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A COMPARISON OF KAPLAN-MEIER AND CUMULATIVE INCIDENCE 

ESTIMATE IN THE PRESENCE OR ABSENCE OF COMPETING RISKS IN 
BREAST CANCER DATA 

 
Bintu N. Sherif, M.S.

 
   University of Pittsburgh, 2007

 

Statistical techniques such as Kaplan-Meier estimate is commonly used and interpreted as 

the probability of failure in time-to-event data. When used on biomedical survival data, patients 

who fail from unrelated or other causes (competing events) are often treated as censored 

observations.   

This paper reviews and compares two methods of estimating cumulative probability of 

cause-specific events in the present of other competing events: 1 minus Kaplan-Meier and 

cumulative incidence estimators. A subset of a breast cancer data with three competing events: 

recurrence, second primary cancers, and death, was used to illustrate the different estimates 

given by 1 minus Kaplan-Meier and cumulative incidence function. Recurrence of breast cancer 

was the event of interest and second primary cancers and deaths were competing risks. 

The results indicate that the cumulative incidences gives an appropriate estimates and 1 

minus Kaplan-Meier overestimates the cumulative probability of cause-specific failure in the 

presence of competing events. In absence of competing events, the 1 minus Kaplan-Meier 

approach yields identical estimates as the cumulative incidence function. 

The public health relevance of this paper is to help researchers understand that competing 

events affect the cumulative probability of cause-specific events. Researchers should use 

methods such as the cumulative incidence function to correctly estimate and compare the cause-

specific cumulative probabilities. 
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1.0 INTRODUCTION 

Statistical techniques such as Kaplan-Meier product limit estimate (Kaplan and Meier 

1958), which take into account censored data, are primarily used in the medical and biological 

sciences for estimating the probability of failure in time-to-event data “survival data”. The term 

“survival data” is widely used to describe data involving time to the occurrence of an event. 

Events may be death, the appearance of a cancerous tumor, the development of some disease, 

recurrence of a disease, cessation of smoking, conception, and so forth. We have also seen 

survival analysis widely been used in the social sciences, where interest is on analyzing time to 

events such as job changes, marriage, birth of children and so forth. The engineering sciences 

have also contributed to the development of survival analysis which is called "reliability 

analysis" or "failure time analysis" in this field, since the main focus is in modeling the time it 

takes for machines or electronic components to break down. The developments from these 

diverse fields have for the most part been consolidated into the field of "survival analysis" 

(Allison, 1984). In the past decades, applications of the statistical methods for survival data 

analysis have been extended beyond biomedical and reliability research to other fields, for 

example, felons’ time to parole (criminology), length of newspaper or magazine subscription 

(marketing), workmen’s compensation claims (insurance), health insurance practice, business 

and economics. The study of survival data has previously focused on predicting the probability 

of response, survival, or mean lifetime, and comparing the survival distributions of experimental 
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animals or of human patients. In recent years, the identification of risk and/or prognostic factors 

related to response, survival, and the development of a disease has become equally important 

(Lee (1992) Ch. 1). 

The analysis of survival data can be complicated by issues of censoring. In biomedical 

data, censoring arises when an individual’s life length is only partially known in a certain period 

of time. Types of censoring includes right censoring- where the event occurs after the follow-up 

time, left censoring- where the event time occurred before the observation time, or interval 

censoring, where observation is not continual, but occurs at discrete times. Only the times 

between which the event occurred is known. Censored observations are contributed not only by 

losses to follow-up but also by deaths from other causes and sometimes by other events if they 

preclude development of the endpoint under consideration (Pepe, 1991).  For example, in a study 

of the disease-free survival in lymph node-negative breast carcinomas (Kuru et al study, 2003) 

patients with pathologically proven breast carcinoma and with negative axillary lymph nodes, 

who had been operated on for primary breast cancer, were followed-up for 60 months. The 

primary event of interest was death due to breast carcinoma. Patients who died from causes other 

than breast carcinoma were treated as censored observations. Many other studies tend to use the 

same type of approach; including Martinez (2007) in which the primary event of interest was 

AIDS related deaths (if the primary cause of death was an AIDS-defining condition) and death 

by other causes were censored.  

Ideally, the survival period is determined by following a group of patients until each of 

them has been reviewed for a set period of time or until an event has occurred. Emerging 

evidence now suggests that in the presence of competing risks, which will be further discussed, 

the cumulative incidence function, a method which takes into account competing risks 

 2 



occurrence, is the appropriate method use to estimate the probability of occurrence of the event 

of interest in the presence of other events. However, researchers often use the Kaplan Meier 

approach (1-KM) to evaluate the survival probability of occurrence of a cause-specific endpoint, 

even if the appropriate data contain competing-risk events (Gooley, Leisenring et al. 1999).  In 

the clinical oncology and epidemiology literature it is still quite common to see this probability 

incorrectly estimated as the 1 - KM estimator (Gaynor et al., 1993). This could result in an over-

estimation of the cumulative probability of cause-specific failure. 

There can be different types of failure in a time-to-event analysis under competing risks. 

For illustration purposes I will make the same assumption as Gooley et al (1999), that is, the 

existence of two failure types; events of interest and all other events. This paper evaluates the 

advantages and statistical appropriateness of using the cumulative incidence estimate over the 

Kaplan Meier estimates (1-KM) method in biomedical survival analysis under right censoring.  

The introduction and background are presented in Section 1. Section 2 reviews the hazard 

function estimate, commonly used the Kaplan Meier approach and the cumulative incidence 

estimate, as well as the definition of competing risks. Section 3 contains the description of a 

breast cancer dataset, used for comparison and illustrates the difference between cumulative 

incidence estimate and the 1 minus Kaplan Meier estimate. Section 4 contains the Statistical 

methods.  Numerical results of comparing the two types of estimates are provided in Section 5. 

Section 6 is a discussion of the results, limitations, suggestions for possible future application of 

this method, and suggested modifications of this method to fit different types of competing risks. 
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2.0 ESTIMATORS OF CUMULATIVE PROPOTION UNDER COMPETING RISKS 

2.1 THE HAZARD FUNCTION ESTIMATE 

A central quantity in survival analysis is the hazard function, (also known as the failure 

rate, hazard rate, or force of mortality) 

It is defined by: 
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Where f(t), F(t) and S(t) are the probability density function (p.d.f), the cumulative 

distribution function and the survivor function of T , respectively. 

Thus, λ (t) δt can be seen as the conditional probability that the event of interest occurs in 

the interval [t, t + δ t), given that it has not occurred before time t. It is clear that the hazard 

function is finite and nonnegative. This function is particularly useful in determining the 

appropriate failure distributions when competing risks are present.  

A quantity related to the hazard function is the probability of an individual surviving 

beyond time t, the survival function. The survival function, S(t) , is the exponential of the 

negative of the cumulative hazard function, i.e. 
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where H(t) is the cumulative hazard function.  

2.2 KAPLAN MEIER ESTIMATE 

The standard nonparametric estimator of the survival function is the Kaplan-Meier 

estimate. The Kaplan–Meier, or product limit estimator, first derived by Kaplan and Meier 

(1958), estimates the survival probability beyond time t  in right-censored data. It is very often 

useful to summarize the survival experience, in particular groups of patients in terms of the 

empirical survival function S(t): 

   

  k distinct event times t1 <tj  <...<tk 

  at each event time tj there are nj individuals at risk 

dj is the number of subjects who have the event at the time 
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When there are no censored observations, the Kaplan Meier estimator is simple and 

intuitive, as the proportion of failures times > t. When there is censoring, the Kaplan Meier 

provides an estimate of S(t) that takes censoring into account. The Kaplan-Meier estimator is a 
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step function with jumps at the observed event times. The pattern of these jumps depends not 

only on the number of events observed at each event time tj, but also on the pattern of the 

censored observations prior to ti. Figure 1 shows an example of a Kaplan-Meier survival curve 

for breast cancer patients assigned to tamoxifen treatment.  Details of this study will be described 

in section 3. 
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Figure 1.  An example of a Kaplan Meier curve 
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2.3 COMPETING RISK 

Gooley et al (1999) defined a competing risk as an event whose occurrence either 

precludes the occurrence of another event under examination or fundamentally alters the 

probability of occurrence of this other event. It is assumed that there is a potential failure time 

associated with each of the p risks to which the event is exposed. Thus, Tj represents the time-to-

event failure from cause j ( j = 1, . . . ,p) and the smallest Tj dictates the time to overall event 

failure.  In classical competing risks only U = min {T1, . . . , Tp} and C, where U = Tc, are 

observable; U and C are respectively the time of failure and the cause, or type of failure. It is 

assumed for the present that ties cannot occur, i.e. pr (Tj= Tk) = 0 for all j ≠ k.  Otherwise C is 

not so simply defined, Crowder (1994). In other words, a unit is exposed to several risks at the 

same time, but it is assumed that the eventual failure of the unit is due to only one of these risks, 

which is called a “cause of failure” (McKeague et al, 1994). 

When competing risks are present it is assumed that the subjects contribute iid 

observations to the data; the component fails when the first of all the competing failure 

mechanisms reaches a failure state; each of the k failure modes has a known life distribution 

model. (Pepe, 1991; Crowder, 1994).  One can assume that each failure mechanism leading to a 

particular type of failure proceeds independently of each other, including the risk of the event of 

interest, at least until a failure occurs. However, this is often not likely to be true, particularly 

when there is causal-effect between events. To assume independence one must be sure that a 

failure of one type of event has no effect on the likelihood of any other events (Crowder, 1994).  

Competing risks data can arise in many different situations and in relation to many 

different research questions.  A common example found in the literature is allogeneic bone 

marrow transplant among patients with leukemia. Following bone marrow transplant, a patient 
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may die from chronic graft-versus-host disease (CGVHD), recurrence of leukemia, pneumonia, 

other transplant related toxicities, or other causes during a study period. If the failure of interest 

is CGVHD, the other causes of death would be competing events. Each event can cause failure to 

occur; regardless of whether it is the failure of interest. Competing risks can be seen in women 

who start using an intrauterine device (IUD). They are subject to several risks, including 

accidental pregnancy, expulsion of the device, removal for medical reasons (including pelvic 

inflammatory disease) and removal for personal reasons. (Progress, 2002).  Competing events 

can also be seen in patients on a waiting list for renal transplant, because not all patients who are 

registered will eventually be transplanted. Competing events arise when registered patients may 

developed contraindications from transplantation and will be removed from the waiting list, or 

patients may die while awaiting a donor kidney (Smits, 1998).  Time to any first event of these 

can constitute competing risks data. 

Kalbfleisch and Prentice (1980 p.164) identified three distinct problems that arise in 

analyzing data with competing risks: 

1. The estimation of the relationship between covariates and the rate of 

occurrence of cause-specific failure.  

2. The study of the interrelation between failure types under a specific set of 

conditions. 

3. The estimation of failure rates for certain types of failure given the removal 

of some or all other failure types; this is regarded as a classic competing risk 

analysis. 

Kalbfleisch and Prentice (1980) suggested the use of cumulative incidence estimates as a 

solution to the first problem and Tsai (1982) proposed 1 minus a Kaplan-Meier estimator as a 
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way for estimating each event of interest in the presence of other competing events. The problem 

with that is 1 minus Kaplan-Meier overestimates the cumulative probability of a cause-specific 

failure (Gooley et al. (1999); Gaynor et al. (1993)) suggest the use of cumulative incidence 

estimator to estimate the cumulative probability when competing risks are present. 
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2.4 CUMULATIVE INCIDENCE ESTIMATE 

The cumulative incidence function, also referred to as the cause-specific failure 

probability (Gaynor et al., 1993), can be interpreted as the cumulative probability that a failure of 

type k occurs on or before time t (Bryant and Dignam, 2004). The cumulative incidence function 

helps to determine patterns of failure and to assess the extent to which each component 

contributes to overall failure. For competing risks data one often wishes to estimate the 

cumulative incidence probability of failure of a specific cause, k, at time t, that is: 
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t
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0
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where εj indicates the cause of type of failure, S(s) is the overall survival probability, and 

λk(s) is the cause-specific hazards for cause k(Scheike, 2003). The cumulative incidence 

estimator can be expressed in terms of the Kaplan Meier estimates, 
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3.0 BREAST CANCER DATA 

3.1 BREAST CANCER BACKGROUND 

According to the American Cancer Society, other than skin cancer, breast cancer is the 

most frequent malignant disease of women in the US with 180,000 new cases being diagnosed 

each year. It is the second leading cause of cancer death and the leading cause of cancer death for 

women 40-55 years of age. As in other cancers, the majority of women diagnosed with breast 

cancer are elderly, making aging one of the single greatest risk factors for the development of 

new breast cancer, with the estimated risk of new breast cancer at 1 in 14 for women aged 60 to 

79 compared with 1 in 24 women aged 40 to 59 and 1 in 228 women aged 39 and younger 

(Holmes et al., 2003). While some breast cancer patients die from this disease, most of them die 

from other causes because breast cancer patients are usually old with many other health 

conditions (Holmes et al., 2003). 

3.2 BREAST CANCER DATASET 

The data used to illustrate the difference between Kaplan Meier estimates and the 

cumulative incidence estimate consists of 788 eligible participants with follow-up from the 

National Surgical Adjuvant Breast and Bowel Project (NSABP) databases. The participants were 
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enrolled in the B-20 study between Oct 17, 1988 and March 5, 1993 and they were randomly 

assigned to 3 regimes including tamoxifen only treatment, which was used here for illustration. 

The dataset included time to event, measured in years, and event indicator categorized as: event 

free, recurrence, death (not event related), and second primary cancer. Median follow-up years 

were 13.09, and among those 788 patients, 478 were event free at the last follow-up. 170 patients 

had breast-cancer recurrence, 100 patients developed other cancers (secondary primary cancer) 

and 40 patients die before they developed those events mentioned earlier. In many clinical and 

epidemiological studies, subjects can potentially experience recurrent events. Here recurrence of 

breast cancer, death prior due to other diseases, and second primary cancers are competing 

events.  
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4.0 METHODS 

4.1 STATISTICAL METHODS 

The data were labeled and recoded using the Stata version 9.2 statistical software package 

(StataCorp., 2005). To convert time into years, the original time variable was divided by 120. 

The data were declared to be a survival- time data with recurrence as failure event, and the sts 

and generate command was used to create the 1 minus Kaplan-Meier estimates. The stcompet 

command in Stata was used to generate the cumulative incidence estimates for each competing 

events, recurrence, second primary cancers and death. The focus will only be on the cumulative 

incidence estimates for recurrence. Overlaid two-way graphs were plotted using the 1 minus 

Kaplan-Meier and cumulative incidence estimates for recurrence versus time. The Kaplan-Meier 

estimates and cumulative incidence estimates were compared, using the compare command, to 

see how many observations were different.  

When there are no competing events the Kaplan-Meier estimates and the cumulative 

incidence estimates are identical. To illustrate this, a new time variable was generated, and event 

times were replaced with the maximum time 17.2 years for other events: event free, second 

primary cancers and death. The data were again declared to be a survival-time data with 

recurrence as failure event. The 1 minus Kaplan-Meier estimates and cumulative incidence 

estimates were generated, plotted and compared. 
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5.0 RESULTS 

5.1 COMPARISION IN THE PRESENCE OF COMPETING EVENTS 

 

The breast cancer recurrence was used as the event of interest (failure event) to illustrate 

the differences in cumulative probability of cause-specific failure estimates given by the two 

estimators (1 minus Kaplan Meier and cumulative incidence). The graphs are identical for the 

first five observations (Table 1) because there are no competing events before t= 0.7833 years.  

Figure 2 and Table 2 show a clear difference between the two estimates. The 1 minus Kaplan 

Meier estimator over-estimates the probability of recurrence among the breast cancer patients. 

The difference is very noticeable after 5 years and increases with more competing events i.e. 

death, second primary cancers. The 1 minus Kaplan Meier gives a larger estimate than the 

Cumulative Incidence estimator.   
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Table 1: 1-KM and CI estimates for the first 5 breast cancer data observations 

Probability of breast cancer recurrence 

time            1-KM     CI 

.342 .0013 .0013 

.533 .0025 .0025 

.725 .0051 .0051 

.725 . 0051 .0051 

.783 .0063 .0063 
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Figure 2. 1- KM estimate and the CI estimate of recurrence for the breast cancer dataset 

 

Figure 2 and shows the relationship between follow-up time in years and the probability 

of recurrence of breast cancer, which was estimated by the cumulative incidence function and  

Kaplan-Meier methods.  

 

Table 2: Selected observations of CI and 1 - KM for the breast cancer data 

Probability of breast cancer recurrence 
Time t (years)   1-KM     CI 
1.1 .0191 .0190 
5.0 .1187 .1157 
10.23 .1893 .1802 
15.08 .2409 .2239 
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Figure 3. The difference between 1-KM and CI 

 

Figure 3 shows the difference between the two estimators, and the compare command in 

Stata generated (Table 3), which shows the Kaplan Meier estimates greater than the cumulative 

incidence for 165 out of 170 observations. The difference between the 1 minus Kaplan-Meier 

and cumulative incidence probabilities of breast cancer recurrence is positive over time. The 1 

minus Kaplan Meier is a non-interpretable and biased estimate for the probability of recurrence, 

is due to the censoring of observations that are failures from a competing events (Gooley et al., 

1999) 
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Table 3: 1-KM and CI comparison. 

   difference  

 count minimum average maximum

KM1=CI1 5    

KM1>CI1 165 1.62e-06 .0045642    .0197285 

jointly defined  170 0 .0044299    0197285 

CI1missing only 618    

total 788    

 

With two competing events i.e. second primary cancer and death, the graphs and tables 

shows an evident over-estimate of the 1 minus Kaplan-Meier estimator, however researchers 

continue to use 1 minus Kaplan-Meier estimates to interpret the cumulative probability of cause-

specific failure. “We feel the primary reason for this misuse is a fundamental misunderstanding 

among clinical researchers of the assumptions required for interpretable Kaplan-Meier estimates, 

coupled with a lack of thorough comprehension of how CI is computed” Gooley et al,1999.   
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5.2 COMPARISON IN THE ABSENCE OF COMPETING EVENTS 

The Kaplan Meier estimates are identical to the cumulative incidence estimates if no 

failures from competing events are encountered (Gooley et al., 1999). According to Gaynor et 

al., there are two hypothetical assumptions that must be met for the two estimators to be 

identical: (1) eliminate competing events, failures due to other causes and (2) the events of 

interest must remain the same given assumption (1). In Figure 4,the breast cancer dataset was 

used to validate both assumptions.  
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Figure 4. 1-KM and CI estimates in the absence of competing events 
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Figure 4 shows one curve, which indicates that the cumulative incidence function is 

equivalent to the 1 minus Kaplan-Meier. Table 4 below also verifies the equality of these two 

estimators. 

 

Table 4:1-KM and CI comparison in the absence of competing events 

   difference  

 count minimum average maximum

KM2=CI2 170    

jointly defined  170 0 0     0 

CI2missing only 618    

total 788    
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6.0 DISCUSSION 

In analyzing competing risks data, it is important to realize the possible contributions of 

sound statistical methodology to the adequate exploration of the data. The use of 1 minus 

Kaplan-Meier to estimate cause-specific cumulative probability is based on the incorrect 

assumption that the probability of failing prior to time t from cause k is equal to 0. This incorrect 

assumption can lead to an inflated estimated of the proportion of patients who are at risk of 

failure at time t, causing 1 minus Kaplan-Meier to overestimate the cause-specific failure 

probability. The breast cancer dataset demonstrated the bias in using the 1 minus Kaplan-Meier 

approach.   

Discrepancy between the 1 minus Kaplan Meier and the cumulative incidence methods is 

instantly recognizable, so the cumulative incidence should always be used if an estimate of the 

cumulative probability of cause-specific events is desired. One should avoid censoring 

competing events at the event times for convenience to use the 1 minus Kaplan-Meier approach. 

The censored events are informative, because it changes the probability of the event of interest 

occurring.   

 

 

  

 

 21 



APPENDIX A 

PROGRAM CODE 
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