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An innovative use of fiber reinforced polymer (FRP) composite materials, to 

control the manifestation of local buckling in a flanged steel section, is proposed. In this 

method, the high stiffness and linear behavior of FRP materials are utilized to provide 

“bracing” against web or flange local buckling in a manner that strategically leverages 

the unique mechanical properties of each material in an efficient application domain. The 

experimental research reported is aimed at demonstrating the feasibility of using small 

quantities of FRP to provide cross-sectional stability through the bonding of FRP strips to 

flange elements of the cross-section, thereby increasing the critical load of the member; 

constraining plastic flow in the cross-sectional flange elements; and facilitating the 

manifestation of a well-formed and stable hysteretic response of the member under cyclic 

loading. The member becomes, in effect, an FRP stabilized steel section. 

An experimental program investigating the inelastic buckling behavior of FRP 

stabilized members is reported. In all cases, WT 6x7 steel sections were used. Unretrofit 

control specimens and four retrofit scenarios were investigated using either high strength 

(HS) carbon FRP (CFRP) strips or ultra-high modulus (UHM) glass FRP (GFRP) strips. 
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For each material two cases were considered: a single 2 in. (50.8 mm) wide strip applied 

to the WT stem; and two 1 in. (25.4 mm) wide strips placed on top of each other at the 

same location. The FRP strips were applied to each side of the WT stem. The two FRP 

configurations used result in the same area of FRP materials having the same centroid 

applied to the steel section.  

Fifteen 14 in. (356 mm) long WT sections were tested in concentric compression 

to failure. Three specimens of each detail were tested. The specimen length was selected 

to ensure local buckling of the WT stem with no lateral torsional buckling of the section. 

Each specimen was dominated by web (stem) local buckling (WLB) behavior. No 

evidence of flange local buckling or lateral torsional buckling was observed. The 

presence of the FRP increased the axial load carrying capacity of the WT section between 

4% and 14%. The bifurcation loads were increased as much as 17%. In these tests, the 

CFRP specimens exhibited a more pronounced improvement in behavior. Similarly, the 

specimens having two 1 in. wide FRP strips performed better that those with one 2 in. 

strip. Debonding of the FRP strips was a post-peak phenomenon in all tests. Generally 

debonding occurred at an applied load of about 75% of the peak load on the descending 

branch of the load curve. 
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1.0 INTRODUCTION 

 

An innovative use of fiber reinforced polymer (FRP) composite materials, to 

control the manifestation of local buckling in a flanged steel section, is proposed. In this 

method, the high stiffness and linear behavior of FRP materials are utilized to provide 

“bracing” against web or flange local buckling in a manner that strategically leverages 

the unique mechanical properties of each material in an efficient application domain. The 

experimental research reported is aimed at demonstrating the feasibility of using small 

quantities of FRP to provide cross-sectional stability through the bonding of FRP strips to 

flange elements of the cross-section, thereby increasing the critical load of the member; 

constraining plastic flow in the cross-sectional flange elements; and facilitating the 

manifestation of a well-formed and stable hysteretic response of the member under cyclic 

loading. The member becomes, in effect, an FRP stabilized steel section. 

Extensive advances in the application of fiber reinforced polymer (FRP) 

composite materials for repair and strengthening of structures and their components have 

been made. The merits of FRP retrofit of reinforced concrete members have been well 

researched and documented. Relatively limited work however has been conducted 

investigating the use of FRP to retrofit steel members (Zhao and Zhang, 2006). Carbon 

FRP (CFRP) materials have been used to strengthen steel members (e.g.: Cadei et al., 

2004; Miller et al., 2004), enhance fatigue or fracture performance (e.g.: Jones and 

Civjan, 2003) and provide local stability for steel compression members (e.g.: Ekiz and 
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El-Tawil, 2006; Shaat and Fam, 2004). The present work proposes the concept of an FRP 

stabilized steel section. It is proposed that through the strategic application of FRP to a 

steel compression member a degree of buckling restraint may be affected.  

The linear behavior, high strength, and stiffness of FRP materials can be applied 

to a steel section to increase member stability. More specifically, small amounts of FRP 

can be utilized to increase resistance to flange (FLB) and/or web (WLB) local buckling. 

The purpose of such an application is not necessarily to increase load-carrying capacity 

but to restrict plastic flow of the plate member. A schematic representation of the concept 

of FRP stabilization and the test specimens used and their behavior is shown in Figure 

1.1. 

 

 

1.1 SUMMARY OF RESEARCH PROGRAM 

 

An experimental program investigating the inelastic buckling behavior of FRP 

stabilized members is reported. In all cases, WT 6x7 steel sections were used. Unretrofit 

control specimens and four retrofit scenarios were investigated using either high strength 

(HS) CFRP strips or ultra-high modulus (UHM) GFRP strips. For each material two 

cases were considered: a single 2 in. (50.8 mm) wide strip applied to the WT stem; and 

two 1 in. (25.4 mm) wide strips placed on top of each other at the same location. The 

FRP strips were applied to each side of the WT stem. The two FRP configurations used 

result in the same area of FRP materials having the same centroid applied to the steel 

section.  
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Fifteen 14 in. (356 mm) long WT sections were tested in concentric compression 

to failure. Three specimens of each detail were tested. The specimen length was selected 

to ensure local buckling of the WT stem with no lateral torsional buckling (LTB) of the 

section. Each specimen was dominated by web (stem) local buckling (WLB). No 

evidence of FLB or LTB was observed. The presence of the FRP increased the axial load 

carrying capacity of the WT section between 4% and 14%. The bifurcation loads were 

increased as much as 17%. In these tests, the CFRP specimens exhibited a more 

pronounced improvement in behavior. Similarly, the specimens having two 1 in. wide 

FRP strips performed better that those with one 2 in. strip. Debonding of the FRP strips 

was a post-peak phenomenon in all tests. Generally debonding occurred at an applied 

load of about 75% of the peak load on the descending branch of the load curve.  

 

 

1.2 OBJECTIVES OF RETROFIT 

 

When retrofitting steel sections with FRP, the objectives may be a combination of 

a) increasing the maximum compressive capacity of the member; and b) increasing the 

radius of gyration to improve the buckling behavior. Additionally, the more slender a 

member, the more the member behavior deteriorates under cyclic loading (Bruneau et al., 

1998). Decreasing the slenderness of a member ultimately increases the cyclic loading 

lifespan as well as its loading capacity. 

The slenderness ratio of a compression member is a function of member length 

and radius of gyration. In this study, the stem of the WT section tested is locally very 
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slender and presents a specific region at which to concentrate the FRP retrofit application. 

Considering only the WT stem, the increase in weak-axis radius gyration (ry) due the 

application of the FRP ranged from 12% to 35%. This suggests the prospect of increasing 

stability on a local level. However, a negligible increase in ry is determined when the 

entire WT cross section is considered; thus there is a negligible effect on the global brace 

behavior. The FRP-retrofitted members tested mirror this predicted behavior where the 

increases in radius of gyration are proportional to, although approximately three times, 

the observed increases in axial load carrying capacity and bifurcation load in the inelastic 

stub column tests.  

 

 

1.3 SCOPE OF THESIS 

 

 The objective of the work reported in this thesis is to assess the effectiveness of 

FRP composite materials for mitigating inelastic buckling behavior of steel sections. The 

work reported here should be considered a pilot study to assess the feasibility of such an 

approach. Ultimately, if FRP composite materials prove to provide support for steel 

members under inelastic behavior, it may be feasible to improve the cyclic load capacity 

of members susceptible to WLB and FLB. Since the behavior of FRP stabilized steel 

members is still in its infancy in terms of research, it is the goal of this report to provide a 

more thorough understanding of the applications of FRP in this situation. This thesis 

focuses on the effects of FRP on axially loaded steel members under inelastic buckling in 

terms of; peak load capacity, web bifurcation load, radius of gyration, the effects on the 
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stem in axial compression, and the debonding of the FRP composite material from the 

steel substrate are discussed. 

The organization of the thesis is as follows. Chapter 2 presents a thorough review 

of available literature focusing on the use of FRP to retrofit steel members, specifically 

for stability. Section 2.7 demonstrates the potential “design space” for FRP stabilization 

and Section 2.8.1 provides a brief summary of a companion study addressing elastic 

buckling behavior. Chapter 3 presents details of the experimental program conducted. 

Chapter 4 presents detailed results of the experimental program. A discussion of the 

results is presented in Chapter 5. Chapter 6 provides a summary of the program, 

conclusions and recommendations. 

 

WT-section WT-section
(side view)

buckled WT web
(end view)

load from UTM

load
plate

FRP

 

Figure 1.1 Schematic representation of test specimens and behavior. 
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2.0 LITERATURE REVIEW  

 

 The study reported in this thesis was conducted to investigate the use of fiber 

reinforced polymer (FRP) composite materials for the stabilization of local plastic 

buckling of slender steel sections. The use of FRP composite materials in a flanged steel 

section was ultimately studied to investigate the ability to control aspects of the 

manifestation of local buckling. FRP is a material which exhibits linear elastic behavior 

to failure. This behavior, it is proposed, may be used to provide the necessary bracing 

force to limit web or flange local buckling in a steel member. By applying small 

quantities of FRP composite materials to the web of WT 6x7 sections, it was 

hypothesized that the stability of the very slender web would improve. Such an 

improvement may result in increased critical load capacity and mitigation of the capacity 

loss and “kinking” effects associated with compression buckling under cyclic loading. By 

constraining these plastic flow effects within a slender element, a well-formed and stable 

hysteretic response under cyclic loading of the slender steel member may be achieved. 

This concept has been introduced and is referred to as FRP stabilized steel sections 

(Accord et al., 2006; Abraham and Harries, 2007). Previous experimental work has 

focused on the elastic buckling behavior of FRP stabilized steel sections (Abraham, 

2006). The focus of this work is the affects of FRP stabilization on a steel member prone 

to inelastic buckling. This application is believed to be unique but builds on previous 

applications of FRP in civil infrastructure as discussed in the following sections. 
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2.1 FRP MATERIALS 

 

 Fiber reinforced polymer (FRP) materials combine high-modulus, high strength 

fibers with a relatively low-modulus polymeric matrix to produce a material having high 

unit strength and unit stiffness. The polymeric matrix serves to protect the fibers and 

transfer load between fibers, ensuring a uniform behavior. The strength of FRP is 

dependent upon both the fiber type and orientation. FRP composite materials with high 

fiber volume ratios are typically found in the civil engineering industry. One of the great 

advantages FRP composite materials brings to the civil engineering industry, is their 

ability to safely carry large loads and the ease with which they may be employed to 

retrofit existing structures (Harries and El-Tawil, 2006).  

Two of the most common types of FRP composite materials are those made with 

carbon (CFRP) and glass (GFRP) fibers. CFRP can be found in three basic types; high 

strength (hsCFRP), high modulus (hmCFRP), and ultra-high modulus (uhmCFRP). 

Generally speaking, when the stiffness of CFRP is increased, there is a corresponding 

reduction in strength and rupture strain of the FRP material. GFRP, compared to CFRP, 

has a much lower modulus but is often more cost effective on the basis of unit stiffness. 

When determining the proper type of FRP for a retrofit, it is best to choose a FRP 

composite material that has a modulus which is compatible to the substrate to which the 

FRP is being applied. CFRP has largely been chosen in retrofitting steel members for this 

reason (Harries and El-Tawil, 2006). 
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 The mechanics of the FRP itself are extremely refined in themselves. The 

individual fibers, yarns or tows (for a glossary of FRP terms used in civil infrastructure, 

consult ACI 440R-07) are protected and bound by the polymeric matrix, distributing the 

force between the fibers through interfacial shear and providing a degree of stability to 

the fibers. Not only does the matrix act as a force transferring system, but it also aids in 

protection of the fiber material from the surrounding environment. The most common 

FRP systems use epoxy-based resin systems. Similarly, when preformed FRP materials 

are used, epoxy-based adhesive systems are preferred for their strength, durability and 

ease of use. When utilizing FRP composite materials to retrofit a steel substrate, one must 

fully understand the resulting steel-adhesive-FRP system in order to comprehend the 

behavior of the new structural system. Table 2.1 provides typical properties of the steel-

adhesive-FRP systems.  

 

 

2.2 STRENGTHENING OF STEEL USING FRP MATERIALS 

 

 Moy (2004a) proposed design guidelines for the strengthening of metallic structures 

using FRP materials. These guidelines are formalized in CIRIA’s (UK) Report C595 (Cadei 

et al. 2004). According to Moy, when strengthening metallic materials with FRP, several 

limit states must be considered. The foremost limit state would be the ultimate limit state, 

which would be the partial or total collapse of a structure due to the failure of: a) the FRP in 

tension or compression; b) the metallic substrate; c) the adhesive joint; or d) the local or 

global buckling of the member. One must also consider the serviceability limit state, 
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addressing member deflection, deformation, or vibration. When utilizing FRP materials to 

strengthen metallic structures, it is also imperative to verify that the retrofit will be durable, 

introducing a third limiting state focused on time or aging related effects, such as: fatigue, 

creep, corrosion, and weathering. Finally, one must consider abnormal or extreme events 

such as fire, mechanical impact (collision) and/or seismic resistance, when retrofitting with 

FRP composite materials. To address many of these limit states the application process of the 

FRP is often critical. When applying FRP to metallic substrates it is essential that the 

substrate surface is clean and clear of blemishes, such as corrosion, to ensure a sound bond 

between the FRP and the metallic substrate. It is further noted by Moy that GFRP composite 

material is seldom used when strengthening metallic structures due to its low modulus of 

elasticity.  

 As with any retrofitting material, the ultimate strength provided is only as good as the 

idyllic creation of the FRP composite material itself. This, as in every other aspect of design 

engineering, is why safety factors are applied to design codes. A primary concern when 

retrofitting any metallic structure with FRP is the long term degradation that may accompany 

the retrofit based on the surrounding environment. In particular corrosion or continued 

corrosion of the steel substrate may have significant effects on the bond behavior of the FRP. 

Degradation of strength, stiffness or bond properties may be caused by several factors (and 

their synergies), including; exposure to moisture, ultra-violet light, chemical exposure, 

fatigue, and creep. As proposed by Moy (2004a), Table 2.2 displays a list of partial safety 

factors proposed for different environmental exposures and different FRP materials. Such 

factors would be applied in addition to code-prescribed material resistance or load factors. It 
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can be seen in Table 2.2, that CFRP is generally the most inert of the conventional forms of 

FRP material. 

 When strengthening a metallic structure with a FRP composite system, it is also 

essential to optimize the epoxy bond strength between the substrate and the FRP. Poor bond 

will hinder the performance of the FRP composite system, ultimately decreasing the 

effectiveness of the retrofit. Regular inspections of retrofitted FRP composite metallic 

structures are necessary to ensure the safety and durability of the system (Moy, 2004a).  

 The strengthening of steel members with FRP composite materials has been the 

subject of limited research over the past few years. Although the area of strengthening 

concrete with FRP composite materials has thoroughly advanced within the civil engineering 

industry, the use of such retrofits with steel is still in its relative infancy. With the 

advancement of composite materials, they become much more practical as lightweight and 

easily installable retrofit materials. Several studies on the strengthening effects of FRP on 

steel members have been conducted. Patnaik and Bauer (2004) studied the effects of CFRP 

laminates on the strengthening of steel beams in both flexure and shear. The beams tested 

under flexural loading were strengthened with CFRP on the tension flange and exhibited a 

30% increase in load carrying capacity. The beams tested under shear were retrofitted with 

CFRP on the beam webs and exhibited a 62% increase in apparent shear capacity. They 

concluded that the composite retrofits strengthened the beam in both flexure and shear, and 

that composite FRP materials applied to steel warrant further investigation.    

Sayed-Ahmed (2004) conducted an analytical study focused on the effects of local 

buckling on thin-webbed steel I-sections with CFRP applied to the areas of local buckling 

under compression. The main goal of this technique is to affect a delayed response in the 
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local buckling of the web of the beam. Based on an analytical study where CFRP was applied 

at the midheight of the web and assumed to result in a brace point at this location, Sayed-

Ahmed concluded that the application of CFRP strips to these steel members not only 

increased the critical load of the member from 20-60%, but it also increased the ultimate 

strength by 2-9%. While the study was flawed, it nonetheless introduced the potential of 

FRP-stabilized steel members. 

Miller et al. (2001), focused on the use of CFRP plates in strengthening a steel bridge 

girder on Interstate-95 in Newark, Delaware. The feasibility of such a retrofit was concluded, 

and the application in a real world scenario was carried out. It was determined that these 

retrofits provide great promise for retrofitting structures for increased strength. The CFRP 

plates theoretically increased the capacity corrosion damaged bridge girders from 10-37% 

(since this is an active Interstate, no tests to failure can be conducted). The CFRP resulted in 

an apparent increase of 11.6% in the structure’s flexural stiffness. As with any real world 

scenario testing, further information can be retrieved from such applications to determine the 

long-term effectiveness of such retrofits. For instance, it was found that the inclusion of 

GFRP plates at the steel interface aided in the prevention of galvanic corrosion.  

Shaat and Fam (2004) illustrated the use of FRP sheets for the strengthening of short 

HSS steel columns. The use of both CFRP and GFRP perimeter wraps were examined in 

axial compression tests of short HSS steel columns. By varying the fiber orientation and FRP 

layering it was determined that when two layers of CFRP wraps were both fixed in the 

transverse direction an axial strength capacity increase of 18% was recorded. In contrast, 

when one layer of the CFRP was oriented longitudinally, and the next layer is applied 

transversely, the axial stiffness is increased significantly by 28%. This demonstrates the 
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importance of fiber orientation in steel strengthening capacity. Not only did this test show the 

capacity of FRP retrofits to aid in the strengthening of steel, it also displayed the importance 

of bonding between the FRP and steel substrate to be a limiting factor in the capacity of the 

retrofit. This will be discussed further in following sections.  

 

 

2.3   FATIGUE BEHAVIOR OF STEEL WITH FRP 

 

 The fatigue life of a steel structure is critical to the expected usable or remaining life 

of any structure. Jones and Civjan (2003) focused their studies on the application of fiber 

reinforced polymer overlays to extend the fatigue life of steel. It was noted through fatigue 

experiments that the reduced fatigue-induced stress in the steel, and thus improved behavior, 

attributed to the application of FRP materials is largely governed by the adhesive connection 

between the steel substrate and the FRP. Generally speaking, there was some demonstrated 

effectiveness in increasing of fatigue life, but the behavior of the steel element was entirely 

dominated by the adhesive behavior of the epoxy material.  

Ekiz (2007) demonstrated improved steel brace fatigue behavior under either seismic 

or wind loading conditions using carbon fiber reinforced polymer (CFRP) wrapping. The 

improvement in a structure’s ability to maintain greater stability under cyclic loading 

scenarios only furthers the potential benefits of the applications of FRP to steel structures. 

This application will be explored in the present work. 
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2.4 STRUCTURAL REHABILITATION USING FRP 

 

Rehabilitation, that is: restoring capacity to, rather than specifically strengthening, a 

member or structure is presently of great interest in the civil infrastructure community due to 

the significant number of deteriorated structures. Through the use of fiber reinforced 

polymers, structural rehabilitation may be less time consuming and more easily accomplished 

over a broad spectrum of structures. Gillespie et al. (1996), using adhesively bonded FRP 

systems, demonstrated the rehabilitation of steel girders having significant corrosion. The use 

of composite materials showed great promise for increasing the structural life and stability of 

corrosion and fatigue damaged members. Even with corroded girders, it was determined that 

composite materials were able to provide significant rehabilitation effect to structural 

elements. Not only was the stiffness of the degraded members improved with the application 

of FRP composite materials, the desired loads were reached without adhesive failure between 

the steel substrate and the composite materials. Through further testing it was determined that 

fiber reinforcement additionally provided a means to reduce fatigue crack growth, ultimately 

increasing the life of the steel member, in turn leading to a longer life span of the structure. In 

this application it is noted that the ultimate strength of the structure was not completely 

returned to its “as built” value, however the rehabilitation restored sufficient capacity to 

safely resist present-day load demands.  

Hollaway and Cadei (2002) explored the technique of upgrading metallic structures 

with FRP materials. Through their studies, it was concluded that with the application of FRP 

materials to existing metallic structural systems, the working life of a structure could be 

extended 1.5 times its original lifespan. In addition to this, the cost saving introduce by using 
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FRP were in the range of 17.5% over alternative steel rehabilitation methods. As previously 

mentioned, the adhesive bond of the FRP to the steel is extremely critical in this 

rehabilitation method. It is critical that both the FRP and steel substrates surfaces are 

properly prepared in order to maximize the epoxy bond. Not only did this report focus on the 

rehabilitation properties of FRP, but it also noted the use of GFRP in offshore platforms as a 

form of fire protection for the structural member. Thus GFRP has been used in prolonging 

the life of a structural element in extreme environments. These findings in the rehabilitation 

of both experimentally and field tested steel members through the use of FRP, demonstrate 

the practicality and promise of FRP in the field of structural rehabilitation. 

 

 

2.5 BOND INTERFACE BETWEEN FRP AND STEEL SUBSTRATE 

 

 As discussed in previous sections, the interface bond between the fiber reinforced 

polymer (FRP) composite material and the steel substrate is one of, if not the most important 

factor determining in the effectiveness of FRP on the behavior of steel. The bond of the FRP 

to the steel substrate dictates the extent to which the FRP may aid the structural steel element 

in improving its capacity, ductility, and/or delaying effects of both local and lateral torsional 

buckling. Sebastian and Luke (2007) explored the interface failure mechanics of FRP 

reinforced steel beam members. These tests focused on the interface between steel beams and 

adhesively bonded elastic reinforcing strips to determine the stresses developed in the 

interface between the composite and the steel. Several variations of the composite material 

were tested on the steel substrate. First, the affects of multiple layers of the elastic FRP strips 
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were studied. The effects of tapering the composite material were analyzed in the 

determination of the plane stress interface between the steel and the composite material. To 

minimize bond stresses, the FRP should change in cross-sectional area with the moment 

diagram of the steel beam (i.e.: optimize FRP reinforcement to moment demand). The effects 

of bond imperfections on steel members with bonded FRP materials loaded in tension were 

the second topic explored in this study. It is important to determine defects or bond 

imperfections, due to the fact that these imperfections may ultimately control the capacity of 

the composite member. Finally, the use of elastic FRP strips in the compression region of the 

steel members was analyzed.  

 Sebastian and Luke (2007) provide several conclusions about the interface failure 

mechanics of the FRP material and the steel substrate. For the bonded FRP in tension, failure 

of the composite member occurred due to buckling of the member and the separation of the 

composite strip from the surface of the steel. In the instance of the four layered composite 

strip, it was found that the FRP materials exhibited interlaminar failures before separating 

from the steel substrate. Sebastian and Luke cite bond imperfections, localized bending of the 

strips, and the presence of adhesive fillets as affecting this behavior. During experimental 

testing, several of the beams maintained their final load through larger deflections than may 

be expected. This is most likely due to the redistribution of the stresses to the composite 

material while buckling occurred in the steel member.  

 Based on the strains in the FRP material, the peak available FRP-to-steel bond stress 

capacity was determined to be 3.55 ksi (24.5 N/mm2). The observed bond stress is largest at 

the ends of the FRP material. For the FRP strip under compression, buckling failure of the 

strip was observed in the region of steel buckling (largest deformations) and eventually led to 
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the brittle separation of the edges of the composite in this region. Sebastian and Luke 

concluded that minimally invasive strain measuring techniques may aid in the further 

quantification of bond stresses between substrates and composite materials. Also, the fatigue 

performance of steel retrofitted with composite materials should be explored further to 

determine the full potential of composite technology. 

 Schnerch et al. (2005) explored the bond behavior of CFRP-strengthened steel bridge 

girders. This focused on uncracked steel girders, strengthened with CFRP strips. These ultra-

high modulus CFRP (uhmCFRP) strips had an elastic modulus of 49,000 ksi (338 GPa) and 

an ultimate elongation of 0.0033; they had a linear stress-strain behavior. The test specimens 

utilized in this experiment were wide flanged steel members, designated SLB 100 x 4.8. The 

first number designates the nominal depth in millimeters and the second designates the mass 

in kilograms per meter. To simulate a bridge girder, a steel plate was welded to the 

compression flange to simulate a composite concrete deck. The CFRP composite material 

strips were adhered to the tension flange, each strip having a width of 1.42 in. (36 mm) and a 

thickness of 0.06 in. (1.45 mm). The development length provided for the CFRP strips 

ranged from 1.97 in. (50 mm) to 7.87 in. (200 mm). The development length was defined as 

“the distance from one of the load points to the end of the CFRP strip, in a region of constant 

shear force and decreasing bending moment towards the end of the strip.” That is to say, the 

length of the CFRP extending into the shear span of a beam loaded in four point bending. 

Schnerch et al. loaded each steel specimen until a tension flange strain of 0.008 was 

achieved. One of two events occurred: 1) if sufficient development was provided, the CFRP 

ruptured at a strain near its ultimate elongation; or 2) the CFRP debonded from the steel due 

to insufficient development length.  
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When determining the most suitable adhesive for applying CFRP to a steel substrate, 

one must account not only for the CFRP strain at failure and the mode of failure, but also the 

adhesive material which can fully utilize the CFRP at the shortest development length. The 

shortest development length adhesives, having development lengths of 3-4 in. (76-102 mm), 

were Weld-On SS620 and SP Spabond 345. “The remaining adhesives had development 

lengths as follows: the Vantico Araldite 2015 and Jeffco 121 adhesives had a development 

length of 4-5 in. (102-127 mm), Fyfe Tyfo MB had a development length of 6 in. (152 mm) 

and Sika Sikadur 30 had a development length of more than 8 in. (203 mm). The CFRP strip 

strain at rupture or debonding for the tested adhesives and respective development lengths 

are given in Table 2.3. The development length of the CFRP strips used, independent of 

adhesive type, as determined by Nozaka et al. (2005), is less than 8 in. (203 mm). Schnerch 

et al. concluded that the bond of the FRP to the steel is largely dependent upon surface 

preparation of the steel.  

 A complete discussion of factors affecting bond to steel substrates is beyond the 

scope of the present work. Cadei et al. (2004) provides an overview of factors affecting FRP-

to-steel bond including those associated with a) surface preparation; b) environmental 

exposure; c) creep and fatigue behavior; and, d) issues associated with mitigating galvanic 

corrosion. 
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2.6 FIELD APPLICATIONS OF FRP ON STEEL STRUCTURES 

 

 Several applications of FRP to steel have been used in the engineering industry to 

investigate and demonstrate this burgeoning technology. Moy (2004b) reports three case 

studies of CFRP strengthening of metallic structures on the London Underground. The first 

study focused on the retrofitting of a steel bridge D65A. This structure serves as a bridge for 

Underground trains, over a road in Acton, West London. The bridge has both main and 

secondary girders, where the secondary girders directly support the railway track. The 

loading on these secondary girders is almost entirely live loads, and fatigue is a major 

concern. To extend the life of the girders, the live load stresses were to be reduced by 25%. 

Traditionally, this would be accomplished through the addition of welded steel plates. Since, 

the steel plates would require extensive scaffolding; the road below the railway bridge would 

have to be shut down. This problem was averted, by using lighter weight CFRP material. The 

steel substrate was cleaned, and the CFRP plates were easily applied with epoxy. A major 

concern was the frequent train loading while the epoxy adhesive was curing. Testing was 

performed to assess the effects of cyclic loading during cure on the adhesive bonding the 

CFRP to the steel. After confirming the results would be adequate for the bridges’ needs, 

CFRP plates were applied to the underside of the bridge. As a result of the CFRP application, 

a 24% decrease in the live load stresses was reported, accomplishing the objective of the 

retrofit while maintaining the road beneath the bridge open during application.  

 The second study reported by Moy (2004b) was vent shaft V129, in Shadwell Station, 

East London Line. The vent struts needed reinforcement, while allowing the trains in the 

tunnel below to keep running. CFRP was applied to the struts using the DML RIFT (Resin 
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Infusion under Flexible Tooling) technique. The struts were successfully strengthened, and 

no sign of deterioration was noted. Finally, a third case study focused on the tunnel support 

structure on the Circle Line. The strengthening of the ceiling of the tunnel was accomplished 

using an all CFRP beam system. These cases demonstrate the versatility of FRP composite 

materials in solving structural deficiencies in existing structures. 

 Chacon et al. (2004) studied the application of CFRP to the Ashland Bridge, in 

Delaware, USA. Through the application of CFRP plates to the beams of the bridge, the 

stiffness of the beams and distribution of applied loads was improved. The retrofit decreased 

the strain in the beams by 5.5%.   

 

 

2.7 STRUCTURAL STABILITY OF STEEL SECTIONS 

 

 Structural stability is a significant and large area of study. In the following brief 

synopses, three studies which have been used to help to identify potential design spaces for 

the use of FRP stabilization are introduced. Nakashima et al. (2002) focused on lateral 

instability and lateral bracing of steel beams subjected to cyclic loading. One must first 

understand the behavior of steel members under such loading, before determining the impact 

of retrofits to aid or inhibit such behaviors. Lateral instability behavior is affected by the type 

of loading, whether it is cyclic or monotonic loading. Particularly when the slenderness ratio 

about the weak axis of a steel member is large, cyclic load behavior is degraded in 

comparison with monotonic load behavior; this is largely due to the extent of out-of-plane 

deformations. The eventual formation of a plastic “kink” (occurring at the point of largest 
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out-of-plane deflection) also impairs the behavior of compression members and tension-

compression members such as braces (Bruneau et al., 1998). This behavior will be discussed 

further in Chapter 5.  

Nakashima et al. (2002) developed limit curves relating web and flange slenderness 

to expected instability behavior. Figure 2.1 shows such a curve generated for the 

performance objective that the moment capacity meets or exceeds the plastic moment 

capacity (M/Mp > 1.0) at a rotation capacity of 0.045 radians. The curve shown is 

additionally coupled with the requirement that L/ry < 80, also to ensure M/Mp > 1.0. Such 

limit curves may be drawn for any performance objective. The curves describe four distinct 

“regions” of behavior: A: behavior controlled by flange local buckling (FLB) followed by 

lateral torsional buckling (LTB); B: behavior controlled by LTB occurring almost 

simultaneously with FLB; C: behavior controlled by web local buckling (WLB) followed by 

almost simultaneous FLB and LTB; and, D: behavior controlled by web shear buckling 

(WSB) resulting in rapid loss of capacity upon onset of buckling due to reduction in beam 

depth. 

LTB can be mitigated by improving bracing. As the slenderness approaches zero (i.e.: 

L/ry � 0), the limit curve shifts to encompass a greater range of beam geometries. 

Additionally, as LTB is mitigated, Region B is minimized and there is a more abrupt 

transition between Regions A and C. The ranges of geometric properties of typically 

available U.S. wide flange beam shapes are shown in Figure 2.1b. Only 49 of 146 available 

W-sections satisfy the performance objective shown (Nakashima et al., 2003). Additionally, 

most behavior is predicted to be in Regions A and B. Mitigating LTB will shift the limit 

curve to the right and “sharpen” the Region B transition. In such a case, more sections will 
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satisfy the performance criteria but those remaining will be dominated by the more critical 

Region A behavior. Thus it is demonstrated that there is a considerable design space for FRP 

stabilized sections to mitigate the critical FLB behavior. 

Uang and Fan (2001) investigated the cyclic stability criteria for steel moment 

connections with a reduced beam section. Reduced beam section moment connections are 

growing in usage throughout the industry. These connections have a portion of the beam 

flange intentionally removed a short distance from the connection in order to develop a 

controlled plastic hinge having a capacity less than the adjacent connection, thereby 

“protecting” the connection from plastic deformations. This reduction in the beam flange 

increases the importance of lateral bracing of the steel beam member. In their experiments, 

55 full-scale specimens of reduced steel beam sections were analyzed to assess the 

relationship between plastic rotation capacity and rate of plastic hinge strength degradation. 

The observed response of these sections was largely accounted for by the slenderness ratio 

associated with web local buckling and not the lateral-torsional buckling of the member. The 

failures involved controlled local flange buckling leading to crippling of the adjacent slender 

web; this results in a “collapse” of the section as the depth and thus plastic capacity is 

dramatically reduced. It was found that when the reduced beam section is placed with a 

composite concrete slab it only improves this behavior in positive bending region (by 

providing lateral bracing to the compression flange); whereas in the negative bending region, 

the concrete slab provided little assistance in enhancing the plastic rotation capacity of the 

reduced beam section. 

Uang and Fan (2001) quantified the interaction between lateral torsional buckling 

(LTB) and flange (FLB) and web local buckling (WLB). The relationship between beam 
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rotation capacity and flange, web and beam slenderness ratios highlight the interaction 

between buckling behaviors and demonstrated a) that behavior is more sensitive to WLB 

behavior where it is critical; and b) that there is a relatively weak interaction with LTB in any 

case. Uang and Fan proposed equations to provide flange, web and beam slenderness limits 

based on desired rotation capacity. The reality however is that such slenderness limits are 

only be achievable with more expensive “built-up sections” (those fabricated from welded 

plates rather than rolled sections). Thus the design space for improving stability behavior 

through FRP stabilization is again demonstrated. 

Okazaki et al. (2006) studied the stability requirements for beams in seismic load 

resisting steel moment frames. The more rotation in a steel member, the more important the 

effects of local buckling become. The greater the rotation demands, the smaller the flange 

and web width-thickness ratios must be. Local buckling or a combination of local buckling 

and lateral torsional buckling play a large part in the degradation of strength. When dealing 

with shallow wide flange beams (depth-width ratio of 2.05), and a target rotation of no 

greater than 0.03 radians, lateral torsional buckling is negligible. However, when dealing 

with deep beams (depth-width ratio of 2.84), and a target rotation of 0.04 radians, lateral 

torsional buckling is the controlling factor more so than the local buckling of the structural 

steel element. This again demonstrates the importance of the slenderness of an element and 

the role which lateral torsional buckling and local buckling play in the stability of a structural 

steel element.  
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2.8 ENHANCING STABILITY OF STEEL SECTIONS USING FRP 

 

Ekiz et al. (2004) looked at the possibilities of enhancing plastic hinge behavior in 

steel flexural members using carbon fiber reinforced polymer (CFRP) wraps. They 

investigated four steel flexural specimens under reversed cyclic loading; two of the 

specimens were completely wrapped in CFRP in the plastic hinge region. Variables 

considered were the fiber orientation and the wrapping scheme on the structural steel 

members. One of the goals of this program was to introduce the concept of utilizing CFRP 

reinforcement in the plastic hinge region of steel members to aid in decreasing local 

slenderness and lateral torsional buckling constraints, ultimately aiding in the advancement 

of CFRP materials in new construction and seismic region improvements.  

 Ekiz et al. (2004) used two double-channel built up members, and placed CFRP 

wraps around the expected plastic region of the elements. After completing the reversed 

cyclic loading tests on the structural frame, the behavior of the unwrapped steel sections was 

compared to that of the CFRP-wrapped sections. The CFRP wrapping in the plastic hinge 

region greatly improved the behavior of the structure. It was concluded that CFRP wrapping 

can increase the size of plastic hinge region (thus permitting greater energy dissipation 

through plastic deformation), while inhibiting local buckling and delaying lateral torsional 

buckling. This ultimately increases the rotational capacity, improves structural fatigue 

behavior, and aids in the dissipation of energy throughout the plastic hinge region. From 

these conclusions, Ekiz et al. suggested that the use of CFRP wraps in areas of high seismic 

activity may be suitable for upgrading existing structures.  
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Accord et al. (2006) utilized nonlinear finite element analysis to examine the effects 

of low modulus GFRP strips bonded to I-shaped sections developing plastic hinges under 

moment-gradient loading. The provision of GFRP strips provided effective bracing of the 

flange outstands delaying the formation of local buckling of the compression flange, 

ultimately increasing structural ductility. Representative results from Accord et al. are shown 

in Figure 2.2. In this figure, the same amount of GFRP is located at different locations on the 

slender flange. As may be expected, the greatest improvement in behavior is affected when 

the GFRP is located as close to the flange tips as possible. 

 

2.8.1 Companion Study on FRP Stabilization for Elastic Buckling (Abraham, 2006) 

 

The present thesis represents one part of an experimental program investigating both 

elastic and inelastic buckling behavior of FRP stabilized members. This work reports 

inelastic buckling studies while Abraham (2006) discussed elastic buckling behavior. In both 

studies, specimen sections and retrofit details are the same and are reported in Chapter 3.  

In Abraham’s work, the WT 6x7 sections were cut to a length of 65.5 in. (1664 mm). 

A double angle connection engaging only the stem of the WT was designed to a) reflect an 

AISC-compliant (2005) brace connection; and b) result in a transfer of forces coincident with 

the neutral axis of the WT section. All specimens were heavily instrumented (similar to that 

reported in Chapter 3) and tested under concentric cyclic compressive loading to failure. 

Each brace was initially subjected to a small tensile force of approximately 2 kips (8.9 kN) to 

allow the loading sequence to pass through zero in each cycle. The first loading cycle 

imposed a maximum 5 kips (22.2 kN) compressive load and then returned to the initial 2 kips 
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tensile load. The following cycles incrementally increased the maximum compressive load 

by 5 kips each cycle and each returned to the initial 2 kips tensile load upon cycle 

completion. Each specimen reached at least 45 kips (200 kN) in this manner and cyclic 

loading was continued until failure occurred as defined by either excessive lateral deflection 

or FRP strip debonding.  

A summary of test results and images of each specimen are shown in Table 2.4. Each 

specimen exhibited elastic lateral torsional buckling (LTB) typical of a slender WT section. 

This behavior is characterized by large lateral translations of the stem tip, twist about the 

centroid and nominal strong axis translation as shown in Table 2.4. For the very slender stem 

WT tested (d/tw = 29.8), plastic ‘kinking” of the stem was observed with increased axial (and 

thus lateral) displacement. This behavior is particularly obvious in Specimen C (Table 2.4). 

The presence of FRP on subsequent specimens helped to mitigate this post-buckling 

crippling. 

The FRP retrofit specimens did not provide a significant increase in axial capacity 

compared to the control specimen. The GFRP-2 and GFRP-1 retrofit specimens exhibited 6% 

and 9% increases in axial capacity, respectively. Specimens CFRP-2 and CFRP-1 exhibited a 

slight decrease in axial capacity as compared with the control specimen, possibly resulting 

from misalignment of the specimen in the test frame. 

Despite little effect on axial capacity, the retrofit specimens did exhibit greater 

control over the weak-axis lateral displacement as well as the weak and strong-axis 

bifurcation loads. Weak-axis lateral displacement values of 0.1 in. (2.5 mm) and 0.3 in. (7.6 

mm), representing mid-height lateral displacements of L/655 and L/218, respectively, are 

arbitrarily selected to illustrate specimen behavior. A weak-axis lateral deflection of 0.1 and 
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0.3 in. occurred at higher loads for the FRP-retrofitted specimens than for the control 

specimen. The load to cause a 0.1 in. weak-axis lateral deflection increased between 5% and 

46% for the FRP-retrofitted specimens. The load to cause a 0.3 in. weak-axis lateral 

deflection increased between 6% and 20% for the FRP-retrofitted specimens. An increase in 

the weak-axis bifurcation load ranging from 5% to 13% was observed. The strong-axis 

bifurcation load was also observed to increase suggesting a mechanism where the FRP 

provides stability to the relatively unstable stem and ultimately delays the onset of strong-

axis buckling of the brace member. 

 

 

2.9 RELATIONSHIP TO PRESENT WORK 

 

 The research discussed in this chapter was aimed at providing some justification 

and background for investigating the behavior and use of FRP materials for stabilization 

of the plastic buckling of slender steel sections. In the following chapters, the use of FRP 

materials in a flanged steel section is studied to assess the ability to control the 

manifestation of local buckling of a steel section. A companion study (Abraham, 2006) 

focused on the elastic buckling behavior of FRP stabilized steel sections, whereas the 

focus of this work is inelastic buckling behavior.  
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Table 2.1 Typical properties of steel-adhesive-FRP systems. (Harries and El-Tawil, 2006) 

FRP Strips Adhesive1 

 Mild 
Steel hsCFRP1 hmCFRP1 uhmCFRP1 GFRP2 high 

modulus 
low 

modulus3 

tensile modulus 
GPa (Msi) 

200 
(29) 

166 
(24) 

207 
(30) 

304 
(44) 

42 
(6) 

4.5 
(0.65) 

0.4 
(0.06) 

tensile strength 
MPa (ksi) 

276-
483 

(40-70) 

3048 
(442) 

2896 
(420) 

1448 
(210) 

896 
(130) 

25 
(3.6) 

4.8 
(0.7) 

ultimate strain, % 18-25 1.8 1.4 0.5 2.2 1.0 >10 
density 

kg/m3 (lb/ft3) 
7530 
(490) 

~1618 
(~101) 

~1618 
(~101) 

~1618 
(~101) 

~2146 
(~134) 

~1201 
(~75) 

~1201 
(~75) 

CTE 
10-6/oC (10-6/oF) 

21.6 
(12) 

~0 ~0 ~0 
8.8 

(4.9) 
162 
(90) 

n.r. 

strip thickness 
mm (in.) 

- 
1.3 

(0.05) 
1.3 

(0.05) 
1.3 

(0.05) 
1.5 

(0.06) 
- - 

strip width - typically up to 150 mm (6 in.) - - 
Tg

4 
oC (oF) 

- 149 (300) 149 (300) 149 (300) resin 63 (145) - 

shear strength 
MPa (psi) 

- - - - - 
24.8 

(3600) 
9.0 

(1300) 
bond strength  

kPa (psi) 
- - - - - 

~20.7 
(~3000) 

~5.0 
(~725) 

1 representative data from single manufacturer (SIKA Corporation); a number of companies provide similar products 
2 data from single manufacturer (Tyfo), there is only one known preformed GFRP product offered in the infrastructure market 
3 traditionally, high modulus adhesive systems are used in strengthening applications; an example of a very low modulus adhesive is provided to 

illustrate range of properties 
4 Tg = glass transition temperature 
n.r. = not reported 

 
 
 

Table 2.2 Recommended degradation sub-factors for various FRP materials. (Moy, 2004) 
Material partial safety sub-factor γmes 

E-glass (GFRP) Aramid (AFRP) Carbon (CFRP) 
Degradation 
Mechanism 

Minimum Maximum Minimum Maximum Minimum Maximum 
Moisture 1.1 2.0 1.1 1.25 1.0 1.15 

Chemical Exposure 1.0 1.33 1.0 1.15 1.0 1.15 
UV Exposure 1.0 1.05 1.1 1.33 1.0 1.05 

Fatigue 1.0* 4.0† 1.0* 2.5† 1.0* 2.0† 
Creep 1.0 2.5 1.0 1.67 1.0 1.25 
Impact 1.0 1.33 1.0 1.25 1.0 2.0 

Overall Degradation 2.5 6.67 1.67 4.0 1.5 3.0 
* the factor of unity applies where there is no fatigue loading 
† upper bound value due to high amplitude, high frequency load cycles 
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Table 2.3 CFRP strip strain at rupture/debonding for tested adhesives/development 

lengths. (Schnerch et al., 2005) 
Adhesive Development Length 

  8 in. 6 in. 5 in.  4 in. 3 in. 2 in. 
Weld-On SS620 0.00308 0.00296 0.00316 0.00290 0.00259 
  rupture rupture 

- 
rupture rupture debond 

SP Spabond 345 0.00288 0.00294 0.00311 0.00243 0.00183 
  rupture rupture 

- 
rupture debond debond 

Vantico Araldite 2015 0.00309 0.00298 0.00282 0.00277 
  rupture rupture 

- 
rupture debond 

- 

Jeffco 121 0.00298 0.00328 0.00266 0.00244 
  rupture rupture rupture debond 

- - 

Fyfe Tyfo MB2 0.00347 0.00306 0.00210 
  rupture debond 

- 
debond 

- - 

Sika Sikadur 0.00281 
  debond 

- - - - - 

*underlined values are the average of two test results  
 

 

 

Table 2.4 Elastic buckling test results. (Abraham, 2006) 

Photo of specimen at end of testing 

     
Specimen C CFRP-2 CFRP-1 GFRP-2 GFRP-1 

maximum compressive capacity (kips) 49.2 48.8 47.9 52.2 53.7 
load at 0.1 in. weak axis deflection (kips) 26.1 33.3 27.4 38.0 32.4 
load at 0.3 in. weak axis deflection (kips) 37.3 41.6 39.6 44.7 42.5 
weak axis bifurcation load (kips) 29.7 31.5 31.0 33.5 32.6 
strong axis bifurcation load (kips) 33.3 53.1 47.2 46.1 48.8 
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Figure 2.1 Slenderness limits associated with beam instabilities. 
(after Nakashima et al., 2003) 
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Figure 2.2 Analytical load-deflection behavior of GFRP stabilized steel cantilever. 

(Accord et al., 2006) 
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3.0 EXPERIMENTAL PROGRAM 

 

This section describes the experimental procedure including: the WT 6x7 steel 

sections used, fiber reinforced polymer retrofit procedures, specimen designation, 

experimental setup, instrumentation, experimental procedure, and the predicted WT  

behavior under axial compression. 

 

 

3.1 WT STEEL SECTION SPECIMENS 

 

 Throughout this experimental program, ASTM A 992 Grade 50 WT 6x7 (U.S. 

designation) steel sections were utilized. Each specimen was cut to a length of 14 in. (356 

mm). The length selected was determined after several specimens having varying lengths 

were tested in concentric compression (squash tests). The peak load at which each 

specimen buckled was recorded, and the optimal length of 14 in. (356 mm) was selected 

based on the desire to have a specimen dominated by local plastic buckling. The 

specimen lengths and their corresponding peak axial load are given in Table 3.1 and 

shown in Figure 3.1. A length of 14 in. clearly falls in the region dominated by local 

buckling (initial steeper slope in Figure 3.1) while still providing sufficient length to 

which to bond the FRP. The squash tests also established the squash load as being 105 

kips (467 kN). The theoretical value of the squash load based on nominal material 
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properties is Agfy = (2.08 in2) (50 ksi) = 104 kips (463 kN). Figure 3.2 shows the seven 

trial squash test specimens. 

After establishing the specimen length, different fiber reinforced polymer (FRP) 

stabilization configurations were designated. In addition to the control specimens, having 

no FRP, carbon FRP (CFRP) and glass FRP (GFRP) were utilized to stabilize the slender 

stem of the WT sections. The material properties of the FRP are given in Table 3.2. Two 

different configurations of both CFRP and GFRP were used, and are shown in Figure 3.3. 

Each FRP strip was 13 in. (330 mm) in length, and was laid out in one of two 

configurations. The designation CFRP-1 or GFRP-1 represents two 1 in. (25.4 mm) strips 

affixed on top of one another while CFRP-2 or GFRP-2 represents a single 2 in. (50.8 

mm) strip of FRP adhered to the steel substrate. Both FRP configurations were applied 

such that the centroid of the FRP is located 1.5 in. (38.1 mm) from the end of the WT 

stem. It is noted that the cross section details and FRP and adhesive materials used are the 

same as those used by Abraham (2006). 

 

 

3.2 FRP RETROFIT PROCEDURES 

 

 Two different FRP materials (CFRP and GFRP) having two configurations (two 1 

in. strips and one 2 in. strip) were applied to the stems of WT 6x7 sections. The purpose 

of these FRP retrofits was to investigate the potential stabilizing effects of the FRP on the 

plastic buckling of the WT webs under concentric axial compression. 
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3.2.1 FRP Retrofit Configurations 

 

The two types of FRP used were: Fyfe Tyfo UC high strength carbon FRP and 

UG ultra high modulus glass FRP. Both FRP types were affixed to the steel with Fox 

Industries’ FX 776 epoxy adhesive. FX 776 is a two-part ambient-cure epoxy system 

specifically intended for use with FRP materials on steel or concrete substrates. The 

manufacturer reported material properties of the FRP and adhesive are given in Table 3.2. 

Both the CFRP and GFRP were originally provided in strips having unidirectional fiber 

orientation with a width of 4 in. (102 mm) and a thickness of 0.055 in. (1.4 mm) and 

0.075 in. (1.9 mm) for the CFRP and GFRP, respectively. From these strips, the specimen 

strips were cut. Two different configurations for both CFRP and GFRP were used as 

shown in Figure 3.3. Both FRP configurations were applied such that the centroid of the 

FRP is located 1.5 in. (38.1 mm) from the end of the WT stem. Each 13 in. FRP strip was 

laid out in one of two configurations:  Specimens CFRP-1 and GFRP-1 consist of two 1 

in. (25.4 mm) strips affixed on top of one another. This was achieved by first adhering 

the two strips together using FX 776 adhesive. This double-thickness strip was allowed to 

cure in ambient conditions for 24 hours before being adhered to the WT stem, again using 

FX 776 adhesive. The single 2 in. (50.8 mm) wide strips of the CFRP-2 and GFRP-2 

specimens were applied directly to the WT stem following surface preparation as 

described below. Both FRP configurations had the same amount of FRP material. Three 

specimens of each FRP and configuration were prepared resulting in a total of 15 

specimens.  
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3.2.2 Application of FRP to Steel Specimens 

 

To ensure the quality of the bond between the FRP and the steel substrate, the 

following procedures were followed.  

 

3.2.2.1 Preparation of Steel Substrate 

 

All steel specimens were cut to a length of 14 in. (356 mm). After the steel was 

cut to length, both cross sectional faces of the steel were faced using a belt sander to 

ensure parallel end bearing faces. This was done to ensure a uniform distribution of 

bearing forces across the entire section.  

To achieve maximum bonding effectiveness, the steel surface to which the FRP 

was to be applied required preparation so that a clean bare steel surface was achieved. To 

accomplish this, a 40 grit zirconia alumina sanding belt was used to clean and roughen 

the stem of the WT surface (see Figure 3.4). Immediately after sanding the steel 

specimens, an anti-corrosion agent was applied to the surface to ensure no rust would 

form between the time the steel was sanded and the FRP was applied. This clean surface 

was maintained until FRP application by placing all steel specimens in a dry and clean 

environment.  
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3.2.2.2 Preparation of FRP 

 

A 13 in. (330 mm) length of FRP was chosen as this maximized the available 

development length on the 14 in. (356 mm) stem. The effective bond length in. for the 

CFRP and GFRP strips used is calculated as given in Equation 3.1 (Nozaka et al. 2005). 

The effective bond length, Le, is the length of FRP beyond which an increase in bonded 

length no longer results in an increase in bond capacity. This length is somewhat 

analogous to the development length of a reinforcing bar in concrete. 

units) (SI         
11

4.6 







+=

FRPFRPssa

a
e tEtEt

G
L             3.1 

Where, Es, EFRP, ts, tFRP are the Young’s modulus (MPa) and thickness (mm) of the steel 

and FRP. Ga and ta are the shear modulus (MPa) and thickness (mm) of the adhesive 

layer. Le is estimated to fall between 1.2 and 1.6 in. (30-40 mm) for the GFRP used and 

between 2.4 and 3.0 in. (60-75 mm) for the CFRP used. In both cases, the 13 in. length of 

FRP permits the development of the required effective bond length on both sides of the 

midheight region. 

Both CFRP and GFRP were cut to the specified length using a variable speed 

dremel abrasive wheel cut-off tool. Since both the carbon and glass FRP come in 4 in. 

(101.6 mm) wide strips, all FRP material was cut to the specified width of either 1 in. 

(25.4 mm) or 2 in. (50.8 mm) using a razor blade. Once the FRP was cut to width, both 

surfaces of the FRP were cleaned with isopropyl rubbing alcohol. This was done to 

ensure a clean application surface. This clean surface was maintained until application by 

placing all FRP specimens in a dry and clean environment.  
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The FRP configurations involved both a single 2 in. (50.8 mm) FRP strip and two 

1 in. (25.4 mm) FRP strips applied on top of one another. For the 1 in. (25.4 mm) FRP 

“sandwiched” strips, one strip was applied directly on top of the other using the FX 776 

adhesive. Uniform pressure was applied to the strip to establish a thin and uniform bond 

line along the length of the strip and to remove air pockets that may occur within the 

adhesive layer. Masking tape was applied to the exterior surface of the FRP strips, to 

ensure a clean surface for the eventual application of strain gages. The dual layered FRP 

configuration was allowed to set for 24 hours before being applied to the steel specimen. 

The single 2 in. (50.8 mm) wide strips of the CFRP-2 and GFRP-2 specimens were 

applied directly to the WT stem following surface preparation.  

 

3.2.2.3 Application of FRP to Steel Substrate 

 

All steel specimens were placed on a clean level surface and were allowed to rest 

with one face of the stem on the table surface. Both the centerlines of the FRP and the 

steel were marked at 1½ in. (38.1 mm) from the edge of the stem as shown in Figure 3.3. 

The FX 776 adhesive was mixed per the manufacturer’s specifications and a uniform 

layer of epoxy was applied to both the FRP and steel substrate. The FRP was then aligned 

on the steel and uniform pressure was applied to mitigate both non-uniform adhesion and 

air bubbles which may be present in the epoxy. The FRP was applied to the steel rapidly, 

so that application was complete well with the adhesive’s reported pot life of about 30 

minutes. The first application was permitted to cure in ambient conditions for 24 hours 
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and then the steel specimens were flipped and the process was repeated on the other side 

of the stem.  

 

 

3.3 SPECIMEN NAMING CONVENTION  

 

The specimen naming convention is as follows: 

xFRP-y-zz 

Where:  x = C = Carbon Fiber Reinforced Polymer (CFRP) 

x = G = Glass Fiber Reinforced Polymer (GFRP) 

   y = 1 = Two 1 in. (25.4 mm) wide strips 

   y = 2 = One 2 in. (50.8 mm) wide strip 

Finally, the last number, zz, designates the percentage of the peak load to which 

the post-peak testing of the specimen was taken before stopping the test. For example, if 

zz = 80, the test was stopped once the peak load had fallen 20%  

   zz = 50 = post-peak test stopped at 50% of the peak load 

   zz = 80 = post-peak test stopped at 80% of the peak load 

zz = 90 = post-peak test stopped at 90% of the peak load 
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3.4 EXPERIMENTAL SETUP 

 

 All specimens were subjected to concentric axial compression aligned through the 

centroid of the WT section. The axial load was applied using a 200 kip (890 kN) capacity 

Baldwin Universal Testing Machine (UTM). Although the WT stub columns were 

“ground to bear”, 22 gage steel plates were placed on both the top and bottom of the 

specimens in order to ensure uniform distribution of force into the WT section. The lower 

loading surface was a flat steel cylinder 10 in. (254 mm) in diameter, while the upper 

plate was a similar plate backed by an 8” (202 mm) “ball joint”. Thus the loading plates 

were larger than the WT section and may be assumed to distribute a uniform compressive 

force across the entire cross section. All specimens were placed in the machine as shown 

in Figure 3.5. Applied load is recorded through the Baldwin load cell while vertical 

displacement is recorded using a draw wire transducer (DWT) located between machine 

heads (on right of Figure 3.5). It is recognized that the DWT, in addition to recording 

specimen shortening, also captures seating of the ball joint, crushing of the 22 gage shim 

plates (considered negligible) and shortening of the load plates (also negligible). The 

seating of the ball joint occurs at very low applied loads and is easily corrected in the 

acquired data. 
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3.5 INSTRUMENTATION 

 

 All specimen instrumentation was similar to that used by Abraham (2006). The 

basic configuration of electrical resistance strain gages deployed in the steel and FRP is 

displayed in Figure 3.6. In the case of the control specimens, 6 strain gages were placed 

at the mid height of the specimens. Based on the numbering scheme in Figure 3.6, the 

control specimens utilized strain gages 1 through 6. All of these strain gages were 

centered at the same distance from the edge of the flange or stem: 0.2 in. (5.08 mm). For 

the FRP specimens, only the web gages were used therefore, these specimens used gages 

1 and 2 on the steel and 7 and 8 on the FRP. The strain gages placed on the FRP (7 and 8) 

were centered along the midline of the FRP strip and were therefore 1.5 in. (38.1 mm) 

from the stem tip. The axial and lateral displacements were recorded using draw wire 

transducers (DWT). The axial displacement DWT was connected directly to the 

crosshead, whereas the lateral displacement DWT was clipped to the tip of the stem at the 

mid height of the specimen. Both DWT configurations can be seen in Figure 3.6.  

 All instrumentation and the Baldwin load cell were connected to a Vishay System 

5100 data acquisition system. The applied loading of the specimens in the Baldwin UTM 

was controlled manually, at a constant rate of 100 pounds (445 N) per second, with 

hydraulic load controls. 
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3.6 EXPERIMENTAL PROCEDURE 

 

 There were a total of fifteen specimens tested in this program, three of each 

specimen configuration. As described earlier, each specimen configuration was loaded 

beyond its peak load to a percentage (50%, 80%, or 90%) of that load at which time the 

test was stopped. This was done to permit assessment of the buckling deformations with 

each FRP configuration. For each specimen, the axial load was applied at a constant rate 

of 100 pounds (445 N) per second. Once the peak load of the specimen was achieved, 

testing continued until the final target load (50%, 80% or 90% of the peak load) was 

reached. Finally, the specimen was unloaded at a constant rate. Following unloading and 

photographing, the specimen was reloaded until FRP failure occurred (if it had not done 

so already). 

 

 

3.7 PREDICTED WT 6x7 BEHAVIOR  

 

Steel member sections are categorized as compact, noncompact, or slender-

elements based upon limiting width-thickness ratios of webs and flanges (AISC 2005). 

To determine the classification of the WT 6x7 sections, the limiting width-thickness 

ratios were calculated, as shown in Table 3.3. 

AISC (2005) states, “For a section to be compact, all of its compression elements 

must have width-thickness ratios equal to or smaller than the limiting λp.” The second 

limiting width-thickness ratio, λr, is the division between noncompact and slender 
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sections. Elastic local buckling is not the governing limit state for a compression element 

provided the limiting (web or flange) width-thickness ratio of the element does not 

exceed λr. When λr is exceeded, the elastic buckling strength of the compression member 

must be taken into account. In the case of the WT 6x7 sections used in the present work, 

the flanges are compact while the stem is slender: 

 24.803.18.292.0/96.5/ =>=== ywstem FEtdλ   3.2 (AISC Eq. E7-15) 

 The reduction factor for a slender unstiffened element, Qs, is calculated based on 

the AISC Specification (2005) Section E7.1:   
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 Using this reduction factor, the local critical buckling load is determined: 
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Where Fe is the elastic critical buckling stress (Euler buckling stress): 
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 Finally, the calculation of the local critical buckling load of a 14 in. (356 mm) 

long WT 6x7 section accounting for the stem buckling limit state is found to be 46 kips 

(209 kN): 

3.46)08.2)(278.22( === gcrn AFP kips      3.6 (AISC Eq. E7-1)
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Table 3.1 Preliminary squash test results. 
Nominal Length Peak Axial Load 

2 in. (51 mm) 105000 lbs (467 kN) 
4 in. (101.6 mm) 96500 lbs (429 kN) 
6 in. (152.4 mm) 90500 lbs (403 kN) 
12 in. (304.8 mm) 77900 lbs (347 kN) 
14 in. (355.6 mm) 70600 lbs (314 kN) 
18 in. (457.2 mm) 59100 lbs (263 kN) 

49.5 in.1 (1257.3 mm) 49255 lbs (219 kN) 
1 Abraham 2006 

 
 
 
 
 

Table 3.2 Material properties reported by manufacturer. 

Material 
Tensile 

Strength 
 

Tensile 
Modulus 
ksi (MPa) 

Thickness in. 
(mm) 

Rupture 
Strain 

WT 6x7 Section 
50 ksi 

(345 MPa) 
29000 ksi 

(200000 MPa) 
tw = 0.200 (5.1) - 

HS Carbon FRP 
405 ksi 

(2792 MPa) 
22500 ksi 

(155000 MPa) 
0.055 (1.4) 0.018 

UHM Glass FRP 
130 ksi 

(896 MPa) 
6000 ksi 

(41000 MPa) 
0.075 (1.9) 0.022 

Adhesive 
4.5 ksi 

(31 MPa) 
5751 ksi 

(4000 MPa) 
0.03 (0.76)2 0.025 

1 tangent modulus of elasticity 
2 estimated 
 
 
 
 
 

Table 3.3 Limiting Width-Thickness Ratios for WT 6x7. 

Limiting Width Thickness Ratios Description of 
Element 

Width-Thickness 
Ratio 

WT 6x7 λp (compact) λr (noncompact) 

Slender Element 
Compression 

Member 

Flexure in flanges 
of tees 

ftb 2  

8.8 
yFE38.0  

9.2 
yFE00.1  

24.1 
yFE03.1  

24.8 
Uniform 

compression in 
stems of tees 

wtd  

29.8 
NA yFE75.0  

18.1 
yFE03.1  

24.8 
Note:  Equations presented in English units format 
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Figure 3.1 Peak axial load verses specimen length for squash tests. 

 
 
 
 

 
 

Figure 3.2 Photograph of squash test specimens. 
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Figure 3.3 Specimen section details. 

 
 
 

 
 

Figure 3.4 Representative photo of steel surface prepared for FRP application. 
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Figure 3.5 Experimental setup. 
 
 
 
 
 
 

 
 

Figure 3.6 Instrumentation photo and cross sectional diagram. 
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4.0 EXPERIMENTAL RESULTS 

 

This section deals with the experimental behaviors and results of each plastic 

buckling test of the WT 6x7 specimens. 

 

 

4.1 TEST RESULTS 

 

 Table 4.1 summarizes all of the specimens’ maximum axial compressive loads, 

axial displacements, and midheight lateral displacements. Table 4.2 displays all of the 

maximum strains recorded for each strain gage for each specimen. Figures 4.1 through 

4.3 display both the displacement and load-strain curves of each control specimen. The 

displacement curve displays both the axial and lateral displacements recorded by the 

vertical and horizontal draw wire transducers, respectively. The three remaining graphs 

display the results of the strain gages throughout the testing of the specimens. A 

representative photograph of each control specimen accompanies the displacement curve, 

while a diagram of the strain gage layout accompanies the load-strain curves. Figures 4.4 

through 4.15 display both the displacement and load-strain curves for each FRP specimen 

tested. Accompanying these curves are representative photos of the specimen at their 

post-peak response at an axial load corresponding to the designated percentage of the 

peak load (i.e.: 50%, 80% or 90%). Figures 4.16 to 4.21 show photographs of selected 
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test specimens at their peak and ultimate capacities. Figure 4.22 displays a bar graph of 

the maximum lateral displacements at midheight including representative photographs of 

the specimens at both 80% and 90% of the axial load capacity. 

 

 

4.2 SPECIMEN BEHAVIOR 

 

Web local buckling of the stem dominated the behavior of each test specimen. 

Neither flange local buckling nor lateral torsional buckling was observed in the test 

specimens. As indicated in Table 4.1, the presence of the FRP affected the responses to 

some degree. The Control specimens were additionally used to assess the test set-up and 

specifically to ensure that the WT sections were subject to a uniform axial load over their 

entire section. The following sections describe the behavior of each specimen type tested 

in this experimental program.  

 

4.2.1 Axial Load Distribution and Apparent Loading Eccentricity 

 

 Table 4.3 displays the strain readings for all three control specimens at specified 

load intervals that were recorded during the experimental procedure. This illustrates the 

uniform compressive strains in the cross section at lower loads, and gives an indication 

when instability is initiated in the section. When one of the coupled strain gages begins 

recording a greater or lesser rate of change in strain, the section is displaying signs of 

instability.  
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 When dealing with lower axial loads on a member under elastic behavior, the 

strains across a cross section should be uniform. Any non-uniform strain reading displays 

imperfections and/or eccentricities within the section or applied loading, causing flexural 

behavior. These non-uniform readings may lead to a decrease in the buckling capacity of 

the member. Several reasons could account for these non-uniform strain readings, such 

as: member fabrication, misalignment of the member in the test frame, inconsistencies 

within the material, or a combination of these reasons. For all of these reasons, the results 

achieved in this experiment may be slightly modified if any misalignment is calculated. 

To determine this eccentricity from the theoretical member cross sectional centroid, the 

strain gage data must be utilized. The strain data was taken at 10000 lbs (44.4 kN) for 

each member. From the strain data, and assuming the strain varied linearly throughout the 

member, the approximation of the strain values was determined. These strain 

approximations were converted to stresses and the resultant force and magnitude were 

determined by summing the moment about an arbitrary point. Table 4.4 displays the 

theoretical centroid of the WT 6x7 sections, and the calculated experimental centroids 

based upon the recorded strain gage data. The expected theoretical centroid based upon 

AISC Manual 13th Edition is located at 1.760 in. (44.7 mm) from the outside of the flange 

and in the middle of the stem at 1.985 in. (50.4 mm). The calculations of the coordinates 

of the equivalent load eccentricity displayed in Table 4.4 are displayed in Appendix A. 

As was observed by Abraham (2006) the x-eccentricity is on the order of 0.4 in. (10 mm) 

from the theoretical centroid. This is believed to result from differences between the WT 

sections tested and the theoretical geometry reported by AISC. The y-eccentricity is 
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approximately 0.1 in. (2.5 mm) in each case, possibly indicating an eccentricity in the test 

frame loading. 

 

4.2.2 Control Specimen 

 

 The maximum peak axial compression load obtained from the three control 

specimens was 80341 lbs (357 kN). The maximum axial and lateral displacements 

obtained when the specimen was loaded to an ultimate load of 50% of the peak load 

obtained were 0.293 in. (7.44 mm) and 2.007 in. (50.98 mm) respectively. The control 

specimens all exhibited a significant “kink” in the web of the WT section as they buckled 

as clearly seen in Figure 4.16(c). This kink was less pronounced or mitigated completely, 

resulting in a sinusoidal buckle having no kink (for example, compare with Figure 

4.20(c)) in the specimens that had FRP material applied to the web. A summary of the 

maximum strains recorded may be found in Table 4.2. Figure 4.16 shows representative 

photos of specimen Control 50.  

 

4.2.3 Specimen CFRP-1 

 

The maximum peak axial compression load obtained from the three CFRP-1 

specimens was 89317 lbs (397 kN). The maximum axial and lateral displacements 

obtained when the specimen was loaded to an ultimate load of 50% of the peak load were 

0.142 in. (3.607 mm) and 1.242 in. (31.547 mm), respectively. CFRP-1-50 and CFRP-1-

80 specimens exhibited CFRP strip debonding initiating at one end of the CFRP strips 
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located on the “tension” side of the buckled web as can be seen in Figure 4.17(c). This 

debonding occurred after the maximum axial load was obtained and therefore was driven 

by the buckling-induced deformation of the web. Specimen CFRP-1-90 did not exhibit 

debonding (Figure 4.17(d)) indicating that the limited lateral deflection at a load of 90% 

of the peak load was insufficient to cause debonding in this case. It is also evident by 

contrasting the ultimate behavior of CFRP-1-50 and CFRP-1-90 in Figures 4.17 (c) and 

(d), respectively, that the formation of the kink (evident in 4.17(c)) appears to occur 

following debonding; this will be discussed further in Chapter 5. Of all the specimens 

tested, the CFRP-1 group displayed the greatest increase in the maximum axial 

compression value. A summary of the maximum strains recorded may be found in Table 

4.2. Figure 4.17 shows representative photos of CFRP-1-50 and CFRP-1-90.  

 

4.2.4 Specimen CFRP-2 

 

The maximum peak axial compression load obtained from the three CFRP-2 

specimens was 86406 lbs (384 kN). The maximum axial and lateral displacements 

obtained when the specimen was loaded to an ultimate load of 50% of the peak load were 

0.253 in. (6.426 mm) and 1.537 in. (39.040 mm) respectively. CFRP-2-50 exhibited 

debonding at one end of the CFRP strip located on the “tension” side of the web buckle 

as shown in Figure 4.18(c). This debonding occurred after the maximum axial load was 

obtained. CFRP-2-80 did not exhibit debonding. Specimen CFRP-2-90 exhibited unique 

behavior: a compressive failure of the CFRP strip on the “compression” side of the 

buckled web was observed as shown in Figure 4.19. It is noted that the “tension” side 
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debonding shown in Figure 4.19 occurred after 90% of the peak load was attained; the 

specimen was loaded further to investigate the compressive behavior observed. The 

compressive failure of the CFRP in this case indicates an extremely sound bond between 

the CFRP and the steel. A summary of the maximum strains recorded may be found in 

Table 4.2. Figure 4.18 displays the representative photos of Specimen CFRP-2-50. 

 

4.2.5 Specimen GFRP-1 

 

The maximum peak axial compression load obtained from the three GFRP-1 

specimens was 88957 lbs (396 kN). The maximum axial and lateral displacements 

obtained when the specimen was loaded to an ultimate load of 50% of the peak load were 

0.201 in. (5.105 mm) and 1.746 in. (44.348 mm) respectively. Like the previous 

specimens, GFRP-1-50 exhibited debonding initiating at the end of the GFRP strip on the 

“tension” side of the buckled web. GFRP-1-80 and GFRP-1-90 exhibited no such 

debonding. A summary of the maximum strains recorded may be found in Table 4.2. 

Figure 4.20 shows representative photos of Specimen GFRP-1-50. 

 

4.2.6 Specimen GFRP-2 

 

The maximum peak axial compression load obtained from the three GFRP-2 

specimens was 83476 lbs (371 kN). The maximum axial and lateral displacements 

obtained when the specimen was loaded to an ultimate load of 50% of the peak load were 

0.260 in. (6.604 mm) and 1.438 in. (36.525 mm) respectively. GFRP-2-50 and GFRP-2-
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80 exhibited debonding at the ends of the GFRP strips located on the “tension” side of the 

web buckle. GFRP-1-90 exhibited no such debonding. A summary of the maximum 

strains recorded may be found in Table 4.2. Figure 4.21 shows representative photos of 

Specimen GFRP-2-50.  

 

 

4.3 OBSERVED DEBONDING BEHAVIOR  

 

Table 4.5 summarizes the maximum strains recorded on the CFRP or GFRP strips 

in each test. The degree of through-web flexure is very evident in these values. The 

maximum strains attained prior to debonding are comparable to those observed in test 

programs of FRP adhesively bonded to either steel or concrete. The strains are also well 

below the reported rupture strain of the materials (See Table 3.2). One factor affecting the 

debonding behavior and the inability to develop FRP rupture is the relatively short 

bonded length used. This is discussed in Section 3.2.2. 
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Table 4.1 Summary of displacements resulting from axial compression. 

Specimen 
Maximum 

Compressive Load, 
lbs (kN) 

Maximum Axial 
Displacement, in. (mm) 

Maximum Lateral 
Displacement at Midheight, 

in. (mm) 
Control 50 80341 (357) 0.293 (7.442) 2.007 (50.978) 
Control 80 77727 (346) 0.111 (2.819) 0.569 (14.453) 
Control 90 74398 (331) 0.163 (4.140) 0.411 (10.439) 
CFRP-1-50 86419 (384) 0.142 (3.607) 1.242 (31.547) 
CFRP-1-80 88621 (394) 0.080 (2.032) 0.555 (14.097) 
CFRP-1-90 89317 (397) 0.081 (2.057) 0.499 (12.675) 
CFRP-2-50 82742 (368) 0.253 (6.426) 1.537 (39.040) 
CFRP-2-80 86406 (384) 0.108 (2.743) 0.705 (17.907) 
CFRP-2-90 80105 (356) 0.082 (2.083) 0.628 (15.951) 
GFRP-1-50 83247 (370) 0.201 (5.105) 1.746 (44.348) 
GFRP-1-80 88957 (396) 0.072 (1.829) 0.668 (16.967) 
GFRP-1-90 82205 (366) 0.080 (2.032) 0.542 (13.767) 
GFRP-2-50 80966 (360) 0.260 (6.604) 1.438 (36.525) 
GFRP-2-80 83476 (371) 0.082 (2.083) 0.686 (17.424) 
GFRP-2-90 76898 (342) 0.109 (2.769) 0.634 (16.104) 
 

 

Table 4.2 Summary of maximum strain gage readings. 

Specimen Gage 1 
(µe) 

Gage 2 
(µe) 

Gage 3 
(µe) 

Gage 4 
(µe) 

Gage 5 
(µe) 

Gage 6 
(µe) 

Gage 7 
(µe) 

Gage 8 
(µe) 

Control 50 -1339 -4398 -6663 -1530 -1350 -2871 --- --- 
Control 80 -4341 -1068 -1879 -1149 -1678 -1500 --- --- 
Control 90 -3772 -1331 -1855 -1196 -3463 -1216 --- --- 
CFRP-1-50 -4211 1615     3678 -6757 
CFRP-1-80 -3725 920     2252 -4056 
CFRP-1-90 -3830 1241     2884 -6082 
CFRP-2-50 -5388 3334     5035 -7996 
CFRP-2-80 -4635 2322     3066 -5419 
CFRP-2-90 -4108 2273     2803 -4815 
GFRP-1-50 -4347 3017     3380 -5894 
GFRP-1-80 -4198 1372     4495 -2200 
GFRP-1-90 -4158 1146     3962 -6891 
GFRP-2-50 -5206 3392     6456 -9338 
GFRP-2-80 1637 -3949     -6131 2948 
GFRP-2-90 -3855 1396     2629 -5151 
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Table 4.3 Strains at applied load intervals for all 3 control specimens. 
Applied Load Gage 1 (µe) Gage 2 (µe) Gage 3 (µe) Gage 4 (µe) Gage 5 (µe) Gage 6 (µe) 

Control 50             
5000 lbs -158 -148 -11 -7 -122 -116 
10000 lbs -245 -232 -89 -85 -197 -192 
20000 lbs -424 -405 -253 -247 -360 -358 
30000 lbs -597 -571 -423 -414 -524 -524 
40000 lbs -767 -729 -591 -580 -696 -700 
50000 lbs -935 -884 -755 -741 -873 -880 
60000 lbs -1101 -1037 -918 -900 -1051 -1061 
70000 lbs -1273 -1206 -1082 -1064 -1235 -1252 

Control 80             
5000 lbs -146 -134 -91 -88 -90 -92 
10000 lbs -262 -239 -195 -192 -166 -170 
20000 lbs -399 -356 -360 -355 -270 -273 
30000 lbs -558 -483 -525 -514 -449 -450 
40000 lbs -745 -625 -683 -664 -634 -632 
50000 lbs -945 -767 -839 -811 -818 -812 
60000 lbs -1156 -895 -999 -957 -1004 -991 
70000 lbs -1646 -1056 -1209 -1099 -1238 -1198 

Control 90             
5000 lbs -177 -162 -72 -66 -29 -30 
10000 lbs -320 -291 -164 -157 -60 -60 
20000 lbs -548 -497 -421 -410 -105 -101 
30000 lbs -746 -683 -649 -639 -199 -190 
40000 lbs -929 -840 -822 -805 -368 -356 
50000 lbs -1170 -1023 -992 -966 -550 -532 
60000 lbs -1566 -1244 -1178 -1120 -760 -731 
70000 lbs -2450 -1218 -1391 -1184 -1101 -957 

 
 
 

Table 4.4 Coordinates of equivalent load eccentricity. 

  
x 

(in.) 
∆x (ex) 
(in.) 

y 
(in.) 

∆y (ey) 
(in.) 

Peak Observed 
Load (lbs) 

Theoretical Centroid 1.760 --- 1.985 --- --- 
Control 2.551 0.791 1.970 -0.015 80341 
CFRP-1 2.074 0.314 1.890 -0.095 89317 
CFRP-2 2.162 0.402 1.895 -0.090 86406 
GFRP-1 2.135 0.375 1.894 -0.091 88957 
GFRP-2 2.153 0.393 1.894 -0.091 83476 
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Table 4.5 Maximum strain gage readings on the FRP. 

Specimen 
Max Strain on 
tension side of 

stem (µe) 

Max Strain on 
compression side 

of stem (µe) 
Control 50 --- --- 
Control 80 --- --- 
Control 90 --- --- 
CFRP-1-50 3678 -6757 
CFRP-1-80 2252 -4056 
CFRP-1-90 4118 -7269 
CFRP-2-50 5035 -7996 
CFRP-2-80 3066 -5419 
CFRP-2-90 2834 -6970 
GFRP-1-50 3380 -5894 
GFRP-1-80 4562 -2234 
GFRP-1-90 4061 -7847 
GFRP-2-50 6456 -9338 
GFRP-2-801 2948 -6131 
GFRP-2-90 7010 -8960 

1 in all cases but GFRP-2-80, the tension side of the stem was 
recorded by gage 7 and the compression side by gage 8. In GFRP-
2-80 this is reversed (i.e.: the web buckled in the other direction) 
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(a) Load-Displacement curves. (b) Load-Strain curves. 
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(c) Load-Strain curves. (d) Load-Strain curves. 

 
Figure 4.1 Representative behavior of Control Specimen 50. 
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(a) Load-Displacement curves. (b) Load-Strain curves. 
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(c) Load-Strain curves. (d) Load-Strain curves. 

 
Figure 4.2 Representative behavior of Control Specimen 80. 
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(a) Load-Displacement curves. (b) Load-Strain curves. 
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(c) Load-Strain curves. (d) Load-Strain curves. 

 
Figure 4.3 Representative behavior of Control Specimen 90. 
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(a) Load-Displacement curves. (b) Load-Strain curves. 

 
Figure 4.4 Representative behavior of Specimen CFRP-1-50. 
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(a) Load-Displacement curves. (b) Load-Strain curves. 

 
Figure 4.5 Representative behavior of Specimen CFRP-1-80. 
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(a) Load-Displacement curves. (b) Load-Strain curves. 

 
Figure 4.6 Representative behavior of Specimen CFRP-1-90. 
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(a) Load-Displacement curves. (b) Load-Strain curves. 

 
Figure 4.7 Representative behavior of Specimen CFRP-2-50. 
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(a) Load-Displacement curves. (b) Load-Strain curves. 

 
Figure 4.8 Representative behavior of Specimen CFRP-2-80. 
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(a) Load-Displacement curves. (b) Load-Strain curves. 

 
Figure 4.9 Representative behavior of Specimen CFRP-2-90. 
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(a) Load-Displacement curves. (b) Load-Strain curves. 

 
Figure 4.10 Representative behavior of Specimen GFRP-1-50. 
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(a) Load-Displacement curves. (b) Load-Strain curves. 

 
Figure 4.11 Representative behavior of Specimen GFRP-1-80. 
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(a) Load-Displacement curves. (b) Load-Strain curves. 

 
Figure 4.12 Representative behavior of Specimen GFRP-1-90. 
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(a) Load-Displacement curves. (b) Load-Strain curves. 

 
Figure 4.13 Representative behavior of Specimen GFRP-2-50. 
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(a) Load-Displacement curves. (b) Load-Strain curves. 

 
Figure 4.14 Representative behavior of Specimen GFRP-2-80. 
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(a) Load-Displacement curves. (b) Load-Strain curves. 

 
Figure 4.15 Representative behavior of Specimen GFRP-2-90. 
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(a) (b) (c) 

Figure 4.16 Control 50 Specimen. 
(a) Prior to loading, (b) at the peak axial load of 80341 lbs (357 kN), and (c) at 50% of axial 

load capacity. 
 
 

    
(a) (b) (c) (d) 

Figure 4.17 Specimens CFRP-1-50 and CFRP-1-90. 
(a) CFRP-1-50 prior to loading, (b) CFRP-1-50 at the peak axial load of 86419 lbs (384 kN), (c) 

CFRP-1-50 at 50% of axial load capacity, (d) CFRP-1-90 at 90% axial load capacity. 
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(a) (b) (c) 

Figure 4.18 Specimen CFRP-2-50. 
(a) Prior to loading, (b) at the peak axial load of 82742 lbs (368 kN), and (c) at 50% of axial 

load capacity. 
 
 
 
 
 
 
 

 
 

Figure 4.19 Specimen CFRP-2-90 showing compressive failure of bonded CFRP. 
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(a) (b) (c) 

Figure 4.20 Specimen GFRP-1-50. 
(a) Prior to loading, (b) at the peak axial load of 83247 lbs (370 kN), and (c) at 50% of axial 

load capacity. 
 

   
(a) (b) (c) 

Figure 4.21 Specimen GFRP-2-50. 
(a) Prior to loading, (b) at the peak axial load of 80966 lbs (360 kN), and (c) at 50% of axial 

load capacity. 
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Figure 4.22 Maximum lateral displacements at midheight including representative 

photographs of the specimens at both 80% and 90% of the axial load capacity. 
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5.0 EXPERIMENTAL DISCUSSION 

 

This chapter deals with the interpretation and discussion of the data and results 

presented in Chapter 4. A summary of the peak load behavior is provided in Table 5.1. It 

is seen that the presence of the FRP results in a marginal improvement in axial load 

carrying capacity. This effect, as expected, is shown to be proportional to the increase in 

radius of gyration affected by the presence of the GFRP. 

 

 

5.1 WEB BIFURCATION LOAD 

 

The web local buckling bifurcation load is the applied load at which web local 

buckling at the tip of the stem is initiated. Prior to bifurcation, the strain gages on either 

side of the web (gages 1 and 2) essentially “track” each other in compression indicating 

the web stem is subject to uniform compression (as shown in Figure 4.4, for example). As 

buckling initiates, the web bends resulting in a superimposed strain gradient through the 

thickness of the web. This behavior is easily represented as the application of a moment 

to the web equal to the applied axial load multiplied by an apparent eccentricity of this 

load; that is: P x e as shown in Figure 5.1. Once this eccentricity is introduced, one gage 

continues to increase in compression at a greater rate than the application of axial load 

would suggest and the second gage begins shedding compression, eventually going into 
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net tension. The bifurcation load is arbitrarily defined in this work as occurring when the 

axial resultant acting on the web stem is beyond the dimension of the web; that is the 

eccentricity of the resultant axial load exceeds half the web width: e > tw/2. The 

eccentricity is calculated based on the values of strain recorded on gages 1 and 2 (ε1 and 

ε2) as follows (see Figure 5.1): 

621

12 wt
e 









+
−

=
εε
εε

                                              5.1  

The bifurcation loads are reported in Table 5.1. In this test program, bifurcation 

was seen to initiate above 90% of the peak load attained indicating a very uniform and 

concentric application of axial load. The presence of the FRP appears to affect the 

bifurcation load to essentially the same degree as it affects the peak load. The CFRP-1 

and GFRP-1 exhibit a marginal increase in the load at which bifurcation initiates 

reflecting the greater local increase in radius of gyration affected by the FRP discussed in 

the following section. 

 

 

5.2 RADIUS OF GYRATION 

 

 The slenderness ratio of a member is affected by both the length of the element 

and its radius of gyration, ry. When retrofitting steel sections with FRP the objectives are 

to both increase the maximum compressive capacity of the member while also increasing 

the radius of gyration to improve the buckling behavior. The more slender a member, the 

more the member behavior deteriorates under cyclic loading (Bruneau et al., 1998). 

Decreasing the slenderness of a member ultimately increases the cyclic loading lifespan 
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as well as its loading capacity. In this experimental program, the WT 6x7 member has a 

slender stem and a compact flange (see Section 3.7); the retrofit is therefore focused on 

the stem. Table 5.2 displays the increases in the radii of gyration for the entire WT 6x7 

section and for the stem alone (calculated based on the length from the flange to the stem 

tip, d – tf) when retrofitted with FRP.  

 The effect of retrofitting is a significant increase in the value of ry for the stem 

alone, ranging from 1.12 to 1.36 times the value of ry for the unretrofit stem (calculated to 

be 0.058 in.). These increases are proportional to, although approximately three times, the 

observed increases in axial load carrying capacity and bifurcation load. In contrast, when 

considering the WT section as a whole, there is essentially no increase of the radius of 

gyration.  

While the axial load capacity was improved by the FRP retrofitting, the increased 

stem radius of gyration greatly aided in delaying the “kinking” of the stem under axial 

compression. This results in a more ductile behavior and will ultimately lead to the 

increased capacity of a member under reversed cyclic axial loading conditions.  

 

 

5.3 EFFECTS UPON THE STEM IN AXIAL COMPRESSION 

 

 Visual observation of the test specimens during and after testing, revealed the 

improved resistance of the WT stem to “kinking” when FRP is applied (Figure 5.2). In 

each fiber reinforced specimen, kinking of the stem only occurred after debonding of the 

FRP. The FRP material inhibited the stem from kinking and ultimately may allow the 
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section to withstand a greater amount of cyclic loading. As discussed above, the 

increased radius of gyration improved the stability of the stem resulting in a more ductile 

stem behavior than observed in the control specimens. The stem was supported by the 

FRP until the eventual debonding of the FRP. The theoretical effect of mitigating the 

“kinking” effect is illustrated in Figure 5.3. By mitigating kinking: 

1. the compression “plateau” A-B is elongated; 

2. the residual compressive load Cr’ may be increased; 

3. the “negative stiffness” region (B-C) is minimized or mitigated altogether. 

4. the reloading tensile stiffness is increased (C-D-E); and, 

5. the rapid transition in stiffness during tension reloading is less significant, 

reducing the possibility of an “impact” effect (CISC 2007). 

6. the number of cycles to eventual fracture of the section due to low cycle fatigue is 

increased due to the reduced plastic deformation demand. 

Each of these effects results in an increase in energy that may be dissipated by the 

brace as illustrated by a greater area contained under the hysteresis in Figure 5.3. 
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Table 5.1 Results of plastic buckling tests (Average of three tests in every case). 
 Control CFRP-1 CFRP-2 GFRP-1 GFRP-2 
Peak axial 
compression,  
lbs (kN) 

77560 (345) 88125 (392) 83180 (370) 84750 (377) 80480 (358) 

ratio of peak load to 
control peak load 

n.a. 1.14 1.07 1.09 1.04 

WLB bifurcation 
load, lbs (kN) 

71940 (320) 84305 (375) 78235 (348) 83405 (371) 73515 (327) 

ratio of bifurcation 
load to control 
bifurcation load 

n.a. 1.17 1.09 1.16 1.02 

ratio of bifurcation 
load to peak load 

0.93 0.96 0.94 0.98 0.91 

Representative 
photograph taken 
during post-peak 
response at axial 
load of 80% of peak 
load  
 
(Debonding shown 
by arrows) 

     
 C CFRP-1 CFRP-2 GFRP-1 GFRP-2 
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Table 5.2 Predicted ry values. 
(adapted from Harries and Abraham, 2006) 

  calculation  CFRP-1 CFRP-2 GFRP-1 GFRP-2 

 tFRP, in   0.11 0.055 0.15 0.075 

 bFRP, in   1 2 1 2 

 d, in  = tFRP/2 + tstem/2 0.155 0.128 0.175 0.138 

 AFRP, in
2  = 2tFRPbFRP 0.22 0.22 0.3 0.3 

 IFRP, in
4  = (1/12)bFRPtFRP

3 + nAFRPd
2 0.00427 0.00282 0.00202 0.0012 

F
R

P
 

 n, modular ratio  = EFRP/Esteel 0.776 0.776 0.207 0.207 

 tstem, in  (AISC, 2005a) 0.200 0.200 0.200 0.200 

 dstem, in  = d - tf 5.735 5.735 5.735 5.735 

 Astem, in
2  = tstemdstem 1.147 1.147 1.147 1.147 

 Iy-stem, in
4  = (1/12) dstemtstem

3 0.00382 0.00382 0.00382 0.00382 

 ry-stem, in  = (Iy-stem/Astem)
1/2 0.0577 0.0577 0.0577 0.0577 

 Astem comp, in
2  = Astem 

(1) 1.147 1.147 1.147 1.147 

 Iy-stem comp, in
4  = Iy-stem + nIFRP 0.0081 0.0066 0.0058 0.0050 

 ry-stem comp, in  = (Iy-stem comp/Astem comp)
1/2 0.0784 0.0710 0.0695 0.0645 

W
T

6x
7 

S
te

m
 O

nl
y 

 increase in ry  = ry-stem comp/r y-stem 1.358 1.230 1.204 1.117 

 AWT6x7, in
2  (AISC, 2005a) 2.08 2.08 2.08 2.08 

 Iy, in
4  (AISC, 2005a) 1.18 1.18 1.18 1.18 

 ry, in  (AISC, 2005a) 0.753 0.753 0.753 0.753 

 Acomp, in
2  = Astem 

(1) 2.080 2.080 2.080 2.080 

 Iy comp, in
4  = Iy + nIFRP 1.1833 1.1822 1.1804 1.1802 

 ry comp, in  = (I comp/Acomp)
1/2 0.7543 0.7539 0.7533 0.7533 F

ul
l W

T
6x

7 
S

ec
tio

n 

 increase in ry  = ry comp/r y 1.002 1.001 1.000 1.000 
 (1) Astem comp = Acomp = Astem due to the low compressive modulus of FRP. 
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Figure 5.1 Web bifurcation load eccentricity value calculations. 
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Pretest Peak Load Peak Load Peak Load 
90% of Load 

Capacity 
80% of Load 

Capacity 
50% of Load 

Capacity 

Control 

       
 (a) (b) (c) (d) (e) (f) (g) 

FRP 

       
 (h) (i) (j) (k) (l) (m) (n) 

(a) Pretest of control specimen 50, (b) control specimen 50 peak load of 74400 lbs, (c) control specimen 80 peak load of 77800 lbs, 
(d) control specimen 90 peak load of 80400 lbs, (e) at 90% of post peak axial load capacity, (f) at 80% of post peak axial load 
capacity, (g) at 50% of post peak axial load capacity, (h) pretest of GFRP-1-50, (i) GFRP-1-50 peak load of 84100 lbs, (j) CFRP-1-
80 peak load of 89800 lbs, (k) CFRP-1-90 peak load of 90400 lbs, (l) CFRP-1-90 at 90 % of post peak axial load capacity, (m) 
CFRP-1-80 at 80 % of post peak axial load capacity, and (n) GFRP-1-50 at 50 % of post peak axial load capacity. 
Figure 5.2 Photographic representations of the effects of fiber reinforcement on the behavior of the stem under 

axial compression. 
 
 

 

B’

C’

 
Figure 5.3 Modified sample hysteresis of brace under cyclic loading to illustrate the 
effect of the absence of kink formation. (original from Bruneau, 1998, adapted from 

Harries and Abraham, 2006) 
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6.0 CONCLUSIONS AND RECOMMENDATIONS 

 

 This section presents the conclusions of the experimental program, and 

recommendations based on these conclusions.  

 

 

6.1 CONCLUSIONS 

 

The concept of strategically applying FRP material to a steel compression 

member in order improve local buckling behavior was proposed and investigated in this 

pilot study. The nominal affect of the addition of small amounts of FRP has little effect 

on the elastic buckling behavior of the long sections typical of braces found in building 

structures (Abraham, 2006). The FRP retrofit is however able to affect local behavior. 

Improvement in load-carrying capacity is proportional to the increase in effective radius 

of gyration (ry) affected by the presence of the FRP. For elastic buckling, the entire 

section is considered in which case the increase in ry is nominal. For plastic buckling, 

only the outstanding plate element (WT stem, in the present case) is considered in which 

case the proportional improvement in capacity is greater. 

Prior to FRP debonding, the presence of the FRP controls the plastic buckling and 

delays the formation of the plastic “kink”. The formation of this kink affects the cyclic 

compressive capacity of the section upon subsequent reloading, the tensile stiffness of the 
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section, and can lead to section fracture in relatively few loading cycles. Thus the 

application of FRP may represent a viable option for improving the energy absorption 

and ultimate cyclic ductility of elements susceptible to plastic buckling in a seismic 

lateral force resisting system. The following conclusions were arrived at through this 

experimental program: 

1. The FRP retrofit measures did not provide a substantial increase in the axial 

compression load carrying capacity of the WT steel section members. The CFRP-

1 and CFRP-2 specimens exhibited an increase in axial capacity of 14% and 7%, 

respectively. The GFRP-1 and GFRP-2 specimens exhibited an increase in axial 

capacity of 9% and 4%, respectively.  

2. In this test program, bifurcation was seen to initiate above 90% of the peak axial 

load attained indicating a very uniform and concentric application of axial load. 

The presence of the FRP appears to affect the bifurcation load to essentially the 

same degree as it affects the peak load. The CFRP-1 and GFRP-1 specimens 

exhibited a marginal increase in the load at which bifurcation initiated reflecting 

the greater local increase in radius of gyration affected by the FRP. 

3. The effect of retrofitting is a significant increase in the value of ry for the WT 

stem alone, ranging from 1.12 to 1.36 times the value of ry for the unretrofit stem. 

These increases are proportional to, although approximately three times, the 

observed increases in axial load carrying capacity and bifurcation load. In 

contrast, when considering the WT section as a whole, there is essentially no 

increase of the radius of gyration.  
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4. While the axial load carrying capacity was improved by the FRP retrofitting, the 

FRP was most effective in delaying the “kinking” of the stem under axial 

compression. This results in a more ductile behavior and will ultimately lead to 

increased capacity of a member under reversed cyclic axial loading conditions. 

5. Visual observation of the test specimens during and after testing, revealed the 

improved resistance of the WT stem to “kinking” when FRP is applied (Figure 

5.2). In each FRP specimen, kinking of the stem only occurred after debonding of 

the FRP. The FRP material inhibited the stem from kinking and ultimately may 

allow the section to withstand a greater amount of cyclic loading. The stem was 

supported by the FRP until the eventual debonding of the FRP. The FRP, in this 

case, may serve to “spread” the plastic behavior over a larger region of the WT 

stem. 

6. The effectiveness of the FRP is limited by its ability to remain affixed to the steel 

substrate under axial compression load. The debonding behavior may be 

described as “end-peel” debonding. The end peel behavior of the FRP from the 

steel substrate is linked to the strains due to curvature and the interfacial shear 

caused by this curvature at the termination of the bonded FRP. 
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 6.2 RECOMMENDATIONS 

 

 Recommendations for future study include: 

1. The application of FRP composite retrofitting should be explored in areas of 

moderate and high seismic activity. The large impact that the FRP had on 

delaying “kinking” behavior of the WT stem suggests the need to explore this 

behavior under reversed cyclic axial loading conditions.  

2. Investigating the effects of the FRP development lengths on steel members to 

which the FRP composite materials are applied. This in turn may lead to further 

investigation of the impact of bond adhesion to the steel substrate, and ways in 

which to improve the bond behavior. The improvement of bonding FRP 

composite materials to the steel substrate will enhance the effectiveness of the 

FRP.  

3. Related to the previous recommendation, methods of providing FRP anchorage 

where extension of the FRP is not an option (such as in flexural hinges in beams 

at column faces) should be investigated to maximize the usability of the concept 

of FRP stabilization. 

The field of FRP composite materials is relatively new, leaving much more 

investigation on the effects of FRP on steel members still left to be done. The vast array 

of practical applications of FRP in the field of civil engineering has only yet to be 

discovered.  
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APPARENT CENTROID LOCATION 
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Actual Centroid Calculation

Load at which the stresses and strains were calcula ted:  10,049 lbs

Strains [ µµµµe]: Stresses [ksi]:

εW1 296:= εF1 244:= εF3 345:=
σW1

29000εW1⋅

10
6

:= σW1 8.584=

εW2 239:= εF2 245:= εF4 337:=

σW2

29000εW2⋅

10
6

:= σW2 6.931=

T Cross-Sectional Properties

tf 0.225:= Es 29000:=
σF1

29000εF1⋅

10
6

:= σF1 7.076=

tw 0.2:=

σF2

29000εF2⋅

10
6

:= σF2 7.105=
bf 1.985:=

bw 5.736:=
σF3

29000εF3⋅

10
6

:= σF3 10.005=

bgage 0.25:=

σF4

29000εF4⋅

10
6

:= σF4 9.773=

Average the stress between the pairs of strain gage s:

A1

σF3 σF4+

2
:= A1 9.889=

A2

σF1 σF2+

2
:= A2 7.091=

A3

σF1 σF3+

2
:= A3 8.54=

A4

σW1 σW2+

2
:= A4 7.758=

Stress Distribution Found Through Linear Interpreta tion

Avg1 3.47−
A2 A1−

2.97
⋅ A2+:= Avg1 10.36=

Avg2 3.47
A2 A1−

2.97
⋅ A1+:= Avg2 6.619=

Avg3 A3:= Avg3 8.54=

Avg4 5.735
A4 A3−

5.235
⋅ A3+:= Avg4 7.683=
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Locations upon which the force acts:

d1x 0.1125:= d1y 0:= d4x 0.1125:= d4y 3.397:=

d2x 0.1125:= d2y .2:= d5x 4:= d5y 1.985:=

d3x 0.1125:= d3y 3.197:= d6x 4.2:= d6y 1.985:=

Flange Calculations

h1 if Avg1 Avg2< Avg1, Avg2, ( ):= h3 if Avg1 Avg2<
Avg2 Avg1−

2
Avg1+





, 
Avg1 Avg2−

2
Avg2+





, 





:=

h1 6.619=
h3 8.49=

f1 h1 tf⋅ bf⋅:= f1 2.956=

f3 h3 tf⋅ bf⋅:=
h2 if Avg1 Avg2< Avg2 Avg1−( ), Avg1 Avg2−( ), [ ]:=

f3 3.792=
h2 3.741=

h4 if Avg1 Avg2< Avg2, Avg1, ( ):=

f2

h2

2

2
tf⋅ bf⋅:= h4 10.36=

f4

h4 h3−

2
tf⋅ bf⋅:=

f2 0.418=

f4 0.418=

Web Calculations

h5 if Avg3 Avg4< Avg3, Avg4, ( ):= h6 if Avg3 Avg4< Avg4 Avg3−( ), Avg3 Avg4−( ), [ ]:=

h5 7.683= h6 0.858=

f5 h5 tw⋅ bw⋅:= f6

h6

2
tw⋅ bw⋅:=

f5 8.814= f6 0.492=

Forces_Summed f1 f2+ f3+ f4+ f5+ f6+:= Forces_Summed 16.889=

Calculation of New Centroid

x
f1 d1x⋅ f2 d2x⋅+ f3 d3x⋅+ f4 d4x⋅+ f5 d5x⋅+ f6 d6x⋅+

Forces_Summed
:= x 2.26=

y
f1 d1y⋅ f2 d2y⋅+ f3 d3y⋅+ f4 d4y⋅+ f5 d5y⋅+ f6 d6y⋅+

Forces_Summed
:= y 1.9=

New Centroid:   x = 2.26 inches , y = 1.9  
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