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ROBUST CROSS-PLATFORM DISEASE PREDICTION USING GENE
EXPRESSION MICROARRAYS

Zhibao Mi, PhD

University of Pittsburgh, 2008

Microarray technology has been used to predict patient prognosis and response to treatment,
which is starting to have an impact on disease intervention and control, and is a significant
measure for public health. However, the process has been hindered by a lack of adequate clinical
validation. Since both microarray analyses and clinical trials are time and effort intensive, it is
crucial to use accumulated inter-study data to validate information from individual studies. For
over a decade, microarray data have been accumulated from different technologies. However,
using data from one platform to build a model that robustly predicts the clinical characteristics of
a new data from another platform remains a challenge. Current cross-platform gene prediction
methods use only genes common to both training and test datasets. There are two main
drawbacks to that approach: model reconstruction and loss of information. As a result, the
prediction accuracy of those methods is unstable.

In this dissertation, a module-based prediction strategy was developed to overcome the
aforementioned drawbacks. By the current method, groups of genes sharing similar expression
patterns rather than individual genes were used as the basic elements of the model predictor.
Such an approach borrows information from genes’ similarity when genes are absent in test data.
By overcoming the problems of missing genes and noise across platforms, this method yielded
robust predictions independent of information from the test data. The performance of this method
was evaluated using publicly available microarray data. K-means clustering was used to group

v



genes sharing similar expression profiles into gene modules and small modules were merged into
their nearest neighbors. A univariate or multivariate feature selection procedures was applied and
a representative gene from each selected module was identified. A prediction model was then
constructed by the representative genes from selected gene modules. As a result, the prediction
model is portable to any test study as long as partial genes in each module exist in the test study.
The newly developed method showed advantages over the traditional methods in terms of

prediction robustness to gene noise and gene mismatch issues in inter-study prediction.
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1.0 INTRODUCTION

1.1 MICROARRAY TECHNOLOGY AND ITS APPLICATION

Microarray technology is originated from a nucleotide hybridization technique, Southern
blotting, where fragmented DNA are spotted on a supporting material, usually celluloid
membrane and then probed with a known DNA fragment to identify unknown genes (Southern
1975). However, Southern blotting is limited for single or fewer gene processes. Early
microarrays were spotted multiple cDNAs onto a miniaturized filter paper or glass slide to
monitor panel of gene expression profile (Kulesh, Clive et al. 1987; Schena, Shalon et al. 1995).
Now this miniaturized technology has extended to other molecular studies known as ‘omics’, e.g.
genomics, transcriptomics, and evolved to many platforms using advanced technologies, such as
Affymetrix GeneChip, GE (Amersham) Codelink, Illumina BeadChip, and Agilent SurePrint.
With the advance of genome sequencing, microarray technology has been developed rapidly
in many aspects: from hundreds of gene probes to tens of thousands of gene probes, from spotted
cDNA microarrays to photolithography oligonucleotide gene chips, from manual results reading
system to automated data processing (Schulze and Downward 2001). Although various
techniques are involved in microarray technology, the principle of microarray experiments is
simply nucleotide hybridizations on micro-scaffolds. Use of this technology to systemically

measure gene expression on a global level has evolved from large scale gene mapping and



sequencing (Poustka, Pohl et al. 1986; Cantor, Mirzabekov et al. 1992) to transcript level
analysis and gene signaling pathway identification (Schena, Shalon et al. 1995; Schulze, Nicke et
al. 2004), and it has even spread to develop gene signatures for disease classification and
prognosis prediction (Luo, Duggan et al. 2001; Beer, Kardia et al. 2002; van 't Veer, Dai et al.
2002; Potti, Mukherjee et al. 2006). No other technology has drawn as much dedicated attention
in the biomedical field, and microarrays led the way from related gene expression level to human

global activities.

1.2 CLINICAL RISK PREDICTION USING GENOMIC TECHNOLOGIES

Microarray technology is becoming a promising methodology for predicting prognosis and
response to treatment for cancer patients, and an emerging component for individualized
medicine. Though many gene signatures developed from microarray technology reported have
prediction values for various cancer patients, so far only few of them are in clinical practices
(van 't Veer, Dai et al. 2002; Paik, Shak et al. 2004; Ross, Hatzis et al. 2008). The many others
are suffering from either lack of a standardized molecular class prediction methods or
independent clinical validations (Pusztai, Mazouni et al. 2006; loannidis 2007; Pusztai and
Leyland-Jones 2008), which severely hinders the utility of individual genomic information.
Since microarray analyses and clinical trials are expensive as well as time and effort intensive,
therefore, to validate information and to predict patient outcomes from individual studies, it is
crucial to utilize accumulated inter-study data. A stable prediction model requires features
selected from a large training data set (Dobbin and Simon 2005; Dobbin, Zhao et al. 2008). For

over a decade, microarray data have been accumulated from different array technologies or



different versions within technologies performed on similar clinical samples. However, to use a
data set or integrated data sets from one platform to build a model that robustly and accurately
predicts clinical characteristics of a new data set or a new sample from another platform remains
a challenge (Tan, Downey et al. 2003; Park, Cao et al. 2004); however, the public accessible data
provide an alternative to validate the genomic information when new clinical trials are

inapproachable.

1.3 METHODOLOGICAL ISSUES IN INTER-STUDY MICROARRAY ANALYSES

Even though performing microarray experiment is straightforward with current automated
microarray assay systems, accurate use of the genomic information from microarray analysis to
classify patients or to predict patient prognosis is not trivial. An ideal approach to use genomic
data for prediction includes microarray data pre-processing, gene selection, and model
construction based on training study, and finally, the constructed model is validated on an
independent test data. Commonly in literature, prediction models were cross validated only based
on the same data used for the model construction (Pusztai and Leyland-Jones 2008). Cross
validated models are usually under represented or over fitted due to a lack of heterogeneity of
sampling and do not reveal cross platform problems when training data and test data are from
different microarray platforms and protocols. A common cross platform problem is missing
genes when genes in prediction model based on training data cannot be matched to test data.
Traditional prediction methods using microarray data select individual genes as model
components. This individual gene-based prediction (GBP) approach is sensitive to cross-

platform missing genes.



Current cross-platform gene prediction methods use only those genes common to both
training and test data sets (Shi, Tong et al. 2004; Irizarry, Warren et al. 2005; Shi, Tong et al.
2005). One drawback of this approach is that the prediction model has to be reconstructed,
depending on the test data. Thus, the model cannot be created independent of knowledge about
the test data. The model elements need to be adjusted every time test data is predicted.

In addition, because many genes in the training set and not in the test set are ignored, important
information from the training set may be lost. Finally, the prediction accuracy of the GBP
methods is unstable. In addition to missing genes, another reason for this instability is that these
methods are sensitive to gene noise. In this study, a module-based prediction (MBP) method is
developed to overcome these aforementioned drawbacks. In the MBP, groups of genes sharing
similar expression patterns rather than individual genes are used as model predictors. Such an
approach borrows information from genes’ similarity when genes are absent in test sets. By
overcoming gene noise and avoiding the problem of missing genes across platforms, the MBP
method was hypothesized to yield robust predictions completely independent of information

from the test data. The mechanism of the GBP versus the MBP is illustrated in Figure 1.1.
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Figure 1.1 The GBP method versus the MBP method: The GBP method selects individual
genes from training samples to construct a prediction model and uses the model to predict new
sample (A); whereas, the MBP method selects groups of genes to form gene modules and uses
these modules to construct a prediction model (B).

1.4  RELEVANT APPROACHES

Recently, there have been methods developed to use gene cluster information instead of
individual gene information as predictors although they are not designed to solve the problems
mentioned above. These methods can be summarized as three categories, metagenes, supergenes,
and gene pathway modules, sharing a nature of using information of gene clusters. The
metagene, defined as aggregate patterns of gene expression, was originally proposed by a group
of researchers from Duke University (West, Blanchette et al. 2001; Spang, Zuzan et al. 2002;
Huang, Cheng et al. 2003; Pittman, Huang et al. 2004; Potti, Mukherjee et al. 2006; West,
Ginsburg et al. 2006). The metagene approach first dealt with an array dimension reduction
either using supervised feature selection based on t test or correlation coefficient (Potti,

Dressman et al. 2006) or unsupervised K-means clustering (Huang, Cheng et al. 2003), then took
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the linear combination of the group of genes within cluster (metagene) based on the principal
component of singular value decomposition (SVD) (Huang, Cheng et al. 2003; Potti, Dressman
et al. 2006; Potti, Mukherjee et al. 2006) as predictors to fit prediction model (Figure 1.2.A).
Meanwhile, they try to identify the biological pathways of the metagenes (Bild, Potti et al. 2006;
Bild, Yao et al. 2006; Potti, Dressman et al. 2006). This method was then modified by group of
researchers from MIT and Harvard University, whose metagene was extracted from a standard
preprocessed array data applying nonnegative matrix factorization (NMF) to factor the resulting
expression matrix and yield a metagene model by deriving the Moore-Penrose pseudoinverse
matrix, and then the model data set was projected into metagene space and refined by trimming
outliers using support vector machine (SVM) classifier (Figure 1.2.A). The refined model data
set was then refactored using NMF and a refined projection map was established by
pseudoinverse matrix used to analyze new test data set(Tamayo, Scanfeld et al. 2007). The goal
of metagene methods was to obtain more accurate and stable prediction. A group of researchers
from Stanford University took a slightly different approach from metagene. They focused on
gene cluster method, named supergene, in one aspect, to control cluster reproducibility that a
cluster defined in training dataset (model dataset) can be found in the test dataset (Kapp and
Tibshirani 2007) and further to take average of gene expressions within cluster at each
hierarchical level to fit a lasso regression model (Figure 1.2B), yielding a more accurate
prediction results (Park, Hastie et al. 2007). Another approach of using information of group of
genes for prediction is pathway module prediction, of which genes are grouped according to their
functional pathways (Segal, Shapira et al. 2003; Segal, Friedman et al. 2004; Segal, Friedman et
al. 2005; van Vliet, Klijn et al. 2007; Wong, Nuyten et al. 2008). This method tried to make gene

clusters more enriched with biological meanings (Figure 1.2C). However, unlike the MBP
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Figure 1.2 Approaches related to the MBP: Metagene approaches (A), Suppergene approach
(B), Model based on biological pathway approach(C)

method being proposed, none of these methods was targeted to fully utilize gene information of
training data or to deal with missing genes in the test dataset. A comparison of these methods is
shown in Table 1.1. Their models still involve all individual genes. Missing one gene in the

model will invalid the entire prediction.



Table 1.1 Comparison of prediction methods using gene cluster information

Methods Authors Institution Data reduction Feature selection Model Missing controlled ~ Test dependent
Metagene Huang et al Duke K-means clustering SVD Bayesian decision tree No Yes
Potti etal Duke Pearson correlation SVD Bayesian decision tree No Yes
Tamayoetal — MIT, Harvard NMF pseudoinverse SVM No Yes
Supergene Park et al Stanford ~ Hierarchical Clustering ~ average genes LASSO NA N/A
Pathway Module van Vliet etal Delft, Netherland Pathway Compendia ~ rank of p-values ~ Bayes classifier No NA
MBP Mietal Pitt K-means clustering ~ representative gene  Multiple classifiers Yes No

1.5 THE MBP VERSUS METAGENE APPROACH

Though both the MBP and metagene approaches use the information from group of genes they
are different by nature. In metagene approach, a subset of genes is selected by either supervised
(Potti, Dressman et al. 2006) or unsupervised method (Huang, Cheng et al. 2003), then
projection method, SVD or NMF is used to identifying linear combinations of the subset of
genes as metagenes (Potti, Dressman et al. 2006; Tamayo, Scanfeld et al. 2007). In this
approach, if a gene selected in the subset of genes to form a metagene is missing in a test data the
prediction would fail. Whereas in the MBP approach, all genes are grouped into K subsets by an
unsupervised clustering method, then top k subsets of genes are selected by a supervised method,
moderate t statistics (Tibshirani, Hastie et al. 2002), to form prediction modules. For each
module, a representative gene of group of genes is selected to build prediction model. In this
approach, if a gene selected in the prediction module is missing in a test data, a representative
gene can be chosen from the remaining of genes in the module and the prediction would not fail.
Further, for construction of a prediction model, only information from one gene subset is used by

metagene approach, whereas, the information from multiple subsets is used by the MBP
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approach. The differences indicate that the MBP is robust to gene missing and noise in inter-

study microarray analyses, while, metagene approach is sensitive to the gene missing and noise.

1.6 HIGHLIGHT OF THE MBP

The MBP is developed to gain model robustness by solving gene missing and gene noise
problems, not designed to increase prediction accuracy. As long as no significant loss of
predictive power or accuracy, the MBP has its practical advantage of clinical utility over the
GBP. The MBP development is motivated by two major issues existing in current GBP inter-
study microarray analyses, i.e. information loss and model reconstruction when only common
genes of both training and test data sets are used. To avoid the issues the prediction models need
to be built using all genes in training dataset and are independent of test dataset. The GBP
models are invalid if there are missing genes in the test data. The MBP can overcome the
problem by borrowing information from the other genes within the same prediction module.
Further, the MBP is robust to gene noise by selecting a representative gene from a prediction

module. The prediction robustness to gene missing and noise is inherited from the MBP design.

1.7 THE GOALS OF THE PROJECT

The current study was designed to determine whether the MBP method has the similar predictive
power as the GBP method both within-study and inter-studies and whether the method gained the

prediction robustness in terms of gene missing and noise. The overall goal to build the MBP



model is to yield robust prediction models by solving gene noise and gene missing problems
existing in the traditional GBP, and to obtain simple models by using all genes of a dataset to
build prediction model without knowing information of test datasets. The following three goals

are to be achieved in the dissertation project.

1.7.1 MBP algorithm development
Microarray data are preprocessed and standardized. The genes in the standardized array data are
clustered by K-means and PW-K-means approaches. For those cluster size smaller than a
threshold & are merged into their nearest neighbors. The clusters are selected based on the
moderated t statistics and the representative gene for each selected cluster was determined by
minimum sum distance among the genes within the cluster. The final prediction model is
constructed based on the selected representative genes.
1.7.2  Prediction failure control

An intrinsic disadvantage of using the GBP to build cross-platform prediction model is that gene
missing problem can not be solved. The key of solving this problem using the MBP is that when
a gene or multiple genes are missing in a test sample, the MBP method can borrow information
from other genes in the same cluster by presenting a representative gene. When gene missing
increases, the probability of the MBP method fails also increases. This especially happens when
the cluster sizes are small and the cluster merging strategy is developed to avoid this problem. If
a cluster size is smaller than the threshold o, the cluster is merged into its nearest neighbor
cluster to avoid the prediction failure due to clusters missing. The cluster sizes generated by K-
means clustering could be viewed as a random vector depending on the original data matrix. A

data mining is performed to explore the distribution of cluster sizes and in turn, generate
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probability calculation under different number of genes, number of clusters and probability of
missing genes.

1.7.3 The MBP performance evaluation
The newly developed MBP algorithm is tested on its prediction accuracy using publicly available
microarray datasets. The prediction accuracy is assessed in both within-study and inter-studies
scenarios and is compared with that of the GBP method using both univairate and multivariate
feature selection methods. The MBP method is designed for model simplicity and robustness.
The simplicity indicates that the method provides simple and easy use prediction model and the
robustness indicates that the method can perform robust prediction with presence of gene
missing and noise. Simulation studies are performed by randomly generating gene missing and

noise in real gene expression profiles to evaluate the robustness of the MBP method.
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20 EXPERIMENTAL DESIGN AND METHODOLOGY

21 DATASETS AND GENE MATCH

Eight publicly available datasets were used to test the validity and adequacy of the MBP method
(Table 2.1). Five prostate cancer datasets, Luo (Luo, Duggan et al. 2001), Yu (Yu, Landsittel et
al. 2004), Welsh (Welsh, Sapinoso et al. 2001), Dhan (Dhanasekaran, Barrette et al. 2001),and
Lap (Lapointe, Li et al. 2004) were downloaded from a public available web site. The malignant
prostate cancer and its matched adjacent prostate tissue samples from Yu, Welsh, and Lap
datasets, and the malignant prostate cancer and its matched donor samples from Luo and Dhan
datasets were used for two sets of pair-wise cross-platform analyses. Three lung cancer data sets,
Beer (Beer, Kardia et al. 2002), Bhat (Bhattacharjee, Richards et al. 2001), and Garber (Garber,
Troyanskaya et al. 2001), were downloaded from publicly accessible information supporting the
published manuscripts. Only the normal and the adenocarcinoma samples were used for analysis.
All three datasets were from different platforms or different versions, and pair-wise inter-study
analyses were performed.

All pair-wise inter-study analyses relied on matching genes between training data and test
data. Entrez ID was used to match Affymetrix datasets using the R package “annotate” (Kuhn,

Luthi-Carter et al. 2008), and a web-based match tool, MatchMiner, was used for cDNA datasets
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(Bussey, Kane et al. 2003). The genes sharing the same Entrez ID was averaged for their

expression.
Table 2.1 Datasets used in the study

Tumor Type Dataset Authors Platform Sample histology

Lung Cancer  Beer Beer et al Affymetrix U95A 86 AC, 10 normal
Bhat Bhattacharjee et al ~ Affymetrix HG 6800 134 AC, 17 normal
Garber Garber et al cDNA 39 AC, 5 normal

Prostate Cancer Luo Luo et al cDNA 16 PC, 9 donors
Dhan Dhanasekaran et al  ¢cDNA 14 PC, 19 donors
Yu Yu etal Affymetrix U9SA 66 PC, 59 Adjacent
Welsh Welsh et al Affymetrix U9SA 25 PC, 9 Adjacent
Lap Lapointe et al cDNA 62 PC, 41 Adjacent

2.2 DATADESCRIPTION AND PREPROCESSING:

Beer dataset The data was originally published in Nature Medicine 2002 by Beer et al (Beer,
Kardia et al. 2002). The 86 lung adenocarcinoma samples were collected from the University of
Michigan Hospital between May 1994 and July 2000 from 67 stage I and 19 stage III patients,
and 10 non-neoplastic lung tissues were also obtained during that time. The total 96 samples
were analyzed using Affymetrix HG6800 microarray chips. After the data preprocessing, 4467
genes remained in the dataset.

Bhat dataset The data was originally published in PNAS 2001 by Bhattacharjee et al
(Bhattacharjee, Richards et al. 2001). The data used in the project was the subset of the total 203
snap-frozen samples, including 134 lung adenocarcinoma samples and 17 normal lung

specimens. The samples were collected from the Thoracic Oncology Tumor Bank at the Brigham
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and Women’s Hospital/Dana—Farber Cancer Institute, Harvard University. Total 151 samples
were analyzed using Affymetrix U95A microarray chips. After the data preprocessing, 4107
genes remained in the dataset.

Garber dataset The data was originally published in PNAS 2001 by Garber et al (Garber,
Troyanskaya et al. 2001). The data included 39 lung adenocarcinoma samples and 5 normal lung
specimens. Total 44 samples were analyzed using cDNA microarrays. After the data
preprocessing, 3399 genes remained in the dataset.

Luo dataset The data was originally published in Cancer Research 2001 by Luo et al (Luo,
Duggan et al. 2001). The data included 16 prostate adenocarcinoma samples from Johns Hopkins
Hospitals during October 1998 and March 2000, and 9 benign prostatic hyperplasia specimens
from Johns Hopkins Hospital during February 1999 and November 2000. Total 25 samples were
analyzed using cDNA microarrays. After the data preprocessing, 3673 genes remained in the
dataset.

Dhan dataset The data was originally published in Nature 2001 by Dhanasekaran et al
(Dhanasekaran, Barrette et al. 2001). The data included 14 prostate adenocarcinoma samples
from University of Michigan Prostate SPORE tumor bank and 19 noncancerous. Total 33
samples were analyzed using cDNA microarrays. After the data preprocessing, 7784 genes
remained in the dataset.

Lap dataset: The data was originally published in PNAS 2004 by Lapointe et al (Lapointe,
Li et al. 2004). The data included 62 primary prostate cancer samples and 41 matched normal
prostate tissues from Stanford University, Karolinska Institute, and Johns Hopkins University.
Total 33 samples were analyzed using cDNA microarrays. After the data preprocessing, 1735

genes remained in the dataset.
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Welsh dataset The data was originally published in Cancer Research 2001 by Welsh et al
(Welsh, Sapinoso et al. 2001). The data included 25 primary prostate cancer samples and 9
matched normal prostate tissues from University of Virginia. Total 33 samples were analyzed
using Affymetrix U95A microarray chips. After the data preprocessing, 9494 genes remained in
the dataset.

Yu dataset The data was originally published in JCO 2004 by Yu et al(Yu, Landsittel et al.
2004). The data included 66 primary prostate cancer samples and 59 matched normal prostate
tissues. Total 125 samples were analyzed using Affymetrix U95A microarray chips. After the
data preprocessing, 9109 genes remained in the dataset.

All the data were preprocessed using standard data filtering by eliminating genes with low
expressions and genes not varying sufficiently across the training samples. The data were
standardized by first column-wise and then row-wise normalization by subtracting column or

row means and dividing by the corresponding column or row standard deviations.

2.3 NOTATIONS AND GENERAL CONCEPT

Suppose a prediction model is to be constructed from a training study and will be applied to a
test study. Let G be the gene set covered in the training study and G® in the test study, where

normally G" #G™ if the training and test studies are of different microarray platforms. Denote
by D= {ng, geG¥,se Str} the expression intensity matrix of the training study

and D = {Xées ,geG¥,se Ste}, where g represents gene indexes and S are samples. For traditional

GBP methods, gene sets covered in the training and test studies have to be identical so that the
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prediction model can be applied across studies. The prediction model is usually constructed in
the submatrix D" = {Xérs ,geG" NGk, se S”} and applied to D® = {Xﬁes ,9eG"NG",se Ste}. As a
result, the prediction model is not totally independent of the test study information. In the MBP

approach, the gene set G" in the training study is clustered into K clusters by K-means such that
G =UK_,GY and G ﬂGEr =¢ for 1<i< <K The prediction model will be constructed
based on the K cluster modules, of the form F(r{’,r¥....,r), where " is the representative gene

vector in cluster module G{ . In this study, the “median gene” that has the smallest sum of

distances to other genes in the cluster was used as the representative gene vector. Namely when

Xfhe — x§o

2
_ t tr \2 tr — (ytr tr
= D eesr Ot =xE)? 1= (Ko S €ST) - For

~tr _ .
gk =arg min ZgEGﬁr and HXrtTr].o _Xgo

meG\
application to the test study, denote by G =G{" NG™ the genes in the k-th cluster module that

appear in the test study. If GF #¢ VK the representative gene vectors can be similarly

Xife — Xe

te _ (yte te ~ .
calculated as Ne = (xaﬁes,s €sS®) where g =arg min deeﬁe and

meGy®

2
“ XFﬁ. - the.

= stw (x%s —x)* . The proposed MBP model can then be applied to the test study

by F(ri&rs,...r¢).

24  ALGORITHM DEVELOPMENT

The MBP algorithm was developed under the rationale that genes sharing similar expression

profiles could be grouped together and that a representative gene can be selected from the group
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of genes. The algorithm involved four major steps: gene clustering, cluster merging, cluster
selection, and model construction. The MBP schema is shown in Figure 2.1.

Gene clustering The processed data were clustered into K clusters by the classical K-means
method (Hartigan and Wong 1979) or PW-K-means method (Tseng 2007). The clusters were
defined as gene modules. Normally K = 100 or 150 was chosen.

Module merging When the number of genes within a module was less than a given
threshold o, the small module was merged into its nearest-neighboring module based on the
minimum distance between module centroids. The selection of 6 was determined by a
probabilistic model described below to avoid missing genes of the entire module in the test study
with high probability.

Module selection Although in the MBP approach, the number of features has been reduced
to hundreds, the dimensionality is still high and proper feature (module) selection is needed to
achieve better performance. Thus, both univariate and multivariate feature selection methods
were explored. For univariate feature selection, the top k modules are selected according to their
ranks of average absolute value of moderated t statistics (Tibshirani, Hastie et al. 2002), and the
representative genes within each selected module were used to construct the prediction model.
For multivariate feature selection methods, the module selection was embedded with the
prediction model construction.

Model construction The selected representative genes of the prediction module were used to
fit the prediction models. For univariate feature selection methods, three classical classification
methods included linear discrimination analysis (LDA) (Mardia, Kent et al. 1979), , k-nearest

neighbor (KNN) (Dasarathy 1991), and supporting vector machine (SVM) (Cristianini and
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Shawe-Taylor 2000) were examined. For multivariate feature selection, prediction analysis of

microarray (PAM) (Tibshirani, Hastie et al. 2002) was explored.

MBP
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Figure 2.1 Schema of the module based prediction (MBP) method: a microarray data with
sizable samples is selected as training input for the MBP; then the genes are clustered into groups
using unsupervised method based on the gene similarity, such as K-means correlation method;
for those gene cluster sizes smaller than a threshold 0, the clusters are merged into their nearest
neighbor; the clusters after merging are selected by moderate t statistics to form prediction
modules which comprise of the prediction model as the output; for each module, a representative
gene is selected based on the minimum sum of distance among the genes within the module; then
the representative genes are used to predict outcome for a new test sample.

The algorithm was implemented using R 2.7.1 (free software downloaded from www.r-
project.org). The MBP core algorithm was written using R program, however, some functions,
such as K-means clustering, classifiers (LDA, KNN, SVM, PAM) were downloaded from R

packages. The PW-K-means clustering program C code was provided by Dr. Tseng.
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2.5 MINIMUM CLUSTER SIZE IN MODULE MERGING AND DISTRIBUTION

DIAGNOSIS

One of the motivations to develop the MBP method is to build a prediction model solely on the
training data, independent of test data and portable across studies with different microarray
platforms. A necessary condition for the MBP procedure to succeed is that the test study should
contain one or more genes in each gene cluster module in order to calculate the representative
gene vector in the prediction model. Below a simplified probabilistic model to estimate the
smallest o needed to achieve the goal is provided. Assume 7 is the probability for a gene in the
training study to be missing in the test study and that gene missing is independent of each other.
The probability that the MBP method obtains no less than N genes in each of the K modules in

the test study is

ﬁ(ﬂ,é K)= Pr(no module has less than N genes in test study‘é K )

ﬁ{ Z(n(Gk )”n(Gﬁf)—n_(l_ﬂ)nJ (1)

k=
where Gk = (n(Gltr) - N(GK )) and n(G{") is the number of genes in cluster Gy . In this paper, we
require P>99% and N = 3. The probability calculation depends only on the gene missing

probability 77 and the module sizes, N(G{") . In the data analyses of the eight data sets used in this
paper, we found that the cluster sizes generated by K-means clustering follow multinomial
distributions very well, ie. G, = (n(Gfr),---,n(Gf{))~ Multinomial(n(G”),%< ,---,%<). (see QQ-

plots in Figure 3.1). Thus the probability of each module in test study to have no less than N

genes becomes
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p(n(G"),K, 7) = P(no module has less than N genes in test study)
= j P(no module has less than N genes in test study)- p((§k )d(§k 2)

=2 PG p(Gy)

To estimate the minimal o required in the module merge procedure, the following simulation
to calculate the probability was performed such that each module in the test study has no less

than N genes after &merge:

1. Suppose n(G"), K, r, Sare given. Simulate Gk from Multinomial(n(G”),%<,---,%<).

2. Given o, merge clusters with less than ¢ genes into a random cluster. Suppose the resulting
cluster sizes become G'k' (K<K).

3. Compute the conditional probability, P(z ,G'k') from equation (1).
4. Repeat 1-3 for B times (B=1,000 in this study). The probability of successful application to the
test study can be estimated by

p(n(G"),K, z,8) = P(no module has less than N genes in test study | § - merge)

Lo o o 3)
=— E G'..
B & P (7, G'.)

5. Find the smallest &such that p(n(G"),K,7,6)>0.99

The advantage of the probabilistic model is that the estimation of minimal 6 only depends on the
total number of genes in the training data (n(G") ), the number of clusters K used in K-means
and the probability of gene missing in the test study. It does not depend on the observed data and
a table can be computed for a rapid decision in future applications. For example, when 4,000
genes are analyzed in the training study, Kmeans clustering generated K = 100 modules and one

expects 7 = 50% gene missing probability in the test study, 6 >3 was required in é-merge to
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guarantee successful application of the MBP in inter-study prediction with 99% probability (see

Table 3.1 in the result section).

26  CLASSIFICATION METHODS

In this study, binary outcome prediction or classification was the main focus; however, the
method can be extended to other outcome predictions, such as those for time to event data. To
evaluate the MBP performance, four commonly used classifiers, LDA, KNN, PAM and SVM
were chosen for univairate or multivariate selections. For univariate selection, the features were
chosen by selecting top K clusters for the MBP or top q individual genes for the GBP based on
moderate t statistics; whereas for multivariate selection, the features were chosen by considering
correlations among genes and minimizing error rate using the two state-of-the-art methods, PAM
and Recursive-SVM (Zhang, Lu et al. 2006).

Linear discriminate Analysis (LDA) Originally conceptualized by RA Fisher and
developed by others (Fisher 1936; Mardia, Kent et al. 1979), LDA is a very popular statistical
classification method, which identifies linear combinations of features that accurately separate
two or more classes of events. The method also is used for data dimension reduction. In this
study, LDA was used for classification purposes.

K-nearest neighbor (KNN) KNN is a simple machine learning method to classify the events
based on the majority vote of its neighbors (Dasarathy 1991). It is very useful for features in
multidimensional space. KNN was used for classification purposes here.

Support vector machine (SVM) SVM is a supervised machine learning method that identify

the classes by separating hyperplanes, which maximizes the margin between two classes
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(Cristianini and Shawe-Taylor 2000). Generally, SVM is used to classify two groups of data, but
it can be extended to separate more than two groups of data (Hsu and Lin 2002). In this study,
binary SVM classification method was used to compare results among different classifiers.
Nearest centroid This method was used as a special case when no shrinkage operation
involved for feature selection in PAM (Tibshirani, Hastie et al. 2002) and marked as PAM-U or

PAM for PAM univariate feature selection.

2.7 FEATURE SELECTION METHODS

Two feature selection approaches were used to select prediction modules for the MBP, i.e.
univairate and multivariate feature selections. For univariate approach, once the genes in training
set are grouped in K clusters, the top k clusters are selected based on the absolute value of
moderate t statistics to form the prediction modules; whereas for multivariate approach, the
prediction modules are selected by the following two feature methods from K clusters.
Prediction analysis for microarrays (PAM) Published in 2002 (Tibshirani, Hastie et al.
2002), PAM has become a very popular method for gene classification and prediction. The
unique part of the PAM is its centroid shrunken algorithm (Tibshirani, Hastie et al. 2002). Unlike
LDA, KNN, and SVM, PAM was used for both feature selection and classification in this study.
Recursive supporting vector machine (R-SVM) R-SVM was developed for genes
classification of noisy data. Similar method was reported in machine learning 2002 by Guyon et
al (Guyon, Weston et al. 2002) using SVM recursive feature elimination or SVM-RFE to select

gene features robust to outliers. However, according to Zhang et al, R-SVM was better than
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SVM-RFE in regarding to robustness to noise (Zhang, Lu et al. 2006). R-SVM was used as a

multivariate selection method in the study.

28 EVALUATION AND SIMULATION

Prediction accuracy versus prediction performance index In common practice, prediction
performance is evaluated by overall accuracy, calculated as the correctly predicted number of
subjects divided by total number of subjects tested. Sometimes, the accuracy may misinterpret
the prediction performance when samples are imbalanced between the two groups of subjects,
e.g. if a hundred of subjects are tested, ninety five of them are cancer patients and five of them
are normal. For a useless predictor, all subjects are classified into the cancer group and the
prediction accuracy is still 95%. To avoid this problem, besides prediction accuracy, a prediction
performance index (PPI), computed as the average of sensitivity and specificity, was used to
evaluate the prediction performance. As for previous example, PPI is 50%.

The MBP versus the GBP within study prediction Prediction performance was assessed
for every dataset using a leave-one-out cross validation (LOOCV) approach (Kohavi 1995).
Since there were random factors during K-means in the MBP method, the LOOCV was run thirty
or hundred times and used LDA, KNN, and SVM as the classifiers. The means and standard
deviations of accuracies were calculated and compared with the accuracies obtained from the
traditional GBP method based on moderate t statistics feature selection and PAM method.

The MBP versus the GBP inter-study prediction Cross-platform prediction was performed
by the standard MBP algorithm stated above. The test data used in the pair wise inter-study

analyses were three lung cancer datasets, three prostate cancer datasets matched with adjacent
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tissues as controls, and two prostate cancer datasets using donors’ samples as controls. The
prediction accuracies and PPI were calculated based on three classifiers, LDA, KNN, and SVM.
The results were compared with those of the GBP method, which only used genes common to
both training and test datasets. PAM classification method with univariate and multivariate
feature selections were also evaluated.

Simulation with varying gene variability To determine whether using gene cluster
information would create a model that was robust even when gene noise was present, white noise
was randomly added to the Luo dataset. The noise followed a Gaussian distribution with mean p
= 0 and standard deviationo . The magnitude of noise was determined by size of o, and the

range of noise added was based various different proportions of noise (p). The prediction

accuracies were evaluated by the LOOCYV approach across different os and different ps and were
compared with their counterparts from the GBP methods.

Simulation with gene mismatches in cross-platform scenario The robustness to missing
genes was evaluated by randomly splitting the Luo dataset into a training dataset and a test
dataset by a 1:1 ratio, and serial proportions of genes were randomly deleted from the training
and test dataset to create missing genes. The prediction accuracies and prediction successful rate
(PSR), defined as number of successful predictions divided by the total number of prediction
tests attempted when genes used for prediction are missing in test set, were compared between

the MBP method and the GBP method using LDA, KNN, and SVM classifiers.
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3.0 RESULTS

3.1 DISTRIBUTION OF CLUSTER SIZE

In order to estimate minimum cluster size, 8, one needs to know the distribution of the cluster

size generated by K-means’ method. Since K-means’ clusters were randomly generated, the

cluster size, G{ was considered as a random variable, which might affect the prediction or

classification accuracy and stability for approaches involving clustering as the data reduction

method. Gy usually depends on, G" K, and individual dataset. To have a good estimate of §, it is
essential for one to estimate the distribution of G . Both conditional Poisson and multinomial

distributions were tested to fit the distribution of Gy . The distribution was estimated using the

eight datasets under either Poisson or multinomial conditions by fitting QQ-plots. The results

showed that the Poisson fits were not good (data not shown), but the eight datasets fitted well
under multinomial assumptions (Figure 3.1). Determination of Gy distribution provided useful

information for estimation of 9.
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3.2 ESTIMATION OF MINIMUM CLUSTER SIZE

As a key parameter of the MBP model, 8 was used to control or minimize prediction failure

caused by missing genes when genes in a model built on training set do not exist in a test set.
When a cluster size Gy was smaller than 8, the cluster was merged into its nearest cluster to
minimize the probability of prediction failure. A smaller G leads to a higher probability of

prediction failure. It is crucial to estimate 6 given the proportion of genes missing in test set, T,

and the probability of successful prediction, o (considered acceptable when o = 99%).
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Figure 3.1 QQ-plots of observed cluster size versus theoretical cluster size generated
according to multinomial distributions: X axis represents cluster size generated by K-means
clustering method and Y axis represents cluster size simulated by multinomial distribution.
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The simulated results were listed in Table 3.1 ( B=1000). The results showed that the threshold &
were higher when K , t, and o increased, whereas G" decreased. Also cluster sizes after

Table 3.1 Simulated results for estimation of 3 and K' (B=1000, N=3)

NGY) K -
0.2 0.3 0.4 0.5 0.6 0.7

2000 100 1(100)  1(100) 1(100) 15(91) 20( 63) 25( 43)
2000 125 1(125)  8(124) 12(111) 16( 78) 19( 58) 25( 42)
2000 150 7(147)  10(130) 13(98) 16( 71) 19( 59) 26 ( 44)
2000 175 8(156) 10(130) 13(91) 15(76) 19( 61) 26( 45)
2000 200 8(161) 10(127) 12(99) 15(76) 19( 61) 26( 43)

3000 100 1(100)  1(100) 1(100)  1(100) 12 (100) 29 ( 67)
3000 125 1(125)  1(125) 1(125) 12(125) 21(98) 27( 61)
3000 150 1(150)  1(150) 9(150) 16(129) 21( 85) 26( 61)
3000 175 1(175)  7(175) 12(162) 17(111) 20( 85) 26( 65)
3000 200 6(200) 10 (187) 13(154) 16(114) 20( 82) 27( 64)

4000 100 1(100)  1(100) 1(100)  1(100)  1(100) 21 (100)
4000 125 1(125)  1(125) 1(125) 1(125) 1(125) 30( 89)
4000 150 1(150)  1(150) 1(150)  1(150) 22(128) 29( 78)
4000 175 1(175)  1(175)  1(175) 15(170) 22(117) 28 ( 76)
4000 200 1(200)  1(200) 11(198) 17(161) 22(105) 27( 79)

5000 100 1(100)  1(100) 1(100)  1(100)  1(100) 1 (100)
5000 125 1(125)  1(125) 1(125) 1(125) 1(125) 27(124)
5000 150 1(150)  1(150) 1(150)  1(150)  1(150) 31 (109)
5000 175 1(175)  1(175)  1(175) 1(175) 21(165) 30( 98)
5000 200 1(200)  1(200) 1(200) 13(200) 22(157) 29( 94)

merging, K were estimated shown in parentheses in Table 3.1. This table provided a reference
when the threshold was set up for cluster merging. Meanwhile, based on the simulation results,
as shown in Table 3.2, 6 for each pair of training and test datasets was estimated, given K = 100,
o = 99%, and as indicated in parentheses, © was calculated based on the number of matched
intersection genes in both training and test data sets divided by the number of genes in training

data sets, and 6 was estimated based on the multinomial distribution of cluster size (Table 3.2).
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The results showed that gene mismatching between the training datasets and test datasets varied

from 36% to 97%. The following evaluations of the MBP and the GBP performances were based

on the data mismatching scenarios.

Table 3.2 Common gene cross platform data with (r, 8)

Test
Training  —-mmmmm oo o e -
Beer Bhat Garber Luo Dhan Welsh Yu Lap
Beer 4467 2493 1594 - - - - -
(0.00,1) (0.44,1) (0.64,1)
Bhat 2493 4107 1493 - - - - -
(0.39,1) (0.00,1) (0.64,1)
Garber 1594 1493 3399 - - - - -
(0.53,1) (0.56,1)  (0.00,1)
Luo - - - 3673 2352 - - -
(0.00,1) (0.36,1)
Dhan - - - 2352 7784 - - -
(0.70,1) (0.00,1)
Welsh - - - - - 9494 2521 356
(0.00,1) (0.73,1) (0.96, 100)
Yu - - - - - 2521 9109 295
(0.72,1) (0.00,1) (0.97,100)
Lap - - - - - 356 295 1735

(0.79, 43) (0.83,34) (0.00, 1)

3.3

PREDICTION ACCURACIES WITHIN STUDY

The purpose of the analysis is to test the assumption of no significant loss of predictive power

regarding to the prediction accuracy using the MBP method within a study. We may or may not
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expect an increased prediction accuracy of the MBP. Given K =100, k =10, 20, 30 and 6 = 10
for MBP, and selected top differentiated genes of 10, 20, and 30 for the GBP, the prediction
accuracies of the MBP versus those of the GBP using three classifiers, LDA, KNN, and SVM
across eight cancer datasets were computed using LOOCYV, as shown in Figure 3.2, given the
condition that if there was at least one gene matched in the test set, i.e. N > 1. The results
showed that the prediction accuracies were classifier, number of selected features, and data

dependent; however, there was no evidence showing that either the GBP or the MBP
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Figure 3.2 Within study prediction accuracies between the MBP and the GBP across eight
cancer datasets: The MBP prediction accuracies were compared with those of the GBP within
eight datasets using LOOCYV approach. The parameters were set for MBP as K=100, k =10, 20,
and 30, N>1, and 6=10 and the parameters was set for the GBP as q =10, 20, and 30.
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method yielded better prediction accuracy one way or another despite fluctuations of the
prediction accuracies across different datasets and different classifiers, indicating that the
performance of these two methods was indistinguishable. Further, we changed parameters from
N>1toN2>3and o =10 to d = 20, hoping it would yield more stable results. As shown in
Figure 3.3, the results were similar as in Figure 3.2, but with smaller standard deviations after 30
repeated tests. The results indicated that no significant loss of predictive power using the MBP

within a study across the eight cancer datasets.
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Figure 3.3 Within study prediction accuracies between the MBP and the GBP across six
cancer datasets: The MBP prediction accuracies were compared with those of the GBP within
six datasets using LOOCYV approach. The parameters were set for the MBP as K=100 and 150, k
=10, 20, and 30, N > 3, and 6=10 and the parameters was set for the GBP as g = 10, 20, and 30.
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34 PREDICTION ACCURACIES INTER-STUDIES

Since prediction accuracies were indistinguishable between the two methods in within studies,
the MBP performance was then tested on datasets in inter-studies and compared with the GBP
regarding to prediction accuracy and PPI. There were three sets of inter-study evaluations: one
set of lung cancer data, including Beer, Bhat, and Garber, and two sets of prostate cancer data,
i.e. one set with donors as control including Luo and Dhan and the other set with adjacent tissues
as control, including Lap, Welsh, and Yu. The three sets of pair-wise platform comparisons were
shown in Table 3.2. Each dataset within the three sets served as training data in turns and tested
on the other dataset. The number of genes in each training dataset and the number of common
genes to each testing pair dataset were listed in Table 3.2. The gene missing rate varied from
36% to 97% (Table 3.2). GivenK =100,k =10, 20, 30 and 6 =10 for the MBP and selected top
differentiated genes of 10, 20, and 30 for the GBP, the prediction accuracies of the MBP versus
those of the GBP using three classifiers, LDA, KNN, and SVM across six pair-wise inter-study
cancer datasets were computed, as shown in Figure 3.4. Given the condition of N > 1, the results
showed that the prediction accuracies were classifier, number of selected features, and data
dependent; however, there was no evidence showing that neither the GBP nor the MBP method
performed better than the other one despite fluctuations of the prediction accuracies across
different datasets and different classifiers, indicating that the performance of these two methods
was indistinguishable. Note that, the GBP inter-study predictions were based on intersection
genes or common genes of pair-wise inter-study datasets, otherwise, the prediction failed due to

gene mismatching in the test sets, indicating that the prediction model from the training set is not
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entirely independent from the test set and varies greatly when the test data set changes. The MBP

method, however, does not have this issue.
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Figure 3.4 Pair-wise inter-study prediction accuracies between the MBP and the GBP: The
MBP prediction accuracies were compared with those of the GBP among ten pair-wise inter-
study datasets. The parameters were set for the MBP as K=100, k =10, 20, and 30, N >1, and
5=10 and the parameters was set for the GBP as q = 10, 20, and 30. Three classifiers were used
for the comparison, LDA, KNN, and SVM.
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Similarly as within study evaluation, the parameters were changed fromN>1toN >3 and d =
10 to 6 = 20 to evaluate the MBP performance, compared with the GBP using intersection genes.
As shown in Figure 3.5 and Figure 3.6, the results were similar as in Figure 3.4, but with smaller

standard deviations after 100 repeated tests.
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Figure 3.5 Pair-wise inter-study prediction accuracies between the MBP and the GBP: The
MBP prediction accuracies were compared with those of the GBP among six pair-wise lung
cancer inter-study datasets. The parameters were set for the MBP as K=100 and 150, k =10 and
20, N >3, and 6=20 and the parameters was set for the GBP as g =10 and 20. Four classifiers
were used for the comparison, LDA, KNN, SVM and PAM.
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Figure 3.6 Pair-wise inter-study prediction accuracies between the MBP and the GBP: The
MBP prediction accuracies were compared with those of the GBP among six pair-wise prostate
cancer inter-study datasets. The parameters were set for the MBP as K=100 and 150, k =10 and
20, N >3, and 6=20 and the parameters was set for the GBP as g =10 and 20. Four classifiers
were used for the comparison, LDA, KNN, SVM and PAM.

Noticed that three lung cancer datasets and two prostate cancer datasets, Luo and Welsh, used in

the analyses were unbalanced between the tumor and control groups, we used PPI to evaluate the
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MBP performance in addition to prediction accuracy shown in Figures 3.4, 3.5, and 3.6, to avoid

inflated prediction accuracy. As shown in Figure 3.7, PPI was generally smaller than the
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