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BAYESIAN ANALYSIS OF LATENT TRAIT HIERARCHICAL MODELS FOR  

MULTIPLE BINARY OUTCOMES  

IN CLUSTER RANDOMIZED CLINICAL TRIALS 

 Xinhua Zhao, PhD 

University of Pittsburgh, 2010 

In clinical trials, multiple endpoints for treatment efficacy often are obtained, and in addition, 

data may be collected hierarchically. Statistical analyses become very challenging for this 

multidimensional hierarchical data, particularly with data collected at more than two levels. We 

propose a latent variable approach to assess an intervention effect on multiple binary outcomes 

from three-level hierarchical data.  This approach incorporates the correlation structure into one 

or more latent outcomes, and simultaneously regresses the latent outcome(s) on observed 

covariates. Random effects are included to model the hierarchical structure. Parameters 

estimation is done using a fully Bayesian approach implemented in WinBUGS.  

We first illustrate the approach in a cluster randomized clinical trial of three interventions 

to improve the processes of care for outpatients with pneumonia. Four binary outcomes are 

collected at the patient-level and clustered at the provider and clinic site levels. Simulation 

studies are conducted to check the algorithm and computational implementation. Then, we 

extend the one latent trait model to a two-latent trait model using eight outcomes from both 

outpatient and inpatient care. This latent modeling approach provides a comprehensive way to 

analyze multivariate hierarchical data. The method not only allows assessment of intervention 

effects with respect to multiple outcomes, but also assesses the relationship between outcomes, 

identifies those outcomes that carry the most information about the latent trait(s), and provides a 

summary measure of the “quality of care” at each clinical site. 
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 This work extends existing methods to model multivariate binary endpoints in a cluster-

randomized clinical trial. The public health significance of this study is the potential usefulness 

of this approach to quantify intervention (or exposure) effects with regard to multiple outcomes 

in hierarchical data setting, which arises frequently in medical and epidemiologic studies.  
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1.0  INTRODUCTION 

There are many situations in medical and other applied research settings where the outcomes of 

interest cannot be characterized by one single measurement on the individuals under study. For 

example, no single measure exists for outcomes such as blood pressure, quality of life, or 

physical functioning. To effectively capture all aspects of such outcomes, a number of 

measurements commonly are used. For example, blood pressure can be measured by systolic and 

diastolic blood pressures. Quality of life often is measured with a multi-item self-report 

questionnaire. Physical functioning is measured using an extensive self-report questionnaire 

and/or multiple performance-based tests. The result of such measurements is the representation 

of blood pressure, quality of life, or physical functioning by a set of scores for each individual.  

1.1 STATEMENT OF THE PROBLEM 

In clinical trials, multiple endpoints for treatment efficacy often are obtained (Pocock, Geller, 

and Tsiatis, 1987). For example, in stroke recovery no single outcome can serve as a gold 

standard indicative of treatment efficacy. The primary objective of analyses of this kind is not to 

identify the particular outcomes that differ between the groups, but rather to use all the data at 

hand to establish whether there is a difference between the groups.  Several statistical issues arise 

in evaluating a treatment effect from this type of data. One main issue is the multidimensionality. 
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Each of the several response variables measures a slightly different aspect of the response. 

because no single response variable suffices as a main outcome variable, methods that 

collectively consider all of the response variables are desired. The main question is how to use 

the multiple response variables to obtain a summary measure of the treatment effect that is 

readily interpretable. The problem is challenging because the multiple response variables may be 

defined on different numerical scales. If the data are collected hierarchically, the result is 

multidimensional hierarchical data. These methods also must account for the autocorrelation 

between individuals within the same cluster within each response variable, and the cross-

correlation between different response variables both across clusters and within the same cluster. 

Frequently, from a substantive perspective, there is a need to summarize all the multidimensional 

measures into a unidimensional composite score, such as an overall measure of quality of care in 

health care research.  

The frequently used approaches include individual outcome data analysis, dimension 

reduction of the data, and global test procedures. Each of those approaches fails to characterize 

the relationship between outcomes or summarize the variables. Latent variable models provide a 

natural way to analyze the complex multivariate data in this setting. A latent variable model is 

any model that includes the unobserved random variables. These models have been employed 

extensively in the areas of psychological and educational testing (Baker F.B. 1992) and the social 

sciences (Eye and Clogg, 1994). In recent years, the utility of latent variable models has been 

recognized and the use is increasing in medical research (for example see Catalano and Ryan, 

1992; Bollen and Long, 1993; Legler and Ryan, 1997; Sammel, Ryan, and Legler, 1997). 

However, latent variable models seldom have been used to test hypotheses about clinical 

outcomes in clinical trials and other designed studies (Donaldson 2003). 
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The overwhelming majority of the literature on latent variable models is frequentist in 

nature, using maximum likelihood estimation. MLE commonly treats latent variables as random 

and parameters as fixed. Inference usually is based on the marginal likelihood, the likelihood of 

the data given the latent variables, integrated over the latent variable distribution. The EM 

algorithm often is applied to maximize the likelihood. Unfortunately, in general no closed form 

for the multi-dimensional integrals exists, so that some approximations are required. Also, extra 

effort such as calculating the observed information matrix from the Louis formula is required to 

estimate standard errors (Louis, 1982). 

Bayesian estimation of latent variable models using Markov Chain Monte Carlo 

(MCMC) is an attractive alternative to maximum likelihood. Bayesians treat both latent variables 

and parameters as random variables. The difficulties induced by the complexities of the model 

and the multi-dimensional integrals can be handled efficiently using powerful computing tools 

such as the Gibbs sampler. An additional benefit is that samples are available from the joint 

posterior distribution of the latent variables. Often, these samples can be used to obtain important 

insights into structural relationships, which may not be apparent from the parameter estimates, 

such as checking the normality of the posteriors samples of latent variable to capture lack of 

model fit (Sik-Yum Lee 2007). Since about 2000, a number of authors have used MCMC 

methods to implement Bayesian analysis in various structural equation models (SEMs), 

involving nonlinear structure, heterogeneity and multilevel data (Lee and Song 2004, Lee and 

Song 2003, Dunson, et al. 2000).  The majority of the Bayesian approaches for complex SEMs 

were developed under the crucial assumption that the conditional distribution of the manifest 

(observed) variables, given the latent variables, is normal, while other distributions, such as the 

binomial (unordered binary data), have received limited consideration. 
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Very recently, latent variable modeling approaches have been used to profile health care 

providers on quality of health care. Quality of healthcare is an abstract and multidimensional 

construct that cannot be measured directly. There are three dimensions of quality of care: 

structure, process, and outcome. Structure measures are characteristics of the health provider. 

Process measures are the components of the encounter between a physician or other healthcare 

professional and a patient. Outcome measures refer to the patient’s subsequent health status 

(Blumenthal 1996). Normand et al. published a series of articles using latent variable models to 

quantify quality of health care using Gibbs sampling, involving a 2-parameter Normal-Ogive 

model (multivariate probit model) for multiple cross-sectional binary outcomes (2000, 2008), 

and multilevel multidimensional latent variable models under multivariate normal distribution 

with a threshold model for mixed binary and continuous outcomes in cross-sectional (2003) and 

longitudinal (2006) data settings. The aim of these studies was to estimate the unidimensional 

latent score in order to profile health care providers.  

Latent variable models have played little role in analyzing clinical trial data. For binary 

outcomes, item response theory (IRT) models with a probit-link were commonly used in 

literature. Given the easy interpretation and popularity of logit-link in clinical data settings, we 

will use logit link for the proposed method, which generalizes the conditional distribution of the 

manifest variable given the latent variable from the normal distribution to other exponential 

family distributions. In addition, existing standard software cannot analyze multiple outcomes 

from hierarchical data with more than two levels.  

In our work, we propose a general latent variable model to analyze an intervention effect 

with regard to multiple binary outcomes for a three-level model with multiple outcomes at the 

patient-level and clustering at the provider and site levels, using MCMC Bayesian estimation. 
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This latent modeling approach provides a comprehensive way to analyze multivariate 

hierarchical data.  Not only does the method allow assessment of intervention effects with 

respect to multiple outcomes, but it also quantifies the relationship between outcomes, identifies 

those outcomes carry the most information about the latent trait, and provides a summary 

measure of the “quality of care” of each clinical site. 

1.2 MOTIVATING EXAMPLE: THE EDCAP STUDY 

The Emergency Department Community Acquired Pneumonia (EDCAP) Trial (Yealy, Auble, 

Stone et al., 2004) motivated this proposed method. The EDCAP study was designed to compare 

the effectiveness and safety of three guideline implementation strategies of increasing intensity 

(low-intensity, moderate-intensity, and high-intensity) on quality of care of patients with 

community acquired pneumonia (CAP) in Emergency Departments (EDs). The low-intensity 

implementation arm reflected the quality improvement methods typically used by the 

collaborating state quality improvement (QI) organizations, which served as a usual care control. 

The moderate intensity arm also conducted an on-site educational session for ED medical 

providers and requested a QI plan for the admission decision. The high-intensity intervention 

added a multifaceted set of provider behavior change techniques (i.e. reminder forms, feedback, 

and bimonthly plan-do-study-act cycles) that continued through the year-long guideline 

implementation period. The intervention was randomized at the site (ED) level in the ratio of 3 

high intensity: 3 moderate intensity: 2 low intensity.  

The study guideline recommended outpatient care for low risk patients with CAP who 

presented for the ED and inpatient care for high risk patients. The study practice guideline 
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recommended four processes of care for outpatients (i.e.,  oxygen assessment, first dose of 

antibiotics in ED, treatment with compliant antibiotics in the ED, and compliant antibiotic 

therapy upon discharge ) and four processes of care for inpatients (oxygen assessment, blood 

cultures before antibiotic administration, antibiotic administration within 4 hours and treatment 

with compliant antibiotic therapy in ED). Those eight binary outcomes were used to illustrate the 

proposed method, with “1” indicating that the patient received the recommended process of care, 

“0” otherwise.  

The EDCAP study has a 3-level hierarchical data structure, in which multiple outcomes 

are nested within patients, patients are nested within providers, and providers are nested within 

clinical sites (EDs). Of the 3201 patients were seen by 407 providers at 32 clinical sites, 1125 

received outpatient care and 2076 received inpatient care.  Intervention was randomized at site 

level.  

The primary study results were published by analyzing each outcome separately (Yealy, 

Auble, Stone et al., 2005). Many pairwise comparisons were conducted and subjective 

conclusions of the overall effect were based on the multiple tests.  The information derived from 

these individual outcome analyses can be overwhelming, and the increased Type I error is an 

issue. Further, in this multidimensional outcome data, we expect some relationships between the 

outcomes, so that modeling outcomes independently could result in a loss of efficiency.  

 The purpose of our work is to develop a statistical model to assess an overall intervention 

effect. Specifically, we propose a general latent variable model to analyze the intervention effect 

with regard to multiple binary outcomes with a 3-level hierarchical data structure, using a fully 

Bayesian approach. This proposed model framework incorporates the correlation structure into 

one or more latent outcomes, and simultaneously regresses the latent outcome(s) on 
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interventions.  This analysis will address the question of whether there is significant variability in 

the quality of care across sites, and whether the intervention explains some of this variability. 

This latent modeling approach provides a comprehensive way to analyze intervention effect in 

multivariate and hierarchical data.   

In Chapter 2, we review relevant literature. In Chapter 3, we describe a Bayesian 

formulation of the proposed one-latent trait and two-latent trait models. The EDCAP data is 

analyzed sequentially in terms of complexity. First, each outcome was analyzed individually   

using both a Bayesian approach and maximum likelihood with random effects to account for 

clustering effects at the site and provider levels, and results were presented in Appendix A. 

Second, in Chapter 4, a one-latent trait model is proposed to assess an overall intervention effect 

using outpatient data. Then, in Chapter 5, the one latent trait is extended to two-latent trait model 

to assess the intervention effect on both outpatient care (4 outcomes) and inpatient care (4 

outcomes). We conclude in Chapter 6 by discussing some limitations and extensions. Selected 

output and figures of Bayesian implementation are listed in Appendix B.  
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2.0  REVIEW OF THE LITERATURE 

Multiple outcomes are common in the social and behavior sciences, and increasingly, so in 

biomedical studies. Statistical analysis is challenged by such data in studying the relationships 

between outcome measures and associated covariates. The development of statistical methods for 

the analysis of multiple outcomes has been an area of active research for decades.  

2.1 NON LATENT VARIABLE APPROACHES 

Traditionally, one frequently used approach is to analyze the treatment effect on each response 

variable separately, presenting multiple P-values and drawing overall subjective conclusions. 

While this approach is simple and easy to implement, it has limitations. Evaluating individual 

response variables is informative but often fails to provide an overall statement of the treatment 

effect. It is commonplace to interpret a trial as positive if any endpoint has a treatment difference 

significant at the 5% level, which increased the risk of overall Type I error rate (inflation of false 

positives). Also, it fails to advantageously borrow strength across the response variables, i.e., it 

fails to combine the related information about the treatment effect from the various response 

variables. Hence, for multiple endpo ints without prespecified priorities, it is challenging to 

preserve a small overall Type I error rate and allow for correlated endpoints. One could simply 

apply a Bonferroni correction; however, this approach can be very conservative, particularly for 
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correlated endpoints. For related outcomes likely to be affected in a similar manner, a 

multivariate approach that allows for an overall assessment of intervention effects by combining 

information from these related outcomes is preferred, which could detect the intervention effects 

with better statistical power (Gray SM and Brookmeyer R 1998,  Sammel M, Lin H and Ryan L 

1999) 

Another commonly used approach is to reduce the dimensionality of the data. Very 

simple approaches include calculating a summation score for several continuous variables or 

collapsing multiple binary outcomes into a single binary outcome that indicates the presence of 

at least one of the endpoints of interest. This could also been accomplished in a more complex 

way using variable reduction techniques, such as factor analysis or principal components 

(Morrison, 1976). This analysis apporach is named as two-stage factor analysis, a two-step 

procedure, wherein one first performs a factor analysis or principal components analysis to 

identify a linear combination of outcomes that are most correlated with each other, then treats 

this linear combination as fixed and known without measurement error and models this linear 

combination as a function of covariates (Sammel, 1999).  This approach may not lead to 

interpretable results and the data reduction may result in biased estimates, a loss of information 

(Gray SM and Brookmeyer R 1998, Croon Bolck, 1997), and most important, uncertainty in the 

aggregated scores is difficult to quantify (Gray and Brookmeyer, 1998). 

Another approach is the use of global testing procedures based on suitable multivariate 

models to compare outcomes between different groups. Testing procedures for multiple 

outcomes have been described by O’Brien (1984), Pocock (1987) and Legler (1995) among 

others. O’Brien (1984) based his methods on generalized least squares (GLS) as well as a 

nonparametric rank-based approach. Pocock et al. (1987) extended O’Brien’s GLS approach to 
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included binary and survival endpoints. Legler et al. (1995) used generalized estimating equation 

(GEE)-based score tests for a general M-group comparison. Although a global test can assess 

whether or not groups differ with respect to multiple outcomes, they fall short in exploring the 

relationship between outcomes. There is no well-recognized best way to accomplish this. One 

simple approach is to use some kind of multiple comparisons technique to identify which 

individual outcomes are affected. Ironically, attempting to do so may sometimes undermine the 

rationale for using a global test in the first place.  Global analyses have been criticized often on 

the grounds that combining multiple outcomes may obscure a real effect if only one or two 

outcomes are actually affected by the intervention. In general, global tests will be more powerful 

and are recommended in practice when all the outcomes are closely related and be similarly 

affected by the variable of interest. 

None of these approaches described above provide a comprehensive way to study the 

relationships between outcomes, to synthesize (or summarize) these variables, or to quantify the 

multivariate outcome as a univariate composite score and simultaneously assess the relationship 

between this composite score and the observed covariates with measurement errors considered in 

one model framework. However, latent variable models provide a natural and comprehensive 

way to analyze data with multiple outcomes and hierarchical data structure. 

2.2 LATENT VARIABLE MODELS 

Latent variable models refer to any models that include unobserved random variables. Such 

models assume the existence of one or more latent variables, i.e., quantities that are not directly 

observed but thought to be underlying the measured responses.  Latent variable models have 
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been used extensively in the areas educational testing, psychology, and social science for 

studying interrelationships among observed and latent variables, because they provide a natural 

way to analyze data with multiple dimensions. The utility of these models in medical research 

has only quite recently been recognized (Bentler PM and Stein JA 1992, Rabe-Hesketh S. and 

Skrondal A. 2008). One advantage of the latent variable model is that a one degree-of-freedom 

test can be used to test for the overall exposure effect, and could be more powerful compared to 

the a M degree-of-freedom test (Sammel 1999). Another advantage of the latent variable model 

is that it naturally yields a summary measure for each individual that can be interpreted as 

individual severity score.   

The classification scheme of traditional latent variable models was summarized by 

Skrondal A. and Rabe-Hesketh S (2007), based on metrics for the observed and latent variables.  

For both continuous latent variable(s) and observed variables, the models include common factor 

models, structural equation models, linear mixed models and covariate measurement error 

models; latent trait models/IRT for continuous latent variable(s) and categorical observed 

variables; latent profile models for categorical latent variable(s) and continuous observed 

variables; and latent class models for both categorical latent variable(s) and observed variables 

 The factor analysis model is the most basic statistical model for studying the 

relationships among latent and observed variables. To deal with complex data sets in various 

fields, the factor analysis model has been generalized to more sophisticated models (Bentler and 

Weeks 1980). These multivariate models are commonly called structural equation models 

(SEMs). A SEM with latent variables provides a very general framework for modeling the 

relationships in multivariate data (Bollen 1989). In the following, in order to have a better 

understanding of the proposed latent variable models, we will review various latent variable 
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models, including factor models, item response models, SEMs, and the recent work on unifying 

and extending the classical latent variable models within a general framework. We also review 

Bayesian estimation for latent variable models. 

2.2.1 Common factor models 

For i = 1, . . . ,N  independent subjects with j=1,…, I continuous items, a unidimensional 

common factor model can be written as  

,ij j j i ijy β λ η ε= + +  where ~ (0, ), ~ (0, )i ij jjN Nη ψ ε θ , ( , ) 0i ijCov η ε =                        (2.1)               

In (2.1), jβ  represents the measure-specific mean, iη  

jλ

is the common factor or latent trait 

for subject i, is a factor loading for the jth
ijε item, are unique factors or measurement error 

(which are not separately identified when there are no replicates) and θ jj

   Without any parameter constraints, the above unidimensional common factor model is 

not identified (several sets of parameter values can produce the same probability distribution) 

because multiplying the standard deviation √ ψ of the common factor by an arbitrary positive 

 is the measurement 

error variance. The model framework could be considered as a multivariate model that 

incorporates the correlation structure into a single latent outcome, which is a weighted 

combination of the observables. The common factor can represent any hypothetical construct, 

i.e., a concept that cannot even in principle be directly observed, intelligence and depression 

being prominent examples. In this case the measures j are typically questions or items of a 

questionnaire or structured interview. The answer to a particular item is therefore a reflection of 

both the hypothetical construct and an item-specific aspect, referred to as the common and 

specific factors, respectively. 
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constant can be counteracted by dividing all factor loadings jλ  by the same constant. 

Identification is achieved either by ‘anchoring’, where the first factor loading is fixed to one (λ1

Hypothetical constructs are often multidimensional. The above one-dimensional factor 

model could be generalized to a less restrictive multi-dimensional (“M-dimensional”) factor 

model. An M-dimensional factor model can be formulated as 

 

= 1), or by ‘factor standardization’, where the factor variance is set to a positive constant (ψ = 1). 

The models resulting from either identification restriction are equivalent.  

1 1 ...ij j j i jM iM ijy β λ η λ η ε= + + + +
          

In matrix form i i iy β η ε= + Λ +  

where β  is a vector of item-specific constants, Λ  is now an n × m matrix of factor loadings with 

element pertaining to item j and latent variable l denoted λjl iη ,  is a vector of M common factors 

with covariance matrix Ψ  , and jε  is a vector of unique factors with diagonal covariance matrix 

Θ .We define Ψ ≡ Cov(ηi) and assume that E(ηj iε) = 0, E( ) = 0, and Cov(ηi, iε ) = 0.  

In the multidimensional case, an important example of a restricted model is the 

independent clusters model where Λ  has many elements set to zero such that each indicator 

measures one and only one factor. Such a configuration makes sense if one set of indicators is 

designed to measure one factor and another set of indicators to measure another factor. For 

example, matrix (2.3) in below depicts an independent clusters two-factor model where each 

factor is measured by three separate items. The model identification is achieved by anchoring, 

where we have the scale of each factor by setting one factor loading to 1.  

(2.2) 
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y
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β ε
β ελ
β η ελ
β η ε

λ εβ
λ εβ

    
    
    
       = + +           
    
    
                          

2.2.2 IRT models 

When the response items are dichotomous or ordinal, the above factor model can be extended to an 

IRT model using a generalized linear model formulation. The conditional probability of a particular 

response given the latent trait (or factor) typically is specified by a logit or probit link function. The 

IRT model has been developed in the context of educational testing.  Let ijy  denotes the observed 

binary outcome of item j (correct or incorrect) on subject i, and iη  

exp( )
Pr( 1| )

1 exp( )
j i j

ij i
j i j

y
λ η β

η
λ η β

−
= =

+ −

represents the continuous 

unobserved ability of the examinee. A two-parameter logistic (2-PL) model can be formulated as 

 

There are two parameters associated with each item, an intercept and a factor loading. jβ  

represents the item difficulty, iη  jλrepresents ability,  

jλ

is referred to as the discrimination 

parameter because items with a larger  

j iλ η

better discriminates between subjects with different 

abilities.  In this 2-PL model, an item can be easier than another item for low abilities but more 

difficult than the other item for higher abilities, due to the item-examinee interaction . The 

two-parameter (2-PL) IRT model could be reduced to a one-parameter (1-PL) IRT model by 

(2.4) 

(2.3) 
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constraining factor loadings jλ  to all be 1, which is just a random intercept logistic model 

without covariates. The Rasch model could be obtained by taking iη as fixed in the 1-PL model.    
 

The two-parameter IRT model with probit link is called the Normal-ogive model (Lord FM 

1952)  

1[Pr( 1| )]ij j i i jy η β λη−Φ = = +  

Here Φ (·) is the cumulative standard normal distribution and 1−Φ  (·) is the probit link.  

2.2.3 Structural equation models (SEM)  

SEMs, also called simultaneous equation models, are multivariate regression models with latent 

variables. SEMs provide a broad framework for modeling means and covariance relationships in 

multivariate data. In general, SEM combines the ideas of factor analysis and regression. Unlike 

the more traditional multivariate linear model, however, the response variable in one regression 

equation in a SEM may appear as a predictor in another equation. Factor models and IRT models 

are important in their own right for modeling the relationship among the observed and latent 

variables, but also as building blocks in SEMs, where relationships among latent variables are 

modeled. SEM also is referred to as covariance structure analysis. In this structural model, there 

could be both latent dependent variables and latent explanatory variables. 

The standard SEM, in particular the LISREL (linear structural relationship) model 

(Jöreskog KG 1977), is composed of two components. The first component is a confirmatory 

factor analysis model, which relates the latent variables to their entire corresponding manifest 

(observed) variables (indicators) and takes the measurement error into account. This component 

can be regarded as a regression model that regresses the manifest variables on a small number of 

(2.5) 
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latent variables.  The second component is again a regression type structural equationthat regresses 

the endogenous (dependent) latent variables with the linear terms of some endogenous and 

exogenous (independent) latent variables. There are several ways of parameterizing SEMs with latent 

variables. Here we will use a parameterization suggested by Muthén (Muthén BO 1984) due to its 

convenience in application.  

The measurement part of the model is the confirmatory factor model specified in equation 

(2.1) 

1 1 ...ij j j i jM iM ijy β λ η λ η ε= + + + +  

 The structural part of the model specifies regressions for the latent variables on other latent 

and observed variables 

 
i i i iη α η χ ζ= +Β +Γ +

      

Here iη  is a vector of latent variables with corresponding lower-triangular parameter matrix 

B governing the relationships among them, α is a vector of intercepts, Γ  a regression parameter 

matrix for the regression of the latent variables on the vector of observed covariates iχ , and iζ  is a 

vector of disturbances. We define Ψ ≡ Cov(ζi) and assume that E(ζi)=0, Cov( iχ ,ζi) = 0 and 

Cov(
iε , ζ i) = 0, 

 An important special case is the Multiple-Indicator-Multiple-Cause (MIMIC) model 

(Joreskog KG 1975), which imposes the restriction B = I in the structural model, so the structural 

model reduces to 

i i ixη α ζ= +Γ +  

The MIMIC model is a one-factor model, where the factor is measured by multiple 

indicators and regressed on several observed covariates or “causes”.  

(2.6) 

(2.7) 

(2.8) 
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2.2.4  Generalized Linear Latent and Mixed Models 

Recognizing the mathematical similarity of a wide range of latent variable models, Rabe-

Hesketh and Skrondal proposed a very general framework to unify and generalize various the 

classical latent variable models, including the multilevel, factor, item response, latent class, 

structural equation and longitudinal models. The model framework is named as Generalized 

Linear Latent and Mixed Models, or GLLAMMs (Rabe-Hesketh et al., 2007; Skrondal & Rabe-

Hesketh, 2004). The GLLAMM model can be written down explicitly in its full generality just 

like the unifying LISREL model. 

GLAMM combines features of generalized linear mixed models (GLMMs) and SEMs. 

GLLAMMs consist of two building blocks: a response model and a structural model. The 

response model specifies the distribution of the observed responses conditional on the latent 

variables and covariates (via a linear predictor and link function) and in the structural model the 

latent variables themselves maybe regressed on other latent and observed covariates. 

The response model generalizes GLMMs to incorporate factor structure in addition to 

random intercepts and coefficients. Conditional on the latent variables, the response model of 

many latent variable models is a generalized linear model. As for such models, the response 

model of GLLAMMs has three components: a link, a distribution and a linear predictor. The 

conditional expectation of the response y, given x, z and η, is ‘linked’ to the linear predictor via a 

link function g(·). 

1
( [ | , , ]) ` `

M

ij ij mi mij m
m

g E y x z X zη β η λ
=

= +∑  

Common combinations of links and distributions include: (i) the identity link and normal 

distribution for continuous responses; (ii) the logit, probit or complementary log–log link and 

(2.9) 
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Bernoulli distribution for dichotomous responses; (iii) the cumulative version of these links and 

multinomial distribution for ordinal responses; and (iv) the log link and Poisson distribution for 

counts. The right side of the equation is the linear predictor, η  is the vector of all latent variables 

in the model, x and z denote vectors of covariates. The elements of xij are covariates with ‘fixed’ 

effects β. The mth latent variable  is multiplied by a linear combination m̀ij mz λ  of covariates 

 where  are parameters (usually factor loadings). Some traditional latent variable models 

could be viewed as special cases, such as the common factor model and IRT models.   

 The structural model is similar to the structural part of SEM specified in (2.7) except that 

it is a multilevel structural model where latent variables and observed variables can vary at 

different hierarchical levels. This includes the conventional single-level structural model as a 

special case. 

2.2.5 Bayesian estimation of latent variable models 

Most of the literature on latent variable models is frequentist in nature, based on maximum 

likelihood estimation (MLE) (for examples see Bock and Aitkin, 1981, Rabe-Hesketh et al., 

2004 and 2005, Schoenberg and Richtand, 1984). Latent variables are treated as random and 

parameters are fixed, inference is usually based on the marginal likelihood, the likelihood of the 

data given the latent variables, integrated (or summed in the discrete case) over the latent 

variables distribution. In the cases of multivariate normal latent variables and multivariate 

normal responses, the marginal distribution of the response given the latent variables is 

multivariate normal (multivariate normal marginal distribution), the MLE is relatively 

straightforward because the integral involved in the marginal likelihood can be explicitly solved 
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and expressed in closed form. However, in non-normal models, such as item-response models, 

there generally is no analytic expression for the likelihood, i.e., the likelihood does not have a 

closed form, and approximations are needed (Skrondal A and Rabe-hesketh S, 2004). There are 

several more or less accurate approximate methods of integration, including numerical 

integration using quadrature or adaptive quadrature (as implemented in SAS NLMIXED and the 

Stata program gllamm), or Monte Carlo integration (simulated likelihood). Different methods for 

maximizing the likelihoods include the Expectation-Maximization (EM) and Gradient methods 

of Newton-Raphson and Fisher Scoring algorithms.  

 In contrast, Bayesian estimation treats both latent variables and parameters as random 

variables, so that there is no distinction between the two types of variables. When the likelihood 

does not have a closed form, the Bayesian alternatives using MCMC for latent variable models 

are attractive (Sik-Yum Lee 2007a, Sik-Yum Lee 2007b). MCMC methods allow estimation of a 

very wide range of models and have become increasing popular. The difficulties induced by the 

complexities of the model and the multi-dimensional integrals can be handled efficiently by 

means of powerful computing tools in statistics, such as the Gibbs sampler (Geman and Geman, 

1984). An additional benefit is that samples are available from the joint posterior distribution of 

the latent variables.  

A major breakthrough for Bayesian estimation of latent variable models is the idea of 

data augmentation that was proposed by Tanner and Wong (1987). The strategy is to treat latent 

quantities (Ω ) as hypothetical missing data and augment the observed data with them so that the 

posterior distribution based on the “complete” data is relatively easy to analyze. More 

specifically, instead of working with the intractable posterior density ( | )P yθ , we will work 

with ( , | )P yθ Ω , where Ω  is the set of latent variables in the model. For most cases, ( , | )P yθ Ω  
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still is not in closed form and it is difficult to deal with it directly. However, on the basis of the 

complete-data set ( , )yΩ , the conditional distribution [ | , ]yθ Ω  is usually standard; moreover, the 

conditional distribution [ | , ]yθΩ can be derived from the definition of the model without much 

difficulty. Consequently, we can apply some MCMC methods to simulate the observations from 

( , | )P yθ Ω by drawing observations iteratively from their full conditional densities ( | , )p yθ Ω  

and ( | , )p yθΩ ( Sik-Yum Lee 2007a). Most of the full conditional distributions are the standard 

normal, gamma or Wishart distributions. Simulating observations from them is rather 

straightforward. For nonstandard conditional distributions, the Metropolis-Hastings (MH) 

algorithm (Metropolis el al., 1953; Hastings, 1970) may have to be used for efficient simulation. 

The freely available software WINBUGS (Windows version of Bayesian inference Using 

Gibbs Sampling, Gilks WR 1994) is a useful and powerful tool for Bayesian analysis. It allows 

users to evaluate complex models without implementing the technical details of MCMC for each 

new problem. The software will set up the MCMC process and conduct the sampling, so that the 

users are able to focus on model design and validation. It could produce reliable Bayesian 

statistics for a wide range of statistical models, including SEM models (Sik-Yum Lee 2007a,). 

The algorithm used in WinBUGS is mainly developed using MCMC techniques, such as the 

Gibbs sampler and the MH algorithm. This software is able to produce reliable Bayesian 

statistics, including the Bayesian estimates with their standard error estimates, and the Deviance 

Information Criterion for model comparison and goodness-of-fit assessment of the hypothesized 

model. 
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3.0  PROPOSED METHOD 

We describe our method in the context of EDCAP example. The EDCAP study has a 4-level 

hierarchical data structure, in which multiple measurements are nested in patients, patients are 

nested in providers and providers are nested in clinical sites.  The intervention is randomized at 

the site level. One question of interest is whether the intervention is association with site level 

variation. Assuming that each site has one underlying trait (e.g., quality of pneumonia care), we 

construct a latent trait at site-level and then model the association between this latent trait and the 

intervention.  

To set the notation, let i denote the level-4 units (sites), j denote the level-3 units 

(providers), k denote the level-2 units (patients), and h denote the level-1 units (measurements or 

items). Let Yijkh be the dichotomous value of the hth response of the kth patient treated by 

provider j in the ith (i=1,2,…., 32 ) site (ED ). The two covariates that will be modeled are one 

level-2 unit (patient-level) covariate, risk status (Zijk 0=low risk, 1=high risk)), and one level-4 

unit (site-level) covariate, intervention level (Xi(x i1, xi2

 

) (0,0)=low, (1,0)=moderate, (1,1)=high 

intensity intervention). 
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3.1 ONE-LATENT TRAIT MODEL 

EDCAP outpatient data with four outcomes were used to illustrate the proposed method 

3.1.1 Model specification 

Though data are collected at patient level, this analysis focuses on site-level variation. We 

formalize the likelihood function by writing the within-site and the between-site models 

separately, with the within-site model linking the outcomes to  patient risk status and various 

random effects, and between-site model linking the site-level random effect  to the latent 

variable, with the latent mean modeled as a function of the intervention.  

Within-Site Model. The outcome variable is assumed to follow a binomial distribution 

and is linked by logit link to the patient-level covariates, a patient-level random effect, a 

provider-level random effect, and a site-level measurement-specific random effect, 

0h 1h 0h 1h ijk ijk ij( | , , , , , ) + z + + +ijkh ijk ij ih ijk ihLogit y zβ β µ υ η β β µ υ η=        (3.1) 

where,  

Yijkh

β

, binary effectiveness outcome measure 

0h , a baseline for each measure, indicating performance of  the h th process of care at an 

average site with the low-intensity intervention for low risk patients. The lower the value, the 

lower the average probability of receiving the h th

β

 process of care. 

1h,

Z

 a fixed measure-specific regression coefficient for the patient-level covariate 

ijk, as defined above, patient risk status (i.e., 0= high risk, 1= low risk) 
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The parameter µijk is patient level random error term such that the responses are 

conditionally independent at the patient level. It is assumed to be normally distributed with zero 

mean and constant variance (i.e., µijk ~ N (0, σ2

The parameter ν

)) 

ij is a provider level random error term that allows for correlation among 

patients within a provider. It is assumed to be normally distributed with zero mean and constant 

variance (i.e., νij ~ N (0, τ2

The parameter η

). 

ih, a measurement-specific site level random effect for measure h in site 

i, permits heterogeneity across the sites and allows for correlation among patients within a site.  

It is assumed to be normally distributed with a non-zero mean as a function of intervention effect 

and a measurement-specific variance (i.e., ηih ~ N ((λhθi, ψh
2)), which are specified in detail 

below. It is further assumed that the random effects µijk , νij   and ηih 

Between-Site Model. To model the correlation between the multivariate outcomes at the 

site-level, we relate the site-level random effects to one latent variable θ

are mutually independent. 

i

                               

, such that the four site-

level effects are conditionally independent given the latent variables. 

2

2

,  where ~ (0, )

. . ~ ( , )
ih h i ih ih h

ih h i h

N

i e N

η λ θ ε ε ψ

η λ θ ψ

= +
 

Where, θ i serves as a composite profile of care rendered by site i. Larger θ i

The parameter λ

 corresponds to better 

quality of health care. 

h is a fixed measure-specific discrimination parameter (weight), 

depending on a measure’s ability to discriminate between sites. It may be thought of as a “factor 

loading” that quantifies the weight of each outcome on the latent variables. The larger the value, 

the more the power to discriminate underlying quality. The sign of λh is not identifiable, so the 

constraint that λh >0 is added to the model. 

    (3.2) 
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The variable εih ~ (0,ψh
2

In this hierarchical model, variability in latent quality (θ

 ), the site level random error term  for measure h, measures the 

degree of heterogeneity across sites. 

i) across sites is assumed to have 

both a systematic component, explained by a site-specific covariate (the intervention Xi

 where ~ (0,1)
. . ~ ( ,1)
i i i i

i i

X N
i e N X
θ γ α α

θ γ
= +

: low, 

moderate, high intensity), and a random component such that  

        

where variable iα  is i.i.d error term (i.e. iα  ~ N (0,1)), so that  the prior variance of the latent 

quality trait is set to 1 (to fix the scale of the latent variable for identifiability of the model). 

Estimates of the latent trait (θi.) are given by the posterior mean of θ i

Parameter γ is the vector of fixed treatment effects, γ = (γ

. Low values indicate poor 

quality of care.    

1 , γ2 ) with γ1 denoting 

moderate intensity vs. low intensity, and γ2 denoting high intensity vs. low intensity. The  linear 

contrast γ1 -γ2

Here X

 denotes high intensity vs. moderate intensity. 

i denotes the vector of site-level covariates, Xi = (xi1, xi2

It follows from the two-stage between-site models (specified above in equations 3.2 and 

3.3) that we can formalize the between-site model in one equation 

), where (0, 0) = low 

intensity intervention, (1,0) = moderate intensity intervention, (1,1) = high intensity intervention.  

2

2 2

+ , where ~ (0,1), ~ (0, )

. . ~ ( , )
ih h i h i ih i ih h

ih i h h

X N N

i e N X

η λ γ λ α ε α ε ψ

η γ λ ψ

= +

+
 

Based on the two submodels specified above in equation 3.1 and 3.4, the full model can 

be written as  

 0h 1h 0h 1h ijk ijk ij( | , , , , , , , ) + z + + +ijkh h i ijk ij ih ijk h i ihLogit y zβ β λ θ µ υ ε β β µ υ λ θ ε= +  

      (3.4) 

 

  (3.5) 

 

      (3.3) 
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In matrix form 

[ ]

1 01 111 1

2 02 212 2

13 33 03 3

14 404 44

( )
( )
( )
( )

ijk i

ijk i
ijk i ij ijk

ijk i

iijk

Logit y
Logit y

Z
Logit y
Logit y

β εβ λ
β εβ λ

θ ν µ
β λβ ε
β λβ ε

        
        
        = + + + + +        
        
               

 

             where θi =γXi + ai

                         µ

 as specified in equation 3.3  

ijk ~ N(0, σ2) ,Vij ~ N(0, τ2), εih  ~ N(0, ψh
2)

or formalized in one equation 

  

0h 1h 0h 1h ijk ijk ij

22 2
ijk ij

( | , , , , , , , , ) + z + + +

   ~N(0, ), ~ (0, ), ~N(0,1), and ~ (0, )
ijkh h ijk ij ih ijk i h i h i ih

i ih h

Logit y z X X

where N N

β β λ γ µ υ ε β β µ υ λ γ λ α ε

µ σ υ τ α ε ψ

= + +
  

There are a total of 20 unknown parameters in this model for 4 outpatient measures, 

including treatment effect γ(γ1, γ2), measurement specific intercept (β0h), measurement- specific 

factor loading (λh), measurement- specific covariate effect (β1h) ,   and the variance σ2 of the 

patient -level random error term(µijk), the variance τ2of the provider-level random error term(vij) 

and the variance ψh
2  of the measurement- specific site-level random error terms (ε ih). A path 

diagram of this model is given in Figure 3-1.  

(3.6) 
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λ1 λ2 λ3 λ4 

Xi (intervention) 
 

γ 

 θi 
 

Yijk1 Yijk2 Yijk3 Yijk4 

ψ1 
 

ψ2 
 

ψ3 ψ4 
 

ηi1 
 

ηi2 
 

ηi3 
 

ηi4 
 

Outcome:Yijkh 
  i: Site  
  j: Provider  
  k: Patient  
  h: Measurements  

µijk Vij 
 

σ2(patient) τ2(provider) 

Site-level random 
effect by measures 

β0h+β1h  Zijk(high-risk)      +   + 

Patient-level 
outcomes 

Site-level latent trait  
 

Site-level intervention effect 
Variance=1 

Between-site 
model 

Within-site 
model 

  Note: The circles represent the latent variable, ellipses represent random effects, rectangles represent the 
 observed data, free-standing letters represent parameters, and the arrows represent linear/non linear 
  relations 

Figure 3-1 Path diagram of one latent trait model with four outcomes 
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3.1.2 Model estimation 

We used a fully parametric Bayesian approach for model estimation. Bayesian estimation of the 

model parameters requires the specification of a prior distribution for each unknown parameter. 

In this study, a noninformative but proper prior distribution is used. We assume that the fixed 

effects ({β0h}, {β1h} and {γ}) are independent and normally distributed with mean zero and a 

huge variance 104
 (N (0, 104). The prior distributions for factor loadings {λh} also were chosen 

to be N (0, 104

2 -1p( )σ σ∝

), but truncated below 0 for model identification. For the variance parameters, we 

follow the recommendation of Andrew Gelman (2006) to use a noninformative uniform prior 

density on standard deviation parameters unless a weakly informative prior is desired. The 

uniform density on σ is equivalent to , an inverse χ2 distribution with -1 degree of 

freedom. We used Uniform (0,100) as prior for the standard deviation of σ, τ, and {ψh}  to 

account for clustering at the patient, provider and site levels. The inverse-gamma (ε,ε) family of 

noninformative prior distributions is not recommended here, because when σ is estimated to be 

near zero the resulting inference will be sensitive to ε. The setting of near-zero variance 

parameters is important, partly because this is where the classical and Bayesian inference for 

hierarchical models will differ the most. To identify parameters, we fix the scale of the latent 

variable by setting the variance of the prior distribution for θi

Bayesian estimates of latent variable models can be obtained using MCMC techniques, 

including Gibbs sampler (Geman and Geman, 1984) and the Metropolis Hasting (MH) algorithm 

(Metropolis et al., 1953; Hasting, 1970). The strategy is to treat latent quantities

 equal to 1.  

( )Ω , including 

the latent trait and random effects, as hypothetical missing data; due to the nature of MCMC, it is 

not necessary to integrate out the latent quantities to make inference about the parameters. The 
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latent quantities are updated, along with other parameters from their posterior distributions 

( , | )P yθ Ω by drawing observations iteratively from their full conditional densities ( | , )p yθ Ω  

and ( | , )p yθΩ . For the proposed model specified by equations (3.1-3.6), the augmented 

complete data likelihood function takes the form: 

32 4

0 1 0h 1h
1 1 1 1

4

0h 1h ijk ij
1 1 1

( , | , , , , , , , , ) ( , , , , | , , , , , , , )

 = ( | , , , , , , ) ( ;0, ) ( ;0, )

ij ijk

ij ijk

n n

ijkh i ijk ij ih h ijk i
i j k h

n n

ijkh i ijk ij ih
j k h

f Y Z X f y z X

f y

β β λ γ σ τ ψ θ µ υ ε β β λ σ τ ψ

β β λ θ µ υ ε φ µ σ φ υ τ

= = = =

= = =

Ω =

   
        
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2
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i j k j

X r
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y
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∏∏
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Given the augmented complete data likelihood in (3.7) and priors specified as above, the joint 

posterior of latent quantities and all unknown parameters can be expressed as 

0 1

0h 1h 0 1

4

0h 1h ijk ij
1 1 1

( , , , , , , , , , , | , , )

  { ( , , , , | , , , , , )} ( , , , , , , )

   = { ( | , , , , , , ) ( ;0, ) ( ;0, )
ij ijk

i ijk ij ih

ijkh i ijk ij ih h

n n

ijkh i ijk ij ih
j k h

f Y X Z

f y f

f y

β β λ γ σ τ ψ θ µ υ ε

θ µ υ ε β β λ σ τ ψ β β λ γ σ τ ψ

β β λ θ µ υ ε φ µ σ φ υ τ
= = =

∝

  
     

∏

∏ ∏ ∏
32 4

ih
1 1

0 1

( ; ' ,1) ( ;0, ) }

      ( , , , , , , )

i i h
i h

X r

f

φ θ φ ε ψ

β β λ γ σ τ ψ
= =

 
  
 

×

∏ ∏

  

The parameters are sampled using the augmented data. The full conditional distributions 

needed to implement the MCMC algorithms are summarized below: 

(1) Sample iθ using the Metropolis algorithm from the full conditional distribution:    

(3.7) 

(3.8) 
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(2) Sample random effects of ijkµ , ijυ , ihε using rejection sampling (Zeger and Karim 

1991)  

(3) Sample variance of random effects using inverse gamma distribution 

      
2

2 0.010.01( | .) ( , )
2 2

ijkIf IG
µ

σ
 ++

∝   
 

∑ , similarly for 2τ and 2
hψ  

 (4) Sample 0 1( , , )h h h hβ β β γ  using the metropolis algorithm from the full conditional 

distribution: 
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(5) Sample γ  using the full conditional distribution: 

       1 1( | .) (( ` ) ` ), ( ` ) )p N X X X X Xγ θ− −∝  

The Gibbs sampler algorithm proceeds by sampling latent quantities and parameters from 

(1) to (5), respectively. The simulation of observations from the standard distributions involved 

in equations for steps 3 and 5 is straightforward. The MH algorithm could be used to simulate 

observations from the remaining complex distributions. Repeat Steps (1)-(5) until convergence 

and collect a large number of additional draws from which to calculate posterior summaries.  

 The generic Bayesian Package WinBUGS1.4 (Spiegelhalter, Thomas, Best and Lunn, 

2003) was used to perform MCMC simulations of the posterior distribution. For our model, we 

used double chains with two sets of varied initial values. In one set we specify 0 as initial values 
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for the fixed effects ({β0h}, {β1h), {γ} and {λh})   and 1 as the initial value for the standard 

deviation parameters (σ, τ, and {ψh}). 

 The Bayesian estimates of posterior mean, standard deviation, median and 95% 

credible intervals were summarized for the final model. To visualize the association between 

each outcome and the latent trait (θ

In another set of initial values, we changed the setting for 

the fixed effects by using the estimates from the preliminary analysis of aggregated site-level 

data. The convergence of the MCMC sampler was assessed by examining trace plots.  

i

ijkhY

), we plot the estimated probability of receiving a process of 

care ( ) as a function of the latent trait ( iθ ).The parameters characterizing these curves, 

0hβ quantify the intercepts, and λ  h

                                           

 quantifies the steepness of the curve.   

0h
ijkh

0h

exp( )Pr (Y =1)=  
1 exp( )

h i

h i

β λ θ
β λ θ
+

+ +
 

We also estimated the relative contribution of the common variance to total variance of 

each outcome as 2 2 2/( )h h hλ λ ψ+ , where hλ  is the outcome-specific factor loading, and 2
hψ  is the 

site-level outcome specific variance. Pairwise Spearman correlation coefficients for the site-level 

proportion of each individual outcome, the site-level average proportions of the 4 outcomes 

(AVG), and the estimated latent scores ( iθ ) summarize the relationship between observed 

outcomes and the estimated latent scores. Scatter plots of the latent scores vs. site-level average 

outcomes are graphed by intervention arm. 

3.1.3 Model comparison and fit 

We fit other reduced models: one imposing the constraint that the variability in the latent trait 

(θi) across sites is not related to the intervention, but represented by a random component such 

(3.9) 
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that θi ~ N (0, 1); and another model constraints that β1

D pD+

=0, because the poor correlation between 

oxygen assessment (outcome 1) and other outcomes suggests this outcome might measure a 

different underlying construct. The deviance information criterion (DIC) (Spiegelhalter et al., 

2002) was computed as an overall measure of model fit to compare models, with smaller DIC 

being better. The DIC is computed as , where D  
is the posterior mean of the deviance 

and pD is a complexity term that estimates the effective number of parameters in complex 

hierarchical models, computed as the difference between D and the deviance evaluated at the 

posterior mean of the model parameters.  

But does the model fit the data? Global goodness of fit of the final models was assessed 

using posterior predictive checks (Gelman et al., 1995, Loannis 2009) comparing the observed 

data with data replicated under the model. Let 1( ,..., )
h

rep rep rep
h h k hy y y=  represent the vector of the 

replicated data for the hth outcome. The distribution of yh
rep

1( | ( ,..., )) ( | ) ( | )
h

rep rep
h h k h h hp y y y p y w p w y d w= ∫

 given the observed data is 

                                                                     
 

where w is the vector of the model parameters in (3.6). Sampling from (3.10), we 

replicated 2000 data sets given the model in (3.6). We calculated the empirical distribution for 

several summary statistics ( )v hT y for each replicated data set rep
hy , and compared them with the 

statistics in the observed data set. ( )v hT y was chosen here as the proportion of patients receiving 

a recommended process of care by intervention group. The choice of this summary statistic was 

motivated by the main study interest of evaluating an intervention effect. We report Bayes p-

values, estimated using tail area probabilities, by the proportion of times the statistics in the 

replicated data were more extreme than the observed one, i.e., Bayes p-values= 

Pr( ( ) ( ) | )rep
v h v hT y T y w≥ .  Bayes p-values were computed for each ( )rep

v hT y  across intervention 

(3.10) 
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groups. P-values that are close to 0 or 1 are indicative of poor model fit. Values around 0.5 

indicate that the distributions of the replicated data and the observed data are close. 

3.2 EXTENSION TO THE TWO-LATENT TRAIT MODEL 

EDCAP outpatient data and inpatient data with eight outcomes were used to illustrate the 

proposed method. Because of the structural relationships (structural missing) among outcomes at 

patient level (e.g., outcomes of outpatient care are measured only on patients who were assigned 

to outpatient care, and outcomes of inpatient care are collected only for inpatients), let 

Yijkh,out=(yijk1, yijk2, yijk3, yijk4) denote a vector of outpatient outcomes, and Yijkh,in =(yijk5, yijk6, 

yijk7, yijk8

Instead of modeling outpatient outcomes and inpatient outcomes by two separate one 

latent variable models, here we model all the comes in one model framework using two latent 

trait model, with one trait representing quality of outpatient care and the other one representing 

quality of inpatient care. Assuming the eight measures all were used in the full model, the 

covariance structure of the two traits can be assessed. 

) denote a vector of inpatient outcomes.  Please note that each patient has only four 

outcomes either from outpatient care or inpatient care, due to the structural missing. 

Within-site Model. Model specification is same as (3.1), but with separate equations for 

outpatient care and inpatient care due to the structural missing of outcomes at the patient level. 

Let , ,,i out i inθ θ  denote the outpatient and inpatient traits, respectively. Based on the results from 

the one latent trait models, different patient level random effects and the same provider effect 

were specified for the following two equations. The same provider could be admitting some 

patients and treating others as outpatients. 
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, 0h 1h , 0h 1h ijk ijk,out ij( | , , , , , ) + z + +ijkh out ijk out ij ih ijk ihLogit y zβ β µ υ η β β µ υ η= +                

, 0h 1h , 0h 1h ijk ijk,in ij( | , , , , , ) + z + +ijkh in ijk in ij ih ijk ihLogit y zβ β µ υ η β β µ υ η= +  

We combine the two equations in (3.11) using an indicator variable of outp with 1 

indicating that the patient was assigned to outpatient care and 0 indicating that the patient was 

assigned to inpatient care. 

             0h 1h , ,

outp 1-outp
0h 1h ijk , , ij

( | , , , , , , )

                 + z +( ) ( ) +
ijkh ijk out ijk in ij ih ijk

ijk out ijk in ih

Logit y zβ β µ µ υ η

β β µ µ υ η= +
 

In (3.12), 2
ijk,out ~N(0, )outµ σ  and 2

ijk,in ~N(0, )inµ σ  denote outpatient and inpatient patient-level 

random effects respectively, 2
ij ~ (0, )Nυ τ is the provider-level random effect, and εih ~ (0, ψh

2) 

is site-level outcome-specific random effect. The site-level random effect (ηih ) 

Between-Site Model (for extension to two latent traits). Assume there are M traits, here 

M=2 here. We relate the 8 site-level random effects to a vector (L=2) of latent variables, θ

is specified in 

between-site model as follows: 

i = 

(θ1i, θ2i

2 2
1 1 2 2| , , ~ ( , )ih i h h h hi iNη θ λ λ θ λ θΨ + Ψ

).  

 

Where 1 2  i iandθ θ  denote the outpatient trait and inpatient trait for site i, respectively. 

Here, λ  is a 2 X 8 vector of discriminating parameters that account for the correlation 

among the eight measures. The 8 measurement-specific random effects at the site level were 

partitioned into two factors, representing the quality of each trait separately, by fixing certain 

elements of λ equal to 0. The model identification is achieved by anchoring, where we scale each 

factor by setting one factor loading to specify the ”scale” of the unknown parameters  

(3.11) 

 

(3.12) 

 

(3.13) 
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As in the one latent trait model, variability in a latent quality (θmi) across sites is assumed 

to have both a systematic component, explained by site-specific covariates (here the randomized 

intervention Xi

1 2( , ) ~ ( ` ,  )i T ii i N X Rθ θ θ= Σ

: low, moderate, high intensity intervention), and a random component such that  

 

Where 1, 2,

1, 2,

 
  

out out

in in

r r
R

r r
 

=  
 

 is a 2 X 2 vector representing outpatient and inpatient intervention 

effects of moderate intensity vs. low-intensity, and high-intensity vs. low-intensity interventions, 

respectively. 11 12

21 22

 
 

φ φ
φ φ
 

Σ =  
 

 denotes a covariance matrix of the two latent variables.  

Formulating the model in equation (3.15) in matrix form, parameters with asterisks are 

parameters that are fixed at the preassigned values. 
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The augmented complete data likelihood function takes the form: 

0 1

32
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A path diagram is shown in Figure 3-2 for eight outcomes with two latent traits, and four 

outcomes for each trait. 

A Wishart (R, r) prior was specified for the covariance matrix Ω. To represent a non-

informative prior, we chose a large number of degrees of freedom (r=8). The scale matrix was 

specified as 
1 0
0 1

R  
=  
 

(Lee and Song 2003). The priors for other parameters were specified as in 

section 3.1.2. 

(3.16) 
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j:Provider  
k: patient  
h: measure  

µijk vij 
 

σ2 (patient) τ2 (provider) 

Site-level random 
effects   

 

β0h+β1h  Zijk(high-risk) 

 

      +   + 

Patient-level 
outcomes 

 

Site-level latent traits  
 

Site-level intervention effects 
 

Note: The circles represent latent variables, ellipses represent random effects, rectangles represent the 
observed data, free-standing letters represent parameters, and arrows represent linear/non linear relations 

Yijk1 Yijk2 Yijk3 Yijk4 

λ11    1 λ13 λ14 

Xi (intervention) 
 

 γ1 

θ1i 
 

 

 

 

 

 

 

 

 

ηi1 
 

ηi2 
 

ηi3 
 

ηi4 
 

Yijk5 Yijk6 Yijk7 Yijk8 

λ25    1 λ27 λ28 

γ2 

θ2i 
 

 

 

 

 

 

 

 

 

ηi5 
 

ηi6 
 

ηi7 
 

ηi8 
 

  ζ1 
 

  ζ2 
 

ψ21 

Between- 
site 

model 

Within- 
site  

model 

Figure 3-2 Path diagram of two latent trait model with eight outcomes, and four outcomes for each trait 
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4.0  ONE-LATENT TRAIT MODEL FOR MULTIPLE BINARY OUTCOMES IN A 

CLUSTER RANDOMIZED CLINICAL TRIAL 

4.1 ABSTRACT 

In clinical trials, multiple endpoints for treatment efficacy often are obtained, and in addition, 

data may be collected hierarchically. Statistical analyses become very challenging for such 

multidimensional hierarchical data, particularly with data collected at more than two levels. We 

propose a latent variable approach to construct an underlying latent trait from the multiple binary 

outcomes for a three-level model with multiple outcomes at the patient-level and clustering at the 

provider and site levels, and assess an intervention effect on the latent trait directly.  Random 

effects model the hierarchical structure, and the parameters are estimated using a fully Bayesian 

approach. We illustrate the proposed approach in a cluster randomized clinical trial with four 

binary outcomes. Simulation studies are conducted to check the algorithm and computational 

implementation. This latent variable modeling approach incorporates the correlation structure 

into a single latent outcome, and simultaneously regresses the latent outcome on observed 

covariates. It provides a comprehensive alternative to individual outcomes analysis of 

multivariate and hierarchical data versus traditional individual outcome analysis, and leads to an 

intuitively appealing and useful interpretation of complex data.   

Key Words: Latent variable models, hierarchical models, Bayesian approach  
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4.2 INTRODUCTION 

In clinical trials, multiple endpoints for treatment efficacy often are obtained (Pocock, Geller, 

and Tsiatis, 1987). The primary objective of analyses of this kind may not be to identify which 

particular outcomes differ by groups, but rather to use all the data at hand to establish whether 

there is a difference between the groups. Several statistical issues arise in evaluating a treatment 

effect from this type of data. Multidimensionality is a major issue, because several response 

variables measure slightly different aspects of the effect of interest, and no single response 

variable suffices as the main outcome variable. Methods that collectively consider all of the 

response variables are desirable (Gray and Brookmeyer, 1998). When data are collected 

hierarchically, the outcomes are both multidimensional and hierarchical. These methods also 

must account for the autocorrelation between observations within the same cluster and the cross-

correlation between different response variables both across and within clusters. Frequently, 

there is a need to summarize all of the multidimensional outcomes into a unidimensional 

composite score, such as an overall measure of quality of care in health care research (Teixeira-

Pinto and Normand 2008).  

Commonly used approaches include individual outcome data analysis, dimension 

reduction, and global test procedures. Each of these approaches fails to characterize relationships 

between outcomes or summarize those variables. Individual outcome data analysis (i.e., analyze 

each  outcome separately and present multiple P-values) is simple and easy to implement, but 

fails to provide an overall estimate of the treatment effect, increases the overall Type I error rate, 

and does not borrow strength across the response variables. Dimension reduction approaches, 

such as calculating a summary score for several continuous variables, collapsing multiple binary 

outcomes into a single binary outcome, or constructing a complex function of the individual 
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response variables such as principal components (Morrison, 1976), may result in biased 

estimates and a loss of information. Furthermore, data reduction may lead to uninterpretable 

results, and uncertainty in the aggregated scores is difficult to quantify (Gray and Brookmeyer, 

1998). Global testing procedures for multiple outcomes described by O’Brien (1984), Pocock 

(1987) and Legler (1995) among others, including generalized estimating equation (GEE) based 

score tests for general M-group comparisons, could be used to assess whether groups differ with 

respect to multiple outcomes.  However such methods do not characterize the relationships 

between outcomes (Sammel, Ryan and Legler 1997).  

Latent variable models (i.e., models that include the random unobserved variables) 

provide a natural way to analyze such complex multivariate data. (Skrondal and Rabe-Hesketh 

2004). The model framework incorporates the correlation structure into a single latent outcome, 

which is a weighted combination of the observable outcomes, and simultaneously regresses the 

latent outcome on observed covariates. One advantage of the latent variable model is that a one 

degree-of-freedom likelihood ratio test of the overall covariate effect could be more powerful 

than a M degree-of-freedom test (Sammel 1999). Another advantage is that a summary latent 

score for each individual is estimated as a by-product, such as computing an individual severity 

score in birth defect study (Legler and Ryan, 1997).    These models have been employed 

extensively in psychological and educational testing (Baker 1992) and the social sciences (Eye 

and Clogg, 1994). In recent years, use of latent variable models has been increasing in medical 

and public health research (Legler and Ryan, 1997; Sammel, Ryan, and Legler, 1997; Teixeira-

Pinto and Normand, 2008). However, latent variable models seldom have been used to test 

hypotheses about clinical outcomes in clinical trials and other designed studies (Donaldson 

2003). 
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Most of the literature on latent variable models is frequentist in nature, based on 

maximum likelihood estimation. Computation is intensive and difficult, because in general no 

closed form exists for the multi-dimensional integrals. Compared to maximum likelihood 

methods, Bayesian alternatives using Markov Chain Monte Carlo (MCMC) are becoming more 

popular and attractive because of their flexibility (Lee and Song 2004, Lee and Song 2003, 

Dunson et al. 2003). MCMC incorporates prior information and, under specification of a flat 

(non-informative) prior, provides estimates similar to those obtained by maximum likelihood as 

well as interval estimates that can be obtained directly from the posterior samples. The 

difficulties induced by the complexities of the multi-dimensional integrals can be handled 

efficiently by powerful computing tools, such as the Gibbs sampler. Samples available from the 

joint posterior distribution of the latent variables can be used flexibly to identify outlying 

subjects and to obtain important insights into structural relationships (Sik-Yum Lee 2007).  

In this paper, we outline a general latent variable model for multiple binary outcomes 

from a 3-level cluster-randomized clinical trial using a fully Bayesian approach, to evaluate an 

overall intervention effect with multivariate outcomes at the patient level. In Section 4.3, we 

present the motivating example of the EDCAP trial (Yealy et al., 2004). In Section 4.4, we 

describe a Bayesian formulation of the proposed model and the implementation in WinBUGS 1.4 

(Windows version of Bayesian inference Using Gibbs Sampling, Gilks 1994) to estimate the 

parameters. In Section 4.5, we illustrate the proposed methodology using the EDCAP data.  We 

check the algorithm and our computational implementation with simulations in Section 4.6, and 

conclude with a discussion in section 4.7.  
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4.3  MOTIVATING EXAMPLE: THE EDCAP STUDY 

The cluster-randomized EDCAP study was designed to compare the effectiveness and safety of 

three guideline implementation strategies of increasing intensity (low-intensity, moderate-

intensity, and high-intensity) on quality of care of CAP in EDs (Yealy et al., 2004). The low-

intensity implementation arm reflected the quality improvement methods typically used by the 

collaborating state quality improvement (QI) organizations, which served as a usual care control. 

The moderate intensity arm also conducted an on-site educational session for ED medical 

providers and requested a QI plan for the admission decision. The high-intensity intervention 

also conducted a multifaceted set of provider behavior change techniques (i.e. reminder form, 

feedback, and bimonthly plan-do-study-act cycles) that continued through the year-long 

guideline implementation period. The intervention was randomized at the site (ED) level. This 

study has a 3-level hierarchical data structure, in which multiple outcomes are nested within 

patients, patients are nested within providers, and providers are nested within clinical sites.   

For patients assigned to outpatient care, the study practice guideline recommended four 

processes of outpatient care in the ED:  oxygen assessment, first dose of antibiotics in ED, 

treatment with compliant antibiotics in the ED, and compliant antibiotic therapy upon discharge. 

The 1125 patients assigned to outpatient care were seen by 310 providers at 32 clinical sites. 

Each patient had four binary outcomes, with 1 indicating that the patient received the 

recommended process of care, 0 otherwise. Scatter plots of the site-level average outcomes 

(proportions of outpatients receiving recommended processes of care) by intervention arm are 

shown in Figure 4-1. In general, sites with higher intensity interventions had higher proportions 

of patients receiving the recommended processes of care. Oxygen assessment had a ceiling 
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effect, with little variability across sites. Site-level descriptive statistics are summarized in Table 

4-1. 
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Figure 4-1  Site-level average outcomes (i.e., proportions of outpatients receiving each recommended process of 

care) by intervention arm 

 

Table 4-1 Site-level averaged proportions of patients receiving each recommended process of care 

Variable 

Low 
intensity 

intervention 
% 

N=174 

Moderate 
intensity 

intervention 
% 

N=498 

High 
intensity 

intervention 
% 

N=453 

Oxygen assessment 95.7 ( 4.1) 94.6 ( 7.5) 96.9 ( 3.4) 

First dose antibiotics in ED 64.8 ( 9.4) 70.8 (18.2) 90.6 ( 5.7) 

Compliant ED antibiotics 29.0 (13.4) 35.4 (23.1) 63.7 ( 5.4) 

Complaint discharge antibiotics 79.1 ( 8.9) 90.0 ( 5.0) 89.4 ( 8.1) 
 

Estimated intervention effects from an individual outcome analysis are summarized in 

Table 4-2. We ran separate random effect logistic regression models to estimate the log odds of a 

patient receiving each recommended process of care as a function of intervention arm, adjusting 

for patient risk status (low risk vs. high risk) and accounting for clustering at both the provider 

level and the site level.  Models were fit using GLAMM in Stata 10. In total, 12 pairwise 

Oxygen assessment                             First dose of antibiotics in 
ED      

Treatment with compliant 
antibiotics therapy in ED 

Compliant antibiotic 
therapy on discharge 
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comparisons were conducted for the 4 individual outcomes across 3 intervention arms. Type I 

error is increased with all of these univariate analyses. Only the intervention effects of the first 

dose of antibiotics and compliant antibiotic therapy in the ED reached statistical significance 

once the multiple testing was taken into account using a Bonferroni correction (Miller, 1981). 

Most importantly, an overall intervention effect cannot be estimated. 

Table 4-2 Estimated intervention effects from univariate random effect logistic regression models 

Variable 

Moderate vs. low 

intensity intervention 

Log OR (95% CI) 

High vs. low 
intensity intervention 

Log OR (95% CI) 

High vs. moderate 

intensity intervention 

Log OR (95% CI) 

Overall 

P value 

 

Oxygen assessment 0.10 (-1.09, 1.29) 0.40  (-0.82, .63) 0.30  (-0.73, 1.34) 0.78 

First dose antibiotic in ED 0.26  (-0.50, 1.01) 1.90 (1.08, 2.72) 1.65  (0.92, 2.37) <0.001 

Compliant ED antibiotic 0.19 (-0.66, 1.04) 1.78 (0.93, 2.64) 1.59 (0.86, 2.33) <0.001 

Complaint discharge antibiotic 0.77 (0.08, 1.47) 0.99 (0.28, 1.70) 0.22  (-0.41, 0.85) 0.02 

4.4  LATENT VARIABLE MODEL 

We describe our method in the context of EDCAP example. Let Yijkh (1 = received 

recommended procedure; 0 = not) be the dichotomous outcome of the hth response (h=1,2,3,4, 

where the four responses are ordered as: oxygenation, timely antibiotic, compliant ED antibiotic, 

compliant discharge antibiotic) of the kth (k=1,2,…nij) patient treated by provider j (j=1,2,…ni) 

in the ith (i=1,2…32) site (ED), Xi{(xi1, x i2) (0,0)=low intensity, (1,0)=moderate intensity, 

(1,1)=high intensity)} denote the site-level intervention arms, and Zijk (0=low risk, 1=high risk) 

be the covariate of patient-level risk status. The proposed latent approach is a comprehensive, 

simultaneous model. We formalize the likelihood function by writing the within-site and 

between-site models sequentially, with the within-site model linking the outcomes to  patient risk 

status and various random effects, and the between-site model linking the site-level random 



 

44 

effect to the latent variable, with the latent mean modeled as a function of the intervention. In 

this example, the underlying site-level latent variable can be considered as a hypothetical 

construct of “quality of outpatient pneumonia care in ED”. 

4.4.1  Model specification 

Within-Site Model. Each outcome is assumed to follow a binomial distribution and is linked by 

logit link to the patient-level covariates, a patient-level random effect, a provider-level random 

effect, and a site-level outcome-specific random effect: 

0h 1h 0h 1h ijk ijk ij( | , , , , , ) + z + + +ijkh ijk ij ih ijk ihLogit y zβ β µ υ η β β µ υ η=            

In (4.1), β0h  denotes a baseline for each outcome, indicating performance of the  hth  

process of  care at an average site with the low-intensity intervention for low risk patients, and 

β1h denote a fixed outcome-specific regression coefficients for a patient-level covariate, risk 

status (Zijk

2
ijk ~N(0, )µ σ

). We model the correlation between the four outcomes with a patient-level random 

effect , and the correlation between patients within providers with a provider-level 

random effect 2
ij ~ (0, )Nυ τ . The ηih denote outcome-specific site level random effects for 

outcome h at site i, permit heterogeneity across the sites, and allow for correlation between 

patients within a site. The random effects µijk, νij, and η ih are assumed 

Between-Site Model. To model the correlation between the multivariate outcomes at the 

site-level, we relate the site-level random effects to one latent variable θ

to be mutually 

independent. 

i, such that the four site-

level effects are conditionally independent given the latent variable θi. 

(4.1) 

 



 

45 

                               
2

2

,  where ~ (0, )

. . ~ ( , )
ih h i ih ih h

ih h i h

N

i e N

η λ θ ε ε ψ

η λ θ ψ

= +
 

Here θi serves as a composite profile of outpatient care rendered by site i, with larger 

values denoting better quality of care. In (4.2), λh is fixed outcome-specific discrimination 

parameter (weight), which quantifies the weight of each outcome on the latent variables and 

indicates the ability of each outcome to discriminate between sites.  Larger values for λh 

correspond to outcomes that better discriminate the underlying quality of care between sites. The 

sign of λh is not identifiable, so the constraint that λh >0 is added to the model.  The ε ih ~ (0, 

ψh
2

In this hierarchical model, variability in latent quality (θ

) denote site level random error terms for outcome h, and quantify the degree of 

heterogeneity across sites. 

i) across sites is assumed to have 

both a systematic component, explained by the site-level interventions (Xi

                                    

), and a random 

component such that  

 where ~ (0,1)
. . ~ ( ,1)
i i i i

i i

X N
i e N X
θ γ α α

θ γ
= +

 

Where ai~ N(0,1) 


iθ

 is i.i.d error term. The prior variance of the latent quality trait is set to 1, to fix 

the scale of the latent variable for identifiability of the model (Skrondal & Rabe-Hesketh 2004). 

Estimates of the latent score ( ) are given by the posterior mean of θ i, where low values for the 

latent score indicate poor quality of care. In (4.3), γ (γ1 , γ2 ) is the vector of fixed treatment 

effects on latent mean, with γ1 denoting moderate intensity vs. low intensity, and γ2

Equations 4.2 and 4.3 can be combined to formalize the between-site model in one 

equation: 

 denoting 

high intensity vs. low intensity  respectively. 

    (4.2) 

 

 (4.3) 
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2

2 2

+ , where ~ (0,1), ~ (0, )

. . ~ ( , )
ih h i h i ih i ih h

ih i h h

X N N

i e N X

η λ γ λ α ε α ε ψ

η γ λ ψ

= +

+
 

Combining equations 4.1 and 4.4, the full model can be expanded as: 

0h 1h 0h 1h ijk ijk ij( | , , , , , , , ) + z + + +ijkh h i ijk ij ih ijk h i ihLogit y zβ β λ θ µ υ ε β β µ υ λ θ ε= +  

In matrix form 

[ ]

1 01 111 1

2 02 212 2

13 33 03 3

14 404 44

log ( )
log ( )
log ( )
log ( )

ijk i

ijk i
ijk i ij ijk

ijk i

iijk

it y
it y

Z
it y
it y

β εβ λ
β εβ λ

θ ν µ
β λβ ε
β λβ ε

        
        
        = + + + + +        
        
               

 

                                Wwhere ~ ( ,1)i iN Xθ γ  as specified in equation (3.3).  

The combined equation can be written as: 

       0h 1h 0h 1h ijk ijk ij

22 2
ijk ij

( | , , , , , , , , ) + z + + +

   ~N(0, ), ~ (0, ), ~N(0,1), and ~ (0, )
ijkh h ijk ij ih ijk i h i h i ih

i ih h

Logit y z X X

where N N

β β λ γ µ υ ε β β µ υ λ γ λ α ε

µ σ υ τ α ε ψ

= + +
 

A total of 20 unknown parameters appear in this model for four outcomes from 3-level 

hierarchical data, , including the treatment effect  γ(γ1, γ2), outcome-specific intercept (β0h) , 

outcome-specific factor loading (λh ), outcome-specific covariate effect  (β1h) ,   and the variance 

σ2 of patient-level random error term (µijk), the variance τ2 of provider-level random error term 

(vij) and the outcome- specific variance ψh
2  of site-level random error terms (εih).  To better 

visualize this complicated model, a path diagram is shown in Figure 4-2.  

 
 

  (4.4) 

 

    (4.5) 

 

 (4.6) 
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λ1 λ2 λ3 λ4 

Xi (intervention) 
 

 

 θi 
 

Yijk1 Yijk2 Yijk3 Yijk4 

 
 

 
 

  
 

ηi1 
 

ηi2 
 

ηi3 
 

ηi4 
 

Outcome: yijkh 
  i: Site  
  j: Provider  
  k: Patient  
  h: Measurements  

µijk Vij 
 

σ2(patient) τ2(provider) 

Outpatient care- 
specific site-level 
random effects  

β0h+β1h  Zijk(high-risk)      
+ 

  
+ 

Patient-level 
outcomes 

Site-level latent trait  
 

Site-level intervention effect 
Variance=1 

Between-site 
model 

Within-site 
model 

Note: The circles represent latent variable, ellipses represent random effect, rectangles represent the 
observed data, free-standing letters represent parameters, arrows represent linear/non linear relationships, 
and short arrows pointing at circles or rectangles represent residual variability. 

Figure 4-2 Path diagram of one latent trait model 
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4.4.2    Model estimation 

Bayesian estimation of the model parameters requires the specification of a prior distribution for 

each unknown parameter. For the fixed effects ({β0h}, {β1h} and {γ}), we use diffuse priors, 

independent normal distributions with mean zero and large variance (104), respectively. The 

prior distribution for factor loading {λh} also was chosen to be N (0, 104), but truncated below 0 

for identification. For the variance parameters, we followed the recommendation of Gelman 

(2006) to use a noninformative uniform prior density on standard deviation (SD) parameters in 

hierarchical models. The uniform (0,100) was used as prior for σ, τ, and {ψh}, the SDs of 

random effects at the patient, provider and site level, respectively. We assume that the prior 

distributions of all these parameters are independent, and for each of these parameters, diffuse 

priors lead to equally probable a priori for all possible values and hence proportional to a 

constant (Choi K and Seltzer M, 2010). To identify parameters, we fix the scale of the latent 

variable by setting the variance to 1 for the prior distribution of θi

Bayesian estimates of latent variable models can be obtained using MCMC techniques, 

including Gibbs sampler (Geman and Geman, 1984) and the Metropolis Hasting (MH) algorithm 

(Metropolis et al., 1953; Hasting, 1970). The strategy is to treat latent quantities

. 

( )Ω , including 

the latent trait and random effects, as hypothetical missing data; due to the nature of MCMC, it is 

not necessary to integrate out the latent quantities to make inference about the parameters. The 

latent quantities are updated, along with other parameters from their posterior distributions 

( , | )P yθ Ω by drawing observations iteratively from their full conditional densities ( | , )p yθ Ω  

and ( | , )p yθΩ . For the proposed model, the augmented complete data likelihood function takes 

the form: 
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32 4

0 1 0h 1h
1 1 1 1

4

0h 1h ijk ij
1 1 1

( , | , , , , , , , , ) ( , , , , | , , , , , , , )

    = ( | , , , , , , ) ( ;0, ) ( ;0, )

ij ijk

ij ijk

n n

ijkh i ijk ij ih h ijk i
i j k h

n n
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f y
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The generic Bayesian Package WinBUGS1.4 (Spiegelhalter, Thomas, Best and Lunn, 

2003) was used to perform MCMC simulations of the posterior distribution. For our model, we 

used double chains with two sets of varied initial values. The convergence of the MCMC 

sampler was assessed by examining trace plots.  

We fitted two reduced models: one imposing the constraint that the variability in the 

latent trait (θi) across sites is not related to the intervention, but only represented by a random 

component such that θi ~ N (0, 1); and one imposing the constraints that β1

The Bayesian estimates of the posterior means, standard deviations, medians and 95% 

credible intervals were summarized for the final model. To visualize the association between 

each outcome and the latent trait (θ

=0, because the poor 

correlation of oxygen assessment (outcome 1) with the other outcomes suggests that this outcome 

might measure a different underlying construct. The deviance information criterion (DIC) 

(Spiegelhalter et al., 2002) was computed as an overall measure of model fit in model 

comparison with smaller DIC being better.  

i), we plot the estimated probability of receiving a process of 

 

    (4.7) 
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care ( ijkhY ) as a function of the latent trait ( iθ ). The parameters characterizing these curves, β0h 

quantify the intercepts, and λ  h

                                           

 quantifies the steepness of the curve.   

0h
ijkh

0h

exp( )Pr (Y =1)=  
1 exp( )

h i

h i

β λ θ
β λ θ
+

+ +
 

We also estimated the relative contribution of the common variance to total variance of 

each outcome as 2 2 2/( )h h hλ λ ψ+ , where hλ  is the outcome-specific factor loading, and 2
hψ  is the 

site-level outcome specific variance. Pairwise Spearman correlation coefficients for the site-level 

proportion of each individual outcome, the site-level average proportions of the 4 outcomes, and 

the latent score ( iθ ) summarize the relationship between observed outcomes and the estimated 

latent score. Scatter plots of the latent score vs. site-level average outcomes are graphed by 

intervention arm. 

Global goodness of fit of the final models was assessed using posterior predictive checks 

(Gelman et al., 1995, Loannis 2009), comparing the observed data with data replicated under the 

model. Let 1( ,..., )
h

rep rep rep
h h k hy y y=  represent the vector of the replicated data for the hth outcome. 

The distribution of yh
rep

1( | ( ,..., )) ( | ) ( | )
h

rep rep
h h k h h hp y y y p y w p w y d w= ∫

 given the observed data is 

                                                                     
 

Where w is the vector of the model parameters in (4.6). Sampling from (4.10), we replicated 

2000 data sets given the model in (3.6). We calculated the empirical distribution for several 

summary statistics ( )v hT y for each replicated data set rep
hy , and compared them with the statistics 

in the observed data set. ( )v hT y was chosen here as the proportion of patients receiving a 

recommended process of care by intervention group. The choice of this summary statistic was 

motivated by the main study interest of evaluating intervention effect. We report Bayes p-values, 

(4.9) 

(4.10) 
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estimated using tail area probabilities, by the proportion of times the statistics in the replicated 

data were more extreme than the observed one, i.e. Bayes p-values= Pr( ( ) ( ) | )rep
v h v hT y T y w≥ .  

Bayes p-values were computed for each ( )rep
v hT y  across intervention groups. P-values that are 

close to 0 or 1 are indicative of poor model fit. Values around 0.5 indicate that the distributions 

of the replicated data and the observed data are close. 

4.5 APPLICATION TO THE EDCAP OUTPATIENT DATA 

We applied the proposed approach using outpatient data from the EDCAP trial to assess whether 

site-level quality of outpatient pneumonia care varied systematically by intervention arm. In 

total, 20 parameters are estimated in equation 3.6. Our parameter estimates were based on the 

output of a Gibbs sampler of 7000 iterations after eliminating the first burn-in 3000 iterations 

(double chains). All the results are based on the pooled two chains, that is, a sample size of 

14,000 deviates. The full model with an intervention effect on the latent trait is preferred because 

the full model clearly shows that the latent trait varies systematically by intervention arm, 

although the difference in DIC between the two models was small (model with intervention 

effect: DIC=3211, model without intervention effect: DIC=3215). This is not surprising because 

the two models differ only in the latent structure at the site level, and only 32 sites are available 

to test the model fit. The model with “oxygen assessment” removed from the latent trait had 

slightly higher DIC (3212) than the full model with intervention effect. For comparable 

interpretation of the four outcomes, we choose to maintain oxygen assessment in the final model. 
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Posterior summaries of selected parameters characterizing the hierarchical structure and 

relationships between intervention and outcomes are shown in Table 4-3. The larger the intercept 

(β0h), the higher the proportion of patients received the therapy on average. Oxygen assessment 

has best average performance, and treatment with compliant antibiotic therapy in ED had the 

poorest average performance. Two outcomes of first dose of antibiotics in ED and treatment with 

compliant antibiotic therapy in ED had relatively large values of the discrimination parameter 

(λh

The intervention effect was modeled indirectly on the site-level latent trait (θ

), indicating those two therapies had larger variability across sites and potentially more 

discriminatory power for site performance (and more weight on the latent trait). The data show 

obvious heterogeneity at patient level (σ=1.37), provider level (τ=0.69) and site level (ψ ranges 

from 0.43 to 1.38).  

i

hλ

), which 

could be interpreted as site-level mean quality of ED outpatient pneumonia care. Sites with the 

high intensity intervention had significantly higher mean quality of outpatient care than sites 

with the low or moderate intervention (2.78 with 95% posterior intervals (1.21, 4.7) and 2.42 

with 95% posterior intervals (1.02, 4.1) respectively (Table 4-3). Latent means between 

moderate and low intensity intervention arms did not differ significantly. Furthermore, the factor 

loading parameters  in equation 4.6 also affect the estimation of the direct intervention effect. 

For comparison with the univariate analyses, global measures of the intervention effects in the 

scale of log odds ratio are calculated as iX γ λ (moderate vs. low: 0.18, high vs. low: 1.39 and 

high vs. moderate: 1.21), which differ somewhat from the average intervention effect on the 

individual outcomes in Table 4-2 (0.33, 1.27, 0.94, respectively) due to the different weight on 

each outcome. 
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Table 4-3 Posterior summaries for the latent variable model 

 Parameter Posterior summaries 

 Mean  Median sd 95% CI 

Baseline 

 (intercept) 

β 4.33 01 4.32 0.43 (3.53 , 5.23) 

β 1.09 02 1.08 0.37 (0.42 , 1.79) 

β -1.31 03 -1.32 0.43 (-2.13 , -0.52) 

β 2.57 04 2.58 0.27 (2.03 , 3.08) 

Discrimination 

parameters 

λ 0.20 1 0.16 0.16 (0.01 , 0.59) 

λ 0.79 2 0.76 0.19 (0.47 , 1.2) 

λ 0.87 3 0.85 0.24 (0.48 , 1.41) 

λ 0.25 4 0.23 0.14 (0.03 , 0.56) 

Stand deviation of random effect 

patient-level σ 1.37   1.37 0.12 (1.15 , 1.6) 

provider-level    τ 0.69 0.69 0.14 (0.4 , 0.95) 

Site-level outcome-specific 

ψ 1.38 1 1.33 0.44 (0.68 , 2.39) 

ψ 0.43 2 0.43 0.22 (0.06 , 0.89) 

ψ 0.68 3 0.69 0.25 (0.16 , 1.18) 

ψ 0.70 4 0.69 0.21 (0.32 , 1.14) 

Intervention    effect  

On 

 Latent mean 

γ 0.37 1 0.37 0.58 (-0.77 , 1.48) 

γ 2.78 2 2.72 0.91 (1.21 , 4.7) 

γ2-γ 2.42 1 2.36 0.79 (1.02 , 4.1) 

Global intervention effect on 
outcomes  

(Log odds ratio) 

1γ λ  0.18 0.19 0.30 (-0.41 , 0.75) 

2γ λ  1.39 1.39 0.34 (0.76 , 2.04) 

2 1( )γ γ λ−  1.21 1.20 0.30 (0.64 , 1.82) 

 

Figure 4-3 summarizes the estimated probabilities of receiving a process of care ( ijkhY ) as 

a function of latent trait ( iθ ) (equation 3.8). A steeper slope corresponds to higher ability of an 

outcome to differentiate between sites, and a stronger association with the latent trait. The 

relationship between the latent trait and outpatient performance outcomes are strongest for first 

dose of antibiotics in ED as well as treatment with compliant antibiotic therapy in ED, and 
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weakest for oxygen assessment.  This is not surprising, considering the contribution of the 

common variance to total variance of each outcome. First dose of antibiotics in emergency 

department is the largest contributor with 77% its total variance explained, followed by 

treatment with compliant antibiotic therapy in ED with 62%, compliant antibiotic therapy on 

discharge with 11% and oxygen assessment only 2% of the total variance. 

Table 4-4 displays the pairwise Spearman correlation coefficients between the site-level 

aggregated outcomes and the latent score ( iθ ). Timely first dose in the  

ED and treatment with compliant antibiotic therapy in the ED are highly correlated (r=0.75) with 

both the average score and the latent score (r ≥ 0.90 for each). Oxygen assessment is poorly 

correlated (r < 0.3) with the other variables.  

 

Figure 4-3 Estimated probability of receiving each performance measure as a function of the latent 
score 
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Table 4-4 Pairwise Spearman correlation coefficients for site-level aggregated outcomes and the estimated 
latent score 

Variable (1) (2) (3) (4) AVG LS 

(1) Oxygen assessment 1.00      

(2) First dose antibiotics 0.08 1.00     

(3) Compliant ED antibiotics -0.14 0.77 1.00    

(4) Complaint discharge antibiotics -0.15 0.32 0.44 1.00   

(AVG) Site-level average outcomes 0.05 0.90 0.93 0.52 1.00  

(LS) Latent score 0.06 0.92 0.90 0.37 0.96 1.00 
 

Figure 4-4 displays the scatter plot of latent score vs. site-level average outcomes by 

intervention arm. Higher levels of the intervention generally are associated with higher latent 

scores, except for a few poorly performing sites in the moderate intensity arm and two relatively 

well performing sites in the low intensity arm. 

Latent Score

-2

-1

0

1

2

3

4

Average Score

0.56 0.58 0.60 0.62 0.64 0.66 0.68 0.70 0.72 0.74 0.76 0.78 0.80 0.82 0.84 0.86 0.88 0.90 0.92 0.94

trt low Moderate High  

Figure 4-4 Scatter plot of site-level average outcomes and latent score for outpatient data 

 

Table 4-5 summarizes the posterior predictive checks of the fitted models, using the test 

statistics of site-level average outcomes by intervention arm. The first column T(y) lists the 

computed proportion from the observed data, and the next column T (yrep) shows the mean and 

95% C.I. of the computed proportion from the replicated data. The proposed model estimates 
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well the percentage of patients receiving each therapy by intervention arm. Most Bayesian p-

values are very close to 0.5, and none is close to 1 or 0, indicating no lack of fit of this model. 

Table 4-5 Summary of the posterior predictive checks for site-level aggregated outcomes by 
intervention arm 

Variable Low Intensity 
Intervention 

Moderate intensity 
Intervention 

High Intensity 
Intervention 

 T(y) 
% 

T(yrep

95% int. 
) P 

value 
T(y) 
% 

T(yrep

95% int. 
) P 

value 
T(y) 
% 

T(yrep

95% int. 
) P 

value 

Oxygen assessment 94.8 94.7 

(90.2, 98.3) 

0.56 95.6 95.6 

(93.2, 97.6) 

0.50 96.7 96.7 

(94.3, 98.7) 

0.51 

First dose 
antibiotics 

64.9 65.4 

(57.5, 73.6) 

0.57 70.1 70.0 

(65.5, 74.5) 

0.49 91.0 90.8 

(87.2, 94.0) 

0.47 

Compliant ED 
antibiotics 

29.3 28.8 

(21.3, 36.2) 

0.48 30.7 31 

(26.7, 35.5) 

0.57 65.6 65.5 

(60.3, 70.4) 

0.49 

Complaint 
discharge antibiotics 

80.5 82.8 

(75.9, 88.5) 

0.74 89.2 88.3 

(84.7, 91.8) 

0.32 90.7 90.7 

(87.4, 93.8) 

0.54 

 

4.6  SIMULATION STUDIES 

We conducted Monte Carlo simulation studies to check our algorithm and computational 

implementation of the proposed approach. All computations are performed by iteratively running 

WinBUGS interface inside SAS following the procedure proposed by Zhang (2008). Although 

WinBUGS is a convenient tool for estimating Bayesian models, it is not very flexible for 

simulation studies because it can run only a single model or a single data set at one time. 

However, SAS can be used to iteratively implement the simulation procedure.  

Data were simulated based on the model specified in equation (4.5). The “true” parameter 

values ranged around parameters estimates obtained from the analysis of outpatients data, to 

make the population models more realistic.  The level-1 unit covariate Xijk, is binary with p=0.5, 
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and level-4 unit covariate is a three-level categorical variable with p = (1/3,1/3,1/3).  The true 

values were set as: β0 = (4,1,-1.5,2.5), β1 

2 2 2/( )h h hλ λ ψ+

= (0.5, 0.2, 1.0, 0.2),  σ = 1.0, τ=0.6, ψ= (1.2, 0.5, 0.5, 

0.5), λ = (0.2, 0.6, 0.9, 0.3) and γ = (0.5, 2.5). As calculated by , the fractions of 

level-4 units variance explained by the common variance are 3%, 59%, 76% and 26% for the 

four items respectively, which is similar to the outpatient data. 

Simulation studies with two different sample sizes were considered, to investigate 

whether the sample size affected the parameter estimation. In simulation study 1, we generated 

30 hospitals with a total of 300 providers and 3000 patients. In simulation study 2, we double the 

sample size by generating 60 hospitals with a total of 600 providers and 6000 patients. The 

number of patients per provider varies with an average of 10 patients per provider. For each 

simulation, we generated 200 datasets. The true parameter values were based on parameter 

estimates obtained from the EDCAP data, to make the simulation models relevant to this study.  

With the prior distribution described in section 4.4.2, we first ran a few sets of data and 

found that the generated sequences for all parameters converged within 3000 iterations. 

Although we may use 3000 as the burn-in data, we used a burn-in period of 5000 iterations to 

ensure the convergence for all the other data sets, and then an additional 5000 observations were 

collected to produce the Bayesian estimates and their estimated standard errors.  Based on the 

200 replications, we computed the mean and the SD of the estimates of mean and median, the 

mean of the SD estimate (mean of SD), as well as the bias (which is the difference between the 

true parameter and the mean of the corresponding estimates), and the root mean squares (RMS) 

between the estimates and the true values.  

Table 4-6 summarizes the simulation results:  (i) As expected, increasing the sample size 

improves the accuracy of the estimates. (ii) The Bayesian estimates are reasonably accurate, with 
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bias for almost all parameters being less than 10% in n=3000 and less than 5% in n=6000. The 

exception was λ1, whose bias was 57% in the smaller sample and 25% in the larger sample. This 

is not surprising because only 3% total variance of the first outcome was explained by the latent 

trait. Also for this reason, the bias of the factor loading λ1 did not obviously affect the accuracy 

of the estimates (γ1, γ2 and γ2-γ1

1 1 1 2,   ( )andγ λ γ λ γ γ λ−

) of the intervention on the latent mean and global intervention 

( ). (iii) In most cases, the estimated SEs and SDs are close to each other; 

this indicates that the estimated SEs are consistent with the true SEs. (iv) In most cases, the 

estimates of mean or median are very close, but for the factor loading parameters (λ1, λ2, λ3, λ4) 

and the estimates of level-3 units fixed covariate effects (γ1, γ2 ), estimates of the median are 

closer to the true value with smaller bias in the smaller sample size. 
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Table 4-6 Posterior summaries for the parameters in the one-latent trait model from simulated data 

                                      N=3000                                   N=6000 

Parameter Bias of 
Mean 

SD of 
Mean 

Mean of 
SE 

RMS  Bias  of 
Median 

SD of 
median 

Bias of 
Mean 

SD of 
Mean 

Mean of 
SE 

RMS  Bias  of 
Median 

SD of 
median 

β0,1 -0.012 =4 0.322 0.374 0.321 -0.017 0.316 0.004 0.219 0.252 0.219 0.002 0.217 

β0,2 0.017 =1 0.259 0.265 0.259 0.018 0.26 0.017 0.178 0.18 0.179 0.02 0.178 

β0,3 0.005 =-1.5 0.39 0.358 0.39 0.007 0.393 0.015 0.277 0.241 0.276 0.017 0.279 

β0,4 0.005 =2.5 0.184 0.214 0.184 0.007 0.183 0.01 0.144 0.144 0.145 0.011 0.144 

σ=1.0 0.017 0.071 0.071 0.071 0.017 0.071 0.004 0.048 0.05 0.045 0.004 0.048 

ψ1 0.103 =1.2 0.297 0.301 0.315 0.067 0.287 0.051 0.188 0.19 0.195 0.036 0.186 

ψ2 -0.007 =0.5 0.124 0.159 0.122 -0.007 0.123 -0.012 0.099 0.108 0.1 -0.009 0.096 

ψ3 0.014 =0.5 0.179 0.227 0.179 0.012 0.19 -0.023 0.161 0.173 0.161 -0.017 0.171 

ψ4 0.004 =0.5 0.149 0.147 0.148 -0.004 0.146 0.01 0.093 0.095 0.095 0.006 0.091 

τ=0.6 0.003 0.062 0.058 0.063 0.002 0.062 0.007 0.042 0.04 0.045 0.007 0.042 

λ1 0.114 =0.2 0.169 0.193 0.202 0.083 0.168 0.05 0.111 0.13 0.122 0.037 0.114 

λ2 0.045 =0.6 0.163 0.157 0.167 0.032 0.161 0.02 0.104 0.1 0.105 0.014 0.103 

λ3 0.047 =0.9 0.194 0.21 0.2 0.033 0.191 0.021 0.137 0.136 0.138 0.017 0.136 

λ4 0.04 =0.3 0.125 0.123 0.13 0.029 0.125 0.01 0.083 0.08 0.084 0.006 0.082 

γ1 0.044 =0.5 0.612 0.574 0.612 0.027 0.591 -0.004 0.36 0.372 0.359 -0.008 0.357 

γ2 0.098 =2.5 1.011 0.868 1.014 -0.01 0.786 -0.015 0.537 0.513 0.536 -0.046 0.517 

γ2-γ1 0.055 =2.0 0.901 0.782 0.901 -0.032 0.689 -0.011 0.485 0.477 0.484 -0.034 0.468 

1γ λ =0.25 0.018 0.296 0.291 0.297 0.017 0.294 0.002 0.184 0.19 0.184 0 0.183 

2γ λ =1.25 0.057 0.264 0.312 0.268 0.048 0.263 0.006 0.218 0.209 0.217 0.001 0.218 

2 1( )γ γ λ− =1.0 0.038 0.291 0.312 0.293 0.03 0.29 0.004 0.202 0.206 0.202 0 0.202 



 

60 

4.7  DISCUSSION 

Multiple outcomes arise frequently in many fields of biomedical research. Existing commonly 

used standard software cannot analyze multiple outcomes from hierarchical data with more than 

two levels. We have described a flexible Bayesian latent variable model for the situation where 

several binary outcomes are measured to assess an intervention effect in a cluster-randomized 

clinical trial with 3-level hierarchical data. The difficulties induced by the complexities of the 

model and the multi-dimensional integrals are handled efficiently by the Gibbs sampler (Geman 

and Geman, 1984). Compared to traditional separate outcome analyses, this joint modeling 

approach provides a comprehensive way to analyze multivariate and hierarchical data, and leads 

to an intuitively appealing and useful interpretation of complex data.  In this proposed model 

framework, the intervention effect was assessed as one degree-of-freedom test, taking 

advantages of covariance between outcomes. The parameters of factor loading and outcome-

specific variance can be used to assess the relationship between outcomes, and identify those 

outcomes carry the most information about the latent trait. Another advantage of the latent 

variable model is that it naturally yields a summary measure for each site. As expected, our study 

shows that the latent scores were highly correlated with raw average outcomes (AVG, r=0.96). 

As Skrondal and Rabe-Hesketh (2004) pointed out, sometimes an extremely simple approach 

appears to work as well as much more cumbersome methodologies. However, the raw average 

methodology cannot be directly applied to clusters with missing data, and cannot incorporate 

covariance information or relationships between latent variables, in contrast to model based 

approach.  
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Methods proposed here easily should be extendable to any distributions from exponential 

family. For multilevel data, the model could be generalized to allow additional covariates at 

different hierarchical levels. Covariates can be added to the within-site model (4.1), between-site 

model (4.2), or on the latent variable level θ i 

In this paper, it has been assumed that the outcomes are conditionally independent given 

the common latent construct. This bears a close similarity to random-effects models, where, 

given the random effect, outcomes are assumed to be independent. We will consider extending 

the model to relax this local independence assumption and allow conditional dependence 

between outcomes in future work. Another important assumption is that we assume the 

directions of intervention effects are consistent across outcomes when specifying the prior 

distribution for factor loadings {λ

(4.3) as appropriate. For cross-sectional data 

without a hierarchical structure, the model can be framed differently by combining the within 

site and between site models. 

h

 

}, as truncated normal distributions above 0 for model 

identification. This assumption seems reasonable in our EDCAP outpatient data because 

individual outcome analyses showed the positive intervention effects across all outcomes 

regardless of significance (Table 4-2).  While we considered in this paper the situation where the 

multiple outcomes are binary, different outcome types, including both continuous and discrete 

endpoints, can be incorporated into the proposed model framework. Finally, in clinical trials, it 

might be interesting to examine whether interventions influence the degree of heterogeneity 

(variation) across health care providers. The estimated variance components would be of great 

interest, and potentially could be jointly modeled with the regression coefficients.  
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5.0  TWO-LATENT VARIABLE MODELS FOR ESTIMATING AN INTERVENTION 

EFFECT FROM MULTIDIMENSIONAL HIERARCHICAL DATA 

5.1 ABSTRACT  

Multiple outcomes are collected commonly in clinical trials. In this article, we propose fully 

Bayesian latent variable approaches, including one and two latent variable models, to estimate an 

overall intervention effect for the situation where multiple outcomes are obtained from 

hierarchical data. This approach incorporates the correlation structure into one or more latent 

outcomes, and simultaneously regresses the latent outcome(s) on the intervention. Random 

effects are included to model the hierarchical structure. This method is applied to data from a 

cluster-randomized clinical trial with multiple binary outcomes and a 3-level hierarchical 

structure. Not only does the method allow assessment of intervention effects with respect to 

multiple outcomes, but it also assesses the relationship between outcomes, identifies those 

outcomes that carry the most information about the latent trait, and provides a measure of the 

“quality of care” of each clinical site. 

Key Words: hierarchical models, Bayesian approach, multiple latent traits  
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5.2 INTRODUCTION 

Statistical issues that arise when evaluating an intervention effect from multi-center clinical trials 

with multiple endpoints include multidimensionality (because each response variable measures a 

slightly different aspect of the effect of interest), autocorrelation between observations within the 

same site, and cross-correlation between different response variables both across and within 

sites. Often, a unidimensional composite score is of interest, such as an overall measure of 

quality of care in health care research (Teixeira-Pinto and Normand 2008).  

Commonly used approaches such as dimension reduction and global test procedures fail 

to characterize relationships between outcomes or summarize their individual effects. Latent 

variable models (i.e., models that include random unobserved variables) provide a natural way to 

analyze such complex multivariate data when an underlying hypothetical construct is assumed 

(Skrondal and Rabe-Hesketh, 2004). Following the very general model framework of 

generalized linear latent and mixed models (GLLAMMs) (Skrondal & Rabe-Hesketh, 2004 and 

2007), latent variable models can be formalized by writing two submodels: a response model and 

a structural model. The response model specifies the distribution of the observed responses 

conditional on the latent variables and covariates, which extends generalized linear mixed 

models (GLMMs) to incorporate factor structure in addition to random intercepts and 

coefficients; in the structural model, the latent variables themselves may be regressed on other 

latent and observed covariates.  

One advantage of the latent variable model is that a one degree-of-freedom likelihood 

ratio test of the overall covariate effect can be more powerful than a M degree-of-freedom test 

(Sammel, 1999). Another advantage is that a summary latent score for each individual can be 

estimated (Legler and Ryan, 1997).  These latent variable models have been employed 
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extensively in psychological and educational testing (Baker, 1992) and the social sciences (Eye 

and Clogg, 1994), and in recent years, use has been increasing in medical and public health 

research (Legler and Ryan, 1997; Sammel, et al., 1997; Donaldson, 2003; Teixeira-Pinto and 

Normand, 2008). Much of the literature on latent variable models is from a frequentist 

perspective, based on maximum likelihood estimation. Computation is intensive and difficult, 

because in general no closed form exists for the multi-dimensional integrals. Bayesian 

alternatives using Markov Chain Monte Carlo (MCMC) are becoming more popular and 

attractive because of their flexibility (Lee and Song, 2003 and 2004; Dunson et al., 2003). The 

difficulties induced by the complexities of the multi-dimensional integrals can be handled 

efficiently by powerful computing tools, such as the Gibbs sampler (Sik-Yum Lee, 2007).  

In this chapter, we implement Bayesian estimation of multilevel latent variable model to 

asses an overall intervention effect on multiple binary outcomes from a 3-level cluster-

randomized clinical trial. In Section 5.3, we present the motivating example of the Emergency 

Department Community Acquired Pneumonia (EDCAP) study (Yealy et al., 2004), In Section 

5.4, we describe our one- and two-latent trait models for clustered binary outcomes, and 

implement Bayesian estimation in WinBUGS 1.4 (Windows version of Bayesian inference Using 

Gibbs Sampling, Gilks, 1994). We illustrate the proposed methodology using the EDCAP data in 

section 5.5, and conclude with a discussion in section 5.6.  
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5.3  THE EDCAP EXAMPLE 

Data from the cluster-randomized EDCAP trial motivated this proposed method. The EDCAP 

study was designed to compare the effectiveness and safety of three guideline implementation 

strategies of increasing intensity (low-intensity, moderate-intensity, and high-intensity) on 

quality of care of Community Acquired Pneumonia (CAP) in Emergency Departments (EDs) 

(Yealy et al., 2004). The study guideline recommended outpatient care for low risk patients with 

CAP who presented to the ED, and inpatient care for high risk patients. Four processes of care 

were recommended for outpatient care and inpatient care respectively, including oxygen 

assessment, first dose of antibiotics in ED, treatment with compliant antibiotics in the ED, and 

compliant antibiotic therapy upon discharge for outpatients; oxygen assessment, blood cultures 

before antibiotic administration, antibiotic administration within 4 hours and treatment with 

compliant antibiotic therapy in the ED for inpatients. So, there are eight processes of care 

outcomes considered here. 

The EDCAP data have a 3-level hierarchical data structure, in which multiple outcomes 

are nested within patients, patients are nested within providers, and providers are nested within 

clinical sites (EDs).  The three intervention arms were randomized at the site level. The 3201 

patients were seen by 407 providers at 32 clinical sites; 1125 patients were assigned to outpatient 

care and 2076 were assigned to inpatient care.  Each patient had four binary outcomes from 

either inpatient care or outpatient care, with 1 indicating that the patient received the 

recommended process of care, 0 otherwise. Site-level average proportions of patients receiving 

recommended processes of care are summarized in Table 5-1. Scatter plots of the site-level 

average outcomes (proportions of patients receiving recommended processes of care) by 

intervention arm are graphed in Figure 5-1. In general, sites with higher intensity interventions 
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had higher proportions of patients receiving the recommended processes of care, with the 

exceptions of outpatient and inpatient oxygen assessment and antibiotics within in 4 hours for 

inpatients. Oxygen assessment had a ceiling effect, with little variability across sites.  

Table 5-1 Site-level average proportions of patients receiving recommended processes of care 

Processes of care 

Low 
intensity 

intervention 
% 

Moderate 
intensity 

intervention 
% 

High 
intensity 

intervention 
% 

Outpatient processes N=174 N=498 N=453 

Oxygen assessment 95.7 (4.1) 94.6 ( 7.5) 96.9 ( 3.4) 

First dose antibiotics in ED 64.8 ( 9.4) 70.8 (18.2) 90.6 ( 5.7) 

Compliant ED antibiotics 29.0 (13.4) 35.4 (23.1) 63.7 (15.4) 

Complaint discharge antibiotics 79.1 ( 8.9) 90.0 ( 5.0) 89.4 ( 8.1) 

Inpatient processes N=566 N=661 N=849 

Oxygen assessment 97.4 ( 2.9) 99.2 ( 1.4) 97.7 ( 3.2) 

Blood cultures before antibiotics 55.8 (17.6) 58.3 (13.0) 74.0 ( 9.1) 

Antibiotics within 4  h 78.9 (14.6) 80.8 ( 9.2) 77.8 ( 8.2) 

Compliant antibiotics in ED 44.9 (14.2) 59.2 (19.3) 71.2 (14.0) 
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Figure 5-1 Site-level average outcomes (i.e., proportions of patients receiving each recommended 
process of care) by intervention arm 

  
Estimated intervention effects from analyses of individual outcome are summarized in 

Table 5-2. We ran separate random effect logistic regression models to estimate the log odds of a 

patient receiving each recommended process of care as a function of intervention arm, adjusting 

for patient risk status (low risk vs. high risk) and accounting for clustering at both the provider 

level and the site level.  Models were fitted using GLAMM in Stata 10. In total, 24 pairwise 

comparisons were conducted for the 8 individual outcomes across 3 intervention arms. Type I 

error is increased with all of these univariate analyses. Only the intervention effects on outpatient 

outcomes of the first dose of antibiotics and compliant antibiotic therapy in the ED, and inpatient 

outcomes of blood culture before antibiotics and compliant antibiotics in ED reached statistical 

significance once the multiple testing was taken into account using a Bonferroni correction 

Oxygen assessment                             First dose of antibiotics  
in ED      

Treatment with compliant 
antibiotics therapy in ED 

Compliant antibiotic 
therapy on discharge 

Oxygen assessment                             Blood cultures before 
antibiotic administration   

Antibiotic administration 
within 4 h 

Treatment with compliant  
antibiotic therapy in ED 
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(Miller, 1981). An overall intervention effect cannot be estimated from those individual data 

analyses. 

Table 5-2 Estimated intervention effects from univariate random effect logistic regression models 

Variable 

Moderate vs. low 
intensity 
intervention 
Log OR (95% CI) 

High vs. low 
intensity 
intervention 
Log OR (95% CI) 

High vs. moderate 
intensity 
intervention 
Log OR (95% CI)  

Overall  
P value 
 

 Outpatient processes of care     

Oxygen assessment 0.10 (-1.09, 1.29) 0.40  (-0.82, .63) 0.30  (-0.73, 1.34) 0.78 

First dose antibiotics in ED 0.26  (-0.50, 1.01) 1.90 (1.08, 2.72) 1.65  (0.92, 2.37) <0.001 

Compliant ED antibiotics 0.19 (-0.66, 1.04) 1.78 (0.93, 2.64) 1.59 (0.86, 2.33) <0.001 

Complaint discharge antibiotics 0.77 (0.08, 1.47) 0.99 (0.28, 1.70) 0.22  (-0.41, 0.85) 0.02 

Inpatient processes of care     

Oxygen assessment 1.34 (-0.04, 2.73) 2.15 (-0.97, 1.40) -1.13 (-2.43, 0.17) 0.13 

Blood cultures before antibiotics  0.18 (-0.36, 0.72) 0.94 (0.40, 1.48) 0.76 (0.27, 1.25) <0.001 

Antibiotics within 4  h 0.11 (-0.47, 0.68) -0.11 (-0.68, 0.46) -0.22 (-0.73, 0.30) 0.79 

Compliant antibiotics in ED 0.62 (-0.04, 1.29) 1.27 (0.61, 1.93) 0.65 (0.05, 1.24) <0.001 

5.4  LATENT VARIABLE MODELS 

We describe our method in the context of EDCAP example. First we analyze the data separately 

for outpatients and inpatients using one-latent trait models, and then we combine the two sets of 

data in one model framework using a two-latent trait model to assess the relationship between 

the two latent traits. 

Because of the unobserved structural relationships among outcomes at patient level (e.g., 

outcomes of outpatient care are measured only on outpatients and outcomes of inpatient care are 

measured only on inpatients), let Yijkh,out = (yijk1, yijk2, yijk3, yijk4) denote a vector of outpatient 

outcomes  and Yijkh,in = (yijk5, yijk6, yijk7, yijk8) denote a vector of inpatient outcomes.  Each yijkh 

denotes the hth response (ordered as in Table 1) of the kth (k = 1,2,…nij) patient treated by 
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provider j (j = 1,2,…ni) in site i (i = 1,2…32). Let Xi {(xi1, xi2), where (0, 0) = low intensity, (1, 

0) = moderate intensity, (1, 1) = high intensity intervention)} denote the site-level intervention 

arms, and Zijk

5.4.1 One latent trait model 

 (0 = low risk, 1 = high risk) be the covariate denoting patient-level risk status. 

Please note that each patient only has four outcomes from either outpatient care or inpatient care, 

due to the structural missing data. 

The one latent trait model is illustrated using four outcome measures. Because EDCAP is a 

cluster randomized clinical trial and the intervention effect is assessed at site level, in the 

proposed model framework the latent variable is defined at the site level rather than the patient 

level. 

Response Model. The response model regresses the outcomes with a small number of latent 

variables adjusting for covariates and accounting for the clustering. Each outcome is assumed to 

follow a binomial distribution and is linked by logit link to a site-level latent trait, a patient-level 

covariate, a patient-level random effect, a provider-level random effect, and a site-level outcome-

specific random effect: 

0h 1h 0h 1h ijk ij ijk( | , , , , , , ) + z + + +ijkh h i ijk ij ih ijk h i ihLogit y zβ β λ θ µ υ ε β β λ θ ε υ µ= +   

In matrix form 

[ ]

1 01 111 1

2 02 212

3133 03 3

41404 44

log ( )
log ( ) 1
log ( )
log ( )

ijk i

ijk i
ijk i ij ijk

ijk i

iijk

it y
it y

Z
it y
it y

β εβ λ
β εβ

θ ν µ
λββ ε
λββ ε

        
        
        = + + + + +        
        
             

   

(5.1) 
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In (5.1), the β0h denote a baseline for each outcome, indicating performance of the hth 

process of care at an average site with the low-intensity intervention for low risk patients. The 

β1h denote fixed outcome-specific regression coefficients for the patient-level covariate of risk 

status (Zijk h iλ θ). The term  models the correlation between the outcomes at the site-level, such 

that the site-level outcomes are conditionally independent given the latent variable θ i. In this 

example, the underlying site-level latent variable θ i can be considered as a hypothetical construct 

of “quality of outpatient (or inpatient) pneumonia care in ED” rendered by site i, with larger 

values denoting better quality of care, and λh is fixed outcome-specific discrimination parameter 

(weight), which quantifies the weight of each outcome on the latent variables and indicates the 

ability of each outcome to discriminate between sites. Larger values for λh correspond to 

outcomes that better discriminate the underlying quality of care. The model identification is 

achieved by anchoring, where we set λ2

2
ijk ~N(0, )µ σ

=1 to fix the scale of the latent variable. We model the 

correlation between the four outcomes within patient by a patient-level random 

effect , the correlation between patients within providers by a provider-level 

random effect 2
ij ~ (0, )Nυ τ , and a site-level outcome-specific random effect εih ~ (0, ψh

2) that 

permits heterogeneity across sites. The random effects µ ijk, νij, and εih are assumed 

Structural Model. The structural model regresses the latent variables on the observed 

covariate of intervention (X

to be 

mutually independent.  

i), such that variability in latent quality (θi

                                    

) across sites has both a 

systematic component, explained by the site-level interventions, and a random component:  

2

2

 where ~ (0, ),   i.i.d error term

. . ~ ( , )
i i i i

i i

X N an
i e N X
θ γ α α φ

θ γ φ

= +
  (5.2) 
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In (5.2), γ (γ1 , γ2 ) is the vector of fixed treatment effects on the site-level latent trait (θ), 

with γ1 denoting a contrast between the moderate intensity vs. low intensity intervention, and γ2

Combining equations 5.1 and 5.2, the full model can be formulated in one equation:       

 

denoting a contrast between the high intensity vs. low intensity intervention, respectively. 

0h 1h 0h 1h ijk ijk ij

22 2 2
ijk ij

( | , , , , , , , , ) + z + + +

   ~N(0, ), ~ (0, ), ~N(0, ), and ~ (0, )
ijkh h ijk ij ih ijk i h i h i ih

i ih h

Logit y z X X

where N N

β β λ γ µ υ ε β β λ γ λ α µ υ ε

µ σ υ τ α φ ε ψ

= + +
 

 Bayesian estimation of latent variable models treat latent quantities ( )Ω , including the 

latent trait and random effects, as hypothetical missing data. For the proposed model, the 

augmented complete data likelihood function takes the form: 

32 4

0 1 0h 1h
1 1 1 1

4

0h 1h ijk ij
1 1 1

( , | , , , , , , , , ) ( , , , , | , , , , , , , )
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A total of 20 unknown parameters appear in the full model for four outcomes from 3-

level hierarchical data. We also fit reduced models by removing those outcomes that were poorly 

correlated with other measures or affected by intervention in a different manner, to see if model 

fit improved. We fitted a reduced model of outpatient data by imposing λ1=0, since oxygen 

assessment (outcome 1) has a ceiling effect and little variation. We fit a reduced model for 

inpatient data by imposing λ1=0 and λ3=0 for the outcomes of oxygen assessment (due to the 

(5.3) 

 

(5.4) 
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ceiling effect) and antibiotics within 4 hours because it was not affected by the intervention in 

the same manner as the other processes of care for inpatients (See Figure 5-1, Table 5-1, Table 5-

2).   

Path diagrams summarize these full latent trait and reduced models (Figure 5-2).  Here 

circles represent the latent variables, rectangles represent the observed data, free-standing letters 

represent parameters, arrows connecting circles and/or rectangles represent linear/non linear 

relationships, and short arrows pointing at circles or rectangles represent residual variability. 

 

 

λ1 1 λ3 λ4 

Xi (intervention) 

 γ 

 θi 

 

Yijk1 Yijk2 Yijk3 Yijk4 

1 λ1 λ2 

Xi (intervention) 

 γ 

 θi 

 

Yijk1 Yijk2 Yijk3 Yijk4 

1 λ1 

Xi (intervention) 

 γ 

 θi 

 

Yijk1 Yijk2 Yijk3 Yijk4 

A B C 

 

Figure 5-2 Path diagram of one latent trait models. A: full model, B: reduced model for outpatient 
data, C: reduced model for inpatient data 
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5.4.2 Two latent trait model 

Instead of modeling outpatient outcomes and inpatient outcomes by two separate one latent 

variable models, here we model all the outcomes in one model framework using a two latent trait 

model, with one trait representing quality of outpatient care and the other one representing 

quality of inpatient care. The covariance structure of the two traits also can be assessed. 

Response Model. Model specification is same as (3.1), but with separate equations for 

outpatient care and inpatient care (due to the structural missing of outcomes at the patient level). 

Let ,i outθ and ,i inθ denote the outpatient and inpatient latent traits, respectively. Based on the 

preliminary results from the one latent trait models, different patient level random effects and the 

same provider effect were specified for the following two equations. 

, 0h 1h , , 0h 1h ijk , ijk,out ij( | , , , , , , , ) + z + + +ijkh out h i out ijk out ij ih ijk h i out ihLogit y zβ β λ θ µ υ ε β β λ θ µ υ ε= +               

, 0h 1h , , 0h 1h ijk , ijk,in ij( | , , , , , , , ) + z + + +ijkh in h i in ijk in ij ih ijk h i in ihLogit y zβ β λ θ µ υ ε β β λ θ µ υ ε= +  

We combine the two equations in above by defining an indicator variable of outp with 1 

indicating that the patient was assigned to outpatient care and 0 indicating that the patient was 

assigned to inpatient care. 

             0h 1h , , , ,

outp 1-outp outp 1-outp
0h 1h ijk , , , , ij

( | , , , , , , , , , )

                 + z +( ) ( ) +( ) ( ) +
ijkh h i out i in ijk out ijk in ij ih ijk

h i out h i in ijk out ijk in ih

Logit y zβ β λ θ θ µ µ υ ε

β β λ θ λ θ µ µ υ ε= +
 

In (3.5), 2
ijk,out ~N(0, )outµ σ  and 2

ijk,in ~N(0, )inµ σ  denote outpatient and inpatient patient-

level random effects respectively, 2
ij ~ (0, )Nυ τ denotes provider-level random effects, and εih ~ 

(5.5) 

 

(5.6) 
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(0, ψh
2

Structural Model. The outpatient and inpatient latent traits are regressed on the 

intervention separately, and estimates of the intervention effects are allowed to differ across the 

two traits.  

) denotes site-level outcome-specific random effects. The model identification is achieved 

by anchoring, where we fix the scale of each trait by setting one factor loading to 1. 

, ,( , ) ~ ( ` ,  )i i out i in T iN X Rθ θ θ= Σ  

where 1, 2,

1, 2,

 
  

out out

in in

r r
R

r r
 

=  
 

 is a 2 X 2 vector representing outpatient and inpatient 

intervention effects of moderate intensity vs. low-intensity and high-intensity vs. low-intensity 

intervention, respectively, and 11 12

21 22

 
 

φ φ
φ φ
 

Σ =  
 

 denotes a covariance matrix of the two latent 

variables. The augmented complete data likelihood function takes the form: 
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Preliminary results of the one latent trait models showed that the outpatient latent trait 

was constructed mainly by three outcomes (first dose of antibiotics in ED, compliant ED 

antibiotics and complaint discharge antibiotics), and the inpatient latent trait was constructed 

mainly by two outcomes (Blood cultures before antibiotics and Compliant antibiotics in ED). 

These five outcomes are used to fit the two-latent trait model. Though two separate latent traits 

were modeled, this integrated model will allow exploration of the relationship between the two 

latent traits. In the path diagram shown in Figure 5-3, 12φ  denotes the correlation between the 

latent traits for outpatient and inpatient care conditional on intervention effects. 
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Figure 5-3 Path diagram of the two latent traits model 



 

76 

5.4.3 Model estimation 

Bayesian estimation of the model parameters requires the specification of a prior distribution for 

each unknown parameter. For the fixed effects ({β0h}, {β1h}, {γ}) and factor loadings {λh}, we 

use diffuse priors N (0, 104), independent normal distributions with mean zero and large 

variance, respectively. For the variance parameters (σ, τ, {ψh φ} and ), we used uniform (0,100) 

as priors (Gelman 2006). In the two latent traits model, a Wishart (R, r) prior was specified for 

the covariance matrix Ω. To represent non-informative prior, we chose a large degree of freedom 

as r=8. The scale matrix was specified as 
1 0
0 1

R  
=  
 

(Lee and Song 2003). We assume that the 

prior distributions of each these parameters are independent. The generic Bayesian Package 

WinBUGS1.4 (Spiegelhalter, Thomas, Best and Lunn, 2003) was used to simulate the posterior 

distribution using MCMC. For our model, we used double chains with two sets of varied initial 

values. The convergence of the MCMC sampler was assessed by examining trace plots.  The 

deviance information criterion (DIC) (Spiegelhalter et al., 2002) was computed as an overall 

measure of relative model fit to compare full and reduced models, with smaller DIC being better.  

 The Bayesian estimates of posterior means and 95% credible intervals are summarized 

for the final models. Estimates of the site specific latent scores (i.e., value of latent variable at 

each site) are given by the posterior mean of θ i. To visualize the association between each 

outcome and the latent trait ((θi

ijkhY

), we plot the estimated probability of receiving a process of care 

( ) as a function of the latent trait ( iθ ). Of the parameters charactering these curves, β0h 

quantifies the intercept, and λ  h quantifies the steepness of the curve.   
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0h
ijkh

0h

exp( )Pr (Y =1)=  
1 exp( )

h i

h i

β λ θ
β λ θ
+

+ +
 

We also estimated the relative contribution of the common variance to the total variance 

of each outcome as 

                                               
2 2 22 2/( )h h hλ φ λ φ ψ+         

IN (5.10), hλ  is the outcome-specific factor loading, and 2
hψ  is the site-level outcome specific 

variance. Scatter plots of the outpatient latent score vs. inpatient latent score from the two-latent 

trait model are shown by intervention arm. 

5.5 APPLICATION TO THE EDCAP DATA 

We applied the proposed approaches to the EDCAP data, to assess whether site-level quality of 

pneumonia care varied systematically by intervention arm. One latent trait models were fit first 

for outpatient data and inpatient data separately, and then the two latent trait model was fit to 

model inpatient and outpatient care simultaneously. Our parameter estimates were based on the 

output of a Gibbs sampler of 10,000 iterations after eliminating the first burn-in of 10000 

iterations (double chains). All the results are based on the pooled two chains, that is, a sample 

size of 20,000 deviates. 

5.5.1  One latent trait model results 

Compared to the respective full models (Figure 5-2a), both the outpatient reduced model with 

oxygen assessment removed from the latent trait (Figure 5-2b) and inpatient reduced model with 

(5.9) 

(5.10) 
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oxygen assessment and antibiotics within 4 hours (Figure 5-2c) had almost the same DIC 

(Outpatient full model vs. reduced model: 3207, 3208; Inpatient full model vs. reduced model: 

7524, 7523). Given the tiny differences in DIC values between the full model and reduced 

model, we choose to present here the results from the full model. Results of the reduced models 

are not shown, but the corresponding estimates of the parameters are very similar to the full 

models shown here. 

Posterior summaries of selected parameters characterizing the hierarchical structure and 

relationships between intervention and outcomes of the full models are shown in Table 5-3. The 

larger the intercept (β0h), the higher the proportion of patients received the therapy on average. 

Oxygen assessment has best average performance, which is in agreement with ceiling effect seen 

in Figure 1, and treatment with compliant antibiotic therapy in outpatient care had the poorest 

average performance. Two outcomes of outpatient care (first dose of antibiotics in ED and 

treatment with compliant antibiotic therapy in ED) and two outcomes of inpatient care (blood 

culture before antibiotics and treatment with compliant antibiotic therapy in ED) had relatively 

larger values of the discrimination parameter (λh

The intervention effect was modeled on the site-level latent trait (θ

); larger weight on the latent traits indicates that 

those therapies had larger variability across sites and potentially more discriminatory power for 

site performance. The data show obvious heterogeneity at patient-level (σ = 1.36 and 0.50 for 

outpatients and inpatients, respectively), provider-level (τ=0.70 and 0.43) and site-level (ψ 

ranges from 0.48 to 1.43).  

i), which could be 

interpreted as a site-level mean quality of ED outpatient (or inpatient) pneumonia care. Sites with 

the high intensity intervention had significantly higher mean quality of outpatient and inpatient 

care than sites with the low or moderate intensity interventions (outpatient: estimate of mean 
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differences of high vs. low = 1.98, 95% posterior interval = (0.98, 3.06) and high vs. moderate = 

1.73, 95% posterior interval = (0.85, 2.63) respectively; inpatient: high vs. low = 0.72, 95% 

posterior interval = (0.14, 1.33) and high vs. moderate = 0.50, 95% posterior interval = (0.06, 

1.1) respectively, Table 5-3). Latent means between moderate and low intensity intervention 

arms did not differ significantly.  

To estimate the direct overall intervention effect, we must recall that the factor loading 

parameters hλ  in equation 3.3 also affect the estimation of the direct intervention effect. Hence, 

global measures of the intervention effects in the scale of log odds ratio are calculated as 

iX γ λ (Outpatient: 0.16, 1.21 and 1.06 for moderate vs. low, high vs. low and high vs. moderate 

respectively; inpatient: 0.14, 0.36 and 0.23 respectively ). None of the global intervention effects 

is significant for inpatient data, because the two outcomes of oxygen assessment and antibiotics 

within 4 hours are negatively associated with the intervention by negative factor loadings (-0.48, 

-0.28 respectively), which is in agreement with the individual outcome analyses in Table 5-2. 
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Table 5-3 Posterior summaries for one latent variable models of outpatient and inpatient data 

  Outpatient model Inpatient model 
 Parameter Mean  95% CI Mean  95% CI 

Baseline 

 (intercept) 

β 4.58 01 (3.64,5.73) 4.42 (3.3 , 5.72) 

β 1.13 02 (0.34,1.89) 0.16 (-0.25 , 0.59) 

β -1.30 03 (-2.26,-0.47) 1.41 (1 , 1.87) 

β 2.59 04 (2,3.11) -0.10 (-0.65 , 0.45) 

Discrimination 

parameters 

λ 0.00 1 (-0.7,0.64) -0.48 (-4.75 , 2.79) 

λ 1.00* 2 NA 1.00* NA 

λ 1.18 3 (0.76,1.75) -0.28 (-2.04 , 0.84) 

λ 0.31 4 (-0.04,0.69) 1.99 (0.43 , 6.41) 

Stand deviation of random effect 

patient-level σ 1.36   (1.13,1.6) 0.50 (0.32 , 0.66) 

provider-level    τ 0.70 (0.46,0.97) 0.43 (0.32 , 0.53) 

Site level outcome-
specific 

ψ 1.40 1 (0.64,2.45) 1.43 (0.7 , 2.54) 

ψ 0.48 2 (0.08,0.92) 0.58 (0.35 , 0.85) 

ψ 0.63 3 (0.1,1.16) 0.60 (0.39 , 0.87) 

ψ 0.70 4 (0.29,1.16) 0.72 (0.32 , 1.05) 

Stand deviation of latent 
trait 

φ  0.75 (0.39,1.16) 0.14 (0.01 , 0.42) 

Intervention    effect 

on latent mean 

γ 0.25 1 (-0.61,1.19) 0.22 (-0.2 , 0.65) 

γ 1.98 2 (0.98,3.06) 0.72 (0.14 , 1.33) 

γ2-γ 1.73 1 (0.85,2.63) 0.50 (0.06 , 1.1) 

Global intervention 
effect  

(Log odds ratio) 

1γ λ  0.16 (-0.39,0.76) 0.14 (-0.06 , 0.53) 

2γ λ  1.21 (0.56,1.99) 0.36 (-0.13 , 0.95) 

2 1( )γ γ λ−
 

1.06 (0.49,1.7) 0.23 (-0.13 , 0.61) 

 

Figure 5-4 displays the estimated probability of receiving a recommended process of care 

( ijkhY ) as a function of latent trait ( iθ ) (equation 5.7). A steeper slope corresponds to higher 

ability of an outcome to differentiate between sites, and a stronger association with the latent 

trait. The relationship between the latent trait and outpatient performance outcomes are strongest 

for first dose of antibiotics in ED as well as treatment with compliant antibiotic therapy in ED, 

*fixed values for model identification 
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and weakest for oxygen assessment. The relationship between the latent trait and inpatient 

performance outcomes are strongest for blood culture before antibiotics as well as treatment with 

compliant antibiotic therapy on discharge, and weakest for the other two outcomes, even 

negatively associated with antibiotics within in 4 hours. This result is not surprising, as looking 

at the contribution of the common variance to total variance of each outcome calculated by 

equation (5.10). The values are 0%, 71%, 66% and 10% for the four outpatient outcomes, 

respectively, and 0.2%, 6%, 0.4% and 13% for the four inpatient outcomes respectively 

(outcomes are ordered as in Table 5-1,.  

 

Figure 5-4 Estimated probability of receiving each performance measure as a function of the latent 
score for outpatients and inpatients 
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5.5.2  Two latent trait model results 

Posterior summaries of selected parameters in the two latent trait model characterizing the latent 

traits and intervention effects are shown in Table 5-4. The point estimates of discrimination 

parameters and intervention effects for the outpatient outcomes are very close to the results from 

the one-latent trait model, but with a stronger intervention effect. The global intervention effect 

in inpatient care turned to be significant because the two outcomes, oxygen assessment that was 

not associated and antibiotics within 4 hours that was negatively associated with the 

interventions were removed from the analysis, otherwise, the global intervention effect will be 

cancelled out. This is analogous to interaction data analysis, i.e., if the intervention effect 

significantly varies across outcomes, it is not appropriate to estimate overall single intervention 

effect on all outcomes. As in the single latent trait models, no intervention effect was observed 

for the moderate intensity versus low intensity comparison. The intervention effects were 

stronger in outpatient care than inpatient care. The outpatient latent trait had higher variation 

than inpatient latent trait (variance of 0.24 vs. 0.11), and the two traits are uncorrelated after 

accounting for the intervention effect (r = 0.06, 95% posterior interval: -0.53, 0.61).  

Figure 5-5 displays the scatter plot of estimated outpatient latent score vs. inpatient latent 

score by intervention arm. For both traits, higher levels of the intervention generally are 

associated with higher latent scores, except for a few poorly performing sites in the moderate 

intensity arm. Overall, the two traits are positively correlated, but within in each intervention 

arm, there seems to be no correlation, i.e., the two latent traits do not exhibit site-level clustering 

after adjusting for intervention arm. 
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Table 5-4 Posterior summaries of the two latent trait model 

 Parameter Posterior summaries 

 Mean Median sd 95% CI 

Discrimination 

parameters 

λ 1.13 13 1.11 0.27 (0.67 , 1.71) 

λ 0.33 14 0.32 0.20 (-0.03 , 0.74) 

λ 0.92 28 0.90 0.37 (0.26 , 1.71) 

Intervention    effect on 
latent mean, outpatient 

γ 0.40 1 0.38 0.45 (-0.44 , 1.31) 

γ 2.37 2 2.35 0.53 (1.36 , 3.47) 

γ2-γ 1.97 1 1.96 0.43 (1.15 , 2.83) 

Global intervention effect 
on outcomes, outpatient 

1γ λ  0.32 0.31 0.36 (-0.36 , 1.08) 

2γ λ  1.92 1.91 0.40 (1.18 , 2.73) 

2 1( )γ γ λ−  1.59 1.59 0.32 (0.98 , 2.23) 

Intervention    effect on 
latent mean, inpatient 

γ 0.25 1 0.24 0.25 (-0.22 , 0.76) 

γ 0.98 2 0.97 0.27 (0.49 , 1.55) 

γ2-γ 0.74 1 0.73 0.27 (0.22 , 1.29) 

Global intervention effect 
on outcomes,  inpatient 

1γ λ  0.24 0.23 0.23 (-0.19 , 0.72) 

2γ λ  0.93 0.93 0.25 (0.44 , 1.45) 

2 1( )γ γ λ−  0.69 0.69 0.25 (0.21 , 1.19) 

Covariance between  latent 
traits 

Ф 0.24 11 0.21 0.14 (0.07 , 0.6) 

Ф 0.11 22 0.10 0.05 (0.05 , 0.23) 

Ф 0.01 12 0.01 0.06 (-0.1 , 0.14) 

corr 0.06 0.07 0.30 (-0.53 , 0.61) 
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Figure 5-5 Scatter plot of outpatient latent scores versus inpatient latent scores 

5.6  DISCUSSION 

We have described a flexible Bayesian latent variable model for the situation where several 

binary outcomes are measured to assess an intervention effect in a cluster-randomized clinical 

trial with 3-level hierarchical data. The method not only allows assessment of intervention 

effects with respect to multiple outcomes, but also assesses the relationship between outcomes, 

identifies those outcomes that carry the most information about the latent trait(s), allows for 

structural missingness, and provides a summary measure of the “quality of care” at each clinical 

site across patient subgroups. In the EDCAP study, this approach showed that latent scores for 

the quality of both outpatient and inpatient care were highest for the high intensity intervention 

sites, and that these traits were essentially uncorrelated.  
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Methods proposed here are extendable to any distributions of exponential family. For 

multilevel data, the model can be generalized to allow additional covariates at either response 

model (first stage) or structural model (second stage), as appropriate. In EDCAP study, the 

intervention was added at the second stage because the intervention was randomized at the site 

level.  

One important assumption is that the outcomes are conditionally independent given the 

common latent construct. This bears a close similarity to random-effects models, where 

outcomes are assumed to be independent given the random effects. We will consider extending 

the model to relax this local independence assumption to allow conditional dependence between 

outcomes in future work.  While we considered multiple binary outcomes in this paper, different 

outcome types can be incorporated into the proposed model framework, including both 

continuous and discrete endpoints.  

In summary, this latent variable approach provides a comprehensive alternative to 

traditional individual outcome analysis to quantify intervention (or exposure) effects with regard 

to multiple outcomes in hierarchical data setting. The two latent trait model allows a joint 

assessment of quality of care for two distinct subgroups of patents. 
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6.0  CONCLUSION AND DISCUSSION  

In clinical trials, multiple endpoints for treatment efficacy often are obtained (Pocock, Geller, 

and Tsiatis, 1987), and in addition, data may be collected hierarchically. Commonly used 

approaches, such as individual outcome data analysis, dimension reduction, or global test 

procedures, fail to borrow strength across outcomes, characterize relationships between 

outcomes or summarize those variables. Latent variable approaches provide a natural way to 

analyze complex multivariate hierarchical data, but seldom have been used to test hypotheses 

about clinical outcomes in clinical trial and other designed studies (Donaldson 2003). In 

addition, no existing commonly used software could analyze multivariate outcomes from 

hierarchical data with more than two levels. We have described a flexible Bayesian latent 

variable model for the situation where several binary outcomes are measured to assess an 

intervention effect in a cluster-randomized clinical trial with 3-level hierarchical data.  

Chapter 4 illustrates the single latent trait model in a cluster randomized clinical trial of 

three interventions to improve the processes of care for outpatients with pneumonia. Four binary 

outcomes are collected at the patient-level and clustered at the provider and clinic site levels.   

Simulation studies are conducted to check the algorithm and computational implementation. 

Chapter 5 extends the one latent trait model to a two-latent trait model using eight outcomes 

from both outpatient and inpatient care.  
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This latent modeling approach provides a comprehensive way to analyze multivariate 

hierarchical data.  The method not only allows assessment of intervention effects with respect to 

multiple outcomes by borrowing strength across outcomes, but also assesses the relationship 

between outcomes, identifies those outcomes that carry the most information about the latent 

trait(s), and provides a summary measure of the “quality of care” at each clinical site. Although 

the frequently used simple raw average methodology could also compute summary scores, it 

cannot be directly applied to clusters with missing data, or incorporate covariance information or 

relationships between latent variables, in contrast to model based approach (Skrondal and Rabe-

Hesketh, 2004).  

The proposed single latent trait model makes one important assumption, that a univariate 

latent variable explains the observed pattern in the data and that the intervention affects the 

outcomes in the similar way (same direction) , because we standardized by fixing the variance of 

the latent trait as 1 and truncating the factor loading {λh} below 0 for identification. This 

assumption is reasonable for the example of outpatient data used in Chapter 4 to illustrate the one 

latent trait model, because the individual outcome analyses show that the intervention has a 

positive effect on each outcome. Although oxygen assessment is poorly correlated with the other 

outcomes, indicating this outcome might measure a different underlying construct, removing it 

from the latent trait results in slightly bigger DIC, suggesting that the model with one trait 

constructed from the four outcomes fits better. In Chapter 5,  model identification is achieved by 

“anchoring” by fixing the scale of factor loading instead of ‘standardization’ and truncation, 

which relaxes the assumption of a common intervention effect, but loses the interpretation that 

higher latent scores indicate higher quality of pneumonia care when the estimates of factor 

loadings have different signs across outcomes. However, in order to model the covariance 
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structure between multiple latent traits, we used ‘anchoring” instead of “standardization”, 

because “standardization” constraint the variance of latent trait to be 1. In Chapter 5, we refit one 

latent trait model using outpatient data by “anchoring”, the results are consistent with the results 

in Chapter 4 using “standardization”. 

Due to the complexity of the model framework, in practice, latent variable models for 

hierarchical data could be framed in different ways for convenience.  We frame the one latent 

trait model in Chapter 4 by specifying the within-site and between-site models separately, to 

better interpret the within-in site and between-site variation for cluster-randomized hierarchical 

clinical data in the EDCAP study. The model could be extended by adding additional covariates 

to the within-site model, the between-site model and/or the model of latent variable level, as 

appropriate. In Chapter 5, we frame the model using the recent developed very general model 

framework of Generalized Linear Latent and Mixed Models ( GLLAMMs) (Skrondal & Rabe-

Hesketh, 2007; Skrondal & Rabe-Hesketh, 2004), by  writing two submodels: a response model 

and a structural model. The response model constructs latent variable(s) form the observed 

responses and the structural model regresses the latent variables as a function of intervention 

effect. Although the models were framed differently in Chapters 4 and 5, the underlying 

mathematical mechanisms are similar. 

Our models make one important assumption of conditional independence of outcomes 

given the latent traits, which plays a central role in latent variable models. In further work, we 

will consider extending the model to relax this local independence assumption to allow 

conditional dependence between outcomes. Although in our work, we considered the situation 

where the multiple outcomes are binary, different outcome types, including both continuous and 

discrete endpoints can be incorporated into the proposed model framework. Another extension of 
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this hierarchical model is to relax the assumption of homogeneity of variance, to examine 

whether interventions influence the degree of heterogeneity (variation) across health care 

providers. In this situation, estimates of variance components are of as great an interest as the 

regression coefficients. This joint modeling has been done for a single outcome (Hedeker, 

Mermelstein, and Demirtas, 2008), but not for multiple outcomes using a latent construct. 

Finally, our proposed two latent trait model models the outpatient and inpatient traits 

distinctly, which is reasonable for the EDCAP data because the two traits are poorly correlated 

conditional on the intervention effect. When the two traits are highly correlated, a possible 

extension would be to generate an overall trait constructed from those two individual latent traits, 

i.e., to estimate an overall intervention effect on this single latent trait or use this single trait to 

profile the health care providers.  

In summary, this latent modeling approach provides a comprehensive way to analyze 

multivariate hierarchical data.  The method not only allows assessment of intervention effects 

with respect to multiple outcomes, but also assesses the relationship between outcomes, 

identifies those outcomes that carry the most information about the latent trait(s), and provides a 

summary measure of the “quality of care” at each clinical site. Our work extends existing 

methods to model multivariate binary outcomes in a three-level hierarchical setting using one-

latent trait and two-latent trait models, and assesses the relationships between multiple latent 

traits. A practical application demonstrates potential usefulness of this approach to quantify 

intervention effects with regard to multiple endpoints in a cluster-randomized clinical trial.  
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APPENDIX A  

INDIVIDUAL OUTCOME DATA ANALYSIS 

To explore the data, random logistic regression models accounting for clustering effect at site level 

and provider level were fitted for each outcome separately, to estimate the intervention effect 

adjusting for patient risk levels.  

Both a Bayesian approach with WinBUGS and a maximum likelihood approach with the 

Stata Gllamm procedure were used to fit the models. Similar results were obtained based on the 

two different procedures. This demonstrates that the computation algorithm and the non-

informative prior specification in our Bayesian approach are reasonable. Posterior summaries and 

maximum likelihood estimators of the intervention effect were shown in table 6-1. In total, 24 

pairwise comparisons were conducted for the 8 outcomes. We noticed that the information derived 

from these individual outcome measures separately is overwhelming and not consistent across all 

outcomes. Furthermore, with this multidimensional outcome data, we expect some relationship 

among the outcomes, so that modeling outcomes independently would result in a loss of 

efficiency. 
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Table A-1 Bayesian and maximum likelihood estimations of intervention effects from individual 
outcome data analysis 

Outcomes comparisons Posterior summaries   Maximum likelihood 
method 

 Mean  Median sd 95% C.I. Est. S.E. 95% C.I. 

Outpatient processes 

Oxygen 
assessment  

Moderate vs. Low 0.11 0.12 0.70 (-1.27, 1.46) 0.10 0.61 (-1.09, 1.29) 

High vs. Low 0.42 0.43 0.74 (-1.05, 1.86) 0.40 0.63 (-0.82, 1.63) 

High vs. Moderate 0.31 0.32 0.62 (-0.95, 1.50) 0.30 0.53 (-0.73, 1.34) 

First dose of 
antibiotics in ED 

 

 

Moderate vs. Low 0.24 0.24 0.43 (-0.61, 1.08) 0.26 0.39 (-0.50, 1.01) 

High vs. Low 1.94 1.93 0.47 ( 1.01, 2.90) 1.90 0.42 (1.08, 2.72) 

High vs. Moderate 1.70 1.70 0.42 ( 0.88, 2.53) 1.65 0.37 (0.92, 2.37) 

Treatment with 
compliant 
antibiotic therapy 
in  ED 

Moderate vs. Low 0.18 0.15 0.49 (-0.71, 1.22) 0.19 0.43 (-0.66, 1.04) 

High vs. Low 1.78 1.76 0.47 ( 0.90, 2.73) 1.78 0.44 (0.93, 2.64) 

High vs. Moderate 1.60 1.60 0.41 ( 0.81, 2.39) 1.59 0.38 (0.86, 2.33) 

Compliant 
antibiotic therapy 
on discharge 

Moderate vs. Low 0.75 0.74 0.40 (-0.04, 1.56) 0.77 0.35 (0.08, 1.47) 

High vs. Low 0.97 0.96 0.42 ( 0.12, 1.84) 0.99 0.36 (0.28, 1.70) 

High vs. Moderate 0.22 0.23 0.36 (-0.46, 0.94) 0.22 0.32 (-0.41, 0.85) 

Inpatient processes 

Oxygen 
assessment 

Moderate vs. Low 1.56 1.50 0.99 (-0.22, 3.67) 1.34 0.71 (-0.04, 2.73) 

High vs. Low 0.22 0.20 0.86 (-1.43, 2.00) 0.21 0.61 (-0.97, 1.40) 

High vs. Moderate -1.34 -1.30 0.90 (-3.28, 0.37) -1.12 0.66 (-2.43, 0.17) 

Blood cultures 
before antibiotic 
administration 

Moderate vs. Low 0.12 0.12 0.31 (-0.48, 0.74) 0.18 0.27 (-0.36, 0.72) 

High vs. Low 0.91 0.91 0.31 ( 0.31, 1.52) 0.94 0.28 (0.40, 1.48) 

High vs. Moderate 0.79 0.79 0.28 ( 0.22, 1.36) 0.76 0.25 (0.27, 1.25) 

Antibiotic 
administration 
within 4  h 

Moderate vs. Low 0.08 0.08 0.33 (-0.57, 0.75) 0.11 0.29 (-0.47. 0.68) 

High vs. Low -0.13 -0.13 0.34 (-0.78, 0.55) -0.11 0.29 (-0.68, 0.46) 

High vs. Moderate -0.21 -0.21 0.29 (-0.79, 0.55) -0.22 0.26 (-0.73, 0.30) 

Treatment with 
compliant 
antibiotic therapy 
in ED 

Moderate vs. Low 0.67 0.66 0.35 ( 0.03, 1.37) 0.62 0.34 (-0.04, 1.29) 

High vs. Low 1.30 1.30 0.35 ( 0.64, 2.01) 1.27 0.34 (0.61, 1.93) 

High vs. Moderate 0.64 0.64 0.33 (-0.02, 1.28) 0.65 0.30 (0.05, 1.24) 
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APPENDIX B  

SELECTED WINBUGS FIGURES 

Gibbs sampling history plots (trace plot) and posterior density plots are given for three 

parameters of the intervention effect. We examined convergence of the two Monte Carlo Markov 

chains by checking the trace plot. In Chapter 4 of one latent trait model, each parameter of 

interest becomes stationary by 3,000 iterations, indicating that the convergence has been reached 

by 3,000 iterations. In Chapter 5 of two-latent trait model, we used the first 10000 iterations as 

burn in. The posterior density plots for parameters show unimodal distributions, which are nearly 

symmetric, and look close to normal.  
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Figure B-6-1 Gibbs sampling trace plots of outpatient intervention effect of moderate vs. low (r1), 

high vs. low (r1), and high vs. moderate ( r2- r1

  
) sequentially, one latent trait model in Chapter 4 
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Figure B-6-2 Posterior density plots for parameters of outpatient  intervention effect of moderate vs. 

low (r1), high vs. low (r1), and high vs. moderate ( r2- r1
 

) sequentially, one latent trait model in Chapter 4 
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Figure B-6-3 Gibbs sampling trace plots of outpatient and inpatient intervention effect of moderate 
vs. low (r1), high vs. low (r1), and high vs. moderate ( r2- r1

 
) sequentially, one latent trait model in Chapter 5 

 

t2 chains 1:2 sample: 20000

   -2.0     0.0     2.0

    0.0
   0.25
    0.5
   0.75
    1.0

t3 chains 1:2 sample: 20000

    0.0     2.0     4.0

    0.0
    0.2
    0.4
    0.6
    0.8

t32 chains 1:2 sample: 20000

    0.0     1.0     2.0     3.0

    0.0
   0.25
    0.5
   0.75
    1.0

tt2 chains 1:2 sample: 20000

   -1.0     0.0     1.0

    0.0
    0.5
    1.0
    1.5
    2.0

tt3 chains 1:2 sample: 20000

    0.0     1.0     2.0

    0.0
    0.5
    1.0
    1.5
    2.0

tt32 chains 1:2 sample: 20000

   -1.0     0.0     1.0

    0.0
    0.5
    1.0
    1.5

 

Figure B-6-4 Posterior density plots for parameters of outpatient and inpatient intervention effect of 
moderate vs. low (r1), high vs. low (r1), and high vs. moderate ( r2- r1

 

) sequentially, one latent trait model in 
Chapter 5 
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