
LOAD BALANCING HOTSPOTS IN SENSOR

STORAGE SYSTEMS

by

Mohamed Aly

M.S. Computer Science, University of Pittsburgh, 2007

B.Sc. Computer and Systems Engineering, Alexandria University,

Egypt, 2002

Submitted to the Graduate Faculty of

the Department of Computer Science in partial fulfillment

of the requirements for the degree of

Doctor of Philosophy

University of Pittsburgh

2009

CORE Metadata, citation and similar papers at core.ac.uk

Provided by D-Scholarship@Pitt

https://core.ac.uk/display/12209704?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

UNIVERSITY OF PITTSBURGH

DEPARTMENT OF COMPUTER SCIENCE

This dissertation was presented

by

Mohamed Aly

It was defended on

March 25, 2009

and approved by

Prof. Kirk Pruhs, Department of Computer Science

Prof. Panos K. Chrysanthis, Department of Computer Science

Prof. Alexandros Labrinidis, Department of Computer Science

Dr. Phillip Gibbons, Intel Research Pittsburgh

Dissertation Advisors: Prof. Kirk Pruhs, Department of Computer Science,

Prof. Panos K. Chrysanthis, Department of Computer Science

ii

Copyright c© by Mohamed Aly

2009

iii

ABSTRACT

LOAD BALANCING HOTSPOTS IN SENSOR STORAGE SYSTEMS

Mohamed Aly, PhD

University of Pittsburgh, 2009

Sensor networks provide us with the means of effectively monitoring and interacting with

the physical world. A sensor network usually consists of a large number of small inexpensive

battery-operated sensors deployed in a geographic area. This dissertation considers a sensor

network deployed to monitor a disaster area. First responders continuously issue ad-hoc

queries while moving in the disaster area. In such an environment, it is often more beneficial

to store sensor readings and process ad-hoc queries within rather than outside the sensor

network. Recently, this led to an increased popularity of Data-Centric Storage (DCS). A

DCS scheme is based on a mapping function from readings to sensors based on the attribute

values of each reading. This mapping function defines the DCS index structure.

Two significant problems arising in this DCS network model due to data and traffic

skewness are storage hotspots and query hotspots. Storage hotspots are formed when many

sensor readings are mapped for storage to a relatively small number of sensor nodes. Query

hotspots occur when many user queries target few sensor nodes. Both types of hotspots are

hard to predict. Storage hotspots result in an uncontrolled reading shedding that decreases

the Quality of Data (QoD). Due to the limited wireless bandwidth of sensors, hotspots

decrease QoD by increasing collisions (thus losses) of reading/query packets. When lasting

long enough, hotspots affect the Quality of Service (QoS) by unevenly depleting energy in

the sensor network.

This dissertation addresses both problems of hotspots through load balancing. The main

dissertation hypothesis is that data migration resulting from local or global load balancing of

iv

the DCS index structure can effectively solve the hotspot problems. The contributions of this

dissertation lie in developing two schemes, namely, the Zone Sharing/Zone Partitioning/Zone

Partial Replication (ZS/ZP/ZPR) scheme and the K-D tree based Data-Centric Storage

(KDDCS) scheme. ZS/ZP/ZPR detects and decomposes both types of hotspots through load

balancing in the hotspot area. KDDCS avoids the formation of hotspots through globally

load-balancing the underlying DCS index structure. Experimental evaluation shows the

effectiveness of the proposed schemes in coping with hotspots in comparison to the state-of-

the-art DCS schemes.

Keywords Sensor Networks, Distributed Algorithms, Data-Centric Storage, Load Balanc-

ing, Storage Hotspots, Query Hotspots.

v

TABLE OF CONTENTS

PREFACE . xvi

1.0 INTRODUCTION . 1

1.1 Motivation . 1

1.2 Problem Definition . 3

1.3 Approach and Contributions . 4

1.4 Roadmap . 6

2.0 RELATED WORK . 8

2.1 Data-Centric Storage (DCS) . 8

2.2 Load Balancing Paradigms . 13

2.3 Point-to-Point Routing . 14

2.4 Summary . 16

3.0 SYSTEM MODEL AND EXPERIMENTAL PLATFORM 17

3.1 System Model . 17

3.1.1 Network Model and Motivating Application 17

3.1.2 Sensor Devices . 20

3.2 Experimental Platform . 22

3.2.1 Sensor Network . 22

3.2.2 Policies and Schemes . 23

3.2.3 Experimental Setup . 24

3.2.4 Storage Workload . 24

3.2.5 Query Workload . 26

3.2.6 Hotspot Generation . 27

vi

3.2.7 Experimental Evaluation Scenario 30

3.2.8 Experimental Metrics . 31

3.3 Summary . 33

4.0 LOCAL HOTSPOT DETECTION AND DECOMPOSITION 34

4.1 Local Detection and Decomposition of Storage Hotspots 34

4.1.1 Basic Idea . 35

4.1.2 Distributed Migration Criterion (DMC) 36

4.1.3 DMC Implementation Details . 39

4.1.4 Single Hop Zone Sharing (SHZS) . 41

4.1.5 Multi-Hop Zone Sharing (MHZS) . 42

4.1.5.1 GPSR Modifications . 43

4.1.5.2 Hotspot Decomposition Mechanism 45

4.1.6 Handling Dynamic Hotspots Through Zone Rejoining 46

4.1.7 ZS Implementation Overhead . 47

4.1.8 ZS Experimental Evaluation . 49

4.1.8.1 Sensitivity Analysis . 51

4.1.8.2 Single Static Storage Hotspots 54

4.1.8.3 Multiple Simultaneous Static Storage Hotspots 59

4.1.8.4 Moving Storage Hotspots . 63

4.1.8.5 Effect of Storage Level Threshold on MHZS Performance . . 67

4.1.8.6 Effect of Energy Level Threshold on MHZS Performance . . . 72

4.1.8.7 Effect of the Zone Share Count on MHZS Performance 78

4.1.8.8 Discussion . 84

4.2 Local Detection and Decomposition of Query Hotspots 87

4.2.1 Zone Partitioning (ZP) . 88

4.2.1.1 Illustrative Example . 88

4.2.1.2 Local Detection of Query Hotspots 89

4.2.1.3 The Partitioning Criterion (PC) 90

4.2.1.4 GPSR Modifications . 92

4.2.1.5 Coalescing Process . 94

vii

4.2.2 Zone Partial Replication (ZPR) . 95

4.2.2.1 Additional PC Requirements 95

4.2.2.2 ZPR Handling of Insertions 97

4.2.3 ZP/ZPR Implementation Overhead 98

4.2.4 ZP/ZPR Experimental Evaluation 99

4.2.4.1 Sensitivity Analysis . 100

4.2.4.2 Single Static Query Hotspots 103

4.2.4.3 Multiple Simultaneous Static Query Hotspots 107

4.2.4.4 Moving Query Hotspots . 109

4.2.4.5 Discussion . 114

4.3 Local Detection and Decomposition of Mixed Hotspots 115

4.3.1 The ZS/ZP/ZPR Scheme . 115

4.3.2 ZS/ZP/ZPR Experimental Evaluation 118

4.3.2.1 Uniform Loads . 119

4.3.2.2 Single Static Mixed Hotspots 120

4.3.2.3 Multiple Simultaneous Static Mixed Hotspots 122

4.3.2.4 Moving Mixed Hotspots . 130

4.3.2.5 Discussion . 132

4.3.3 Learned Lessons from the Experimental Evaluation 134

4.4 Summary . 137

5.0 HOTSPOT AVOIDANCE . 138

5.1 Overview on KDDCS . 138

5.2 DIM vs. KDDCS . 140

5.3 The Weighted Split Median Problem . 143

5.4 The KDDCS Components . 146

5.4.1 Distributed Logical Address Assignment Algorithm 146

5.4.2 Event to Bit-code Mapping . 148

5.4.3 Incremental Event Hashing and Routing 150

5.4.4 Discussion . 152

5.5 KDTR: K-D Tree Rebalancing Algorithm 153

viii

5.5.1 Selection of Subtrees to be Rebalanced 153

5.5.2 Tree Rebalancing Algorithm . 154

5.5.3 Discussion . 156

5.6 Avoiding Storage Hotspots with KDTR . 158

5.6.1 Experimental Evaluation . 158

5.6.1.1 Single Static Storage Hotspots 160

5.6.1.2 Multiple Simultaneous Static Storage Hotspots 165

5.6.1.3 Moving Storage Hotspots . 168

5.6.2 Discussion . 174

5.7 Extending KDTR to Avoid Query Hotspots 175

5.7.1 Experimental Evaluation . 176

5.7.1.1 Single Static Query Hotspots 178

5.7.1.2 Multiple Simultaneous Static Query Hotspots 181

5.7.1.3 Moving Query Hotspots . 185

5.7.1.4 Discussion . 191

5.8 Extending KDTR to Avoid Mixed Hotspots 191

5.8.1 Experimental Evaluation . 193

5.8.1.1 Uniform Loads . 195

5.8.1.2 Single Static Mixed Hotspots 196

5.8.1.3 Multiple Simultaneous Static Mixed Hotspots 199

5.8.1.4 Moving Mixed Hotspots . 203

5.8.1.5 Discussion . 207

5.9 KDDCS Robustness to Packet Loss . 209

5.10 Learned Lessons from the Experimental Evaluation 210

5.11 Summary . 212

6.0 CONCLUSIONS . 214

6.1 Summary of Contributions . 214

6.2 Future Work . 217

6.2.1 Future Experimental Studies of the Thesis Schemes 217

6.2.1.1 Experimenting on Sensor Network Testbeds 217

ix

6.2.1.2 Experimenting on Heterogeneous Networks 217

6.2.1.3 Experimenting on Sensor Networks Experiencing Failures . . 220

6.2.2 Future Directions . 222

6.2.2.1 Load Balancing Query Hotspots Using Query Semantics . . . 223

6.2.2.2 Spatio-Temporal Data-Centric Storage for Real-Time Sensor

Applications . 225

BIBLIOGRAPHY . 227

x

LIST OF TABLES

1 Experimental Setup . 25

2 Performance of the Different Versions of ZS (Relative to DIM) for Single Stor-

age Hotspots . 86

3 ZS Performance (Relative to DIM) for Storage Hotspots 86

4 ZP/ZPR Performance (Relative to DIM) for Query Hotspots 114

5 ZS/ZP/ZPR Performance (Relative to DIM) for Mixed Hotspots 134

6 KDDCS Performance (Relative to DIM) for Storage Hotspots 174

7 KDDCS Performance (Relative to DIM) for Query Hotspots 191

8 KDDCS Performance (Relative to DIM) for Mixed Hotspots 209

9 KDDCS Performance (Relative to DIM) for the Different Hotspot Types . . . 211

xi

LIST OF FIGURES

1 Sensor to Bit-code Mapping . 10

2 Assigning Value Ranges to Sensors . 11

3 The GPSR Algorithm . 15

4 Zone Sharing Illustrative Example . 36

5 Zone Sharing Algorithm . 40

6 Modified GPSR Algorithm for ZS . 44

7 QoD Improvements vs QoS Overheads of the Different ZS Versions 53

8 ZS: QoD Graphs for a 60% Single Storage Hotspot 55

9 ZS: Number of Full Nodes for a 60% Single Storage Hotspot 57

10 ZS: Energy Consumption Graphs for Single Storage Hotspots 58

11 ZS: QoD Graphs for Multiple Storage Hotspots 60

12 ZS: Number of Full Nodes for a 60% Multiple Storage Hotspot 61

13 ZS: Energy Consumption Graphs for 60% Multiple Storage Hotspots 62

14 ZS: QoD Graphs for a 40% Moving Storage Hotspot 64

15 ZS: Full Nodes for a 40% Moving Storage Hotspot 65

16 ZS: Energy Consumption Graphs for a 40% Moving Storage Hotspot 66

17 ZS: Dropped Events for Various C Values . 68

18 ZS: Number of Full Nodes for Various C Values 70

19 ZS: Dead Node Graphs for Various C Values 71

20 ZS: Energy Consumption Graphs for Various C Values 73

21 ZS: Dropped Events for Various E Values . 75

22 ZS: Number of Full Nodes for Various E Values 76

xii

23 ZS: Dead Node Graphs for Various E Values 77

24 ZS: Energy Consumption Graphs for Various E Values 79

25 ZS: Dropped Events for Various SC Values 80

26 ZS: Number of Full Nodes for Various SC Values 82

27 ZS: Dead Node Graphs for Various SC Values 83

28 ZS: Energy Consumption Graphs for Various SC Values 85

29 ZP Example . 88

30 Zone Partitioning Algorithm . 91

31 Modified GPSR Algorithm for ZP . 94

32 ZPR Example . 97

33 ZP/ZPR: QoD Graphs for Single Query Hotspots 104

34 ZP/ZPR: Number of Full Nodes for a 60% Single Query Hotspot 105

35 ZP/ZPR: Energy Consumption Graphs for Single Query Hotspots 106

36 ZP/ZPR: QoD Graphs for 80% Multiple Query Hotspots 108

37 ZP/ZPR: Number of Full Nodes for 80% Multiple Query Hotspots 109

38 ZP/ZPR: Energy Consumption Graphs for 80% Multiple Query Hotspots . . 110

39 ZP/ZPR: Dropped Events for a 60% Moving Query Hotspot 111

40 ZP/ZPR: Number of Full Nodes for an 80% Moving Query Hotspot 112

41 ZP/ZPR: Energy Consumption Graphs for an 80% Moving Query Hotspot . . 113

42 ZS/ZP/ZPR: Average Node Energy for Uniform Loads 120

43 ZS/ZP/ZPR: Dropped Events for Single Mixed Hotspots 121

44 ZS/ZP/ZPR: QoD Graphs for Single Mixed Hotspots 123

45 ZS/ZP/ZPR: Number of Full Nodes for a 60% Single Mixed Hotspot 124

46 ZS/ZP/ZPR: Energy Consumption Graphs for a 60% Single Mixed Hotspot . 125

47 ZS/ZP/ZPR: Dropped Events for Multiple Mixed Hotspots 126

48 ZS/ZP/ZPR: QoD Graphs for Multiple Mixed Hotspots 127

49 ZS/ZP/ZPR: Number of Full Nodes for 60% Multiple Mixed Hotspot 128

50 ZS/ZP/ZPR: Energy Consumption Graphs for 80% Multiple Mixed Hotspots 129

51 ZS/ZP/ZPR: QoD Graphs for an 80% Moving Mixed Hotspot 131

52 ZS/ZP/ZPR: Number of Full Nodes for 60% Moving Mixed Hotspot 132

xiii

53 ZS/ZP/ZPR: Energy Consumption Graphs for Moving Mixed Hotspots . . . 133

54 KDDCS k-d Tree . 142

55 KDDCS Initial k-d Tree . 143

56 Logical Address Assignment Algorithm . 147

57 Example of Routing a Query on KDDCS . 151

58 KDTR Example . 157

59 KDDCS: QoD Graphs vs Single Storage Hotspots 161

60 KDDCS: Number of Full Nodes for an 80% Single Storage Hotspot 163

61 KDDCS: Energy Consumption Graphs vs Single Storage Hotspots 164

62 KDDCS: QoD Graphs vs Multiple Storage Hotspots 166

63 KDDCS: Number of Full Nodes for 60% Multiple Storage Hotspots 167

64 KDDCS: Energy Consumption Graphs vs Multiple Storage Hotspots 169

65 KDDCS: QoD Graphs for a 40% Moving Storage Hotspot 170

66 KDDCS: Number of Full Nodes for a 40% Moving Storage Hotspot 171

67 KDDCS: Energy Consumption Graphs for a 40% Moving Storage Hotspot . . 173

68 KDDCS: QoD Graphs vs Single Query Hotspots 179

69 KDDCS: Number of Full Nodes for a 60% Single Query Hotspot 180

70 KDDCS: Energy Consumption Graphs vs Single Query Hotspots 182

71 KDDCS: QoD Graphs vs Multiple Query Hotspots 183

72 KDDCS: Number of Full Nodes for 80% Multiple Query Hotspots 184

73 KDDCS: Energy Consumption Graphs vs Multiple Query Hotspots 186

74 KDDCS: QoD Graphs for a 60% Moving Query Hotspot 187

75 KDDCS: Number of Full Nodes for a 60% Moving Query Hotspot 189

76 KDDCS: Energy Consumption Graphs for a 60% Moving Query Hotspot . . . 190

77 KDDCS: Average Node Energy for Uniform Loads 196

78 KDDCS: QoD Graphs vs Single Mixed Hotspots 197

79 KDDCS: Number of Full Nodes for a 60% Single Mixed Hotspot 198

80 KDDCS: Energy Consumption Graphs vs Single Mixed Hotspots 200

81 KDDCS: QoD Graphs for Multiple Mixed Hotspots 201

82 KDDCS: Number of Full Nodes for 60% Multiple Mixed Hotspot 202

xiv

83 KDDCS: Energy Consumption Graphs vs Multiple Mixed Hotspots 204

84 KDDCS: QoD Graphs vs Moving Mixed Hotspots 206

85 KDDCS: Number of Full Nodes for 80% Moving Mixed Hotspots 207

86 KDDCS: Energy Consumption Graphs vs Moving Mixed Hotspots 208

xv

PREFACE

With my PhD journey coming to an end, I would like to thank Allah, the Almighty God, for

blessing me with the opportunity, time, health, and strength, to conduct this PhD research

and put together this dissertation.

I would like to thank my advisors, Kirk Pruhs and Panos Chrysanthis, for their guid-

ance and support throughout my PhD study. I learned a lot from their knowledge, advice,

dedication, and wisdom. Individually and collectively, they taught me things that I cannot

enumerate on the academic, professional, and personal levels. Kirk and Panos, I cannot find

enough words to thank you.

I would also like to extend my gratitude to my committee members, Alexandros Lab-

drinidis and Phillip Gibbons, for their support, thoughtfulness, and their insightful and

constructive advice and feedback.

I am grateful to my friends and colleagues in the PhD program, especially Mahmoud

Elhaddad, Sherif Khattab, and Mohammad Hammoud, for their continuous help and sup-

port. I also appreciate my successful research collaboration with Nicholas Morsillo, John

Augustine, Adel Youssef, and Anandha Gopalan.

Furthermore, I would like to thank the faculty and staff of the Computer Science De-

partment at Pitt for the warm and familial departmental environment.

Acknowledgment is also due to the NSF for supporting my research through grants: NI-

0325353, CCF0448196, CCF-0514058, and IIS-053453. Also, I would like to acknowledge the

support that I received from the Andrew Mellon Doctoral Fellowship.

Finally, the most appreciation is due to my beloved family: my father Abdel-Mohsen, my

mother Amal, my sister Naglaa, my brother Tarek, my wife Khadiga, and my newly-born

son, Mouaaz. With gratitude, I dedicate this work to them.

xvi

1.0 INTRODUCTION

1.1 MOTIVATION

Sensor networks are autonomous self-organizing systems providing us with the means of effec-

tively monitoring and interacting with the physical world. A sensor network usually consists

of a large number of small inexpensive battery-operated sensors deployed in a geographic

area defined as the service area. Sensors continuously gather different types of information

from the environment. A sensor reading is composed of one or more attributes (e.g., tem-

perature, carbon monoxide level, etc.), the identity of the sensor device sensing it, and the

time it was sensed on. Periodically, sensor readings or their synopses may be directed to

the base station, a server located within or nearby the service area, for further storage and

processing. Sensor nodes are characterized with power, memory, and computational con-

straints. They are usually stationary unlike mobile ad-hoc network nodes. Sensor networks

are used in many real-world applications such as habitat monitoring [54], surveillance [57],

disaster management [7], inventory management [40], etc.

In this work, we mainly focus on sensor networks for disaster management. Consider

an emergency/disaster scenario where sensors are deployed in the area of the disaster [58].

Sensor devices continuously sense and store readings of potential interest. As first responders

move through the disaster area with hand-held devices that can directly communicate with

sensor devices, they can query the network about recent readings. For example, a first

responder might ask for the locations (or IDs) of all sensor nodes that recorded high carbon

monoxide levels in the last 15 minutes, or the first responder might ask whether any sensor

node detected movement in the last minute. Queries are picked up by sensor devices in the

region of the first responder and the sensor network is then responsible for answering these

1

queries. The first responders use these query answers to make decisions on how to best

manage the emergency.

The ad-hoc queries of the first responders are generally multi-dimensional range queries

[37], that is, the queries concern sensor readings that were sensed over a small time window

in the near past and that fall in a given range of the attribute values. As these queries

arise from within the service area and target fairly small amounts of sensor readings, the

base station storage technique, comprised of directing all sensor readings to be stored in

base stations and all queries to be processed by these base stations, may not be the optimal

storage and query processing technique for this environment. In-Network Storage (INS) is

a storage technique that has been specifically proposed to efficiently process ad-hoc queries.

INS involves storing events locally in the caches of the sensor nodes (in other words, using

the sensor devices as storage devices). It is more beneficial to store data in the network

because it is more efficient than shipping all the data (i.e., raw sensor readings) out of the

network (to base stations), or simply because no out-of-network storage is available.

INS may take many forms depending on how to map readings to sensors for storage. The

straightforward INS technique is local storage which consists of letting each sensor store the

readings it generates. In this case, processing any range query will require flooding the whole

network with retrieval messages, which is both energy and time consuming. Due to the query

processing inefficiency of this scheme, INS schemes already presented in literature involved

targeted data retrieval through adopting the Data-Centric Storage (DCS) concept [53], which

is based on the traditional database concept of access paths (or indexing) [19]. A DCS

scheme is based on a function from readings to sensors mapping each reading to a storage

sensor based on the value of the attributes of this reading. The reading-to-sensor mapping

defines the DCS index structure. Based on this index structure, each storage sensor will be

responsible for a given attribute value range. This responsibility includes both storing any

sensor reading (i.e., generated by any sensor) whose attributes fall in and answering any

query targeting this value range. The storage sensor may be different than the sensor that

originally generated the event.

2

1.2 PROBLEM DEFINITION

In a DCS sensor network model, two major problems may arise, namely storage hotspots

and query hotspots. Storage hotspots represent a form of data skewness occurring when

the distribution of readings is non-uniform with respect to the possible value ranges of

the different attributes. This skewed reading distribution results in mapping many sensor

readings for storage to a fairly small number of sensor nodes. Consequently, this results in

forming one or more hot regions of attribute values (and subsequently of sensor devices).

Both the hot value ranges and the hot geographic regions can be referred to as the storage

hotspots. Storage hotspots can lead to increasing the reading shedding as the storage sensors

(falling in the storage hotspots) become overloaded with data very quickly and start dropping

readings once exceeding their storage capacities. This results in decreasing the Quality of

Data (QoD) of the sensor network. We define the QoD to be the average proportion of the

effective result size of any query (measured in terms of the number of sensor readings) to

the number of sensor readings actually fulfilling the query.

Furthermore, storage hotspots result in some form of traffic skewness as a fairly small

number of sensor nodes are frequently targeted for storing readings. As each sensor node has

a limited wireless bandwidth, many of the packets (carrying readings) targeting nodes falling

in a storage hotspot tend to be dropped due to wireless collisions. This further decreases

QoD. Additionally, this traffic skewness imposes a high energy consumption overhead on

sensor nodes falling in the hotspot area. Unless the number of routing paths used by the

underlying routing algorithm to access the hotspot area is large, hotspots impose a high

energy consumption overhead on sensor nodes falling on these routing paths as well. In

case a hotspot lasts for enough time, these overloaded sensor nodes quickly deplete their

energy and start dying before other sensor nodes possibly having almost full batteries. Node

deaths affect QoD as the data stored in the dead nodes would be lost. Additionally, node

deaths significantly affect the Quality of Service (QoS) of the sensor network by decreasing

the network lifetime and may additionally result in partitioning the network. As node

deaths decrease the number of functional sensors in the network, this decreases the coverage

capability of the network, which results in an even larger decrease of its QoS.

3

Query hotspots represent another form of data skewness occurring where most of the

mobile users issue queries falling, with a high percentage, in a small sub-range of the possible

attribute value ranges. Consequently, most of these queries target a fairly small subset of

sensor nodes in the sensor network. Query hotspots may easily occur in our setting due to

the time-varying number of users and may also arise because of the difference in popularity

between the readings of different sensor nodes based on the reading type, location, time, etc.

Similar to storage hotspots, query hotspots affect the QoD of the sensor network. Many of

the packets targeting nodes falling in a query hotspot tend to be dropped due to wireless

collisions. As most of these packets represent queries, this results in increasing the average

number of attempts incurred in sending packets in the hotspot area. Subsequently, a query

whose results partially or fully fall in the hotspot area would tend to be partially or fully

unanswered. This has a direct effect on decreasing the QoD of the sensor network. Also,

similar to storage hotspots, node deaths that may result from query hotspots have negative

effects on both QoD and QoS.

In this dissertation, we focus on the two problems of storage and query hotspots assum-

ing a failure-free environment (where nodes only fail because of battery depletion). The

formation of hotspots significantly affect the QoD of the sensor network. Additionally, it

may have a secondary effect on decreasing the QoS of the sensor network.

1.3 APPROACH AND CONTRIBUTIONS

In this dissertation, we address the storage and query hotspot problems in the disaster

management DCS sensor network model by means of load balancing. Our main hypothesis

in this thesis is that data migration resulting from load balancing the underlying index

structure of a DCS scheme is effective in solving the hotspot problems (both storage and

query hotspots) arising in that scheme.

Our contributions in this thesis are as follows:

• We present two hotspot detection and decomposition solutions, namely the Zone Sharing

(ZS) [8] and the Zone Partitioning/Zone Partial Replication (ZP/ZPR) [5] schemes, to

4

individually identify and decompose storage and query hotspots, respectively. Both

schemes assume an underlying k-d tree based index structure and are implemented on

top of the Distributed Index for Multi-dimensional data (DIM) DCS scheme [37].

• We blend the two solutions to form the ZS/ZP/ZPR scheme to detect and decompose

both types of hotspots, either separately or simultaneously.

• We develop a generic globally load-balanced DCS scheme, namely the K-D tree based

Data-Centric Storage (KDDCS) scheme [9], that is able to avoid the formation of either

type of hotspots. We apply KDDCS to individually cope with storage and query hotspots.

• We develop a systematic approach for using KDDCS to simultaneously avoid both types

of hotspots.

To measure the efficiency of our schemes, we experimentally study the performance of

our schemes for the different hotspot types through extensive simulations. When designing

our simulations, we tried as much as possible to model real-world hotspot scenarios possibly

arising in disaster management applications. In our simulations, we use different perfor-

mance metrics. Our metrics lie in three main categories: QoD, load balancing, and energy

consumption. The concentration on these categories comes as a direct consequence of our

main goal in this thesis, which is to improve the QoD for hotspots of different types, through

load balancing, with a secondary goal of improving energy consumption (or at least, without

imposing an additional energy consumption overhead). Example of metrics we use are the

number of dropped sensor readings, the average node storage, the average result size of given

types of queries, the number of full nodes (i.e., with caches full with readings), the number

of dead nodes, and the average energy consumption per sensor node.

Our experimental evaluation showed that the localized load balancing achieved by the

ZS/ZP/ZPR scheme is best suited for detecting and decomposing small to medium isolated

hotspots. For these hotspot settings, ZS/ZP/ZPR achieves good QoD improvements while

introducing a small energy consumption overhead on the sensor network. On the other

hand, the global load balancing achieved by KDDCS offers higher QoD improvements for

the different hotspot settings while imposing a slightly larger energy consumption overhead

than that imposed by ZS/ZP/ZPR. More importantly, KDDCS copes with complex hotspot

settings, such as large-scale single hotspots, multiple simultaneous static hotspots of either

5

similar or different types, and multiple moving hotspots. Furthermore, the KDDCS QoD

improvements become more tangible for networks of large sizes. In summary, KDDCS is

the best selection for a sensor network to maximize QoD for the different hotspot types and

settings while paying a moderate energy consumption cost.

In light of these recommendations, KDDCS can be considered as the best fitting scheme

for our motivating disaster management application. Recall that first responders use the

sensor network data to better manage the disaster. A safe assumption about our application

is that the expected network lifetime is relatively short, ranging from few hours to few

days. Driven by the urgency of the sensor network data, data loss negatively affects the

network performance much more than energy loss. Thus, it is better to sacrifice energy

consumption for achieving the best possible QoD throughout the short network lifetime. As

KDDCS maximizes the QoD for the different hotspot types while imposing an affordable

energy consumption overhead on the sensor network, it is the best candidate for a disaster

management application or any other application with similar characteristics such as habitat

monitoring of rare phenomena and data-sensitive short-term surveillance applications.

1.4 ROADMAP

The rest of this dissertation is organized as follows. We start by describing the state-of-the-

art DCS schemes (with a special concentration on the DIM scheme representing the basis

of our local hotspot detection and decomposition schemes), load balancing paradigms, and

point-to-point routing schemes used in sensor networks in Chapter 2. We then explain our

system model and experimental platform in more details in Chapter 3.

In Chapter 4, we present our local storage hotspot detection and decomposition schemes

to cope with the different types of hotspots. All schemes presented in this chapter run on

top of the DIM DCS scheme. We start by presenting our ZS scheme to cope with storage

hotspots. ZS locally detects a storage hotspot (in its formation location) and decomposes

it by migrating sensor readings away from the hotspot area without globally changing the

underlying k-d tree of the DIM scheme.

6

We continue by presenting the ZP/ZPR scheme to detect and decompose query hotspots

arising in the DIM scheme. The scheme is based on the local detection of query hotspots and

applying the data migration concept to decompose such hotspot without affecting the k-d

tree of the DIM scheme. To locally detect and decompose mixed hotspots, both schemes are

blended into the ZS/ZP/ZPR scheme. All three schemes, ZS, ZP/ZPR, and ZS/ZP/ZPR are

experimentally evaluated for the different types of hotspots through extensive simulations.

Then, in Chapter 5, we present KDDCS, a globally load-balanced DCS scheme whose

main goal is to avoid the formation of hotspots of different types and sizes. KDDCS con-

tinuously maintains the load balancing of the underlying k-d tree when mapping sensors to

virtual addresses at the start of the network operation, as well as when mapping readings to

storage sensors throughout the network lifetime. Due to the generality of its building com-

ponents, we present different KDDCS versions to avoid storage hotspots, query hotspots,

and mixed hotspots. We experimentally evaluate the performance of KDDCS to show its

efficiency against different hotspot types and settings.

At the end, we conclude this dissertation and highlight possible future work, both related

and complementary to our thesis work in Chapter 6.

7

2.0 RELATED WORK

In this chapter, we will present a brief quick review of the work related to our schemes

and already presented in literature. We start by reviewing the Data-Centric Storage (DCS)

literature. Then, we give an overview on the previously proposed load balancing schemes.

Finally, as all our schemes use point-to-point routing for reading/query routing, we review

the point-to-point routing protocols widely used in sensor networks.

2.1 DATA-CENTRIC STORAGE (DCS)

Many approaches have been presented in literature defining how to store the data generated

by a sensor network. One line of work consisted in sending aggregated readings to be

stored in base stations, lying within, or outside, the network. However, this approach is

more appropriate to continuous queries running on servers and mostly processing events

generated by all the sensor nodes over a large period of time [12, 38, 59, 52, 44, 43]. In order

to improve the QoD of ad-hoc queries, In-Network Storage (INS) has been proposed. In

INS, sensor caches are used as temporary storage devices to store sensor readings. All INS

storage schemes already presented in literature were based on the DCS concept [53]. In

general, DCS schemes differ from each other based on the readings-to-sensors mapping used.

For example, this mapping was done using hash tables in the Geographic Hash Table (GHT)

scheme [53,48] and using k-d trees in the Distributed Index for Multi-dimensional data (DIM)

scheme [37].

The first DCS scheme presented in literature was GHT. The scheme basically hashes keys

into geographic coordinates, and stores a key-value pair at the sensor node geographically

8

nearest the hash of its key [48]. The system replicates stored data locally (at surrounding

sensor nodes) to ensure persistence when nodes fail. It uses an efficient consistency protocol

to ensure that key-value pairs are stored at the appropriate nodes after topological changes

(caused by node failures, both temporary or permanent, node movements, or any other

external factors). By replicating values in different locations across the service area, GHT

further distributes regular storage and query loads throughout the network. Data is routed to

sensor nodes using the Greedy Perimeter Stateless Routing (GPSR) algorithm [32] (described

in Section 2.3). In light of our problems, GHT does not provide any special handling for

data skewness occurring in the forms of storage and query hotspots. Furthermore, the

hashing technique of GHT does not implement any special support for multi-dimensional

range queries. Processing such queries occurs through separate processing for each of the

query dimensions followed by joining results of the different dimensions.

To efficiently process multi-dimensional range queries by leveraging the benefit of a

locality-preserving hash in storing data, DIM presented the novel idea of using k-d trees [11]

as the underlying DCS index structure. To map readings to sensors, DIM uses a k-d tree

where the leaves L form a partition of the service area, and each element of L contains either

zero or one sensor. The formation of the k-d tree consists of rounds. Initially, L is a one

element set containing the whole service area. In each odd/even round r, each region L ∈ L
that contains more than one sensor is bisected horizontally/vertically. Every time a region is

split, each sensor in that region has a bit appended to its address specifying which side of the

split the sensor was on. Thus, the length of a sensor’s address (bit-code) is its depth in the

underlying k-d tree. Upon generating a reading, a sensor maps the reading to a binary code

based on a repetitive fixed uniform splitting of the attribute ranges in a round robin fashion.

Let the reading be consisting of only one attribute, say temperature. Then, the high order

bits of a temperature reading are used to determine a root-to-leaf path in the k-d tree, and

if there is a sensor in the region of the leaf, then this sensor becomes the storage sensor of

this reading. Due to the regularity of regions in this k-d tree, the reading is routed from the

generating sensor to the storage sensor using GPSR. Experimental results have shown that

DIM scheme exhibits better performance than the GHT scheme in processing ad-hoc range

queries.

9

Figure 1: Sensor to Bit-code Mapping

Figures 1 and 2 show an example of a deployment of four sensors and the DIM k-d tree

for that deployment, respectively. Figure 1 shows the initial sensor to bit-code mapping that

assigns a bit-code to each sensor based on the sensor geographic locations. In Figure 2, X and

Y represent temperature and pressure, respectively. The possible value range for temperature

is [30, 70] while that of pressure is [0, 2]. The figure shows the sensor storage responsibility

assignments resulting from the value range to bit-code mapping. In the figure, each sensor

is assigned two sub-ranges of values, one for temperature and one for pressure. Each sensor

is supposed to store all readings whose values fall in the sensor’s assigned sub-ranges. The

orphan zone (01) is assumed to be delegated to node 001, which is the least loaded among

its neighbors. Periodic messages are exchanged between sensor nodes to maintain the DIM

k-d tree structure. As for GHT, DIM did not have load balancing as a major design goal.

Thus, its performance was poor against skewed data sets [37].

In a follow-up work for DIM, Gummadi et al. [?] evaluated the effect of the data organi-

zation on DIM. The authors have shown that storing sensor readings in separate DIMs, one

for each attribute, works better than storing the readings in one DIM based on all attributes.

The authors then used this observation in order to build energy efficient query processing

techniques by optimizing the joins involved in processing any of the queries and caching

previous query results in query issuers (sensor nodes that issued those queries) and/or query

processors (sensor node that were involved in processing queries) in order to avoid repeating

10

Figure 2: Assigning Value Ranges to Sensors

most of these joins for future queries.

Building on GHT and DIM, different DCS schemes have been presented in literature

with different goals. None of these schemes considered load balancing as a major design

goal. For instance, the practical data-centric storage scheme, pathDCS [18], had the main

design goal of avoiding the dependence of DCS on point-to-point routing. pathDCS aimed at

making DCS a basic primitive available to the different sensor network applications by using

only tree-based communication primitives. This was based on the fact that standard tree

construction algorithms are already available in many real-world deployments unlike point-

to-point routing. The design of pathDCS relied on associating data names with paths instead

of sensor nodes. These paths are derived from a collection of trees initially constructed at

the beginning of the network operation starting from a small subset of sensors, namely

landmarks. The scheme did not provide any special handling for data skewness or traffic

skewness. Due to the static assignments of storage responsibilities and the static routing

paths, the scheme is not suited for handling storage and/or query hotspots.

The Center Mapping Data Centric Storage (CMDCS) was developed to address the issues

of data storage and query processing [25]. CMDCS supports the power efficient processing

of event queries by preprocessing of the observed data (i.e., the generated readings) to check

11

whether these readings satisfy the occurrence conditions of events under concern. Once

an event occurs, the event information is stored in the sensor network while the irrelevant

readings are ignored. Though this approach has the benefit of solely focusing on storing

events rather than raw sensor readings, it may limit the sensor network’s ability to process

queries for non-supported events once the raw data has been partially discarded. Despite the

fact of storing less sensor readings, the scheme suffers from both storage and query hotspots.

A hotspot scenario occurs in CMDCS when one event occurs (or the sensor network is

queried for such event) much more frequently than the other ones belonging to the set of

events under concern. This results in the formation of storage/query hotspots and CMDCS

does not provide any special handling for such cases.

All previously discussed DCS schemes did not consider security issues resulting from

the lack of tamper-resistance of the sensor nodes and the unattended nature of the sensor

network. For example, an attacker may simply locate and compromise the node storing the

event of his interest. To address these security problems, a privacy-enhanced DCS network,

namely pDCS [51], has been recently developed to offer different levels of data privacy based

on different cryptographic keys. pDCS proposed several query optimization techniques based

on Euclidean Steiner Tree and Keyed Bloom Filter to minimize the query overhead while

providing certain query privacy. These techniques do not target load balancing as a design

goal. Thus, they are not suited for dealing with storage and query hotspots. In fact, the

improved query optimization techniques presented in pDCS can be adopted by our KDDCS

scheme as a way to improve query processing. This can be considered as a future work.

Finally, the advances in flash memory has lead to seriously consider the option of equip-

ping sensors with high-capacity and energy-efficient local flash storage [61,16]. Recently, the

authors of [16] presented StonesDB, a sensor network database architecture, to enable this

vision through a number of innovative features including energy efficient use of flash memory,

multi-resolution storage and aging, query processing, and intelligent caching. In general, in-

creasing the storage capacities of sensor nodes through the use of flash memories can reduce

reading shedding resulting from storage hotspots but it does not necessarily eliminate it.

This may decrease the negative impact that storage hotspots have on QoD. However, flash

memories do not reduce the negative impacts that hotspots have on both QoD as a result

12

of increasing wireless collisions and node deaths. Furthermore, the use of flash memories

does not improve the unbalanced energy consumption caused by hotspots and thus does not

reduce the negative effects that hotspots impose on QoS.

2.2 LOAD BALANCING PARADIGMS

In general, load balancing was not the main design goal for previous DCS schemes although

irregularities have been classified as a major issue in DCS schemes [23]. Irregularities arise

because of irregular sensor deployments or skewed reading distribution. Ping et al. [56]

suggested exploiting similarities when processing queries issued by neighboring sensors in a

DCS scheme to improve the energy efficiency of query processing in DCS schemes, especially

DIM. After presenting the DIM scheme [37], data migration has been suggested by [36] to

load-balance storage hotspots arising in DIM because of the irregular events distribution

problem. Due to its complexity and its heuristic nature, the solution was not completely

successful in dealing with storage hotspots. Furthermore, it did not consider query hotspots

at all. To our knowledge, no previous solutions have been presented in literature to cope

with query hotspots targeting a DCS scheme.

In GHT, the programmer has no control on the level of redundancy of data. This may

result in a great unbalance in the storage load imposed on each sensor, even when sensors

are uniformly distributed. This problem consequently results in serious data losses, wasting

energy, and shortening the overall lifetime of the sensor network. To cope with this problem,

the Q-NiGHT protocol [4] (recently revised to be the DELIGHT protocol [3]) has been

designed to run on top of GHT in order to provide a direct control on the level of QoS in the

data dependability. The protocol uses a strategy similar to the rejection method [2] to build

a hash function which scatters data approximately with the same distribution as that of

sensors. As the scheme is mainly suited for dealing with the sensor deployment distribution,

it does not take the reading and/or query load distribution into account. Thus, the effect of

this scheme is limited when it comes to data skewness problems including both storage and

query hotspots.

13

Recently, the Dynamic Data centric Storage mechanism (DDS) has been proposed with

the goal of increasing robustness [34]. DDS is based on centrally keeping track of the distri-

bution of the data generated by the network and dynamically adjusting the mapping from

sensor readings to storage points through linear programming to reduce the storage cost

and balance the storage and query workloads in the network. The main problems with this

scheme are that it is centralized and that it assumes the existence of a base station in the

sensor network. This cannot be assumed in a disaster management scenario. Additionally,

this has the effect of incurring a large communication cost when relaying data from and

to the base station. Additionally, this results in a lack of scalability. The scheme takes

advantage of the GPSR routing protocol to store multiple copies of readings to improve the

robustness of the network with little overhead.

Independently from DCS, load balancing represented a goal for some sensor network

applications. Almost all previously presented load balancing paradigms performed on the

level of packets as a mean for dealing with traffic skewness problems. Consequently, most

of these schemes were embedded in routing protocols. Many of these protocols were based

on multi-path routing, where a set of paths are determined for each packet type (defined

by one or more sources and one or more destinations) prior to the network operation and

paths are interchangeably used afterwards [50,17]. Directed diffusion [28] presented the idea

of finding multiple routes from multiple sources to a single destination while applying in-

network data aggregation. Many multi-paths routing schemes were later presented based on

Directed Diffusion, e.g., [22, 46, 10]. For example, Ganesan et al. [22] suggested the use of

braided multi-paths to achieve high resilience and fault-tolerance. It is clear that all these

techniques try to address the effects of traffic skewness. However, they have no effect on

data skewness.

2.3 POINT-TO-POINT ROUTING

The need for point-to-point routing has recently increased as many current sensor network

applications assume its usage, e.g., data-centric storage [53, 9] and multi-dimensional range

14

Figure 3: The GPSR Algorithm

queries [37, 8, 5]. In point-to-point routing, a packet contains a destination address. When

the sender sends the packet through its wireless network device, the packet is picked by

the node whose address matches the packet destination address. Other nodes falling in the

communication range of the sender ignore the packet. Early point-to-point routing schemes

were based on geographic routing. The best known of these schemes is the Greedy Perimeter

Stateless Routing (GPSR) protocol [32]. GPSR is a responsive and efficient routing protocol

for mobile, wireless networks. Unlike routing algorithms established before GPSR, which

mainly use graph-theoretic notions of shortest paths and transitive reachability to find routes,

GPSR exploits the correspondence between geographic position and connectivity in a wireless

network, by using the positions of nodes to make packet forwarding decisions. GPSR uses

greedy forwarding to forward packets to nodes progressively closer to the destination. In

regions of the network where such a greedy path does not exist (i.e., the only path requires

that one temporarily moves further away from the destination), GPSR recovers by forwarding

in perimeter mode (in which a packet traverses successively closer faces of a planar subgraph

of the full radio network connectivity graph) until reaching a node closer to the destination,

where greedy forwarding resumes. Figure 3 presents a high-level code of the GPSR algorithm

applied on every node in the sensor network.

Several modifications have been presented to the basic GPSR algorithm to deal with

some of the general challenges of geographic routing such as traffic skewness and obsta-

15

cles to radio propagation [31]. One of these modifications is the geographic provisioning

technique. This modification lets GPSR use geographic forwarding via a way-point (not

on the path found by basic GPSR) to distribute load in the network. This approach may

be promising because on a wireless network, position and capacity are generally correlated;

distributing load geographically leverages spatial reuse, and cuts the average load in regions

where traffic is concentrated. Another modification is to extend GPSR to deal with obstacles

to radio propagation. Obstacles introduce the risk that the planar subgraph used by GPSR’s

perimeter mode may not be connected. The modification uses both deterministic and ran-

domized algorithms for recovering from such disconnections when they occur. Again, these

modifications mainly target solving the traffic skewness problems. They are orthogonal the

data skewness problems of both storage and query hotspots. As our main focus in this thesis

is on developing comprehensive solutions for both the data and traffic skewness caused by

hotspots, we decided to use the basic GPSR rather than its modifications throughout our

experimental evaluations in order not to mask the negative traffic skewness effects hotspots.

Later, it was pointed that geographic schemes suffer from various limitations, e.g., the

unrealistic requirement of GPS-equipped sensors [21, 33]. Driven by this problem, schemes

like NoGeo [47] and GEM [42] suggested the use of synthetic virtual coordinates assigned by

iteratively embedding nodes in a Cartesian plane. Two recent schemes, BVR [21] and Logical

Coordinates [13], used a collection of ideas from both geographic and virtual coordinates

schemes. The basic idea of both schemes is to let nodes obtain coordinates from a set of

landmarks. Routing then minimizes a distance function on these coordinates.

2.4 SUMMARY

In this chapter, we presented the state-of-the-art of DCS, load-balancing, and point-to-point

routing. Our local hotspot detection and decomposition schemes use geographic routing as

they are built on top of DIM that routes packets using the basic GPSR algorithm. As for

global load balancing, our proposed KDDCS scheme adopts the virtual coordinates routing

paradigm in its underlying Logical Stateless Routing (LSR) algorithm.

16

3.0 SYSTEM MODEL AND EXPERIMENTAL PLATFORM

Before presenting our schemes in the following chapters, we need to highlight our underlying

system model and discuss the experimental platform that will be used to evaluate the per-

formance of our proposed schemes. Our system model and our experimental platform are

presented in the next two sections, Section 3.1 and Section 3.2, respectively.

3.1 SYSTEM MODEL

In this section, we describe our system model. We start by describing our sensor network

model and our motivating disaster management application. Then, we discuss the types of

sensor devices that can be adopted by our sensor network to best serve the requirements of

our motivating application.

3.1.1 Network Model and Motivating Application

Sensor network applications can be characterized into two types, namely search/discovery

and investigation. Search/discovery sensor network applications consist of continuously mon-

itoring a service area for the sake of studying one or more phenomena, e.g., habitat mon-

itoring applications [54],. These applications are generally characterized by the relatively

long expected network lifetime. Due to this fact, the major challenge for these networks

is to improve Quality of Service (QoS) as much as possible, even at the cost of providing

a lower Quality of Data (QoD). One the other hand, investigation applications consist of

sensor networks running for relatively short time periods in order to investigate one or more

17

events of concern, e.g., disaster management applications [7]. The expected network lifetime

in these cases is fairly short, e.g., ranging from few hours to few days. Due to the importance

and the urgency of the event being investigated by the sensor network, QoD is a major goal

in these applications even at the cost of decreasing QoS.

We mainly focus on a sensor network for a disaster/emergency management application.

We consider a cluster of sensor devices spanning a limited geographic area, namely the service

area, in the range of hundreds of meters. Sensor devices are assumed to be stationary and

capable of wirelessly communicating among themselves (through the IEEE 802.5 standard

communication protocol), as well as with other mobile computing devices such as cell phones,

laptops, palms, and PDAs (possibly through one of the standard IEEE 802.11 protocols). At

the start of the network operation, sensor devices organize themselves to start performing

their given task, which is mainly monitoring and storing different types of information,

e.g., temperature, pressure, etc. Sensors are battery-operated devices equipped with limited

storage and communication capabilities (detailed device specifications presented in the next

subsection). The existence of base stations, i.e., servers, is not mandatory in our sensor

network.

The query load imposed to the sensor network is formed as follows. First responders

to the disaster roam in the service area with their handheld computing devices. Using

these devices, they issue ad-hoc queries which are mainly range queries. A range query

usually queries the sensor network for readings whose values belong to a given attribute

range [a, b] during a specific time period [t1, t2]. As most sensor nodes nowadays have the

capacity to generate and store multi-dimensional readings, the query may be asking for

readings satisfying a given attribute range for each of the reading dimensions, e.g., [a1, b1]

for attribute 1 and [a2, b2] for attribute 2, etc. Furthermore, the query may not necessarily

be asking for actual readings, it can ask for the sensor(s) that sensed these readings, the

number of these readings, or any other aggregate function on these readings, such as their

average value, their median value, their minimum value, their maximum value, etc. A simple

example for such a query would be querying all sensors mounted in the service area for the

IDs of sensors that sensed a temperature of between 50 and 60 degrees Fahrenheit and a

pressure between 1000 and 1010 millibars during the last 10 minutes.

18

First responders may be using a variety of mobile computing devices to interact with

our sensor network. Cell phones are currently the most widespread among these devices,

especially after the current advances in the mobile phones technology. In addition to cell

phones, other mobile devices that may possibly be querying the sensor network could be

PDAs, laptops, car computers, etc. Mobile devices may also be operating independently

from any human user such as the case in robots. The number of mobile users/devices is

time-varying, and hardly predicted at any time of the network operation. Consequently,

the query load imposed on the sensor network, represented by both the number and the

distribution of the queries accessing the sensor devices, is also variable and hard to predict.

The sensor network is responsible for efficiently processing all queries it receives. As

discussed in the previous chapters, Data-Centric Storage (DCS) is adopted as the storage

paradigm for our sensor network model. In a DCS scheme, a sensor reading generated by

any sensor is forwarded for storage to a possibly different sensor node, namely the storage

sensor, determined by mapping the reading attribute values to the space of sensor addresses

(or geographical coordinates). Specifically, whenever a sensor s1 measures a reading, it

sends the reading tuple to be stored in another sensor s2 which is determined based on the

mapping function of the specific DCS scheme applied. s2 only keeps this tuple for a limited

amount of time due to memory limitations. A sensor can use a First-In-First-Out scheme

(FIFO) to always keep the most recent readings in its cache. In the case that large reading

histories need to be kept in the sensor caches, each cache can be split into two parts, one for

storing the recent readings and the other to aggregate the elder readings in terms of window

increments [20].

Before determining the appropriate device type to be used in our sensor network model,

we first characterize disaster areas into two types, namely permanent and temporary. Per-

manent disaster areas can be forests permanently under fire risks, volcano locations, rivers

frequently experiencing floods, and buildings located in areas under continuous risks of tor-

nados or earthquakes. Possible temporary service areas are mainly areas experiencing a

non-frequent emergency such as the world trade center location immediately after 9/11, the

location of a fire or that of a plane crash, etc. Throughout our experimental evaluation, we

mainly focus on temporary disaster areas.

19

3.1.2 Sensor Devices

Currently, wireless sensor network devices fall into two main categories; mote-class devices

and microservers. Mote-class devices are tiny, inexpensive, resource-constrained devices that

operate for long periods of time on battery power (originally designed at UC Berkeley in

2000 [27, 26]). Mote-class devices are mainly characterized by their low power consumption

achieved primarily through using a micro-controller (MCU) and a low-power radio (e.g.,

CC1000 or CC2420). The current generation of motes includes the Mica2 and MicaZ [1]

as well as the Telos [45]. Mica motes include an Atmel ATMega128L 8-bit micro-controller

running at 8MHz that contains 4 KBytes of SRAM and 128 KBytes of Flash ROM. The

Mica2 contains the CC1000 FM-based radio while the MicaZ has the 802.15.4-compliant

CC2420 radio. On the other hand, the Telos uses a 16-bit MSP430 microcontroller with 10

KBytes of RAM and 60 KBytes of Flash ROM as well as a CC2420 802.15.4 radio. Some

other mote-class devices include the Eyes node [55] and the Blue Mote [41].

The second category, microservers, is comprised of devices that mostly resemble an em-

bedded PC platform. Microservers include a 32-bit CPU, megabytes of DRAM and up

to several gigabytes of stable storage as well as a high-bandwidth 802.11 radio. Since mi-

croservers are similar to a PC platform, they include support for sophisticated peripherals

as well as high data rate sensors. One of the first microserver platforms specifically de-

signed to support wireless sensor networks was the Intel Stargate [29]. The Stargate has a

400MHz 32-bit PXA55 XScale processor, 64 MB of SDRAM, 32 MB of internal Flash and

a Compact-Flash slot that can extend its storage to 1 GB or more. An Ethernet port as

well as an 802.11 PCMCIA card provide its networking support. The Stargate operates on

rechargeable lithium battery. Since the Stargate is fairly powerful in terms of computational

resources, it is able to run a conventional operating system. The current generation of Star-

gates runs a Linux distribution (Familiar [24], based on a 2.4.19 kernel) and supports several

file system types.

The choice of a specific category of sensor devices to be used in our disaster manage-

ment application depends on different parameters. The first is the expected lifetime of the

sensor network. In case the sensor network is intended to be deployed once and expected to

20

be operating for long times (such as the case for permanent disaster areas), the mote-class

sensors will be more fitting for this scenario. However, this would mean that the DCS model

that we adopt should be acting as a temporary storage for sensor readings rather than a

permanent one due to the limited storage capability of the mote devices. Synopses of sensor

readings may then be forwarded to base stations for permanent storage and processing. A

second parameter determining the sensor device category can be the mobile devices des-

ignated to be used with the sensor network and their networking capabilities. Assuming

that the main mobile devices used to communicate with sensor devices are cell phones, the

specific networking protocol used by these cell phones, e.g., 802.11g or 802.15.4, will a factor

determining the sensor types adopted by the sensor network.

A third parameter determining the actual device category adopted by the sensor network

would be the sophistication level of the individual tasks of sensor nodes in the network.

Generally speaking, mote-class devices are more suited for monitoring applications than

microservers. This is mainly due to the simplicity of the task of each individual sensor in

sensor networks used for monitoring applications. In our disaster management application,

the main task of each sensor lies in monitoring and relaying information about the disaster

area. In such a case, the capabilities of a sensor mote are sufficient for performing the

required tasks. A fourth parameter is the expected cost for building and maintaining the

sensor network. Again, the cost of microservers may be a constraint for using them in sensor

network deployments, especially large-scale ones. A fifth parameter is the nature of the

service area and whether the operation will be unattended or no. This implicitly affects the

possibility of existence of a recharging mechanism for microservers or would totally avoid

their usage in case of the unavailability of such a mechanism.

A sixth parameter would be the type of queries forming the query load and whether they

contain predicates or joins that would require intensive computing to be processed. Complex

queries may lead to choosing to add one or more microservers to the sensor network to be

responsible for processing queries and delivering final results to the user. A final parameter

can be the disaster type and the subsequent sensing rate. In general, emergencies would

need much higher sensing rates than those needed for sensor networks deployed in permanent

disaster areas where the sensor network can be considered as a long-term monitoring sensor

21

network. Therefore, microservers would be more fitting for these emergencies. The actual

selection of the device category to be used by the sensor network would be a design choice

taken by the network designers based on all the previously discussed parameters.

In general, the schemes and algorithms that we design in this dissertation are independent

from the actual device category adopted by the sensor network. Our schemes continue to

work well even for a sensor network composed of devices from both categories. For this

scenario, storage loads may not be initially homogeneous among all sensors. Microservers

may be the ones responsible for storing sensor readings. Other motes may temporarily store

readings then relay them to microservers, or may simply not be responsible for storing any

readings. A possibly different set, or a subset, of microservers, may act as gateways for

communication with the mobile devices. Our schemes continue to be fitting for all these

possible design options. Throughout the experimental evaluation of this thesis, we consider

our network to be solely composed of motes.

3.2 EXPERIMENTAL PLATFORM

In order to measure the performance of our proposed schemes and compare their behavior to

the corresponding state-of-the-art, we built a sensor network simulation testbed in which we

implemented all our schemes as well as other state-of the-art schemes. We formulated our

experimental evaluation to simulate an investigation sensor network deployed in a temporary

disaster area for search and saving/recovery purposes. In this section, we describe the details

of our experimental platform and the settings of our experiments.

3.2.1 Sensor Network

We simulated a sensor network spanning a disaster area (or service area) R. Sensors are

assumed to be static, with limited amount of energy and storage resources. The exact

sensor characteristics like the sensing and communication ranges, the storage capacity, and

the starting energy budget are parameters to be set by the user when launching a new

22

experiment. To accommodate all types of sensor deployments, the sensor locations are

either carefully picked, randomly generated, or generated based on an input distribution.

Typically, we use a uniform distribution. The network is accessible by a variable number of

mobile users. The queries generated by these users and mainly forming the querying load of

the network represent an important parameter of the simulator. A detailed discussion about

how we form our query load is presented in Section 3.2.5.

We adopted point-to-point routing to be the main routing paradigm used in our simu-

lator. We implemented both physical geographic routing and logical routing. In geographic

routing, each node is addressed by a relative address. Due to the dependence of many of

our simulated schemes on GPSR, we implemented it as the main geographic routing scheme

in our simulator. Note that we implemented the basic GPSR scheme, rather its modifi-

cations (already discussed in Chapter 2). This is primarily due to the fact that DIM was

implemented on top of the basic GPSR and our goal was to achieve a comparable DIM’s

performance as that reported in [37]. Furthermore, our experiments mainly focused on net-

works with uniformly distributed sensor node locations. In such a case, the majority of the

readings are routed through the greedy mode (in our simulations, more than 90% of the

packets were routed through the greedy mode rather than through the perimeter mode). In

addition to GPSR, we implemented logical routing schemes as the Logical Stateless Routing

(LSR) protocol, which is part of the KDDCS (Chapter 5). The appropriate routing scheme

is used in any given simulation experiment.

3.2.2 Policies and Schemes

We implemented different DCS schemes in our simulator. We selected the Local Storage

(LS) scheme to be our base case. In LS, each sensor stores its own readings and any query

is flooded to all sensors. As state-of-the-art DCS schemes, we adopted the GHT and the

DIM schemes. We implemented our ZS, ZP/ZPR, and ZS/ZP/ZPR schemes (presented in

Chapter 4) on top of the DIM scheme. Also, we implemented our KDDCS scheme running

on top of the Logical Stateless Routing (LSR) scheme (both are presented in Chapter 5).

23

3.2.3 Experimental Setup

Now that we have presented a high-level overview on our simulator, we move on to present

the details of our experiments. Table 1 shows the parameter values and/or ranges used in

our experimental setup. In selecting our experimental parameter values, we tried to be as

close as possible to the DIM’s original simulation environment [37] to guarantee a similar

performance for the DIM scheme. We also considered ranges of values for each parameter

rather than a single value to test the effect on each of the parameters on the performance

of our schemes. As for the network size, the network radius, and the communication range,

our goal was to always maintain a dense network where each sensor has in average 20 nodes

within its nominal radio range. This guarantees the application of the greedy routing module

of the GPSR algorithm for the majority of the time. As a simplification, we assumed that a

reading size is equal to the packet size. We also assumed that the energy unit is the amount

of energy needed to send or receive one packet (thus, one reading). As for the node storage

capacity, we tested values ranging from 20 to 100 readings. To understand the meaning of

these values in real-world scenarios, let us assume a packet size of 2 bytes (which is typically

considered as a small packet size [30]). This means a reading size of 2 bytes and a node

storage capacity ranging from 400 bytes to 2KB.

We tested our schemes with different parameter combinations and achieved similar per-

formances in most of the cases. For all experimental results presented in this thesis, we set

the node storage and energy capacity to be 30 readings and 70 units, respectively (with the

goal of setting a common reference environment for comparing all schemes).

3.2.4 Storage Workload

We now describe our general procedure to form our storage loads. In a real-life sensor network

implementing a DCS storage scheme, the storage load is composed of sensor readings sensed

by the different sensor nodes. Once each sensor node senses a reading, the sensor forwards

this reading, according to the underlying DCS index structure, to the sensor node responsible

for storing it. In generating our storage load, we follow the exact same procedure. Each

sensor node continuously generates readings and sends each reading to its storage sensor.

24

Table 1: Experimental Setup

Parameter Value Range

Network size 50 to 500 sensors

Network radius 40m to 200m

Communication range 2m

Topology uniformly distributed sensor node locations

Node storage 20 to 100 readings

Packet size 1 reading

Energy unit send (or receive) 1 reading

Initial node energy 50 to 200 units

Reference DCS schemes LS, GHT, DIM

Storage workload size 10 * network size

Query workload size 10 * network size

Frequency of reading generation 1 reading per simulation time unit

Attribute Ranges Normalized to [0, 1]

25

The frequency of reading generation and/or the maximum number of readings per node for

each simulation are parameters to be set in our simulator. This storage load generation

technique can be used to either generate uniform storage distributions or skewed ones as will

be discussed below. In our simulations, we tested different values for the number of readings

generated by each sensor, ranging from [50%, 90%] of the node storage capacity.

The reading value ranges represent an important factor that determines the degree of

data skewness. As we model sensors sensing multiple phenomena, a reading is a tuple of

two or more attributes. For each of the attributes, we set a network wide attribute range,

e.g., the attribute range of temperature can be [30, 120] degree Fahrenheit. We use ranges

reflecting possible real-world values for each of our attributes. Forming readings can be done

in several ways in our simulator. An actual list of reading values can be manually passed

to our simulator. In such a case, when any sensor is about to generate a new reading, it

picks a reading tuple from the list. Another way to generate readings is that each sensor can

randomly generate the reading by following a given distribution.

Based on this storage generation technique, imposing a uniform storage load on the sensor

network should be straightforward. We define uniform storage load to be a one where each

sensor node receives an amount of sensor readings that is, with high probability, less than its

storage capacity. Assuming that the sensor locations are drawn, uniformly at random, from

a uniform distribution, generating a uniform storage load can be done by using a uniform

distribution for the reading values. Thus, when generating any reading, each sensor draws

the reading values at random from a uniform distribution. This technique should uniformly

partition storage responsibility across the different sensor nodes in the network.

3.2.5 Query Workload

Concerning the query loads, mobile users are the main sources of ad-hoc queries which can

be submitted to any sensor. In our simulators, sensors issue queries. A sensor s issuing

a query q means that s received q from a mobile user U , issues it to the sensor network,

receives its result, and relays this result back to U . An ad-hoc query can be of the following

form:

26

select NodeID, timestamp

from sensors

where temperature > t1 and temperature < t2

and pressure > p1 and pressure < p2

To model such a query in our simulator, a querying sensor would either select the ranges

from a given list or generate them based on a given distribution. The total number of queries

is a parameter to be set in our simulator. To generate a uniform query load in our network,

the querying sensor is picked uniformly at random from all the sensor nodes (once a query

is to be sent to the network). Then, the starting points of the ranges [t1, t2] and [p1, p2] are

randomly picked from the temperature and pressure attribute ranges, respectively. As for

the size of the attribute range targeted by each query, it is a parameter for our simulator. In

our simulation, we generally generate multiple groups of queries, each with a given attribute

range size, such as 10% or 20% of the attribute ranges.

3.2.6 Hotspot Generation

To study the performance of our schemes, we run the above simulator against different

types of hotspot settings. Specifically, we synthetically generate storage and query loads to

carefully form different hotspot scenarios. When designing our simulations, we model real-

world hotspot scenarios possibly arising in our disaster management applications as much

as possible. We mainly concentrate on three hotspot types, namely storage hotspots, query

hotspots, and mixed hotspots (consisting of simultaneous storage and query hotspots). For

each hotspot type, we study a variety of settings, including single hotspots, multiple hotspots,

and moving hotspots. Recall that a single hotspot is a hotspot occurring in one sub-range of

the possible attribute ranges. To understand these hotspot types and setting in light of our

disaster scenario, let us assume a typical scenario for a fire that is about to develop in the

disaster area. In such a case, a single storage hotspot can arise when a fire starts to take place

in the disaster area and most of the temperature readings fall in the [500, 600] sub-range.

Similarly, a single query hotspot may occur when many responders simultaneously check for

the existence of a fire, thus target the [500, 600] temperature sub-range. When both hotspot

27

types occur simultaneously, i.e., the fire takes place and a lot of responders are checking for

it, this forms a mixed hotspot in the [500, 600] temperature sub-range. Multiple hotspots

simultaneously occur in two or more different sub-ranges of the attribute ranges. An example

of such a scenario is the existence of two fires in the disaster area, an already developed fire

and another one in the process of being developed. This can create simultaneous storage

(or mixed hotspots) in two different temperature sub-ranges, e.g. [400, 450] and [550, 600].

Moving hotspots are hotspots initially occurring in a given sub-range of the attribute ranges

then moving to one or more neighboring sub-ranges (one at a time) as time progresses. An

example of such a hotspot is a fire throughout its different development stages. The hotspot

may start at [300, 350], then move on to [350, 400], then to [400, 450], etc. For each hotspot

setting, we simulated different hotspot sizes. This corresponds to the different possible sizes

of fires that can possibly arise in our network. We discuss the technique to generate storage

and query loads for the different hotspot types/settings in the following paragraphs.

Using the storage load generation technique discussed in Section 3.2.4, forming storage

hotspots can be either done in a controlled manner or through a skewed reading distribution.

In the first case, we determine the exact reading ranges of the hotspot. This subsequently

determines the sensors falling in the hotspot, which are the sensors responsible for storing

the pre-specified hot ranges according to the underlying DCS scheme. We also determine

the percentage of readings (among all storage load readings) falling in the hotspot range.

An example for that is to say that a hotspot will be arising in a range equal to 10% of the

overall attribute range. As for temperature with attribute range [50, 90], this range can be

[60, 64] degrees. The size of this hotspot can be 60% of all readings to be generated. This

means that each sensor would randomly pick a reading falling in the hotspot range with

a probability of 0.6. This controlled hotspot generation technique has many advantages.

The first is that it allows us to accurately determine the effect of the hotspot including its

location, sensors that it affects, its size, and its duration. This gives us the opportunity to

test different hotspot settings which has the great effect of carefully studying the behavior of

our schemes against each of these settings. A second advantage for this hotspot generation

scheme is that it allows us to generate hotspot data in a way that closely simulates real-world

scenarios. Note that the actual percentage of readings falling in the hotspot range can be

28

slightly larger than the predetermined hotspot size in case readings supposedly not falling

within the hotspot range (i.e., with probability 0.4 in our example) are generated through a

distribution over the whole attribute range, e.g., a uniform distribution.

A second technique of hotspot generation in our simulator is by adopting a given skewed

distribution for the readings, e.g., a normal distribution for readings over each of the attribute

value ranges (i.e., a multivariate Gaussian distribution). In this case, the generating sensor

would be picking the reading values uniformly at random from all the attribute ranges. It

is important to note that both techniques can considered almost identical. This is simply

because it is usually possible to fit any data distribution generated from the first technique

with a specific skewed distribution generated from the second one. In our simulations, we

mainly use the controlled technique to generate storage hotspots.

The techniques for forming query hotspots are very similar to the storage hotspot for-

mation techniques. Traffic can be generated either based on a given skewed distribution or

through carefully selected distribution (i.e., a controlled manner). In the first case, the ranges

of the queries arising in any sensor follow a specific skewed distribution over the attribute

ranges. In the second case, queries originate at random sensors and ask for data falling in

a given attribute value range with a large probability, otherwise, ask for data falling in any

range picked uniformly at random from the attribute value ranges. Both techniques are valid

ones for generating query hotspots in the sensor network. In our simulations, we mainly use

the controlled technique for generating query hotspots.

The third type of hotspots that we are interested to model are mixed hotspots. A

network facing a mixed hotspot actually faces both storage and query hotspots occurring

simultaneously. We can classify mixed hotspots into two types: correlated and uncorrelated.

We define mixed correlated hotspots to be those where storage and query hotspots coincide,

i.e., fall in the same attribute ranges. In contrast, uncorrelated mixed hotspots are those

where the storage and query hotspots fall in different attribute ranges. We implement both

of them in our simulator.

When modeling hotspots, we will be interested in both static hotspots and dynamic

hotspots. Static hotspots are those that occur in a given location at some point in time

without moving to another location. Dealing with the hotspot once is enough for such a

29

case. We will be interested in modeling single and multiple static hotspots arising in the

sensor network (simultaneously or back-to-back). On the other hand, moving hotspots can

be represented by a series of two or more hotspots that are logically dependent and that

occur one after the other. The dependence can be in terms of occurring in neighboring range

values, such as a 10% hotspot that starts at the [60, 64] temperature range, then moves to

[64, 68] temperature range. This example represents a very realistic scenario that can happen

in a network mounted in any open-air location as the temperature increases and decreases

equivalently in the whole service area. Thus, the sensor readings tend to fall in the same

value range during any given time period. This range may be slightly shifting across time,

which forms a moving hotspot. It is important to test the behavior of our schemes against

all these hotspot scenarios for completeness.

It is important to note that the main goal of our experimental evaluation is to study the

QoD that any scheme achieves against different hotspots. Recall that hotspots can have a

secondary effect on the QoS by increasing the energy consumption of the nodes falling in the

hotspot area and eventually increasing node deaths. As this is considered a long-term effect

for hotspots, we did not concentrate on building test cases that simulate such a case. All the

hotspot scales that we generate are not intense to the extent of generate a traffic skewness

that actually increases node deaths. Thus, we test the performance of our schemes in terms

of the QoD improvement that they achieve and the energy consumption overhead that they

impose as compared to the case where no load balancing mechanisms are implemented.

3.2.7 Experimental Evaluation Scenario

The experimental evaluation of our proposed schemes will be conducted as follows. We first

compare our schemes, both local and global, against uniform loads to test their performance

in the regular cases and study the overhead of implementing each of them. Then, we compare

the performance of our schemes, against storage, query, and mixed hotspots. For each of the

hotspot types, we test the following settings.

1. Single Static Hotspots: We will test our schemes against storage and query hotspots,

respectively. The high level scenario of these experiments will consist of an initialization

30

phase of reading insertions where a skewed followed by a querying phase where a query

load is imposed on the network. The aim of this set of experiments is to test the basic

functionality of our schemes and their ability to individually cope with single storage,

query, or mixed hotspots.

2. Multiple Static Hotspots: This experiment will consist of an initialization phase of reading

insertions followed by a querying phase in a way as to form two or more hotspots of the

same type. This experiment aims at studying the performance of our schemes against

hotspots simultaneously arising in the sensor network.

3. Moving Hotspots: This experiment will consist of multiple pairs of insertion and querying

phases. A hotspot is initially formed in a given attribute range, then, it moves to a

neighboring attribute range. This moving process is repeated for several times. This

experiment studies the performance of our schemes against hotspots that keep sliding

across the different locations of the network. It also checks the ability of any scheme to

deal with the fading of a given hotspot and the creation of a hotspot in another location.

For each hotspot type, we study the effect of changing the hotspot size, in terms of the

attribute range of the hotspot, on the performance of our schemes. To achieve statistically

significant results, we run each of our experiments for multiple runs (5 to 10) and average

the results over all the runs. We were aware of the standard deviation in all simulation runs

and we did not encounter a relatively large variance in any of the simulations.

3.2.8 Experimental Metrics

For each of the above hotspot types, we compare our schemes based on the metrics presented

below.

1. The Number of Dropped Events (Readings/Queries): measures the number of readings

(or queries) dropped either due to storage overflow and/or collisions. This metric is

important as it measures the Quality of Data (QoD) of any scheme against the different

storage/query loads. In the case of storage hotspots, events are mainly readings dropped

due to storage overflow. Wireless collisions represent a secondary source of dropping

readings. Thus, this metric measures the data persistence achieved by any scheme against

31

different storage loads. In the case of query hotspots, it measures the number of dropped

queries mainly due to collisions. The metric then can be viewed as the number of

unanswered queries by the sensor network (Note that we do not retry queries once they

are dropped). This is also considered as an important QoD measure at it gives an

indication about the ability of the sensor network to answer the different queries and

thus the QoD achieved by the sensor network.

2. The Average Results of an x% Query: measures the average number of readings returned

for queries of a given attribute range size, e.g., the average number of readings returned

for queries asking for 10% of the attribute range. This metric gives an indication about

the QoD of the sensor network and its ability to successfully answer queries of different

sizes.

3. The Average Storage Load: measures the QoD achieved by any scheme by measuring its

ability to improve the average storage load across sensors. It also measures how well any

scheme load balances the hotspot data across the sensor network rather than assigning

it to sensor nodes falling in the hotspot area.

4. The Number of Full Nodes: measures the number of nodes whose storage reaches the

maximum storage capacity. This is also another important load balancing metric. As

a hotspot causes the storage overflow of sensor nodes falling in the hotspot area, the

reduction of the number of full nodes gives an indication about increasing the number of

nodes responsible for storing the hotspot data. Eventually increasing the number of full

nodes, after this reduction, gives an indication about the extreme load balancing ability

of any scheme by load balancing the hotspot data early enough so that the larger set of

nodes responsible for storing the hotspot data reach their full capacity.

5. The Average Energy Consumption: compares the QoS of the different schemes by mea-

suring the energy consumption overhead they impose on the sensor network.

6. The Number of Dead Nodes: is another important QoS metric as it indicates the coverage

QoS of the sensor network. Additionally, it has an important implication on the load

balancing performance of the schemes under concern.

32

3.3 SUMMARY

In this chapter, we presented our system model and the details our experimental platform.

One shortcoming of our experimental evaluation is that it was not based on the standard

sensor network simulators, e.g., TOSSIM [35]. The main reason for this fact is that the

currently available sensor network simulators were not fully developed by the time we pursued

this research. We intend to port our implementations to one or more of these simulators in

the near future. Another important note is that, although our data sets are considered to

be synthetic, we tried to make their distributions and value ranges as realistic as possible

to be similar to real-world data sets that could be recorded from any already-deployed

disaster management sensor network. Unfortunately, we were not able to find any real-world

data set for a disaster management sensor network with sensors deployed in a service area

(of any type, urban, open-air, etc) and queries are issued by any type of mobile devices.

Experimentally evaluating our schemes on real sensor network testbeds will be left as one of

our future extensions.

33

4.0 LOCAL HOTSPOT DETECTION AND DECOMPOSITION

Current DCS schemes fail to effectively cope with both storage and query hotspots. In

this chapter, we propose two local solutions to detect and decompose storage and query

hotspots, namely the Zone Sharing (ZS) and the Zone Partitioning/Zone Partial Replication

(ZP/ZPR) schemes, respectively, . We combine the two schemes to form the ZS/ZP/ZPR

scheme to detect and decompose mixed hotspots. Our schemes work on top of the DIM DCS

scheme [37]. We present our schemes in the following sections.

4.1 LOCAL DETECTION AND DECOMPOSITION OF STORAGE

HOTSPOTS

In this section, we propose a solution to the storage hotspots problem arising mainly due

to irregular data distribution in DCS schemes. We will present our solution in the context

of the DIM scheme, which has been shown to exhibit a performance superior to other DCS

techniques, e.g. GHT, for the case of multi-dimensional range queries. In DIM, a sensor

node is defined as a leaf of a k-d tree [11] and is assigned a binary address (zone) based on

its geographic location. The address size (in bits) of each sensor is equal to its depth (level

number) in the tree. Readings are mapped to binary codes based on their attribute values

and they are routed to their storage sensors using the Greedy Perimeter Stateless Routing

(GPSR) algorithm [32].

The intuitive idea of our proposed Zone Sharing (ZS) solution is that a node experiencing

high load compared to its neighbors is a good indication of a storage hotspot and it is

reasonable to share its load with one of its less-loaded neighbors. In the specific terms of

34

DIM, a high-loaded sensor node attempts to split its owned zone with one of its less-loaded

neighbors. Based on the maximum number of times a zone could be shared, we present two

ZS flavors: Single-Hop Zone Sharing (SHZS) and Multi-Hop Zone Sharing (MHZS).

Experimental results show that the main advantages of ZS are:

• Improving QoD by distributing the hotspot readings among a larger number of sensors.

Improvements ranged from 50% over DIM for single storage hotspots to 20% over DIM

for multiple storage hotspots.

• Increasing the energy savings by balancing energy consumption among sensor nodes.

Energy consumption overhead additionally imposed by ZS ranged from 5% (per node)

over DIM for single hotspots to 3% for multiple hotspots.

This was valid for hotspots of sizes ranging from 40% to 80%.

In the next subsections, we describe and analyze the ZS scheme.

4.1.1 Basic Idea

Figure 4 shows a typical scenario for the zone sharing process. In the k-d tree on the LHS,

N0 (address = 0) is experiencing high storage load compared to its neighbors, N1 (address

= 11) and N2 (address = 10). N2 has a smaller storage load than N1. The difference of

load between the two subtrees is considered as a potential hotspot indication in the left

subtree. Therefore, in order to cope with this hotspot that is about to be formed in N0,

node N2 passes the responsibility of its original zone to N1 and takes responsibility of a

portion (around half) of N0’s zone. The k-d tree takes the form presented on the RHS of

Figure 4.

Note that the move of N2 is only logical, i.e., N2 still keeps in its original geographic

location (assuming nodes are stable), but, it takes responsibility of another zone whose code

value is different from its binary address value. Also, it is assumed that each node has enough

energy to send and receive events during this logical move.

The above procedure is used to decompose storage hotspots as follows: In case a hotspot

arises in a set of sensor nodes, the border nodes, i.e., those nodes falling on the border of the

hotspot, will trade (pass) responsibility of portions of their zones to some of their less-loaded

35

Figure 4: Zone Sharing Illustrative Example

neighbors, not falling in the hotspot area, as described above. This will lead to decreasing

the size of the hotspot by removing these border nodes outside from the hotspot. Then, the

nodes that were previously on the hotspot borders will now act as the less-loaded neighbors

for the new border nodes, and consequently, receive part of the load of these border nodes.

This process continues till it totally decomposes the hotspot and distributes its load on a

larger number of sensor nodes.

But many questions need to be answered to efficiently implement zone sharing, such as:

When can a node tell that it is falling in a hotspot? How does a node know the neighbors

information? With which neighbor to trade the excess capacity? How much load to trade?

How many times a given zone can be traded? What changes need to be made to GPSR to

account for the zone migration? What will be the implementation overhead of this scheme?

In the following subsections, we answer these questions in turn.

4.1.2 Distributed Migration Criterion (DMC)

A node experiencing an unusual load can split its owned zone with one of its neighbors.

In such a case, the node’s depth in the k-d tree is increased by 1 (i.e., its address size is

increased by 1 bit). A neighbor of this node is logically moved to share its zone. As this

neighbor was another leaf in the tree, it passes its original zone to one of its siblings, and

the tree depth of this last decreases by 1 bit.

The above process can be described as a migration of a given node from its original level

to a lower one in the k-d tree. Thus, we call the original node that splits its zone the donor

36

(N0 in Figure 4) as it donates almost half of its load, while its neighbor that takes part of

that zone is called the migrator (N2 in Figure 4) as it migrates from a zone to another.

The node that receives the original migrator’s zone is called the receiver (N1 in Figure 4).

We define lx to be the storage load of node x and ex to be the energy level of node x.

Therefore, in Figure 4, the original load of the migrator, which is passed to the receiver,

is referred to as lmigrator, while the total load of the donor, before the migration process,

is ldonor. The amount of load that the donor passes to the migrator after the migration of

this last is defined as the traded zone, T . It is expressed in terms of the number of traded

messages (Note that an event represents one message). The value of T is solely defined by

the donor, based on the distribution of its storage load, in a way that balances the storage

between itself and the migrator after the migration process. In case the load is uniformly

distributed in the hotspot zone, T can be considered as half of the original load of the donor,

ldonor.

In order to define which neighbor to split zone with, we need to relate the loads, as well

as the energy levels, of the three nodes involved in the migration process in a reasonable way

that maximizes the profit gained from migration. Therefore, we provide a set of inequalities

to be locally applied by the three nodes. These equations represent necessary conditions

that must be fulfilled to justify zone sharing. In these equations, an energy unit represents

the amount needed to send one message. The fraction re is the amount of energy consumed

in receiving one message (if less than one energy unit):

ldonor

lmigrator + lreceiver

≥ C1 (4.1)

T

lmigrator

≥ C2 (4.2)

T

edonor

≤ E1 (4.3)

lmigrator + re ∗ T

emigrator

≤ E2 (4.4)

lmigrator ∗ re

ereceiver

≤ E3 (4.5)

where Ci’s and Ej’s are constants representing storage ratio and energy ratio thresholds,

respectively.

37

The first two equations are concerned with relating the storage loads of the three nodes.

Equation (1) states that the pre-migration load of the donor should be much bigger than the

post-migration load of the receiver. Such constraint is needed in order to guarantee that no

migration oscillation would occur. It should be applied by both the donor and the receiver.

The value of the constant C1 should be large enough in order to make sure that the donor

is really falling within a storage hotspot. Equation (2) states that the post-migration load

of the migrator is bigger than its pre-migration load. This is needed in order to gain some

profit from the whole migration process. This equation should be applied by the migrator.

It is obvious that C2 should take large enough values (e.g., greater than or equal to 2) in

order to avoid cyclic migrations.

Equations (3) to (5) relate the energy levels of the three nodes, before and after the

migration process. Equation (3) states that the energy consumed in transferring the traded

zone is much less than the donor’s energy level prior to the migration process. It is applied

by the donor. Equation (4) states that the energy consumed in sending the migrated zone,

as well as receiving the shared zone, is less than the total energy amount owned by the

migrator pre-migration. It is only applied by the migrator. The last equation, Equation (5),

states that the energy consumed by the receiver in receiving the original load of the migrator

is less than its available energy before migration. It is obvious that this last is applied by

the receiver. These inequalities are needed to make sure that the energy amount consumed

in the migration process will not cause the death, or the approach to death, of one or more

of the nodes involved in the migration process. The values of the Ej thresholds should be

small (e.g., less than 0.5).

It is clear that the values of different thresholds can differ based on the importance of

energy as opposed to that of data in the sensor network. Recall that sensor network appli-

cations can be classified into search/discovery applications and investigation applications.

In search/discovery applications, the sensor network is expected to run for a long period of

time, which indicates the high value of energy in the network. Additionally, the application

consists of monitoring the environment and using the sensor network data in offline studies.

Thus, no urgent action will be taken based on a subset of the sensor readings. In such an

application, the energy safety requirements should be strictly applied. Thus, the E thresh-

38

olds should take very small values (e.g., 0.3 or less), while the C thresholds should take large

values (e.g., 3 or more), to make sure zone sharing is not applied except in really needed

cases. On the other hand, investigation applications, such as our disaster management ap-

plication, the sensor network data is highly urgent and is mostly used to trigger important

actions, such as decisions taken during the disaster management process. In such a scenario,

the C thresholds should take small values (that can be as low 1.5 or even lower), while the

E thresholds should take large values (e.g., 0.6 or more), to facilitate the satisfaction of the

migration process requirements. In general, the actual values of the E and C thresholds

depend on the specific needs of the sensor network application.

One benefit of the DMC is that it has the ability of using the available sensor storage

and energy capacities with no dependence on the capacity or the energy distributions in

the network. As each node shares its storage and energy capacity once engaging in the

zone sharing process, the ZS scheme can be efficiently applied in a sensor network with

homogeneous or heterogeneous storage and/or energy capacities.

4.1.3 DMC Implementation Details

To be able to localize the evaluation of the above equations, each node is supposed to

maintain load information, in terms of in terms of storage and energy, of its neighbors. This

can easily be done by taking benefit from the list of direct neighbors that each node maintains

in the DIM scheme and keeping track of the storage and the energy of each of these neighbors.

Using this list, the node will be able to select the best candidate neighbor to split its owned

zone with in case of falling in a storage hotspot. The periodic messages exchanged between

neighbors to maintain the underlying DCS index structure of DIM, as well as insertion and

query messages accessing the sensor network, can be piggybacked with such information.

Each node periodically checks its storage level and applies the migration criterion in case

this level exceeds a given threshold. The time window of checking for hotspots, and thus

applying the migration criterion, depends on the generation rate of readings in the network

and can be a network parameter that the network designer can carefully set based on the

probability of a hotspot formation and the expected time the hotspot may take to start

39

Figure 5: Zone Sharing Algorithm

causing problems in the sensor network.

To fully localize the evaluation of the DMC equations without the dependance on a

central authority in the network, the migration process, as described above, needs some

distributed decision making among sensors involved in migration process. For this purpose,

a three-way hand-shaking procedure must be applied in case a node decides to share its zone

with one of its neighbors. First, the donor should decide which neighbor to be the migrator

and contact this last with a Request to Migrate message (RTM). In case the candidate

migrator is able to migrate, it should select an appropriate receiver, inform it about its

migration decision, and invites it to take its storage responsibility. In case that receiver

accepts this invitation, the migrator replies to the donor with an Accept to Migrate message

(ATM). Figure 5 shows the ZS algorithm periodically applied by each node in the network.

Note that the RTM and ATM requests could either be piggybacked on other messages or

sent explicitly. The overhead of such messages is negligible compared to that of the actual

migration process.

It is important to note that the case of multiple RTM messages simultaneously accessing

a single node does not cause any problems in the network. In such a case, the node simply

processes RTMs on a first-come-first-serve basis. Once receiving the first RTM, the node

40

searches for a receiver. In the meanwhile, it rejects any further RTMs that it receives. As

the ZS algorithm presented in Figure 5 shows, a donor searches for migrators by considering

its neighboring nodes, one by one. Thus, in case a donor receives a rejection for an RTM, it

moves on to consider the next prospective migrator from its list of neighbors.

4.1.4 Single Hop Zone Sharing (SHZS)

Now that we defined the DMC, we need to decide how will the hotspot decomposition process

take place. This can be done by determining the number of times a single zone can be traded.

In order to minimize the changes made to the tree, we limit the maximum depth change of

any zone to 1. In other words, each zone can be shared only once. A receiver cannot share

the original migrator’s zone another time. Hence, we call this ZS version Single-Hop Zone

Sharing (SHZS).

As every zone will be at most one hop further from its original location, the original

GPSR can be used to query the different zones and the original donor node will just forward

the query, or the insertion, to the migrator in case the queried zone has been already donated.

This will enable us to use the same DIM scheme with minimal changes made for the hotspot

decomposition purpose.

Although the SHZS algorithm is quite simple, it has three drawbacks when dealing with

large hotspots, i.e. those hotspots spanning more than one or two nodes. First, with large

storage hotspots sizes, the neighbors of the overwhelmed node will most probably be falling

in, or close to, the hotspot, thus suffering from the same symptom. Therefore, these node

will hardly satisfy the DMC. As the hotspot size increases, border nodes will be extremely

loaded as well as their neighbors, thus complicating the DMC satisfaction. Furthermore,

when a border node passes a portion of its load to a neighbor, it will be still falling in the

hotspot, thus, unable to receive any load from other nodes closer to the center of the hotspot.

Hence, the DMC will not lead to the hotspot decomposition.

Second, the fact that a shared zone cannot be shared again complicates the scheme in

the case of dealing with large hotspots. At some point, all the neighbors of the hotspot node

will be responsible for zones that were already falling under this node’s responsibility. Then,

41

this last receives further readings by dropping old ones, leading to decreasing the QoD.

A third complication is regarding the GPSR algorithm in the case of reading insertion.

Assuming that a donor selects to share the zone that has more upcoming readings to be

inserted in the future, all such insertions will first pass by the donor before going to the

migrator. This will impose a large energy consumption burden on the donor node.

However, it should be noted that the situation changes when the storage hotspot spans

a fairly small number of nodes. In fact, the important criteria about such small hotspots are

that the number of nodes directly neighboring the hotspot nodes is equal or greater to the

hotspot nodes and that the storage load imposed on those nodes is negligible. In such a case,

the hotspot decomposition can start from the borders of the hotspot area and going inwards

towards the center of the hotspot. This process would proceed in rounds. In each round,

SHZS is applied to the nodes on the border of the hotspot in order to share their storage

with their less-loaded neighbors. After each step, the size of the hotspot, in terms of the

number of nodes falling into it, decreases. The process continues until reaching the center of

the hotspot and completely decomposing it. In order for SHZS to work well in this scenario,

the total number of rounds needed should be fairly small and the nodes falling around the

hotspot borders, throughout the process, should be ready to receive part of the hotspot

load. Unless these two conditions are satisfied, SHZS will fail to completely decompose the

hotspot.

From the above points, it is obvious that the SHZS algorithm is best suited to decompose

small hotspots, in terms of both the number of nodes falling in the hotspot and the storage

load imposed on the hotspot nodes. The ability of the scheme to decompose larger hotspots

becomes fairly limited due to the simplicity of the hotspot decomposition technique used. In

order to extend the zone sharing idea to handle larger hotspots, we present the Multi-Hop

Zone Sharing (MHZS) scheme in the next subsection.

4.1.5 Multi-Hop Zone Sharing (MHZS)

The main idea of the MHZS scheme is to relax the strict single hop sharing assumption

adopted in the SHZS scheme. Based on this relaxation, we introduce another ZS version

42

where a zone can be shared more than once. This implies that a given zone can encounter

a tree depth change, as well as a tree path change, of any size. To see how this can occur,

consider a network with two main subtrees, 0x and 1y, where x and y are zone bit-codes

of different lengths. In this topology, a hotspot may arise in node N0 with address 0110,

i.e., falling in the 0x subtree. To decompose this hotspot, MHZS applies the zone sharing

process for 3 hops. Thus, at the end of the zone sharing process, the hotspot zone will be in

a node which is 3 hops away from its original location. Among these hops, the first one is

applied with node 0111 from the 0x subtree. However, the following hops are applied with

nodes 100 and 101, respectively. Thus, the final location of the hotspot zone is node 101,

which belongs has a different path and different path length in the k-d tree than the original

node 0110.

4.1.5.1 GPSR Modifications This above description of the MHZS scheme introduces

an important question, which is: how would the routing work in the resulting k-d tree? In

the original k-d tree of the DIM scheme, routing worked in a systematic hop-by-hop purely

localized manner without any need for keeping immediate information of the node actually

responsible for storing each zone as the convergence to that node at the end of the routing

process was guaranteed. However, due to the changes introduced by MHZS to the k-d tree

structure, this is not the case anymore. As a zone can be moved several hops away from

its original node, using the basic GPSR routing algorithm without modifying it will involve

the original donor, as well as subsequent donors, in all insertions and queries concerning the

shared zone. This would be an extreme overhead as it would involve the original hotspot

nodes in all these operations. All insertions and queries will first go to the original hotspot

node. Then, they would be forwarded to the subsequent donors, one after the other, until

reaching the final node actually storing the zone. This overhead would be proportional to the

number of times the zone sharing process is applied. Furthermore, this would defeat one of

the purposes of applying the zone sharing process, which is reducing the energy consumption

burden imposed on the hotspot nodes. Hence, GPSR must be augmented by some means

to determine that a zone has been shared and moved away from its original location. We

discuss the modifications that we introduce to GPSR in the following paragraphs.

43

Figure 6: Modified GPSR Algorithm for ZS

To implement the MHZS scheme, we assume that each node maintains a Shared Zones

List (SZL) containing three entries: zone address, original donor, and final migrator. Upon

zone sharing, the donor sends the shared zone address, its name, and the migrator’s name,

to all its neighbors. Thus, each node will be aware of zones traded by its neighbors.

In case of multiple sharing of the same zone, the old migrator becomes the new donor.

It sends the zone address, the original donor, and the new migrator, to all of its neighbors.

Thus, it has to check its SZL first and send the entry corresponding to the zone under concern

after updating the final migrator entry with the new migrator. In case a node receives a

shared zone entry that is already present in its SZL, it updates its list with the new entry.

This means that a given zone has been re-shared. This update guarantees that a shared zone

will have similar entries in all shared lists containing information about this shared zone.

The node then forwards the shared zone entry to its neighbors.

When routing an event (an insertion or a query), GPSR first searches the SZL with the

zone address. In case an entry for such zone is found, this means that the original destination

of the zone has been changed to a new one. Therefore, the destination node found in the

SZL entry of the zone is used to explicitly update the destination field of the message to be

routed to its new value. GPSR then uses the new destination address to forward the message

using the best path to the final migrator. A flag is updated in the message to indicate that

its original destination has been already changed to its current one to avoid further lookups

44

in subsequent nodes. Figure 6 shows the modified version of the GPSR algorithm run by

each node in the network.

As all the neighbors of each donor and migrator are forwarded with the new SZL entry

of the shared zone, this results in a cloud of nodes with the same SZL entry. This cloud

includes the original hotspot area as well as the sensor nodes surrounding it. Applying the

SZL search at each of the routing steps results in changing the routing direction of any event

as soon as an SZL entry for the event zone is encountered. This usually happens when the

event starts entering the cloud. Thus, the cloud deviates the direction of any event to direct

it to the new destination of the required zone. This has the effect of considerably reducing

the energy consumption overhead imposed on the nodes falling in the hotspot area.

It is important to mention that queries are routed exactly as they used to be routed in

the original DIM scheme. Any query initiating at any of the sensor nodes, and asking for a

given range over the attributes stored in the network, is processed in a hop-by-hop manner.

At each step, the query is forwarded to the next node towards its final destination in case the

query can be completely answered by one node, i.e., in case the attribute range of the query

is falling under responsibility of one sensor node. Otherwise, the query is split at one point

into two or more queries each targeting a different node. Applying our GPSR modification

results in the possibility of splitting the query at any time in case a subset of the queried

zone has already been shared. On the other hand, the query is fully deviated in case the

whole queried zone has been shared. Otherwise, the query processing proceeds exactly as

dictated by the original DIM scheme.

4.1.5.2 Hotspot Decomposition Mechanism After describing the routing process of

any insertion or query in MHZS, we now illustrate the high-level hotspot decomposition

technique that applying the above MHZS would result in. Let us consider a storage hotspot

arising in a group of sensor nodes. Applying MHZS results in multiple-rounds of hotspot

decomposition (with each round similar to the one we described for SHZS in Section 4.1.4).

The hotspot decomposition starts from the hotspot borders and goes on towards the center

of the hotspot area. However, the main difference between MHZS and SHZS is that the

former will be able to scale more than the latter. In both schemes, applying the zone sharing

45

for the first time would result in increasing the number of nodes responsible for storing the

hotspot load by involving the immediate neighbors of the border nodes in this responsibility.

However, for the next round, MHZS tends to further send the zones shared in the first round

away from their original locations. This results in more room in the border nodes and their

surrounding nodes. This room would be use in further dissipations of the hotspot load away

from the hotspot area. This has the effect of increasing the MHZS ability in decomposing

large hotspots, unlike the case with SHZS.

4.1.6 Handling Dynamic Hotspots Through Zone Rejoining

The above description of the ZS scheme had an underlying assumption that a the load

distribution does not change over time. In other words, hotspots were assumed to be static.

Once a hotspot arises in some attribute range, it continues to be there for the rest of the

network operation time. It is clear that this does not seem to be realistic. For example, a

storage hotspot may arise in a given attribute range, e.g., [x1, y1], at some point in time t1.

After some time period, the hotspot may vanish and the load may return to be normal, i.e.,

following a non-skewed distribution, over the whole possible range of attributes. Another

possibility is that another hotspot may arise in another attribute range [x2, y2] in a later

point in time t2 > t1. To handle these scenarios, our ZS scheme needs to implement a

zone rejoining functionality that is responsible for stopping the zone sharing process and

retrieving the k-d tree structure dictated by the original DIM scheme once a storage hotspot

dissipates. We describe this zone rejoining functionality in the following paragraph.

Our zone rejoining process relies on continuously monitoring the storage load of the hot

zone and periodically comparing the change rate of that zone with the storage load change

rates of its neighboring zones. This can be implemented as follows. Once the zone sharing

process is applied for one or more times, the donor(s) and the migrator(s) of each shared zone

keep track of the initial load of the shared and migrated zones, respectively. The initial loads

of the shared (or migrated) zones denote the loads of these zones immediately after the zone

sharing process. Additionally, the two nodes keep track of the rate of load change of these

zones. Periodically, these rates are compared with the load change rates of the zones stored

46

by the neighbors of these two nodes. In case the change rates are similar, this indicates a

strong possibility that the initially hot zone (composed of the union of both the shared and

the migrated zones) became less overloaded. Subsequently, this shows the success of the zone

sharing process in decomposing the hotspot. In case the change rates of the shared and/or

migrated zones are much higher, this indicates that another zone sharing step may need to

take place to fully decompose the original hotspot.

However, in case the change rates of the shared and migrated zones are much less than

those of the neighboring zones, this can be an indication that the hot zone is no more popular.

In such a case, the zone sharing process may be rolled back and the migrated zone may be

returned to its original storage node (or to its previous donor, in case this zone has been

shared more than once). This rollback process is performed in two steps. The first step

is to send the current readings belonging to the migrated zone to the donor. This storage

load transfer is accompanied by a notification from the migrator to the donor that the latter

has resumed the storage responsibility of the migrated zone. The second step consists of

notifying all the neighbors of the migrator and the donor, as well as their neighbors, to

update their SZL entries of this zone and indicate that the previous donor became the final

destination of the zone. It is important to mention that the first step may be omitted in case

one of the two nodes (or the two of them) is (are) low in energy or in case the migrated zone

readings are relatively old. This can be a design parameter for the zone rejoining process.

To conclude, ZS copes with storage hotspots of different sizes by decomposing the hotspot

storage load across a larger number of sensor nodes. The decomposition process takes place

from the hotspot borders and going all the way towards the hotspot center.

4.1.7 ZS Implementation Overhead

Now that we have fully described the ZS scheme with its two versions, we move on to discuss

its implementation overhead on sensor motes. We concentrate on two types of overheads:

the processing overhead and the memory overhead. We discuss each of these overheads in

the following paragraphs.

We start by the processing overhead. Looking at the ZS scheme, we realize it introduces

47

two main types of processing overheads, the first is the DMC evaluation and the second is the

SZL search. The DMC evaluation results from the application of the DMC five equations in

a periodic manner. As none of these equations contains any mathematical operations other

than the standard addition, subtraction and multiplication, the overhead of applying these

equations once is negligible. Furthermore, as the DMC is periodically applied by each node

a number of times in the order of the direct neighbors of that node, which is in the worst

case θ(n). Thus, the overall overhead imposed by the DMC on each sensor node is negligible.

The second processing overhead to be considered is the SZL search overhead. As we are

constraining each node to send the information about shared zones only to its neighbors,

the size of a shared zone entry will be relatively small. It is easy to prove that an n-times

shared zone will be at most present in the shared zone lists of nodes of θ(n) hops away

from its final destination. Thus, the SZL search overhead that will be encountered by each

sensor node will be at most in the order of θ(log n). Also, for shared zones, search in shared

lists occurs only once in the furthest node containing shared zone information (i.e., furthest

from the final destination). Upon seeing the destination flag set in the message, GPSR in

the following nodes uses such destination immediately without searching the list. Thus, this

search does not add a considerable energy consumption overhead on individual sensor nodes

as it results in a maximum of θ(n) energy units to be consumed by all nodes involved in

routing any event.

We now move on to consider the memory overhead imposed by the ZS scheme on each

sensor node. This overhead results from two sources: the DMC code and the SZL. Consid-

ering the DMC code, we realize that it mainly consists of a for loop spanning the neighbors

of each node and having the five inequalities applied for each of these neighbors to decide

whether a zone sharing is to take place or no. Additionally, the storage loads and energy sta-

tus counters have to be kept for each of the neighbors of the node. Two additional variables

representing the best migrator and the best receiver have to be maintained within the loop.

The DMC implementation takes less than 30 lines of C++ code. Once run, the program

requires less than 1 KBytes of main memory. Thus, the memory requirement of the DMC

implementation is considered very miniature. Our experimental study showed that the SZL

is small thus does not impose a considerable storage burden on the sensor nodes.

48

4.1.8 ZS Experimental Evaluation

In this section, we move on to study the performance of our ZS scheme when facing storage

hotspots of different types and sizes. Our study is twofold. We first study the effect of

the different parameters on the ZS performance. Towards this goal, Section 4.1.8.1 presents

the high level overview on our sensitivity analysis results. Based on these results, we set

default values for the different ZS parameters and compare the ZS performance (both SHZS

and MHZS) against our reference schemes. Section 4.1.8.2, Section 4.1.8.3, and Section

4.1.8.4 compare the performance of our schemes against single, multiple, and moving storage

hotspots, respectively. We then present the full results our sensitivity analysis in Sections

4.1.8.5 to 4.1.8.7. The results show the detailed effect of each of the ZS parameters on the

overall performance of the scheme.

Throughout this section, the node storage capacity is equal to 30 readings and the node

initial energy capacity is equal to 70 units. Therefore, a full sensor node is defined to be a

sensor node having 30 readings in its cache. Similarly, a node is depleted (and consequently

considered dead) as soon as it consumes 70 energy units. Once a node is dead, all readings

stored in this node are considered lost. Based on the DIM scheme, the storage responsibility

(a subset of the attribute range) of the dead node is assigned to one of its direct neighbors.

Recall that we define an event to be either a reading or a query.

For each of our experiments, we study three aspects: QoD (R1), load balancing (R2),

and energy consumption (R3). For the QoD, we study the number of dropped events (read-

ings/queries) and the average node storage. We refer to the percentage of QoD improvement

to be the percentage of decrease in event drops. For the load balancing, we study the num-

ber of full nodes. As for energy consumption, we study the average node energy and the

number of dead nodes. The average node energy is the one that defines the improvement

or the downgrading in the energy consumption performance. To be statistically significant,

we conducted 5 simulation runs for each of the experiments and taken the average of values

across all runs.

For each of the hotspot types, we conducted experiments on different hotspot sizes rang-

ing from 20% to 80%. Unless otherwise stated, performing well on the large hotspot sizes,

49

i.e., [60%, 80%], implies a good performance on the moderate sized hotspots, i.e., [40%, 60%].

In most of the cases, the performance burden imposed to the network by small hotspots, i.e.,

hotspots less than 40%, does not justify the cost paid to detect and decompose the hotspots.

The main lessons that we learned from the experimental evaluation of ZS against our

reference schemes can be summarized in the following points:

1. When facing single storage hotspots, MHZS achieves a QoD improvement of around 55%

over DIM (as opposed to 20% improvement for SHZS). Towards this, MHZS imposes an

energy consumption overhead of 5% per node over DIM (as opposed to 3% overhead for

SHZS).

2. For multiple hotspots, SHZS slightly improves QoD by around 20% while MHZS performs

worse than DIM in some cases due to collisions (occurring when decomposing multiple

hotspots simultaneously). SHZS imposes an energy consumption overhead of around 2%

over DIM.

3. For moving hotspots, MHZS scores a 20% QoD improvement (as opposed to 15% for

SHZS) while introducing an energy consumption overhead of 3% over DIM (as opposed

to 2% for SHZS). This comes with an increase in node deaths of around 5% of the network

size.

4. For single hotspots, increasing the C value from 2 to 3 decreases the QoD of MHZS

by around 20% (compared to DIM) due to the decrease in the number of times the ZS

process is applied. This comes with decreasing the energy consumption overhead by

around 3% (from 8% to 5%).

5. For single hotspots, decreasing E to 0.3 results in improving QoD by at least 20% for

both single and multiple hotspots while reducing the energy consumption overhead by

around 5% (compared to when E = 0.5 with DIM as the base case).

6. For single hotspots, Changing the SC value does not highly affect QoD. When SC = 5,

energy consumption overhead is around 3% better than for higher SC values.

7. In general, SHZS is the better choice than MHZS as the former scores acceptable QoD

improvements for all hotspot types while imposing small energy consumption overheads

(compared to DIM).

50

We start by presenting the results of our sensitivity analysis study.

4.1.8.1 Sensitivity Analysis To pick the default parameter values for ZS, we studied

the effect of changing the storage level threshold C, the energy level threshold E, and the

maximum allowed share count SC over the ranges [1.5, 3], [0.3, 0.8], and [5, 15], respectively.

Figure 7 plots the performance of ZS (for single storage hotspots) in terms of both the QoD

improvements and the QoS overheads encountered for the different parameter values. Before

describing the selection process of the default values for the different ZS parameters, we first

illustrate the reasons for selecting each of these ranges.

We study the effect of changing the C threshold between 1.5 and 3. The selection of this

range is based on the role of C in the ZS process. Recall that the pre-migration load of donor

to the collective pre-migration load of the receiver and the migrator should be more than,

or at least equal to, C for the ZS to take place (Inequality 4.1). Furthermore, the size of the

traded zone to the pre-migration load of the migrator should be larger than, or at least equal

to, C as well (Inequality 4.2). Thus, selecting a value for C which is lager than 3 will result

in highly reducing the probability of satisfying the DMC, and in a consequent high reduction

in the number of zone shares taking place in the network. Similarly, setting C to a small

value would highly increase the number of zone shares and may cause cyclic migrations. We

study the performance for C values ranging from 1.5 to 3 with an 0.1 increment. We only

present the results for a subset of these values that captures the main learned lessons from

the study.

We study the effect of changing the E parameter between 0.3 and 0.8. The selection of

this value range is based on the role of E in the ZS process. Recall that the energy needed to

send the traded zone to the pre-migration energy of donor should not exceed E (Inequality

4.3). Thus, E should definitely be less than 1 so that the donor does not deplete all its energy.

In fact, it should make sure to leave the donor with a good amount of energy. That’s why we

select a value of 0.8 as the maximum for this threshold as to make sure that the donor has

a least a fraction of 0.2 of its energy remaining after the zone sharing process. Furthermore,

The energy of needed by the migrator in the zone sharing process (which comprises the

energy needed to send its pre-migration load plus the energy needed to receive the traded

51

zone) to the energy of the migrator should not exceed E (Inequality 4.4). Thus, E should

guarantee that the migrator is left with energy after the zone sharing process, exactly as it

was discussed for the donor. The same argument follows for the receiver (Inequality 4.5).

As for the lower bound, selecting a very low fractional value for E will be too restrictive and

would result in decreasing the probability of applying the ZS process, especially after the

energy of the sensor nodes across the network is about to be fully consumed. In light of this,

we selected a lower bound of 0.3 for E. Specifically, we study the performance for E values

ranging from 0.3 to 0.8 with an 0.1 increment. We only present the results for a subset of

these values that captures the main learned lessons from the study.

In addition to studying the ZS performance for SC = 1, i.e., testing the SHZS perfor-

mance, we study the effect of changing the SC value between 5 and 15 hops (i.e., shares per

zone). The reason for selecting 5 as the lower bound is to set a clear distinction between

MHZS and SHZS. Based on our experiments, a smaller SC value, e.g., 2 or 3, is not sufficient

to highly improve (or degrade) the performance of the SHZS scheme. In fact, our results

show that pushing a hot zone only 2 or 3 hops away from its original storage sensor does not

highly differ from pushing it for only one hop. In all these cases, the ZS ability to decompose

the hotspot is limited. As for the upper bound for SC, setting SC to a very large value

will result in completely disturbing the DCS index structure. This would result from the

fact that hot zones will be sent very far from their original destination. Additionally, all

mappings and routing decisions will be based on our ZS scheme rather than based on the

underlined DIM scheme. To avoid this, we set the upper bound for SC to be 15. Specifically,

we conducted experiments for SC values ranging from 5 to 15 with an increment of 1. We

only present the results for a subset of these values that captures the main learned lessons

from the study.

We now move on to discuss the results of our sensitivity analysis. We started our analysis

by studying the effect of C on SHZS. To limit the effect of E, we set it to the maximum

value of 0.8. This experiment resulted in a peak SHZS performance for C = 2, namely a

20% improvement on QoD with a 3.5% overhead on QoS. Thus, we select a default value of

2 for the C parameter.

Moving forward, we set C = 2 and study the effect of E on the SHZS performance. This

52

Figure 7: QoD Improvements vs QoS Overheads of the Different ZS Versions

53

resulted in a performance improvement that is inversely proportional to the value of E. The

peak performance was achieved for E = 0.3 with a 25% QoD improvement and a 3% QoS

overhead. Thus, we select a value of 0.3 to be the default value for E.

Using the default values for both C and E, we move on to study the performance of

MHZS with SC = 5. As a first step, we verify that the default values already computed for

SHZS achieve the best performance for MHZS as well. We start by studying the different C

values while setting E to 0.3. For this study, the best performance is achieved when C = 2.

QoD improvements are about 55% and QoS overheads are around 5%. Similarly, we test the

MHZS performance for the different E values. The value of E = 0.3 continued to score the

best MHZS performance. This verifies the selection of the default values for C and E.

Finally, we study the effect of SC on the MHZS performance. We present the results

for SC values of 10 and 15 (while setting the C and E to their default values). The results

show that SC has a limited effect on the MHZS performance. The MHZS performance was

almost identical for the two SC values, 10 and 15, with a 50% QoD improvement and an 8%

QoS overhead. Thus, we set the default value of 5 for the SC parameter.

Using the default values for C = 2, E = 0.3, and SC = 5 (right most point on Figure

7), we test the ZS performance against the different hotspot types and settings. Our exper-

imental results are shown in Figures 8 to 28. In these figures, we compare the performance

of the basic DIM versus the performances of both SHZS and MHZS, with respect to our

different performance measures. It is important to mention that we only included the DIM

as the sole reference scheme as our simulations have shown that it completely outperform

both the LS and the GHT schemes. Thus, in order to present more accurate and complete

graphs, we only plot the results for our ZS scheme and those for DIM.

4.1.8.2 Single Static Storage Hotspots The following three results compare the ZS

performance to that of the DIM when facing single static hotspots.

R1. QoD: Figure 8(a) presents the total number of events dropped by all network nodes for

a 60% single storage hotspot. For the three simulated schemes, the number of dropped events

is quite low and almost constant for networks of small sizes (less than 150 nodes), while it

increases linearly for larger network sizes. Thus, the fluctuation of the ratios in the figure

54

 0

 0.5

 1

 1.5

 2

 50 100 150 200 250 300 350 400 450 500

D
ro

pp
ed

 E
ve

nt
s

Network Size

DIM/DIM
SHZS/DIM
MHZS/DIM

(a) Dropped Events

 0

 0.5

 1

 1.5

 2

 50 100 150 200 250 300 350 400 450 500

A
vg

 S
to

ra
ge

 L
ev

el
 (

re
ad

in
gs

)

Network Size

DIM/DIM
SHZS/DIM
MHZS/DIM

(b) Average Node Storage

Figure 8: ZS: QoD Graphs for a 60% Single Storage Hotspot

55

(for network smaller than 200) does not actually have a big significance when comparing the

performances of the three schemes. For networks of larger sizes, the main observation in this

figure is that MHZS improves the performance by around 55% (over DIM) for all network

sizes while SHZS improves the performance by at least 20% (over DIM).

Figure 8(b) shows the average node storage for networks with 60% storage hotspots.

The figure shows that that MHZS improves DIM’s performance by around 48% (around 5

readings per node) for all network sizes. Also, SHZS performs better than DIM by around

22% (an average of 2 readings per node). Note that we achieved similar results for hotspots

of sizes up to 80%.

Based on the two figures, MHZS achieves a 50% QoD improvement over DIM while SHZS

scores around 20% improvement. In general, a reduction in the number of dropped readings

improves the average lifetime of a reading, which can be defined as the amount of time the

reading will be stored in the network before being dropped. This consequently improves the

network ability to efficiently provide answers for queries aiming any arbitrary set of readings

throughout the network operation. Consequently, this results in improving the overall QoD.

R2. Load Balancing: Figure 9 compares the performance of the schemes in terms of the

number of full nodes for networks experiencing 60% single storage hotspots. Recall that, by

full nodes, we mean the nodes having caches full (i.e., storing 30 readings). This metric shows

the ability of any scheme to decompose the hotspot and load-balance its readings across a

larger number of network nodes. A successful load balancing strategy reduces the number

of nodes reaching the edge of the storage capacity. In general, studying load balancing helps

us in understanding the reasons behind the QoD improvements of our schemes.

The main observation from the figure is that MHZS decreases the number of full nodes

by around 50% for small network sizes (less than 150) and the improvement increases to be

around 70% for large networks. It is important to note how the performance of the scheme

scales with the network size and how its load balancing effect becomes more obvious for

larger networks. On the other hand, SHZS decreases the number of full nodes by around 35%

compared to DIM. This result shows that ZS, especially MHZS, improves the network ability

to maintain a higher portion of the hotspot readings by sending these readings for storage

away from the hotspot area. This consequently increases the number of sensors responsible

56

 0

 0.5

 1

 1.5

 2

 50 100 150 200 250 300 350 400 450 500

N
um

 o
f F

ul
l N

od
es

Network Size

DIM/DIM
SHZS/DIM
MHZS/DIM

Figure 9: ZS: Number of Full Nodes for a 60% Single Storage Hotspot

for storing the hotspot readings. Note that we achieved similar results for hotspots of sizes

up to 80% hotspots.

Now that we have studied the ZS performance in terms of QoD, it is important to compare

the energy consumption of ZS to that of the DIM to make sure that the QoD improvement

does not come with a high energy overhead that would be imposed on the DIM scheme when

applying ZS.

R3. Energy Consumption: Figure 10(a) presents the average node energy level for

networks experiencing a 60% single storage hotspot. The figure shows that introducing ZS

schemes slightly decreases the average sensor energy by around 3% for SHZS and 5% for

MHZS when compared to DIM. Note that we achieved similar results for hotspots up to

80%. Figure 10(b) presents the number of dead nodes for networks with an 80% hotspot.

The figure shows that MHZS increases node deaths (compared to DIM) by around 30% for

networks less than 200 nodes and by around 100% for larger networks. This increase in node

deaths is equivalent to 2% of the network size for small networks and by around 3% of the

57

 0

 0.5

 1

 1.5

 2

 50 100 150 200 250 300 350 400 450 500

A
vg

 E
ne

rg
y

Le
ve

l (
en

er
gy

 u
ni

ts
)

Network Size

DIM/DIM
SHZS/DIM
MHZS/DIM

(a) Average Node Energy for a 60% Single Storage Hotspot

 0

 0.5

 1

 1.5

 2

 2.5

 3

 50 100 150 200 250 300 350 400 450 500

D
ea

d
N

od
es

Network Size

DIM/DIM
SHZS/DIM
MHZS/DIM

(b) Dead Nodes for an 80% Single Storage Hotspot

Figure 10: ZS: Energy Consumption Graphs for Single Storage Hotspots

58

network size for larger networks. The important observation from the two figures is that the

energy consumption overhead imposed by applying ZS on top of DIM is relatively small.

In conclusion, the above results show that applying ZS schemes on top of DIM improves

DIM’s QoD when facing single storage hotspots while imposing a slight energy consumption

overhead. For SHZS, the QoD improvements are around 20% while the energy consumption

overheads are around 3% per node. For MHZS, the QoD improvements are around 55%

while the energy consumption overheads are around 5% per node. The results are valid for

hotspot sizes up to 80%. In general, MHZS performs better than SHZS when facing single

storage hotspots.

4.1.8.3 Multiple Simultaneous Static Storage Hotspots We now study the perfor-

mance of our ZS schemes compared to DIM when facing multiple simultaneous and static

storage hotspots. As for the single hotspots, we conduct our study in terms of QoD (R1),

load balancing (R2), and energy consumption (R3). The results presented in this section are

based on simulating networks with two simultaneous hotspots. Recall that an x% multiple

hotspot means that at least x% of the readings fall in the two hotspots with each reading

falling in any of the two hotspots with equal probability, i.e., at least x/2% of the readings

are expected to fall in each of the two hotspots.

R1. QoD: Figure 11(a) presents the total number of events dropped by all network nodes

in networks facing a 60% multiple hotspots. For the three simulated schemes, the num-

ber of dropped events is quite low and almost the same for networks of small sizes (less

than 100 nodes). For larger network sizes, the number of dropped events increases linearly.

Specifically, SHZS outperforms DIM by around 20% while MHZS performs worse than DIM

for networks larger than 100 nodes (though the performance of all three schemes is quite

comparable). Figure 11(b) shows the average node storage for networks with 60% multiple

storage hotspots. The main observation in this figure is that SHZS improves performance by

around 30%. Based on both figures, SHZS is able to score at least 20% QoD improvement

over DIM for the case of multiple hotspots. We achieved similar results for hotspots of sizes

up to 80%.

The bad MHZS performance results from its hotspot decomposition strategy which is

59

 0

 0.5

 1

 1.5

 2

 50 100 150 200 250 300 350 400 450 500

D
ro

pp
ed

 E
ve

nt
s

Network Size

DIM/DIM
SHZS/DIM
MHZS/DIM

(a) Dropped Events for a 60% Multiple Storage Hotspot

 0

 0.5

 1

 1.5

 2

 50 100 150 200 250 300 350 400 450 500

A
vg

 S
to

ra
ge

 L
ev

el
 (

re
ad

in
gs

)

Network Size

DIM/DIM
SHZS/DIM
MHZS/DIM

(b) Average Node Storage for an 80% Multiple Storage Hotspot

Figure 11: ZS: QoD Graphs for Multiple Storage Hotspots

60

 0

 0.5

 1

 1.5

 2

 50 100 150 200 250 300 350 400 450 500

N
um

 o
f F

ul
l N

od
es

Network Size

DIM/DIM
SHZS/DIM
MHZS/DIM

Figure 12: ZS: Number of Full Nodes for a 60% Multiple Storage Hotspot

based on decomposing the hot zone into sub-zones and sending part of these hot sub-zones

away from the hotspot area. By carefully studying our experiments’ input data and their

results, we realized that this MHZS strategy causes further collisions among the hot sub-

zones of the different hotspots. This can be viewed as the formation of additional hotspots

which further trigger the MHZS scheme for their decomposition. This symptom results in

slightly decreasing the dropped events of the MHZS scheme compared to those of DIM. It is

worth mentioning that this collision effect does not take place in all multiple hotspot cases.

In fact, depending on the subranges of the two hotspots, MHZS performs better than SHZS

in some of the cases where no collisions take place.

R2. Load Balancing: Figure 12 presents the number of full nodes for networks with 60%

multiple storage hotspots. The figure shows that SHZS decreases the number of full nodes

by around 25%. This shows that SHZS achieves a better load balancing of the hotspot data

than that of DIM. This consequently explains the QoD improvement achieved by SHZS. This

was true for hotspots of sizes up to 80%.

61

 0

 0.5

 1

 1.5

 2

 50 100 150 200 250 300 350 400 450 500

A
vg

 E
ne

rg
y

Le
ve

l (
en

er
gy

 u
ni

ts
)

Network Size

DIM/DIM
SHZS/DIM
MHZS/DIM

(a) Average Node Energy

 0

 0.5

 1

 1.5

 2

 2.5

 3

 50 100 150 200 250 300 350 400 450 500

D
ea

d
N

od
es

Network Size

DIM/DIM
SHZS/DIM
MHZS/DIM

(b) Dead Nodes

Figure 13: ZS: Energy Consumption Graphs for 60% Multiple Storage Hotspots

62

R3. Energy Consumption: Figure 13(a) shows the average node energy level for networks

with 60% hotspots. The figure shows that SHZS does not impose except a 2% energy

consumption overhead on DIM. This is mainly due to the fact that each zone can only be

shared once. Figure 13(b) shows the number of node deaths for networks with 60% hotspots.

The figure shows that SHZS increases the number of dead nodes by around 25% over DIM.

As the number of dead nodes achieved by DIM is at most 5% of the network size (for all

network sizes), the performance degradation caused by DIM is around 1.25% of the network

size. In general, the two figures show that SHZS adds a small energy consumption on the

DIM scheme in the case of multiple storage hotspots.

In conclusion, the implementation of the ZS schemes on top of DIM slightly copes with

the problem of multiple storage hotspots. SHZS achieves at least 20% QoD improvement

over DIM. This comes a 2% additional energy consumption overhead. As for MHZS, it

may cause a QoD downgrading by creating further collisions across the hot sub-zones and

subsequent formations of new hotspots. This is valid for hotspots of sizes up to 80%.

4.1.8.4 Moving Storage Hotspots We now study the ZS performance against the

third type of hotspots we are interested in, which are moving storage hotspots. Our study

continues to be in terms of the three dimensions: QoD (R1), load balancing (R2), and

energy consumption (R3). We simulated an x% moving hotspot as follows. Each run has

been divided into 5 steps. The hotspot starts in range [t1, t1 + i] in the first step, then moves

on to [t1+i, t1+2i] in the second step, etc. In each of the steps, x% of the generated readings

fall in the step’s hotspot range. We simulated hotspot sizes up to 50%.

R1. QoD: Figure 14(a) presents the number of events dropped by networks facing a 40%

moving hotspot. The figure shows that the three schemes achieve a similar performance for

networks less than 200 nodes. The number of dropped events is relatively small for these

network sizes. For larger networks, SHZS improves DIM’s performance by at least 18% while

MHZS improves DIM’s performance by at least 20%. This shows the ZS ability to improve

the data persistence against moving hotspots. Figure 14(b) presents the average node storage

for networks with a 40% moving hotspot. The figure shows that MHZS improves average

node storage by around 50% while SHZS improves it by around 25%. Overall, the two figures

63

 0

 0.5

 1

 1.5

 2

 50 100 150 200 250 300 350 400 450 500

D
ro

pp
ed

 E
ve

nt
s

Network Size

DIM/DIM
SHZS/DIM
MHZS/DIM

(a) Dropped Events

 0

 0.5

 1

 1.5

 2

 50 100 150 200 250 300 350 400 450 500

A
vg

 S
to

ra
ge

 L
ev

el
 (

re
ad

in
gs

)

Network Size

DIM/DIM
SHZS/DIM
MHZS/DIM

(b) Average Node Storage

Figure 14: ZS: QoD Graphs for a 40% Moving Storage Hotspot

64

 0

 0.5

 1

 1.5

 2

 50 100 150 200 250 300 350 400 450 500

N
um

 o
f F

ul
l N

od
es

Network Size

DIM/DIM
SHZS/DIM
MHZS/DIM

Figure 15: ZS: Full Nodes for a 40% Moving Storage Hotspot

show the ability of ZS to decompose moving hotspots in a better way than DIM.

R2. Load Balancing: Figure 15 presents the number of full nodes for networks with a 40%

moving hotspot. The figure clearly shows that MHZS decreases the number of full nodes

by around 70% compared to DIM. SHZS also performs better than DIM by around 25%.

This shows that MHZS considerably load balances the hotspot data throughout the network

lifetime. This results in sending hot sub-zones away from the hotspot area(s). Consequently,

this increases the number of sensor nodes responsible for storing the hotspot data. This

results in decreasing the number of sensor nodes with saturated caches.

R3. Energy Consumption: Figure 16(a) presents the average node energy for networks

with a 40% moving hotspot. The figure shows that the three schemes achieve almost the same

performance, with the ZS schemes having around 1 or 2 readings less than DIM (specifically,

2% overhead for SHZS and 3% overhead for MHZS). Figure 16(b) presents the number of

node deaths for networks with a 40% moving hotspot. In general, the number of dead nodes

for DIM is at most 5% of the network size (for all network sizes). SHZS increases node deaths

65

 0

 0.5

 1

 1.5

 2

 50 100 150 200 250 300 350 400 450 500

A
vg

 E
ne

rg
y

Le
ve

l (
en

er
gy

 u
ni

ts
)

Network Size

DIM/DIM
SHZS/DIM
MHZS/DIM

(a) Average Node Energy

 0.5

 1

 1.5

 2

 2.5

 3

 50 100 150 200 250 300 350 400 450 500

D
ea

d
N

od
es

Network Size

DIM/DIM
SHZS/DIM
MHZS/DIM

(b) Dead Nodes

Figure 16: ZS: Energy Consumption Graphs for a 40% Moving Storage Hotspot

66

by around 20% while qMHZS increases node deaths achieved by DIM by around 100% (or

around 5% of the network size). In general, this shows that ZS imposes a moderate energy

consumption overhead on DIM.

In conclusion, the ZS schemes are able to perform slightly better than the basic DIM

against moving hotspots. The 20% QoD improvement, though it is not that big, comes with

a 3% energy consumption overhead.

We now move on to the sensitivity analysis of ZS. We study the effect of the different ZS

parameters on the ZS performance. We concentrate on the effect of three main parameters:

the storage level threshold C , the energy level threshold E, and the zone share count SC. We

present the results of our study in the following three subsections. For each of our studies, we

concentrate on changing the value of the parameter under concern while keeping the values

of the other parameters set to their default values (determined in Section 4.1.8.1). Note that

although we studied the performance of ZS for many parameter values and combinations,

we present a subset of results that captures the most important learned lessons.

To maximize the effect that any of the three parameters will have on ZS, we focus on

studying MHZS rather than SHZS. This is simply due to the fact that MHZS applies the

ZS process much more frequently than SHZS. Thus, the effect of any of these parameters

on the MHZS performance for any network setting will be higher than that effect the same

parameter has on SHZS. It is important to note that, throughout the following fine tuning

results, the hot ranges for multiple hotspots were carefully selected to avoid the symptom of

collision effects (and hotspot reformation) as much as possible.

4.1.8.5 Effect of Storage Level Threshold on MHZS Performance In this sub-

section, we study the effect of the storage level threshold, namely the C1 and C2 thresholds

of the DMC, on the ZS performance. To maintain the same threshold among the three

participants of the ZS process (the sender, the migrator, and the receiver), we mainly set the

two parameters to a single value that we refer to by the variable C. Recall that our default

value for C was 2. As discussed in Section 4.1.8.1, we study C values ranging from 1.5 to 3.

The following three results compare the MHZS performance for the different C values

studying both single and multiple hotspots of sizes up to 80%.

67

 0

 0.5

 1

 1.5

 2

 50 100 150 200 250 300 350 400 450 500

D
ro

pp
ed

 E
ve

nt
s

Network Size

DIM/DIM
(C = 1.5)/DIM
(C = 2.0)/DIM
(C = 3.0)/DIM

(a) 80% Single Storage Hotspot

 0.5

 1

 1.5

 2

 2.5

 3

 50 100 150 200 250 300 350 400 450 500

D
ro

pp
ed

 E
ve

nt
s

Network Size

DIM/DIM
(C = 1.5)/DIM
(C = 2.0)/DIM
(C = 3.0)/DIM

(b) 60% Multiple Storage Hotspots

Figure 17: ZS: Dropped Events for Various C Values

68

R1. QoD: Figures 17(a) and 17(b) compare the number of dropped events of the different

MHZS versions for the 80% single hotspot case and the 60% multiple hotspot case, respec-

tively. The figures show that increasing the storage level threshold generally increases the

number of dropped events. For both single and multiple hotspots, the C = 2 MHZS version

performs the best in terms of QoD. For single hotspots, the C = 2 MHZS version achieves

around 55% QoD improvement over DIM, while C = 1.5 improves QoD by around 52% and

C = 3 improves QoD by around 35%. For multiple hotspots, all schemes perform worse than

DIM due to the collision effect (as discussed in Section 5.6.1.2). However, the C = 2 MHZS

version continues to perform the best among the three versions by decreasing performance

by around 35% as opposed to 50% for the C = 1.5% version and 100% for the C = 3 version.

This result shows that the C = 2 version is the most appropriate version to deal with our

hotspot scenarios as it applies the zone sharing process in a moderate way without over-

reacting to or under-estimating the hotspot. Note that the C = 2 MHZS version continues

to perform the best among all versions when the collision problem is avoided for the multiple

hotspot. In such a case, QoD improvements can reach 65% as opposed to QoD improvements

of around 60% and 45% for the C = 1.5 and C = 3 cases, respectively. We achieved similar

results for hotspots of sizes up to 80%.

R2. Load Balancing: Figures 18(a) and 18(b) compare the number of full nodes of the

different MHZS versions for the 80% single hotspot case and the 60% multiple hotspots case,

respectively. The important observation is that C = 2 decreases the number of full nodes the

most for both single and multiple hotspots (by around 55% for single hotspots and 75% for

multiple hotspots). The number of full nodes is slightly less for the other two MHZS versions

(around 50%. This shows that changing the C value above and below a threshold slightly

downgrades the load balancing performance of MHZS. Thus, applying the ZS process for a

very large or very low number of times decreases the load balancing ability of the ZS scheme.

This is valid for single and multiple hotspots of sizes up to 80%.

R3. Energy Consumption: Figures 19(a) and 19(b) compare the number of dead nodes

of the different MHZS versions for the 80% single hotspot case and the 40% multiple hotspots

case, respectively. In both cases, the numbers of dead nodes for DIM are slightly small (3%

of the network size for single hotspots and 4% of the network size for multiple hotspots).

69

 0

 0.5

 1

 1.5

 2

 50 100 150 200 250 300 350 400 450 500

N
um

 o
f F

ul
l N

od
es

Network Size

DIM/DIM
(C = 1.5)/DIM
(C = 2.0)/DIM
(C = 3.0)/DIM

(a) 80% Single Storage Hotspot

 0

 0.5

 1

 1.5

 2

 50 100 150 200 250 300 350 400 450 500

N
um

 o
f F

ul
l N

od
es

Network Size

DIM/DIM
(C = 1.5)/DIM
(C = 2.0)/DIM
(C = 3.0)/DIM

(b) 60% Multiple Storage Hotspots

Figure 18: ZS: Number of Full Nodes for Various C Values

70

 0.5

 1

 1.5

 2

 2.5

 3

 50 100 150 200 250 300 350 400 450 500

D
ea

d
N

od
es

Network Size

DIM/DIM
(C = 1.5)/DIM
(C = 2.0)/DIM
(C = 3.0)/DIM

(a) Dead Nodes for an 80% Single Storage Hotspot

 0.5

 1

 1.5

 2

 2.5

 3

 50 100 150 200 250 300 350 400 450 500

D
ea

d
N

od
es

Network Size

DIM/DIM
(C = 1.5)/DIM
(C = 2.0)/DIM
(C = 3.0)/DIM

(b) Dead Nodes for 40% Multiple Storage Hotspots

Figure 19: ZS: Dead Node Graphs for Various C Values

71

The main observation is both figures is that the performance downgrade imposed by all

MHZS versions is quite small. For single hotspots, the downgrade ranges 75% to 100%

over DIM, i.e., 2.25% to 3% of the network size. For multiple hotspots, the performance

downgrade ranges from 75% to 125% over DIM, i.e., 3% to 5% of the network size. In

general, increasing the C value decreases the number of dead nodes. This is due to the fact

that increasing C results in applying the ZS process fewer times. This results in decreasing

the energy consumption overhead imposed on each node.

This can also be observed in Figures 20(a) and 20(b) comparing the average node energy

of the different MHZS versions for the 60% single hotspot case and the For 40% multiple

hotspots case, respectively. The first figure shows that C = 1.5 downgrades energy consump-

tion of DIM by around 10% for single hotspots as opposed to 8% and 5% downgrades for the

C = 2 and C = 3 MHZS versions, respectively. The second figure shows that MHZS improves

energy consumption overhead for multiple hotspots. This is due to increasing the event shed-

ding as a result of the collision effect. With more events dropped (readings/queries), the

energy consumption burden imposed on sensor nodes falling in the storage hotspot rela-

tively decreases. For the cases where the collision effect was avoided, increasing the C value

continued to slightly decrease the energy consumption overhead imposed on sensor nodes.

Overheads ranges from 15% for C = 1.5% to 10% for C = 3. Overall, this shows that the

average energy consumption of MHZS does not largely vary for small changes in the C value.

All the above three results show that the MHZS performance depends on the value of

the C parameter. Increasing the C value beyond 2 decreases the QoD of MHZS by around

20% (compared to DIM’s performance). This is mainly due to the decrease in the number

of times the ZS process is applied. QoD of MHZS is almost identical for C values between

1.5 and 2. In terms of energy consumption, increasing the C value results in decreasing the

energy consumption overhead of MHZS. For single hotspots, overhead increases by around

3% (compared to DIM) when changing the C value from 1.5 to 2 or from 2 to 3.

4.1.8.6 Effect of Energy Level Threshold on MHZS Performance In this subsec-

tion, we move on to study the effect of the energy level threshold, namely the Ei thresholds

of the DMC, on the MHZS performance. As in the previous experiment, we set the three

72

 0

 0.5

 1

 1.5

 2

 50 100 150 200 250 300 350 400 450 500

A
vg

 E
ne

rg
y

Le
ve

l (
en

er
gy

 u
ni

ts
)

Network Size

DIM/DIM
(C = 1.5)/DIM
(C = 2.0)/DIM
(C = 3.0)/DIM

(a) Average Node Energy for a 60% Single Storage Hotspot

 0

 0.5

 1

 1.5

 2

 50 100 150 200 250 300 350 400 450 500

A
vg

 E
ne

rg
y

Le
ve

l (
en

er
gy

 u
ni

ts
)

Network Size

DIM/DIM
(C = 1.5)/DIM
(C = 2.0)/DIM
(C = 3.0)/DIM

(b) Average Node Energy for 40% Multiple Storage Hotspots

Figure 20: ZS: Energy Consumption Graphs for Various C Values

73

parameters to a single value that we refer to by the variable E to maintain the same perfor-

mance among the nodes participating in the ZS process. Recall that our default value for E

was 0.3. As discussed in Section 4.1.8.1, we study E values ranging from 0.3 to 0.8.

We concentrate on studying the MHZS rather than the SHZS as the MHZS is the one that

applies the ZS process the most. The following three results compare the MHZS performance

for the different values of E when facing both single and multiple hotspots. We conducted

experiments for hotspots of sizes up to 80%.

R1. QoD: Figures 21(a) and 21(b) compare the number of dropped events for MHZS,

applying the three E values, for the 60% single hotspot case and 60% multiple hotspots case,

respectively. The figures show changing the E value between 0.5 and 0.8 does not highly

affect the ZS performance for both single and multiple hotspots. Decreasing E to 0.3 results

in improving QoD by around 20% for single hotspots and 25% for multiple hotspots. For

single hotspots, QoD improvements range from 35% from E = 0.5 (or more) to around 55%

for E = 0.3. In general, this result shows that decreasing E results in increasing the number

of times the ZS process is applied. This consequently results in a better decomposition of

the hotspots and a better QoD for the network.

R2. Load Balancing: The same lesson learned from R1 is strengthened by Figures 22(a)

and 22(b) comparing the number of full nodes for MHZS, applying the three E values, for the

80% single hotspot case and 60% multiple hotspots case, respectively. The two figures show

that MHZS performance is almost identical for E values 0.5 and 0.8. As for E = 0.3, the

number of full nodes drops by around 10% for single hotspots and 15% for multiple hotspots.

This shows that important effect of the energy level threshold on the load balancing capability

of the ZS scheme.

R3. Energy Consumption: Figures 23(a) and 23(b) compare the number of dead nodes

for MHZS, applying the three E values, for the 80% single hotspot case and 60% multiple

hotspots case, respectively. Both figures show that the MHZS versions with E = 0.5 and

E = 0.8 perform almost identically. Decreasing the E value to 0.3 increases the number of

dead nodes by around 10% to 30% (compared to DIM) for single hotspots and 50% to 70%

(compared to DIM) for multiple hotspots. This is due to the fact that decreasing E results

in fewer number of times of zone shares. This causes some nodes falling in the hotspot

74

 0

 0.5

 1

 1.5

 2

 50 100 150 200 250 300 350 400 450 500

D
ro

pp
ed

 E
ve

nt
s

Network Size

DIM/DIM
(E = 0.3)/DIM
(E = 0.5)/DIM
(E = 0.8)/DIM

(a) 60% Single Storage Hotspot

 0.5

 1

 1.5

 2

 2.5

 3

 50 100 150 200 250 300 350 400 450 500

D
ro

pp
ed

 E
ve

nt
s

Network Size

DIM/DIM
(E = 0.3)/DIM
(E = 0.5)/DIM
(E = 0.8)/DIM

(b) 60% Multiple Storage Hotspots

Figure 21: ZS: Dropped Events for Various E Values

75

 0

 0.5

 1

 1.5

 2

 50 100 150 200 250 300 350 400 450 500

N
um

 o
f F

ul
l N

od
es

Network Size

DIM/DIM
(E = 0.3)/DIM
(E = 0.5)/DIM
(E = 0.8)/DIM

(a) 80% Single Storage Hotspot

 0

 0.5

 1

 1.5

 2

 50 100 150 200 250 300 350 400 450 500

N
um

 o
f F

ul
l N

od
es

Network Size

DIM/DIM
(E = 0.3)/DIM
(E = 0.5)/DIM
(E = 0.8)/DIM

(b) 60% Multiple Storage Hotspots

Figure 22: ZS: Number of Full Nodes for Various E Values

76

 0.5

 1

 1.5

 2

 2.5

 3

 50 100 150 200 250 300 350 400 450 500

D
ea

d
N

od
es

Network Size

DIM/DIM
(E = 0.3)/DIM
(E = 0.5)/DIM
(E = 0.8)/DIM

(a) Dead Nodes for an 80% Single Storage Hotspot

 0.5

 1

 1.5

 2

 2.5

 3

 50 100 150 200 250 300 350 400 450 500

D
ea

d
N

od
es

Network Size

DIM/DIM
(E = 0.3)/DIM
(E = 0.5)/DIM
(E = 0.8)/DIM

(b) Dead Nodes for 60% Multiple Storage Hotspots

Figure 23: ZS: Dead Node Graphs for Various E Values

77

to deplete their energy. However, as node deaths for DIM are around 3% of the network

size for single hotspots and 5% of the network size for multiple hotspots, the performance

degradation imposed by MHZS (in terms of node deaths) is relatively small when compared

the the network size.

A similar observation can be seen in Figures 24(a) and 24(b) comparing the average

node energy for MHZS, applying each of the three E values, for the cases 60% single and

multiple hotspots, respectively. The figures show that the two MHZS versions with E = 0.5

and E = 0.8 exhibit almost the same performance. The first figure shows that the energy

consumption overheads increase from 5% at the case of E = 0.3 to 10% at the other two cases.

For multiple hotspots, the MHZS version with E = 0.3 reduces DIM’s energy consumption

overhead by around 9% per node as opposed to 15% for the other two versions (due to the

collision effect). In general, increasing E to 0.3 slightly decreases the energy consumption

load imposed on sensor nodes (by around 5% compared to DIM) for the case of single

hotspots. This results from the fact that the number of times the ZS process is applied is

higher than in the cases where E takes larger values.

In general, the above results show that the E parameter has an important effect on the

ZS performance. The E = 0.3 version of MHZS performs better than the other two versions

(that perform similarly). For single hotspots, the E = 0.3 MHZS version increases QoD by

around 20% while improving the energy consumption by around 5% (compared to the other

two MHZS versions with DIM as the base case).

4.1.8.7 Effect of the Zone Share Count on MHZS Performance In this subsection,

we move on to study the effect of the zone share count on the MHZS performance. We will

refer to this parameter by SC. This parameter controls the number of times a zone can be

shared. Recall that our default value for the zone share count was 5. As discussed in Section

4.1.8.1, we study SC values ranging from 5 to 15.

We continue to concentrate on studying the effect of changing the threshold values on the

MHZS scheme performance. The following three results compare the MHZS performance for

the different values of the zone share count when facing both single and multiple hotspots.

We conducted results for hotspots of sizes up to 80%.

78

 0

 0.5

 1

 1.5

 2

 50 100 150 200 250 300 350 400 450 500

A
vg

 E
ne

rg
y

Le
ve

l (
en

er
gy

 u
ni

ts
)

Network Size

DIM/DIM
(E = 0.3)/DIM
(E = 0.5)/DIM
(E = 0.8)/DIM

(a) Average Node Energy for a 60% Single Storage Hotspot

 0

 0.5

 1

 1.5

 2

 50 100 150 200 250 300 350 400 450 500

A
vg

 E
ne

rg
y

Le
ve

l (
en

er
gy

 u
ni

ts
)

Network Size

DIM/DIM
(E = 0.3)/DIM
(E = 0.5)/DIM
(E = 0.8)/DIM

(b) Average Node Energy for 60% Multiple Storage Hotspots

Figure 24: ZS: Energy Consumption Graphs for Various E Values

79

 0

 0.5

 1

 1.5

 2

 50 100 150 200 250 300 350 400 450 500

D
ro

pp
ed

 E
ve

nt
s

Network Size

DIM/DIM
(SC = 5)/DIM

(SC = 10)/DIM
(SC = 15)/DIM

(a) 80% Single Storage Hotspot

 0.5

 1

 1.5

 2

 2.5

 3

 50 100 150 200 250 300 350 400 450 500

D
ro

pp
ed

 E
ve

nt
s

Network Size

DIM/DIM
(SC = 5)/DIM

(SC = 10)/DIM
(SC = 15)/DIM

(b) 60% Multiple Storage Hotspots

Figure 25: ZS: Dropped Events for Various SC Values

80

R1. QoD: Figures 25(a) and 25(b) compare the number of dropped events for MHZS,

applying the three SC values, for the 80% single hotspot case and 60% multiple hotspots case,

respectively. The first figure shows that, for the single hotspot case, the QoD performance

of MHZS is very similar for all SC values ranging from 10 to 15. The QoD performance

improvement scored by MHZS over DIM ranges from 50% for SC = 10 (or SC = 15) to

55% for SC = 5%. The important observation in this result is that the SC value does

not highly affect the QoD achievements of the MHZS scheme. This result can be explained

as follows. For the ZS process to be applied, all DMC inequalities need to be satisfied.

Though increasing the SC value allows a hot zone to be traded a larger number of times,

such a zone cannot be traded except when three sensor nodes satisfy the DMC. This purely

depends on the loads of the sensor nodes, in terms of both storage and energy, throughout

the network lifetime. Though we have changed the SC values in this experiment, each zone

ends up by being traded an almost constant number of times. This mainly results in a similar

performance for MHZS for the different SC values. We achieved similar performances for

hotspots of sizes up to 80%.

R2. Load Balancing: Figures 26(a) and 26(b) compare the average node storage for the

different MHZS versions for the 80% single hotspot case and 60% multiple hotspots case,

respectively. The figures show that the two MHZS versions with SC = 10 and SC = 15

exhibit a similar performance, while setting SC = 5 decreases the number of full nodes

by around 5% for both single and multiple hotspots. This justifies the QoD performances

discussed in R1 by showing that the effect of SC on load balancing is limited. We achieved

similar performances for hotspots of sizes up to 80%.

R3. Energy Consumption: Figures 27(a) and 27(b) compare the number of dead nodes

for the different MHZS versions for the 80% single hotspot case and 60% multiple hotspots

case, respectively. The first figure shows that increasing the SC value to 10 (or beyond)

increases the number of dead nodes by around 15% compared to DIM (whose number of

dead nodes is around 3% of the network size) for single hotspots. This is also strengthened

by Figure 28(a) which shows that the same increase in the SC value decreases the average

node energy by around 3%. This can be explained as follows. Increasing SC allows a hot

zone to move for larger number of times. This results in involving a larger area (of sensors) in

81

 0

 0.5

 1

 1.5

 2

 50 100 150 200 250 300 350 400 450 500

N
um

 o
f F

ul
l N

od
es

Network Size

DIM/DIM
(SC = 5)/DIM

(SC = 10)/DIM
(SC = 15)/DIM

(a) 80% Single Storage Hotspot

 0

 0.5

 1

 1.5

 2

 50 100 150 200 250 300 350 400 450 500

N
um

 o
f F

ul
l N

od
es

Network Size

DIM/DIM
(SC = 5)/DIM

(SC = 10)/DIM
(SC = 15)/DIM

(b) 60% Multiple Storage Hotspot

Figure 26: ZS: Number of Full Nodes for Various SC Values

82

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 50 100 150 200 250 300 350 400 450 500

D
ea

d
N

od
es

Network Size

DIM
SC = 5

SC = 10
SC = 15

(a) Dead Nodes for a 60% Single Storage Hotspot

 0.5

 1

 1.5

 2

 2.5

 3

 50 100 150 200 250 300 350 400 450 500

D
ea

d
N

od
es

Network Size

DIM/DIM
(SC = 5)/DIM

(SC = 10)/DIM
(SC = 15)/DIM

(b) Dead Nodes for 60% Multiple Storage Hotspots

Figure 27: ZS: Dead Node Graphs for Various SC Values

83

the hotspot storage. Thus, a larger number of sensors will be involved in sending/receiving

packets. This results in a slight increase in the energy consumption overhead imposed on

the individual sensor nodes in the network.

In conclusion, changing the value of the SC parameter does not highly affect neither

QoD nor QoS. For SC = 5, QoD improvements are around 55% while energy consumption

overhead is around 5%. When increasing the SC value to 10 or 15, QoD improvements are

around 50% while energy consumption overheads are around 8% per node.

To summarize the sensitivity analysis results, Table 2 shows the effect of the different

parameters on the MHZS performance for single storage hotspots (of sizes up to 80%).

4.1.8.8 Discussion In this section, we conducted a complete study of the ZS scheme.

We studied the ZS performance for single, multiple, and moving hotspots. Additionally, we

studied the individual effect of the storage level threshold, the energy level threshold, and

the zone share count on the ZS performance. Table 3 summarizes the ZS performance for

the different storage hotspot types (of sizes up to 80%).

In general, SHZS can be considered as a better choice than MHZS. This is due to the

fact that MHZS may cause further hotspot collisions in the case of multiple hotspots. This

collision problem downgrades its QoD performance compared to DIM. This has the effect of

limiting its usability for decomposing general storage hotspots. On the other hand, SHZS

achieves moderate QoD improvements while imposing a small energy consumption overhead

compared to DIM for all hotspot settings.

Now that we have completely presented and studied the performance of the ZS scheme,

we move to present ZP/ZPR schemes aimed at locally detecting and decomposing query

hotspots.

84

 0

 0.5

 1

 1.5

 2

 50 100 150 200 250 300 350 400 450 500

A
vg

 E
ne

rg
y

Le
ve

l (
en

er
gy

 u
ni

ts
)

Network Size

DIM/DIM
(SC = 5)/DIM

(SC = 10)/DIM
(SC = 15)/DIM

(a) Average Node Energy for an 80% Single Storage Hotspot

 0

 0.5

 1

 1.5

 2

 50 100 150 200 250 300 350 400 450 500

A
vg

 E
ne

rg
y

Le
ve

l (
en

er
gy

 u
ni

ts
)

Network Size

DIM/DIM
(SC = 5)/DIM

(SC = 10)/DIM
(SC = 15)/DIM

(b) Average Node Energy for 60% Multiple Storage Hotspots

Figure 28: ZS: Energy Consumption Graphs for Various SC Values

85

Table 2: Performance of the Different Versions of ZS (Relative to DIM) for Single Storage

Hotspots

Hotspot Type QoD Gains QoS Losses

[C = 1.5, E = 0.8, SC = 1] 18% 3.7%

[C = 2, E = 0.8, SC = 1] 20% 3.5%

[C = 3, E = 0.8, SC = 1] 14% 3.2%

[C = 2, E = 0.5, SC = 1] 22% 3.5%

[C = 2, E = 0.3, SC = 1] 25% 3%

[C = 2, E = 0.3, SC = 5] 55% 5%

[C = 1.5, E = 0.3, SC = 5] 52% 8%

[C = 3, E = 0.3, SC = 5] 35% 3%

[C = 2, E = 0.5, SC = 5] 35% 10%

[C = 2, E = 0.8, SC = 5] 35% 10%

[C = 2, E = 0.8, SC = 10] 50% 8%

[C = 2, E = 0.8, SC = 15] 50% 8%

Table 3: ZS Performance (Relative to DIM) for Storage Hotspots

Hotspot Type Scheme QoD Gains QoS Losses

Single Static Hotspots
SHZS 20% 3%

MHZS 55% 5%

Multiple Static Hotspots
SHZS 20% 2%

MHZS −30% −5%

Moving Hotspots
SHZS 15% 2%

MHZS 20% 3%

86

4.2 LOCAL DETECTION AND DECOMPOSITION OF QUERY

HOTSPOTS

Another major problem in DCS schemes, and specifically in DIM, is that of query hotspots.

Query hotspots may occur in DIM if the sensors are not uniformly distributed. Query

hotspots may also occur in the case of a skewed query workload. In both cases, relatively

many queries are asking for data stored in a relatively small number of the sensors. Thus,

a query hotspot is formed in the geographic area of these sensors. For example, if there

was only one sensor on one side of the first bisection (i.e., in one of the two subtrees of the

root of the k-d tree), then half of the query load would be accessing this sensor (assuming

a uniformly distributed query workload). The presence of a query hotspot affects both the

QoD and the QoS of the sensor network. Certainly, it is not desirable to have a storage

scheme whose QoD and QoS guarantees rest on assuming a uniform distribution of both,

sensor locations and query load.

In this section, we propose two schemes locally solving the query hotspots problem in the

DIM scheme: Zone Partitioning (ZP) and Zone Partial Replication (ZPR). ZP considers a

node, having a frequently accessed zone, compared to its neighbors’ zones, a good indication

of a query hotspot. A reasonable solution would be to force this node to split its owned

zone with one of its less-accessed neighbors. For the case where the access frequencies are

not homogeneous among the subranges of the frequently accessed zone, we present a second

algorithm, ZPR, to replicate the readings of the highly accessed subranges among a larger

number of sensor nodes to reduce the total number of queries accessing the hotspot area.

Experimental evaluation shows that the main advantages of applying ZP/ZPR on top of

DIM are:

• Improving QoD by distributing the hotspot events (readings/queries) among a larger

number of sensors. Improvements ranged from 25% over DIM for single query hotspots

to 15% over DIM for multiple static query hotspots.

• Increasing the energy savings by balancing energy consumption among sensor nodes.

Energy consumption overhead additionally imposed by ZP/ZPR ranged from 7% (per

node) over DIM for single hotspots to 5% for multiple static hotspots.

87

Figure 29: ZP Example

This was valid for hotspots of sizes ranging from 40% to 80%.

The following two subsections describe our ZP and ZPR schemes, respectively.

4.2.1 Zone Partitioning (ZP)

We now describe ZP, which is the first algorithm we present for decomposing query hotspots

in DIM. As discussed above, a query hotspot represents a skewness of the query load toward

a given path of the k-d tree. Thus, ZP is based on continuously checking for such skewness

and trying to rebalance it when it is detected at any subset of sensors. We first illustrate

the basic ZP idea using a simple example.

4.2.1.1 Illustrative Example Figure 29 shows a typical scenario explaining how ZP

works. In the Figure, a circle represents a sensor node and an arrow represents a hop on

a query path. A black node is one that is storing data accessed by queries, while a white

node is accessed by no queries in the query load. In the sensor network on the left hand

side, queries sent from sensor nodes N0, N2, N4, N8, and N9 require data falling in the

storage range responsibility of N5. After knowing that none of its neighbors is accessed by

queries, N5 determines that it is responsible for a hot range of attribute values, thus, falling

in a query hotspot. Subsequently, node N5 partitions the responsibility of its original zone

between itself, node N3, and node N6. After the zone partitioning, queries take the paths

described in the right hand side of the Figure. Note that this zone partitioning is only logical,

88

hence, nodes N3 and N6 keep their original zones (i.e., addresses) and each of them takes

responsibility of another zone whose code value is different from its binary address value.

Note that Nodes N3 and N6 must have enough memory space to store the newly received

readings belonging to the hot partition passed by N5.

In the above ZP process, we call the node that passes (donates) responsibility of part of

its hot zone the donor (N5 in Figure 29). The neighbors that take parts of the partitioned

zone are called the receivers (N3 and N6 in Figure 29).

Now that we have presented the basic ZP idea, we present the actual ZP components in

the following subsections.

4.2.1.2 Local Detection of Query Hotspots In order to locally detect hotspots, each

node keeps track of the frequency of accesses of its readings. The tuple representing every

stored event is appended by a counter called the access frequency. This counter represents

the number of queries accessing such reading over a given time period (window), w . The

node resets all counters at the start of w and increments the counter associated with a

reading every time it receives a query requesting this reading during w.

Each sensor node continuously computes the Average Access Frequency, AAF (Zk) of

each of its zones Zk, which is the average of the access frequencies of readings belonging to

zone Zk. Note that, in general, a node can be responsible for more than one zone. At this

point, let us assume that readings falling in each zone will be uniformly accessed. In case a

node x realizes that
AAF (Zi)

AAF (Zj)
> threshold1 ∀Zj stored in x

that is, zone Zi is much more accessed than all other zones, x considers this as an indication

of a query hotspot that it experiences. Thus, x decides to split the hot zone Zi into two

partitions: Zi1 and Zi2 in a way that keeps AAF (Zi1) and AAF (Zi1) almost equal. Note

that each of the zone addresses of Zi1 and Zi2 should be one bit longer than the zone address

of Zi, as the former zones are children of the latter in the k-d tree. Then, x keeps one of the

partitions and passes the other one to a selected node of its neighbors, namely the receiver.

We call the partition that will be passed to a receiver, the traded zone T . Note that the

ratio threshold1 should be larger than 1 to guarantee the real existence of a hotspot. After

89

electing Zi from its zones, x compares AAF (Zi) to the AAFs of its neighbors as we discuss

in the next subsection.

4.2.1.3 The Partitioning Criterion (PC) We now present the Partitioning Criterion

(PC), which is a set of inequalities to be locally applied by the donor to select the best

candidate among its neighbors to be a receiver. The PC inequalities relate the loads, as

well as the energy levels, of the donor with those of its neighbors. In these inequalities, we

express the traded zone, T , in terms of the number of traded messages (Note that an event

represents one message). An energy unit represents the amount needed to send one message.

The fraction re is the amount of energy consumed in receiving one message (if less than one

energy unit). We express the total storage capacity of a sensor node by S. By lx, we mean

the storage load of node x, while ex is meant to be the energy level of node x:

T + lreceiver ≤ S (4.6)

T

edonor

≤ E1 (4.7)

T ∗ re

ereceiver

≤ E2 (4.8)

AAF (donor)

AAF (receiver)
≥ Q1 (4.9)

where Ei’s and Qj are constants representing energy ratio and average access frequency

thresholds, respectively.

Equation (4.6) represents a Storage Safety Requirement. It states that the sum of the

pre-partitioning load of the receiver and the traded zone size should be less than the storage

capacity of the receiver. Such constraint is needed in order to guarantee that the receiver

will be able to store all the traded zone readings. Equations (4.7) and (4.8) represent Energy

Safety Requirements. Equation (4.7) states that the ratio of the energy consumed by the

donor in sending the traded zone to the available donor energy is less than a given threshold.

Equation (4.8) states that the ratio of the energy consumed by the receiver in receiving the

traded zone to the available receiver energy is less than a given threshold. These inequalities

are needed to make sure that the energy amount consumed in the partitioning process will

not cause the death, or the approach to death, of one or more of the nodes involved in the

90

Figure 30: Zone Partitioning Algorithm

partitioning process. The values of the Ei thresholds should be relatively small, e.g., less

than 0.5. Finally, equation (4.9) represents the Access Frequency Requirement. It relates the

average access frequencies of both, the donor and the receiver, and makes sure that the ratio

of the first to the second is greater than a threshold Q1. This is needed in order to guarantee

that the donor is really falling within a query hotspot, as well as to be able to choose the

best receiver to partition the hot zone with. The value of Q1 should be relatively larger, e.g.,

greater than 2.

Note that the values of the different PC thresholds depend on the actual sensor network

application and the relative importance of energy to that of data in the network. In an

investigation network, where the value of data is relatively more than that of energy, the Q

thresholds should take small values while the E thresholds should be assigned large values.

However, in a search/discovery network, where energy is more valuable than data, the reverse

is true. That is, E thresholds should take small values while Q thresholds should take large

values.

To be able to apply the PC, the donor is supposed to know load information, in terms

of in terms of storage, energy and average query frequency, of its neighbors. The periodic

91

messages exchanged between neighbors to maintain the DIM structure, as well as insertion

and query messages, can be piggybacked with such information. A sensor node experiencing

a high frequency of accesses uses such neighbors’ information to select the best receiver

among them. This can be done by selecting the node that minimizes the left hand side of

equation (3) while maximizing the left hand side of equation (4). Upon selecting a receiver,

the donor sends a Request to Partition (RTP) to such receiver. In case the receiver accepts

this request, it replies to the donor with an Accept to Partition (ATP). Figure 30 shows the

ZP algorithm periodically applied by each node in the network. Note that the RTP and ATP

could either be piggybacked on other messages, or sent explicitly. The overhead of the load

information exchange messages and that of the hand shaking messages are small compared

to that of the traded zone passing messages as the formers take can be piggybacked on the

structure maintaining messages that were presented in the original DIM scheme.

We now illustrate how the decomposition of large query hotspots, arising in more than

one sensor node, takes place. Given the PC inequalities, nodes near the center of the hotspot

cannot find any receiver to partition load with as all their neighbors are falling in the hotspot.

Therefore, the hotspot decomposition starts from the hotspot borders. Each of nodes on the

borders of the hotspot partitions its storage with one of its less loaded neighbors. These

border nodes subsequently cease belonging to the hotspot. A new set of nodes now fall

on the hotspot borders. These nodes start partitioning their storage with their less loaded

neighbors. The process continues in an iterative fashion, decomposing the hotspot more and

more at each iteration, until nodes in the center of the hotspot become normally loaded.

This signifies the complete decomposition of the hotspot.

4.2.1.4 GPSR Modifications We now discuss the changes introduced to the GPSR

algorithm to account for ZP. Based the above ZP algorithm, a receiver can re-apply the

PC to partition a previously traded zone. The process can be applied more than once. At

each time, a smaller hot sub-zone is moved further away from its original node. In case

of k subsequent partitioning times, keeping GPSR with no changes will involve the original

donor in all insertions and queries concerning any of the k traded zones. This overhead would

be proportional to the total number of hops a zone is traded. To reduce this overhead, we

92

augmented GPSR to recognize that a zone has been traded and moved away from its original

storage sensor.

For such purpose, each node maintains a Traded Zones List (TZL) containing three

entries: zone address, original donor, and final receiver. Upon ZP, the donor sends the

traded zone address, its ID and the receiver’s ID to all its neighbors. Thus, each node

will be aware of zones traded by its neighbors. In case a receiver x repartitions a traded

zone z into z1 and z2, x becomes the new donor of z. Therefore, x sends the new sub-zone

address (assume it z2), the original donor of z, as well as the new receiver of z2, to all of its

neighbors. Note that x gets the original donor of z from the entry of z in its TZL. Each of

the neighbors, upon receiving such entry, should check its TZL for a previous entry for z, or

any of its parent zones. In case of finding z’s entry, the node overwrites its zone address by

z1. Then, the node adds a new entry for z2 in its TZL. At the end, it forwards the z2 entry

to all its neighbors.

As we are constraining each node to send traded zone information only to its neighbors,

it is easy to prove that an entry for a p-times traded sub-zone will be present in the TZLs of

nodes falling on a path of θ(p) hops away from its final destination. Based on the definition

of a query hotspot, the number of zones that will be originally falling in the hotspot will be

very small. Thus, keeping the TZL represents a small storage overhead on all sensor nodes.

Additionally, the computation overhead imposed on any node for searching its TZL for an

entry is O(log p), which is relatively small.

Using the TZL concept, GPSR is changed as follows. Each message sent by GPSR is

appended by a dest changed bit flag and a dest, which is a node address entry. Originally,

dest changed is set by the message sender to 0. In routing a message (an reading or a query),

a node x first checks the dest changed flag. In case it is 1, x uses the dest variable as an

explicit destination for the message and uses the original GPSR to select the next hop for

the message toward dest. Otherwise, x forms the message destination address z using the

original DIM event to bit-code mapping and then checks its TZL for an entry whose zone

address (or left most significant string of the zone address) is identical to z. In case z is

found in x’s TZL, x sets the dest changed to 1 and dest to the new destination of z found in

the z’s TZL entry. The original GPSR is then used to send the message to dest. In case no

93

Figure 31: Modified GPSR Algorithm for ZP

entry is found for z, GPSR uses z as the message destination. Figure 31 shows the modified

version of the GPSR algorithm run by each node in the network.

Using the modified GPSR algorithm, TZL search for any p-times traded zone T occurs

only once by a node which is θ(p) hops away from the final destination of T . As soon as

such node updates the dest changed and dest fields in the message, dest is explicitly used by

GPSR in the subsequent nodes without searching the list. This has the effect of minimizing

the overhead of both, energy consumption and computational load, imposed on nodes falling

in the query hotspot.

4.2.1.5 Coalescing Process We now discuss how to cope with query load distribution

changes. Based on ZP, the receiver continues to keep track of the accesses of the traded

zones. In case any of such zones is not accessed for a complete time window, d, this is

considered as an indication that the hotspot has stopped to exist (or may have moved to

another location). At such point, the receiver transfers the responsibility of the received zone

back to its original owner. We call this the coalescing process. All neighboring nodes drop

the traded zone entry from their TZLs. Further readings belonging to, as well as queries

asking for, that zone are directed to the original donor based on the original DIM and GPSR

schemes. In such process, the receiver only sends recent readings belonging to the previously

94

received zone to the original donor (readings inserted during d). Thus, the coalescing process

is considered much cheaper than the partitioning process. In case d is large enough, we can

guarantee that the hotspot would not be formed again in the future and that the coalescing

process is not causing a loss in the QoD provided by the sensor network as the receiver drops

the readings inserted before d. Using such coalescing process, partitioning oscillations, where

the responsibility of storing the zone keeps going back and forth between its original owner

in DIM and other neighboring sensor nodes due to hotspot changes, can be avoided.

From the above, ZP decomposes the query hotspot by continuously partitioning its stor-

age load with its neighboring sensors starting from the hotspot borders and moving toward its

center. However, in ZP, we assume that the access frequency is uniform among the subranges

of the hot zone. How about in case it is skewed toward a narrow subrange? The follow-

ing section addresses this question by presenting our second query hotspot decomposition

algorithm.

4.2.2 Zone Partial Replication (ZPR)

We now present ZPR, which is our second query hotspot decomposition algorithm. ZPR

mainly deals with the case where a sensor x falls in a query hotspot and a large percentage

of the queries accessing x target a small subrange of x’s attribute range responsibility. In

such a case, a fairly limited number of readings are accessed. ZPR decomposes the query

hotspot by replicating such readings in neighboring sensors. ZPR is meant to work in parallel

with ZP such that the combination of ZP/ZPR can efficiently handle the decomposition task

of query hotspots of different sizes.

4.2.2.1 Additional PC Requirements First, let us show how a node decides whether

to apply ZP or ZPR. To do this, it is necessary to enhance the PC (the Partitioning Criterion

already presented in Section 4.2.1.3) by additional conditions that help the node falling

in a query hotspot in determining the algorithm to be used for hotspot decomposition.

95

Specifically, we add two more Access Frequency Requirement inequalities to the PC.

AAF (partialsubrange)

AAF (totalzonerange)
≥ Q2 (4.10)

size(partialsubrange)

size(totalzonerange)
≤ Q3 (4.11)

Equation (4.10) relates the AAF of given subrange of the attribute ranges of the hot zone

to the AAF of the entire hot zone range. Such equation indicates that almost all queries

targeting the hot zone are basically asking for readings falling within the hot subrange of

attribute values. The threshold, Q2 should take values close to 1, such as 0.7 to 0.9. On

the other hand, equation (4.11) makes sure that the size of the hot sub-zone is fairly small

compared to the total hot zone size. It is clear that the threshold, Q3, should take values

close to 0, such as 0.2 or less.

A node falling within the query hotspot first tries to satisfy all 6 PC inequalities. In

case it succeeds in this, then the node chooses to apply ZPR. If the node is only able to

satisfy the first 4 PC inequalities, it proceeds in applying ZP. In case ZPR is chosen to be

applied, the donor sends the hot sub-zone to all its direct neighbors. Each of these neighbors,

upon receiving the hot sub-zone, inserts an entry for such sub-zone in its TZL. The entry

is represented by the tuple (sub-zone code, donor, self address). In other words, the node

indicates itself as the receiver of such sub-zone. Note that we selected to follow the same

TZL technique as the one used in ZP in order to reduce special cases.

Based on the above, no further changes need to be imposed to the modified GPSR to

route queries in ZPR. Upon routing a query asking for a given zone, the node checks its

TZL first. In case an entry is found for such zone with the receiver address is equal to the

node’s self address, the reading is simply looked up in the node’s storage. When a query is

answered by one of the receivers of the replicated hot zone, such receiver broadcasts the hot

zone to all its neighbors. In other words, whenever a replicated hot zone is used to answer

queries, we enforce such zone to be re-replicated one hop further from the original hot zone

owner. Neighbors receiving such broadcast store the replicated hot zone in case of space

availability. Note that, in case a query asks for a portion of the hot zone and the query

is answered by replica node, such node only broadcasts that portion of the hot-zone. This

should not happen frequently as the hot zone is small enough by definition.

96

Figure 32: ZPR Example

Figure 32 shows a ZPR example. In the left hand side, node N5 (in black) is accessed

by queries sent from nodes N1, N2, N4, N7, and N8. By applying ZPR, N5 sends the hot

sub-zone readings to all its direct neighbors (nodes in dark gray, i.e., nodes N1, N2, N3, N6,

and N7). Thus, queries initiated by N1, N2, and N7 are answered from the initiating nodes’

caches. For queries initiated at N4 and N8, the results are first provided by N3 and N6,

respectively. Each of the nodes N3 and N6, upon realizing that the replicated hot sub-zone

was used in answering such queries, forward such sub-zone to N4 and N8 (filled with light

gray), respectively.

4.2.2.2 ZPR Handling of Insertions An interesting question is how ZPR handles

reading insertions. Recall that when any node x receives a message (in this case, a reading

insertion), it applies the modified GPSR presented above. Thus, x first checks its TZL for

the destination zone (i.e., node address) of such reading. In case ZPR was applied to the

reading’s zone z, x will find an entry for z with x’s address as z’s final destination. In

such case, x inserts the new reading in its cache and proceeds with sending the reading

to its original storage sensor as determined by the DIM scheme. Upon receiving a newly

inserted reading, the original storage sensor re-initiates ZPR to propagate such reading to

all neighbors having copies of z.

It is worth mentioning that ZPR may encounter some inconsistencies in the answers of

some simultaneously posed queries. Consider in Figure 32, a new hotspot event generated

by node N7. At the same time, two queries are generated by N4 and N8. By the time the

97

new reading arrives at N5, N8’s query would have been already answered by N6. However,

N5 updates N3 with the newly inserted event before N3 replies at N4 with the query result,

therefore, the new reading will be included in such result. In order to decrease this effect,

we bound the number of hops a zone can be replicated away from its original storage sensor

to a limited number of hops.

4.2.3 ZP/ZPR Implementation Overhead

As the ZP and the ZPR schemes cope with different hotspot scenarios, they are intended

to work in combination to efficiently decompose a wider range of query hotspots. In this

subsection, we will discuss the implementation overhead imposed by the ZP/ZPR mix on

sensor nodes. Similar to the ZS overhead, ZP/ZPR impose two types of overheads: the

processing overhead and the memory overhead. We discuss these overheads below.

The processing overheads consist of the PC evaluation and the TZL search overheads.

Due to the similarity between the PC and the ZS’s DMC, the overhead of applying the PC

inequalities is negligible exactly as that of applying the DMC inequalities. As the PC is

periodically applied by each node a number of times in the order of the direct neighbors

of that node, which is in the worst case θ(n), the overall overhead imposed by the PC on

each sensor node is negligible. The second processing overhead, which is the TZL search

overhead, is also similar to that incurred by the ZS’s SZL search. As each node sends the

information about traded zones only to its neighbors, a k-times traded zone will be at most

present in the TZLs of nodes of θ(k) hops away from its final destination. Thus, the TZL

search overhead that will be encountered by each sensor node will be at most in the order

of θ(log n). As the TZL search occurs only once in the furthest node from the destination

(and containing the traded zone information), this search does not add a considerable energy

consumption overhead on individual sensor nodes as it results in a maximum of θ(n) energy

units to be consumed by all nodes involved in routing any event.

We now move on to consider the memory overhead imposed by the ZP/ZPR schemes

on each sensor node. This overhead results from two sources: the PC code and the SZL.

Considering the PC code, it mainly consists of a for loop spanning the neighbors of each

98

node and having the six inequalities applied for each of these neighbors to decide whether a

zone partitioning or a zone partial replication is needed. Additionally, the AQF and energy

status counters have to be kept for each of the neighbors of the node. Our PC implementation

takes less than 50 lines of C++ code. Once run, the program requires around 1.2 KBytes

of memory. This imposes a relatively small memory overhead on sensor nodes. Concerning

the TZL size, our experimental study has showed that it is very small and does not impose

a considerable storage burden on the sensor nodes.

4.2.4 ZP/ZPR Experimental Evaluation

In this section, we study the performance of the ZP/ZPR scheme when for the different

types of query hotspots. We first conduct a sensitivity analysis to determine the effect of

each of the parameters on the overall ZP/ZPR performance (Section 4.2.4.1). Based on the

analysis results, we set default values for the different parameters. Using the default values,

we compare the performance of the schemes against single static (Section 4.2.4.2), multiple

static (Section 4.2.4.3), and moving query hotspots (Section 4.2.4.4).

Throughout this section, the node storage capacity is equal to 30 readings and the node

initial energy capacity is equal to 70 units. Therefore, a full sensor node is defined to be a

sensor node having 30 readings in its cache. Similarly, a node is depleted (and consequently

considered dead) as soon as it consumes 70 energy units. Once a node is dead, all readings

stored in this node are considered lost. Based on the DIM scheme, the storage responsibility

(a subset of the attribute range) of the dead node is assigned to one of its direct neighbors.

Recall that we define an event to be either a reading or a query.

For each of our experiments, we study three aspects: QoD (R1), load balancing (R2),

and energy consumption (R3). For the QoD, we study the number of dropped events (read-

ings/queries) and the average node storage. We refer to the percentage of QoD improvement

to be the percentage of decrease in event drops. For the load balancing, we study the num-

ber of full nodes. As for energy consumption, we study the average node energy and the

number of dead nodes. The average node energy is the one that defines the improvement

or the downgrading in the energy consumption performance. To be statistically significant,

99

we conducted 5 simulation runs for each of the experiments and taken the average of values

across all runs.

For each of the hotspot types, we conducted experiments on different hotspot sizes rang-

ing from 20% to 80%. Unless otherwise stated, performing well on the large hotspot sizes,

i.e., [60%, 80%], implies a good performance on the moderate sized hotspots, i.e., [40%, 60%].

In most of the cases, the performance burden imposed to the network by small hotspots, i.e.,

hotspots less than 40%, does not justify the cost paid to detect and decompose the hotspots.

The main learned lessons from our experimental evaluation of ZP/ZPR can be summa-

rized in the following points:

1. For single query hotspots, QoD improvements of ZP/ZPR are around 25% over DIM,

while energy consumption overhead are around 7% over DIM.

2. For multiple hotspots, QoD improvements are around 20% over DIM, while energy con-

sumption overhead is around 5% over DIM.

3. For moving hotspots, ZP/ZPR causes additional collisions in the network. It decreases

DIM’s QoD by around 300%. In terms of energy consumption, ZP/ZPR performs 25%

better than DIM.

4. Setting the energy threshold Ei and the average access frequency threshold Q1 to 0.3

and 5%, respectively, achieves boosts ZP/ZPR performance.

5. The actual values of Q2, Q3, and threshold1 do not highly affect the ZP/ZPR perfor-

mance.

4.2.4.1 Sensitivity Analysis We start by studying the effect of the different parameters

on the ZP/ZPR performance, namely the energy thresholds (Ei) and the average access

frequency thresholds (Qi and threshold1).

When tuning any of the parameters, we assigned the rest of the parameters to their

default values. As for our default parameter values, we selected a value of 2 for threshold1.

Concerning the PC parameters, we chose a value of 0.3 for the E1 and E2 constants (in-

equalities 4.7 and 4.8, respectively). For the access frequency inequalities, we set Q1 to 5

(inequality 4.9), Q2 to 0.8 (inequality 4.10), and Q3 to 0.2 (inequality 4.11). Note that the

100

initial selection of these values is a result of the role of each of them in the PC (as discussed

in Section 4.2.1.3).

For the energy threshold Ei, we studied values between 0.3 and 0.8, exactly as we did with

the E parameter of the DMC. The results of our study are highly similar to the parameter

tuning results of the ZS scheme. This is a direct result of the high similarity between the

hotspot detection and decomposition technique of the ZS and the ZP schemes. By having

closer look at both the DMC and the PC, one can realize that the energy related constraints

in both schemes have the same goal, which is to avoid the trade of any zone, and thus the

movement of its storage responsibility, unless the nodes participating in the trade possess

enough energy to fulfill this movement. Although one may think that the nature of storage

and query hotspots are different, the underlying hotspot decomposition technique in both

schemes is the same, as it is based on moving zones away from the hotspot area. For single

hotspots, QoD improvements were around 25% for E = 0.3. This comes with an energy

consumption overhead of 7%. QoD improvements dropped to 20% for E = 0.5 or E = 0.8.

This comes with an energy consumption overhead of around 10%. Thus, the optimal Ei

value for ZP should be around 0.3, exactly as that of ZS.

For the average access frequency threshold, our main focus was on the Q1 parameter

responsible of determining whether a zone is hot compared to its neighboring zones or no.

We tested Q1 values ranging from 2 to 10. QoD improvements were the most for Q1 = 5 and

dropped by around 2% to 3% for smaller and larger Q1 values. As for energy consumption

overheads, the Q1 = 5 version continued to perform the best with an improvement of around

1% to 2%. The interesting observation was that the change of the Q1 parameter values

does not highly affect the performance of ZP, nor its hotspot load balancing capability, for

the different query hotspot settings. This observation can be explained by the types of

hotspots we tested. Recall that our hotspots were of the form of a large number of queries

accessing a small range of attributes. This means that a lot of queries will be accessing a

small number of nodes. Therefore, the nodes surrounding these hot nodes will mainly be of

notably less access ratios. Consequently, the average access frequency criterion of the PC

will quickly be triggered without highly depending on the value of the Q1 parameter. Even if

the increase in the Q1 value results in some delay in applying the zone partitioning process,

101

this does not highly affect the performance of the scheme. This lets the PC energy criteria

become the most dominating ones controlling whether the PC would be applied or no. For

general hotspots, we believe a value of around 5 should be an optimal one for most of the

hotspot cases. Individual hotspot types should be dealt with on a case by case basis by the

administrators of the given sensor network.

For the rest of the average access frequency parameters, Q2 and Q3, their main respon-

sibility is to trigger the replication functionality of the ZPR scheme. The importance of

these parameters comes into play when many of the hotspots imposed to the sensor network

are very narrow and spanning a very small subrange of the attribute ranges. As in most

of our simulations, this was not the case, the change in the values of these parameters did

not have a high effect on the ZP/ZPR performance. In real life, we believe that most of

the hotspot setting will not meet the ZPR triggering requirements. The only query type for

which ZPR would be very efficient are point queries which are queries asking for the number

of (or a function on) readings having a single value. As this type of queries is not highly

famous for sensor networks as compared to range queries, we believe that setting the Q2

and Q3 parameters to their default values would be a proper choice to achieve an acceptable

ZP/ZPR performance.

As for the threshold1 parameter, we encountered the same scenario as changing its value

from 2 to 5 did not highly affect the ZP performance. We believe that the actual value of

this parameter does not actually make a difference on the performance of the ZP except in

the cases where a node is storing more than one zone with the average access frequencies

of one of them is much higher than the average access frequencies rest of the zones. For

our network settings, this case is very infrequent as the nodes are uniformly distributed in

the network service area. This results in a uniform assignment of the DIM zones to nodes,

which subsequently results in assigning one zone for each node for the majority of the cases.

However, in cases where there exists many network nodes, each carrying the responsibility of

multiple zones, e.g., due to temporary or permanent node deaths, the value of this parameter

can have a higher effect on the performance of the ZP scheme.

To summarize, the results of our study show that the we selected a value of 0.3 would

perform the best for the E1 and E2 constants. For the access frequency equations, results

102

show that setting Q1 to 5 would achieve the best results. As for Q2, Q3, and threshold!,

their effects are not tangible on the ZP/ZPR performance. In the rest of this section, we set

these parameters to their default values.

We now move on to study the performance of ZP/ZPR for the different hotspot types.

Our experimental results are shown in Figures 33 to 41. In these figures, we compare the

performance of the basic DIM versus that of ZP/ZPR, with respect to QoD (R1), load bal-

ancing (R2), and energy consumption (R3). It is important to mention that we only included

the DIM as the sole reference scheme as our simulations have shown that it completely out-

perform both the LS and the GHT schemes. Thus, in order to present more accurate and

complete graphs, we only plot our ZP/ZPR scheme results and that of the DIM.

4.2.4.2 Single Static Query Hotspots In this subsection, we study the performance

of ZP/ZPR compared to that of DIM when facing single query hotspots. We study the per-

formance of the schemes in terms of QoD (R1), load balancing (R2), and energy consumption

(R3).

R1. QoD: Figure 33(a) shows the number of events dropped by the different schemes

when an 80% single query hotspot. Recall that the number of dropped events is directly

proportional to the number of unanswered queries in the case of query hotspots. The figure

shows that ZP/ZPR improves QoD by around 25% over DIM. Figure 33(b) shows the average

number of readings returned for an arbitrary query asking for 40% of the attribute ranges

for networks facing a 60% single query hotspot. The figure shows that the ZP/ZPR scheme

performs around 75% better than the DIM in terms of improving the query result size for

all networks sizes. Similar performance gains have been achieved by ZP/ZPR for queries of

different range sizes. Also, we achieved similar results for hotspots of sizes up to 80%.

This result shows that ZP/ZPR decomposes the hotspot storage responsibility among a

larger number of sensor nodes. This results in reducing collisions resulting from the query

hotspot. Consequently, this helps in reducing the number of dropped events and increasing

the expected result size of queries of different sizes in the sensor network. This has the great

effect of increasing the data accuracy and the QoD of the different queries addressing the

sensor network.

103

 0

 0.5

 1

 1.5

 2

 50 100 150 200 250 300 350 400 450 500

D
ro

pp
ed

 E
ve

nt
s

Network Size

DIM/DIM
(ZP-ZPR)/DIM

(a) Dropped Events for a 80% Single Query Hotspot

 0

 0.5

 1

 1.5

 2

 50 100 150 200 250 300 350 400 450 500

A
ve

ra
ge

 N
um

 o
f R

ea
di

ng
s

R
et

ur
ne

d
fo

r
a

40
%

 Q
ue

ry

Network Size

DIM/DIM
(ZP-ZPR)/DIM

(b) 40% Query for a 60% Single Query Hotspot

Figure 33: ZP/ZPR: QoD Graphs for Single Query Hotspots

104

 0

 0.5

 1

 1.5

 2

 50 100 150 200 250 300 350 400 450 500

N
um

 o
f F

ul
l N

od
es

Network Size

DIM/DIM
(ZP-ZPR)/DIM

Figure 34: ZP/ZPR: Number of Full Nodes for a 60% Single Query Hotspot

R2. Load Balancing: Figure 34 presents the number of full nodes for networks facing

a 60% single query hotspot. The Figure shows that the performance of networks applying

ZP/ZPR on top of DIM is almost identical to those applying the basic DIM scheme for

all network sizes. We achieved similar results for hotspots of sizes up to 80%. This result

shows that the ZP/ZPR scheme does not cause the formation of storage hotspots by moving a

large number of readings to few sensor nodes. Instead, applying the ZP/ZPR scheme has the

benefit of load balancing the query loads on the network nodes without disturbing the initial

balance of the storage load among the network sensors. Recall that the sensor reading values

are drawn uniformly at random (from a uniform distribution) from the possible attribute

range.

R3. Energy Consumption: Figures 35(a) and 35(b) show the average node energy and

the number of dead nodes for networks facing an 80% and a 60% single query hotspot,

respectively. The first figure shows that the average node energy drops by around 7% when

applying ZP/ZPR. The second figure shows that the number of node deaths for ZP/ZPR is

105

 0

 0.5

 1

 1.5

 2

 50 100 150 200 250 300 350 400 450 500

A
vg

 E
ne

rg
y

Le
ve

l (
en

er
gy

 u
ni

ts
)

Network Size

DIM/DIM
(ZP-ZPR)/DIM

(a) Average Node Energy for an 80% Single Query Hotspot

 0

 0.5

 1

 1.5

 2

 50 100 150 200 250 300 350 400 450 500

D
ea

d
N

od
es

Network Size

DIM/DIM
(ZP-ZPR)/DIM

(b) Dead Nodes for a 60% Single Query Hotspot

Figure 35: ZP/ZPR: Energy Consumption Graphs for Single Query Hotspots

106

around 25% more than that of DIM (at most 1% of the size of the network). This result

shows that applying ZP/ZPR on top of DIM does not add a considerable energy consumption

overhead on the sensor nodes.

In conclusion, the above three results show that applying ZP/ZPR achieves good per-

formance improvements against single query hotspots. QoD improvements are around 25%,

while energy consumption overheads are around 7%.

4.2.4.3 Multiple Simultaneous Static Query Hotspots In this subsection, we study

the performance of ZP/ZPR compared to that of DIM when facing multiple simultaneous

query hotspots. We study the performance of (R2), and energy consumption (R3). The

results presented in this section are based on simulating networks with two simultaneous

hotspots. Recall that an x% multiple hotspot means that at least x% of the queries fall in

the two hotspots with each query falling in any of the two hotspots with equal probability,

i.e., at least x/2% of the queries are expected to fall in each of the two hotspots.

R1. QoD: Figures 36(a) and 36(b) compare the performance of ZP/ZPR with that of DIM

in terms of the number of dropped events and the average result size for 40% queries when

facing 80% multiple query hotspots, respectively. The first figure shows ZP/ZPR improves

QoD by around 20% over DIM. The second figure shows that the average query result size

of 40% queries for ZP/ZPR is around 50% larger than that of DIM. This result shows that

ZP/ZPR highly improves the QoD performance of the DIM scheme when facing multiple

hotspots. Similar results were achieved for hotspots of sizes up to 80%. It is important to

note that the QoD improvements achieved for multiple query hotspots are slightly less than

those achieved for single query hotspots.

R2. Load Balancing: Figure 37 compares the performance of ZP/ZPR to that of DIM

in terms of the average the number of full nodes when facing 80% multiple query hotspots.

The figure shows that the two schemes perform similarly in terms of load balancing. This

result shows that the ZP/ZPR scheme is capable of simultaneously decomposing multiple

hotspots without disturbing the storage load balancing of the DIM scheme or causing the

formation of storage hotspots in the sensor network.

R3. Energy Consumption: Figures 38(a) and 38(b) compare the performance of ZP/ZPR

107

 0

 0.5

 1

 1.5

 2

 50 100 150 200 250 300 350 400 450 500

D
ro

pp
ed

 E
ve

nt
s

Network Size

DIM/DIM
(ZP-ZPR)/DIM

(a) Dropped Events

 0

 0.5

 1

 1.5

 2

 50 100 150 200 250 300 350 400 450 500

A
ve

ra
ge

 N
um

 o
f R

ea
di

ng
s

R
et

ur
ne

d
fo

r
a

40
%

 Q
ue

ry

Network Size

DIM/DIM
(ZP-ZPR)/DIM

(b) 40% Query

Figure 36: ZP/ZPR: QoD Graphs for 80% Multiple Query Hotspots

108

 0

 0.5

 1

 1.5

 2

 50 100 150 200 250 300 350 400 450 500

N
um

 o
f F

ul
l N

od
es

Network Size

DIM/DIM
(ZP-ZPR)/DIM

Figure 37: ZP/ZPR: Number of Full Nodes for 80% Multiple Query Hotspots

with that of DIM in terms of the average node energy and the number of dead nodes when

facing 80% multiple query hotspots, respectively. The first figure shows that ZP/ZPR per-

forms worse than that of DIM by around 5%. The second figure shows that ZP/ZPR scheme

slightly increases the number of dead nodes by around 20% compared to DIM (around 1.25%

of the whole network size). Overall, the two figures show that ZP/ZPR achieves very good

energy savings by decomposing multiple query hotspots while not imposing a high energy

consumption load on the network nodes. This was valid for hotspots of sizes up to 80%.

In conclusion, the above three results show that ZP/ZPR achieves good performance

improvements for all network sizes when facing multiple query hotspots. QoD improvements

are around 20% while energy consumption overhead is around 5%.

4.2.4.4 Moving Query Hotspots In this subsection, we study the performance of

ZP/ZPR compared to that of DIM when facing a moving query hotspot. We study the

performance of the schemes in terms of QoD (R1), load balancing (R2), and energy con-

109

 0

 0.5

 1

 1.5

 2

 50 100 150 200 250 300 350 400 450 500

A
vg

 E
ne

rg
y

Le
ve

l (
en

er
gy

 u
ni

ts
)

Network Size

DIM/DIM
(ZP-ZPR)/DIM

(a) Average Node Energy

 0

 0.5

 1

 1.5

 2

 50 100 150 200 250 300 350 400 450 500

D
ea

d
N

od
es

Network Size

DIM/DIM
(ZP-ZPR)/DIM

(b) Dead Nodes

Figure 38: ZP/ZPR: Energy Consumption Graphs for 80% Multiple Query Hotspots

110

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 50 100 150 200 250 300 350 400 450 500

D
ro

pp
ed

 E
ve

nt
s

Network Size

DIM/DIM
(ZP-ZPR)/DIM

Figure 39: ZP/ZPR: Dropped Events for a 60% Moving Query Hotspot

sumption (R3). We simulated an x% moving hotspot as follows. Each run has been divided

into 5 steps. The hotspot starts in range [t1, t1 + i] in the first step, then moves on to

[t1 + i, t1 + 2i] in the second step, etc. In each of the steps, x% of the generated queries fall

in the step’s hotspot range. We simulated hotspot sizes up to 50%.

R1. QoD: Figure 39 compares the performance of ZP/ZPR to that of DIM in terms of

the number of dropped events for a 60% moving query hotspot. The main observation from

the figure is that DIM performs better than ZP/ZPR versus moving hotspots. In terms of

QoD, ZP/ZPR performs around 300% worse than DIM. This can be explained as follows.

As the hotspot moves, ZP/ZPR tries to decompose it by sending part of the hotspot storage

responsibility away from the hotspot area. Due to the mobility of the hotspot, ZP/ZPR

causes the formation of new hot areas where event collisions increase. This subsequently

affects the QoD of the ZP/ZPR scheme as compared to that of DIM.

R2. Load Balancing: Figure 40 presents the number of full nodes for networks facing an

80% moving query hotspot. The Figure shows that the performance of networks applying

111

 0

 0.5

 1

 1.5

 2

 50 100 150 200 250 300 350 400 450 500

N
um

 o
f F

ul
l N

od
es

Network Size

DIM/DIM
(ZP-ZPR)/DIM

Figure 40: ZP/ZPR: Number of Full Nodes for an 80% Moving Query Hotspot

ZP/ZPR on top of DIM is equal to those applying the basic DIM scheme for all network

sizes. This result shows that the storage load balancing of the two schemes is comparable.

This shows that ZP/ZPR does not cause any major disturbance to the load-balanced storage

in the network.

R3. Energy Consumption: Figures 41(a) and 41(b) compare the performance of ZP/ZPR

with that of DIM in terms of the average node energy and the number of dead nodes when

facing an 80% moving query hotspot, respectively. The first figure shows that the ZP/ZPR

performance is 25% better than DIM. The second figure shows that applying ZP/ZPR on top

of DIM highly reduces the number of dead nodes (incurred by DIM) by around 50% (around

3% of the network size). This result shows that, although the application of ZP/ZPR reduces

the QoD as it increases the number of collisions, it has an important effect on improving the

energy consumption imposed on the different networks nodes. This improvement comes due

to the decomposition of the moving query hotspot among a larger number of nodes, thus,

achieving a better energy consumption load balancing across the sensor network.

112

 0

 0.5

 1

 1.5

 2

 50 100 150 200 250 300 350 400 450 500

A
vg

 E
ne

rg
y

Le
ve

l (
en

er
gy

 u
ni

ts
)

Network Size

DIM/DIM
(ZP-ZPR)/DIM

(a) Average Node Energy

 0

 0.5

 1

 1.5

 2

 50 100 150 200 250 300 350 400 450 500

D
ea

d
N

od
es

Network Size

DIM/DIM
(ZP-ZPR)/DIM

(b) Dead Nodes

Figure 41: ZP/ZPR: Energy Consumption Graphs for an 80% Moving Query Hotspot

113

Table 4: ZP/ZPR Performance (Relative to DIM) for Query Hotspots

Hotspot Type QoD Improvements QoS Overheads

Single Static Hotspots 25% 7%

Multiple Static Hotspots 20% 5%

Moving Hotspots −300% −25%

The above three results have shown ZP/ZPR decreases QoD as it causes additional

collisions in the network. In fact, ZP/ZPR decreases QoD by around 300% compared to

DIM. In terms of energy consumption, ZP/ZPR is 25% better than DIM.

In conclusion, the ZP/ZPR scheme improves both QoD and energy savings when facing

single and multiple query hotspots, while it only improves energy savings against moving

query hotspots.

4.2.4.5 Discussion In this section, we studied ZP/ZPR for single, multiple, and moving

hotspots. Additionally, we studied the individual effect of energy thresholds (Ei) and the

average access frequency thresholds (Qi and threshold1) on the ZP/ZPR performance. For

single storage hotspots, QoD improvements of ZP/ZPR are around 25% over DIM, while

energy consumption overhead are around 7% over DIM. For multiple hotspots, QoD im-

provements are around 20% over DIM, while energy consumption overhead is around 5%

over DIM. For moving hotspots, DIM is outperforming ZP/ZPR in terms of QoD. Table 4

summarizes the ZP/ZPR performance for query hotspots.

Now that we have completely presented and studied the performance of the ZP/ZPR

scheme, we move on to present the ZS/ZPR/ZPR scheme whose goal is to detect and de-

compose mixed hotspots.

114

4.3 LOCAL DETECTION AND DECOMPOSITION OF MIXED

HOTSPOTS

Based on the previous two sections, there are many similarities between the ZS and the

ZP/ZPR schemes. Considering the hotspot detection scheme, each of the two schemes de-

pends on comparing the node’s load with those of its neighbors. The load can be the storage

load, as in ZS, or the query load, as in ZP. Once a hotspot is detected in a given zone, each

of the ZS and ZP schemes copes with the hotspot by decomposing the zone into smaller

zones and passing the storage responsibility of parts of these zones to some of the node’s

neighbors. ZPR’s Replication substitutes the zone partitioning in case the hot zone is a fairly

small subrange of attribute range. The similarities between the ZS and ZP/ZPR schemes

open the door for the possibility of using the mix of ZS/ZP/ZPR to detect and decompose

mixed hotspots. In the following subsection, we describe the strategy used by ZS/ZP/ZPR

in coping with mixed hotspots. Recall that a mixed hotspot is composed of a collection

storage and query hotspots simultaneously taking place in the network.

4.3.1 The ZS/ZP/ZPR Scheme

The basic idea of the ZS/ZP/ZPR scheme is to blend the similar components of the ZS and

the ZP/ZPR schemes to form new unified components. Branching decisions are then added

to decide the sequence of applying the non-similar components. ZS/ZP/ZPR mainly blends

the hotspot detection of the ZS and that of ZP/ZPR into a new hotspot detection technique

that determines whether a storage and/or a query hotspot is arising in any sensor node.

Based on the hotspot nature, either the DMC, the PC, or both are triggered for evaluation.

Furthermore, the SZL and the TZL are blended into one list type that we denote by the

Decomposed Zone List (DZL) that contains the zone bit-code, the original zone donor, and

the final node destination. The third entry of the DZL acts like the final migrator when

ZS is applied or the final receiver in case ZP is applied. We now describe the details of

ZS/ZP/ZPR.

The first step of ZS/ZP/ZPR is to detect hotspots. Each node detects hotspots arising

115

in its zone responsibility by keeping track of its storage load and the AQFs of its zones

throughout the network operation. Periodically, the node compares these counters with the

corresponding counters of its neighbors. The comparison technique is exactly similar to those

individually applied by ZS and ZP/ZPR to detect storage and query hotspots, respectively.

The result of this step is to determine whether a node is experiencing a normal load, or

whether it is experiencing a storage and/or a query hotspot. This concludes the first step.

The second step in ZS/ZP/ZPR is to decompose the hotspot arising in any node once

they are detected. This can be done as follows. In case one (isolated) hotspot type is detected

in a given type, that is either a storage hotspot or a query hotspot, and not both of them

simultaneously, the corresponding scheme is triggered. That is the DMC (and thus ZS) is

triggered whenever a storage hotspot is encountered while the PC (and thus ZP/ZPR) is

triggered for decomposing query hotspots.

In case two simultaneous hotspots of different types arise at the same node, i.e., a storage

and a query hotspot, the appropriate action is taken based on whether the hotspots are in the

same zone or no. In case the hotspots are in the same zone, this means that the zone must be

decomposed into two or more parts to decompose the two hotspots. As the storage hotspot

may be spanning other neighboring nodes, the DMC needs to be applied in order to find a

suitable migrator among the node’s neighbors to share the node’s zone responsibility with.

Applying ZP will not be possible in this case as the partitioned zone may be passed to a node

already experiencing a storage hotspot. Unlike in ZS, the zone decomposition process may

be done in a non-uniform way, i.e., the zone must not be split in two equal parts. Instead,

the zone may be split into non-equally bit-code sized zones to make sure that the resulting

sub-zones have uniform storage and AQF loads. An example for that decomposition is that

a 101 zone may be decomposed into 1010, 10110, and 10111 sub-zones.

The second case for the two hotspots arising in the same node is for them to be initiating

in two different zones. In this case, both the DMC and the PC need to be applied, the

two zones have to be decomposed, and their storage responsibilities have to be shared with

neighboring nodes. However, it is possible that the node may not have enough energy

for either evaluating both the DMC and the PC, or applying the actual ZS and ZP/ZPR

processes. In this case, two options are possible.

116

1. Compare the sizes (in terms of the load and AQF ratios) and spans (in terms of the

number of neighbors experiencing the same hotspot) of the two hotspots. Decompose

the more severe one. If both are of equal size and span, select the one to decompose

either at random or based on a pre-specified prioritization of one hotspot type over the

other. We adopt this technique in our experimental evaluation.

2. Always prioritize the decomposition of one hotspot type over the other. For example,

deciding to always decompose query hotspots if they arise regardless of whether a storage

hotspot is experienced or no. This decision can be taken a priori during the network setup

phase based on the expected nature of the network application, usage, query load, node

types, etc.

As it is clear from the above presentation, combination of the ZS and the ZP/ZPR

schemes should be able to decompose mixed hotspots regardless of whether they are cor-

related or no. Furthermore, blending the ZS and the ZP/ZPR schemes comes with no

additional implementation overheads as the mix ZS/ZP/ZPR does not add any new major

step in addition to the hotspot detection and decomposition phases already implemented

individually by the ZS and the ZP/ZPR schemes. Our actual ZS/ZPZ/ZPR implementation

does not exceed 140 lines of C++ code. Once run, it does not take more than 2 KBytes

of memory. Furthermore, our experimental study showed that the DZL size does not ex-

ceed, in average, that of the SZL or that of the TZL. This shows in conclusion that the

implementation overhead that ZS/ZP/ZPR will impose on sensor nodes will be relatively

small.

Experimental evaluation shows that the main advantages of ZS/ZP/ZPR are:

• Improving QoD by distributing the hotspot events (readings/queries) among a larger

number of sensors. Improvements ranged from 75% over DIM for single mixed hotspots

to at least 50% over DIM for multiple mixed hotspots.

• Increasing the energy savings by balancing energy consumption among sensor nodes.

Energy consumption overhead additionally imposed by ZS/ZP/ZPR was around 12%

(per node) over DIM for all hotspot types.

This was valid for hotspots of sizes ranging from 40% to 80%.

117

4.3.2 ZS/ZP/ZPR Experimental Evaluation

In this section, we study the performance of the final ZS/ZP/ZPR version for both uniform

loads. and mixed hotspots. We compare the ZS/ZP/ZPR performance to that of DIM

against uniform loads (Section 4.3.2.1), single mixed hotspots (Section 4.3.2.2), multiple

mixed hotspots (Section 4.3.2.3), and moving mixed hotspots (Section 4.3.2.4). For each

of the hotspot settings, we compare the two schemes in terms of QoD, load balancing, and

energy consumption.

After experimentally verifying that this achieves the best ZS/ZP/ZPR, we set the param-

eters of the ZS/ZP/ZPR scheme to their default values already concluded from the individual

ZS and ZP/ZPR studies.

Throughout this section, the node storage capacity is equal to 30 readings and the node

initial energy capacity is equal to 70 units. Therefore, a full sensor node is defined to be a

sensor node having 30 readings in its cache. Similarly, a node is depleted (and consequently

considered dead) as soon as it consumes 70 energy units. Once a node is dead, all readings

stored in this node are considered lost. Based on the DIM scheme, the storage responsibility

(a subset of the attribute range) of the dead node is assigned to one of its direct neighbors.

Recall that we define an event to be either a reading or a query.

For each of our experiments, we study three aspects: QoD (R1), load balancing (R2),

and energy consumption (R3). For the QoD, we study the number of dropped events (read-

ings/queries) and the average node storage. We refer to the percentage of QoD improvement

to be the percentage of decrease in event drops. For the load balancing, we study the num-

ber of full nodes. As for energy consumption, we study the average node energy and the

number of dead nodes. The average node energy is the one that defines the improvement

or the downgrading in the energy consumption performance. To be statistically significant,

we conducted 5 simulation runs for each of the experiments and taken the average of values

across all runs.

For each of the hotspot types, we conducted experiments on different hotspot sizes rang-

ing from 20% to 80%. Unless otherwise stated, performing well on the large hotspot sizes,

i.e., [60%, 80%], implies a good performance on the moderate sized hotspots, i.e., [40%, 60%].

118

In most of the cases, the performance burden imposed to the network by small hotspots, i.e.,

hotspots less than 40%, does not justify the cost paid to detect and decompose the hotspots.

The main learned lessons out of the experimental evaluation of ZS/ZP/ZPR can be

summarized in the following points:

1. Impose around 2% energy consumption overhead per node over DIM for networks with

no hotspots.

2. When facing single mixed hotspots, ZS/ZP/ZPR achieves a QoD improvement of around

75% over DIM. Towards this, ZS/ZP/ZPR imposes an energy consumption overhead of

12% per node over DIM.

3. For multiple hotspots, ZS/ZP/ZPR improves QoD by around 50% to 70% while imposing

a 12% energy consumption overhead over DIM.

4. For moving hotspots, ZS/ZP/ZPR scores a 50% QoD improvement while introducing an

energy consumption overhead of 12% over DIM.

Our experimental results are presented in Figures 42 to 53. It should be noted that we

only concentrate on the comparison between the ZS/ZP/ZPR and the DIM schemes as DIM

continues to perform highly better than the LS and GHT schemes against mixed hotspots.

4.3.2.1 Uniform Loads In this section, we study the performance of the ZS/ZP/ZPR

for uniform loads. Our goal is to measure the energy consumption overhead imposed by our

schemes when the network experiences no hotspots. It is clear that the energy consumption

overhead of the ZS/ZP/ZPR scheme represents an upper bound for the energy consumption

overhead individually imposed by the ZS and the ZP/ZPR schemes. Therefore, we only

study the uniform loads case for ZS/ZP/ZPR to avoid repetition.

Figure 42 compares the performance of our ZS/ZP/ZPR scheme to that of DIM in

terms of average energy for uniform loads. The figure shows that the implementation of the

ZS/ZP/ZPR schemes on top of DIM does not add a considerable burden and does not cause

an intolerable performance degradation when the sensor network experiences uniform loads.

Decrease in average node energy is around 2%.

119

 0

 0.5

 1

 1.5

 2

 50 100 150 200 250 300 350 400 450 500

A
vg

 E
ne

rg
y

Le
ve

l (
en

er
gy

 u
ni

ts
)

Network Size

DIM/DIM
(ZS-ZP-ZPR)/DIM

Figure 42: ZS/ZP/ZPR: Average Node Energy for Uniform Loads

4.3.2.2 Single Static Mixed Hotspots The following three results compare the per-

formance of the ZS/ZP/ZPR scheme to that of the DIM for single static mixed hotspots.

Comparison is based on QoD (R1), load balancing (R2), and energy consumption (R3).

R1. QoD: Figures 43(a) and 43(b) compare the performance of ZS/ZP/ZPR to that of

DIM in terms of the number of dropped events when facing single static mixed hotspots of

sizes 60% and 80%, respectively. The figures show that ZS/ZP/ZPR achieves around 75%

QoD improvement over DIM. This shows the high improvement that ZS/ZP/ZPR achieves,

in terms of increasing the data persistency and the query answering capability, compared to

the basic DIM scheme. Figure 44(a) presents the average query result size of 40% queries

when facing an 80% single mixed hotspot. The figure shows that results of the queries for

ZS/ZP/ZPR are around 3 times larger than those for DIM. Figure 44(b) compares the two

schemes in terms of average node storage when facing 60% single storage hotspots. The

figure shows that ZS/ZP/ZPR increases the average node storage by around 25% per node

for all networks sizes. The results are valid for hotspots of sizes up to 80%.

120

 0

 0.5

 1

 1.5

 2

 50 100 150 200 250 300 350 400 450 500

D
ro

pp
ed

 E
ve

nt
s

Network Size

DIM/DIM
(ZS-ZP-ZPR)/DIM

(a) 60% Single Mixed Hotspot

 0

 0.5

 1

 1.5

 2

 50 100 150 200 250 300 350 400 450 500

D
ro

pp
ed

 E
ve

nt
s

Network Size

DIM/DIM
(ZS-ZP-ZPR)/DIM

(b) 80% Single Mixed Hotspot

Figure 43: ZS/ZP/ZPR: Dropped Events for Single Mixed Hotspots

121

All four figures show the high QoD improvement that ZS/ZP/ZPR achieves compared to

the DIM scheme. An important observation is that this improvement exceeds the improve-

ments that ZS and ZP/ZPR individually scored against single storage and query hotspots,

respectively. This shows the high ability of the ZS/ZP/ZPR scheme to take benefit of the

correlation among the two hotspot types to improve the overall DIM performance.

R2. load balancing: Figure 45 compares the performance of the two schemes in terms of

the number of full nodes when facing a 60% single mixed hotspot. The figure shows that

ZS/ZP/ZPR has a constant number of full nodes as opposed to the number of full nodes for

DIM increasing linearly with the increase in the network size. This shows that ZS/ZP/ZPR

highly improves the DIM load balancing performance. The main observation is that the

amount of improvement increases proportionally to the network size.

R3. Energy Consumption: Figures 46(a) and 46(b) compare the performance of the

two schemes in terms of dead nodes and average node energy when facing 60% single mixed

hotspots, respectively. The first figure shows that the introduction of the ZS/ZP/ZPR

scheme multiplies the number of dead nodes by 2.25 times. The increase in node deaths is

around 3.4% of the size of the network. The second figure shows that ZS/ZP/ZPR reduces

the average node energy by around 12%. The two figures collectively show that ZS/ZP/ZPR

introduces a moderate energy consumption overhead on the DIM scheme.

In conclusion, ZS/ZP/ZPR improves QoD by around 75% over DIM while increasing the

energy consumption overhead imposed on each node in the network by around 12%. This

shows its high ability to cope with single mixed hotspots with a moderate energy consumption

cost imposed on the sensor network nodes. This can be considered as a good achievement

when comparing this energy consumption cost to the amount of QoD improvement that the

scheme achieves compared to the basic DIM.

4.3.2.3 Multiple Simultaneous Static Mixed Hotspots The following three results

compare the ZS/ZP/ZPR performance to that of the DIM when facing multiple static mixed

hotspots. Comparison is based on QoD (R1), load balancing (R2), and energy consumption

(R3). The results presented in this section are based on simulating networks with two

simultaneous mixed hotsposts. Recall that an x% multiple hotspot means that at least x%

122

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 50 100 150 200 250 300 350 400 450 500

A
ve

ra
ge

 N
um

 o
f R

ea
di

ng
s

R
et

ur
ne

d
fo

r
a

40
%

 Q
ue

ry

Network Size

DIM/DIM
(ZS-ZP-ZPR)/DIM

(a) 40% Query for an 80% Single Mixed Hotspot

 0

 0.5

 1

 1.5

 2

 50 100 150 200 250 300 350 400 450 500

A
vg

 S
to

ra
ge

 L
ev

el
 (

re
ad

in
gs

)

Network Size

DIM/DIM
(ZS-ZP-ZPR)/DIM

(b) Average Node Storage for a 60% Single Mixed Hotspot

Figure 44: ZS/ZP/ZPR: QoD Graphs for Single Mixed Hotspots

123

 0

 0.5

 1

 1.5

 2

 50 100 150 200 250 300 350 400 450 500

N
um

 o
f F

ul
l N

od
es

Network Size

DIM/DIM
(ZS-ZP-ZPR)/DIM

Figure 45: ZS/ZP/ZPR: Number of Full Nodes for a 60% Single Mixed Hotspot

of the readings fall in the two hotspots with each reading/query falling in any of the two

hotspots with equal probability, i.e., at least x/2% of the readings/queries are expected to

fall in each of the two hotspots.

R1. QoD: Figures 47(a) and 47(b) compare the number of dropped events of the two

schemes when facing 60% and 80% multiple mixed hotspots, respectively. The figure shows

that ZS/ZP/ZPR highly improves the DIM performance by reducing the amount of dropped

events by around 50% to 70%. We achieved similar results for hotspots of sizes up to 80%.

However, it should be noted that the improvement in performance is less than that achieved

against single mixed hotspots. This is due to the slight effect of the increased collisions

symptom that the ZS schemes (and consequently the ZS/ZP/ZPR scheme) sometimes faces

in the case of multiple hotspots.

Figure 48(a) shows the improvement that ZS/ZP/ZPR achieves, compared to DIM, in

terms of the average result size of 40% queries when facing 80% multiple mixed hotspots.

Basically, ZS/ZP/ZPR at least doubles the query result sizes compared to DIM. Figure

124

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 50 100 150 200 250 300 350 400 450 500

D
ea

d
N

od
es

Network Size

DIM/DIM
(ZS-ZP-ZPR)/DIM

(a) Dead Nodes

 0

 0.5

 1

 1.5

 2

 50 100 150 200 250 300 350 400 450 500

A
vg

 E
ne

rg
y

Le
ve

l (
en

er
gy

 u
ni

ts
)

Network Size

DIM/DIM
(ZS-ZP-ZPR)/DIM

(b) Average Node Energy

Figure 46: ZS/ZP/ZPR: Energy Consumption Graphs for a 60% Single Mixed Hotspot

125

 0

 0.5

 1

 1.5

 2

 50 100 150 200 250 300 350 400 450 500

D
ro

pp
ed

 E
ve

nt
s

Network Size

DIM/DIM
(ZS-ZP-ZPR)/DIM

(a) 60% Multiple Mixed Hotspot

 0

 0.5

 1

 1.5

 2

 50 100 150 200 250 300 350 400 450 500

D
ro

pp
ed

 E
ve

nt
s

Network Size

DIM/DIM
(ZS-ZP-ZPR)/DIM

(b) 80% Multiple Mixed Hotspot

Figure 47: ZS/ZP/ZPR: Dropped Events for Multiple Mixed Hotspots

126

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 50 100 150 200 250 300 350 400 450 500

A
ve

ra
ge

 N
um

 o
f R

ea
di

ng
s

R
et

ur
ne

d
fo

r
a

40
%

 Q
ue

ry

Network Size

DIM/DIM
(ZS-ZP-ZPR)/DIM

(a) 40% Query for an 80% Multiple Mixed Hotspot

 0

 0.5

 1

 1.5

 2

 50 100 150 200 250 300 350 400 450 500

A
vg

 S
to

ra
ge

 L
ev

el
 (

re
ad

in
gs

)

Network Size

DIM/DIM
(ZS-ZP-ZPR)/DIM

(b) Average Node Storage for a 60% Multiple Mixed Hotspot

Figure 48: ZS/ZP/ZPR: QoD Graphs for Multiple Mixed Hotspots

127

 0

 0.5

 1

 1.5

 2

 50 100 150 200 250 300 350 400 450 500

N
um

 o
f F

ul
l N

od
es

Network Size

DIM/DIM
(ZS-ZP-ZPR)/DIM

Figure 49: ZS/ZP/ZPR: Number of Full Nodes for 60% Multiple Mixed Hotspot

48(b) shows that ZS/ZP/ZPR achieves around 30% increase in the average node storage

when facing 60% multiple mixed hotspots. All four figures collectively show the high QoD

improvement that ZS/ZP/ZPR achieves compared to DIM. The results are valid for hotspots

of sizes up to 80%.

R2. load balancing: Figure 49 shows that ZS/ZP/ZPR highly improves the DIM storage

load balancing by highly reducing the number of full nodes when facing 60% multiple mixed

hotspots. As in the case of single mixed hotspots, ZS/ZP/ZPR achieves a constant number

of full nodes as opposed while that of DIM is proportional to the network size.

R3. Energy Consumption: Figures 50(a) and 50(b) compare the two schemes in terms

of the number of dead nodes and the average node energy when facing 80% multiple mixed

hotspots, respectively. The two figures shows that ZS/ZP/ZPR imposes a moderate en-

ergy consumption overhead imposed compared to the DIM scheme. ZS/ZP/ZPR increases

node deaths by around 3% of the network size when compared to DIM. In terms of energy

consumption overhead, ZS/ZP/ZPR imposes an increase of about 12% over DIM.

128

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 50 100 150 200 250 300 350 400 450 500

D
ea

d
N

od
es

Network Size

DIM/DIM
(ZS-ZP-ZPR)/DIM

(a) Dead Nodes

 0

 0.5

 1

 1.5

 2

 50 100 150 200 250 300 350 400 450 500

A
vg

 E
ne

rg
y

Le
ve

l (
en

er
gy

 u
ni

ts
)

Network Size

DIM/DIM
(ZS-ZP-ZPR)/DIM

(b) Average Node Energy

Figure 50: ZS/ZP/ZPR: Energy Consumption Graphs for 80% Multiple Mixed Hotspots

129

In conclusion, ZS/ZP/ZPR helps DIM in coping with multiple mixed hotspots. Towards

that, ZS/ZP/ZPR improves DIM’s QoD by 50% to 70% while imposing a 12% energy con-

sumption overhead on DIM. The relative cost of the QoD improvement the case of multiple

mixed hotspots is slightly higher than that in the case of single mixed hotspots.

4.3.2.4 Moving Mixed Hotspots The following three results compare the ZS/ZP/ZPR

performance to that of the DIM for moving static mixed hotspots. Comparison is based on

QoD (R1), load balancing (R2), and energy consumption (R3). We simulated an x% moving

hotspot as follows. Each run has been divided into 5 steps. The hotspot starts in range

[t1, t1 + i] in the first step, then moves on to [t1 + i, t1 + 2i] in the second step, etc. In

each of the steps, x% of the generated readings/queries fall in the step’s hotspot range. We

simulated hotspot sizes up to 50%.

R1. QoD: Figure 51(a) shows that ZS/ZP/ZPR achieves around 50% QoD improvement

compared to DIM by reducing the number of dropped events when facing 80% moving mixed

hotspots. Similarly, Figure 51(b) shows that ZS/ZP/ZPR highly at least doubles the average

result size of a 40% query compared to DIM. Both figures show that ZS/ZP/ZPR achieves a

good QoD improvement for mixed hotspots when implemented on top of DIM. It should be

noted that the improvement is less than those in the cases of single and multiple hotspots.

However, it is performing much better than ZS and ZP/ZPR against moving storage and

query hotspots, respectively.

R2. load balancing: Figure 52 compare the load balancing ability of the two schemes in

terms of the number of full nodes for 60% moving mixed hotspots. The figure shows that

ZS/ZP/ZPR improves the DIM load balancing by reducing considerably the number of full

nodes by around 70% compared to DIM. This shows the ZS/ZP/ZPR ability to load-balance

the data falling in moving mixed hotspots across the sensor network.

R3. Energy Consumption: Figure 53(a) and 53(b) compare ZS/ZP/ZPR and DIM in

terms of dead nodes and average node energy when facing 60% and 80% moving mixed

hotspots, respectively. The first figure shows that ZS/ZP/ZPR increases the number of dead

nodes by around 5% of the network size. The second figure shows that the drop in the

average node energy is around 12% per node. Together, both figures show that ZS/ZP/ZPR

130

 0

 0.5

 1

 1.5

 2

 50 100 150 200 250 300 350 400 450 500

D
ro

pp
ed

 E
ve

nt
s

Network Size

DIM/DIM
(ZS-ZP-ZPR)/DIM

(a) Dropped Events

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 50 100 150 200 250 300 350 400 450 500

A
ve

ra
ge

 N
um

 o
f R

ea
di

ng
s

R
et

ur
ne

d
fo

r
a

40
%

 Q
ue

ry

Network Size

DIM/DIM
(ZS-ZP-ZPR)/DIM

(b) 40% Query

Figure 51: ZS/ZP/ZPR: QoD Graphs for an 80% Moving Mixed Hotspot

131

 0

 0.5

 1

 1.5

 2

 50 100 150 200 250 300 350 400 450 500

N
um

 o
f F

ul
l N

od
es

Network Size

DIM/DIM
(ZS-ZP-ZPR)/DIM

Figure 52: ZS/ZP/ZPR: Number of Full Nodes for 60% Moving Mixed Hotspot

adds a moderate energy consumption overhead when implemented on top of DIM and facing

moving mixed hotspots. The overhead is comparable to that imposed in the cases of single

and multiple mixed hotspots.

The above three results show that ZS/ZP/ZPR is able to improve the performance of

DIM when facing moving mixed hotspots. The QoD improvements are around 50% and the

energy consumption overhead is around 12%. The relative cost of the QoD improvement

slightly higher than those experienced by ZS/ZP/ZPR in the cases of single and multiple

mixed hotspots.

4.3.2.5 Discussion In conclusion, ZS/ZP/ZPR is able to cope with mixed hotspots with

the drawback of imposing a moderate energy consumption overhead on the different network

nodes. QoD achievements are ranging from 70% in the case of single hotspots, 50% to 70%

in the case of multiple hotspots, and 50% in the case of moving hotspots. This comes with

an energy consumption overhead of around 12% for all hotspot types. Table 5 summarizes

132

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 50 100 150 200 250 300 350 400 450 500

D
ea

d
N

od
es

Network Size

DIM/DIM
(ZS-ZP-ZPR)/DIM

(a) Dead Nodes for a 60% Moving Mixed Hotspot

 0

 0.5

 1

 1.5

 2

 50 100 150 200 250 300 350 400 450 500

A
vg

 E
ne

rg
y

Le
ve

l (
en

er
gy

 u
ni

ts
)

Network Size

DIM/DIM
(ZS-ZP-ZPR)/DIM

(b) Average Node Energy for an 80% Moving Mixed Hotspot

Figure 53: ZS/ZP/ZPR: Energy Consumption Graphs for Moving Mixed Hotspots

133

Table 5: ZS/ZP/ZPR Performance (Relative to DIM) for Mixed Hotspots

Hotspot Type QoD Improvements QoS Overheads

Single Static Hotspots 70% 12%

Multiple Static Hotspots 50%− 70% 12%

Moving Hotspots 50% 12%

the ZS/ZP/ZPR performance for mixed hotspots.

4.3.3 Learned Lessons from the Experimental Evaluation

In this section, we will discuss some of the insights than can be taken from the experimental

evaluation of our ZS, ZP, ZS/ZP/ZPR schemes. Our main goal is to study the benefits of

implementing our schemes versus their implementation overhead. Also, we would like to

determine the environments that are most fitting for our schemes, in terms of network size,

hotspot types and sizes, etc.

Before discussing the learned lessons out of our experimental evaluation, we summarize

our results in the following points:

1. Our schemes are best suited for decomposing single hotspots while introducing a tolerable

energy consumption overhead on the sensor nodes across the network.

2. For single hotspots, QoD improvements are around 50% for single storage hotspots (using

MHZS), 25% for single query hotspots, and 75% for single mixed hotspots while energy

consumption overheads are 5%, 7%, and 12% respectively.

3. For multiple hotspots, QoD improvements are around 20% for single storage hotspots

(using SHZS), 20% for single query hotspots, and 50% to 70% for single mixed hotspots

while energy consumption overheads are 2%, 5%, and 12% respectively.

4. For large-scale hotspots (especially those larger than 80%) and moving hotspots, the per-

formance improvements of our schemes, in terms of QoD, become limited. Additionally,

the energy consumption overhead becomes relatively large (above 15%). This mainly

134

results from the inefficiency of the local hotspot decomposition strategy followed by our

schemes against complex hotspot settings.

In general, experiments have shown that the schemes achieve good results in terms of

improving the QoD of DIM for the different types of hotspots. The QoD improvements of

our schemes were varying depending on the hotspot type. In general, our schemes perform

better when facing single hotspots rather than when facing multiple or moving hotspots. This

result can be explained by the fact that our schemes do not introduce any major changes

to the underlying DCS index structure. As our schemes do not implement any global load

balancing scheme that coordinates the hotspot load balancing across the network, their

ability to deal with hotspots arising in different locations is limited. Additionally, the local

hotspot decomposition might introduce additional hotspots in the network if the dissipation

of the data of the different hotspots leads them to a single new location which becomes the

new hotspot area.

The network size was another important factor in determining the efficiency of our

schemes. For most of the hotspot types, our schemes did not add much benefit for small

networks (less than 150 nodes). The effect of hotspots is not considered relatively high on

these networks in terms of the negative effects of hotspots on QoD. Therefore, the addition

of our schemes did not help DIM perform any better. The effect of our schemes became

to appear for sensor networks of medium sizes (150 to 350 nodes). This effect became very

obvious for larger networks.

Concerning hotspot sizes, the performance improvements of our schemes were very lim-

ited for small hotspot sizes (less than 40%). This is due to the fact that the negative effects

of such hotspots on the DIM performance are already limited. Additionally, the relatively

short durations of our experiments helped in further reducing the negative effects of small

hotspots. Therefore, it was hard to achieve a tangible performance improvement for these

small hotspot sizes out of implementing our schemes. Our schemes started to score better

improvements when hotspot sizes became larger, starting from 50% to 80%. As the nega-

tive effects of these hotspots are very obvious on the DIM performance, the addition of our

schemes improved the DIM ability to deal with hotspots. Decomposing hotspots of larger

sizes became a problem for our schemes. This is due to the fact that the amount of events

135

falling in these hotspots became too large for our local schemes to compete with. We be-

lieve this is mainly due to the fact that our schemes do not introduce load balancing to the

underlying index structure. This definitely limits their gains against large hotspots.

The energy consumption overhead is also another important factor to take into account

when deciding to implement any of our schemes. As our results show, the overhead is low for

uniform loads. This is mainly due to piggy-backing the information needed by the DMC and

PC on the regular messages sent within the network. This helps our schemes in introducing

a small overhead throughout the network operation. For single hotspots, the overhead was

low to moderate for most of the cases. It mainly comes from the continuous migration of

readings in the network. Note that the zone sharing and partitioning processes continuously

take place in order to increase the DIM ability to deal with hotspots. This overhead is higher

for multiple hotspots regardless whether they are static or dynamic due to the increase in

the energy consumed by the different network nodes in data migration.

One of the limitations of our experimental evaluation is that we did not consider simul-

taneous updates and queries. This limited our ability to determine the effect of such a case

on the correctness of query results for the ZPR scheme. However, as we discussed earlier,

our experimental evaluation scenario and our hotspot formation technique was fitting for the

ZP scheme rather than for the ZPR scheme. We believe that, in real-world scenarios, the

application of the ZP scheme would be more frequent than that of the ZPR scheme. We plan

for validating this assumption when experimenting our schemes on sensor network testbeds

in the near future.

In general, we believe that our schemes are fitting medium-sized networks that are ex-

pected to decompose single hotspots of medium sizes. Due to the local hotspot decomposition

technique of our schemes, they are not suited to deal with large and consistent hotspots nor

with multiple hotspots (both static and dynamic). Our local schemes are well fitting for

search/discovery sensor network applications, where limited hotspots may exist and solving

them is required not to consumer a lot of energy from the sensor network. Chapter 5 presents

our KDDCS scheme whose global load balancing technique is perfectly fitting to deal with

these hotspot settings.

136

4.4 SUMMARY

In this chapter, we presented a set of local schemes to detect and decompose different types

of hotspots imposed on DCS sensor networks, including storage, query, and mixed hotspots.

Our schemes use the concept of data migration to decompose hotspots without changing

the underlying index structure of the DIM scheme. Our experimental results show that

our schemes achieve good QoD and load balancing achievements, especially against single

hotspots, while adding a tolerable energy consumption overhead on the different sensor

nodes. The performance improvements of our schemes become limited in the cases of large-

scale single hotspots and multiple hotspots (both static and dynamic). An important benefit

of our local schemes is their low messaging overhead compared to the DIM scheme. Another

advantage of our schemes is their ability to be applied in sensor networks with different

storage capacities. The next chapter will present our KDDCS scheme to improve the sensor

network performance against against these cases.

137

5.0 HOTSPOT AVOIDANCE

In the previous chapter, we have presented a set of local schemes to detect and decompose

hotspots of various types. Though being effective, our schemes were limited in their ability

to cope with hotspot once their sizes and/or numbers increase. In this chapter, we provide a

load-balanced in-network DCS scheme based on k-d trees, that we, not surprisingly, call K-D

tree based DCS (KDDCS). KDDCS has the ability of avoiding hotspots of different types by

maintaining the underlying k-d tree balanced throughout the network operation. We present

the details of KDDCS in the following sections.

5.1 OVERVIEW ON KDDCS

The main design goal of KDDCS is to avoid the formation of hotspots. We define the hotspot

avoidance to be the ability to deal with the hotspot in its early stages and successfully

disseminating it before it severely arises. Similar to the DIM scheme, our KDDCS scheme

stores data in-network by mapping the sensor nodes to the leaves of a k-d tree. In KDDCS,

the refinement of regions in the formation of the k-d tree has the property that the numbers

of sensors on both sides of any partition are approximately equal. As a result of this, our

k-d tree will be balanced, there will be no orphan regions, and, regardless of the geographic

distribution of the sensors, the ownership of events will be uniformly distributed over the

sensors if the events are uniformly distributed over the range of possible events. We present

a modification of Greedy Perimeter Stateless Routing (GPSR) [32] routing, namely Logical

Stateless Routing (LSR), for the routing of events from their generating sensors to their

storage sensors. LSR is competitive with the GPSR routing scheme used in DIM. In order

138

to maintain load balance in the likely situation that the events are not uniformly distributed,

we present a re-balancing algorithm that we call K-D Tree Re-balancing (KDTR). Our re-

balancing algorithm guarantees load balance even if the event distribution is not uniform.

KDTR has essentially minimal overhead. We identify a problem, that we call the weighted

split median problem, that is at the heart of both the construction of the initial k-d tree, and

the re-balancing of the k-d tree. In the weighted split median problem, each sensor has an

associated weight/multiplicity, and the sensors’ goal is to distributively determine a vertical

line with the property that the aggregate weight on each side of the line is approximately

equal. We give a distributed algorithm for the weighted split median problem, and show how

to use this algorithm to construct our initial k-d tree, and to rebalance the tree throughout

the network lifetime. We use the KDTR algorithm to avoid the formation of storage and/or

query hotspots.

We are mindful of the time, message complexity, and node storage requirements, in the

design and implementation of all of our algorithms. The time for all of our algorithms is

within a poly-log factor of the diameter of the network. Obviously, no algorithm can have

time complexity less than the diameter of the network. The number of messages, and number

of bits in those messages, that any particular node is required to send by our algorithms is

poly-logarithmic in number of sensors. The amount of information that each node must

store to implement one of our algorithms is logarithmic in the number of sensor nodes. In

general, the implementation overheads (including the memory and processing overheads) of

the different KDDCS components are very suitable for the limited resources of sensor nodes

(especially for motes).

Experimental evaluation shows that the main advantages of KDDCS, when compared

to the plain DCS schemes, such as DIM and GHT, as, well as to our previously presented

local hotspot detection and decomposition schemes including ZS, ZP/ZPR, and their mix

ZS/ZP/ZPR, are:

• Coping with hotspots of all types and sizes, especially those of complex structure such

as multiple and moving hotspots.

• Increasing the Quality of Data (QoD) by distributing the hotspot events (readings and/or

queries) among a larger number of sensors.

139

• Improving data persistence by balancing the storage responsibility among sensor nodes.

• Achieving a comparable Quality of Service (QoS) by imposing low to moderate energy

consumption overheads compared to the other schemes while balancing energy consump-

tion overheads among the network nodes.

The rest of this chapter is organized as follows. Section 2 highlights the differences

between DIM and KDDCS. Section 3 describes the weighted split median problem, and our

distributed solution. Section 4 describes the components of KDDCS. Section 5 presents our k-

d tree rebalancing algorithm. Sections 6, 7, and 8 describe how KDDCS avoids storage, query,

and mixed hotspots, respectively. Section 9 highlights the packet loss handling mechanism in

KDDCS. Section 10 discusses the learned lessons out of the experimental evaluation. Finally,

Section 11 concludes the chapter.

5.2 DIM VS. KDDCS

In this section, we will briefly describe the components of both schemes, DIM and KDDCS,

and highlight the differences between the two schemes using a simple example.

We assume that the sensors are arbitrarily deployed in the convex bounded region R.

We assume also that each sensor is able to determine its geographic location (i.e., its x and

y coordinates), as well as, the boundaries of the service area R. Each node is assumed to

have a unique NodeID, like a MAC address. We define an event to be either a reading or

query.

The main components of any DCS scheme are: the sensor to address mapping that gives

a logical address to each sensor, and the event to storage-sensor mapping that determines

which sensor will store a reading or answer a query. The components of DIM and KDDCS

are:

• Repetitive splitting of the geographic region to form the underlying k-d tree, and the

logical sensor addresses.

• Repetitive splitting of the attribute ranges to form the bit-code for an event.

• The routing scheme to route an event from the generating sensor to the storage sensor.

140

We now explain how DIM implements these components.

Let us start with the formation of the k-d tree in DIM. DIM starts the network operation

with a static node to bit-code mapping phase. In this phase, each sensor locally determines

its binary address by uniformly splitting the overall service area in a round robin fashion,

horizontally then vertically, and left shifting its bit-code with every split by 0 (or 1) bit when

falling above (or below) the horizontal split line (similarly, by a 0 bit if falling on the left of

the vertical split line, or a 1 bit otherwise). Considering the region as partitioned into zones,

the process ends when every sensor lies by itself in a zone, such that the sensor address is

the zone bit-code. Thus, the length of the binary address of each sensor (in bits) represents

its depth in the underlying k-d tree. Note that from a sensor address, one can determine the

physical location of the sensor. In case any orphan zones exist (zones physically containing

no sensors in their geographic area), the ownership of each of these zones is delegated to one

of its neighbor sensors. As an example, consider the simple input shown in Figure 1. The

k-d tree formed by DIM is shown in Figure 2. In this figure, the orphan zone (01) is assumed

to be delegated to node 001, which is the least loaded among its neighbors.

We now turn to the construction of an event bit-code in DIM. The generation of the

event bit-code proceeds in rounds. As we proceed, there is a range Rj associated with each

attribute j of the event. Initially, the range Rj is the full range of possible values for attribute

j. We now describe how a round i ≥ 0 works. Round i, determines the (i+1)th high order bit

in the code. Round i depends on attribute j = i mod k of the event, where k is the number

of attributes in the event. Assume the current value of Rj is [a, c], and let b = (a + c)/2 be

the midpoint of the range Rj. If the value of attribute j is in the lower half of the range Rj,

that is in [a, b], then the ith bit is 0, and Rj is set to be the lower half of Rj. If the value of

attribute j is in the upper half of the range Rj, that is in [b, c], then the ith bit is 1, and Rj

is set to be the upper half of Rj.

To show the events to bit-code mapping in DIM, consider that the sensor readings in

our example (shown in Figure 2) are composed of two attributes, temperature and pressure,

with ranges (30, 70) and (0, 2), respectively. Let an event with values (55, 0.6) be generated

by Node N3(11). The 4 high-order bits of the bit-code for this reading are 1001. This is

because temperature is in the top half of the range [30, 70], pressure is in the bottom half of

141

Figure 54: KDDCS k-d Tree

the range [0, 2], then temperature is in the bottom half of the range [50, 70], and pressure is

in the top half of the range [0, 1]. Thus, the reading should be routed toward the geometric

location specified by code 1001.

In DIM, events are routed using GPSR. An event is routed to the geographic zone with

an address matching the high order bits of the reading bit-code. In our example, the sensor

10 will store this reading since this is the sensor that matches the high order bits of the

bit-code 1001. If there is no sensor in this region, then, the event is stored in a neighboring

region.

We now highlight the differences between our proposed KDDCS scheme, and DIM. The

first difference is how the splitting is accomplished during the formation of the k-d tree. In

KDDCS, the split line is chosen so that there are equal numbers of sensors on each side of

the split line. Recall that, in DIM, the split line was the geometric bisector of the region.

Thus, in KDDCS, the address of a sensor is a logical address and does not directly specify

the location of the sensor. Also, note that the k-d tree in KDDCS will be balanced, while

this will not be the case in DIM if the sensors are not uniformly distributed. This difference

is illustrated by the k-d tree formed by KDDCS shown in Figure 54 for the same simple

input shown in Figure 1. The second difference is that in determining the storage sensor for

142

Figure 55: KDDCS Initial k-d Tree

an event, the range split point b need not be the midpoint of the range Rj. The value of b is

selected to balance the number of readings in the ranges [a, b] and [b, c]. Thus, in KDDCS,

the storage of readings will be roughly uniform over the sensors. The third difference is that,

since addresses are not geographic, KDDCS needs a routing scheme that is more sophisticated

than GPSR. Figure 55 shows another example for a larger sensor network together with the

k-d tree formed by KDDCS for this network.

5.3 THE WEIGHTED SPLIT MEDIAN PROBLEM

Before presenting our KDDCS scheme, we first define the weighted split median problem in

the context of sensor networks and present an efficient distributed algorithm to solve the

problem. Each sensor si initially knows wi associated values v1, . . . vwi
. Let W =

∑n
i=1 wi

be the number of values. The goal for the sensors is to come to agreement on a split value

V with the property that approximately half of the values are larger than V and half of the

143

values are smaller than V .

We present a distributed algorithm to solve this problem. The time complexity of our

algorithm is O(log n) times the diameter of the communication network in general, and O(1)

times the diameter if n is known a priori within a constant factor. Each node is required to

send only O(log n) sensor ID’s. The top level steps of this algorithm are:

1. Elect a leader sensor s`, and form a breadth first search (BFS) tree T of the communi-

cation network that is rooted at s`.

2. The number of sensors n, and the aggregate number of values W is reported to s`.

3. The leader s` initiates a process to collect a logarithmically-sized uniform random sample

L of the values. The expected number of times that a value from sensor si is included in

this sample is Θ
(

wi log n
W

)
.

4. The value of V is then the median of the reported values in L, which s` reports to all of

the sensors.

We need to explain how these steps are accomplished, and why the algorithm is correct.

We start with the first step. We assume that each sensor has a lower bound k on the

number of sensors in the service area. If a sensor has no idea of the number of other sensors,

it may take k = 2.

Then, each sensor decides independently, with probability Θ
(

ln k
k

)
, to become a candi-

date for the leader. Each candidate sensor sc initiates the construction of a BFS tree of the

communication graph rooted at sc by sending a message Construct(sc) to its neighbors. As-

sume a sensor si gets a message Construct(sc) from sensor sj. If this is the first Construct(sc)

message that it has received, or sc’s ID is larger than the ID of any previous candidates in

prior Construct messages, then:

• si makes sj its tentative parent in the BFS tree T , and

• forwards the Construct(sc) message to its neighbors.

If the number of candidates was positive, then, after time proportional to the diameter

of the communication network, there will be a BFS tree T rooted at the candidate with the

largest ID. Each sensor may estimate an upper bound for the diameter of the communication

graph to be the diameter of R divided by the broadcast radius of a sensor. After this time, the

144

sensors know that they have reached an agreement on T , or that there were no candidates.

If there were no candidates, each sensor can double its estimate of k, and repeat this process.

After O(log n) rounds, it will be the case that k = Θ(n). Once k = Θ(n), then, with high

probability (that is, with probability 1− 1
poly(n)

), the number of candidates is Θ(log n). Thus,

the expected time complexity to accomplish the first step is O(n log n). Assuming that each

ID has O(log n) bits, the expected number of bits that each sensor has to send is O(log2 n)

since there are likely only O(log n) candidates on the first step and only one round in which

there is a candidate. A log n factor can be removed if each sensor initially knows an estimate

of n that is accurate to within a multiplicative constant factor.

The rest of the steps will be accomplished by waves of root-to-leaves and leaves-to-root

messages in T . The second step is easily accomplished by a leave-to-root wave of messages

reporting on the number of sensors and number of values in each subtree. Let Ti be the

subtree of T rooted at sensor si, and Wi the aggregate number of values in Ti. The value Wi

that si reports to its parents is wi plus the aggregate values reported to si by its children in

T . The sensor count that si reports to its parents is one plus the sensor counts reported to

si by its children in T .

The third step is also accomplished by a root-to-leaves wave and then a leaves-to-root

wave of messages. Assume a sensor si wants to generate a uniform random sample of Li

of the values stored in the sensors in Ti. The value of L` for the leader is Θ(log n). Let

si1 , . . . , sid be the children of si in T . Node si generates the results to Li Bernoulli trials,

where each trial has d + 1 outcomes corresponding to si and its d children. The probability

that the outcome of a trial is si is wi

Wi
, and the probability that the outcome is the child sij

is
wij

Wi
. Then, si informs each child sij how often it was selected, which becomes the value of

Lij · si, then waits until it receives samples back from all of its children. si then unions these

samples, plus a sample of values of the desired size from itself, and then passes that sample

back to its parent. Thus, each sensor has to send O(log n) ID’s.

The leader s` then sets V to be the median of the values of the sample L, then, in a

root-to-leaves message wave, informs the other sensors of the value of V .

We now argue that, with high probability, the computed median of the values is close

to the true median. Consider a value V̂ such that only a fraction α < 1
2

of the values are

145

less than V̂ . One can think of each sampled value as being a Bernoulli trial with outcomes

less and more depending on whether the sampled value is less than V̂ . The number of less

outcomes is binomially distributed with mean αL. In order for the computed median to

be less than V̂ , one needs the number of less outcomes to be at least L/2, or equivalently

(1
2
−α)L more than the mean αL. But the probability that a binomially distributed variable

exceeds its mean µ by a factor of 1 + δ is at most e
−δ2µ

3 . Thus, by picking the multiplicative

constant in the sample size to be sufficiently large (as a function of α), one can guarantee

that, with high probability, the number of values less than the computed median V cannot

be much more than L/2. A similar argument shows that the number of values more than

the computed median V can not be much more than L/2.

If the leader finds that n is small in step 2, it may simply ask all sensors to report on

their identities and locations, and then compute V directly.

Now that we solved the weighted split median problem, we present the components of

the KDDCS scheme in the next section.

5.4 THE KDDCS COMPONENTS

We now present our KDDCS scheme in details. We explain how the initial k-d tree is

constructed, how events are mapped to sensors, and how events are routed to their storage

sensors.

5.4.1 Distributed Logical Address Assignment Algorithm

The main idea of the algorithm is that the split lines used to construct the k-d tree are selected

so that each of the two resulting regions contain an equal number of sensors. The split line

can be determined using our weighted split median algorithm with each sensor having unit

weight, and the value for each sensor is either its x coordinate or its y coordinate. The

recursive steps of the algorithm are shown in Figure 56. We now describe in some greater

detail how a recursive step works.

146

Figure 56: Logical Address Assignment Algorithm

The algorithm starts by partitioning the complete region R horizontally. Thus, the

distributed weighted split median algorithm (presented in section 3) is applied for R using

the y-coordinates of the sensors to be sent to the BFS root. Upon determining weighted

split median of R, sensors having lower y-coordinate than the median value (we refer to

these sensors as those falling in the lower region of R) assign their logical address to 0. On

the other hand, those sensor falling on the upper region of R assign themselves a 1 logical

address. At the end of the first recursive step, the terrain can be looked at as split into

two equally logically loaded partitions (in terms of the number of sensors falling in each

partition).

At the next step, the weighted split median algorithm is applied locally in each of the

sub-regions (lower/upper), while using the sensors’ x-coordinates, thus, partitioning the sub-

regions vertically rather than horizontally. Similarly, sensors’ logical addresses are updated

by left-shifting them with a 0 bit for those sensors falling in the lower regions (in other words,

sensor nodes falling on the left of the weighted median line), or with a 1 bit for sensor nodes

falling in the upper regions (i.e., sensor nodes falling on the right of the weighted median

line).

147

The algorithm continues to be applied distributively by the different subtrees until each

sensor obtains a unique logical address, using x and y coordinates of sensors, in a round robin

fashion, as the criterion of the split. The algorithm is applied in parallel on the different

subtrees whose root nodes fall at the same tree level. At the ith recursive step, the algorithm

is applied at all intermediate nodes falling at level i− 1 of the tree. Based on the definition

of the weighted split median problem, the algorithm results in forming a balanced binary

tree, such that sensors represent leaf nodes of this tree (intermediate nodes of the tree are

logical nodes, not physical sensors). The algorithm terminates in log n recursive steps. At

the end of the algorithm, the size of the logical address given to each sensor will be log n

bits.

Recall that the time complexity of our weight split median algorithm is O(d log n), where

d is the diameter of the region. Thus, as the depth of our k-d tree is O(log n), we get

that the time complexity for building the tree is O(d log2 n). If the sensors are uniformly

distributed, then, as the construction algorithm recurses, the diameters of the regions will

be geometrically decreasing. Thus, in the case of uniformly distributed sensors, one would

expect the tree construction to take time O(d log n). As our weighted split median algorithm

requires each sensor to send O(log n) ID’s, and our k-d tree has depth O(log n), we can

conclude that during the construction of our k-d tree, the number of ID’s sent by any node

is O(log2 n).

5.4.2 Event to Bit-code Mapping

In this section, we explain how the event to bit-code mapping function is determined. Recall

that the main idea is to set the split points of the ranges so that the storage of events is

roughly uniform among sensor nodes. To construct this mapping requires a probability dis-

tribution on the events. In some situations, this distribution might be known. For example,

if the network has been operational for some period of time, a sampling of prior events might

be used to estimate a distribution. In cases where it is not known, say when a network is

first deployed, we can temporarily assume a uniform distribution.

In both cases, we use the balanced binary tree as the base tree to overlay the attribute-

148

specific k-d tree on (Recall that a k-d tree is formed by k attributes). This is basically done

by assigning a range for each of the k attributes to every intermediate node in the tree.

Note that the non-leaf nodes in the k-d tree are logical nodes that do not correspond to any

particular sensor. One may think of non-leaf nodes as regions. Any split point p of a node

x of tree level l, where l%k = i, represents a value of attribute i. Such split point partitions

the range of attribute i falling under responsibility of node x into two subranges such that

the subrange lower than p is assigned to the left child of x, while the other range is assigned

to x’s right child. Note that the other k−1 ranges of node x, corresponding to the remaining

k − 1 attributes, are simply inherited by both children of x.

Knowing the data distribution, the split points of the tree should be predefined in a

way to cope with any expected irregularity in the load distribution among the k-d tree leaf

nodes. For example, given an initial temperature range (30, 70) and knowing that 50% of

the events will fall in the temperature range (65, 70), the root split point should be defined

as 65 (assuming that the temperature is the first attribute in the event). Therefore, based on

the selected root split point, the left child subtree of the root will be responsible for storing

events falling in the temperature range (30, 65), while the right child subtree will store events

falling in the range (65, 70). Figure 54 gives an example of non-uniform initialization of split

points.

We finish by describing what information is stored in each sensor node. Each sensor

node corresponds to a leaf in the k-d tree. Each sensor knows its logical address in the

tree. Further, each leaf in the k-d tree knows all the pertinent information about each of its

ancestors in the tree. The pertinent information about each node is:

• The geographic region covered. This can be represented by the geographic coordinates

of the upper left corner (x1, y1) and those of the lower right corner of this region, (x2, y2).

• The split line separating its two children (either x = k1 or y = k1 where x1 < k1 < x2

and y1 < k2 < y2).

• The attribute range, and attribute split point, associated with this region.

From this information, each leaf/sensor can determine the range of events that will be stored

at this sensor. Note that each sensor only stores O(log n) information about the k-d tree.

149

5.4.3 Incremental Event Hashing and Routing

Strictly speaking, the readings-to-sensors mapping in DIM actually produces a geographic

location. GPSR routing can then be used to route each reading towards the geographic

location of its storage sensor. If the destination is contained in a leaf region with one sensor,

then that sensor stores the reading. If the leaf region is an orphan, then one of the sensors

in the neighboring regions will store this reading.

In our scheme, the readings-to-sensors mapping provides a logical address. Essentially,

all that the sensor generating the reading can determine from this logical address is the

general direction of the storage sensor. Thus, our routing protocol, which we call Logical

Stateless Routing (LSR), is in some sense less direct.

LSR operates in O(log n) rounds. We explain how a round works. Assume that a source

sensor with a logical address s wants to route a reading v1 to a sensor with logical address

t. However, s does not know the identity of the sensor t. Recall that s knows the pertinent

information about its ancestors in the k-d tree. In particular, s knows the range split values

of its ancestors. Thus, s can compute the least common ancestor (LCA) of s and t in the

k-d tree. Assume that the first bit of disagreement between s and t is the `th bit. So, the

least common ancestor (LCA) of s and t in the k-d tree has depth `. Let R be the region

corresponding to the LCA of s and t, L be the split line corresponding to this region, and

R0 and R1 be the two sub-regions of R formed by L. Without loss of generality, assume that

s ∈ R0 and t ∈ R1. From its own address, and the address of t, the sensor s can conclude

that t is in the region R1. Recall that s knows the location of the split line L. The sensor s

computes a location x in the region R1. For concreteness here, let us assume that x is some

point in R1 that lies on the line intersecting s and perpendicular to L (Although there might

be some advantages to selecting x to be the geometric center of the region R1). LSR then

directs a message toward the location x using GPSR. The message contains an additional

field noting that this is a `th round message. The `th round terminates when this message

first reaches a sensor s′ whose address agrees with the address of t in the first `+1 bits. The

sensor s′ will be the first sensor reached in R1. Round ` + 1 then starts with s′ being the

new source sensor.

150

Figure 57: Example of Routing a Query on KDDCS

We explain how range queries are routed by means of an example. This example also

essentially illustrates how readingss are stored. Figure 57 gives an example of a multi-

dimensional range query and shows how to route it to its final destination. In this example,

a multi-dimensional range query arises at node N7(111) asking for the number of events

falling in the temperature range (30, 32) and pressure range (0.4, 1) that were generated

throughout the last 2 minutes. Node N7 knows that the range split point for the root was

temperature 40, and thus, this query needs to be routed toward the left subtree of the root,

or geometrically toward the top of the region, using GPSR. The first node in this region

that this event reaches is say N3. Node N3 knows that the first relevant split point is

pressure = 0.5. Thus, the query is partitioned into two sub-queries, ((30, 32), (0.4, 0.5)) and

((30, 32), (0.5, 1)). When processing the first sub-query, node N3 forwards it to the left using

GPSR. N3 can then tell that the second query should be routed to the other side of its parent

in the k-d tree since the range split for its parent is temperature 34. The logical routing of

this query is shown on the right in Figure 57, and a possible physical routing of this query

is shown on the left in Figure 57.

As LSR does not initially know the geometric location of the storage sensor, the route to

the storage sensor cannot possibly be as direct as it is in DIM. But, we argue that the length

151

of the route in LSR should be at most twice the length of the route in DIM. Assume for the

moment that all messages are routed by GPSR along the direct geometric line between the

source sensor and the destination location. Let us assume, without loss of generality, that

LSR is routing horizontally in the odd rounds. Then, the routes used in the odd rounds

do not cross any vertical line more than once. Hence, the sum of the route distances used

by LSR in the odd rounds is at most the diameter of the region. Similarly, the sum of

the route distances used by LSR in the even rounds is at most the diameter of the region.

Thus, the sum of the route distances for LSR, over all rounds, is at most twice the diameter.

The geometric distance between the source-destination pair in DIM is obviously at most the

diameter. So we can conclude that the length of the route found by LSR is at most twice

the length of the route found by DIM, assuming that GPSR is perfect. In fact, the only

assumption that we need about GPSR to reach this conclusion is that the length of the path

found by GPSR is roughly a constant multiple times the geometric distance between the

source and destination. Even this factor of two can probably be improved significantly in

expectation if the locations of the sensors are roughly uniform. A simple heuristic would be

to make the location of the target x equal to the location of the destination sensor t if the

sensors in R1 where uniformly distributed. The location of x can easily be calculated by the

source sensor s given information local to s.

5.4.4 Discussion

To summarize, KDDCS is mainly composed of three components: the initial distributed

logical address assignment algorithm, the event to bit-code mapping, and the incremental

event hashing and routing scheme. The first component is responsible for initializing the

sensor logical addresses to form a balanced k-d tree (with sensors as leaves). It is based on

distributively solving the weighted split median problem. The event to bit-code mapping is

responsible for distributively forming the initial k-d tree over the possible attribute ranges

of readings and assigning each sensor a storage responsibility range. Finally, the incremental

event hashing and routing is responsible for incrementally routing each reading to its storage

sensor for each reading (based on the attribute values of that reading).

152

5.5 KDTR: K-D TREE REBALANCING ALGORITHM

Based on the KDDCS components presented in the previous section, KDDCS already avoids

the formation of storage hotspots resulting from skewed sensor deployments. Also, KDDCS

avoids the formation of storage hotspots resulting from skewed reading distributions assum-

ing that the distribution of sensor readings was known a priori. However, storage hotspots

may be formed if the initial presumed reading distribution was incorrect or if the reading

distribution evolves over time. Similarly, query hotspots may be formed if the query load

distribution is skewed. In this section, we present the K-D Tree Rebalancing algorithm

(KDTR) to rebalance the load on sensors throughout the network operation. This load can

either be storage load, query load, or mixed load.

In the next subsections, we first explain how to determine the roots of the subtrees that

will rebalance, and then show how a rebalancing operation on a subtree works. We assume

that this rebalancing is performed periodically with a fixed period.

We will present the KDTR algorithm in the context of storage hotspots. In the following

sections, we will discuss how to use KDTR to avoid both query and mixed hotspots.

5.5.1 Selection of Subtrees to be Rebalanced

The main idea is to find the highest unbalanced node in the k-d tree. A node is unbalanced

if the ratio of the number of readings in one of its child subtrees over the number of readings

stored in its other child subtree exceeds some threshold h. This process of identifying nodes

to rebalance proceeds in O(log n) rounds from the leaves to the root of the k-d tree.

We now describe round i ≥ 1 intuitively occurring in parallel on all subtrees rooted at

nodes of height i+1 in the k-d tree. Let x be a node of height i+1. Let the region associated

with x be R, the split line be L, and the two sub-regions of R be R0 and R1. At the start

of this round, each sensor in R0 and R1 knows the number of stored readings C0 and C1 in

R0 and R1, respectively. The count C0 is then flooded to the sensors in R1, and the count

C1 is flooded to the sensors in R0. After this flooding, each sensor in R knows the number

of readings stored in R, and also knows whether the ratio max(C0

C1
, C1

C0
) exceeds h.

153

The time complexity per round is linear in the diameter of a region considered in that

round. Thus, the total time complexity is O(D log n), where D is the diameter of the network,

as there are O(log n) rounds. The number of messages sent per node i in a round is O(di),

where di is the degree of node i in the communication network. Thus, the total number of

messages sent by a node i is O(di log n).

Rebalancing is then performed in parallel on all unbalanced nodes that have no unbal-

anced ancestors. Note that every leaf knows if an ancestor will rebalance, and is so, the

identity of the unique ancestor that will balance. All the leaves of a node that will rebalance

will be aware of this at the same time.

5.5.2 Tree Rebalancing Algorithm

Let x be an internal node to the k-d tree that needs to be rebalanced. Let the region

associated with x be R. Let the attribute associated with node x be the j’th attribute. So,

we need to find a new attribute split L for the j’th attribute for node x. To accomplish this,

we apply the weighted split median procedure, where the weight wi associated with sensor i

is the number of readings stored at sensor i, and the values are the j’th attributes of the wi

readings stored at that sensor. Thus, the computed attribute split L has the property that,

in expectation, half of the readings stored in R have their j’th attribute larger than L, and

half of the readings stored in R have their j’th attribute smaller than L.

Let R0 and R1 be the two sub-regions of R. Eventually, we want to recursively apply

this process in parallel to the regions R0 and R1. But before recursing, we need to route

some readings from one of R0 or R1 to the other. The direction of the routing depends on

whether the attribute split value became larger or smaller. Let us assume, without loss of

generality, that readings need to be routed from R0 to R1. Consider a reading e stored at a

sensor s in R0 that needs to be routed to R1. The sensor s picks a destination logical address

t, uniformly at random, from the possible addresses in the region R1. The reading e is then

routed to t using the routing scheme described in section 5.4.3. The final storage sensor for

e in R1 cannot be determined until our process is recursively applied to R1, but this process

cannot be recursively applied until the readings that should be stored in R1 are contained in

154

R1. The fact the the destination addresses in R1 were picked uniformly at random ensures

that load is balanced between R0 and R1. This process can now be recursively applied to

R0 and R1.

We now discuss the complexity of this procedure. We break the complexity into two

parts: the cost of performing the weighted split median operation, and the cost of migrating

the readings. One application of the weighted split median has time complexity O(D log n),

where D is the diameter of the region, and messages sent per node of O(log2 n) messages.

Thus, we get time complexity O(D log2 n) and messages sent per node of O(log3 n) for all of

the applications of weighted split median. Every periodical rebalance requires each reading

to travel at most twice the diameter of the network (assuming that GPSR routes on a direct

line). The total number of readings that can be forced to migrate as a result of k new

readings being stored is O(k log k). Thus, the amortized number of migrations per reading is

logarithmic, O(log k) in the number of insertions. This amount of rebalancing per insertion

is required for any standard dynamic data structure (e.g. 2-3 trees, AVL trees, etc.).

Figure 58 shows a detailed example illustrating how KDTR works on the sensor network

of Figure 55. Continuing on the same example we presented in Section 4.2, we monitor how

KDTR maintains the k-d tree balancing in the course of successive insertions. Starting with

an equal number of 3 readings stored at each sensor, a storage hotspot arises in node N7 after

6 reading insertions. By checking the ratio of N7 storage to that of N7, KDTR identifies

the subtree rooted at node 11 as an unbalanced subtree. As none of node 11’s ancestors

are unbalanced at this point, KDTR selects 11 to be rebalanced. However, the storage load

remains skewed toward subtree 1, thus, after another 6 insertions, KDTR rebalances the

subtree rooted at 1. After 12 more insertions aiming the right subtree of the root, KDTR

rebalances the root of the tree, basically changing the attribute-based split points of almost

all internal nodes, in order to maintain the balance of the tree. Note that, as long as the

average loads of sensors which are falling outside the hotspot area increases, the frequency

of rebalancing decreases.

We digress slightly to explain a method that one might use to trigger rebalancing, as

opposed to fixed time period rebalancing. Each sensor si knows the number of readings that

are stored in each region corresponding to an ancestor of si in the k-d tree when this region

155

was rebalanced. Let Cj be the number of readings at the last rebalancing of the region Rj

corresponding to node of depth j on the path from the root to si in the k-d tree. Assume

that the region Rj has elected a leader sj. Then, the number of readings that have to be

stored in Rj, since the last rebalancing, to cause another rebalancing in Rj is something like

hCj, where h is the unbalancing ratio that we are willing to tolerate. Then, each insertion

to si is reported by si to sj with probability something like Θ
(

log n
hCj

)
. Thus, after seeing

Θ(log n) such notifications, the leader sj can be confident that there have been very close to

hCj insertions into the region Rj, and a rebalancing might be warranted. Note that the role

of leader requires only receiving O(log n) messages.

5.5.3 Discussion

In summary, the KDTR algorithm is composed of two components: the selection of subtrees

to be rebalanced and the actual tree rebalancing algorithm. As for the selection for the trees

to be rebalanced, the main idea is find the highest unbalanced node(s) in the k-d tree. This

can be done in O(log n) rounds with a total time complexity of O(D log n), where D is the

diameter of the network. Again, the tree rebalancing algorithm is based on distributively

solving the weighted split median problem.

It is important to note that, in addition to load balancing, the application of the KDTR

algorithm achieves two very important benefits. The first is that the continuous rebalancing

of the k-d tree allows KDDCS to continuously check for node failures and deal with them

by rebalancing the storage load among the available nodes in the network at the time of

rebalancing. This acts as a first level of fault tolerance for KDDCS. A second advantage is

that the continuous rebalancing allows the LSR algorithm to use different routing paths for

the same request type as time progresses. This has the advantage of reducing parts of the

negative effects of traffic skewness across the sensor network.

156

Figure 58: KDTR Example

157

5.6 AVOIDING STORAGE HOTSPOTS WITH KDTR

As was discussed in the previous sections, the KDDCS scheme will be able to avoid the

formation of storage hotspots without applying the KDTR algorithm assuming that the

storage load distribution was known, at least to a constant factor, prior to the network

operation and that this distribution should be static, i.e., not changing over time. In case

the two assumptions cannot be satisfied, the KDTR algorithm, as presented in the previous

section, will take the responsibility of avoiding storage hotspots. The KDTR algorithm

performs such function through the periodic global rebalancing of the underlying k-d tree of

the KDDCS scheme. This rebalancing is performed in a parallel and distributed manner. Its

periodicity guarantees the decomposition of any potential hotspot as soon as its indications

start to kick-in, and thus, the avoidance of any hotspots.

As the rebalancing in KDTR used the storage load of sensor nodes as its metric, the

above KDTR version was geared to avoid storage hotspots. We experimentally study the

performance of the KDTR algorithm when facing storage hotspots in the next subsection.

5.6.1 Experimental Evaluation

In this section, we study the performance of KDDCS for storage hotspots. We compare

KDDCS with DIM and DIM with ZS for single static storage hotspots (5.6.1.1), multiple

static storage hotspots (5.6.1.2), and moving storage hotspots (5.6.1.3).

Throughout this section, the node storage capacity is equal to 30 readings and the node

initial energy capacity is equal to 70 units. Therefore, a full sensor node is defined to be a

sensor node having 30 readings in its cache. Similarly, a node is depleted (and consequently

considered dead) as soon as it consumes 70 energy units. Once a node is dead, all readings

stored in this node are considered lost. Based on the DIM scheme, the storage responsibility

(a subset of the attribute range) of the dead node is assigned to one of its direct neighbors.

Recall that we define an event to be either a reading or a query.

For each hotspot type, we conduct experiments for single, multiple, and moving hotspots.

For each of our experiments, we compare the performance of KDDCS for the LS scheme, the

158

GHT scheme, the basic DIM scheme, and the DIM scheme with the ZS scheme implemented

on top of it (both SHZS and MHZS).

For each of our experiments, we study three aspects: QoD (R1), load balancing (R2),

and energy consumption (R3). For the QoD, we study the number of dropped events (read-

ings/queries) and the average node storage. We refer to the percentage of QoD improvement

to be the percentage of decrease in event drops. For the load balancing, we study the num-

ber of full nodes. As for energy consumption, we study the average node energy and the

number of dead nodes. The average node energy is the one that defines the improvement

or the downgrading in energy consumption performance. To be statistically significant, we

conducted 5 simulation runs for each of the experiments and taken the average of values

across all runs.

For each of the hotspot types, we conducted experiments on different hotspot sizes rang-

ing from 20% to 100%. When presenting our results, we always present the results for the

largest hotspot size on which the scheme performed well. Unless otherwise stated, performing

well on the large hotspot sizes, i.e., [60%, 80%], implies a good performance on the moderate

sized hotspots, i.e., [40%, 60%]. In most of the cases, the performance burden imposed to

the network by small hotspots, i.e., hotspots less than 40%, does not justify the cost paid to

detect and decompose the hotspots.

To model the worst case performance of KDDCS, we set the scheme to initially start

every experiment with a uniform distribution of attribute ranges on sensor nodes. This

means that the initial storage responsibility for each of the sensor nodes would be the same

for both KDDCS and DIM. The reason behind this selection is to model the efficiency of

the KDTR algorithm in dealing with hotspots in cases where the ranges of these hotspots

cannot be anticipated in advance, prior to the network operation. Of course, initializing the

network with a distribution which partially or fully anticipates the ranges of the hotspots

or the distribution of the readings to be stored in the sensor network would boost the

KDDCS performance over all other schemes. However, this case may only be realistic if load

distributions are known prior to the network operation. As this may not be the common case,

we decided to model the general case which would help us analyze the worst case KDDCS

performance.

159

Before presenting the results of our experiments, we highlight the learned lessons out of

our experimental evaluation in the following points:

1. KDDCS scores good QoD achievements for the different hotspot types and sizes while

introducing a tolerable energy consumption overhead on the sensor nodes across the

network.

2. For single storage hotspots, QoD improvements are around 75% while energy consump-

tion overheads are 1%.

3. For multiple static storage hotspots, QoD improvements are around 25% while energy

consumption overheads are 1%.

4. For multiple dynamic (moving) storage hotspots, QoD improvements are around 60%

while energy consumption overheads are 13%.

5. The performance improvements of KDDCS scale proportionally with the network size.

Experimental results are shown in Figures 59 to 67. Recall that DIM already outper-

forms both the LS and the GHT schemes. Also, we only plot the MHZS performance as a

representative of the ZS scheme. That’s why we only plot the KDDCS performance together

with those of the DIM and DIM/MHZS schemes. For simplicity, we refer to the DIM/MHZS

scheme by MHZS.

Though we tested a range of values for the rebalancing ratio h, we only present results

corresponding to h = 2 to avoid repetition. In general, changing the value of h did not

have a major effect on the KDDCS performance. This is due the type of hotspots that we

simulated. As our hotspots usually fall in relatively small subranges of the possible attribute

ranges, satisfying the rebalancing criteria of the KDTR algorithm only requires a small h

value in most of the cases. This results in almost no difference in performance between h

values ranging from 1.5 to 3. Concerning the MHZS parameters, we use their default values

already presented in Chapter 4.

5.6.1.1 Single Static Storage Hotspots The following three results compare the KD-

DCS performance compared to those of DIM and MHZS for single static hotspots.

160

 0

 0.5

 1

 1.5

 2

 50 100 150 200 250 300 350 400 450 500

D
ro

pp
ed

 E
ve

nt
s

Network Size

DIM/DIM
MHZS/DIM

KDDCS/DIM

(a) 80% Single Storage Hotspot

 0

 0.5

 1

 1.5

 2

 50 100 150 200 250 300 350 400 450 500

A
vg

 S
to

ra
ge

 L
ev

el
 (

re
ad

in
gs

)

Network Size

DIM/DIM
MHZS/DIM

KDDCS/DIM

(b) 80% Single Storage Hotspot

Figure 59: KDDCS: QoD Graphs vs Single Storage Hotspots

161

R1. QoD: Figure 59(a) compares the KDDCS performance to those of DIM and MHZS

schemes in terms of the number of dropped events for an 80% single storage hotspot. Recall

that we use the number of dropped events as a direct indication of the QoD of any scheme.

A scheme dropping less readings is achieving a better data persistence. This helps such a

scheme to provide more accurate and complete query answers. Consequently, this would

improve the scheme’s QoD. The figure shows that KDDCS and MHZS have comparable

event drops for all network sizes. Both schemes improve the QoD of the basic DIM scheme

by around 75%. The main observation in the figure is that the performance of KDDCS scales

with the network size in a way that keeps the same percentage of QoD improvement for all

network sizes. We achieved similar results for hotspots of sizes ranging from 50% to 100%.

Figure 59(b) compares the performance of the three schemes in terms of the average

node storage for an 80% single storage hotspot. Recall that the average node storage is

measured in terms of sensor readings. The figure shows that KDDCS increases the average

node storage achieved by DIM by around 30% for all network sizes. KDDCS performs

comparably to MHZS for all network sizes.

Overall, the above figures show that KDDCS highly increases data persistence as com-

pared to DIM. Though KDDCS may perform similarly to MHZS in this small-scale simula-

tion, the performance of KDDCS may highly exceed that of MHZS in the case of persistent

hotspots that span a large duration of the network operation.

R2. Load Balancing: Figure 60 shows the number of full nodes of the three schemes

for an 80% single storage hotspot. Recall that a full node is a one storing the maximum

storage capacity. The number of full nodes represents an indication on the capability of any

scheme to load balance the hotspot data among a larger number of sensor nodes. The figure

shows that KDDCS highly exceeds DIM in terms of number of full nodes. The number of

full nodes for KDDCS is around 30% times larger than that for DIM. On the other hand,

KDDCS decreases the number of full nodes compared to MHZS by around 5% to 20% (Recall

that all percentages are related to DIM). As discussed in R1, this is due to the larger number

of nodes KDDCS devotes to store the hotspot data. Successfully maintaining the hotspot

data within the sensor caches while distributing them among a larger number of sensor nodes

results in decreasing the number of nodes reaching their full capacity. It is important to note

162

 0

 0.5

 1

 1.5

 2

 50 100 150 200 250 300 350 400 450 500

N
um

 o
f F

ul
l N

od
es

Network Size

DIM/DIM
MHZS/DIM

KDDCS/DIM

Figure 60: KDDCS: Number of Full Nodes for an 80% Single Storage Hotspot

that the KDDCS scheme does not let nodes drop readings. Instead, once they reach, or

be close to, their capacity, rebalancing takes place. Thus, a larger amount of sensor nodes

become involved in storing the hotspot data. It is also important to note how KDDCS scales

with the network size while maintaining the same percentage of improvement over other

schemes for all network sizes. We achieved similar results for hotspots of sizes ranging from

50% to 100%.

R3. Energy Consumption: Figure 61(a) and 61(b) compare the performance of the three

schemes in terms of dead nodes and average node storage for an 80% single storage hotspot.

Recall that we measure the average node energy in terms of energy units, where the unit is

the amount of energy needed to send (or receive) one sensor reading. We use the average

node energy as an indication for the energy consumption overhead imposed by a scheme

on each node in the sensor network. On the other hand, node deaths give an important

indication on the QoS improvement that any scheme achieves. The first figure shows that

KDDCS achieves a very comparable performance to that of DIM, while MHZS performs

163

 0.5

 1

 1.5

 2

 2.5

 3

 50 100 150 200 250 300 350 400 450 500

D
ea

d
N

od
es

Network Size

DIM/DIM
MHZS/DIM

KDDCS/DIM

(a) 80% Single Storage Hotspot

 0

 0.5

 1

 1.5

 2

 50 100 150 200 250 300 350 400 450 500

A
vg

 E
ne

rg
y

Le
ve

l (
en

er
gy

 u
ni

ts
)

Network Size

DIM/DIM
MHZS/DIM

KDDCS/DIM

(b) 80% Single Storage Hotspot

Figure 61: KDDCS: Energy Consumption Graphs vs Single Storage Hotspots

164

worse than the DIM scheme by 50% to 100%. The reason behind that is that KDDCS copes

with hotspots in a very early stage of their formation. This helps in reducing the overhead

imposed on nodes responsible for storing the hotspot data throughout the network operation.

Although MHZS decomposes hotspots, its response to the hotspot formation is not quick

enough. This continues to impose a large energy consumption overhead on the nodes falling

in the center of the hotspot and increases the death among them by the end of the network

operation time. We achieved similar results for hotspots of sizes ranging from 50% to 100%.

The second figure shows that KDDCS imposes a 1% energy consumption overhead on

DIM while MHZS imposes 3%. This can be explained by the fact that KDDCS increases the

node participation throughout the network by devoting a larger number of nodes to store

the hotspot data. This results in involving more nodes in both storing and routing data.

Consequently, this decreases the average energy level of the sensor nodes throughout the

network. We achieved similar results for hotspots of sizes ranging from 50% to 100%.

In conclusion, KDDCS achieves a 75% QoD improvement over DIM. This comes at almost

no additional cost (an additional 1% energy consumption overhead that KDDCS imposes on

the sensor nodes in the network as compared to DIM). Unlike MHZS, KDDCS performance

scales for any hotspot size and does not increase the number of dead nodes as MHZS does.

5.6.1.2 Multiple Simultaneous Static Storage Hotspots We now study the perfor-

mance of our KDDCS scheme compared to DIM and MHZS for multiple simultaneous static

storage hotspots. We conduct our study in terms of QoD (R1), Load Balancing (R2), and

energy consumption (R3).

R1. QoD: Figures 62(a) and 62(b) compare the performance of the three schemes in terms

of dropped readings and average node storage for 60% multiple storage hotspots. Recall

that we use the number of dropped events as a direct indication of the QoD of any scheme.

A scheme dropping less readings is achieving a better data persistence. This helps such a

scheme to provide more accurate and complete query answers. Consequently, this would

improve the scheme’s QoD. The first figure shows that KDDCS outperforms DIM, which

in turn outperforms MHZS for all network sizes. In fact, KDDCS improves DIM’s QoD by

around 25% for all network sizes. This shows the high ability of our global KDDCS scheme

165

 0

 0.5

 1

 1.5

 2

 50 100 150 200 250 300 350 400 450 500

D
ro

pp
ed

 E
ve

nt
s

Network Size

DIM/DIM
MHZS/DIM

KDDCS/DIM

(a) Dropped Events for 60% Multiple Storage Hotspots

 0

 0.5

 1

 1.5

 2

 50 100 150 200 250 300 350 400 450 500

A
vg

 S
to

ra
ge

 L
ev

el
 (

re
ad

in
gs

)

Network Size

DIM/DIM
MHZS/DIM

KDDCS/DIM

(b) Average Node Storage for 60% Multiple Storage Hotspots

Figure 62: KDDCS: QoD Graphs vs Multiple Storage Hotspots

166

 0

 0.5

 1

 1.5

 2

 50 100 150 200 250 300 350 400 450 500

N
um

 o
f F

ul
l N

od
es

Network Size

DIM/DIM
MHZS/DIM

KDDCS/DIM

Figure 63: KDDCS: Number of Full Nodes for 60% Multiple Storage Hotspots

to maintain a higher portion of the data falling in the ranges of the simultaneous hotspots.

Recall that MHZS suffered from the increased collision symptom for multiple hotspots and

note its effect on degrading the performance of MHZS.

The second figure shows that KDDCS improves DIM’s average node storage by 33% for

all network sizes. This is due to load balancing the storage responsibility of the hotspot data

among a larger amount of sensor nodes, which consequently reduces the average storage load

imposed on each of the sensor nodes. Both figures show the high KDDCS ability to cope

with multiple storage hotspots compared to the other two schemes. We achieved similar

results for hotspots of sizes ranging from 50% to 100%.

R2. Load Balancing: Figure 63 compares the number of full nodes of the different schemes

for 60% multiple storage hotspots. Recall that a full node is a one storing the maximum

storage capacity. The number of full nodes represents an indication on the capability of

any scheme to load balance the hotspot data among a larger number of sensor nodes. The

figure shows that KDDCS decreases the number of full nodes of the DIM scheme by around

167

20%. This is because the DIM scheme does not load-balance the storage hotspot data which

forces all the nodes falling in the hotspot area to reach their full capacity and start dropping

readings. This is unlike KDDCS which reduces the burden imposed on these nodes by

load balancing storage responsibility on a larger number of sensor nodes, thus reducing the

storage share of each of these nodes and consequently reducing the number of full nodes. We

achieved similar results for hotspots of sizes ranging from 50% to 100%.

R3. Energy Consumption: Figures 64(a) and 64(b) compare the performance of the

three schemes in terms of dead nodes and average node energy for 80% and 60% multiple

storage hotspots, respectively. Recall that we measure the average node energy in terms

of energy units, where the unit is the amount of energy needed to send (or receive) one

sensor reading. We use the average node energy as an indication for the energy consumption

overhead imposed by a scheme on each node in the sensor network. On the other hand, node

deaths give an important indication on the QoS improvement that any scheme achieves. The

first figure shows that KDDCS acts very comparably to DIM in terms of energy consumption.

As for the second figure, it shows that KDDCS performance ranges from 10% better to 20%

worse than that of DIM. Knowing that both schemes impose a number of dead nodes of

around 5% to 6% of the overall network size, one can realize that both schemes perform

quite comparably in terms of node deaths. We achieved similar results for hotspots of sizes

ranging from 50% to 100%.

In conclusion, the above three results show that KDDCS has a much higher ability to

efficiently deal with multiple simultaneous hotspots compared to the other two schemes.

KDDCS achieves a 25% QoD improvements without imposing any additional energy con-

sumption overhead on sensor nodes. This is considered as a very good achievement for

KDDCS compared to both DIM and MHZS.

5.6.1.3 Moving Storage Hotspots We now study the KDDCS performance for the

third type of hotspots we are interested in, which are moving storage hotspots. We conduct

our study in terms of QoD (R1), Load Balancing (R2), and energy consumption (R3).

R1. QoD: Figures 65(a) and 65(b) compare the QoD of the three schemes in terms of

dropped events and average node storage when facing a 40% moving storage hotspot. Recall

168

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 50 100 150 200 250 300 350 400 450 500

D
ea

d
N

od
es

Network Size

DIM/DIM
MHZS/DIM

KDDCS/DIM

(a) Dead Nodes for 80% Multiple Storage Hotspots

 0

 0.5

 1

 1.5

 2

 50 100 150 200 250 300 350 400 450 500

A
vg

 E
ne

rg
y

Le
ve

l (
en

er
gy

 u
ni

ts
)

Network Size

DIM/DIM
MHZS/DIM

KDDCS/DIM

(b) Average Node Energy for 60% Multiple Storage Hotspots

Figure 64: KDDCS: Energy Consumption Graphs vs Multiple Storage Hotspots

169

 0

 0.5

 1

 1.5

 2

 50 100 150 200 250 300 350 400 450 500

D
ro

pp
ed

 E
ve

nt
s

Network Size

DIM/DIM
MHZS/DIM

KDDCS/DIM

(a) Dropped Events

 0

 0.5

 1

 1.5

 2

 50 100 150 200 250 300 350 400 450 500

A
vg

 S
to

ra
ge

 L
ev

el
 (

re
ad

in
gs

)

Network Size

DIM/DIM
MHZS/DIM

KDDCS/DIM

(b) Average Node Storage

Figure 65: KDDCS: QoD Graphs for a 40% Moving Storage Hotspot

170

 0

 0.5

 1

 1.5

 2

 50 100 150 200 250 300 350 400 450 500

N
um

 o
f F

ul
l N

od
es

Network Size

DIM/DIM
MHZS/DIM

KDDCS/DIM

Figure 66: KDDCS: Number of Full Nodes for a 40% Moving Storage Hotspot

that we use the number of dropped events as a direct indication of the QoD of any scheme.

A scheme dropping less readings is achieving a better data persistence. This helps such a

scheme to provide more accurate and complete query answers. Consequently, this would

improve the scheme’s QoD. The first figure shows that KDDCS outperforms the two other

schemes in terms of number of dropped readings. KDDCS improves QoD by around 60%

over DIM. The important observation in this figure is that KDDCS improvements scale with

the network size.

The second one shows that KDDCS continues to react quicker and with a larger-scale

than that of MHZS. This increases the number of nodes responsible of the hotspot data and

subsequently reduces the average node storage of each of these nodes. The figure reflects

this by showing how KDDCS increases the DIM’s average node storage by 20%. The figures

show the high QoD improvement achieved by KDDCS compared to the other schemes. We

achieved similar results for hotspots of sizes up to 80%.

R2. Load Balancing: Figure 66 shows the number of full nodes of the three schemes for a

171

40% moving storage hotspot. Recall that a full node is a one storing the maximum storage

capacity. The number of full nodes represents an indication on the capability of any scheme

to load balance the hotspot data among a larger number of sensor nodes. The result is very

similar to result R2 from the multiple storage hotspots section. It shows KDDCS ability to

load-balance the hotspot data on a larger scale than that of MHZS and in a quicker pace as

well. Basically, KDDCS reduces the number of full nodes of DIM by around 20% while it at

least doubles that of MHZS. This shows that KDDCS first reduces the number of full nodes

falling in the hotspot area, then, keeps expanding the hotspot storage responsibility while

being able to maintain the hotspot data in the sensor caches (i.e., without dropping them)

to the extent that the new set of nodes responsible for the storage start getting saturated.

It should be noted that, if the simulation time is extended, the number of full nodes should

decrease as new tree rebalances take place in the network. We achieved similar results for

hotspots of sizes up to 80%.

R3. Energy Consumption: Figure 67(a) compares the node deaths of the three schemes

for a 40% moving storage hotspot. Recall that we measure the average node energy in terms

of energy units, where the unit is the amount of energy needed to send (or receive) one

sensor reading. We use the average node energy as an indication for the energy consumption

overhead imposed by a scheme on each node in the sensor network. On the other hand, node

deaths give an important indication on the QoS improvement that any scheme achieves. The

figure shows that KDDCS slightly increases node deaths compared to the basic DIM scheme.

The first figure shows that KDDCS continues to perform better than MHZS in terms of node

deaths. In fact, KDDCS performance ranges from 10% better than DIM to 40% worse than

DIM. Given the fact that the number of node deaths of DIM is around 5% of the network

size (for all network sizes), this shows that KDDCS decreases the DIM performance by at

most 2% of the network size. On the other hand, MHZS at least doubles node deaths of

DIM for all network sizes.

Figure 67(b) compares the schemes in terms of average node energy for a 40% moving

storage hotspot. The figure shows that KDDCS slightly reduces the DIM’s average node en-

ergy by around 13%. This is mainly due to involving a larger number of nodes in the hotspot

storage responsibility. Also, this is because of the energy consumption overhead incurred in

172

 0.5

 1

 1.5

 2

 2.5

 3

 50 100 150 200 250 300 350 400 450 500

D
ea

d
N

od
es

Network Size

DIM/DIM
MHZS/DIM

KDDCS/DIM

(a) Dead Nodes

 0

 0.5

 1

 1.5

 2

 50 100 150 200 250 300 350 400 450 500

A
vg

 E
ne

rg
y

Le
ve

l (
en

er
gy

 u
ni

ts
)

Network Size

DIM/DIM
MHZS/DIM

KDDCS/DIM

(b) Average Node Energy

Figure 67: KDDCS: Energy Consumption Graphs for a 40% Moving Storage Hotspot

173

Table 6: KDDCS Performance (Relative to DIM) for Storage Hotspots

Hotspot Type QoD Improvements QoS Overheads

Single Static Hotspots 75% 1%

Multiple Static Hotspots 25% 1%

Moving Hotspots 60% 13%

moving readings among network nodes after each rebalancing operation. As moving hotspots

are highly mobile, rebalancing occurs in a higher frequency than that incurred by the static

hotspots. However, as the energy consumption increase incurred by KDDCS is not much

higher than those of the other schemes, this shows that the energy consumption overhead of

the reading migration process incurred by KDDCS when facing dynamic hotspots is fairly

small. Note that we achieved similar results for hotspots of sizes up to 80%.

Overall, KDDCS improves QoD by about 60% with a tolerable energy consumption

overhead of about 13%, compared to DIM, in the case of moving storage hotspots.

5.6.2 Discussion

In this section, we discussed the ability of the KDTR algorithm to avoid storage hotspots.

Based on the usage of KDTR, we experimentally studied the KDDCS performance for single,

multiple, and moving storage hotspots. Overall, KDDCS is highly able to cope with storage

hotspots of different types and sizes. KDDCS scores good QoD achievements for the different

hotspot types and sizes while introducing a slight energy consumption overhead on the sensor

nodes across the network (as compared to DIM). For single hotspots, QoD improvements

are around 75% over DIM while energy consumption overheads are around 1% over DIM.

For multiple static hotspots, QoD improvements are around 25%over DIM while energy

consumption overheads are around 1% over DIM. For moving hotspots, QoD improvements

are around 60% over DIM while energy consumption overheads are around 13% over DIM.

Table 6 summarizes the KDDCS performance for storage hotspots.

174

5.7 EXTENDING KDTR TO AVOID QUERY HOTSPOTS

As was discussed in the presentation of the ZP/ZPR scheme (Section 4.2), a successful metric

to be used as an indication for query hotspots can be the Average Querying Frequency (AQF).

Not surprisingly, the same metric can used used by the KDTR algorithm to avoid query

hotspots. This is based on the fact that the KDTR mainly applies our distributed algorithm

solving the weighted split median problem and this algorithm is a generic algorithm that can

be applied using any metric representing the load to be balanced. We describe the AQF-

based version of KDTR below. Other than the KDTR modifications, no further changes are

introduced to the basic KDDCS components in order to avoid query hotspots.

To be able to cope with query hotspots, each node keeps track of the AQF of its stored

zone. Periodically, the KDTR algorithm is applied. The ratios of the AQFs of the two

children of each intermediate node of the k-d tree are used to select the maximum tree to be

rebalanced. Once the maximum unbalanced tree is determined, the medians of this k-d tree

are recursively computed using the weighted split median procedure of the tree rebalancing

algorithm with the weight wi associated with sensor i being the AQF of sensor i. After

reading migrations, the resulting k-d tree should re-achieve its AQF-based balance.

It is important to note that the AQF metric for avoiding query hotspots implicitly

assumes that the distribution of access frequencies of the subranges (or the readings) within

each node should not be uni-tailed, e.g., exponential. Instead, this distribution should be

almost symmetric, e.g., a uniform or a normal distribution. This restriction is important

for the average of the access frequencies of the readings (or the subranges) to be a fair

representative of the expected AQFs of the two sub-zones resulting from evenly splitting the

original zone into two parts. Otherwise, AQF cannot be used as a metric for repeatedly load

balancing access frequencies in the different levels of the tree.

If this above assumption is not satisfied, the KDTR will need more than one round of

rebalancing in order to converge the k-d tree to a load-balanced tree. This is simple because

the tree may remain unbalanced after the first round as the hot sub-zone may remain under

the responsibility of one or a small number of nodes instead of being split among a large

number of sensors. Thus, applying the KDTR again will continue to determine that a subtree

175

is unbalanced. Repeatedly applying KDTR’s tree rebalancing algorithm will have the effect

of completely balancing any potential unbalanced subtree.

5.7.1 Experimental Evaluation

In this section, we study the performance of the KDDCS scheme when facing the different

types of query hotspots. We compare the performance of the schemes for single static query

hotspots (Section 5.7.1.1), multiple static query hotspots (Section 5.7.1.2), and moving query

hotspots (Section 5.7.1.3).

Throughout this section, the node storage capacity is equal to 30 readings and the node

initial energy capacity is equal to 70 units. Therefore, a full sensor node is defined to be a

sensor node having 30 readings in its cache. Similarly, a node is depleted (and consequently

considered dead) as soon as it consumes 70 energy units. Once a node is dead, all readings

stored in this node are considered lost. Based on the DIM scheme, the storage responsibility

(a subset of the attribute range) of the dead node is assigned to one of its direct neighbors.

Recall that we define an event to be either a reading or a query.

For each hotspot type, we conduct experiments for single, multiple, and moving hotspots.

For each of our experiments, we compare the performance of KDDCS for the LS scheme, the

GHT scheme, the basic DIM scheme, and the DIM scheme with one ZP/ZPR on top of it.

For simplicity, we refer to the DIM/ZP/ZPR scheme by ZP/ZPR.

For each of our experiments, we study three aspects: QoD (R1), load balancing (R2),

and energy consumption (R3). For the QoD, we study the number of dropped events (read-

ings/queries) and the average node storage. We refer to the percentage of QoD improvement

to be the percentage of decrease in event drops. For the load balancing, we study the num-

ber of full nodes. As for energy consumption, we study the average node energy and the

number of dead nodes. The average node energy is the one that defines the improvement

or the downgrading in the energy consumption performance. To be statistically significant,

we conducted 5 simulation runs for each of the experiments and taken the average of values

across all runs.

For each of the hotspot types, we conducted experiments on different hotspot sizes rang-

176

ing from 20% to 100%. Unless otherwise stated, performing well on the large hotspot sizes,

i.e., [60%, 80%], implies a good performance on the moderate sized hotspots, i.e., [40%, 60%].

In most of the cases, the performance burden imposed to the network by small hotspots, i.e.,

hotspots less than 40%, does not justify the cost paid to detect and decompose the hotspots.

To model the worst case performance of KDDCS, we set the scheme to initially start

every experiment with a uniform distribution of attribute ranges on sensor nodes. This

means that the initial storage responsibility for each of the sensor nodes would be the same

for both KDDCS and DIM. The reason behind this selection is to model the efficiency of

the KDTR algorithm in dealing with hotspots in cases where the ranges of these hotspots

cannot be anticipated in advance, prior to the network operation. Of course, initializing the

network with a distribution which partially or fully anticipates the ranges of the hotspots or

the distribution of the readings to be stored in the sensor network would boost the KDDCS

performance over all other schemes. As this may not be the common case, we decided to

model the general case which would help us analyze the worst case KDDCS performance.

Our experimental results are presented in the following sub-sections. Though we tested

a range of values for the rebalancing ratio h, we only present results corresponding to h = 2

to avoid repetition. In general, changing the value of h did not have a major effect on

the KDDCS performance. This is due the type of hotspots that we simulated. As our

hotspots usually fall in relatively small subranges of the possible attribute ranges, satisfying

the rebalancing criteria of the KDTR algorithm only requires a small h value in most of the

cases. This results in almost no difference in performance between h values ranging from

1.5 to 3. Thus, Concerning the ZP/ZPR parameters, we use their default values already

presented in Chapter 4.

Before presenting the results of our experiments, we highlight the learned lessons out of

our experimental evaluation in the following points:

1. KDDCS scores good QoD achievements for the different hotspot types and sizes while

introducing a tolerable energy consumption overhead on the sensor nodes across the

network.

2. For single query hotspots, QoD improvements are around 13% while energy consumption

overheads are 2.5%.

177

3. For multiple static query hotspots, QoD improvements are around 87% for multiple query

hotspots while energy consumption overheads are 15%.

4. For multiple dynamic (moving hotspots), QoD improvements are around 35% for moving

query hotspots while energy consumption overheads are around 3%.

5. The performance improvements of KDDCS scale proportionally with the network size.

The results of the simulations are shown in Figures 68 to 76. Recall that DIM already

outperforms both the LS and the GHT schemes. That’s why we only plot the KDDCS

performance together with those of the DIM and DIM/ZP/ZPR schemes. In these figures,

we compare the performance of KDDCS with those the basic DIM and the ZP/ZPR schemes,

with respect to our different performance measures.

5.7.1.1 Single Static Query Hotspots In this subsection, we compare the perfor-

mance of KDDCS to those of DIM and ZP/ZPR for single query hotspots. We conduct our

study in terms of QoD (R1), Load Balancing (R2), and energy consumption (R3).

R1. QoD: Figures 68(a) and 68(b) compare the performance of the three schemes in terms

of dropped readings and average node storage for an 80% single query hotspot. Recall that

we use the number of dropped events as a direct indication of the QoD of any scheme. A

scheme dropping less readings is achieving a better data persistence. This helps such a

scheme to provide more accurate and complete query answers. Consequently, this would

improve the scheme’s QoD. The first figure shows that KDDCS slightly reduces the number

of dropped events by around 13% for most of the network sizes compared to DIM. It is

important to observe that the reduction achieved by ZP/ZPR is quite better for most of the

cases. The second figure shows that KDDCS increases the average node storage by around

18% compared to the other two schemes (which perform similarly). This result shows that

KDDCS achieves a slightly better data persistence/query answering capability in most of the

cases by reducing collisions at the hotspot nodes. However, the most important indication is

that KDDCS assigns the responsibility of the hotspot to a larger number of nodes, which in

turn, increases the average node storage for all network nodes. We achieved similar results

for hotspots of sizes ranging from 50% to 100%.

R2. Load Balancing: Figure 69 compares the three schemes in terms of number of full

178

 0

 0.5

 1

 1.5

 2

 50 100 150 200 250 300 350 400 450 500

D
ro

pp
ed

 E
ve

nt
s

Network Size

DIM/DIM
(ZP-ZPR)/DIM

KDDCS/DIM

(a) Dropped Events for an 80% Single Query Hotspot

 0

 0.5

 1

 1.5

 2

 50 100 150 200 250 300 350 400 450 500

A
vg

 S
to

ra
ge

 L
ev

el
 (

re
ad

in
gs

)

Network Size

DIM/DIM
(ZP-ZPR)/DIM

KDDCS/DIM

(b) Average Node Storage for an 80% Single Query Hotspot

Figure 68: KDDCS: QoD Graphs vs Single Query Hotspots

179

 0

 0.5

 1

 1.5

 2

 50 100 150 200 250 300 350 400 450 500

N
um

 o
f F

ul
l N

od
es

Network Size

DIM/DIM
(ZP-ZPR)/DIM

KDDCS/DIM

Figure 69: KDDCS: Number of Full Nodes for a 60% Single Query Hotspot

nodes for a 60% single query hotspot. Recall that a full node is a one storing the maximum

storage capacity. The number of full nodes represents an indication on the capability of any

scheme to load balance the hotspot data among a larger number of sensor nodes. The figure

shows that KDDCS has a lower number of full nodes than those of DIM and ZP/ZPR. Recall

that the reading distribution imposed on the sensor network in this experiment is drawn,

uniformly at random, from a uniform distribution. The figure shows that both DIM and

ZP/ZPR have the almost identical values for the number of full nodes for all network sizes.

KDDCS reduces the number of full nodes by around 40%. Recall that the reading distribution

imposed on the network was drawn uniformly at random from a uniform distributed over

the attribute ranges. Additionally, we use the version of KDDCS that starts with a uniform

assignment of ranges to nodes. Thus, the important observation in the figure is that DIM

and ZP/ZPR have comparable numbers of full nodes. As reading distribution is not skewed,

then, this number represents the number achieved by DIM in the regular cases. As KDDCS

decreases the number of full nodes, this means that it achieves a better load balancing of

180

readings across the sensor network. We achieved similar results for hotspots of sizes ranging

from 50% to 100%.

R3. Energy Consumption: Figures 70(a) and 70(b) compare the performance of the three

schemes in terms of dead nodes and average node energy for 80% and 60% query hotspots,

respectively. Recall that we measure the average node energy in terms of energy units, where

the unit is the amount of energy needed to send (or receive) one sensor reading. We use

the average node energy as an indication for the energy consumption overhead imposed by

a scheme on each node in the sensor network. On the other hand, node deaths give an

important indication on the QoS improvement that any scheme achieves. The first figure

shows that KDDCS performs quite similarly to the DIM scheme in terms of dead nodes.

Although KDDCS increases the number of dead nodes by 30% for small networks, this not

viewed as a huge effect as the number of dead nodes scored by DIM in these cases is less

than 3% of the network size. The second figure shows that KDDCS slightly decreases the

average energy level by around 2.5% compared to the DIM scheme. Both figures show that

KDDCS does not impose any remarkable energy consumption overhead on the DIM for single

query hotspots unlike the ZP/ZPR scheme. We achieved similar results for hotspots of sizes

ranging from 50% to 100%.

In conclusion, KDDCS achieves acceptable QoD improvements over DIM (around 13%)

for single query hotspots. Towards this improvement, KDDCS introduces an energy con-

sumption overhead of around 2.5%. The performance gains are expected to be much higher

in the case of long-lasting query hotspots.

5.7.1.2 Multiple Simultaneous Static Query Hotspots In this subsection, we com-

pare the performance of KDDCS to those of DIM and ZP/ZPR for mutiple simultaneous

query hotspots. We conduct our study in terms of QoD (R1), Load Balancing (R2), and

energy consumption (R3).

R1. QoD: Figures 71(a) and 71(b) compare the performance of the three schemes in terms

of dropped readings and average node storage for 80% and 60% query hotspots, respectively.

Recall that we use the number of dropped events as a direct indication of the QoD of

any scheme. A scheme dropping less readings is achieving a better data persistence. This

181

 0

 0.5

 1

 1.5

 2

 50 100 150 200 250 300 350 400 450 500

D
ea

d
N

od
es

Network Size

DIM/DIM
(ZP-ZPR)/DIM

KDDCS/DIM

(a) Dead Nodes for an 80% Single Query Hotspot

 0

 0.5

 1

 1.5

 2

 50 100 150 200 250 300 350 400 450 500

A
vg

 E
ne

rg
y

Le
ve

l (
en

er
gy

 u
ni

ts
)

Network Size

DIM/DIM
(ZP-ZPR)/DIM

KDDCS/DIM

(b) Average Node Energy for a 60% Single Query Hotspot

Figure 70: KDDCS: Energy Consumption Graphs vs Single Query Hotspots

182

 0

 0.5

 1

 1.5

 2

 50 100 150 200 250 300 350 400 450 500

D
ro

pp
ed

 E
ve

nt
s

Network Size

DIM/DIM
(ZP-ZPR)/DIM

KDDCS/DIM

(a) Dropped Events for 80% Multiple Query Hotspots

 0

 0.5

 1

 1.5

 2

 50 100 150 200 250 300 350 400 450 500

A
vg

 S
to

ra
ge

 L
ev

el
 (

re
ad

in
gs

)

Network Size

DIM/DIM
(ZP-ZPR)/DIM

KDDCS/DIM

(b) Average Node Storage for 60% Multiple Query Hotspots

Figure 71: KDDCS: QoD Graphs vs Multiple Query Hotspots

183

 0

 0.5

 1

 1.5

 2

 50 100 150 200 250 300 350 400 450 500

N
um

 o
f F

ul
l N

od
es

Network Size

DIM/DIM
(ZP-ZPR)/DIM

KDDCS/DIM

Figure 72: KDDCS: Number of Full Nodes for 80% Multiple Query Hotspots

helps such a scheme to provide more accurate and complete query answers. Consequently,

this would improve the scheme’s QoD. The two figures show that KDDCS achieves a large

performance improvement compared to the two other schemes. The first figure shows that

KDDCS improves QoD by around 87%. The important note is that the number of dropped

events is quite constant for KDDCS. The second figure shows that KDDCS improves the

average node storage by around 15%. Both figures show that the benefit of the global load

balancing strategy followed by KDDCS shines for a sophisticated hotspot setting such as

that of multiple simultaneous query hotspots. We achieved similar results for hotspots of

sizes ranging from 50% to 100%.

R2. Load Balancing: Figure 72 compares the numbers of full nodes of the three schemes

for 80% multiple query hotspots. Recall that a full node is a one storing the maximum

storage capacity. The number of full nodes represents an indication on the capability of

any scheme to load balance the hotspot data among a larger number of sensor nodes. The

figure shows that KDDCS reduces the number of full nodes by around 20%. The important

184

lesson that the figure shows is that reassigning the hotspot data to a larger group of sensors

helps achieving a better load balancing in terms of storage load responsibility imposed on

the different sensor nodes. We achieved similar results for hotspots of sizes ranging from

50% to 100%.

R3. Energy Consumption: Figure 73(a) compares the number of dead nodes of the

three schemes for 60% multiple query hotspots. Recall that we measure the average node

energy in terms of energy units, where the unit is the amount of energy needed to send (or

receive) one sensor reading. We use the average node energy as an indication for the energy

consumption overhead imposed by a scheme on each node in the sensor network. On the

other hand, node deaths give an important indication on the QoS improvement that any

scheme achieves. The first figure shows that KDDCS moderately the number of dead nodes

by around 75% as compared to the other two schemes which perform quite similarly. This

shows that the continuously occurring rebalancing process of the KDDCS scheme slightly

increases the energy consumption load imposed on some of the network nodes. However,

it should be noted that the DIM performance in terms of the number of dead nodes does

not exceed 6% of the network size (for all network sizes). This shows that the performance

degradation of the KDDCS scheme does not exceed 4.5% of the network size. Figure 73(b)

shows the average energy level of the three schemes for 60% multiple query hotspots. The

figure shows the KDDCS decreases the average energy level by 15% compared to DIM. This

is in part due to the reading migration overhead imposed by KDDCS on the different network

nodes. Also, this is due to the ability of KDDCS to load-balance energy consumption among

a larger number of network nodes, thus, decrease the number of intact nodes in the network.

We achieved similar results for hotspots of sizes ranging from 50% to 100%.

In conclusion, KDDCS achieves a high QoD improvement on top of DIM (around 87%)

for multiple simultaneous query hotspots. However, this comes with a moderate energy con-

sumption overhead (around 15% over DIM) that KDDCS introduces to the sensor network.

5.7.1.3 Moving Query Hotspots In this subsection, we compare the performance of

KDDCS to those of DIM and ZP/ZPR for a moving query hotspot. We conduct our study

in terms of QoD (R1), Load Balancing (R2), and energy consumption (R3).

185

 0.5

 1

 1.5

 2

 2.5

 3

 50 100 150 200 250 300 350 400 450 500

D
ea

d
N

od
es

Network Size

DIM/DIM
(ZP-ZPR)/DIM

KDDCS/DIM

(a) Dead Nodes for 60% Multiple Query Hotspots

 0

 0.5

 1

 1.5

 2

 50 100 150 200 250 300 350 400 450 500

A
vg

 E
ne

rg
y

Le
ve

l (
en

er
gy

 u
ni

ts
)

Network Size

DIM/DIM
(ZP-ZPR)/DIM

KDDCS/DIM

(b) Average Node Energy for 60% Multiple Query Hotspots

Figure 73: KDDCS: Energy Consumption Graphs vs Multiple Query Hotspots

186

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 50 100 150 200 250 300 350 400 450 500

D
ro

pp
ed

 E
ve

nt
s

Network Size

DIM/DIM
(ZP-ZPR)/DIM

KDDCS/DIM

(a) Dropped Events

 0

 0.5

 1

 1.5

 2

 50 100 150 200 250 300 350 400 450 500

A
vg

 S
to

ra
ge

 L
ev

el
 (

re
ad

in
gs

)

Network Size

DIM/DIM
(ZP-ZPR)/DIM

KDDCS/DIM

(b) Average Node Storage

Figure 74: KDDCS: QoD Graphs for a 60% Moving Query Hotspot

187

R1. QoD: Figures 74(a) and 74(b) compare the performance of the three schemes

in terms of dropped events and average node storage for a 60% moving storage hotspot.

Recall that we use the number of dropped events as a direct indication of the QoD of any

scheme. A scheme dropping less readings is achieving a better data persistence. This helps

such a scheme to provide more accurate and complete query answers. Consequently, this

would improve the scheme’s QoD. The first figure shows that KDDCS improves DIM’s QoD

by 35%. This shows the high data persistence gain achieved by KDDCS over the other

schemes. It is important to note that amount of improvement is comparable to the multiple

static query hotspots case, while it is much larger than for the single query hotspots cases.

This shows that the benefits of global load balancing are more obvious for more sophisticated

hotspots. It is important to note that ZP/ZPR is performs much worse than DIM (around

300% worse). The second figure shows that KDDCS increases the average node storage

by 40% over DIM. This demonstrates the KDDCS ability to improve data persistence by

assigning the storage responsibility of the hotspot data to a larger amount of sensor nodes

across the sensor network. This consequently improves the average storage of sensor nodes.

We achieved similar results for hotspots of sizes up to 80%.

R2. Load Balancing: Figure 75 compares the three schemes in terms of number of full

nodes for a 60% moving query hotspot. Recall that a full node is a one storing the maximum

storage capacity. The number of full nodes represents an indication on the capability of any

scheme to load balance the hotspot data among a larger number of sensor nodes. The figure

shows a similar load balancing result to that achieved by KDDCS for multiple simultaneous

query hotspots. Basically, KDDCS reduces the DIM’s number of full nodes by around 25%.

This shows that, when KDDCS decomposes the query hotspots at the beginning of their

formation, it achieves a better load balancing of storage among the different sensor nodes in

the network. We achieved similar results for hotspots of sizes up to 80%.

R3. Energy Consumption: Figures 76(a) and 76(b) compare the performance of the

three schemes in terms of dead nodes and average node energy when facing a 60% moving

query hotspot. Recall that we measure the average node energy in terms of energy units,

where the unit is the amount of energy needed to send (or receive) one sensor reading. We

use the average node energy as an indication for the energy consumption overhead imposed

188

 0

 0.5

 1

 1.5

 2

 50 100 150 200 250 300 350 400 450 500

N
um

 o
f F

ul
l N

od
es

Network Size

DIM/DIM
(ZP-ZPR)/DIM

KDDCS/DIM

Figure 75: KDDCS: Number of Full Nodes for a 60% Moving Query Hotspot

by a scheme on each node in the sensor network. On the other hand, node deaths give an

important indication on the QoS improvement that any scheme achieves. The first figure

shows that KDDCS performs slightly worse than DIM in terms of the number of dead

nodes. Basically, KDDCS increases node deaths by at around 20% compared to DIM (for

most network sizes). The number of dead nodes of DIM does not exceed 8% of the network

size (for all network sizes). The second figure shows that KDDCS imposes at most 3%

performance overhead over DIM in terms of average node energy. Both figures show that

KDDCS does not incur except a slight energy consumption overhead compared to DIM for

moving query hotspots.

Overall, KDDCS improves QoD performance compared to DIM and ZP/ZPR by without

introducing any remarkable energy consumption overhead. QoD improvements are around

35% over DIM while energy consumption overhead is at most 3%. We achieved similar

results for hotspots of sizes up to 80%.

189

 0

 0.5

 1

 1.5

 2

 50 100 150 200 250 300 350 400 450 500

D
ea

d
N

od
es

Network Size

DIM/DIM
(ZP-ZPR)/DIM

KDDCS/DIM

(a) Dead Nodes

 0

 0.5

 1

 1.5

 2

 50 100 150 200 250 300 350 400 450 500

A
vg

 E
ne

rg
y

Le
ve

l (
en

er
gy

 u
ni

ts
)

Network Size

DIM/DIM
(ZP-ZPR)/DIM

KDDCS/DIM

(b) Average Node Energy

Figure 76: KDDCS: Energy Consumption Graphs for a 60% Moving Query Hotspot

190

Table 7: KDDCS Performance (Relative to DIM) for Query Hotspots

Hotspot Type QoD Improvements QoS Overheads

Single Static Hotspots 13% 2.5%

Multiple Static Hotspots 87% 15%

Moving Hotspots 35% 3%

5.7.1.4 Discussion In this section, we studied the KDDCS performance for single, mul-

tiple, and moving query hotspots. Overall, KDDCS is highly able to cope with query hotspots

of different types and sizes. KDDCS scores good QoD achievements for the different hotspot

types and sizes while introducing a tolerable energy consumption overhead on the sensor

nodes across the network. For single hotspots, QoD improvements are around 13% over

DIM while energy consumption overheads are 2.5% over DIM. For multiple static hotspots,

QoD improvements are around 87%over DIM while energy consumption overheads are around

15% DIM. For moving hotspots, QoD improvements are around 35% over DIM while energy

consumption overheads are 3% over DIM. Unlike ZP/ZPR, the benefits of KDDCS becomes

quite obvious for multiple and moving query hotspots. Table 7 summarizes the KDDCS

performance for query hotspots.

We now move on to present the KDTR handling of mixed hotspots.

5.8 EXTENDING KDTR TO AVOID MIXED HOTSPOTS

We now move on to discuss the mechanism of avoiding mixed hotspots using the KDTR

algorithm. Recall that mixed hotspots are those composed of simultaneous storage and query

hotspots. Similar to the case with query hotspots, the modifications that we introduce in

this subsection are mainly to the KDTR algorithm, i.e., the basic components of KDDCS

remain unchanged. The basic idea to avoid mixed hotspots is to separately detect storage

and query hotspots. Depending on the type of imbalance that may exist, the second step

191

consists of applying the appropriate tree rebalancing algorithm to avoid the formation of all

types of hotspots. We explain our new KDTR version below.

The first step in avoiding mixed hotspots is to detect their existence. To perform this

task, our KDTR algorithm proceeds with its usual maximum unbalanced subtree selection

process. However, in this case, the selection algorithm is performed twice, once using the

storage load as a metric and the other using the AQF as a metric.

The result of this unbalancing detection process can be one of the following cases:

1. No unbalanced subtrees exist. In this case, no action is taken.

2. One imbalance type is found, either storage imbalance or querying frequency imbalance.

In this case, the corresponding metric to the imbalance type is used in rebalancing the

determined subtree.

3. Two unbalancing types are encountered. In this case, the subtrees may be either con-

tained in each other or non-intersecting. We discuss the action for each case below.

In case the unbalanced subtrees are two separate subtrees of the k-d tree, two rebalancing

processes are triggered, one for each unbalanced tree. Each process uses the appropriate

rebalancing metric. For the case where one of the unbalanced subtrees contains the other,

the maximum unbalanced tree is the one that is rebalanced. As for the rebalancing metric,

different options exist. The first is to use either the sum or a combination of the storage load

and the AQF as the weight wi of each node i. This has the effect of taking both metrics into

account, either evenly, or while giving priority to one of them over the other (by increasing

its corresponding multiplier). For example, the multiplier of the metric corresponding to

the bigger unbalanced subtree may be twice that of the metric corresponding to the smaller

unbalanced subtree. Another possibility is that we can solely use the metric corresponding to

the bigger unbalanced subtree relying on the fact that rebalancing it may implicitly rebalance

the smaller one. In such a case, the KDTR algorithm may be applied multiple times in order

to converge to a fully load-balanced k-d tree. A third possibility is that the degree of

unbalancing of the two subtrees may be compared and the more severely unbalanced subtree

may be picked to be rebalanced regardless of whether it is the bigger or the smaller subtree.

In conclusion, KDTR can be extended to avoid all types of hotspots including storage,

192

query, and mixed hotspots. The actual KDTR version applied in for any sensor network can

be left as a design parameter based on the expected nature and workloads of the intended

sensor network application. Another possibility may be to apply two KDTR versions with

different time intervals, e.g., applying the storage hotspots KDTR version every 1 hour while

applying the query hotspots one every 10 min in case query hotspots are expected to be the

main hotspot source faced by the network. This would have the effect of continuously moni-

toring the query hotspot formation in the network while not fully neglecting the possibility of

formation of storage hotspots without paying the full cost of applying the KDTR algorithm

for mixed hotspot avoidance.

5.8.1 Experimental Evaluation

In this section, we study the performance of the final version of the KDTR algorithm versus

both uniform loads and mixed hotspots. We compare the KDDCS performance to those of

DIM and ZS/ZP/ZPR for uniform loads (Section 5.8.1.1), single mixed hotspots (Section

5.8.1.2), multiple mixed hotspots (Section 5.8.1.3), and moving mixed hotspots (Section

5.8.1.4).

We concentrate on studying correlated mixed hotspots where storage and query hotspots

coincide, i.e., fall in the same attribute ranges. Recall that uncorrelated mixed hotspots can

be easily considered as isolated hotspots of different types, i.e., storage and query hotspots

occurring simultaneously in the network. Individually and concurrently dealing with such

hotspots should be done by KDDCS in a straightforward manner.

Throughout this section, the node storage capacity is equal to 30 readings and the node

initial energy capacity is equal to 70 units. Therefore, a full sensor node is defined to be a

sensor node having 30 readings in its cache. Similarly, a node is depleted (and consequently

considered dead) as soon as it consumes 70 energy units. Once a node is dead, all readings

stored in this node are considered lost. Based on the DIM scheme, the storage responsibility

(a subset of the attribute range) of the dead node is assigned to one of its direct neighbors.

Recall that we define an event to be either a reading or a query.

For each hotspot type, we conduct experiments for single, multiple, and moving hotspots.

193

For each of our experiments, we compare the performance of KDDCS for the LS scheme, the

GHT scheme, the basic DIM scheme, and the DIM scheme with one ZS/ZP/ZPR on top of

it. For simplicity, we refer to the DIM/ZS/ZP/ZPR scheme by ZS/ZP/ZPR.

For each of our experiments, we study three aspects: QoD (R1), load balancing (R2),

and energy consumption (R3). For the QoD, we study the number of dropped events (read-

ings/queries) and the average node storage. We refer to the percentage of QoD improvement

to be the percentage of decrease in event drops. For the load balancing, we study the num-

ber of full nodes. As for energy consumption, we study the average node energy and the

number of dead nodes. The average node energy is the one that defines the improvement

or the downgrading in the energy consumption performance. To be statistically significant,

we conducted 5 simulation runs for each of the experiments and taken the average of values

across all runs.

For each of the hotspot types, we conducted experiments on different hotspot sizes rang-

ing from 20% to 100%. Unless otherwise stated, performing well on the large hotspot sizes,

i.e., [60%, 80%], implies a good performance on the moderate sized hotspots, i.e., [40%, 60%].

In most of the cases, the performance burden imposed to the network by small hotspots, i.e.,

hotspots less than 40%, does not justify the cost paid to detect and decompose the hotspots.

To model the worst case performance of KDDCS, we set the scheme to initially start

every experiment with a uniform distribution of attribute ranges on sensor nodes. This

means that the initial storage responsibility for each of the sensor nodes would be the same

for both KDDCS and DIM. The reason behind this selection is to model the efficiency of

the KDTR algorithm in dealing with hotspots in cases where the ranges of these hotspots

cannot be anticipated in advance, prior to the network operation. Of course, initializing the

network with a distribution which partially or fully anticipates the ranges of the hotspots or

the distribution of the readings to be stored in the sensor network would boost the KDDCS

performance over all other schemes. As this may not be the common case, we decided to

model the general case which would help us analyze the worst case KDDCS performance.

Our experimental results are presented in the following sub-sections. Though we tested

a range of values for the rebalancing ratio h, we only present results corresponding to h = 2

to avoid repetition. In general, changing the value of h did not have a major effect on

194

the KDDCS performance. This is due the type of hotspots that we simulated. As our

hotspots usually fall in relatively small subranges of the possible attribute ranges, satisfying

the rebalancing criteria of the KDTR algorithm only requires a small h value in most of the

cases. This results in almost no difference in performance between h values ranging from

1.5 to 3. Thus, Concerning the ZP/ZPR parameters, we use their default values already

presented in Chapter 4.

Before presenting the results of our experiments, we highlight the learned lessons out of

our experimental evaluation in the following points:

1. KDDCS scores good QoD achievements for the different hotspot types and sizes while

introducing a tolerable energy consumption overhead on the sensor nodes across the

network.

2. For single static mixed hotspots, QoD improvements are around 75% for single mixed

hotspots while energy consumption overheads are 18%.

3. For multiple static mixed hotspots, QoD improvements are around 95% for multiple

mixed hotspots while energy consumption overheads are 29%.

4. For multiple dynamic (moving) mixed hotspots, QoD improvements are around 95%

while energy consumption overheads are 35%.

5. The performance improvements of KDDCS scale proportionally with the network size.

The results of the simulations are shown in Figures 77 to 86. Recall that DIM already

outperforms both the LS and the GHT schemes. That’s why we only plot the KDDCS perfor-

mance together with those of the DIM and ZS/ZP/ZPR schemes. In these figures, we com-

pare the performance of KDDCS with that of the basic DIM and that the ZS/ZP/ZPR, with

respect to our different performance measures. For simplicity, we will refer to ZS/ZP/ZPR

by ZS/ZP/ZPR.

We present the results of our study in the next four subsections.

5.8.1.1 Uniform Loads We conclude our performance study by studying the KDDCS

performance for uniform loads. Figure 77 compares KDDCS with both DIM and ZS/ZP/ZPR

in terms of average node energy for uniform loads. The figure shows that the differences

195

 0

 0.5

 1

 1.5

 2

 50 100 150 200 250 300 350 400 450 500

A
vg

 E
ne

rg
y

Le
ve

l (
en

er
gy

 u
ni

ts
)

Network Size

DIM/DIM
(ZS-ZP-ZPR)/DIM

KDDCS/DIM

Figure 77: KDDCS: Average Node Energy for Uniform Loads

between the schemes are very small. This simply shows that KDDCS does not add any

additional energy consumption burden on the sensor network, compared to the DIM scheme,

when the network experiences no hotspots.

5.8.1.2 Single Static Mixed Hotspots The following three results compare the KD-

DCS performance to those of DIM and ZS/ZP/ZPR for single static mixed hotspots. We

conduct our study in terms of QoD (R1), Load Balancing (R2), and energy consumption

(R3).

R1. QoD: Figures 78(a) and 78(b) compare the performance of the three schemes

in terms of dropped readings and average node storage for a 60% single mixed hotspot.

Recall that we use the number of dropped events as a direct indication of the QoD of any

scheme. A scheme dropping less readings is achieving a better data persistence. This helps

such a scheme to provide more accurate and complete query answers. Consequently, this

would improve the scheme’s QoD. The first figure shows that KDDCS achieves a similar

196

 0

 0.5

 1

 1.5

 2

 50 100 150 200 250 300 350 400 450 500

D
ro

pp
ed

 E
ve

nt
s

Network Size

DIM/DIM
(ZS-ZP-ZPR)/DIM

KDDCS/DIM

(a) Dropped Events for a 60% Single Mixed Hotspot

 0

 0.5

 1

 1.5

 2

 50 100 150 200 250 300 350 400 450 500

A
vg

 S
to

ra
ge

 L
ev

el
 (

re
ad

in
gs

)

Network Size

DIM/DIM
(ZS-ZP-ZPR)/DIM

KDDCS/DIM

(b) Average Node Storage for a 60% Single Mixed Hotspot

Figure 78: KDDCS: QoD Graphs vs Single Mixed Hotspots

197

 0

 0.5

 1

 1.5

 2

 50 100 150 200 250 300 350 400 450 500

N
um

 o
f F

ul
l N

od
es

Network Size

DIM/DIM
(ZS-ZP-ZPR)/DIM

KDDCS/DIM

Figure 79: KDDCS: Number of Full Nodes for a 60% Single Mixed Hotspot

performance improvement over DIM to that achieved by ZS/ZP/ZPR (in terms of dropped

events). Basically, KDDCS improves QoD by around 75%. The second figure shows that

KDDCS increases the average node storage by around 8% compared to the basic DIM scheme.

The two figures show the QoD improvement achieved by KDDCS compared to DIM for single

mixed hotspots. The important thing to note is that the amount of QoD improvement for

single mixed hotspots is equal to that achieved for the case of single storage hotspots and

much better than that achieved for single query hotspots. This shows the high benefits of

global load balancing when dealing with hotspots of complex structures. We achieved similar

results for hotspots of sizes ranging from 50% to 100%.

R2. Load Balancing: Figure 79 shows the number of full nodes of the three schemes

for a 60% single mixed hotspots. Recall that a full node is a one storing the maximum storage

capacity. The number of full nodes represents an indication on the capability of any scheme

to load balance the hotspot data among a larger number of sensor nodes. The number of full

nodes for KDDCS is almost equal to (or at most 5% less than) that of DIM for most network

198

sizes. The important observation in this figure is that KDDCS continues to achieve a better

load balancing of the hotspot data compared to ZS/ZP/ZPR by increasing the number of

nodes engaged in the storage responsibility of the hotspot data and thus increasing the overall

number of full nodes compared to the ZS/ZP/ZPR scheme. We achieved similar results for

hotspots of sizes ranging from 50% to 100%.

R3. Energy Consumption: Figure 80(a) and 80(b) compare the dead nodes and the

average node energy of the three schemes for a 60% single mixed hotspot. Recall that we

measure the average node energy in terms of energy units, where the unit is the amount of

energy needed to send (or receive) one sensor reading. We use the average node energy as an

indication for the energy consumption overhead imposed by a scheme on each node in the

sensor network. On the other hand, node deaths give an important indication on the QoS

improvement that any scheme achieves. The first figure shows that KDDCS increases the

number of dead nodes by around 40% compared to the DIM scheme. The second figure shows

that KDDCS load-balances the energy consumption among a larger number of sensor nodes,

thus, reduces the average node energy level of the different nodes in the sensor network by

around 18% compared to DIM. The two figures show that the energy consumption overhead

of KDDCS is moderate in the case of single mixed hotspots. We achieved similar results for

hotspots of sizes ranging from 50% to 100%.

Overall, KDDCS largely improves the QoD, by around 75%, compared to the DIM scheme

for single mixed hotspots. This comes with a slight energy consumption overhead of about

18% over DIM.

5.8.1.3 Multiple Simultaneous Static Mixed Hotspots The following three results

compare the KDDCS performance to those of DIM and ZS/ZP/ZPR for multiple static

mixed hotspots. We conduct our study in terms of QoD (R1), Load Balancing (R2), and

energy consumption (R3).

R1. QoD: Figures 81(a) and 81(b) compare the performance of the three schemes in terms

of dropped readings and average node storage for an 80% mutiple mixed hotspot. Recall

that we use the number of dropped events as a direct indication of the QoD of any scheme.

A scheme dropping less readings is achieving a better data persistence. This helps such a

199

 0.5

 1

 1.5

 2

 2.5

 3

 50 100 150 200 250 300 350 400 450 500

D
ea

d
N

od
es

Network Size

DIM/DIM
(ZS-ZP-ZPR)/DIM

KDDCS/DIM

(a) Dead Nodes for a 60% Single Mixed Hotspot

 0

 0.5

 1

 1.5

 2

 50 100 150 200 250 300 350 400 450 500

A
vg

 E
ne

rg
y

Le
ve

l (
en

er
gy

 u
ni

ts
)

Network Size

DIM/DIM
(ZS-ZP-ZPR)/DIM

KDDCS/DIM

(b) Average Node Energy for a 60% Single Mixed Hotspot

Figure 80: KDDCS: Energy Consumption Graphs vs Single Mixed Hotspots

200

 0

 0.5

 1

 1.5

 2

 50 100 150 200 250 300 350 400 450 500

D
ro

pp
ed

 E
ve

nt
s

Network Size

DIM/DIM
(ZS-ZP-ZPR)/DIM

KDDCS/DIM

(a) Dropped Events for 80% Multiple Mixed Hotspots

 0

 0.5

 1

 1.5

 2

 50 100 150 200 250 300 350 400 450 500

A
vg

 S
to

ra
ge

 L
ev

el
 (

re
ad

in
gs

)

Network Size

DIM/DIM
(ZS-ZP-ZPR)/DIM

KDDCS/DIM

(b) Average Node Storage for 80% Multiple Mixed Hotspots

Figure 81: KDDCS: QoD Graphs for Multiple Mixed Hotspots

201

 0

 0.5

 1

 1.5

 2

 50 100 150 200 250 300 350 400 450 500

N
um

 o
f F

ul
l N

od
es

Network Size

DIM/DIM
(ZS-ZP-ZPR)/DIM

KDDCS/DIM

Figure 82: KDDCS: Number of Full Nodes for 60% Multiple Mixed Hotspot

scheme to provide more accurate and complete query answers. Consequently, this would

improve the scheme’s QoD. The first figure shows that KDDCS highly outperforms the DIM

scheme and slightly improves the performance of the ZS/ZP/ZPR scheme in terms of dropped

events. KDDCS improves DIM’s QoD by around 95%. The important observation in this

figure is how much KDDCS scales with the network size. The second figure shows that

KDDCS experiences the highest average node storage among the three schemes. KDDCS

is 50% better than DIM in terms of average node storage. This is an important indication

that KDDCS exhibits a higher data persistence as compared to the other two schemes. We

achieved similar results for hotspots of sizes ranging from 50% to 100%.

R2. Load Balancing: Figure 82 shows the number of full nodes of the three schemes

for 60% multiple mixed hotspots. Recall that a full node is a one storing the maximum

storage capacity. The number of full nodes represents an indication on the capability of any

scheme to load balance the hotspot data among a larger number of sensor nodes. The figure

shows the high load balancing that KDDCS achieves compared to ZS/ZP/ZPR in terms of

202

highly increasing the number of full nodes. This is due to engaging a lot of nodes in storing

the hotspot data. As the number continues to grow, many of these nodes reach their full

capacity. Though the number of full nodes of KDDCS are almost the same as that of DIM

for the different network sizes, it should be noted that the geographic distribution of these

nodes is completely different between the two schemes. This is because the full nodes in

the DIM scheme are those falling in the original hotspot area, while the full nodes in the

KDDCS scheme are a subset of the nodes falling in the larger hotspot area (achieved after

the repetitive tree rebalancing processes). We achieved similar results for hotspots of sizes

ranging from 50% to 100%.

R3. Energy Consumption: Figure 83(a) and 83(b) compare the dead nodes and the

average node energy of the three schemes for 60% multiple mixed hotspots. Recall that we

measure the average node energy in terms of energy units, where the unit is the amount of

energy needed to send (or receive) one sensor reading. We use the average node energy as an

indication for the energy consumption overhead imposed by a scheme on each node in the

sensor network. On the other hand, node deaths give an important indication on the QoS

improvement that any scheme achieves. The first figure shows that KDDCS at least doubles

the number of dead nodes compared to DIM. However, the number of dead nodes for DIM

is at most 3% of the network size (for all network sizes). This means that the performance

degradation imposed by KDDCS in terms of additional dead nodes is relatively low (around

3% of the network size). The second figure shows that KDDCS continues to load-balance

energy consumption across a larger number of network nodes and thus decreases the average

node energy. Basically, the energy consumption overhead imposed by KDDCS is around

35% more than that of DIM. Both figures show that KDDCS incurs a moderate energy

consumption overhead compared to the other two schemes in the case of multiple mixed

hotspots. We achieved similar results for hotspots of sizes ranging from 50% to 100%.

Overall, KDDCS achieves very good QoD performance improvements of around 95% over

DIM with a moderate energy consumption overhead of around 35%.

5.8.1.4 Moving Mixed Hotspots The following three results compare the KDDCS

performance to those of DIM and ZS/ZP/ZPR for moving mixed hotspots. We conduct our

203

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 50 100 150 200 250 300 350 400 450 500

D
ea

d
N

od
es

Network Size

DIM/DIM
(ZS-ZP-ZPR)/DIM

KDDCS/DIM

(a) Dead Nodes for 60% Multiple Mixed Hotspots

 0

 0.5

 1

 1.5

 2

 50 100 150 200 250 300 350 400 450 500

A
vg

 E
ne

rg
y

Le
ve

l (
en

er
gy

 u
ni

ts
)

Network Size

DIM/DIM
(ZS-ZP-ZPR)/DIM

KDDCS/DIM

(b) Average Node Energy for 60% Multiple Mixed Hotspots

Figure 83: KDDCS: Energy Consumption Graphs vs Multiple Mixed Hotspots

204

study in terms of QoD (R1), Load Balancing (R2), and energy consumption (R3).

R1. QoD: Figures 84(a) and 84(b) compare the performance of the three schemes in terms

of dropped events and average node storage for an 80% moving mixed hotspot. Recall that we

use the number of dropped events as a direct indication of the QoD of any scheme. A scheme

dropping less readings is achieving a better data persistence. This helps such a scheme to

provide more accurate and complete query answers. Consequently, this would improve the

scheme’s QoD. The first figure shows that KDDCS improves QoD by around 95% over DIM.

The second figure shows that KDDCS achieves a 30% higher average node storage than DIM.

This shows that KDDCS highly increases the data persistence as compared to the two other

schemes. We achieved similar results for hotspots of sizes up to 80%.

R2. Load Balancing: Figure 85 shows the number of full nodes of the three schemes

for an 80% moving mixed hotspot. Recall that a full node is a one storing the maximum

storage capacity. The number of full nodes represents an indication on the capability of any

scheme to load balance the hotspot data among a larger number of sensor nodes. The figure

shows that KDDCS multiplies the number of full nodes between 4 and 5 times compared to

DIM. This shows the high load balancing gain that KDDCS achieves compared to the other

two schemes by highly increasing the number of nodes participating in the storage of the

hotspot data and consequently increasing the overall number of full nodes in the network.

The important observation is that the number of full nodes for KDDCS is linear in the

network size while it is almost constant for the other two schemes. We achieved similar

results for hotspots of sizes up to 80%.

R3. Energy Consumption: Figure 86(a) and 86(b) compare the dead nodes and

the average node energy of the three schemes for 80% and 60% moving mixed hotspot,

respectively. Recall that we measure the average node energy in terms of energy units,

where the unit is the amount of energy needed to send (or receive) one sensor reading. We

use the average node energy as an indication for the energy consumption overhead imposed

by a scheme on each node in the sensor network. On the other hand, node deaths give

an important indication on the QoS improvement that any scheme achieves. The figures

show that KDDCS incurs a moderate energy consumption overhead in terms of a moderate

increase in the number of dead nodes (ranging from twice to two and half times that of

205

 0

 0.5

 1

 1.5

 2

 50 100 150 200 250 300 350 400 450 500

D
ro

pp
ed

 E
ve

nt
s

Network Size

DIM/DIM
(ZS-ZP-ZPR)/DIM

KDDCS/DIM

(a) Dropped Events for an 80% Moving Mixed Hotspot

 0

 0.5

 1

 1.5

 2

 50 100 150 200 250 300 350 400 450 500

A
vg

 S
to

ra
ge

 L
ev

el
 (

re
ad

in
gs

)

Network Size

DIM/DIM
(ZS-ZP-ZPR)/DIM

KDDCS/DIM

(b) Average Node Storage for an 80% Moving Mixed Hotspot

Figure 84: KDDCS: QoD Graphs vs Moving Mixed Hotspots

206

 0

 1

 2

 3

 4

 5

 6

 50 100 150 200 250 300 350 400 450 500

N
um

 o
f F

ul
l N

od
es

Network Size

DIM/DIM
(ZS-ZP-ZPR)/DIM

KDDCS/DIM

Figure 85: KDDCS: Number of Full Nodes for 80% Moving Mixed Hotspots

DIM) and a decrease in the average node energy by around 35%. As for the number of dead

nodes of DIM, it is at most 3% of the network size (for all network sizes). Thus, KDDCS

degrades the performance (in terms of dead nodes) by at most 4.5% of the network size.

This can safely be considered as a small to moderate overhead depending on the network

size. The important observation about the second figure is that KDDCS continues to load-

balance energy consumption across the different sensor nodes of the network. This results

in decreasing the average node energy of the sensor nodes across the network. We achieved

similar results for hotspots of sizes up to 80%.

In conclusion, KDDCS achieves a high QoD performance gain of around 95% over DIM

at the cost of introducing a moderate energy consumption overhead on the sensor network

of around 35%.

5.8.1.5 Discussion In this section, we studied the KDDCS performance for single, mul-

tiple, and moving mixed hotspots. Overall, KDDCS is highly able to cope with mixed

207

 0.5

 1

 1.5

 2

 2.5

 3

 50 100 150 200 250 300 350 400 450 500

D
ea

d
N

od
es

Network Size

DIM/DIM
(ZS-ZP-ZPR)/DIM

KDDCS/DIM

(a) Dead Nodes for an 80% Moving Mixed Hotspot

 0

 0.5

 1

 1.5

 2

 50 100 150 200 250 300 350 400 450 500

A
vg

 E
ne

rg
y

Le
ve

l (
en

er
gy

 u
ni

ts
)

Network Size

DIM/DIM
(ZS-ZP-ZPR)/DIM

KDDCS/DIM

(b) Average Node Energy for a 60% Moving Mixed Hotspot

Figure 86: KDDCS: Energy Consumption Graphs vs Moving Mixed Hotspots

208

Table 8: KDDCS Performance (Relative to DIM) for Mixed Hotspots

Hotspot Type QoD Improvements QoS Overheads

Single Static Hotspots 75% 18%

Multiple Static Hotspots 95% 29%

Moving Hotspots 95% 35%

hotspots of different types and sizes. KDDCS scores good QoD achievements for the differ-

ent hotspot types and sizes while introducing a tolerable energy consumption overhead on

the sensor nodes across the network. For single hotspots, QoD improvements are around

75% over DIM while energy consumption overheads are 18% over DIM. For multiple static

hotspots, QoD improvements are around 95% over DIM while energy consumption overheads

are around 29% DIM. For moving hotspots, QoD improvements are around 95% over DIM

while energy consumption overheads are 35% over DIM. Unlike ZS/ZP/ZPR, the benefits of

KDDCS becomes quite obvious for multiple and moving mixed hotspots. Table 8 summarizes

the KDDCS performance for mixed hotspots.

5.9 KDDCS ROBUSTNESS TO PACKET LOSS

To make our algorithms resilient to packet loss, a simple ACK scheme can be adopted. In

this scheme, ACKs are requested for reading insertions as well as for queries. For insertions,

the scheme is obvious as the ACK would be required from the corresponding storage node

(as well as the replica node if replication is applied). Considering queries, the query issuer

receives ACKs from all the nodes responsible for storing the sub-zones of the queried zone.

In case one of the ACKs is not received, the query can be resent to that node or to its replica.

209

5.10 LEARNED LESSONS FROM THE EXPERIMENTAL EVALUATION

In this section, we will discuss some of the insights than can be taken from the experimental

evaluation of KDDCS scheme. Our main goal is to study the compare the benefits of imple-

menting our scheme to those of implementing the ZS/ZP/ZPR scheme and also compare the

implementation overheads of both schemes. Also, we would like to determine the network

and hotspot settings fitting for each of the schemes.

Before discussing the learned lessons out of our experimental evaluation, we summarize

our experimental results in the following points:

1. KDDCS scores good QoD achievements for the different hotspot types and sizes while

introducing a tolerable energy consumption overhead on the sensor nodes across the

network.

2. KDDCS energy consumption performance is almost the same as that of DIM in the case

of uniform loads.

3. For single hotspots, QoD improvements are around 75% for single storage hotspots, 13%

for single query hotspots, and 75% for single mixed hotspots while energy consumption

overheads are 1%, 2.5%, and 18% respectively.

4. For multiple static hotspots, QoD improvements are around 25% for multiple storage

hotspots, 87% for multiple query hotspots, and 95% for multiple mixed hotspots while

energy consumption overheads are 1%, 15%, and 35% respectively.

5. For multiple dynamic (moving hotspots), QoD improvements are around 60% for moving

storage hotspots, 35% for moving query hotspots, and 95% for moving mixed hotspots

while energy consumption overheads are 13%, 3%, and 35% respectively.

6. The performance improvements of KDDCS scale proportionally with the network size.

Table 9 summarizes the KDDCS performance for the different hotspot types.

In general, experiments have shown that the KDDCS achievements in terms of improving

the QoD by far exceed those of ZS/ZP/ZPR when implemented on top of DIM. This is

basically valid for most hotspot types and sizes. Furthermore, KDDCS showed very good

210

Table 9: KDDCS Performance (Relative to DIM) for the Different Hotspot Types

Hotspot Type QoD Improvements QoS Overheads

Storage Hotspots

Single Static Hotspots 75% 1%

Multiple Static Hotspots 25% 1%

Moving Hotspots 60% 13%

Query Hotspots

Single Static Hotspots 13% 2.5%

Multiple Static Hotspots 87% 15%

Moving Hotspots 35% 3%

Mixed Hotspots

Single Static Hotspots 75% 18%

Multiple Static Hotspots 95% 35%

Moving Hotspots 95% 35%

results in load balancing multiple hotspots, both static and dynamic, unlike ZS/ZP/ZPR

whose achievements were limited for such hotspot types.

Experiments have also shown that the energy consumption overhead of KDDCS is fairly

varying for the different hotspot types. In the case of single hotspots, KDDCS does not

impose a remarkable energy consumption overhead on the sensor network. In fact, the

KDDCS energy consumption overhead is in the same range of that imposed by ZS/ZP/ZPR.

It is better for single storage and single query hotspots and a little bit higher for the case

of multiple mixed hotspots. The case is a little bit different for multiple hotspots (mainly

multiple query and multiple mixed hotspots) as the energy consumption overheads imposed

by KDDCS is a little bit higher than those of ZS/ZP/ZPR. However, it should be noted

that we test the worst case scenario for KDDCS, in which KDDCS starts with a uniform

assignment of zones to sensor nodes. This should not be the version to be used in case

large-scale hotspots are expected to arise in pre-known attribute ranges (known prior to the

network operation). Starting with a more skewed assignment of zone responsibilities to sensor

nodes would highly reduce the energy consumption overhead imposed by KDDCS as it will

reduce the scale on which KDTR is applied at the early phases of the network operation. Our

211

experimental results shows that using a pre-known distribution could improve the KDDCS

energy consumption overheads by large amounts that could reach to 80% in some cases.

Another important observation is the effect of the value of the h threshold on the KDDCS

performance. Though we tested a range of values for the rebalancing ratio h, our results

showed that changing the value of h did not have a major effect on the KDDCS performance.

This can be explained by the type of hotspots that we simulated. As our hotspots usually

fall in relatively small subranges of the possible attribute ranges, satisfying the rebalancing

criteria of the KDTR algorithm only requires a small h value in most of the cases. Our

experiments showed that this results in almost no difference in performance between h values

ranging from 1.5 to 3. The effect of h should be more obvious in the cases where the skewness

of the hotspot distribution follows a more smooth distribution, e.g., a normal distribution

with relatively large variance.

We now discuss the settings in which KDDCS excelled the most. As for network sizes, the

KDDCS performance was similar to that of DIM for small networks (less than 100 nodes).

The KDDCS advantage is higher for larger networks with the improvements increasing with

the network size. As for hotspot sizes, KDDCS, unlike ZS/ZP/ZPR, had the ability to deal

with hotspots of different sizes. In fact, the actual hotspot size does not really matter as

KDDCS deals with the hotspots very early during their formation. This is why KDDCS can

be considered able to avoid hotspots of different sizes. Concerning sensor network applica-

tions, KDDCS is best suited for investigation sensor networks where the value of the sensor

data is relatively higher than that of the sensor energy.

In general, KDDCS is a load balancing scheme that is able to cope with all types of

hotspots and network sizes. Its application is very encouraged for networks that are expected

to frequently face hotspots of different types, lengths, and sizes.

5.11 SUMMARY

In this chapter, we presented KDDCS, a globally load-balanced DCS scheme whose main

design goal is to avoid the formation of hotspots of the different types, including storage,

212

query and mixed hotspots. KDDCS avoids hotspots, i.e., successfully deals with them in

their early stages of formation, by continuously load balancing the underlying k-d tree.

Furthermore, we proposed a new routing algorithm, namely the Logical Stateless Routing,

for routing events from the generating sensors to the storage sensors. LSR is competitive with

the popular GPSR routing. Our experimental evaluation has confirmed that our proposed

KDDCS both increases the QoD in the different hotspot cases without adding a large energy

consumption overhead on the sensor network. KDDCS does not depend on the storage or

the energy capacity distribution in the sensor network.

213

6.0 CONCLUSIONS

In this chapter, we conclude our dissertation by briefly presenting the summary of our

contributions. We also highlight our future work, including both the possible extensions to

our thesis work as well as the future research directions related to our work.

6.1 SUMMARY OF CONTRIBUTIONS

In this dissertation, we address the hotspot problems in the Data-Centric Storage (DCS) sen-

sor network model by means of load balancing. The thesis identifies two important problems

in sensor networks implementing DCS, namely storage hotspots and query hotspots. Both

problems represent different forms of data skewness in the sensor network. Storage hotspots

arise because of the skewness of the distribution of the sensor reading values. This skewness

results in assigning a large amount of sensor readings for storage to a small amount of sensor

nodes. Query hotspots represent a skewness in data popularity where a large percentage of

the query load ask for the data stored in a small subset of the sensor nodes. Both problems

primarily downgrade the Quality of Data (QoD) of the sensor network with a secondary

negative effect on the Quality of Service (QoS) of the sensor network.

Through the design, development, and evaluation of a set of simple easy-to-implement

distributed load balancing schemes, the thesis is supported. The key contribution of this

thesis is the concept of data migration and using it in load balancing both storage and query

hotspots. The usage of the data migration concept comes in two types of schemes: local and

global. Local schemes act as hotspot detection and decomposition schemes. Once a hotspot

is detected by any of these schemes, a portion of the hotspot data is migrated away from the

214

hotspot area as a local remedy without disturbing the underlying index structure of the DCS

scheme. In this direction, we present three schemes to deal with storage, query, and mixed

hotspots. These schemes are Zone Sharing (ZS), Zone Partitioning/Zone Partial Replication,

and ZS/ZP/ZPR (resulting from the mix of the first two schemes), respectively. Our local

schemes are highly characterized by their low implementation and messaging overheads.

The second type of schemes that we present in this thesis are global schemes. We mainly

present the K-D tree based Data-Centric Storage (KDDCS) scheme to globally load-balance

all types of hotspots, including storage, query, and mixed hotspots. Load balancing in

KDDCS is based on defining and distributively solving a theoretical problem that we call

the Weighted Split Median problem. Continuously solving the problem in a distributive

manner guarantees that the different subtrees of the k-d tree will remain balanced, to a

constant factor. One advantage for our schemes, both local and global, is that they work

well for all networks, regardless of the distribution of node storage capacities.

Experimental evaluation, through extensive simulations, showed the efficiency of our

schemes to deal with hotspots of different types. Due to their heuristic nature, local schemes

are best suited for decomposing single isolated static hotspots of small to medium sizes.

Their implementation on top of the DIM scheme achieves moderate QoD improvements while

imposing a slight energy consumption overhead on the sensor network. On the other hand,

global schemes are able to avoid the formation of hotspots, i.e., load-balance the hotspot

very early in its formation. Experiments show the KDDCS capability to effectively cope

with all hotspot settings, including single and multiple hotspots (both static and dynamic),

as well as all hotspot sizes. KDDCS achieves high QoD improvements for all hotspot types

at the cost of introducing a moderate energy consumption overhead on the sensor network.

The contributions of our thesis are both theoretical and practical. The main theoretical

contribution of this thesis lies in presenting a new k-d tree distributed rebalancing algorithm,

namely the K-D Tree Rebalancing (KDTR) algorithm, based on defining and distributively

solving the Weighted Split Median problem. The running time of the KDTR algorithm is

within a poly-log factor of the diameter of the network. The number of messages any sensor

has to send, as well as the bits in those messages, is poly-logarithmic in the number of

sensors. Although presented in the context of sensor networks, KDTR can easily be used

215

in load balancing k-d trees used in general computer systems and networks, e.g. distributed

systems, peer-to-peer networks [49], and mobile ad-hoc networks.

On the practical level, the schemes presented in our thesis work offer important guidelines

and easy-to-implement tools to help network designers and operators in successfully dealing

with the hotspot problem according to its expected severity. We highlight the practical

contributions of our thesis as well as the usage of each of them in the following points:

• Local hotspot detection and decomposition schemes developed in our thesis, i.e., ZS,

ZP/ZPR, and ZS/ZP/ZPR, are recommended for sensor networks with low hotspot for-

mation probability, low data urgency, long expected network lifetime, and with the en-

ergy value relatively higher than that of data, e.g., sensor networks for regular monitoring

applications.

• The KDDCS developed in this thesis is recommended for sensor networks with high

hotspot formation probability, high data urgency, short expected network lifetime, and

relatively low energy value (compared to data), e.g., sensor networks for disaster manage-

ment. KDDCS is considered an important step towards developing a robust hotspot-free

DCS scheme.

• In addition to load balancing, the KDTR algorithm allows KDDCS to naturally take

care of node deaths through continuous load balancing. Thus, KDTR acts as a first level

of fault tolerance for KDDCS. This advantage can be exploited when exporting KDTR

to other contexts, e.g., peer-to-peer networks.

• As part of the KDDCS scheme, we developed a new virtual routing scheme, namely the

Logical Stateless Routing (LSR) scheme, for the routing of events from their generating

sensors to their storage sensors in the KDDCS scheme. LSR is competitive with the

GPSR routing scheme. Due to the continuous load balancing in KDDCS, LSR has the

potential of following different routing paths for identical requests arising in different

points in time. LSR can easily be used in general networking applications, both wired

and wireless.

Finally, in the context of our disaster management application, our recommendation is

to adopt the KDDCS scheme as the solution for hotspots of all types. KDDCS provides the

216

best possible trade between QoD and QoS when the quality and timeliness of information

needed to determine how to save lives is more important than the energies and lifetimes of

sensor nodes.

6.2 FUTURE WORK

In this section, we highlight possible experimental studies that we plan to conduct for the

different schemes presented in this dissertation in the near future. The main goal of these

experiments is to further study the benefits of our schemes when applied in new contexts,

namely on sensor network testbeds, on heterogeneous sensor networks, and on sensor net-

works experiencing failures, respectively. In the second part of this section, we discuss some

of the future research directions that are complementary to our thesis work.

6.2.1 Future Experimental Studies of the Thesis Schemes

6.2.1.1 Experimenting on Sensor Network Testbeds To fully test the performance

of our schemes in real-world settings, we plan to implement them on one of the currently

available wireless sensor network testbeds, e.g., MoteLab [39]. We will also try to find real

traces for the different experiments conducted in this dissertation.

6.2.1.2 Experimenting on Heterogeneous Networks When evaluating the local

schemes presented in this thesis, our experimental evaluation assumed a homogeneous net-

work of sensor nodes where the storage responsibility is shared among all nodes. Depending

on the sensor types presented in Chapter 3, our assumed sensor network can be either a

network of motes or a network of microservers. However, a typical real-world sensor network

can consist of both, microservers and motes. The possible new features of heterogeneous net-

works are as follows. First, the storage responsibility in heterogeneous networks can solely

assigned to microservers. Second, the energy capacities are not the same among all nodes

in this network type. Instead, possibly rechargeable microservers have much more available

217

energy than that of motes. It is clear that our schemes can easily be applied in heterogeneous

sensor networks with no major changes needed. In this section, we describe how our schemes

can be applied in heterogeneous networks and highlight the changes needed for our schemes

to be fit for such networks.

ZS/ZP/ZPR for Heterogeneous Networks: In this section, we present the changes

needed for the ZS/ZP/ZPR scheme to be applied in heterogeneous networks. This includes

the changes applied to both the ZS and the ZP/ZPR schemes to be separately or collectively

applied in heterogeneous networks. The fact that microservers are the ones responsible

for storage makes heterogeneous networks look like overlay networks where a backbone of

microservers is available in the network and responsible for storing readings and answering

queries while the rest of the network is composed of motes responsible for sensing information.

Furthermore, the microservers should be able to communicate among each other using the

802.11 radio rather than using the 802.5 one, thus, without involving motes. We use these

two important facts in our discussion below.

We start by discussing the changes needed to be applied to the DIM scheme for handling

heterogeneous networks. At the beginning of the network operation, each microserver needs

to know its direct neighbors. Furthermore, the storage responsibility of the attribute ranges

should be partitioned among microservers only. Thus, the address assignment of the DIM

scheme is only applied among microservers. At the end of this process, each microserver has

a bit-code address representing its zone responsibility.

To route events from motes to the corresponding microservers, each mote needs to be

first associated with one of the zones. Thus, at the end of the address assignment phase,

each microserver initiates a broadcast message notifying surrounding motes with its address.

Each mote associates itself with the closest microserver to its geographical position. To route

any event, the mote uses its address as well as the attribute values of the event to determine

the correct direction to which the event should be routed exactly as in the DIM scheme.

We now describe how to apply our schemes to this modified DIM version. Periodically,

each microserver compares its storage with its direct neighboring microservers. In case a

hotspot arises, it is dealt with using one of our local schemes. Each of the microservers

involved in a ZS or ZP then updates the SZLs or TZLs of its neighboring microservers as

218

well as those of its neighboring motes. To route an event, a node first checks its zones’ list

to determine whether the event’s storage responsibility has been changed or no. If so, the

event is routed to its new storage sensor. Otherwise, it is routed to its original one.

In the future, we plan to experimentally study the performance of ZS/ZP/ZPR on het-

erogeneous networks. It is important to note that this modified version of our ZS/ZP/ZPR

scheme relies on the important facts that microservers have much more available storage

and energy than motes and that event relocations will not involve any motes. However, in

case these assumptions are not valid, the energy consumption load imposed on motes due to

the event relocation process applied by our schemes may become much more dangerous on

both the QoD and QoS of the network compared to the benefits achieved from applying our

schemes. In such a case, living with the dangers of hotspots may be a better option.

KDDCS for Heterogeneous Networks: Our KDDCS experimental evaluation assumed

a homogeneous network of sensor nodes where the storage responsibility is shared among

all nodes. To handle heterogeneous networks, we follow the exact procedure used in the

previous subsection to adapt our local hotspot detection and decomposition schemes to

heterogeneous networks composed of a mix of microservers and motes. Our underlying

assumption is that microservers are the only nodes responsible for storage and should be able

to communicate among each other using the 802.11 radio rather than using the 802.5 one,

thus, without involving motes. Thus, event relocations among microservers will not involve

any motes. As the microservers’ storage capacities are much higher than those of motes,

this assumption seems mandatory for using the data migration concept in heterogeneous

networks. Otherwise, applying the KDTR will considerably affect the QoS of the network

as it will add a tremendous relative energy consumption burden on motes. We describe how

KDDCS will work.

At the beginning of the network operation, each microserver needs to know its direct

neighbors. Furthermore, the storage responsibility of the attribute range should be par-

titioned among microservers only. Thus, the KDDCS logical address assignment is only

applied among microservers. At the end of this process, each microserver has a bit-code

address representing its zone responsibility. To route events from motes to the correspond-

ing sensors, each mote needs to be first associated with one of the zones. Thus, at the end

219

of the address assignment phase, each microserver initiates a broadcast message notifying

surrounding motes with its address. Each mote associates itself with the closest microserver

to its geographical position. Once a mote associates itself with a specific microserver, it

inherits the full tree path of this microserver and stores all the pertinent information stored

by this microserver. To hash and route any event, the mote uses its pertinent information

as well as the attribute values of the event to determine the correct direction to which the

event should be routed exactly as in the original KDDCS scheme.

Periodically, the KDTR algorithm is applied among microservers. In case a tree rebalanc-

ing takes place, each of the microservers of the rebalanced tree broadcasts its changed set of

bisectors. Whenever a mote associated to one of these microservers listens to the broadcast

message of this microserver, it updates its pertinent information with the new values. Hence,

the pertinent information of all motes are kept up-to-date with those of the microservers at

the end of the KDTR algorithm. This ensures the correct hashing and routing of events to

their corresponding storage sensors.

In the future, we plan to experimentally study the performance of KDDCS on heteroge-

neous networks.

6.2.1.3 Experimenting on Sensor Networks Experiencing Failures Any sensor

network can be affected by two major types of failure: node failures and packet failures.

Node failures mainly occur due to lack of energy, while the main reason of packet failures

are geographical obstacles or atmospheric variations.

Studying the Effect of Failures on ZS/ZP/ZPR: To understand the effect of failures on

ZS/ZP/ZPR, we first discuss the techniques used by DIM to handle different failure types.

As for packet failures, DIM deals with them by simply requiring ACKs for the different events

(insertions and queries) and resending the packets corresponding to the missing ACKs when

ACKs do not reach the sender after a deadline. To cope with node failures, DIM implements

two types of replication. The first type is local replication, which consists of replicating each

zone in the node responsible for the one’s complement of its bit-code. This replication deals

with random node failures. The second type is mirror replication. It consists of replicating

each event in its backup node which is the node that takes the responsibility of the event

220

zone in case the current node responsible for the zone fails. This replication is for resilience

to concurrent failures of geographically contiguous nodes. In general, replication increases

the effect of a hotspot as it means that any storage and/or query hotspot arising in a given

zone z will arise in more than one geographical locations depending on the replication level

applied by DIM.

We now move on to the effect of failures on our local hotspot detection and decomposition

schemes. As our schemes mainly focus on improving the QoS and QoD of DIM, they can be

affected by node failures much more than being affected by packet failures. This is simply

because the failure of a node causes the loss of its storage. In case this node already falls in

a hotspot area, its failure wastes the benefits of the hotspot decomposition in case this node

was involved in a ZS process, a ZP process, or a ZPR process. Additionally, the failure of this

node decreases the number of available nodes for sharing the hotspot load, thus, increases

the dangers of hotspots and reduces the ability of our schemes to decompose such hotspots.

As for packet failures, the addition of our schemes on top of DIM does not affect the DIM’s

ACK resending process. Additionally, the existence of packet failures does not affect the

performance of our schemes against hotspots compared the basic DIM scheme experiencing

the same packet failures.

To cope with node failures, our schemes can take benefit of the DIM’s replication schemes.

Whenever a hotspot arises in a given zone z, DIM’s replication causes the hotspot to arise

in the node responsible for storing z as well as the nodes responsible for storing the replicas

of z. Though this replication can cope with node failures, its implementation causes the bad

effects of hotspots to be multiplied. Our schemes can deal with this increased negative effect

of hotspots by applying the zone sharing/partitioning to the original storage node as well as

to the replica nodes. In such a case, the SZLs and/or the TZLs are updated in the neighbors

of the original node as well as in the neighbors of its replicas. Whenever a reading is inserted

in a shared (or partitioned) zone, it goes to the new primary node storing the zone (the

donor, the migrator, or the receiver, depending on the zone address). Whenever a query is

issued, it can be answered by the closer node to the query issuer, either the new primary

zone copy or the new replica nodes. Thus, applying our schemes to the replica nodes keeps

the replication positive effect of successfully dealing with node failures while reducing the

221

multiplied hotspot burden caused by replication. In the future, we plan to experimentally

study this node failure handling technique and its effect on the performance of our local

schemes.

Studying KDDCS Resilience to Node Failures: Our KDDCS scheme implicitly as-

sumed a failure-free network. This assumption is not completely realistic in the context of

sensor networks as failures can occur due to different physical reasons, e.g. energy consump-

tion. A failure of a node can cause the loss of its data which harms the QoD of the whole

scheme. In this section, we present a simple replication scheme that makes KDDCS resilient

to node failures. We describe our replication scheme below.

Our scheme is based on the idea of storing any reading in a node whose bit-code is

a function of the original reading bit-code. As the bit-code of any reading in our scheme

is dynamic and formed in a hop-by-hop manner based on the value of the bisectors in the

intermediate tree nodes, the replica node cannot be obtained based on applying this function

of the reading bit-code (as DIM for example applies a 1’s complement on the static bit-code of

each reading). Instead, our replication scheme uses the fact that the bounds of the attribute

ranges are known to all nodes. Based on this piece of information, it is easy to get the

complement of each reading corresponding to the reading with complement attributes to

original attributes. Hence, the original reading is sent for storage in the node responsible for

storing this complement reading.

Using this simple replication scheme, KDDCS can handle negative effects resulting from

node failures. Once a query is issued to a failed node, the query can be redirected to the

node(s) responsible for storing the failed node’s attribute range. In the future, we plan to

experimentally study this node failure handling technique and its effect on the performance

of our KDDCS scheme.

6.2.2 Future Directions

We now move on to discuss some of the research directions that complement the work

presented in this thesis and that we plan to work on in the near future. We also highlight

the initial results we have for some of the studies we already pursued in these directions.

222

We believe that these studies, together with our thesis work, will have the great effect to

pave the road towards building a robust in-network storage scheme that fits a variety of

applications/workloads.

6.2.2.1 Load Balancing Query Hotspots Using Query Semantics In this thesis,

we concentrated on decomposing query hotspots through data migration associated by local

or global rebalancing of the DCS index structure. This can be considered as one way for

solving the problem. Another technique for solving the problem can be through the usage

of the query semantics of the different queries forming the hotspot.

In a preliminary work [6], we presented three content-based schemes to detect and de-

compose query hotspots in sensor networks. We assume the underlying sensor network

implements a point-to-point routing scheme and is accessible by multiple base stations (ei-

ther static or dynamic). A query is issued from a base station to a nearby sensor. This

query issuer sensor is then responsible for forwarding the query to the data source(s), the

sensor(s) addressed by the query. Results are then forwarded to the issuer that, in its turn,

answers the base station(s).

To decompose query hotspots, our schemes avoid duplication in forwarding results of

similar queries. Our proposed solution is composed of two phases: local hotspot detection,

and hotspot decomposition. The hotspot detection is solely determined by each data source

sensor. At its high level, a sensor keeps track of the recent queries it answered (or currently

answering), together with the issuer(s) of each of these queries. The sensor detects a possible

hotspot when two (or more) queries intersect. Based on the nature of the intersection and

the location of the issuers (physical or logical), the hotspot decomposition phase consists of

one of three solutions: two-phase query processing, three-phase query processing, and query

partitioning.

Our first load-balancing scheme, two-phase query processing, is based on detecting that

two issuers are asking for the same data simultaneously or within a small time duration. The

idea is to avoid duplication in sending results by answering one of the issuers and asking it to

forward the results to the second issuer. The selection of the issuer to send results to depends

on the approximate positions of the two issuers with respect to the data source. This scheme

223

is beneficial when the distance between the two issuers is smaller than the distance between

each one of them and the data source.

When the two issuer nodes and the data source form an equilateral triangle, our three-

phase query processing scheme sends query results to an intermediate destination which then

forwards received results to both issuers.

Our third load-balancing scheme, namely query partitioning, considers load-balancing

when a query intersects with previous queries answered by the same data source. In general,

two or more queries simultaneously addressing a data source may intersect among each other

in part of their results, and at the same time, may intersect with one or more queries that

recently addressed the same data source. In such a case, the data source detects the two types

of intersections. For the first type of inter-query intersection, the data source applies either

the two-phase or the three-phase query processing technique depending on the locations of

the query issuers (as described in the previous two sections). For the second intersection

type, the data source redirects the intersecting part of the query to be answered by the most

recent issuer of that part. This can be done through sending a single packet to this issuer, x.

Then, x acts like a new data source receiving a new query and processing it using data cached

in its memory. In case the query result is to be sent to more than one issuer of the original

query, x applies either two-phase or three-phase query processing. Otherwise, the result is

forwarded to the only issuer requesting it. Assuming that a query is usually composed of

more than one packet, this scheme decreases the load on data sources and maximizes the

benefit of caching query results.

We show through extensive simulations, that the major advantages achieved by applying

our schemes on top of geographic routing protocols are:

• Load balancing query hotspots and thus increasing the network lifetime and throughput.

• Improving the QoD offered by the sensor network.

• Maintaining a comparable level of QoS and real-time guarantees to that offered by the

underlying routing protocol.

In general, this work can be considered as one step towards the full usage of the semantics

of queries forming the query load in order to load-balance the query access frequencies among

224

the different sensor nodes in the sensor network. In the future, we’re interested in developing

schemes which take benefit of both, data migration and query semantics, in order to avoid

the formation of query hotspots in DCS sensor networks.

6.2.2.2 Spatio-Temporal Data-Centric Storage for Real-Time Sensor Applica-

tions In our dissertation, we mainly focused on sensor networks whose query load is solely

composed of range queries. However, geo-centric queries represent another major type of

queries that will be heavily accessing sensor networks in the near future. It is widely believed

that sensor networks will shortly consist of globally deployed sensors providing real-time geo-

centric information to users. Particularly, users with mobile devices will issue ad-hoc queries

usually from within, or nearby, the queried area. An example of sensor clusters is the Bronx

Zoo cluster. In this application, motes are deployed in the Bronx Zoo for habitat monitor-

ing [14,62,60,15]. The park visitors are allowed to use their mobile devices to query sensors

for real-time information about animals, their behaviors, the climate they live in, etc.

It is clear that the in-network data-storage for this application has different requirements

than those of our disaster management application due to the different nature of queries and

their geographic locality that was not a characteristic of our ad-hoc queries. Load balancing

continues to be an important goal to shoot for while building an in-network data-storage

scheme for this application. Recall that, in a typical DCS scheme, a readings-to-sensors

mapping function assigns the responsibility for storing the reading of any sensor to a storage-

sensor based on the value of that reading. As our queries are geo-centric, we realize that

reading-based indexing is not a good fit for our model as processing a geo-centric query will

require flooding the whole cluster. In a recent work [7], we present the Spatio-Temporal

Data-Centric Storage scheme (STDCS), a novel DCS scheme for real-time geo-centric sensor

network applications. In STDCS, data indexing is based on the sensor locations rather than

the reading values. Hence, STDCS presents a sensors-to-sensors mapping instead of the

previous readings-to-sensors mappings. Our scheme embeds the sensor geographic locations

into the leaves of a k-d tree [11] and assigns virtual addresses to sensors based on their

positions in the k-d tree. The virtual address of each sensor is used as an input to the

mapping function as to determine its storage-sensor. Any point-to-point routing scheme can

225

be then used to route readings to their storage-sensors, e.g. the Greedy Perimeter Stateless

Routing protocol (GPSR) [32]. Query processing can be easily done locally and distributively

by the sensors in a hop-by-hop manner.

Our major design goal for STDCS is load-balancing. Traffic skewness may easily occur in

our applications due to the time-varying number of users and the hard task of expecting their

behaviors at any point in time. The main skewness source in our model lies in query hotspots

that may arise because of the difference in popularity between the readings of different sensor

nodes due to the reading type, location, time, etc. To maintain load balancing, we present

the novel concept of spatio-temporal data indexing, where the mapping of readings to their

storage-sensors depends not only on the location of the generating sensor, but also on the

generation time of the reading. Spatio-temporal indexing balances the load, in terms of

query accesses, among sensors with no dependence on the query distribution imposed on

the cluster. Additionally, we present a separate load balancing scheme to adaptively detect

and decompose query hotspots. This scheme is based on the dynamic adjustment of the

parameters of the spatio-temporal data indexing.

Through extensive experimental evaluation, we show that the advantages of STDCS are:

• Highly outperforming both local storage and spatial indexing when facing query hotspots.

• Minimizing load balancing overhead by adaptively adjusting the needed load balancing

level based on the detected skewness level of the hotspot.

In summary, STDCS is different from previous proposals in two aspects. First, it is

based on the novel idea of using a temporally evolving spatial indexing scheme to balance

querying load among sensors. Furthermore, STDCS uses dynamic mechanisms for query

hotspot detection and decomposition.

An important question to be asked is whether it is possible to build a unified in-network

data-storage scheme that can efficiently process and answer both, range queries and geo-

centric queries. Another important question is how to maintain load balancing for such

a scheme (with its orthogonal purposes). We believe that building such a scheme will be

considered as a huge step that would quickly put the concept of in-network data-storage into

action in real-world sensor network deployments.

226

BIBLIOGRAPHY

[1] Crossbow mica2, 2003. http://www.xbow.com.

[2] Monte Carlo Statistical Methods. Springer-Verlag, 2004.

[3] Michele Albano, Stefano Chessa, Francesco Nidito, and Susanna Pelagatti. Data centric
storage in non-uniform sensor networks. In Proc. of INGRID, 2007.

[4] Michele Albano, Stefano Chessa, Francesco Nidito, and Susanna Pelagatti. Q-NiGHT:
Adding qos to data centric storage in non-uniform sensor networks. In Proc. of MDM,
2007.

[5] Mohamed Aly, Panos K. Chrysanthis, and Kirk Pruhs. Decomposing data-centric stor-
age query hot-spots in sensor networks. In Proc. of the 3rd Annual International Con-
ference on Mobile and Ubiquitous Systems: Networks and Services (MOBIQUITOUS),
2006.

[6] Mohamed Aly, Anandha Gopalan, and Adel Youssef. Load-balancing query hotspots
for next-generation sensornets. In Proc. of the 50th IEEE Global Communications con-
ference (GLOBECOM), 2007.

[7] Mohamed Aly, Anandha Gopalan, Jerry Zhao, and Adel Youssef. STDCS: Spatio-
temporal data-centric storage for real-time sensor applications. In Proc. of the 5th IEEE
Communications Society Conference on Sensor, Mesh and Ad Hoc Communications and
Networks (SECON), 2008.

[8] Mohamed Aly, Nicholas Morsillo, Panos K. Chrysanthis, and Kirk Pruhs. Zone Sharing:
A hot-spots decomposition scheme for data-centric storage in sensor networks. In Proc.
of he 2nd International VLDB Workshop on Data Management for Sensor Networks
(DMSN), 2005.

[9] Mohamed Aly, Kirk Pruhs, and Panos K. Chrysanthis. KDDCS: A load-balanced in-
network data-centric storage scheme in sensor network. In Proc. of the 15th ACM Con-
ference on Information and Knowledge Management (CIKM), 2006.

227

[10] Seung Jun Baek and Gustavo de Veciana. A scalable model for energy load balancing in
large-scale sensor networks. In Proc. of 4th International Symposium on Modeling and
Optimization in Mobile, Ad Hoc and Wireless Networks, 2006.

[11] J. L. Bentley. Multidimensional binary search trees used for associative searching. In
CACM, 18(9), 1975.

[12] Philippe Bonnet, Johannes Gehrke, and Praveen Seshadri. Towards sensor database
systems. In Proc. of MDM, 2001.

[13] Qing Cao and Tarek Abdelzaher. A scalable logical coordinates framework for routing
in wireless sensor networks. In Proc. of RTSS, 2004.

[14] UC Davis Wildlife Health Center. Southern california puma project, 2004.
http://www.vetmed.ucdavis.edu/whc/scp/.

[15] Panos K. Chrysanthis and Alexandros Labrinidis. Final workshop report of the
NSF workshop on data management for mobile sensor networks (MobiSensors), 2007.
http://mobisensors.cs.pitt.edu/.

[16] Yanlei Diao, Deepak Ganesan, Gaurav Mathur, and Prashant Shenoy. Rethinking data
management for storage centric sensor networks. In Proc. of CIDR, 2007.

[17] Stefan Dulman, Tim Nieberg, Jian Wu, and Paul Havinga. Trade-off between traffic
overhead and reliability in multipath routing for wireless sensor networks. In Proc. of
WCNC, 2003.

[18] Cheng Tien Ee, Sylvia Ratnasamy, and Scott Shenker. Practical data-centric storage.
In Proc. of NSDI, 2006.

[19] Ramez Elmasri and Shamkant B. Navathe. Fundamentals of Database Systems. 2004.

[20] Deborah Estrin. Reliability and storage in sensor networks. Technical report, 2005.

[21] Rodrigo Fonseca, Sylvia Ratnasamy, Jerry Zhao, Cheng Tien Ee, David Culler, Scott
Shenker, and Ion Stoica. Beacon Vector Routing: Scalable point-to-point routing in
wireless sensornets. In Proc. of NSDI, 2005.

[22] Deepak Ganesan, Ramesh Govindan, Scott Shenker, and Deborah Estrin. Highly-
resilient, energy-efficient multipath routing in wireless sensor networks. ACM SIG-
MOBILE Mobile Computing and Communications Review, 5, 2001.

[23] Deepak Ganesan, Sylvia Ratnasamy, Hanbiao Wang, and Deborah Estrin. Coping with
irregular spatio-temporal sampling in sensor networks. In Proc. of HotNets-II, 2003.

[24] Familiar Group. The Familiar project, 2003. http://familiar.handhelds.org/.

228

[25] Longjiang Guo, Yingshu Li, and Jianzhong Li. Event query processing based on data-
centric storage in wireless sensor networks. In Proc. of IEEE Globecom, 2006.

[26] Jason Hill and David Culler. Mica: A wireless platform for deeply embedded networks.
Proc. of IEEE Micro, 22(6):12–24, 2002.

[27] Jason Hill, Robert Szewczyk, Alec Woo, Seth Hollar, David Culler, and Kristofer Pister.
System architecture directions for networked sensors. In Proc. of ASPLOS-IX, 2000.

[28] Chalermek Intanagonwiwat, Ramesh Govindan, Deborah Estrin, John Heidemann, and
Fabio Silva. Directed diffusion for wireless sensor networking. IEEE/ACM Transactions
on Networking (TON), 11, February 2003.

[29] Intel. Intel Stargate, 2002. http://platformx.sourceforge.net.

[30] Holger Karl and Andreas Willig. Protocols and Architectures for Wireless Sensor Net-
works. 2005.

[31] Brad Karp. Challenges in geographic routing: Sparse networks, obstacles, and traffic
provisioning. In Proc. of the DIMACS Workshop on Pervasive Networking, 2001.

[32] Brad Karp and H. T. Kung. GPSR: Greedy perimeter stateless routing for wireless
sensor networks. In Proc. of ACM Mobicom, 2000.

[33] Young-Jin Kim, Ramesh Govidan, Brad Karp, and Scott Shenker. On the pitfalls of
geographic face routing. In Proc. of DIALM-POMC, 2005.

[34] Yongxuan Lai, Yufeng Wang, and Hong Chen. Energy-efficient robust data-centric
storage in wireless sensor networks. In Proc. of DMSN, 2007.

[35] Philip Levis, Nelson Lee, Matt Welsh, and David Culler. TOSSIM: Accurate and scalable
simulation of entire tinyos applications. In Proc. of Sensys, 2003.

[36] Xin Li, Fang Bian, Ramesh Govidan, and Wei Hong. Rebalancing distributed data
storage in sensor networks. Technical report, University of Southern California, 2005.

[37] Xin Li, Young Jin Kim, Ramesh Govidan, and Wei Hong. Multi-dimensional range
queries in sensor networks. In Proc. of ACM SenSys, 2003.

[38] Samuel Madden, Michael J. Franklin, Joseph M. Hellerstein, and Wei Hong. Tag: a tiny
aggregation service for ad-hoc sensor networks. volume 36, pages 131–146, New York,
NY, USA, 2002. ACM Press.

[39] the Electrical Engineering Maxwell Dworkin Laboratory and Harvard University Com-
puter Science Department. MoteLab, 2005. http://motelab.eecs.harvard.edu/index.php.

[40] Katina Michael and Luke McCathie. The pros and cons of RFID in supply chain man-
agement. In Proc. of the International Conference on Mobile Business (ICMB), 2005.

229

[41] Dust Networks. Blue Mote, 2003. http://www.dust-inc.com.

[42] James Newsome and Dawn Song. GEM: Graph embedding for routing and data centric
storage in sensor networks without geographic information. In Proc. of SenSys, 2003.

[43] Seung-Jong Park, Ramanuja Vedantham, Raghupathy Sivakumar, and Ian F. Akyildiz.
A scalable approach for reliable downstream data delivery in wireless sensor networks.
In Proc. of MobiHoc, 2004.

[44] Tri Pham, Eun Jik Kim, and W. Melody Moh. On data aggregation quality and energy
efficiency of wireless sensor network protocols. In Proc. of BROADNETS, 2004.

[45] Joseph Polastre, Robert Szewczyk, and David Culler. Telos: enabling ultra-low power
wireless research. In Proc. of IPSN, 2005.

[46] Ioan Raicu, Loren Schwiebert, Scott Fowler, and Sandeep K.S. Gupta. Local load
balancing for globally efficient routing in wireless sensor networks. International Journal
of Distributed Sensor Networks, 1, 2005.

[47] Ananth Rao, Sylvia Ratnasamy, Christos Papadimitriou, Scott Shenker, and Ion Stoica.
Geographic routing without location information. In Proc. of Mobicom, 2003.

[48] Sylvia Ratnasamy, Brad Karp, Li Yin, Fang Yu, Deborah Estrin, Ramesh Govidan,
and Scott Shenker. GHT: A geographic hash table for data-centric storage. In Proc. of
WSNA, 2002.

[49] Tobias Scholl, Bernhard Bauer, Benjamin Gufler, Richard Kuntschke, Angelika Reiser,
and Alfons Kemper. Scalable community-driven data sharing in e-science grids. Future
Gener. Comput. Syst., 25(3):290–300, 2009.

[50] Rahul C. Shah and Jan M. Rabaey. Energy aware routing for low energy ad hoc sen-
sor networks. In Proc. of IEEE Wireless Communications and Networking Conference
(WCNC), 2002.

[51] Min Shao, Sencun Zhu, Wensheng Zhang, and Guohong Cao. pDCS: Security and
privacy support for data-centric sensor networks. In Proc. of Infocom, 2007.

[52] Mohamed A. Sharaf, Jonathan Beaver, Alexandros Labrinidis, and Panos K. Chrysan-
this. TiNA: A scheme for temporal coherency-aware in-network aggregation. In Proc.
of MobiDE, 2003.

[53] Scott Shenker, Sylvia Ratnasamy, Brad Karp, Ramesh Govidan, and Deborah Estrin.
Data-centric storage in sensornets. In Proc. of HotNets-I, 2002.

[54] Robert Szewczyk, Eric Osterweil, Joseph Polastre, Michael Hamilton, Alan Mainwar-
ing, and Deborah Estrin. Habitat monitoring with sensor networks. Commun. ACM,
47(6):34–40, 2004.

230

[55] Infineon Technologies. EyesIFXv1 node, 2005. http://www.infineon.org.

[56] Ping Xia, Panos K. Chrysanthis, and Alexandros Labrinidis. Similarity-aware query
processing in sensor networks. In Proc. of WPDRTS, 2006.

[57] Ting Yan, Tian He, and John A. Stankovic. Differentiated surveillance for sensor net-
works. In Proc. of the 1st international conference on Embedded networked sensor sys-
tems (SenSys), pages 51–62, New York, NY, USA, 2003. ACM.

[58] Ting Yan, Tian He, and John A. Stankovic. Differentiated surveillance for sensor net-
works. In Proc. of SenSys, 2003.

[59] Yong Yao and Johannes Gehrke. Query processing for sensor networks. In Proc. of
CIDR 2003, 2003.

[60] Demetrios Zeinalipour-Yazti, Panayiotis Andreou, Panos K. Chrysanthis, and George
Samaras. SenseSwarm: a perimeter-based data acquisition framework for mobile sensor
networks. In Proc. of DMSN, 2007.

[61] Demetrios Zeinalipour-Yazti, Song Lin, Vana Kalogeraki, Dimitrios Gunopulos, and
Walid A. Najjar. Microhash: An efficient index structure for flash-based sensor devices.
In Proc. of USENIX FAST, 2005.

[62] Pei Zhang, Christopher M. Sadler, Stephen A. Lyon, and Margaret Martonosi. Hardware
design experiences in ZebraNet. In Proc. of SenSys, 2004.

231

	TITLE PAGE
	COMMITTEE MEMBERSHIP PAGE
	ABSTRACT
	TABLE OF CONTENTS
	LIST OF TABLES
	1. Experimental Setup
	2. Performance of the Different Versions of ZS (Relative to DIM) for Single Storage Hotspots
	3. ZS Performance (Relative to DIM) for Storage Hotspots
	4. ZP/ZPR Performance (Relative to DIM) for Query Hotspots
	5. ZS/ZP/ZPR Performance (Relative to DIM) for Mixed Hotspots
	6. KDDCS Performance (Relative to DIM) for Storage Hotspots
	7. KDDCS Performance (Relative to DIM) for Query Hotspots
	8. KDDCS Performance (Relative to DIM) for Mixed Hotspots
	9. KDDCS Performance (Relative to DIM) for the Different Hotspot Types

	LIST OF FIGURES
	1. Sensor to Bit-code Mapping
	2. Assigning Value Ranges to Sensors
	3. The GPSR Algorithm
	4. Zone Sharing Illustrative Example
	5. Zone Sharing Algorithm
	6. Modified GPSR Algorithm for ZS
	7. QoD Improvements vs QoS Overheads of the Different ZS Versions
	8. ZS: QoD Graphs for a 60% Single Storage Hotspot
	(a). Dropped Events
	(b). Average Node Storage
	9. ZS: Number of Full Nodes for a 60% Single Storage Hotspot
	10. ZS: Energy Consumption Graphs for Single Storage Hotspots
	(a). Average Node Energy for a 60% Single Storage Hotspot
	(b). Dead Nodes for an 80% Single Storage Hotspot
	11. ZS: QoD Graphs for Multiple Storage Hotspots
	(a). Dropped Events for a 60% Multiple Storage Hotspot
	(b). Average Node Storage for an 80% Multiple Storage Hotspot
	12. ZS: Number of Full Nodes for a 60% Multiple Storage Hotspot
	13. ZS: Energy Consumption Graphs for 60% Multiple Storage Hotspots
	(a). Average Node Energy
	(b). Dead Nodes
	14. ZS: QoD Graphs for a 40% Moving Storage Hotspot
	(a). Dropped Events
	(b). Average Node Storage
	15. ZS: Full Nodes for a 40% Moving Storage Hotspot
	16. ZS: Energy Consumption Graphs for a 40% Moving Storage Hotspot
	(a). Average Node Energy
	(b). Dead Nodes
	17. ZS: Dropped Events for Various C Values
	(a). 80% Single Storage Hotspot
	(b). 60% Multiple Storage Hotspots
	18. ZS: Number of Full Nodes for Various C Values
	(a). 80% Single Storage Hotspot
	(b). 60% Multiple Storage Hotspots
	19. ZS: Dead Node Graphs for Various C Values
	(a). Dead Nodes for an 80% Single Storage Hotspot
	(b). Dead Nodes for 40% Multiple Storage Hotspots
	20. ZS: Energy Consumption Graphs for Various C Values
	(a). Average Node Energy for a 60% Single Storage Hotspot
	(b). Average Node Energy for 40% Multiple Storage Hotspots
	21. ZS: Dropped Events for Various E Values
	(a). 60% Single Storage Hotspot
	(b). 60% Multiple Storage Hotspots
	22. ZS: Number of Full Nodes for Various E Values
	(a). 80% Single Storage Hotspot
	(b). 60% Multiple Storage Hotspots
	23. ZS: Dead Node Graphs for Various E Values
	(a). Dead Nodes for an 80% Single Storage Hotspot
	(b). Dead Nodes for 60% Multiple Storage Hotspots
	24. ZS: Energy Consumption Graphs for Various E Values
	(a). Average Node Energy for a 60% Single Storage Hotspot
	(b). Average Node Energy for 60% Multiple Storage Hotspots
	25. ZS: Dropped Events for Various SC Values
	(a). 80% Single Storage Hotspot
	(b). 60% Multiple Storage Hotspots
	26. ZS: Number of Full Nodes for Various SC Values
	(a). 80% Single Storage Hotspot
	(b). 60% Multiple Storage Hotspot
	27. ZS: Dead Node Graphs for Various SC Values
	(a). Dead Nodes for a 60% Single Storage Hotspot
	(b). Dead Nodes for 60% Multiple Storage Hotspots
	28. ZS: Energy Consumption Graphs for Various SC Values
	(a). Average Node Energy for an 80% Single Storage Hotspot
	(b). Average Node Energy for 60% Multiple Storage Hotspots
	29. ZP Example
	30. Zone Partitioning Algorithm
	31. Modified GPSR Algorithm for ZP
	32. ZPR Example
	33. ZP/ZPR: QoD Graphs for Single Query Hotspots
	(a). Dropped Events for a 80% Single Query Hotspot
	(b). 40% Query for a 60% Single Query Hotspot
	34. ZP/ZPR: Number of Full Nodes for a 60% Single Query Hotspot
	35. ZP/ZPR: Energy Consumption Graphs for Single Query Hotspots
	(a). Average Node Energy for an 80% Single Query Hotspot
	(b). Dead Nodes for a 60% Single Query Hotspot
	36. ZP/ZPR: QoD Graphs for 80% Multiple Query Hotspots
	(a). Dropped Events
	(b). 40% Query
	37. ZP/ZPR: Number of Full Nodes for 80% Multiple Query Hotspots
	38. ZP/ZPR: Energy Consumption Graphs for 80% Multiple Query Hotspots
	(a). Average Node Energy
	(b). Dead Nodes
	39. ZP/ZPR: Dropped Events for a 60% Moving Query Hotspot
	40. ZP/ZPR: Number of Full Nodes for an 80% Moving Query Hotspot
	41. ZP/ZPR: Energy Consumption Graphs for an 80% Moving Query Hotspot
	(a). Average Node Energy
	(b). Dead Nodes
	42. ZS/ZP/ZPR: Average Node Energy for Uniform Loads
	43. ZS/ZP/ZPR: Dropped Events for Single Mixed Hotspots
	(a). 60% Single Mixed Hotspot
	(b). 80% Single Mixed Hotspot
	44. ZS/ZP/ZPR: QoD Graphs for Single Mixed Hotspots
	(a). 40% Query for an 80% Single Mixed Hotspot
	(b). Average Node Storage for a 60% Single Mixed Hotspot
	45. ZS/ZP/ZPR: Number of Full Nodes for a 60% Single Mixed Hotspot
	46. ZS/ZP/ZPR: Energy Consumption Graphs for a 60% Single Mixed Hotspot
	(a). Dead Nodes
	(b). Average Node Energy
	47. ZS/ZP/ZPR: Dropped Events for Multiple Mixed Hotspots
	(a). 60% Multiple Mixed Hotspot
	(b). 80% Multiple Mixed Hotspot
	48. ZS/ZP/ZPR: QoD Graphs for Multiple Mixed Hotspots
	(a). 40% Query for an 80% Multiple Mixed Hotspot
	(b). Average Node Storage for a 60% Multiple Mixed Hotspot
	49. ZS/ZP/ZPR: Number of Full Nodes for 60% Multiple Mixed Hotspot
	50. ZS/ZP/ZPR: Energy Consumption Graphs for 80% Multiple Mixed Hotspots
	(a). Dead Nodes
	(b). Average Node Energy
	51. ZS/ZP/ZPR: QoD Graphs for an 80% Moving Mixed Hotspot
	(a). Dropped Events
	(b). 40% Query
	52. ZS/ZP/ZPR: Number of Full Nodes for 60% Moving Mixed Hotspot
	53. ZS/ZP/ZPR: Energy Consumption Graphs for Moving Mixed Hotspots
	(a). Dead Nodes for a 60% Moving Mixed Hotspot
	(b). Average Node Energy for an 80% Moving Mixed Hotspot
	54. KDDCS k-d Tree
	55. KDDCS Initial k-d Tree
	56. Logical Address Assignment Algorithm
	57. Example of Routing a Query on KDDCS
	58. KDTR Example
	59. KDDCS: QoD Graphs vs Single Storage Hotspots
	(a). 80% Single Storage Hotspot
	(b). 80% Single Storage Hotspot
	60. KDDCS: Number of Full Nodes for an 80% Single Storage Hotspot
	61. KDDCS: Energy Consumption Graphs vs Single Storage Hotspots
	(a). 80% Single Storage Hotspot
	(b). 80% Single Storage Hotspot
	62. KDDCS: QoD Graphs vs Multiple Storage Hotspots
	(a). Dropped Events for 60% Multiple Storage Hotspots
	(b). Average Node Storage for 60% Multiple Storage Hotspots
	63. KDDCS: Number of Full Nodes for 60% Multiple Storage Hotspots
	64. KDDCS: Energy Consumption Graphs vs Multiple Storage Hotspots
	(a). Dead Nodes for 80% Multiple Storage Hotspots
	(b). Average Node Energy for 60% Multiple Storage Hotspots
	65. KDDCS: QoD Graphs for a 40% Moving Storage Hotspot
	(a). Dropped Events
	(b). Average Node Storage
	66. KDDCS: Number of Full Nodes for a 40% Moving Storage Hotspot
	67. KDDCS: Energy Consumption Graphs for a 40% Moving Storage Hotspot
	(a). Dead Nodes
	(b). Average Node Energy
	68. KDDCS: QoD Graphs vs Single Query Hotspots
	(a). Dropped Events for an 80% Single Query Hotspot
	(b). Average Node Storage for an 80% Single Query Hotspot
	69. KDDCS: Number of Full Nodes for a 60% Single Query Hotspot
	70. KDDCS: Energy Consumption Graphs vs Single Query Hotspots
	(a). Dead Nodes for an 80% Single Query Hotspot
	(b). Average Node Energy for a 60% Single Query Hotspot
	71. KDDCS: QoD Graphs vs Multiple Query Hotspots
	(a). Dropped Events for 80% Multiple Query Hotspots
	(b). Average Node Storage for 60% Multiple Query Hotspots
	72. KDDCS: Number of Full Nodes for 80% Multiple Query Hotspots
	73. KDDCS: Energy Consumption Graphs vs Multiple Query Hotspots
	(a). Dead Nodes for 60% Multiple Query Hotspots
	(b). Average Node Energy for 60% Multiple Query Hotspots
	74. KDDCS: QoD Graphs for a 60% Moving Query Hotspot
	(a). Dropped Events
	(b). Average Node Storage
	75. KDDCS: Number of Full Nodes for a 60% Moving Query Hotspot
	76. KDDCS: Energy Consumption Graphs for a 60% Moving Query Hotspot
	(a). Dead Nodes
	(b). Average Node Energy
	77. KDDCS: Average Node Energy for Uniform Loads
	78. KDDCS: QoD Graphs vs Single Mixed Hotspots
	(a). Dropped Events for a 60% Single Mixed Hotspot
	(b). Average Node Storage for a 60% Single Mixed Hotspot
	79. KDDCS: Number of Full Nodes for a 60% Single Mixed Hotspot
	80. KDDCS: Energy Consumption Graphs vs Single Mixed Hotspots
	(a). Dead Nodes for a 60% Single Mixed Hotspot
	(b). Average Node Energy for a 60% Single Mixed Hotspot
	81. KDDCS: QoD Graphs for Multiple Mixed Hotspots
	(a). Dropped Events for 80% Multiple Mixed Hotspots
	(b). Average Node Storage for 80% Multiple Mixed Hotspots
	82. KDDCS: Number of Full Nodes for 60% Multiple Mixed Hotspot
	83. KDDCS: Energy Consumption Graphs vs Multiple Mixed Hotspots
	(a). Dead Nodes for 60% Multiple Mixed Hotspots
	(b). Average Node Energy for 60% Multiple Mixed Hotspots
	84. KDDCS: QoD Graphs vs Moving Mixed Hotspots
	(a). Dropped Events for an 80% Moving Mixed Hotspot
	(b). Average Node Storage for an 80% Moving Mixed Hotspot
	85. KDDCS: Number of Full Nodes for 80% Moving Mixed Hotspots
	86. KDDCS: Energy Consumption Graphs vs Moving Mixed Hotspots
	(a). Dead Nodes for an 80% Moving Mixed Hotspot
	(b). Average Node Energy for a 60% Moving Mixed Hotspot

	PREFACE
	1.0 INTRODUCTION
	1.1 Motivation
	1.2 Problem Definition
	1.3 Approach and Contributions
	1.4 Roadmap

	2.0 RELATED WORK
	2.1 Data-Centric Storage (DCS)
	2.2 Load Balancing Paradigms
	2.3 Point-to-Point Routing
	2.4 Summary

	3.0 SYSTEM MODEL AND EXPERIMENTAL PLATFORM
	3.1 System Model
	3.1.1 Network Model and Motivating Application
	3.1.2 Sensor Devices

	3.2 Experimental Platform
	3.2.1 Sensor Network
	3.2.2 Policies and Schemes
	3.2.3 Experimental Setup
	3.2.4 Storage Workload
	3.2.5 Query Workload
	3.2.6 Hotspot Generation
	3.2.7 Experimental Evaluation Scenario
	3.2.8 Experimental Metrics

	3.3 Summary

	4.0 LOCAL HOTSPOT DETECTION AND DECOMPOSITION
	4.1 Local Detection and Decomposition of Storage Hotspots
	4.1.1 Basic Idea
	4.1.2 Distributed Migration Criterion (DMC)
	4.1.3 DMC Implementation Details
	4.1.4 Single Hop Zone Sharing (SHZS)
	4.1.5 Multi-Hop Zone Sharing (MHZS)
	4.1.5.1 GPSR Modifications
	4.1.5.2 Hotspot Decomposition Mechanism

	4.1.6 Handling Dynamic Hotspots Through Zone Rejoining
	4.1.7 ZS Implementation Overhead
	4.1.8 ZS Experimental Evaluation
	4.1.8.1 Sensitivity Analysis
	4.1.8.2 Single Static Storage Hotspots
	4.1.8.3 Multiple Simultaneous Static Storage Hotspots
	4.1.8.4 Moving Storage Hotspots
	4.1.8.5 Effect of Storage Level Threshold on MHZS Performance
	4.1.8.6 Effect of Energy Level Threshold on MHZS Performance
	4.1.8.7 Effect of the Zone Share Count on MHZS Performance
	4.1.8.8 Discussion

	4.2 Local Detection and Decomposition of Query Hotspots
	4.2.1 Zone Partitioning (ZP)
	4.2.1.1 Illustrative Example
	4.2.1.2 Local Detection of Query Hotspots
	4.2.1.3 The Partitioning Criterion (PC)
	4.2.1.4 GPSR Modifications
	4.2.1.5 Coalescing Process

	4.2.2 Zone Partial Replication (ZPR)
	4.2.2.1 Additional PC Requirements
	4.2.2.2 ZPR Handling of Insertions

	4.2.3 ZP/ZPR Implementation Overhead
	4.2.4 ZP/ZPR Experimental Evaluation
	4.2.4.1 Sensitivity Analysis
	4.2.4.2 Single Static Query Hotspots
	4.2.4.3 Multiple Simultaneous Static Query Hotspots
	4.2.4.4 Moving Query Hotspots
	4.2.4.5 Discussion

	4.3 Local Detection and Decomposition of Mixed Hotspots
	4.3.1 The ZS/ZP/ZPR Scheme
	4.3.2 ZS/ZP/ZPR Experimental Evaluation
	4.3.2.1 Uniform Loads
	4.3.2.2 Single Static Mixed Hotspots
	4.3.2.3 Multiple Simultaneous Static Mixed Hotspots
	4.3.2.4 Moving Mixed Hotspots
	4.3.2.5 Discussion

	4.3.3 Learned Lessons from the Experimental Evaluation

	4.4 Summary

	5.0 HOTSPOT AVOIDANCE
	5.1 Overview on KDDCS
	5.2 DIM vs. KDDCS
	5.3 The Weighted Split Median Problem
	5.4 The KDDCS Components
	5.4.1 Distributed Logical Address Assignment Algorithm
	5.4.2 Event to Bit-code Mapping
	5.4.3 Incremental Event Hashing and Routing
	5.4.4 Discussion

	5.5 KDTR: K-D Tree Rebalancing Algorithm
	5.5.1 Selection of Subtrees to be Rebalanced
	5.5.2 Tree Rebalancing Algorithm
	5.5.3 Discussion

	5.6 Avoiding Storage Hotspots with KDTR
	5.6.1 Experimental Evaluation
	5.6.1.1 Single Static Storage Hotspots
	5.6.1.2 Multiple Simultaneous Static Storage Hotspots
	5.6.1.3 Moving Storage Hotspots

	5.6.2 Discussion

	5.7 Extending KDTR to Avoid Query Hotspots
	5.7.1 Experimental Evaluation
	5.7.1.1 Single Static Query Hotspots
	5.7.1.2 Multiple Simultaneous Static Query Hotspots
	5.7.1.3 Moving Query Hotspots
	5.7.1.4 Discussion

	5.8 Extending KDTR to Avoid Mixed Hotspots
	5.8.1 Experimental Evaluation
	5.8.1.1 Uniform Loads
	5.8.1.2 Single Static Mixed Hotspots
	5.8.1.3 Multiple Simultaneous Static Mixed Hotspots
	5.8.1.4 Moving Mixed Hotspots
	5.8.1.5 Discussion

	5.9 KDDCS Robustness to Packet Loss
	5.10 Learned Lessons from the Experimental Evaluation
	5.11 Summary

	6.0 CONCLUSIONS
	6.1 Summary of Contributions
	6.2 Future Work
	6.2.1 Future Experimental Studies of the Thesis Schemes
	6.2.1.1 Experimenting on Sensor Network Testbeds
	6.2.1.2 Experimenting on Heterogeneous Networks
	6.2.1.3 Experimenting on Sensor Networks Experiencing Failures

	6.2.2 Future Directions
	6.2.2.1 Load Balancing Query Hotspots Using Query Semantics
	6.2.2.2 Spatio-Temporal Data-Centric Storage for Real-Time Sensor Applications

	BIBLIOGRAPHY

