, line 155) 

 
Next school year, however, the algebra students will be given the Prentice Hall book to use at 

home as a reference, while a portion of the CMP2 books will serve as the core text in the 

classroom (Darcy, Contextual Interview). 

4.3.2 Keith’s Day 
 

This section focuses on the typical structure of Keith’s day at Baskerville Middle School.  First, 

Keith’s perception of time allocation during the school day is examined and then compared to 

the views his mentors and supervisor hold regarding his use of time during the school day.  Next, 

Keith’s instructional practices are explored, beginning with his lesson planning and then the 

enactment of the lessons in his focus class.   
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4.3.2.1 “No time” during the school day Baskerville Middle School    “I wish I had more time 

for everything” (Keith, General Interview 1.2, line 107).  From planning and enacting lessons to 

talking with other teachers and completing his university work, Keith repeatedly stated he felt 

pressured because of the lack of time during the day.  This section further explores the notion of 

time constraints on Keith’s day, from his perspective and that of his mentors and supervisor.  

4.3.2.1.1 Keith’s perspective     One way Keith attempted to gain more time was to arrive 30 

minutes before he was required.  He typically arrived at school around 7:00 each morning.  He 

used this hour before homebase began to make copies for the day, grade student work, clarify 

last minute details of the day’s lessons with one or both of his mentors, and work on university 

coursework.  For example, on day two of observations, Keith spent a few minutes completing an 

assignment for a class at the university that was due that evening.  On day three, he spent most of 

the time entering student grades on the computer, noting that he “wished the middle school gave 

[interns] a laptop like they do at the high school so I could do my grades at home” (Fieldnotes, 

day 3, p.3).  On day four, Keith spent the time reviewing information for the 6th grade lessons 

that he was teaching that day.  Occasionally, this time prior to homebase was also used to tutor 

students. This occurred twice during the observations.  Keith explained that “during the first 

quarter we had students who were struggling so we invited them to come in at 7:30 if they had 

trouble and one of them has continued to come in” (Keith, General Interview #2, line 393). 

 Although the extra time in the mornings has helped him some, he still expressed frustration at 

not having enough time during the day to talk to his mentors and other teachers.  Throughout the 

day, Keith had very limited interactions with other teachers, which he attributed to being a 

function of his schedule.  He emphasized that 

I teach five periods a day, I eat lunch for a period, I have a planning 
period and then one team meeting. So other than the team meeting, 
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which you wouldn’t have seen10...I mean, I actually interact with 
other subject teachers on our team. Other than that, I really don’t get 
a chance to interact with other teachers because I really have one 
planning period during which I’m supposed to be planning and 
working with my mentor so, unless I were to stay after school...even 
if I did that, people don’t really do anything after school anyway so, 
no, there’s really no chance to interact with other teachers (Keith, 
General Interview #2, lines 137-139). 

 

 Keith also stated that the lack of available time during the day impacted his ability to plan 

lessons with his mentors.  He said that with Michelle “there’s supposed to be time during the day 

but there’s not. There was just no time to sit down and plan a lesson cause I have one period a 

day and it often ends up being other stuff” (Keith, General Interview #1.1, lines 354-355).  

Michelle stated that they try to meet during their 4th period planning at least three times a week 

to discuss planning as well as reflecting on how things have been going in the classes.  She noted 

that this is not always possible, though, because  

that planning time is also the same time that our sixth graders eat 
lunch which is...when someone wants to come in to get extra help 
the only time they can come in is during lunch then sometimes I 
have to give that time up to work with them (Michelle, Contextual 
Interview, line 182). 

 

 During the five days of observations, Keith and Michelle tutored students during the planning 

period on days two and three.  They met together for approximately 20 minutes on days one and 

four, and 30 minutes on day five.  On day one, the conversation focused on Keith’s ideas for the 

new unit in 7th grade.  He described his plans and Michelle provided some general feedback.  For 

example, they discussed Keith’s idea of combining two of the sections from the textbook. 

   KN: I was going to combine 3.1 and 3.2.  I think that the  
    big idea is the same. 
   MF: Did you talk to [the other math teachers]? They  
    already did those sections. 
                                                 
10 Because of school policy, I was not permitted to attend any of the team meetings. 
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   KN: No 
   MF: It might be a good idea.  They could give you ideas of  
    what to keep or adjust (Fieldnotes, day 1, p. 24). 
 

The conversation continued at the unit level, with Michelle pointing out how the topics connect 

to other subjects, grade levels, and what other 7th grade teachers have already taught.  At the end 

of the conversation, Michelle noted that they are “not always this formal with planning” 

(Fieldnotes, day 1, p.26).  On days four and five, the conversation involved some brief discussion 

of unit planning, but primarily focused on issues outside of planning, such as the logistics of 

Keith beginning to teach the 6th grade class.   

 Keith felt that he had “virtually no time to work with [Darcy]” because she is on a different 

team (Keith, General Interview 1.1, line 360).  As a result their schedules do not coincide for a 

full planning period.  Their schedules did, however, mesh so that they could talk for 10 minutes 

after the algebra class each day.  Keith stated that 

basically if I want to plan with [Darcy], I have to stay there after 
class and miss my lunch to plan with her. And it’s usually not 
planning an individual lesson. It’s usually just kind of the scope. 
Like I’m going to do this today, this tomorrow, do you have any 
suggestions...stuff like that (Keith, General Interview #2, lines 113-
116). 

 
 Keith and Darcy did talk after class for each day of observations.  Two of the five days of 

observation -- days one and four -- were spent discussing some component of the upcoming 

lesson.  For example, after the students left the classroom on day one, Keith asked Darcy about 

the ordering of lessons involving multiplication of polynomials and algebra tiles, which were the 

lessons for days four and five.  Darcy suggested that he use the algebra tiles first as a way to 

build students’ understanding of the procedure.  Keith took a set of algebra tiles from the 

classroom so that he could plan at home (fieldnotes, day 1, p.31).  After class on day four, they 
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discussed how to proceed the next day given where the current lesson ended.  Darcy suggested 

how to use a warm-up activity to connect the two lessons.   After class on days two, three, and 

five, Darcy and Keith reflected on the enactment of the day’s lesson.  These will be explored in 

detail in section 4.3.3.1, which focuses on the feedback that Keith received about his 

instructional practices.   

 The only time Darcy and Keith had a full class period for planning was on day two while the 

students took the unit test.  During this time, they both sat in the back of the room to plan lessons 

for days four and five, during which the students would be using algebra tiles.  Algebra tiles are a 

set of manipulatives that are often used to model operations with polynomials.  As shown in 

figure 10, there are three different sized tiles, each in two colors.  The small square represents a 1 

by 1 unit, or 1.  The rectangular pieces represent x, and have the dimensions x by 1.  The large 

square pieces have the dimensions of x by x, or x2.    The different colors are to denote positive 

and negative numbers, typically with yellow representing positive and red representing negative 

values.  

-x2x2 -x -1x 1

 
Figure 10. Algebra tiles 
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They both worked through some examples with the algebra tiles, with Darcy discussing how she 

has taught the lesson in the past, identifying problems she has seen students encounter, 

highlighting important mathematical points that should be made during the lesson, and 

suggesting ways of launching the problem as well as specific questions Keith may want to ask to 

elicit the key mathematical ideas of the lesson.  As they progressed through the tasks, Keith 

asked clarifying questions both about the mathematics and ways to structure the lesson.   

4.3.2.1.2 The mentors’ and supervisor’s perspective     Keith’s mentors and supervisor also saw 

him struggling with time management issues.  However, they viewed the problem slightly 

differently than Keith.  For example, Michelle felt that while time was a factor in his limited 

interactions with other teachers, part of it was also a lack of initiative on Keith’s part.  She 

explained that each day during 3rd period Keith met with all of the teachers on the 7th grade team.  

She described his participation as similar to that in the department meetings- attending but not 

participating. 

I don’t think [Keith has] much of a participatory role...just...he’s in 
there....On a daily basis there’s usually some kids names that come 
up whether it’s behavioral concerns or academic concerns and if it’s 
a student that he has on a daily basis, he usually...he’ll put his input 
in but for the most part is just kind of there (Michelle, Contextual 
Interview, line 74). 

 

While they each recognized Keith’s demanding schedule, the notion of him not taking initiative 

was the larger issue for his mentors and supervisor.  Darcy, Michelle, and Nicole each 

independently stated that they expected a higher quality of work from Keith than he was 

producing.  Michelle, having been an intern herself at the university, stated  

I was empathetic to the time constraints and the demands on course 
work versus teaching...but I also know what I did and how much 
time I put into it so I also know... what kind of sacrifices it takes to 
do your best at all of those things that you’re being asked to do....I 
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knew what it took and I knew that he wasn’t doing that (Michelle, 
Contextual Interview, lines 336-338). 
 

Nicole stated that if Keith was not constantly pushed,  

he’s likely to sort of do the minimum that’s needed to be done. And I 
think it’s a function of how much there is to do, given the 
responsibilities of being student and an intern. And whatever else is 
going on in his life.  (Nicole, Contextual Interview, line 97-100).   
 

Darcy also described Keith as “completely stressed”, noting that from her interactions with him 

he seems to be “always just getting...just getting to the next day,…the next minute, actually” 

(Darcy, Contextual Interview, lines 380, 382).  For example, she discussed how as he took on 

more responsibilities, he was not using his observation time in her classroom effectively. 

I feel like after he started then being responsible to take on the actual 
classroom activities upstairs [in Michelle’s classroom], then it was 
like he was feeling pressure to get that done so … instead of 
focusing on…. really trying to concentrate on questioning techniques 
or whatever, he’s back there trying to rush, I guess to get prepared 
(Darcy, Contextual Interview, line 206). 

 

 One point that everyone, including Keith, agreed on was that his lack of time management 

primarily impact his lesson planning.  Keith reflected that  

I was struggling to balance graduate school with teaching and I was 
kind of using the weekends to do my graduate school homework and 
trying to plan through the next class at night and it wasn’t working 
out well. I was doing my lessons on notebook paper and I was 
forgetting things. And they weren’t that insightful...the 
lessons....they just weren’t going that well. So I would say just the 
overall expectation of having a good, clean,...well-flowing 
lesson...wasn’t being met. And the way ...we remedied that was we 
laid out a plan of how I would … prepare in the future. I would do 
everything I had to do on the weekends and that way I could use the 
nights to adjust things rather than coming home after fifteen hours, 
trying to think of something creative then. Cause it wasn’t happening 
(General Interview 1.1, lines 267-274). 
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The next section further explores the mentors’ and supervisor’s general views on his lesson 

planning.  Then Keith’s planned lessons for the five days of observation in the focus class, 

particularly the cognitive demands of the task in the curriculum and lesson plan, are examined. 

4.3.2.2 Planning lessons Darcy, Michelle, and Nicole each indicated that the enactment of 

lessons was not always effective because, from their point of view, Keith did not always fully 

think through various aspects of the lesson prior to enactment.  Darcy stated that when planning 

a lesson, “you have to study...the lesson in and out. How you’re going to orchestrate it. 

Otherwise,...it could be a flop” (Darcy, Contextual Interview, line 278-280).  She said that she 

often felt Keith did not have a clear “vision where [he] wanted to end up” at the conclusion of a 

lesson or how to tie lessons together (line 408).  Similarly, Nicole distinguished between just 

having a written lesson plan and the quality of the content of the plan.  Regarding Keith’s written 

plans, she stated,  

I don’t think he was planning carefully enough. And it’s not that he 
didn’t have a lesson plan that had questions and whatever imbedded 
in it...I didn’t think he was thinking enough about particularly the 
launching of the problem....so that may seem sort of trivial but it 
seemed to me that a lot of times his inability to launch the problem 
well impacted the rest of the lesson…. he doesn’t really try to think 
about how to connect the children’s lives and prior mathematical 
experiences with the math topic of the day in the way that is really 
productive (Nicole, Contextual Interview, lines 112-115, 131).  

 
 To illustrate her point, she discussed specific instances of how Keith’s lack of planning for 

the set-up of the task impacted the enactment of the lesson.  For example, during one of her 

observations in the Algebra class, Keith was teaching a lesson from CMP on slope that uses 

staircases as a way to think about rise and run.  She noted that in setting up the lesson, Keith 

did ask some general questions about [staircases]... but almost 
because you were supposed to. Not that he had a targeted...notion of 
what he wanted to come out of the questions which was going to 
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help him deal with the mathematics of the lesson (Nicole, Contextual 
Interview, lines 119-120).  

 
 
 Darcy also talked about this particular lesson as an example of Keith’s lack of initiative and 

thoughtfulness with planning.  She recalled how the day before this lesson the two of them 

discussed for over 40 minutes a variety of ways to launch the task.  She left the final decision of 

how to orchestrate the set-up to Keith.  She expressed her disappointment in the final plan and 

enactment of the set-up.  

We spent all that time coming up with things to talk about and 
nothing was brought up….How disappointing….and it ended up 
being not a bad lesson but it could have been a lot stronger (Darcy, 
Contextual Interview, lines 348, 350- 351). 

 

 Keith recognized he wasn’t doing a good job with planning during the first few months of his 

internship.  He described his vision of a “good lesson” as  

one where the lesson runs smoothly,... fits into the time that you 
expect it to, the students get out of the lesson what you expect them 
to,...they participate. And I wasn’t putting all those things together 
very well. And part of that was I wasn’t planning very well. I mean I 
still struggle with that sometimes but I would say I wasn’t putting 
enough time into planning (Keith, General Interview #2, lines 92-
95). 

  

. 
Keith stated he began to change his planning practices after conversations with his mentors and 

supervisor following the lesson on slope, noting that Nicole “was kind of a catalyst for what to 

do to improve in the algebra class” (Keith, General Interview 1.1, line 324).  He said that Darcy 

then helped him focus on planning specific pedagogical moves, such as orchestrating 

discussions.  “Rather than just putting content in my lesson plans we were focusing on putting 

transition things in there” (Keith, General Interview #2, line 120).  Appendix K provides an  
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example of Keith’s current lesson plan format.  He noted that now he spends “a lot more time 

planning. I plan out in pretty much...in pretty good detail what I want to happen” (line 145).    

 When planning the details of a particular unit or lesson, the teachers at Baskerville Middle 

School have the flexibility to use the curriculum “as is” or to make modifications as they see fit 

for their individual classes.  Michelle explained that while there is a “common assessment 

pressure” to cover the same topics, the teachers still have freedom to make decisions about when 

and how topics are discussed (Michelle, Contextual Interview, line 76).  According to Darcy,  

we have our scope and that’s what we follow….Everybody realizes 
what chapters we need to cover, what books we need to go 
through....There’s no time line, as far as….do this in a day...we’re 
not real that specific (Contextual Interview, lines 151-152). 

 
Keith understood that while there was a basic guideline, he also had the opportunity to make his 

own decisions.  He explained that 

obviously there are some strict expectations with regard to like 
curriculum. I mean, I can’t just decide to teach something that’s not 
in the curriculum or I can’t decide not to teach something that is. But 
I feel like I have the freedom to write my lessons however I want, to 
do whatever activities I want (Keith, General Interview #2, lines 
204-206). 

 
Interestingly, though, he also stated that he relies heavily on the teaching suggestions in the CMP 

texts.  He elaborated, saying 

I feel that it would be foolish of me not to use resources that are 
provided by a group of people who have a lot more experience in 
education than I do. I feel that the inefficient use of my time to 
completely plan when a good template is provided for me and, plus, 
seeing how it’s my first year of teaching, I don’t have the greater 
understanding of how it works in with the whole year, whereas they 
do. They know what comes after what and like every little detail 
that’s gonna be in every future investigation whereas I don’t (Keith, 
General Interview #1.1, lines 201-203). 
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He acknowledged that there were a few select times when he elaborated on a topic more than the 

CMP materials did.  For example, he discussed how after finishing an algebra unit in the 7th 

grade, he took the opportunity to further discuss the distributive property.  He felt that during the 

unit, the concept was available to the students informally, particularly through a few homework 

problems, “but you had to, as a teacher, recognize that. So in that sense, I decide what to 

highlight that’s maybe not explicitly obvious” (Keith, General Interview 1.1, line 435-436).  He 

emphasized, though, that he did not do this often since the CMP materials  

kind of tell you what’s important…. the main ideas so,…I just follow 
the book and if there’s something that I feel is important that’s not in 
there I try to bring that out (Keith, General Interview #1.1, lines 430-
431). 

 

Keith does not, however, find the suggestions from the Prentice Hall teacher’s edition very 

useful, noting that the suggestions are not as extensive as those in the CMP materials.  As a 

result, he says that “I do what I can with the Prentice Hall” (Keith, General Interview #1.1, line 

535).   

 The influence of CMP is visible not only in the CMP classes, but in Keith’s algebra class as 

well.  He discussed how he used the CMP lesson plan format of “launch, explore, summarize” to 

also plan lessons in the algebra class.  Three of his written lesson plans in the focus class (days 

one, four, and five) did explicitly have those section titles; the written lesson plan Keith provided 

for day three was the worksheet he distributed to the students.  He stated he used the CMP 

format while planning lessons for the algebra class primarily because of his comfort level with 

the format.  He explained  

that’s what I’ve been taught, that’s how I’ve been teaching all year. 
That’s the way CMP presents their lessons....plus, I mean, it follows 
my education at [the university]....let the students make some sort of 
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discovery and then talk about it as a class (Keith, General Interview 
#2, lines 526-529). 

 

Darcy also encouraged Keith to “CMP it” when planning lessons for the algebra class.  She 

explained that this is a phrase she uses often with Keith and other algebra teachers as a way to 

describe modifying the traditional lessons from the Prentice Hall book. 

you could probably just take, if it’s like lesson 3.5 in the Prentice 
Hall book … maybe do a launch activity would be similar to 
Connected Math and then just go through your traditional examples. 
Some how do something that is kind of CMP type and work it into 
your lesson that way and not have to...reinvent the whole wheel, but 
try to...try to put parts of it into it (Darcy, Contextual Interview, lines 
44-45). 

 

For example, on day three of observations following a lesson that both Darcy and Keith felt did 

not go well, Keith mentioned that he was not as comfortable teaching in a “guided lecture” style.  

Darcy reminded him that he could make any of the lessons “CMP oriented”. She then proceeded 

to provide specific examples of how he could have used group work for the lesson and specific 

questions he could have asked that would have opened the dialogue between the students about 

the mathematics (fieldnotes, day 3, p.20-21).   

 Keith indicated that he understood what Darcy meant by the phrase “CMP it”.  He explained 

it as “introducing less and letting [students] figure out more and then talking about it afterwards 

rather than showing them how to do everything and then giving them examples to work on 

(Keith, General Interview #2, line 491).  However, Darcy stated that she believed Keith was tied 

to the curriculum, which she did not view as a positive characteristic.  She described the Prentice 

Hall book as “horrible” and so she told Keith “from day one you can flex from it, whatever you 

wanna do…and that’s one thing that I have not really seen” from Keith (Darcy, Contextual 

Interview, lines 164, 167-168).  A comparison of the tasks in the curriculum and Keith’s planned 
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tasks for the four days of lessons (day two was a test, so no lesson was planned for or enacted on 

that day) do indicate that Keith did primarily rely on the textbook for tasks; however he did find 

an alternative task for one lesson and adapted the tasks in the textbook to increase the cognitive 

demands of the planned lesson on days four and five (see table 13).   

 
 
Day: topic 

 
curriculum 

 
IQA rating 
of source 

Keith’s 
Planned 
task 

Relation to source 
of task 

1: Daniel Webster and the 
Devil task 

Prentice Hall 
Textbook  

(section 8.7) 
 

 
2 
 
 

 
4 

Invented- demands 
increased 

2: test- KN and DD plan 
algebra tiles lessons 

 
No 

instructional 
task 

 
No 

instructional 
task 

 
No 

instruction
al task 

 
No instructional 

task 

3: polynomials - defining 
and adding- whole class 
discussion 

Prentice Hall 
Textbook 

(section 9.1) 
 

 
2 
 

 
2 

Adapted- demands 
maintained 

4: algebra tiles to find the 
product of a monomial and 
binomial 

Prentice Hall 
Textbook 

(section 9.2) 
 

 
2 
 

 
4 

Adapted- demands 
increased 

5: using algebra tiles to 
introduce factoring 

Prentice Hall 
Textbook 

(section 9.2) 
 

 
2 
 

 
4 

Adapted- demands 
increased 

 
Average Score on IQA  2.0 3.5 

 

Table 13: Summary of the IQA score for the original and planned task 
 

 On day one, Keith used the task Daniel Webster and the Devil (see Appendix L) to 

supplement the ideas raised in section 8.7 of the Prentice Hall book.   This task was coded as 

invented since he utilized a task from outside of the curriculum.  Prior to observations, the class 

had completed a unit on exponents.  He thought the unit had been “fairly devoid of activities” 

(Keith, General Interview #2, line 55).   He wanted to provide the students with a problem that 
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was not “strictly procedural”, so he “found [a task] on the internet” that he felt aligned with the 

ideas section 8.7 of the book (Keith, General Interview 1.2, line 56).  In using this task, he 

increased the cognitive demands of the task from the textbook from a two on the IQA to a four 

for the planned task (see table 13).  The original lesson focused students’ attention on evaluating 

a given exponential function by creating a table of values and then graphing that function.  Four 

examples were provided in the text as a guideline for solving additional problems. In contrast, 

the task Keith planned- Daniel Webster and the Devil- provided students with the opportunity to 

solve a problem in which the answer was not obvious or the focus.  The task began with a 

contextual problem that asks students to analyze a proposed payment plan and decide if Daniel 

should accept the deal. While the task did explicitly prompt the students to create a table, the 

purpose of the table was to identify patterns and make generalizations.  In addition, the task 

asked the students to predict the type of graphs that the salary and commission data would 

generate.   

 For the remaining three lessons, Keith used the tasks from the book but made some 

adjustments to them.  As a result, each planned task was coded as adapted.  On day three, he 

created a worksheet to hand out to the students that was a slightly modified version of the 

information and examples from the book.  For example, question one in the textbook provided 

three expressions and asked students to examine the given table and select the one that 

corresponded to a particular customer’s order, which was the context of the problem.  Keith 

simply removed the choices, asking students to write the expression.  Additionally, the textbook 

defined various words, such as “monomial”.  While the worksheet Keith created also had the 

definition, he left a blank space for the students to write in the new vocabulary words.   When 

asked about the worksheet, he stated that he 
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based them on the way [Darcy] does a class. She usually gives them 
a worksheet with blank spaces like where vocab words go and 
then...she’ll introduce something and give examples and have them 
work along with her. Um...basically I figured out she just basically 
takes them out of the lesson section of the book, like, and she 
basically follows the same order that the book does so I did the same 
thing (Keith, General Interview #2, lines 498-500). 

 
These changes, however, did not change the cognitive demands of the lesson.  Both the task in 

the curriculum and Keith’s planned task focused students’ attention on three topics: 1) 

memorizing definitions, 2) classifying polynomials based on the stated procedure of writing the 

polynomials in standard form, placing the terms in order, combining like terms, and naming the 

polynomial by its degree, and 3) adding and subtracting polynomials by combining like terms.  

Overall, the task did not require students to explain their reasoning or make connections between 

representations or to the underlying mathematical concepts; therefore, as table 13 illustrates, both 

the task in the curriculum and the planned task were scored as a two on the IQA.     

 The lessons on days four and five were also adapted; however, these adaptations led to the 

increase in cognitive demands.  The focus of these two days was on multiplying polynomials by 

monomials and factoring monomials from polynomials.  The task as it appeared in section 9.2 of 

the textbook was coded as a 2 on the IQA (see table 13) because the worked out examples in the 

book provided explicit procedures that were to be used on the subsequent practice problems and 

the focus was on producing the correct answer rather than understanding the underlying 

mathematical concepts.  This was evidenced by the relationship between the examples and 

practice problems.  Example one showed students how to multiply a monomial and a trinomial 

by following the steps of “use the distributive property, multiply the coefficients and add the 

exponents of powers with the same base, simplify” (Prentice Hall, p.462).  Three problems were 

the given for students to practice and “check understanding”.  Following additional examples on 
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finding the greatest common factor and factoring out a monomial (each of which were outlined 

similarly to example one), the exercises (i.e., 44 practice problems associated with section 9.2)  

referred students back to the corresponding example for each block of problems; that is, 

problems 1-12 referred students to example one, since the problems were analogous.   

 Keith, however, modified the lesson from the textbook.  His adaptations of the material in the 

textbook increased the cognitive demands of the lesson and scored a four on the IQA.  As 

previously discussed in section 4.3.2.1.1, during a planning session on day two Darcy 

recommended that Keith consider using algebra tiles for the lessons on days four and five as a 

way to introduce the concepts of the lesson to the students.  He utilized that suggestion as well as 

the suggestion of how to design the worksheet.  For example, Darcy had suggested that he may 

want to create “a sample sheet that has…maybe four basic ones you wanna multiply (Transcript 

of focus class, day 2, line 94), which is exactly how Keith structured the worksheet.  Appendix N 

includes a copy of the worksheet Keith distributed in class on days four and five.  His planned 

task involved using the algebra tiles to model multiplication of a monomial and binomial, finding 

the greatest common factor, and factoring out a monomial.  There was an explicit procedure to 

follow in using the tiles, but the procedure was directly connected to the underlying 

mathematical concepts of the lesson.  The task prompted students to make explicit connections 

between the given expressions and manipulative representations, as well as the area model of 

multiplication.  This task was planned as a two day activity.  Keith stated that he wanted to use 

the algebra tiles as a way to give students “a concrete thing to work with….just to kind of help 

them understand why things work” (Keith, General Interview #2, lines 541-542).  The textbook 

suggests the use of algebra tiles with the following section, 9.3, but Keith wanted to use them 

with section 9.2 in order to  
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create the meaning before we create the procedure….That’s kind of 
following along the idea of CMP…. rather than telling them how to 
do something, let them kind of experiment with it a little bit to try to 
figure out what’s happening (Keith, General Interview #2, lines 555, 
557-558). 

 

 

4.3.2.3 Enacting lessons     Keith’s mathematical goals for the series of lessons in the focus class 

are summarized in table 14.  Keith consistently maintained the cognitive demands of his planned 

task both during the set-up and enactment of his lessons (see table 15). While the IQA score for 

the set-up was always the same as the planned task, twice (days 3 and 5), the enactment of the 

lesson received a lower score, even though the overall cognitive demands of the lesson remained 

the same.  Day three was the only day that Keith planned for and enacted a low-level task.  His 

average set-up score for tasks was 3.5; the average score for the enactment was slightly lower, a 

3.0. This section further examines each of the tasks as set-up and as enacted in the focus class.  

Specifically, the cognitive demands of the tasks, the questions, and the representations available 

and used in the lesson will be explored. 
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Day Goal 

1 

I’m just interested in them realizing that salaries are going to go up then down, the 
commission is going to go up. Just kind of develop a little intuition about exponents and 
that’s...even though we’re...even though we’re not officially covering exponential 
functions, we’re just doing the operations of the properties of exponents, I’m just trying to 
develop a little intuition with exponential functions (General Interview 1.1 lines 71-79). 
 
We’re basically working on applications of some of the stuff they’ve...application of 
some of the properties they’ve learned….So basically I want them to...it’s a little tricky to 
figure out exactly what the next day’s salary is so, I mean, that’s just kind of a working 
through the problem, that really doesn’t have anything to do with the mathematics behind 
it but once they get the worksheet started, once they get the pattern right I’m just looking 
for them to be able to generalize the...commission based on the number of days. 
 

2 (students taking test) 

3 

Today we’re going to start a new chapter. It’s polynomials. We’re gonna introduce adding 
and subtracting polynomials which we really already know how to do. And just gonna get 
some vocabulary down like monomial, binomial, stuff like that. 
 

4 
We’re going to use algebra tiles to um...simulate multiplying monomials and binomials.  
Um...finding the greatest common factor with algebra tiles and factoring. 
 

5 

KN: Well, today we are going to finish up the lesson from Friday which is  
using algebra tiles to find the greatest common factors and how to  
(xxxxxx) factor.  And if we have time, we’re gonna get to a...how to do that with  
things that we can’t model with tiles.  
 
JM: What do you mean? 
 
KN: Like, we can only model...um, well we’re doing (xx) with monomial and  
binomial and we can only model things that we can fit onto the page with  
the algebra tiles. We’re gonna try to like get a concrete um...way of um...multiplying for 
any number. (xxxxx) model how we find the greatest common factor of any number, 
(xxxxxxx) factor anything. Any...well, anything that would be created by a monomial and 
a binomial.  
 
JM: Okay. Anything else? 
 
KN: Other than just kind of relating it to like the area of...like the  
algebra tiles kind of create like a...like a rectangle with dimensions  
and an area, I guess just relating the answers to that. 

Table 14: Keith’s goals for each day, as given in the Lesson Centered Interview unless otherwise 
noted 
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Day: topic 

 
original 

 
planned 

 
set-up 

 
enacted 

1: Daniel Webster and 
the Devil task 

 
2 
 
 

 
4 

 
4 

 
4 

2: test- KN and DD plan 
algebra tiles lessons 

 
No 

instructional 
task 

 
No 

instructional 
task 

 
No 

instructional 
task 

 
No 

instructional 
task 

3: polynomials - 
defining and adding- 
whole class discussion 

 
2 
 

 
2 

 
2 

 
1 

4: algebra tiles to find 
the product of a 
monomial and binomial 

 
2 
 

 
4 

 
4 

 
4 

5: using algebra tiles to 
introduce factoring 

 
2 
 

 
4 

 
4 

 
3 

 
Average Score on IQA 2.0 3.5 

 
3.5 

 
3.0 

Table 15: Summary of the IQA score for the original task, planned task, set-up, and enactment 
of the task in Keith Nichols’ classroom.   

 

4.3.2.3.1 Day One: high-level of cognitive demand    Keith launched the task on day one by 

having students predict if, based only on their understanding of the context, Daniel Webster 

should accept the payment plan proposed to him by the devil.  After discussing the predictions, 

Keith clarifies the directions for the task and students begin to work in small groups.  The task 

was set-up and enacted in a way that maintained the cognitive demands from the lesson plan, 

thus scoring a 4 on the IQA.  The task for this lesson can be found in appendix L.  During the 20 

minutes the students spent working on the task at their tables, Keith circulated throughout the 

room clarifying directions and asking students questions to both clarify their thinking and 

encourage them to further analyze the mathematics by looking for patterns. 
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 Approximately 30 minutes into the class, Keith pulled the class together for a whole group 

discussion.  A student shared how she completed the table for the salary and commission.  From 

there, the conversation focused on the generalization 100(2x) that a student suggested for the 

commission.  The class realized that while the expression does not produce the correct value for 

the given day, it does produce the correct value for the following day.  For example, as illustrated 

in figure 11, the generalization 100(2x) yields a value of $200 for day one, which is actually the 

proper value to day two; similarly, the value obtained by 100(2x) for day two is the true solution 

for day three’s commission. 

 

 
 

 

 

 

 

Number of 
Day 

Correct 
commission 

Value obtained 
by expression 

100(2x) 

1 $100 $200 
2 $200 $400 
3 $400 $800 
4 $800 $1600 
5 $1600 $3200 

Figure 11. Table of values produced by a student for the task  
 
 

Two other students suggested possible ways to adjust the formula so that the correct commission 

occurred on the correct day.  The following conversation ensued: 

   KN:  So it’s...like you said, you’re one ahead.  
   Male St: So maybe...100 times... 
   KN:  So how could we slow that down by? It looks  
     like...for day number one we really had the  
     value for day number two.  
   Female St: You need a half. You need a half. Or  
     something.  
   KN:  That’s another idea.  
   Female St: Maybe 100 times 1.5? Yeah...that would... 
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   KN:  Okay. So we’ve got two different ideas here.  
     One, [male student] said his numbers are one  
     spot ahead of where they should be. [Female  
     student’s] idea was that we just have double  
     the amount that we should.  
   St:  Um...maybe it should be 100 times 2 x minus  
     1. Two the 2nd power minus one.  
   KN:  100 times 2 to x minus 1. Okay. How’s  
     that...how’s that gonna work? (Focus class  
     transcript, day 1, lines 613-633) 
 

The conversation continued for approximately 2 minutes, with the students evaluating the 

expression for the given values.  The students then agreed that the revised version, 100(2x-1), 

does in fact work as a way to generalize the commission.  Keith then directed the conversation 

back to the second idea of how to revise 100(2x). 

   KN:   [Female student], I’m also interested in your  
     idea.  
   Female St: I don’t know. I just guessed on that.  
   KN:  You noticed that we had twice as much as we  
     needed to.  
   St:  Yeah. 
   KN:  How could we build off of that? 
   St:  You’d have to use a graph to show that. 
   St:  So 100 times like... 
   St:  Couldn’t you use a fraction? 
   KN:  Sure. 
   Female St: But I don’t know how to do that. I just  
     guessed.  
   KN:  Okay. Take a minute...um...[male student]  
     came up with a good way to, um, fix this.   
     [Female student’s] way is also good, though.  
     [She] said the amount we’re getting is twice as  
     much as it should be. How can I keep this  
     same form that we had before... 
   St:  How would you do the half? 
   KN:  Something times 2 to the x. [Male student #2],  
     what do you think? 
   Male St #2: I didn’t (inaudible). 
   KN:  What did you come up with? 
   Male St #2: I got 50 times 2 to the x power.  
   KN:  Okay, so [male student #2] came up with 50  
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     times 2 to the x. Would you like to show us  
     how you came up with that? 
 
The student proceeded to the overhead in the front of the room and showed how he used the 

graphing calculator to determine the equation; however, Keith did not connect the new equation 

to the female student’s notion of having twice as much as needed.  The last three minutes of 

instructional time were spent having students predict which type of graph they think would 

represent the salary data.  After the students agree on the shape of the graph, Keith states that it is 

called a quadratic, and noted that “quadratics aren’t anything that you’re supposed to have 

known yet, I just thought it would be interesting to take a look at it” (Focus class transcript, day 

1, line 767). 

  Throughout the lesson, there were 10 conversations in which connections were made 

between representations.  In each of these instances, the connections were prompted by Keith’s 

questioning and it was the students who made the connection.   The students had access to the 

context and table on the worksheet.  The table served as a way to organize the mathematics based 

on the information in the context, and was used as the jumping off point during the class 

discussion.  Keith began the discussion by asking students how they could use the table to come 

to a conclusion.  One student responded  

you see how the…commission is gradually going up and, like, after a 
certain time you can see that it’s not a good idea anymore to work 
for him…At 11, you’d be in debt because the commission is 
$102,400 and you don’t have any money. And...so you can see how 
it goes up, like how this...your salary goes up and, well, goes down 
kind of because you get less and less, and then...you can see 
how…the commission is going up more and more (Keith, focus class 
transcript, day 1 lines 486-488). 

 
Here the student is making a connection between the context and the table. 
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 While the task did not explicitly prompt students to develop a generalized formula, Keith did 

so both as he walked around during group work and during the whole class discussion.  

Additionally, the table called for students to find the salary and commission for day thirty, thus 

implying the need for a generalization since the previous day on the table is 11.  As previously 

mentioned, students also had access to three different equations, two of which were equivalent.  

While Keith did ask questions that connected to the mathematics for each equation, he did not 

make connections between the equations.   

Language also played a large role in the class, and three of the connections conversations 

between representations involved language.  For example, the students verbally described 

relationships between the day and the salary and the day and the commission.  Additionally, 

students verbally described how the information in the table would be represented graphically.  

Keith drew sketches of their descriptions of graphs on the board at the end of the class.  

 During the lesson, Keith asked a total of 83 academic questions (see table 16).  Keith 

began class by asking a combination of tuning and monitoring questions.  Overall, approximately 

60% of the questions asked throughout the course of the lesson served the purpose of monitoring 

students’ understanding of the task and asking them to explain their thinking.  For example, as 

Keith moved between groups while they solved the task, he often asked questions such as “How 

did you get those?”, “What’s that mean to you?” and “Is that going to work for day one?”  

(Keith, focus class transcript, day 1, lines 204, 435, 585).  Nearly one-third of the questions 

asked during the lesson were connecting questions, with the majority (66%) of these occurring 

during the whole class discussion. During this time, Keith asked students to make use of and 

connections between tables, equations, and eventually graphs. For example, he began the 

discussion by asking the class, “So, how can you use Julie’s table to make your decision?” 
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(Keith, focus class transcript, day 1, line 484).  He also pushed students to further analyze the 

underlying mathematics and he prompted students to describe relationships between the days and 

the salary or commission.   

Day: topic Tuning  Monitoring Connecting Total 

1: Daniel Webster and the Devil task 711

(8.4%)12
49 
(59%) 

27 
(32.5%) 

83 

  Table 16: Questions asked during the set-up and enactment in Keith’s classroom on day 
1 

 

4.3.2.3.2 Day three13: low-level of cognitive demand    Day three was the only day during 

observations that Keith planned for and enacted a task at a low-level of cognitive demand (see 

table 15).  Keith closely followed the planned task, and as a result, the enacted lesson focused 

students’ attention on memorizing definitions, identifying the degree of polynomials, and naming 

the monomial based on the degree.   

 Keith began the lesson by using the contextual problem and chart from the textbook (refer to 

appendix M for the task).  However, confusion over the directions led to students calling out in a 

way that was disruptive to the enactment of the remainder of the lesson.  At one point while 

giving the directions for the launching activity, Keith tried to explain how to read the chart.  He 

stated  

if you see an x in say, Cassock’s name under c, that means he bought 
a bag of seed. If you see an x under millet, that means he bought one 
millet (Keith, focus class transcript, lines 206-207). 

 
Keith’s explanation did not match the purpose of the task; that is, the “x” on the chart did not 

represent one, but rather an unknown amount.  This error led to confusion and anxiety among the 

students.  To settle the questions and concerns, Keith gathered the class together and told the 
                                                 
11 Number of questions coded as such – ie. 7 questions out of 83 total coded on day 1 were tuning 
12 Percent of questions asked that day- ie., 8.4% of questions on day 1 were tuning 
13 Day two was a test.  No instructional task was enacted so no data for Keith’s instructional practices was collected 
during that day.   
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students what the expression would be for each person’s order.  Additionally, Keith did not use 

the problem in a meaningful way in the remainder of the lesson; that is the focus was on 

producing the correct expression, which involved one each of a monomial, binomial, and 

trinomial, rather than using the expressions as a means to further explore the new vocabulary.   

As a result of the focus on the writing the desired expression, the set-up of the lesson was scored 

as a 2 on the IQA rubric.   

 As the lesson progressed, the focus continued to move towards learning definitions.  Keith 

repeated the textbook’s definition of a monomial numerous times throughout the lesson.  

However, a few students continued to verbalize confusion about the distinction between 

monomials and polynomials.  For example, approximately 40 minutes into the class, a student 

again questions the difference between polynomials and monomials.  The following conversation 

ensues: 

St: So it has to have...for it to be a polynomial, it has to have 
some other form than multiplication in it.  

KN: What? Like I said, a polynomial is like a big family of which 
monomials is a part. So polynomials can monomials, they 
can be two monomials, they can be three... 

St: But it wouldn’t be...this wouldn’t be a polynomial, right? x 
squared y to the 3rd (xxxx). 

St: Yes it would.  
KN: All of...this is the polynomial family. Alright. This 

one...usually when decide what they are, we call them by 
their most restrictive form. So like, that top one, you could 
say it’s a mono...polynomial but it’s also a monomial. It’s 
like...it’s like am I gonna call you a human or a girl? I’m 
gonna call you by your most descriptive, most restrictive 
form. I’m gonna call you a girl. It’s like when we have 
monomials and polynomials...I’m gonna call this a 
monomial. This...this bottom one is two monomials or one 
polynomial.  

St: Because they’re added? 
KN: The fact that there’s more than one of them makes it...so it 

cannot be a monomial any more. Mono means one. The fact 
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that there’s two of them makes it that...it cannot be a 
monomial any more.  

St: But how can you figure that top one is one and not two.  
KN: Because a monomial is one number, one variable, or the 

product of one number and a variable, or the product of two 
variables. It just goes back to the definition of what is a 
monomial (emphasis added) (Keith, focus class transcript, 
day 3, lines 738-769).  

.  
This conversation was representative of the students’ confusion and Keith’s response throughout 

the lesson. 

 Beyond definitions, Keith also presented rules for finding the degree of polynomials and then 

asked students to use that procedure on example problems.  For example, Keith described to the 

students how to find the degree of a polynomial by telling them:  

when we’re looking at a polynomial and we wanna find the degree 
of the entire polynomial, we just look for the degree of the high...the 
highest degree of any of the monomials. So since we put them in 
standard form from like the greatest to the least...if we’ve already 
done that, we can just look at the degree of the leading one (Keith, 
focus class transcript, day 3, lines 668-669).  

 

He proceeded to show an example, after which students worked on seven practice problems that 

asked students classify polynomials by finding the degree, naming the polynomial using the 

degree (e.g., quadratic), identifying the number of terms, and naming the polynomial using the 

number of terms (i.e., binomial).  For example, on the last problem, 3x4 – 4 – 2x2 + 5x4, students 

combined the like terms and named the polynomial a fourth degree trinomial. 

 The planned lesson also involved students adding and subtracting polynomials; however, 

during the enactment Keith was only able to introduce one example at the end of class. The focus 

was on the procedure and obtaining the correct answer rather than on understanding the 

mathematical concepts that underlie the procedure.  A student volunteered to do the problem on 

the board.  After he completed the problem, Keith summarized his steps, saying: 
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So the way [he] did it is one way. We can line them up and add them 
vertically. The only thing you have to be careful is you have to make 
sure you get like the right variables in the right columns. So like if 
there wasn’t...let’s say there hadn’t been a -9x there, you’d have to 
make sure you didn’t put the one here. You’d have to make sure you 
left a blank spot (Keith, focus class transcript, day 3, lines 1006-
1009). 

 
 While students often expressed confusion during the lesson, the task was not challenging 

mathematically for the students, particularly as evidenced by the focus on definitions and the fact 

that the students already appeared to know how to add polynomials. Additionally, students were 

not pushed to engage in complex thinking or to understand or create meaning for any procedures.  

As a result, the implementation was scored as a 1 on the IQA, representing a low-level of 

cognitive demands focused on definitions and rules.   

 In addition to the lowest level of cognitive demand from any of his lessons, day three also 

represented the least number of questions asked and representations available to students.  A 

context was available but in a generic way; that is, the task began with a chart that expressed 

customers’ orders for bird supplies; however, the chart and context were used only to write 

expressions. There were no meaningful connections made during the lesson.  In fact, Keith 

reflected that he wasn’t even sure of why the context and chart was there until after the lesson. 

  Table 17 summarizes Keith’s academic questions.  Keith asked only 54 questions, which 

is 32 less than the average number asked per day.  Of those questions, almost 80% were 

monitoring, and 17% connecting.  This was also atypical of his questioning pattern.  The few 

connecting questions either focused on connecting students’ knowledge of language with the 

symbolic expressions (i.e., understanding that “mono” means one) or on prompting students 

extend their thinking.  An example of this was when Keith asked, “Can you guys guess which 

monomial might not have a degree?” (Keith, focus class transcript, line 425). 
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Day: topic Tuning Monitoring Connecting Total
3: polynomials - defining and adding- whole 
class discussion 

2 
(3.7%) 

43 
(79.2%) 

9 
(16.7%) 

54 

 
Table 17: Questions asked during the set-up and enactment in Keith’s classroom on day 3  

 

4.3.2.3.3 Day four: high-level of cognitive demand    The focus of class on day four was to use 

algebra tiles as a way to model multiplication of monomials and binomials.  For example, figure 

12 illustrates the correct model for (x+3)(2x).  To begin, the appropriate pieces for each factor 

are placed on the outside of the mat, with one factor on the side and one on the top.  For this 

particular problem, one yellow x piece (representing x) and three yellow units (representing +3) 

are on the side of the mat, while two yellow x pieces (thus, 2x) are placed on the top.  The 

solution to the multiplication problem is obtained by filling in the area on the mat created by the 

dimensions, or the factors.  To do this, the largest pieces possible are used first (ie., the x2 block).  

The color of the piece placed in the solution is determined the signs of the corresponding factors 

(i.e., positive x times positive x is a positive x2, ).  As shown in figure 12, the solution must 

occupy the full area encompassed by the factors. The solution can then be determined by 

counting the number of each piece in the solution area.  For this particular problem, there are two 

x-squared pieces and six x pieces; therefore, the solution is 2x2+6x. 
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2x

x+3 

 

Figure 12. Using algebra tiles to model (x+3)(2x) and to determine the solution  
 

Keith’s lesson was both set-up and enacted at a high-level of cognitive demand, scoring a 

4 on the IQA.  While the lesson required that students use a specific procedure of modeling with 

algebra tiles, the purpose was to develop meaning for multiplying monomials and binomials.   

Keith began class by drawing an “x by x” rectangle on the board, and asking two tuning 

questions.   

KN:  What...what does the inside of this shape represent? 
St: Area. 
KN: Area. So how do you find the area of this shape? What do 

you end up doing?  
St: X times x. 
KN: X times x or... 
St:  X squared.  
KN: Okay. So, when we have um...we would call each of these a 

product. So these are two things that we’re gonna multiply 
together to get an inside value. So, if I had just given you x 
times x you could have come up with the same answer. But 
this is just like another way to express the answer in terms of 
like a geometric picture. So what we’re saying is...we’re 
saying this whole square represents x times x. We’re going to 
be using that sort of idea today (Keith, focus class transcript, 
day 4, lines 28-46). 

 

182 
 



 
This opening dialogue connected to students’ understanding of the area model of multiplication, 

which Keith then extended to multiplying monomials and binomials.  He repeatedly referred 

back to the basic area model throughout the lesson to connect the procedure and mathematical 

concept.    

 Keith engaged the students in a four minute conversation about the value of each of the 

algebra tile pieces. During this time he emphasized that even though five units almost “fits” on 

one rod the value of the rod is “x”.  He also discussed how to use the different colors to model 

positive and negative numbers.  These were two points that Darcy highlighted with Keith during 

the planning session on day 2 as potential places of student confusion.    

 Keith then asked students how to model the expression “x+3” using the tiles.  He connected 

back to the drawing from the start of class, stating,  

What we’re gonna do is...we’re gonna create like out own little...our 
own shape like we have over here. We’re gonna create our shape and 
like we did here...when we multiply them together we’re basically 
creating an area. And our area is also our answer for our...for our um 
product. So what we’re gonna do is we’re gonna create our own 
shape here (Keith, focus class transcript, lines 133-136). 

 
After the class agreed on how to model (x+3)(x) and find the area using the algebra tiles, Keith 

handed out a worksheet that had four problems for the students to solve.  The students worked at 

their tables for approximately 10 minutes.  During this time, Keith circulated, answering 

questions and clarifying directions.  

Prior to beginning the class discussion, he asked four students to sketch their solutions on the 

board.  He then directed students to “put your area into variables. You have it in terms of shapes 

right now. But our shapes represent something. So I want you to put your shapes into a formula” 

(Keith, focus class transcript, day 4, lines 659-662).  After a few minutes passed, Keith asked for 
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volunteers to share and explain their solutions.  Prompted by a student’s question on the first 

problem, he again linked back to the drawing from the beginning of class to clarify why the 

terms in the solution were added.  Figure 13 shows the initial drawing and how Keith modified it 

during the following conversation. 

 

Figure 13. The first is a drawing on the board that Keith referred to as a means to create the 
second drawing 

 
 
 

KN: So if I say....let’s say I say the area of the whole thing is 8 
(referring to figure 13a) and I said the area of this part is 4 
and the area of this part is 4. What’s the area of the whole 
thing (referring to figure 13b)?  

ST: Uh..16. 
ST: Eight. 
KN: Eight. If the area of this part is four and the area of this part is 

four, the whole area is eight.  
ST: Yeah, that’s what I meant.  
KN: So, over here (referring to the algebra tile pieces in the 

solution area of the mat) , I know the area of this part and this 
part and each of these individual parts so I can just add them 
up…do you agree that...now that this is +4 or do you still 
disagree (Keith, focus class transcripts, day 4, lines 772-780). 

 
 
A student explained the second problem, indicating how the pieces from the area model 

connected to the symbols in the expression.  For the third problem, the student simply stated the 

expression; Keith did not ask him to clarify further, but instead asked a series of questions that 

X 

X 
a)  b)  

X2 4 4 

area = 8 
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both summarized the day’s activities and laid the groundwork for day five.  Keith asked if it is 

possible to have a situation when the area portion of the algebra tile mat was not completely 

filled in; figure 14 provides an example to clarify what Keith was asking.  After students stated 

that it would not model the multiplication properly since the area is not complete, Keith asked, 

“Do you think it’s possible to find what goes on the outside just based on what’s on the inside?” 

(Keith, focus class transcript, day 4, line 861).  After a short discussion, students agreed that it 

could be done.  Keith then introduced the term “factoring”, stating that factoring and finding the 

greatest common factor would be the focus on the next day’s lesson. 

 

Figure 14. An example of an algebra tile mat that is not completely filled 
 

 

Although the lesson did not involve many representations of a function, the manipulatives 

were used as a way to model a key mathematical concept – the area model of multiplication and 

how that model extends to multiplying monomials and binomials.  There were numerous 

connections between the algebra tiles and the symbolic expressions.  Specifically, a total of 35 

separate conversations occurred where connections were made.  Of those, 20 conversations 

occurred where the students made the connections, almost exclusively in linking the symbolic 
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expression to the algebra tile pieces.  For example, a student suggested that the answer to a 

problem was -4x2-4x.  Keith then asked the connecting question, “So, who can explain to me 

where she came up with that? How did she come up with negative 4x squared -4x?” (Keith, 

focus class transcript, day 4, lines 635-636).  This question prompted students to express the 

connection between the manipulative representation and symbolic expression.  A student 

responded, “there’s four of the…x squared blocks and 4 of the x’s” (Keith, focus class transcript, 

day 4, line 644). 

The remaining 15 connections between representations occurred when Keith stated the 

connections.  These took one of 2 forms- either Keith reiterating what a student had just said, or 

in clarifying directions, stating the connection.  For example, after completing an example 

together with the students at the beginning of class, Keith reviewed the co-constructed solution 

as a means to review the directions for the group work.   

Each one is like it’s own separate part to the area. This is the part of 
the area determined by these two long pieces. These two parts are 
determined by the long piece with each unit (Keith, focus class 
transcript, day 4, lines 321-323). 
 

 In so doing, he stated the connections between the manipulatives and the symbols. 

 Table 18 outlines the types of questions Keith asked on day four.  He asked a total of 99 

questions during day four’s lesson. Only 2 of the questions were tuning, both of which occurred 

in the opening dialogue.  He asked 60 monitoring questions.  These questions encouraged 

students to explain their thinking (i.e., “So does anyone have a different idea?”, “Why is that?”) 

or aimed to have students produce the answer to a question (i.e., “So you have a negative and a 

positive, so what...is your answer going to be negative or positive?”) (Keith, focus class 

transcript, day 4, lines, 151, 272, 412).  The remaining 37 questions were connecting.  The 

connecting questions served to connect both between representations and to the underlying 
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mathematical concepts, or to push students to further analyze the mathematics.  The question that 

Keith asked at the end of class about factoring is an example of a connecting question from this 

lesson that prompted further reflection and analysis by the students.   

Day: topic Tuning Monitoring Connecting Total
4: algebra tiles to find the product of 2 
binomials 

2 
(2%) 

60 
(60.6%) 

37 
(37.4%) 

99 

Table 18: Questions asked during the set-up and enactment in Keith’s classroom on day 4 
 
 
4.3.2.3.4 Day five: high-level of cognitive demand     The lesson on day five built on the 

previous lesson.  Again, the students used algebra tiles as a way to investigate multiplication of 

monomials and binomials.  Day five’s lesson pushed that topic further by also exploring the 

ideas of factoring and identifying the greatest common factor.  The set-up was scored as a 4 on 

the IQA; however, the implementation was scored as a 3.  The rationale for each rating is further 

described below.  The task can be found in appendix M. 

  The set-up of the main task for the day provided students with the opportunity to review the 

procedure for modeling multiplication with the algebra tiles, thus ensuring that the students 

would have access to the task of “working from the inside out”.  He began by asking a student to 

“recap what we did yesterday and what it was used for” (Keith, focus class transcript, day 5, line 

31).  The student described how the different color pieces represent positive and negative, and 

correctly told Keith how to model “-4x”; however, Keith took over at this point to describe how 

to model x(x+1) “geometrically”.  During the remaining 20 minutes of the set-up, Keith asked 

the students to explain how the pieces modeled the given multiplication sentence, asking 

questions such as, “How did...[she] break this up?” (line 189), “Is there a tile that could fit all the 

way down here and all in one?”, and “Does anyone have any comments on the area?” (line 232).  
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This last question prompted a discussion on if the student’s symbolic expression (x4) matched the 

visual representation (2 x-squared pieces).   

ST: Uh...I think x to the fourth is wrong.  
KN: Okay. Why do you think that? 
ST: Because x to the fourth isn’t just like half. That’s like...that’s 

only two...it’s only half the dimension (inaudible) cause if 
one square is x squared. 

KN: Okay, so this...this is like x...let me write in black. 
ST: And wouldn’t that be 2x to the second? 

 
Just as in day 4, Keith likened this to an area model with whole numbers.  The conversation 

continued.   

KN:  Now if I gave you something that looked like this...if I said this area is 
four and this area is four, what’s the total area there? 

ST: Eight. 
KN: Eight. So if we know...if we have a large figure and we know the areas of 

parts of it, do we wanna add or sub...add or multiply? 
ST: Add. 

 Twenty minutes into class, Keith introduces the notion of greatest common factor through a 

series of tuning questions aimed at connecting to the students’ understanding of the words 

“greatest” and “common”.  Keith again linked the process to whole numbers, discussing the 

factors of -9 and 3.  After completing one example together, Keith instructed the students to 

complete the next four problems from the worksheets while he walked around. 

 Immediately, Keith went to the back of the room to talk with Darcy.  During the set-up, he 

began to struggle with the model to show the greatest common factor.  As a result, he was unsure 

of how to progress in the lesson.  He drew on Darcy as a source of support during the lesson to 

provide some guidance.  

KN: I’m having a hard time...I was having a hard time thinking 
about greatest common factor. I know how to find it, I have a 
hard time like saying why it makes sense. 

DD: It’s the one they share...they share the most.  
KN: Yeah…. 
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DD:  The biggest thing is...you need to start with the original 
expression. 

KN: Okay. The product. 
DD: The product….You’d work your way back out.…To see 

where they came from. So you were trying to use one that 
they’d already worked the other way, so….you have to go 
back the other way.  

KN: So one that they don’t already know the answer to it.  
DD: Right. Yeah (lines 437-456).  

 

 From this conversation and one that occurred a few more minutes into the lesson, it became 

apparent that Keith had not worked through each of the problems using the algebra tiles prior to 

the lesson. He was not fully prepared for some of the questions the students had regarding the 

use of the algebra tiles or how the tiles may model situations with a constant for the greatest 

common factor (ie., a greatest common factor of 5).  Half of the problems (#2 and #4) had 

constants as the greatest common factors.  As questions came up in class about how to model 

these, Keith instructed the students to not “spend too much time stressing on number 

two….Because it’s something that we have to... extend how we’re doing this to do number two” 

(lines 564, 566).  Figure 15 depicts the algebra tile mat for problem #2, -4x2-4. This problem 

cannot actually be modeled with tiles since, as Keith established at the end of class on day 4, the 

area does not make a rectangle. 
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Figure 15. Model of -4x2-4 
 

 

As he worked with a group on problem #4, he again asked Darcy to come help him figure out 

how to use the tiles.  After she worked with the group and was also unable to determine how to 

use the tiles to model the problem, Keith stated, “I’m thinking that these algebra tiles don’t work 

so well with...greatest common factors that are constants” (line 707). 

 Following this conversation, Keith gathers the class together for a discussion on numbers one 

and three.  He then moved the conversation to discussing ‘factoring’, stating that  

whether you know it or not, you’ve...for the last like half hour 
you’ve been factoring. It’s like, when we wanna factor something, 
we wanna break it down into like what parts you multiplied together 
to get it (lines 882-883) 
. 

 While there were obvious difficulties with #2 and #4, Keith did conduct a discussion with the 

whole class that allowed students to work towards the goal of factoring polynomials.  While 

students were able to state the greatest common factors for numbers two and four, they were not 

190 
 



able to clearly provide evidence or explain their thinking.  The struggles with this portion of the 

lesson led to a score of a 3 on the IQA. 

 The representations used in this lesson were manipulatives, symbols, and language.  Similar 

to day 4, these were not representations of functions, but of a key mathematical idea.  Of the 109 

questions Keith asked during this lesson (see table 19), approximately half of the questions were 

connecting.  This represented the highest percentage of connecting questions asked in any of the 

lessons.  There were 12 conversations where students made the connections either between 

representations or to the underlying mathematical concepts.  Keith also stated a large percentage 

of the connections, with 9 conversations of this nature.   As in day four, though, these 

conversations often occurred as a clarification or summary of a student’s explanation.   

Day: topic Tuning Monitoring Connecting Total 
5: using algebra tiles to introduce factoring 8 

(7.3%) 
47 
(43.1%) 

54 
(49.5%) 

109 

Table 19: Questions asked during the set-up and enactment in Keith’s classroom on day 5 
 
 

4.3.3 Emerging issues from the analysis   
 

Throughout the focus lessons and interviews, a few issues emerged regarding not only Keith’s 

instructional practices, but the alignment of various aspects of his contextual settings.  These 

issues, which are discussed in the following sections, were identified by reviewing the fieldnotes 

and interviews for common themes.  The fieldnotes, transcripts of interviews, and focus classes 

were then coded for evidence of each theme.  Three main issues emerged from that analysis: 1) 

the feedback Keith received regarding his progress, 2) his execution of that feedback, and 3) the 

consistency of the messages he received from numerous sources regarding both desired teaching 

practices and his work towards achieving those practices.  
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4.3.3.1 Receiving feedback on lessons    Throughout the day, Keith received verbal feedback 

from both of his mentors on his enactment of lessons.  This feedback ranged from conversations 

of less than a minute in between classes to a 10 minute discussion with Darcy following the 

algebra class on day three.  While the length of time of the conversations varied, one aspect that 

was constant was the specificity of the feedback.  This section further explores the discussions 

between Keith and his mentors on the days of observations.  

 While Keith and Michelle did not have formal conferences during the five days of 

observation, she provided Keith with some form of feedback each day.  For example, the lessons 

on days one and two for the 7th graders focused on the role of the scale factor on perimeter and 

area between similar figures.  After the lesson on day one, Keith noted that while he tried to let 

the students discover the relationship, he was not sure if they all understood.  He revisited the 

topic on day two by using the previous night’s homework as a way to discuss the topics.  He 

decided at the end of first period not to assign any additional homework because he felt the 

students were still confused.  In the 4 minutes between classes, he and Michelle debriefed the 

lesson.  She provided feedback by using phrases such as “I’m wondering what would have 

happened if….” and “maybe try…”.  She also suggested that it “might not have been a bad idea 

to leave the homework, to let them struggle” (Keith, fieldnotes, day 2, p.11).   

 Keith stated that Michelle’s feedback is always “very detailed” and “very insightful” 

(Keith, General Interview #1.1, lines 315, 317).  He also appreciated the way she presented the 

feedback, clarifying that  

she’s never said, “Well I do this or I do this”...I mean, she’s always 
like, “Well, maybe you would think about doing something like this” 
or “At this point, you might have wanted to bring this topic up”. 
She’s never said, “This is how I do it”. She’s never given the 
impression that I should teach the way she does (Keith, General 
Interview #2, lines 196-198). 
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 Darcy also provided explicit feedback after the focus class observations, with these 

conversations ranging from 5-10 minutes.  The longest post-lesson feedback occurred on day 

three.  As previously described, day three in the algebra class was the only day that classroom 

management was an issue, due in part to the organization of the lesson.   It was also the most 

traditional style lesson that Keith taught in all the classes observed.  Following the class, Keith 

and Darcy sat down and Keith immediately asked, “What should I have done differently? That 

was horrible.” (Keith, fieldnotes, day 3, p.19).  Darcy had made notes on the implementation of 

the lesson which she referred to during their conversation.  She discussed the students’ behavior, 

but linked it to the structure of the lesson and resulting confusion.   

DD:  I don’t think they know why the beginning part with the 
chart….You didn’t know what you wanted at times. 

KN:  I feel like I knew where I wanted to go….I was shocked at 
how much trouble they had with monomial. 

DD:  Maybe you could have had them produce examples, then go 
back to the definition to judge (Keith, fieldnotes, day 3, 
p.20). 

 
Keith expressed that he always has more trouble with a “guided class”, to which Darcy continued 

to suggest specific ways Keith could have modified the textbook and lesson structure the class to 

make it more “CMP oriented”.  She ended the conference by giving Keith a “management 

point”.  She stated that when giving directions, “make sure everyone is with you.”  She then 

provided an example of how he might do this with the upcoming lesson with algebra tiles (Keith, 

fieldnotes, day 3, p.21). 

 Keith discussed how Darcy is “always willing to give feedback” (Keith, General Interview 

#1.1, line 298), stating that while sometimes she begins with a general comment such as “I think 
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that went really well, or, that was a big improvement” (Keith, General Interview 1.1, lines line 

296) she expands and  

doesn’t give general blanket suggestions.  She says, ‘When so and so 
said this, maybe it would have been helpful to say this.”  Or like, 
“When so and so, when this happened maybe you could have 
brought this into the discussion.”  She’s very specific about what 
she...how she thinks it could have been better and she’s very specific 
about things that I did well (Keith, General Interview 1.1, lines 312-
313). 

 
Following the lesson on day four, Darcy did commend Keith on the lesson, noting that it was 

“much better today”, pointing out that he did a good job introducing the tiles and the reasoning 

for the different color pieces to set up the lesson.  Additionally, during their conversation on day 

five after class, Darcy noted specific places where Keith could have made other decisions.  She 

focused on the one student who knew that the greatest common factor 5x+5 was five.  She 

directed Keith’s attention to sketches of possible solutions to the problem on the back board that 

she created during the lesson (see figure 16), noting specific questions he could have asked to 

elicit the key mathematical ideas.   
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Figure 16. The drawing Darcy made on the board in the back of the classroom 
 

 The specificity of feedback also extends to Nicole. Nicole explained that her approach to 

supervision is 

to try to take notes on what’s actually happening during the lesson 
and then try to identify with the teacher some area of 
instruction...which they feel they need to continue to work on. And 
then trying to use...the evidence collected during the lesson as a way 
to frame the discussion about whatever that particular thing is 
(Nicole, Contextual Interview, lines 76-77). 
 

Keith explained that following lessons that Nicole observed, they have a post-lesson conference 

during which  

she gives very detailed feedback....I’m pretty good at like figuring 
out what I’m doing wrong, I’m just not...I’ve just always haven’t 
been so good at fixing it. And like what I think is going wrong is 
usually the same thing she does so it’s usually...and she sees the 
same things that [Michelle] does, so it’s always aligned. Like we 
always have the same ideas. So, I mean, it’s not like she’s way over 
there and I’m thinking something else, so like it’s helpful in that 
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way.…she’s pretty tough though…. [she has] high expectations 
(Keith, General Interview #2, lines 272-277). 

 

Both Darcy and Michelle also expressed that Nicole’s feedback is specific and influential  on 

Keith’s practice. For example, Michelle felt that Nicole “gives him very good input, very good 

feedback. She does always try to be very specific… with reinforcing things and refining 

(Michelle, Contextual Interview, lines 304-305).  Similar to his mentors’ feedback, Keith said he 

finds his conversations with Nicole beneficial to his teaching, noting that “wherever she is, she’s 

an influence on it” (Keith, General Interview #1.1, line 325).  

4.3.3.2 Implementing the feedback   Darcy, Michelle, and Nicole all agreed that Keith is able 

to almost always identify if and when a lesson went awry, but even with specific feedback the 

changes in practice were slow to take hold.  Michelle stated that following a lesson 

he can tell you what went wrong and we can brainstorm things that 
are possible remedies but then to make changes those things haven’t 
been happening...even if I narrow it down to one specific thing... 
we’re just going to talk about x and we do that, and we talk about 
that and we say, “Okay, this is what we agree that this is what should 
be done to remedy x” then I might not see it in the next day’s lesson 
(Michelle, Contextual Interview, line 192). 

 
Michelle further explained that from her point of view, 

he’s not much of a risk-taker...he’s very set in routines where...I tried 
to talk to him about changing just the variety of the way you do 
things in the classroom just to keep the kids...you know, keep 
interest a little bit better and nothing...that really hasn’t changed too 
much (Michelle, Contextual Interview, lines 375-376). 

 
One common area of focus Keith’s mentors and supervisor stressed was planning and 

preparation.  During the observations in the focus class, there were instances of his lack of 

planning for gathering materials for the lesson and lack of anticipation of student responses.  On 

day one, Keith asked Darcy during class if there was on overhead projector for the graphing 
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calculator available.  This arose because a student was using the calculator to find the equation of 

the line, a method Keith did not anticipate.  On day two, Keith had not planned an assignment for 

the students to work on after completing the test.  After the first student turned in his test with 

almost 30 minutes left in class, Keith asked Darcy if he should give them an assignment.  They 

both looked through the book to find appropriate work, which Keith promptly wrote on the 

board.  Additionally, on day four, Keith asked Darcy,  “Do we have the algebra tiles?” as he is 

ready to hand them out to the class (focus class transcript, line 47).  These three instances 

revolved around not setting up the materials prior to class, which Keith attributed to the lack of 

time.  This lack of preparedness, though, did not impact the overall flow of the lesson; however, 

that was not the case for days three and five. 

 Prior to the lesson on day three, Keith indicated he felt that the students would not struggle in 

learning the vocabulary, stating “this is the sort of thing [the students] will pick up in seconds” 

(Keith, Lesson Centered Interview, day 3).  He intended to focus mostly on adding and 

subtracting polynomials, something he was only able to do one problem with at the end of class.  

His lesson plan for day three was different from the other three days in that it was just the 

worksheet he handed out to the students.  He later stated that while he knew how he wanted the 

lesson to progress, he had not planned in detail (fieldnotes, day 3).   

 As discussed in section 4.3.2.2, one specific part of the implementation Nicole and Darcy had 

focused on with Keith was launching the task.  On day three, it was during the launching of the 

task with the chart of orders for bird supplies that the lesson began to unravel.  Reflecting back 

on the lesson, Keith stated,  

I was surprised that the kids, for how smart they were, couldn’t 
remember what a monomial was and what I binomial was...I guess I 
could have introduced it in a way that left more...a longer lasting 
understanding but the fact that they couldn’t associate one term with 
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monomial was surprising to me…. I had no desire to do that chart.  It 
was in the book and I guess I didn’t grasp the importance...I still 
don’t think it was that important...but I guess I didn’t grasp why it 
was there. Basically there [were] three different people, one of their 
orders was expressed by a monomial, one was a binomial and one 
was a trinomial. I didn’t even make that connection, probably 
because I had no interest in that problem and I didn’t want to do it 
but I did it because it was in the book (Keith, General Interview #2, 
lines 476-477; 504-507). 

 
His lack of thinking through the launching problem and understanding the mathematical purpose 

to the task eventually led to a poor implementation, one in which both the teacher and students 

were confused.   

 While Keith’s lesson plans for day five were more extensive than those on day three (i.e., he 

scripted the lesson and had specific questions to ask), it became noticeable during the class that 

he had not fully worked through each of the examples.   As discussed earlier, this led to Keith 

abandoning two of the four problems, but unlike day three, it did not interfere as extensively with 

the focus of the lesson. 

4.3.3.3 Alignment of High Expectations     Section 4.3 (Keith’s story) began by discussing the 

high expectation for success that is prevalent at Baskerville Middle School.  Keith is not immune 

to those demands. He is aware of the expectations, feeling the demands from his mentors, his 

supervisor, the curriculum, and his coursework at the university.  He articulated that the 

alignment between all of these entities is very helpful.  

It’s comforting that I don’t have the same worries that other interns 
sometimes do where Pitt’s philosophy is totally different than their 
school’s and that can cause problems sometimes where they try 
teach like Pitt teaches you on the one day their supervisor comes, 
and then they try to teach the other way when the supervisor’s not 
there. I don’t have to worry about that. It’s comforting that they both 
believe in the same thing (Keith, General Interview #1.1, lines 397-
403). 
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While the consistent message is valuable, he sometimes struggles with the high expectations- 

both in reaching them and in appreciating them.  For example, Keith discussed how his 

experience with both his mentors and supervisor is different from other interns in the university 

program.  He felt that compared to other interns he was held to a higher expectation of success 

by his mentors and supervisor.  For example, he noted that “I get the impression that not all 

supervisors are so tough” (Keith, General Interview #2, line 285).  While he also felt that this 

was reasonable and “good for me in the long run”, he expressed that the higher expectations  

hasn’t been good for my report card….The internship grade is the 
only thing I haven’t gotten an A or an honors on since I’ve been 
here… I think...in terms of like trying to make me a better teacher 
it’s good for me…..I’m not sure I appreciate it right now but 
probably at some...I don’t know...in a way I do appreciate it now. In 
a way I...I mean I don’t wish that I had someone that wasn’t as 
involved but at the same point, at some points it would be nice. Not 
that I would want that, though (Keith, General Interview #2, lines 
294-295; 299-301). 

 
Darcy acknowledged that Keith is possibly held to a higher standard that others, stating that  

we are an excellent school but you’ve had two people who have 
gone through the ESP program, you’re having someone...a 
supervisor that is like the god…you know, your daily observations 
are going to be a little bit more critical (Darcy, Contextual Interview, 
line 548). 
 

 

4.4 COMPARING THE INSTRUCTIONAL PRACTICES OF PAIGE AND KEITH 
 

There were a number of similarities between Paige and Keith.  For example, both were 

completing a year-long internship in schools that were well respected within the communities for 

high academic success among students. Both were in the same teacher education program, in 

which the focus was on preparing pre-service teachers to develop and enact cognitively 

demanding, student-centered lessons. Additionally, both Paige and Keith participated in ESP, as 
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did their mentors.  Despite these similarities, an analysis of the results discussed in chapter four 

illuminated key differences between the instructional practices of Paige and Keith.  These 

differences are important since they not only impact the learning that Paige and Keith take with 

them from their pre-service teacher experience, but ultimately affect their students’ opportunities 

to learn mathematics (Stigler & Hiebert,1999; Hiebert, 2003).  These differences are highlighted 

in the next two sections.  

 

4.4.1 Instructional Practices  
 

Both Paige and Keith relied on the curriculum as the primary source of the tasks used in their 

classrooms. However, the way in which they used the tasks differed.  Paige appropriated all of 

her tasks from the curriculum, each time implementing the task in a manner that maintained the 

cognitive demands of the original task.  Three of her five tasks focused on learning a procedure 

that did not require students to make connections to the underlying mathematical concepts.  The 

end of unit project (days four and five) was high-level, requiring students to engage in activities 

such as making predictions and justifying.  In contrast, Keith consistently changed the tasks in 

the curriculum.  Specifically, he used a task from outside of the curriculum on day one, and 

modified the tasks from the curriculum on the remaining three days.  He increased the cognitive 

demands of the tasks on three of the four tasks.  Even though he adapted the task on day two, 

those modifications did not change the demands of the task.  This was the only day he 

implemented a low-level task.  During the implementation of the tasks, both Paige and Keith 

consistently maintained the level of cognitive demands of the task (high-level or low-level); 

however, twice they both implemented the task at a lower IQA score than the score at set-up.   
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  Both Paige and Keith provided students with a variety of representations throughout the 

lessons; however, it is not just the presence of multiple representations that is vital to 

understanding, but rather the ways in which the representations are used as a means to develop a 

connected web of ideas (Lesh, Landau, & Hamilton, 1983; Lesh, Post, & Behr, 1987; Pape & 

Tchoshanov, 2001).  As outlined in chapter one, two key components of conceptually 

understanding a mathematical idea are 1) being able to connect pieces of knowledge in a 

meaningful way (Skemp, 1976; Hiebert et al, 1997), and 2) using that knowledge to move 

flexibly between and among various mathematical representations (Dreyfus & Einsberg, 1996; 

NRC, 2001; Lesh, Post, Behr, 1987; NCTM, 2000; Pape & Tchoshanov, 2001).  The 

conversations surrounding various representations that students in Keith’s classroom engaged in 

were different from those that Paige’s students had access to in their classroom.  For example, on 

day one in Paige’s classroom, there were 12 conversations where connections between 

representations were stated, but only two of these conversations were such that students were 

provided with the opportunity to think and reason about the relationships between the 

representations.  In contrast, all 10 conversations where connections were made public in Keith’s 

classroom on day one were prompted by connecting questions, thus providing the students with 

opportunities to advance their current thinking and understanding through further reflection, 

exploration, application, or analysis of mathematical relationships (Hiebert & Wearne, 1993; 

Driscoll, 1999; Boaler & Brodie, 2004).   

  As tables 20 and 21 illustrate, on average, Keith asked almost twice as many questions 

each day as did Paige.  He was also more consistent than Paige with the number of questions he 

asked each day; that is, the range of total questions for Keith was 55, whereas for Paige it was 

107.  Interestingly, Paige asked the most questions on day two, which was a teacher-centered 
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lesson, and the least on days four and five, each which involved a high-level task.  The trend in 

Keith’s data was opposite.  He asked the least number of questions on the only day he used a 

low-level task, and asked a consistently higher number of questions on the days he enacted high-

level tasks. 

Day:  Tuning  Monitoring Connecting Total 
1 21 

(32.8%) 
40 
(62.5%) 

3 
(4.7%) 

64 

2 12 
(9.9%) 

97 
(80.2%) 

12 
(9.9%) 

121 

3 0 
 

46 
(95.8%) 

2 
(4.2%) 

48 

4 0 28 
(93.3%) 

2 
(6.7%) 

30 

5 0 14 
(100%) 

0 14 

TOTALS 33 
(11.9%) 

225 
(81.2%) 

19 
(6.9%) 

277 

Average # 
per day 

6.6 45 3.8 45.4 

Range of 
questions 
asked 

21 83 12 107 

Table 20: Summary of Paige Morris’ questions 
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Day Tuning Monitoring Connecting Total 
1 7 

(8.4%) 
49 
(59%) 

27 
(32.5%) 

83 

2 0 0 0 0 
3 2 

(3.7%) 
43 
(79.2%) 

9 
(16.7%) 

54 

4 2 
(2%) 

60 
(60.6%) 

37 
(37.4%) 

99 

5 8 
(7.3%) 

47 
(43.1%) 

54 
(49.5%) 

109 

TOTALS 19 
(5.5%) 

199 
(57.7%) 

127 
(36.8%) 

345 

Average # 
per day 

4.75 49.75 31.75 86.25 

Range of 
questions 
asked 

5 17 45 55 

 
 Table 21: Summary of Keith Nichols’ questions 

 

  A more fine grained analysis shows that it is not just the number of questions that 

differed, but also the types of questions asked.  Keith asked each type of question each day.  

Altogether, 5.5% of all the questions he asked were tuning, 57.7% were monitoring, and 36.8% 

were connecting.  Paige, however, only asked tuning questions on days one and two, and did not 

ask any connecting questions on day five.  Additionally, the vast majority (81.2%) of all the 

questions Paige asked were monitoring.  This was true in each class as well as overall.  Only 

6.9% of the total questions asked were connecting.  The difference in the types of questions 

asked is striking, particularly regarding connecting questions.  Questions of this type are focused 

on providing students with opportunities to grapple with, reflect on, or further analyze the key 

mathematical ideas of the lesson, or to make conceptual connections between various 

representations.  Overall, Keith asked six times as many connecting questions as did Paige.  

Keith’s least number of connecting questions occurred on the day he used a procedural task.  
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However, even on this day 16.7% of his questions were connecting, as compared to the highest 

number Paige asked- 9.9%- which also occurred during a procedural task.  Paige asked either 

few (6.7% on day four) or no (day five) connecting questions when she used a high-level task.  

This is intriguing, given that the nature of high-level tasks is such that connecting questions are a 

natural fit.  High-level tasks focus on exploring and analyzing concepts and relationships and as 

a means to develop meaning for the underlying mathematics of the task (Stein and Lane, 1996; 

Stein et al, 2000).  Connecting questions are designed to elicit that thinking from the students 

(Hiebert & Wearne, 1993; Driscoll, 1999; Newton, 2002; Boaler & Brodie, 2004). 

 

4.4.2 The contextual settings 
 

There were many similarities between the contexts in which Paige and Keith taught.  The schools 

were similar in composition and scored comparably on state assessments. The mentor teachers 

each participated in ESP, and as such, had been exposed to what the University valued regarding 

instructional practices. According to Boston’s (2006) study, both Michelle and Madeline were 

using high-level tasks in their own teaching, and Darcy was recognized within the University as 

being a teacher leader who also frequently used high-level tasks.  Each of the focus classes used 

traditional textbooks.  Additionally, each of the University supervisors visited the classroom 

regularly to observe and provide feedback.  Despite these similarities, however, there existed 

critical differences, particular regarding the use of the curriculum and the interactions of each 

pre-service teacher with the mentors and supervisors. 

 Paige and Keith both used a traditional textbook for the focus class.  Their views of and 

reliance on the textbook, though, was quite different.  As shown in section 4.2.2.2, Paige 
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consistently appropriated the tasks from the curriculum.  From her perspective the textbook was 

a valuable resource that supported her desired teaching practices.  She described the suggestions 

in the teacher’s addition, stating that  

on the side it has different things but the things I use the most 
are probably just the additional example questions...sometimes 
it will have…questions laid out that I’ll be like, “Oh! That’s a 
good question to ask.”...but there’s the typical…if you have 
English as a second language try this.  Or if you have a student 
with this try this. Or, if you want to do this individually 
instead of group or vice versa you could do this. So...they’re 
good suggestions, I mean, in general. Paige, General Interview 
#1, lines 254-259) 
 

Paige viewed the Integrated One text as “student-centered”, stating that,   

almost daily they have to do something in their groups...it 
might just be a simple calculator activity or finishing a couple 
of questions together but there’s a lot of different...just 
activities thrown in (Paige, General Interview #1, line 159). 

 
However, an analysis of the tasks in the curriculum showed that 60% of the tasks associated with 

the days of observation focused on practicing procedures and did not require students to think 

and reason meaningfully about mathematical concepts.  These tasks appeared to by typical of the 

tasks throughout the textbook.  

 Keith did not value the structure of the traditional text, stating that “it tells you how to do 

something and then gives you a bunch of examples” (Keith, General Interview #1, line 154).  

Keith’s practice was highly influenced by his use of the reform-oriented curricula, CMP, which 

was used in the other math classes he taught.  As previously stated in section 4.3.1.2, Keith 

described ways that he and Darcy “combat” the traditional approach of the Prentice Hall text, 

trying to make it more like CMP.  When asked to describe the mathematics in the textbooks, he 

stated that “Prentice Hall is easier but I think that [the students] get a better understanding from 

Connected Math” (Keith, General Interview, line 157).  Additionally, as described in section 
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4.3.2.2 Keith relies greatly on the teaching suggestions from CMP; however, he stated that he 

does not use any of the teaching suggestions in the traditional text because he does not find them 

helpful to him in designing the lessons. 

 In addition to the textbook, the mentoring practices that Paige and Keith experienced were 

also different.   Paige and Madeline both stated, and field notes confirmed, that they regularly co-

taught classes.  This was particularly true of the second period class; however, Madeline also 

regularly interjected comments and questions during the other classes Paige taught.  

Interestingly, though, Paige and Madeline did not discuss why Madeline interjected a comment 

or question in a particular way at a particular time.   Additionally, as discussed in section 4.2.3.4, 

the feedback that Paige received on her teaching was general and broad.  Keith’s experiences 

with his mentors were different.  He did not co-teach with either of his mentors.  Instead, as 

outlined in section 4.3.3.1, Michelle and Darcy made detailed notes during his lessons and 

provided him with specific feedback after class.   Keith’s mentors and university supervisor all 

mentioned that he was slow to implement the feedback; however, no comparison to Paige can be 

made on this aspect since she did not receive the same type of feedback and guidance.   
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5.0 CHAPTER FIVE: DISCUSSION 
 

 
 
 
 

5.1 INTRODUCTION 
 

Chapter one described the need for the instructional practices in mathematics classrooms to shift 

from procedure driven teacher-centered instruction to conceptually oriented student-centered 

instruction.  However, research indicates that this process is not easy for teachers to accomplish 

(Cohen, 1990; Manouchehri & Goodman, 2000; Orrill & Anthony, 2003; Wilson & Lloyd, 

2000).  Teachers need experience.  Teacher education programs have the potential to provide 

pre-service teachers with opportunities both in the university setting (e.g. Behm & Lloyd, 2003; 

Lloyd & Frykholm, 2000; Smith et al, 2001; Smith et al 2003; Spielman & Lloyd, 2004) and in 

the field experience classroom (e.g. Eisenhart et al, 1994; Ebby, 2000; Van Zoest & Bohl, 2002) 

to develop instructional practices that support students’ development of mathematical 

understanding that is conceptual rather than purely procedural in nature.   

Drawing on Carpenter and Lehrer’s (1999) framework, this study investigated the 

instructional practices of two pre-service teachers.  Specifically, this study examined the 

cognitive demands of the tasks used in focus lessons at four particular points (curriculum, lesson 

plan, set-up, and enactment), the type of academic questions asked (tuning, monitoring, and 

connection), and the representations of functions (table, graph, equation, language, and context) 

available during the lesson.  Previous research (e.g., Clarke, 1997; Henningsen & Stein, 1997; 

Hienert & Wearne, 1993; Lloyd, 1999; Remillard, 1999; Sanches & Llinares, 2003; Van Zoest & 
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Bohl, 2002) indicated that various factors impact the implementation of instructional practices 

that involve conceptually oriented tasks.  Additionally, this study investigated how aspects of the 

context within which each pre-service teacher worked influenced their instructional practices, 

particularly focusing on the mentor teacher and the curriculum.   

 Findings from the study show that the instructional practices of Paige and Keith were quite 

different.  Paige appropriated all the tasks from the textbook and stated that she felt the textbook 

aligned with her teaching methods.  Keith, however, stated that he did not value the traditional 

text in the focus class, but instead preferred the methods of the ROC he used in his other classes.  

As a result, he supplemented the textbook with a task from an outside source on the first day and 

adapted the tasks in the textbook to be more “CMP-like” on the remaining three days.  Even the 

lesson plan format that Paige and Keith utilized was quite different.  Paige used a chart that 

simply contained the objective, page numbers from the textbook, and problem numbers for 

homework.  In contrast, Keith’s lesson plans typically were 2-4 pages of text that included 

details such as specific questions to ask the students. 

  There were also differences on each of the critical dimensions of instructional practice.  

While both Paige and Keith consistently maintained the level of cognitive demand of each 

lesson, only 40% of Paige’s tasks (2 out of 5) were high-level, compared to 75% (3 out of 4) of 

Keith’s being high level.  Both Paige and Keith did provide their respective students with 

multiple representations; however, the ways in which the representations were used differed.  

Paige focused on procedural aspects of making connections between representations.  Keith used 

the representations as a way for the students to build meaning of the mathematical concepts.   

Paige was also more likely to state connections, whereas Keith often asked questions that 

allowed the students to make the connections.  This is most evident in the questions that each 
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pre-service teacher asked.  On average, Paige asked only 4 connecting questions per day, 

compared to Keith’s average of approximately 32.   

 When taken together, the data indicate that students in Keith’s class were exposed to more 

tasks that were cognitively demanding (i.e, 75% of the tasks were high-level as compared to 40% 

of Paige’s tasks), and to more opportunities via the questions asked to make connections between 

representations and to the mathematical concepts.  This is important since previous research (as 

reviewed in chapters one and two) indicates that the critical dimensions of instructional practice 

impact students’ learning.  Specifically, studies by Hiebert and Wearne (1993), Stein and Lane 

(1996), and Stigler and Hiebert (1999) illustrate that the cognitive demands of the tasks used in a 

classroom influence the opportunities students have to think and reason about mathematics.  The 

work of those such as Lesh, Landau, and Hamilton (1983), Lesh, Post, and Behr (1987), and 

Pape and Tchoshanov (2001) point to the importance of students making connections between 

representations as a way to develop a conceptual understanding of mathematics.  Additionally, 

studies by Chapin et al (2003), Forman et al (1998), Hiebert and Wearne (1993), Lampert and 

Rittenhouse (1996), Martino and Maher (1999) and O’Connor (2001) demonstrate how the types 

of questions asked can impact the students’ learning of the mathematics.   Keith’s students, then, 

were provided with more opportunities to think and reason about mathematics and develop a 

conceptual understanding. 

  One possible explanation for these differences is that Paige and Keith themselves had 

different experiences regarding their learning about instructional practices.  The next section 

further considers the opportunities that Paige and Keith had during their field experience to learn 

about student-centered instructional practices.    
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5.2 OPPORTUNITIES TO LEARN ABOUT STUDENT-CENTERED 
INSTRUCTIONAL PRACTICES DURING THE FIELD EXPERIENCE 

 
  
One well established idea in education research is that students learn what they have the 

opportunity to learn.  While this research has focused on K-12 students, it stands to reason that 

the same is true if the students are pre-service teachers learning the teaching profession. That is, 

pre-service teachers can only gain knowledge of ideas and become skilled at methods to which 

they are exposed to and have opportunities to explore.  Varied experiences are likely to result in 

varied learning outcomes.   

 As previously established, Paige and Keith did have a number of similar experiences, yet 

their instructional practices were quite different.  One way to account for these differences is by 

more closely comparing support structures of each pre-service teacher.  An analysis of the 

contexts makes salient the differences in the support to enact student-centered instruction 

between each pre-service teacher.  Two specific areas that were targeted in this study were the 

curriculum and the mentor.  A review of the data indicated that the curriculum used in each part 

of the field experience (i.e., not just the focus class) did impact the instructional practices of both 

Paige and Keith.  Additionally, the mentoring that Paige and Keith received from their mentor 

teachers and university supervisors also appeared to affect aspects of their practice.  Each of 

these are explored more in the following sections.  
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5.2.1 The curriculum      
 
 

Chapter one discussed that the textbook is a primary support that teachers rely on for planning 

and teaching mathematics (Brown & Edelson, 2004; Ball & Cohen, 1996; Remillard, 2004; Van 

Zoest & Bohl, 2002).  Traditional textbooks and ROC differ significantly on the types of 

mathematical thinking and reasoning that is valued as evidenced by the tasks that are provided to 

engage students with the mathematics.  In addition, the curricula also diverge on the role of the 

teacher and the students (Lloyd, 1999; Lloyd & Frykholm, 2000, NCTM, 1989; NCTM, 2000; 

Senk & Thompson, 2003b).  As a result, different curricula provide differing levels of support to 

teachers who are trying to implement student-centered instructional practices.   

 As discussed in section 4.2.2, the curricula that Paige and Keith were each exposed to 

seemed to impact their instructional practices.  Even though both pre-service teachers used a 

traditional textbook in the focus class, Keith had access to and experience with the reform-

oriented curriculum CMP.  Paige viewed her curriculum as a great resource that supported her 

desired instructional practice.  She cited the suggestions from the teacher’s edition as support; 

however, as previously discussed, the suggestions in the Integrated 1 textbook were primarily 

surface level features rather than substantial support for enacting student-centered instructional 

practices.  Through CMP, Keith did have access to a curriculum that provided substantial 

support.  Keith was able to utilize his exposure to and experience with CMP in his other classes 

to modify his instructional practices with the traditional textbook in the focus class.    
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5.2.2 Mentoring      

As described in chapter one, the mentor can have a profound influence on the instructional 

practices of a pre-service teacher (Ebby, 2000; Eisenhart et al, 1994; Frykholm, 1996; Van Zoest 

and Bohl, 2002).  Mentors can be a support and socializing agent to the teaching profession for 

the pre-service teacher (Little, 1990).  The act of mentoring can serve as an effective tool for 

helping pre-service teachers learn to teach because there are aspects of teaching that can only 

truly be explored while in the classroom setting rather than a university course (Feiman-Nemser, 

2001; Wang, 2001).  

 In pre-service teacher education, the term “mentor” is often used to describe the teacher of 

the classroom in which the pre-service teacher is completing some component of the field 

experience; however, the term mentor can be extended to others with expertise in the field who 

are involved on a regular basis with the pre-service teacher regarding their teaching practices, 

such as the university supervisor (Little, 1990).  Using Little’s (1990) definition, both the mentor 

teacher and the university supervisor played mentoring roles for Paige and Keith.  However, the 

depth of mentoring that each received was quite different, thus providing different opportunities 

to progress towards the goal of student-centered instructional practices.     

 Feiman-Nemser (2001) describes two types of mentoring practices: emotional support and 

educative mentoring.  Drawing on the work of Little (1990), Feiman-Nemser defines emotional 

support as, “support that makes novices feel comfortable” (p.18).  Emotional support mentors 

typically view their role as primarily providing a classroom in which the pre-service teachers14 

can try out new ideas, succeeding or making mistakes in a safe context.    The support given may 

take the form of offering suggestions and feedback, but the nature of the support “may not 
                                                 
14 While each study discussed did involve pre-service teachers, the studies more broadly focused on beginning 
teachers; however, for consistency within the text of this current study, the term “pre-service teacher” will be used.  
The author recognizes that this is limiting, but wishes to use a consistent vocabulary.  
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qualify as an educational intervention” because it may be very situation specific or practical 

advice that does not provide an opportunity for the pre-service teacher to learn about a key aspect 

of teaching (Feiman-Nemser, 1998).  In contrast, educative mentoring is guided by  

an explicit vision of good teaching and an 
understanding of teacher learning.  Mentors who share 
this orientation attend to beginning teacher’ present 
concerns, questions, and purposes without loosing 
sight of long-term goals for teacher development.  
They interact with novices in ways that foster an 
inquiring stance.  They cultivate skills and habits that 
enable novices to learn in and from their practice.  
They use their knowledge and expertise to assess the 
direction novices are heading and to create 
opportunities and conditions that support meaningful 
teacher learning in the service of student learning (p. 
18).  

 

 Various research studies (e.g., Feiman-Nemser, 1998, 2001; Edwards, 1998; Wang 2001) 

indicate that educative mentoring is a powerful tool in helping beginning teachers develop 

instructional practices that are conceptually oriented and student-centered.  Feiman-Nemser 

(2001) discussed how the educative mentor relates to the beginning teacher in a way that is 

similar to the desired way the beginning teacher should interact with the students in the 

classroom.  For example, she identified eight strategies one exceptional educative mentor used 

with a beginning teacher.  Specifically, she found that the educative mentor 1) found appropriate 

openings to discuss key ideas, 2) helped the beginning teacher pinpoint the source of any 

problems, 3) probed the thinking and reasoning of the beginning teacher, 4) commented on 

points of growth, 5) remained focused on student learning, 6) connected to relevant theories of 

teaching and learning, 7) provided a model of desired teaching for the beginning teacher to 

observe, and 8) demonstrated “wondering about teaching” via reflection and questioning.  In 
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sum, educative mentoring is purposeful and occurs in all phases of teaching- planning, enacting, 

and reflecting (Feiman-Nemser, 1998, 2001).  . 

  As described in section 4.2.3.4, the feedback that Paige typically received from both 

Madeline and Derrick was broad, often involving complementary comments or general pieces of 

advice.  This is indicative of the emotional support mentoring (Fieman-Nemser, 2001).  While 

supporting the pre-service teacher via general feedback and advice is sometimes appropriate, the 

problem arises when the majority of mentoring is in this format, as was the case with Paige. 

Beginning teachers often do not know how to ask for specific guidance and feedback, or do not 

even recognize that it is needed and would be beneficial to their teaching practices (Little, 1990).  

In contrast, as illustrated in section 4.3.3.1, Keith was consistently exposed to educative 

mentoring from both of his mentor teachers and university supervisor.  He was expected to work 

towards a high standard of success, and was provided with very specific feedback about his 

instructional practices along the way.   The mentoring that Paige and Keith received is a critical 

component of their experiences, and the differences ultimately may have impacted their 

instructional practices.  A recent study by Fieman-Nemser (2001) indicated that beginning 

teachers within the first few years of teaching who were exposed to educative mentoring were 

more likely to develop effective instructional practices that were student-centered and 

conceptually oriented and go beyond the surface level features of reform instruction (e.g having 

students work in groups).  One possible explanation for the differences in the mentoring 

practices may be the way each mentor and supervisor viewed their role and purpose with the pre-

service teacher as well as their expectations of the pre-service teacher. 

 Both Madeline and Derrick stated that their role with Paige was primarily to provide support 

for her while she figures out the “nuts and bolts of teaching” (Madeline, Contextual Interview, 
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line 409).  Madeline stated that in addition to providing a model of good teaching, she wanted to 

“also just to support her....you know, if there’s an issue and she needs my advice, I’m there to 

help her with it” (Contextual interview, line 410-411).    Derrick described his relationship with 

Paige as one that was very collegial. 

Well, actually I believe from day one, it really didn’t have that 
feeling at all that we were different. It was more like we were 
just co-workers on this deal and ....I never got the feeling that 
she was nervous that I was coming in or she was afraid of me 
or anything of that type at all. She was just very friendly and 
that was the way she was with [Madeline], too. It’s just like 
everybody was equal and she was equal to us and we were 
equal to her and we’re all in this together (Derrick, Contextual 
Interview, lines 47-50). 

 
Additionally, Derrick’s description of his approach to supervising pre-service teachers aligns 

with that of an emotional support mentor.  

I don’t approach my supervising with…expectations, I think. I 
think I just go and see what the situation is, then see what I 
can do to help or what advice I can offer or uh...like 
some...some schools, some districts, some mentor 
teachers...they don’t know what to do with an intern or student 
teacher. So I tell them about my past experiences or what 
I...what I think the university would want. With [Paige] and 
[Madeline],...they were both very confident. [Madeline’s] 
been through the [same university] program so she 
knew...what was kind of expected. And...really with [Paige] 
there wasn’t much to do. She was on top of things right from 
the very beginning (Contextual Interview, lines 69-75) 

 
 

Paige also discussed her perspective on what Madeline and Derrick expected from her as an 

intern.   

I think that [Madeline] kind of expects me to do the same 
things she does…. do everything for the classes that I’m 
teaching at the time,...planning and…teaching, figuring 
out…pacing and dealing with whatever issues pop up in that 
class. So, on that level I pretty much… do whatever she’s 
doing…I go to all the meetings that we need or parent 
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meetings or team meetings or IEP meetings (General 
Interview #1, lines 310-315).  
 
[Derrick] expects me to do a good job and, you know, to keep 
things running smoothly….Make sure that I’m listening to the 
kids. Make sure that… that I’m clear....If the kids are engaged 
or not, or if they could care less what’s going on….[Derrick] 
is such a nice guy so it’s hard to… think of what he’s so 
critical about. He always tries to be so nice about it. (General 
Interview #2, lines 138; 143-147) 

 

  As illustrated in section 4.3.3.3, Keith recognized that he was being held to a high 

standard of success from his mentors and university supervisor.   This difference is further 

illuminated by his mentors’ and supervisor’s expectations and views of their roles with Keith.  

Each of them independently stated that the expected Keith to plan and enact lessons that 

provides students with opportunities to engage in thinking and reasoning about mathematics.  

That is, he should identify a meaningful goal and create a lesson that facilitates students working 

towards that goal.  Each emphasized the value of a well-written lesson plan, and Darcy 

repeatedly commented on the importance of referring to the written plan during the enactment.  

Additionally, each discussed the expectation that Keith should reflect on the enactment of the 

lesson, and through that reflection identify one or two specific areas to work on immediately.   

  Darcy, Michele, and Nicole’s description of their roles closely aligns with that of an 

educative mentor.  For example, Nicole stated that her approach to working with pre-service 

teacher was to  

try to take notes on what’s actually  happening during the 
lesson and then try to identify with the teacher some area of 
instruction which they need...which they feel they need to 
continue to work on. And then trying to use...the evidence 
collected during the lesson as a way to frame the discussion 
about whatever that particular thing is (Contextual Interview, 
lines 76-77).  
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This focused and purposeful observation and conversation was typical of the interactions Keith 

had with Darcy and Michele during the course of the data collection. 

 Throughout the data collection, Paige only had opportunities to experience two of the eight 

characteristics identified by Feiman-Nemser (2001): commenting on points of growth and 

observing desired teaching practices.  However, these opportunities were not fully capitalized on 

as an authentic way of promoting growth.  For example, as previously established, the feedback 

Paige received was often general in nature.  Additionally, even though Paige did have 

opportunities to watch Madeline teach, Paige stated that from the first day of her internship, she 

“never just sat and observed” (General Interview #1, line 104).   

  Keith’s experience being mentored was quite different than Paige’s.  Through the 

interviews and observations, there is evidence that Keith regularly experienced all eight of the 

characteristics associated with educative mentoring as described by Feiman-Nemser (2001).  His 

mentors often focused on a particular part of his lesson and used those as a way to discuss 

student understanding as well as actions Keith did or did not take to support students’ learning of 

the intended mathematical goal.   

 Another difference of interest between the mentoring of the university supervisors was the 

extent to which each viewed the role of the university in the education of the pre-service 

teachers.  Feiman-Nemser’s (2001) sixth criteria of an educative mentor is that the mentor helps 

the pre-service teacher see connections to relevant theories of teaching and learning; that is, the 

instructional practices of the pre-service teacher should be informed by and viewed through the 

lens of the current understanding of effective teaching strategies.  Nicole’s interactions with 

Keith were, in fact, grounded in relevant theories that Keith was learning about at the university.  

This may be due, in large part, to the fact that Nicole was also an instructor for two of Keith’s 
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methods classes at the university. As discussed in section 4.3.3.3, Keith recognized and 

appreciated the consistency between his field placement and university coursework.  In contrast, 

Derrick indicated that he did not value the work of the university, as he did not view the 

workload and assignments as being beneficial to the pre-service teachers.  He expressed his 

concern, stating, 

I get the feeling...at least the last two, maybe three years, that 
[the pre-service teachers are] being overworked down at Pitt. 
[Those] who are teaching those courses are...[the pre-service 
teachers are] doing a full-time job at their school and then 
they’re doing a full-time job at Pitt. It’s very, very frustrating 
to them. At different times, different interns, they just get 
overwhelmed and I’ve talked to them and their mentors and 
people have talked to them and kind of get them through it and 
then after that things turn around. It seems like the workload 
down at Pitt is too much. That’s my observation of the whole 
thing….[The university work] keeps them away...yes...it keeps 
them away from the preparation for their local...for their 
schools (Contextual Interview, lines 247-249; 260).  

 
  In summary, the mentoring practices that Paige and Keith were each exposed to were 

quite different.   Paige experienced emotional support that focused on helping her deal with 

problems as they arise.  Keith’s mentors (including his university supervisor) were more 

purposeful in their observations and feedback.  They consistently used specific instances form 

the lesson as a means to identify key areas for Keith to focus on improving. 

 

5.3 IMPLICATIONS AND RECOMMENDATIONS FOR THE FIELD 
 

This study examined the instructional practices of two secondary mathematics pre-service 

teachers.  The results indicate that the curriculum used, the alignment of support, and the 

mentoring practices each pre-service teacher was exposed to impacted their instructional 

practices, particularly with respect to the cognitive demands of the tasks used in the classroom, 
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the use of representations as a means to build understanding of a concept, and the number of and 

types of questions asked during the enactment of the lesson.  These results have significance for 

the field of pre-service teacher education. 

 First, as outlined in section 5.3.1, both Keith and Paige relied on their curriculum as a 

resource for planning lessons.  Each focus class used a traditional textbook.  Keith, however, was 

more critical of the traditional book than Paige.  Paige described her curricula as being “student-

centered”, but she focused on surface level features such as suggestions for working in groups.  

While working in groups can be a powerful experience for students, being in groups does not 

guarantee that the students will effectively engage in a mathematically productive conversation.  

The group work needs to be purposefully structured so that the students are thinking and 

reasoning about mathematics.  Paige’s curriculum did not provide her with the support necessary 

to construct this type of setting.  Similarly, the teacher’s edition from Keith’s focus class also did 

not provide this support; however, CMP did. Keith used the ideas in the reform-oriented 

curricula he used in other classes as a guide to modify the more traditional text used in the 

algebra focus class.  Given that pre-service teachers are likely to rely heavily on their textbooks, 

pre-service teacher education programs should consider providing opportunities for their 

students to explore a variety of curricular materials, critically analyzing the tasks, tools, and 

normative practices provided.  Additionally, pre-service teachers should analyze the benefits and 

drawbacks of different curricula.   

Second, as illustrated in Keith’s story, the alignment of high expectations from various 

aspects of the context in which the pre-service teacher is immersed (i.e., curriculum, mentor, 

supervisor, university courses) was effective in supporting the development of student-centered 

instructional practices.  Paige’s context was not fully aligned, given that the curriculum was a 
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traditional text and her supervisor did not value the practices of the university courses.  This 

result implies that pre-service teacher education programs should carefully examine the extent to 

which all aspects of the pre-service teacher’s context aligns to support and promote the desired 

instructional practices.   

  Finally, this study highlights the importance of mentoring on pre-service teachers 

instructional practices.  Specifically, Keith experienced educative mentoring, and he was more 

likely than Paige to plan lessons that involved high-level tasks and to maintain the cognitive 

demands of the tasks during the set-up and enactment of the lesson.  Thus, the mentoring that 

pre-service teachers experience is a critical component in developing student-centered 

instructional practices. Teacher education programs, then, should carefully consider the 

identification and use of mentors, including the university supervisors.   According to a study by 

Wang (2001), even if the mentor teacher’s instructional practices are student-centered and 

represent the practices desired from the pre-service teacher, that alone does not imply that the 

mentor will be effective in helping the pre-service teacher develop those practices.  This is 

illustrated with the case of Madeline and Paige.  Boston’s (2006) study indicated that the 

majority of tasks that Madeline used in her classroom were high-level, and that she maintained 

the cognitive demands of the tasks during the enactment of the lesson; yet only 20% of the tasks 

that Paige enacted were high-level.   Paige’s story exemplifies the fact that educative mentoring 

is not guaranteed simply based on the practices of the mentors.  Therefore, teacher education 

programs also should establish ways of working with the mentors on the act of mentoring.  

Comments from both Madeline and Michele support the ideas that teacher education programs 

need to provide support and feedback to the mentors.  Both indicated that they were unsure of 
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how to progress in mentoring, particularly in the beginning stages of the internship.  Each also 

expressed a desire for feedback on their mentoring practices. 

 

5.4 FUTURE RESEARCH 
 

While much was learned from this study, there were limitations in the design that should be 

considered in future research.  This study focused on two participants, each for five consecutive 

days. Future research may focus on a longer time frame as a way to capture more detail and note 

changes that may (or may not) occur over time.  Future work may also include a larger number 

of participants in a variety of setting.  Additionally, this study focused primarily on the 

curriculum and the mentor teachers.  Future studies might more closely examine other support 

structures available to the pre-service teachers. For example, future research should examine 

more specifically the role of the university supervisors, focusing on the feedback provided and 

the impact that feedback has on the instructional practices of the pre-service teacher.  

Additionally, future research should follow the participants in university methods courses as a 

way to investigate how the tools and frameworks of the program are introduced and utilized in 

the university course.  This would provide more insight into the alignment between the 

expectations and support of university regarding the enactment of student centered instructional 

practices with the expectations and support of the mentor teachers and university supervisors.  

The research could also be expanded by following the pre-service teachers into their first 

year of teaching to determine the nature of their instructional practices when they are no longer 

“under the wing” of the mentor teacher and university supervisor.   The support available to 

Paige and Keith during the first year of teaching may be similar to or different from the access 

each had to educative mentoring and a reform-oriented curriculum as pre-service teachers. A 
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study that examines their instructional practices and how the new contextual settings impact 

those practices would provide insight into what residue, if any, remained from their experiences 

as a pre-service teacher as well as how instructional practices may change or stay the same when 

different supports are in place. 
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Appendix A 

 
TOOLS AND FRAMEWORKS INTRODUCED IN THE UNIVERSITY METHODS 

COURSES 
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Thinking Through a Lesson Protocol 

TTLP 
 
Part 1:  Selecting and Setting up a Mathematical Task 

 
 What are your mathematical goals for the lesson (i.e., what is it that you want students to 

know and understand about mathematics as a result of this lesson)?  
 

 In what ways does the task build on students’ previous knowledge? What definitions, 
concepts, or ideas do students need to know in order to begin to work on the task?  What 
questions will you ask to help students access their prior knowledge? 

 
 What are all the ways the task can be solved? 

o Which of these methods do you think your students will use?   
o What misconceptions might students have? 
o What errors might students make? 

 

 What are your expectations for students as they work on and complete this task? 
o What resources or tools will students have to use in their work? 
o How will the students work -- independently, in small groups, or in pairs -- to 

explore this task? How long will they work individually or in small groups/pairs?  
Will students be partnered in a specific way?  If so in what way? 

o How will students record and report their work? 
 

 How will you introduce students to the activity so as not to reduce the demands of the 
task?  What will you hear that lets you know students understand the task? 

 

Part 2:  Supporting Students’ Exploration of the Task  

 
 As students are working independently or in small groups: 

o What questions will you ask to focus their thinking?   
o What will you see or hear that lets you know how students are thinking about the 

mathematical ideas?   
o What questions will you ask to assess students’ understanding of key 

mathematical ideas, problem solving strategies, or the representations? 
o What questions will you ask to advance students’ understanding of the 

mathematical ideas? 
o What questions will you ask to encourage students to share their thinking with 

others or to assess their understanding of their peer’s ideas?  
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 How will you ensure that students remain engaged in the task?   
o What will you do if a student does not know how to begin to solve the task?   
o What will you do if a student finishes the task almost immediately and becomes 

bored or disruptive? 
o What will you do if students focus on non-mathematical aspects of the activity 

(e.g., spend most of their time making a beautiful poster of their work)? 
 
Part 3:  Sharing and Discussing the Task  

 
 How will you orchestrate the class discussion so that you accomplish your mathematical 

goals?  Specifically: 
o Which solution paths do you want to have shared during the class discussion? In 

what order will the solutions be presented?  Why?  
o In what ways will the order in which solutions are presented help develop 

students’ understanding of the mathematical ideas that are the focus of your 
lesson? 

o What specific questions will you ask so that students will: 
 make sense of the mathematical ideas that you want them to learn? 
 expand on, debate, and question the solutions being shared? 
 make connections between the different strategies that are presented? 
 look for patterns? 
 begin to form generalizations? 

 
 What will you see or hear that lets you know that students in the class understand the 

mathematical ideas that you intended for them to learn? 
 

 What will you do tomorrow that will build on this lesson? 
 

 
 
 
The Thinking Through a Lesson Protocol was developed through the collaborative efforts (lead by Margaret Smith, 
Victoria Bill and Elizabeth Hughes) of the mathematics team at the Institute for Learning and faculty and students in 
the School of Education at the University of Pittsburgh. 
 
 Smith, M.S. & Bill, V. (2004, January). Thinking Through A Lesson: Collaborative Lesson Planning as a 
Means for Improving the Quality of Teaching. Presentation at the annual meeting of the Association of Mathematics 
Teacher Educators, San Diego, CA. 
 

Hughes, E.K., & Smith, M.S. (2004, April).  Thinking Through a Lesson: Lesson Planning as Evidence of 
and a Vehicle for Teacher Learning.  Poster presented as part of a symposium, “Developing a Knowledge Base for 
Teaching: Learning Content and Pedagogy in a Course on Patterns and Functions " at the annual meeting of the 
American Educational Research Association, San Diego, CA 
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Math Task Analysis Guide 

Lower-Level Demands Higher-Level Demands 
 
Memorization Tasks 
• Involves producing previously learned facts, 

rules, formulae, or definitions OR 
committing facts, rules, formulae, or 
definitions to memory. 

• Cannot be solved using procedures because a 
procedure does not exist or because the time 
frame in which the task is being completed is 
too short to use a procedure. 

• Are not ambiguous – such tasks involve 
exact reproduction of previously seen 
material and what is to be reproduced is 
clearly and directly stated. 

• Have no connection to the concepts or 
meaning that underlie the facts, rules, 
formulae, or definitions being learned or 
reproduced. 

 

 
Procedures With Connections Tasks 
• Focus students’ attention on the use of procedures for the 

purpose of developing deeper levels of understanding of 
mathematical concepts and ideas. 

• Suggest pathways to follow (explicitly or implicitly) that 
are broad general procedures that have close connections to 
underlying conceptual ideas as opposed to narrow 
algorithms that are opaque with respect to underlying 
concepts. 

• Usually are represented in multiple ways (e.g., visual 
diagrams, manipulatives, symbols, problem situations).  
Making connections among multiple representations helps 
to develop meaning. 

• Require some degree of cognitive effort.  Although general 
procedures may be followed, they cannot be followed 
mindlessly.  Students need to engage with the conceptual 
ideas that underlie the procedures in order to successfully 
complete the task and develop understanding.  

 
Procedures Without Connections Tasks 
• Are algorithmic. Use of the procedure is 

either specifically called for or its use is 
evident based on prior instruction, 
experience, or placement of the task. 

• Require limited cognitive demand for 
successful completion.  There is little 
ambiguity about what needs to be done and 
how to do it. 

• Have no connection to the concepts or 
meaning that underlie the procedure being 
used. 

• Are focused on producing correct answers 
rather than developing mathematical 
understanding. 

• Require no explanations, or explanations that 
focus solely on describing the procedure that 
was used. 

 

 
Doing Mathematics Tasks 
• Requires complex and non-algorithmic thinking (i.e., there 

is not a predictable, well-rehearsed approach or pathway 
explicitly suggested by the task, task instructions, or a 
worked-out example). 

• Requires students to explore and to understand the nature of 
mathematical concepts, processes, or relationships. 

• Demands self-monitoring or self-regulation of one’s own 
cognitive processes. 

• Requires students to access relevant knowledge and 
experiences and make appropriate use of them in working 
through the task. 

• Requires students to analyze the task and actively examine 
task constraints that may limit possible solution strategies 
and solutions. 

• Requires considerable cognitive effort and may involve 
some level of anxiety for the student due to the 
unpredictable nature of the solution process required.  
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Math Task Framework 

 
 
 
 
 
 
 
 
 
 
 

 
 TASKS   
as they appear 
in curricular/ 
instructional 
materials 

 

TASKS      
as set up by the 
teachers 

TASKS        
as  
implemented  
by students 

 
Student  
Learning 
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Cycle of Teaching 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Teaching Planning 

Reflecting
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Categories of Questions 
 

Question Type Description Examples 
1. Gathering 
information, leading 
students through a 
method 

Requires immediate answer 
Rehearses known facts/procedures 
Enables students to state 
facts/procedures 

What is the value of x 
in this equation? 
How would you plot 
that point? 

2. Inserting terminology Once ideas are under discussion, 
enables correct mathematical 
language to be used to talk about 
them 

What is this called? 
How would we write 
this correctly? 

3. Exploring 
mathematical meanings 
and/or relationships 

Points to underlying mathematical 
relationships and meanings.  Makes 
links between mathematical ideas and 
representations 

Where is this x on the 
diagram?  
What does probability 
mean? 

4. Probing, getting 
students to explain their 
thinking 

Asks students to articulate, elaborate 
or clarify ideas 

How did you get 10? 
Can you explain your 
idea? 

5. Generating 
Discussion 

Solicits contributions from other 
members of class. 

 Is there another 
opinion about this? 
What did you say, 
Justin? 

6.  Linking and applying Points to relationships among 
mathematical ideas and mathematics 
and other areas of study/life 

In what other 
situations could you 
apply this?  Where 
else have we used 
this? 

7. Extending thinking Extends the situation under 
discussion to other situations where 
similar ideas may be used 

Would this work with 
other numbers? 

8. Orienting and 
focusing 

Helps students to focus on key 
elements or aspects of the situation in 
order to enable problem-solving 

What is the problem 
asking you? 
What is important 
about this? 

9. Establishing context Talks about issues outside of math in 
order to enable links to be made with 
mathematics 

What is the lottery? 
How old do you have 
to be to play the 
lottery? 

Boaler & Broodie, 2004 
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Representations of a Function 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

equation graph 

table 

language 

context 

 
Van de Walle (2004) 
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Appendix B 

 
UNIVERSITY GUIDELINES FOR PHASE-IN OF INTERNS 

 
 
 



233 
 

University  
Intern Teacher Phase-In Process 

WEEK NUMBER MAT 
WEEK 1 • Induction and Observations  

 
WEEK 2 • Induction and Observations 

• Routine clerical, classroom, non-instructional tasks 
• Individualized student instruction-tutoring, remedial or enrichment, writing/reading conferences 
• Small group instruction 
• Episodic teaching/mini-lessons 

WEEK 3 • Observations 
• Routine clerical, classroom, non-instructional tasks 
• Individualized student instruction-tutoring, remedial or enrichment, writing/reading conferences 
• Small group instruction 
• Episodic teaching/mini-lessons 

WEEK 4 • Routine clerical, classroom, non-instructional tasks 
• Individualized student instruction-tutoring, remedial or enrichment, writing/reading conferences 
• Small group instruction 
• Episodic teaching/mini-lessons 

WEEK 5 • Routine clerical, classroom, non-instructional tasks 
• Individualized student instruction-tutoring, remedial or enrichment, writing/reading conferences 
• Small group instruction 
• Episodic teaching/mini-lessons 
• One class preparation (Secondary Level: multiple sections, if possible) 

WEEK 6 • Routine clerical, classroom, and non-instructional tasks 
• Individualized student instruction 
• Small group instruction 
• Episodic Teaching/mini lessons 
• One class preparation (Secondary Level: multiple sections, if possible) 

WEEK 7 • Routine clerical, classroom, and non-instructional tasks 
• Individualized student instruction 
• Small group instruction 
• Episodic Teaching/mini lessons 
• One class preparation (Secondary Level: multiple sections, if possible) 

WEEK 8 • Routine clerical, classroom, and non-instructional tasks 
• Individualized student instruction 
• Small group instruction 
• Episodic Teaching/mini lessons 
• One class preparation (Secondary Level: multiple sections, if possible) 
 

WEEK 9 • Routine clerical, classroom, and non-instructional tasks 
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• Individualized student instruction 
• Small group instruction 
• Episodic Teaching/mini lessons 
• One class preparation (Secondary Level: multiple sections, if possible) 

WEEK 10 • Routine clerical, classroom, and non-instructional tasks 
• Individualized student instruction 
• Small group instruction 
• Episodic Teaching/mini lessons 
• One class preparation (Secondary Level: multiple sections, if possible) 

WEEK 11 • Routine clerical, classroom, and non-instructional tasks 
• Individualized student instruction 
• Small group instruction 
• Episodic Teaching/mini lessons 
• One class preparation (Secondary Level: multiple sections, if possible) 

WEEK 12 • Routine clerical, classroom, and non-instructional tasks 
• Individualized student instruction 
• Small group instruction 
• Episodic Teaching/mini lessons 
• TWO  class preparations (Secondary Level: multiple sections, if possible) 

WEEK 13 • Routine clerical, classroom, and non-instructional tasks 
• Individualized student instruction 
• Small group instruction 
• Episodic Teaching/mini lessons 
• TWO  class preparations (Secondary Level: multiple sections, if possible) 

WEEK 14 • Routine clerical, classroom, and non-instructional tasks 
• Individualized student instruction 
• Small group instruction 
• Episodic Teaching/mini lessons 
• TWO  class preparations (Secondary Level: multiple sections, if possible) 

WEEK 15 NOTE: This schedule should continue until WEEK 18. At that time the intern will assume ½ of the mentor’s teaching schedule (no more 
than 3 preparations/day at secondary level).  This will continue for the rest of the placement. 

 
Phasing in of interns and student teachers is always a joint decision and deviations from these guidelines to accommodate individual student’s progress should be 

made only with the consent of the intern/student teacher, the mentor/cooperating teacher, and the university supervisor.   
 

For additional information, you should refer to the Intern or Student Teacher Handbook. 
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Appendix C 

 
UNIVERISTY GUIDELINES FOR ROLES OF THE MENTOR, SUPERVISOR, AND 

INTERN 
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SUMMARY OF THE ROLES OF THE MENTOR/COOPERATING TEACHER, THE UNIVERSITY SUPERVISOR, AND THE 

INTERN/STUDENT TEACHER 
The professional, collaborative training team consists of the mentor/cooperating teacher, the university supervisor, and the 
intern/student teacher. Each member of the team has a unique role that contributes to the professional growth and development of the 
intern/student teacher. However, the roles are interdependent. The success of the internship/student teaching experience hinges on the 
quality of the social and professional relationships developed within this triad. Continuous open, honest, three-way communication is critical 
for the professional triad to be effective. 
 

ROLE OF THE 
MENTOR/COOPERATING TEACHER 

                              

ROLE OF THE UNIVERSITY 
SUPERVISOR 

 

ROLES AND RESPONSIBILITIES OF THE 
INTERN/STUDENT TEACHER 
 

 
• Acknowledge the 

intern/student teacher as a 
professional colleague to 
students, faculty, and parents. 
Allow them to become part of 
the professional staff. 

• Familiarize the intern/student 
teacher with the classroom, 
school, and community 
environments. 

• Orient the student to the 
school curriculum. 

• Clarify at the beginning of the 
experience the specific roles 
and responsibilities of the 
intern/student teacher. This 
will avoid potential problems. 

• Model effective classroom 
instruction. 

• Assist the intern/student 
teacher in planning 
instruction.  

• Be willing to share resources.  
• Provide opportunities for the 

intern/student teacher to 
observe you and other 
colleagues in a variety of 
disciplines and grade levels. 

• Serve as a coach, an 
encourager, and a nurturer. 

• Observe the intern/student 
teacher teach and provide both 
oral and written feedback on 
their planning and 
preparation, classroom 
environment and 
management, instructional 
delivery, and assessment 
skills. Offer feedback in a 
positive and constructive 
manner. 

• Invite the intern/student to 
engage in reflective self-
evaluation. Ask questions that 
encourage the intern/student 
teacher to describe, evaluate, 
and refine all aspects of 
his/her teaching. 

• Complete one, formal written 
observation a week, using a 
university observation protocol. 

• Verify the intern/student 
teacher’s weekly hours and 
sign the weekly time sheets. 

• Read the Intern/Student 
Teacher Handbook to become 

 
The university supervisor is a member 
of the Pitt faculty who serves as the 
vital link between the university and 
the cooperating schools. Some 
supervisors are graduate students 
pursuing doctoral degrees in education. 
These individuals are generally 
certified teachers who work under the 
guidance of our full-time faculty. Most 
of them have also completed advanced 
graduate studies in teaching, teacher 
education, and staff development. 
Other supervisors are former teachers 
and/or administrators. All supervisors 
participate in regular clinical 
supervision training programs. Several 
members of our supervisory staff have 
previously served as 
mentor/cooperating teachers. 
 
The university supervisor works 
closely with BOTH the intern/student 
teacher and the mentor/cooperating 
teacher. 
 
Guidelines for Supervisors 

• Interpret University 
policies, procedures, and 
requirements to all 
personnel involved in the 
internship/student teaching 
experience. 

• Know the standards 
(criteria) to be used in 
assessing the intern/student 
teacher’s performance. 

• Observe the intern/student 
teacher’s teaching seven 
times a semester.  

• Evaluate on an on-going 
basis the intern/student 
teacher’s performance in 
the classroom and on-site 
according to the domains of 
planning and preparation, 
classroom environment, 
instructional delivery, and 
professionalism. 

• In Elementary Education, 
the university supervisor 
must observe the 
intern/student teacher teach 
lessons in 
Reading/Language Arts, 
Math, Science, and Social 
Studies. 

 
The intern/student teacher has many personal, 
professional, and academic obligations throughout this 
practicum experience. At the university, we place a 
strong emphasis on professionalism. We stress that they 
are graduate students in a professional program and, 
therefore, are expected to think and to conduct 
themselves as professionals at all times. If conflicts or 
problems arise, the intern/student teacher should first 
discuss these matters with his/her mentor/cooperating 
teacher and his/her university supervisor in a 
confidential manner. 
 
ROLES AND RESPONSIBILITIES OF THE 
INTERN/STUDENT TEACHER 
 

Most of these are listed below 
• Become familiar with and follow the 

calendar of the cooperating school. This 
pertains to orientation days, in-service days, 
conference days, workshops, and holidays. 

• Follow the daily time schedule established 
by the district for the intern/student teacher. 

• Be punctual! Consistent tardiness without 
sufficient cause is inexcusable. 

•  Dress in an appropriate professional 
manner. 

• Maintain regular attendance. The hours an 
intern is assigned to a cooperating school 
varies, but the minimum is 20 hours a week 
for the entire year. Student teachers are at 
their cooperating school all day for 14 
weeks. 

• Report every absence and its reasons to the 
mentor/cooperating teacher through the 
school office as early as possible. See 
handbook for excused absences. 

• Clear every absence with the university 
supervisor, as well as the 
mentor/cooperating teacher. Student 
teachers who miss more than five days will 
have to make up these days by extending 
their student teaching. 

• Give ample prior notice to the building 
principal, if a planned absence has been 
approved by the university supervisor and 
the mentor/cooperating teacher. 

• Establish positive working relationships 
with all personnel in the cooperating school, 
with the university supervisor, and with 
university faculty. 

• Perform the same teaching and non-
teaching duties as the mentor/cooperating 
teacher, including participation in faculty 
meetings, parent-teacher conferences, staff 
development programs, extracurricular 
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familiar with guidelines, 
policies, and procedures. 

• Complete the required midterm 
and final university evaluations 
and submit them to the 
university supervisor or the 
Office of Teacher Education. 

• Work closely with the 
university supervisor and the 
district site coordinator. 
Confer regularly with the 
intern/student teacher and the 
university supervisor 
concerning the intern/student 
teacher’s progress. 

• If conflicts or problems arise, 
discuss them confidentially 
with the intern/student teacher 
and the university supervisor. 

• Participate in special 
university or school-based 
training sessions for mentors. 

• If you support the intern’s 
entry into the profession, write 
a letter of recommendation for 
his/her university placement 
file. 

 
Finally, a mentor/cooperating teacher 
must remember that becoming a teacher 
is a gradual, developmental process and 
that your role is to guide the novice teacher 
through this first experience. 
 
 
 
 

 
 

• Collect data on the 
intern/student teacher’s 
performance using a variety 
of data collection 
instruments. 

• Videotape the 
intern/student teacher 
teaching and use the tape to 
allow the novice teacher to 
engage in in-depth 
reflective analysis of 
his/her teaching. 

• Confer with the 
intern/student teacher 
following each observation 
and share data with the 
intern/student teacher and 
the mentor/cooperating 
teacher. 

• Ask questions to encourage 
the intern/student teacher to 
become reflective about 
his/her teaching. 

• Plan with the 
intern/student teacher and 
mentor/cooperating 
teacher specific areas that 
will receive attention in 
subsequent observations. 

• Keep the Coordinator of 
Supervision, the 
Coordinator of Field 
Placements, and specialty 
area program faculty 
informed of the 
intern/student teacher’s 
progress. 

 

functions, etc. 
• Organize the planning and implementation 

of instruction. Both unit plans and lesson 
plans must be prepared and submitted to the 
mentor/cooperating teacher prior to 
implementation. This allows the 
mentor/cooperating teacher to offer 
suggestions and/or give approval to the 
intern/student teacher’s plans. 

• Interns and student teachers must write a 
complete lesson plan for every lesson they 
teach. Block plans are NOT permitted. 

• Interns/student teachers are responsible 
for submitting lesson plans to the 
mentor/cooperating teacher and the 
university supervisor by a mutually 
agreed upon deadline prior to each 
teaching assignment. Copies of all lesson 
and unit plans should be retained by the 
intern/student teacher. 

• Accept constructive feedback. Use the 
supportive and corrective feedback given by 
the mentor/cooperating teacher and the 
university supervisor to become a reflective 
practitioner.   

•  Complete the Formal Reflection sheet or 
Formal Conference Feedback Form  at the 
close of each conference. Have the 
university supervisor or the 
mentor/cooperating teacher initial the form. 
Staple the reflection behind the formal, 
written observation. 

• Furnish the university supervisor with a 
complete classroom schedule, including 
time. In addition, providing a map of the 
school and travel directions to the school 
would be helpful. 

• Complete the weekly, cumulative time 
sheet for each week of the 
internship/student teaching experience. 
After your mentor/cooperating teacher 
has signed the form, file the weekly time 
sheet in your folder. THIS IS A LEGAL 
DOCUMENT. 

• Complete all assignments made by the 
mentor/cooperating teacher and the 
university supervisor, in addition to all 
university course-related assignments. 

• FOR INTERNS ONLY: Prepare a 
professional portfolio that highlights 
reflective thinking and multiple modes of 
instruction which includes evidence for the 
successful completion of the four domains 
of the [state] assessment. 

• Read the Intern/Student Teacher 
Handbook and familiarize yourself with 
all guidelines, policies, and procedures for 
the practicum experience. 
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Appendix D 

 
GENERAL INTERVIEW PROTOCOLS 
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General Interview #1 Protocol 
 
Notes to interviewer: 

• After asking the first question, let the teacher talk as much as possible.  Use neutral 
prompts like “Hmm,” “Oh,” or non-verbal cues to encourage the teacher to continue 
talking. 

• When the teacher is responding, write down key words or phrases.  If you need to probe 
an idea to learn more about it, use the exact wording that the teacher used as often as 
possible. 

• If the teacher covers elements of questions earlier in the interview, return to them by 
saying something like, “I know you talked about this earlier, but is there anything more 
you’d like to say about…” 

• Admit your ignorance.  If you don’t understand what the teacher is talking about, avoid 
any verbal or non-verbal cues that might convey an understanding.  Instead, use one of 
the general prompts listed to elicit more information. 

• To begin the interview set up and turn on the audio recorder. Note the information below. 
 

o Interviewer: _________________________ 

o Date: ______________________________ 

o Class/Period: ________________________ 

o Participant: (use pseudonym)                      

o School: (use pseudonym)  

o Recorder: ______ 

o Files: __________ 
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This is (name of interviewer) interviewing (name of pre-service teacher) on (date).  This is 
general interview #1. 
 
Thank you for participating in the study. 
 
This interview has two parts.  The first part focuses on learning about you and your experiences 
thus far in your internship.  The second part will focus on the upcoming series of lessons that I 
will be videotaping.   
 
Part 1: Gathering Contextual Information 
 
 

1. I’d like to talk about your internship. 
a. Tell me about (name of school). 
 
b. What are the students like? 

 
c. What classes do you teach? 

i. How long have you been teaching each of the classes? 
 

d. As you know, I’ll be videotaping one particular class.  Tell me more about (the 
focus class). 

i. Describe the students 
ii. Describe the type of class (honors, academic, etc) 

iii. How does this class compare to other classes you teach? 
iv. Is there anything else you’d like to say about this class? 

 
e. What is your typical day like? 

 
2. Could you talk about your relationship with your mentor? 

a. Do you plan lessons together? 
i. Why/why not? 

ii. How, if at all, has this changed from the beginning of the year? 
b. What does your mentor expect from you as an intern? 

i. Have the expectations changed from the beginning of the year? 
1. in what ways? 
2. what prompted the changes? 

c. Is there anything else you’d like to say about your mentor? 
 

3. How would you describe the philosophy of the mathematics department in your school? 
a. How is it similar to or different from what happens in your classroom when your 

mentor is teaching? 
b. How is it similar to or different from what happens in your classroom when you 

are teaching? 
c. How is it similar to or different from what you are learning in your coursework at 

Pitt? 
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d. Is there anything else you’d like to say about the math department at your school? 
 

4. What interactions do you have with other math teachers 
a.  in your school? 
b. At the high school? 

 
 

5. How are decisions made about what gets taught? 
 

6. Is there anything else you’d like to say about your internship? 
 
 
General prompts for elaboration on ideas that the teacher brings up: 
Would you say more about [use teacher’s own words here]? 

Would you say more about what you mean by [use teacher’s own words here]? 

Would you give me an example [of that/what you mean by teacher’s own words]? 

If the teacher uses a word or phrase that you’re not familiar with: 
I’m sorry, I’m not familiar with what _________________ is.  Would you tell me more about it? 
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Part 2: Gathering Instructional Information 
 
We’re going to move onto the second part of the interview. I’d like to talk more now about the 
upcoming lessons in the (period and name of class) that I’ll be observing.   
 

1. Would you please give me a sense of what’s going to happen in the set of lessons you 
will be teaching over the next few days? 

 
2. What is your mathematical goal for this series of lessons? 

 
3. What sorts of problems, activities, or exercises will the students be working on? 

 
a. Where did they come from? 
 
b. If modified: Can you describe the modifications you made and your reasons for 

making them? 
 

4. How did you decide to use those problems, activities, or exercises? 
a. What influenced your decision? 
b. Are these lessons “typical” of your usual lessons? 

i. (if yes) In what ways? 
ii. (if no) How are they different?  Why are they different? 

 
5. What do you see as your role during the upcoming lessons? 

a. Is it the same for each lesson? 
i. (if yes) In what ways? 

ii. (if no) How is it different?  Why is it different?   
b. Is this your typical role in the classroom? 

i. (if yes) In what ways? 
ii. (if no) How is it different?  Why is it different?   

 
6. What do you see as the students’ role during the upcoming lessons? 

a. Is it the same for each lesson? 
i. (if yes) In what ways? 

ii. (if no) How is it different?  Why is it different?   
b. Is this the students’ typical role in the classroom? 

i. (if yes) In what ways? 
ii. (if no) How is it different?  Why is it different?   

 
7. Is there anything else you want to tell me about the lessons I’ll be observing that you 

haven’t had a chance to talk about yet? 
If the teacher offers more information, follow up with: 

Anything else you want to say about the lessons? 
Anything else? 
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General prompts for elaboration on ideas that the teacher brings up: 
Would you say more about [use teacher’s own words here]? 

Would you say more about what you mean by [use teacher’s own words here]? 

Would you give me an example [of that/what you mean by teacher’s own words]? 

If the teacher uses a word or phrase that you’re not familiar with: 
I’m sorry, I’m not familiar with what _________________ is.  Would you tell me more about it? 
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General Interview #2 Protocol 
 
Notes to interviewer: 

• After asking the first question, let the teacher talk as much as possible.  Use neutral 
prompts like “Hmm,” “Oh,” or non-verbal cues to encourage the teacher to continue 
talking. 

• When the teacher is responding, write down key words or phrases.  If you need to probe 
an idea to learn more about it, use the exact wording that the teacher used as often as 
possible. 

• If the teacher covers elements of questions earlier in the interview, return to them by 
saying something like, “I know you talked about this earlier, but is there anything more 
you’d like to say about…” 

• Admit your ignorance.  If you don’t understand what the teacher is talking about, avoid 
any verbal or non-verbal cues that might convey an understanding.  Instead, use one of 
the general prompts listed to elicit more information. 

• To begin the interview set up and turn on the audio recorder. Note the information below. 
 

o Interviewer: _________________________ 

o Date: ______________________________ 

o Class/Period: ________________________ 

o Participant: (use pseudonym)                      

o School: (use pseudonym)  

o Recorder: ______ 

o Files: __________ 
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This is (name of interviewer) interviewing (name of pre-service teacher) on (date).  This is 
general interview #2. 
 
Thank you for participating in the interview today.  I’d like to talk about the 5 lessons I recorded 
during your (period, name of focus class) from (dates). 
 

1. How do you think this set of lessons went? 
 

a. What aspects of the lesson went exactly as you thought they would? 
 
b. Are there any aspects of the lessons that surprised you? 

(use anything other if some have already been identified) 
 

2. In the interview prior to the beginning of this set of lessons, you indicated that your 
mathematical goal for this series of lessons was (repeat exactly what the teacher said in 
response to general interview #1, part 2, question 2).  Did this set of lessons help you 
meet that goal? 

 
 

 
For question 3, use the instructional design decisions that the researcher identified from the 
classroom observations. (should be multiple decisions(3-5) for each teacher) 

 
3. So I noticed that students did __________________.  Why did you decide to have 

students do this during this set of lessons? 
Did it accomplish that goal? 
How do you know? 
Examples: 

So I noticed that students used algebra tiles in the activity on Wednesday.  Why did you decide to have 
students use them during this set of lessons? Did it accomplish that goal?  How do you know? 

 
So I noticed that when students had difficulty with the question you asked on Friday, you had them 
turn and talk to each other.  Why did you decide to have them do that at that moment in the lesson?  
Did it accomplish that goal?  How do you know? 

 
So I noticed that when you gave groups a task to work on Monday, you asked them to think and work 
individually on the task for a few minutes before talking with their group.  Why did you decide to have 
students do this for that activity?  Did it accomplish that goal?  How do you know? 

 
So I noticed that when you deviated from your lesson plan on Monday when you _____.  Why did you 
decide to do ______ instead of what was in your lesson plan?  Did it accomplish that goal?  How do 
you know?  Were you satisfied with the result of the change? 
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For question 4, use the video clip(s) that the researcher identified from the classroom 
observations.  
 
 

4. For this next question, I’d like for us to take a look at a short piece of video from your 
class and give you a chance to share your reflections on it. 
(Show video clip) (Pause after showing the clip and allow the teacher to reflect 
spontaneously.  When he or she is done speaking, probe as needed.) 

 

5. What was your role during the lessons? 

a. Was it the same for each lesson? 

i. (if yes) In what ways? 
ii. (if no) How is it different?  Why is it different?   

 
b. During the initial interview, you stated that you saw your role as (repeat exactly 

what the teacher said in response to general interview #1, part 2, question 6).  
Looking back over the lessons, how does your actual role compare to what you 
envisioned your role to be?  

 
6. What was the students’ role during the lessons? 

a. Was it the same for each lesson? 

i. (if yes) In what ways? 
ii. (if no) How is it different?  Why is it different?   

 
b. During the initial interview, you stated that you saw the students’ role as (repeat 

exactly what the teacher said in response to general interview #1, part 2, question 
7).  Looking back over the lessons, how does the students’ actual role during the 
lessons compare to what you envisioned the students’ role to be?  

 
7. Is there anything else you want to tell me about the lessons that you haven’t had a chance 

to talk about yet? 
If the teacher offers more information, follow up with: 
Anything else you want to say about the lessons? 
Anything else? 

 
8. When you think about planning to teach these lessons for next year to meet (restate the 

teacher’s math goal), what will you do?  Why? 
 
General prompts for elaboration on ideas that the teacher brings up: 
Would you say more about [use teacher’s own words here]? 

Would you say more about what you mean by [use teacher’s own words here]? 

Would you give me an example [of that/what you mean by teacher’s own words]? 
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If the teacher uses a word or phrase that you’re not familiar with: 
I’m sorry, I’m not familiar with what _________________ is.  Would you tell me more about it? 
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Appendix E 

 
LESSON CENTERED INTERVIEW PROTOCOLS 
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Pre- Lesson Interview  
 

o Interviewer: _________________________ 

o Date: ______________________________ 

o Class/Period: ________________________ 

o Participant: (use pseudonym)                      

o School: (use pseudonym)  

o Recorder: ______ 

o Files: __________ 

 
To begin the interview: 
Complete information above. 
Set up and turn on the audio recorder. 
Begin with the opening question. 
 
 
Pre-Lesson Interview Question 
 
Please tell us what you’re going to be doing in today’s lesson and what you hope students will 
learn. 
 

 
 
 
 
Reminders for the Observer 
 

• Do not try to take field notes while recording.  Focus on getting quality video and audio.  
If there are specific impressions you wish to write down, do so after class has finished. 

• If displays are created of student work, make every effort to capture them on tape.  If 
possible, take footage of them after class is over if they are still hanging publicly.  (This 
can be done by shooting more video, or by using the still photo feature on the camera.) 

• Try to transcribe all interviews when you return to the office later that day/evening. 
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Post-Lesson Interview  
 

o Interviewer: _________________________ 

o Date: ______________________________ 

o Class/Period: ________________________ 

o Participant: (use pseudonym)                      

o School: (use pseudonym)  

o Recorder: ______ 

o Files: __________ 

 
To begin the interview: 
Complete information above. 
Set up and turn on the audio recorder. 
Begin with the opening question. 
 
Post-Lesson Interview Questions 
 

1. Thinking back on the lesson you just completed, how do you think it went? 
 

2. In the interview prior to the beginning of this lesson, you indicated that your 
mathematical goal for this lesson was (repeat exactly what the teacher said in response to 
pre-interview question 1).  Did this lesson help you meet that goal?   

 
a. (if yes) How? 
b. (if no)- Why not? 

 
 

 
 
Reminders for the Observer 
 

• Do not try to take field notes while recording.  Focus on getting quality video and audio.  
If there are specific impressions you wish to write down, do so after class has finished. 

• If displays are created of student work, make every effort to capture them on tape.  If 
possible, take footage of them after class is over if they are still hanging publicly.  (This 
can be done by shooting more video, or by using the still photo feature on the camera.) 

• Try to transcribe all interviews when you return to the office later that day/evening. 
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Appendix F 

 
 

CONTEXTUAL INTERVIEW PROTOCOLS 
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Contextual Interview Protocol 
 
Notes to interviewer: 

• After asking the first question, let the teacher talk as much as possible.  Use neutral 
prompts like “Hmm,” “Oh,” or non-verbal cues to encourage the teacher to continue 
talking. 

• When the teacher is responding, write down key words or phrases.  If you need to probe 
an idea to learn more about it, use the exact wording that the teacher used as often as 
possible. 

• If the teacher covers elements of questions earlier in the interview, return to them by 
saying something like, “I know you talked about this earlier, but is there anything more 
you’d like to say about…” 

• Admit your ignorance.  If you don’t understand what the teacher is talking about, avoid 
any verbal or non-verbal cues that might convey an understanding.  Instead, use one of 
the general prompts listed to elicit more information. 

• To begin the interview set up and turn on the audio recorder. Note the information below. 
 

o Interviewer: _________________________ 

o Date: ______________________________ 

o Class/Period: ________________________ 

o Participant: (use pseudonym)                      

o School: (use pseudonym)  

o Recorder: ______ 

o Files: __________ 

255 
 



This is (name of interviewer) interviewing (name of interviewee) on (date).  This is a contextual 
interview. 
 
Thank you for participating in the interview today.  The purpose of the interview is for me to 
gain insight into how you view certain aspects of mathematics education environment at (name 
of school). 
 
Gathering Contextual Information 
 

7. I’d like to talk now about the school.. 
a. Tell me about (name of school). 
 
b. What are the students like? 

 
c. What classes do you teach? 

i. How long have you been teaching each of the classes? 
 
 

8. I’d like to talk more now about (name of pre-service teacher).What is the typical day like 
for (name of pre-service teacher)? 

 
9. Could you talk about your relationship with (name of pre-service teacher)? 

a. Do you plan lessons together? 
i. Why/why not? 

ii. How, if at all, has this changed from the beginning of the year? 
b. What do you expect from (name of pre-service teacher) as your intern? 

i. Have the expectations changed from the beginning of the year? 
1. in what ways? 
2. what prompted the changes? 

c. Is there anything else you’d like to say about your intern? 
 

10. How would you describe the philosophy of the mathematics department in your school? 
a. How is it similar to or different from what happens in your classroom when you 

are teaching? 
b. How is it similar to or different from what happens in your classroom when (name 

of pre-service teacher) is teaching? 
c. Is there anything else you’d like to say about the math department at your school? 
 

11. What interactions do you have with other math teachers 
a.  in your school? 
b. At the high school? 

 
12. How are decisions made about what gets taught? 

 
13. Is there anything else you’d like to say about the environment at (name of school)? 
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General prompts for elaboration on ideas that the teacher brings up: 
Would you say more about [use teacher’s own words here]? 

Would you say more about what you mean by [use teacher’s own words here]? 

Would you give me an example [of that/what you mean by teacher’s own words]? 

If the teacher uses a word or phrase that you’re not familiar with: 
I’m sorry, I’m not familiar with what _________________ is.  Would you tell me more about it? 
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Appendix G 

 
ACADEMIC RIGOR RUBRIC OF THE INSTRUCTIONAL QUALITY ASSESSMENT 

(IQA) 
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Academic Rigor 
RUBRIC 1a: Potential of the Task (time one- in curricular materials) 15

Did the task (in curricular materials) 16 have potential to engage students in rigorous thinking 
about challenging content? 

4 

The task has the potential to engage students in exploring and understanding the nature of mathematical concepts, 
procedures, and/or relationships, such as: 
• Doing mathematics: using complex and non-algorithmic thinking (i.e., there is not a predictable, well-rehearsed 

approach or pathway explicitly suggested by the task, task instructions, or a worked-out example); OR  
• Procedures with connections: applying a broad general procedure that remains closely connected to mathematical 

concepts. 
 
The task must explicitly prompt for evidence of students’ reasoning and understanding.  
For example, the task MAY require students to:   
• solve a genuine, challenging problem for which students’ reasoning is evident in their work on the task; 
• develop an explanation for why formulas or procedures work;  
• identify patterns and form generalizations based on these patterns; 
• make conjectures and support conclusions with mathematical evidence; 
• make explicit connections between representations, strategies, or mathematical concepts and procedures. 
• follow a prescribed procedure in order to explain/illustrate a mathematical concept, process, or relationship. 

3 

The task has the potential to engage students in complex thinking or in creating meaning for mathematical 
concepts, procedures, and/or relationships. However, the task does not warrant a “4” because:  
• the task does not explicitly prompt for evidence of students’ reasoning and understanding. 
• students may be asked to engage in doing mathematics or procedures with connections, but the underlying 

mathematics in the task is not appropriate for the specific group of students (i.e., too easy or too hard to promote 
engagement with high-level cognitive demands);  

• students may need to identify patterns but are not pressed for generalizations; 
• students may be asked to use multiple strategies or representations but the task does not explicitly prompt students 

to develop connections between them; 
• students may be asked to make conjectures but are not asked to provide mathematical evidence or explanations to 

support conclusions 

2 

The potential of the task is limited to engaging students in using a procedure that is either specifically called for or its use 
is evident based on prior instruction, experience, or placement of the task. There is little ambiguity about what needs to 
be done and how to do it. The task does not require students to make connections to the concepts or meaning underlying 
the procedure being used. Focus of the task appears to be on producing correct answers rather than developing 
mathematical understanding (e.g., applying a specific problem solving strategy, practicing a computational 
algorithm). 
 
OR The task does not require student to engage in cognitively challenging work; the task is easy to solve.  

1 

The potential of the task is limited to engaging students in memorizing or reproducing facts, rules, formulae, or 
definitions. The task does not require students to make connections to the concepts or meaning that underlie the 
facts, rules, formulae, or definitions being memorized or reproduced. 
 
OR      The task requires no mathematical activity. 

0 Students did not engage in a task. 

 

                                                 
15 Adapted- added titles here for clarification 
16 Adapted- added titles here for clarification 
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Academic Rigor 
RUBRIC 1b: Potential of the Task (time two- in lesson plan) 17

Did the task (as planed) 18 have potential to engage students in rigorous thinking about 
challenging content? 

4 

The task has the potential to engage students in exploring and understanding the nature of mathematical concepts, 
procedures, and/or relationships, such as: 
• Doing mathematics: using complex and non-algorithmic thinking (i.e., there is not a predictable, well-rehearsed 

approach or pathway explicitly suggested by the task, task instructions, or a worked-out example); OR  
• Procedures with connections: applying a broad general procedure that remains closely connected to mathematical 

concepts. 
 
The task must explicitly prompt for evidence of students’ reasoning and understanding.  
For example, the task MAY require students to:   
• solve a genuine, challenging problem for which students’ reasoning is evident in their work on the task; 
• develop an explanation for why formulas or procedures work;  
• identify patterns and form generalizations based on these patterns; 
• make conjectures and support conclusions with mathematical evidence; 
• make explicit connections between representations, strategies, or mathematical concepts and procedures. 
• follow a prescribed procedure in order to explain/illustrate a mathematical concept, process, or relationship. 

3 

The task has the potential to engage students in complex thinking or in creating meaning for mathematical 
concepts, procedures, and/or relationships. However, the task does not warrant a “4” because:  
• the task does not explicitly prompt for evidence of students’ reasoning and understanding. 
• students may be asked to engage in doing mathematics or procedures with connections, but the underlying 

mathematics in the task is not appropriate for the specific group of students (i.e., too easy or too hard to promote 
engagement with high-level cognitive demands);  

• students may need to identify patterns but are not pressed for generalizations; 
• students may be asked to use multiple strategies or representations but the task does not explicitly prompt students 

to develop connections between them; 
• students may be asked to make conjectures but are not asked to provide mathematical evidence or explanations to 

support conclusions 

2 

The potential of the task is limited to engaging students in using a procedure that is either specifically called for or its use 
is evident based on prior instruction, experience, or placement of the task. There is little ambiguity about what needs to 
be done and how to do it. The task does not require students to make connections to the concepts or meaning underlying 
the procedure being used. Focus of the task appears to be on producing correct answers rather than developing 
mathematical understanding (e.g., applying a specific problem solving strategy, practicing a computational 
algorithm). 
 
OR The task does not require student to engage in cognitively challenging work; the task is easy to solve.  

1 

The potential of the task is limited to engaging students in memorizing or reproducing facts, rules, formulae, or 
definitions. The task does not require students to make connections to the concepts or meaning that underlie the 
facts, rules, formulae, or definitions being memorized or reproduced. 
 
OR      The task requires no mathematical activity. 

0 Students did not engage in a task. 

                                                 
17 Adapted- added titles here for clarification 
18 Adapted- added titles here for clarification 
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RUBRIC 2a: Implementation of the Task (time three- in set-up) 19

At what level did the teacher guide students to engage with the task in implementation? 

4 

Students were provided (through the set-up) with the opportunity to  explore and understand the nature of 
mathematical concepts, procedures, and/or relationships, such as: 
• Doing mathematics: using complex and non-algorithmic thinking (i.e., there is not a predictable, well-rehearsed 

approach or pathway explicitly suggested by the task, task instructions, or a worked-out example); OR  
• Procedures with connections: applying a broad general procedure that remains closely connected to mathematical 

concepts. 
 
There is explicit evidence of students’ reasoning and understanding20.  
For example, students may have been provided with the opportunity to:   
• solve a genuine, challenging problem for which students’ reasoning will be evident in their work on the task; 
• develop an explanation for why formulas or procedures work;  
• identify patterns and form generalizations based on these patterns; 
• make conjectures and support conclusions with mathematical evidence; 
• make explicit connections between representations, strategies, or mathematical concepts and procedures. 
• follow a prescribed procedure in order to explain/illustrate a mathematical concept, process, or relationship. 

3 

Students were provided (through the set-up) with the opportunity to engage in complex thinking or in creating 
meaning for mathematical concepts, procedures, and/or relationships. However, the implementation does not 
warrant a “4” because:  
• there is no potential for explicit evidence of students’ reasoning and understanding. 
• students may engage in doing mathematics or procedures with connections, but the underlying mathematics in the 

task will not be appropriate for the specific group of students (i.e., too easy or too hard to sustain engagement 
with high-level cognitive demands);  

• students have opportunity to  identify patterns but do not have the opportunity to make generalizations; 
• students have opportunity to use multiple strategies or representations but do not explicitly have opportunity to 

make connections between different strategies/representations were not evident; 
• students have the opportunity to make conjectures but do not need to  provide mathematical evidence or 

explanations to support conclusions 

2 

Students were provided (through the set-up) with the opportunity to engage in using a procedure that was either 
specifically called for or its use was evident based on prior instruction, experience, or placement of the task. There is 
little ambiguity about what needed to be done and how to do it. Students do not need to make connections to the 
concepts or meaning underlying the procedure being used. Focus of the set-up appears to be on producing correct 
answers rather than developing mathematical understanding (e.g., applying a specific problem solving strategy, 
practicing a computational algorithm). 
 

OR Student were not given cognitively challenging work; the task was easy to solve.  

1 

Students engage in memorizing or reproducing facts, rules, formulae, or definitions. Students do not make 
connections to the concepts or meaning that underlie the facts, rules, formulae, or definitions being memorized 
or reproduced. 
 
OR Students did not engage in mathematical activity. 

  0 
 
The students did not engage in a task. 
 

                                                 
19 Adapted- added titles here for clarification 
 
20 Modified language to more closely align with the set-up portion of the lesson 
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RUBRIC 2b: Implementation of the Task (time four- implementation) 21

At what level did the teacher guide students to engage with the task in implementation? 

4 

Students engaged in exploring and understanding the nature of mathematical concepts, procedures, 
and/or relationships, such as: 
• Doing mathematics: using complex and non-algorithmic thinking (i.e., there is not a predictable, well-

rehearsed approach or pathway explicitly suggested by the task, task instructions, or a worked-out 
example); OR  

• Procedures with connections: applying a broad general procedure that remains closely connected to 
mathematical concepts. 

 
There is explicit evidence of students’ reasoning and understanding.  
For example, students may have:   
• solved a genuine, challenging problem for which students’ reasoning is evident in their work on the 

task; 
• developed an explanation for why formulas or procedures work;  
• identified patterns and formed generalizations based on these patterns; 
• made conjectures and supported conclusions with mathematical evidence; 
• made explicit connections between representations, strategies, or mathematical concepts and 

procedures. 
• followed a prescribed procedure in order to explain/illustrate a mathematical concept, process, or 

relationship. 

3 

Students engaged in complex thinking or in creating meaning for mathematical concepts, 
procedures, and/or relationships. However, the implementation does not warrant a “4” because:  
• there is no explicit evidence of students’ reasoning and understanding. 
• students engaged in doing mathematics or procedures with connections, but the underlying 

mathematics in the task was not appropriate for the specific group of students (i.e., too easy or too 
hard to sustain engagement with high-level cognitive demands);  

• students identified patterns but did not make generalizations; 
• students used multiple strategies or representations but connections between different 

strategies/representations were not explicitly evident; 
• students made conjectures but did not provide mathematical evidence or explanations to support 

conclusions 

2 

Students engaged in using a procedure that was either specifically called for or its use was evident based 
on prior instruction, experience, or placement of the task. There was little ambiguity about what 
needed to be done and how to do it. Students did not connections to the concepts or meaning underlying 
the procedure being used. Focus of the implementation appears to be on producing correct answers 
rather than developing mathematical understanding (e.g., applying a specific problem solving 
strategy, practicing a computational algorithm). 
 

OR Student did not engage in cognitively challenging work; the task was easy to solve.  

1 

Students engage in memorizing or reproducing facts, rules, formulae, or definitions. Students do 
not make connections to the concepts or meaning that underlie the facts, rules, formulae, or 
definitions being memorized or reproduced. 
 
OR Students did not engage in mathematical activity. 

  0  
The students did not engage in a task. 

                                                 
21 Adapted- added titles here for clarification 
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Appendix H 

 
FACTORS ASSOCIATED WITH THE MAINTENANCE AND DECLINE OF 

COGNITIVE DEMAND 
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Factors associated with maintenance and decline of high-level demands. 

Factors Associated with the Decline of 
High-Level Cognitive Demands 

Factors Associated with the Maintenance 
of High-level Cognitive Demands 

Routinizing problematic aspects of the task  Scaffolding of student thinking and 
reasoning 
 
 
 

Shifting the emphasis from meaning, 
concepts, or understanding to the 
correctness or completeness of the answer 
 
 

Providing a means by which students can 
monitor their own progress. 

Providing insufficient time to wrestle with 
the demanding aspects of the task or so 
much time that students drift into off-task 
behavior 

Modeling of high-level performance by 
teacher or capable students 

Engaging in high-level cognitive activities 
is prevented due to classroom management 
problems 
 
 

Pressing for justifications, explanations, 
and/or meaning through questioning, 
comments, and/or feedback 

Selecting a task that is inappropriate for a 
given group of students 
 
 
 
 

Selecting tasks that build on students’ prior 
knowledge 

Failing to hold students accountable for 
high-level products or processes 
 
 
 
 

Drawing frequent conceptual connections 

 Providing sufficient time to explore 
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Appendix I 

 
PAIGE MORRIS’ TASK FROM DAY 1 
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Appendix J 

 
PAIGE MORRIS’ TASK FROM DAY 2 
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Appendix K 

 
 

PAIGE MORRIS’ TASK FROM DAY 3 

 
 
 

 

273 
 



 
 

 

274 
 



Appendix L 

 
PAIGE MORRIS’ TASK FROM DAYS 4 AND 5 
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Appendix M 

 
EXAMPLE OF KEITH NICHOLS’ LESSON PLAN 
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Appendix N 

 
KEITH NICHOLS’ TASK FROM DAY 1 
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Appendix O 
 

KEITH NICHOLS’ TASK FROM DAY 3 
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Appendix P 

 
 
 

KEITH NICHOLS’ TASK FROM DAYS 4 AND 5 
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