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NUMERICAL ANALYSIS OF A VARIATIONAL MULTISCALE METHOD FOR
TURBULENCE

Songul Kaya, Ph.D.

University of Pittsburgh, 2004

This thesis is concerned with one of the most promising approaches to the numerical simulation

of turbulent flows, the subgrid eddy viscosity models. We analyze both continuous and discontinu-

ous finite element approximation of the new subgrid eddy viscosity model introduced in [43], [45],

[44].

First, we present a new subgrid eddy viscosity model introduced in a variationally consistent

manner and acting only on the small scales of the fluid flow. We give complete convergence of the

method. We show convergence of the semi-discrete finite element approximation of the model and

give error estimates of the velocity and pressure. In order to establish robustness of the method

with respect to Reynolds number, we consider the Oseen problem. We present the error is uniformly

bounded with respect to the Reynolds number.

Second, we establish the connection of the new eddy viscosity model with another stabilization

technique, called Variational Multiscale Method (VMM) of Hughes et.al. [35]. We then show the

advantages of the method over VMM. The new approach defines mean by elliptic projection and

this definition leads to nonzero fluctuations across element interfaces.

Third, we provide a careful numerical assessment of a new VMM. We present how this model

can be implemented in finite element procedures. We focus on herein error estimates of the model

and comparison to classical approaches. We then establish that the numerical experiments support

the theoretical expectations.

Finally, we present a discontinuous finite element approximation of subgrid eddy viscosity model.
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We derive semi-discrete and fully discrete error estimations for the velocity.
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Introduction

0.1 Turbulence

In this thesis accurate and reliable solutions of turbulent flows are considered. Despite efforts

of more than centuries, turbulence phenomenon is categorized as an unsolved problem. Turbulence

is part of everyday’s life. The majority of flows of industrial and technological applications are

turbulent; natural flows are invariably so. There are many important and interesting physical

phenomena which are connected with turbulent flows. Turbulence is observed in natural and

engineering applications such as in weather prediction, air pollution, water pollution, aerodynamics

and heat exchangers. In view of the importance of this subject, understanding turbulent flow is

central to many important problems. So, it is natural that the study of turbulent flow has attracted

wide-spread attention from scientists all over the world. However, progress has been limited and

understanding turbulent flows remains a challenge. The main obstacles in turbulence are subjected

to the features of turbulence, listed below:

1. Turbulence is diffusive.

2. Turbulence is not only chaotic motion and but also irregular motion.

3. Turbulence is rotational and three dimensional.

4. Turbulence is highly dissipative.

5. Turbulence is a continuum phenomenon. The smallest scales of turbulence are much larger

than the molecular scales in the engineering application.

6. Turbulence is associated with high levels of vorticity fluctuations. Small scales are generated

by the vortex stretching mechanism.
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Description Reynolds Number
Water droplet 6.4 ×10−1

Blood flow 1.35 ×102

Car with 54 km/h 4 ×106

Small airplane 2×107

Planetary boundary layer 18 ×1012

Geophysical flow 1020 and higher

Table 1. Some representative values of Reynolds numbers.

The equations of motion for an incompressible, viscous linear fluid are called Navier Stokes

Equations. They were proposed in 1823 by the French Engineer C. M. L. H. Navier upon the

basis of an oversimplified molecular model, [58]. Since turbulent flows are governed by the Navier-

Stokes equations, in this thesis we consider the numerical solutions of the Navier-Stokes equations.

These equations obey conservation of momentum and conservation of mass and their mathematical

structure are best understood for incompressible fluids. Incompressible Navier-Stokes equations in

the nondimensional form are given by the following equations:

ut +∇ · (uu) +∇p− ν∆u = f , ∇ · u = 0, (1)

where u is the fluid velocity, p is the fluid pressure, f is an external force and ν is the kinematic

viscosity, inversely proportional to Re, the Reynolds number. In Navier-Stokes equations the

control parameter is the Reynolds number. As Re increases, the flow becomes more sensitive to

perturbations, more complex in its structure and eventually turbulent. Table 1 presents some

examples for ‘real life’ Reynolds number values. Nevertheless, turbulent flows exhibit a lack of

robustness and predictability with respect to Reynolds number. Motivated by this question, the

robustness of the model with respect to Reynolds numbers is discussed in this thesis.

Despite the introduction of the Navier-Stokes equations over a century ago, its predictions and

consequences are still far from being completely understood today. One may think that since enor-

mous computing power increases day by day, a straightforward procedure, called Direct Numerical

Simulation (DNS) of Navier-Stokes equations, should solve the turbulence question. Unfortunately,

having huge computing power is not enough to understand features of turbulence. One of the major

problems in solving Navier-Stokes equations is the richness of scales. This broad range of scales
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changes with respect to Reynolds number and exceeds the limits of computing power available

today. Because of this reason the use of a turbulence model becomes necessary. To do this, ques-

tionably derived models are typically used. The correct modeling of turbulence requires a thorough

understanding of the physics of turbulent flows not yet attained. One of the objective of this work

is to improve the numerical simulation of complex turbulent flows with a new discretization of (1).

This new discretization is given with more fidelity to the physics of turbulent flows.

In addition to the richness of scales of Navier-Stokes equations, the question of turbulence

becomes more complicated in the absence of a complete mathematical theory for the Navier-Stokes

equations or any of the various turbulence models. The mathematical theory was founded by J.

Leray [51] in 1934. Leray’s theory describes the most abstract and complete mathematical aspects of

the Navier-Stokes equations. Leray introduced the first description of turbulent solutions, namely

weak solutions. The bold definition of Leray’s leads to the fundamental question of uniqueness

of weak solutions. Leray conjectured that turbulence is connected with the uniqueness in weak

solutions of Navier-Stokes equations. In 2d, the existence and the uniqueness of weak solutions are

shown but in 3d, uniqueness of weak solutions is still an open question Duchon and Robert [18],

Galdi [22] (One Million Dollar Clay Prize problem). In this thesis, we discuss mathematical aspects

of the new model for the Navier-Stokes equations.

0.2 Numerical Simulations of Turbulent Flows

The chaotic nature of turbulence gives rise to a statistical approach in comparing turbulent

flows. For instance, it is impossible to find two turbulent flows such that the velocity at each point

in one flow is equal to the velocity at the corresponding point in the other flow, at all times. Thus,

we need a statistical approach to quantify turbulent flows. Statistical quantities in turbulent flows

are the mean (e.g., average), the correlations between the different components of velocity and

the correlation between the different velocities at the different points, etc.. The first statistical

description is given by Kolmogorov [46] and will be considered in the following section.
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0.2.1 Kolmogorov Energy Spectrum

An alternative description of multiscale turbulence was proposed by the meteorologist L. F.

Richardson (1922):

Big whirls have little whirls,

That feed on their velocity,

And little whirls have lesser whirls,

and so on to viscosity.

The Russian mathematician A. N. Kolmogorov combined the idea of Richardson and the dimen-

sional analysis and gave the first statistical description of the turbulent flows [46] in 1941. It is

generally believed that the Kolmogorov cascade theory provides an approximate description of

homogenous isotropic turbulence [9]. Kolmogorov quantified the statistics of the velocity fluctua-

tions (small scales, unresolved scales) distribution and his ideas remain one of the corner stones of

turbulent flows.

Kolmogorov’s idea is that the velocity fluctuations in the inertial subrange are more affected by

the interaction between small eddies in the turbulent field and less influenced by the large features

of the flow. He also realized that the statistics of the small scales are independent from the large

scales, the initial and boundary conditions, but depends only on the energy dissipation rate, ε and

the kinematic viscosity, ν.

Using this physical argument Kolmogorov proposed his first hypothesis: At sufficiently large

Reynolds numbers, there will exist a range of high wave numbers in which the turbulence is in a

state of statistical equilibrium influenced only by the parameters ε and ν. This state is universal, [9].

His second hypothesis states: At wave numbers which are much larger than of the large eddy scales

and also much smaller than the scales of the dissipation range, which conditions can only be met

at very high Reynolds numbers, there exists an inertial range in which the statistics of turbulence

are determined solely by energy dissipation rate, ε, [9].

From the first and second hypothesis, Kolmogorov derived an expression for the energy spec-

trum, denoted by E(k, t) where k is the wave number given by k2 = k2
x + k2

y + k2
z . Hence, energy
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Figure 1. Kolmogorov’s Energy Cascade.

spectrum in inertial range is given by

E(k, t) = Cε2/3k−5/3

where C is a nondimensional and universal constant, (Sreenivasan [67]) and these results are widely

used in computational fluid mechanics to estimate the number of grid points to fully resolve tur-

bulent flows.

The picture of turbulence that emerged with Kolmogorov was the following: turbulent energy

is created at relatively large scales (in the energy containing eddies) and is transferred, through a

process of eddies breaking into other eddies, to smaller and smaller scales till the dissipation effects,

which increase at decreasing scales, predominate, and the energy is consumed at the smallest scales.

This energy transferred from scale to scale progresses on the way through the inertial subrange, thus

explaining the dependence of statistics of the subrange on the dissipation rate. This conception of

energy transfer has been called the energy cascade and its graph is given by Figure 1. According

to this theory, there is an energy loss around the cut off lengthscale kc in inertial subrange. It is
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necessary to model this energy loss in such a way that the method/model must incorporate energy

drain due to inertial effects near kc of unresolved scales. This can be done with eddy viscosity

models. In this thesis we consider one of these models, namely subgrid eddy viscosity models.

0.3 Techniques for Turbulent Simulations

In this section, we consider the following three approaches for modeling turbulent simulations:

1. Direct Numerical Simulations (DNS)

2. Reynolds Averaged Navier-Stokes (RANS)

3. Large eddy Simulations (LES).

These turbulence models are based on direct discretization, time averaged or space averaged quan-

tities and have been used in engineering applications.

0.3.1 Direct Numerical Simulations (DNS)

In DNS, the Navier-Stokes equations are solved to determine the instantaneous flow field by

using direct discretization. Since all length scales must be resolved, no modeling is required in this

approach. This approach is the most desirable way of simulating a flow. Theoretically, the solutions

obtained from DNS are as close to the solutions of (1). Unfortunately, the simulations of turbulent

flow take way too much time and despite steady advances in computing power, attempts at the

DNS of the Navier-Stokes equations have been limited to rather low Re. For instance, if one is

interested in solving Navier-Stokes equations for Re = 1000 in a unit cube, according to Kolmogorov

estimate, one needs a total of Re−9/4 ∼ 5.6 million grid points. Hence although today’s computers

are much faster than they were decades ago, they still are not fast enough to simulate many fluid

flows scenarios we are interested in. This prompts us to make use of alternatives to DNS, namely

the use of turbulence models.

0.3.2 Reynolds Averaged Navier Stokes (RANS)

In this approach, suggested by Reynolds (1895), the velocity and pressure is decomposed into an

ensemble mean flow and a fluctuating perturbation field. In other words, this approach requires to

6



model all scales and to solve time-averaged equations. The decomposition of velocity and pressure

leads to a set of differential equations for the mean flow quantities containing contributions from the

time-varying, turbulent motion. An additional model is needed for the Reynolds stresses term to

describe the effect of fluctuation on the mean. RANS has proven to be advantageous in providing

data to industry. Thus RANS can be found in many commercial codes (Flowtech International

AB, ARC3D). However, although RANS is able to satisfactorily model some turbulent flows, it

sometimes unpredictably fails to model others. One of the problems is that there are terms in the

equations to be solved whose values are unknown, for instance Reynolds stresses, which must be

themselves modeled. Hence, modeling leads to new numerical equations which are different from

original Navier-Stokes equations themselves. As a consequence, the RANS approach limits our

ability, by providing only mean turbulence quantities. This means that it is desirable to find a

better way to simulate turbulence.

0.3.3 Large Eddy Simulations (LES)

LES technique is a compromise between the computational efficiency of RANS and the high

accuracy of DNS. According to LES procedure, the velocity and pressure can be written in two

parts. These quantities are the sum of a mean component and fluctuations component as follows

u = ū + u′, p = p̄ + p′, (2)

in which the overbar denotes the mean quantity and the prime denotes the fluctuating part. ū

and p̄ are defined by filtering or mollification. In LES, the Navier Stokes equations are filtered in

a way that the smallest spatial structure disappears from the solution. The goal is to compute the

mean part accurately. After deciding how to define the mean flow structures of the flow, LES must

construct closed equations for ū. One simple approach is to convolve the Navier-Stokes equations

with a filter function. By assuming that convolution commutes with differentiation, we obtain the

space-averaged Navier-Stokes equations:

ūt +∇ · (ūū) +∇ · R(u,u) +∇p̄− ν∆ū = f̄ ,

∇ · ū = 0,
(3)

7



where R, Reynolds stress tensor, is

R(u,u) = uu− ūū.

In general, since uu 6= ūū, the space-averaged Navier-Stokes equations are not closed. A main

issue is to model Reynolds stress tensor to get a closed system. For the justification of LES

models, we refer to [23], [39], [38], [64], [40]. The most common way of modeling Reynolds stress

terms is to use eddy viscosity models considered in the following section. The reader can find the

other modeling approaches in [50]. We emphasize that the major drawback of LES relative to

RANS is that the computations are necessarily three-dimensional and time dependent (Piomelli

and Chasnow [60]). This means that the computational cost is quite high. Also averaging Navier-

Stokes equations leads to serious problems if the flow is given in a bounded domain, which is the

most frequent case in applications. Already the first step of deriving equations for the large scales

introduces an additional term, a so-called commutation error ([19]). This term is simply neglected

in applications. However, the analysis in [19] shows that there are cases where this term does not

vanish asymptotically. A second serious problem of the classical LES in bounded domains is the

definition of appropriate boundary conditions for the large scales. This problem is unresolved. In

applications, often physically motivated wall laws are used. A possible remedy of this dilemma is

the definition of the large scales in a different way, namely by projection into appropriate spaces.

This idea is the basis of variational multiscale methods (VMM), see Hughes et al. [35] Chapter 2.

As a result, LES is not the miracle cure to simulate most of the turbulent flows in engineering

application.

Since all turbulence models have limitations, it is the author’s belief that, careful consideration

is needed in deciding what type of turbulence model will be used for what application.

0.4 Eddy Viscosity Models

One of the most widely used concepts in turbulence simulation for practical engineering ap-

plications is the eddy viscosity concept. These models are consistent with the idea of an energy

cascade (Figure 1). Boussinesq [11] proposed that the turbulent stresses are proportional to the

8



mean-velocity gradients. This concept can be generalized to model the Reynolds stress tensor as

∇ ·R(u,u) ∼ −∇ · (νT∇sū),

where νT ≥ 0 is called turbulent viscosity or eddy viscosity parameter and ∇s is the symmetric

part of deformation tensor defined by

∇sū =
∇ū +∇ūT

2
.

The extensions of this model with some extra terms can be found in Mohammadi and Pironneau

[57]. Now, one needs to determine the eddy viscosity parameter, νT . The most commonly used

eddy viscosity model is the Smagorinsky eddy viscosity model [65], in which the turbulent eddy

viscosity parameter is given by

νT = (Csδ)2‖∇sū‖F ,

where Cs is the Smagorinsky constant, δ is the averaging radius and ‖ · ‖F is the Frobenius norm

defined by for all v ∈ RN

‖v‖F =

√√√√
N∑

i,j=1

vvT .

Thus, with Boussniesq’s assumption, we obtain the term ∇ · ((Csδ)2‖∇sū‖F∇sū). A complete

mathematical theory for Navier-Stokes equations for the Smagorinsky model is constructed by

Ladyzhenkaya [47]. In the work of Ladyzhenkaya, this extra term is considered as a correction

term for flows with larger stresses. Also, one of the essential result in LES is given by Lilly [54].

Lilly estimated a universal value of Smagorinsky constant Cs as 0.17.

The justification of Smagorinsky eddy viscosity models is given by Zhang et. al. [70], [39], [53].

This concept is criticized because of the following facts:

• These eddy viscosity models require a priori knowledge of the flow to set Cs.

• The viscosity is applied over all wave numbers. This means that extra dissipation is added

where it is needed (at the higher wave number) and also where it is not necessary (at the lower

wave number). In addition, a viscosity model is too dissipative over the large flow structures.

9



• The eddy viscosity does not vanish for laminar flows.

This chapter will be concluded by pointing out that current eddy viscosity models are of limited

usefulness on long time simulations because they are diffusive over the large flow structures. Limited

accuracy in moderate time simulations is also observed, because the connection of eddy viscosity

models to the physics of fluctuations is tenuous.

The objective of this thesis is to improve the numerical simulation of complex turbulent flows by

formulating a new discretization of Navier-Stokes equations. This discretization which is introduced

in Chapter 1 gives more realistic results to the physics of the turbulent flows.

0.5 Chapter Descriptions

The thesis is structured in four chapters. We analyze continuous finite element approximation

in Chapter 1, Chapter 2, Chapter 3 and discontinuous finite element approximation of the model

in Chapter 4.

Chapter 1 is dedicated to the presentation of the new eddy viscosity model resulting in a new

discretization of Navier-Stokes equations. This idea was first introduced by [30], [49]. Unlike the

traditional eddy viscosity model acting on all scales of the fluid flow, our new approach introduces

viscosity only on small scales. We then investigate convergence of the continuous semi discrete

finite element approximation of the corresponding model. First, a priori error estimates of velocity

and pressure are proved in two successive sections. After giving the L2 error estimate for velocity,

the Reynolds number dependence of the new approach is reviewed for the Oseen problem.

Chapter 2 presents another stabilization technique called Variational Multiscale Method (VMM).

We prove that our new model fits into the framework of VMM. The interest in this connection is

that the new method allow fluctuations to be nonzero across meshlines.

Chapter 3 provides numerical assessment of the subgrid eddy viscosity model. First, we

present how this model can be implemented in finite element procedures. Specifically, we perform

two numerical experiments in 2d. We present numerical results (including error tables, graphs as

well as plots of the streamlines) corresponding to the model.

Chapter 4 addresses the discontinuous finite element approximation of the subgrid eddy vis-

cosity model. We combine Discontinuous Galerkin (DG) and eddy viscosity techniques. This

10



combination brings a new improvement over the continuous discretization. In order to investigate

this, we first consider semi discretization of the DG approximation of the model. Finally, we analyze

two fully discrete schemes based on: Backward Euler and Crank Nicholson.
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Chapter 1

Finite Element Analysis of the New Subgrid Eddy

Viscosity Models

1.1 The New Subgrid Eddy Viscosity Model

This chapter gives a numerical analysis of a special subgrid eddy viscosity method/model for

the Navier-Stokes equations at higher Reynolds number. In this method, variationally consistent

eddy viscosity is introduced acting only on the discrete fluctuations. This technique is inspired

by earlier work of Guermond [30], Hughes [35] and Layton [49]. It can also be thought of as an

extension to general domains and boundary conditions of the spectral vanishing viscosity idea of

Maday and Tadmor [55], Chen, Du and Tadmor [14]. Specifically, this new method inserts eddy

viscosity acting only on the smallest resolved mesh scales (Kaya [43]).

Consider the incompressible, viscous Navier-Stokes equations

ut + (u · ∇)u +∇p− ν∆u = f in (0, T ]× Ω,

∇ · u = 0 in [0, T ]× Ω,

u = 0 in [0, T ]× ∂Ω,

u(0,x) = u0 in Ω,∫

Ω
p dx = 0, in (0, T ].

(1.1)

where u is the fluid velocity, p is the pressure, f is the external force, ν is the kinematic viscosity,

and Ω ⊂ Rd(d = 2 or d = 3) is a bounded, simply connected domain with polygonal boundary ∂Ω.

The idea consists of stabilizing the discrete equations by adding eddy viscosity in a variationally

consistent way. To motivate this approach, we consider a first variational formulation of (1.1) in
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the functional spaces

X : = {v ∈ L2(Ω)d : ∇v ∈ L2(Ω)d×d and v = 0 on ∂Ω},

L : = {S ∈ L2(Ω)d×d : Sij = Sji},

Q : = L2
0(Ω) := {q ∈ L2(Ω) :

∫

Ω

q dx = 0}.

One nonstandard variational formulation of (1.1) is: find u : [0, T ] → X, p : (0, T ] → Q and

G : [0, T ] → L satisfying

(ut,v) + b(u,u,v)− (p,∇ · v) + (q,∇ · u) + ((2ν + νT )∇su,∇sv)

−(νTG,∇sv) = (f ,v), (1.2)

(G−∇su,L) = 0, (1.3)

for all (v, q,L) ∈ (X, Q,L) where (., .) denotes the L2(Ω) inner product, b(u,u,v) : X×X×X :→ R

b(u,v,w) =
1
2
(u · ∇v,w)− 1

2
(u · ∇w,v) (1.4)

denotes the skew symmetrized trilinear form and νT > 0 denotes the eddy viscosity parameter.

Next, we consider the finite element discretization of the Navier-Stokes equations based on

(1.2), (1.3). We first construct a coarse finite element mesh ΠH(Ω) and a fine mesh Πh(Ω), where

h << H typically. Conforming velocity-pressure finite element spaces are then constructed based

upon Πh(Ω) and ΠH(Ω). Let Xh ⊂ X, XH ⊂ X, Qh ⊂ Q and LH ⊂ L be finite element spaces.

Consider the approximation (uh, ph,GH) based on the variational formulation (1.2), (1.3) : find

uh ∈ Xh, ph ∈ Qh,GH ∈ LH satisfying

(uh
t ,vh)+b(uh,uh,vh)−(ph,∇·vh)+(qh,∇·uh)+((2ν+νT )∇suh,∇svh)−(νTGH ,∇svh) = (f ,vh),

(1.5)
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for all vh ∈ Xh and qh ∈ Qh where GH ∈ LH ⊂ L2(Ω) is defined by

(GH −∇suh,LH) = 0, (1.6)

for all LH ∈ LH .

Different choices of LH give rise to different methods. Consider the following limit choices of

LH :

• If LH = {0} : Then the equation (1.6) implies that GH = 0. Inserting this into (1.5) yields

the usual artificial viscosity method.

• If LH = ∇sXh: Then, there exits a vh ∈ Xh such that LH = ∇svh. The equation (1.6)

implies we have GH = ∇suh. Inserting GH in (1.5) gives the Galerkin discretization of

Navier-Stokes equations.

The effect of the extra term in (1.5) can be seen by using (1.6), to eliminate GH from (1.5). Clearly,

(1.6) implies that

GH = PLH∇suh (1.7)

where PLH : L → LH denotes the usual L2 orthogonal projection. Insertion of this into (1.5) and

simplification using properties of orthogonal projection yield:

(uh
t ,vh) + b(uh,uh,vh)− (ph,∇ · vh) + (qh,∇ · uh) + (2ν∇suh,∇svh)

+ (νT (I − PLH )(∇suh), (I − PLH )∇svh)) = (f ,vh), (1.8)

for all (vh, qh) ∈ (Xh, Qh). The formulation (1.5), (1.6) thus introduces implicitly the extra stabi-

lization term

(νT (I − PLH )(∇suh), (I − PLH )∇svh)). (1.9)

This is an eddy viscosity term acting on the scales between H and h, i.e.,the small scales. The

normal use of eddy viscosity (EV) models is in high Re/turbulent problems and thus we are

specifically interested in the numerical analysis of (1.5), (1.6) for higher Re, (or smaller ν). As we

mention in Section 0.4, standard EV models have often been noted to be too diffusive and over
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damp in the large flow structures (large eddies). Indeed, the physical interpretation of EV models

is that they model energy lost around the cut off lengthscale due to inertial effects (eddy breakdown

to below the meshwidth size). Standard EV, however, removes energy strongly from all resolved

scales. Thus, the method (1.5), (1.6) is of special interest because (i) the eddy viscosity does not

act on the large structures and (ii) it is introduced in a variationally consistent manner. This thesis

will give a complete and systematic analysis of the finite element method (1.5), (1.6) for small ν.

The general idea of using two-grid discretizations to increase the efficiency of methods was

pioneered by J. Xu (see, e.g., Marion and Xu [56]) and developed by Girault and Lions [25], [26],

Layton [48]. This plus the physical ideas underlying eddy viscosity models and previous work [20]

on stabilizations in viscoelasticity lead very naturally to the present method.

1.1.1 Preliminaries

Throughout this thesis, we use standard notation for Sobolev spaces (Adams [1]). For s ≥ 0

and r ≥ 1, the classical Sobolev space on a domain E ⊂ Rd(d = 2, 3) is

W k,r(E) = {v ∈ Lr(E) : ∀ |m| ≤ k, ∂mv ∈ Lr(E)},

where ∂mv are the partial derivatives of v of order |m|. The usual norm in W k,r(E) is denoted by

‖·‖k,r,E and the semi norm by | · |k,r,E . The L2 inner-product is denoted by (·, ·)E and only by (·, ·)
if E = Ω. For the Hilbert space Hk(E) = W k,2(E), the norm is denoted by ‖·‖k,E . By H1

0 (E) we

shall understand the subspace of H1(E) of functions that vanish on ∂E. Since the case of scalar,

vector or tensor functions will be clear from the context, we will not distinguish between these cases

in the notation of Hk(Ω). The H1(Ω) norm is defined by ‖v‖1 =
√
‖v‖2 + ‖∇v‖2. The norm of

dual space H−1(Ω) = (H1(Ω) ∩H1
0 (Ω))∗ is defined by

‖φ‖−1 = sup
v∈(H1(Ω)∩H1

0 (Ω))d

|(φ,v)L2 |
‖v‖1

.

Throughout the text, C denotes a generic constant which does not depend on ν, νT , h, H unless

specified.
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For any function φ that depends on time t and space x, denote

φ(t)(x) = φ(t,x), ∀t ∈ [0, T ], ∀x ∈ Ω.

If X denotes a functional space in the space variable with the norm ‖ · ‖X and if φ = φ(t,x), then

for s > 0:

‖φ‖Ls(0,T ;X) = [
∫ T

0
‖φ(t)‖s

Xdt]1/s, ‖φ‖L∞(0,T ;X) = max
0≤t≤T

‖φ(t)‖X .

Recall that for a vector function φ, the tensor ∇φ is defined as (∇φ)i,j = ∂φi

∂xj
and the tensor

product of two tensors T and S is defined as T : S =
∑

i,j TijSij .

As usual, V denotes the space of divergence free functions

V := {v ∈ X : (∇ · v, q) = 0, for all q ∈ Q} .

We assume that the velocity-pressure finite element spaces Xh ⊂ X, Qh ⊂ Q satisfy the discrete

inf-sup or Babuska-Brezzi condition:

inf
qh∈Qh

sup
vh∈Xh

(qh,∇ · vh)
‖qh‖‖∇vh‖ ≥ β > 0. (1.10)

where β is independent from h. This condition is now well understood and numerous example of

attractive finite element spaces satisfying inf-sup condition exist, e.g., Gunzburger [31], Girault and

Raviart [27]. Recall that under this condition, the space of discretely divergence free functions Vh,

Vh :=
{
vh ∈ Xh : (∇ · vh, qh) = 0, for all qh ∈ Qh

}
, (1.11)

is well-defined and the natural formulations of the discrete Navier Stokes problem in (Xh, Qh) and

Vh are equivalent. Further, if inf-sup condition holds and u ∈ V then (see Girault and Raviart [27]),

inf
vh∈Vh

‖∇(u− vh)‖ ≤ C(β) inf
vh∈Xh

‖∇(u− vh)‖.

Since (1.3) naturally occurs as a constraint associated with (1.2), well-posedness of the contin-

uous reformulation depends upon another inf-sup condition, which we verify next.

16



Lemma 1.1.1. (Inf-Sup Condition) The formulation (1.2), (1.3) satisfies following inf-sup condi-

tion:

inf
L∈L

sup
(G,v)∈(L,X)

| (∇sv −G,L) |
(‖G‖2 + ‖∇sv‖2)

1
2 ‖L‖

≥ 1. (1.12)

Proof: Picking v = 0 and G = L establishes the required inequality.

Corollary 1.1.1. The continuous problem (1.2), (1.3) is equivalent to the usual variational for-

mulation of the Navier-Stokes equations in (X, Q).

We assume that the following approximation assumption, typical of piecewise polynomial velocity-

pressure finite element spaces of degree (k, k − 1) holds : there is k ≥ 1 such that for any

u ∈ (Hk+1(Ω))d ∩X and p ∈ (Hk(Ω) ∩Q) :

inf
vh∈Xh

{
‖u− vh‖+ h‖∇(u− vh)‖

}
≤ Chk+1 ‖u‖k+1 , (1.13)

inf
qh∈Qh

‖p− qh‖ ≤ Chk ‖p‖k . (1.14)

We often use the following inequalities.

Lemma 1.1.2. (Young’s inequality)

ab ≤ t

p
ap +

t−q/p

q
bq, a, b, p, q, t ∈ R,

1
p

+
1
q

= 1, p, q ∈ (1,∞), t > 0. (1.15)

Lemma 1.1.3. (Poincaré-Friedrichs) There is a C(Ω) > 0 such that

‖v‖L2 ≤ C(Ω)‖∇v‖L2 , ∀ v ∈ X. (1.16)

Lemma 1.1.4. (Korn’s inequality) If γ(v) is a semi-norm on L2(Ω) which is a norm on the

constants, then there is a C(Ω) > 0 such that for

‖∇v‖ ≤ C(Ω)[γ(v) + ‖∇sv‖],

for all v ∈ X.
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As a consequence of Korn’s inequality it follows that, taking γ(v) = ‖v‖ then

‖∇v‖L2 ≤ C‖∇sv‖L2 , (1.17)

for all v ∈ X. Thus, the norms ‖∇v‖ and ‖∇sv‖ are equivalent.

Note that the skew symmetrized trilinear form b(u,u,v) introduced in (1.4) has the following

properties:

b(u,v,w) = −b(u,w,v) and b(u,v,v) = 0 for all u,v,w ∈ X. (1.18)

Lemma 1.1.5. Let Ω ⊂ Rd. Then,

b(u,v,w) ≤ C‖∇su‖ ‖∇sv‖ ‖∇sw‖ , (1.19)

for all u,v,w ∈ X.

Lemma 1.1.6. Let Ω ⊂ R3,i.e.,d = 3. Then,

b(u,v,w) ≤ C(Ω)
√
‖u‖ ‖∇su‖‖∇sv‖‖∇sw‖,

for all u,v,w ∈ X.

Proof: By Lemma 2.1 p.12 of Temam [68]

b(u,v,w) ≤ C(Ω) ‖u‖1/2 ‖v‖1 ‖w‖1 .

The Poincaré-Friedrichs and Korn’s inequality implies

‖v‖1 ≤ C‖∇sv‖, ‖w‖1 ≤ C‖∇sw‖.

Lastly, an interpolation inequality implies

‖u‖1/2 ≤ C(Ω) ‖u‖1/2 ‖u‖1/2
1 ≤ C(Ω) ‖u‖1/2 ‖∇su‖1/2.

It will be important to introduce the notion of means/large scales and fluctuations/small scales
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that we use. We shall use over-bar and prime notation to denote large and small scales, respectively.

If XH ⊂ Xh, we can decompose uh ∈ Xh into discrete means and fine mesh fluctuations via

uh = uH + u′h, (1.20)

for uH ∈ XH and u′ ∈ X′
h where XH , X

′
h denote the coarse mesh space and small scale space, re-

spectively. The space for fluctuations X′
h and the decomposition (1.20) are determined by specifying

how uH ∈ XH is determined from uh.

Definition 1.1. (Elliptic Projection) PE : Xh ⊂ X → XH is the projection operator satisfying

(∇s(uh − PEuh),∇svH) = 0, (1.21)

for all vH ∈ XH .

In Chapter 2 to present new method (1.5), (1.6) in a variational multiscale framework, we

consider the following decomposition of deformation tensor. Let the spaces LH ⊂ L, XH ⊂ Xh ⊂ X

as defined in Section 1. For the multiscale decomposition of the deformation tensor ∇suh set

D(uh) = ∇suh,

for all vh ∈ Xh and split

Dh = DH + D′h

where DH = PLHDh and D′h = (I − PLH )Dh.

Lemma 1.1.7. Assume that XH ⊂ Xh and LH = ∇sXH . Then,

(I − PLH )D(uh) = D(I − PE)uh and PLHD(uh) = D(PEuh),

where PE is the elliptic projection operator into XH .

Proof: From DH = PLHDh, it follows that

(Dh − DH ,LH) = 0, for all LH ∈ LH .
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for all LH ∈ LH . Also, since LH = ∇sXH , DH = ∇swH for some wH ∈ XH . This yields:

(∇s(uh −wH),∇svh) = 0, (1.22)

for all vh ∈ XH . Then, consider the elliptic projector operator PE : X → XH . From this map,

define PEuh = wH . Then, (1.22) can be written as:

(∇s(uh − PEuh),∇svh) = 0,

for all vh ∈ XH . This implies that PLHD(uh) = ∇sPEuh and (I − PLH )D(uh) = ∇s(I − PE)uh.

We shall assume that LH = ∇sXH , the condition of Lemma 1.1.7 holds and that the finite

element spaces Xh and XH satisfy an inverse-type inequality. Using Lemma 1.1.7, and applying

the inverse estimate for XH , we have

‖PLHD(φh)‖ = ‖D(PEφh)‖ ≤ CH−1‖PEφh‖L2 , (1.23)

We know want to find an estimate for the elliptic projection operator. By using the (1.21), for

all φh ∈ Xh we can write

(D(PEφh),D(vH)) = (D(φh),D(vH)), (1.24)

for all vH ∈ XH . We claim that the following inequality holds for elliptic projection operator:

‖PEφh‖ ≤ C(‖φh‖+ H‖D(φH − φh)‖). (1.25)

where φH = PEφh. To show (1.25), we first define the following dual problem: given φH ∈ L2,

find ψ ∈ X

−∆ψ = φH in Ω

ψ = 0 on ∂Ω.
(1.26)

Since the boundary ∂Ω is smooth enough, there exists a unique ψ ∈ X. We assume that the

dual problem (1.26) is H2(Ω) regular. This means that for any φH ∈ L2(Ω) there exists a unique
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ψ ∈ (X ∩H2(Ω)d) such that the following inequality holds

‖ψ‖2 ≤ C‖φH‖. (1.27)

Multiplying (1.26) with vH ∈ XH and integrating over the domain yield

(−∆ψ,vH) = (φH ,vH).

Then, we set vH = φH −φh in the last equation and applying Cauchy Schwarz and H2 regularity.

We obtain

‖φH‖2 − (φH , φh) = (−∆ψ, φH − φh)

‖φH‖2 − (φH , φh) ≤ C‖ψ‖2‖φH − φh‖

≤ C‖φH‖‖φH − φh‖.

By applying Young’s inequality, we get

‖φH‖2 ≤ (φH , φh) + C‖φH‖‖φH − φh‖

≤ ‖φH‖‖φh‖+ C‖φH‖‖φH − φh‖

‖φH‖2 ≤ C1‖φh‖2 + C2‖φH − φh‖2 (1.28)

where C1, C2 constant independent from H,h. Now, we need to estimate the term ‖φH − φh‖ in

(1.28). For this part we use the dual problem (1.26) as

−∆ψ = φH − φh in Ω

ψ = 0 on ∂Ω.
(1.29)

From H2 regularity assumption, we now have

‖ψ‖2 ≤ C‖φH − φh‖. (1.30)

Then we use the definition of elliptic projection operator (D(ψH),D(φH − φh)) = 0, ∀ψH ∈ XH .
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This gives

‖φH − φh‖2 = (−∆ψ, φH − φh)

= (∇ψ,∇(φH − φh))

= (∇(ψ −ψH),∇(φH − φh)).

By using approximation results, Korn’s inequality and H2 regularity of (1.29), we get

‖φH − φh‖2 ≤ CH‖ψ‖2‖D(φH − φh)‖

≤ CH‖φH − φh‖‖D(φH − φh)‖.

Hence we get,

‖φH − φh‖ ≤ CH‖D(φH − φh)‖.

Substituting this last result in (1.28) gives

‖PEφh‖ ≤ C(‖φh‖+ H‖D(φH − φh)‖). (1.31)

By using Lemma 1.1.7 and this final estimation in (1.23), we get

‖PLHD(φh)‖ = ‖D(PEφh)‖ ≤ CH−1‖PEφh‖ ≤ C(H−1‖φh‖+ ‖D(φH − φh)‖) (1.32)

where ‖D(φH − φh)‖ = ‖D((I − PE)φh)‖ = ‖(I − PLH )D(φh)‖.

1.2 Error Estimations

1.2.1 Semi Discrete A Priori Error Estimation For Velocity

The first important question for the method (1.5), (1.6) is how the two scales and the eddy

viscosity parameter h,H, νT should be coupled. The second important question for the method

is the dependence of the error upon ν (i.e., Reynolds number). To answer the first question,

this section considers the questions of stability, consistency and convergence of the method. We
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show convergence of the usual semi-discrete finite element approximation of the model as the mesh

widths h,H → 0 and give an estimate of the error. The error estimate reveals the correct coupling

between h,H and νT . To answer the second question, we show the convergence analysis of the

Oseen problem. Then, we show the error is uniform in Reynolds number.

The semi-discrete approximation is a map uh : [0, T ] → Vh satisfying

(uh
t ,vh) + b(uh,uh,vh) + (2ν∇suh,∇svh) + νT ((I − PLH )∇suh, (I − PLH )∇svh) = (f,vh),

(1.33)

for all vh ∈ Vh where Vh is the space of discretely divergence-free functions given by (1.11).

Proposition 1.2.1. [Stability of method (1.5), (1.6)] The approximate solution of uh of (1.5),

(1.6), is stable. For any t > 0,

1
2
‖uh(t)‖2 +

t∫

0

(2ν‖∇suh‖2 + νT ‖(I − PLH )∇suh‖2)dt′ ≤ 1
2
‖uh(0)‖2 +

t∫

0

(f ,uh)dt′.

In particular, sup
0≤t≤T

∥∥uh
∥∥ ≤ C(f,u0).

Proof: Set vh = uh in (1.33), use triangle inequality and the fact that b(uh,uh,uh) = 0:

1
2

d

dt
‖uh‖2 + 2ν‖∇suh‖2 + νT ‖(I − PLH )∇suh‖2 ≤ (f ,uh).

The result follows from integrating over [0, t]. Stability then easily follows by applying Cauchy-

Schwarz inequality on the right hand side.

Corollary 1.2.1. The solution uh exist and is unique. If the discrete inf-sup condition (4.23)

holds, then ph exists and is unique.

We note that by adding and subtracting terms, it is easy to see that the true solution (u, p)

satisfies

(ut,vh) + b(u,u,vh)− (p,∇ · vh) + (2ν∇su,∇svh) + (νT (I − PLH )∇su, (I − PLH )∇svh)

= (f ,vh) + (νT (I − PLH )∇su, (I − PLH )∇svh), (1.34)
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for all v ∈ Vh.

Theorem 1.1. (Convergence) Suppose ∇u ∈ L4(0, T ;L2(Ω)). Then with C = C(Ω), there is a

constant C∗(T ) = exp(C(1 + ν−3) ‖∇u‖4
L4(0,T ;L2(Ω))) such that

‖u− uh‖2
L∞(0,T ;L2) + Cν‖∇s(u− uh)‖2

L2(0,T ;L2) + νT ‖(I − PLH )∇s(u− uh)‖2
L2(0,T ;L2)

≤ C‖u0 − vh
0‖2

L2(0,T ;L2) + C∗(T ) inf
vh∈Xh

ph∈Qh

[
(H−2 + ν−1

T )‖(u− vh)t‖2
L2(0,T,H−1)

+ν‖∇s(u− vh)‖2
L2(0,T ;L2) + νT ‖(I − PLH )∇s(u− vh)‖2

L2(0,T ;L2) + νT ‖(I − PLH )∇su‖2
L2(0,T ;L2)

+(H−2 + ν−1
T )‖∇s(u− vh)‖L4(0,T ;L2)‖u− vh‖L4(0,T ;L2)(‖∇u‖2

L4(0,T ;L2) + 1)

+ν−1‖p− qh‖2
L2(0,T ;L2)

]
.

Proof: Let e = u − uh and vh ∈ Vh. Then, decompose the error into two parts: e = η − φh,

where η = u−vh and φh = uh−vh. Let vh ∈ Vh denote an approximation of u. Subtracting (1.33)

from (1.34) yields,

(et,vh) + [b(u,u,vh)− b(uh,uh,vh)] + (2ν∇se,∇svh) + (νT (I − PLH )∇se, (I − PLH )∇svh)

= −(p,∇ · vh) + (νT (I − PLH )∇su, (I − PLH )∇svh). (1.35)

By using (1.53) and setting vh = φh, we obtain:

(φh
t , φh) + (2ν∇sφh,∇sφh) + (νT (I − PLH )∇sφh, (I − PLH )∇sφh)

= (ηt, φ
h) + [b(u,u, φh)− b(uh,uh, φh)] + (2ν∇sη,∇sφh)

+(νT (I − PLH )∇sη, (I − PLH )∇sφh)− (p− qh,∇ · φh)

+(νT (I − PLH )∇su, (I − PLH )∇sφh). (1.36)

Note that, since φh ∈ Vh, (qh,∇ · φh) = 0, and we can write

(p,∇ · φh) = (p− qh,∇ · φh),
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for all qh ∈ Qh. We want to bound the terms on the right hand side of (1.36). Consider first the

convection terms in (1.36). Adding and subtracting terms yields:

b(u,u, φh)− b(uh,uh, φh) = b(e,u, φh) + b(uh, e, φh).

By writing e = η − φh, and using skew-symmetry b(uh, φh,φh) = 0, this reduces to

b(u,u,φh)− b(uh,uh, φh) = b(η,u, φh)− b(φh,u, φh) + b(uh, η, φh). (1.37)

We first bound the nonlinear terms on the right hand side of (1.37). After applying triangle

inequality, the first nonlinear term is estimated by using the definition of nonlinear term, Cauchy

Schwarz inequality, (1.32) and by using the following property of projection operator:

‖∇sφh‖ ≤ ‖PLH∇sφh‖+ ‖(I − PLH )∇sφh‖

≤ C(H−1‖φh‖+ ‖(I − PLH )∇sφh)‖. (1.38)

Then we have

b(η,u, φh) ≤ C‖∇u‖‖η‖ 1
2 ‖∇sη‖ 1

2 ‖∇sφh‖

≤ C‖∇u‖‖η‖ 1
2 ‖∇sη‖ 1

2

(
H−1‖φh‖+ ‖(I − PLH )∇sφh‖

)

≤ CH−2‖∇u‖2‖η‖‖∇η‖+ ‖φh‖2 +
νT

4
‖(I − PLH )∇sφh‖2 + ν−1

T ‖∇u‖2‖η‖‖∇sη‖.

In order to bound the next nonlinear term, we use Lemma 1.1.6 and Young’s inequality:

b(φh,u, φh) ≤ ‖∇sφh‖ 3
2 ‖φh‖ 1

2 ‖∇u‖ ≤ ε‖∇sφh‖2 +
C

ε3
‖φh‖2‖∇u‖4.

The last nonlinear term on the right hand side of (1.37) is bounded by using Lemma 1.1.6, property

of the projection operator, (1.38), (1.32) and Young’s inequality.

b(uh, η,φh) ≤ C‖∇uh‖ 1
2 ‖uh‖ 1

2 ‖∇sη‖‖∇sφh‖

≤ (CH−2 + ν−1
T )‖∇uh‖‖uh‖‖∇sη‖+

1
2
‖φh‖2 +

νT

8
‖(I − PLH )∇sφh‖2.
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The remaining terms in (1.36) are estimated by the Cauchy Schwarz, (1.38), (1.32), Young’s, and

Hölder inequalities as follows

‖(ηt, φ
h)‖ ≤ CH−2‖ηt‖2

−1 + ‖φh‖2 +
νT

4
‖(I − PLH )∇sφh‖

+4ν−1
T ‖ηt‖2

−1,

2ν‖∇sη‖‖∇sφh‖ ≤ 2ν‖∇sη‖2 +
ν

2
‖∇sφh‖2,

νT ‖(I − PLH )∇sη‖‖(I − PLH )∇sφh‖ ≤ 4νT ‖(I − PLH )∇sη‖2 +
νT

16
‖(I − PLH )∇sφh‖2,

νT ‖(I − PLH )∇su‖‖(I − PLH )∇sφh‖ ≤ 4νT ‖(I − PLH )∇su‖2 +
νT

16
‖(I − PLH )∇sφh‖2,

‖(p− qh,∇ · φh)‖ ≤ ν−1‖p− qh‖2 +
Cν

2
‖∇sφh‖2.

Inserting these bounds into (1.36) and setting ε = ν/2 yields

1
2

d

dt
‖φh‖2 + ν‖∇sφh‖2 + 7CνT ‖(I − PLH )∇sφh‖2

≤ C(H−2 + ν−1
T )‖ηt‖2

−1 + C(H−2 + ν−1
T )‖∇u‖‖η‖‖∇sη‖

+C(H−2 + ν−1
T )‖∇suh‖2‖η‖‖∇sη‖+ Cν‖∇sη‖2

+CνT ‖(I − PLH )∇sη‖2 + CνT ‖(I − PLH )∇u‖2

+‖φh‖2C(1 + ν−3‖∇u‖4) + ν−1‖p− qh‖2.

Since by assumption ∇u ∈ L4(0, T ;L2(Ω)), Gronwall’s inequality implies

max
0≤t≤T

‖φh‖2 + C

T∫

0

[2ν‖∇sφh‖2 + CνT ‖(I − PLH )∇sφh‖2]dt′

≤ C∗(T )‖φh‖2 + CC∗(T )
[ T∫

0

(H−2 + ν−1
T )‖ηt‖2

−1 + ν‖∇sη‖2 + νT ‖(I − PLH )∇sη‖2

+νT ‖(I − PLH )∇u‖2 + (H−2 + ν−1
T )‖η‖‖∇sη‖(‖∇u‖2 + ‖∇uh‖2)

]
dt′

+CC∗(T ) inf
qh∈Qh

T∫

0

ν−1‖p− qh‖2dt′,
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where

C∗(T ) = exp(

T∫

0

C(1 + ν−3)‖∇u‖4)dt′.

We can bound the remaining terms by using Cauchy-Schwarz inequality in L2(0, T ) and Propo-

sition 1.2.1. Thus,

T∫

0

‖∇u‖2‖η‖‖∇sη‖dt′ ≤ C‖∇u‖2
L4(0,T ;L2(Ω))‖∇sη‖L4(0,T ;L2(Ω))‖η‖L4(0,T ;L2(Ω)),

T∫

0

‖∇uh‖2‖η‖‖∇sη‖dt′ ≤ C‖∇sη‖L4(0,T ;L2(Ω))‖η‖L4(0,T ;L2(Ω)).

Applying the triangle inequality we have the infimum taken over only Vh instead of Xh. Under

the discrete inf-sup condition, it is known that if ∇ · u = 0 the infimum over Vh can be replaced

by infimum taken over Xh, (Girault and Raviart [27], Theorem 1.1, p.59). Thus the final result

follows.

Remark 1.1. For the error analysis, we assume regularity in time ‖∇u‖ ∈ L4(0, T ) i.e.
T∫
0

‖∇u‖4 dt <

∞. With this assumption, it is known that the usual Leray [51] weak solution of the Navier-Stokes

equations is unique, Ladyzhenskaya [47].

The error estimates which are similar to Theorem 1.1 can be used as a guide to pick parameter

scalings by balancing error terms in the case of smooth solutions. To illustrate this let us consider

the Mini-element of Arnold, Brezzi and Fortin [3].

Corollary 1.2.2. Suppose u, p are sufficiently smooth. Assume that Πh(Ω) is obtained by refine-

ment of ΠH(Ω) (h << H). Let Xh,XH ,LH := ∇XH , Qh denote a finite element space of linears

plus bubble functions, piecewise linear on a coarser mesh width H > h, piecewise constants plus

quadratics on coarser mesh, piecewise linear on a mesh width of h, respectively.

With the choices

νT ∼ h, h ∼ H2,

the error in L∞(0, T ; L2(Ω)) ∩ L2(0, T ; H1(Ω)) is bounded by C(u, ν)h.
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Proof: By using approximation assumptions given Section 2,

max
0≤t≤T

‖u− uh‖2 + C(T )

T∫

0

[
ν

2
‖∇s(u− uh)‖2 +

νT

4
‖(I − PLH )∇su‖2]dt′

≤ C∗(u, p)((H−2 + ν−1
T )h6 + νh2 + νT h2 + νT H2 + H−2h3 + ν−1

T h3

+H−2h3 + ν−1h2).

We neglect higher order terms for balancing, i.e., H−2h6, ν−1
T h6, H−2h3. It can be seen easily that

with the natural choice of νT ∼ h, H2 ∼ h the error is order h.

Remark 1.2. If one considers Taylor-Hood element, with the choices

Xh :=
{
v ∈ C0(Ω̄) : v |∆∈ P2(∆), for all triangles ∆ inΠh(Ω)

}
,

XH :=
{
v ∈ C0(Ω̄) : v |∆∈ P2(∆), for all triangles∆ inΠH(Ω)

}
,

LH :=
{

lH ∈ L2(Ω)d : lH |∆∈ P1(∆), for all triangles∆inΠH(Ω)
}

,

Qh :=
{
v ∈ C0Ω̄ : v |∆∈ P1(∆), for all triangles ∆ inΠh(Ω)

}
.

νT ∼ h, h ∼ H2,

the error in L∞(0, T ; L2(Ω)) ∩ L2(0, T ; H1(Ω)) is bounded by C(u, ν)h2.

1.2.2 Error Estimation For Pressure

In this section, we provide the L2 error estimation for the pressure. We follow the pressure

estimation of Girault and Raviart [27] for Navier-Stokes equations. The analysis of pressure requires

the estimation of the derivative of velocity error. We first start with writing the error equation for

the pressure and derive the estimation for the ‖(u− uh)t‖.
It is easy to see that approximate solution (uh,vh) satisfies the following equations:

(ph,∇ · vh) = (uh
t ,vh) + b(uh,uh,vh) + (2ν∇suh,∇svh)

+νT ((I − PLH )∇suh, (I − PLH )∇svh) + (f ,vh), (1.39)

for all vh ∈ Xh. Writing the equations (1.34) and (1.39) satisfied by p and ph, respectively and
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setting σ = p− ph and e = u− uh, we get the following equation for the pressure error:

(σ,∇ · vh) = (et,vh) + ν(∇se,∇svh) + νT ((I − PLH )∇se, (I − PLH )∇svh)

+b(u,u,vh)− b(uh,uh,vh)− νT ((I − PLH )∇su, (I − PLH )∇svh). (1.40)

On the other hand, inf-sup condition (1.1.1) is equivalent to the following: for every qh ∈ Qh,

there exists a nontrivial vh ∈ Xh, such that

(ph − p̃,∇ · vh) ≥ β‖∇vh‖‖ph − p̃‖. (1.41)

In view of (1.41), we have

‖σ‖ ≤ ‖p− p̃‖+ β−1 |(ph − p̃,∇ · vh)|
‖∇vh‖ , (1.42)

where p̃ ∈ Qh approximation of p. Adding and subtracting (p̃,∇ · v) into (1.40) gives

(ph − p̃,∇ · vh) ≤ C(‖p− p̃‖+ ‖et‖+ ν ‖∇se‖

+νT ‖(I − PLH )∇se‖+ νT ‖(I − PLH )∇su‖)‖∇vh‖+ |b(u,u,vh)− b(uh,uh,vh)|.

By using Lemma 1.1.5, the nonlinear terms can be rewritten as follows:

b(u,u,vh)− b(uh,uh,vh) = −b(e, e,vh) + b(e,u,vh) + b(u, e,vh)

≤ C(‖∇se‖+ ‖∇u‖) ‖∇se‖ ‖∇vh‖.

Then (1.42) becomes

‖σ‖ ≤ C(‖p− p̃‖+ ‖et‖+ ν ‖∇se‖+ νT ‖(I − PLH )∇se‖

+νT ‖(I − PLH )∇su‖+ ‖∇se‖2 + ‖∇se‖ ‖∇u‖). (1.43)

To estimate the right hand side of (1.43), we need an estimation for ‖et‖. In order to get this

estimation, let us define the following modified Stokes projection.
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Definition 1.2. (Modified Stokes Projection) Let (uS(t), pS(t)) ∈ (Xh, Qh) satisfy

ν(∇suS(t),∇svh) + νT ((I − PLH )∇suS(t), (I − PLH )∇svh)− (pS ,∇ · vh)

= ν(∇su(t),∇svh) + νT ((I − PLH )∇su, (I − PLH )∇svh)− (p,∇ · vh) ∀vh ∈ Xh, (1.44)

(qh,∇ · uS(t)) = 0, ∀qh ∈ Qh. (1.45)

for all (vh, qh) ∈ (Xh, Qh).

We now derive estimates for the error ut−uh
t and p− ph. Let (uS , pS) satisfy (1.44) and (1.45)

and define η = u− uS and ξ = uh − uS .

Theorem 1.2. (Error Estimate for ‖ut−uh
t ‖) Assume that u ∈ L∞(0, T ; L2) and ∇u ∈ L∞(0, T ; L2).

Then there is a constant C̃ = exp(C(T )ν−1) such that the error ut − uh
t satisfies for T ≥ 0

‖ut − uh
t ‖2

L2(0,T ;L2) + 2ν‖∇s(u− uh)‖2
L2(0,T ;L2) +

νT

2
‖(I − PLH )∇s(u− uh)‖2

L2(0,T ;L2)

≤ C̃
(
(ν + νT )‖u0 − uh

0‖2
L2(0,T ;L2) + ‖(u− vh)t‖2

L2(0,T ;L2) + ‖∇(u− vh)‖2
L2(0,T ;L2)

+ν2
T h−2 ‖(I − PLH )∇u‖2

L2(0,T ;L2)

)
.

Proof: Adding and subtracting terms in (1.44)-(1.45) and setting vh = ξt result in

‖ξt‖2 + ν
d

dt
‖∇sξ‖2 +

νT

2
‖(I − PLH )∇sξ‖2

= (ηt, ξt)− νT ((I − PLH )∇su, (I − PLH )∇sξt) + [b(u,u, ξt)− b(uh,uh, ξt)]

= T1 + T2 + T3. (1.46)

By using Cauchy Schwarz and Young’s inequality, the first term is bounded by

T1 ≤ 1
16
‖ξt‖2 + C ‖ηt‖2 .
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Also, an inverse inequality implies that the term T2 can be estimated with

T2 ≤ 1
16
‖ξt‖2 + CνT h−2 ‖(I − PLH )∇u‖2 .

Nonlinear terms can be rewritten as

b(u,u, ξt)− b(uh,uh, ξt) = b(u− uS ,uh, ξt)− b(ξ,uh, ξt) + b(u,u− uh, ξt)

= b(ξ, ξ, ξt)− b(ξ, η, ξt) + b(ξ,u, ξt)− b(η,uh, ξt) + b(u, ξ, ξt)− b(u,η, ξt)

= T31 + T32 + T33 + T34 + T35 + T36. (1.47)

We assume that ξ ∈ L∞((0, T )×Ω). We estimate each term in (1.47) separately. Using Lp bounds,

we obtain:

T31 = (ξ,∇sξ, ξt) ≤ ‖ξ‖L∞ ‖∇sξ‖ ‖ξt‖

=
1
16
‖ξt‖2 + C ‖∇sξ‖2 .

We use the integration by parts, inverse inequality, and Lp bounds to estimate T32:

T32 = (ξ,∇η, ξt) +
1
2
(∇ · ξ, ξt · η) ≤ ‖ξ‖L∞ ‖∇sη‖ ‖ξt‖+

1
2
‖η‖L4 ‖∇sξ‖ ‖ξt‖L4

≤ 1
16
‖ξt‖2 + C ‖∇η‖2 +

1
2
hk+1/2 ‖η‖ ‖∇sξ‖h−1/2 ‖ξt‖

≤ 1
16
‖ξt‖2 + C ‖∇sξ‖2 + C ‖∇η‖2 .

The next term T33 can be bounded by using integration by parts, Poincaré, Cauchy Schwarz and

Young’s inequality:

T33 = (ξ · ∇u, ξt) +
1
2
(∇ · ξ, ξt · u)

≤ ‖ξ‖ ‖∇u‖L∞ ‖ξt‖+
1
2
‖u‖L∞ ‖∇sξ‖ ‖ξt‖

≤ 1
16
‖ξt‖2 + C ‖∇sξ‖2 .
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T34 is bounded like T32 :

T34 = (η · ∇uh, ξt) +
1
2
(∇ · η, ξt · uh)

≤ ‖η‖L4 ‖∇suh‖L4 ‖ξt‖+
1
2
‖uh‖L∞ ‖∇sη‖ ‖ξt‖

≤ 1
16
‖ξt‖2 + C ‖∇η‖2 .

Note that the nonlinear term T35 and T36 are bounded exactly like T33.

Combining all the bounds above and arranging terms, we obtain

1
2
‖ξt‖2 + ν

d

dt
‖∇sξ‖2 +

νT

2
‖(I − PLH )∇sξ‖2

≤ C(‖∇ξ‖2 + ‖ηt‖2 + ‖∇sη‖2 + ν2
T h−2 ‖(I − PLH )∇u‖2).

The application of Gronwall’s inequality gives the required result.

Theorem 1.3. (Pressure Estimation) Under the assumptions Theorem 1.1 and Theorem 1.2, the

following estimate holds true

‖p− ph‖L2(0,T ;L2) ≤ C‖u0 − vh
0‖L2(0,T ;L2) + C∗(T ) inf

vh∈Xh

ph∈Qh

[
(H−1 + ν

−1/2
T )‖(u− vh)t‖L2(0,T,H−1)

+ν1/2‖∇s(u− vh)‖L2(0,T ;L2) + νT ‖(I − PLH )∇s(u− vh)‖2
L2(0,T ;L2)

+ν
1/2
T ‖(I − PLH )∇su‖L2(0,T ;L2) + (H−1 + ν

−1/2
T )‖∇s(u− vh)‖1/2

L4(0,T ;L2)
‖u− vh‖1/2

L4(0,T ;L2)

×(‖∇u‖L4(0,T ;L2) + 1) + ν−1/2‖p− qh‖L2(0,T ;L2)

]

+C̃((ν + νT )1/2‖u0 − uh
0‖L2(0,T ;L2) + ‖u− vh‖L2(0,T ;L2) + ‖∇(u− vh)‖L2(0,T ;L2)

+νT h−1‖(I − PLH )∇u‖L2(0,T ;L2))

C‖u0 − vh
0‖2

L2(0,T ;L2) + C∗(T ) inf
vh∈Xh

ph∈Qh

[
(H−2 + ν−1

T )‖(u− vh)t‖2
L2(0,T,H−1)

+ν‖∇s(u− vh)‖2
L2(0,T ;L2) + νT ‖(I − PLH )∇s(u− vh)‖2

L2(0,T ;L2)

+νT ‖(I − PLH )∇su‖2
L2(0,T ;L2) + (H−2 + ν−1

T )‖∇s(u− vh)‖L4(0,T ;L2)‖u− vh‖L4(0,T ;L2)

×(‖∇u‖2
L4(0,T ;L2) + 1) + ν−1‖p− qh‖2

L2(0,T ;L2)

]
,
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where C∗(T ) = exp((7 + Cν−3) ‖∇u‖4
L4(0,T ;L2(Ω))) and C̃ = exp(CTν−1).

Proof: We want to bound (1.43). By using the Theorem 1.1 and Theorem 1.2 in (1.43). We

obtain the required result.

1.3 Error Estimate For Velocity In L2

We now give an error estimate in L2 for the velocity by using the duality argument [33]. We

first consider the linearized adjoint problem of the Navier-Stokes equations: given g ∈ L2(Ω), find

(φ, χ) ∈ (X, Q) such that φ(τ) = 0, and

−(φt,v) + (2ν∇sφ,∇sv) + (νT (I − PLH )∇sφ, (I − PLH )∇sv)

+b(u,v, φ) + b(v,u, φ) + (χ,∇ · v)− (q,∇ · φ) = (g,v). (1.48)

for all (v, q) ∈ (X, Q). Since (u, p) is a nonsingular solution of (1) and the boundary ∂Ω is smooth

enough, there exists a unique (φ, χ) to dual (1.48), [33] . We also assume that the linearized adjoint

problem (1.48) is H2(Ω) regular. This means that for any g ∈ L2(Ω) there exists a unique pair

(φ, χ) in (X ∩H2(Ω)d)× (Q ∩H1(Ω)) such that the following inequality holds

‖φ‖2 + ‖χ‖1 ≤ C‖g‖. (1.49)

The following error estimate is proved in [33]:

‖φ(0)‖2
1 +

∫ τ

0
{‖φ‖2

2 + ‖χ‖1}dt ≤ C(u0, f)
∫ τ

0
‖e‖2 dt. (1.50)

Owing to (1.50), we now give the L2 error estimate.

Theorem 1.4. Assume that the assumptions of Theorem 1.1 and Theorem 1.3 hold and the solution

of the dual problem (1.48) satisfies the stability estimates (1.49) and (1.50). Then, there exists a

constant C, independent of h,H, νT such that

‖u− uh‖L2(0,T ;L2(Ω) ≤ Chk+1(‖u‖L2(0,T ;Hk+1(Ω) + ‖p‖L2(0,T ;Hk(Ω)) (1.51)

33



Proof: Choosing v = e = u− uh, q = p− ph and g = e in (1.48) we have

‖e‖2 = − d

dt
(e, φ) + (et,φ) + (2ν∇sφ,∇se)

+(νT (I − PLH )∇sφ, (I − PLH )∇se) + b(u, e, φ) + b(e,u, φ)

+(χ,∇e)− (p− ph,∇ · φ). (1.52)

Recall that we have the following error equation

(et,vh) + [b(u,u,vh)− b(uh,uh,vh)] + (2ν∇se,∇svh)

+(νT (I − PLH )∇se, (I − PLH )∇svh)− (p− ph,∇ · vh)

+(qh,∇ · (u− uh) = (νT (I − PLH )∇su, (I − PLH )∇svh). (1.53)

for all (vh, qh) ∈ Xh×Qh. Then, we choose (vh, qh) ≈ (φ̃, q̃) where (φ̃, q̃) are the best approximation

of (φ, χ) in (Xh, Qh). Note that we have the following estimation for these best approximations:

‖φ− φ̃‖1 ≤ Ch‖φ‖2 ≤ Ch ‖e‖ , (1.54)

‖χ− q̃‖1 ≤ Ch‖χ‖1 ≤ Ch ‖e‖ . (1.55)

Subtracting (1.53) to right hand side of (1.52) results

‖e‖2 = − d

dt
(e, φ) + (et,φ− φ̃) + (2ν∇s(φ− φ̃),∇se)

+(νT (I − PLH )∇s(φ− φ̃), (I − PLH )∇se) + (νT (I − PLH )∇su, (I − PLH )∇sφ̃)

+b(u, e, φ− φ̃) + b(u, e, φ− φ̃) + b(e, e, φ̃− φ) + b(e, e, φ)

+(χ− q̃,∇ · e)− (p− ph,∇ · (φ− φ̃)).
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We now integrate both sides [0, τ ] and use φ(τ) = 0. This gives

∫ τ

0
‖e‖2 dt ≤ (φ(0), e(0)) +

∫ τ

0

{
(et,φ− φ̃) + (2ν∇s(φ− φ̃),∇se)

+(νT (I − PLH )∇s(φ− φ̃), (I − PLH )∇se) + (νT (I − PLH )∇su, (I − PLH )∇sφ̃)

+b(u, e, φ− φ̃) + b(u, e, φ− φ̃) + b(e, e, φ̃− φ) + b(e, e, φ)

(χ− q̃,∇ · e)− (p− ph,∇ · (φ− φ̃))
}

dt

= S1 + S2 + · · ·+ S11.

We first bound S1, S3 and S10 together. Using Cauchy Schwarz inequality and Young’s inequality

give

S1 + S3 + S10 ≤ ‖φ(0)‖ ‖e(0)‖+
∫ τ

0
(‖2ν∇s(φ− φ̃)‖+ ‖χ− q̃‖)‖∇se‖dt.

Also, by using (1.54), (1.55) and (1.50)

S1 + S3 + S10 ≤ ε ‖φ(0)‖2 + ε

∫ τ

0
(‖φ‖2

2 + ‖χ‖2
1)dt

+
1
ε
{‖e(0)‖2 + h2 max{C, ν}

∫ τ

0
‖∇se‖2dt}.

≤ εC(u0, f)
∫ τ

0
‖e‖2dt +

C(ν)
ε
{‖e(0)‖2 + h2

∫ τ

0
‖∇se‖2dt}.

Using the same type of inequalities, approximation results and the stability bound (1.49) gives the

following bound for S2:

S2 ≤
∫ τ

0
‖et‖ ‖φ− φ̃‖dt ≤ 1

ε
h2

∫ τ

0
‖et‖2 dt + ε

∫ τ

0
‖e‖2 dt.

To bound the eddy viscosity term, we use ‖(I − PLH )‖ ≤ 1 and (1.54). Hence, S4 is bounded as

S4 ≤
∫ τ

0
νT ‖(I − PLH )∇s(φ− φ̃)‖‖(I − PLH )∇se‖dt

≤ ε

∫ τ

0
‖e‖2 dt +

1
ε
ν2

T h2

∫ τ

0
‖∇se‖2dt.
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Using approximation results, the consistency term S5 can be estimated as follows

S5 ≤
∫ τ

0
{νT ‖(I − PLH )∇su‖ ‖(I − PLH )∇sφ̃‖}dt

≤
∫ τ

0
νT Hk|u|k+1H‖∇sφ̃‖1dt ≤

∫ τ

0
CνT Hk+1|u|k+1‖φ̃‖2

≤ C

∫ τ

0
νT Hk+1|u|k+1(‖φ̃− φ‖2 + ‖φ‖2)dt ≤

∫ τ

0
CνT Hk+1|u|k+1‖φ‖2dt

≤ 1
ε
ν2

T H2k+2

∫ τ

0
‖u‖2

k+1 dt + ε

∫ τ

0
‖e‖2 dt.

We then consider the nonlinear terms, S6 and S7, by using Lemma 1.1.6, (1.54) and Korn’s in-

equality:

S6 + S7 ≤
∫ τ

0
M ‖∇u‖ ‖∇e‖ ‖∇(φ− φ̃)‖dt

≤ ε

∫ τ

0
‖e‖2 dt +

C

ε
h2

∫ τ

0
‖∇u‖2 ‖∇se‖2 dt.

The term S8 can be estimated in the same way as above

S8 ≤
∫ τ

0
‖∇e‖2 ‖φ‖2 dt ≤ ε

∫ τ

0
‖e‖2 dt +

1
ε
h2

∫ τ

0
‖∇se‖2 dt.

The estimate of the last nonlinear term S9 follows from Korn’s inequality and (1.49):

S9 ≤
∫ τ

0
‖∇e‖2 ‖∇φ‖ dt ≤ C

∫ τ

0
‖∇se‖2 ‖φ‖2dt

≤ C

∫ τ

0
‖∇se‖2 ‖e‖dt ≤ ε

∫ τ

0
‖e‖2 dt +

C

ε

∫ τ

0
‖∇e‖4 dt.

Finally, S11 is bounded by using (1.54)

S11 ≤
∫ τ

0
‖p− ph‖‖φ− φ̃‖dt ≤ ε

∫ τ

0
‖e‖2dt +

1
ε
h2

∫ τ

0
‖p− ph‖2dt.
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Choosing ε sufficiently small and collecting all the estimates, we have

∫ τ

0
‖e‖2 ≤ C

{
‖e(0)‖2 + h2

∫ τ

0
‖∇se‖2 (1 + ν2

T + ‖∇u‖2)dt + h2

∫ T

0
‖et‖2 dt

+ν2
T H2k+2

∫ τ

0
‖u‖2

k+1 dt +
∫ τ

0
‖∇e‖4 dt + h2

∫ τ

0
‖p− ph‖2dt

}
.

Applying the Theorem 1.1 and Theorem 1.3 gives the required result.

In the next section, we investigate the Reynolds number dependence for the linearized Navier-

Stokes equation called Oseen problem.

1.4 Reynolds Number Dependence for the Oseen Problem

Consider the solution of the time dependent linearized Navier-Stokes equations, i.e. the Oseen

problem

ut − ν∆u + b · ∇u +∇p = f in (0, T ]× Ω,

∇ · u = 0 in [0, T ]× Ω,

u = 0 in [0, T ]× ∂Ω,

u(0,x) = u0 in Ω,

(1.56)

where b(x) is a smooth vector field with ∇·b = 0 and b = 0 on ∂Ω. Simplifying the proof from the

Navier-Stokes case, we show that the semi-discrete approximation of (1.56) is convergent. Indeed,

the variational formulation of (1.56) is

(ut,v) + (ν∇u,∇v) + (b · ∇u,v)− (p,∇ · v) + (q,∇ · u) = (f ,v). (1.57)

for all (v, q) ∈ (X, Q). We consider the new subgrid eddy viscosity method and the same fi-

nite element discretization as for the Navier-Stokes case. Thus, the semi discrete finite element

approximation is a map uh : [0, T ] → Vh satisfying

(uh
t ,vh) + (ν∇uh,∇vh) + (b · ∇uh,vh) + (νT (I − PLH )∇uh, (I − PLH )∇vh) = (f,vh), (1.58)
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for all vh ∈ Vh where Vh is the space of discretely divergence-free functions. For error analy-

sis, we need a second equation including u. Multiply (1.56) by vh ∈ Vh and integrate over Ω.

Rearrangements give for any vh ∈ Vh

(ut,vh) + (ν∇u,∇vh) + (b · ∇u,v)− (p− qh,∇ · vh) (1.59)

+(νT (I − PLH )∇u, (I − PLH )∇vh) = (νT (I − PLH )∇u, (I − PLH )∇vh) + (f,vh).

Theorem 1.5. There is a constant C∗ = eC(t−T ) independent of ν such that

max
0≤t≤T

‖u− uh‖2
L∞(0,T ;L2) + ν‖∇(u− uh)‖2

L2(0,T ;L2) + νT ‖(I − PLH )∇(u− uh)‖2
L2(0,T ;L2)

≤ ‖u0 − vh
0‖2

L2(0,T ;L2) + C∗ inf
vh∈Xh

ph∈Qh

[(H−2 + ν−1
T )‖(u− vh)t‖2

L2(0,T,H−1)

+ ν‖∇(u− vh)‖2
L2(0,T ;L2) + νT ‖(I − PLH )∇(u− vh)‖2

L2(0,T ;L2) + νT ‖(I − PLH )∇u‖2
L2(0,T ;L2)

+ H−2‖PLHb(u− vh)‖2
L2(0,T ;L2) + ν−1

T ‖(I − PLH )b(u− vh)‖2
L2(0,T ;L2)

+ (H−2 + ν−1
T )‖p− qh‖2

L2(0,T ;L2)]. (1.60)

Proof: For the error analysis subtract (1.58) from (1.59) and set e = u− uh = η − φh where

η = u−vh and φh = uh−vh. Following the same procedure in the proof of Theorem 1.1 gives the

result.

Remark 1.3. This result is important because it shows that the important the new method improves

its robustness with respect to Reynolds number. The Oseen problem captures the convection terms

contribution to the linearized problem but omits the reaction term. Thus, this error estimates shows

that the new method ensures the uniformity in ν in the error contribution from the convection

terms.

To show the advantages of this new method we consider also the error in usual Galerkin formu-

lation of Oseen problem (νT = 0). The usual Galerkin variational formulation of Oseen problem is

(1.57) and semi discrete approximation is

(uh
t ,vh)− ν(∇uh,∇vh)− (b · ∇uh,vh) = (f,vh), for all vh ∈ Vh. (1.61)
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Then, if we subtract (1.61) from (1.57), we get the following theorem.

Theorem 1.6. Let uh be the usual Galerkin finite element approximation of the Oseen problem.

Then, there is a constant C such that

max
0≤t≤T

‖u− uh‖2
L∞(0,T ;L2) + ν‖∇(u− uh)‖2

L2(0,T ;L2) ≤ C inf
vh∈Xh

ph∈Qh

[
ν−1‖(u− vh)t‖2

L2(0,T,H−1)

+ ν‖∇(u− vh)‖2
L2(0,T ;L2) + ν−1‖b(u− vh)‖2

L2(0,T ;L2) + ν−1‖p− qh‖2
L2(0,T ;L2)].

Remark 1.4. If we compare Theorem 1.5 and Theorem 1.6, it is clear that the basic error estimate

for the usual Galerkin formulation of Oseen problem depends badly on ν. In contrast, this new

approach leads to an error estimate with error constants which are uniform in ν for the Oseen

problem.
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Chapter 2

Connection with the Variational Multiscale Method

In this chapter, we give a slightly more general interpretation of Hughes’s variational multiscale

method (VMM) [35]. The VMM studied in this chapter is an extension of an approach for scalar

convection diffusion equations which can be found in [44]. VMM approach has often noted fun-

damental conceptual restriction connected to the assumption that fluctuations cannot cross mesh

lines. It seems this assumption does not reflect the behavior of small scales correctly. We show

that a new consistently stabilized method of [43] fits into the framework of generalized variational

multiscale methods as does another consistently stabilized method of [30]. In addition, this general-

ization removes the restriction of VMM. This chapter is organized as follows: Section 2.1 introduces

the VMM method. Section 2.2 establishes the connection of VMM of Hughes and VMM of Chapter

1.

2.1 Introduction to Variational Multiscale Method (VMM)

The Variational Multiscale Method (VMM) is a finite element method for multiscale problem

introduced by Hughes [35], which simultaneously discretizes coupled systems of both large and

small scales. The usual semi discrete variational formulation of (1.1) is : find u : [0, T ] → X, p :

(0, T ] → Q satisfying

(ut,v) + b(u,u,v)− (p,∇ · v) + (q,∇ · u) + (2ν∇su,∇sv) = (f ,v),

(q,∇ · u) = 0,
(2.1)

for all (v, q) ∈ (X, Q). The usual 1-scale semi-discrete finite element method for (2.1) arises by

choosing appropriate finite dimensional subspaces Xh ⊂ X and Qh ⊂ Q and determining uh and

ph satisfying (2.1) restricted to Xh, Qh. In turbulent flows the effects of small scales velocity in

X \Xh upon the large velocity uh ∈ Xh are widely thought to be critical for a realistic simulation.
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Following Hughes [35], the velocity and pressure spaces are decomposed into means and fluctuations

X = X̄ + X′ and Q = Q̄ + Q′ (2.2)

where X̄ ⊂ X, Q̄ ⊂ Q denote closed subspaces of large velocity and pressure scales. In this

decomposition, X̄ is chosen as a standard finite element space, i.e. Xh. Associated with X̄, Q̄ is

a projection operator: P̄ : (X, Q) → (X̄, Q̄). The space of fluctuations (X′, Q′) is the complement

of X̄, Q̄ in X, Q, respectively. Then (X′, Q′) := P ′(X, Q) where P ′ = (I − P̄ ). By using (2.2), we

write:

u = ū + u′ and p = p̄ + p′, where (ū, p̄) = P̄ (u, p), (u′, p′) = P ′(u, p). (2.3)

Inserting this decomposition into (2.1) and setting first (v, q) = (v̄, q̄) then (v, q) = (v′, q′) gives

the following coupled equations for ū and u′ :

(ūt + u′t, v̄) + b(ū + u′, ū + u′, v̄) + (2ν∇s(ū + u′),∇sv̄)− (p̄ + p′,∇ · v̄) = (f̄ + f ′, v̄), (2.4)

(ūt + u′t,v
′) + b(ū + u′, ū + u′,v′) + (2ν∇s(ū + u′),∇sv′)− (p̄ + p′,∇ · v′) = (f̄ + f ′,v′), (2.5)

for all v̄ ∈ X̄ and for all v′ ∈ X′. After rearranging terms, these coupled system yields

(ūt, v̄) + b(ū, ū, v̄)− (2ν∇sū,∇sv̄)− (p̄,∇ · v̄)− (f̄ , v̄) = (f ′, v̄)− a(u′, v̄)− (p′,∇ · v̄), (2.6)

where

a(u′, v̄) = (u′t, v̄) + b(u′,u′, v̄) + b(ū,u′, v̄) + b(u′, ū, v̄) + (2ν∇su′,∇sv̄),

and

(u′t,v
′)+ b(u′,u′,v′)− (2ν∇su′,∇sv′)− (p′,∇·v′)− (f ′,v′) = (f̄ ,v′)− a(ū,v′)− (p̄,∇·v′), (2.7)

where

a(ū,v′) = (ūt,v′) + b(ū, ū,v′) + b(u′, ū,v′) + b(ū,u′,v′) + (2ν∇sū,∇sv′).

A variational multiscale discretization from (2.6),(2.7) begins by selecting a finite dimensional

subspace X̄ := Xh for the approximate mean flow ū ∈ X̄, p̄ ∈ Q̄ and finite dimensional spaces
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X′
h, Q′

h for the fluctuation. Note that ideally X′
h ⊂ X′ but usually X′

h ( X′.

Definition 2.1. (Hughes et al., [35]) The VMM approximation to (2.1) is a pair (ū, p̄) : [0, T ] →
(X̄, Q̄) and (u′h, p′h) : [0, T ] → (X′

h, Q′
h) satisfying ū(0) = P̄u0,u′h(0) = P ′u0 and

(ūt, v̄)+ b(ū, ū, v̄)+ (2ν∇sū,∇sv̄)− (p̄,∇· v̄)+ (q̄,∇· ū)− (f̄ , v̄) = (f ′, v̄)−a(u′h, v̄)+ (p′h,∇· v̄′h),

(2.8)

where

a(u′h, v̄) = (u′h,t, v̄) + b(u′h,u′h, v̄) + b(ū,u′h, v̄) + b(u′h, ū, v̄) + (2ν∇su′h,∇sv̄),

for all v̄ ∈ X̄, q̄ ∈ Q̄ and

(u′h,t,v
′
h) + b(u′h,u′h,v′h) + (2ν∇su′h,∇sv′h)− (p′,∇ · v′) + (q′h,∇ · u′h)

+ (νT∇su′h,∇sv′h)− (f ′,v′) = (f̄ ,v′h)− a(ū,v′h) + (p̄,∇ · v′h), (2.9)

where

a(ū,v′h) = (ūt,v′h) + b(ū, ū,v′h) + b(u′h, ū,v′h) + b(ū,u′h,v′h) + (2ν∇sū,∇sv′h),

for all v′h ∈ X′
h, q′h ∈ Q′

h and where νT is the turbulent viscosity coefficient in a small scale artificial

viscosity type stabilization term.

Remark 2.1. The work of Hughes (and co-workers) [35] has explored the choices

• the projection operator P̄ as L2 projection,

• (X̄, Q̄) = standard velocity-pressure finite element spaces, (X′
h, Q′

h) = spaces of bubble func-

tions vanishing on element edges,

• νT = a Smagorinsky eddy viscosity term.

Remark 2.2. Different choices of X′
h have been explored. In the case of periodic boundary con-

ditions, X′
h is often constructed as the span of the next few exponentials [36]. For bounded do-

mains,(motivated by Residual Free Bubble(RFB) [12] theory) the choices (X̄, Q̄) = standard velocity-
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pressure finite element spaces, (X′
h, Q′

h) = spaces of bubble functions vanishing on element edges

have been explored. One important question which is actively being investigated is how rich the

space X′
h must be.

The VMM has been developed and connected with the other popular methods. The choice of

bubble functions to model fluctuations imposes the following assumption: the small scales exist only

in the interior of element boundaries of the element domains. This assumption leads to localizing

calculations for the small scales in the sense that the problems are elementwise uncoupled. This

choice of (X
′
h, Q′

h), is made for the same reason as in RFB methods (Hughes [35]). Thus with

VMMs, the small scales’ equation can be solved element by element and inserted into large scales’

equation. The introduced terms then closely represent the effect of the modelled small scales on

the large scales.

Definition 2.2. (Generalized VMM) A generalized VMM is determined by alternate choices of

• projection operator P̄ defining large scales,

• the discrete spaces X̄, Q̄, X′
h, Q′

h where X′
h, Q′

h are the complements of X̄, Q̄, respectively,

• the small scale stabilization term

(νT∇su′h,∇sv′h),

is added on the right hand side of (2.9)

2.2 Connection with the new approach and VMM

One contribution of this work is to show that (1.5), (1.6) is a suitably generalized VMM in the

sense of Definition 2.2. To present this we use Lemma 1.1.7.

Remark 2.3. Lemma 1.1.7 shows that the natural definition of means of ∇su is by L2 projection

and means of u is by elliptic projection.

Remark 2.4. The VMM discretization of the incompressibility constraint is:

(∇ · (uH + u′h), qH) = 0,

(∇ · (uH + u′h), q′h) = 0,
(2.10)
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for all qH ∈ QH and for all q′h ∈ Q′
h. At this point an algorithmic choice must be made. If

uh = uH + u′h is to be discretely div-free with respect to Qh then (2.10) is imposed (as stated)

as a coupled system. In this case uH may not be discretely div-free with respect to QH . This is

the choice we make herein; it leads to the use of the elliptic projection operator PE. If uH is to

be discretely div-free with respect to QH , then (2.10) uncouples and u′h will not (in general) be

discretely div-free with respect to Q′
h nor will uh be discretely div-free with respect to Qh. With this

choice PE should be replaced in our error analysis by the discrete Stokes projection. This issue does

not arise in spectral discretization of periodic problem since spectral basis functions are chosen to

be exactly div-free.

Theorem 2.1. Assume that XH ⊂ Xhand LH = ∇XH . Then (1.5),( 1.6) is a generalized VMM

wherein:

• the projector operator PE : Xh → XH a elliptic projection operator function. Thus, uH =

PEuh.

• X′
h, is the complement of XH , in Xh, respectively, given by X′

h = (I − PE)Xh. Thus,

u′h = (I − PE)uh.

• the stabilization term is given by (νT∇su′h,∇sv′h).

Proof: From Lemma 1.1.7, the extra term in equation (1.9) can be written as

(νT (I − PLH )(∇suh), (I − PLH )(∇svh)) = (νT (∇su′h,∇sv′h)).

Thus, the new method is equivalent to: find (uh, ph, gH) ∈ (Xh, Qh,LH) satisfying

(uh
t ,vh) + b(uh,uh,vh)− (ph,∇ · vh) + (qh,∇ · uh) + (2ν∇suh,∇svh)

+ (νT∇su′h,∇sv′h) = (f,vh), (2.11)

for all vh ∈ Xh and qh ∈ Qh. In equation (2.11), write uh = uH +u′h, and set alternately, vh = vH

and vh = v′h. Similarly, as in (2.8), (2.9), this gives the following coupled equations:
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(uH
t ,vH) + b(uH ,uH ,vH) + (2ν∇suH ,∇svH)− (pH ,∇ · vH)

+ (qH ,∇ · uH)− (fH ,vH) = (f ′,vH)− a1(u′h,vH), for all vH ∈ XH , qH ∈ QH , (2.12)

where

a1(u′h,vH) = (u′h,t,v
H)+b(u′h,u′h,vH)+b(uH ,u′h,vH)+b(u′h,uH ,vH)−(p′h,∇·vH)+(2ν∇su′h,∇svH),

and

(u′h,t,v
′
h) + b(u′h,u′h,v′h)− (2ν∇su′h,∇sv′h)− (p′,∇ · v′) + (q′h,∇ · u′h)

+ (νT∇su′h,∇sv′h)− (f ′,v′) = (fH ,v′h)− a2(uH ,v′h), for all v′h ∈ X′
h, q′h ∈ Q′

h, (2.13)

where

a2(uH ,v′h) = (uH
t ,v′h)+b(uH ,uH ,v′h)+b(u′h,uH ,v′h)+b(uH ,u′h,v′h)−(pH ,∇·v′h)+(2ν∇suH ,∇sv′h).

As noted before, the Hughes’ VMM uses the assumption that fluctuations vanish identically

on the boundaries of the element. This seems to unlikely reflect the behavior of the small scales.

The VMM studied in this thesis does not have this restriction. In the new VMM, (1.5), (1.6),

fluctuations are allowed to be nonzero across boundaries. Indeed, let us choose the span of linear

basis function with vertex in ΠH , for coarse mesh ΠH and the span of linear basis function with

vertex in Πh not in ΠH for the complement of XH i.e. for the fluctuations. It is clear that with

this new VMM’s approach, fluctuations can be nonzero across mesh edges.
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Chapter 3

Numerical Experiments

The objective of this chapter is to provide a careful numerical assessment of the model introduced

in Chapter 1. In numerical tests, we consider the steady state Navier-Stokes equations.

We first describe the algorithm used for handling the nonlinearity and the subgrid eddy viscosity

term. We then present two numerical examples: one with a known analytical solution that allows

for a numerical study of the convergence rates; and one benchmark problem, driven cavity. In both

cases, the mini-element spaces (k = 1) are used.

3.0.1 Algorithm

To solve the nonlinear system a Newton method is used. Given (um−1, pm−1), we find (um, pm)

satisfying

(2ν∇sum,∇svh) +
1
2
b(um−1,um,vh) +

1
2
b(um,um−1,vh)− 1

2
b(um−1,vh,um)

−1
2
b(um,vh,um−1)− (pm,∇ · vh)

= (f ,vh) +
1
2
b(um−1,um−1,vh)− 1

2
b(um−1,vh,um−1)− (νT (I − PLH )∇sum−1, (I − PLH )∇svh))

(3.1)

(qh,∇ · um) = 0,

for all (vh, qh) ∈ (Xh, Qh). This algorithm leads to a linear system of the form Ax = b with A

nonsymmetric. To solve this linear system we use the iterative conjugate gradient squared method

of [66]. The stopping criteria of this Newton method is based on the absolute residual.

We now show that the extra stabilization term (νT (I − PLH )(∇sum−1), (I − PLH )∇svh)) re-

quires a modification of the right-hand side of the linear system, that can be computed locally.

First, the extra stabilization term can be rewritten

(νT (I − PLH )∇sum−1, (I − PLH )∇svh)) = νT (∇sum−1,∇svh)− νT (PLH∇sum−1,∇svh).
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In this decomposition, adding the first term is straight-forward, as it is similar to the diffusive term

(2ν∇sum−1,vh). The difficulty is to incorporate the second term, since it couples coarse and fine

meshes. Denoting a basis of Xh by {φh
j }Nh

j=1, we want to compute (PLH∇sum−1,∇sφh
j ), for all j.

Denoting a basis of LH by {ψH
j }NH

j=1, we can write

PLH∇sum−1 =
NH∑

j=1

βjψ
H
j , (3.2)

where the βj ’s are unknown coefficients, uniquely defined. Thus, we have

(PLH∇sum−1,∇sφh
i )i = (

NH∑

j=1

βjψ
H
j ,∇sφh

i )i = R




β1

β2

...

βNH




,

where R is the matrix that couples the fine and large scales: Rij = (ψH
j ,∇sφh

i ). To determine the

unknown coefficients βj ’s, it suffices to take the inner product to both sides of (3.2) with ψH
i :




β1

β2

...

βNH




= S−1(PLH∇sum−1, ψH
i ) = S−1(∇sum−1, ψH

i ), (3.3)

where S = (ψH
j , ψH

i ) is the mass matrix associated to LH . Thus, we have so far

(PLH∇sum−1,∇sφh
i )i = RS−1(∇sum−1, ψH

i )i. (3.4)

To conclude, we decompose ∇sum−1 as

∇sum−1 =
Nh∑

j=1

αm−1
j ∇sφh

j ,
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and substitute this into (3.4):

(PLH∇sum−1,∇sφh
i )i = RS−1RT




αm−1
1

αm−1
2

...

αm−1
Nh




.

Since the αm−1
j ’s are known, it suffices to compute R and S. We note that if one chooses discon-

tinuous piecewise polynomial basis functions for LH , the matrix S is the block diagonal and then

computing RS−1RT can be done locally on each element in the coarse mesh ΠH .

3.0.2 Convergence Rates

We consider the equation (1) on the domain Ω = [0, 1]× [0, 1], with a body force obtained such

that the true solution is given by u = (u1,u2),

u1 = 2x2(x− 1)2y(y − 1)(2y − 1), u2 = −y2(y − 1)22x(x− 1)(2x− 1),

p = y.

The fluid viscosity is ν = 10−2, which gives a Reynolds number of the order 102. From Corol-

lary 1.2.2 we choose νT = h and H such that H2 ≤ h. The theoretical analysis then predicts a

convergence rate of O(h) for the velocity in the energy norm, O(h2) for the velocity in the L2 norm,

and O(h) for the pressure. The domain is subdivided into triangles. First, the coarse mesh is chosen

such that H = 1/2 and the fine mesh is a refinement of the coarse mesh, so that h = 1/4 (here,

h = H2). Other pairs of meshes are obtained by successive uniform refinements (see Figure 3.1 for

the case H = 1/8 and h = 1/16). We choose for basis functions of LH , discontinuous piecewise

constants and two quadratics defined the reference elements. If F denote the affine mapping from

the reference element to the physical element, we have:

LH = {L : L|E = FL̂, ∀ L̂ ∈ L̂H , ∀E ∈ τH},
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Figure 3.1. H = 1/8 with one refinement h = 1/16.

Table 3.1. Numerical errors and degrees of freedom..

meshes Nh L2 Rate H1
0 Rate L2 pressure Rate

H=1/2, h=1/4 218 0.0069 0.0509 4.3269e-04
H=1/4, h=1/8 882 0.0017 2.0211 0.0241 1.0786 2.4448e-04 0.8236
H=1/8, h=1/16 3554 3.9446e-04 2.1076 0.0108 1.1580 9.6978e-05 1.3340
H=1/16, h=1/32 14274 8.1066e-05 2.2827 0.0046 1.2313 3.3879e-05 1.5173
H=1/32, h=1/64 57218 1.6313e-05 2.3131 0.0020 1.2016 1.1026e-05 1.6195

L̂H = span








1 0

0 0


 ,




0 0

0 1


 ,




0 1

1 0


 ,




∂b
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1
2

∂b
∂y

1
2

∂b
∂y 0


 ,




0 1
2

∂b
∂x

1
2

∂b
∂x

∂b
∂y








,

where b denotes the bubble function defined as

b(x, y) = 27xy(1− x− y).

Table 3.1 gives the errors and convergence rates for u− uh and p− ph in different norms. These

numerical results demonstrate that the rates are optimal and better than theory predict. Figure 3.2

shows both computed solution and exact solution for the case (H,h) = (1/8, 1/16).
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Figure 3.2. Comparison between the true solution and computed solution (H, h) = (1/8, 1/16)..

3.0.3 Driven Cavity Problem

Now, we are interested also in flows driven by interaction of a fluid with boundary. These flows

have been widely used as test cases for validating incompressible fluid dynamic algorithms. Corner

singularities for two dimensional fluid flows are very important, since most examples of physical

interest have corners. Because of this reason, this section is devoted to driven cavity problem which

as being favorable to the most of classical models. This problem is a classical test example used in

Ghia, Ghia, Shin [24], J. E. Akin [2], and Cantekin, Westerink, and Luettich [13].

Driven cavity flow is enclosed in a square box, the boundary conditions u = (1, 0) for 0 < x < 1,

y = 1, a no slip condition at the other boundaries, and f = 0 (Figure 3.3). The boundary conditions

at the corners lead to a non-smooth solution. As we mentioned earlier, we use mini-element for

the finite element discretization and this conforming pair of finite element spaces satisfy inf-sup

condition, (1.12). We present the flow for different Reynolds number for fixed mesh where H = 1/8,
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  x

(1,0)(0,0)

y

(1,1)(0,1)

u = 0 u = 0 

u = 0

Figure 3.3. Driven cavity flow.

h = 1/16. The same basis functions L̂H are chosen as Section 3.0.2.

The computational results for a set of different Reynolds numbers (Re = 1, 100, 400, 2500)

are shown below. In these numerical tests, we observe the effect of Reynolds number on the flow

pattern and the results are illustrated with Akin’s velocity vectors [2]. For the low Reynolds number

(Re = 1), the flow has only one vortex located above the center (Figure 3.4). When Re = 100,

the flow pattern starts to form reverse circulation cells in lower corners (Figure 3.4). As we see in

Figure 3.4, good agreement can be found between the case Re = 1, 100.

We also draw the x component of velocity along the vertical centerline and y component of

velocity along the horizontal centerlines for Re = 100 and Re = 400. We compare the results

obtained by Ghia, Ghia Shin’s [24]. Ghia’s algorithm is based on the time dependent streamfunction

using the coupled implicit and multigrid methods. Their results are used as benchmark data as

basis for comparison. Figure 3.5 and Figure 3.6 show that the results agree with Ghia’s data using

subgrid eddy viscosity method with Ghia’s data.

As a next step we would like to compare numerical result with the small-small Smagorinsky

model also known as artificial viscosity models. These models include adding only artificial viscosity

as:

b(u,u,v)− (p,∇ · v) + (q,∇ · u) + ((2ν + νT )∇su,∇sv) = (f ,v).

We compare the velocity streamline behavior for Navier-Stokes equation, subgrid eddy viscosity
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Figure 3.4. Velocity vectors for Re = 1 (above) and Re = 100 (below). Velocity vectors using
subgrid eddy viscosity method (upper left, lower left) and Akin’s velocity vectors a mesh of 40 ×
40 elements (upper right, lower right), (J. Akin [2]).
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Figure 3.5. Vertical and horizontal midlines for Re = 100.
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Figure 3.6. Vertical and horizontal midlines for Re = 400.

and artificial viscosity model for Re = 2500. As we mention in Introduction, one of the drawback

of artificial viscosity model is that it introduces in general too much diffusion into the computed

flow, i.e. the computed solution looks like a solution of a low Re. Figure 3.7 shows that the main

eddy of artificial eddy viscosity model is too small. On the other hand, our numerical tests shows

that the solution obtained with (1.5), (1.6) reproduce the main eddy of a high Re driven cavity

flow much larger and centered more accurately than artificial viscosity model. With new subgrid

eddy viscosity model, steady flow pattern becomes more complex with reverse circulation cells in

both lower corners.
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Figure 3.7. Velocity vectors for Re = 2500 for Subgrid Eddy Viscosity Model, Artificial Viscosity
Model, from left to right (H, h) = (1/8, 1/16).
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Chapter 4

Discontinuous Approximations of Subgrid Eddy

Viscosity Models

4.1 Introduction

The goal of this chapter is to analyze the subgrid eddy viscosity method combined with a

different discretization. The discontinuous finite element approximation is used to discretize Navier-

Stokes equations.

For any numerical method, the error equation arising from the Navier Stokes equations contains

a convection-like term and a reaction (or stretching) term. Discontinuous Galerkin (DG) methods,

first introduced in the work of Reed and Hill [61] and Lesaint and Raviart [52], are particularly

efficient in controlling convective error terms. On the other hand, (generally nonlinear) eddy

viscosity models are intended to give some control of the error’s reaction like terms. Indeed, the

exponential sensitivity of trajectories of the Navier Stokes equations (arising from reaction like

term) is widely believed to be limited to the small scales. It is thus conjectured that by modeling

their action on the large scales, the reaction like terms introducing exponential sensitivity will be

contained.

DG methods have recently become more popular in the science and engineering community.

They use piecewise polynomial functions with no continuity constraint across element interfaces.

As a result, variational formulations must include jump terms across interfaces ([69]). The DG

methods offers several advantages, including: (i) flexibility in the design of the meshes and in the

construction of trial and test spaces, (ii) local conservation of mass, (iii) h-p adaptivity and (iv)

higher order local approximations. DG methods have become widely used for solving computational

fluid problems, especially diffusion and pure convection problems ([6, 59]). In addition, DG is

applied for the elliptic problems [62, 63]. The reader should refer to Cockburn [15] for a historical

review of DG methods. For the steady-state Navier-Stokes equations, a totally discontinuous finite

element method is formulated in [28], while in [42], the velocity is approximated by discontinuous
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polynomials that are pointwise divergence-free, and the pressure by continuous polynomials.

Combining DG and eddy viscosity technique is clearly advantageous. While convective effects

are accurately modelled by DG, the dispersive effects of small scales on the large scales are correctly

taken into account with the eddy viscosity model. Besides, the fact that there is no constraint

between the finite elements gives more freedom in choosing the appropriate the basis functions on

the coarse and refined scales such as hierarchical basis functions for multiscale turbulent modeling.

We consider in this chapter the combination of DG methods with a linear eddy viscosity model

introduced in Chapter 1. We show that the errors are optimal with respect to the mesh size and

depend on the Reynolds number in a reasonable fashion.

4.2 Notation and Preliminaries

We consider the stationary Navier-Stokes equations for incompressible flow as given 1.1. Let

Kh = {Ej , j = 1, ..., Nh} denote a nondegenerate triangulation of the domain Ω. Let h denote the

maximum diameter of the elements Ej inKh. We denote the edges ofKh by {e1, e2, ..., ePh
, ePh+1, ..., eMh

},
where ek ⊂ Ω for 1 ≤ k ≤ Ph and ek ⊂ ∂Ω for Ph+1 ≤ k ≤ Mh. With each edge we associate a

normal unit vector nk. For k > Ph, the unit vector nk is taken to be outward normal to ∂Ω. Let

ek be an edge shared by elements Ei and Ej with nk exterior to Ei. We define the jump [φ] and

average {φ} of a function φ by

[φ] = (φ|Ei)|ek
− (φ|Ej )|ek

, {φ} =
1
2
(φ|Ei)|ek

+
1
2
(φ|Ej )|ek

.

If e belongs to the boundary ∂Ω, the jump and average of φ coincide with its trace on e.

We define the following broken norm for positive s:

||| · |||s = [
Nh∑

j=1

‖·‖2
s,Ej

]1/2.

From [68], if f ∈ L2(0, T ; (H1
0 )′), there exists a solution (u, p) of (1.1) such that u ∈ L∞(0, T ; H1

0 (Ω))∩
L2(0, T ; H1

0 ). In addition, we will assume that u and p satisfy the following regularity properties:

• (R1) u ∈ C0(0, T ; H1(Ω)) ∩ L∞(0, T ; H2(Ω))

56



• (R2) ut ∈ L2(0, T ; H1
0 (Ω)),

• (R3) u ∈ L∞(0, T ;W 2,4/3(Ω)), p ∈ L∞(0, T ;W 1,4/3(Ω)).

The reader should refer to [10] for the justification of these regularity assumptions, except for the

last one, that is needed here for the discontinuous Galerkin variational formulation. The following

functional spaces are defined:

X = {v ∈ (L2(Ω))2 : v|Ej ∈ W 2,4/3(Ej), ∀Ej ∈ Kh},

Q = {q ∈ L2
0(Ω) : q|Ej ∈ W 1,4/3(Ej), ∀Ej ∈ Kh},

where L2
0(Ω) is given by

L2
0(Ω) = {q ∈ L2(Ω) :

∫

Ω
q = 0}.

We associate to (X, Q) the following norms:

‖v‖X = (|||∇v|||20 + J(v,v))
1
2 , ∀v ∈ X, ‖q‖Q = ‖q‖0,Ω, ∀q ∈ Q,

where the jump term J is defined as

J(u,v) =
Mh∑

k=1

σ

|e|
∫

ek

[u] · [v]. (4.1)

In this jump term, |e| denotes the measure of the edge e and σ is a constant parameter that will

be specified later.

Recall the following property of norm ‖ · ‖X ([28]): for each real number p ∈ [2,∞) there exists

a constant C(p) such that

‖v‖Lp(Ω) ≤ C(p)‖v‖X , ∀v ∈ X. (4.2)

For any positive integer r, the finite-dimensional subspaces are

Xh = {vh ∈ X : vh ∈ (Pr(Ej))2, ∀Ej ∈ Kh},

Qh = {qh ∈ Q : qh ∈ Pr−1(Ej), ∀Ej ∈ Kh}.
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We assume that for each integer r ≥ 1, there exists an operator Rh ∈ L(H1(Ω);Xh) such that

‖Rh(v)− v‖X ≤ Chr|v|r+1,Ω, ∀v ∈ Hr+1(Ω) ∩H1
0 (Ω), (4.3)

|v −Rh(v)|0,Ej ≤ Chr+1
Ej

|v|r+1,∆Ej
, ∀v ∈ Hr+1(Ω), 1 ≤ j ≤ Nh, (4.4)

where ∆Ej is a suitable macro element containing Ej . Note that for r = 1, 2 and 3, the existence

of this interpolant follows from [17, 16, 21]. The bounds (4.3) and (4.4) are proved in [28] and in

[29] respectively.

Also, for each integer r ≥ 1, there is an operator rh ∈ L(L2
0(Ω);Qh) such that for any Ej in Kh

∫

Ej

zh(rh(q)− q) = 0, ∀zh ∈ Pr−1(Ej), ∀q ∈ L2
0(Ω), (4.5)

‖q − rh(q)‖m,Ej ≤ Chr−m
Ej

|q|r,Ej , ∀q ∈ Hr(Ω) ∩ L2
0(Ω), m = 0, 1. (4.6)

Finally, we recall some trace and inverse inequalities, that hold true on each element E in Kh, with

diameter hE :

‖v‖0,e ≤ C(h−1/2
E ‖v‖0,E + h

1/2
E ‖∇v‖0,E), ∀e ∈ ∂E, ∀v ∈ X, (4.7)

‖∇v‖0,e ≤ C(h−1/2
E ‖∇v‖0,E + h

1/2
E ‖∇2v‖0,E), ∀e ∈ ∂E, ∀v ∈ X, (4.8)

‖v‖L4(e) ≤ Ch
−3/4
E (‖v‖0,E + hE‖∇v‖0,E), ∀e ∈ ∂E, ∀v ∈ X, (4.9)

‖vh‖0,e ≤ Ch
−1/2
E ‖vh‖0,E , ∀e ∈ ∂E, ∀vh ∈ Xh, (4.10)

‖∇vh‖0,e ≤ Ch
−1/2
E ‖∇vh‖0,E , ∀e ∈ ∂E, ∀vh ∈ Xh, (4.11)

‖∇vh‖0,E ≤ Ch−1
E ‖vh‖0,E , ∀vh ∈ Xh. (4.12)

‖vh‖L4(E) ≤ Ch
−1/2
E ‖vh‖0,E , ∀vh ∈ Xh. (4.13)
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4.3 Variational Formulation and Scheme

Let us first define the bilinear forms a : X×X → R and c : X×Q → R:

a(v,w) =
Nh∑

j=1

∫

Ej

∇v : ∇w −
Mh∑

k=1

∫

ek

({∇v}nk · [w]− ε0{∇w}nk · [v]), (4.14)

c(v, q) = −
Nh∑

j=1

∫

Ej

q∇ · v +
Mh∑

k=1

∫

ek

{q}[v] · nk, (4.15)

where ε0 takes the constant value 1 or −1. Throughout the chapter, we will assume the following

hypothesis: if ε0 = 1, the jump parameter σ is chosen to be equal to 1; if ε0 = −1, the jump

parameter σ is bounded below by σ0 > 0 and σ0 is sufficiently large. Based on this assumption, we

can easily prove the following lemma.

Lemma 4.3.1. There is a constant κ > 0 such that

a(vh,vh) + J(vh,vh) ≥ κ‖vh‖2
X , ∀vh ∈ Xh. (4.16)

In addition to these bilinear forms, we consider the following upwind discretization of the term

u · ∇z ([28]):

b̃(u, z, θ) =
Nh∑

j=1

(
∫

Ej

(u · ∇z) · θ +
∫

∂E−j
|{u} · nEj |(zint − zext) · θint)

+
1
2

Nh∑

j=1

∫

Ej

(∇ · u)z · θ − 1
2

Mh∑

k=1

∫

ek

[u] · nk{z · θ}, (4.17)

for all u, z, θ in X and where on each element the inflow boundary is:

∂E−
j = {x ∈ ∂Ej : {u} · nEj < 0},

and the superscript int (resp ext) refers to the trace of the function on a side of Ej coming from

the interior of Ej (resp. coming from the exterior of Ej on that side). Note that the form b̃ is not

linear with respect to its first argument, but linear with respect to its second and third argument.

To avoid any confusion, if necessary, in the analysis, we will explicitly write b̃(u, z, θ) = b̃u(u, z,θ)
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when the inflow boundaries ∂E−
j are defined with respect to the velocity {u}. We finally recall the

positivity of b̃ proved in [28].

b̃(u, z, z) ≥ 0, ∀u, z ∈ X. (4.18)

Remark 4.1. If u, z, θ ∈ H1
0 (Ω), then b(u, z,θ) = b̃(u, z, θ) in Chapter 1.

With these forms, we consider a variational problem of (1.1): for all t > 0 find u(t) ∈ X and

p(t) ∈ Q satisfying

(ut(t),v) + ν(a(u(t),v) + J(u(t),v))

+b̃(u(t),u(t),v) + c(v, p(t)) = (f(t),v), ∀v ∈ X, (4.19)

c(u(t), q) = 0, ∀q ∈ Q, (4.20)

(u(0),v) = (u0,v), ∀v ∈ X. (4.21)

We shall now show the equivalence of the strong and weak solutions.

Lemma 4.3.2. Every strong solution of (1.1) is also a solution of (4.19)-(4.21). Conversely, if u ∈
L∞(0, T ;H2(Ω)) and p ∈ L2(0, T ; H1(Ω)) are a solution of (4.19)-(4.21) then (u, p) satisfies (1.1).

Proof: Fix t > 0. Let (u, p) be the solution of (1.1). Since u(t) ∈ H1
0 (Ω), by the trace theorem

[u(t)] ·nk = 0 on each edge. Also, ∇·u(t) = 0, thus u satisfies (4.20). Multiplying the first Navier-

Stokes equation (1.1) by v ∈ X, integrating over each element and summing over all elements

yield

Nh∑

j=1

∫

Ej

(ut · v + ν∇u : ∇v)− ν

Mh∑

k=1

∫

ek

[∇unk · v] +
Nh∑

j=1

∫

Ej

u · ∇u · v

−
Nh∑

j=1

∫

Ej

p∇ · v +
Mh∑

k=1

∫

ek

[pv · nk] =
∫

Ω
f · v.

The boundary terms are rewritten as:

Mh∑

k=1

∫

ek

[∇unk.v] =
Mh∑

k=1

∫

ek

{∇u}nk · [v] +
Mh∑

k=1

∫

ek

[∇u]nk · {v}.
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The first part of the lemma is then obtained because the jumps of u,∇unk and of p are zero almost

everywhere.

Conversely, let (u, p) be a solution to (4.19)-(4.21). First, let E belong to Kh and choose

v ∈ D(E)2, extended by zero outside E. Then, (u, p) satisfy in the sense of distributions

ut − ν∆u + u · ∇u +∇p = f , ∇ · u = 0, in E. (4.22)

Next consider v ∈ C1(Ē) such that v = 0 on ∂E, extended by zero outside E, ∇v · n = 0 on ∂E

except on one side ek. We multiply (4.22) by v and integrate by parts. We then obtain

∫

ek

{∇v}nk · [u] = 0,

which implies that [u] = 0 almost everywhere on ek. If ek belongs to the boundary ∂Ω, this implies

that u|ek
= 0. Thus, u ∈ H1

0 (Ω). Finally, choose v ∈ C1(Ē), with v = 0 on ∂E except on one side

ek, extended by zero outside. Integrating by parts (4.22), we have

∫

ek

(−ν∇unE + pnE) · v =
∫

ek

{−ν∇unE + pnE} · v.

Since v is arbitrary, this means that the quantity −ν∇unk + pnk is continuous across ek. There-

fore, the equation (4.22) is satisfied over the entire domain Ω. The initial condition in (1.1) is

straightforward.

We recall a discrete inf-sup condition and a property satisfied by Rh (see [28]).

Lemma 4.3.3. There exists a positive constant β0, independent of h such that

inf
qh∈Qh

sup
vh∈Xh

c(vh, qh)
‖vh‖X‖qh‖0

≥ β0. (4.23)

Furthermore, the operator Rh satisfies:

c(Rh(v)− v, qh) = 0, ∀qh ∈ Qh, ∀v ∈ H1
0 (Ω). (4.24)

In order to subtract the artificial diffusion introduced by the eddy viscosity on the coarse grid,
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we consider the same finite element discretization introduced in Chapter 1. We define the following

bilinear g : X×X → R:

g(v,w) =
Nh∑

j=1

∫

Ej

(I − PLH )∇v : (I − PLH )∇w, ∀v,w ∈ X.

For all t > 0, we seek a discontinuous approximation (uh(t), ph(t)) ∈ Xh ×Qh such that

(uh
t (t),vh) + ν(a(uh(t),vh) + J(uh(t),vh)) + νT g(uh(t),vh)

+b̃(uh(t),uh(t),vh) + c(vh, ph(t)) = (f(t),vh), ∀vh ∈ Xh, (4.25)

c(uh(t), qh) = 0, ∀qh ∈ Qh, (4.26)

(uh(0),vh) = (u0,vh), ∀vh ∈ Xh. (4.27)

Lemma 4.3.4. There exists a unique solution to (4.25)-(4.27).

Proof: The equations (4.25) and (4.26) reduce to the ordinary differential system

duh

dt
+ νAuh + Buh + νT Guh = F.

By continuity, a solution exists. To prove uniqueness, we choose vh = uh in (4.25), qh = ph in

(4.26); we apply the coercivity equation (4.16) and the generalized Cauchy-Schwarz

1
2

d

dt
‖uh‖2

0,Ω + νκ‖uh‖2
X ≤ ‖f‖L4/3(Ω)‖uh‖L4(Ω) ≤

νκ

2
‖uh‖2

X +
C

νκ
‖f‖2

L4/3(Ω)
.

Integrating over [0, t] yields:

‖uh(t)‖2
L∞(0,T ;L2(Ω)) + νκ‖uh‖2

L2(0,T ;X) ≤ ‖uh(0)‖2
0 +

C

νκ
‖f‖2

L2(0,T ;L4/3(Ω))
.

Since uh is bounded in L∞(0, T ; L2(Ω)), it is unique [8]. The existence and uniqueness of ph is

obtained from the inf-sup condition stated above.

Remark 4.2. From a continuum mechanics point of view, it might be advantageous to consider
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the symmetrized velocity tensor. In this case, the bilinear form a is replaced by

a(v,w) =
Nh∑

j=1

∫

Ej

∇sv : ∇sw −
Mh∑

k=1

∫

ek

({∇sv}nk · [w]− ε0{∇sw}nk · [v]),

where ∇sv = 0.5(∇v + ∇vT ) and the term relating the coarse and refined mesh is replaced by
∑Nh

j=1

∫
Ej

(I − PLH )∇su : (I − PLH )∇svh. It is easy to check that all the results proved in this

chapter also hold true for the symmetrized tensor formulation.

4.4 Semi-discrete A Priori Error Estimate

In this section, priori error estimates for the continuous in time problem, are derived. The

estimates are optimal in the fine mesh size h. The effects of the coarse scale appear as higher order

terms.

Theorem 4.1. Let (u, p) be the solution of (1.1) satisfying R1-R3. In addition, we assume that

ut ∈ L2(0, T ; Hr+1(Ω)),u ∈ L∞(0, T ; Hr+1(Ω)) and p ∈ L2(0, T ; Hr(Ω)). Then, the continuous in

time solution uh satisfies

‖u− uh‖L∞(0,T ;L2(Ω)) + κ1/2ν1/2‖u− uh‖L2(0,T ;X)

+ν
1/2
T ‖(I − PLH )∇(u− uh)‖L2(0,T ;L2(Ω)) ≤ CeCT (ν−1+1)[hr((ν + ν−1 + νT )1/2|u|L2(0,T ;Hr+1(Ω))

+ν−1/2|p|L2(0,T ;Hr(Ω)) + |ut|L2(0,T ;Hr+1(Ω))) + ν
1/2
T Hr|u|L2(0,T ;Hr+1(Ω))] + Chr|u0|r+1,Ω,

where C is a positive constant independent of h,H, ν and νT .

Proof: We fix t > 0 and for simplicity, we drop the argument in t. Defining eh = u − uh and

subtracting (4.25), (4.26), (4.27) from (4.19), (4.20), (4.21) respectively yields

(eh
t ,vh) + νa(eh,vh) + νJ(eh,vh) + νT g(eh,vh) + b̃(u,u,vh)

−b̃(uh,uh,vh) = −c(vh, p− ph) + νT g(u,vh), ∀vh ∈ Xh, ∀t > 0, (4.28)

c(eh, qh) = 0, ∀qh ∈ Qh, ∀t > 0, (4.29)

(eh(0),vh) = 0, ∀vh ∈ Xh. (4.30)
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Decompose the error eh = η − φh, where φh = uh − Rh(u) and η is the interpolation error

η = u−Rh(u). Set vh = φh in (4.28) and qh = rh(p)− ph in (4.29):

(φh
t ,φh) + νa(φh,φh) + νJ(φh, φh) + νT g(φh,φh)

+b̃uh(uh,uh, φh)− b̃u(u,u, φh) = (ηt, φ
h) + νa(η, φh) + νJ(η,φh)

+νT g(η, φh) + c(φh, p− rh(p))− νT g(u, φh), ∀t > 0. (4.31)

We now bound the terms on the right hand-side of (4.31). The first three terms are rewritten as:

(ηt, φ
h) + νa(η, φh) + νJ(η,φh) = (ηt,φ

h) + ν

Nh∑

j=1

∫

Ej

∇η : ∇φh

−ν

Mh∑

k=1

∫

ek

{∇η}nk · [φh] + νε0

Mh∑

k=1

∫

ek

{∇φh}nk · [η] + νJ(η,φh)

= S1 + · · ·+ S5.

Using Cauchy-Schwarz and Young’s inequalities and the approximation result (4.3), the first two

terms are bounded as follows:

S1 ≤ ‖ηt‖0,Ω‖φh‖0,Ω ≤ 1
2
‖φh‖2

0,Ω + Ch2r+2|ut|2r+1,Ω,

S2 ≤ 2ν

Nh∑

j=1

‖∇η‖0,Ej‖∇φh‖0,Ej ≤
κν

8
‖∇φh‖2

0 + Cνh2r|u|2r+1,Ω.

To bound the third term, we insert the standard Lagrange interpolant of degree r, denoted by

Lh(u).

−ν

Mh∑

k=1

∫

ek

{∇η}nk · [φh] = −ν

Mh∑

k=1

∫

ek

{∇(u− Lh(u))}nk · [φh]

−ν

Mh∑

k=1

∫

ek

{∇(Lh(u)−Rh(u))}nk · [φh].

By using the inequalities (4.8) and (4.11), the definition of the jump (4.1), and the approximation

64



results (4.3), the third term can be bounded by

S3 ≤ κν

12
J(φh, φh) + Cνh2r|u|2r+1,Ω.

Then, from the trace inequalities (4.7), (4.11) and the approximation result (4.3), we have

S4 ≤ Cν(
Mh∑

k=1

σ

|e|‖[η]‖2
0,ek

)1/2(
Mh∑

k=1

|e|
σ
‖{∇φh}‖2

0,ek
)1/2

≤ κν

8
|||∇φh|||20 + Cνh2r|u|2r+1,Ω.

The jump term is bounded by the approximation result (4.3) as follows:

S5 ≤ κν

12
J(φh, φh) + CνJ(η,η) ≤ κν

12
J(φh,φh) + Cνh2r|u|2r+1,Ω.

The eddy viscosity term in the right-hand side of (4.31) is bounded by (4.3),

νT g(η,φh) ≤ νT

4
|||(I − PLH )∇φh|||20 + CνT h2r|u|2r+1,Ω.

Because of (4.5), the pressure term is reduced to

c(φh, p− rh(p)) =
Mh∑

k=1

∫

ek

{p− rh(p)}[φh] · nk,

which is bounded by using Cauchy-Schwarz inequality, trace inequality (4.7) and approximation

result (4.6)

c(φh, p− rh(p)) ≤ C(‖p− rh(p)‖2
0 +

Nh∑

j=1

h2
Ej
|p− rh(p)|21,Ej

)1/2J(φh, φh)1/2

≤ κν

12
J(φh, φh) + C

h2r

ν
|p|2r,Ω.

The last term on the right-hand side of (4.31), corresponding to the consistency error, is bounded
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using Cauchy-Schwarz inequality

νT g(u, φh) ≤ νT

4
|||(I − PLH )∇φh|||20 + CνT H2r|u|2r+1,Ω.

Thus far, the terms in the right-hand side of (4.31) are bounded by

1
2
‖φh‖2

0 + Ch2r|ut|2r+1,Ω + C(ν + νT )h2r|u|2r+1,Ω + C
h2r

ν
|p|2r,Ω

+CνT H2r|u|2r+1,Ω +
κν

4
‖φh‖2

X +
νT

2
|||(I − PLH )∇φh|||20.

Consider now the nonlinear terms in (4.31). We first note that since u is continuous,

b̃u(u,u,φh) = b̃uh(u,u, φh).

Therefore, adding and subtracting the interpolant Rh(u) yields:

b̃uh(uh,uh, φh)− b̃uh(u,u, φh) = b̃uh(uh,φh, φh) + b̃uh(φh,u, φh)

−b̃uh(φh, η, φh)− b̃uh(η, Rh(u), φh)− b̃uh(u, η,φh).

To simplify the writing, we drop the subscript uh and write b̃(·, ·, ·) for b̃uh
(·, ·, ·). From the inequality

(4.18), the first term is positive. We then bound the other terms. We first note, that we can rewrite

the form b̃ as

b̃(φh,u, φh) =
Nh∑

j=1

∫

Ej

(φh · ∇u) · φh − 1
2
c(φh,u · φh). (4.32)

The first term, using the Lp bound (4.2), is bounded by

Nh∑

j=1

∫

Ej

(φh · ∇u) · φh ≤ ‖φh‖L4(Ω)‖∇u‖L4(Ω)‖φh‖L2(Ω)

≤ κν

64
‖φh‖2

X +
C

ν
‖u‖2

L∞(0,T ;W 2,4/3(Ω))
‖φh‖2

0,Ω.
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Let c1 and c2 be the piecewise constant vectors such that

c1|Ej =
1
|Ej |

∫

Ej

u, c2|Ej =
1
|Ej |

∫

Ej

φh, 1 ≤ j ≤ Nh.

We rewrite using (4.29) and (4.24):

c(φh,u · φh) = c(φh,u · φh − c1 · c2) = c(φh, (u− c1) · φh) + c(φh, c1 · (φh − c2)).

Then, expanding the first term

c(φh, (u− c1) · φh) = −
Nh∑

j=1

∫

E
(u− c1) · φh∇ · φh

+
Mh∑

k=1

∫

ek

{(u− c1) · φh}[φh] · nk = S6 + S7.

The first term is bounded, for s > 2, using the inverse inequality (4.12) and (4.2)

S6 ≤ C

Nh∑

j=1

‖u− c1‖Ls(Ej)‖φh‖
L

2s
s−2 (Ej)

‖∇φh‖L2(Ej) ≤ C‖φh‖0,Ω|u|W 1,s(Ω)‖φh‖
L

2s
s−2 (Ω)

≤ C‖φh‖0,Ω|u|W 1,s(Ω)‖φh‖X ≤ κν

64
‖φh‖2

X +
C

ν
‖u‖2

L∞(0,T ;W 2,4/3(Ω))
‖φh‖2

0.

The bound for the second term is more technical. First, passing to the reference element Ê, and

using the trace inequality (4.10), we obtain

S7 ≤ C

Mh∑

k=1

|ek||E|−1/2‖φh‖0,E‖(û− ĉ1) · φ̂h‖ê

≤ C

Mh∑

k=1

|ek||E|−1/2‖φh‖0,E(‖(û− ĉ1) · φ̂h‖0,Ê + ‖∇̂((û− ĉ1) · φ̂h
)‖0,Ê).

The L2 term is bounded as, for s > 2,

‖(û− ĉ1) · φ̂h‖0,Ê ≤ ‖û− ĉ1‖Ls(Ê)‖φ̂
h‖

L
2s

s−2 (Ê)

≤ h|E|−1/s−(s−2)/(2s)|u|W 1,s(E)‖φh‖
L

2s
s−2 (E)

≤ C|u|W 1,s(E)‖φh‖
L

2s
s−2 (E)

.
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Note for the gradient term, we write

‖∇̂((û− ĉ1) · φ̂h
)‖0,Ê = ‖(∇̂û · φ̂h

+ (û− ĉ1) · ∇φ̂
h
)‖.

Let us first bound

‖∇̂û · φ̂h‖0,Ê ≤ ‖∇̂û‖Ls(Ê)‖φ̂
h‖

L
2s

s−2 (Ê)

≤ Ch|E|−1/s‖∇u‖Ls(E)|E|−(s−2)/2s‖φh‖
L

2s
s−2 (E)

≤ C‖∇u‖Ls(E)‖φh‖
L

2s
s−2 (E)

.

Now the other term is

‖(û− ĉ1) · ∇̂φ̂
h‖0,Ê ≤ ‖û− ĉ1‖L∞(Ê)‖∇̂φ̂

h‖0,Ê ≤ Ch‖u‖L∞(E)‖∇φh‖0,E .

Combining all the bounds above and using (4.2), we have

S7 ≤ C

Nh∑

j=1

‖φh‖0,Ej [|u|W 1,s(Ej)‖φh‖
L

2s
s−2 (Ej)

+‖∇u‖Ls(Ej)‖φh‖
L

2s
s−2 (Ej)

+ h|u|L∞(Ej)‖∇φh‖L2(Ej)] ≤
κν

32
‖φh‖2

X +
C

ν
‖φh‖2

0.

Now,

c(φh, c1 · (φh − c2)) = −
Nh∑

j=1

∫

E
c1 · (φh − c2)∇ · φh

+
Mh∑

k=1

∫

ek

{c1 · (φh − c2)}[φh] · nk = S8 + S9.

The first term is bounded by (4.12)

S8 ≤ C

Nh∑

j=1

‖c1‖‖φh − c2‖0,Ejh
−1‖φh‖0,Ej

≤ C

Nh∑

j=1

‖c1‖‖∇φh‖0,Ej‖φh‖0,Ej ≤
κν

64
‖φh‖2

X +
C

ν
‖u‖2

L∞([0,T ]×Ω)‖φh‖2
0,Ω.

68



Similarly, the second term is bounded

S9 ≤ C

Nh∑

j=1

‖c1‖‖∇φh‖0,Ej‖φh‖0,Ej ≤
κν

64
‖φh‖2

X +
C

ν
‖u‖2

L∞([0,T ]×Ω)‖φh‖2
0,Ω.

Thus,

b̃(φh,u, φh) ≤ 5κν

64
‖φh‖2

X +
C

ν
‖φh‖2

0,Ω.

Let us now bound b̃(φh, η,φh).

b̃(φh,η, φh) =
Nh∑

j=1

(
∫

Ej

(φh · ∇η) · φh +
∫

∂E−j
|{φh} · nEj |(ηint − ηext) · φh,int)

−1
2
c(φh,η · φh).

The first term is easily bounded:

Nh∑

j=1

∫

Ej

(φh · ∇η) · φh ≤
Nh∑

j=1

‖φh‖0,Ej‖φh‖L4(Ej)‖∇η‖L4(Ej)

≤ κν

32
‖φh‖2

X +
C

ν
‖u‖2

L∞(0,T ;W 2,4/3(Ω))
‖φh‖2

0,Ω.

The second term is bounded using inequalities (4.9), (4.12), (4.2) and (4.4)

Nh∑

j=1

∫

∂E−j
|{φh} · nEj |(ηint − ηext) · φh,int) ≤ C

Nh∑

j=1

‖φh‖L4(∂Ej)‖ηh‖L4(∂Ej)‖φh‖L2(∂Ej)

≤ C

Nh∑

j=1

h−3/2hr+1|u|r+1,Ω‖φh‖2
0,Ω ≤

κν

64
‖φh‖2

X + C‖u‖2
L∞(0,T ;Hr+1(Ω))‖φh‖2

0,Ω.

The last term in b̃(φh, η, φh) is bounded like the terms S6, S7, S8 and S9 of b̃(φh,u,φh). The

69



remaining nonlinear terms are bounded in a similar fashion.

b̃uh(η, Rh(u),φh) =
Nh∑

j=1

∫

Ej

(η · ∇Rh(u)) · φh

+
Nh∑

j=1

∫

∂E−j
|{η} · nEj |(Rh(u)int −Rh(u)ext) · φh,int +

1
2

Nh∑

j=1

∫

Ej

(∇ · η)Rh(u) · φh

−1
2

Mh∑

k=1

∫

ek

[η] · nk{Rh(u) · φh} = S10 + · · ·+ S13

Using the bound (4.2) and the approximation result (4.3), we have

S10 ≤ ‖η‖L2(Ω)‖∇Rh(u)‖L4(Ω)‖φh‖L4(Ω) ≤
κν

64
‖φh‖2

X + C‖u‖2
L∞([0,T ]×Ω)h

2r|u|2r+1,Ω.

The inequalities (4.7), (4.10), (4.2) and the approximation result (4.3) yield

S11 ≤ C

Nh∑

j=1

h
−1/2
Ej

(‖η‖0,Ej + hEj‖∇η‖0,Ej )h
−1/2
Ej

‖φh‖0,Ej

≤ C‖φh‖2
0,Ω + C‖u‖2

L∞([0,T ]×Ω)h
2r|u|2r+1,Ω.

Similarly, we have

S12 ≤
Nh∑

j=1

‖u‖L∞([0,T ]×Ω)‖φh‖0,Ej‖∇ · η‖0,Ej ≤ C‖φh‖2
0,Ω + C‖u‖2

L∞([0,T ]×Ω)h
2r|u|2r+1,Ω.

Note that S13 is bounded exactly like S11. The other nonlinear term is bounded using (4.3) and

(4.10)

b̃uh(u, η, φh) =
Nh∑

j=1

∫

Ej

(u · ∇η) · φh +
Nh∑

j=1

∫

∂E−j
|{u} · nEj |(ηint − ηext) · φh,int

≤ C

Nh∑

j=1

‖u‖L∞([0,T ]×Ω)‖∇η‖0,Ej‖φh‖0,Ej + C

Nh∑

j=1

‖u‖L∞([0,T ]×Ω)‖η‖0,∂Ej‖φh‖0,∂Ej

≤ C‖φh‖2
0,Ω + C‖u‖2

L∞([0,T ]×Ω)h
2r|u|2r+1,Ω
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Combining all bounds above and using (4.16), we obtain

1
2

d

dt
‖φh‖2

0 +
κν

2
‖φh‖2

X +
νT

2
‖(I − PLH )∇φh‖2

0 ≤ C(
1
ν

+ 1)‖φh‖2
0

+Ch2r(ν +
1
ν

+ νT )|u|2r+1,Ω + C
h2r

ν
|p|2r,Ω + Ch2r|ut|2r+1,Ω + CνT H2r|u|2r+1,Ω.

Integrating over 0 and t, noting that ‖φh(0)‖0 is of the order hr and using Gronwall’s lemma,

yields:

‖φh(t)‖2
0 + κν‖φh‖2

L2(0,t;X) + νT ‖(I − PLH )∇φh‖2
L2(0,t;L2(Ω))

≤ CeC(1+ν−1)h2r[(ν + ν−1 + νT )|u|2L2(0,T ;Hr+1(Ω)) + ν−1|p|2L2(0,T ;Hr(Ω))

+|ut|2L2(0,T ;Hr+1(Ω)) + νT H2r|u|2L2(0,T ;Hr+1(Ω))] + Chr|u0|2r+1,Ω.

where the constant C is independent of ν, νT , h, H but depends on ‖u‖L∞(0,T ;W 2,4/3(Ω)). The theo-

rem is obtained using the approximation results (4.3), (4.4) and the following inequality:

‖u(t)− uh(t)‖2
0 + κν‖u(t)− uh(t)‖2

L2(0,T ;X) + νT ‖(I − PLH )∇(u(t)− uh(t))‖2
L2(0,T ;L2(Ω))

≤ ‖φh(t)‖2
0 + κν‖φh‖2

L2(0,T ;X) + νT ‖(I − PLH )∇φh‖2
L2(0,T ;L2(Ω))

+‖η(t)‖2
0 + κν‖η‖2

L2(0,T ;X) + νT ‖(I − PLH )∇η‖2
L2(0,T ;L2(Ω)).

Remark 4.3. One of the most important property of the Theorem 4.1 is that the new method

improves its robustness with respect to the Reynolds number. In most cases, error estimations of

Navier Stokes equations gives a Gronwall constant that depends on the Reynolds number as 1/ν3.

In contrast, this approach leads to a better error estimate with a Gronwall constant depending on

1/ν.

Optimal convergence rates are obtained for Theorem 4.1 if νT and H are appropriately chosen.

Corollary 4.4.1. Assume that νT = hβ and H = h1/α. If the relation β ≥ 2r(α−1)/α is satisfied,

then the estimate becomes

‖u− uh‖L∞(0,T ;L2(Ω)) + ‖u− uh‖L2(0,T ;X) = O(hr).
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For example, one may choose for a linear approximation the pair (νT ,H) = (h, h1/2), for

quadratic approximation (νT ,H) = (h, h3/4) or (νT ,H) = (h2, h1/2), and for cubic approximation

(νT ,H) = (h, h5/6) or (νT ,H) = (h2, h2/3).

Remark 4.4. By using the inf-sup condition (4.23) and the estimates for the ‖(u−uh)t‖, a priori

error estimate for the pressure can also be derived as in Chapter 1. Since the analysis is lengthy

and is similar, we present this analysis in Appendix A.

4.5 Fully discrete scheme

In this section, we formulate two fully discrete finite element schemes for the discontinuous eddy

viscosity method. Let ∆t denote the time step, let M = T/∆t and let 0 = t0 < t1 < · · · < tM = T

be a subdivision of the interval (0, T ). We denote the function φ evaluated at the time tm by φm

and the average of φ at two successive time levels by φm+ 1
2

= 1
2(φm + φm+1).

Scheme 1: Given uh
0 , find (uh

m)m≥1 in Xh and (ph
m)m≥1 in Qh such that

1
∆t

(uh
m+1 − uh

m,vh) + ν(a(uh
m+1,v

h) + J(uh
m+1,v

h)) + b̃(uh
m,uh

m+1,v
h)

+νT g(uh
m+1,v

h) + c(vh, ph
m+1) = (fm+1,vh), ∀vh ∈ Xh, (4.33)

c(uh
m+1, q

h) = 0, ∀qh ∈ Qh. (4.34)

Scheme 2: Given ũh
0 , ũh

1 , p̃h
1 , find (ũh

m)m≥2 in Xh and (p̃h
m)m≥2 in Qh such that

1
∆t

(ũh
m+1 − ũh

m,vh) + ν(a(ũh
m+ 1

2
,vh) + J(ũh

m+ 1
2
,vh)) + b̃(ũh

m+ 1
2
, ũh

m+ 1
2
,vh)

+νT g(ũh
m+ 1

2

,vh) + c(vh, p̃h
m+ 1

2

) = (fm+ 1
2
,vh), ∀vh ∈ Xh, (4.35)

c(ũh
m+1, q

h) = 0, ∀qh ∈ Qh. (4.36)

For both schemes, the initial velocity is defined to be the L2 projection of u0. Scheme 1 is based

on a backward Euler discretization. Scheme 2 is based on a Crank-Nicolson discretization, and

requires the velocity and pressure at the first step. The approximations ũh
1 and p̃h

1 can be obtained
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by a first order scheme (see [5]). We will show that Scheme 1 is first order in time, and Scheme 2

second order in time. First, we prove the stability of the schemes.

Lemma 4.5.1. The solution (uh
m)m of (4.33),(4.34) remains bounded in the following sense

‖uh
m‖2

0,Ω ≤ K, m = 0, . . . , M,

∆t
M−1∑

m=0

‖uh
m+1‖2

X ≤ K

2ν
, ∆t

M−1∑

m=0

|||(I − PLH )∇uh
m+1|||20 ≤

K

2νT
,

where K = ‖u0‖2
0,Ω + ‖f‖2

L2([0,T ]×Ω).

The solution (ũh
m)m of (4.35),(4.36) remains bounded in the following sense

‖ũh
m‖2

0,Ω ≤ K̃, m = 0, . . . ,M,

∆t

M−1∑

m=0

‖ũh
m+1‖2

X ≤ K̃

2ν
, ∆t

M−1∑

m=0

‖(I − PLH )∇ũh
m+1‖2

0,Ω ≤
K̃

2νT
,

where K̃ = ‖u0‖2
0,Ω + 2‖f‖2

L2([0,T ]×Ω).

Proof: Choose vh = uh
m+1 in (4.33) and qh = ph

m+1 in (4.34). We multiply by 2∆t and sum

over m. Then, from the positivity of b̃, (4.16), we have

‖uh
m‖2

0,Ω − ‖uh
0‖2

0,Ω + 2κν∆t
m−1∑

j=0

‖uh
j+1‖2

X + 2νT ∆t
m−1∑

j=0

|||(I − PLH )∇uh
j+1|||20

≤ ∆t
m−1∑

j=0

‖fj+1‖2
0,Ω + ∆t

m−1∑

j=0

‖uh
j+1‖2

0,Ω.

The result is obtained by using a discrete version of Gronwall’s lemma [32] and the fact that

‖uh
0‖0,Ω ≤ ‖u0‖0,Ω.

For Scheme 2, the proof is similar. Choose vh = ũm+ 1
2

in (4.35) and qh = p̃h
m+ 1

2

in (4.36). The

rest of the proof follows as above.

Theorem 4.2. Under the assumptions of Theorem 4.1 and if ut and utt belong to L∞(0, T ;L2(Ω)),
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there is a constant C independent of h,H, ν and νT such that

max
m=0,...,M

‖um − uh
m‖0,Ω + (νκ∆t

M−1∑

m=0

‖um+1 − uh
m+1‖2

X)1/2

+(νT ∆t
M∑

m=0

|||(I − PLH )(∇um+1 − uh
m+1)|||20)1/2 ≤ Chr|u0|r+1,Ω

+CeCTν−1
[hr(ν + ν−1 + νT )1/2|u|L2(0,T ;Hr+1(Ω)) + ν

1/2
T Hr|u|L2(0,T ;Hr+1(Ω))

+ν−1/2∆t(‖ut‖L∞(0,T ;L2(Ω)) + ‖utt‖L∞(0,T ;L2(Ω))) + hrν−1/2|p|L2(0,T ;Hr(Ω)]

Proof: As in the continuous case, we set em = um − uh
m. We subtract to (4.33) and (4.34) the

equations (4.19) and (4.20) evaluated at time t = tm+1.

(ut(tm+1),vh)− 1
∆t

(uh
m+1 − uh

m,vh) + ν[a(em+1,vh) + J(em+1,vh)]

+νT g(em+1,vh) + b̃(um+1,um+1,vh)− b̃(uh
m,uh

m+1,v
h)

+c(vh, pm+1 − ph
m+1) = νT g(um+1,vh), ∀vh ∈ Xh, (4.37)

c(em+1, q
h) = 0, ∀qh ∈ Qh. (4.38)

Define φm = uh
m−(Rh(u))m, ηm = um−(Rh(u))m. Choose vh = φm+1 in (4.37) and qh = ph

m+1 in

(4.38). Adding and subtracting the interpolant and using (4.16) yields the following error equation:

1
2∆t

(‖φm+1‖2
0,Ω − ‖φm‖2

0,Ω) + νκ‖φm+1‖2
X + νT |||(I − PLH )∇φm+1|||20

+b̃(uh
m,uh

m+1,φm+1)− b̃(um+1,um+1, φm+1) + c(φm+1, p
h
m+1 − pm+1)

≤ ‖∂u
∂t

(tm+1)− 1
∆t

(um+1 − um)‖0,Ω‖φm+1‖0,Ω +
1

∆t
‖ηm+1 − ηm‖0,Ω‖φm+1‖0,Ω

+ν|a(ηm+1, φm+1) + J(ηm+1,φm+1)|+ νT |||(I − PLH )∇ηm+1|||0|||(I − PLH )∇φm+1|||0

+νT |||(I − PLH )∇um+1|||0|||(I − PLH )∇φm+1|||0.
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We rewrite the nonlinear terms:

b̃uh
m

(uh
m,uh

m+1, φm+1)− b̃um+1(um+1,um+1, φm+1)

= b̃uh
m

(uh
m,uh

m+1, φm+1)− b̃uh
m

(um+1,um+1, φm+1).

We now drop the subscript uh
m.

b̃uh
m

(uh
m,uh

m+1, φm+1)− b̃uh
m

(um+1,um+1, φm+1)

= b̃(uh
m,φm+1, φm+1)− b̃(φm, ηm+1, φm+1) + b̃(φm,um+1, φm+1)

−b̃(ηm,uI
m+1, φm+1)− b̃(um, ηm+1,φm+1)− b̃(um+1 − um,um+1,φm+1).

Thus, we rewrite the error equation as

1
2∆t

(‖φm+1‖2
0,Ω − ‖φm‖2

0,Ω) + νκ‖φm+1‖2
X + νT |||(I − PLH )∇φm+1|||20

+b̃(uh
m, φm+1,φm+1) ≤ |b̃(φm, ηm+1,φm+1)|+ |b̃(φm,um+1,φm+1)|+ |b̃(ηm,uI

m+1, φm+1)|

+|b̃(um,ηm+1,φm+1)|+ |b̃(um+1 − um,um+1, φm+1)|+ |c(φm+1, p
h
m+1 − pm+1)|

+‖∂u
∂t

(tm+1)− 1
∆t

(um+1 − um)‖0,Ω‖φm+1‖0,Ω +
1

∆t
‖ηm+1 − ηm‖0,Ω‖φm+1‖0,Ω

+ν|a(ηm+1, φm+1) + J(ηm+1,φm+1)|+ νT |||(I − PLH )∇ηm+1|||0|||(I − PLH )∇φm+1|||0

+νT |||(I − PLH )∇um+1|||0|||(I − PLH )∇φm+1|||0 ≤ |T0|+ · · ·+ |T10|.

We want to bound the terms T0, T2....T10. T0 can be handled as in Theorem 4.1. Then, T0 is

bounded as

T0 ≤ κν

6
‖φm+1‖2

X + Cν−1(‖u‖2
L∞(0,T ;Hr+1(Ω)) + ‖u‖2

L∞(0,T ;W 2,4/3(Ω))
)‖φm‖2

0,Ω

Also, the term T1 is bounded exactly like the term (4.32) in the proof of Theorem 4.1. Here, the

constant vectors are

c1 =
1
|Ej |

∫

Ej

um+1, c2 =
1
|Ej |

∫

Ej

φm+1.
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Then, T1 can be rewritten as:

T1 =
Nh∑

j=1

∫

Ej

(φm · ∇um+1) · φm+1 −
1
2
c(φm, (um+1 − c1) · φm+1)

−1
2
c(φm, c1 · (φm+1 − c2)) ≤ κν

24
‖φm+1‖2

X + Cν−1‖φm‖2
0,Ω.

Expanding T2, we obtain:

T2 =
Nh∑

j=1

∫

Ej

(ηm · ∇uI
m+1) · φm+1 +

Nh∑

j=1

∫

∂E−j
|{ηm} · nEj |(uI,int

m+1 − uI,ext
m+1) · φint

m+1

+
1
2

Nh∑

j=1

∫

Ej

(∇ · ηm)uI
m+1 · φm+1 −

1
2

Ph∑

k=1

∫

ek

[ηm] · nk{uI
m+1 · φm+1}

= T21 + · · ·+ T24.

The bound for T21 is obtained using (4.2) and (4.4):

T21 ≤ ‖ηm‖0,Ω‖∇uI
m+1‖L4(Ω)‖φm+1‖L4(Ω)

≤ κν

24
‖φm+1‖2

X + Cν−1h2r‖u‖2
L∞(0,T ;W 2,4/3(Ω))

|um|2r+1,Ω.

Similarly for the term T22, the inequalities (4.3) and (4.10) give

T22 ≤ C

Nh∑

j=1

‖ηm‖L2(∂Ej)‖uI
m+1‖L∞(Ω)‖φm+1‖L2(∂Ej)

≤ κν

24
‖φm+1‖2

X + Cν−1h2r‖u‖2
L∞([0,T ]×Ω)|um|2r+1,Ω.

The estimate of T23 is obtained by using a bound on interpolant, Cauchy-Schwarz inequality, the

approximation result (4.3), Young’s inequality and Lp bound (4.2).

T23 ≤ κν

24
‖φm+1‖2

X + Cν−1h2r‖u‖2
L∞([0,T ]×Ω)|um|2r+1,Ω.

The term T24 is bounded exactly as for T22. Because of the regularity of u, the approximation
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result (4.3), we can bound T3.

T3 ≤ C‖um‖L∞(Ω)h
r|um+1|r+1,Ω‖φm+1‖0,Ω

≤ κν

24
‖φm+1‖2

X + Cν−1h2r‖u‖2
L∞([0,T ]×Ω)|um|2r+1,Ω.

The term T4 is bounded using the estimate (4.2).

T4 ≤ ∆t‖ut‖L∞(tm,tm+1;L2(Ω))‖∇um+1‖L4(Ω)‖φm+1‖L4(Ω)

≤ κν

24
‖φm+1‖2

X + Cν−1∆t2‖ut‖2
L∞(tm,tm+1;L2(Ω))‖u‖2

L∞(0,T ;W 2,4/3(Ω))
.

By property of the interpolant (4.24) and properties of rh(p) (4.5), (4.6), we now bound T5.

T5 = c(φm+1, p
h
m+1 − (rh(p))m+1)− c(φm+1, pm+1 − (rh(p))m+1)

= −c(φm+1, pm+1 − (rh(p))m+1) =
Mh∑

k=1

∫

ek

{pm+1 − (rh(p))m+1}[φm+1] · nk

≤
Mh∑

k=1

‖[φm+1]‖0,ek
|ek|1/2−1/2‖pm+1‖0,ek

≤ κν

24
‖φm+1‖2

X + Cν−1h2r|pm+1|2r,Ω.

From a Taylor expansion, we have

T6 ≤ C∆t‖φm+1‖X‖utt(t∗)‖0,Ω ≤ κν

24
‖φm+1‖2

X + Cν−1∆t2‖uTm‖2
L∞(0,T ;L2(Ω)).

To bound T7, we assume that h ≤ ∆t and we use (4.4) and (4.2).

T7 ≤ κν

24
‖φm+1‖2

X + Cν−1 h2r+2

∆t2
(|um+1|2r+1,Ω + |um|2r+1,Ω)

≤ κν

24
‖φm+1‖2

X + Cν−1h2r(|um+1|2r+1,Ω + |um|2r+1,Ω).

The terms T8, T9 and T10 are exactly bounded as in Theorem 4.1. Combining all the bounds of the
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terms T0, . . . , T10 , multiplying by 2∆t and summing over m, we obtain:

‖φm+1‖2
0,Ω − ‖φ0‖2

0,Ω + νκ∆t
m∑

i=0

‖φi+1‖2
X + νT ∆t

m∑

i=0

|||(I − PLH )∇φi+1|||20

≤ CeCTν−1
[h2r(ν + ν−1 + νT )|u|2L2(0,T ;Hr+1(Ω)) + νT H2r|u|2L2(0,T ;Hr+1(Ω))

+ν−1∆t2(‖ut‖2
L∞(0,T ;L2(Ω)) + ‖utt‖2

L∞(0,T ;L2(Ω))) + h2rν−1|p|2L2(0,T ;Hr(Ω)]

The final result is obtained by noting that ‖φ0‖0,Ω is of order hr and by using approximation results

and a triangle inequality.

Theorem 4.3. Assume that utt ∈ L∞(0, T ; (H1(Ω))2), ptt ∈ L∞(0, T ; H1(Ω)), uttt ∈ L∞(0, T ; (H2(Ω))2)

and ftt ∈ L∞(0, T ; (L2(Ω))2). Under the assumptions of Theorem 4.1, there is a constant C inde-

pendent of h,H, ν and νT such that

max
m=0,...,M

‖um − ũm‖0,Ω + (νκ∆t

M−1∑

m=0

‖um+1 − ũm+1‖2
X)1/2

+(νT ∆t
M−1∑

m=0

|||(I − PLH )∇um+1 − ũm+1|||20)1/2 ≤ CeCTν−1
[hrν−1/2‖p‖L2(0,T ;Hr(Ω))

+hr(ν + ν−1 + νT )1/2‖u‖L2(0,T ;Hr+1(Ω)) + ∆t2ν1/2‖uttt‖L∞(0,T ;H2(Ω))

+∆t2ν−1/2(‖utt‖L∞(0,T ;H1(Ω)) + ‖ptt‖L∞(0,T ;H1(Ω)) + ‖uttt‖L∞(0,T ;L2(Ω))

+‖ftt‖L∞(0,T ;L2(Ω))) + ν
1/2
T Hr|u|L2(0,T ;Hr+1(Ω))] + Chr|u0|r+1,Ω.

Proof: The proof is derived in a similar fashion as for the backward Euler scheme. Using the

same notation, the error equation is obtained by subtracting the equation (4.19) evaluated at the

time t = tm+1/2 to the equation (4.35) and adding and subtracting the interpolant (Rh(u))m+1/2.
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After some manipulation, we obtain

1
2∆t

(‖φm+1‖2
0,Ω − ‖φm‖2

0,Ω) + νκ‖φm+ 1
2
‖2

X + νT |||(I − PLH )∇φm+ 1
2
|||20

+b̃(ũh
m+ 1

2
,φh

m+ 1
2
,φm+ 1

2
) ≤ |b̃(φm+ 1

2
,ηm+ 1

2
, φm+ 1

2
)|+ |b̃(φm+ 1

2
,um+ 1

2
, φm+ 1

2
)|

+|b̃(ηm+ 1
2
,uI

m+ 1
2
, φm+ 1

2
)|+ |b̃(um+ 1

2
, ηm+ 1

2
, φm+ 1

2
)|

+|b̃(um+ 1
2
− u(tm+ 1

2
),um+ 1

2
, φm+ 1

2
)|+ |b̃(u(tm+ 1

2
),um+ 1

2
− u(tm+ 1

2
), φm+ 1

2
)|

+|c(φm+ 1
2
, p̃h

m+ 1
2

− p(tm+ 1
2
))|+ ‖ut(tm+ 1

2
)− 1

∆t
(um+1 − um)‖0,Ω‖φm+ 1

2
‖0,Ω

+
1

∆t
‖ηm+1 − ηm‖0,Ω‖φm+ 1

2
‖0,Ω + ‖fm+ 1

2
− f(tm+ 1

2
)‖0,Ω‖φm+ 1

2
‖0,Ω

+ν|a(u(tm+ 1
2
)− uI

m+ 1
2

, φm+1) + J(u(tm+ 1
2
)− uI

m+ 1
2

,φm+1)|

+νT |||(I − PLH )∇ηm+ 1
2
|||0|||(I − PLH )∇φm+ 1

2
|||0

+νT |||(I − PLH )∇um+ 1
2
|||0|||(I − PLH )∇φm+ 1

2
|||0 ≤ A0 + · · ·+ A13.

The terms A0, A1, A2, A3, A8, A11 and A12 are bounded exactly like the terms T0, T1, T2, T3, T7, T9

and T10 respectively. From a Taylor expansion, we bound the terms A4 and A5:

A4 + A5 =
Nh∑

j=1

∫

Ej

(um+ 1
2
− u(tm+ 1

2
)) · ∇um+ 1

2
) · φm+ 1

2

+
Nh∑

j=1

∫

Ej

u(tm+ 1
2
) · ∇(um+ 1

2
− u(tm+ 1

2
)) · φm+ 1

2

=
∆t2

8

Nh∑

j=1

∫

Ej

(utt(t∗)) · ∇um+ 1
2
) · φm+ 1

2
+

∆t2

8

Nh∑

j=1

∫

Ej

u(tm+ 1
2
) · ∇(utt(t∗)) · φm+ 1

2

≤ κν

64
‖φm+ 1

2
‖2

X + Cν−1∆t4‖utt‖2
L∞(0,T ;H1(Ω))‖u‖2

L∞(0,T ;W 2,4/3(Ω))
.
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With (4.20), (4.24) and (4.36), the pressure term can be rewritten as:

A6 = c(φm+ 1
2
, p̃h

m+ 1
2
− pm+ 1

2
) + c(φm+ 1

2
, pm+ 1

2
− p(tm+ 1

2
))

= −c(φm+ 1
2
, pm+ 1

2
− (rh(p))m+ 1

2
) + c(φm+ 1

2
, pm+ 1

2
− p(tm+ 1

2
))

=
Mh∑

k=1

∫

ek

{pm+ 1
2
− (rh(p))m+ 1

2
}[φm+ 1

2
] · nk −

Nh∑

j=1

∫

Ej

(pm+ 1
2
− p(tm+ 1

2
))∇ · φm+ 1

2

+
Mh∑

k=1

∫

ek

{pm+ 1
2
− p(tm+ 1

2
)}[φm+ 1

2
] · nk

≤ κν

64
‖φm+ 1

2
‖2

X + Cν−1h2r(|pm+1|2r,Ω + |pm|2r,Ω) + Cν−1∆t4‖ptt‖2
L∞(0,T ;H1(Ω)).

We now bound A7, using a Taylor expansion,

A7 ≤ C∆t2‖uttt(t∗)‖0,Ω‖φm+ 1
2
‖0,Ω ≤ κν

64
‖φm+ 1

2
‖2

X + Cν−1∆t4‖uttt‖2
L∞(0,T ;L2(Ω)).

Using also a Taylor expansion, we bound A9:

A9 ≤ Cν−1∆t4‖ftt‖2
L∞(0,T ;L2(Ω)) +

κν

64
‖φm+ 1

2
‖2

X .

Finally the last term A10 is handled as follows:

A10 = ν[a(ηm+ 1
2
,φm+ 1

2
) + J(ηm+ 1

2
,φm+ 1

2
)]

+ν[a(u(tm+ 1
2
)− um+ 1

2
,φm+ 1

2
) + J(u(tm+ 1

2
)− um+ 1

2
, φm+ 1

2
)] = A101 + A102.

The term A101 is bounded like T8. The term A102 reduces to

A102 = ν

Nh∑

j=1

∫

Ej

∇(u(tm+ 1
2
)− um+ 1

2
) : ∇φm+ 1

2

−ν

Mh∑

k=1

∫

ek

{∇(u(tm+ 1
2
)− um+ 1

2
)nk}[φm+ 1

2
] ≤ κν

64
‖φm+ 1

2
‖2

X + Cν∆t4‖utt‖2
L∞(0,T ;H2(Ω)).
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Combining all the bounds above yield:

1
2∆t

(‖φm+1‖2
0,Ω − ‖φm‖2

0,Ω) +
νκ

2
‖φm+ 1

2
‖2

X +
νT

2
|||(I − PLH )∇φm+ 1

2
|||20

≤ Cν−1(‖φm‖2
0,Ω + ‖φm+1‖2

0,Ω) + Ch2r(ν + ν−1 + νT )(|um+1|2r+1,Ω + |um|2r+1,Ω)

+Ch2rν−1(|pm+1|2r,Ω + |pm|2r,Ω) + C∆t4ν‖uttt‖2
L∞(0,T ;H2(Ω))

+C∆t4ν−1(‖utt‖2
L∞(0,T ;H1(Ω)) + ‖ptt‖2

L∞(0,T ;H1(Ω)) + ‖uttt‖2
L∞(0,T ;L2(Ω))

+‖ftt‖2
L∞(0,T ;L2(Ω))) + CνT H2r(|um+1|2r+1,Ω + |um|2r+1,Ω).

The end of the proof is similar to the one of Theorem 4.2.

Corollary 4.5.1. Assume that νT = hβ and H = h1/α where β ≥ 2r(α−1)/α (see Corollary 4.4.1),

then the estimates in Theorem 4.2 and Theorem 4.3 are optimal.

max
m=0,...,M

‖um − uh
m‖0,Ω + (∆t

M−1∑

m=0

‖um+1 − uh
m+1‖2

X)1/2 = O(hr + ∆t),

max
m=0,...,M

‖um − ũm‖0,Ω + (∆t
M−1∑

m=0

‖um+1 − ũm+1‖2
X)1/2 = O(hr + ∆t2).
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Chapter 5

Conclusions and Future Research

In this thesis we have performed and analyzed a subgrid eddy viscosity method for solving

the time dependent Navier-Stokes equations. This method has the advantage that the diffusivity

is introduced only on the small scales. By adding an eddy viscosity term on the coarse scale,

the resulting method dissipates the energy of scales near the cutoff wave number. The method

is robustness with respect to the Re. Specifically, the analysis for the Oseen problem establishes

that the error is bounded uniformly in Re. Numerical test shows the new stabilization technique

is robust and efficient in solving Navier-Stokes equations for a wide range of Reynolds numbers.

In addition, we have analyzed the stability and convergence of totally discontinuous schemes

for solving the time-dependent Navier-Stokes equations. Both semi discrete approximation and

fully discrete are constructed for velocity. In addition, semi discrete approximation of pressure is

obtained. We have showed that these estimations are optimal.

This thesis suggests several directions for further research. One of the future directions is to

extend the numerical simulations with time dependent Navier-Stokes equations and to do exper-

iments for the computational benchmarks problems. Specifically, we should test the model for

channel flow and flows over step problems.

Another research direction of this work is to reduce the dependence of the estimate on the

Reynolds number. One way is to extend the analysis for some popular nonlinear eddy viscosity.

We can try to use modified version of the approach in [41].

Also, we should perform a posteriori error estimation to improve the accuracy of the method

while reducing computational cost. This can be done by investigation of explicit error estimates

involving the computed numerical solution and the subgrid eddy viscosity constant. It would also

be of interest to study adaptive subgrid eddy viscosity, in which eddy viscosity affects local regions

of the flow.
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Appendix A

Discontinuous L2 Pressure Estimation

Theorem A.1. Under the assumptions of Theorem 4.1, and if a(.,.) is symmetric (ε0 = −1), the

following estimate holds true

‖ut − uh
t ‖L2(0,T ;L2(Ω)) + ν1/2‖u− uh‖L∞(0,T ;X) ≤ CeCTν−1

[hr|u0|r+1,Ω

+hr|u|L2(0,T ;Hr+1(Ω)) + hr|ut|L2(0,T ;Hr+1(Ω)) + CνT Hrh−1|u|L2(0,T ;Hr+1(Ω))].

where C and is a positive constant independent of h,H, ν and νT . If a(.,.) is nonsymmetric

(ε0 = 1), the estimate is suboptimal, of order hr−1.

Proof: We introduce the modified Stokes problem: for any t > 0, find (uS(t), pS(t)) ∈ Xh ×Qh

such that

ν(a(uS(t),vh) + J(uS(t),vh)) + νT g(uS(t),vh) + c(vh, pS(t))

= ν(a(u(t),vh) + J(u(t),vh)) + νT g(u(t),vh) + c(vh, p(t)), ∀vh ∈ Xh, (A.1)

c(uS(t), qh) = 0, ∀qh ∈ Qh. (A.2)

For any t > 0, there exists a unique solution to (A.1), (A.2). Furthermore, it is easy to show that

the solution satisfies the error estimate:

κ1/2ν1/2‖u(t)− uS(t)‖X + ν
1/2
T ‖(I − PH)∇(u− uS)‖0,Ω

≤ hr(ν + ν−1 + νT )1/2|u|r+1,Ω + ν−1/2|p|r,Ω + |ut|r+1,Ω) + ν
1/2
T Hr|u|r+1,Ω, ∀t > 0.
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Define η = u − uS and ξ = uh − uS , and choose the test function vh = ξt. The resulting error

equation is:

‖ξt‖2
0,Ω + νa(ξ, ξt) +

ν

2
d

dt
J(ξ, ξ) +

νT

2
d

dt
g(ξ, ξ)

= (ηt, ξt)− νT g(u, ξt) + b̃(u,u, ξt)− b̃(uh,uh, ξt). (A.3)

The first term in the right-hand side of (A.3) is easily bounded.

(ηt, ξt) ≤
1
64
‖ξt‖2

0,Ω + Ch2r|ut|2r+1,Ω.

The consistency error term is bounded using the inverse inequality (4.12) and the projection oper-

ator.

νT g(u, ξt) ≤ CνT Hr|u|r+1,Ω|||∇ξt|||0,Ω

≤ 1
64
‖ξt‖2

0,Ω + Cν2
T H2rh−2|u|2r+1,Ω.

Let us rewrite the nonlinear terms

b̃(u,u, ξt)− b̃(uh,uh, ξt) = b̃(u− uS ,uh, ξt)− b̃(ξ,uh, ξt) + b̃(u,u− uh, ξt)

= b̃(ξ, ξ, ξt)− b̃(ξ, η, ξt) + b̃(ξ,u, ξt)− b̃(η,uh, ξt) + b̃(u, ξ, ξt)− b̃(u, η, ξt).

In what follows, we assume that ξ belongs to L∞((0, T )× Ω).

We now consider each of the nonlinear terms. Expanding b̃(ξ, ξ, ξt) results

b̃(ξ, ξ, ξt) =
Nh∑

j=1

∫

Ej

ξ · ∇ξ · ξt +
Nh∑

j=1

∫

∂E−j
|{ξ} · nEj |(ξint − ξext) · ξint

t

+
1
2

Nh∑

j=1

(∇ · ξ)ξ · ξt −
1
2

Mh∑

k=1

∫

ek

[ξ] · nk{ξ · ξt}

= S14 + · · ·+ S17.
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The first term is bounded as

S14 ≤ ‖ξ‖L∞(Ω)‖∇ξ‖0,Ω‖ξt‖0,Ω

≤ 1
64
‖ξt‖2

0,Ω + C‖ξ‖2
X .

From the definition of jump term, S15 is bounded

S15 ≤ C

Nh∑

j=1

‖ξ‖L∞(Ω)‖ξint − ξext‖0,∂Ej‖ξint
t ‖0,∂Ej

≤ C

Mh∑

k=1

‖[ξ]‖0,ek
(

σ

|ek|)
1/2−1/2‖ξt‖0,ek

≤ 1
64
‖ξt‖2

0,Ω + C‖ξ‖2
X .

The bound for S16 and S17 is the same as S14.

S16 ≤ C

Nh∑

j=1

‖ξ‖L∞(Ω)‖∇ξ‖0,Ω‖ξt‖0,Ω

≤ 1
64
‖ξt‖2

0,Ω + C‖ξ‖2
X .

S17 ≤ C

Mh∑

k=1

‖ξ‖L∞(Ω)‖[ξ]‖0,ek
‖ξt‖0,ek

≤ 1
64
‖ξt‖2

0,Ω + C‖ξ‖2
X .

We expand the term b̃(ξ, η, ξt)

b̃(ξ, η, ξt) =
Nh∑

j=1

∫

Ej

ξ · ∇η · ξt +
Nh∑

j=1

∫

∂E−j
|{ξ} · nEj |(ηint − ηext) · ξint

t

+
1
2

Nh∑

j=1

(∇ · ξ)η · ξt −
1
2

Mh∑

k=1

∫

ek

[ξ] · nk{η · ξt}

= S18 + · · ·+ S21.
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By using approximation results and Lp bounds, S18 and S19 are bounded as

S18 ≤ ‖ξ‖L∞(Ω)‖∇η‖0,Ω‖ξt‖0,Ω

≤ 1
64
‖ξt‖2

0,Ω + Ch2r|u|2r+1,Ω,

S19 ≤ C

Nh∑

j=1

‖ξ‖L∞(Ω)‖ηint − ηext‖0,∂Ej‖ξint
t ‖0,∂Ej

≤ 1
64
‖ξt‖2

0,Ω + Ch2r|u|2r+1,Ω.

We use the inverse inequality, and Lp bounds to bound S20 and S21

S20 ≤ C

Nh∑

j=1

‖η‖L4(Ω)‖∇ξ‖L2(Ω)‖ξt‖L4(Ω)

Chr+1/2|u|r+1,Ω‖∇ξ‖L2(Ω)h
−1/2‖ξt‖0,Ω

≤ 1
64
‖ξt‖2

0,Ω + C‖ξ‖2
X .

S21 ≤ C

Mh∑

k=1

‖ξ‖L∞(Ω)‖η‖0,ek
‖ξt‖0,ek

≤ 1
64
‖ξt‖2

0,Ω + Ch2r|u|2r+1,Ω.

The following nonlinear term b̃(ξ,u, ξt) can be expanded as

b̃(ξ,u, ξt) =
Nh∑

j=1

∫

Ej

ξ · ∇u · ξt +
1
2

Nh∑

j=1

(∇ · ξ)u · ξt

−1
2

Mh∑

k=1

∫

ek

[ξ] · nk{u · ξt} = S22 + · · ·+ S24.
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Similarly, S22 and S23 are bounded by using Lp bounds, jump term and approximation results.

S22 ≤ ‖ξ‖L4(Ω)‖∇u‖L4(Ω)‖ξt‖L2(Ω)

≤ 1
64
‖ξt‖2

0,Ω + C|u|2
L∞(0,T ;W 2,4/3(Ω))

‖ξ‖2
X .

S23 ≤ C

Nh∑

j=1

‖u‖L∞((0,T )×Ω)‖∇ξ‖0,Ω‖ξt‖0,Ω

≤ 1
64
‖ξt‖2

0,Ω + C‖ξ‖2
X .

S24 ≤ C

Mh∑

k=1

‖u‖L∞(Ω)‖[ξ]‖0,ek
‖ξt‖0,ek

(
σ

|ek|)
1/2−1/2

≤ 1
64
‖ξt‖2

0,Ω + C‖ξ‖2
X .

Again, we expand b̃(η,uh, ξt)

b̃(η,uh, ξt) =
Nh∑

j=1

∫

Ej

η · ∇uh · ξt +
Nh∑

j=1

∫

∂E−j
|{η} · nEj |(uh,int − uh,ext) · ξint

t

+
1
2

Nh∑

j=1

(∇ · η)uh · ξt −
1
2

Mh∑

k=1

∫

ek

[η] · nk{uh · ξt}

= S25 + · · ·+ S28.

By using Lp bounds and approximation results the terms are bounded as

S25 ≤ ‖η‖L4(Ω)‖∇uh‖L4(Ω)‖ξt‖L2(Ω)

≤ 1
64
‖ξt‖2

0,Ω + Ch2r|u|2r+1,Ω,

S26 ≤ C

Nh∑

j=1

‖uh‖L∞((0,T )×Ω)‖{η}‖0,∂Ej‖ξint
t ‖0,∂Ej

≤ 1
64
‖ξt‖2

0,Ω + Ch2r|u|2r+1,Ω,
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S27 ≤ C

Nh∑

j=1

‖uh‖L∞((0,T )×Ω)‖∇η‖0,Ω‖ξt‖0,Ω

≤ 1
64
‖ξt‖2

0,Ω + Ch2r|u|2r+1,Ω.

S28 ≤ C

Mh∑

k=1

‖uh‖L∞(Ω)‖[η]‖0,ek
‖ξt‖0,ek

≤ 1
64
‖ξt‖2

0,Ω + Ch2r|u|2r+1,Ω.

Use Lp bounds to bound b̃(u, ξ, ξt)

b̃(u, ξ, ξt) =
Nh∑

j=1

∫

Ej

u · ∇ξ · ξt +
Nh∑

j=1

∫

∂E−j
|{u} · nEj |(ξint − ξext) · ξint

t

= S29 + S30.

S29 ≤ ‖u‖L∞((0,T )×Ω)‖∇ξ‖0,Ω‖ξt‖0,Ω

≤ 1
64
‖ξt‖2

0,Ω + C‖ξ‖2
X .

S30 ≤ C

Nh∑

j=1

‖u‖L∞((0,T )×Ω)‖ξint − ξext‖0,∂Ej‖ξint
t ‖0,∂Ej

≤ C

Mh∑

k=1

‖[ξ]‖0,ek
‖ξt‖0,ek

(
σ

|ek|)
1/2−1/2

≤ 1
64
‖ξt‖2

0,Ω + C‖ξ‖2
X .

Lastly, if we expand b̃(u,η, ξt), we get

b̃(u, η, ξt) =
Nh∑

j=1

∫

Ej

u · ∇η · ξt +
Nh∑

j=1

∫

∂E−j
|{u} · nEj |(ηint − ηext) · ξint

t

= S31 + S32.
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These terms are bounded as following:

S31 ≤ ‖u‖L∞((0,T )×Ω)‖∇η‖0,Ω‖ξt‖0,Ω

≤ 1
64
‖ξt‖2

0,Ω + Ch2r|u|2r+1,Ω,

S32 ≤ C

Nh∑

j=1

‖u‖L∞((0,T )×Ω)‖ηint − ηext‖0,∂Ej‖ξint
t ‖0,∂Ej

≤ 1
64
‖ξt‖2

0,Ω + Ch2r|u|2r+1,Ω.

Collecting all the bounds with (A.3) gives:

‖ξt‖2
0,Ω + νa(ξ, ξt) +

ν

2
d

dt
J(ξ, ξ) +

νT

2
d

dt
g(ξ, ξ)

≤ 1
2
‖ξt‖2

0,Ω + C‖ξ‖2
X + Ch2r|u|2r+1,Ω

+Ch2r|ut|2r+1,Ω + Cν2
T H2rh−2|u|2r+1,Ω. (A.4)

In the case where the bilinear form a is symmetric (ε0 = −1), the inequality becomes

1
2
‖ξt‖2

0,Ω +
ν

2
d

dt
‖ξ‖2

X +
νT

2
d

dt
g(ξ, ξ) ≤ C‖ξ‖2

X

+Ch2r|u|2r+1,Ω + Ch2r|ut|2r+1,Ω + Cν2
T H2rh−2|u|2r+1,Ω. (A.5)

Integrating between 0 and t, and using Gronwall’s lemma yields:

‖ξt‖2
L2(0,T ;L2(Ω)) + ν‖ξ‖2

L∞(0,T ;X) + νT max
0≤t≤T

g(ξ, ξ) ≤ CeCTν−1
[h2r|u0|2r+1,Ω

+Ch2r|u|2L2(0,T ;Hr+1(Ω)) + Ch2r|ut|2L2(0,T ;Hr+1(Ω)) + +Cν2
T H2rh−2|u|2L2(0,T ;Hr+1(Ω))].

In the case where the bilinear form a is non-symmetric(ε0 = 1), we rewrite (A.4) as

a(ξ, ξt) =
1
2

d

dt
|||∇ξ|||20 −

Mh∑

k=1

∫

ek

{∇ξ}nk · [ξt] +
Mh∑

k=1

∫

ek

{∇ξt}nk · [ξ].

The bound is then suboptimal: O(hr−1).
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We now derive an error estimate for the pressure.

Theorem A.2. Assume that a(.,.) is symmetric (ε0 = −1) and ν ≤ 1. In addition, we assume

that u ∈ L2(0, T ; Hr+1), ut ∈ L2(0, T ; Hr+1) and p ∈ L2(0, T ; Hr). Then, the solution ph satisfies

the following error estimate

‖ph − rh(p)‖L2(0,T ;L2(Ω)) ≤ CeCTν−1
[νhr|u0|r+1,Ω

+νhr|u|L2(0,T ;Hr+1(Ω)) + νhr|ut|L2(0,T ;Hr+1(Ω)) + CννT Hrh−1|u|L2(0,T ;Hr+1(Ω))]

+Cν1/2hr|u0|r+1,Ω + Cνhr|u|L2(0,T ;Hr+1(Ω)) + Cνhr|p|L2(0,T ;Hr(Ω))

+CνT Hr|u|L2(0,T ;Hr+1(Ω))

+CeCT (ν−1+1)[hr((ν + ν−1 + νT )1/2|u|L2(0,T ;Hr+1(Ω)) + ν−1/2|p|L2(0,T ;Hr(Ω))

+|ut|L2(0,T ;Hr+1(Ω))) + ν
1/2
T Hr|u|L2(0,T ;Hr+1(Ω))] + Chr|u0|r+1,Ω.

where C is independent of h,H, ν and νT . Again, if ε0 = 1, the estimate is suboptimal.

Proof: The error equation can be written for all vh in Xh:

−c(vh, ph − rh(p)) = (uh
t − ut,vh) + νa(uh − u,vh) + νJ(uh − u,vh)

+νT g(uh − u,vh) + b̃(uh,uh,vh)− b̃(u,u,vh) + νT g(u,vh)− c(vh, p− rh(p)).

From the inf-sup condition (4.23), there is vh ∈ Xh such that

c(vh, ph − rh(p)) = −‖ph − rh(p)‖2
0, ‖vh‖X ≤ 1

β0
‖ph − rh(p)‖0,Ω.

Thus, we have

‖ph − rh(p)‖2
0,Ω = (uh

t − ut,vh) + ν

Nh∑

j=1

∫

Ej

∇(uh − u) : ∇vh

−ν

Mh∑

k=1

∫

ek

{∇(uh − u)}nk · [vh] + νε0

Mh∑

k=1

∫

ek

{∇vh}nk · [uh − u] + νJ(uh − u,vh)

+νT g(uh − u,vh) + b̃(uh,uh,vh)− b̃(u,u,vh) + νT g(u,vh)− c(vh, p− rh(p)).
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All the terms above can be handled as in Theorem 4.1. The resulting inequality is

‖ph − rh(p)‖2
0,Ω ≤ Cν2‖uh

t − ut‖2
0,Ω + Cν2‖uh − u‖2

X + Cν2h2r|u|2r+1,Ω + Cν2h2r|p|2r,Ω
+Cν2

T H2r|u|2r+1,Ω + Cν2
T g(uh − u,uh − u) + C‖uh − u‖2

0,Ω.

We now integrate between 0 and T , and use Theorem 4.1 and Theorem A.1 to conclude.
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6 (1823), 389–440.

59. J. T. Oden, I. Babuska, and C. E. Baumann, A discontinuous hp finite element method for
diffusion problems, J. Comput. Phys. 146 (1998), 491–519.

60. U. Piomelli and J. R. Chasnov, Large eddy simulation: theory and application, in Turbulent
and transition modeling, Kluwer, Dordrecht, 1996, Eds: M. Hallback, D. S. Henningson, A. V.
Johannson and P. H. Alfredson.

61. W. H. Reed and T. R. Hill, Triangular mesh methods for the neutron transport equation, Tech.
Report LA-UR-73-479, Los Alamos Scientific Laboratory (1973).

62. B. Rivière, M. F. Wheeler, and V. Girault, Improved energy estimates for interior penalty,
constrained and discontinuous Galerkin methods for elliptic problems Part I, Computational
Geosciences 3 (1999), 337–360.

63. B. Rivière, M. F. Wheeler, and V. Girault, A priori error estimates for finite element methods
based on discontinuous approximation spaces for elliptic problems, SIAM J. Numer. Anal. 39
(2001), 902–931.

64. P. Sagaut, Large eddy simulation for incompressible flows, Springer-Verlag Berlin Heidelberg
New York, 2001.

65. J. Smagorinsky, General circulation experiments with the primitive equation,I: The basic ex-
periment, Month. Weath. Rev. 91 (1963), 99–164.

66. P. Sonneveld, A fast Lanczos-type solver for nonsymmetric linear systems, SIAM J. Sci. Statist.
Comput. 10 (1989), 36–52.

67. K. R. Sreenivasan, On the universality of the Kolmogorov constant, Physics of Fluids 7(11)
(1995), 2778–2784.

95



68. R. Temam, Navier-Stokes Equations and Nonlinear Functional analysis, SIAM, Philadelphia,
1995.

69. M. F. Wheeler, An elliptic collocation- finite element method with interior penalties, SIAM J.
Numer. Anal. 15 (1978), no. 1, 152–161.

70. Y. Zhang, R. L. Street, and J. R. Koseff, A dynamical mixed subgrid-scale model and its
application to turbulent the recirculating flows, Phys. Fluids A 5 (1993), 3186–3196.

96


	Title
	Commitee Members
	Abstract
	Acknowledgments

	Table of Contents
	List of Tables
	List of Figures
	INTRODUCTION
	Chapter Descriptions
	Eddy Viscosity Models
	Turbulence
	Techniques for Turbulent Simulations
	LES
	DNS
	RANS

	Numerical Simulations of Turbulent Flows
	Kolmogorov Theory 


	CHAPTER 1: New Model
	The New Subgrid Eddy Viscosity Model
	Preliminaries

	Error Estimations
	Semi Discrete Error Estimation for Velocity
	Error Estimation for Pressure

	Oseen Problem
	Error Estimate for Velocity in L2

	CHAPTER 2: Variational Multiscale Method
	Introduction to Variational Multiscale Method
	Connection with the New Approach and VMM 

	CHAPTER 3: Numerical Experiments
	Algorithm
	Convergence Rates
	Driven Cavity Problem

	CHAPTER 4: Discontinuous Approximations of Subgrid Eddy Viscosity Models
	Notation and Preliminaries
	Variational Formulation and Scheme
	Semi-discrete a Priori Error Estimate
	Fully Discrete Scheme
	Introduction

	CHAPTER 5: Conclusions and Future Research
	APPENDIX A
	Discontinuous L2 Pressure Estimation

	BIBLIOGRAPHY

