LIPOPROTEIN LIPASE GENE SEQUENCING AND PLASMA LIPID PROFILE

by

Dilek Pirim

B.S, Istanbul University, Turkey, 2007

Submitted to the Graduate Faculty of

the Department of Human Genetics

Graduate School of Public Health in partial fulfillment

of the requirements for the degree of

Master of Science

University of Pittsburgh

2010

UNIVERSITY OF PITTSBURGH

Graduate School of Public Health

This thesis was presented

by

Dilek Pirim

It was defended on

December 8, 2010

and approved by

F. Yeşim Demirci, M.D., Assistant Professor, Human Genetics Graduate School of Public Health, University of Pittsburgh

Clareann H. Bunker, Ph.D., Associate Professor, Epidemiology, Graduate School of Public Health, University of Pittsburgh

Thesis Director: M. Ilyas Kamboh, Ph.D, Professor and Department Chair Human Genetics, Graduate School of Public Health University of Pittsburgh Copyright © by Dilek Pirim

2010

LIPOPROTEIN LIPASE GENE SEQUENCING AND PLASMA LIPID PROFILE

Dilek Pirim, M.S.

University of Pittsburgh, 2010

In the United States, coronary heart disease (CHD) is the most common cause of death and number one killer of American males and females. Several epidemiological studies have identified risk factors for CHD, like low high-density lipoprotein cholesterol (HDL-C), elevated total cholesterol and low-density lipoprotein (LDL) cholesterol, and high triglycerides (TGs), but underlying genetic variations that cause predisposition to these traits still remain unclear. Lipoprotein lipase (LPL) is one of the major genes involved in lipid metabolism and its gene sequence variation has already been reported to be associated with the risk of CHD and risk of other complex diseases like dyslipidemia, type 2 diabetes, essential hypertension, and Alzheimer's disease. Unraveling the unknown genetic variation in the LPL gene in relation to HDL-C and correlated lipid traits is critically important for public health because identification of genetic markers may lead to promising future public health interventions, like prognostic tools and therapeutic approaches to alleviate the burden of CHD in the U.S. In this study, we investigated the role of common and rare variation in LPL by resequencing individuals having extremely low (n=48) and high (n=47) HDL-C levels selected from a population-based non-Hispanic white (NHW) sample of 623 individuals. A total of 179 variants were identified in 95 individuals by resequencing the entire LPL gene, including 91 uncommon or rare variants [minor allele frequency (MAF) <0.05)] and 88 common variants (MAF \geq 0.05). Of the 91 relatively uncommon or rare variants, 21 were present only in the low-HDL group and 25 were present

only in the high HDL-C group. Overall, the prevalence of uncommon or rare variants was higher in the high HDL-C than the low HDL-C group. Thirty two of the 88 common variants demonstrated significant association (P-value <0.05) between the high and low HDL-C groups. We also examined 12 common variants (MAF \geq 0.05) in the total NHW sample and identified 7 variants to be significantly associated with lipid levels.

In conclusion, our comprehensive resequencing of the LPL gene confirms that both common and rare variants in this gene are associated with interindividual variation in plasma lipid profile.

TABLE OF CONTENTS

ACKNOWLEDGMENTXI	
1.0 BACKGROUND AND SIGNIFICANCE	
1.1 CORONARY HEART DISEASE 1	
1.1.1 Public health importance of coronary heart disease 1	
1.1.2 Risk factors of coronary heart disease	
1.2 HIGH DENSITY LIPOPROTEIN (HDL) 4	
1.2.1 HDL-Metabolism 5	
1.2.2 The antiatherogenic role of HDL particles	
1.2.3 HDL cholesterol and CHD risk 6	
1.2.4 Effects of genetic factors on HDL-C levels	
1.3 LIPOPROTEIN LIPASE	
1.3.1 <i>LPL</i> gene regulation	
1.4 LIPOPROTEIN LIPASE ENZYME 10	
1.4.1 Effects of Lipoprotein Lipase activity on lipid levels	
1.5 LIPOPROTEIN LIPASE GENE SEQUENCE VARIATION	
1.6 LPL POLYMORPHISMS ASSOCIATED WITH PLASMA HDL-C LEVELS	
AND CORONARY HEART DISEASE15	
1.7 SPECIFIC AIMS 17	

2.0	SUBJECTS AND METHODS 18
	2.1 SUBJECTS
	2.2 DNA SEQUENCING 19
	2.3 GENOTYPING
	2.4 STATISTICAL METHODS
3.0	RESULTS
	3.1 DNA RESEQUENCING
	3.1.1 LPL Annotated Sequence
	3.2 DISTRIBUTION OF LPL VARIANTS IN HIGH AND LOW HDL-C
	GROUPS
	3.3 LINKAGE DISEQUILIBRIUM (LD) AND TAGGER ANALYSES OF LPL
	VARIANTS
	3.4 GENOTYPING OF IDENTIFIED VARIANTS IN THE ENTIRE NHW
	SAMPLE AND THEIR ASSOCIATION ANALYSIS WITH PLASMA
	LIPOPROTEIN LEVELS
4.0	DISCUSSION
	4.1 COMPARISON OF OUR RESEQUENCING RESULTS WITH TWO
	PUBLISHED STUDIES65
	4.2 DISTRIBUTION OF LPL VARIANTS AMONG HIGH AND LOW HDL-C
	GROUPS
	4.2.1 Distribution of common LPL variants among high and low HDL-C groups in
	NHWs

	4.2	2.2 Distribution of relatively uncommon or rare <i>LPL</i> variants among high	and
	low	w HDL-C groups in NHWs	69
	4.3	DISTRIBUTION OF SELECTED COMMON VARIANTS IN THE TO	TAL
	NHW	V SAMPLE	71
5.0	CON	ICLUSIONS	74
BIB	LIOG	GRAPHY	75

LIST OF TABLES

Table 1. Most common LPL variants
Table 2. Population characteristic data (mean±SD) of entire NHW (n=623)
Table 3. Population characteristic data (mean±SD) of the subset of population used for DNA
sequencing19
Table 4. LPL Polymerase chain reaction (PCR) primers
Table 5. PCR reaction and cycling conditions 23
Table 6. Tagger results using SNP genotype data of CEU population provided from HapMap
$(MAF \ge 4\%, r^2 \ge 0.7)$
Table 7. TaqMan SNP Genotyping Assays 24
Table 8.TaqMan reaction and thermal cycler conditions
Table 9. LPL variants identified in our study for the NHW population 29
Table 10. Distribution of common LPL variants in high and low HDL-C groups in NHWs 47
Table 11. Distribution of relatively uncommon or rare LPL variants in high and low HDL-C
groups in NHWs
Table 12. Tagger results using Haploview of LPL common variants in NHWs 53
Table 13. Genotyping results of 12 tagSNPs screened in the entire NHW sample
Table 14. Genotype distributions and adjusted p-values for 12 LPL variants in NHWs
Table 15. Distribution of identified functional variants in high and low HDL-C groups

LIST OF FIGURES

Figure 1. Lipoprotein lipase gene structure with promoter elements. (From Wang et al 2009,
"Am Physiol Soc, used with permission")9
Figure 2. LPL activity in fatty acid transport to muscle and adipose tissues (Attie et al. 2010,
used with permission)
Figure 3. <i>LPL</i> and neighboring genes on chromosome 8
Figure 4. LPL Annotated Sequence
Figure 5. LD analysis of identified common variants in NHWs
Figure 6. LD analysis of the 32 identified variants which had a statistically significant p-value
<0.05 when comparing the allele frequencies between the high HDL-C and low HDL-C groups
Figure 7. LD analysis of the variants screened in the entire NHW sample

ACKNOWLEDGMENT

First of all, I would like to express my sincere gratitude to my thesis advisor Dr. M. I. Kamboh for giving me the opportunity to join his lab and participate in this exciting research. Thank you for your invaluable assistance, support, and encouragement during the course of my work. I am also deeply indebted to other my committee members, Drs. F. Yesim Demirci and Clareann Bunker, for their time and effort in reviewing this work.

I also wish to thank Turkish Ministry of Education for supporting me financially during my graduate study.

Special thanks to Dr. F. Yesim Demirci for all her efforts and devoted works that she has done for my project in the past two years. I am sure that without your assistance and knowledge, this work would not have been successful. I truly appreciate your understanding and gracious support.

Thank you to my coworkers and fellow students in Dr. Kamboh's lab, especially Yuee Wang, M. Irfan Kamboh, Kate Hughes, and Jatinder Singh for all of their assistance with my project and guidance during my training period. Thanks to Zaheda Radwan for sharing all joys and hard times during the time of the project.

I would like to thank all my friends who supported me whenever I needed, no matter how far the distances were.

Lastly, I wish to thank my family for all they have done for me. Thanks dad for being such a wonderful role model; your devotion to science and medicine always encourages and inspires me. Thanks mom for your efforts that make the distances disappear and make me feel as if you are with me whenever I need you.

1.0 BACKGROUND AND SIGNIFICANCE

1.1 CORONARY HEART DISEASE

1.1.1 Public health importance of coronary heart disease

In the United States, coronary heart disease (CHD) is the most common cause of death and major killer of American males and females; one of every six deaths is caused by CHD (Coronary Heart Disease) according to the National Vital Statistics in 2009 (Heron et al. 2009). Based on the Framingham Heart Study (FHS) in 2001 more than half of the total cardiovascular events were due to the CHD in females and males under age 75 (Lloyd-Jones et al. 2010; American Heart Association 2010). In 2006, almost 425,000 (224K males and 201K females) people died from CHD and the CHD death rate was 134.9 per 100,000 (176.3 for white males, 206.4 for black males, 101.5 for white females and 130.0 for black females (Lloyd-Jones et al. 2009). American Heart Association computation based latest available mortality data show that in every twenty five seconds an American will experience a coronary event and it will cause death of one person in about every minute. The same data computes that about 81% of Americans die of CHD are at age 65 or above (Lloyd-Jones et al. 2010). According to the data of National Health and Nutrition Examination Survey (NHANES) between 2003 and 2006, the prevalence of CHD in the United States was 17,600,000 for adults age 20 and older. It means 7.9 percent (9.1 percent for males and

7.0 percent for females) of American adults age 20 and older have CHD (Lloyd-Jones et al. 2010). The incidence is different between females and males; males at 40 and older have high risk of developing CHD than females at the same age. The percentages for lifetime risk of developing CHD are 48.6 % for males and 31.7% for women at age 40 (Ulrich et al. 1999). The latest available data of the American Heart Association estimates that the direct and indirect cost of CHD is \$177.1 billion for 2009 (Lloyd-Jones et al. 2010).

1.1.2 Risk factors of coronary heart disease

The risk factors for CHD are classified into two categories according to their causative and quantitative contributions to CHD. Low level serum high-density lipoprotein (HDL) cholesterol, elevated serum total and low-density lipoprotein (LDL) cholesterol, elevated blood pressure, cigarette smoking, diabetes mellitus and advancing age are the major and independent risk factors. Several studies, including Framingham Heart Study, have investigated the quantitative relationship between these factors and CHD. The major and independent risk factors contribute the total risk of a person independently and total risk calculation can be done by summing of the risk imparted by each of the major risk factors. Second category includes predisposing and conditional risk factors that are associated with independent risk factors for CHD. Obesity, physical activity, ethnic characteristics, psychosocial factors, family history of premature CHD are predisposing risk factors and elevated serum triglycerides, small LDL particles, elevated serum homocysteine, elevated serum lipoprotein (a), prothrombotic factors and inflammatory markers (eg. C-reactive protein) are conditional risk factors for CHD (Grundy et al. 1999). After nine years follow up, the data of the three prospective cohort studies includes both sexes and a spectrum of adult ages shows that 87% to 100% of fatal CHD cases had prior exposure to at least one clinically elevated major CHD risk factor which are cholesterol \geq 240 mg/dL [\geq 6.22mmol/L], arterial blood pressure \geq 140/190 mm Hg, medication use for cholesterol and hypertension, high cholesterol, cigarette smoking or clinical diabetes; 64% to 100% of these fatal CHD cases had prior exposure to two or more major CHD risk factors at higher than favorable levels (Greenland et al. 2003). The mortality data, prevalence and incidence of CHD show that male gender and blacks has higher risk of developing a CHD (Keil et al. 1989; Cooper et al. 1992; Johnson et al. 1986).

Since family history is an important risk factor for CHD, several studies imply the importance of genetic factors in the pathogenesis of CHD due to their aggregation in families with combination of lifestyle and common environment (Jannotti et al. 2000; Tiret et al. 2002; Breslow et al. 2001). The heritability of these risk factors has been investigated in many twin studies to understand the role of shared genes and shared environment. These results strength the importance of the genetic factors in predisposition to CHD (Hans et al. 1997; Marenberg et al. 1994; Chen et al. 2009; Austin et al. 1987). Most of the known genetic variation that affects the risk of CHD underlay in the genes that have an important role in lipid metabolism, including the lipoprotein lipase (*LPL*) gene. These variations may result a change in the genetic studies for unraveling the genetic variation in candidate genes that may affect the lipid levels and contribute to the etiology of CHD.

1.2 HIGH DENSITY LIPOPROTEIN (HDL)

High density lipoprotein (HDL) is the smallest and densest lipoprotein particle in the circulation which consists of several distinct subclasses that vary in size, shape, density (1.063 to 1.21g/ml), surface charge and composition (Rye et al. 2009; Tsompanidi et al. 2009). The other major groups of lipoproteins, in order of largest to smallest according to their lipid content, are chylomicrons, very low density lipoprotein (VLDL), intermediate-density low protein (IDL), and low density lipoprotein (LDL). They are responsible to carry the lipids like cholesterol and triglyceride (TG) in the circulation. HDL particles compose by a hydrophobic core of cholesterol esters and a small amount of triglycerides (TGs); is surrounded by phospholipids, free cholesterol and apolipoproteins (apos) (Rye et al. 2009; Florentin et al. 2008). HDL may have a discodial or spherical shape depending on the lipid composition. Mature HDL is in spherical shape and contains 45-55% apolipoproteins, 26-32% phospholipids, 15-20% esterified cholesterol, 3-5% free cholesterol and about 5% triglycerides (Tsompanidi et al. 2009). The major apolipoprotein particles of HDL are apoAI and apoAII and the minor apolipoproteins are apoIV, apoCI/CII/CIII, apoD, apoE, apoJ, apoK and apoM (Florentin et al. 2008). HDL particles also include liposoluble, antioxidants, and several enzymes like paraoxonase-I (PONI), platelet-activating factor acetylhydrolase (PAF-AH) and glutathione phospholipid peroxidase (Florentine et al. 2008). As a major component of HDL, apoAI has a role in biogenesis and functions of HDL (Tsompanidi et al. 2009).

Although, high blood cholesterol is a major risk factor for CHD, cholesterol which is carried in HDL particles is called 'good' cholesterol and it is beneficial for a number of reasons (Toth, 2005; Genest et al. 1999). American Heart Association considers low high density lipoprotein (HDL-C) as a major risk factor for heart disease if it is less than 40 mg/dL for men and less than 50 mg/dL for women; HDL-C levels of 60 mg/dL and above is considered as being protective against heart disease.

1.2.1 HDL-Metabolism

Unlike the other lipoprotein particles, HDL promotes the reverse cholesterol transport (RCT), carries the excess cholesterol from non-hepatic cells (such as macrophages) to the liver and steroidogenic organs so cholesterol can be able to use for the synthesis of lipoproteins, bile acids, Vitamin D, and steroid hormones (Genest et al. 1999; Stein et al.1999; Von Eckardstein et al 2001). There are three different pathways that reverse cholesterol transport can take place. First, LDL receptors on liver recognize the multiple copies of apoE particles on mature HDL particles so they can be taken up by liver (Bruce et al. 1998). Second, scavenger receptor class B1 (SR-B1) mediates the selective uptake of the high-density lipoprotein cholesteryl esters (HDL-CE) (Acton et al. 1996). Third, cholesteryl ester transfer protein (CETP) transfers the cholesteryl esters from HDL to the TG rich lipoprotein particles, and then they can be taken by the liver via LDL receptors (Bruce et al., 1998)

1.2.2 The antiatherogenic role of HDL particles

The antiatherogenic role of HDL particles is mainly related its function in reverse cholesterol transport pathway which removes cholesterol from peripheral cells (macrophages in the artery wall) (Rye et al. 2009; Florentin et al. 2008). Besides this function, HDL has anti-thrombotic and anti-inflammatory properties that contribute to its atheroprotective role (Von Eckardstein et al. 2001; Genest et al. 1991). It also prevents atherosclerotic lesion progression by inhibiting LDL oxidation, promoting endothelial repair, inhibiting the binding of monocytes to the endothelium and improving endothelial function (Rye et al. 2009; Assmann et al. 1993; Rust et al.1999)

1.2.3 HDL cholesterol and CHD risk

Lipid levels and their role in development of CHD have been studied since the early 1950s (Barr et al. 1951). Despite the fact that HDLs carry about 20% of the total plasma cholesterol, several clinical and epidemiological studies have demonstrated the inverse relationship between HDL-C and CHD (Gordon et al. 1989, Castelli et al. 1986, Castelli 1977). This was reported as a 1 mg/dL increase of HDL-C levels is associated with a 2-3% decreased CHD risk (Gordon et al. 1989). It is worth noting that although the direct relationship between the CHD risk and low HDL-C is clearly identified in many studies, this does not reflect a causal relationship due to other factors that affect CHD risk as well as HDL-C levels (Vergeer et al. 2010). The risk factors for CHD that also cause low level of HDL-C are: male gender, smoking, obesity, hypertriglyceridemia, insulin resistance, physical inactivity, systemic inflammation, and low socioeconomic status (Vergeer et al. 2010).

1.2.4 Effects of genetic factors on HDL-C levels

Since the inverse relationship between HDL-C levels and CHD have been confirmed in various epidemiological studies, interest has focused on the role of genetic factors influencing HDL-C concentration (Weissglas-Volkov et al. 2010). Based on family and twin studies, the heritability of HDL-C levels is estimated up to 80 % (Kronenberg et al. 2002; Perusse et al., 1997; Wang and Paigen 2005; Goode et al. 2007). This means, in addition to environmental factors, genetic factors play an important role in affecting the variation of plasma HDL-C levels.

The genetic inheritance of low and high HDL-C levels can be monogenic, polygenic, or can be determined by interactions between several genes and their interactions with environmental factors. Most of the researchers conduct studies by using case/controls, families, and unascertained populations to understand the role of major genes in lipid metabolism influencing HDL-C variations (Weissglas-Volkov et al. 2010). In this aspect, the mutations in the *APOA1, ABCA1, LCAT*, and *LPL* genes have been associated with low HDL-C levels and they cause monogenic disorders as apoAI deficiency, Tangier disease, familial lecithin-cholesterol-acyl transferase (LCAT) deficiency (FLD), and lipoprotein lipase (LPL) deficiency (Type I hyperlipoproteinemia or familial chylomicronemia), respectively. However, mutations in the *CETP* and *HL* genes have been associated with high HDL-C levels (Weissglas-Volkov et al. 2010).

The approaches to identify the susceptibility genes in complex polygenic diseases fall into two categories: candidate gene studies and genome wide association studies (GWAS). The candidate gene studies using resequencing and association techniques have identified several variants in some of the genes that have a known important function in HDL metabolism. Among these genes (*CETP*, *LIPC*, *LPL*, *LIPG*, *LCAT*, *ABCA1*, *APOA1*, *APOC3*, *APOC5*, *APOE*, *SR-BI*, and *PON1*), the common variants that have been identified in *LPL*, *CETP*, and *LIPC* are the most significantly associated with HDL-C levels (Weissglas-Volkov et al. 2010, Sviridov et al. 2007).

There are ten GWASs published on HDL-C levels (Willer et al. 2008, Kathiresan et al. 2008a, Kooner et al.2008; Wallace et al. 2008; Kathiresan et al. 2007; Aulchenko et al., 2009, Chasman et al., 2008; Sabatti et al. 2009; Ridker et al. 2009, Heid et al. 2008). These results are consistent with the previous association studies and the strongest association signals were observed for SNPs in the *LPL*, *CETP*, and *LIPC* genes. However, these GWASs also identified new candidate genes influencing HDL-C levels which need further studies to understand their functional importance in the HDL metabolism.

1.3 LIPOPROTEIN LIPASE

The lipoprotein lipase (LPL protein; *LPL* gene) is located on chromosome 8p22 in humans (Sparkes et al. 1987). The National Center for Biotechnology Information (NCBI) reference nucleotide sequence is NC_00008.10 (http://www.ncbi.nlm.gov/sites/entrez). It is a member of the TG lipase gene family; the other genes in the same family are hepatic lipase (HL), pancreatic lipase (PL), and endothelial lipase (EL). The *LPL* gene comprises 10 exons spanning 30 kb (Deeb and Peng 1989). The gene encodes 475 amino acids and it becomes a mature protein of 448 residues after cleavage of a 27-amino-acid signal peptide (Wion et al 1987). 5'- untranslated region, the signal peptide and the first two amino acids are encoded by the first exons. The rest of the 9 exons encode the remaining 446 amino acids. The 10th exon is the largest exon which encodes the long 3'-untranslated region of 1,948 nucleotides. Figure 1 shows the gene structure

and the basic promoter elements of the *LPL* gene which are located within 101bp upstream of the transcription starting site (Wang et al 2009).

Figure 1. Lipoprotein lipase gene structure with promoter elements. (From Wang et al 2009, "Am Physiol Soc, used with permission")

1.3.1 LPL gene regulation

The expression and regulation of *LPL* is regulated at transcriptional, posttranscriptional, translational and posttranslational levels in a tissue specific manner. Hormonal levels and nutritional regulations can also affect the expression of *LPL* by interacting proteins or directly modify the regulation of *LPL* (Wang et al. 2009). Variations in *LPL* gene sequence, expression and regulation are important because they may influence its activity and also its contribution to disease so screening the *LPL* gene in people who have different level of HDL-C levels may explain how *LPL* variants affect HDL-C levels and CHD. HDL-C levels may be regulated in three different ways due to plasma LPL activity (Weissglas-Volkov 2010). First, some of the phospholipids and apolipoproteins are shed and transferred to the HDL particles during the hydrolysis of TG-rich lipoproteins (Klos et al. 2007). Second, LPL limits the CETP-mediated

HDL-C reduction by decreasing plasma TG because the exchange of cholesterol for TG from HDL is modulated by CETP due to the amount of VLDL particles (Rye et al. 2009). Third, HDL lipid composition is altered by LPL enzyme activity because affects the catabolic rate of apoA1 so they can be more rapidly cleared from the circulation (Barter et al. 2003).

1.4 LIPOPROTEIN LIPASE ENZYME

In 1943, Paul Hahn first observed clearance of postprandial lipidemic plasma heparin injection (Hahn 1943). After this finding, more studies focused on understanding the mechanism of so called heparin releasable 'clearing factor' and it was revealed that this factor is a lipolytic enzyme which has high activity against the TG component of plasma lipoproteins. The enzyme was called LPL, after discovering its role on breaking down plasma triglycerides of TG-rich lipoproteins which are VLDL and chylomicrons (Tsutsumi 2003). LPL is a major rate-limiting enzyme responsible for the hydrolysis of TG-rich particles circulating in the bloodstream, so it has a central role in overall lipid metabolism and transport. ApoCII is required for activation of LPL and there are several factors such as apoCIII, apoE, high salt conditions and fatty acids that inhibit LPL activity (Murthy et al. 1996). It is synthesized by parenchymal cells and then transferred to the luminal surface of endothelial cells where it is anchored to the surface of the cells by heparan sulfate proteoglycans (Goldberg et al. 1996).

LPL enzyme activity has been detected in several extrahepatic tissues and cells, including adipose tissues which it is predominantly found and in other tissues such as heart, skeletal muscle, lung, lactating mammary gland, brain, kidney, and macrophages (Kirchgessner et al. 1989). LPL enzyme activity has been also identified in differentiated macrophages, placenta, spleen, pancreatic β -cells and steroidgenic tissue, but not in liver of adult animals. Due to tissue-specific activity of LPL, high levels of hepatic messenger RNA and enzyme activities are shown during suckling period in lactating mammary glands (Semenkovich et al. 1989, Yacoub et al. 1952; Merkel et al. 1998a). The high level LPL activity in adipose tissue is seen after a meal consistent with the fat storage function of adipose tissue and its level is increased by fasting and exercise training in skeletal muscle (Merkel et al. 2002).

The LPL enzyme is catalytically active in its dimer nascent form which is composed of 55 kDa subunits and it shows a head-to-toe configuration by noncovalent interactions (Zhang et al. 2005). Maturation of nascent LPL starts in the endoplasmic reticulum depending the activity of lipase maturation factor 1 (Peterfly et al. 2007). According to the three-dimensional structure of LPL, it has been shown that LPL is organized into two structurally distinct domains; a larger N-terminal domain (residues 1-312) and a smaller C-terminal domain (residues 312-448) connected by a flexible peptide (Yang et al. 1989, Bengtsson-Olivecrone et al. 1986, Lookene et al. 1993) N-terminal domain includes catalytic site covered by a lipid-binding lid and catalytic center consists of three amino acids: Ser132, Asp156, and His241. Interaction of LPL with lipoprotein substrates occurs in the C-domain and it results a conformational change that allows enzyme to conduct its catalytic function by opening of the lid in the N-terminal domain (Santamarina-Fojo et al. 1994).

There are four distinct physiological activities of LPL that have been identified in several studies which all influence the plasma lipoprotein profile and the cellular metabolism of fatty acids and lipids (Preiss-Landl et al 2002). First and major activity of LPL is its hydrolyzing function of TG-rich lipoproteins (chylomicron and VLDL) to provide fatty acids to underlying tissues (Figure 2). Second, LPL has uncatalytic activity called 'bridging function' which allow enzyme to interact with lipoproteins and anchoring them to the vessel wall so it facilitate

triglyceride hydrolysis and lipoprotein uptake (Merkel et al.1998b, Merkel et al. 2002). Third, LPL has a role in the uptake of lipoproteins by acting as a ligand for the LDL receptors, VLDL receptors, megalin, and LDL receptor related protein (Medh et al. 1996, Takahashi et al. 1995, Kounnas et al. 1993, Beisiegel et al. 1991). Fourth, LPL facilitates the selective uptake of lipoproteins associated lipids (Merkel et al. 2002; Seo et al. 2000) and lipophilic vitamins such as vitamin A and vitamin E (Preiss-Landl et al. 2002; Sattler et al. 1996; Van Bennekum et al. 1999).

Figure 2. LPL activity in fatty acid transport to muscle and adipose tissues (Attie et al. 2010, used with permission).

1.4.1 Effects of Lipoprotein Lipase activity on lipid levels

Lipoprotein lipase is the major enzyme in lipid metabolism so its catalytic function and bridging function are both critically important for humans to maintain the lipid levels favorably. Due to its essential role in regulation of lipid metabolism, it is a candidate susceptibility gene for influencing CHD risk. Several studies show variations in the human *LPL* gene that have a role in the disease's etiology due to changes in *LPL* gene sequence, expression and regulation (Xie et al. 2010). Havel

and Gordon discovered LPL deficiency in 1960 and then the gene was cloned in 1991 followed by identification of several mutations (Havel et al. 1960, Henderson et al. 1991). Clinically abnormal lipid levels have been associated with CHD, atherosclerosis and obesity in individuals who have a number of functional DNA sequence variations in their LPL gene (Murthy et al. 1996; Reymer et al. 1995; Brunzell et al. 1995; Wiebusch et al. 1992). LPL deficiency, known as Type 1 hyperlipoproteinemia or familial chylomicronemia (MIM 238600), is a rare autosomal recessive disorder (1/1,000,000) caused by defects in the LPL gene and it is correlated with severe hypertriglyceridemia due to chylomicronemia and VLDL accumulation with very low levels of LDL-C (<20 mg/dL). LPL deficiency is and HDL-C levels characterized with hepatosplenomegaly, xanthomas, acute pancreatitis and recurrent episodes of abdominal pain (Klos et al. 2007). Several studies have shown that individuals with LPL deficiency are compound heterozygotes and most of the disease causing mutations occur predominantly in exons 4, 5 and 6 of the LPL gene. The disease causing mutations usually result catalytically inactive LPL enzyme that is being degraded within the cell and cause little or no postheparin LPL activity (Wang et al. 2009).

1.5 LIPOPROTEIN LIPASE GENE SEQUENCE VARIATION

LPL is a candidate gene for influencing the risk of CHD due to its central role in lipid metabolism. Hypertriglyceridemia, which is the main clinical feature of LPL deficiency and dysfunction may be also a risk factor in the pathogenesis of CHD as well as dsylipidemia, type 2 diabetes (T2D), essential hypertension (EH), and Alzheimer's disease (Xie et al. 2010). It is thought to be a common biological basis for these complex diseases that structure, expression and

function of the LPL gene may have a role in that. This explains importance of understanding the LPL gene sequence variation and its association between specific phenotypes. Initially, 9.7kb of LPL sequence, about one-third of the LPL gene, was sequenced in 71 individuals, that identified 88 variable sites (79 were single nucleotide substitutions and 9 were insertion-deletion) (Nickerson et al. 1998). The average nucleotide diversity across the region, spanning from 3' end of intron 3 to the 5' end of intron 9, was found to be 0.2 %, which is almost one variant in every 500bp (Nickerson et al. 1998). Nickerson et al. (1998) sequenced a total of 9,734bp including 8,736bp in non-coding region and 9,98bp in coding region; 81 variants were identified in noncoding region and 7 variants were identified in coding region. Most of the variable sites detected in the coding region were silent and third base substitutions except one variable site that leads to stop codon and premature truncation of the protein in position 9040C>G (447Ser \rightarrow Ter) and three amino-acid substitutions were observed in the coding region in positions 2849A>G (291Asn \rightarrow Ser), 6176 G>A (370Val \rightarrow Met), and 6203A>G (379Thr \rightarrow Ala) (Nickerson et al. 1998). In another study, sequence variants were identified by resequencing all 10 exons and introns/flanking regions of the human LPL gene in 95 subjects, and 24 variants were identified including 9 in coding and 15 in non-coding regions (Morabia et al. 2002). Three of the 24 variants were found to be associated with amino acid changes; $291Asn291 \rightarrow Ser$ (N291S) in exon 6 and 447Ser→Ter (S447X) in exon 9 and 9Asp→Asn (D9N) in exon 2 (Morabia et al. 2002). In addition to these common coding variants, almost 100 naturally occurring mutation have been described in LPL gene: 61 missense mutation, 12 nonsense mutations, 10 frameshift mutations or small insertion/deletions, 3 gross mutations, 8 splicing mutations and 4 promoter variants (Merkel et al. 2002). Ser447X is the only variant associated with increased LPL activity and found in up to 20% in the general population (Merkel et al. 2002). The most common LPL coding variants with their locations and percentages of carriers in related populations are briefly described in the Table 1.

 Table 1. Most common LPL variants

LPL Variant	Location	Carrier frequencies (%) in populations
Ser447X	Exon 9	20% in Caucasians (Humphries et al. 1998, Wittrup et al. 1999)
Asp9Asn	Exon 2	1.5% in Caucasians (Wittrup et al. 1999)
Asn291Ser	Exon 6	2-5% in Caucasians (Wittekoek et al. 1998)
-93T→G	Promotor	76.4% in South African Blacks and 1.7% in Caucasians (Ehrenborg et al. 1997)

1.6 LPL POLYMORPHISMS ASSOCIATED WITH PLASMA HDL-C LEVELS AND CORONARY HEART DISEASE

Several studies have investigated the association of *LPL* polymorphisms with HDL-C levels (Boes et al. 2009). Seven variants have showen significant association with HDL-C levels. Two of them are the common variants (Asp9Asn, N291S) that result amino acid changes and lead to decrease in enzymatic activity and so they have been projected to reduce HDL-C levels (Wittrup et al. 1999, Zhang et al. 1996; Mailly et al. 1995). While D9N (rs1801177) results in 3.2 mg/dl decrease in HDL-C levels and 20% increase in TG levels, Asn291Ser (rs268) leads to 4.6mg/dl decrease in HDL-C levels (Wittrup et al. 1999). The D9N variant is in near-complete linkage disequilibrium with the promoter variant (T93G), which may cause decreased LPL activity due to lower promoter activity but the role of the promoter variant is not yet clear (Merkel et al. 2002). The other amino acid substitution, Gly188Glu, decreases HDL-C levels (10mg/dl) and it is most

frequent in French Canadians in Quebec (Wittrup et al. 1999; Merkel et al. 2002). It is the major mutation that results nonfunctional LPL protein and has the strongest link with increased risk of CHD among all *LPL* variants (Merkel et al. 2002). The *Hind*III (rs320) polymorphism is located in intron 8 of the LPL gene and is in strong linkage disequilibrium with the Ser447X variant (Humphries et al. 1998). The *Hind*III polymorphism has been estimated to increase HDL-C levels up to 5.5mg/dl (Senti et al. 2001; Holmer et al. 2000; Corella et al. 2002; Ukkola et al. 2001; Radha et al. 2006, Ahn et al. 1993). Ser447X (rs328) is the other common variant that cause stop codon and it is also associated with increased HDL-C levels in several studies (Wittrup et al. 1999; Nettleton et al. 2007; Lee et al. 2004; Komurcu-Bayrak et al. 2007; Pallaud et al. 2001; Constanza et al. 2005; Kathiresan et al. 2008b; Talmud et al. 2002). Two single nucleotide polymorphisms (SNPs), rs326 and rs13702, have been identified to be in a strong LD with rs320 so they are also associated with HDL-C levels (Boes et al. 2009; Klos et al. 2006).

Genome wide association (GWA) studies have also identified many SNPs associated with HDL-C levels. To our knowledge, seven GWA studies have found association signals in the *LPL* gene with HDL-C levels (Boes et al. 2010). The reported SNPs with the lowest p-values are rs2083637 (Aulchenko et al. 2009), rs10503669 (Willer et al. 2008), rs331 (Chasman et al. 2008), rs328 (Kathiresan et al. 2008b), rs17482753 (Heid et al. 2008), rs17411031 (Wallacee et al. 2008), and rs326 (Kooner et al. 2008).

1.7 SPECIFIC AIMS

The objective of this study is to evaluate the role of common and rare genetic variation in the *LPL* gene in relation to HDL-C and correlated lipid traits in a non-Hispanic white (NHW) sample (n=623). Since *LPL* is a biological candidate gene for HDL-C levels, its common and/or rare variation is hypothesized to contribute to the variation in HDL-C levels. The following are the three aims of our study.

Aim 1: Resequence the LPL gene in a subset of phenotypically determined samples having HDL-C in the upper (n=47) and lower (n=48) 5th percentile derived from a NHW sample of 623 individuals to identify both rare (allele frequency <0.01) and common variants (allele frequency ≥ 0.05).

Aim 2: Screen the tagSNPs of common variants of the *LPL* gene in the total NHW sample (n=623).

Aim 3: Evaluate the association of both rare and common *LPL* variants identified in Aim 1 and Aim 2 with HDL-C and correlated lipids (total cholesterol, triglycerides, LDL-C) levels in the NHW sample.

2.0 SUBJECTS AND METHODS

2.1 SUBJECTS

The study samples comprised 623 non-Hispanic whites (NHWs) derived from the San Luis Valley Diabetes Study in Colorado. The main features of the study subjects are depicted in Table 2. All subjects used in this current study were non-diabetics and a more detailed description of the sample population is given in Razagghi et al. (2000) and Demirci et al. (2010). Total fasting serum cholesterol was determined by using esterase-oxidase method, total HDL-C and TG were measured using enzymatic methods and LDL-C was calculated by the Friedewald equation when triglycerides levels were less than 400mg/dl (4.5 mmol/l) (Harris et al. 1998).

DNA was extracted from buffy coat using standard DNA extraction procedures.

Variable	Men (n=295)	Women (n=328)
Age (years)	52.9 ± 0.6	52.4 ± 0.6
BMI (kg/m2)	26.2 ± 0.20	24.8 ± 0.2
LDL (mg/dl)	139.8± 2.0	134.7± 2.0
HDL-C (mg/dl)	43.9 ± 0.6	56.3 ± 0.7
Triglycerides (mg/dl)	147.6 ± 4.1	128.2 ± 2.9
Total Cholesterol (mg/dl)	213.7 ± 2.2	217.7 ± 2.1

Table 2. Population characteristic data (mean±SD) of entire NHW (n=623)

A total of 95 NHW individuals whose serum HDL-C in the upper 5th (n=47) and in the lower 5th (n=48) percentiles were selected for resequencing of the entire *LPL* gene. Of the selected 95 individuals, 47 were females (23 with high HDL-C levels and 24 with low HDL-C levels) and 48 were (24 with high HDL-C levels and 24 with low HDL-C levels) males. A summary of the selected sample of 95 individuals is presented in Table 3.

	Total n=95		
Variable	High HDL(n=47)	Low HDL(n=48)	<i>p</i> -value
Age (years)	55.45 ± 9.8	53.03 ± 10.54	0.25
Sex (M/F)	24/23	24/24	0.92
BMI (kg/m2)	23.17 ± 3.17	27.35 ± 3.90	< 0.001
LDL (mg/dl)	126.84 ± 46.95	136.95 ± 41.28	0.28
HDL-C (mg/dl)	77.68 ± 13.32	31.81 ± 4.37	< 0.001
Triglycerides (mg/dl)	114.09 ± 60.88	240.21±153.22	< 0.001
Total Cholesterol (mg/dl)	227.34 ± 51.76	208.81 ± 44.65	0.06

Table 3. Population characteristic data (mean±SD) of the subset of population used for DNA sequencing

2.2 DNA SEQUENCING

The LPL gene is located on chromosome 8p22 and comprises 10 exons. Figure 3 depicts the location of the LPL gene on chromosome 8 with neighboring genes and indicates their orientations. The accession number for DNA reference sequence for LPL gene used in PCR and resequencing is NC_00008.10; is derived from Genbank in NCBI it site (http://www.ncbi.nlm.nih.gov). A total of 37 overlapping resequencing amplicons were sequenced in both directions and the PCR primers that were used to produce these overlapping amplicons are given in Table 4. These amplicons cover the entire LPL gene (27,993 bp) as well as 1,196 bp in the 5' flanking region and 1kb in the 3' flanking region resulting into a total of 30,189 bp genomic fragment. Although we design most of the primers by using Pimer 3 software (<u>http://frodo.wi.mit.edu/primer3/</u>), we also used a subset of primers from a previous study (Nickerson et al. 1998). That sequenced only a portion of the targeted region (9.7kb), starting 3' end of intron 3 to 5' end of intron 9.

Figure 3. LPL and neighboring genes on chromosome 8.

Amp. #	PCR Amp. (bp)	Forward Primer	Reverse Primer	Internal Sequencing Primer
1	822	5'-GGGTTGGGGATACACTTCAT-3'	5'-TGTTTTCCAAGGAGGGAAAG-3'	
2	722	5'-TGATCCATCTTGCCAATGTT-3'	5'-AGGGCTTTGCTCTCCATCT-3'	
3	851	5'-GAAAGCTGCCCACTTCTAGC-3'	5'-GTACTTTCTCCACCCCGACA-3'	
4	703	5'-TGACCTGCAGTCACCTCTCT-3'	5'-GCTCTCTATGCTGCTGTTGC-3'	
5	800	5'-GGGGCCAAATGAGAATGTC-3'	5'-AGTTGGCTCCTACCATCTTC-3'	
6	1177	5'-GGATCAGTTTGAAAACACTGGA -3'	5'-CATTTTGATGGCTGGAACAT-3'	
7	1112	5'-TGCCTTATGCCAGATTGTTC-3'	5'-TTGAATGAAGGGCTGTTGAG-3'	
8	1147	5'-ATACCATTCTGGCTTGGATT-3'	5'-ACTGATGTGGTCGATTTGGT-3'	
9	1056	5'-AGCTGCATGTTAGAGAAGTCAA-3'	5'-CCAAACTTCAGTCAGCTCTCC-3'	
10	1093	5'-CTGCCCAATAGCAATCACAG-3'	5'-CAATGGGTAAACACTCCAAGA-3'	
11	1113	5'-TCTTGGTGGATGAATGGAT-3'	5'-ATTACCAGTGTGAGCCATCG-3'	
12	1022	5'-GCCATAGGAGTGGGAACAGT -3'	5'-ACTGGAGGGTTGCTTGATTT-3'	
13	787	5'-TCGAAAACACTTCAGAAACAAAA-3'	5'-AGTAAATGGAGGCCCAGAGA-3'	
14	1090	5'-CTGCGAGGTTGGTAAAGGAT-3'	5'-CCTGCCTGTGCTGAAAATA-3'	
15	1053	5'-TGTGATAAAATCTCAAATTCCTAAA-3'	5'-TCCTACAGTGGCTGACATTTTT-3'	
16	1019	5'-AGGGAGGGCTTCAGTTCAG-3'	5'-TTCACAATGGGAACCCTGTA-3'	
17	1049	5'-AACCCGATTTTCTTGCCTTA-3'	5'-TGAATGCCCCCAGAAAATA-3'	
18	1084	5'-AGAGTTGGGTGCCAAAACTT-3'	5'-GGGTATATATTTTCCCATTATTCC-3'	
19	691	5'-AACCAGGTAATTGGAAGTAAAAA-3'	5'-ACAGTTCTGCCAAAAATAAAACT-3'	
20	1061	5'-TGTTTACGGAAAAGTGAAACAAA-3'	5'-GGGGCTTCTGCATACTCAA-3'	
21 *	475	5'-GGCCAAATGTGTATATGAAAAC-3'	5'-CCATGACTGTAGAATAGGAGC-3'	
22 *	1783	5'-AGAGGACTTGGAGGTAAATATT-3'	5'-GACTCCTTGGTTTCCTTATTTA-3'	5'-ATGTTACTGGAACAGAAGATG-3'
<i>22</i>	1705			5'-CTGGTCCACATCTGGGTAAA-3'
23 *	1229	5'-AGGCTGGAGACTGTTGTAAAT-3'	5'-CTCAGGTTTCCATCTGGATTC-3'	5´-CTATCAACTCTGTTATGGTGGC-3´
24	708	5'-CCCTCTATGTGCTCATGCAA-3'	5'-TGGGGCCACTGTTCTTTAAT-3'	
25	1169	5'-GGAATGGTCGGAAAATGAGA-3'	5'-AAGGAAAGGCAGCAGGACTA-3'	

Table 4. LPL Polymerase chain reaction (PCR) primers

Table	Table 4 Continued				
26	915	5'-CCACGCCCAACTAATTTC-3'	5'-CCTAGAAAATGCAGACCTTGAA-3'		
27	1057	5'-TGTTTTGGCCTTCTGATTTG-3'	5'-CATGGTGAGACCCTGTCG-3'		
28	755	5'-AGTAAGAAGTCCATGACAAAGTGT -3'	5'-TTTCCTGGGTTTCCTACAAT-3'		
29*	1881	5'-CATCAATTACAGTCGTACCTAT-3'	5'-TCAGCTTTAGCCCAGAATGC-3'	5'-GAGCAGTCTTATGTTACTGGGC-3'	
30*	794	5'-TCATTTGCAGAAAGGAAAGG-3'	5'-AATTCAGAACAGGAGTAGTG-3'		
31	874	5'-TGCCTCTTTCCTACCTGACC-3'	5'-ATTTTTGTAAAGGACGAAAAACAT-3'		
32	1072	5'-AAAAACATGCCTATTAGGAAAAG-3'	5'-CGCATCTGAACATTCTCTGTC-3'		
33	1078	5'-CGGCCCTAGATGCAGTTTTA-3'	5'-AGATTCGCCCAGTTTCTGAG-3'		
34	1049	5'-AGAAGTCATTTGGCCCAGTC-3'	5'-GCTGAGGATTACAGGCTCATT-3'		
35	1046	5'-ACTTGGAGAGGGACGAAGAA-3'	5'-TCACAACCCAAATCCAGAAA-3'		
36	1044	5'-GCATAATTCGGAAGGGAAAA-3'	5'-TTATCAAGGCAACCCAAAGC-3'		
37	754	5'-GCCTGCATAAAGTACACAGGA-3'	5'-CTTCTCCACATCCTCAGCAA-3'		

*Primers from the study of Nickerson et al. (1998)

The GeneAMP® PCR System 9700 thermal cycler with a heated lid (Applied Biosystems, Foster City, CA) was used for performing the polymerase chain reaction (PCR). The PCR reactions and cycling conditions are presented in Table 5. Gel electrophoresis by using 96-well pre-cast agarose E-Gel® 96 2% with SYBR® Safe (Invitrogen Corperation, Carlsbad, CA) was performed following amplification of each of the PCR fragments to check the success of the reaction. Reamplification was done for some of the samples that were failed in the initial amplification and regular 2% agarose gel with ethidium bromide (2µl) was performed after PCR reaction of this subset of reamplified samples to confirm the amplification.

All the amplified samples were sent to a commercial sequencing lab where automated sequencing and capillary electrophoresis were performed on ABI 3730x1DNA Analyzers (Genomic Services of Beckman Coulter, Danvers, MA). Sequencing data received from the commercial lab was analyzed in our lab by Variant Reporter version 1.0 (Applied Biosystems) and Sequencher version 4.8 (Gene Codes Corporation, Ann Arbor, MI).

PCR Reaction (Total volume 25 µL)		PCR conditions
DNA	3.0 µL	1. 95° C for 5 minutes
dH2O	12.25-13.75 μL	2. 95° C for 45 seconds
10x BufferGold	2.5 μL	3. 58-60° C for 45 seconds
MgCl2 (25 mM)	1-3.5 μL	4. 72° C for 1 minute
dNTPs (1.25mM)	3.8 µL	- Repeat steps 2-4 for 40
Forward Primer (20mM)	0.4 µL	cycles
Forward Primer (20mM)	0.4 µL	5. 72° C for 10 minutes
AmpliTaqGold (5U/µL)	0.15 μL	6. Cool to 4° C

Table 5. PCR reaction and cycling conditions

2.3 GENOTYPING

While the sequencing was underway, we used the Hapmap database and Haploview program to determine the number of common tagSNPs that cover the entire gene and ~1kb flanking regions in whites. Seventeen tagSNPs were identified in Haploview (MAE4%, $r^{2} \ge 0.7$) using SNP genotype data of CEU population (Utah residents with Northern and Western European ancestry) (www.hapmap.org). To date, we have genotyped 12 of them using TaqMan SNP genotyping assays. Table 6 lists the 48 variants that were captured by genotyping of 12 tagSNPs; 12 tagSNPs are highlighted in yellow. Table 7 lists the assay IDs of the genotyped 12 SNPs in the entire NHW sample with their refSNP IDs.

Bin	Variants captured
1	rs3916027, rs295, rs297, rs291, rs13702, rs326, rs327, rs331, rs320 (HindIII),
	rs301
2	rs264, rs3779787, rs271, rs256, rs255, rs3779788, rs263
3	rs11570891, rs15285, rs3735964, <mark>rs1059611,</mark> rs12679834, rs328 (Ser447X), rs325
4	rs312, rs4922115, rs11570892, rs316, rs4921684, rs330
5	rs10099160, rs319, rs3200218
6	rs17410577, rs13266204
7	rs258, <mark>rs253</mark>
8	<mark>rs1534649</mark> , rs10104051
9	rs270
10	rs281
11	rs9644636
12	rs285
13	rs248
14	rs249
15	rs3289
16	rs283
17	rs343

Table 6. Tagger results using SNP genotype data of CEU population provided from HapMap (MAF \ge 4%, r \ge 0.7)

Twelve screened variants are highlighted in yellow.

i.	1			
	Table 7. 1	'aaMan SNP	Genotyping	Assavs
	Table 7. 1	aqiviali Sinr	Genotyping	Assa

Table 7. TaqMan SNP Genotyping Assays					
Assay ID	LPL refSNP IDs	Location	Position	Taqman Assay Type	
C27500004_10	rs3779787	Intron 1	2335	Pre-made	
C_11856397_10	rs13266204	Intron 1	4424	Pre-made	
C9642884_10	rs1534649	Intron 1	4060	Pre-made	
C_12104326_10	rs249	Intron 4	15425	Pre-made	
C1842993_10	rs253	Intron 4	15836	Pre-made	
C_12104296_20	rs264	Intron 5	17599	Pre-made	
C1842996_10	rs270	Intron 6	18095	Pre-made	
C_12104268_10	rs283	Intron 6	19517	Pre-made	
C_12104236_10	rs312	Intron 7	22416	Pre-made	
C1843006_20	rs327	Intron 8	23955	Pre-made	
C8804467_10	rs3289	Exon 10 3'UTR	27611	Pre-made	
C8804485_10	rs1059611	Exon 10 3'UTR	28982	Pre-made	
384-well plates containing dried whole genome amplified DNA was used in TaqMan genotyping. PCR amplification was performed using a PTC-200 MJThermal Cycler (Biorad) or a GeneAmp 9700 (Applied Biosystems). After thermal cycling, Real-Time PCR system (ABI Prism 7900HT Sequence Detection Systems) was used for endpoint fluorescence reading of the plates. TaqMan reaction and thermal cycler conditions are given in Table 8. The remaining common SNPs are currently being genotyped by the medium-throughput Sequenom IPLEX genotyping assays.

TaqMan Reaction (total	TaqMan Reaction (total volume of 5 µL)				
dH ₂ O	2.43	1. 95° C for 10 minutes			
TaqMan Master Mix	2.50 μL	2. 95° C for 15 seconds 3. 60° C for 1 minute			
TaqMan Assay Mix	0.06 µL	-repeat steps 2-3 50x			

Table 8. TaqMan reaction and thermal cycler conditions

2.4 STATISTICAL METHODS

Allele and genotype frequencies were determined by direct counting. Concordance of the genotype distribution to Hardy-Weinberg equilibrium was tested using a χ^2 goodness-of-fit test for each variant. The variants identified by sequencing were analyzed by using Haploview to determine allele frequencies and their distributions among high and low HDL groups and their LD patterns. In the subset of sample that was used for sequencing, the χ^2 test was used to compare the allele frequencies between the low and high HDL groups. For those SNPs that were genotyped in the entire sample, linear regression was performed to test for the effects of genotypes on the means of plasma lipoprotein lipid levels. The HDL-C and TG levels were transformed using normal log transformation to reduce the effects of non-normality. The significant covariates were identified using stepwise regression in both directions. The additive and dominant models were used for data analysis. The covariates included in the final model were sex, age, BMI and smoking. The R statistical software package (version 2.3.1, http://www.r-project.org) and Statistical Analysis Software (SAS) were used to perform all computations. A P-value of less than 0.05 under one of these models was considered as suggestive evidence of association and a Pvalue between 0.05 and 0.1 was considered as marginally significant $(0.05 \le P \le 0.01)$.

3.0 RESULTS

3.1 DNA RESEQUENCING

A total of 179 variants, single base substitutions or indels plus a microsatellite (tetranucleotide repeat marker) in intron 6, were identified in our study by complete resequencing of the *LPL* gene in 95 American NHW individuals falling in the upper (n=47) and lower (n=48) 5th percentile of HDL-C distribution. Table 9 shows a summary of the *LPL* variants identified in our NHW population sample.

Of the 179 variants identified, 105 were found to be already reported in the Chip Bioinformatics which currently uses dbSNP build 130. Among these 179 variants, 88 had a MAF ≥ 0.05 , 54 had a MAF 1-5% and 37 had MAF ≤ 0.01 . Seventeen of those variants were insertions or deletions, and remaining 162 were single nucleotide substitutions. One hundred forty two variants were located in the introns (including the microsatellite), 7 were located in the 3' flanking region, 8 were located in the 5' flanking region and 23 were located in the exons. Of the 23 exonic variants, 3 resulted in non-synomous changes; aspartate9->asparagine (D9N) in exon 2, asparagine291->serine (N291S) in exon 6, and serine447->stop codon in exon 9, and 3 resulted in synonymous changes; valine108->valine in exon 3, glutamic acid118->glutamic acid in exon 4 and threonine361->threonine in exon 8.

The remaining 17 exonic variants were located in the last exon 10 that codes 3'UTR region (Table 9). Of the 17 insertions and deletions, only one of the insertions was located in the exonic region but it was in 3'UTR and so did not affect the protein sequence. The range of indels sizes was 1-20 base except a 697-base deletion identified in intron 2.

We identified 74 variants that are not reported in the dbSNP build 130; 22 of these new identified variants had MAF ≥ 0.05 , 52 had MAF < 0.05 and 33 had MAF ≤ 0.01 . Of 74 new identified variants, 4 were located in 5' flanking region, 62 were in introns, 5 were in 3'UTR and 3 were in the 3' flanking region.

LPL variant	Alleles	Location	refSNP	Amino Acid Change	MAF	Call Rate
			ID			%
208	T>C	5' flanking	rs1470186		0.016	98.90
351	C>A	5' flanking			0.005	98.90
428	G>A	5' flanking	rs73667465		0.016	98.90
549	C>T	5' flanking	rs17091742		0.016	98.90
958	G>A	5' flanking			0.005	95.80
1088	G>T	5' flanking			0.005	97.90
1090	T>G	5' flanking	rs1800590 (-T93G)		0.011	98.90
1130	G>C	5' flanking			0.005	97.90
2335	G>T	Intron 1	rs3779787		0.122	98.90
2913	T>C	Intron 1			0.005	95.80
3558	G>A	Intron 1	rs34309063		0.247	100.00
3964	G>C	Intron 1	rs17410577		0.239	98.90
4060	G>T	Intron 1	rs1534649		0.430	97.90
4424	A>G	Intron 1	rs13266204		0.263	97.90
4621	C>G	Intron 1			0.021	100.00
4948	C>G	Intron 1	rs6997330		0.022	97.90
5094	C>G	Intron 1			0.005	97.90
5107	C>T	Intron 1			0.005	96.80
5118	A>T	Intron 1			0.022	95.80
5200	C>T	Intron 1			0.006	91.60
5531	G>A	Intron 1	rs1031045		0.016	96.80
5772	A>G	Intron 1	rs60633545		0.016	98.90
5949	T>G	Intron 1			0.137	100.00
6383	G>T	Intron 1			0.005	100.00
6435	G>C	Intron 1			0.005	97.90
6477	T>C	Intron 1			0.005	98.90
6553	C>T	Intron 1	rs59254395		0.016	100.00
6554	A>G	Intron 1	rs56043715		0.016	100.00
6821	C>T	Intron 1	rs10104051		0.426	98.90
7130	T>C	Intron 1	rs28615996		0.021	73.70
7131	T>G	Intron 1			0.007	75.80
7313	G>A	Intron 1	rs28645722		0.016	98.90
7388	C>G	Intron 1	rs28575919		0.016	100.00

Table 9. LPL variants identified in our study for the NHW population

Table 9(Contin	ued)					
7503	T>C	Intron 1	rs6999612		0.016	100.00
7512	C>T	Intron 1	rs3779788		0.121	100.00
7556	T>C	Intron 1	rs59811201		0.016	89.50
8221	A>C	Intron 1	rs7000460		0.018	84.20
8250	G>A	Intron 1	rs59630933		0.019	97.90
8415	T>A	Intron 1	rs56321069		0.183	100.00
8467	C>T	Intron 1			0.005	100.00
8516	delG	Intron 1			0.011	50.50
9015	A>G	Intron 1	rs28445964		0.021	68.40
9024	T>C	Intron 1			0.008	98.90
9130	T>A	Intron 1	rs13252357		0.005	98.90
9411	A>C	Intron 1	rs28689946		0.016	98.90
9418	G>A	Intron 1	rs28582042		0.016	98.90
9589	C>T	Intron 1			0.016	98.90
9696	G>T	Intron 1	rs73667468		0.016	97.90
9914	T>G	Intron 1	rs73667469		0.016	100.00
10127	G>A	Exon 2	rs1801177(D9N)	Aspartate9>	0.016	100.00
				Acnoracina		
10.400	~ -	(non-synonymous)		Asparagine	0.007	
10632	C>T	Intron 2		Asparagine	0.005	94.70
10632 10912	C>T A>G	Intron 2 Intron 2		Asparagine	0.005	94.70 94.70
10632 10912 10987	C>T A>G C>A	Intron 2 Intron 2 Intron 2 Intron 2		Asparagine	0.005 0.022 0.122	94.70 94.70 96.80
10632 10912 10987 11050	C>T A>G C>A T>C	Intron 2 Intron 2 Intron 2 Intron 2 Intron 2	rs7016529	Asparagine	0.005 0.022 0.122 0.016	94.70 94.70 96.80 96.80
10632 10912 10987 11050 11090	C>T A>G C>A T>C C>G	Intron 2 Intron 2 Intron 2 Intron 2 Intron 2 Intron 2 Intron 2	rs7016529 rs8176337	Asparagine	0.005 0.022 0.122 0.016 0.190	94.70 94.70 96.80 96.80 98.90
10632 10912 10987 11050 11090 11228	C>T A>G C>A T>C C>G T>C	Intron 2 Intron 2 Intron 2 Intron 2 Intron 2 Intron 2 Intron 2 Intron 2	rs7016529 rs8176337	Asparagine	0.005 0.022 0.122 0.016 0.190 0.005	94.70 94.70 96.80 96.80 98.90 96.80
10632 10912 10987 11050 11090 11228 11574	C>T A>G C>A T>C C>G T>C G>A	Intron 2 Intron 2 Intron 2 Intron 2 Intron 2 Intron 2 Intron 2 Intron 2 Intron 2 Intron 2	rs7016529 rs8176337 rs34123038	Asparagine	0.005 0.022 0.122 0.016 0.190 0.005 0.049	94.70 94.70 96.80 96.80 98.90 96.80 100.00
10632 10912 10987 11050 11090 11228 11574 11600	C>T A>G C>A T>C C>G T>C G>A G>C	Intron 2 Intron 2	rs7016529 rs8176337 rs34123038		0.005 0.022 0.122 0.016 0.190 0.005 0.049 0.011	94.70 94.70 96.80 96.80 98.90 96.80 100.00 100.00
10632 10912 10987 11050 11090 11228 11574 11600 11760	C>T A>G C>A T>C C>G T>C G>A G>C A>C	Intron 2 Intron 2	rs7016529 rs8176337 rs34123038 rs73667470		0.005 0.022 0.122 0.016 0.190 0.005 0.049 0.011 0.016	94.70 94.70 96.80 96.80 98.90 96.80 100.00 100.00 100.00
10632 10912 10987 11050 11090 11228 11574 11600 11760 11888_11889	C>T A>G C>A T>C C>G T>C G>A G>C A>C insA	Intron 2 Intron 2	rs7016529 rs8176337 rs34123038 rs73667470		0.005 0.022 0.122 0.016 0.190 0.005 0.049 0.011 0.016	94.70 94.70 96.80 96.80 98.90 96.80 100.00 100.00 100.00 95.80
10632109121098711050110901122811574116001176011888_1188912224_12920	C>T A>G C>A T>C C>G T>C G>A G>C A>C insA del697	Intron 2 Intron 2	rs7016529 rs8176337 rs34123038 rs73667470		0.005 0.022 0.122 0.016 0.190 0.005 0.049 0.011 0.016 0.011 0.015	94.70 94.70 96.80 96.80 98.90 96.80 100.00 100.00 100.00 95.80 98.90
10632 10912 10987 11050 11090 11228 11574 11600 11760 11888_11889 12224_12920 12449	C>T A>G C>A T>C C>G T>C G>A G>C A>C insA del697 G>A	Intron 2 Intron 2	rs7016529 rs8176337 rs34123038 rs73667470		0.005 0.022 0.122 0.016 0.190 0.005 0.049 0.011 0.016 0.011 0.015 0.017 0.011 0.015	94.70 94.70 96.80 96.80 98.90 96.80 100.00 100.00 100.00 95.80 98.90 97.90
10632 10912 10987 11050 11090 11228 11574 11600 11760 11888_11889 12224_12920 12484	C>T A>G C>A T>C C>G T>C G>A G>C A>C insA del697 G>A C>A	Intron 2 Intron 2	rs7016529 rs8176337 rs34123038 rs73667470		0.005 0.022 0.122 0.016 0.190 0.005 0.049 0.011 0.016 0.011 0.015 0.011 0.011 0.015 0.011 0.0149	94.70 94.70 96.80 96.80 98.90 96.80 100.00 100.00 100.00 95.80 98.90 97.90 97.90
10632109121098711050110901122811574116001176011888_1188912224_12920124491248412550	C>T A>G C>A T>C C>G T>C G>A G>C A>C insA del697 G>A C>A G>A	Intron 2 Intron 2	rs7016529 rs8176337 rs34123038 rs73667470		0.005 0.022 0.122 0.016 0.190 0.005 0.049 0.011 0.016 0.011 0.015 0.0149 0.011 0.015 0.011 0.005 0.117 0.048 0.118	94.70 94.70 96.80 96.80 98.90 96.80 100.00 100.00 100.00 95.80 98.90 97.90 97.90 95.80
10632 10912 10987 11050 11090 11228 11574 11600 11760 11888_11889 12224_12920 1224_9 12449 12484 12550 12810_12829	C>T A>G C>A T>C G>G G>A G>C A>C insA del697 G>A C>A C>A G>A dup20	Intron 2 Intron 2	rs7016529 rs8176337 rs34123038 rs73667470		0.005 0.022 0.122 0.016 0.190 0.005 0.049 0.011 0.016 0.011 0.015 0.011 0.016 0.117 0.005 0.117 0.048 0.118 0.126	94.70 94.70 96.80 96.80 98.90 96.80 100.00 100.00 100.00 95.80 98.90 97.90 97.90 95.80 95.80
10632109121098711050110901122811574116001176011888_1188912224_1292012449124841255012810_1282912853_12854	C>T A>G C>A T>C C>G T>C G>A G>C A>C insA del697 G>A C>A C>A G>A dup20 Ins16	Intron 2 Intron 2	rs7016529 rs8176337 rs34123038 rs73667470		0.005 0.022 0.122 0.016 0.190 0.005 0.049 0.011 0.016 0.011 0.015 0.011 0.015 0.117 0.048 0.118 0.126 0.055	94.70 94.70 96.80 96.80 98.90 96.80 100.00 100.00 100.00 95.80 98.90 97.90 97.90 97.90 95.80 95.80 95.80
10632 10912 10987 11050 11090 11228 11574 11600 11760 11888_11889 12224_12920 12449 12249 12484 12550 12810_12829 12853_12854 12861_12864	C>T A>G C>A T>C G>A G>A G>C A>C insA del697 G>A C>A G>A G>A dup20 Ins16 del4	Intron 2 Intron 2	rs7016529 rs8176337 rs34123038 rs73667470		0.005 0.022 0.122 0.016 0.190 0.005 0.049 0.011 0.016 0.011 0.015 0.011 0.015 0.117 0.048 0.118 0.126 0.055 0.055 0.060	94.70 94.70 96.80 96.80 98.90 96.80 100.00 100.00 100.00 95.80 97.90 97.90 97.90 95.80 95.80 95.80 95.80

Table 9(Contin	ued)					
12884_12887	del4	Intron 2			0.016	100.00
13003	G>T	Intron 2			0.053	100.00
13639	G>A	Intron 2			0.011	98.90
13854	G>A	Exon 3 (synonymous)	rs1121923(V108V)	Valine108> Valine	0.016	100.00
14114	T>C	Intron 3	rs73667472		0.080	100.00
15206	C>A	Intron 3	rs343		0.042	100.00
15245	G>A	Exon 4 (synonymous)	rs248(E118E)	Glutamic acid118> Glutamic acid	0.047	100.00
15425	T>C	Intron 4	rs249		0.095	98.90
15449_15450	Ins2	Intron 4			0.063	98.90
15653	delA	Intron 4			0.410	92.60
15836	C>T	Intron 4	rs253		0.410	100.00
16316	C>G	Intron 5	rs254		0.074	97.90
16320	T>C	Intron 5	rs255		0.105	96.80
16386	C>T	Intron 5	rs256		0.118	97.90
16442	G>C	Intron 5			0.005	97.90
16563	T>A	Intron 5			0.016	93.70
16671	G>C	Intron 5	rs258		0.409	100.00
17231	C>T	Intron 5	rs263		0.135	100.00
17476	A>C	Intron 5			0.005	95.80
17599	G>A	Intron 5	rs264		0.116	60.00
17948	A>G	Exon 6	rs268 (N291S)	Asparagine291>	0.033	92.60
18065	T>G	Intron 6		Serme	0.009	91.60
18086	T>G	Intron 6	rs269		0.119	96.80
18095	C>A	Intron 6	rs270		0.201	100.00
18121	G>A	Intron 6	rs271		0.109	100.00
18297	A>C	Intron 6			0.005	97.90
18395_18396	InsT	Intron 6			0.121	100.00
18462	T>G	Intron 6			0.005	98.90
18621	C>T	Intron 6			0.005	100.00
18708	T>C	Intron 6	rs276		0.021	95.80
18822	T>C	Intron 6	rs277		0.232	97.90
18942	G>A	Intron 6	rs278		0.211	97.90
19442	A>T	Intron 6	rs281		0.242	95.80

Table 9(Contin	ued)					
19445	C>G	Intron 6	rs282		0.129	96.800
19517	C>T	Intron 6	rs283		0.161	100.00
19608	C>T	Intron 6	rs285 (PvuII)		0.407	97.90
19675	A>T	Intron 6	rs286		0.060	95.80
19815	G>A	Intron 6			0.005	97.90
19975	A>G	Intron 6	rs287		0.172	100.00
20038	T>C	Intron 6	rs289		0.159	100.00
20080	C>T	Intron 6			0.005	100.00
20271	T>C	Intron 6	rs291		0.163	98.90
20363	A>T	Intron 6			0.053	100.00
20505_20506	insA	Intron 6			0.163	100.00
20544	T>C	Intron 6	rs294		0.080	100.00
20657	A>C	Intron 6	rs295		0.163	98.90
20663	G>A	Intron 6	rs296		0.005	97.90
20790	T>C	Intron 6	rs297		0.163	91.60
21125_21128	del4	Intron 6			0.005	87.40
21353	T>C	Intron 7	rs301		0.172	86.30
21780	T>G	Intron 7	rs304		0.103	86.30
21820	A>G	Intron 7	rs305		0.108	97.90
21895	T>G	Intron 7	rs308		0.012	94.70
21965	C>T	Intron 7	rs310		0.006	93.70
22044_22047	del4	Intron 7			0.075	92.60
22416	G>C	Intron 7	rs312		0.072	100.00
22461	G>A	Intron 7	rs314		0.180	92.60
22514	T>C	Intron 7	rs315		0.011	92.60
22855	C>A	Exon 8	rs316 (T361T)	Threonine361->	0.079	88.40
23190 23191	del2	(synonymous)		1 nreonine	0.500	86 30
23190_23191	G>T	Intron 8			0.068	88.40
23388	C>G	Intron 8	rs318		0.018	90.50
23395	A>C	Intron 8	rs319		0.293	93.70
23496	T>G	Intron 8	rs320 (HindIII)		0.185	94.70
23573	T>C	Intron 8			0.017	95.80
23636	A>C	Intron 8	rs322		0.170	98.90
23747	T>C	Intron 8	rs325		0.067	98.90
23858	A>G	Intron 8	rs326		0.206	100.00

23955	T>G	Intron 8	rs327		0.192	90.50	
24143	C>G	Exon 9 (non-synonymous)	rs328 (Ser447X)	Serine447-> Stop codon	0.005	100.00	
24505	A>G	Intron 9	rs329	•	0.016	98.90	
24573	T>C	Intron 9			0.005	100.00	
24815	G>A	Intron 9	rs330		0.111	100.00	
24824	G>A	Intron 9	rs331		0.122	100.00	
24852	T>C	Intron 9	rs12679834		0.080	100.00	
24899	C>T	Intron 9			0.016	100.00	
25005	A>G	Intron 9			0.005	100.00	
25049	G>A	Intron 9			0.063	98.90	
25320	C>T	Intron 9			0.005	95.80	
25335	C>T	Intron 9			0.079	98.90	
25355		Intron 9			0.079	91.60	
25352	T>G	Intron 9			0.074	95.80	
25044	T>G	Intron 9			0.077	96.80	
26234		Intron 9	rs10000160		0.282	98.00	
20234		Intron 0	1810099100		0.202	08.00	
27000	C>1	Intron 9			0.029	98.90	
2/160	T>A	Intron 9			0.027	98.90	
27229	C>1	Intron 9	rs115/0891		0.082	97.90	
27249	G>A	Exon 10-3 UTR	rs4922115		0.085	98.90	
2/611	T>C	Exon 10-3 UTR	rs3289		0.016	95.80	
27688	C>T	Exon 10-3' UTR			0.005	95.80	
27783	A>T	Exon 10-3' UTR			0.011	95.80	
28036	A>G	Exon 10-3' UTR	rs11570892		0.101	100.00	
28067	A>T	Exon 10-3' UTR	rs3208305		0.203	100.00	
28093	C>T	Exon 10-3' UTR	rs1803924		0.082	100.00	
28382	C>T	Exon 10-3' UTR	rs1059507		0.110	100.00	
28407	C>A	Exon 10-3' UTR			0.026	100.00	
28464	C>A	Exon 10-3' UTR	rs3735964		0.079	100.00	
28490	A>G	Exon 10-3' UTR	rs3200218		0.279	100.00	
28524	C>T	Exon 10-3' UTR			0.005	100.00	
28911	T>C	Exon 10-3' UTR	rs13702		0.200	100.00	
28982	T>C	Exon 10-3' UTR	rs1059611		0.079	97.90	
29046_29047	Ins2	Exon 10-3' UTR			0.079	100.00	
29086	C>T	Exon 10-3' UTR	rs15285		0.200	100.00	
29088	$C > \Delta$	Exon 10-3' UTR	rs3866471		0.105	100.00	

Table 9(Contin	ued)				
29287	G>A	3' flanking	rs3916027	0.184	100.00
29315	T>G	3' flanking	rs9644636	0.339	100.00
29474	C>T	3' flanking		0.026	98.90
29487	T>A	3' flanking	rs4921683	0.105	98.90
29547	C>T	3' flanking	rs4921684	0.105	98.90
29557_29558	InsA	3' flanking		0.005	98.90
29716	T>C	3' flanking		0.026	95.80

3.1.1 LPL Annotated Sequence

Figure 4 depicts the variants identified in *LPL* within a color FASTA representation of the annotated reference sequence adapted and modified from the CHIP Bioinformatics database (http://snpper.chip.org). The color code for the reference sequence is as follows: green for 5' and 3' flanking regions, grey for introns, black for exons. Capital letters are used to show coding bases and small letters show the bases in the UTR and flanking regions. The variants identified in this study also listed in dbSNP build 130 are shown in blue font with refSNP ID; the variants that are identified in only our study are shown in red font. The 197 variants which were already reported in public databases but not identified in this study are shown in grey font. The small deletions and the insertions identified in our study are shown by highlighting the region in yellow. We identified a large deletion in intron 2 which was not reported before in any public databases and it is highlighted in *italics*.

19,839,852 ataaat atagtagatt ggaggttetg atttgatgag ceagtttete 19,839,898 agccataaac tgagagggg ttgggggatac acttcattgt ccttcctggc 19,839,948 taatgtaaat coottatatt taaaaagata tttaaaagta ttccaagcat 19,840,008 tttggcagaa aagcatagta tctaatgtta tttttttctt attttatgtg 19,840,058 catgectett atceatttaa aaatagettt actgacetat aatttacaca p.208/rs1470186-[T/C] 19,840,108 ctatataatt ctcccattga aagtgcataa ttctgttgct tttagtatat 19,840,158 ttacagagtt gtgcagcatc agcataatgt aatctagaac attgtcatca 19,840,208 actaccccca aatototatt ottocottoo cotattaatt accoageecco p.351-[C/A] 19,840,258 aggcaagcac tgatctactt ttggtctcta tggatttgtc tatttgtgga p.428/rs73667465-[G/A] 19,840,308 cactttaaat ggaatcatac aatatgtgtc ttttgcgact atcttctttc 19,840,358 acttatcata actcaatacg gctttagatt atttgacctc gatgttctgc 19,840,408 ctctgaacat aaaatattat ccttgcattc cttgatgagt ttgaggattg p.549/rs17091742-[C/T] 19,840,458 agaataattt gcatgagaca aaaattagaa actagttaga gcaagtaggc 19,840,508 ttttctccat cacataaget gatecatett gecaatgtta aaacaccaga 19,840,558 ttgtacaagc acaagctggg acgcaatgtg tgtccctcta tccctacatt 19,840,608 gactttgcgg gggtggggat ggggtgcggg gtgagtgagg gaggactgca 19,840,658 agtgacaaac aggattcgtc aaaagagagg tgtattaaag tgccgatcaa 19,840,708 atgtaattta acagctaaac tttccctcct tggaaaacag gtgattgttg 19,840,758 agtatttaac gtgaatcgat gtaaacctgt gtttggtgct tagacagggg 19,840,808 gccccccgggt agagtggaac cccttaagct aagcgaacag gagcctaaca p.958-[G/A] 19,840,858 aagcaaattt ttccgtctgc cctttccccc tcttctcgtt ggcagggttg 19,840,908 atcctcatta ctgtttgctc aaacgtttag aagtgaattt aggtccctcc p.1088-[G/T];p.1090/rs1800590-[T/G] 19,840,958 ccccaactta tgattttata gccaataggt gatgaggttt atttgcatat p.1130-[G/C] 19,841,008 ttccagtcac ataagcagcc ttggcgtgaa aacagtgtca gactcgattc 19,841,058 cccctcttcc tcctcctcaa gggaaagctg cccacttcta gctgccctgc Exon 1 19,841,108 catccccttt aaagggcgac ttgctcagcg ccaaaccgcg gctccagccc 19,841,158 tetecageet eeggeteage eggeteatea gteggteege geettgeage 19,841,208 tcctccagag ggacgcgccc cgagATGGAG AGCAAAGCCC TGCTCGTGCT 19,841,258 GACTCTGGCC GTGTGGCTCC AGAGTCTGAC CGCCTCCCGC GGAGGGGGTGG 19,841,308 CCGCCGCCGA CCGTAAGTTT TGCGCGCAAA CTCCCCTCCA CCTGCAGACC Intron 1 rs11570895 19,841,358 CGGCGGGTGG CCACTGCCAC CCGAACTGAG GATGAGAAGA AGGAAGTTGG 19,841,408 AAGGGGCGGT GGATGCGCCC AGGGACTCTC CCAGCCTGGG CTCTAGCCCC 19,841,458 GAAACGGTCC CCGGAGTGGG ATCCAGGAGG GGCCGGGAGG GAATCTCCTC 19,841,508 CCGATCGTGA AGCGGCGGCG CCCAGTTCCC GCTTTTTCTC TCTGCCGGGT 19,841,558 TCCCGCGCTA TCCCTTCCAC TCTGGCTGGG ACCGCGTTCC CGGGCTCGCA 19,841,608 GGCTCCGCCG GGGAGGTTCC GGGGTGTGGG GGCCGGGACG GCGGAGGCGG rs2898492 19,841,658 GGAGTAAGGG CCCGGCTGGC GGTGACCTGC AGTCACCTCT CTGCCGGAGG 19,841,708 GGCCCTGGAA TGAAAGGCGC GCGGGCCAAG GTGACCTCGC CTTGGTTGGC 19,841,758 ACTGCGGCTC AGCCCCCGCC CGGGGACTCG CGGGCCGACT GTGGCCCCTT 19,841,808 CTGGGGAAGC CGGGGCGCGG GGAGGCGTTC CGGGCATCTC AGCCGCACGG 19,841,858 GGTACGCTCG CCCTCGGCGG GGCCCCTCGC TCCGCTGTGG GAGTGGCAGT 19,841,908 GGGTGTCGGG GTGGAGAAAG TACGCGTGGC GCGGAGTCCT GGGGACGCGG rs7839976 19,841,958 CGTCCCACCC GCTCTGGGGA GCCCCGGACT CTCTCCAGCT TCCAGGCTCG 19,842,008 CATGCCCCTC TTTTCTTAGT GCCCTGAGAA CCCAGCGAGG GGCTGACCCT 19,842,058 CCCGAAACCG TGGCGCAGCC ACCAGCAATC TGTGGTCGCC GACTCGGGGG 19,842,108 GTTGCCAGGT CTGCGTTTGG CCACCCTTTC TGTCCTGGGG GCTGAGGTCA 19,842,158 GCTCCGGGCG CCCGGCCCCG CCGCGCGGCT GCGAGCACGT GGGGTTGACG p.2335/rs3779787-[G/T] 19,842,208 GGCGCCGCT GGAGGCAGCG AGCACAACGG TGGTCACCGC CGCCAGGGAA 19,842,258 CCGCCCGCTC GCTGGGGTCC AGGCGTTCGG GGCCAAATGA GAATGTCTCA 19,842,308 GACCTGTCCG CAATGGAGGC AGCCTGCTTA ATTCGAACCT CGATTCAGTA 19,842,358 AACATGCAAC AGCAGCATAG AGAGCAGCTG AAGCCATTCA TAACACGGGA 19.842.408 CAACATTTCC TTTTTTCTTC CATGCTGGAA TTGCAATTAG GGCGGTGTCG 19,842,458 CTTGGATGTG CTCTCAGGCG GCACGTCCCC AGCGGTTCAA GTTATAATAG 19,842,508 AGTCTCTCCA TAGCTTTGAT GGCCGCTAAA CGTTTGTTTT ATTTTGGCAT 19,842,558 TAATTTGTGA AACATTTTTG TTAGGTTAAA AAACAAAAAG TTGGCAGGGA 19,842,608 GCAGTGGCTC ACCCATGTAG TCCCAGCACT TCGGGAGGCC GAGGCCGGAA 19,842,658 GACAGCTTGA GCCCAGAAGT TCGAAATCAG CCTGGGCAAC ATAGGGAGAC 19,842,708 ACCGTCTCTA TAAAAAAAA ATACAAAAAT TAGCCGGGCG TGGTGGCCTG 19,842,758 TECCTETEET CCCAEGATAET CAECAGECTE AGAGATCACT TEAECCAEGE p.2913-[T/C] 19,842,808 AGTTTCAGTA GACTGCAGTG AGCTGTGATT GCCCCACTGC ACTTCATCCT 19,842,858 GGGTGACAGT GAGACCCTGT CTCATAAAAT TAAAACAAAA CAAAACAAAC 19,842,908 ACTAAGTATA GATTCCATCA AAGCAAAATT GGATAAGAAA AAAAGTATCT 19,842,958 TTTCTATTGG ATCAGTTTGA AAACACTGGA GAGTTGATGA GAAAGTCTTC 19,843,008 AACATCTTAG GTGGGGTATG TTTCGTATGT TTCCCTTCGT ACTGCTTAAT 19,843,058 GCTGACAAGA AGATGGTAGG AGCCAACTCC AAATTCTTAT TTCAGAAAGC 19,843,108 ACACCATAGA ATAACGTCAT TTTCATTGCA AAACAAGCAC CGAAATATGT 19,843,158 CATCACATTC AAGTTTTTCC TAGGCTCCCT TACAGGTTCA AGATCCTAAA

19,843,208	TTCTTGGGAG	TCAGTGTCAC	CTCTCTGGGT	TTAGGTTCCT	CAACTCTGCA	
19,843,258	ATGAGTTTGG	ATGAGGCCAA	TGTTCTCTGA	GCCTGGTGTA	ACTCTTGCCT	
19,843,308	CTTTAAGTGG	ACACTTATGT	GATTAATTAG	TTTAATTGAG	TTGTAGCCAA	
19,843,358	CACATGCTTT	TCCTAGCTGT	AAATATATTA	AGGAAGGATT	ATTTCCAAGT	
19,843,408	AGACTGGAAA	CGATGCCCTC	CCATCCCCTC	CACTTTCACT	CTACTCACCC	p.3558/rs34309063-[G/A]
19,843,458	AATATATCAT	GCCTCTCCCA	TCACAGCAAC	TTTCTCCCTC	TTTCTCCTCC	
19.843.508	AGATGCATTC	ATCTAGGAAG	GTAAGAATTT	CAGGGAGAGA	AAGATGTCAC	
19 843 558	CGTCGTAGAA	AGACAGGGAT	CACCTCCTCT	GGGCTCTTGA	GTTTACTTAT	
19 843 608			CAACAATATC	ACCACAACAC	CONCECTOR	
10 942 659	alacalatta	anaanaaaaa	CANCANIAIO	AUGACAAGAG	CCACIOICCI	
19,843,038	CAGGCACIIC	GICCIGGGAG	CCACCACCAI	CICIGCAIGG	CUCCAATIAG	
19,843,708	GAAACGIGAA	GAGCIAGGAG	AGGGAGAGIA	IGGICAGIGC	I I AGCAGC I G	
19,843,758	AAGTTCCACT	TGCCTGGCCA	TCGTGAATTT	CCAGGCIGIC	TTCTGAGTTG	
19,843,808	AACATGATGG	CAAAGGAGAG	CAAAATAGCA	GATGTCACTG	AAGGAGAGC'I'	p.3964/rs1/4105//-[G/C]
19,843,858	CAGCGAGGGA	GTGATTGATT	AATAGCTGTA	TTGAAAGGTG	GGAGTCAGGT	
19,843,908	ACGGGGGAAG	AGC <mark>G</mark> GCGATG	GAAAATTTTC	GCTTTCTTTC	AGCAGCTTAT	p.4060/rs1534649-[G/T]
19,843,958	TTTTAACTCA	GCTTTCTGTT	CTTGCTTTAT	TATGGAGGAA	AAATTGGGCC	
19,844,008	ATAGAGTTTA	CTGCCTTATG	CCAGATTGTT	CAAGAAAATG	CCTTGCAACT	
19,844,058	TACAATATTT	TGCAGCTAGT	TTCTTCC G TG	ACCACCACAA	AGACTGCATT	rs73667466
19,844,108	GACTTAAATA	TGAAGATGTT	CCAGCCATCA	AAATGATGGT	TGGTGATGAT	
19,844,158	TTTGGATCAC	AAAGTGTAAG	GAAAGTATTC	AAGACATGAG	TATCATGATT	
19.844.208	TTTTAAGGTC	TGGATGAAGA	GACCATTTGG	ATTTACTAAT	AAGGTAAATT	
19.844.258	CCAACTTTTA	TGGCAATAAA	AACAACAAAA	ACACTTATCA	GTGTAAAGCT	$p_4424/rs13266204-[A/G]$
10 9/1 209	TTCCCATCAT			TCACCACACT	CAACTAAATA	p.1121,1210200201 (II, 0)
10 044 250	COULTRA	ACACACITA	TATIGAGIIIG	CACCACAGI	GAACIAAAIA	
10 044,330	TAICA	ACAGAGACII	TUTAACCIGG	GAGIAAAAII	CIIGICACAG	
19,844,408	IGCITTIGIC	ACATICIGIC	I I I GCAAAAG	IIGAAGGCIC	CAAIAGIIIC	1001 [g/g]
19,844,458	TGAAGGACTA	ATAGGATAGG	GTTCCCAACTT	ACTCAGAGGC	TAAGAG1TTTG	p.4621-[C/G]
19,844,508	AAA1"1"I'AC'I'C	TGAACGATGT	CIGIICACIA	GACTGCGTGA	CIGCAGIIIIG	rs588//654
19,844,558	CTGTCTTGTG	GCCATTTTAA	GATTGTCTGT	GTGCACTGAC	ACCATTTGCG	
19,844,608	TACTCAACAA	CAG G TATCTA	CTAGGAAGGA	AGGAATGGAT	TATCTTAGGT	rs10503668
19,844,658	GCTATATATA	TATGTAAGTT	CTGCCGGAAG	TGAGCCTATT	AAACTTGTGC	
19,844,708	CAATTCATTC	CTTTTGCTCT	TCCCAGTCTG	TGCTCTCAGA	ATGATCAAAT	
19,844,758	GCTATCTAAG	TAGTGTGGTG	ATTTTGACTG	TTTGAATGAA	TAAACGAAAA	
19,844,808	CGTCTCCCAC	CATTATTTGA	CAGTAGAATA	GAACAAAGAT	GACCCAGTTG	p.4948/rs6997330-[C/G]
19,844,858	GCGTGGCCAC	ACTGTGTCTA	ATCCAGCCAC	CTTGCTCACA	GCACTCAACC	
19,844,908	CACTTTGGTG	TGTGCGCTCA	TCTGTATTTT	CGTAAATGTT	GAAGTCT C TT	p.5094-[C/G]
19.844.958	TCTATGCAGT	CAGGTAGGGG	TAATACCATT	CTGGCTTGGA	TTAATTTGAG	p.5107-[C/T]; p.5118-[A/T]
19.845.008	TGTAGTACAA	AGTTTAGAGA	AGCTTTTTAAG	TAGCATGAAA	AGTCAGATGC	F fot.i. F f
19 845 058	TTTCCCACCC	ATCCTCCTCA	ATCTACCTAA	ATCCATCTCC	ACTTACACAT	$p_{5200} = [C/T]$
19 845 108			ACATACACCT	ATCATCACAT		p:5200 [C/1]
10 9/6 160	COULTRACAGE	AAATTCALLCA	CCACADUTAA	TTACCATCAL	AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA	
10 045 200	CCITIGAAAA	AAAA11GGC1	JACEN JAC	1 IACGGIGAA	AAACAGIAIA aaamammam	
19,845,208	GGAGI IAGCA	CTIACATITI	AACIAAAAAG	AAIAGCGICC	CCAIGIIIAI	
19,845,258	TCAGCCCTCC	CTCCAATAAA	ACAATTGTTG	GCAAAGTAAT	CATGGACTT	
19,845,308	CATTIGTGTTTA	G'I''I''I'GAGACA	ACTGGATGTT	TCCATTIGCC	ATCCTCAGCA	
19,845,358	ACAAGAAGAA	AGTAGTCTCA	GA1"I'AACCAG	GTAAGTATTT	TGTATTTCAC	p.5531/rs1031045-[G/A]
19,845,408	'I''I'AAAAAA'I'C	'I'I'GAC'I'GAAA	TATGCCTATG	'I'GA'I'GACAC'I'	CAACCAAA'I''I'	
19,845,458	ATTTCATTAA	CCAGTCCACA	AGATCTCCTT	AAATAATGAT	GGCTTATTCA	
19,845,508	CACTTGATGG	TCTCATTCAG	TGGGGCAATT	TTAATACACA	TCTCTGAACC	
19,845,558	TATTTTTAA	CCCCTCTTTT	TCAGTAGTGT	GGAAGGTTAG	CCCTAATATT	
19,845,608	GGAGAAAATT	CAGGGTAAAA	TTCAG <mark>A</mark> TGAT	TCATACAGGA	TTTATTTTTC	p.5772/rs60633545-[A/G]
19,845,658	CTATTCCATT	AATAAAACAA	CTTTTATAAA	AATAAAAAGT	AGGCTGGCAC	
19,845,708	AGTGGCTCAC	TCCTGTAATC	CCAGCATTTT	GGGAGGCCGA	GGCGGGTGGA	
19,845,758	TCATGAGGTC	GGGAGTTCAA	GACCAGCGTG	GCCAGGATGG	TGAAACCCCA	
19,845,808	TC T CTACTAA	АААТАСАААА	ATTAGCCAGG	CGTGGTGGCA	GGCACCTGTA	p.5949-[T/G]
19,845,858	ATCCCGGCTA	CTCGGGAGGC	TGAGGCAGAG	AATGGCTTGA	ACCCAGGAGG	
19,845,908	CATAGGTTGC	AGTGAGTCAC	GATCGTGCCA	CTGCACTCCA	GCCTGGGTGA	
19.845.958	CAGAGCAAGA	CTCCGTTTCA	ΑΤΑΑΤΑΑΑΑ	ΑΤΑΑΑΤΑΑΑ	ATGAAATAAA	
19 846 008	GTAAAGCTGC	ATGTTAGAGA	AGTCAAGAGC	ATTACTTACC	TTAGAATATC	
19 846 058	TGAACAGACC	AATCAATTCA	GTCTCATCAT	CATATTCATC		
19 846 108	CCANTCCAC	CACATCACTA	ATTOATCAT	TTOTTOCATO	TOOTACACAC	
10 0/6 100	A CTCCCTC AC	TOCATA	TONOTATOR	TOTONONONO		
10 046 200	ACIGUUIGAG	COOTOTACIA	CTCACACAAA	ACCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC	CAAAIGAAI'I'	p 6383-[C/m]
10 046 050	ACIGAGGAAG	CULLIGIAGGA	GIGAGAGAAA			p.0303-[G/1]
10 046 200	GARREA CREEC	GAIAACAGGA	GAACAGAAAT	I CCAAAGAGA	ATTGCATTCT	P.0435-[G/C]
19,846,308	CATTGAGTTC	TIGTACCTCA	I GI CA'I'I'GCA	LAAATGTTCA	I CITTACTCAC	p.04//-[T/C]
19,846,358	G'I'GA'I'GACTT	TGATCTGCCT	'I''I'AAAGCACC	ATCTGCTGCT	TTCCTGGGAT	
19,846,408	GCTCAA <mark>CA</mark> CT	TCCCTCTTTC	TAGCAACAAG	AATTACCACT	CTTCCCCTCT	p.6553/rs59254395-[C/T];p.6554/-
rs56043715-[A/G]					
19,846,458	ATACATTTAT	CTTTCTCTAC	GTGCTTTAAC	TTCTCAGCCT	AATTTCGTCT	
19,846,508	CTGTGAGTTA	TTATCTATGT	TAGAATAAAT	TCTTTGTCTT	TGTTTACACA	
19,846,558	CTCAGATTTG	TAGTTATTTA	TTTAGGAATT	TAGGAATAAA	GATTCCATAG	
19,846,608	TCAGGAAAGG	$CACAA \underline{\mathbf{T}}TTAT$	AACTTGCGTG	TTACCCAAAA	CTCTCCCCTA	rs61274012

19	,846,	658	AGGGCTTAAT	ATGGACATTT	CTGA <mark>C</mark> GAGGC	CTGATGGGCA	$\mathbf{G}\mathbf{G}\mathbf{T}\mathbf{G}\mathbf{G}\mathbf{T}\mathbf{A}\mathbf{C}\mathbf{G}\mathbf{G}$	p.6821/rs10104051-[C/T];rs73667467
19	,846,	708	TGATGCTAAG	TTAAATTCAG	AATGAAGGCC	TGCCTTTCCT	TCCCTCCTTC	
19	,846,	758	CTTCCCCTTC	CCCTTCTTCC	TTCCTTCCTT	CCTTCCCTCC	ATCCCTCCCT	
19	,846,	808	CCTGTACTCC	TCTTCTTTCT	CAATTCTAAG	GTGGCCTTAA	TTTCTAAGGG	
19	,846,	858	ACATGGCAAA	AGACAGTCTA	GTTGGATGAG	TGCAGTCACT	AATATTATTT	
19	,846,	908	CCATGTATGG	AAAATAACTG	TTTCCTTAGT	AACAATTGCA	TCAAATCAGT	
19	,846,	958	TCACCTGCTG	CCCAATAGCA	ATCACAGGAT	GCA TT GGGAC	AAATAAATAT	p.7130/rs28615996-[T/C];p.7131-[T/G]
19	,847,	800	ACTGACTGCC	CCACAGCCAC	ATGGTCTAAG	TCAGTTACTG	GAGAGCTGAC	
19	,847,	058	TGAAGTTTGG	GAAGCATATT	CATCTTACGA	CACTGAGACA	TCCTCGGGGG	
19	,847,	108	GTTGCAAACA	CAGGTAGTGT	GAAAATTATC	AGAACATCCA	AGAAAAGGAA	
19	,847,	158	AGTTTGACTA	AGTGCC <mark>G</mark> ATA	AGATTTATGA	TGTCATGTCT	GACATAGAAT	p.7313/rs28645722-[G/A]
19	,847,	208	TGAAACCATC	ACAGAGCACA	TAGAGTGGTA	TATTTTCCTG	T <mark>C</mark> AAATGAAA	p.7388/rs28575919-[C/G]
19	,847,	258	ATCATTTTCT	TTAAAAGTGA	AATGAAAGTC	TCTAAATACA	AATTTACTAG	
19	,847,	308	AGGATGTGTA	AATTTCCTAC	TTTTCATTAC	ATACTCTGGA	CCCAACAGAG	
19	,847,	358	ggaaat t gga	GCTGT <mark>C</mark> AGTG	AGCCATACAT	GCAATCTGGT	ACAGGATCTA	p.7503/rs6999612-
[Τ/	C];p.	7512,	/rs3779788-[[C/T]				
19	,847,	408	TGGATTGAAT	AGACTTTTTT	TCATGGAACT	ACACAAAGCC	AGTCTTAGTC	p.7556/rs59811201-[T/C]
19	,847,	458	A'I"I"I'CAAAGA	AAA'I''I''I'G'I'GG	'I'CA'I"I'I'CAAA	ACCACCAGCA	A'I''I'CCAGGGA	
19	,847,	508	CACCAAG'I''I'G	CATAATTCTA	GGGGAAAG'I'G	GAC'I'AAAAG'I'	GAA'I'GGCAGC	
19	,847,	558	C'I'C'I'GGAG'I''I'	A'I'AC'I'GAGCA	'I''I'A'I''I'C'I''I'AA	AA'I'G'I'CAA'I''I'	'I'GGCAAA'I'AG	
19	,847,	608	GTGGTAAGCG	AGATCTGTCT	GCCAGA'I''I'G'I'	TCACATCATC	TCTGCTTTTAA	
19	,847,	658	AAAGA'1"1'GA'1'	CATAGAATAT	GITAAAATAA	GACCTGTGGA	GAGGAGGTAT	
19	,847,	708	GAGCTATTTA	AGGTGGAAAG	GTGTGGGGAGA	GGGTGAAATT	AGTITITAAAT	
19	,847,	158	CARE CARE	ACTITITAAC	AGGAAAAGAA	GITCITGGGC	ACTGAAGGCA	
19	,847,	808	GAATTAGATT	AAAAGTATTC	AATACTCTTC	CATTATCAGA	GAAATAGTAA	
19	,84/,	858	AGCTACTAGA	GIGCITICIG	GTTGGGAAGG	AAGAAGGCTA		
19	,047,	908		1GAGAAGIAG	AGCATATICI	IGGIGGAIGA	AIGGAIICAC	
19	,04/,	000	GIGIACIIII	ACIAIAIGCA	AAIGAAAAGA	GCI I I AAAGA	CCCATAGIII	
19	,040,	008	CANAGACIC	TTATIGAAL	TTACATCAT	TAACAAATTT	CTCCTACITA	$p_{R}^{221}/r_{R}^{7000460}$
19	,010,	1028	TTACATCACC	CACCTCTCTC	TCCACCTCTC	TCTCTATCTC	TCTCTCATCA	p.8250/re59630933-[C/A]
19	,010,	158	ACTCATTCCA	TATTTCTTAA	ACCACALTAT	TCTTTAACCA	ATTTACAAA	p.0230/1339030933 [G/A]
19	.848.	208	ATAATTACTC	AATAGGAAAA	TGTTGGCCAA	TCCTCAGATA	TTTAGATAAG	
19	.848.	258	GCTGATTCAA	ATGCCTATTC	TTTCACTGTT	CTCACTATGA	CACTCTTATT	p.8415/rs56321069-[T/A]
19	.848.	308	TTTATTATTG	GCCTGACTTC	CGCAGTTATT	TTGAAGTTAC	AGATTTTTAA	p.8467-[C/T]
19	.848.	358	ATTTTGAGTT	GAAAAAAAA	AGCAAATTTA	GATTAAGGAA	TGAGAAGTAG	p.8516-[de]G]
19	,848,	408	TCCTCGCAGC	CTCATGAATC	TCCTGAAATT	TCGAACGGCA	AAATCTAAAA	
19	,848,	458	TCTACAAGTT	ATTACCTTCT	TACAGTAAAT	AGGTGGGTGT	TATGGGTCGT	
19	,848,	508	TTTCTTTAAC	TTCTTTACTT	GAAAAGGAAT	TAAATGATTT	CCCTTTAACA	
19	,848,	558	TAACTTCCCT	TTGATTGTGC	TCTGCTTCAT	GAAGTCTGAT	TTTATTTGCA	
19	,848,	608	ATATAATTTA	CTTCAACTAT	TCACTGTACC	CCATGAAGAT	TCAGCAGCAT	
19	,848,	658	TTATAACTAT	TGTCCATAGT	TTCAAAAACT	AGGTTGTCTT	TCTCTTCTCA	
19	,848,	708	CCAAGTTTGG	GATTAACTAT	GAAGAACCAA	AGTGAACCCT	TTCAACAACA	
19	,848,	758	AGGTTTGCTG	TGGTTTTCAA	GTTTTGCCTT	TGTGTGGAAC	ATTGTAATGA	
19	,848,	808	CATAGTGGGA	AAAGAAATAT	TTGGGGAGAG	AATTAACCAT	GGCTGATACA	
19	,848,	858	$TAGCAC{\mathbf{G}}GGT$	ATTTCTGA <mark>A</mark> C	AACCTAC <mark>T</mark> AA	ATTATTTCTT	AGAACATTTT	rs73601656;p.9015/rs28445964-[A/G];
p.9	024-[T/C]						
19	,848,	908	GAAGTATATC	TTGCCATAGG	AGTGGGAACA	GTTTCATACA	AAAGCCTCCT	
19	,848,	958	CATGCTTCCA	ACTTTTCTTT	AAAAATTTT	TTT T AAATTA	TTTTTATTAAA	p.9130/rs13252357-[T/A]
19	,849,	008	AATAGAGGCC	CGGCCCGATG	GCTCACACTG	GTAATCCCAG	CACTTTAGGA	
19	,849,	058	GGCTGAGGTG	GGCAAATCAC	TTGAGGCCAG	GAGTTTGAGA	ACAGCCTGGC	
19	,849,	108	CAACATGGTG	AAACCTCATC	TCTACTAAAA	ATCCAAAAAT	TAACCAGGCC	
19	,849,	158	CGGTGGCTCA	TGCCTGTAAT	CCCAGCATTT	TAAGAGGCTG	AGGCGGGTGG	
19	,849,	208	A'I'CAC'I'I'GAG	CCCAGGAGAT	AGCGACCACC	CTGGGCAACA	'I'GGCCAAAC'I'	
19	,849,	258	TCATCTCTAC	AAGAAA'I'ACA	A <mark>G</mark> 'I''l'AGCC'I'G	GCGTGGTGGC	ACGCACC'I'G'I'	p.9411/rs28689946-
[A/	C];p.	9418/	rs28582042-	-[G/A]	amaa aamaaa			
19	,849,	308	GGTCCCCAGCT	ACTCAGGAAG	CTGAGGTGGG	AGGATCACTT	GAG1"I'CGAGG	
19	,849,	400	GIGCAGIGAA	CCAAGATCGC	ACCACIGCAC	TCCTTTGGCC	TGGGACACAG	~ 0E80 [C/m]
19	,049,	400	AACAAGACCC	GICICAAAA		AACAAAACAA		p.9589-[C/1]
19	,049,	430 E00	GLUCCALACA	TATACAAAIA	GIGGAACIAI	AGCACACAAG	TCACACCAI	> 0606 / x=72667468 [C/𝕎]
10	, 0 ± 2 , 8/10	550	CCCTCTCATCA	CTCLCCACGAA	CACTANTACC	AAAGI GGAAC	CACCOAACTC	5.2020/TB/200/H00-[G/T]
10	,019, 849	608	ACTTARATC	ATCTCTTCAC	ACIACIACIACI	AGGGIAGCCI	GABTCCCCA	
19	.849	658	ACAGCAGTTC	CCTTACTTCA	AATCACABA	GTACACACAC	ATACCCTGAC	
19	.849	708	TAAGGAGAGC	TTCAAGAAAG	GCTGGAAGAC	TTAGGAGAGA	TCAATGGTGA	
19	.849	758	CAATCTTAAT	TCAGAGTTAA	GGTTGTCTCT	CTGTCAACTT	TGCTCAACGT	p.9914/rs73667469-[T/G]
19	,849	808	TGGAGCATCT	GTTGTTCTCT	TGCAATCCAC	ATTCGTTTTC	GAAAACACTT	,
19	,849.	858	CAGAAACAAA	AATAGCATCA	GCGGTGGTTG	CCTGTGAACC	TAAAACATAT	
19	,849.	908	CATTCCAATG	AATAAAATCA	AGCAACCCTC	CAGTTAACCT	CATATCCAAT	
19	,849,	958	TTTTCCTTTC	CAGAAAGAAG	AGATTTTATC	GACATCGAAA	GTAAATTTGC	Exon 2 p.10127/rs1801177-[G/A]

19,850,008 CCTAAGGACC CCTGAAGACA CAGCTGAGGA CACTTGCCAC CTCATTCCCG 19,850,058 GAGTAGCAGA GTCCGTGGCT ACCTGTCATT TCAATCACAG CAGCAAAACC rs11542065 19,850,108 TTCATGGTGA TCCATGGCTG GACGGTAAGG GAGGCTCTTT GGGGAAGAGT Intron 2 19,850,158 GGATTGGGGT GGTGAGGTAT CCTGACTGGC CTGCCCAATT GTTGGGGACC 19,850,208 CAGTGATGGG TCCGCACCCC ACATCTCACG TGGATCTCCT TACACTTGAA rs59054859 rs11570898 19,850,258 TAAAGACAGT TCTGGCTCAG GTGGGATCTG AAGCCACAGG TTCATGAGAA 19,850,308 CTCCCCCTAG GCAGTGCCAG CCTTCATTTT AACACTGTAC CTGGTTGGTG 19,850,358 CCCTTGAGCC AGAGCTTCCT GCGAGGTTGG TAAAGGATGC TCTGCCCAGC 19,850,408 TACTGAGCAG AAGATAGGTG ATTGCTGTGG GGAACCGGTG GAACCCTGGC 19,850,458 ATGATCCCGC ATCACCCAGC ACATTGCCAG GAGAACCTTT CTAAAGAAGA p.10632-[C/T] 19,850,508 CAGCATGGAA GAGTGAGGAG AGGGCTGGAG TGGAGTGAGG AAGTGTGGCG 19,850,558 TCCATGCTGG CTTTGCCATT CTCCAGCTCT GTGCTGTGGA TCAAGTCACT 19,850,608 TGTCATCTCT GGGCCTCCAT TTACTGATCT GTAAAGCAGA GGTTGCACTA 19,850,658 GATGTCCCTA AAAACACTCT ACTTCCAAAA TTTTCCAGTT GTAAACTTTA rs6991305 19,850,708 GGGAGCCTTT CTGGAAATTA AAAAAAAAA GGGCTGGGCA GGGAACTGAC 19,850,758 ATGCTGACAT GCCAGATGAT TAGAAAAAGT GAAACTGTGA TTAAATTTAC p.10912-[A/G] 19,850,808 TTTAAAAAAT TGTTAAAAGT CCCCTCTCTA ATATGTCACA CAGTCACTTT p.10987-[C/A] 19,850,858 AGATTATGTA GTTCTTGCTT AGTTTGTTTT AAAATGTTTC AATCCCAAGT 19,850,908 GAGTAGACTG TGTAATTTAT TTAAAAGGAT TTGTGTAAAA TGGCTTGTTA p.11050/rs7016529-[T/C]; p.11090/rs8176337-[C/G] 19,850,958 AAGATATATT ATCTATCCAT TATGTCAGAG CTTGTGAATA TTATAATACT 19,851,008 AATTTCTAGT GAGAACTAAC TAAAAATAAC ATTCATCTAG TCCACATTC 19,851,058 TTTTCCTACA TAATTTAAGT GGCTTTGTTA TTGACTGAAG AGGACAATCG p.11228-[T/C] 19,851,108 CTACAATTTT TATAGAGATG AGACTACTAC TAACAGAATT CACACAGATG 19,851,158 TTTAACAAAA TATAGCCATT TACTATGTTA ACATAGTAAA TTCAATATTT 19,851,208 TGTGATAAAA TCTCAAATTC CTAAACATAA ATCCTTTAAT ATTTTAATAG 19,851,258 GTGTAAGTAG GAAAAAGGAA TCTTTTTCTT TTTTGAGATG GAGGCTCACT 19,851,308 CTATTGCCCA GGCTGGAGTG CAGTGGCGCG ATCTCGGCTC ACTGCAACCT 19,851,358 CCGCCACCTG GGCATAAGAG ATTCTCCTGC CTCAGCCTCC CGAGTAGCTG 19,851,408 GGACTACAGG CGCCCACCAC CACACCCCGC CAATTTTTAT ATTTTCAGCA p.11574/rs34123038-[G/A] 19,851,458 CAGCCAGGGT TTCACCCTGT TGGCCAGGCT GGTCTCGAAC TCCTGACCTC p.11600-[G/C] 19,851,508 AAGTGATCTA CCCACCTTGG CCTCCCAAAG TGTTGGGATG ACAGGCGAGA 19,851,558 GCCACTGCAT CTGGCCCAGA AAAAGGAATC TTTAGAGGCC CTTTGGTTAT 19,851,608 ATACAGAACT TGGATTTTAA AATTTTTCAA AAAATCTGAG CTTAATAAAC p.11760/rs73667470-[A/C];rs60772381 19,851,658 GCATTTATAC AACAGAAATA AATTGAGTAT CTCAGTCATC TCAATCTTAT 19,851,708 CCCTGAGAGA ATTTTATACT TTGGGAAGTT GTGGGAAAAA AM GGTTCTT p.11888_11889-[InsA] 19,851,758 TTTCATACTA AGATGACATG ACCAACCCAA TATCAACAGA CGGTGCCACT 19,851,808 TCCTATCATT GGTCCTACTG CCTCACTAAG CCCACCTGTA TCTTTCACAT 19,851,858 CATGTGTCCT GACATTTTGA GTGCTTGAGC ACAGAGACTG CTGTCTGGCT 19,851,908 GTGGGACTGA GTTGGGTCTG TGCAAGAACT AAGCCAGCCA CACTGATCTT 19,851,958 GATTATCTCA GTGAACTCAC TGGCAGGGTC AGGTGGCCCA CCTGGTATAG 19,852,008 GCAGCAGGGA GGGCTTCAGT TCAGCTGCGT GTCTGAAAAC CAAAGATTTA 19,852,058 AAACATAGTA ATTATTGAAC CTCAGAAGAA AAACTCAGAT TGAAAGAACT p.12224_12920-[del697] 19,852,108 TAGAATAAGA CCCTTTTTGA GTTGAGAAAG GTGAGTACTT AGATTTTTCA 19,852,158 TTTGCTTTGT TTGGGATTAC TTACATCAGT ATTTTATGTT GATCAGAAAG 19,852,208 AAAGGATTCA ATTAGCTATT GTTCGGTTAA TAAAAATGTC AGCCACTGTA rs73667471 19,852,258 GGAGTAAGTT GGATGTCCAG CCTTTTTAGA TTGCTTAACT TGGAAACACT 19,852,308 GGCCTGGGAG CGGTGGCTCA TGCCTGTGAT CCCAGCACTC TGGGAGGCCA p.12449-[G>A];rs57357723;rs10095748 p.12484-[C/A] 19,852,358 AGGCAGGCAG ATCACTGGAG GTCAGGAGTT TGAGACCAAC CTGGCCAACA 19,852,408 TGG<mark>G</mark>GAAACC CAATCTCTAC TAAAAAAATA CAAAAAAATT AGCCAGGTGT p.12550-[G/A];rs58934202 19,852,458 GGTGGTATGT GCTTGTAGTC CCAGCTACTC AGGAGGCTGA GGCAGGAGAA 19,852,508 TCGCTTGAAC CAAGGAGGCG GAGGTTGCAC TGAGCTGAGA TCATGCCACT [del4];p.12878_12889-[del12] 19,852,758 AAGAGAAACA CTGGTAGTAC AGAAAAAACTT CTGATAGAGG CCTAGAGTAA 19,852,808 ACCCGATTT CTTGCCTTAT CTGAAATAAG CTGCCTGGGG ACTCACAGGC rs11570894 19,852,858 ACAGACGAAG GGAAATGAGG AGGCTCTCCA GCTGTGTCAT GAGACACCCA p.13003-[G/T] 19,852,908 AAGGAATGCT TAGCATGTAG CATGCATGTG ATACATCCCA GCAGGTTGCT 19,852,958 TAGACACAGC TATCTTGGAG CTTTGCCACT TGCTTGGATG TCACTGGCTT 19,853,008 TAAGTACAGG GTTCCCATTG TGAAGTAGGG GATCCTGGCT GAAACAGGGA rs7002728 19,853,058 GACATTAACA TTACATTCTG AAGAAATGAC ATCAACCTCT CCTGATCTTG 19,853,108 AAAGCCAACT ACAAAGGGTG CCCAACACCC CAACCTTGAA GGGAGGCGAA 19,853,158 GGTGAGTGGG ACTGGACCAA TTCAACAGGG TTCTGCTCCT AGCCAGGTGC 19,853,208 TCCTGCTAGT TTCCTCAAAG ACCCACTTTG CATTCAGACC AATCTTTCCT 19.853.258 TTTAATAGTA TAAATGATCA AAATTTTATT GAATGTCTAA AATATACTTT

19,853,358 AATGCCTTCC TGGCTTACTT AGATCTGCCT TGGAAGGGAC AGACCTGTCT 19,853,408 CTGAACACTG TTCTGTTATT TGATTTTTCT ATCTGTGCCA ATGGGTTTCC 19,853,458 AATCAAGTTT GTTTTTTCCA TTTCATGCAG GTGTATTGGG CTGATGTATC p.13639-[G/A] 19,853,508 TATGACAAGT GGTAGGTGGG TATTTTAAGA AAGCTTGTGT CATCATCTTC 19,853,558 AGGTAACAGG AATGTATGAG AGTTGGGTGC CAAAACTTGT GGCCGCCCTG Exon 3 19,853,608 TACAAGAGAG AACCAGACTC CAATGTCATT GTGGTGGACT GGCTGTCACG 19,853,658 GGCTCAGGAG CATTACCCAG TGTCCGCGGGG CTACACCAAA CTGGTGGGGAC 19,853,708 AGGATGT<u>G</u>GC CCGGTTTATC AACTGGATGG AGGTAAGACT GGGAGAAGGA Intron 3 p.13854/rs1121923-[G/A] 19,853,758 GACTTATGTG TCCAAAACAG TGTTTTTGAC TGGAGCCAGA AAACCGGCTG rs3735959 19,853,808 TTCTTTCTTC CTTTTCTCTT AGATTTAAAT ATTTTCTGGG GGCATTCAAA 19,853,858 TCTTCAGAAT CAGCGTGGAT ATTATTTTAT ATCCAAAAGC AACATTTTGA 19,853,958 GATATTTTCA CAGTGAATAG ATCTGCTGAG ACCAATAACT AAGTGGGCCC p.14114/rs73667472-[T/C] 19,854,008 AACAGAAAAA AGCTTGTGAT TTTCGGACAG AGGAAAGATG GCATGTTCAG 19,854,058 CCAGACCCTT CCCTACCAGT TGGCTGGCCT GTGGACATCT TATCCTCACC rs58670071 19,854,108 TTGACATACC AATCTCTTTC ATGAAAATAT TAATAGTACT TATTCTTTAG 19,854,158 TGTGAAATAG GATGAACGTT TTTGTTGAGC ATTGGGAGAG TGATGGAATT 19,854,208 GAGCTAGGAA GATGTTGGAA GGGAAGGTGC ATAGGATAGA AGGGAACTGA 19,854,258 GGTCTGGAGT TCTGACTTAG CTGCAAGAGA CCCACTTTTT CACACGATCC 19,854,308 CTTGAGAAGT ACCTCTGAAA AGTATCTTGG GGTTGGAAAG AAGCTGATAC 19,854,358 TCTGACCAAG GCAAATTATT TTAACCAGGT AATTGGAAGT AAAAAATAAG 19,854,408 CTGTGTTTAT TAGACTGATC ATAAAAGACA AAAGTTCTTT TCTTGTCTTT 19,854,458 TTTGCTGACC AGGCAAATGA ACA<u>T</u>GGGCAA ACGGGATCAC CTCCCTGGGG rs8176338 19,854,508 CTCAGGCTTC TCACCTGTTA AATGAGGGGC TGGACCATGT ACCTCTGGTC 19,854,558 CCTTCCACTG AATGTTTCCT GAGTCTGTCA TTGCTTGGCT AACCTTCAAT 19,854,608 GATAAAGTGA TACAGATATT TAGAGTAAGG AATAATGGGA AAATATATAC 19,854,658 CCATATACTA TACATTCAAA CATACACACA TATACATATA TGCATGCATA 19,854,708 TAAATGTATA CGCATATGTA TATGTGTATA TGTTTGTACG TATAGTATAT 19,854,758 GGTTATATAT GCAAATACAT ATACATATAC AAACATATGC ATATATTATA 19,854,808 TACATAAATA ATACTATTTC AGATGCATGG AAAAACTTTG TAATTTAAAT 19,854,858 CTGCTATTAA AGAAAGAGAA AATCAATTCT GGATTTGTTT ACGGAAAAGT 19,854,908 GAAACAAAAG AAAAAGACAA TTTTAACACT AGAGAATATT TTCTCTCTCT 19,854,958 TACCTGTAAC ACAAAATTAA AATAAGTAGA ATTAGTTTTC AGTATTTCCT rs57345602 19,855,008 ATATTTGGAA AACAATATTT ATATTCATTT TGTTTCTTTT AGTTTTATTT 19,855,058 TTGGCAGAAC TGTAAGCACC TTCATTTCT TTTTCTTCCA AAGGAGGAGT Exon 4 p.15206/rs343-[C/A];rs247; rs11570897;p.15245/rs248-[G/A] 19,855,108 TTAACTACCC TCTGGACAAT GTCCATCTCT TGGGATACAG CCTTGGAGCC 19,855,158 CATGCTGCTG GCATTGCAGG AAGTCTGACC AATAAGAAAG TCAACAGAAT 19,855,208 TACTGGTAAG AAAGCAATTT CGTTGGTCTT ATCATAAGAG GTGAAAAGAC Intron 4 19,855,258 TGTCATTCTG AGAGAGAATC AGAACAAATT TTGTTAAATA CCCACATGTG p.15425/rs249-[T/C] 19,855,308 TGOTGTTCTT CCCGGAGACA TGACCAGCAC TTGATTATCT CATTGTAGGG p.15449_15450-[InsTG] 19,855,358 CTCTTTATTA GGGATAAGAA AAAACACAGA CGCTCTCACT GGCTTACTAT 19,855,408 CCACTGGCAA TAGCACAGAA ATAAAGCATA AT<u>T</u>ACACACA ATGCCTGCAG rs251 19,855,458 ATTTCTCTGG GAAGCCTGTT TCCTCCCACT CTCAGCTCTG TGTTTTAGTA 19,855,508 GTGTAA TGC ACATCAGTAC TAGGAGAAAA GAAGAAGGAC CAATTCCAGA p.15653-[delA] 19,855,558 GGCCACTTCG AAAGAAGACC GTCATCTAGG CAAAGGTGTG GCATACACAC 19,855,608 AGAGAGAAAG AACCCACCAC TGTTTATACA TCTTCTCGAC ATATTCAGAA 19,855,658 ATAATCTACA AAAGGAAATC CAGCCATCCT GAGTGGAAAC TGCTGCATAA p.15836/rs253-[C/T] 19,855,708 GGCTAGTTTA AGAGAACTCAA ATTCATTTTA GAAGGAGCCA AGCCTCCTT 19,855,758 TATGTCTCTC TAAGTAAAGA TACCATGACT GTAGAATAGG AGCTAATAAG rs11570899 19,855,808 AATCTAAATA GCTGCCAGTG CATTCAAATG ATGAGCAGTG ACATGCGAAT 19,855,858 GTCATACGAA TGGAAATTTA CAAATCTGTG TTCCTGCTTT TTTCCCTTTT 19,855,908 AAGGCCTCGA TCCAGCTGGA CCTAACTTTG AGTATGCAGA AGCCCCGAGT Exon 5 19,855,958 CGTCTTTCTC CTGATGATGC AGATTTTGTA GACGTCTTAC ACACATTCAC 19,856,008 CAGAGGGTCC CCTGGTCGAA GCATTGGAAT CCAGAAACCA GTTGGGCATG rs45607438 19,856,058 TTGACATTTA CCCGAATGGA GGTACTTTTC AGCCAGGATG TAACATTGGA 19,856,108 GAAGCTATCC GCGTGATTGC AGAGAGAGGA CTTGGAGGTA AATATTATTT Intron 5 19,856,158 AGAAGCGAAT TAAATGTGAC TCTTATCCTT AACCCTTATT GACCCAATGT p.16316/rs254-[C/G];p.16320/rs255-[T/C]19,856,208 CCTACTCAGT AGCTTCAAAG TATGTAGTTT TCATATACAC ATTTGGCCAA p.16386/rs256-[C/T] 19,856,258 ATTATGTTTC TGAAGAATTC TGCAATGTTC AGCATGACCA CCTTAGAGCC p.16442-[G/C] 19,856,308 AGGCAGACAG CCATTTTATC TTTTATTTAC TATACTGTAG GCTACACTGA 19,856,358 GCAGTGCACT TACAGTAGCA AGAGAAAAAG GTGGGATTTT AGACAGGAAG 19,856,408 ACTCCACTGA CCTCAA**T**AAT GGCATCATAA AATGCTATCT GGCCACATGT p.16563-[T/A] 19,856,458 TGTCATACCT TGAATGTAGC TGCAAAGCCA ATGGAAAGAT TTTAGATGTT 19,856,508 ACTGGAACAG AAGATGTTAA TTAGGATAAA TCTTCCAAAA TGTTCAGAAC rs257;p.16671/rs258-[G/C]; 19,856,558 ATAATGTTAG CTTAATGTTT TACTTTAATA ATGTTAGCTT GTGTTAAATT 19,856,608 TATGATTTTT GTTTGTTTGT TTTTTGAGAT AGAGTCTTAT TCTATTGCCC 19,856,658 AAGCTGGGGT GCAGTCACAC AATCACAGGG ACTTGCAATG TTGCCCAGGC

19,856,708 TGGTCTCAAA CTCCTGGCCT CAAGTGATCC TCCTGCCTCA GCCTCCCAAA rs259 19,856,758 GTTCTGGGAT TGCAGCTGTG AGCCACCACG CCCAGTTTAC GATTTATTTT rs260 19,856,808 TAAGAGCCCC TTGCATACTT TATAGACATT GGGACCTACC TAGGATATTC 19,856,858 TCGTTATTTT TGTGCACGTA ATAGAACTTA GAGCATATTG TTACTATTTT rs261 19,856,908 CGATTGTCCT AAAAACTTAC AAGGAATTCA TTCTTATGGC ATTGCTGATT rs262 19,856,958 ATTTCTATGT TCATTTGATA TAAAAGAGTG TTAGTAGGGG CAGAACCCTC 19,857,008 AATTGTACAT AATATCAATG ATAAAATACA ATTCATTTAA CAATTACCCT 19,857,058 CTTAAGATGT GGTTTCTAGA AATACAAATT GTCCCTAACT TACAGTTTTC p.2713/rs263-[C/T] 19,857,108 CAACTTTACA ATTGGGCTGT AACACCATTT TAAGTTGAGA AGCACGTGAT rs9282782 19,857,158 GGTTTGACTT AAAACTTTTT GACATTATGA TGGGTTTTGG GGGTATTAAG 19,857,208 TGCATTTTGA CTTACAGTAT TTTTGACTTA TGAAGAATTT ATTGTAAGGC 19,857,258 AAGGGGCAGG TATATGTTTC TAGAAGCACC TAGAAGTGTT AGACACTTTC 19,857,308 AATGTAAGAG AAGGATGAGA TAAACAAGGA AATCAACCTC CACCTTGGAG p.17476-[A/C] 19,857,358 GCTTATTACA GCTTCATAAA CATACTCATA AATATAAGAA GCACAAAAGT 19,857,408 CAAAAATTCC CTGTGAACTT GCAACTTTCA CTCTCTTGAA GGTGGGTGGG 19,857,458 CCCCACCAC CAAGAATATC TCCTGAAATA GGGCCTACAA TCATAAATGC p.17599/rs264-[G/A] 19,857,508 ACAGGACTAT ATCCTTGGGT GATTCTACTC TAACACCACA TCTCACCTAT rs265 19,857,558 TTTAGACATG CCAAATGAAA CACTCTTTGT GAATTTCTGC CGAGATACAA rs266;rs267 19,857,608 TCTTGGTGTC TCTTTTTAC CCAGATGTGG ACCAGCTAGT GAAGTGCTCC Exon 6 19,857,658 CACGAGCGCT CCATTCATCT CTTCATCGAC TCTCTGTTGA ATGAAGAAAA rs28934893;rs35414700 19,857,708 TCCAAGTAAG GCCTACAGGT GCAGTTCCAA GGAAGCCTTT GAGAAAGGGC rs1800011 19,857,758 TCTGCTTGAG TTGTAGAAAG AACCGCTGCA ACAATCTGGG CTATGAGATC 19,857,808 AATAAAGTCA GAGCCAAAAG AAGCAGCAAA ATGTACCTGA AGACTCGTTC p.17948/rs268-[A/G] 19,857,858 TCAGATGCCC TACAAAGGTA GGCTGGAGAC TGTTGTAAAT AAGGAAACCA Intron 6 rs59184895 19,857,908 AGGAGTCCTA TTTCATCATG CTCACTGCAT CACATGTACT GATTCTGTCC p.18065-[T/G];p.18086/rs269-[T/G]; rs2075651; p.18095/rs270-[C/A] 19,857,958 ATTGGAACAG AGATGATGAC TGGTGTTACT AAACCCTGAG CCCTGGTGTT p.18121/rs271-[G/A] 19,858,008 TCTGTTGATA GGGGGTTGCA TTGATCCATT TGTCTGAGGC TTCTAATTCC 19,858,058 CATTGTCAGC AAGGTCCCAG TGCTCAGTGT GGGATTTGCA GCCTTGCTCG 19,858,108 CTGCCCTCCC CTGTAAATGT GGCCATTAGC ATGGGCTAGG CTATCAGCAC 19,858,158 AGACCTCAGA GCTCATTGG AACCATCCAC CTCGGGTCAA CAAACTATAA p.18297-[A/C] 19,858,208 CCCTTGTGCC AAATCCAGCC TACTTCCTGC TTTTGTAAAT AGTTTTTTTA rs272;p.18395_18396-[InsT] 19,858,258 AAACTTTTAA GTTCAGGGGT ACGTATGTAG GTTTGCTAAA AAGGTAAACT 19,858,308 TGTGACATGG GAGTT<u>T</u>GTTG TCCAGAATAT TCCATCACCC AGGTATTAAG p.18462-[T/G] 19,858,358 CTTAGTACCC ATTAGTTACT TTTCCTGAAG CTCTCCCTCC TCCCACCCTC 19,858,408 TGGGAGGCCC CAGTGTCTGT TGTTCCCCCTC TATGTGCTCA TGCAAAGTTT 19,858,458 TATTAGGACA CAGCCACACA CATT<u>C</u>ATTAC CATATTGTCA AAGGCTGGTT p.18621-[C/T] 19,858,508 TCATGCCACC ATAACAGAGT TGATAGCCCA CAGAGCCTAA AATATTTACT rs275 19,858,558 CCCTGGCCCT TTACAGAATG TTCACAACTT ACATAAAGGC AAGGACCATC p.18708/rs276-[T/C] 19,858,608 TGTCTTATTT ATTTATTTAT TTAATTTGAG ATGAAGTCTA GCTTTCTCCT 19,858,658 AGGCTGGAGG AGAGGGGCAT GATCTTGGCT CACCACAACC TCTGCCTCCC p.18822/rs277-[T/C] 19,858,708 GGGTTCAAAT GATTCCCCTG CCTCAGCCTC CGGAGTAGCT GGGATAACAG 19,858,758 GCATGCACCA TCATGCCCAG CTAATTTTTG TATTTTTAGT AGAGAGGGGG p.18942/rs278-[G/A] 19,858,808 TTTCACCGTG TTGACCAGGC TGGTCTCGAA CTGCTGACCT CAGGTGATCT 19,858,858 GCCCTCCTTG GCCTCATCTG TCTTTTTAAA TGCAACTATT CCTGGAAGGC 19,858,908 AAGAATATCT CACACCTTCT AAGATACTGC CATTTTGCCA GGAGTTTGTT 19,858,958 TCACACTTGA ATTTCAAG<u>C</u>T TGGCCTCTTG TTTAGAGGCA GACCTAAAGG rs279 19,859,008 AATGGTCGGA AAATGAGAGA GGAGGTCTTC GGATAAATCC GGTGAGAGGG 19,859,058 ACCAACTTCA GGAAGGGTGG CTTTTGTGGA ATCCAGATGG AAACCTGAGG 19,859,108 GAAGGGATGA TATTAAAGAA CAGTGGCCCC AGGTAAAACA TATGGCACCC 19,859,158 ATGTGTAAGG TGATTCTTAG AATCTGTAGA GGTGTCTTTC GTGGTATAGA rs280 19,859,208 GGTTGAGGCA CCTGTGCTTC AAGGAAACCT TAACTCTTCA AAATCAGGCA 19,859,258 ATGCGTATGA GGTAAAGAGA GGACTGTGGG ACCATAATCT TGAAG<mark>A</mark>CACA rs17091775;p.19442/rs281-[A/T];p.19445/rs282-[C/G] 19,859,308 GACAGGCTTC ACTCATCCCT GCCTCCTGCA CCAGTGGGTT CAAGGCTCTG 19,859,358 TCAGTGTCCC CTAGGGGGCAC CTCACCACTC CCAGCTTCTT CAGCTCTGGC p.19517/rs283-[C/T];rs284 19,859,408 CTGTCCTGCT GCCTGCAAGG GTTTTGCTTA ATTCTCAATT CAATGTCTCT 19,859,458 TCATCTTTTA GCAGCTGTGG GGTTTTGTTG TTGTTCTTCT GTTTTTGCTT p.19608/rs285-[C/T] 19,859,508 AGTATCTGAC TACTTTTTAA TTATAAAAAG AGATGTATCT AAACAAAATA p.19675/rs286-[A/T] 19,859,558 GAGATTGTTA TCAGAAGTTC ACAACATTTA TTAAAAAATTT TTTCACCTGG 19,859,608 ACAAGAGTCT AAAGCAGCAT AAAAATATGG TCTGCTATAT TCTAAACCAT 19,859,658 CAGTCTTAAG AGATCTGT<mark>C</mark>T CTCAGCTTAA GAGAAAATAC ATTTAATAGA p.19815-[G/A] 19,859,708 CAGTAACACA AATAAGAAAA AAATCTGACC AAGGATAGTG GGATATAGAA 19,859,808 TTTATTTATT TATTTATTT TGAGACACAG TCTCGCTCAG TTACCCAGGC p.19975/rs287-[A/G] 19,859,858 TGGAGTGCAG CGGCGCAATC TTAGCTCACT GCAACCTCTG CTTCCCGGTT rs288;rs2583659;p.20038/rs289-[T/C] 19,859,908 CAAGCGATTC TCCTGCCTCA GCCTCCTGAG TAACTGGGAT TACAGGCACC p.20080-[C/T] 19,859,958 CGCCACCACG CCCAACTAAT TTCTGTATTT TTCTTAGTAG AAACAGGGTT rs34951282 19,860,008 TCACCATGTT GGCCAAGCTA GTCTCAAACT CCTGACCTCA GGTGATTCAC rs290 19,860,058 CCACCAAGGC CTCCCAAAGT GCTGGGATTA CAGGCATGAG CCACCATGCC

19,860,108 TGGCCTCCAA GAACTCTTTT TTCCTCCATC ATCATGGTTC TATTTTAGTC rs2698206;p.20271/rs291-[T/C] 19,860,158 CTGCTGCCTT TCCTTTTAAC CTCTCCCCAG GCCCATTGC TCAGGGTTTT 19,860,208 TEGTAGAGAC CAGAGGAGGG GCAGGGAGGA GATATAGAAG TTCAACTACC p.20363-[A/T] 19,860,258 TGCTTCCAGA GGCTGTCCCT AGTATAGAAT ACTTTAGGGG CTGGCTTTAC 19,860,308 AAGGCAGTCC TTGTGGCCTC ACTGATG**G**CT CAATGAAATA AGTTCTTTTT rs292 19,860,358 TAAAAAAAAT TTTATTTATT TCCATAGGTT ATTGGGGGGAA CAGGTGGTGT p.20505_20506-[InsA];p.20544/rs294-[T/C]19,860,408 TTGGTTACAT GAGTAAGTTC TTTAGTAGTG ATTTGTGAGA TTTTGGTGTG 19,860,458 CCCATTACGG AATGGAAAAA TCAACGAAAT AAGTTCTATG ATGCACCTAC 19,860,508 TAGACACCTA ATCTGCCCTA GATGGTGGGG GAATTAAGAG CATGGGCATG p.20657/rs295-[A/C];p.20663/rs296-[G/A]19,860,558 ATCCTGTGAC CGGAAGCCCG CTTACAGTCA GGGTGGAGGA CAGACCTACT 19,860,608 CATGAAACAA ACACAGTGAC ATATAGTGAC ACAGAAGCAA ATG<u>T</u>CAAATA p.20790/rs297-[T/C] 19,860,658 TGCTTGCTCC AGATGCTAAG GCACAAGATG GCCAAGGATG GCGGAGTTCA 19,860,708 TGGAGAAAGC ATCATGAGTG TTTTGGCCTT CTGATTTGAT CTCCCTAGCA 19,860,758 CCCCTCAAAG ATGGCTACTT CCTAATGCTG CTTGGCAATT CAGACACATT 19,860,808 TGGGTTTTTC CTATGCATAT AACCACACTT TTCTGAAAGG GAGTAGAATT 19,860,858 CAAGGTCTGC ATTTTCTAGG TATGAACACT GTGCATGATG AAGTCTTTCC 19,860,908 AAGCCACACC AGTGGTTCCA TGTGTGTGCA CTTCCGGTTT GAGTGCTAGT 19,860,958 GAGATACTTC TGTGGTTCTG AATTGCCTCA CTATTTGGGG TTGTGGATATT p.21125_21128-[delGACT];rs73601683 19,861,008 TTCATAAAGA TTGATCAACA TGTTCGAATT TCCTCCCCCAA CAGTCTTCCA Exon 7 19,861,058 TTACCAAGTA AAGATTCATT TTTCTGGGAC TGAGAGTGAA ACCCATACCA 19,861,108 ATCAGGCCTT TGAGATTTCT CTGTATGGCA CCGTGGCCGA GAGTGAGAAC rs298 19,861,158 ATCCCATTCA CTCTGTGAGT AGCACAGGGG GGCGGTCATC ATGGCACCAG Intron 7 rs299 rs300 19,861,208 TCCCTCTCCT GCCATAACCC TTGGTCTGAG CAGCAGAAGC AGAGAGCGAT p.21353/rs301-[T/C];rs302;rs34500595 19,861,258 GCCTAGAAAA CAAGTCTTTA GTTAAAAAAA TCAGAATTTC AAAATTGAGG 19,861,308 TCTTTCCTCT ATTTGATATT GAGAAAAAA TGCTTCAAAT TGGCCATTTT 19,861,358 ATTTTCACTT ACTAGTTATA TTTTTTTATT TATCATCTTA TATCTGTTTA 19,861,408 TTTCTTTTAT AAAGCTGCTG TTAAACAATA TAATTAAACT ATCTCAAAAG 19,861,458 GTTTGACATT AAAGAAAATG AGCAATGGTA ACAGGAAACC ACTCTATAGA 19,861,508 TGTACATATA ATATGTACAG AAAATATAAG TAGTAAGAAG TCCATGACAA 19,861,608 CTCTCTCTAT TGCCCAGGCT GGAGTGCAGT GAT<u>T</u>CGATCT CAGCTCACTG p.21780/rs304-[T/G] 19,861,658 CAACCTCTAC CTCCCGAGTT CAAACAATTC TTCTGTCTCA GCCTCCCGAG p.21820/rs305-[A/G] 19,861,708 TAGCTGGGGC TGCAGGGTGCC CACCACTG CCCAGCTGAT TTTTGTAT<u>T</u> rs306;rs307; p.21895/rs308-[T/G] 19,861,758 TTAGTAGCGA CAGGGTCTCA CCATGTTGGC CAAGCTGGTC TTGAA<u>T</u>TCCT rs309 19,861,808 GATCTCAGGT GATCACCCG CCCCGGCCTC CCAAAGTGCT GGGATTACAG p.21965/rs310-[C/T] 19,861,858 GTGTGAGCCA CCATGCCCAG CCTACCCTTT ACTACTAATC AAAGAAATAA p.22044_22047_[deltaaa] 19,861,908AGTAAGGCA ACTTGATACT TTTACAATTA CTAGATGAAC AAATCTTTAA19,861,958AAATAGCCAG TGCAGACAAG GTGGTGAAGC AGAACATGCG AACCTACCAT 19,862,008 GCATCATTCA CGGCTAGAAC CCTCCAGGTG CGGAAGGTAG TATTTTAATA 19,862,058 ACTITCCATA GCTACAAAAT ATTATTACAT AGAAGGGAGT GATTTTTTC 19,862,108 ТААТАТТТАТ ССТАААДААА ТАДТСААСАА АСАТТТТТАА АААСАТСААТ 19,862,158 TACAGTCGTA CCTATACTAG CATAAATTAG AAACCCAGTA TCCAACATTG 19,862,208 AGGCAGTGGG TAAATGAATC GTGGTTTATC AAGTCATTATA AATCAATCTA 19,862,258 GCCTTTAAAA ACTATAATTC TAGGAAACCC AGGAAAACAT AGTAAAAAAT p.22416/rs312-[G/C];rs313 19,862,308 GGAATATAAA ATCTCAAGAA AATAAAGAAT AGAGAATCGT ATGTGTGCTA p.22461/rs314-[G/A] 19,862,358 TGATTGTAGC TAAATAATGT TCAAGTATCA ACACAAATTG AAAAGGAATA p.22514/rs315-[T/C] 19,862,408 CATGAAAATG AAAATTATAT TTCTGAATGA TTGACTTCAG GATTTTCTTT 19,862,458 TAGAATTGTA TTAAATAGTT CATGTCATTA GGATAAATGC TGGAATGTGG 19,862,508 ATATAATTTA AAATATACTA AATGCCATCG ACCTTCATTT TGAGTTCTTT 19,862,558 GTTGGACATT TTTGTGCATT TTTAAAAATAT CCCCTAAATA ATAAAGCTAT 19,862,608 TTATATTTGG AGAGGAGAAA AAAAAGTGGG GGGCAGGGAG AGCTGATCTC 19,862,658 TATAACTAAC CAAATTTATT GCTTTTTGT TTAGGCCTGA AGTTTCCACA Exon 8 19,862,708 AATAAGACCT ACTCCTTCCT AATTTACACA GAGGTAGATA TTGGAGAACT p.22855/rs316-[C/A] 19,862,758 ACTCATGTTG AAGCTCAAAT GGAAGAGTGA TTCATACTTT AGCTGGTCAG 19,862,808 ACTGGTGGAG CAGTCCCGGC TTCGCCATTC AGAAGATCAG AGTAAAAGCA rs5934 19,862,858 GGAGAGACTC AGAAAAAGTA ATTAAATGTA TTTTTCTTCC TTCACTTTAG Intron 8 19,862,908 ACCCCCACCT GATGTCAGGA CCTAGGGGGCT GTATTTCAGG GGCCTTCACA 19,862,958 ATTCAGGGAG AGCTTTAGGA AACCTTGTAT TTATTACTGT ATGATGTAGA 19,863,008 TTTTCTTTAG GAGTCTTCTT TTATTTTCTT ATTTTTGGGG GGC<mark>ACG</mark>GGGG p.23190_23191-[delAG];p23192-[G/T] 19,863,058 GGGAAGTGAC AGTATTTTTG TATTTCATGT AAGGAAAACA TAAGCCCTGA 19,863,108 ATCGCTCACA GTTATTCAGT GAGAGCTGGG ATTAGAAGTC AGGAATCTCA 19,863,158 GCTTCTCATT TGGCACTGTT TCTTGTAAGT ACAAAATAGT TAGGGAACAA 19,863,208 ACCTCCGAGA TGCTACCTGG ATAATCAAAG ATTCAAACCA ACCTCTTCAA p.23388/rs318-[C/G];p23395/rs319-[A/C] 19,863,258 GAAGGGTGAG ATTCCAAGAT AATCTCAACC TGTCTCCGCA GCCCCACCCA 19,863,308 TGTGTACCCA TAAAATGAAT TACACAGAGA TCGCTATAGG ATTTAAAGCT p.23496/rs320-[T/G] 19,863,358 TTTATACTAA ATGTGCTGGG ATTTTGCAAA CTATAGTGTG CTGTTATTGT 19,863,408 TAATTTAAAA AAACTCTAAG TTAGGA<u>T</u>TGA CAAATTATTT CTCTTTAGTC p.23573-[T/C] 19,863,458 ATTTGCTTGT ATCACCAAAG AAGCAAACAA ACAAACAAAA AAAAAAAGAA rs321;p.23636/rs322-[A/C];rs323

19 863 508	777CATCTTC	CCCATCCAAA	TCTTATAAAC	$\lambda \lambda T C T T T T T T T T T T T T T T T T $	ACACTACCAA	
10 000 500		AAADDIADDO		MAICIIIII	TCACIAGCAA	
19,863,558	TGTCTAGCTG	AAGGCAGATG	CCCTAATTCC	TTAATGCAGA	TGCTAAGAGA	
19,863,608	T GGCAGAGTT	GATCTTTTAT	CATCTCTTGG	TGAAAGCCCA	GTAACATAAG	p.23747/rs325-[T/C]
19,863,658	ACTGCTCTAG	GCTGTCTGCA	TGCCTGTCTA	TCTAAATTAA	CTAGCTTGGT	
19 863 708	TGCTGAACAC	CACCTTACCC	TOTOAAATTA	CCCTCTCATT	CTGATGTGGC	$p_{23858/rs326-[A/G]:rs7005541}$
10 062 750				CCCICIONII		p.25050/15520 [m/0]/15/005511
19,003,750	CIGAGIGIGA	CAGIIAAIIA	IIGGGAAIAI	CAAAACAATT	ACCCAGCAIG	
19,863,808	ATCATGTATT	A'I''I''I'AAACAG	TCCTGACAGA	ACTGTACCTT	'I'G'I'GAACAG'I'	p.23955/rs327-[T/G]
19,863,858	GCTTTTGATT	GTTCTACATG	GCATATTCAC	ATCCATTTTC	TTCCACAGGG	Exon 9
19.863.908	TGATCTTCTG	TTCTAGGGAG	AAAGTGTCTC	ATTTGCAGAA	AGGAAAGGCA	
10 062 050	COTCOCCTAT	TTCTCAAATC	CCATCACAAC	TOTOTONATA	ACAACTCACC	p - 24142 / ma229 [C/C]
19,003,950	CCIGCGGIAI	IIGIGAAAIG	CCAIGACAAG	ICICIGAAIA	AGAAGICAGG	p.24143/18320-[C/G]
19,864,008	CTGGTGAGCA	TTCTGGGCTA	AAGC'I'GAC'I'G	GGCATCCTGA	GCTTGCACCC	Intron 9
19,864,058	TAAGGGAGGC	AGCTTCATGC	ATTCCTCTTC	ACCCCATCAC	CAGCAGCTTG	
19,864,108	CCCTGACTCA	TGTGATCAAA	GCATTCAATC	AGTCTTTCTT	AGTCCTTCTG	
19 864 158	CATATCTATC	AATCCCTCT	CTTCCTTTAT	CCAATACTTC		
10 064 200	CATAIOIAIC	mammanaa	GIIGGIIIAI	OUTRAIACTIC		
19,864,208	CITICICCIC	TIGITICICC	CAGCCCGGAC	CTTCAACCCA	GGCACACATT	
19,864,258	TTAGGTTTTA	TTTTACTCCT	TGAACTACCC	CTGAATCTTC	ACTTCTCCTT	
19,864,308	TTTTCTCTAC	TGCGTCTCTG	CTGACTTTGC	AGATGCCATC	TGCAGAGCAT	
19,864,358	GTAACACAAG	TTTAGTAGTT	GCCGTTCTGG	CTGTGGGTGC	AGCTCTTCCC	p.24505/rs329-[A/G]
19 864 408	ACCATCTATT	CACCCAACTA	A A A A CATC	ACTCCATCAC	CTCCACCCAC	p 24573 - [T/C]
10 064 450	AUGATOTATT	CAUGOAADIA		ACTOCATCAC	CIUCAUCAC	p.215/5 [1/C]
19,864,458	ATAGTTCTTG	ATTCTCCAAG	TGCCAGCATA	CICCGGGACA	CACAGCCAAC	
19,864,508	AGGGCTGCCC	CAAGCACCCA	TCTCAAAACC	C TCAAAGCTG	CCAAGCAAAC	rs12544438
19,864,558	AGAATGAGAG	TTATAGGAAA	CTGTTCTCTC	TTCTATCTCC	AAACAACTCT	
19 864 608	GTGCCTCTTT	CCTACCTGAC	CTTTAGGGCT	AATCCATGTG	GCAGCTGTTA	
10 064 660	COTCONTOTT	TCCACACC	CACTACTCAC	ACCACACTAA	CONTETENCE	n 24915/ma220 [C/A:n 24924/ma221 [C/A]
10,004,000	GCIGCAICII		CAGIACIGAG	AGGACACIAA	GCAIGIGACC	p.24013/18330-[G/A/p.24024/18331-[G/A]
19,864,708	TTCACTACTC	CTGTTCTGAA	TTCCAGGAAT	ATGCCCTTTTT	CAACCCTCCA	p.24852/rs126/9834-[T/C]
19,864,758	CA <mark>C</mark> ATCCCCT	GCCAGACAGC	AAGTGCTAAT	GGGTTACAGG	AACAAAGGGG	p.24899-[C/T]
19,864,808	AGAAATATTA	GATCATGTCA	TACAAGCCAG	TGACACAAGA	AATGAAGGGA	
19.864.858	AAGGCTAGAC	ACAGTGTCAT	CTGGAAACAG	GAAAAGCAAT	TGCTTTTGGT	$p_25005 - [A/G]$
10 064 000			ATTTCCCACA	A TOTATACA	1001111001 1001010001	$p = 25000 [C/\lambda] \cdot ma 29691091$
10 064 050		CCIAGIIIGC	ATTIGGGACA	AAIGIAIAGA	ATAAGAATIG	p.23049-[G/A]/1820001001
19,864,958	CCITCATGCC	TGCAATCCCA	GCACTTTGGGG	AGGCTGAGGC	AGGTGGATCA	
19,865,008	CCTGAGGTCA	GGAGTTTGAG	ACCAGCCTGG	CCAACGTGGC	GAAACCACCT	
19,865,058	CTCTACTAAA	ΑΑΤΑΤΑΑΑΑ	TTAGCTGGGT	GTGGCGGCAC	ATGCCTGTAA	
19,865,108	TCCCAGCTAC	TCGGCAGGCT	GAGGCGGGAG	AATTGCTTGA	ACCGGGGAGG	
10 865 158	CACACCTTCC	ACTCACATCA	CATCCCCCA		CCCTCCCCAA	$p_{25320} = [C/\pi] : p_{25335} = [C/\pi]$
10 005,150	CAGAGGIIGC	AGIGAGAIGA	GAICGCCA		GCC1GGGCAA	p.25520 - [C/1]/p25555 - [C/1]
19,865,208	CAGAGAAAGA	CICCATCICA	АААААААААА	AAACATGCCT	A111 A GGAAAA	p.25352-[A/C],rs285/8146
19,865,258	GTATATTAAA	GACCCTA T GT	GTAACATCTT	TAATGTTTTT	AAATTCTACT	rs28599962
19,865,308	TTATAATA G A	TTTTATACAT	GTTTACTATA	AATAGATTAG	GAAAAATAAG	rs13261181
19,865,358	САААААТААА	ATAAAATCAC	TGTGACCATA	TCACTCAGAG	ACAACCCCAA	
19 865 408	TTAACCTTTT	ͲϪͲͲͲϪͲϪͲͲ	CTTTCCCACT	TTATATAC	ΔΤΔΔΤΔΤΤΤΔ	
10 065 450						
19,005,450	TAIGITTIC	GILCIIIACA	AAAAIAGAAI	IAIGGIGIAI	ATACICIGAA	18116610 00400000
19,865,508	TGACTAGATG	AGAACATCTG	GATCAAAAGC	ATTAATGTAA	GAGCATTCAG	rs1/116619 rs28439839
19,865,558	GATAAACTCA	AAATGGAGAA	TAGTTAGTGG	TATTGAGCCA	GGCAAAATAA	
19,865,608	CGCAATTCTT	ATCTAACTGG	AGACTTTTCT	TCTAAGAGGT	TATTACGTTG	
19,865,658	TTTTTCCT C A	TCACAAATCT	GAGGCAATAT	CATACTTTCT	TCAGTTC T TA	rs28424158;p25844-[T/G]
19 865 708	GAAAGAGACT	TTTAGATGAA	GTTTTTTTG	TTTCTTTCC		rs28716400
10 005 700						1520710100
19,005,/50	CIIGAGAIGG	AGIIIIGCIC	IIGCIGCCCA	GGCIGGAGIG	IAGIGGCICG	
19,865,808	ATCTCAGCTC	AC'I'GCAACC'I'	CCACCTCCTG	GG'I"I'CAAGCA	ATTCTCCTGC	
19,865,858	CTCAGCCTCC	CAAGTAGCTG	GGATTACACG	TGTCCGCCAC	CACACCTGGC	
19,865,908	TAATTTCGTA	TTTTTAGTA G	AGAAAGGGTT	TCACCATGTT	GGTCAGGCTG	rs4416836
19,865,958	GTCTTGAACT	CCTAACCTCA	GGTTATCCAC	CTGCCTCGGC	CTCCCAAAGT	
19 866 008	CCTCCCATTA	TACCTCTCAC	TCACCACACC	CCCCCCTACA	TCCACTTTA	
10 966 059	TACATCCATT	TOTATTACAC	ATAATACCA	TCCATAT	CCCACITIA	n 26201 [m/cl:n 26224/ma10000160 [m/c]
19,000,000	IACALGCATI	IGIAIIACAC	AIAAAIAGCA	IGCAIAI	GCCAGAGCAI	p.20201-[1/G]/p.20234/1510099100-[1/G]
19,866,108	C'I'ACAAC'I''I''I'	AAA'I'C'I'ACA'I'	GIGAAIGIGA	AAATAAAACC	'I'CA'I"I'AAA'I''I'	
19,866,158	AGTAAATAAC	TCTAGCTGCT	TGTAAAGCAC	GTCCAGTCGT	ATTTTTTATA	
19,866,208	TGTTACAAGA	CTTTATCTGA	GAAAGCCTAA	TGAAGCATTC	CTTGTCTGAT	
19.866.258	TATAGGATTA	CTGACAGAAC	AGTTATTTAG	ACAGAGAATG	TTCAGATGCG	
10 066 200				TTTCACACAC	TOTOCTTOTO	
19,800,308	IIIIAIIII	AIIIIIACI	IIIAIIIAII	TTTGAGACAG	ICICGIICIG	
19,800,358	TTGCCCAGGC	TAGAA'I'G'I'GG	TGGCGTGATC	TCGGCTCAAT	GCAAC'I'C'I'GC	
19,866,408	CTCC C GGGTT	CAAGTGATTC	TTGTGCCTCA	GCCTGACAAG	TAGCTGGGAT	rs58844409
19,866,458	TATAGGTGCC	CGTTACCATG	CCCAGCTAAT	TTTTCTGTTT	TTAGTAGAGA	
19,866.508	CGGAGTTTCA	CCATATTGGC	CAGGCTGGTC	ATTGAACTCC	TAACCTCAGG	
19 866 558	TGATGTGCCT	GTCTCACCCT	CCCAATGTCC	TGGGATTACA	GGCATGAGCC	
10 066 600	I GAIGIGUUI	GICICAGUUI	CCCAAIGIGC	I GGGAT TACA	GUCAI GAGUU	
19,000,6U8	ACAGCACCCA	GCCAGATGCA	T T.T.T.T.AAAAA	CGTACCTGAA	CITTATCTAG	
19,866,658	GAGGTAATTA	'I'AAATTAGAC	'I'AATAATCTT	CTACAGTTTC	TTTCTTCTGT	
19,866,708	GATTAAAATC	AATCAAATCA	AAGATTCTCT	TTCTCACACC	TTCTGCTAAC	
19,866,758	TCCTCAGAAA	CCTCATATCA	CAAGAAATGA	AATGGAACAG	GCCTTTCGTT	
19.866 808	TGATACATTT	TAGAATAAGA	AATCCTCTAA	ATTTAGAAGT	CATTTGGCCC	
19 866 859	ACTCCTCCA A	AAATCATCCA	COTTATTCCC	ACCCCCCTAA	ATACTTCOTC	$p_{27000-[C/T]}$
10 000,000	AGI CICCAA	AAAIGAIGCA	CCITALIGGG	ACGGGGCIAA	AIAGIIGUIU	P.2/000-[C/1]
та,800,908	CAGTGTCTTC	CATTCCTACA	AACCTGCCAT	TCTCTGATCC	ATTATACACA	
10 066 050	TOTOCOCOTOC					rc10282151

```
19,867,008 GCTTTTTCCA TCC<u>T</u>AAAACC AGTGGGGGGAC AGGCGGGAAT TGTAAAACAC p.27160-[T/A]
19,867,058 TCAGAAGATA ATAAATTGCC CTTTTTCCTG TGCTTTTTCT CAGAaactgg Exon 10 p.27229/rs11570891-[C/T]
19,867,108 gcgaatctac agaacaaaga acggcatgtg aattctgtga agaatgaagt p.27249/rs4922115-[G/A];rs7818177
19,867,158 ggaggaagta acttttacaa aacataccca gtgtttgggg tgtttcaaaa
19,867,208 gtggattttc ctgaatatta atcccagecc tacccttgtt agttatttta
19,867,258 ggagacagtc tcaagcacta aaaagtggct aattcaattt atggggtata
19,867,308 gtggccaaat agcacatcct ccaacgttaa aagacagtgg atcatgaaaa
 19,867,358 gtgctgtttt gtcctttgag aaagaaataa ttgtttgagc gcagagtaaa
19,867,408 ataaggetee tteatgtgge gtattgggee atageetata attggttaga
19,867,458 acctectatt ttaattggatet tteggatet ggeettetea p.27611/rs3289-[T/C]
19,867,508 aactttactc taagtctcca agaatacaga aaatgctttt ccgcgggcacg p.27688-[C/T]
19,867,558 aatcagactc atctacacag cagtatgaat gatgttttag aatgattccc
19,867,608 tettgetatt ggaatgtggt eeagaegtea aceaggaaca tgtaaettgg p.27783-[A/T]
19,867,658 agagggacga agaaagggtc tgataaacac agaggtttta aacagtccct rs11542064
19,867,708 accattggcc tgcatcatga caaagttaca aattcaagga gatataaaat
19,867,758 ctagatcaat taattettaa taggetttat egtttattge ttaateette
19,867,808 tctccccctt ctttttgtc tcaagattat attataataa tgttctctgg
 19,867,858 gtaggtgttg aaaatgagcc tgtaatcctc agctgacaca taatttgaat p.28036/rs11570892-[A/G]
19,867,908 ggtgcagaaa aaaaaaaaga aaccgtaatt ttattattag attctccaaa rs1059497;p.28067/rs3208305-[A/T];
rs11570896;p.28093/rs1803924-[C/T]
 19,867,958 tgattttcat caatttaaaa tcattcaata tctgacagtt actcttcagt
19,868,008 tttaggetta cettggtcat getteagttg tactteeagt gegtetettt rs11570893
19,868,058 tgttcctggc tttgacatga aaagataggt ttgagttcaa attttgcatt
19,868,108 gtgtgagett ctacagattt tagacaagga ccgtttttac taagtaaaag
19,868,158 ggtggagagg ttcctggggt ggattcctaa gcagtgcttg taaaccatcg
19,868,208 cgtgcaatga gccagatgga gtaccatgag ggttgctatt tgttgttttt p.28382/rs1059507-[C/T]
19,868,258 aacaactaat caagagtgag tgaacaacta tttataaact agatctccta p.28407-[C/A]
19,868,308 tttttcagaa tgctcttcta cgtataaata tgaaatgata aagatgtcaa p.28464/rs3735964-
[C/A];p.28490/rs3200218-[A/G]
19,868,358 atateteaga ggetataget gggaace\underline{c}ga etgtgaaagt atgtgatate p.28524-[C/T]
19,868,408 tgaacacata ctagaaagct ctgcatgtgt gttgtccttc agcataattc
19,868,458 ggaagggaaa acagtcgatc aagggatgta ttggaacatg tcggagtaga rs1803923
19,868,508 aattgttcct gatgtgccag aacttcgacc ctttctctga gagagatgat rs58998793
19,868,558 cgtgcctata aatagtagga ccaatgttgt gattaacatc atcaggcttg
19,868,608 gaatgaattc tctctaaaaa taaaatgatg tatgatttgt tgttggcatc
19,868,658 ccctttatta attcattaaa tttctggatt tgggttgtga cccagggtgc
19,868,708 attaacttaa aagattcact aaagcagcac atagcactgg gaactctggc
19,868,758 tccgaaaaac tttgttatat atatcaagga tgttctggct ttacatttta p.28911/rs13702-[T/C]
19,868,808 tttattagct gtaaatacat gtgtggatgt gtaaatggag cttgtacata p.28982/rs1059611-[T/C]
19,868,858 ttggaaaggt cattgtggct atctgcattt ataaatgtgt ggtgctaact rs17091815;p.29046_29047-[InsTT]
19,868,908 gtatgtgtet ttatcagtga tggtetcaca gagecaacte actettatga p.29086/rs15285-
[C/T];p.29088/rs3866471-[C/A]
19,868,958 aatgggcttt aacaaaacaa gaaagaaacg tacttaactg tgtgaagaaa
19,869,008 tggaatcagc ttttaataaa attgacaaca ttttattacc aca
19,869,051 ctaagtcatt attttgtatc atttt<u>t</u>aaag taaatttatt cttaggtcag rs71510671
19,869,101 attcactcag catattttga ctaagtaacc actgtactta gtaaaccgaa p.29287/rs3916027-[G/A]
19,869,151 gagcttctga gaattatagt gtacctata gatattttta acatttatat p.29315/rs9644636-[T/G]
19,869,201 ttgtataaag ctaaagaaag ccttacatat cctttaaact gactatagaa
19,869,251 gaaaatgata cagaattttg cctgcataaa gtacacagga ctattcttgc
19,869,301 ctacaatatg ctttttcaca agcaaaatgt tagactaata taaggcatct p.29474-[C/T];p.29487/rs4921683-[T/A]
19,869,351 ttggccattt tatagtgtac atcatctcta tttctgaggc ctcattgtta
19,869,401 gctgtaacgc aagtagcatt tgtgcaataa aatgaactat ttgggatggg p.29547/rs4921684-[C/T];p.29557_29558-
[InsA]
19,869,451 agggtacatt ttttagaact ttgctttggg ttgccttgat aattaatagc
19,869,501 atatagteca tttatgcage taagtaggga ttgettetta gtacagteag
19,869,551 gaagaattta gcccagaaaa caattatttc aatggccact gacccaaact p.29716-[T/C]
19,869,601 tccaggctga agagcaatgg cgtgatcatg gctcactgca cctccacctc
19,869,651 ccaggeteaa gtgattetee tgeeteagee teeeaagtag atggtaetae
19,869,701 aagcacacgc cactgcaccc agctaatttt tgtatttttt gtagagatgg
19,869,751 gggtttcacc atgttgccca ggctggtctt aaattcctgg cctcaagtgt
19,869,801 ctgcccccct tggcctccca aagtgctgga attacaggca tgagccacca
 19,869,851 tgtccagcct tgacccaaac ttttattgtc agttagctat tggggcttct
19,869,901 ggagtttggg tctcccctga caggaggggg ctccccagtt cacacttggc
19,869,951 cactgcccat caatteetgt tgatatgate aacaagatag acaattgcaa
19,870,001 atgttgctga ggatgtggag aagtgtgaac ctgtgtaagt ggctgatggg
```

Figure 4. LPL Annotated Sequence

3.2 DISTRIBUTION OF LPL VARIANTS IN HIGH AND LOW HDL-C GROUPS

Of the 178 identified variants (excluding microsatellite), 88 had MAF \geq 0.05 and 91 had a MAF <0.05. The MAF range for the 74 variants which have not been previously identified in the dbSNP build 130 was 0.005-0.500%. Among common variants, 32 had a statistically significant difference (P-value<0.05) when comparing the allele frequencies between the high HDL-C and low HDL-C groups; the P-value range was 0.048-0.002. Figure 6 shows the LD pattern of these significant variants in <u>Section 3.3</u>. In addition to 32 variants, 5 of the common variants have a P-value of between 0.05 and 0.10.

Of the 91 relatively uncommon or rare variants (MAF<0.05), 21 were present only in the low HDL-C group and 25 were present only in the high HDL-C group and the remaining were present in both groups. Forty of 47 (85.1%) individuals with high HDL-C had minimum one rare variant versus 35 out of 48 (72.9%) individuals with low HDL-C; 23 of 47 (72.9%) individuals high HDL-C had minimum two rare variants versus 16 out of 48 (33.3%) individuals with low HDL-C; 17 of 47 (36.1%) individuals with high HDL-C had minimum three rare variants versus 8 out of 48 (16.6%) individuals with low HDL-C. There were some individuals that had low genotyping call rates so it is worth mentioning that they may be underestimated in the analysis of rare variants.

Among 23 identified exonic variants, 10 were relatively uncommon or rare variants (MAF <0.05). Of these 10 relatively uncommon or rare exonic variants, two were found only in the high HDL-C group (24143C>G, Ser447X) and (27783A>T, P=0.142) which are located in exon 9 and untranslated region of the exon 10, respectively. On the other hand, two were found only in low HDL-C group (27688C>T, P=0.326 and 28524C>T, P=0.321), however, they are located in the

untranslated region of exon 10. There was a one base insertion in the 3' flanking region which was found only in the low HDL-C group (29557_29558InsA, P=0.321) but the remaining 19 exonic variants were found in both the high and low HDL-groups. Table 9 summarizes the distribution of common *LPL* variants in high and low HDL-C groups. The relatively uncommon or rare *LPL* variants in high and low HDL-C groups are listed in Table 10 and the variants which were found only in high or low HDL-C groups are specifically highlighted; the 25 variants that were found in only high HDL-C group are highlighted in yellow and the 21 variants that were identified in only low HDL-C group are highlighted in blue.

LPL variant (Nucleotide #)	Alleles	Location	refSNP ID	All MAF (n=95)	Assoc. Allele	%MAF of High HDL-C	%MAF of Low HDL-C	P value
2335	G>T	Intron 1	rs3779787	0.122	Т	0.163	0.083	0.096
3558	G>A	Intron 1	rs34309063	0.247	А	0.160	0.333	0.006
3964	G>C	Intron 1	rs17410577	0.239	С	0.160	0.320	0.010
4060	G>T	Intron 1	rs1534649	0.430	Т	0.383	0.478	0.189
4424	A>G	Intron 1	rs13266204	0.263	G	0.200	0.330	0.038
5949	T>G	Intron 1		0.137	G	0.160	0.115	0.367
6821	C>T	Intron 1	rs10104051	0.426	Т	0.404	0.447	0.555
7512	C>T	Intron 1	rs3779788	0.121	Т	0.160	0.083	0.107
8415	T>A	Intron 1	rs56321069	0.183	А	0.228	0.138	0.113
10987	C>A	Intron 2		0.122	А	0.140	0.106	0.498
11090	C>G	Intron 2	rs8176337	0.190	G	0.239	0.146	0.109
12449	G>A	Intron 2		0.117	А	0.152	0.083	0.142
12550	G>A	Intron 2		0.118	А	0.156	0.083	0.128
12810_12829	dup20	Intron 2		0.126	G	0.163	0.089	0.132
12853_12854	Ins16	Intron 2		0.055	С	0.054	0.056	0.972
12861_12864	del4	Intron 2		0.060	С	0.054	0.933	0.727
13003	G>T	Intron 2		0.053	Т	0.053	0.052	0.973
14114	T>C	Intron 3	rs73667472	0.080	С	0.065	0.094	0.471
15425	T>C	Intron 4	rs249	0.095	С	0.085	0.104	0.654
15449_15450	Ins2	Intron 4		0.063	С	0.096	0.031	0.068
15653	delA	Intron 4		0.410	С	0.394	0.426	0.656
15836	C>T	Intron 4	rs253	0.410	С	0.394	0.426	0.656
16316	C>G	Intron 5	rs254	0.074	G	0.060	0.913	0.487
16320	T>C	Intron 5	rs255	0.105	С	0.106	0.104	0.960
16386	C>T	Intron 5	rs256	0.118	Т	0.133	0.104	0.538
16671	G>C	Intron 5	rs258	0.409	С	0.380	0.436	0.440
17231	C>T	Intron 5	rs263	0.135	Т	0.148	0.122	0.618
17599	G>A	Intron 5	rs264	0.116	А	0.128	0.104	0.613
18086	T>G	Intron 6	rs269	0.119	G	0.144	0.093	0.293
18095	C>A	Intron 6	rs270	0.201	А	0.140	0.261	0.045
18121	G>A	Intron 6	rs271	0.109	А	0.130	0.087	0.343
18395_18396	insT	Intron 6		0.121	G	0.138	0.104	0.471
18822	T>C	Intron 6	rs277	0.232	С	0.181	0.281	0.101
18942	G>A	Intron 6	rs278	0.211	А	0.170	0.250	0.177
19442	A>T	Intron 6	rs281	0.242	Т	0.207	0.278	0.262
19445	C>G	Intron 6	rs282	0.129	G	0.133	0.125	0.866
19517	C>T	Intron 6	rs283	0.161	Т	0.167	0.156	0.847
19608	C>T	Intron 6	rs285 (PvuII)	0.407	Т	0.444	0.370	0.304
19675	A>T	Intron 6	rs286	0.060	Т	0.111	0.011	0.004
19975	A>G	Intron 6	rs287	0.172	G	0.244	0.104	0.011
20038	T>C	Intron 6	rs289	0.159	С	0.221	0.104	0.032
20271	T>C	Intron 6	rs291	0.163	С	0.234	0.094	0.009
20363	A>T	Intron 6		0.053	Т	0.043	0.062	0.538

Table 10.Distribution of common LPL variants in high and low HDL-C groups in NHWs

Table 10 (Con	tinued)							
20505_20506	insA	Intron 6		0.163	G	0.234	0.094	0.009
20544	T>C	Intron 6	rs294	0.080	С	0.087	0.073	0.723
20657	A>C	Intron 6	rs295	0.163	С	0.234	0.094	0.009
20790	T>C	Intron 6	rs297	0.163	С	0.234	0.094	0.009
21353	T>C	Intron 7	rs301	0.172	С	0.223	0.120	0.061
21780	T>G	Intron 7	rs304	0.103	G	0.174	0.034	0.002
21820	A>G	Intron 7	rs305	0.108	G	0.179	0.037	0.003
22044_22047	del4	Intron 7		0.075	А	0.087	0.064	0.550
22416	G>C	Intron 7	rs312	0.072	С	0.080	0.065	0.711
22461	G>A	Intron 7	rs314	0.180	А	0.244	0.120	0.031
22855	C>A	Exon 8	rs316(T361T)	0.079	А	0.074	0.083	0.821
23190_23191	del2	Intron 8		0.500	А	0.456	0.453	0.228
23192	G>T	Intron 8		0.068	Т	0.122	0.012	0.004
23395	A>C	Intron 8	rs319	0.293	С	0.282	0.302	0.776
23636	A>C	Intron 8	rs322	0.170	С	0.227	0.117	0.048
23747	T>C	Intron 8	rs325	0.067	С	0.102	0.033	0.067
23858	A>G	Intron 8	rs326	0.206	G	0.278	0.133	0.017
23955	T>G	Intron 8	rs327	0.192	G	0.261	0.122	0.018
23496	T>G	Intron 8	rs320 (HindIII)	0.185	G	0.244	0.128	0.053
24815	G>A	Intron 9	rs330	0.111	А	0.128	0.094	0.456
24824	G>A	Intron 9	rs331	0.122	А	0.154	0.096	0.247
24852	T>C	Intron 9	rs12679834	0.080	С	0.138	0.021	0.003
25049	G>A	Intron 9		0.063	А	0.043	0.083	0.248
25335	C>T	Intron 9		0.079	Т	0.138	0.021	0.003
25352	A>C	Intron 9		0.079	С	0.138	0.021	0.003
25844	T>G	Intron 9		0.074	G	0.130	0.021	0.004
26201	T>G	Intron 9		0.077	G	0.136	0.021	0.004
26234	T>G	Intron 9	rs10099160	0.282	G	0.250	0.312	0.341
27229	C>T	Intron 9	rs11570891	0.082	Т	0.144	0.021	0.002
27249	G>A	Exon 10- 3' UTR	rs4922115	0.085	A	0.087	0.083	0.929
28036	A>G	3' UTR	rs11570892	0.101	G	0.117	0.085	0.468
28067	A>T	Exon 10- 3' UTR	rs3208305	0.203	Т	0.278	0.130	0.014
28093	C>T	Exon 10- 3' UTR	rs1803924	0.082	Т	0.141	0.022	0.004
28382	C>T	Exon 10- 3' UTR	rs1059507	0.110	Т	0.120	0.100	0.673
28464	C>A	Exon 10- 3' UTR	rs3735964	0.079	А	0.138	0.021	0.003
28490	A>G	Exon 10- 3' UTR	rs3200218	0.279	G	0.255	0.302	0.472
28911	T>C	Exon 10- 3' UTR	rs13702	0.200	С	0.277	0.125	0.009
28982	T>C	Exon 10- 3' UTR	rs1059611	0.079	C	0.138	0.021	0.003
29046_29047	Ins2	Exon 10- 3' UTR		0.079	G	0.138	0.021	0.003
29086	C>T	Exon 10- 3' UTR	rs15285	0.200	Т	0.277	0.125	0.009

Table 10 (Continued)

Table 10 (Continued)									
29088	C>A	Exon 10- 3' UTR	rs3866471	0.105	А	0.117	0.094	0.601	
29287	G>A	3' flanking	rs3916027	0.184	А	0.255	0.115	0.012	
29315	T>G	3' flanking	rs9644636	0.339	G	0.348	0.330	0.795	
29487	T>A	3' flanking	rs4921683	0.105	А	0.117	0.094	0.601	
29547	C>T	3' flanking	rs4921684	0.105	Т	0.117	0.094	0.601	

Table 10 (Contin (bou

<i>LPL</i> variant (Nucleotide #)	Alleles	Location	refSNP ID	All MAF (n=95)	MAF(%) assoc. allele High HDL-C	MAF(%) assoc. allele Low HDL-C
208	T>C	5' flanking	rs1470186	0.016	0.021	0.011
351	C>A	5' flanking		0.005	0.011	0.000
428	G>A	5' flanking	rs73667465	0.016	0.021	0.011
549	C>T	5' flanking	rs17091742	0.016	0.021	0.011
958	G>A	5' flanking		0.005	0.000	0.011
1088	G>T	5' flanking		0.005	0.011	0.000
1090	T>G	5' flanking	rs1800590 (-T93G)	0.011	0.011	0.010
1130	G>C	5' flanking		0.005	0.000	0.010
2913	T>C	Intron 1		0.005	0.000	0.011
4621	C>G	Intron 1		0.021	0.021	0.021
4948	C>G	Intron 1	rs6997330	0.022	0.033	0.010
5094	C>G	Intron 1		0.005	0.000	0.011
5107	C>T	Intron 1		0.005	0.011	0.000
5118	A>T	Intron 1		0.022	0.043	0.000
5200	C>T	Intron 1		0.006	0.000	0.011
5531	G>A	Intron 1	rs1031045	0.016	0.022	0.011
5772	A>G	Intron 1	rs60633545	0.016	0.022	0.010
6383	G>T	Intron 1		0.005	0.011	0.000
6435	G>C	Intron 1		0.005	0.011	0.000
6477	T>C	Intron 1		0.005	0.011	0.000
6553	C>T	Intron 1	rs59254395	0.016	0.021	0.010
6554	A>G	Intron 1	rs56043715	0.016	0.021	0.010
7130	T>C	Intron 1	rs28615996	0.021	0.029	0.014
7131	T>G	Intron 1		0.007	0.014	0.000
7313	G>A	Intron 1	rs28645722	0.016	0.022	0.010
7388	C>G	Intron 1	rs28575919	0.016	0.021	0.010
7503	T>C	Intron 1	rs6999612	0.016	0.021	0.010
7556	T>C	Intron 1	rs59811201	0.016	0.021	0.010
8221	A>C	Intron 1	rs7000460	0.018	0.026	0.011
8250	G>A	Intron 1	rs59630933	0.019	0.026	0.012
8467	C>T	Intron 1		0.005	0.000	0.010
8516	delG	Intron 1		0.011	0.011	0.010
9015	A>G	Intron 1	rs28445964	0.021	0.022	0.020
9024	T>C	Intron 1		0.008	0.000	0.014
9130	T>A	Intron 1	rs13252357	0.005	0.011	0.000
9411	A>C	Intron 1	rs28689946	0.016	0.021	0.011

Table 11.Distribution of relatively uncommon or rare LPL variants in high and low HDL-C groups in NHWs

Table 11 (Continued)								
9418	G>A	Intron 1	rs28582042	0.016	0.021	0.011		
9589	C>T	Intron 1		0.016	0.021	0.011		
9696	G>T	Intron 1	rs73667468	0.016	0.022	0.010		
9914	T>G	Intron 1	rs73667469	0.016	0.022	0.011		
10127	G>A	Exon 2	rs1801177 (D9N)	0.016	0.021	0.010		
10632	C>T	Intron 2		0.005	0.000	0.001		
10912	A>G	Intron 2		0.022	0.000	0.043		
11050	T>C	Intron 2	rs7016529	0.016	0.023	0.010		
11228	T>C	Intron 2		0.005	0.011	0.000		
11574	G>A	Intron 2	rs34123038	0.049	0.056	0.043		
11600	G>C	Intron 2		0.011	0.000	0.021		
11760	A>C	Intron 2	rs73667470	0.016	0.021	0.010		
11888_11889	insA	Intron 2		0.011	0.021	0.000		
12224_12920	de1697	Intron 2		0.005	0.011	0.000		
12484	C>A	Intron 2		0.048	0.044	0.052		
12878_12889	del12	Intron 2		0.005	0.011	0.000		
12884_12887	del4	Intron 2		0.016	0.033	0.000		
13639	G>A	Intron 2		0.011	0.021	0.000		
13854	G>A	Exon 3	rs1121923 (V108V)	0.016	0.021	0.010		
15206	C>A	Intron 3	rs343	0.042	0.064	0.021		
15245	G>A	Exon 4	rs248 (E118E)	0.047	0.053	0.042		
16442	G>C	Intron 5		0.005	0.000	0.010		
16563	T>A	Intron 5		0.016	0.011	0.021		
17476	A>C	Intron 5		0.005	0.000	0.010		
17948	A>G	Exon 6	rs268 (N291S)	0.033	0.022	0.043		
18065	T>G	Intron 6		0.009	0.000	0.017		
18297	A>C	Intron 6		0.005	0.011	0.000		
18462	T>G	Intron 6		0.005	0.000	0.010		
18621	C>T	Intron 6		0.005	0.011	0.000		
18708	T>C	Intron 6	rs276	0.021	0.021	0.021		
19815	G>A	Intron 6		0.005	0.011	0.000		
20080	C>T	Intron 6		0.005	0.011	0.000		
20663	G>A	Intron 6	rs296	0.005	0.000	0.010		
21125_21128	del4	Intron 6		0.005	0.000	0.011		
21895	T>G	Intron 7	rs308	0.012	0.013	0.011		
21965	C>T	Intron 7	rs310	0.006	0.013	0.000		
22514	T>C	Intron 7	rs315	0.011	0.000	0.022		

Table 11 (Continued)								
23388	C>G	Intron 8	rs318	0.018	0.024	0.012		
23573	T>C	Intron 8		0.017	0.024	0.011		
24143	C>G	Exon 9	rs328 (Ser447X)	0.005	0.011	0.000		
24505	A>G	Intron 9	rs329	0.016	0.021	0.011		
24573	T>C	Intron 9		0.005	0.000	0.011		
24899	C>T	Intron 9		0.016	0.021	0.010		
25005	A>G	Intron 9		0.005	0.011	0.000		
25320	C>T	Intron 9		0.005	0.011	0.000		
27000	C>T	Intron 9		0.029	0.044	0.012		
27160	T>A	Intron 9		0.027	0.058	0.000		
27611	T>C	Exon 10-3' UTR	rs3289	0.016	0.022	0.010		
27688	C>T	Exon 10-3' UTR		0.005	0.000	0.010		
27783	A>T	Exon 10-3' UTR		0.011	0.022	0.000		
28407	C>A	Exon 10-3' UTR		0.026	0.021	0.031		
28524	C>T	Exon 10-3' UTR		0.005	0.000	0.010		
29474	C>T	3' flanking		0.026	0.043	0.010		
29557_29558	InsA	3' flanking		0.005	0.000	0.010		
29716	T>C	3' flanking		0.026	0.043	0.010		

3.3 LINKAGE DISEQUILIBRIUM (LD) AND TAGGER ANALYSES OF *LPL* VARIANTS

We used LD and Tagger analysis to identify tagSNPs for the common variants (MAF \geq 0.05) that we identified by resequencing. By using tagger analysis with an r² cutoff of 0.9, 43 tagSNP bins were identified. Table 12 shows the bins identified by Tagger analysis and Figure 5 demonstrates the LD plot. Twelve variants that were genotyped in our entire NHW sample are underlined in Table 12. We also used LD analysis in Haploview to see the LD pattern of the 32 common variants that had p-value \leq 0.05 when comparing the allele frequencies between the high HDL-C and low HDL-C groups (Figure 6).

Table 12. Tagger results using Haploview of LPL common variants in NHWs

Bin	Variants captured
1	28093, 23747, 26201, 25352, 25844, 25335, 24852, 29046_29047ins2, 28464, <u>28982</u>
2	29547, 29487, 24824, 24815, 28036, 28382, 29088
3	28911, 29086, 23858, 29287, 28067
4	7512, 12810_12829ins20, 12550, 12449, <u>2335</u>
5	16386, 18121, <u>17599</u> , 18395_18396ins1
6	20790, 20505_20506ins1, 20657, 20271
7	16671, 15653del1, <u>15836</u>
8	<u>23955</u> , 23636, 23496(<i>Hind</i> III)
9	26234, 23395, 28490
10	22855, <u>22416,</u> 27249
11	20038, 19975, 21353
12	3558, 3964
13	16320, 16316
14	21780, 21820
15	8415, 11090
16	13003, 12853_12854ins16
17	18086, 1723
18	6821

Table 12	2 (Continued)
19	19608
20	<u>15425</u>
21	15449_15450ins2
22	25049
23	12861_12864del4
24	18095
25	14114
26	19442
27	19445
28	4424
29	23192
30	20544
31	19675
32	27229
33	20363
34	4060
35	18822
36	<u>19517</u>
37	10987
38	29315
39	22461
40	18942
41	22044_22047de12
42	23190_23191del2
43	5949

Figure 5. LD analysis of identified common variants in NHWs

Figure 6. LD analysis of the 32 identified variants which had a statistically significant p-value <0.05 when comparing the allele frequencies between the high HDL-C and low HDL-C groups

3.4 GENOTYPING OF IDENTIFIED VARIANTS IN THE ENTIRE NHW SAMPLE AND THEIR ASSOCIATION ANALYSIS WITH PLASMA LIPOPROTEIN LEVELS

To date, we have genotyped 12 variants in our NHW sample (n=623) using pre-made TaqMan SNP Genoytping Assays. Genotyping results and features of these tagSNPs are shown in the Table 13.

<i>LPL</i> refSNP ID	Location	Position (Nucleotide #)	Number of individuals genotyped in NHWs	MAF % in *CEU (HAPMAP)	MAF % in NHWs	Call rates (%)	P-value
rs3779787	Intron 1	2335	619	0.175	0.153	99.40	0.376
rs13266204	Intron 1	4424	620	0.259	0.215	99.50	0.616
rs1534649	Intron 1	4060	618	0.472	0.453	99.20	0.599
rs249	Intron 4	15425	614	0.075	0.074	98.60	0.211
rs253	Intron 4	15836	623	0.450	0.451	100.00	0.505
rs264	Intron 5	17599	605	0.142	0.140	97.10	0.428
rs270	Intron 6	18095	618	0.208	0.172	99.20	0.896
rs283	Intron 6	19517	618	0.188	0.201	99.20	0.352
rs312	Intron 7	22416	617	0.092	0.112	99.00	0.976
rs327	Intron 8	23955	619	0.250	0.264	99.40	0.478
rs3289	Exon 10 3'UTR	27611	622	0.042	0.026	99.80	1.000
rs1059611	Exon 10 3'UTR	28982	618	0.133	0.106	99.20	1.000

 Table 13. Genotyping results of 12 tagSNPs screened in the entire NHW sample

* CEU: U.S. residents with northern and western European

None of the variants showed deviation from HWE (P>0.05) in the total sample. Figure 7 shows the LD analysis that was repeated for the variants screened using TaqMan assays. The LD patterns between the 12 variants were similar to those observed in the subset (high and low HDL groups) of our sample that we used for sequencing.

Figure 7. LD analysis of the variants screened in the entire NHW sample

These 12 variants screened in total NWH sample were analyzed by using both additive and dominant models for their relation to plasma total cholesterol, HDL-C, LDL-C and TG levels. Table 14 shows the genotype counts, covariate adjusted mean for each lipid level and adjusted pvalues for additive and dominant models, respectively. The remaining common tagSNPs that are not included in these analyzes are currently being genotyped by Sequenome IPLEX genotyping platform so they are not included in this study.

Of the 12 variants, 4 (rs1059611, rs270, rs3779787, rs327) had statistically significant p-values associated with HDL-C level in both additive and dominant models, but rs13266204 had a significant P-value (0.013) only in additive model and had a marginally significant p-value (0.080) in the dominant model.

Two of the 12 variants (rs327, rs270) showed statistically significant association with triglycerides levels in both additive and dominant models. rs312 showed statistically significant

association with triglyceride levels in additive model (P=0.0091) and it showed marginally significant association in the dominant (P=0.050) model. On the other hand, rs283 had a statistically significant P-value (0.024) associated with TG levels only in dominant model but it had a marginally significant P-value (0.068) in additive model.

There were two variants (rs270 and rs312) that had marginally statistically significant P-values associated with LDL-C levels; rs270 showed marginally significant association in only additive model (P=0.056), however, rs312 showed marginally significant association in only dominant model (P=0.087).

Table 14. Genotype distributions and adjusted p-values for 12 LPL variants in NHWs

	rs132662	04 Add		rs13266204_Dom			
	AA[380]	GA[203]	GG[31]	AA[380]	GA/GG[234]		
Total Cholesterol Adjusted mean±	216.03±2.13	219.34±2.90	218.32±7.21	216.02±2.13	219.2±2.69		
SD	P= 0.400			P=0.342			
P-value							
	AA[383]	GA[203]	GG[31]	AA[383]	GA/GG[234]		
HDL-C Adjusted mean± SD	50.95±0.64	49.95 ± 0.88	45.26±2.19	50.93±0.65	49.3±0.82		
P-value	<mark>P=0.013</mark>			<mark>P=0.080</mark>			
	AA[378]	GA[203]	GG[29]	AA[378]	GA/GG[232]		
LDL-C Adjusted mean± SD	$137.40{\pm}1.97$	141.56 ± 2.68	$143.13{\pm}6.89$	137.41±1.97	141.76±2.50		
P-value	P=0.164			P=0.160			
	AA[380]	GA[203]	GG[31]	AA[380]	GA/GG[234]		
Triglycerides Adjusted mean± SD	140.70 ± 3.52	139.13 ± 4.79	$180.90{\pm}11.92$	140.9 ± 3.54	144.89 ± 4.49		
P-value	P=0.082			P=0.329			
	rs312_Ad	d		rs312_Dom			
	GG[482	GC[122]	CC[7]	GG[482]	GC/CC[129]		
Total Cholesterol Adjusted mean±	$215.70{\pm}1.8$	222.44±3.67	$211.87{\pm}1.15$	215.71±1.89	221.89±3.57		
SD	P=0.174			P=0.118			
P-value							
	GG[484]	GC[123]	CC[7]	GG[482]	GC/CC[129]		
HDL-C Adjusted mean± SD	50.21±0.58	51.06 ± 1.12	57.26 ± 4.66	50.21±0.58	51.39±1.1		
P-value	P=0.118			P=0.201			
	GG[480]	GC[120]	CC[7]	GG[480]	GC/CC[127]		
LDL-C Adjusted mean± SD	137.47±1.75	144.04 ± 3.42	138.97±13.99	137.47±1.75	143.77±3.33		
P-value	P=0.114			D_0 097			
				<u>1 –0.007</u>			
	GG[482]	GC[122]	CC[7]	GG[482]	GC/CC[129]		
Triglycerides Adjusted mean± SD	144.13±3.1	136.49±6.14 82	85.52±25.36	144.19±3.16	133.65±6.00		
P-value	<mark>P=0.009</mark>			P=0.050			
	rc1050611	Add		rs1059611 Do			
	TT[400]	TC[116]	CC[7]	TT[400]	TC/CC[122]		
Total Chalactoral Adjusted maan+	11[490] 216 74+1 8	1C[110]	210 19+15 10	11[490] 216.76±1.80	218 88+3 63		
SD	P=0.713	219.36±3.75	210.19±15.10	P=0 599	218.86±3.05		
P-value	1=0.715			1-0.399			
I -value	TT [491]	TC[117]	CC[7]	TT[491]	TC/CC[124]		
HDL-C Adjusted mean+ SD	4971+058	52 78+1 13	49 36+4 61	49 72+0 58	52 6+1 1		
P-value	P=0.036	52.76±1.15	47.50±4.01	P=0.018	52.0±1.1		
i -value		T O(1171	00171		TC/CC(100)		
	TT[486]	TC[117]	CC[7]	11[486]	TC/CC[123]		
LDL-C Adjusted mean± SD	139.10±1.75	138.78±3.45	138.41±13.96	139.10±1.75	138.76±3.36		
P-value	P=0.925	TO[115]	00[7]	P=0.928	TC/CC[100]		
	11[490]	10[115]	CC[/]	11[490]	128 44 (12)		
Triglycerides Adjusted mean± SD	143.66±3.117	139.91±6.29	113.17±25.35	$143./2\pm3.1/$	138.44±6.13		
r-value	P=0.346			P=0.481			

Mean and *p*-values adjusted for BMI, age, smoking, and sex

Natural log transformed data were used for association analysis of triglycerides and HDL-C levels
Table 14 (Continued)					
	rs253_Ad	d		rs253_Dom	
	CC[181]	TC[315]	TT[121]	CC[181]	TC/TT[436]
Total Cholesterol Adjusted mean± SD	213.91±3.01	218.61±2.32	218.93±3.71	213.82±3	218.69±2
P-value	P=0.231			P=0.168	
	CC[182]	TC[316]	TT[122]	CC[182]	TC/TT[438]
HDL-C Adjusted mean± SD	51.19 ± 0.92	49.94±0.71	50.38±1.13	51.19±0.92	50.06±0.61
P-value	P=0.595			P=-0.290	
	CC[181]	TC[312]	TT[120]	CC[181]	TC/TT[432]
LDL-C Adjusted mean± SD	136.34±2.78	140.15 ± 2.16	140.34 ± 3.45	136.34±2.78	140.20±1.86
P-value	P=0.309			P=0.239	
	CC[182]	TC[314]	TT[121]	CC[182]	TC/TT[435]
Triglycerides Adjusted mean± SD	139.61±5.01	143.13 ± 3.87	$143.24{\pm}6.20$	139.61±5.00	143.16±3.35
P-value	P=0.686			P=0.683	
	rs1534649	_Add		rs1534649_Dom	
	GG[177]	GT[314]	TT [122]	GG[177]	GT/TT [436]
Total Cholesterol Adjusted mean± SD	216.50±3.022	217.63±2.32	215.99 ± 3.65	216.51±3.02	217.17±2
P-value	P=0.956			P=0.850	
	GG[179]	GT[314]	TT [123]	GG[179]	GT/TT [437]
HDL-C Adjusted mean± SD	50.47±0/92	50.52±0.71	49.82±1.12	50.48±0.92	50.32±0.61
P-value	P=0.730			P=0.815	
	GG[177]	GT[311]	TT [121]	GG[177]	GT/TT [432]
LDL-C Adjusted mean± SD	138.43	138.81 ± 2.16	139.61±3.39	138.43±2.78	$140.20{\pm}1.86$
P-value	P=0.792			P=0.855	
	GG[179]	GT[312]	TT [122]	GG[179]	GT/TT [434]
Triglycerides Adjusted mean± SD	145.73±5.04	140.98 ± 3.91	138.33±6.13	145.74 ± 5.04	140.24±3.36
P-value	P=0.175			P=0.219	
	rs327 Ad	d		rs327 Dom	
	TT[337]	TG[229]	GG[47]	TT[337]	TG/GG[276]
Total Cholesterol Adjusted mean± SD	217.07±2.23	216.02±2.68	222.89±5.84	217.07±2.23	217.18±2.47
P-value	P=0.645			P=0.971	
	TT[338]	TG[231]	GG[47]	TT[338]	TG/GG[278]
HDL-C Adjusted mean± SD	49.64±0.68	50.97±0.82	52.52 ± 1.80	49.64±0.68	51.23±0.76
P-value	<mark>P=0.030</mark>			P=0.038	
LDL-C Adjusted mean± SD	TT[335]	TG[227]	GG[47]	TT[335]	TG/GG[274]
P-value	139.14±2.07	137.65±2.50	144.17±5.40	139.14±2.07	138.76±2.29
	P=0.746			P=0.900	
	TT[337]	TG[229]	GG[47]	TT[337]	TG/GG[276]
Triglycerides Adjusted mean± SD	146.94±3.71	136.95±4.48	132.08±9.72	146.94±3.70	136.12±4.10
P-value	P=0.014			P=0.015	
1					

Mean and *p*-values adjusted for BMI, age, smoking, and sex

Natural log transformed data were used for association analysis of triglycerides and HDL-C levels

Table 14 (Continue

	rs264_Ad	ld		rs264_Dom	
	GG[440]	GA[150]	AA[9]	GG[440]	GA/AA[159]
Total Cholesterol Adjusted mean± SD	216.77±1.96	217.53±3.31	222.74±13.31	216.76±1.96	217.81±3.22
P-value	P=0.709			P=0.774	
	GG[442]	GA[151]	AA[9]	GA[442]	GA/AA[160]
HDL-C Adjusted mean± SD	50.20±0.60	51.03±1.02	50.24±4.12	50.2±0.6	50.99±0.99
P-value	P=0.380			P=0.370	
	GG[438]	GA[148]	AA[9]	G[438]	GA/AA[157]
LDL-C Adjusted mean± SD	138.77 ± 1.82	138.18±3.08	147.98±12.31	138.75±1.82	138.72±3.00
P-value	P=0.850			P=0.993	
	GG[442]	GA[148]	AA[9]	G[442]	GA/AA[157]
Triglycerides Adjusted mean± SD	143.18 ± 3.30	141.75±5.62	124.00±22.50	143.21±3.30	140.77±5.47
P-value	P=0.660			P=0.783	
	rs270 Ad	ld		rs270 Dom	
	CC[419]	CA[174]	AA[19]	CC[419]	CA/AA[193]
Total Cholesterol Adjusted mean± SD	215.90±2.02	219.26±3.04	231.19±9.08	215.91±2.02	220.45±2.89
P-value	P=0.100			P=0.187	
	CC[422]	CA[174]	AA[19]	CC[422]	CA/AA[193]
HDL-C Adjusted mean± SD	51.22±0.62	48.58±0.94	49.91±2.80	51.23±0.62	48.71±0.89
P-value	<mark>P=0.020</mark>			<mark>P=0.008</mark>	
	CC[417]	CA[172]	AA[19]	CC[417]	CA/AA[191]
LDL-C Adjusted mean± SD	137.53±1.87	141.17±2.83	3 153.95±8.49	$137.54{\pm}1.87$	142.26±2.69
P-value	<mark>P=0.056</mark>			P=0.123	
	CC[419]	CA[174]	AA[19]	CC[419]	CA/AA[193]
Triglycerides Adjusted mean± SD	137.93±3.39	153.27±5.13	136.79±15.31	137.93±3.39	151.62±4.87
P-value	P=0.031			P=0.012	
	ma240 Ad	d		ng240 Dom	
	TT[523]	TC[70]	CCI61	TT[523]	TC/CC[85]
Total Cholesterol Adjusted mean+ SD	217 39+1 83	214 25+4 55	247.51 ± 16.36	217 34+1 83	216 54+4 41
P-value	P=0.745	217.25±7.55	247.51±1050	P=0.864	210.37±7.71
	TT[526]	TC[79]	CC[6]	TT[526]	TC/CC[85]
HDL-C Adjusted mean+ SD	50 62+0 56	49 41+1 39	46 93+5 00	50 63+0 45	49 24+1 34
P-value	P=0.343	19.1121.09	10.75_5.00	P=0.355	19.2121.91
	TT[521]	TC[77]	CC[6]	TT[521]	TC/CC[83]
LDL-C Adjusted mean± SD	139.39±1.70	134.85±4.26	170.56±15.15	139.34±1.70	137.36±4.13
P-value	P=0.890			P=0.653	
	TT[524]	TC[78]	CC[6]	TT[524]	TC/CC[84]
Triglycerides Adjusted mean± SD	140.82±3.03	147.94±7.61	149.88±27.24	140.82±3.03	148.08±7.35
P-value	P=0.380			P=0.4213	

Mean and *p*-values adjusted for BMI, age, smoking, and sex

Natural log transformed data were used for association analysis of triglycerides and HDL-C levels

Table 14 (Continued)					
	rs283_Add	1		rs283_Dom	
	AA[394]	AT[189]	TT[29]	AA[394]	AT/TT[218]
Total Cholesterol Adjusted mean± SD	217.60 ± 2.10	216.97±2.99	214.60 ± 7.52	217.59±2.1	216.66±2.79
P-value	P=0.717			P=0.782	
	AA[397]	AT[189]	TT[29]	AA[397]	AT/TT[218]
HDL-C Adjusted mean± SD	50.68±0.64	50.09 ± 0.91	48.17±2.29	50.68 ± 064	49.83±0.85
P-value	P=0.350			P=0.402	
	AA[392]	AT[187]	TT[29]	AA[392]	AT/TT[216]
LDL-C Adjusted mean± SD	139.80±1.95	137.57 ± 2.78	138.53±6.96	139.80±1.95	137.70±2.59
P-value	P=0.560			P=0.504	
	A A [20/1	A TE 1 201	TT[20]	AA[394]	AT/TT[218]
Triglycerides Adjusted mean+ SD	138 20+3 48	151 36+4 96	138 14+12 49	138 17+3 48	149 59+4 63
P-value	P=0.068	151.50±4.90	150.14±12.49	D_0.024	11710721100
				P=0.024	
	rs3289_Ac	ld		rs3289_Dom	
	TT[584]	TC[32]	CC[0]	TT[584]	TC/CC[32]
Total Cholesterol Adjusted mean± SD	217.66±1.75	209.97±7.09		217.66±1.75	209.97±7.09
P-value	P=0.289			P=0.289	
	TT[587]	TC[32]	CC[0]	TT[587]	TC/CC[32]
HDL-C Adjusted mean± SD	50.44±0.53	50.42±2.17		50.44 ± 0.53	50.42±2.17
P-value	P=0.876			P=0.876	
	TT[580]	TC[32]	CC [0]	TT[580]	TC/CC[32]
LDL-C Adjusted mean± SD	139.62+1.62	129.13+6.55	00[0]	139.62+1.62	129.13+6.55
P-value	P=0.118			P=0.118	
	TT[584]	TC[32]	CC[0]	TT[584]	TC/CC[32]
Triglycerides Adjusted mean± SD	141.28 ± 2.91	152.51±11.81		141/28±2.91	152.51±11.81
P-value	P=0.378			P=0.378	
	rs3779787	Add		rs3779787 Dom	
	GG[436]		TT[11]	 GG[436]	GT/TT[177]
Total Cholesterol Adjusted mean± SD	217.06±1.98	216.70±3.19	234±12.15	217.04±1.98	217.74±3.1
P-value	P=0.582			P=0.844	
	GG[436]	GT[167]	TT[11]	GG[438]	GT/TT[178]
HDL-C Adjusted mean± SD	49.73±0.60	52.06±0.97	48.94±3.69	49.74±0.6	51.88±0.94
P-value	P=0.033			P=0.018	
	GG[433]	GT[165]	TT[11]	GG[433]	GT/TT[176]
LDL-C Adjusted mean± SD	139.35 ±1.84	136.99±2.95	159.09±11.22	139.31±1.84	138.33±2.88
P-value	P=0.830			P=0.770	
	GG[438]	GT[164]	TT[11]	GG[438]	GT/TT[175]
Triglycerides Adjusted mean± SD	144.66±3.29	137.02±5.33	129.24±20.22	144.68±3.28	136.55±5.18
r-value	r=0.225			P=0.222	

Mean and *p*-values adjusted for BMI, age, smoking, and sex

Natural log transformed data were used for association analysis of triglycerides and HDL-C levels

4.0 DISCUSSION

Lipoprotein lipase (*LPL*) is a biological candidate gene for cardiovascular disease due to its major role in the catabolism of TG rich lipoproteins. Clinically abnormal lipid levels have been associated with CHD, atherosclerosis and obesity in individuals who have functional DNA sequence variation in their *LPL* gene (Murthy et al. 1996; Reymer et al. 1995; Brunzell et al. 1995; Wiebusch et al. 1992). The sequence variation of *LPL* is also associated with Mendelian disorders. *LPL* deficiency, known as Type 1 hyperlipoproteinemia or familial chylomicronemia (MIM 238600), is a rare autosomal recessive disorder (1/1,000,000) caused by defects in the *LPL* gene and it is correlated with severe hypertriglyceridemia due to chylomicronemia and VLDL accumulation with very low levels of LDL-C and HDL-C levels (<20mg/dL).

Several candidate gene studies and genome wide association studies (GWAS) have identified many SNPs in the *LPL* gene associated with lipid levels (Aulchenko et al. 2009; Kooner et al. 2008; Klos et al. 2006; Chasman et al. 2008; Ahn et al. 1993; Razzaghi et al. 2000; Willer et al. 2008; Chamberlein et al. 1999; Wallacee et al. 2008; Humphries et al. 1998). In this study, we resequenced the entire *LPL* gene (~30kb) in 95 healthy NHW individuals having extreme HDL-C to evaluate the impact of *LPL* genetic variation on HDL-C and correlated lipid levels. Our comprehensive resequencing effort of this gene, the first to our knowledge, revealed a total of 179 variants; 162 single nucleotide substitutions, 17 indels and a microsatellite (tetranucleotide repeat marker). Of 178 variants, 88 had a MAF \geq 0.05 and 91 had a MAF <0.05.

4.1 COMPARISON OF OUR RESEQUENCING RESULTS WITH TWO PUBLISHED STUDIES

We compared our sequencing results with two previous published sequencing reports (Nickerson et al. 1998; Wright et al. 2008). Nickerson et al. (1998) examined a portion of the LPL gene (9.7kb), from 3' end of intron 3 to 5' end of intron 9, among 71 individuals from three racial groups including European-Americans from Rochester, Minnesota (n=23), African-Americans from Jackson, Mississippi (n=24) and Europeans from North Karelia, Finland (n=24). They identified 88 variants, of which 79 were single nucleotide substitutions, 8 were indels and one was a microsatellite. Of 88 variant, 56 and 59 were identified in their white populations, North Karelia, Finland and Rochester, Minnesota, respectively. We compared our sequencing results with the variants they identified in Rochester samples. Fifty three of the 59 reported variants were founded in our NHW sample in this 9.7 kb region, including the reported microsatellite $(ATTT)_n$. Of the 6 reported variants, which we did not find in this study, 5 had MAF ≤ 0.05 and one was 8538delA with a MAF of 0.20 which was observed as a sequencing artifact in our sample. On the other hand, we identified 17 variants (0.00 MAF ≤ 0.053) that were not reported in their study. This inconsistency might be due to the sample size differences or due to the different software that were used in identifying variants (Nickerson et al. used PolyPhred Program, but we used Variant Reporter and Sequencher).

Wright et al. (2008) sequenced the 10 exons and intron-exon boundaries of the *LPL* gene, plus 1kb in the promoter region, and about 300 bases in the 3'flanking region in 19 Northern Irish individuals with extreme hypertriglyceridemia (HTG). They identified a total of 42 variants and found rs268 (N291S) to be a major predisposing factor for HTG. We identified 39 of the reported 42 variants, including N291S (discussed later on). The three variants they identified (590G>A, 1018G>A and 345A>C) but we did not, had MAF <0.05 in their Northern Irish sample. Two of these 3 variants were exonic (590(G>A) in exon 5 and 1018G>A in exon 6). Interestingly, these two variants were not identified by Nickerson et al. (1998), either. Since Wright et al. (2008) used a selected sample with HTG, it is not surprising that these variants were not identified in ours and Nickerson et al.'s population-based samples. On the other hand, although we identified 23 exonic variants in our sample, they identified only 15 exonic variants including the 2 we did not identify. Of 11 exonic variants that they did not identify, ten were located in the UTR of exon 10, and one was [rs328 (Ser447X)] located in exon 9.

4.2 DISTRIBUTION OF LPL VARIANTS AMONG HIGH AND LOW HDL-C GROUPS

4.2.1 Distribution of common LPL variants among high and low HDL-C groups in NHWs

Of the 88 common variants (MAF ≥ 0.05) observed in this study 32 showed significantly different distribution (P ≤ 0.05) between high and low HDL-C groups. Of these 32 variants, 25 have been previously reported in Chip Bioinformatics, and remaining 7 are the new variants.

Two of the common variants, rs326 (23858) and rs13702 (28911), that revealed significant difference between the high and low HDL-C groups in our study, have also been reported previously to be associated with HDL-C levels (Klos et al. 2006; Kooner et al. 2008). Klos et al. (2006) genotyped 3,993 individuals (1,132 black females, 807 black males, 1,101 white females and 953 white males) for rs326 and rs13702 variants and found significant association with HDL-C in black males (P=0.013) and black females (P=0.004). The association

between HDL-C levels and rs326 was also confirmed in a GWAS ($P=1.4\times10^{-7}$) comprising 5,968 individuals (Kooner et al. 2008). In both studies, the rs326/G allele was found to be associated with high HDL-C levels than the other allele. Likewise, in our study the frequency of the G allele for rs326 was higher in the high HDL-C group than the low HDL-group (0.278 vs. 0.133; P=0.017). As reported previously, the rs326 and rs13702 variants were in strong LD in our sample ($r^2=0.933$). Our tagger analysis showed that rs13702 and rs326 were in the same bin along with rs15285 (29086C>T) and rs3916027 (29287G>A), which also demonstrated significant difference between the high and low HDL-C groups (P=0.009 and P=0.012, respectively).

A common LPL variant in intron 8, HindIII (23496T>G, rs320), has been reported to be associated with plasma TG and HDL-C in several, but not all studies (Ahn et al. 1993; Razzaghi et al. 2000; Chamberlain et al. 1989) As expected, the frequency of the HindIII/G allele in the high HDL-C group was almost twice to that observed in the low HDL-C group (0.244 vs 0.128; P=0.053) in our sequencing sample, The HindIII/G allele is in strong LD with the 447X allele of the functional Ser447X polymorphism (rs328) in exon 9 (Razzaghi et al. 2000; Humphries et al. 1998;). The S447X variant, which has been reported as a gain-of-function mutation, leads to a premature stop codon, resulting a truncated protein which is two amino acid shorter than the fulllength product that increases LPL protein expression without changing specific activity (Merkel et al. 2002; Rip et al. 2006). Wittrup et al. (1999) found that the carriers of Ser447X had reduced TGs, increased HDL-C and 0.8-fold reduced risk of ischemic heart disease. Since these two variants are in strong LD, there has been a debate in the literature whether *Hind*III is a genetic marker for the functional Ser447X variant or this is functional by itself (Razzaghi et al. 2000; Humphries et al. 1998; Merkel et al. 2002). However, Chen et al (2008) have recently demonstrated that the HindIII site binds to a transcription factor and affects LPL expression and thus, this is a functional variant by itself. Although we identified the *Hind*III polymorphism in our sample, we found only one example of S447X (24143C>G) in the high HDL group using Variant Reporter. We further looked for this variant in Sequencher. However, we did not see any clear peaks as an evidence of variation at this site in Sequencher.

Another common variant PvuII (rs285) that we identified in our sequencing sample has been previously reported to be associated with TG levels and hypertriglyceridemia in some but not all studies (Chamberlein et al. 1999; Ahn et al. 1993). However, in our sequencing sample we found a comparable frequency of the T allele between the high and low HDL-C groups (0.444 vs 0.370; P =0.304).

To our knowledge, seven GWA studies have found significant association signals within the *LPL* gene and flanking regions associated with HDL-C levels (Boes et al. 2010). The reported SNPs with the lowest p-values are: rs2083637 (P= 5.5×10^{-18}) (Aulchenko et al. 2009), rs10503669 (P = 4.1×10^{-19}) (Willer et al. 2008), rs331 (P= 9.1×10^{-7}) (Chasman et al. 2008), rs328 (P = 9×10^{-23}) (Kathiresan et al. 2008b), rs17482753 (P = 2.71×10^{-5}) (Heid et al. 2008), rs17411031 (P = 1.28×10^{-10}) (Wallacee et al. 2008), and rs326 (P = 1.4×10^{-7}) (Kooner et al. 2008). Of these 7 SNPs, we identified rs326 and rs331 SNPs in our study. As mentioned above, our result for rs326 was consistent with reported GWAS, but we did not find a significant difference between high and low HDL-C groups for rs331 (0.154 vs. 0.096; P =0.247), although the frequency of the A allele was higher in high HDL-C group which is consistent with the previous reports. The other 5 GWAS significant SNPs are located in the distant 5'flanking region of the *LPL* that was outside the region we sequenced.

4.2.2 Distribution of relatively uncommon or rare *LPL* variants among high and low HDL-C groups in NHWs

In addition to the 88 common variants identified in sequencing, we identified 91 uncommon or rare variants (MAF< 0.05). Of the 91 relatively uncommon or rare variants, 21 were present only in the low HDL-C group and 25 were present only in the high HDL-C group; 45 exist in both groups. Since the P-values for the uncommon or rare variants (MAF< 0.05) between the two HDL groups were unreliable due to the small resequencing sample size (47 in high HDL and 48 in low HDL), we performed a preliminary analysis for 91 variants to determine the accumulation of rare variants in the high and low HDL-C group. Forty one of 47 (87.2%) individuals with high HDL-C had minimum one rare variant versus 35 of 48 (72.91%) individuals with low HDL-C; 24 of 47 (51.1%) individuals high HDL-C had minimum two rare variants versus 16 of 48 (33.3%) individuals with low HDL-C; 18 of 47 (38.2%) individuals with high HDL-C had minimum three rare variants versus 8 out of 48 (16.6%) individuals with low HDL-C. Overall, the prevalence of uncommon or rare variants was higher in the high HDL-C group than the low HDL-C group, which contradicts observation made by Cohen et al. (2004) by sequencing three other lipid genes. Cohen et al (2004) resequenced the ABCA1, APOA1 and LCAT genes in individuals having extremely low (5th percentile) and high (95th percentile) HDL-C levels from a population-based sample to test whether the accumulation of rare variants collectively contribute to variation in HDL-C levels. They observed accumulation of rare sequence variants in subjects with low HDL-C levels and concluded that multiple rare variants were significant contributor to low HDL-C levels.

То Online Mendelian Inheritance in Man date. in database (OMIM), (http://www.ncbi.nlm.nih.gov/omim) a list of 41 causative mutations or rare variants have been reported in LPL; 35 mutations were reported causing LPL deficiency; 4 were reported causing Combined familial hyperlipidemia (CFH); one single nucleotide polymorphism (SNP) (Ser447X) reported as contributing a defect in lipid interface recognition in a Type 1 hyperlipidemia patient and another SNP (rs326), a HDL-C level quantitative trait locus 11 (HDLCQ11) was reported for being associated with high HDL-C levels. Not surprisingly, we did not identify any example of the reported 35 rare mutation associated with LPL deficiency because our sample was populationbased from apparently healthy individuals. However, of the 4 reported variants associated with CFH, three were identified in our resequencing sample; D9N (rs1801177), -T93G (rs1800590) and N291S (rs268). Both coding variants, D9N and N291S, are associated with reduced enzymatic activity. -T93G is a functional promoter variant located in the 5' flanking region of the LPL gene and is in LD with D9N among Caucasians (Zhang et al. 1996; Mailly et al. 1995; Merkel et al. 2002). The minor allele frequency of these variants in our resequencing sample was ≤ 0.05 (Table 15) and so there were not enough individuals in the high and low HDL groups to make a conclusive statement about their role in affecting HDL-C levels. However, these variants will be genotyped in our entire sample in addition to other rare variants that we identified in the current study to evaluate their association with lipid levels.

Nucleotide #	Alleles	Location	refSNP ID	All MAF (n=95)	MAF(%) assoc. allele High HDL-C	MAF(%) assoc.allele Low HDL-C
1090	T>G	5' flanking	rs1800590 (-T93G)	0.011	0.011	0.010
10127	G>A	Exon 2	rs1801177 (D9N)	0.016	0.021	0.010
17948	A>G	Exon 6	rs268 (N291S)	0.033	0.022	0.043
24143	C>G	Exon 9	rs328(Ser447X)	0.005	0.011	0.000

Table 15. Distribution of identified functional variants in high and low HDL-C groups

4.3 DISTRIBUTION OF SELECTED COMMON VARIANTS IN THE TOTAL NHW SAMPLE

To date, we have screened a total of 12 common variants in the entire NHW sample (n=623) by using TaqMan Genotyping assays (Table 6 and Table 7 in Section 2.3). Of the 12 variants, rs1059611, rs270, rs3779787 and rs327 showed statistically significant association with HDL-C level (P<0.05) in both additive and dominant models, but rs13266204 had a significant P-value (0.013) only in the additive model, but showed a marginally significant association (P=0.080) in the dominant model. To our knowledge, none of these SNPs were previously reported as being significantly associated with HDL-C levels. In our resequencing samples (n=95), we also observed significantly different distribution of rs1059611 (28982T>C), rs270 (18095C>A), rs327 (23955T>G) and rs13266204 (4424A>G) between the high and low HDL-C groups (P=0.003, 0.045, 0.018, and 0.038, respectively). Although we observed significant association of rs3779787 in the total sample (P additive model=0.033 and P dominant model=0.018) the difference of minor allele frequencies between the high and low HDL-C groups was marginally significant

(P=0.096). This can be explained by the sample size differences in genotyping and resequencing. For rs3779787, T allele was associated with high HDL-C levels in our genotyping results (P _{additive} model=0.033 and P _{dominant model}=0.018) and T allele frequency was also higher in high HDL-C group than low HDL-C group, although it did not achieve statistical significance at 5% level (P=0.096). Noteworthy, although we identify only one example of the Ser447X variant in our resequencing sample, it was in LD with rs1059611 which was genotyped in our entire NHW sample and showed significant association with HDL-C levels, as discussed above.

Two of the 12 variants, rs327 (T>G), rs270 (C>A), showed statistically significant association with TGs levels in both additive (P=0.014 and P=0.031, respectively) and dominant models (P=0.015 and P=0.012, respectively). rs312 (G>C) also showed statistically significant association with TG levels in additive model (P=0.009), but it showed marginally significant association in dominant model (P=0.050). The rs327/T and rs270/A alleles were associated with high TG levels as compared to other corresponding alleles of these two SNPs. Both of these variants have also demonstrated significant differences between the high and low HDL-C groups in the subset sequencing sample, as discussed above. Recently, the association between TG levels and rs327 was also reported by Smith et al. (2010), but they did not observe significant association between rs270 and TG levels in any of the statistical models that they used. In their study, rs327 was shown to affect regulation of *LPL* in vitro and they reported this as a new potential functional variant of *LPL* (Smith et al. 2010). We also observed association of rs283 with TG levels (P=0.024); however this association was not identified by Smith et al. (2010).

There was one variant, rs270 (C>A), that showed statistically significant association (P=0.020) with LDL-C levels; rs270/A allele was associated with high LDL-C levels. The same allele was also associated with low HDL-C (P=0.020 and 0.008, for additive and dominant

models, respectively) and high TG levels (P=0.031 and 0.012 for additive and dominant models, respectively). Additionally, rs312 (G>C) showed marginally significant association with TG levels in only dominant model (P=0.087); the G allele was associated with low LDL-C levels for this variant.

Previously, rs3289 located in UTR of exon 10, has shown to affect LPL regulation in vitro and also revealed significant association with TG levels (Smith et al. 2010). However, in our study we found no such association with TG or other lipid traits. This might be due to different sample sizes and sample selection criteria that were used in genotyping.

5.0 CONCLUSIONS

LPL plays a vital role in lipid metabolism and genetic variation in this gene affects monogenic lipid traits and also HDL-C and TG variation in the general population. To further investigate the role of the rare and common variation in the *LPL* gene, we resequenced the entire gene in selected individuals falling in the upper and lower 5th percentile of HDL-C in a NHW sample. We identified 179 variants, of which 88 had MAF 0.05 and 91 had MAF 0.05. Of the 88 common variants, 32 demonstrated significant association with HDL-C levels. Overall, the prevalence of uncommon or rare variants was higher in the high HDL-C group than the low HDL-C group. Our comprehensive resequencing study reconfirms the functional significance of the *LPL* gene in lipid metabolism.

BIBLIOGRAPHY

- Acton S, Rigotti A, Landschulz KT, Xu S, Hobbs HH, Krieger M. Identification of scavenger receptor SR-BI as a high density lipoprotein receptor. *Science* 1996; 271:518–520.
- Ahn YI, Kamboh MI, Hamman RF, Cole SA, Ferrell RE. Two DNA polymorphisms in the lipoprotein lipase gene and their associations with factors related to cardiovascular disease. *J Lipid Res* 1993; 34:421-428.

American Heart Association. Heart and Stroke Statistics 2010 Update.

- Austin MA, King MC, Bawol RD, Hulley SB, Friedman GD. Risk factors for coronary heart disease in adult female twins. Genetic heritability and shared environmental influences. *Am J Epidemiol* 1987; 125:308-318.
- Attie AD. High-maintenance proteins and hypertriglyceridemia Nat Genet 2007; 39;1424-1425
- Aulchenko YS, Ripatti S, Lindqvist I, Boomsma D, Heid IM, Pramstaller PP, et al. Loci influencing lipid levels and coronary heart disease risk in 16 European population cohorts. *Nat Genet* 2009; 41:5-6.
- Barr DP, Russ EM, Eder HA. Protein-lipid relationships in human plasma. II. In atherosclerosis and related conditions. *Am J Med* 1951; 11:480-93.
- Barter P, Kastelein J, Nunn A, Hobbs R High densitylipoproteins (HDLs) and atherosclerosis; the unanswered questions. *Atherosclerosis* 2003; 168:195-211
- Beisiegel U, Weber W, Bengtsson-Olivecrona G. Lipoprotein lipase enhances the binding of chylomicrons to low density lipoprotein receptor-related protein *Proc Natl Acad Sci USA* 1991; 88:8342-8346.
- Bengtsson-Olivecrona G, Olivecrona T, Jörnvall H. Lipoprotein lipases from cow, guinea-pig and man. Structural characterization and identification of protease-sensitive internal regions. *Eur J Biochem* 1986; 161:281-8.

- Boes E, Coassin S, Kollerits B, Heid IM, Kronenberg F. Genetic-epidemiological evidence on genes associated with HDL cholesterol levels: A systematic in-depth review. *Exp Geron* 2004; 44:136–160.
- Breslow JL. Genetic markers for coronary theart disease. Clin Cardiol 2001; 24: 14-17.
- Brunzell JD. Familial lipoprotein lipase deficiency and other causes of chylomicronemia syndrome. in *The Metabolic and Molecular Basis of Inherited Diseases* (eds Scriver, C.R., Beaudet, A.L., Sly, W.S. & Valle, D.) 1913–1932 (McGraw-Hill Inc., New York, 1995).
- Chasman DI Paré G, Zee RY, Parker AN, Cook NR, Buring JE, Kwiatkowski DJ, Rose LM, Smith JD, Williams PT, Rieder MJ, Rotter JI, Nickerson DA, Krauss RM, Miletich JP, Ridker PM. Genetic loci associated with plasma concentration of low-density lipoprotein cholesterol, high-density lipoprotein cholesterol, triglycerides, apolipoprotein A1, and apolipoprotein B among 6382 white women in genome-wide analysis with replication. *Circ Cardiovasc Genet* 2008; 1:21–30.
- Chamberlain JC, Thorn JA, Oka K, Galton DJ, Stocks J. DNA polymorphisms at the lipoprotein lipase gene: associations in normal and hypertriglyceridaemic subjects. *Atherosclerosis* 1999; 79:85-91.
- Chen TJ, Ji CY, Hu YH. Genetic and environmental influences on serum lipids and the effects of puberty: a Chinese twin study. Acta Paediatr 2009; 98:1029-1036.
- Chen Q, Razzaghi H, Demirci FY, Kamboh MI. Functional significance of lipoprotein lipase HindIII polymorphism associated with the risk of coronary artery disease. *Atherosclerosis* 2008; 200:102-108.
- Costanza MC, Cayanis E, Ross BM, Flaherty MS, Alvin GB, Das K, Morabia A. Relative contributions of genes, environment, and interactions to blood lipid concentrations in a general adult population. *Am J Epidemiol* 2005; 161:714-724.
- Cohen JC, Kiss RS, Pertsemlidis A, Marcel YL, McPherson R, Hobbs HH. Multiple rare alleles contribute to low plasma levels of HDL cholesterol. *Science* 2004; 305:869-72.
- Cooper RS, Ford E. Comparability of risk factors for coronary heart disease among blacks and whites in the NHANES I Epidemiologic Follow-up Study. *Ann Epidemiol* 1992; 2:637.
- Castelli WP, Garrison RJ, Wilson PWF, Abbott, Kalousdian S and Kannel WB. Incidence of coronary heart disease and lipoprotein cholesterol levels: the Framingham Study, *JAMA* 1986; 256:2835–2838.
- Deeb SS, Peng RL. Structure of the human lipoprotein lipase gene. *Biochemistry* 1989; 28:4131-4135.

- Demirci FY, Dressen AS, Hamman RF, Bunker CH, Kammerer CM, Kamboh MI. Association of a common G6PC2 variant with fasting plasma glucose levels in non-diabetic individuals. *Ann Nutr Metab* 2010; 56:59-64.
- Eckel RH. Obesity and heart disease: a statement for healthcare professionals from the Nutrition Committee, American Heart Association. *Circulation* 1997; 96:3248-3250.
- Ehrenborg E et al. Ethnic variation and in vivo effects of the -93t-->g promoter variant in the lipoprotein lipase gene. *Arterioscler Thromb Vasc Biol* 1997; 17:2672-2678.
- Florentin M, Liberopoulos EN, Wierzbicki AS, Mikhailidis DP. Multiple actions of high-density lipoprotein. *Curr Opin Cardiol* 2008; 23:370-378.
- Genest J, Marcil M, Denis M, Yu L. High density lipoproteins in health and disease. *J Invest Med* 1999; 47:31–42.
- Gimble JM, Hua X, Wanker F, Morgan C, Robinson C, Hill MR, Nadon N. In vitro and in vivo analysis of murine lipoprotein lipase gene promoter: tissue-specific expression. *Am J Physiol Endocrinol Metab* 1995; 268:213–218
- Gordon T, Castelli WP, Hjortland MC, Kannel WB, Dawber TR. High density lipoprotein as a protective factor against coronary heart disease. The Framingham Study. *Am J Med* 1977; 62:707-714.
- Goldberg IJ. Lipoprotein lipase and lipolysis: central roles in lipoprotein metabolism and atherogenesis. *J Lipid Res* 1996; 37:693-707.
- Gordon D, Rifkind BM. Current concepts: high density lipoproteins-the clinical implications of recent studies. *N Engl J Med* 1989; 321
- Goode EL, Cherny SS. Christian JC, Heritability of longitudinal measures of body mass index and lipid and lipoprotein levels in aging twins. *Twin Res Hum Genet* 2007; 10:703-711.
- Grundy SM, Pasternak R, Greenland P, Smith S Jr, Fuster V. AHA/ACC scientific statement: Assessment of cardiovascular risk by use of multiple-risk-factor assessment equations: a statement for healthcare professionals from the American Heart Association and the American College of Cardiology. *J Am Coll Cardiol* 1999; 34:1348-1359.
- Hahn PF. Abolishment of alimentary lipemia following injection of heparin. *Science* 1943; 98:19-20.
- Harris MR, Bunker CH, Hamman RF, Sanghera DK, Aston CE, Kamboh MI. Racial differences in the distribution of a low density lipoprotein receptor-related protein (LRP) polymorphism and its association with serum lipoprotein, lipid and apolipoprotein levels *Atherosclerosis* 1998; 137:187-195.

- Havel RJ, Gordon JR. Idiopathic hyperlipemia: metabolic studies in an affected family. J Clin Invest 1960; 39:1777-1790.
- Henderson HE, Ma Y, Hassan MF, Monsalve MV. Amino acid substitution (Ile194----Thr) in exon 5 of the lipoprotein lipase gene causes lipoprotein lipase deficiency in three unrelated probands. Support for a multicentric origin. *J Clin Invest* 1991; 87:2005-2011.
- Heid IM, et al. Genome-wide association analysis of high-density lipoprotein cholesterol in the population-based KORA study sheds new light on intergenic regions. *Circ Cardiovasc Genet* 2008; 1:10-20.
- Heron M, Hoyert DL, Murphy SL, Xu J, Kochanek KD, Tejada-Vera B. Deaths: final data for 2006. *Natl Vital Stat Rep* 2009; 57:1-134.
- Humphries SE, Nicaud V, Margalef J, Tiret L, Talmud PJ. Lipoprotein lipase gene variation is associated with a paternal history of premature coronary artery disease and fasting and postprandial plasma triglycerides: the European Atherosclerosis Research Study (EARS). *Arterioscler Thromb Vasc Biol* 1998; 18:526-534.
- Iannotti RJ, Zuckerman AE, Rifai N. Correlations of cardiovascular disease risk factors between African-American siblings. *J Pediatr* 2000; 136:111–119.
- Johnson JL, Heineman EF, Heiss G, Hames CG, Tyroler HA. Cardiovascular disease risk factors and mortality among black women and white women aged 40–64 years in Evans County, Georgia. *Am J Epidemiol* 1986; 123:209.
- Kathiresan S, Melander O, Guiducci C, Surti A, Burtt NP, Rieder MJ, et al. Six new loci associated with blood low-density lipoprotein cholesterol, high-density lipoprotein cholesterol or triglycerides in humans. *Nat. Genet* 2008a; 40:189–197.
- Kathiresan S, Melander O, Anevski D, Guiducci C, Burtt NP, Roos C, et al., Polymorphisms associated with cholesterol and risk of cardiovascular events. *N Engl J Med* 2008b; 1240–1249.
- Kathiresan S, Manning AK, Demissie S, D'Agostino RB, Surti A, Guiducci C, Gianniny L, Burtt NP, Melander O, Orho-Melander M, Arnett DK, Peloso GM, Ordovas JM, Cupples LA. A genome-wide association study for blood lipid phenotypes in the Framingham Heart Study. BMC Med Genet 2007; (8 Suppl) 1:S17.
- Keil JE, Loadholt CB, Weinrich MC, Sandifer SH,Boyle E Jr. Incidence of coronary heart disease in blacks in Charleston, South Carolina. *Am Heart J* 1984; 108:779.
- Kirchgessner TG, Chuat JC, Heinzmann C, Etienne J, Guilhot S, Svenson K, Ameis D, Pilon C, d'Auriol L, Andalibi A. Organization of the human lipoprotein lipase gene and evolution of the lipase gene family. *Proc Natl Acad Sci USA* 1989; 86:9647–9651.

- Kooner JS, Chambers JC, Aguilar-Salinas CA, et al. Genome-wide scan identifies variation in MLXIPL associated with plasma triglycerides. *Nat Genet* 2008; 40:149-151.
- Klos KL, Sing CF, Boerwinkle E, Hamon SC, Rea TJ, Clark A, Fornage M, Hixson JE. Consistent effects of genes involved in reverse cholesterol transport on plasma lipid and apolipoprotein levels in CARDIA participants. *Arterioscler Thromb Vasc Biol* 2006; 26:1828-1836.
- Klos KL, Kullo IJ. Genetic determinants of HDL: monogenic disorders and contributions to variation. *Curr Opin Cardiol* 2007; 22:344-51.
- Kronenberg F, Coon H, Ellison RC, et al. Segregation analysis of HDL cholesterol in the NHLBI Family Heart Study and in Utah pedigrees. *Eur J Hum Genet* 2002; 10:367-374.
- Kounnas MZ, Chappell DA, Strickland DK, Argraves WS. Glycoprotein 330, a member of the low density lipoprotein receptor family, binds lipoprotein lipase in vitro. *J Biol Chem* 1993; 268:14176-14181.
- Komurcu-Bayrak E, Onat A, Poda M, Humphries SE, et al. The S447X variant of lipoprotein lipase gene is associated with metabolic syndrome and lipid levels among Turks. *Clin Chim Acta* 2007; 383:110-115.
- Knoblauch H, Busjahn A, Münter S, Nagy Z, Faulhaber HD, Schuster H, Luft FC. Heritability analysis of lipids and three gene loci in twins link the macrophage scavenger receptor to HDL cholesterol concentrations. *Arterioscler Thromb Vasc Biol* 1997; 17:2054-2060.
- Lookene A, Bengtsson-Olivecrona G. Chymotryptic cleavage of lipoprotein lipase. Identification of cleavage sites and functional studies of the truncated molecule. *Eur J Biochem* 1993; 213:185-194.
- Lloyd-Jones D, Adams RJ, Brown TM, Carnethon M, Heart disease and stroke statistics-2010 update: a report from the American Heart Association. *Circulation* 2010;121:e46-e215.
- Marenberg ME, Risch N, Berkman LF, Floderus B, De Faire U. Genetic susceptibility to death from coronary heart disease in a study of twins. *N Engl J Med* 1994; 330:1041-1046.
- Mailly F, Tugrul Y, Reymer PW, Bruin T, Seed M, Groenemeyer BF, Asplund-Carlson A, Vallance D, Winder AF, Miller GJ, et al. A common variant in the gene for lipoprotein lipase (Asp9-->Asn). Functional implications and prevalence in normal and hyperlipidemic subjects. *Arterioscler Thromb Vasc Biol* 1995; 15:468-478.
- Medh JD, Bowen SL, Fry GL, Ruben S, Andracki M, Inoue I, Lalouel JM, Strickland DK, Chappell DA. Lipoprotein lipase binds to low density lipoprotein receptors and induces receptor-mediated catabolism of very low density lipoproteins in vitro. J Biol Chem 1996; 271:17073-17080.

- Merkel M, Eckel RH, Goldberg IJ. Lipoprotein lipase: genetics, lipid uptake, and regulation. J Lipid Res 2002; 43:1997-2006.
- Merkel M, Weinstock PH, Chajek-Shaul T, Radner H, Yin B, Breslow JL, Goldberg IJ. Lipoprotein lipase expression exclusively in liver. A mouse model for metabolism in the neonatal period and during cachexia. *J Clin Invest* 1998a; 102:893-901.
- Merkel M, Kako Y, Radner H, Cho IS, Ramasamy R, Brunzell JD, Goldberg IJ, Breslow JL. Catalytically inactive lipoprotein lipase expression in muscle of transgenic mice increases very low density lipoprotein uptake: direct evidence that lipoprotein lipase bridging occurs in vivo. *Proc Natl Acad Sci USA* 1998b; 95:13841-13846.
- Merkel M, Heeren J, Dudeck W, Rinninger F, Radner H,et al. Inactive lipoprotein lipase (LPL) alone increases selective cholesterol ester uptake in vivo, whereas in the presence of active LPL it also increases triglyceride hydrolysis and whole particle lipoprotein uptake. *J Biol Chem* 2002; 277:7405-7411.
- Morabia A, Cayanis E, Costanza MC, et al. Association between lipoprotein lipase (*LPL*) gene and blood lipids: a common variant for a common trait? *Genet Epidemiol* 2003; 24:309-321.
- Murthy V, Julien P, Gagne C. Molecular pathobiology of the human lipoprotein lipase gene. *Pharmacol Ther* 1996; 70:101–135.
- Nettleton JA, Steffen LM, Ballantyne CM, Boerwinkle E, Folsom AR, Associations between HDL-cholesterol and polymorphisms in hepatic lipase and lipoprotein lipase genes are modified by dietary fat intake in African American and White adults. *Atherosclerosis* 2007;194, e131–e140.
- Nickerson DA, Taylor SL, Weiss KM, et al. DNA sequence diversity in a 9.7-kb region of the human lipoprotein lipase gene. *Nat Genet* 1998; 19:233-240
- Péterfy M, Ben-Zeev O, Mao HZ, Weissglas-Volkov D, Aouizerat BE, Mutations in LMF1 cause combined lipase deficiency and severe hypertriglyceridemia. *Nat Genet* 2007; 39:1483-1487.
- Peter P. Toth. The "Good Cholesterol": High-Density Lipoprotein. Circulation 2005; 111:e89-e91
- Pallaud C, Gueguen, Sass C, Grow M, Cheng S, Siest G, et al. Genetic influences on lipid metabolism trait variability within the Stanislas Cohort. *J.Lipid Res* 2001; 42:1879–1890.
- Preiss-Landl K, Zimmermann R, Hämmerle G, Zechner R. Lipoprotein lipase: the regulation of tissue specific expression and its role in lipid and energy metabolism. *Curr Opin Lipidol* 2002; 13:471-481.

- Pérusse L, Rice T, Després JP, Bergeron J, Province MA, Gagnon J, Leon AS, Rao DC, Skinner JS, Wilmore JH, Bouchard C. Familial resemblance of plasma lipids, lipoproteins and postheparin lipoprotein and hepatic lipases in the HERITAGE Family Study. *Arterioscler Thromb Vasc Biol* 1997; 17:3263-3269.
- Razzaghi H, Aston CE, Hamman RF, Kamboh MI. Genetic screening of the lipoprotein lipase gene for mutations associated with high triglyceride/low hdl-cholesterol levels. *Hum Genet* 2000; 107:257-267.
- Reymer PW. et al. A lipoprotein lipase mutation (Asn291Ser) is associated with reduced HDL cholesterol levels in premature atherosclerosis. *Nature Genet* 1995; 10:28–33.
- Radha V, Mohan V, Vidya R, Ashok AK, Deepa R, Mathias RA.Association of lipoprotein lipase Hind III and Ser 447 Ter polymorphisms with dyslipidemia in Asian Indians. Am J Cardiol 2006; 97:1337–1342.
- Ridker PM, Paré G, Parker AN, et al. Polymorphism in the CETP gene region, HDL cholesterol, and risk of future myocardial infarction: Genomewide analysis among 18 245 initially healthy women from the Women's Genome Health Study Circ *Cardiovasc Genet* 2009; 2:26-33.
- Rip J, Nierman MC, Ross CJ, Jukema JW, Hayden MR, Kastelein JJ, Stroes ES, Kuivenhoven JALipoprotein lipase S447X: a naturally occurring gain-of-function mutation. *Arterioscler Thromb Vasc Biol* 2006; 26:1236-1245
- Rye KA, Bursill CA, Lambert G, Tabet F, Barter PJ. The metabolism and anti-atherogenic properties of HDL. *J Lipid Res* 2009; 50 (Suppl):S195-S200.
- Rust S, Walter M, Funke H, von Eckardstein A, Cullen P, Kroes HY, et al. Assignment of Tangier disease to chromosome 9q31 by a graphical linkage exclusion strategy. *Nat Genet* 1998; 20:312
- Sabatti C, Service SK, Hartikainen AL, Pouta A, Ripatti S, et al. Genome-wide association analysis of metabolic traits in a birth cohort from a founder population. *Nat Genet* 2008; 41:35-46.
- Santamarina-Fojo S, Dugi KA. Structure, function and role of lipoprotein lipase in lipoprotein metabolism. *Curr Opin Lipidol* 1994; 5:117-125.
- Sattler W, Levak-Frank S, Radner H, Kostner GM, Zechner R. Muscle-specific overexpression of lipoprotein lipase in transgenic mice results in increased alpha-tocopherol levels in skeletal muscle. *Biochem J* 1996; 318:15-19.
- Seo T, Al-Haideri M, Treskova E, Worgall TS, Lipoprotein lipase-mediated selective uptake from low density lipoprotein requires cell surface proteoglycans and is independent of scavenger receptor class B type 1. *J Biol Chem* 2000; 275:30355-30362.

- Semenkovich CF, Chen SH, Wims M, Luo CC, Li WH, Chan L. Lipoprotein lipase and hepatic lipase mRNA tissue specific expression, developmental regulation, and evolution. *J Lipid Res* 1989; 30:423-431.
- Smith AJ, Palmen J, Putt W, Talmud PJ, Humphries SE, Drenos F. Application of statistical and functional methodologies for the investigation of genetic determinants of coronary heart disease biomarkers: lipoprotein lipase genotype and plasma triglycerides as an exemplar. *Hum Mol Genet* 2010; 19:3936-3947.
- Sparkes RS, Zollman S, Klisak I, Kirchgessner TG, Komaromy MC, Mohandas T, Schotz MC, Lusis AJ. Human genes involved in lipolysis of plasma lipoproteins: mapping of loci for lipoprotein lipase to 8p22 andhepatic lipase to 15q21. *Genomics* 1987; 1:138-144.
- Stein O, Stein Y. Atheroprotective mechanisms of HDL. Atherosclerosis 1999; 144:285-303.
- Sviridov D, Nestel PJ. Genetic factors affecting HDL levels, structure, metabolism and function. *Curr Opin Lipidol* 2007; 18:157-163.
- Takahashi S, Suzuki J, Kohno M, Oida K, Tamai T, Enhancement of the binding of triglyceriderich lipoproteins to the very low density lipoprotein receptor by apolipoprotein E and lipoprotein lipase. *J Biol Chem* 1995; 270:15747-15754.
- Talmud PJ, Hawe E, Robertson K, Miller GJ, Miller NE, Humphries SE, Genetic and environmental determinants of plasma high density lipoprotein cholesterol and apolipoprotein AI concentrations in healthy middle-aged men. *Ann Hum Genet* 2002; 66:111-124.
- Talmud PJ, Stephens JW. Lipoprotein lipase gene variants and the effect of environmental factors on cardiovascular disease risk. *Diabetes Obesity Metab* 2004; 6:1-7.
- Tiret L. Gene-environment interaction: a central concept in multifactorial diseases. *Proc Nutr Soc* 2002; 61:457–463.
- Tsompanidi EM, Brinkmeier MS, Fotiadou EH, Giakoumi SM, Kypreos KE. HDL biogenesis and functions: role of HDL quality and quantity in atherosclerosis. *Atherosclerosis* 2010; 208:3-9.

Tsutsumi K. Lipoprotein Lipase and Atherosclerosis Curr Vasc Pharmacol 2003; 1:11-17.

- Ukkola O, Garenc C, Pérusse L,et al. Genetic variation at the lipoprotein lipase locus and plasma lipoprotein and insulin levels in the Québec Family Study. *Atherosclerosis* 2001; 158:199-206.
- Ulrich S, Hingorani AD, Martin J, Vallance P. Lifetime risk of developing coronary heart disease. *Lancet* 1999; 353:925.

- Van Bennekum AM, Kako Y, Weinstock PH, Harrison EH. Lipoprotein lipase expression level influences tissue clearance of chylomicron retinyl ester. *J Lipid Res* 1999; 40:565-574.
- Von Eckardstein A. Differential diagnosis of familial high density lipoprotein deficiency syndromes. *Atherosclerosis* 2006; 186:231–239.
- Von Eckardstein A, Assmann G. Prevention of coronary heart disease by raising of high density lipoprotein cholesterol. *Curr Opin Lipidol* 2000; 11:627-637.
- Vergeer M, Holleboom AG, Kastelein JJ, Kuivenhoven JA. The HDL hypothesis: does highdensity lipoprotein protect from atherosclerosis? *J Lipid Res* 2010; 51:2058-2073.
- Wallace C, Newhouse SJ, Braund P, Zhang F, Tobin M, Falchi M, Ahmadi K, Dobson RJ, Marçano AC, Hajat C, Burton P, Deloukas P, Brown M, Connell JM, Dominiczak A, Lathrop GM, Webster J, Farrall M, Spector T, Samani NJ, Caulfield MJ, Munroe PB. Genome-wide association study identifies genes for biomarkers of cardiovascular disease: serum urate and dyslipidemia. *Am J Hum Genet* 2008; 82:139–149.
- Wang H, Eckel RH. Lipoprotein lipase: from gene to obesity. Am J Physiol Endocrinol Metab 2009; 297
- Wang X, Paigen B. Genetics of variation in HDL cholesterol in humans and mice. *Circ Res* 2005; 96:27-42.
- Weissglas-Volkov D, Pajukanta P. Genetic causes of high and low serum HDL-cholesterol. J Lipid Res 2010; 51:2032-2057.
- Wion KL, Kirchgessner TG, Lusis AJ. Human lipoprotein lipase complementary DNA sequence. *Science* 1987; 235:1638-1641.
- Wiebusch H, Funke H, Kastelein JJP. Mutations in the lipoprotein lipase gene are not restricted to patients with type 1 hyperlipidemia. *Circulation* 1992; 86:609.
- Willer CJ, Sanna S, Jackson AU, Scuteri A, Bonnycastle LL, Clarke R, et al. Newly identified loci that influence lipid concentrations and risk of coronary artery disease. *Nat Genet* 2008; 40:161–169.
- Wittekoek ME, A common mutation in the lipoprotein lipase gene (N291S) alters the lipoprotein phenotype and risk for cardiovascular disease in patients with familial hypercholesterolemia. *Circulation* 1998; 97:729-735.
- Wittrup HH, Tybjaerg-Hansen A, Steffensen R, Deeb SS, Brunzell JD, Jensen G, Nordestgaard BG. Mutations in the lipoprotein lipase gene associated with ischemic heart disease in men. The Copenhagen city heart study. *Arterioscler Thromb Vasc Biol* 1999; 19:1535-40.

- Wright WT, Young IS, Nicholls DP, Graham CA. Genetic screening of the LPL gene in hypertriglyceridaemic patients. *Atherosclerosis* 2008; 199:187-192.
- Xie C, Wang ZC, Liu XF, Yang MS. The common biological basis for common complex diseases: evidence from lipoprotein lipase gene. *Eur J Hum Genet* 2010; 18:3-7.
- Yacoub LK, Vanni TM, Goldberg IJ. Lipoprotein lipase mRNA in neonatal and adult mouse tissues: comparison of normal and combined lipase deficiency (cld) mice assessed by in situ hybridization. *J Lipid Res* 1990; 31:1845-1852.
- Yang CY, Gu ZW, Yang HX, Rohde MF, Gotto AM Jr, Pownall HJ. Structure of bovine milk lipoprotein lipase. J *Biol Chem* 1989; 264:16822-16827.
- Zhang H, Henderson H, Gagne SE, Clee SM, Miao L, Liu G, Hayden MR. Common sequence variants of lipoprotein lipase: standardized studies of in vitro expression and catalytic function. *Biochim Biophys Acta* 1996; 1302:159-166.