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 Triple quantum filtered sodium MRI techniques have been recently demonstrated in vivo. 

These techniques have been previously advocated as a means to separate the sodium NMR signal 

from different physiological compartments based on the differences between their relaxation 

rates. Among the different triple quantum coherence transfer filters, the three-pulse coherence 

transfer filter has been demonstrated to be better suited for human imaging than the traditional 

four-pulse implementation. While the three-pulse structure has distinct advantages in terms of 

the radiofrequency power efficiency, it is characterized, also, by an increased dependence on the 

main magnetic field inhomogeneities. In this thesis, we characterize these dependences and 

introduce a method for their compensation through the acquisition of a field map and the use of a 

modified phase cycling scheme. 

 We analyze the dynamics of spin 3/2 systems using the density matrix theory of 

relaxation. We show that by using the superoperator formalism, we can obtain an algebraic 

formulation of the density matrix’s evolution, in which the contributions from relaxation and 

radio frequency application are factored out. To achieve this goal, we derive an exact form for 

the propagator of the density matrix, in the presence of both static quadrupolar couplings and 

magnetic field inhomogeneities. 

 Using the algebraic formulation, we derive exact expressions for the behavior of the 

density matrix in the classical one-, two- and three-pulse NMR experiments. These theoretical 
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formulas are then used to illustrate the bias introduced on the measured relaxation parameters by 

the presence of large spatial variations in the B0 and B1 fields. This approach is proved useful for 

the characterization of the spatial variations of the signal intensity in multiple quantum-filtered 

sodium MRI experiments. 

 On the imaging applications side, we demonstrate that the conventional on-the-fly triple 

quantum filtered schemes are affected by the presence of B0 inhomogeneities in a severe way, 

which can be described as destructive interference among several coherence pathways. A new 

class of robust filtering schemes is introduced to avoid the destructive interference. The 

usefulness of the introduced technique is experimentally illustrated for twisted projection 

imaging, for human brain imaging. 
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1. INTRODUCTION 

 Nuclear Magnetic Resonance techniques and Magnetic Resonance Imaging (MRI) in 

particular, have made significant contributions to the understanding of living systems during the 

last 50 years. Since the discovery of the NMR phenomena by Felix Bloch and Edward Purcell in 

1946, the applications of NMR for the investigation of living systems have flourished. The 

introduction of the Zeugmatography approach for spatial encoding by Paul Lautenberg, [1], in 

the 1970’s accelerated this pace of discovery and led to the development of MRI and its many 

applications. Today, MRI is a well-established clinical tool that can provide exquisite images of 

the soft tissue anatomy in short imaging times. 

 Extensions of MRI for the study of metabolism and function, however, have progressed 

at a slower pace than their more anatomical counterparts. This is due in part to the additional 

demands that such extensions place on the data acquisition and processing methodologies. One 

such application, with very high potential, was the use of the sodium nucleus for the study of 

disease conditions in humans. Sodium is one of the most important ions in cell physiology. For 

example, in the brain, cells maintain a 10-fold trans-membrane sodium gradient as part of the 

basal physiological function. This gradient is severely disrupted during many pathologies leading 

to large (>50%) changes in the sodium content of tissues. 

 The development of sodium MRI techniques has had many challenges that stem from the 

lower tissue concentration and unfavorable relaxation of this nucleus. Recent developments, 

however, have provided practical means to address such challenges leading to a renewed interest 

in the sodium MRI in humans. One of the most desirable features of any sodium MRI technique 
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would be the ability to sensitize the MRI signal intensity to the changes in sodium content in the 

intracellular space. The use of triple quantum (TQ) filtered NMR techniques is well suited for the 

task because of their non-invasive nature and ease of implementation. Indeed, the first 

demonstrations of the feasibility of such studies in humans have already been published in the 

literature, and reports have already been presented documenting their use for the study of 

pathologies such as brain ischemia and cancer. 

 Characterization and optimization of the TQ signal could therefore enhance the use of 

these techniques for the study of disease in humans. The TQ signal has a strong dependence on 

physical quantities that are beyond the control of the operator. Specifically, B1 and B0 

inhomogeneities could introduce significant variations in the TQ sodium MRI signal that must be 

corrected for if any quantitative information is to be derived from the studies.   

 In this thesis, we focus on the optimization of the TQ signal when B0 inhomogeneities are 

present. We address this problem by first introducing an algebraic approach for the description of 

the spin 3/2 dynamics that allows for a more straightforward study of the experiments. Using this 

formalism, we then illustrate the nature of the signal loss that is introduced by B0 

inhomogeneities and then present a method for their mitigation. This same approach is also used 

to shed some light into the common pitfalls associated with the experimental measurement of 

relaxation properties for spin 3/2 systems. The work is also complemented with a related analysis 

in which these findings are used to provide effective means for the optimization of experimental 

acquisition parameters such as the preparation time and the readout time.  

 

 This thesis is organized to follow the steps involved in the accomplishment of its 

objectives, as outlined above.  In Chapter 2, the Liouville representation of quantum mechanics 
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(QM) is introduced. By using the spherically irreducible tensor operators (SIT) as a basis, the 

superspace is explicitly constructed as a linear, sixteen dimensional, space. The Liouville 

superoperators are constructed for each of the relevant interaction, with external magnetic field 

B0, with static electric field gradients, and with the applied external radiofrequency field (RF). 

The evolution of the system under the action of RF, ignoring relaxation effects, is solved. The 

superoperator describing the system’s evolution in this regime is explicitly constructed. 

 In Chapter 3, the theoretical description of relaxation is constructed in a complete 

superspace formulation, illustrating the advantages of the superspace formalism. The theory is 

applied for the relaxation of spin 3/2 particles experiencing quadrupolar fluctuations. The limit of 

the Redfield theory and the calculation of the relaxation matrix are explicitly offered. The 

chapter ends with the algebraic calculation of the propagator describing the evolution of spin 3/2 

particles when experiencing static magnetic interaction, static quadrupolar interaction, and 

quadrupolar fluctuations. 

 In Chapter 4, the core of the theoretical work is presented. It consists of the full 

construction of the algebraic description for NMR experiments, based on the superspace 

formalism. The aim of the chapter is to offer algorithms for physical MR signal calculations of a 

broad range of experiments. The descriptive objective of this thesis is accomplished here, by 

offering algebraic means for constructing the NMR signal in multiple quantum filtered 

experiments. Arbitrary B0, B1, and static quadrupolar interactions are allowed. The classical one-

, two-, and three-pulse experiments are theoretically analyzed and the predictions are verified on 

both phantom and in-vitro experiments. It is presented the construction of a variety of TQ classes 

of experiments, in which various combinations of coherence pathways are selected. The phase 

cycles are predicted and verified experimentally. The theoretical description of the TQ based 
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determination of T2 relaxation times is presented. Those methods are proved useful for the 

measurement of relaxation times in vivo. 

 Chapter 5 offers an introduction to imaging concepts and a simple description of MRI 

experiments. The four steps process consisting of signal generation, gradient based encoding, 

signal acquisition, and image reconstruction is described in terms of linear equations. The 

usefulness of this approach is illustrated for the optimization of SNR in respect with the readout 

time.  

 The predictive objective is accomplished in Chapter 6, where the design and the NMR 

experimental verification of the novel scheme for TQ imaging, insensitive to B0 inhomogeneities 

are presented. A TQ imaging protocol is developed. It includes determination of the sample 

characteristics (based on the TQ NMR experiments), determination of the B0 distribution (based 

on field map measurement), and a series of four TQ imaging experiments. Based on this 

procedure, a final TQ image is obtained, in which the effects of B0 inhomogeneity are removed. 

The protocol is demonstrated on an agar gel phantom. The last section of this chapter presents 

the TQ images acquired on a normal human volunteer with the developed procedure.  

 The first Appendix presents the linear algebra of the Kronecker product (extensively used 

in the thesis). The second Appendix presents the formulation of spin 1/2 dynamics in superspace 

formalism. In this context, the supervector associated with the density matrix is the 

magnetization vector, while the evolution equations reduce to the standard Bloch equations. 
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2. SUPERSPACE DESCRIPTION OF 3/2 SPIN SYSTEMS 

The construction of the Liouvillian model used for the description of spin 3/2 dynamics is the 

main objective of this chapter. In Section 2.1, a quantum mechanics introduction for spin 3/2 

system is offered. In Section 2.2, the Liouville representation of quantum mechanics (QM) is 

introduced. In Section 2.3, the spherically irreducible tensor operators (SIT) basis is defined. The 

procedures for explicitly constructing the supervectors and superoperators, as well as the 

consequences of axial symmetry are presented. In Section 2.4, the Liouville superoperators 

describing the interaction with the external magnetic field (B0) and with the static electric field 

gradients are offered. In Section 2.5, the evolution of the system under the action of an external 

radiofrequency (RF) field is described in the approximation of infinitely short duration as a pure 

rotation operator in superspace. The off-resonance RF pulse is analyzed, and an approximate 

formula, taking in consideration the effect of finite width, is offered. 

2.1. Quantum mechanics of isolated 3/2 spin system 

 In order to fix notations and conventions we present basic facts about the standard 

formulation of Quantum Mechanics (QM), the Schroedinger formulation. In the Schroedinger 

formulation, the states are represented by norm one vectors in a suitable Hilbert space. Taking 

advantage of the fact that the spin 3/2 systems are described in finite dimensional Hilbert space, 

the presentation emphasizes the linear algebraic aspect of this formulation. In this way the details 

of the presentation of the Liouville formulation is made easier. We choose the system of units in 
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which h/2π=1; in this system of units, the energy and angular frequency have the same units, 

radians per second. 

 

 The quantum mechanical (QM) description of isolated 3/2 spins is constructed in the 

Hilbert space, H, associated with the j=3/2 irreducible representation of the rotation group. In 

this space, of dimension N=4, the natural basis is the angular momentum basis, |jm>, with j=3/2.  

Using this basis, by expressing an arbitrary vector (‘ket’) as the linear combination 

 
3/ 2

3/ 2
| |m

m
jmψ ψ

=−

〉 = 〉∑ , (2.1) 

the vectors are identified with the four dimensional columns 

 

3/ 2

1/ 2

1/ 2

3/ 2

|

ψ
ψ

ψ
ψ
ψ

+

+

−

−

⎡ ⎤
⎢ ⎥
⎢ ⎥〉 =
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

. (2.2) 

The hermitic conjugate, the ‘bra’, is identified with the four dimensional row obtained by 

transposition and complex conjugation of the ‘ket’: 

 ( )† * * * *
3/ 2 1/ 2 1/ 2 3/ 2| | |ψ ψ ψ ψ ψ ψ ψ− −⎡ ⎤〈 = 〉 〈 = ⎣ ⎦ . (2.3) 

All through this thesis, the identifications of vectors with columns and the identification of their 

hermitic conjugates with rows is systematically made. The set of column vectors representing the 

angular momentum basis in H is explicitly given by 

 1 2 3 4

1 0 0 0
3 3 3 1 3 1 3 30 1 0 0, , ,0 0 1 02 2 2 2 2 2 2 2

0 0 0 1
e e e e

⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞
− −⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟= = = = = = = =⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟

⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠

 (2.4) 

or, in a compact form, |jm>=|ej-m+1>. 
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 Consistent with the general principle of QM, the states are identified with ‘rays’ in 

Hilbert space, specifying a direction. In order to avoid both ambiguities and occurrences of 

normalization factors across the formulas, all the vectors describing QM states in this thesis are 

considered normalized to one 

 | 1ψ ψ = . (2.5) 

 The j=3/2 representation of the rotation group is specified in terms of the angular 

momentum operators. This representation is defined by 

 ( )2 | 1 |
| |z

J jm j j jm
J jm m jm

〉 = + 〉

〉 = 〉

G
. (2.6) 

By using the outer product between a bra with a ket, defined as the matrix 

 ( ) *| | i jij
A a b A a b= 〉〈 ⇒ = , (2.7) 

the angular momentum related operators are constructed as four dimensional matrices 

 

( )

( ) ( )

( ) ( )

2
2 1| | 1

1 1 | , 1 |

1 1
2 2

j

z j
m j

j

m j

x y

J m jm jm J j j

J j j m m j m jm

J J J J J J
i

+
=−

±

=−

+ − + −

= 〉〈 = +

= + − ± ± 〉〈

= + = −

∑

∑

1
G

 (2.8) 

 Schroedinger equation describing the time evolution of the vector of state is the four-

dimensional linear equation with given initial condition 

 
( ) ( ) ( )

( ) ( )0 0

| |

| |

d t iH t t
dt

t t t

ψ ψ

ψ ψ

⎧ 〉 = − 〉⎪
⎨
⎪ = 〉 = 〉⎩

. (2.9) 

The construction can be obtained, for arbitrary initial conditions by making use of the forward 

propagator, defined by the matrix equation  
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( ) ( ) ( )

( )
0 0

0 0

, ,

, 1H

d U t t iH t U t t
dt

U t t

⎧ = −⎪
⎨
⎪ =⎩

, (2.10) 

giving the solution of the original Schroedinger equation by  

 ( ) ( ) ( )0 0| , |t U t t tψ ψ〉 = 〉  (2.11) 

In the case in which the Hamiltonian is time-independent, the forward propagator is the matrix 

exponential, 

 ( ) ( )( )0 0, expU t t i t t H= − − . (2.12) 

The physical measurement performed on the system described in the state ψ returns the average 

value 

 ( ) ( ) ( ) ( ) ( ) ( )†
0 0 0 0| | | , , |A t A t t U t t AU t t tψ ψ ψ ψ= =  (2.13) 

The last equality allows the definition of the Heisenberg representation of the operator, with 

respect to H, as the time dependent operator AH(t) given by 

 ( ) ( ) ( )†
0 0, ,HA t U t t AU t t= . (2.14) 

 With a given state, we can associate the projector along the one-dimensional subspace 

spanned by that vector, as the operator 

 2| |,P P Pψ ψ ψψ ψ= 〉〈 =  (2.15) 

The measurement of a physical observable Q, for the system in the given state, returns the 

average value, expressible both as a matrix element and a trace 

 ( )| | TrQ Q P Qψ ψψ ψ= =  (2.16) 

For one single particle, the description through a state vector is sufficient. For a system of many 

particles, the quantum state described by a single vector, pure state, is a special particular case 
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(in which all particles evolve in a totally correlated way). In the situation of a many body system 

the states that admit a description in terms of a single vector requires a careful preparation, which 

for complex systems is an unrealistic task.  

 A general state, in which a partial knowledge of the system is assumed, is a mixed state, 

and it s described as a superposition of pure states with statistical weights wi in such a way that 

the measurement of an observable, Q, is given by the statistical average 

 | | , where 1i i i i i i
i i i

Q w Q w Q wψ ψ= = =∑ ∑ ∑ . (2.17) 

For this (mixed) state, there exist no single vector to describe it; the analog of (2.16) is obtained 

by constructing the density matrix, that is the hermitic matrix,  

 
†

| |i i i i i
i i

w w Pρ ψ ψ

ρ ρ

= 〉〈 =

=

∑ ∑  (2.18) 

 In a given basis, |αi>, the diagonal elements of the density matrix, <αi|ρ|αi>, are called the 

“populations” while the non-diagonal elements are the “coherences” associated with the given 

basis. This distinction is basis-dependent, what is coherence in a given basis could be population 

in a different basis.  

 The knowledge of the density matrix, gives the expectation values of an experiment 

measuring the observable Q as the trace: 

 ( )†TrQ Qρ= . (2.19) 

We just note that the density matrix is a projector if and only if the state is a pure state. The 

evolution equation for the density matrix is obtained from (2.9) as  

 [ ],di i H
dt t
ρ ρ ρ∂
= +

∂
 (2.20) 
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In the case of a stationary statistics (in which the weights associated with the possible individual 

states, are time independent), we obtain the Liouville- von Neuman equation in the form 

 [ ],di H
dt
ρ ρ=  (2.21) 

Using the Schroedinger equation propagator, the time evolution of the density matrix is obtained 

in the form 

 ( ) ( ) ( ) ( )†
0 0 0, ,t U t t t U t tρ ρ= . (2.22) 

2.2. Superspace representation of quantum mechanics 

 The Liouville representation of quantum mechanics is introduced in order to treat both 

types of states in a common fashion. In this representation, one starts by describing all the states 

(pure or mixed) as self-adjoint, positive-defined operators with unit trace [2]. 

 Due to the finite dimensionality of H, both the state space and the observable space (the 

space of bounded operators acting on H) can be embedded in the linear space of N×N matrices. 

Following, [3], this N2 dimensional space is called superspace (or Liouville space) and is denoted 

S. The elements of S are also referred as supervectors.  

 In superspace, the double “ket” |O〉〉  and double “bra” |O〈〈  denote the N2 dimensional 

vectors describing the operator O and its hermitic conjugate O†, respectively. The explicit 

construction of supervectors reduces to a one-dimensional labeling of the matrix elements 

associated with an operator. In this thesis, the consequent choice is made to consider the 

associated vector as the ‘column stacking’ of the matrix, while the double “bra” obtained by 

aligning the rows of the hermitic conjugate, [4]. The properties of those operations are offered in 

Appendix A. An arbitrary NxN matrix, an NxN set of complex numbers, could be considered as 

well either as a row of columns, or as a column of rows 
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 ( ) ( )( )
( )

( )

11 1

1

row ,1
col ,1 , ,col ,

row ,

N

N NN

A A A
A A A N

A A A N

⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟= = = ⎜ ⎟⎜ ⎟

⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠

"
# " #

"
, (2.23) 

The associated supervector and its hermitic conjugate are defined by 

 ( )
( )

( )
( )( ) ( ) ( )( )† † †

col ,1
| cvec | cvec row ,1 , , row ,

col ,

A
A A A A A A N

A N

⎛ ⎞
⎜ ⎟〉 = = 〈〈 = =⎜ ⎟
⎜ ⎟
⎝ ⎠

〉 # " . (2.24) 

The Liouville space becomes a unitary space when it is equipped with the natural inner product 

[3] 

 { }†| TrA B A B〈〈 〉〉 ≡ . (2.25) 

Using the construction presented in (2.24) it becomes obvious that the natural inner product in 

the space of matrices, when expressed in terms of scalar products of rows and columns, 

 { } ( ) ( )† †

1
Tr row , .col ,

N

k
A B A k B k

=

= ∑  (2.26) 

is also expressible as the natural scalar product in superspace 

( ) ( ) ( ) ( )( )
( )

( )
( ) ( )†† † †

1

col ,1
row , .col , row ,1 , , row , . cvec .cvec

col ,

N

k

B
A k B k A A N A B

B N=

⎛ ⎞
⎜ ⎟= =⎜ ⎟
⎜ ⎟
⎝ ⎠

∑ " # , (2.27) 

which is consistent with (2.25). 

 The linear operators acting on S are called superoperators and to distinguish them, the 

convention to use bold face letters for the superoperators is followed in this thesis. The simplest 

examples of superoperators are defined by the left and right multiplication [5] 

 
| |
| |

L

R

B AB
B AB
〉〉 ≡ 〉〉

〉〉 ≡ 〉〉

A
A

 (2.28) 

They satisfy obvious properties 
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 ( ) ( )

( ) ( )

| | | , 0

| |

| |

L R R L L R

L

R

C ACB C

f B f A B

f B Bf A

⎡ ⎤〉〉 = 〉〉 = 〉〉 ⇒ =⎣ ⎦

〉〉 = 〉〉

〉〉 = 〉〉

A B B A A B

A

A

 (2.29) 

A special class of superoperators is defined by the operation of taking the commutator (the 

derivation with respect to an operator). Consistent with the previous notations, the commutator 

superoperator associated with O is denoted using the corresponding bold face O-:H→H, and is 

acting on arbitrary operators B as the commutator 

 [ ] ( )| | , | |L RB O B OB BO B− 〉〉 = 〉〉 = − 〉〉 = − 〉〉O O O . (2.30) 

Similarly, the anti-commutator superoperators are defined by their action as anti-commutators, 

(with the 1/2 factor included in the definition) 

 { } ( ) ( )1 1| | , | |
2 2

L RB O B OB BO B+ 〉〉 = 〉〉 = + 〉〉 = + 〉〉O O O  (2.31) 

 Due to their importance, by default the unlabeled bold-faced notation denotes the 

commutator superoperator. For the particular case of the Hamiltonian, the associated commutator 

superoperator is the Liouvillian, therefore denoted by L. 

 An illustrative example of the usefulness of superspace description is offered by the 

derivation of the well-known Baker-Hausdorff-Campbell formula. Starting with the previous 

observation that left and right superoperators commute (2.29) the exponentiation of the 

commutator superoperator is written as the product of left and right exponentials 

 ( ) ( ) ( ) ( )exp exp exp expL R L RB B B= − = −A A A A A  (2.32) 

the last expression, by definition is  

 ( ) ( )exp expL R A AB e Be−− =A A  (2.33) 

Expanding in series Taylor the original expression, by the definition A 



 13

 ( ) ( ) [ ]
0 0

1 1exp , ,
! !

k

k k
B B A A B

k k

∞ ∞

= =

⎡ ⎤⎡ ⎤= = ⎣ ⎦⎣ ⎦∑ ∑A A … , (2.34) 

from where, the BHC formula is recognized: 

 [ ]
0

1e e , ,
!

A A

k
B A A B

k

∞
−

=

⎡ ⎤⎡ ⎤= ⎣ ⎦⎣ ⎦∑ … . (2.35) 

 The simplest basis in superspace is given by the set of direct products of pure states, 

  | jm〉〈 jn | , denoted using a convenient notation introduced in, [6] †| mn 〉〉 . The decomposition of 

the identity in H provides the representation of any operator in terms of its matrix elements 

 ( )| || | | | | |
j j j j

m j n j m j n j
O jm jmjm O jn jn jm O jn jn

=− =− =− =−

= =〉〈 〉〈 〈 〉 〉〈∑ ∑ ∑ ∑  (2.36) 

which is rewritten in superspace language, as the decomposition of the associated supervector 

 †| | | |
j j

n j m j
O jm O jn mn

=− =−

⎛ ⎞
〉〉 = 〉〉⎜ ⎟

⎝ ⎠
〈 〉∑ ∑ . (2.37) 

This last expression offers another representation of the “cvec” operation, when the summation is 

understood as an ordered one, and it is the starting point of our symbolic algebraic calculations.  

By convention, the hermitic conjugate of an operator  

 ( ) ( )* †† || | |
j j

n j m j
O jmjm O jn jn

=− =−

= 〈 〉 〉〈∑ ∑  (2.38) 

corresponds to the “bra” in superspace, therefore 

 ( )*†

,
| | | |

j

m n j
O mn jm O jn

=−

〈〈 ≡ 〈〈 〈 〉∑ . (2.39) 

This formula re-express the fact that the “bra” is the Liouville space hermitic conjugate of the 

corresponding “ket”. The natural inner product is consistent with the “bra”-“ket” convention  

 ( )*† †| | | and | | |mn O jn O jm O mn jm O jn〈〈 〉〉 = 〈 〉 〈〈 〉〉 = 〈 〉 . (2.40) 
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2.3. Spherically irreducible tensor operators as natural basis in superspace 

 From a group theoretical point of view, the superspace is associated with the direct 

product of two j=3/2 representations of the rotation group. The product reduces to a direct sum of 

representations labeled with principal quantum numbers l=0,1,2,3. Therefore, the quantum 

mechanical operators can be expanded in terms of the normalized spherical irreducible tensor 

(SIT) operators Tlm, l=0,1,2,3,m=-l,…,l. [2, 7]  

They satisfy the commutation relations with the angular momentum, 

 
[ ]

( ) ( ) , 1

,

ˆ, 1 1

z lk lk

lk l k

J T kT

J T l l k k T±
±

=

⎡ ⎤ = + − ±⎣ ⎦
, (2.41) 

the normalization condition, 

 { }†Tr pq lk pl qkT T δ δ=  (2.42) 

and the hermitic conjugation property 

 ( )†
,

l
lk l kT T −= − . (2.43) 

 In the superspace notations, using the notations| | lmlm T〉〉 ≡ 〉〉  †| |lmlm T〈〈 ≡ 〈〈 , (no confusion 

with |mn†>> is possible), the SIT’s satisfy  

 
3

16
0

| |
|

| |

Z

l m

l

l m l

lm m lm
lm

lm lm

λ µλµ δ δ

= =−

〉〉 = 〉〉
〈〈 〉〉 =

〉〉〈〈 =∑ ∑

J

1

. (2.44) 

Using the 3j Wigner coefficients,
j k l

m n p
⎛ ⎞
⎜ ⎟
⎝ ⎠

, the SIT’s can be written explicitly in terms of the 

direct product of basis for H, [8], therefore expressible as a linear combination of 16-dimensional 

vectors |mn†>>. 



 15

 
( ) ( )

( )

( ) ( )

( ) ( )

,

†

,

| 1 2 1 | , |

| 1 2 1 |

j m q

m j m q j

j m q

m j m q j

k j j
kq k j m q jm

q m m q

k j j
kq k m m q

q m m q

− +

< + <

− +

< + <

⎛ ⎞
〉〉 = − + + 〉〈⎜ ⎟− +⎝ ⎠

⎛ ⎞
〉〉 = − + + 〉〉⎜ ⎟− +⎝ ⎠

∑

∑
. (2.45) 

From the Jacobi identity,  

 [ ] [ ] [ ], , , , , , 0A B C B C A C A B⎡ ⎤ ⎡ ⎤ ⎡ ⎤+ + =⎣ ⎦ ⎣ ⎦ ⎣ ⎦  (2.46) 

the fact that the associated superoperator of a commutator is the commutator of the 

corresponding superoperators is obtained,  

 [ ] [ ] [ ] [ ], | , , , , , ,C A B C B A C A B C⎡ ⎤ ⎡ ⎤ ⎡ ⎤〉〉 = − =⎣ ⎦ ⎣ ⎦ ⎣ ⎦A B . (2.47) 

As a consequence, the SIT superoperators satisfy with the angular momentum superoperators, 

the same commutation relations as their operator counterparts 

 
[ ]

( ) ( )
,

, 1

,

, 1 1 .

Z lm l k

lm l m

m

l l m m±
±

=

⎡ ⎤ = + − ±⎣ ⎦

J T T

J T T
 (2.48) 

The structure constants are directly related with the superoperator matrix elements,  

 ,, | , | |lm lm k m lmT T T k mλµ µλµ µ λµ+⎡ ⎤ = 〉〉 = 〈〈 + 〉〉⎣ ⎦ ∑T T  (2.49) 

and they are shared with their superoperators counterparts, 

 ,, , | |lm k m lmk mλµ µ µ λµ+⎡ ⎤ = 〈〈 + 〉〉⎣ ⎦ ∑T T T T . (2.50) 

Explicitly, the SIT associated superoperators are then given by the sum  

 ( ) ( )
3 3

2

1
, , | , |

k
j m q

lm
k q k k m q

l k k
l k k k m q kq

m q m q
− −

′= =− = +

′⎛ ⎞′ ′= − ∆ + 〉〉〈〈⎜ ⎟− −⎝ ⎠
∑ ∑ ∑T  (2.51) 

where the modified 9j Wigner symbol has been introduced for the sake of simplicity: 

 ( ) ( ) ( )( )( ), , 1 2 1 2 1 2 1l k k l k k
l k k l k k

j j j
′+ + ′⎧ ⎫⎡ ⎤′ ′∆ = − − + + + ⎨ ⎬⎣ ⎦ ⎩ ⎭

 (2.52) 
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The |lm>> basis is found more convenient than the original, direct product, basis. The 

decomposition of general operators and superoperators in terms of SIT’s can be written: 

 ( ) ( )
, , ,

| | | , | | | |
l m l m

B t lm lm B t lm lm
λ µ

λµ λµ〉〉 = 〉〉〈〈 〉〉 = 〉〉〈〈 〉〉〈〈∑ ∑∑B B , (2.53) 

with the coefficients being related with the traces: 

 
{ }
{ }

†

†

| Tr

| | Tr ,

lm

lm

lm B T B

lm T B Tλµλµ

〈〈 〉〉 =

⎡ ⎤〈〈 〉〉 = ⎣ ⎦B
. (2.54) 

The last two relations are the starting point in computer implementation of the superspace 

algebraic constructions.  

 

 The axial symmetry, translated in the commutation of a given superoperator with the 

superoperator JZ, has important implications for the matrix elements of the superoperator, and it 

is used extensively in this thesis 

 [ ]| , | 0 | | | |Z mlm lm lm mµλµ λµ δ λ〈〈 〉〉 = ⇒ 〈〈 〉〉 = 〈〈 〉〉B J B B . (2.55) 

From here, the general representation of a superoperator (2.53) is simplified; in terms of its 

reduced matrix elements | |m
lB lm mλ λ≡ 〈〈 〉〉B  it reads 

 
3 3 3

3
| |m

l
m l m m

lm B mλ
λ

λ
=− = =

= 〉〉 〈〈∑ ∑ ∑B . (2.56) 

Grouping the terms with the same magnetic quantum number 

 ( )
3 3 3 3 3

0 0
00

1 1 1
| 00 00 | | 0 0 | | | | , , |m m

l l l
l m l m m

B l B lm B m l m B mλ λ λ
λ λ

λ λ λ−

= = = = =

= 〉〉 〈〈 + 〉〉 〈〈 + 〉〉 〈〈 + − 〉〉 〈〈 −∑∑ ∑∑∑B (2.57) 

one notes that any superoperator, commuting with the Z component of the angular momentum 

superoperator, has a block diagonal structure in the SIT basis.  
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 ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )( )0 1 2 3 1 2 30
00blockdiag B − − −=B B B B B B B B  (2.58) 

with the individual blocks having the structure, 

 

( ) ( ) ( )

( ) ( )

0 0 0 1 1 11 1 1
11 12 13 11 12 1311 12 13

0 1 10 0 0 1 1 11 1 1
21 22 23 21 22 2321 22 23
0 0 0 1 1 11 1 1
31 32 33 31 32 3331 32 33

2 2 2 2
2 222 23 22 23

2 2
32 33 32

B B B B B BB B B
B B B B B BB B B
B B B B B BB B B

B B B B
B B B

− − −

− − − −

− − −

− −
−

−

⎛ ⎞ ⎛ ⎞⎛ ⎞
⎜ ⎟ ⎜ ⎟⎜ ⎟= = =⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠⎝ ⎠ ⎝ ⎠
⎛ ⎞

= =⎜ ⎟
⎝ ⎠

B B B

B B ( ) ( ) ( ) ( )3 33 3
33 332 2

33

B B
B

− −
−

⎛ ⎞
= =⎜ ⎟

⎝ ⎠
B B

 (2.59) 

The component l=m=0 is purposely separated from the larger m=0 subspace because the non-

trivial dynamics take place in the fifteen dimensional space spanned by operators with non-

vanishing principal quantum number, l≠0. Therefore, from now on, all references to the j=3/2 

superspace are restricted to this fifteen dimensional space. The blocks corresponding to a given 

magnetic number m have dimensions d(m)=4-|m| for nonzero m and d(m)=3, for m=0.  

The block decomposition is explicitly revealed if one defines the matrices em which have as 

columns the SIT supervectors characterized by the given magnetic number m, ordered in the 

ascending order of principal quantum number l,  

 
{ }
{ }0

| , ,| 1, ,| 3,  if 0

|10 ,| 20 ,| 30
m m m m m m m= 〉〉 + 〉〉 〉〉 ≠

= 〉〉 〉〉 〉〉

e

e

"
. (2.60) 

In terms of the individual blocks, the decomposition expressed by (2.58) is rewritten 

 ( )
3

3

m T
m m

m=−

= ∑B e B e . (2.61) 

Based on the multiplication properties of the introduced em matrices, 

 ( ) ( ) ( ) ( )
T T
m m m nd m d m d m d n× ×= =e e 1 e e 0  (2.62) 

the computation of a function of a superoperator B is reduced to a direct sum of functions of 

lower dimensional matrices 
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 ( ) ( )( )
3

3

m T
m m

m
f f

=−

= ∑B e B e . (2.63) 

 Further simplifications can be obtained if one considers the properties of the parity 

superoperator. Using the properties of the SIT’s under inversion, the matrix elements of the 

parity superoperator, denoted Π, are simply given by: [9] 

 ( ), | | ll m lm〈〈 − 〉〉 = −Π . (2.64) 

If an operator B commutes with the pair Π, JZ further simplifications in the matrix element’s 

structure in (2.55) occur: 

 [ ] ( ), | |, 0 | , |l
l m lmm mλλ λ+

〈〈 − 〈〈= ⇒ = ⇒ − 〉〉 = − 〉〉B BΠ B ΠBΠ B . (2.65) 

While the reduction to lower dimensions is rigorously expressed by equations (2.61) and (2.63), 

the notations are inconvenient for algebraic manipulation. Therefore, a simpler notation namely, 

 ( ) ( )e m m T
m m m≡B e B e . (2.66) 

is used in this thesis. 

2.4. Static interactions 

The general density matrix associated with a spin 3/2 particle can be expanded as a finite sum  

 ( )
3

1
| |

l
lm

l m l
lmρ ρ

= =−

〉 〉〉 = 〉∑ ∑  (2.67) 

The most general interaction that such a system could experience is given by a Hamiltonian with 

similar decomposition 

 ( )
3

1
| |

l
lm

l m l
H H lm

= =−

〉 〉〉 = 〉∑ ∑  (2.68) 

The coefficients in the previous expansion characterize the external, applied fields. A 

simultaneous rotation of both the system and the environment should leave unchanged the total 
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energy of the system. In other words, the quantity | Hρ〈〈 〉〉  is invariant (it transforms as a scalar 

under arbitrary rotations).  

 The interaction with a time independent, uniform, magnetic field is described by the 

coupling of two pseudo-vectors 

 0JBγ−
GG

 (2.69) 

Choosing the quantization Z-axis along the direction of the magnetic field, the Hamiltonian 

becomes 

 0 0 0 10zH B J B Tγ γ= − = −  (2.70) 

The eigenstates are given by the angular momentum basis (2.6) while the eigenvalues, exhibit the 

equidistant pattern 

 ( )0
0 0mE B m mγ ω= − = −  (2.71) 

The evolution of a pure state is governed by the Schroedinger equation 

 ( )0| |z
di B J
dt

ψ γ ψ〉 = − 〉  (2.72) 

with the solution given by the rotation around the Oz axis, in the negative direction, with Larmor 

frequency ω0=γB0 

 ( ) ( )( ) ( ) ( ) ( )0 0| exp | 0 exp | 0z zt i B t J i t Jψ γ ψ ω ψ〉 = 〉 = 〉  (2.73) 

It is the simple rotation nature of the solution that makes the transformation to rotating frame 

useful. The transformation to a frame rotating with an angular frequency ω in respect with the 

fixed frame of reference is the time dependent rotation  

 ( ) ( )exp zR t i tJω ω= −  (2.74) 

such that, at any moment of time 
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 ( ) ( ) ( ) ( )( ) ( )0| | exp | 0R
zt R t t i t Jψ ω ψ ω ω ψ〉 = 〉 = − − 〉  (2.75) 

 Obviously, whenever the rotation frequency matches the Larmor frequency, the evolution 

in rotating frame is trivial; the state is unmodified. In the class of applications analyzed here, 

there is no a priori knowledge about the exact value of the static magnetic field, but there is very 

accurate information about the frequency of the applied radio-frequency field. In the end, it is the 

RF field that governs the rotating frame frequency; therefore, an off-resonance parameter is 

naturally introduced by  

 0δ ω ω= − . (2.76) 

In the rotating frame, the free precession is described by a slow rotation (the off-resonance 

parameter is of the order of magnitude of hundred of Hz, while the Larmor frequency is in the 

MHz range) 

 ( ) ( ) ( )| exp | 0R
zt i t Jψ δ ψ〉 = − 〉  (2.77) 

The Liouvillian associated with this interaction is obtained by simple substitution of operators 

with superoperators in (2.70) 

 0 0 0 10zBγ ω= − = −L J T  (2.78) 

The solution of the Liouville equation  

 0| |d i
dt

ρ ρ〉〉 = − 〉〉L  (2.79) 

is obtained as the matrix exponential 

 ( ) ( ) ( )0| exp | 0zt i tρ ω ρ〉〉 = 〉〉J  (2.80) 

 The principal characteristic of sodium ions, the presence of a non-vanishing quadrupolar 

moment, made their dynamics sensitive to the external gradients of electric fields. Classically, 

the energy of quadrupolar interaction of a localized charge distribution, q, in the presence of 
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external electric field characterized by the potential Φ, is defined using the Taylor expansion of 

the external potential [10] 

 ( ) ( ) ( ) ( ) ( )
23 3

3 3 3
class

1 , 1 0

10 0
2! 3

i
i i i j

i i j j r

E rW d rq r E d r x q r d r x x q r
x= = =

⎛ ⎞∂
≈ Φ + + −⎜ ⎟∂ ⎝ ⎠

∑ ∑∫ ∫ ∫
G

GG G G G G G  (2.81) 

In the previous expression, the terms represent the electrostatic energy contributions associated 

with the total charge, electric dipole interaction and, the third term, quadrupolar electric 

interaction.  

 The quantum mechanical counter part is constructed by noticing that the quadrupolar 

contribution is a contraction of two spherical tensors, therefore the Hamiltonian has to be a 

contraction between the second order constructed in SIT basis and a tensor constructed in terms 

of second derivatives of the external potential. The expression of such tensor is well known, [11] 

 ( ) ( )0 1 2
1 1 1 1 2
2 26 6zz zx zy xx yy xyV V V V iV V V V iV± ±

⎡ ⎤= = ± = − ±⎣ ⎦∓  (2.82) 

therefore, the contraction between the second order tensor takes the form 

 ( )
2

2
2

6 m
Q Q m m

m
H C V T−

=−

= −∑  (2.83) 

When the expressions (2.82) are evaluated in the principal system of axes associated with the 

external field Vxy=Vyz=Vzx=0 and the expression of the quadrupolar Hamiltonian reduces to the 

text book form, [10] 

 
( )( ) ( )

( ) ( ){ }
20 22 2 2 20 22 2 2

2 2 2 2

1 16 6
6 6

3

Q Q zz xx yy Q zz

Q zz z x y

H C V T V V T T C V T T T

C V J J J J

η

η

− −
⎧ ⎫ ⎧ ⎫

= + − + = + +⎨ ⎬ ⎨ ⎬
⎩ ⎭ ⎩ ⎭

= − + −
G

. (2.84) 

The asymmetry parameter, η, describes the deviation of the external field from cylindrical 

symmetry. Whenever the ion interacts with ordered structures (e.g. at interfaces) the asymmetry 
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may occur. When the ion is placed in a fluctuating, disordered environment, it may be assumed 

that the asymmetry is a random variable with mean zero. In this situation, the quadrupolar 

Hamiltonian takes the simpler form, [12] 

 20Q QH Tω= . (2.85) 

We note that this is an expression in the system of principal axis associated with electric field 

gradients. In the ion’s system of axis, in terms of the angle between the systems’ Oz axis, Θ, 

 
2

20
3cos 1

2Q QH Tω⎛ ⎞Θ−= ⎜ ⎟
⎝ ⎠

 (2.86) 

This observation is the basis for multi-domain model of the biological systems, in which is 

assumed that each individual domain is characterized by a specific quadrupolar frequency given 

by (2.86). The measured quantities, sum over domains, are expressed as the averages over the 

director angles, [12]. 

 

2.5. Superoperator description of RF hard pulses 

 The differential equation governing the evolution of density matrix during the application 

of an RF field with frequency ω, duration T, amplitude B1(t), and phase φ, is given in the rotating 

frame by the differential equation 

 ( ) ( )( ) ( )1| |Z
d t i t t
dt ϕρ ω δ ρ〉〉 = − − − 〉〉J J . (2.87) 

Here, ω1=γB1(t), and the inhomogeneity parameter is defined by the differences between Larmor 

angular frequency and the applied RF angular frequency δ=γB0-ω. 
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 For the class of hard pulses, the amplitude of the RF field is constant, ω1(t)=ω1; as a 

consequence, the density matrix at the end of the pulse ρ(T) is expressed in terms of the density 

matrix before the pulse, ρ(0), in terms of a matrix exponential 

 ( ) ( ){ } ( )1| exp | 0ZT i T Tϕρ ω δ ρ〉〉 = − 〉〉J J . (2.88) 

Taking in consideration that a rotation with angle θ  around a direction described by the unit 

vector U
G

 is described in superspace by the exponential ( )exp i Uθ− J
G G

, the expression in Eq (2.88) 

represents a finite rotation with the angle θ− � , around an axis characterized by the latitude -η and 

the azimuth φ. Requiring the agreement between the Cartesian and spherical coordinates 

representations 

 ( )( )1 sin cos cos sinZ Z X YT Tϕω δ θ η η ϕ ϕ− = − + +J J J J J� , (2.89) 

the expression for the rotation parameters are given by the chain of equations 

 2 2
1 , , , tan /T Tθ ω ψ δ θ θ ψ η ψ θ= = = + =� . (2.90) 

From the physical point of view, θ is the flip angle in the absence of inhomogeneity while ψ is 

the precession angle in the absence of RF. 

 In order to obtain the transformation of QM operators under a rotation, the representation 

in terms of Euler angles is required. The evaluation of the exponential in (2.88) is performed in 

terms of the Euler angles (αL,β,αR) by the identity 

 ( )( ){ } ( ) ( ) ( )exp sin cos cos sin exp exp expZ X Y L Z Y R Zi i i iθ η η ϕ ϕ α β α− + + = − − −J J J J J J� .(2.91) 

Their expression is valid regardless of the specific representation used for the rotation group.  

By using the 1/2 representation (when the operators become 2x2 matrices), the expression for 

Euler angles are obtained whenever 0≤θ≤π and -π/2≤η≤π/2, by the parametric expressions,  
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 , 2arcsin cos sin
2 2 2cosL R
π π θα α ϕ α α ϕ β η

η
⎛ ⎞⎛ ⎞ ⎛ ⎞= − + = + + = ⎜ ⎟⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠ ⎝ ⎠
, (2.92) 

with the common angle, 

 arctan sin tan
2cos
θα η
η

⎛ ⎞⎛ ⎞
= ⎜ ⎟⎜ ⎟

⎝ ⎠⎝ ⎠
. (2.93) 

As a product of three exponentials, the off-resonance pulse P(θ,φ,δ) is expressed 

 ( ) ( ) ( ) ( ), , exp exp expL Z Y R Zi i iθ ϕ δ α β α= − − −P J J J . (2.94) 

The usefulness of this representation becomes obvious in the SIT basis, where the matrix 

element has a particularly simple structure 

 ( ) ( ) ( )| , , | exp | |
2

Yilm i m i m lm e βπθ ϕ δ λµ µ ϕ α µ λµ−⎛ ⎞⎛ ⎞〈〈 〉〉 = − + − + 〈〈 〉〉⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

JP . (2.95) 

The last matrix elements are defining the Wigner functions, [13], when l=λ, and are zero when 

l≠λ, 

 ( )| |Yi m
l llm e dβ µ
λλµ δ β−〈〈 〉〉 =J . (2.96) 

Similar considerations could be found in [14], where the equivalence between an off-resonance 

and an on-resonance pulse is explored. In the present thesis, an approximation of the previous 

formulation is sought. While the expression (2.95) solves the problem of constructing the matrix 

associated with the RF pulse superoperators, more insight in the question of the dephasing during 

the RF pulse could be gained by comparing off-resonance and on-resonance pulses. In 

superoperator form, the relationship between the off-resonance pulse and the on-resonance pulse 

characterized by the same B1, is described by the transformation 

 ( ) ( ) ( ) ( ), ,, , exp , expZ Zi T i Tθ δ θ δθ ϕ δ δ β ϕ δ= − −P L P L , (2.97) 

where the effective length of the pulse is introduced 
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 ,
cos arctan sin tan
sin 2cos

Tθ δ
η θη

θ η η
⎛ ⎞⎛ ⎞

= ⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

. (2.98) 

 The effect of the pulse could be described as the transfer from of the coherence (lµ) to 

coherences with the same principal number (lm). The amplitude of the transfer is the real 

function ( )m
ld µ β , which could take positive as well as negative values. Apart of this amplitude, 

there is a relative phase gained by the resulting coherence. It originates from two mechanisms. 

First, the rotation itself is responsible for the factor exp(i(µ-m)(φ+π/2)), and second, the off-

resonance evolution during a period Tθ,δ is responsible for the factor exp(-iδTθ,δ (m+µ)).  

 For flip angles around π/2 and small inhomogeneities, the following approximations 

could be used,cosη≈1, sinη≈tanη≈η=ψ/θ, from where  

 

,

2arcsin cos sin
2cos

cos arctan sin tan tan
sin 2cos 2

T TT Tθ δ θ

θβ η θ
η

η θ θη
θ η η θ

⎧ ⎛ ⎞
= ≅⎪ ⎜ ⎟

⎝ ⎠⎪
⎨

⎛ ⎞⎛ ⎞ ⎛ ⎞⎪ = ≅ ≡⎜ ⎟⎜ ⎟ ⎜ ⎟⎪ ⎝ ⎠⎝ ⎠⎝ ⎠⎩

 (2.99) 

By numerically comparing with the exact expressions with their approximations, we conclude 

that the approximations are characterized by an error less than 1% whenever 60°≤θ≤120° and 

20°≤ψ≤20° (named here the MRI imperfections domain). In Figure 2.1 the difference between 

the apparent and on-resonance flip angle is presented. The MRI imperfection region is 

completely contained in the 1% error domain. 
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Figure 2.1 The contour plot of the difference between the flip angle (θ) and the apparent flip angle (β) 

 The same conclusion could be drawn from the inspection of Figure 2.2 where the relative 

difference between the exact factor Tθ,δ and its off-resonance independent approximation, Tθ is 

presented. In this situation, the MRI imperfection region is contained in the 1% error domain, 

also. 



 27

 

0.5 1 1.5 2 2.5
q HradiansL

-1.5

-1

-0.5

0

0.5

1

1.5

d
T

H
snaidar
L 1% difference

5% difference

 

Figure 2.2 The contour plot of the difference between the exact expression Tθ,δ and the approximate Tθ 

The conditions being easily satisfied for typical experiments, the off-resonance pulse 

superoperator is described in terms of the on-resonance pulse with the same flip angle, and an 

effective length Tθ depending on the flip angle, only. In superoperator form, the approximation 

becomes 

 ( ) ( ) ( ) ( ), , exp , expZ Zi T i Tθ θθ ϕ δ δ θ ϕ δ= − −P L P L . (2.100) 

The last formula generates the non-vanishing matrix elements between elements of SIT basis 

 ( ) ( )( ) ( ) ( )| , , | exp exp
2

m
llm l i T m i m d µ

θ
πθ ϕ δ µ δ µ µ ϕ θ⎛ ⎞⎛ ⎞〈〈 〉〉 = − + − +⎜ ⎟⎜ ⎟

⎝ ⎠⎝ ⎠
P . (2.101) 

In symbolic calculations, a more compact form is used 



 28

 ( ) ( ) ( ) ( )| , , | e ei m i T m m
llm l pµ ϕ δ µ µθ ϕ δ µ θ− − +〈〈 〉〉 =P , (2.102) 

in which T is understood as the effective time, and the newly introduced p-functions are related 

to the Wigner functions by a phase 

 ( ) ( ) ( )
2e

i mm l
l mp d

π µµ
µθ θ

−
= . (2.103) 

The filtering schemes analyzed in this thesis contain 90° degree pulses, only (the B1 

inhomogeneity manifests in deviations from this ideal value), therefore a simpler approximation 

is used for the effective pulse length, 

 ,
2T Tθ δ π

≈ . (2.104) 
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Figure 2.3  The difference between the effective length of a 90 degree pulse and a θ pulse, as a function of 
inhomogeneity and flip angle. 
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3. RELAXATION MATRIX THEORY 

In Section 3.1, the formal theory of the relaxation is presented by using a quantum description of 

the bath. The systematical use of Liouville representation makes the both the calculations and the 

physical assumptions transparent. The relaxation matrix is constructed in terms of product of 

superoperators associated with the fluctuation. In Section 3.2, the relaxation of spin 3/2 particles 

experiencing quadrupolar fluctuations is constructed as a quadratic form in SIT superoperators. 

In Section 3.3, the algebraic calculation of the propagator describing the relaxation of spin 3/2 is 

offered.  

 

 The Hamiltonian model of a system interacting with a bath is constructed in the direct 

product of Hilbert spaces associated with the Hilbert space of the system HS and Hilbert space of 

the bath Hb. In order to make the formulas more intuitive we reserve the Latin lowercase 

symbols for the quantities referring to the bath. The subscript notation F denotes quantities 

referring to the full system. The bath is considered described by the Boltzmann distribution, with 

a temperature T = 1/(kBβ)  

 { }/ , Trh h
bb e z z eβ β− −= =  (3.1) 

The notation Trb represents the trace operation considered on the bath degrees of freedom, only.  

 For any two operators, a and c, acting on the Hilbert space of the bath, the time 

correlation function is defined as the trace over the bath’s states of their product, [15] 

 ( ) ( ) ( ) ( ){ }0 Tr 0a t c ba t c≡ , (3.2) 

where the time dependent operator a(t) is understood in the bath’s Heisenberg representation 
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 ( ) ( ) ( )exp expa t iht a iht= − . (3.3) 

By using the invariance of the trace under cyclic permutations and the form of bath density 

matrix at canonical equilibrium, (3.1) the following relations are obvious 

 
( ) ( ) ( ) ( ){ } ( ) ( ){ } ( ) ( )
( ) ( ) ( ) ( ){ } ( ) ( ){ } ( ) ( )

0 Tr 0 0 Tr 0 0 0

0 Tr 0 0 Tr 0 0 0

h ith ith h ith ith

h ith ith h h ith ith h

a t c e e a e c e a e c e a c t

a t c e e a e c e c e e a e e b c t i

β β

β β β β β

− − − −

− − − − −

= = = −

= = = +
(3.4) 

Because the bath is stationary, the correlations functions are time shift invariant 

 ( ) ( ) ( ) ( )0a t c a t cτ τ+ =  (3.5) 

The symmetrized and anti-symmetrized correlation functions are defined 

 
( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

10 0 0
2

0 0 0

a t c a t c a c t

a t c a t c a c t

+

−

= +

= −
 (3.6) 

The quantities of the interest are the Fourier transforms of the time-correlations functions, the 

spectral densities  

 ( ) ( )1 0
2

i tac dt e a t cω
ω π

∞
−

−∞

≡ ∫  (3.7) 

Using the previous formula, (3.4), one could prove the frequency analogous of the detailed 

balance relation [15] 

 ac e caβω
ω ω

−
−

=  (3.8) 

For the symmetrized and anti-symmetrized spectral densities similar relations can be written,  

 ( ) ( )/ 2cosh 2 sinh / 2ac ac ac ac e βω
ω ω ω ω

βω βω+ − −= = , (3.9) 

from where, 

 / 2 1 tanh
2 2

ac ac e βω
ω ω

βω− + − ⎛ ⎞= ⎜ ⎟
⎝ ⎠

. (3.10) 
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One could see that in the high temperature limit, β→0, the anti-symmetric spectral densities are 

negligible, compared with the symmetric counterparts.  

3.1. General expression of relaxation matrix 

 The density matrix of the composite system, ρF, at the initial moment in which the spin 

3/2 is prepared, is the direct product of system’s density matrix, ρ(0) and bath’s density matrix, 

b(0)  

 ( ) ( ) ( )0 0 0F bρ ρ= ⊗ ∈ ⊗S bH H  (3.11) 

The full Hamiltonian considered here (covering all situation of interest) is given as a sum of 

three contributions 

 1 1 1 1 k k
F b S b SH H h G H h V v= ⊗ + ⊗ + = ⊗ + ⊗ + ⊗∑ . (3.12) 

The first contribution, 1bH ⊗ , represents the Hamiltonian for an isolated 3/2 system, the second, 

1S h⊗  represents the Hamiltonian of the isolated bath, while the third term describes the 

coupling between the system and the bath.  

 

 The evolution of the full density matrix, in Hamiltonian form is given by the Liouville 

von Neumann equation in the product space 

 [ ]1 1 ,F b S F
di H h G
dt
ρ ρ= ⊗ + ⊗ +  (3.13) 

 In order to offer the superspace formulation, the following four notations are introduced. 

The left, right, commutator, and anti-commutator superoperators associated with a given 

operator, A, are defined by their action on an arbitrary operator B in the expected way, as 

represented in the equation below 
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[ ]
[ ]
[ ] [ ] [ ]( )
[ ] ( ) [ ] [ ]( )1 1

2 2

L

R

L R

L R

A B AB

A B BA

A B AB BA A A B

A B AB BA A A B

−

+

≡

≡

≡ − = −

≡ + = +

 (3.14) 

Because of its form, the Liouville equation requires the calculation of the commutator 

superoperator associated with direct products of operators. 

 Unless the case of left and right multiplication superoperators, where straightforward 

composition relations can be written in the form 

 [ ] [ ] [ ] [ ] [ ] [ ]L L L R R RA a A a A a A a⊗ = ⊗ ⊗ = ⊗ , (3.15) 

(justified from the property of the Kronecker product ( )( ) ( ) ( )A a B b AB ab⊗ ⊗ = ⊗ ), the 

commutator superoperators do not have the same property, by their definition 

 [ ] ( ) ( )( ) ( )( )A a B b A a B b B b A a AB ab BA ba−⊗ ⊗ ≡ ⊗ ⊗ − ⊗ ⊗ = ⊗ − ⊗ , (3.16) 

therefore,  

 [ ] [ ] [ ]A a A a− − −⊗ ≠ ⊗ . 

Instead, the more cumbersome expression can be proved 

 [ ] [ ] [ ] [ ] [ ]A a A a A a− − + + −⊗ = ⊗ + ⊗  (3.17) 

 To prove the identity one could start with the definition of the anti-commutator 

superoperator; its action on an arbitrary direct product can be expressed, (3.16) 

 
[ ] ( )

( ) ( )
A a B b AB ab BA ba

AB BA ab BA ab ba

−⊗ ⊗ = ⊗ − ⊗

= − ⊗ + ⊗ −
, 

which is just a sum of direct products of superoperators 
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 [ ] [ ] [ ] [ ] [ ]L RA a A a A a− − −⊗ = ⊗ + ⊗ . 

A similar relation is obtained, by following the same type of manipulations, in which  

 
[ ] ( )

( ) ( )
A a B b AB ab BA ba

AB ab ba AB BA ba

−⊗ ⊗ = ⊗ − ⊗

= ⊗ − + − ⊗
, 

which reduces to, 

 [ ] [ ] [ ] [ ] [ ]L RA a A a A a− − −⊗ = ⊗ + ⊗ . 

By taking the average of the two results, the equation in (3.17) is demonstrated. Now, we can 

apply the found representation, (3.17), for each of the terms occurring in the Liouville equation, 

which can be rewritten in terms of the superoperators  

 [ ]1 1F b S F
di H h G
dt
ρ ρ−

= ⊗ + ⊗ +  

The superoperators associated with the identity operator are trivial; the commutator vanishes, 

while the other are acting as the identity 

 [ ] [ ] [ ] [ ]1 0 and 1 1 1L R− += = = , (3.18) 

As a notational convenience, the equalities 1=[1]L=[1]R=[1]+ are understood whenever the unit 

superoperator is encountered, for the remainder of this section.  

 The first two terms are easily expanded as direct products of superoperators 

 [ ] [ ] [ ] [ ]1 1 1 1b b S SH H h h− − − −⊗ = ⊗ ⊗ = ⊗ , (3.19) 

In order to transform the last term, the system-bath coupling, by making use of the (3.17),  

 k k k k k kV v V v V v
− − + + −

⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤⊗ = ⊗ + ⊗⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ , (3.20) 

the Liouville equation becomes the linear equation in superspace, 

 [ ] [ ] ( ){ }1 1 k k k k
F b S F

di H h V v V v
dt
ρ ρ

− + + −− − ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤= ⊗ + ⊗ + ⊗ + ⊗⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦∑  (3.21) 
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 Once the superoperator of a direct product is decomposed in direct product of 

superoperators, simple multiplication rules can be used in the Taylor expansion of the 

exponential function to prove  

 
[ ]( ) [ ]( )

[ ]( ) [ ]( )
exp 1 exp 1

exp 1 1 exp

b b

S S

H H

h h

α α

α α

− −

− −

⊗ = ⊗

⊗ = ⊗
 (3.22) 

 As an immediate application of these rules of exponentiation, the transition to Heisenberg 

representation, in respect with both system and bath, is realized by the unitary transformation 

 ( ) [ ] [ ]( )( ) [ ]( ) [ ]( )exp 1 1 exp expSb b SU t it H h it H it h− − − −= ⊗ + ⊗ = ⊗ . (3.23) 

Practically, by the use of the substitution 

 ( ) ( ) ( )( )F Sb Ft U t tρ ρ′= . (3.24) 

the evolution equation takes the simpler form in which the individual Liouvillian contribution 

have disappeared. The remaining term describes the system-bath coupling, in the introduced 

interaction representation 

 
( ) ( ) ( ) ( ) ( )( ){ } ( )

( ) ( )

k k k k
F F

F

di t V t v t V t v t t
dt

G t t

ρ ρ

ρ

− + + −
′ ′⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤= ⊗ + ⊗⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦

′≡

∑ . (3.25) 

Apart of the prime notation for density matrices, there is no need for extra labeling of the 

interaction representation quantities, their time dependence distinguish them from the original, 

Schroedinger representation, counterparts 

 
( ) [ ]( ) [ ]( )
( ) [ ]( ) [ ]( )

exp exp

exp exp

k k

k k

V t it H V it H

v t it h v it h

− −− −

− −− −

⎡ ⎤ ⎡ ⎤= −⎣ ⎦ ⎣ ⎦

⎡ ⎤ ⎡ ⎤= −⎣ ⎦ ⎣ ⎦

 (3.26) 
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The same observation applies for the coupling superoperator, which is expressed by the 

superspace analog of the previous relation 

 ( ) ( ) ( )1
Sb SbG t U t GU t−= . (3.27) 

The equation (3.25) as belonging to a well-known class of linear equations with initial conditions 

 
( ) ( ) ( )

( ) ( )0 0

F F

F F

d t iG t t
dt

t

ρ ρ

ρ ρ

⎧ ′ ′= −⎪
⎨
⎪ ′ ′= =⎩

 (3.28) 

An integral equation can be written, which contains the same information as the preceding 

differential equation together with its initial condition 

 ( ) ( ) ( ) ( )1 1 1
0

0
t

F F Ft i dt G t tρ ρ ρ′ ′ ′= − ∫  

By substitution the previous integral representation for the integrand 

 ( ) ( ) ( ) ( ) ( ) ( ) ( )
1

1 1 1 2 1 2 2
0 0 0

0 0
tt t

F F F Ft i dt G t dt dt G t G t tρ ρ ρ ρ′ ′ ′ ′= − −∫ ∫ ∫  (3.29) 

Continuing this process, indefinitely, the time ordered, Dyson series is obtained 

 ( ) ( ) ( ) ( ) ( )
1

1 1
0 0 0

0
ntt

n
F n n F

n
t i dt dt G t G tρ ρ

−∞

=

⎛ ⎞
′ ′= −⎜ ⎟⎜ ⎟

⎝ ⎠
∑ ∫ ∫" "  (3.30) 

which is the definition of the propagator, as the time-ordered exponential 

 
( ) ( ) ( )

( ) ( )
0

0

exp

F F

t

t t

t i dt G t

ρ ρ′ ′= Γ

⎛ ⎞
′ ′Γ = −⎜ ⎟

⎝ ⎠
∫T

 (3.31) 

This expression can be considered as the starting point of a systematic cummulants expansion 

[16] or it can be used to derive the standard Nakajima-Zwanzig memory function approach [17].  
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For NMR applications when the result aimed is the Redfield equation [18], a less sophisticated 

approach can be followed, starting with (3.29). The necessary ingredient, for obtaining a 

tractable form of the evolution equation, consists in performing the average over bath states, as 

the interest is not in the exact evolution of the system, but in its statistical averaged evolution. 

Recalling the fact that at the moment t=0 the system is prepared in a well defined state, 

uncorrelated with the bath state, the initial condition, in Heisenberg representation is written, also 

 ( ) ( ) ( ) ( ) ( )0 0 0 0 0F b bρ ρ ρ′ ′ ′= ⊗ = ⊗ . (3.32) 

The average evolution of the system is defined by the average over the bath states 

 ( ) ( ){ } ( )av Tr
notation

b F F b
t t tρ ρ ρ′ ′ ′≡ = . (3.33) 

Using the propagator of the composite system-bath, the reduced density matrix becomes 

 ( ) ( ) ( ) ( ){ }av Tr 0 0bt t bρ ρ′ ′ ′= Γ ⊗ . (3.34) 

Time ordered cummulants expansion could be used at this level, to construct a hierarchy of 

evolution equations. When only the second order is seek, by using the double integral 

representation of the exact solution (3.29), and taking the bath average, the following, still exact 

representation is obtained 

 ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
1

av av 1 1 1 2 1 2 2
0 0 0

0 0 0
tt t

Fb b
t i dt G t b dt dt G t G t tρ ρ ρ ρ′ ′ ′ ′ ′= − ⊗ −∫ ∫ ∫ , (3.35) 

from where, an integral-differential equation is found by taking the time derivative  

 ( ) ( ) ( ) ( ) ( ) ( ) ( )av 1 1 1
0

0 0
t

Fb b

d t i G t b dt G t G t t
dt
ρ ρ ρ′ ′ ′ ′= − ⊗ − ∫ . (3.36) 

Using the form of the interaction, (3.25), the first term evaluates to the sum over bath anti-

commutators (because the terms involving the traces of commutators vanishes) which using the 

invariance under cyclic permutations of the trace can be written 
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 ( ) ( ) ( ) ( ) ( ) ( ) ( ){ }0 0 , 0 Tr 0k k
b

G t b V t v t bρ ρ′ ′ ′ ′⎡ ⎤⊗ = ⎣ ⎦∑ . (3.37) 

The last expression is zero, also. The traces are the averages of the bath fluctuations, which are 

zero (when not the case, the redefinition of the static interaction can be made). Finally, the 

equation (3.36) can be written, in Heisenberg representation, 

 ( ) ( ) ( ) ( )av 1 1 1
0

t

F b

d t dt G t G t t
dt
ρ ρ′ ′= −∫  (3.38) 

The last equation is an exact equation of evolution, (under the specified assertions about the 

nature and dynamics of the bath) but unfortunately, it contains, under integral, the full density 

matrix. The natural simplifying assumption at this point is that the bath evolves independently of 

the system (weak system-bath coupling). 

These assumptions translate in the decomposition of the full density matrix as the direct product 

 ( ) ( ) ( )F St t b tρ ρ′ ′ ′= ⊗  (3.39) 

with the evolution of bath’s density matrix, as dictated by the Heisenberg evolution, reducing to 

a constant 

 ( ) [ ]( ) ( ) ( )exp exp expb t it h b ith b ith b−′ = − = − = . (3.40) 

The system’s density matrix is found to be the aforementioned reduced density matrix, due to the 

identity 

 { } { }Tr Trb ba b a b⊗ = . 

Those considerations reduce the evolution equation to the form 

 ( ) ( ) ( ) ( )( )av 1 1 av 1
0

t

b

d t dt G t G t t b
dt
ρ ρ′ ′= − ⊗∫ , (3.41) 

which, takes the equivalent form 
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 ( ) ( ) ( ) ( )av 1 1 av 1
0

t

b

d t dt G t G t b t
dt
ρ ρ′ ′= − •∫  (3.42) 

The product can be expanded, taking advantage of the expansion in direct products of 

superoperators 

 

( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

,

'

'

'

'

b
m k

k m k m

b

k m k m

b

k m k m

b

k m k m

b

G t G t b

V t V t v t v t b

V t V t v t v t b

V t V t v t v t b

V t V t v t v t b

− − + +

− + + −

+ − − +

+ + − −

′ • =

⎛ ′⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ +⎜ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎝

′⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ +⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦

′⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦

⎞′⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎟⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎠

∑

 (3.43) 

By simple inspection, the last two terms can be discarded because the trace of a commutator is 

identical zero. The only two contributions remaining in (3.43) are evaluated by reducing them to 

correlation functions of fluctuations. First, due to the invariance of a trace under circular 

permutations, the obvious identities could be used 

 
{ }{ } { }

[ ]{ } [ ]

1, , ,
4
1, , ,
4

a b c abc acb bca cba a b c

a b c abc acb bca cba a b c

= + + + =

= − + − =
 (3.44) 

obtaining, in terms of the symmetric and anti-symmetric correlation functions (3.6) 

 
( ) ( ) ( ) ( ){ }{ } ( ) ( )

( ) ( ) ( ) ( ){ } ( ) ( )

Tr ,

Tr , '

k m k m k m

b

k m k m k m

b

v t v t b v t v t b v t v t

v t v t b v t v t b v t v t

+ + +

+ − −

′ ′ ′⎡ ⎤ ⎡ ⎤ = =⎣ ⎦ ⎣ ⎦

′ ′⎡ ⎤ ⎡ ⎤ ⎡ ⎤= =⎣ ⎦ ⎣ ⎦ ⎣ ⎦

 (3.45) 

 ( ) ( )
( ) ( ) ( ) ( )

( ) ( ) ( ) ( ),

'

'

k m k m

b k m k mm k

V t V t v t v t
G t G t b

V t V t v t v t

− − +

− + −

⎛ ⎞′⎡ ⎤ ⎡ ⎤ +⎣ ⎦ ⎣ ⎦⎜ ⎟′ • = ⎜ ⎟⎜ ⎟′⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦⎝ ⎠
∑  (3.46) 
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The last reduction of the number of terms entering the evolution equation is based on the high 

temperature approximation. The relation between the anti-symmetric and symmetric spectral 

densities of fluctuations (3.10), 

 / 2 tanh
2

ab ba ab ba e βω
ω ω

βω− ⎛ ⎞− = + ⎜ ⎟
⎝ ⎠

, 

shows that, in the high temperature limit, all the anti-symmetric contributions are one order 

higher in (βω), when compared with their symmetric counterparts. Finally, the only surviving 

terms in the bath average of the bath-system interaction product are 

 ( ) ( ) ( ) ( ) ( ) ( )
,

'k m k m
b

m k
G t G t b V t V t v t v t

− − +
′ ′⎡ ⎤ ⎡ ⎤• = ⎣ ⎦ ⎣ ⎦∑  (3.47) 

Neglecting the terms containing the anti-symmetric function has a physical consequence the loss 

of the ability of the model to describe the approach to equilibrium. [19] 

 The evolution of the reduced density matrix is given by an equation in which only the 

commutator superoperators appear 

 ( ) ( ) ( ) ( ) ( ) ( )av 1 1 1 av 1
,0

t
k m k m

m k

d t dt V t V t v t v t t
dt
ρ ρ

− − +
′ ′⎡ ⎤ ⎡ ⎤= − ⎣ ⎦ ⎣ ⎦∑∫ . (3.48) 

 Due to the fact that there is no longer the danger of confusion, we can return to the 

simpler notation for the commutator superoperator, as the bold-faced symbols. Also, from this 

moment the Hilbert space associated with the bath is no more necessary. The interaction with the 

environment is completely described by the symmetric correlation functions. (For NMR 

applications, the computation of correlation functions in a QM framework is a difficult task, 

most of the calculations are carried in a semi-classical formalism.) [19] 

The last equation is recast, in these friendlier notations  
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 ( ) ( ) ( ) ( ) ( )1 1 1 1
, 0

| |
t

k m
km

m k

d t dt j t t t t t
dt

ρ ρ′ ′〉〉 = − − 〉〉∑ ∫ V V  (3.49) 

The correlation function jmk is characterized by a correlation time τmk assumed much shorter than 

the time scale defining the evolution of the density matrix (fast fluctuation assumption). 

Therefore, replacing in the previous equation, ρ(t1) with ρ(t), a negligible error is introduced. As 

pointed in [20, 21], the extra accuracy one would hope to gain from keeping the “exact” form 

(3.49), is illusory, at this stage of calculations, terms describing the short time dynamics, of the 

same of order of magnitude have been already discarded.  

 ( ) ( ) ( ) ( ) ( )1 1 1
, 0

| |
t

k m
km

m k

d t dt j t t t t t
dt

ρ ρ
⎛ ⎞

′ ′〉〉 = − − 〉〉⎜ ⎟
⎝ ⎠

∑ ∫ V V  (3.50) 

The last expression defines time dependent relaxation superoperators 

 ( ) ( ) ( ) ( ) ( ) ( ) ( )
0

1 1 1
0

t
k m k m

km km km
t

R t dt j t t t t d j t tτ τ τ
−

′ = − = +∫ ∫V V V V  (3.51) 

Again, keeping the time dependence in relaxation matrices gives an illusory sense of accuracy, 

finally, in the evolution of the density matrix is governed by the linear equation 

 ( ) ( )| |d t R t
dt

ρ ρ′ ′ ′〉〉 = − 〉〉  (3.52) 

with the time independent relaxation superoperator 

 ( ) ( ) ( )
, 0

0k m
km

k m
R d jτ τ τ

∞

′ =∑∫ V V  (3.53) 

In the case of interest in this thesis ( ) ( ) ( )2 ,1 mk
k km k m mj jτ δ τ−= = −V T therefore 

 ( ) ( ) ( ) ( )2, 2,
0

1 0m
m m m

m
R d jτ τ τ

∞

−′ = −∑ ∫ T T  (3.54) 
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3.2. Calculation of relaxation matrix for sodium ions 

 Invoking the same symmetry argument as in Section 2.4, the most general expression for 

the quadrupolar fluctuations is found as the contraction between second order spherical tensors 

constructed from spin and bath variables 

 ( ) ( ) ( ) ( )
2 2

†
2 2 2 2,

2 2

m
F m m m m

m m
H t T u t T u t−

=− =−

= ⊗ = − ⊗∑ ∑  (3.55) 

The time dependence of the bath operators is given solely by their evolution under the bath 

Hamiltonian 

 ( ) ( )2 2 0iht iht
m mu t e u e−=  (3.56) 

The assumption of a spherical symmetric environment, translates in the invariance of the bath 

Hamiltonian, f, under an arbitrary rotation. Denoting the action of a rotation on the bath Hilbert 

space by R (which is an unitary transform R+R=1), the following identity can be written 

 ( )( ) ( ) ( ) ( ){ } ( ) ( )( )† † †
2 2 2 2 2 20 Tr 0 0 0f it f i t f

m n m n m nRu R t u e e Ru R e u u t R u Rβ− −= = . (3.57) 

By particularizing the nature of rotation, selection rules could be inferred for the correlation 

functions. Choosing the particular case of a rotation with angle φ around the Oz axis and using 

the SIT property exp(-iφJZ)u2m exp(iφJZ)= exp(-imφ)u2m, the correlation functions have to satisfy 

 ( ) ( ) ( ) ( )2 2 , 2 2,0 0m n n m m mu t u u t uδ − −= , (3.58) 

which defines the correlation density jm,  

 ( ) ( ) ( )2 2 ,0m n n m mu t u j tδ −= . (3.59) 

A more general analysis result is obtained in [22], based on Wigner-Eckart theorem and on 

properties of Clebsch Gordan coefficients. 



 42

 Assuming the exponential decay of the correlation functions, with correlation times, τm, 

the intermediate result is obtained 

 ( ) ( ) ( )2, 2, 0 expm
m m m

m m

tu t u j t α
τ τ−

⎛ ⎞
= = −⎜ ⎟

⎝ ⎠
 (3.60) 

For a biological media, at the room temperature, the environment can be considered as being not 

only axial symmetric, but also, isotropic. The interaction with the external static magnetic field is 

too weak to noticeably break the rotation symmetry. By using Wigner-Eckart theorem and 

simple Clebsch-Gordan manipulations, in the sphericall symmetric case [22] 

 ( ) ( ) ( )
2

2, 2, 0 1 expm
m m

tu t u σ
τ τ−

⎛ ⎞= − −⎜ ⎟
⎝ ⎠

 (3.61) 

 The approach to thermal equilibrium can only be obtained in a full quantum mechanical 

description of both the 3/2 spin system and the thermal bath, when the anti-symmetric correlation 

functions are kept in the calculation.  The semiclassical theory, obtained by considering the 

fluctuations as classical stochastic variables, requires the ad hoc introduction of thermal 

equilibrium, extensively discussed in [19]. In the high temperature case and in the presence of a 

strong static magnetic field, the equilibrium density matrix takes the form of the Maxwell-

Boltzmann distribution, 

 ( ) ( ){ }Eq 0 0
1 exp ,  with Tr expZ ZJ Z J
Z

σ βω βω= − = − . (3.62) 

Separating the solution of the Liouville equation, Eq., into its deterministic (σD) and fluctuating 

(σF) components 

 ( ) ( ) ( )| | |D Ft t tσ σ σ〉〉 = 〉〉 + 〉〉 , (3.63) 

the evolution towards thermal equilibrium imposes the limit condition  

 ( ) Eqlim Dt
tσ σ

→∞
= . (3.64) 
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Due to the strong static magnetic field assumption, the dynamical shift contributions are 

negligible, and the deterministic component of the density matrix satisfies the equation [19] 

 ( ) ( ) ( )( )| | |L
D S D D

d t i t R t
dt

σ σ σ〉〉 = − 〉〉 − 〉〉L  (3.65) 

The relaxation function satisfies the relation R(σEq)=0, in accordance with the Boltzmann form of 

thermal equilibrium. Because of the “deterministic” nature of this last differential equation, the 

subscript indicating the deterministic component of the density matrix can be safely discarded. In 

the case of high temperatures, in pulse NMR experiments, the difference σ(t)-σEq can be assumed 

to be of first order in βω0. By neglecting terms of second order in βω0 (violating, in this order, 

the detailed balance relations) (3.65) is written: [19] 

 ( )( ) ( )( ) ( )( )| | | | | |L
Eq S Eq Eq

d t i t t
dt

σ σ σ σ σ σ〉〉− 〉〉 = − 〉〉− 〉〉 − 〉〉− 〉〉L R . (3.66) 

The relaxation superoperator, R, is constructed in terms of the static Liouvillian as the average 

over fluctuations, which in interaction representation takes the form 

 ( ) ( ) ( ) ( )2, 2,
0

1 exp expm L L
km S m S m

m
R d j i iτ τ τ τ

∞

−′ = − −∑ ∫ L T L T . (3.67) 

For weak quadrupolar interactions the static Liouvillian is dominated by the B0 contribution in 

the exponentials and we thus obtain 

 ( ) ( ) ( ) ( )0 2, 0 2,
0

1 exp expm
m Z m Z m

m
R d j i iτ τ ω τ ω τ

∞

−′ = − −∑ ∫ J T J T . (3.68) 

Due to the properties of SIT superoperators,  

 ( ) ( ) 0
0 2, 0 2,exp exp im

Z m Z mi i e ω τω τ ω τ −− =J T J T  (3.69) 
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This expression is evaluated in terms of spectral densities of (symmetrized) correlation function 

of fluctuations, jm(kω). Considering the fact that the products T2,mT2,-m are invariant under a 

rotation around Oz, in the laboratory frame 

 ( ) ( )0 2, 2,1 m
m m m

m
j mω −= −∑R T T . (3.70) 

With the convenient notations, j0=j0(0), j1=(-1)j1(ω0), j2=j2(2ω0), the evolution in the absence of 

the RF field, is therefore described by a linear equation with time independent coefficients 

 ( )( ) ( ) ( )( )Eq 0 20 0 0 1 1 2 2 Eq| | | |D z Q D
d t i i j j j t
dt

σ σ ω ω σ σ〉〉− 〉〉 = − + + + + 〉〉− 〉〉J T R R R  (3.71) 

where the individual relaxation matrices are defined by products of SIT  superoperators 

 ( )0 2,0 2,0 1 2,1 2, 1 2, 1 2,1 2 2,2 2, 2 2, 2 2,2− − − −= = − + = +R T T R T T T T R T T T T . (3.72) 

Each individual term in the relaxation superoperator commutes with the superoperator for the Z-

component of the angular momentum, 

 [ ] ( )2 2, 2 2, 2 2, 2 2,, , , 0Z m m Z m m m Z m m mm m− − − −⎡ ⎤ ⎡ ⎤= + = − =⎣ ⎦ ⎣ ⎦J T T J T T T J T T T . (3.73) 

Therefore, the rotating frame analog of (3.71) has the form 

 ( )( ) ( ) ( )( )Eq 20 0 0 1 1 2 2 Eq| | | |z Q
d t i i j j j t
dt

ρ ρ δ ω ρ ρ〉〉− 〉〉 = − + + + + 〉〉− 〉〉J T R R R . (3.74) 

All terms in the Liouvillian and relaxation superoperator commute with Π, therefore, the direct 

sum representation can be written (using the convenient notation introduced by (2.66)) 

 

( ) ( ) ( )
( ) ( ) ( )( ) ( )
( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

1
0 1 1 0 2 2 2

0
1 0 1 1 1 3 2 2 2 3 3

0 1
2 0 2 1 1 2 2 2 2 3 3

1
1 1 2 2

e e e e ,

e e e e e e e ,

e e e e e e e ,

e e e e ,

Z

Q Q X

− −

− − −

− − −

− −

= + + +

= + + + + + + +

= + + + + + +

= − + + − +

R R 1

R R 1 1 J

R R R 1

L L J

 (3.75) 
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( ) ( )

( ) ( ) ( )

0 0
1 2

1 1 1
0 2

1 0 2 4 0 2
2 20 1 0 , 0 1 0 ,
5 5

2 0 4 2 0 1

0 3 03 0 6 2 0 6
1 1 10 1 0 , 0 2 0 , 3 0 2 .
5 5 5

6 0 2 6 0 3 0 2 0
Q

−⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟= =⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟−⎝ ⎠ ⎝ ⎠

⎛ ⎞⎛ ⎞ ⎛ ⎞− ⎜ ⎟⎜ ⎟ ⎜ ⎟ −
= = = ⎜ ⎟⎜ ⎟ ⎜ ⎟

⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟−⎝ ⎠ ⎝ ⎠ ⎝ ⎠

R R

R R L

 (3.76) 

The solution of (3.74) is constructed for any initial condition, by using the forward propagator, 

defined by the matrix equation  

 ( ) ( ) ( )0 1 2 20 0 0 1 1 2 2 0 1 2, , , , , , , ,Q z Q Q
d j j j t i i j j j j j j t
dt δ δω δ ω ω= − + + + +U J T R R R U  (3.77) 

The solution of this equation is obtained through the matrix exponential 

 ( ) ( )( )0 1 2 20 0 0 1 1 2 2, , , , expQ z Qj j j t i i j j j tδ ω δ ω= − + + + +U J T R R R . (3.78) 

Once this quantity is computed, the evolution of the full density matrix takes an inhomogeneous 

linear form, symbolized here by the operation ( )t •U�  and defined by the following equation, 

 ( ) ( ) ( ) ( ) ( )( )2 2 1 1 2 1 1 Eq Eq| | | | |t t t t t t tδ δρ ρ ρ ρ ρ〉〉 = − • 〉〉 = − 〉〉− 〉〉 + 〉〉U U� . (3.79) 

The inhomogeneous term emerges only in the longitudinal component of the density matrix in 

the form of a time dependent function denoted ρrec(t) 

 ( ) ( )( )rec Eq| |t tδρ ρ〉〉 = − 〉〉1 U  (3.80) 

and referred to as the “longitudinal magnetization recovery” function. Finally, 

 ( ) ( ) ( ) ( )2 2 1 1 rec 2 1| | |t t t t t tδρ ρ ρ〉〉 = − 〉〉 + − 〉〉U . (3.81) 
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3.3. Calculation of the free propagator 

The closed form of the propagator is the subject of this section. Its construction uses the axial 

symmetry (already explored in Section 2.3) and straightforward properties of projectors.  

 If A commutes with a projector P (an operator satisfying P2=P), then, for any analytic 

function f, in terms of the projector and its complement Q=1-P we can write, 

 ( ) ( ) ( )f f f= +A P PA Q QA  (3.82) 

Specific cases are the decomposition itself,  

 = +A PA QA  (3.83) 

the exponentiation of such operators 

 ( ) ( ) ( )exp exp expα α α= +A P PA Q QA  (3.84) 

and the exponentiation of a projector 

 ( ) ( )exp e e 1α αα = + = + −P P Q 1 P . (3.85) 

The first factorization, relating the general propagator Uδ with the on-resonance (δ=0) 

propagator, denoted simply U, is obtained using the commutation of the Liouvillian with JZ  

 ( ) ( ) ( )0 1 2 0 1 2, , , , exp , , , ,Q Z Qj j j t i t j j j tδ ω δ ω= −U J U  (3.86) 

The R0 matrix is a projector, this fact can be verified either from the general commutation 

relations, (2.49), or from its explicit form, (3.75). In terms of the orthogonal complement, P0=1-

R0, according to (3.84), the commutation of the Liouvillian with R0 implies 

 ( ) ( ) ( )0 0 0 0exp exp expt t t− = − + −L R R L P P L . (3.87) 

The P0 component of the propagator is computed using mutual orthogonal projectors P0i, 

P0iP0j=δijP0i, 
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( )( )
( )( )
( )
( )

01 0 1 2 1 2

02 0 1 2 1 2

03 0 1 2

04 0 01 02 03

/ 8,

/ 8,

/ 8,

,

= − − +

= − − −

= + −

= − + +

P P R R R R 2

P P R R R R 2

P P R R 2

P P P P P

 (3.88) 

in terms of which the P0 component of the Liouvillian can be written 

 ( ) ( )0 1 01 2 02 1 2 03 1 2 042 2 2j j j j j j= + + + + +P L P P P P . (3.89) 

The exponentiation is obtained from (3.84) 

 ( ) ( )1 2 1 20 1 2 22 2
0 01 02 03 04e e e e ej j t j j tt j t j t − + − +− − −= + + +P LP P P P P . (3.90) 

For the R0 component, the following operators commuting with R0 are defined, with α=1,2 

 ( )3 0 1 3 20 3 2 3 1/ 2, 2 , 2iα α α α α α α α= − = = −K R R 1 K K T K K K K  (3.91) 

They satisfy the commutation relations of two independent s=1/2 spins 

 ( )1 2 1 2 3, 0, , 1, 2,3 , ,  and circular permutationsi j i j iβ β β⎡ ⎤ ⎡ ⎤= = =⎣ ⎦⎣ ⎦K K K K K  (3.92) 

Using those spin-like operators, the R0 component of the Liouvillian can be written  

 ( ) ( )0 0 1 2 0 3 1
1,2

2 Qj j j jα α α
α

ω
=

= + + + −∑R L R K K , (3.93) 

and its exponentiation reads  

 ( ) ( )0 1 20
0 0 3 1

1,2
e with exp 2j j j tt

Qe t jα α α α α
α

ω− + +−

=

⎡ ⎤= = − −⎣ ⎦∑R LR R M M K K . (3.94) 

The final exponentials are well known from Pauli matrix algebra, with 2 2
Qjα α ω∆ = − , 

 ( ) ( ) ( ) ( )( ) ( )( )2 2
20

sh
, , 1 1 ch 1Q Q

t
j t j i tα

α α α α α α α α
α

ω ω
∆

= = − − − + ∆ −
∆

M M R T R R . (3.95) 

The final formula for longitudinal and transversal components, in a basis free formulation, reads 
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( ) ( )

( ) ( ) ( ) ( )
1 21 2

1 2 0 1 2

22 2
1 2 01 02 03

0, 1 2 04 0
1,2

, , e e e

, , , e e , ,

j j tj t j tL

j j t j j j tT
Q Q

j j t

j j j t j tα α
α

ω ω

− +− −

− + − + +

=

= + +

= + ∑
U P P P

U P R M . (3.96) 

The ‘basis free’ syntagm used here has the meaning that, regardless of the basis choice in the 

Liouville space, once the set of SIT superoperators Tlm is constructed, the free propagator can be 

obtained by mechanically following the succession of transformations described by Eq(3.72), 

Eq(3.88), Eq(3.91), and Eq(3.96). 

 One of the frequently encountered cases is the relaxation in isotropic environments, 

where ωQ→0 simultaneously with j1→j2. In this situation, ∆α→jα, and, with the auxiliary 

notations ( ) ( ) ( )0 2 22e , et j j t jf t s t− + −= = , the propagator takes the form 

 ( ) ( ) ( )( ) ( )( )2 2
0, 2 2 0 03 13 23 13 23

1, ,0, 1 2 1 1
2

j j j t s s s f s s⎛ ⎞= − − + + + − − +⎜ ⎟
⎝ ⎠

U P P K K K K  (3.97) 

Using the axial symmetry and parity considerations the structure of the propagator is expressed 

in terms of fourteen functions ,0 3m
lu m lλ λ≤ ≤ ≤ ≤  

 

0 0 1 1 1 1 1 1
11 31 11 21 31 11 21 31

0 1 1 1 1 1 1
22 0 21 22 32 1 21 22 32 1

0 0 1 1 1 1 1 1
31 33 31 32 33 31 32 33

2 2 2 2
322 32 22 32

2 2 332 2 2 2
32 33 32 33

0
0 0 e

0

u u u u u u u u
u u u u u u u

u u u u u u u u

u u u u
u

u u u u

−

−

⎛ ⎞ ⎛ ⎞ ⎛ ⎞−
⎜ ⎟ ⎜ ⎟ ⎜ ⎟

= + + − − +⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟ ⎜ ⎟−⎝ ⎠ ⎝ ⎠ ⎝ ⎠

⎛ ⎞ ⎛ ⎞−
+ +⎜ ⎟ ⎜ ⎟

−⎝ ⎠ ⎝ ⎠

U e e

e e e( )3 3−+ e

 (3.98) 

In the case of zero quadrupolar splitting, the structure simplifies, requiring only ten functions  

 

( )

0 0 1 1 1 1
11 31 11 31 11 31

0 1 1
22 0 22 1 22 1

0 0 1 1 1 1
31 33 31 33 31 33

2 2
322 22

2 2 33 3 32 2
33 33

0 0 0
0 0 e 0 0 0 0

0 0 0

0 0
.

0 0

u u u u u u
u u u

u u u u u u

u u
u

u u

−

− −

⎛ ⎞ ⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟ ⎜ ⎟

= + + +⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠

⎛ ⎞ ⎛ ⎞
+ + +⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠

U e e

e e e e

 (3.99) 
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Comparing this expression with (3.96) and the explicit expression of the auxiliary projectors 

(3.100) - (3.104) the individual matrix elements are easily found, and they are presented below. 

Using the short form introduced in Eq.(2.66), the auxiliary projectors are given by  

 01 0 02 0 03 0

1 0 2 4 0 2 0 0 0
1 10 0 0 ,  0 0 0 ,  0 1 0 ,
5 5

2 0 4 2 0 1 0 0 0

−⎛ ⎞ ⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟ ⎜ ⎟= = =⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟ ⎜ ⎟−⎝ ⎠ ⎝ ⎠ ⎝ ⎠

P e P e P e  (3.100) 

 ( ) ( )04 1 1 3 3

2 0 6
1 0 0 0 ,
5

6 0 3
− −

⎛ ⎞−
⎜ ⎟

= + + +⎜ ⎟
⎜ ⎟−⎝ ⎠

P e e e e  (3.101) 

 ( ) ( ) ( )11 2 2 12 2 2 13 2 2

0 1 0 1 01 1 1,  ,  ,
1 0 0 0 12 2 2

i
i− − −

−⎛ ⎞ ⎛ ⎞ ⎛ ⎞
= − = − = +⎜ ⎟ ⎜ ⎟ ⎜ ⎟−⎝ ⎠ ⎝ ⎠ ⎝ ⎠

K e e K e e K e e  (3.102) 

 ( ) ( )21 1 1 22 1 1

0 3 0 0 3 0
5 53 0 2 ,  3 0 2 ,

10 10
0 2 0 0 2 0

i
− −

⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟

= − = − − −⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

K e e K e e  (3.103) 

 ( )23 1 1

3 0 6
1 0 5 0 .

10
6 0 2

−

⎛ ⎞
⎜ ⎟−

= − +⎜ ⎟
⎜ ⎟
⎝ ⎠

K e e  (3.104) 

With the notations 

 
( )
( ) ( ) ( ) ( )0 2222 2

e cosh
, ,  e ,  e ,sinh

e

j t

j j tj t
Qj t

C t
j s t f tt

S

α

α

α α

α αα
α

α

ω

−

− +−

−

⎧ = ∆
⎪

∆ = − = =∆⎨
=⎪ ∆⎩

 (3.105) 

the matrix elements of the free propagator are displayed here, together with their values in the 

limit case j1→j2 and ωQ→0 
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( ) ( ) ( ) ( ) ( )
( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( )

0 21 2

1 2 0 2

0 21 2

1 21 2

2 20 2
11 22 1 1 1

20 2 2
22 32 1

2 20 2
33 33 1 1 1

2 20 3
31 33

1 4e e e
5 5
e e 0
4 1e e e
5 5
2 e e 0 e
5

j j tj t j t

j j t j j t
Q

j j tj t j t

j j tj t j t

u s t u C j S f t s t

u s t u i S
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Similar results are obtained in [23] for single and double quantum coherence evolution. From the 

point of view of our approach, we can describe the calculation in [23] as performed from the 

very beginning in subspaces with given m (1 and 2). We consider that the operator approach is 

more illuminating, offering an overall image about the dynamics of the system.  
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4. ALGEBRAIC DESCRIPTION OF NMR EXPERIMENTS 

In Section 4.1, the decomposition of the NMR signal in terms of coherence pathways is offered, 

based on the superspace description. The off-resonance effects are considered for both of the 

relevant regimes, namely, free relaxation and RF pulse application. In Section 4.2, the multiple 

quantum filtered (MQF) experiments are defined. Several concepts are introduced and precisely 

defined: T2 filtered experiments (in which the contributions from the recovery of the longitudinal 

magnetization disappear), maximally filtered experiments (in which the contribution from 

exactly one coherence pathway survives). In Section 4.3, the classical one-, two-, and three-pulse 

experiments are theoretically analyzed and the predictions are verified on both phantom and in-

vitro experiments (presented in Section 4.4). In Section 4.5, the TQ based determination of T2 

relaxation times, is presented. 
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4.1. Coherence pathway decomposition of NMR signal 
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Figure 4.1 The generic, N-pulse sequence. 

 A general NMR experiment is realized as the repetition of the excitation–acquisition 

cycle schematically depicted in Figure 4.1. The excitation consists of a sequence of hard pulses, 

P1,…,PN, characterized by the flip angles θk, the phases φk and followed by the delays τk. The 

initial delay, τ0, is considered to be measured from the last excitation of the previous sequence. 

Measurements are performed at times t=τN; whenever the quantity “t” is mentioned, the equality 

t=τN is understood. 

 The formation of the NMR signal can be described step by step, as a succession of hard 

pulses and free propagators. Denoting the density matrix before the kth pulse as ρ-
k and the 

density matrix after the kth pulse as ρ+
k, the evolution of the density matrix during the experiment 

is uniquely defined by the set of 2N supervectors ρ-
1, ρ+

1,…, ρ-
N, ρ+

N and it is schematically 

depicted below: 

 ( ) ( ) ( ) ( ) ( ) ( )0 1 1
1 1 2pulse relax relax pulse relax

P U U N P N U N
N N tρ ρ ρ ρ ρ ρ−− + − − +⎯⎯⎯→ ⎯⎯⎯→ ⎯⎯⎯→ ⎯⎯⎯→ ⎯⎯⎯→" . 

 Mathematically, according to the superspace formalism introduced in the previous 

sections, the signal is given by the chain of equations, 
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( ) ( ) ( )1

| |

| | | |
k k k

k k k k k rec kδ δ

ρ ρ

ρ τ ρ τ ρ ρ τ

+ −

− + +
+

〉〉 = 〉〉

〉〉 = • 〉〉 = 〉〉+ 〉〉

P

U U� , (4.1) 

where, Pk is the superoperator associated with the kth RF pulse  

 ( ), ,k k kθ ϕ δ=P P , (4.2) 

Uδ(τk) is the superoperator associated with the free propagation during the time period τk, and 

ρrec(τ) describes the recovery of the longitudinal magnetization during the same period of time,  

 ( ) ( )( )rec Eq| |k kδρ τ τ ρ〉〉 = − 〉〉1 U . (4.3) 

 At one end of the chain, by considering the inter sequence separation (i.e.,τ0) long 

compared with both the longitudinal and transversal relaxation times, the starting point of the 

previous recurrence can be considered given by the equilibrium density matrix  

 ( )1 rec 0 Eq| | | |10ρ ρ τ ρ−〉〉 ≈ 〉〉 ≈ 〉〉 ≈ 〉〉 . (4.4) 

 At the other end of the recurrence, the measured signal is the average of the transverse 

magnetization. For perfect quadrature detection when both X and Y projections are being 

measured, the signal can be considered as being the component m+ of the magnetization. Due to 

its proportionality with the angular momentum, the quantity J+ is measured, which is the l=1, 

m=1 component of the density matrix. Therefore, assuming a receiver phase ψ, the measured 

signal is given by 

 ( ) ( ), , 11 |i i
Ne S eψ ψ

δ θ φ τ ρ τ= 〈〈 〉〉
G G G� . (4.5) 

In conclusion, the NMR signal is represented by the superspace expression, 

 ( ) ( ) ( ) ( ) ( )1 1 1 1 rec 0, , 11 | |N N N NSδ δ δ δθ φ τ τ τ τ ρ τ− −= 〈〈 • • • 〉〉U P U P U P
G G G� � � �… , (4.6) 

where the “~” notation denotes the fact that the recovery of longitudinal magnetization is taken 

into account, while the “δ” subscript emphasizes the off-resonance character of the calculation. 
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At this moment a numerical calculations can begin and such pathway have been followed in [24]. 

While possible, and, with the recent progresses in computer technology, not less practical, we 

consider the numerical approach not illuminating. In the approach we develop in this chapter, we 

are able to obtain information about the result of a certain experiment before any calculation 

takes place. Simply put, we want to be able to specify what really needs to be computed before to 

start computing.  

 

 Taking in to consideration (4.1), the last expression transforms in a sum of N terms, 

comprising a main (K=0) and N-1 residual signals (K≠0), 

 ( ) ( ) ( )
1

0
e , , , ,

N
Ki i

K
S e Sψ ψ
δ δθ φ τ θ φ τ

−

=

= ∑
G G G GG G�  (4.7) 

where each of the sub-signals is expressed as true matrix elements of products of linear operators 

 ( ) ( ) ( ) ( ) ( ) ( ) ( )1 1 1 1 rec, , 11 | , , |K
N N N N K K K K KSδ δ δθ φ τ τ θ φ τ θ φ ρ τ+ + + += 〈〈 〉〉U P U P

G G G … . (4.8) 

 The source of the Kth contribution is the recovered longitudinal magnetization during the 

inter-pulse time period τK, therefore it is independent of the previous part of the sequence. The 

property of the Kth residual to have no dependence of the first K pulses makes it possible to 

design a filtering scheme in which all residual contributions are canceled. This class of filtered 

experiments named ‘T2 experiments’ is described in this thesis and it will be explicitly 

characterized at in the next section. At this moment, the existence of such filtering scheme is just 

assumed. For T2 experiments, after the filtering, the non-vanishing contribution comes from the 

main signal, only, and the relation, denoted by ‘
AF
= ’, has the meaning that the equality holds after 

a proper filtering 

 ( ) ( ) ( ) ( ) ( ) ( ) ( )0
1 1 1 1AF

, , , , 11 | , , |10N N N NS Sδ δ δ δθ φ τ θ φ τ τ θ φ τ θ φ= = 〈〈 〉〉U P U P
G G G GG G …  (4.9) 
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 The manifestations of the off-resonance RF irradiation have a double origin, in the hard 

pulse superoperator and in the propagators. First the RF pulses contains a dependence of δ 

described as 

 ( ) ( ) ( ) ( ), , exp , expZ Zi T i Tθ θθ ϕ δ δ θ ϕ δ= − −P L P L  (4.10) 

Second, the off-resonance propagators are described in terms of the on-resonance quantities 

 ( ) ( ) ( )exp Ziδ τ δτ τ= −U J U  (4.11) 

The effect of the off-resonance irradiation can be absorbed into the RF pulse phases. By using 

the properties 

 
( ) ( ) ( )
( ) ( ) ( )( ) 2

e , e e ,0 e , e

e , , e e e ,0 e e , e e

Z Z Z Z Z

Z Z Z Z Z Z Z Z

i i i i i

i i i T i i i T i i TT

δτ δτ φ φ δτ

δτ δτ δ φ φ δ δτ δ

θ φ θ θ ϕ δτ

θ φ δ θ θ ϕ δ τ

− − − −

− − − − − − −

= = +

= = + +

J J J J J

J J J J J J J J

P P P

P P P
,(4.12) 

in which T is the effective pulse length, any of the matrix elements in (4.8) is brought in the 

equivalent form 

 
( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )( ) ( )

rec 1

rec 1

11| , , |

11| , , exp 2 2 |
N N N N k k k k K

N N N N k k k k N N k k Z Ki T T
δ δ

δ δ

τ θ φ τ θ φ ρ τ

τ θ φ τ θ φ δ τ τ ρ τ
−

−

〈〈 〉〉 =

〈〈 − + + + 〉〉

U P U P

U P U P J

…

… …
(4.13) 

with the distorted phases defined by 

 ( )1 1 1 12 2m m N N N N m m m mT T T Tδφ φ δ τ τ τ τ− − + += + + + + + + + + +… . (4.14) 

The density matrix at the right hand side of (4.13) is longitudinal, therefore, the last exponential 

acts as the identity 

 ( ) ( )rec rece | |Ziα ρ τ ρ τ− 〉〉 = 〉〉J . (4.15) 

The result of this part of the discussion could be formulated: the off resonance signal is 

equivalent with the on resonance signal with distorted phases taking place of the original ones 
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 ( ) ( ), , , ,i ie S e Sψ ψ δ
δ θ φ τ θ φ τ=
G G G GG G . (4.16) 

The reverse is also true, once the on resonance signal as a function of the phases is known, the 

off resonance signal is obtained redefining the RF phases according to (4.14). 

 The explicit dependence of the matrix element ( ), ,S θ φ τ
G G G  on the RF phases is a 

prerequisite for phase cycling design. In order to obtain this information, the projectors over 

subspaces with given quantum magnetic numbers m, 
3

| |m
l m

lm lm
=

= 〉〉〈〈∑M  are used. By 

expanding the propagators and hard pulses in terms of the m-projectors, 

 
( ) ( )

( ) ( ) ( )
,

, e

m
m

i m
m

m

t t

φ µ
µ

µ

θ φ θ−

=

=

∑

∑

U U M

P M P M
 (4.17) 

Using this decomposition, the signal is given by the sum over intermediate magnetic numbers 

 ( ) ( )e , , e e e e ,i i i i m i m
mm

S Aψ ψ ξφ δ τ δ η
δ θ φ τ θ τ− − −=∑

GG GG G G
GG

G G GG G  (4.18) 

where the auxiliary quantities, the “coherence-transfer pathway” vector ξ
G

, [25], and the 

“pathway vector” mG  [26] are given by  

 
( )
( )

1 2 1 1 2 1

1 2 1

, , , ,1N N N

N N

m m m m m m

m m m m m

ξ − − −

−

= − − −

=

G
"

G "
 (4.19) 

Also, we introduce the vector of effective delay times, which takes in consideration the finite 

width of the pulses by  

 1 , 1, , 1eff eff
k k k

eff
N N

T T k N

T

η

η
+= + = −

=

"
. (4.20) 

In the previous expression, we denote the effective pulse width, in the approximation introduced 

before: 
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2  if ~

2
0       if ~

k keff
k

k

T
T

πθ
π

θ π

⎧
⎪= ⎨
⎪⎩

. 

The summation in (4.18) is restricted at both ends, m1=-1, 0, 1 and mN=1therefore there are 

3×7N-2 distinct terms in summation for N≥2, and a single term for N=1. For T2 experiments, due 

to the restrictions m1= -1,1 and mi≠0, only 2x6N-2 terms survive 

 ( ) ( )
1 2 1

1 3

AF 1 , 3 1, 0

e , , e e e e ,
N

N i

i i i i m i m
m

m m m m m

S Aψ ψ ξφ δ τ δ η
δ θ φ τ θ τ

−

− − −

=− =− = ≠

= ∑ ∑
GG GG G G

G

…

G G GG G . (4.21) 

The complex amplitudes 

 ( ) ( ) ( ) ( )
1 11 111 | | 10

N Nm m N m N m mA τ θ τ θ= 〈〈 〉〉M U M P M U M PG …  (4.22) 

can be further expressed in terms of propagator and hard pulse matrix elements 

 ( ) ( ) ( ) ( ) ( ) ( )1 1 02 2 1 1

1 1 2 1 1 1 0 0

1 1 2 2

3 3

2 2 1 1
N N N

N N N

N N

m m m m mm m m m
m N Nl l l l l l l l l

l m l m
A u p u p u pτ θ τ θ τ θ−

− −

− −= =

= ∑ ∑G " …  (4.23) 

with the constraints lN=1, mN=1, m0=0. In a compact notation 

 ( ) ( ) ( ),0
,1 ,1AF

e , , e e e ei i i i m i m m m
l l

m l m

S U Pψ ψ ξφ δ τ δ η
δ θ φ τ τ θ− − −

>

= ∑ ∑
GG GG G G G G

G G
GG G

G G GG G  (4.24) 

where the following products of matrix elements are defined 

 
( ) ( )

( ) ( )

1

1

1

0,
1

,
0 0,

1

,

, ,m

N
mm
l ll

N
m mm
ll

U u l

P p l

α

α α

α α

α

αλ
α

µ
αλ

α

τ τ λ

θ θ λ µ

−

−

−

=

=

= =

= = =

∏

∏

G
G

G
G

G

G  (4.25) 

and the inequality l m≥
G G  is understood as li≥mi, for each i=1,…,N. When there is no possibility 

of confusion, the short forms are used 

 
( )

( )
1 1

1 1

1 1

1 1

,1

,0
,1

N

N

N

N

m m m m
l l l l

m m m m
l l l l

U U U

P P P

τ

θ

−

−

−

−

≡ ≡

≡ ≡

G G" G G
"

G G" G G
"

G

G  (4.26) 
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 The advantage of this formalism resides in the fact that it automatically generates the 

coherence pathways in a form suitable for symbolic calculation. The study of various filtering 

schemes can be realized without explicit calculation of the amplitudes. The analytic form of the 

signal, (4.24), offers a clear description of the maximum amount of information that could be 

extracted from pulsed NMR experiments. 

4.2. Multiple quantum filtered NMR 

 The phase cycling filtering of the signal is performed by averaging the signal NF times, 

over pulses phases, φ, and receiver phases, ψ. The filtered signal (denoted with superscript F) is 

the sum  

 ( ){ },

1 e , ,F i

F

S S
N

ψ
δφ ψ
θ φ τ= ∑ G
G G G  (4.27) 

By applying the summation on the coherence pathways representation, and by performing the 

sum over phases first, the signal takes a form similar to the original (4.18)  

 ( ) ( ), e i mF
m m

m
S A f δ τ ηθ τ − +=∑

GG G
G G

G

G G  (4.28) 

where, now, the filtering-scheme-dependent coefficients, fm, appear 

 ( )
,

1 ei
m

F

f
N

ψ ξφ

φ ψ

−
≡ ∑

GG

G
G

. (4.29) 

The contribution of a given pathway mG  is canceled by the filtering provided that 0mf =G , and this 

is the basic property of MQF experiments [25]. 

 Using the results above, the class of T2 experiments can be properly defined. A T2 

experiment is a filtered experiment in which mf G  vanishes whenever an intermediate magnetic 

quantum number, mi, is zero. 
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 The connection with the NMR experiments requires, as a supplementary step, spatial 

averaging over a distribution of both offset values and flip angles. For simplicity, it is assumed 

that the distribution of flip angles is independent of the off resonance distribution. The averages 

denoted 
θ

and 
δ

can then be performed separately, bringing the measured signal to the form  

 ( ) ( ) ( ) ( ) ( )e , ei mF i m m m
m m m l l

m m l m

S t f A f P Uδ τ η δ τ

δδ θ θ
θ τ θ τ− + −

≥

= =∑ ∑ ∑
GG G G G G G

G GG G G
GG G G

G GG G . (4.30) 

Note that, because the distribution of inhomogeneities is unknown, the averages ( )m
lP

θ
θ

G
G
G

 as 

well as ( )e i mδ τ η

δ

− +
GG G

 are also unknown, which renders the direct fit of (4.30) unreliable for the 

purpose of determining physical properties of the system. Further implications of this 

observation are discussed below. 

 A component, mG , and its associated pathway, is called “echo-like” if the quantity  

 ( )0 0t m τ η= − + ≥
GG G  (4.31) 

For echo-like components, the off-resonance dependent factor becomes exactly one at the time 

τN=t0 during the measurement period. Provided that a filtering scheme can be designed to select 

such a component, mG , the direct, non-B0 biased, determination of the quantity 

 ( ) ( ) ( ), m m
m l l

l m

A P U
θ θ

θ τ θ τ
>

= ∑
G G
G GG

G G

G GG G  (4.32) 

is attainable, by performing a multidimensional experiment. By contrast, for the non-echo 

components, any measurement is biased by the effect of the B0 inhomogeneities.  

 Due to B1 inhomogeneities, the averages ( )m
lP

θ
θ

G
G
G

 are unknown, independent quantities 

rendering the direct fit of (4.32) unreliable, unless a factorization of the flip angle dependent 

terms is possible.  
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 Two strategies are possible for experimentally measuring the products of matrix elements 

( )m
lU τ
G
G
G , namely, the “variable echo” and “fixed echo” time strategies.  

 

 In the “variable echo” time strategy, only one, echo-like, coherence pathway is selected. 

By simultaneously varying the pulse delays, the quantity ( )m
lU τ
G
G
G  is measured for ( ) 0m τ η+ =

GG G , 

up to a multiplicative constant. In general this approach is undermined by the occurrence of 

multiple terms with different principal quantum numbers l
G

in the summation (4.32). The only 

cases in which the selection of a single coherence pathway is possible is given by maximally 

quantum filtered signals, when only the coherences with extreme values of magnetic numbers 

survive 

 1 2 11,  , , 3,  1N Nm m m m−= = = = =… . (4.33) 

 The other possible approach, the “fixed echo” time strategy, requiring also the maximal 

filtering, is possible when the position of the echo is kept constant 

 ( ) const.E mτ τ η≡ + =
GG G  (4.34) 

The signal acquired is proportional with the expression  

 ( ) ( ) ( ) ( ) ( )11

1 2 110 1 1 e EN N

N N N N

i tm mmF
Nl l l lS t u u u t δ τ

δ
τ τ−

− − −

−
−≈ …  (4.35) 

from where, by integrating over the acquisition time, the following non-biased expression is 

obtained 

 ( ) ( ) ( ) ( )2
11

1 2
1

10 1 1
N

N N

t mmF
Nl lt

w t S t dt u uτ τ−

− − −≈∫ … . (4.36) 

While the specific choice of the windowing function, w(t), is not important from the point of 

view of the information provided by the experiment, it may affect the SNR of the experiment.  
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 In imaging, a different class of MQF experiments is constructed, which has as a purpose 

the detection of the sodium ions in non-trivial environments. In this class of experiments, the 

quantity of interest is the total signal. From the SNR point of view, it is more convenient to 

acquire many components (echo and non-echo) together. The manifestation of B0 inhomogeneity 

in the sum given by (4.30) is the possible destructive interference between various components. 

In some special cases, as long as the cancellation is not severe, and the B0 distribution can be 

estimated (by performing different experiments) this effect can be corrected at the data 

processing stage. In the cases of severe cancellation, this direct approach fails, therefore different 

methods have to be designed that avoids he cancellation at the data acquisition stage.  

4.3. Theoretical description of NMR experiments 

In this subsection, the classical 1-, 2- and 3-pulse NMR experiments are analyzed using the 

coherence decomposition formalism. The pulse lengths are ignored; they can be always 

introduced at the end of the analysis, by using simple substitution rules. Apart of the illustration 

of the formalism, the main result of this section is represented by the offered prescription for TQ 

filtering schemes selecting various combinations of coherence pathways. 
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4.3.1. One Pulse Experiment 
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Figure 4.2 The schematic representation of the one-pulse experiment 

 The one pulse experiment, presented schematically in Figure 4.2, is often used in NMR 

for calibrating the 90° pulse. The signal measured is given, in the infinite repetition time limit, by 

 ( ) ( ) ( ) ( ) ( ) ( )1 1 10
1 1 1 1 11 1, , , 11 | , |10 i tiS t e t e u t pψ φ δψ

δ δθ φ ψ θ φ θ− −= 〈〈 〉〉 =U P  (4.37) 

The filtering scheme, based on addition-subtraction with 1 , , 0,1k k kφ π ψ π= = =  (used in order 

to avoid DC baselines in the collected FID) produces the signal  

 ( ) ( ) ( ) ( )1 10 1
11 1 11, sin

2
F i t i tiS t e u t p e u tδ δ
δ θ θ θ− −= = . (4.38) 

After the average over B0 and B1 fields is taken 

 ( ) ( ) ( ) ( )1 10 1
11 1 11,

sini t i t
macroS t e u t p e u tδ δ

θδ θ δ
θ θ− −= ≈  (4.39) 

The general form of the matrix element ( )1
11u t  is given in  

 The presence of the time dependent term e i tδ

δ

−  makes the direct fit of the FID in (4.39) 

unreliable for the estimation of the actual relaxation rates, unless special precautions are taken in 

preparing the sample. Nevertheless, variations of the one pulse experiment can be used to 

experimentally estimate the (in) homogeneity of the B1 field. 
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4.3.2. Two-pulse Experiment 
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Figure 4.3 the schematic representation of the two-pulses experiment 

 The schematic representation of a two-pulse NMR experiment is presented in Figure 4.3. 

One of the most useful and non-trivial, applications of this generic pulse-acquire structure is the 

description of a spin echo experiment. For a given separation τ1 between the pulses, the 

measured signal at time t=τ2 is given by, 

 ( ) ( ) ( ) ( ) ( )1 2 1 2 1 2 2 1 1 1e , , , , , 11 | , , | 10i iS t e tψ ψ
δ δ δθ θ φ φ τ θ φ τ θ φ= 〈〈 〉〉U P U P  (4.40) 

In general, there are three distinct components: echo, residual, and non-echo (m1=-1, 0, 1, 

respectively) 

 ( )( )2 1 1 2 1 12
1 0 1e e e e ei i i i ii i i tS A A Aφ φ δτ φ φ δτψ ψ δ

δ
− − + − − −−

−= + + , (4.41) 

where, 

 ( ) ( ) ( ) ( ) ( )
3

1 1 0
1 2 1 1 1 1 2 1 1

1
, , , m m m

m l l l
l

A t u t u p pθ θ τ τ θ θ
=

= ∑ . (4.42) 

To cancel the residual components (i.e. to obtain a T2 experiment) using phase-cycling, the 

following condition has to be fulfilled 

 ( )2

2 ,

0ie ψ φ

φ ψ

− =∑ . (4.43) 
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The pure echo component can thus be selected with a four phase scheme, satisfying the condition 

above, namely, 

 1 2/ 2 0 / 2, 0,1, 2,3k k kφ π φ ψ π= − = = = . (4.44) 

After averaging over flip angles (to account for spatial inhomogeneities in the B1 field) and B0 

inhomogeneities the macroscopic signal becomes, 

 ( ) ( ) ( )1, 1
1 2 1 1 1 2 1, , , , , ,i tF

macroS t e A tδ τ

θδ
θ θ τ θ θ τ− −−

−= . (4.45) 

Making use of the propagator property U(t+τ1)=U(t)U(τ1), together with the symmetry relation 

( )l km m
lk lku u+− = −  the sum-of-times matrix element  

 ( ) ( ) ( ) ( ) ( ) ( ) ( )1 1 1 1 1 1 1
11 1 11 11 1 21 21 1 31 31 1u t u t u u t u u t uτ τ τ τ− − −+ = − +  (4.46) 

can be formed, and the amplitude of the echo component takes the form 

 ( ) ( ) ( ) ( ) ( ) ( )2 1 2 1 1 2 1 12
1 1 11 1 2 21 21 1 2 2 31 31 1

52 sin sin sin sin 1 3cos
2 8

i A u t u t u u t uθθ τ θ τ θ θ τ−
⎛ ⎞= + − − −⎜ ⎟
⎝ ⎠

. (4.47) 

In particular, when the B1 field is homogeneous the flip angle can be ideally calibrated, the 

condition θ1=π/2, θ2=π is then easily realized leading to the following expression for the 

measured signal,  

 ( ) ( )1, 1 1
1 11 1, , ,

2
i tF

macroS t e u tδ τ

δ

π π τ τ− −− ⎛ ⎞ = +⎜ ⎟
⎝ ⎠

. (4.48) 

In this ideal case, it is possible to extract the function ( )1
11 2u t by a 2D experiment in which the 

delay between pulses, τ1, is varied and the measurement takes place at the time t=τ1. In the 

general case, when the B1 is not uniform across the sample volume, the quantity determined by 

the 2D experiment is the more complex ( )1 1 2, , ,A t t
θ

θ θ−   
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( ) ( ) ( ) ( )

( ) ( ) ( )

2 1 2 1 12
1 1 2 1 11 1 2 21 21

2 1 1
1 2 2 31 31

, , , sin sin 2 sin sin
2

5 sin sin 1 3cos
8

A t t u t u t u t

u t u t

θ θ
θ

θ

θ
θ θ θ θ θ

θ θ θ

− = −

− −

 (4.49) 

For liquids, the identities 1 1
21 31 0u u= = ensure the determination of ( )1

11 2u t  even under non-ideal 

conditions 

 ( ) ( ), 1 2 12
, 1 2 1 11, , , sin sin 2

2
F
macro liquidsS t t u t

θ

θ
θ θ θ− ≈ . (4.50) 

In the general case, the flip angle dependent contributions from 1
21u  and 1

31u  terms make the 

direct extraction of 1
11u  in the presence of B1 inhomogeneities impossible. Under such conditions, 

the extraction of physical parameters (relaxation rates) becomes unreliable. A similar conclusion 

has already been reached by Brown et al. [27]. In Brown’s report, however, the unstable nature 

of a non-linear fit to a sum of three exponentials was described as the leading reason for the 

unsuitability of a two-pulse experiment as a mean to measure relaxation rates. Our analysis here 

indicates that, even for accurate fit, the biased nature of the 90°-180° experiment in the presence 

of B1 inhomogeneities makes the estimation of relaxation rates unreliable. 

 As a further example, we consider the case in which the static quadrupolar interaction is 

absent. Under such conditions, the Hahn echo experiment produces a signal, which, at 

measurement time t is proportional to  

 ( )
2

2 2 2 22
1 1 1 2 2

3 2 5 6 6sin sin sin sin 1 3cos 2
2 5 5 8 5 5

HA f s f s
θ

θ

θ
θ θ θ θ−

⎛ ⎞⎛ ⎞= + − − −⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠
.(4.51) 

For this signal, the five parameter function,  

 ( ) ( )22 / /2 / /1 63e 2e e e
5 25

f fs st T t Tt T t Ta b c− −− −+ − − +  (4.52) 

is the natural choice for the extraction of the relaxation parameters with the amplitudes given by  
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( )

2 2
1

2
1 2 2

sin sin
2

5 sin sin 1 3cos 2
8

a

b

θ

θ

θθ

θ θ θ

=

= −

 (4.53) 

In the ideal situation of both perfect calibration and B1 homogeneous field b=0. Note, however, 

that in the presence of B1 inhomogeneities the calibration of the 180° pulse only guarantees that 

2sin 0
θ

θ =  and the quantity ( )2
1 2 2

5 sin sin 1 3cos 2
8 θ

θ θ θ−  could be still non-zero. A fit to the 

first term of (4.52) (the standard bi-exponential form used in the literature) will still be biased 

leading to a poor determination of the underlying relaxation rates. The bias, reflected by the 

presence of the b-term, depends on the B1 distribution in the sample, which depends in turn on 

the shape of the sample and coil-sample geometry. As a result of the strong correlation between 

the parameters obtained by nonlinear fit, the relaxation times are themselves biased. 
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4.3.3. Three-pulse experiment 
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Figure 4.4 the schematic representation of the three pulse experiment. 

 Using the diagram in Figure 4.4, we have that the relevant matrix element giving the 

signal at time t=τ3, for the three-pulse experiments, reads 

 ( ) ( ) ( ) ( )3 3 2 2 1 1, , 11 | | 10i ie S eψ ψ
δ θ φ τ τ τ τ= 〈〈 〉〉U P U P U P
G G G  (4.54) 

from where the decomposition in terms of coherences reads 

 ( ) ( ) ( )( ) ( ) ( )1 1 2 2 1 3 2 1 1 2 2 3

1 2

1 2

1 3

1 3
e , , e e e ,i m m i m mi i

m m
m m

S Aφ φ φ φ φ δ τ τ τψ ψ
δ θ φ τ θ τ− + − + − − + +

=− =−

= ∑ ∑
G G GG G , (4.55) 

with the individual amplitudes having the explicit form (4.23), 

 ( ) ( ) ( ) ( ) ( ) ( )2 1 2 2 1 1 1 2 1 2

1 2 2 2 1 1 2 1 1 2 1 2

3 3
1 01

1 3 2 1 3 2 1 11
m m m m m m m m m m

m m l l l l l l l l l l
l m l m

A u u u p p p U P
α α α α

τ τ τ θ θ θ
= =

= =∑ ∑  (4.56) 

 According to our previous discussion regarding the off-resonance RF pulses, whenever 

the RF pulses are considered of non-zero width, in the terms multiplying the inhomogeneity 

parameter, δ, it is understood that the delays are modified by the substitutions 

 
1 1 eff

2 1 eff

3 3 eff

2
2
T
T

T

τ τ
τ τ
τ τ

→ +
→ +
→ +

, (4.57) 

where the effective pulse length is defined in terms of the RF pulse duration, T, by  
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 eff
1 2tan

2
T T Tθ

θ π
= ≈ . (4.58) 

The nature of most manipulation, make it safe for us to perform the substitutions at the very end 

of the calculation, as the “true” propagation times are always arguments of the propagator matrix 

elements, while the apparent delays are occurring only in the exponentials, multiplying the 

inhomogeneity, δ.  

 The classification for the terms occurring in (4.55) is straightforward. For a T2 

experiment, there are twelve terms, from which, as a general rule, six are echo like. There are 

exceptional situations when τ2≈kτ1/2, k=0,…,6. When the condition τ2<τ1/3 is fulfilled, the six 

echoes are located at 

 ( )e
3 2 1 2 2 2 2, 3, 3, 0m m m mτ τ τ= − = − ≠…  (4.59) 

Even though the effect of the last two successive RF pulses is equivalent to that of a single RF 

pulse, the additional freedom to manipulate the relative phase between them allows the selection 

of a given m2 order, therefore, reducing the number of matrix element products 1
1 1

m
l lu u  entering in 

the summation in (4.56). 

 By selecting only the coherence pathways with m2=±3 (named here “total TQ filtering”), the 

corresponding amplitudes are completely factored  

 ( ) ( ) ( ) ( ) ( ) ( ) ( )1 2 1 2

1 2

13 1 3 1
1, 3 33 33 33 31 1 33 2 31 3, m m m m

m mA P U P u u uθ τ θ τ θ τ τ τ=± =± = =
G G GG G . (4.60) 

The relevant, flip angle dependent, coefficients, organized in a matrix form for clarity, are given 

by  

 

1, 3
2 333 2

1,3
2 32 233

1 2 31, 3
22 333

1,3
2 333

cos15 2sin sin sin , with 
16 2 sin

2

c sP
cs cP i

c cP s
s sP

α
α

α
α

θ

θ θ θ
θ

− −

−

−

−⎛ ⎞ ⎛ ⎞
⎜ ⎟ =⎜ ⎟−⎜ ⎟ ⎜ ⎟=⎜ ⎟ ⎜ ⎟

=⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠

 (4.61) 
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In the case of identical pulses, with common flip angle θ1 = θ1 = θ1 = θ, 

 

( ) ( )
( ) ( )

( )
( )

2 21, 3
33

2 21,3
533

41, 3
33

41,3
33

cos / 2 sin / 2
cos / 2 sin / 2

sin
cos / 2
sin / 2

P
P
P
P

θ θ
θ θ

θ
θ
θ

− −

−

−

⎛ ⎞⎛ ⎞ −
⎜ ⎟⎜ ⎟ −⎜ ⎟⎜ ⎟ = ⎜ ⎟⎜ ⎟
⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠

 (4.62) 

When τ2<τ1/3, only the components (-1,±3) give echoes, located at τ3=τ1±3τ2. For τ2>τ1/3the 

echoes are given by the components (-1,-3) and (1, -3). In the most selective experiments, the 

individual components are isolated. This can be realized using cycling schemes with ten phases 

 1 1 2 2 3 3/ 5 / 5 / 5 0, ,9k k k k kφ α π φ α π φ α π ψ π= = = = = …  (4.63) 

with the coefficients for each component given in the following table 

 
( ) ( ) ( ) ( )1 2

1

2

3

( , ) 1, 3 1, 3 1, 3 1, 3
1 1 1 1
2 0 0 4
1 2 1 7

TQ TQ TQ TQ
m m
α
α
α

−+ −− +− ++

− + − − + − + +

−

 (4.64) 

The selection of both echo components is realized with the eighteen-phase scheme, TQ- 

 1 2 3
2 0, ,17

9 9 9
k k k k kπ π πφ φ φ ψ π= = = − = = … . (4.65) 

Finally, the simultaneous acquisition of all four TQ components is realized with the following 

composite twelve phases cycle (TQ) 

 
1 2 3

1 2 3

0 0, ,5
3 6 3 3

5 0 6, ,11
3 6 3 3

k k k k

k k k k

π π π πφ φ φ ψ π

π π π πφ φ φ ψ π π

⎧ = + = − = = =⎪⎪
⎨
⎪ = + = − = = + =
⎪⎩

…

…
 (4.66) 

The additional six phases, compared with are introduced to obtain a T2 experiment.  

The introduced experiments give the filtered signals 
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( )

( )
3 1 23

1,3 13 2 2 2 2 32
33 1 2 3

15e sin sin sin sin cos
2 216 2

i

S U
i

δ τ τ τ

δ
θθ

τ θ θ θ
− − −

− =
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( )

( )
3 1 23

1, 3 13 2 2 2 2 32
33 1 2 3

15e sin sin sin cos sin
2 216 2

i

S U
i

δ τ τ τ

δ
θθ

τ θ θ θ
− − +
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3 1

2 23 31, 3 13 2 2 2 2 2 23 32 2
33 1 2 3

15e sin sin sin e cos sin e sin cos
2 2 2 216 2

i
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δ τ τ
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1 2 2

1 2 2
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33 1 2 3

3 32 2 2 23 32 2
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2 2 2 216 2
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2 2 2 2
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i i i

i i i
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δτ

δτ δτ δτ
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δτ δτ δτ

θ θθ θτ θ θ θ

θ θθ θ

−
+ −± ±

− −

⎧ ⎡ ⎤= +⎨ ⎢ ⎥⎣ ⎦⎩
⎫⎡ ⎤+ + ⎬⎢ ⎥⎣ ⎦⎭

G

 (4.70) 

In the case in which all pulses are identical, θ1= θ2= θ3=θ, the signal simplifies to 

 
( )

( ) ( )
3 1

1 13 7
33 2

15e sin cos 3
32 2

i

S U i
i

δ τ τ

δ τ θ δτ
− −

− =
G  (4.71) 

 
( )

{ ( )}

3
13 5
33

1 2 1 2 1 2 1 2

15e sin
16 2

cos cos3 cos sin sin 3 cos cos sin 3 cos sin cos3 .

i
TQS U

i

δτ

δ τ θ

δτ δτ θ δτ δτ θ δτ δτ θ δτ δτ

−

= ×

− − +

G
(4.72) 

4.4. Experimental verification of algebraic description 

 Phantom experiments are performed to illustrate the used of the proposed approach for 

the theoretical description of NMR experiments. These experiments were designed to illustrate 

the bias in the relaxation parameters that could result from variations in the B0 and B1 field 

across the sample and how the proposed approach can help isolate these effects during the 

analysis of the signal.  

 All experiments presented in this section were performed on a vertical bore, 7 Tesla, 

Bruker DMX300 spectrometer (Bruker AG, Germany). The phantoms consisted of agar gels, as 
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such gels are known to exhibit bi-exponential relaxation behavior due to the isotropic slow 

motion experienced by the sodium ions in the agar environment. [12] 

 In order to obtain a strong deuterium lock signal, the gel was prepared using D2O instead 

of distilled water. All chemicals used (10 cc D20, 0.2 g NaCl, 2 g agar powder) were acquired 

from Sigma-Aldrich, St. Louis, MO. The samples were prepared by bringing the mixture close to 

the boiling point while continuously mixing the NaCl and agar using a magnetic stirring plate 

and an uncovered Erlenmeyer flask. After mixing-in and dissolving the chemicals, the mixture 

was allowed to cool before being placed in 10 mm NMR tubes. The resulting samples (2) were 

cylindrical in shape (10 mm diameters) and of different lengths. The smallest sample, which had 

a height of 1cm, was used to illustrate the effects of B0 inhomogeneities. The other sample had a 

height of 4 cm and was used to illustrate the effects of B1 inhomogeneities. While the sample 

were identical prepared, due to their different sizes, they are affected in different ways by the 

evaporation process.  

 The one-pulse experiment data were acquired on both samples, using the same pulse 

sequence program. Eight FID’s were added in each one-pulse experiment, using a phase cycling 

scheme with φ1=kπ,ψ=kπ, k=0,1.  

 The optimum value for shim gradients (shimming) were found using a two stage 

procedure. First, the lock signal level was maximized by modifying the shim gradients. Second, a 

modification of the paropt utility shipped with the XWIN-NMR software suite was used to 

maximize the amplitude of the spectral peak, by varying the shim gradients, followed by 

acquisition and Fourier transformation of the signal. The sensitivity of this approach is better 

than the one based on the lock signal. below presents a comparison between the measured data 
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and the non-linear fit (solid line) for the small (bullets) and large (stars) agar phantoms.  The 

function used in fitting has the biexponential form.  

 ( ) ( )( )3exp / 2exp /FAST SLOWa t T t T b− + − +  

The found b/a ratio found is less than 0.2 percents in both situations. Responsible for the absence 

of the baseline is on the one side the accurate on-resonance frequency determination (realized by 

using a linear fit of the FID’s phase) and, on the other hand, the way data is handled. Instead of 

using the magnitude of the signal, a zero order phase correction is performed, such that the signal 

appears only on the real channel, while the data on the imaginary channel consist of remaining 

noise. 
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Figure 4.5 FID and non-linear fit using the biexponential, from a one pulse experiment on the small agar 
phantom (bullets) and the large agar phantom (stars). (TR=191ms, 8 averages). 

 To illustrate the effects of B1 inhomogeneities across the sample, the one-pulse 

experiment was performed in a 2D fashion with the extra dimension being given by the pulse 
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length. Figure 4.6, below, present the integral of the measured data as a function of the pulse 

length (128 values between 10 and 518 microseconds).  
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Figure 4.6 Dependence of the NMR signal on the RF pulse length for the small (bullets) and the large (stars) 
samples. Each data point corresponds to the integral of the FID (TR=191ms, 16 averages) following the RF 
pulse with corresponding pulse width. 

 The results of the two experiments indicate that the small sample is characterized by 

larger B0 inhomogeneities leading to an “artificial” shortening of the relaxation times. This fact 

is to be expected, as the inhomogeneities are related with the discontinuities in susceptibility at 

the air-agar surface. Clearly, the larger B1 inhomogeneities in the large agar sample lead to a 

higher degree of signal loss as the flip angle increases (increase in pulse length). This behavior is 

expected, also, as the longer sample has regions close to the ends of the coil, where the B1 

inhomogeneity is increased. 
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 To illustrate the theoretical findings from the two-pulse theoretical model another set of 

measurements was performed. In these two-pulse experiments, the time delay between the pulses 

was increased from 0.3 to 38.4 milliseconds (128 equal steps). Each individual FID was recorded 

with a time resolution of four microseconds and twenty-four points in the FID averaged to obtain 

an estimate of the FID intensity at the echo. This estimated peak FID value was graphed as a 

function of the inter-pulse delay for the small and large agar samples.  
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Figure 4.7 Dependence of the NMR signal from a two pulse experiment on the inter-pulse separation for the 
small agar phantom (lower part) and large phantom (upper part). Each data point corresponds to the peak 
amplitude of the corresponding FID (TR=209-285ms, 8 averages). The solid line indicates the fit to the signal 
envelope using the three terms function of the inter-pulse separation t. 

The fit is performed using the function  

 ( ) ( )( ) ( ) ( )( )2
5 3exp 2 / 2exp 2 / exp / exp /FAST SLOW FAST SLOWa t T t T b t T t T c− + − − − − − +  
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 As expected, for the small sample the effect of B0 inhomogeneities is largely removed. 

For the large sample, the quality of the data is not significantly enhanced. Note that from 

equation 112 above, one measure for the size of the B1 inhomogeneities within the sample can be 

given by the ratio b/a, which can be obtained from the best fit to the function. For the small 

sample (homogeneous B1) this ratio yields b/a=0.11 while for the large sample (inhomogeneous 

B1) b/a=0.34. 

 The variable echo three-pulse experiment is demonstrated next using the ten phase cycle 

from equation(4.64). The results of this experimental procedure are presented in lower and upper 

parts of Figure 4.8, for the small and large agar samples, respectively. Selecting only the (-1,-3) 

component, an echo is formed and a 2D experiment is possible. The preparation delay is varied 

between 0.2 and 51.2 milliseconds, in 256 equidistant steps (the FID’s are acquired with a time 

resolution of eight microseconds and eighty points are used in the estimation of the peak). 
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Figure 4.8 Dependence of the NMR signal from a three pulse experiment on position of the echo (a function of 
the inter-pulse delay) for the small (lower part of the plot) and large (upper part of the plot) agar phantom. 
Each data point corresponds to the amplitude of the echo (TR=157-259ms, 20 averages). The solid line 
indicates the fit to the signal envelope, as described in text. 

In fitting the data, the effect of the finite pulse is accounted. The (-1,-3) echo forms at a position 

τ1+x, with x=3τ2+7T, and where T is the effective length of the pulse, the right functional form to 

be used in the fit is given by   

( ) ( )( ) ( )( ) ( )( )( )exp / exp / exp / exp /S F S Fa t T t T t x T t x T b− − − − − − − − +  

 Finally, the fixed echo experiment was performed using a ten-phase cycle, selecting this 

time the (-1, 3) echo. The evolution delay was varied between 0.032 and 16.352 milliseconds in 

256 equidistant steps. The preparation delay was incremented in steps three times larger than the 

ones used for incrementing the evolution time, ensuring the fixed echo location condition 
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discussed above. The time-integral of the FID’s (estimated after discarding the first ten points) 

are shown versus the preparation time, for the small (lower) and large (upper) agar samples, 

together with their best fit (solid lines) in Figure 4.9. 
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Figure 4.9 Dependence of the integral of NMR signal from a three pulse experiment on the TQ evolution time, 
for the small agar phantom (lower part) and large agar phantom (upper part). Each data point corresponds 
to the time integral of the corresponding FID (TR=217-282ms, 10 averages). The solid line indicates the fit to 
the signal envelope. 

The fitting function used, in terms of the evolution time, t:  

( ) ( )( ) ( )exp 3 / exp 3 / exp 3 /S F Sa t T t T t T b− − − − + . 
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4.5. Accurate determination of T2 in vivo 

 Whenever the macroscopic signal is measured, the sum over all spins in a certain volume 

is practically performed. In other words, the macroscopic signal is equivalent to the spatial 

average of the previous formulae, describing the TQ filtered signal, with fmn depending on the 

filtering scheme 

 ( ) ( ) ( )( ) ( )

( )

( )1 1 2 2 1 3 2 1 1 2 2 3

1 2 1 2

1
2 1 1 2 2 3

1,1
3,3

e , , e e e ,i m m i m mi i
m m m m

m
m g m m

S f Aφ φ φ φ φ δ τ τ τψ ψ

δ

τ τ τ

θ φ τ θ τ− + − + − − + +

=−
=− + +

= ∑
G G G

���	��

. (4.73) 

The propagator matrix elements are considered here as corresponding to a biexponential system, 

therefore, up to a common normalization constant,  

 ( ) ( )/ //1 3
31 33e e eS SFt T t Tt Tu t u t− −−= − =  (4.74) 

 To illustrate the discussion in this section, for theoretical considerations, we choose, as an 

example, a biexponential system with the long and short relaxation times, TL=20 milliseconds, 

and respectively, TS=1.9 milliseconds. The function describing the effect of averaging over B0 

inhomogeneity is chosen here, as an example, the Gaussian with σ=8 milliseconds 

 ( ) ( )( )2 2exp / 2g t t σ= −  (4.75) 

 The TQ imaging relies on the accurate measurement of NMR properties of the system to 

be imaged. The accurate determination of the point in which the TQ has its maximum amplitude 

is particularly important. On one side, because the recorded TQ intensity has the form  

 ( ) ( )11 //1
31 1~ ~ SL TT

TQs u e e τττ −− − , 

the maximum intensity is obtained when the preparation time attains its optimum value 

 ( )log /
1/ 1/

L S
opt

S L

T T
T

T T
=

−
 (4.76) 
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In absence of inhomogeneities, the time dependence is the same for all four components, as 

exemplified in the Figure 4.10. In absence of inhomogeneities, the effect of varying the delays τ1 

and τ2 manifests in scaling the signal, through the factor 

 ( ) ( ) ( ) ( ) ( )11 2/ // / /1 3 1
31 1 33 2 31 ~ S SL L LT t TT T t Tu u u t e e e e eττ ττ τ − −− − −− −  (4.77) 
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Figure 4.10 Behavior of ideal TQ with the variation of the preparation time. 

The presence of inhomogeneities introduce another source of time dependence in which of the 

contributions, depending on the location of the associated echo (the point in time in which all 

spin packets have the same phase) 

 ( ) ( )

( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( )

1 1 2 2

1 2 1 2

1 2 1 2
1 1 2 2

1 2 1 2
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e
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g t m m
g t m m
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g t m m
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δ τ τ

δ

τ τ
τ τ

τ τ
τ τ
τ τ

− + +

⎧ − − = − −
⎪ + − = −⎪+ + = = ⎨ − + = −⎪
⎪ + + =⎩

 (4.78) 

In the presence of the inhomogeneities (here introduced by the function g(t)) the following 

typical behavior occurs 
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Figure 4.11 Behavior of non-ideal TQ with the variation of the preparation time. Thin lines represent the four 
components, while the thick dark line is their sum (scaled to half of its value, for display purposes) 

Each of the components is distorted, in a way that is described by multiplication with a time 

translation of the inhomogeneity function. As a consequence, their sum is distorted. 

0 5 10 15 20 25
Acquistion time HmsecL

0

10

20

30

QT
ytisnetni

Ha
.u

.L

TQ signal with variable t

(3)

(1)

(2)

0 5 10 15 20 25
Acquistion time HmsecL

0

10

20

30

QT
ytisnetni

Ha
.u

.L

TQ signal with variable t

(3)

(1)

(2)

 

Figure 4.12 TQ FID’s acquired on a small agar sample, using the Signa GE scanner and a solenoid coil. The 
FID’s correspond to preparation times of 3, 5 and 8 milliseconds. As expected, the position of the maximum 
TQ signal depends on the preparation time, a clear sign of B0 inhomogeneities across the sample. The solid 
lines represent biexponential fit of each data. 

The manifestation of this effect is visible in the example data presented in Figure 4.12, where 

three TQ signals have been acquired with three preparation times. For each of them, the solid 
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lines represent the fit with biexponential function. There is no significant difference in the 

quality of the fit for any of them. Obviously, they predict different optimal preparation times, 

indicated on the plot by the vertical segments, also the fits return different set of long and short 

relaxation times: (15, 2), (16, 3) and (26, 3) milliseconds, for first, second and third data, 

respectively. 

 The conclusion of both the simple theoretical simulation and the sample data is that not 

only the measurements based on individual FID’s are biased in the presence of B0 

inhomogeneities, but also, the approximate extraction of quantities of practical interest is 

impossible.  

 The first example is obtained on a sample consisting of an intact rat brain. The FID 

following a single pulse is presented in Figure 4.13 
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Figure 4.13 Single pulse experiment on a sample consisting of whole rat brain. 

The next figure presents the TQ signal, acquired with a 6 millisecond preparation time 
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Figure 4.14 TQ signal acquired on an intact rat brain, preparation time τ1=6 millisecond. The signal can not 
be fitted with a biexponential. 

 The quality of data is low, as the brain was kept intact. Its irregular geometry combined 

with the susceptibility discontinuity at the air-tissue interface (we did not use a solvent, in order 

to not alter the sodium concentration of the tissue) has as an effect strong B0 inhomogeneity. The 

variable echo data is presented in Figure 4.15, the B0 inhomogeneity is largely removed. 

 

0 10 20 30 40 50 60
Echo position HmsecL

0

0.2

0.4

0.6

0.8

1

ohcE
edutilp

mA
Ha.

u.
L 7Tesla, rat brain

TF = 1.7, TS = 35.7 msec

Variable position TQ Echo

 

Figure 4.15 Variable echo method applied for a sample consisting of a whole, intact, rat brain. In spite of the 
low quality of the single FID data, the 2D acquisition is able to retrieve correct physical quantities. 
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 The next experiment is meant to exemplify the fact that by performing one FID 

experiments only there is no possibility to estimate the errors, and misleading results are 

obtained. The sample consist of five mice brains, in saline and D2O solution. A standard 10 mm 

(larger than the brain’s diameters) NMR tube has been used. Due to the fact that now the probe 

has a more homogeneous magnetic susceptibility, the quality of data is enhanced. 
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Figure 4.16 TQ FID obtained on a sample consisting of five intact mice brains. Due to the fact that the sample 
is placed in saline solution, the B0 homogeneity is improved. Still, the values obtained by fitting are biased. 

 The variable echo experiment gives the results presented in the next figure. As expected, 

the long relaxation times are underestimated. More, as opposed to the plot in Figure 4.14, the 

quality of the single FID does not warn about such discrepancies. 
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Figure 4.17 Variable echo method. Even tough the quality of the single TQ FID is high; the long relaxation 
times are underestimated. 
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5. IMAGING 

In Section 5.1, is offered a simple mathematical procedure for the modeling of the MRI 

experiment steps: signal generation, data acquisition, data regridding, and Fourier Transform 

image reconstruction, in MRI. The suitability of the model is demonstrated by analyzing a 

specific problem, signal to noise ratio (SNR) maximization in respect with the readout time.  

5.1. K-space description of MRI experiments 

 In the following discussion, the R-space denotes the domain of the object to be imaged 

and K-space denoted the spatial frequency domain. The object is described, in generic terms, by 

the amplitude of the imaged density, ( )rρ G , with the restriction ( ) 0rρ =
G  whenever r a≥

G . The 

time decay in each point is described by a function ( ),f r tG . The form of this function could be as 

simple as a mono-exponential decay or more complex as in the case of multiple quantum filter 

experiments. 

 In order to take in account the possibility of multiple excitations, the K-space trajectory is 

described by N branches (one for each RF excitation), with the position, at the moment t, on a 

branch n given by the equation ( )np tG .  

 By assuming the time shift invariance of the experiment, (neither the pulses nor the 

object characteristics change from one sub experiment to another) the preparation times between 

the sub experiments can be ignored. The n-th experiment can be considered as starting at 

moment of time ( ) Read1nt n T− = −  and ending at moment Read 1n nt nT t+ −
+= = .  
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 Considering the sensitivity of the receiving coil constant, the measured signal is the sum 

of the “true” signal and the “noise” 

 ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )( ) ( ) ( )e , exp 2n n n n
m as nV

S t S t t dr r f r t i p t r tη ρ π η= + = +∫
G G G G G  (5.1) 

Under the hypothesis of identical relaxation properties of the system, the decay function has no 

dependence on the coordinates, ( ) ( ),f r t f t=
G , and the theoretical signal takes the simpler form 

as the Fourier transform of the imaged density 

 ( ) ( ) ( ) ( ) ( )( ) ( ) ( )( )ˆexp 2n
n nV

S t f t dr r i p t r f t p tρ π ρ= =∫
G G G G G  (5.2) 

The complex quantity η(t), the additive noise, is described as a stationary Gaussian random 

process, with zero correlation time: 

 ( ) ( ) ( ) ( )2
1 2 1 20 *t t t t tη η η σ δ= = − . (5.3) 

 For theoretical considerations, the definition of the signal in a discrete set of points, only, 

it is not convenient. By using standard regridding procedures one is able to define the intensity of 

the signal as a function of K-space position, κG , using the convolution formula 

 ( ) ( )( ) ( ) ( )
1 1

,
N M

n
n m meas m

n m
R W p t S tκ κ

= =

=∑∑G G G  (5.4) 

This could be interpreted as the discrete approximation of the an integral expression  

 ( ) ( )( ) ( )ˆ ˆ ,
T

R dt w p t S tκ κ= ∫
G G G  (5.5) 

where the short notation is introduced for the sum of individual integrals 

 ( )( ) ( )( )
Read

1 0

, , , ,
nTN

n n n nT
n

dt F t p t dt F t p t
=

≡∑∫ ∫
G G… …  (5.6) 
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For practical purposes, the convolution formula (5.4) is used to generate the data onto a new, 

Cartesian grid (regridding). The reconstruction from this point is accomplished using the Fast 

Fourier Transform.  

In the case in which the signal is considering as originating from an imaging experiment, 

( ) ( ) ( )( )ˆS t f t p tρ=
G the K-space reconstructed signal is given by 

 
( ) ( ) ( )

( ) ( ) ( )( ) ( )

3

2

ˆ ˆ ,

ˆ ˆ, , e
V

ip t r

T

R d r r r

r dt f t w p t π

κ ψ κ ρ

ψ κ κ

=

=

∫
∫

G G

G GG G G

G GG G  (5.7) 

 Regardless of the form chosen for the gridding kernel, the reconstructed signal in a point 

in R-space is defined by the K-space integral 

 ( ) ( )2 3ˆe i rR r R dπ κ κ κ−

Ω
= ∫

GG G GG  (5.8) 

where Ω is the domain in which data are acquired in K-space.  

 In terms of the signal acquired in time domain, the same value can be expressed as a time 

integral 

 
( ) ( )( ) ( )

( )( ) ( )( )2

,

ˆ, e ,
T

i r

R r dt w r p t S t

w r p t d w p tπ κκ κ−

Ω

=

=

∫
∫

GG

G G G

G GG G G . (5.9) 

The kernel ( )( ),w r p tG G , such defined, describes the way in which the value, measured at the 

moment t, is spread over the image, in the reconstruction process.  

 If the signal originates an imaging experiment,  

 
( ) ( ) ( )

( ) ( ) ( )( ) ( )

3

2

,

, , e
V

ip t r

T

R r d r r r r

r r dt f t w r p t π

ψ ρ

ψ ′

′ ′ ′=

′ =

∫
∫

G G

G G G G G

G G G G  (5.10) 

Ideally, the original, regriding kernel should be chosen such that in the end the reconstructed 

image to be proportional with the density to be imaged 
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 ( ) ( ) ( ),r r c r r rψ δ′ ′= −
G G G G G  (5.11) 

Whether this is the case or not, is not the question in this analysis. The assumption made here is 

that the MRI experiment is described by the sequence of transformations 

 ( ) ( ) ( ) ( ) ( ) ( ) ( )
1ˆ 1ˆ c rw FT

SS t R R r I r c r R rκ
− −⎯⎯→ ⎯⎯→ ⎯⎯⎯→ =
GG G G G G  (5.12) 

5.2.  SNR considerations 

 The statistics of the noise in the image is obtained by considering the measured signal, 

S(t), as given only by noise. It is easy to check that it has zero average and its variance is 

completely defined by the kernel ( )( ),w r p tG G  

 
( )

( ) ( ) ( ) ( ) ( )( ) 222 * 2

0

,
T

I r

r I r I r c r dt w r p t

η

η ησ σ −

=

= = ∫

G

G G G G G G  (5.13) 

Considering the ideal situation in which the density is localized in a given point 

 ( ) ( )0r r rρ δ= −
G G G  (5.14) 

the reconstructed signal is obtained from (5.10) and (5.12) in terms of the ψ kernel 

 ( ) ( ) ( )1
0 0 0 0,I r c r r rψ−=
G G G G  (5.15) 

The SNR, denoted here by ν, is therefore calculated 

 ( ) ( )

( )( )
0 0

0 2

0

,

,
T

r r
r

w r p t

ψ
ν

σ
=

∫

G G
G

G G  (5.16) 

Considering the distribution localized in the center of FOV, the SNR expression simplifies 

further 
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 ( ) ( )
( )( )

( ) ( )( )
( )( )2 2

0,0,0
0

0, 0,

T

T T

dt f t w p t

w p t w p t

ψ
ν

σ σ
= = ∫

∫ ∫

G

G G
 (5.17) 

From the integral representation of the kernel, one could see that, neglecting the edge effects  

 ( )( ) ( )( )3 ˆ0, , 1w p t d w p tκ κ
Ω

= ≈∫
G GG G  (5.18) 

In the end, the signal-to-noise ration estimated in the center of FOV is given by a simple formula  

 ( )
( )

Acqu

0 T
dt f t

T
ν

σ
=
∫  (5.19) 

 

 Using this result, the question of dependence of SNR of the time of acquisition can be 

addressed. The optimum acquisition duration, TAcqu, can be found with the same formula for a 

variety of trajectories, as long as we are interested in the SNR in the center of FOV by 

optimizing (5.19).  

 In the situation in which the K-space kernel could be chosen translation invariant 

 ( ) ( )ˆ ˆ,w p w pκ κ= −
G GG G  (5.20) 

the previous formulas simplify considerably 

 ( ) ( ) ( ) ( )22 2ˆ, e e ei p ripr iprw r p d w p w rπ κπ πκ κ− −− −

Ω
= − ≈∫

G G GGG GGG GG G G G  (5.21) 

 ( ) ( ) ( ) ( ) ( ) ( )( )2, e ip t r r
f T

r r w r r r w r dt f t πψ ′−′ ′= Φ − = ∫
G G GG G G G G G  (5.22) 

 ( ) ( ) ( ) ( )2e ip t r

T
R r w r dt S tπ−= ∫

G GG G  (5.23) 

 ( ) ( ) ( ) ( )3
fV

R r w r d r r r rρ′ ′ ′= Φ −∫
G G G G G G  (5.24) 
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5.2.1. Delta Function Object 

The simplest estimation of the acquisition time is obtained in the case of a 1D object described as 

a delta function in the center of FOV. Then S(t)=f(0,t)=f(t) and  

 ( )
( )

Read

0

Read

0

nT

n

dt f t

T
ν

σ
=
∑ ∫

∑
 (5.25) 

For the case in which the time decay function is decreasing monotonically in time, i.e. whenever 

t1≥t2, f(t)1≥f(t)2, the maximization of the SNR with the constraint 

 Read Acqu
1

N
n

n
T T

=

=∑  (5.26) 

implies the equality of individual readout times TRead=TAcqu/N and the SNR becomes 

 
( )

Read

0

Read

T

dt f t
N

T
ν

σ
=

∫
 (5.27) 

By imposing the maximum condition in respect with the individual readout time, the following 

equation is obtained 

 ( ) ( )
Read

Read Read
0

2
T

dt f t T f T=∫  (5.28) 

For the pure exponential decay f(t)=exp(-t/T2), with substitution TRead=T2(w+1/2), the equation 

takes the form 

 ( )1/ 2wwe e= −  (5.29) 

The solutions is given in terms of the well known Lambert W function, 

 Read 2 1 2
1 1 1.256
2 2

T T W T
e−

⎛ ⎞⎛ ⎞= − + − ≅⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

 (5.30) 
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The conclusions of those simple considerations are in agreement with the results obtained 

previously in the context of pure NMR calculations [28].  

5.2.2. Finite width object 

 In this section, the 1D imaging of a homogenous object with finite width is analyzed. 

Specifically, the density is given by a uniform distribution on the interval [-a,a]  

 ( )
1,  for 1

2 0,  for 

x a
x

a x a
ρ

⎧ ≤⎪= ⎨
>⎪⎩

 (5.31) 

 The field of view is chosen here as FOV=2a, V>a. In order to obtain, in R-space, the 

same spatial resolution, the same domain in K-space, denoted here -b ≤ κ ≤ b, is covered during 

the acquisition. The time sampling resolution (dwell time) is constant, regardless of the value of 

the gradient applied.  

 In the one shot acquisition scheme, the [-b,b] interval is covered with a constant gradient 

G starting from the lowest value of κ. The two shot acquisition covers the [-b,b] interval with a 

two branches starting from the center of K-space to the maximum value, b and minimum value, -

b, respectively.  

In terms of dimensionless quantities 

 Acqu

2

,  and 
2

T
y

b T
κ β= =  (5.32) 

the one shot trajectory is parameterized  

 ( ) ( ) ( ) [ ]2 1 1,1y by t y T y yκ β= = + ∈ −  (5.33) 

while the two shot trajectory is given by  

 ( ) ( ) [ ]2 1,1y by t y T y yκ β= = ∈ −  (5.34) 

Another dimensionless quantity is introduced by the geometry of the object  
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 voxels
res

2
2 S

a aab N N
V R

πϕ π π π⎛ ⎞= = = =⎜ ⎟
⎝ ⎠

 (5.35) 

For usual acquisitions, the parameter takes values in a range ( )1 16ϕ π≈ ÷ . Previously discussed 

case of a delta distribution could be recovered in the limit φ→0.  

In absence of relaxation, the signal recorded from this geometry is given by the sinc function  

 ( ) ( ) ( )sin 2
sinc

2
ka

g y
ka
π

κ ϕ
π

= =  (5.36) 

When the relaxation is taken into account, in terms of the dimensionless parameter y 

 
( ) ( ) ( )
( ) ( )

1
1

2

sinc ,  for one shot scheme

sinc ,  for two shot scheme

y

y

S y e y

S y e y

β

β

ϕ

ϕ

− +

−

=

=
 (5.37) 

Then, up to a constant factor the SNR reads as  

 
( ) ( )

( ) ( ) ( ) ( )( )

1

2
1

1

1 2 2
1

sinc

sinc e / 2

y

y

dy e y

e dy e y

β

β β β

ν β β ϕ

ν β β ϕ ν β ν β

−

−

− − −

−

=

= = + −

∫

∫
 (5.38) 

In order to optimize the readout we have to find the maximum of this quantity in respect with the 

parameter β. Using the properly chosen analytic continuation of the second kind exponential 

integral , i ( )Ei z , the explicit formula is obtained 

 
( ) i ( ) i ( ){ }
i ( ) ( ) ( )

2 Ei Ei

Ei Ei log P log
x

z

i i i

ez z z dx z
x

ν β β β ϕ β ϕ
ϕ

∞ −

−

= − − − − +

= − = − −∫
 (5.39) 

As a useful check, the delta function case analyzed above is recovered in the limit φ→0 (the 

limit holds only when the right analytic continuation is chosen for the Ei(z) function).  

 ( ) ( )2
10

lim 1 e β

ϕ
ν β β −

→
= −  (5.40) 
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 In order to prove that those considerations are right the 1D acquisition is simulated for a 

FOV of 20 cm, with the final image containing 64 points. The T2 has the value 16 milliseconds. 

The sampling rate is kept constant at a value dt of 8 microseconds. The object is chosen to fill 

half of FOV, thereforeφ=8π. The gradients are varied between .1 and 1 Gauss per centimeter.  

 The simulated data points, in K-space, are generated for a maximum κ 1.575 cm-1. The 

number of data points exceeds the desired number of points. In order to resample data on a 64 

points grid the usual regridding prescriptions with a Kaiser-Bessel kernel having the window 

width of two.  

 The intensity values in the center of FOV are generated, for each value of the gradient. 

By choosing as signal a random Gaussian noise, following the same reconstruction procedure, 

the “image of a pure noise” is generated. The standard deviation is estimated from the pixels in 

the center of image, half of the object width, in order to avoid the edge effects. For a window 

width of Kaiser Bessel function equal with two, those effects are insignificant. Repeating the 

same calculations with larger window widths (up to six), no noticeable differences have been 

found.  

 The signal to noise ratio (scaled to its maximum value) is compared with the theoretical 

curve. The agreement is found to be excellent. This simple situation allows for an easy 

identification of the artifacts associated with the gridding procedure, by comparing the gridding 

reconstruction to the direct Fourier reconstruction (a luxury unavailable in the case of non-

Cartesian sampling). In the direct reconstruction, all data points are used, generating in R-space a 

domain larger than the FOV. Only the pixels inside FOV are kept.  
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Figure 5.1 Direct, Fourier reconstruction, simulated signal (diamonds), simulated noise (triangles), simulated 
“experimental” SNR (hollow hexagons). The theoretical formula (boxes) compares excellent with the 
simulation 
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Figure 5.2 Gridding reconstruction, simulated signal (diamonds), simulated noise (triangles), simulated 
“experimental” SNR (hollow hexagons). The theoretical formula (boxes) compares well with the simulation 
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6. TQ sodium imaging in presence of both B0 and B1 inhomogeneities 

In Section 6.1, a new scheme for TQ filtering is theoretically predicted and validated by NMR 

experiments. In Section 6.2, the design and applications of the TQ imaging protocol are 

presented, using an agar phantom (as the sodium relaxation in this system is biexponential). In 

Section 6.3, the application for TQ imaging of sodium in humans is offered 

 

 Multiple Quantum Filtered (MQF) techniques have been used extensively in NMR in 

order to separate the NMR signal from different environments. [29]. In the case of sodium, a 

very important ion in cell physiology, these techniques have been further explored for the 

separation of the NMR signal between the intra- and extracellular compartments in the context of 

animal models of disease. Triple quantum sodium NMR techniques, in particular, have been used 

for the observation of sodium ion shifts during ischemia [30] and for the identification of 

neoplastic changes in human and/or animal tissues. While well known in the NMR literature, the 

conventional implementation of TQ sodium NMR relies on the use of a four RF pulse coherence 

transfer filter. In this four pulse structure, the first pulse creates coherences that evolve freely and 

are refocused by the second RF pulse before being converted into triple quantum coherences and 

observable magnetization by third and four pulses, respectively. As shown by Hancu et al, [31], 

the four pulse structure, while being well suited for NMR experiments over small samples, 

introduces a strong dependence on the RF field leading to strong, and difficult to compensate, 

signal modulation across the field of view when imaging applications are considered. By 

eliminating the second RF pulse from this structure, the signal dependence on the RF field 

becomes less severe and moreover this dependence factors out from that of all other 
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experimental parameters. This feature of the three-pulse coherence transfer filter makes it better 

suited for imaging experiments because the aforementioned factorization allows for 

compensation of the signal modulation using an estimate of the B1 field across the field of view 

[32]. 

 The three-pulse implementation of TQ sodium MRI has been demonstrated on human 

subjects and has also been used for the observation of neoplastic changes in the human brain 

[33]. This implementation, because of the lack of a refocusing pulse during the preparation 

period, introduces a signal dependence on the main magnetic field inhomogeneities. This 

dependence on the field inhomogeneities can sometimes lead to unwanted signal loss and, 

therefore, constitutes an issue that needs to be addressed in the context of the quantification of 

the signal. In this thesis, we demonstrate that this signal loss is associated with differences in 

phase evolution for the different coherence pathways that contribute to the triple quantum signal. 

When the TQ signal is acquired as a simple summation over coherence pathways, destructive 

interference between the individual coherences might ensue leading to signal loss in the images. 

We further demonstrate that by using a modified phase cycling scheme, the individual 

coherences can be obtained separately and then re-combined with the aid of a B0 map in order to 

avoid the aforementioned signal loss. The effectiveness of this approach is demonstrated with 

NMR as well as imaging experiments. 

 This three-pulse coherence transfer filter is schematically depicted in the Figure 6.1. It 

consists of a sequence of three pulses characterized by the same flip angle, θ, and phases φ1, φ2, 

φ3. The delays τ1 and τ2 following the first and second pulses allow the creation of third order 

coherences, and their propagation, respectively. Those coherences are converted in measurable, 

transversal magnetization by the last pulse. The presence of the B0 inhomogeneities is described 
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in terms of the parameter δ, defined as the deviation of the applied RF, ω, from Larmor 

frequency, ω0,  

 0Bδ ω γ= − . (6.1) 

Without loss of generality, we will assume for the remainder of this section that the 

inhomogeneity parameter is constant across the sample volume (when this is not the case a B0 

map can be used to obtain the value of this parameter at every voxel on the imaged volume).  

θ,φ1 θ, φ2 θ, φ3
τ1 τ2 t

θ,φ1 θ, φ2 θ, φ3
τ1 τ2 t

θ,φ1 θ, φ2 θ, φ3
τ1 τ2 t

 

Figure 6.1 The schematic representation of the three-pulse sequence. 

 In a voxel characterized by a given value of B0 inhomogeneity parameter, δ, the recorded 

NMR signal at the time t, Sδ(t) can be represented as a sum over coherence pathways, where the 

contribution of each coherence is a complex signal [34]. Because a pathway is completely 

characterized by the intermediate magnetic quantum numbers m1, m2, the total signal is given by 

a sum of twenty-one complex signals, with time dependent amplitudes Amn(t) and time 

independent phases Ψmn [35] 

 ( ) ( )1 2 1 2

1 2

1 3

1 3

exp e i t
m m m m

m m

S t i A δ
δ

−

=− =−

= − Ψ∑ ∑ . (6.2) 
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Apart of their dependence on the acquisition time, the amplitudes Amn, are functions of the flip 

angles and time delays, while the phases Ψmn are functions of time delays, pulses phases, 

receiver phase, and main magnetic field inhomogeneity 

 
  

Amn ≡ Amn t;τ1,τ 2 ,θ( )
Ψmn ≡ Ψmn τ1,τ 2 ,ϕ1,ϕ2 ,ϕ3,ψ ,δ( )

. (6.3) 

In the case of three identical RF pulses (i.e., same RF width and amplitude, but different phases), 

the four relevant amplitudes contributing to the triple quantum signal are given below (up to a 

normalization factor) 

 

( )
( )
( )
( )

( ) ( ) ( )

( ) ( )
( ) ( )

( )
( )

2 2
1, 3

2 2
1,3 1 3 1 5

31 1 33 2 31 4
1, 3

4
1,3

cos / 2 sin / 2
cos / 2 sin / 2

sin
cos / 2
sin / 2

A t
A t

u u u t
A t
A t

θ θ
θ θ

τ τ θ
θ
θ

− −

−

−

⎛ ⎞⎛ ⎞ −
⎜ ⎟⎜ ⎟
−⎜ ⎟⎜ ⎟ = ⎜ ⎟⎜ ⎟
⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠

. (6.4) 

For ions experiencing a biexponential relaxation behavior, in which the short and long T2 

relaxation times are TS respectively TL, the relaxation functions ( )k
mnu t are given by 

 ( ) ( ) ( )/ / /1 3
31 33e e  and eS L Lt T t T t Tu t u t− − −= − = . (6.5) 

The phases associated with a given coherence pathway can be further decomposed as the sum of 

two terms, 

 
  
Ψm1m2

τ1,τ 2 ,ϕ1,ϕ2 ,ϕ3,ψ ,δ( )= Φm1m2
ϕ1,ϕ2 ,ϕ3,ψ( )+ ∆m1m2

τ1,τ 2 ,δ( ). (6.6) 

The first term, Φmn, is defined by the receiver phase ψ and the pulse phases, φi, 

 ( ) ( ) ( )( )
1 2 1 2 3 1 1 2 1 2 2 3, , , 1m m m m m mϕ ϕ ϕ ψ ψ ϕ ϕ ϕΦ = − + + − + − , (6.7) 

while the second term describes the phase accumulation during the off-resonance propagation 

along the given coherence pathway, and is defined by the off-resonance parameter δ,  

 ( )
1 2 1 2 1 1 2 2, , ( )m m m mτ τ δ τ τ δ∆ = + . (6.8) 
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The phase cycling [3] is performed by adding the signals from N repetitions with different RF 

and receiver phases. The resulting signal, when acquired on-the-fly (i.e., automatically 

accumulated over each phase cycle by the scanner), can be written at any acquisition moment of 

time t as the sum 

 ( ) ( )
1 2 3, , ,

TQS t S tδ δ
ϕ ϕ ϕ ψ

= ∑ , (6.9) 

where the summation is performed over all combinations of RF phases φi and receiver phases ψ. 

By changing the order of summation in the last equation, an expression similar to Eq(6.2) can be 

obtained, namely  

 ( ) ( ) 1 2

1 2 1 2

1 2

1 3

1 3

e e m miTQ i t
m m m m

m m

S t A t fδ
δ

− ∆−

=− =−

= ∑ ∑ . (6.10) 

In this last expression, the extra-coefficients fmn are sums over the RF phases  

 1 2

1 2

1 2 3, , ,

e m mi
m mf

ϕ ϕ ϕ ψ

− Φ= ∑  (6.11) 

If the sign of the amplitudes Amn(t) are time independent, a phase cycling scheme can be 

designed such that  

 ( )1 2

1 2

2 1

2 1

0 if 3 or 0

sign if 3 and 0m m
m m

m m
f

N A m m

⎧ ≠ =⎪= ⎨
= ≠⎪⎩

, (6.12) 

which brings the filtered signal in the form, 

 ( ) ( ) 1 2

1 2

1 21, 3

e e m miTQ i t
m m

m m

S t N A t δ
δ

− ∆−

=± =±

= ∑ , (6.13) 

effectively filtering out the contributions from unwanted coherence pathways. The requirement 

of a time independent sign of amplitudes is satisfied for the system considered here, i.e. ions in 

isotropic slow fluctuating environment, as it can be easily seen from their expression. 
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Such a phase cycling design is attractive since it has the property of producing the maximum on-

resonance (i.e. when δ=0) signal: 

 ( ) ( ) ( ) ( ) ( )0 1 3 13 1 3 13
TQS t A t A t A t A tδ = − − − −= + + + . (6.14) 

One particular implementation of this approach is the six-phase scheme used frequently in the 

literature [31]. This scheme corresponds to the following choices for the receiver (ψ) and RF (φi) 

phases 

 1 1 2 2 3 0 0,...,5
3 3

k k k kπ πϕ α ϕ α ϕ ψ π= + = + = = = . (6.15) 

Using the filtering from Eq(6.15), the corresponding coefficients f evaluate to expressions 

depending only on the starting phases of the cycle (α1, α2), 

 
  
fm1m2

α1,α2( )= 6e− i m1α1 + m2 −m1( )α2( ) if m1 = 1, m2 = 3

0                      otherwise

⎧
⎨
⎪

⎩⎪
. (6.16) 

Finally, by choosing α1=π/6, α2=2π/3, the scheme fulfills the requirements of Eq(6.12). 

It has to be noted that this filtering scheme allows a residual signal, due to longitudinal recovery 

magnetization during the delay τ1, to pass through the filter. In most imaging applications, the 

residual component is negligible because τ1 is small compared with the longitudinal relaxation 

time T1. Whenever this signal cannot be ignored (for example, in those 2D NMR experiments in 

which variable delays are used), the supplementation of the cycle with another six phases 

 1 1 2 2 3 0 0,...,5
3 3

k k k kπ πϕ α π ϕ α ϕ ψ π π= + + = + = = + = , (6.17) 

cancels the T1 contributions. For the sake of simplicity, we will assume these contributions to be 

negligible for the reminder of this section (i.e., it is assumed that τ1 is much smaller than T1). 
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In the off-resonance case, the presence of ∆mn phases in Eq(6.13) leads to destructive 

interference between components associated with different coherence pathways. By combining 

the equations (6.16) and (6.10) an analytic result is obtained for an arbitrary flip angles and 

inhomogeneity parameter  

 

( ) ( ) ( )
( ) ( ) ( ) ( )

( ) {
( )}

TQ TQ
1 2 ideal 1 2 1 2

1 3 1
ideal 1 2 31 1 33 2 31

5
1 2 1 2 1 2

1 2 1 2

, , , , e , ; , ; , ,

, , ,

, , , sin cos cos3 cos sin sin 3

cos cos sin 3 cos sin cos3 .

i t

TQ

S t S t F

S t u u u t

F

i

δθ δ τ τ τ τ τ τ θ δ

τ τ τ τ

τ τ θ δ θ δτ δτ θ δτ δτ

θ δτ δτ θ δτ δτ

−=

=

= × − −

+

 (6.18) 

From this expression, it is apparent that a reduction of the TQ signal from its maximum value to 

zero occurs for the offset parameter in the range |δ|≈π/(2τ1) (in MRI applications τ2 is much 

smaller than τ1). For typical in vivo applications, the delay τ1 is set to values maximizing the 

( )1
31 1u τ  functions, which usually leads to values around 5.0 milliseconds. Therefore, variations in 

B0 of the order of 50 Hz could destroy the TQ signal. Unfortunately, those variations are 

common during MRI in vivo applications, due to variations in tissue susceptibility that lead to B0 

inhomogeneities, which are difficult to compensate through shim optimization in a reliable and 

timely fashion. 

A simple approach to correct for the signal variations described by Eq(6.18) would be to 

experimentally determine θ and δ (which for MRI applications imply the acquisition of a B1 map 

and a B0 map) and use their values to compute the ideal signal. When the signal measurements 

are corrupted by noise (denoted η), Eq(6.18) reads 

 ( ) ( ) ( ) ( )TQ TQ
1 2 ideal 1 2 1 2, , , , e , ; , ; ,i tS t S t F tδθ δ τ τ τ τ τ τ θ δ η−= + , (6.19) 

and the corrected signal,   Sestimate
TQ would take the two term form 
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 ( ) ( ) ( ) ( )TQ TQ
estimate 1 2 ideal 1 2

1 2

1, , ; e , , , ,
, ; ,

i tS t S t t
F

δδ τ τ θ δ τ τ η
τ τ θ δ

−= + . (6.20) 

Because the correction factor is less than one, |F(τ1,τ2;θ,δ)|≤1, this signal correction approach is 

not desirable since it decreases the signal-to-noise ratio (SNR) and also, in extreme cases when 

total signal cancellation occurs, F vanishes, therefore (6.20) cannot be used to recover the ideal 

signal. 

 The effects of signal cancellation can be better compensated for by noting that the 

vanishing of the TQ signal under conditions of non-zero δ is not related to the intrinsic physics of 

the problem, but rather to the use of an inappropriate approach for the measurement of the TQ 

coherences. In other words, rather than correcting the effects at a data processing stage, a better 

approach would be to acquire the TQ signal under conditions that avoid the destructive 

interference between the coherence pathways. This new approach is presented in the text below. 

 From Eq(6.2) and Eq(6.6), it is clear that, once the off-resonance parameter is fixed, for 

any choice of the RF and receiver phases, the measured signal is a linear combination of twelve 

complex quantities, ( ) ( )1 2 1 2 1 2
exp e i t

m m m m m mB t i A δ−= − ∆ , with time independent coefficients, i.e., 

 ( ) ( ) ( )
1 2 1 2

1 2

1 3

1 3

exp m m m m
m m

S t i B tδ
=− =−

= − Φ∑ ∑ . (6.21) 

If several measurements are performed using different settings for the receiver and RF phases, 

and these signals are stored independently (i.e., not added in real time by the scanner), Eq(6.21) 

generates a linear system in the unknowns Bmn. By solving this linear system, the ideal TQ 

signal, as defined by Eq(6.14), can then be obtained using the expression:  

 ( )1, 3 1, 3 1,3 1,3
1, 3 1, 3 1,3 1,3e e e e ei i i iTQ i tS B B B Bδ − − − −∆ ∆ ∆ ∆
− − − −≡ + + +  (6.22) 
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Because the number of unknown complex quantities in Eq(6.21) is twelve, twenty-four different 

acquisitions have to be performed to for determining all of the complex amplitudes Bnm. Under 

these conditions, use of an optimal acquisition scheme involves the proper choice of twenty-four 

sets of phases (φ1,φ2,φ3,ψ) such that the associated linear system can be solved for the complex 

amplitudes Bmn. 

 One possible choice of phase cycling that allows the solution of the system mentioned 

above would be to repeat the phase cycles from Eq(6.15) four times, each time with different 

starting phases ( )1 2, , 1, 2,3, 4j j jα α = . By using this acquisition, four signals Sj are obtained that 

are linear combinations of TQ components only 

 ( ) ( ) ( )
1 2 1 2

1 1

1 2
1,1 3,3

, 1, 2,3, 4j j
j m m m m

m m

S t f B t jα α
=− =−

= =∑ ∑ . (6.23) 

This approach reduces the dimensionality of the problem from twenty-four to four while also 

reducing the number of phases from ninety-six to eight. The starting phases chosen in this 

section, together with the corresponding collected signals are displayed in the (6.24) 

 

( ) ( )

( ) ( )

( ) ( )

( ) ( )
( ) ( ) ( ) ( )

1 1
1 2

1, 31
2 2
1 2 1, 32

3 3
1, 331 2

1, 344 4
1 2

1 1 1 1, 30 ,120
1 1 1 1, 0 ,0

6
, 60 ,75 1 1 1 1
, 45 ,90 2 2 2 2

BS
BS

i i i i
BS

i i i i BS

α α

α α

α α

α α

− −

− +

+ −

+ +

⎧ = ° ° ⎛ ⎞
⎛ ⎞⎛ ⎞⎪ ⎜ ⎟− − ⎜ ⎟⎜ ⎟⎪ ⎜ ⎟= ° °⎪ ⎜ ⎟⎜ ⎟ ⎜ ⎟⇒ = − −⎨ ⎜ ⎟⎜ ⎟ ⎜ ⎟= ° °⎪ ⎜ ⎟+ − − + − +⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎪ ⎝ ⎠ ⎝ ⎠⎜ ⎟= ° °⎪ ⎝ ⎠⎩

 (6.24) 

By solving the above system, the modified individual amplitudes Bmn are retrieved in the form of 

simple linear combinations of the measured signals, 

 

( ) ( )

( ) ( ) ( ) ( )

1, 3 1

1, 3 2

1, 3 3

1, 3 4

1 3 2 1 2 1
1 1 1 11

8

2 1 2 1 2 1 2 1

i i i iB S
B S

i i i iB S
B Si i i i

− −

− +

+ −

+ +

⎛ ⎞− + + −⎛ ⎞ ⎛ ⎞
⎜ ⎟⎜ ⎟ ⎜ ⎟− −⎜ ⎟⎜ ⎟ ⎜ ⎟= ⎜ ⎟⎜ ⎟ ⎜ ⎟− −
⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟− − − − ⎝ ⎠⎝ ⎠ ⎝ ⎠

 (6.25) 
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From this system, the corrected TQ signal is then obtained using 

 ( )1, 3 1, 3 1,3 1,3
1, 3 1, 3 1,3 1,3e e e e ei i i iTQ i tS B B B Bδ − − − −∆ ∆ ∆ ∆
− − − −≡ + + + , (6.26) 

where the quantities ∆ contain the information about the off-resonance parameter δ. This is the 

approach proposed in this thesis. Note that for imaging experiments, the method above is easily 

generalized through the use of spatial maps for the field inhomogeneity by constructing the 

solution of the linear system above in a pixel-by-pixel fashion. The effectiveness of this 

approach is experimentally demonstrated in the sections below. 

6.1. NMR experimental results 

 All NMR experiments were performed on a vertical bore, 7Tesla Bruker DMX300 

spectrometer (Bruker AG, Germany). The NMR experiments presented here are aimed at 

emulating the signal originating from a single voxel in a MRI experiment. Because the off-

resonance is one of the main experimental parameters, in order for those experiments to be 

meaningful, a high homogeneity of the B0 field is required (the B1 homogeneity is a less 

stringent requirement). In the light of those considerations, the sample was chosen as cylindrical 

in shape with a 10 mm diameter and a height of 4 cm (longer than the RF coil). For the purposes 

of shimming and calibration of the 90° pulse, one-pulse experiments (consisting of a RF pulse, 

128µsec delay and acquisition with a sampling rate dw=8µsec) were used.  

 The calibration of the 90° pulse is performed at constant power level and the length of the 

90° pulse is determined by acquiring an array of one-pulse spectra with the pulse length 

incremented from zero to 64 microseconds. The 90° pulse was found to correspond to a length of 

15.7 microseconds. The homogeneity of B1 field, estimated from the shape of spectra array was 

found to be satisfactory [36]. 
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 The triple quantum experiments are performed with the pulse sequence depicted in Figure 

6.1. Relevant data acquisition parameters are τ1=5msec, τ2=64µsec and the number of FID’s 

accumulated N=150. The data are accumulated at a rate dw=16µsec, with an original delay 

de=32µsec. The τ1=5.msec value is close to the optimal value for the sample used; the maximum 

TQ signal should be obtained for the setting 

 τ optim =
TLTS

TL − TS

log
TL

TS

 (6.27) 
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Figure 6.2 presents the measured conventional TQ FID data (dots) and its biexponential non-

linear fit (solid line) to the formula 

 ( ) ( )//e e SL t Tt Ts t A B−−= − +  (6.28) 

Prior to fitting, the FID was scaled to its maximum value and phase corrected to zero and first 

order. This procedure rotates the entire signal onto the real channel thereby improving the SNR 

(only noise is left on the imaginary component, as seen in the Figure 6.2). The baseline as 

returned by the fit, B = 0.003, is much smaller than the amplitude A, A=1.6, and proves that the 

signal is a good approximation to an ideal TQ signal (i.e., negligible bias in the fit).  
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Figure 6.2 The conventional TQ filtered FID. The fit to a biexponential function (solid line) is presented 
together with the experimental real (dots) and imaginary (thin line) data points. The displayed data points 
are undersampled, to simplify the graph. 

 The effectiveness of the coherence pathways decomposition is demonstrated in Figure 

6.3. The conventional TQ signal is shown together with the four individual contributions, 

associated with the different coherence pathways (the phase cycles required for their acquisition 



 108

are presented in Appendix 2). The individual signals are acquired with the same number of 

excitations, 150, and their sum is compared with the classical TQ signal. The agreement between 

the on-the fly filtered TQ signal and the sum of the four coherence illustrates the validity of 

coherence decomposition in Eq(6.13). The fact that all the components have the same shape 

demonstrates good B0 homogeneity, while the equality of amplitudes confirms good B1 

homogeneity. Those facts are another justification for considering the signal in Figure 6.2 as 

resembling a single voxel signal.  
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Figure 6.3 The on-resonance conventional TQ signal (dashed line) compared with signals originating from 
individual coherence pathways (solid lines) and their sum (dots). 
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The effect of off-resonance is graphically illustrated in Figure 6.4, where the conventional TQ 

signal is acquired on-resonance and with offsets of 32 Hz, 40 Hz and 56 Hz. The signals are 

phase corrected to 0th and 1st order, as described before. The normalization factor is the same for 

all the plots, in other words the relative amplitudes are preserved. 
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Figure 6.4 the conventional TQ signal for four different settings of the off-resonance parameters (0, 32, 40, 
and 56 Hz). Each signal is phase corrected to 0th and 1st orders. As expected, the TQ intensity is significantly 
diminished as the off-resonance increases. 
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In order to demonstrate the reconstruction of the TQ signal using the modified scheme 

introduced in Eq(6.24), the RF frequency in the previous TQ experiment was set 50Hz off-

resonance. The signals acquired with each of the four phasing cycles are presented in Figure 6.5.  
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Figure 6.5 the four TQ filtered FID’s acquired with different starting phases. Each plot displays the real 
(black line) and imaginary (red line) parts of the corresponding FID. 
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The solution (the determination of the Bmn’s) from Eq(6.25) is then computed for each data 

point. The demodulated amplitudes, |Amn| are displayed in Figure 6.6 together with their sum. 

The fact that the |Amn| functions are equal, together with the fact that their sum reproduces the 

on-resonance signal, demonstrates the effectiveness of the modified acquisition scheme, even in 

the presence of severe off-resonance. 
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Figure 6.6 the four individual components (the overlapping, low amplitude FID’s) are displayed together with 
the reconstructed and on-resonance signals (the overlapping, high amplitude FID’s). 
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 For an MRI experiment, the off-resonance parameter varies across the volume of interest. 

In order to verify the accuracy of the modified TQ acquisition scheme, four NMR experiments 

were performed in a 2D fashion, for each of the starting phase choice. In each experiment, the 

RF frequency was incremented from -120Hz to 120 Hz in 8Hz steps. For every frequency 

setting, the TQ fid was acquired using the same settings as in the 1D experiment. The number of 

FID’s averaged was reduced from 150 to 60, in order to shorten the total experiment time. The 

dependence of conventional TQ signal as a function of the applied RF frequency is presented in 

Figure 6.7. Since a rough surface is harder to visualize, the surface was smoothed with a running 

average algorithm. 
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Figure 6.7 the acquired TQ FID magnitudes are displayed as a function of acquisition time and the off-
resonance parameter. The vanishing of the TQ signal is expected around δ=±50Hz lines and it is well 
demonstrated by the plot. 
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To evaluate the efficiency of the modified scheme, the integrals of the demodulated TQ signals 

are presented in Figure 6.8, as a function of frequency. The crosses correspond to conventional 

acquisition scheme. They are following well the dependency (cosδτ1 cos3δτ2), displayed as solid 

line. The boxes correspond to the modified acquisition scheme. The more benign variation of TQ 

intensity of the off-resonance parameter for the modified acquisition scheme makes this scheme 

suitable for imaging applications.  
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Figure 6.8 integral of the conventional TQ FID as a function of the off resonance parameter (crosses). The 
theoretical function (solid line) agrees well with experimental data. The modified TQ acquisition data (boxes) 
shows less variation with the off-resonance parameter. 
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6.2. Triple Quantum imaging in B0 inhomogeneous fields 

 The imaging experiments were performed on a whole-body, 3 Tesla, MRI scanner 

(GEMS) using a custom-built sodium RF coil and a Twisted Projection Imaging (TPI) sequence. 

[35]. A cylindrical shaped (length L=12 cm, diameter ∅=12 cm), homogenous phantom filled 

with 10% agar gel, was used.  

 The first step in our procedure is the determination of the sample characteristic, 

accomplished by using the variable echo method. The results are presented in Figure 6.9. By 

simple examination, it is visible that is not possible to predict the relaxation parameters from 

none of the individual FID’s. The simple approach in trying to predict the optimum delay (the 

point at which the TQ signal is maxim) fails, too. The maximum of a single FID coincides with 

the point of largest signal, only in the case in which the optimum delay is used.  
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Figure 6.9 Variable echo experiment, the sample used, described in the text, is characterized by large B0 
inhomogeneities, therefore the indivifual FID’s are distorted from the biexponential form. Selecting only the 
echo amplitudes and representing their square root values (bullets) the biexponential form is obtained with 
the TLONG of 27 milliseconds and TSHORT 5.5 milliseconds. 

 Two single quantum (SQ) data sets were obtained by exciting the sample with hard 

pulses (pulse width pw=400µsec) and using echo times (the delay from the end of the pulse to the 

beginning of acquisition period) TE1=10.msec and TE2=11.5msec. The reconstructed images, 

obtained by using a regridding algorithm, are 64x64x64 complex matrices of complex values. 

Using the two SQ images, the off-resonance parameter δ, for each voxel, was obtained from the 

phases of SQ images, to generate a phase map 
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 δ =
φ2 − φ1

TE 2 − TE1

 (6.29) 

with φ1, φ2 being the phases, in that voxel, of the reconstructed images corresponding to the echo 

times TE1 and TE2, respectively. Phase unwrapping was not necessary, as the phase variation 

from one pixel to another are typically small. To speed up the analysis, an image mask (with a 

threshold set at 30% of the maximum SQ image intensity) was generated from the SQ image so 

that the solution of the linear system described above was not performed in areas of zero signals.  

Triple quantum (TQ) images are acquired with a modification of TPI sequence, as presented in. 

[29]. The separations between pulses were τ1=7.0msec and τ2=0.5msec. The echo time is 

TE=10.0msec. Those values correspond to the highest TQ signal for the phantom used. Four 

different experiments, corresponding to the four phase cycles from Eq(6.24), were performed. 

Image reconstruction was performed using the same algorithm, with the same parameter settings 

as used for SQ images.. 

Figure 6.10 and Figure 6.11 present the SQ image for the first echo times and the B0 map 

obtained from the collected SQ images. The presence of large inhomogeneities in the middle of 

phantom is clearly illustrated in this map. This B0 map hast the expected shape for a finite 

cylinder, placed in uniform magnetic field.  

 In Figure 6.12 the conventional TQ images is presented. As expected from the phase 

map, the TQ signal is diminished in the center of the phantom. In Figure 6.13, the images 

obtained from modified TQ acquisition are presented. The artifacts due to the B0 

inhomogeneities have been largely removed. 

 



 117

20 40 60 80 100 120
Pixel number

0

0.5

1

ytisnetnI
Ha

.u
.L

 

Figure 6.10 Selected partitions from the 3D SQ image of a cylindrical phantom. 
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Figure 6.11 Selected partitions from the 3D B0 maps from a cylindrical phantom. 
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Figure 6.12 The TQ image of the cylindrical phantom. The effect of the off-resonance is visible as a low 
intensity area, in the center of image 
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Figure 6.13 The TQ image acquired with the modified sequence. The hole in the center of image disappeared. 
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Figure 6.14 The TQ images of the cylindrical phantoms acquired with the four different starting phases, as 
described in text. 

 In Figure 6.15 a 1D illustration of the differences between the conventional and modified 

TQ results is given. The data were sampled along the dotted lines presented in each picture. 
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Figure 6.15 The conventional TQ profile (dashing) and modified TQ (thick solid line), together with the SQ 
profile (thin solid line). The variation in the reconstructed intensity observed in the corrected TQ image is 
due to the presence of B1 inhomogeneity, ringing and intravoxel dephasing. However, a significant source of 
variation has been removed by using modified TQ scheme 
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 A description of the effects of B0 inhomogeneities on TQ filtered sodium MRI using a 

three-pulse coherence transfer filter has been presented. We have demonstrated that in the 

presence of large B0 inhomogeneities significant signal loss arises due to destructive interference 

between the different coherence pathways. We have also shown that this effect can be eliminated 

through the separate acquisition of the TQ coherences followed by their addition after B0 

correction with the aid of a B0 map. Our results demonstrate that this approach is well suited for 

TQ sodium MRI experiments using clinical MRI scanners. 

6.3. TQ sodium imaging of human brain 

 The applications of TQ techniques for humans imaging encounter supplementary 

difficulties, as opposed to “phantom” experiments. First, the duration of the experiments can not 

exceed acceptable limits (30 minutes). This fact reduces the maximum attainable signal to noise 

ratio. Second, in order to avoid the harming of subjects, there are limits imposed on physical 

parameters. The RF power limitations are the most restrictive. The fast relaxation of sodium 

would allow high repetition rates in imaging experiments. During the experiments presented in 

this section, the repetition rate was decided not based on the relaxation properties but rather on 

the RF power limitation considerations.  

 In order to effectively implement the procedure described in the last section the first 

information necessary is the estimation of relaxation times in human brain. While the procedure, 

demonstrated on agar phantom and in vitro, can be applied in this situation, the limitations in the 

total scanning time restrict us from acquiring the full T2 decay curve. 

 By selecting the (-1,-3) echo alone, three TQ filtered FID’s have been collected with 

three different preparation times τ1=3.5, 5 and 8 milliseconds. The sequence is characterized by 
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τ2=0.5 milliseconds and the pulse width is pw=0.4 milliseconds. The position of the echo is 

computed according to  

 1 2
23 7ECHO wpτ τ τ
π

= + +  (6.30) 

Only 420 FID’s were averaged, in order to keep this procedure as short as possible, the results 

are displayed in Figure 6.16. From this measurement, the optimum preparation time was decided 

as 3.5 milliseconds. 
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Figure 6.16 Three TQ FID, acquired with the filtering scheme TQ--, the preparation time is τ1=3.5, 5, and 8 
milliseconds. The dots correspond to the echo positions. 

 Using a different, less efficient coil, not capable of achieving a 90° pulse, similar data 

were recorded, with preparation times, .5, 1, 2, 4 and 6 milliseconds. All five FID’s are presented 

in Figure 6.17. The position of the echo was predicted with the previous formula (6.30). The 

amplitude at the echo is obtained by averaging nearby data points. Varying the span of the 

averaged data, no change in the ordering of the echo amplitudes is noticed. 
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Figure 6.17 Five TQ variable echo experiment using a very inefficient coil. The flip angle was kept far from 
the 90, in an attempt to reduce the deposited power. The individual FID’s are kept hard to visualize, to prove 
the point that the experimental determination of the optimum preparation time is possible even when the 
SNR is low. In obtaining the echo amplitudes (dots), the ordering does not change as we change the number 
involved in averaging between 50 and 100.  

 The application of the B0 compensating method follows step by step the procedure 

presented in the previous section. The images are presented in the Figure 6.18, Figure 6.19, 

Figure 6.20, and Figure 6.21. 

 

Figure 6.18  Selected slices from single quantum image, acquired with an echo time 100 µseconds. 
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Figure 6.19 the phase map obtained from two SQ images. The sinuses area is the region in which the B0 
inhomogeneities have the maximum values. 

 

Figure 6.20  Standard TQ. acquisition. In the region of large B0 inhomogeneities, the image intensity has an 
artificial low intensity (visualized as a dark hole) 

 

Figure 6.21 B0 corrected TQ, acquired with the presented methodology. Partially, the B0 effects have been 
removed. 
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 The quest for quantitative sodium MRI has to overcome difficulties associated with field 

inhomogeneities. The B0 field inhomogeneities, mainly due to variations in tissues susceptibility, 

manifest in variety of modalities. T2
* effects and the distortion of k-space trajectories are the 

major difficulties encountered in MRI and they receive constant attention in the scientific 

literature. Atop of these manifestations, a source of significant variations in MQF MRI has been 

analyzed in this section. The source resides in the way that various coherence pathways add up to 

create the measured signal; the B0 inhomogeneity introduces phase differences between such 

coherence pathways, effectively diminishing the signal. The problem is demonstrated for sodium 

TQ experiments, but it can manifest for any nuclei, in any experiment involving multiple RF 

pulses.  

 The obvious solution (which consists in designing the filtering scheme in such a way that 

only one coherence path contribution is allowed to pass the filter) lowers the SNR too much. In 

an attempt to preserve the SNR of the experiment, while avoiding the cancellation, a different 

scheme of acquisition is introduced. The main idea is that while acquiring all components, a 

supplementary encoding would allow their separation, later in the processing stage.  

 The way this idea is followed in this thesis, as four different TQ filtered acquisition, 

while demonstrated as being correct, it may be not optimal. For example, in the ideal case of 

perfect B0 homogeneity, on-resonance, the second and fourth acquisitions retrieve only noise. 

This observation is not a critique of the method itself; it just emphasizes the fact that prior 

knowledge about the B0 could be used to design a better acquisition scheme, for that specific 

situation. In itself, the design of the best acquisition scheme for acquiring TQ images, by taking 

in consideration the B0 inhomogeneities, is a new problem. The current work proves that this 

approach is possible, and it would be developed in a future work.  
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APPENDIX A Linear Algebra 
 

The canonical basis in CN consist of N vectors, en, n=1,…,N whose elements satisfy (en)k =δnk. 

Whenever the k-th element of a canonical basis vector is to be referenced, the Kronecker delta 

function will be used instead. In the situation in which the dimension of the vectorial space is not 

clear from the context, the notation en(N) is used to denote the n-th basis vector in the N-

dimensional space. 

A mxn matrix is defined as a matrix with m rows and n columns. The matrix can be considered 

either as a row of columns or as a column of rows 

 ( ) ( )
( )

( )

,1
,1 , , ,

,

row A
A col A col A n

row A m

⎡ ⎤
⎢ ⎥⎡ ⎤= =⎣ ⎦ ⎢ ⎥
⎢ ⎥⎣ ⎦

" #  (7.1) 

In the situation in which the orthonormal system bj is given, satisfying  

 †
j k jkb b δ⋅ = , (7.2) 

the column and row of a linear operator, in respect with the basis bj are defined by the scalar 

products, 

 
( )

†

,

( , )
k

k

col A k A b

row A k b A

= ⋅

= ⋅
 (7.3) 

and the following relations are a consequences of the linear nature of the operator 

 
( , )

( , )
k

k

A X row A k X

X A X col A k

⋅ = ⋅

⋅ = ⋅

∑

∑
 (7.4) 
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The space of the linear operators over Cn with values in Cm is, itself, a linear space, allowing the 

identification of such operators with vectors in a mn dimensional space (superspace). Such 

embedding could be realized in a variety of ways, most of which reduces to the choice of a 

proper labeling of the matrix elements associated with the original operator, in a given basis. The 

most natural choice is realized by defining the ‘column stacking’ operation 

 
( )

( )

col ,1
cvec( )

col ,

m n

A
A C A

A n

×

⎡ ⎤
⎢ ⎥∈ = ⎢ ⎥
⎢ ⎥⎣ ⎦

# . (7.5) 

The matrix element at row i and column j, Aij, is found in cvec(A) at position m (j-1)+i. The 

operation such defined preserves the natural scalar product in the operator space 

 { } ( )( ) ( )††Tr cvec cvecA B A B⋅ = ⋅ . (7.6) 

The relationship between the c-vector associated with the matrix and the one associated with the 

transpose is not trivial. In terms of the perfect shuffle matrix 

 ( ) ( ), ,cvec cvecT
m n n mA S A S=  (7.7) 

 The Kronecker product of two matrices m nA C ×∈  and p qB C ×∈  is defined as the 

( ) ( )mp nq× matrix obtained by replacing each element of aij with the block aijB 

 
11 1

1

n

m mn

a B a B
A B

a B a B

⎛ ⎞
⎜ ⎟⊗ = ⎜ ⎟
⎜ ⎟
⎝ ⎠

"
# %  (7.8) 

The following properties are well-known 

 
( )

( )( )

† † †B C B C

B C F G BF CG

⊗ = ⊗

⊗ ⊗ = ⊗
 (7.9) 
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One of the main advantages offered by Kronecker product is the transformation of the matriceal 

relations in (super) vectorial correspondents 

 ( ) ( ) ( )cvec cvecTAXB B A X= ⊗ . (7.10) 

The superoperators are defined as acting linearly on the regular operators. For any operator, A, 

one can define the left and right superoperators acting on an arbitrary operator B as the product 

to the left and, respectively, to the right 

 
L

R

B AB
B BA
≡

≡

A
A

. (7.11) 

Using the Kronecker representation one could easily notice  

 
1

1

L
m

R
n

A

A

= ⊗

= ⊗

A

A
 (7.12) 

The following commutation relation, becomes trivial, using this formalism 

 L R R L=A B B A  (7.13) 

allowing one to express the exponential of a sum of left and right superoperators in a simple 

form 

 
( ) ( ) ( )
( ) ( ) ( )

exp exp exp

exp exp exp

L R L R

L R L R

+ =

+ =

A B A B

A B A B
 (7.14) 
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APPENDIX B Superspace description of spin 1/2 systems 
 

For a single, spin 1/2 particle a pure state is described by a 2 dimensional column of complex 

numbers.(ket) 

 
1 0
0 1

α
ψ α β α χ β χ

β
+ −⎛ ⎞ ⎛ ⎞ ⎛ ⎞

= = + = +⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠

 (8.1) 

The adjoint (bra) is defined as transpose and conjugate 

 ( )* * * *,ψ α β α χ β χ+ −= = +  (8.2) 

The state has to satisfy (a QM principle) the normalization condition  

 2 21 1ψ ψ α β= ⇔ + =  (8.3) 

The parameterization (at this moment just a parameterization) of a general state is given by 

 
cos

2

sin
2

ie φ

θ

ψ
θ

⎛ ⎞
⎜ ⎟

= ⎜ ⎟
⎜ ⎟⎜ ⎟
⎝ ⎠

. (8.4) 

The results of a measurement for the physical quantity are the eigenvalues of the associated 

operator.  

 
ˆ

1

A a a a

a a

=

=
 (8.5) 

The measurement has a statistic character. The (conditional) probability to obtain a given value 

“a” while the system is in a given state ψ  is given by  
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 ( ) 2 ˆ ˆ;  with a ap a a a a P P a aψ ψ ψ ψ ψ ψ= = = ≡  (8.6) 

The expectation value for observable A when the system is in the state ψ is the average of the 

possible outcomes, weighted with their probabilities 

 ( ) ( )ˆ ˆˆ; a
a a

A p a a aP A
ψ

ψ ψ ψ ψ ψ= = =∑ ∑  (8.7) 

Angular momentum operators are represented in terms of Pauli matrices 

 
0 1 0 1 01 1 1 1 1 1ˆ ˆ ˆˆ ˆ ˆ
1 0 0 0 12 2 2 2 2 2x x y y z z

i
J J J

i
σ σ σ

−⎛ ⎞ ⎛ ⎞ ⎛ ⎞
= = = = = =⎜ ⎟ ⎜ ⎟ ⎜ ⎟−⎝ ⎠ ⎝ ⎠ ⎝ ⎠

 (8.8) 

The basic properties of Pauli matrices are expressed by the product law composition 

 

2 2 2ˆ ˆ ˆˆ ˆ ˆ1 1 1
ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ
ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ

x y z

y z x z x y x y z

z y x x z y y x z

i i i
i i i

σ σ σ
σ σ σ σ σ σ σ σ σ
σ σ σ σ σ σ σ σ σ

= = =
= = =
= − = − = −

, (8.9) 

and orthogonality, 

 { }Tr 2i j ijσ σ δ=  (8.10) 

In short, one could write for the vector of Pauli matrices 

 iσ σ σ× =
G G G  (8.11) 

The angular momentum projection along a direction ( ),θ φ is given in spherical coordinates by  

 ,
ˆ ˆ ˆ ˆsin cos sin sin cosx y zJ J J Jθ φ θ φ θ φ θ= + + . (8.12) 

The eigenvalues of this operator are 1
2

± , with the corresponding eigenvectors 

 
cos sin1 12 2

2 2sin cos
2 2

i

i

e

e

φ

φ

θ θ

θ θ

−⎛ ⎞ ⎛ ⎞−⎜ ⎟ ⎜ ⎟
+ = − =⎜ ⎟ ⎜ ⎟

⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 (8.13) 
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In a general state parameterized by (8.4) the expectation values of the angular momentum 

components are found by simple matrix multiplications 

 1 1 1ˆ ˆ ˆcos sin sin sin cos
2 2 2x y zJ J J

ψ ψ ψ
φ θ φ θ θ= = = , (8.14) 

or, in vectorial notation  

 ( )1 sin cos sin sin cos
2

J
ψ

θ φ θ φ θ=
G

. (8.15) 

The polarization vector is defined as having components given the expectation values of Pauli 

matrices 

 2P Jψ ψ ψ
σ≡ =

G GG  (8.16) 

therefore, 

 ( ) ( )
Unit versor pointing in ,  direction

sin cos sin sin cos ,P u
θ φ

θ φ θ φ θ θ φ= =
G G
�������	������
 . (8.17) 

In such state the angular momentum points in direction given by the polar angles θ and φ. The 

system is aligned, and oriented along the direction ( ),u θ φG . For one single particle, the 

description through a state vector is sufficient. For a system of N (non-interacting) particles, the 

quantum state described by a single vector, pure state, is a special particular case of a physical 

state. This corresponds to a complete knowledge of the individual states of each particle. This 

implies that we have to be able to prepare such a state, and the information about the state is 

available. In general, there is available only a partial information about the system, namely the 

distribution of the individual particles among a sub-set of pure states 

 number of particles in the state j j jN N N ψ= =∑  (8.18) 
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For large N, the state of an ensemble of particles, could be described as a superposition of pure 

states with statistical weights wj=Nj/N. The measurement for a physical (additive) quantity, A 

gives the result expressible in terms of the density matrix 

 ( ) ( ){ } { }ˆ ˆ ˆˆ; Tr Trmeas j j j j j j jj
j j

A N p a a N w A N w A N Aψ ψ ψ ψ ψ ρ= = = =∑ ∑ ∑ ∑ (8.19) 

For a particle in a pure state (or a system of particles prepared in identical states), the density 

matrix is just the projector 

 ˆψρ ψ ψ=  (8.20) 

In matriceal form 

 ( )
2 *

* *
2*

ˆ
a aba

a b
b a b b

ψρ
⎛ ⎞⎛ ⎞ ⎜ ⎟= =⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠

 (8.21) 

The last equality holds only for pure states. For a pure state in which the angular momentum is 

aligned to a direction (θ,φ), the density matrix is completely determined by the polarization 

vector 

 ( ) ( )( )
cos 1 12 ˆ 1 1 ,

2 2sin
2

i
P u

e φ

θ

ψ ρ σ θ φ σ
θ

⎛ ⎞
⎜ ⎟

= = + = +⎜ ⎟
⎜ ⎟⎜ ⎟
⎝ ⎠

G G G G  (8.22) 

The last expression shows that the density matrix for a pure state decomposes in a trivial scalar 

component and a vectorial component. For a mixed state the density matrix is obtained as sum 

over projectors 

 ˆ ˆj j j j j
j j

w wρ ψ ψ ρ= =∑ ∑  (8.23) 

In terms of polarization vectors (individuals, and the average polarization vector) 
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 ( )1 1ˆ 1 1
2 2j j

j
w P Pρ σ σ

⎛ ⎞⎛ ⎞
= + = +⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

∑
G GG G  (8.24) 

The density matrix decomposes in a trivial scalar component and a vectorial component, this 

time characterized by a vector with norm less than one. 

 
2

2 1j j
j

M w P
⎛ ⎞

= ≤⎜ ⎟
⎝ ⎠
∑

G G
 (8.25) 

In general, any operator can be decomposed 

 { } { }0 0
ˆ ˆ ˆ ˆ ˆ1 Tr Tri iA a a a A a Aσ σ= + = =

G G , (8.26) 

theefore, the expectation value in a general state described by the polarization P
G

 is given by  

 
( )( )

( )( )( )

0

0 0

1ˆ ˆ ˆTr 1 1
2
1 ˆTr 1
2

A a a P

a a P a aP

σ σ

σ σ

⎧ ⎫= + +⎨ ⎬
⎩ ⎭
⎧ ⎫= + = +⎨ ⎬
⎩ ⎭

GG G G

G GG G G G
 (8.27) 

In the particular case of the angular momentum operator 

 ( )1 1 1Tr 1
2 2 2i i i iJ e P Pσ σ⎧ ⎫⎛ ⎞= + =⎨ ⎬⎜ ⎟
⎝ ⎠⎩ ⎭

G G G  (8.28) 

In other words, a general state could be completely described by the expectation value of the 

angular momentum (which, up to a constant factor is the magnetization). 

 ( ) ( )1 1 1ˆˆ ˆ ˆˆ 1 1 2 1
2 2 2

P J Jρ σ σ σ= + = + = +
G G GG G G  (8.29) 

The Schroedinger equation governs the pure state evolution 

 ˆdi H
dt

ψ ψ=  (8.30) 

The density matrix evolves according to the equation 
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 ˆ ˆˆ i i i i i i i i i
d di i w w H w H
dt dt
ρ ψ ψ ψ ψ ψ ψ= = −∑ ∑ ∑  (8.31) 

which is the Liouville - von Neumann equation 

 ˆˆ ˆ,di H
dt
ρ ρ⎡ ⎤= ⎣ ⎦  (8.32) 

The Hamiltonian decompose according to the general rule 

 0 3 1 2
0

0 1 2 3

0ˆˆ ˆ1
0
h h h ih

H h h
h h ih h

σ
−⎛ ⎞ ⎛ ⎞

= + = +⎜ ⎟ ⎜ ⎟+ −⎝ ⎠ ⎝ ⎠

G
 (8.33) 

The h0 contribution gives no dynamics; the identity matrix commutes any other matrix 

 ˆ ˆ1, 0ρ⎡ ⎤ =⎣ ⎦  (8.34) 

The expression of density matrix in terms of polarization vector 

 ( )1 ˆˆ ˆ1 ,
2

dP i P h P
dt

ρ σ σ σ σ⎡ ⎤= + = ⎣ ⎦
GG G GG G G  (8.35) 

Using the algebra of Pauli matrices 

 d P ih P
dt

= − ×
GG G

 (8.36) 

This equation is a 3×3 differential equation, and could be written in explicit form 

 
1 1 13 2

2 3 1 2 2

2 13 3 3

0
0

0

P P Ph h
d P i h h P i P
dt

h hP P P

−⎛ ⎞ ⎛ ⎞ ⎛ ⎞⎛ ⎞
⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟= − − = − Ω⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟

⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟−⎝ ⎠⎝ ⎠ ⎝ ⎠ ⎝ ⎠

 (8.37) 

If the interaction is time independent, the solution could be expressed in terms of the exponential 

 ( ) { } ( )exp 0P t i t P= − Ω  (8.38) 

The 3×3 matrix has the special structure 

 1 1 2 2 3 3h L h L h LΩ = + +  (8.39) 

If  
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 0 zh h eω= = −
G G G  (8.40) 

The corresponding matrix is  

 
0 0

0 0
0 0 0

zi i L
ω

ω ω
−⎛ ⎞

⎜ ⎟Ω = − = −⎜ ⎟
⎜ ⎟
⎝ ⎠

 (8.41) 

the evolution is given by 

 ( ) ( )
( )
( )
( )

1

2

3

0cos sin 0
0 sin cos 0 0

0 0 1 0

zit L

Pt t
P t e P t t P

P

ω

ω ω
ω ω−

⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟= = − ⎜ ⎟⎜ ⎟
⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

 (8.42) 

which is nothing else but the Larmor precession, rotation with angular velocity “−ω” 

Interaction representation 

 
1 1 13 2

2 3 1 2 2

2 13 3 3

0
0

0

P P Ph h
d P i h h P i P
dt

h hP P P

−⎛ ⎞ ⎛ ⎞ ⎛ ⎞⎛ ⎞
⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟= − − = − Ω⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟

⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟−⎝ ⎠⎝ ⎠ ⎝ ⎠ ⎝ ⎠

 (8.43) 

In the MRI case the interaction is given by the sum of terms describing interaction with main 

static magnetic field, interaction with a small fluctuating magnetic field  

 ( ) ( )z zh e f t i L iF tω ω= − + Ω = − +
G GG  (8.44) 

The solution is of the general form 

 ( ) ( )zi tLP t e I tω−=  (8.45) 

 ( ) ( ) ( ) ( ) ( )z zi tL i tL Id I t ie F t e I t iF t I t
dt

ω ω−= =  (8.46) 

This equation has, now, a small random driving term. A second order integral equation can be 

written 
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 ( ) ( ) ( ) ( ) ( ) ( ) ( )
"

0 0 0

0 ' ' 0 ' ' " " "
t t t

I I II t I i dt F t I dt F t dt F t I t= + −∫ ∫ ∫  (8.47) 

After the average over fluctuations is performed 

 ( ) ( ) ( ) ( ) ( ) ( ) ( )
"

0 0 0

0 ' ' 0 ' " ' " "
t t t

I I II t I i dt F t I dt dt F t F t I t= + −∫ ∫ ∫  (8.48) 

Using the standard assumptions about the fluctuations  

 ( ) ( ) ( ) ( )
0

" "
t

I Id I t dt F t F t I t
dt

= −∫  (8.49) 

Going back to the original variable, the polarization vector, P  

 ( ) ( ) ( ) ( ) ( ) ( ) ( )" "

0

" "z z

t
i t t L i t t L

z
d P t i L P t dt F t e F t e P t
dt

ω ωω − − −= − − ∫  (8.50) 

After a change of variables 

 ( ) ( ) ( ) ( ) ( )
0

z z

t
i L i L

z
d P t i L P t d L e L e f t f t P t
dt

ωτ ωτ
α β α βω τ τ−= − − −∫  (8.51) 

Semiclassical theory of relaxation together with short-history assumption is obtained in three 

steps: 

 

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

0

0

0

Semi-classical Relaxation Matrix

0

0

z z

z z

z z

t
i L i L

z

t
i L i L

z

i L i L
z

d P t i L P t d L e L e f t f t P t
dt

d P t i L P t d L e L e f f P t
dt

d P t i L P t d L e L e f f P t
dt

ωτ ωτ
α β α β

ωτ ωτ
α α α α

ωτ ωτ
α α α α

ω τ τ

ω τ τ

ω τ τ

−

−

∞
−

= − − −

= − −

= − −

∫

∫

∫
���������������������������

 (8.52) 

Finally, the evolution of the polarization is given by the vectorial equation, the master equation 

for spin 1/2 
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 ( ) ( ) ( )z
d P t i L R P t
dt

ω= − +  (8.53) 

As a remedy of lack of approach to equilibrium, the existence of thermal equilibrium is imposed 

by modifying the master equation 

 ( ) ( ) ( )( )z eq

d P t i L P t R P t P
dt

ω= − − −  (8.54) 
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