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In clinical trials, we often compare two treatment groups using repeated binary measures over 

time. In such trials, we may encounter missing observations, adverse side effects, or non-

responsiveness to therapy which for ethical reasons, may result in increased medical intervention 

beyond the protocol therapy. We developed a family of statistical tests based on the Wilcoxon 

statistic which orders the vectors of repeated binary observations and events where the ordering 

is determined by ‘clinical relevance’. For some scenarios, clinically meaningful ordering of the 

vectors may be defined by a natural algorithm, while for other scenarios the ordering is obtained 

from a group of clinicians. We present the statistical development of the proposed method, 

effects of the variability of rankings among clinicians, examples of the application of the 

proposed method using data from a clinical trial on otitis media, and simulation studies 

comparing the statistical power of the proposed method to more traditional methods of analysis. 

Our simulation studies indicate that the proposed method is competitive with and, for some 

scenarios, is preferable to the traditional methods. Although the proposed method is not 

applicable to every situation, we believe that for some diseases and scenarios, this simple method 

is noteworthy in the sense that it can be adjusted to extremely complex situations if vectors can 

be hierarchically ordered in a reasonable fashion, it can be focused on alternatives that have high 

clinical relevance, and it can be readily adapted to accommodate non-protocol ‘outcomes’ and 
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missing data. The public health relevance of this study is that clinically meaningful results can be 

targeted in clinical trials.  

 

Keywords: Longitudinal data, binary outcomes, Wilcoxon test statistic, ordering, and natural 

algorithm.
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1.0  INTRODUCTION 

Longitudinal studies where measurements are taken repeatedly on the same subjects throughout a 

period of time are commonly used in the health sciences, biological, biomedical, and 

epidemiological areas. Since repeated observations are taken from the same subject, they are 

expected to be correlated with each other over time. These longitudinal serial correlations among 

the measurements made on the same subject should be taken into account in the analysis of the 

data. In such studies, the response at each point in time may be continuous, categorical, or binary 

(e.g., yes/no, success/failure, positive/negative, and presence/absence). In particular, binary 

outcomes are sometimes collected in clinical trials when the purpose is to examine the effect of a 

treatment over time. In some studies, continuous outcomes are dichotomized by a threshold 

value and methods for analyzing binary outcomes are applied. In this work, our main interest 

will be dichotomous outcomes collected in a study with repeated measures over time. As 

motivating examples, we use a group of clinical trials that have been conducted to evaluate the 

efficacy of treatment for otitis media. 

Numerous statistical techniques have been developed for analysis of longitudinal binary 

data. One of the earlier methods used to analyze longitudinal binary data is to sum the repeated 

binary observations for each individual over time and to compare the proportion of responses 

between treatment groups using t-test. Random effects models (mixed effects logistic regression 

models) (Molenberghs and Verbeke 2005) and marginal models (logistic regression models 

using generalized estimating equations (GEE)) (Liang and Zeger 1986) are two commonly used 

alternatives in modeling longitudinal binary data. The former permits heterogeneity across the 

subjects, so the regression coefficients are different between subjects. Thus, random effects 
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models are called subject-specific models. The random intercept logistic regression model is the 

simplest form of this modeling for analysis of longitudinal binary measurements. Marginal 

models are relevant methods for analyzing repeated binary measures, when the main objective of 

a study is to examine the effect of covariates on the population mean. These models assume that 

the regression coefficients are the same for all of the subjects and regression coefficients are 

interpreted for the population level not at the individual level. Hence, they are called population-

averaged models. A logistic regression model using GEE, which is regarded as a marginal 

model, is the longitudinal extension of a logistic regression model for binary responses. Random 

effects models and marginal models consider correlation among the observations obtained from 

the same subjects. 

In some clinical trials, measurements from subjects are collected at specified time points 

for each treatment group (e.g. drug and placebo) during the treatment period and the main 

interest is to examine the efficacy of a new treatment over placebo. Data measured at the last 

time point may be used for primary efficacy assessment.  For example, proportions of positive 

responses to treatment groups based on binary outcomes are compared to evaluate the efficacy of 

a new treatment. In this situation, the comparison is based on the measurements at the last time 

point. Standard statistical methods such as, Fisher’s exact test, chi-squared test of independence, 

t-test, and binary logistic regression can be used to compare two treatment groups (Ali and 

Talukder 2005).   

Interest may be focused primarily on understanding the time trend of a treatment, such as 

the effect of a drug during the early or late stage of the treatment.  Another interest is to establish 

the overall treatment efficacy rather than a time trend of a regimen. A binary logistic regression 

model using GEE or a logistic regression model with random effects, mentioned above, are two 
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approaches to evaluate the time trend and the overall efficacy of a treatment. These approaches 

use the entire longitudinal data collected at each time point.  

Methods using comparisons between pairs of subjects and ranking scores have been used 

to evaluate the differences between two treatment groups. As proposed by Gehan (1965), data 

from pairs of subjects are compared for analysis of time to the occurrence of a particular event in 

clinical trials. Moye et al. (1992) recommended comparing each of the subjects in one group 

(placebo) with each of the subjects in another group (treatment) by integrating additional 

measurements or variables taken over time in the analysis of time-to-event data. Follmann et al. 

(1992) subjectively ranked the patients in clinical trials with multiple outcomes using clinically 

meaningful information based on the subjective strategy of ordering the patients. A group of 

people who are experts in the area of study was asked to rank the patients with several outcomes 

measured over time based on the clinically relevant importance in the analysis of time-to-event 

data from a cardiovascular clinical trial and then techniques using the ranking scores were 

applied to assess the treatment effect.  

Our main purpose in this study is to introduce a novel statistical method in situations 

where we wish to compare two treatments using all of the time points, the outcome is binary, and 

the time points are pre-specified. Our proposed method is based on ordering the entire vector of 

repeated observations rather than considering the individual components of the vector. Ideally, 

vectors can be ordered based on clinical relevance. The two treatment groups are then compared 

by applying statistical techniques handling ranked measurements such as Wilcoxon rank-sum 

test (Wilcoxon 1945) or Mann-Whitney U test (Mann and Whitney 1947) and regression methods 

using the ranked scores. This can be extended to missing data and multiple outcomes.  
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1.1 MISSING DATA ISSUES 

It is uncommon that observations from study subjects at all specified time points will be obtained 

in longitudinal studies. Thus, missing data frequently occur in these studies. The presence of 

missing data can cause misleading inferences and incorrect decisions such as biased and 

inefficient estimates and poor confidence intervals. Missing data can also reduce statistical 

power.  

Ignoring the missing data violates the strict principle of “intention-to-treat” analysis 

comparing the treatment groups to which they were randomly assigned regardless of the 

treatment they actually received (Houck et al. 2004; Bubbar et al. 2006; Li et al. 2006; and Liu et 

al. 2006). Intention-to-treat analyses includes all subjects irrespective of whether they received 

the treatment or they violate the study protocol (e.g., subjects drop out of the study or have 

inadequate adherence). When the missing data are not handled in an appropriate way, one may 

obtain erroneous conclusions. 

Therefore, it is important to examine and account for the reasons for the missing data 

prior to choosing an appropriate statistical method to analyze data. It is crucial to understand the 

patterns of missing data and the mechanisms that result in the data being missing in order to 

handle missing data in the analysis. 

1.1.1 Missing Data Mechanisms  

According to the terminology of Little and Rubin (Little and Rubin 2002), there are three types 

of missing data mechanisms. A missing data process is called missing completely at random 

(MCAR) when the missingness is not associated with either observed or unobserved outcomes 

and is not related to any variables. When the data are MCAR and all available data are used in 
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the analysis, valid inferences can be obtained. It should be emphasized that MCAR is a strong 

assumption and is usually difficult to satisfy in practice.  

Data are said to be missing at random (MAR) if the missingness is related to the observed 

data but does not depend on the potentially unobserved data. MAR is a less restrictive type of 

missing data and more often, but not always, a reasonable assumption in many applications. 

When different withdrawal rates for each treatment groups are assumed, data are more likely to 

be MAR, rather than MCAR (Liu and Gould 2002). When unequal drop-out rates in the 

treatment groups are assumed, missingness depends on the treatment groups. It is considered as 

covariate-dependent dropout. MCAR and MAR are considered as ignorable missingness.  

When the missing data are not random and depend on the unobserved data, missing data 

are called missing not at random (MNAR). One almost always obtains biased estimates and/or 

invalid results using methods which do not take into account the missing values in the analysis 

when the missing data process is MNAR. Results produced by standard methods of analyzing 

longitudinal data are not valid when missing data are MNAR. Special care is needed to analyze 

the data with MNAR. It is required that observed and missing data are jointly modeled to avoid 

misleading inferences. MNAR is considered as non-ignorable missing data. Second paragraph. 

1.1.2 Approaches For Handling Missing Data 

Performing analyses using the methods accounting for missing data are of importance in the 

analysis of data with missing observations. There are different ways to deal with missing data. 

One of the popular choices is a “complete case” (CC) analysis including only subjects with 

complete data. Subjects with missing values are excluded from the analysis. Advantage of CC 

analysis is that any standard statistical methods can be performed on the complete cases. 
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However, CC analysis produces biased estimates unless the strong MCAR assumption is 

satisfied (Little and Rubin 2002). Even though the stringent MCAR assumption holds, one 

disadvantage of CC analysis is that excluding the subjects with missing observations reduces the 

sample size leading to the loss of efficiency. Moreover, excluding the subjects with incomplete 

data violates the principle of intention-to-treat when assessing treatment efficacy or 

effectiveness. 

Another commonly used method to handle missing data in longitudinal studies is the last 

observation carried forward (LOCF) approach, where the last observed value is replaced for all 

of that subject’s subsequent values that are not obtained. The LOCF approach is a simple data 

imputation method and satisfies the intention-to-treat principle by including all subjects 

regardless of missing data. However, the LOCF method makes the very strong and unrealistic 

assumption about missing data (i.e., subject’s response profile remains unchanged at the time of 

the last observed value prior to dropout). It can produce very biased results and tends to decrease 

variability which influences the plausibility of parameter estimates due to the assumption of no 

further change in the profile (Tang et al. 2005). Furthermore, the method is typically applied to 

dropouts and does not address subjects with only intermittent missing data.  

For longitudinal data with binary responses, another approach might be the worst and 

best case analysis which is simple and easy to apply for the imputation of missing data. For 

example, subjects in placebo groups are likely to withdraw from the study because of lack of 

treatment improvement and thus, missing observations for these subjects may be imputed as 

worst response. If subjects who have sufficient benefit from the treatment discontinue the study, 

missing observations for these subjects may be imputed as best response. When subjects in the 

treatment group drop out from the study as a result of an adverse effect or lack of any beneficial 
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treatment effect, best response to all missing responses in the placebo group and worst response 

to all missing responses in the treatment group can be assigned but such an extreme analysis 

would eliminate the beneficial effect of the treatment. It is usually recommended for sensitivity 

analysis to evaluate the effect of treating missing data in different ways regarding the robustness 

of the results.  (Minini et al. 2004) 

GEE analysis using all available observations from subjects requires the MCAR 

assumption. GEE yields valid and consistent estimates under a strong MCAR. Complete case 

and GEE analyses produce invalid estimates when missing data are MAR but not MCAR. 

Likelihood-based methods (random-effects models) also use all available data obtained from 

subjects and yield unbiased results when the less restrictive assumption of MAR is satisfied. 

Gould (1980) proposed a statistical method for analysis of longitudinal data comparing 

two treatment groups based on the observations taken at the last time point from clinical trials in 

the presence of missing data. The main idea in Gould’s method is to consider the information 

about the reasons for withdrawals in the analysis. Response outcomes obtained at the last 

planned occasion and the reasons for withdrawals from two treatment groups are plausibly 

ordered and then statistical methods handling the ranked observations (i.e., Mann Whitney test) 

are performed in comparison of two treatment groups.     

One method to handle missing data is the generalized Wilcoxon test for time-to-event 

data proposed by Gehan (1965). In clinical studies where the outcome of interest is the time to an 

event, patients may not complete the study and are censored before the time to occurrence of an 

event. The relative rank of a censored and non-censored observation is only known if the time to 

event for a subject who is censored or lost to follow-up is greater than the time of event for the 

non-censored subject. Gehan’s generalization of the Wilcoxon statistic is a widely used approach 
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and is useful for comparing two survival curves for randomly right-censored data. All pairs of 

subjects in the two groups are compared in terms of the pattern of events and censored 

measurements.  

Multiple imputation (Rubin 1987) provides a modern and simulation-based approach for 

handling missing data. In multiple imputation, several full data sets are generated in which 

randomly selected observed values are selected from an appropriately defined subset and 

substituted for missing data. These completed data sets are separately analyzed and results from 

each generated data set are combined to yield an overall result. A multiple imputation procedure 

assumes that missing data are MAR. The assumption of MAR is required to produce valid 

inferences. Statistical methods requiring complete data can be used by a multiple imputation 

approach. Popularity of using multiple imputation method increases as developments in 

computer and technology advance.  

1.2 ISSUES OF CLINICAL INTERVENTIONS WHICH ALTER OUTCOMES 

In some clinical trials, two treatment groups are compared to assess the effect of therapy and 

comparison is usually made based on one single primary outcome of interest. In such studies, 

unplanned occurrences may arise and it is common to give non-protocol clinical interventions to 

the patients due to development of illness or the results of the therapy such as drug allergy, 

serious adverse experience, and inadequate effectiveness of treatment. Serious adverse effect of a 

drug in some patients may prevent safe use of treatment which might necessitate change of 

treatment. Unsatisfactory effect of treatment may also require another intervention. Moreover, 

giving another therapy might cause ethical issues and violates the study protocol. This necessity 
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of giving another therapy may result in a dramatic change in the primary outcome or 

inappropriate outcome and interfere with results of the analysis. To assess the effects of therapy, 

it may be important to include such events in the analysis. Applying analyses without 

considering these occurrences may fail to reflect the overall effects of treatment. 

For example, in a clinical trial to compare an antibiotic with placebo in children with 

chronic effusion (fluid in the ear), tube insertion might be needed because of lack of therapeutic 

effect of the treatment. This non-protocol intervention impacts on the primary outcome. Tube 

insertion reduces the occurrence of effusion. If tube insertion is performed on a substantial 

number of children in the placebo group, chronic effusion will be eliminated and the overall 

response will be satisfactory for these children. The placebo group could actually have a lower 

average number of days of chronic effusion than the treatment group because of a large number 

of inserted tubes. Yet clinically this is not considered a good outcome.  

In such cases, it is difficult to accommodate these occurrences in the analysis. 

Incorporating such occurrences into the analysis of data from clinical trials in a way that 

preserves the clinical relevance of the outcomes would be an important contribution.  

1.3 SPECIFIC AIMS 

The primary purpose of this methodological research is to develop a new method of analyzing 

repeated binary data by extending the Wilcoxon test statistic to the vectors of the repeated 

observations. The performance of the proposed method was compared with existing methods in 

the analysis of longitudinal binary outcomes. Since most clinical trials compare two 

interventions or medications and there are natural extensions to more than two groups, we 
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considered comparison of two treatment groups in this study. Analysis of longitudinal 

categorical outcomes and comparing more than two groups can be regarded for future areas of 

research. The following specific aims were considered in this study. 

1.3.1 Comparison of Methods for Longitudinal Binary Responses with Complete Data 

 We first formalized the method for selected orderings of the set of vectors. We contrasted our 

proposed method against three existing methods in the absence of missing data. We validated the 

Type I error and compared the statistical power of the four statistical methods using computer 

simulations. Even though most clinical trials have missing data and the case of a complete data 

set might be considered unrealistic, we felt this is an important first step in our evaluation. It is 

also regarded as beneficial to consider complete data because full data sets are provided when 

multiple imputation approach is used to handle missing data. Moreover, complete data sets are 

analyzed when complete case analysis or LOCF approaches are chosen to handle missing data 

even though they have disadvantages and can produce invalid results under particular 

circumstances. 

1.3.2 Comparison of Methods for Longitudinal Binary Responses with Missing Data  

Missing data occur frequently in longitudinal studies. Statistical methods can produce unrealistic 

and invalid results provided that the missingness has not been properly examined or handled in 

the analysis of the data. Biased and inefficient estimates may be obtained when the statistical 

procedures accounting for missing data are not performed. The proposed procedure has several 

natural extensions which incorporate missing data including a generalized Gehan’s Wilcoxon 
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test statistic (Gehan, E. A. 1965) which has been used for analysis of censored data in clinical 

trials.  

We modified Gould’s idea to account for missing data by ranking withdrawals due to 

outcome related reasons such as lack of efficacy, adverse experiences, recovery or dramatic 

improvement of the treatment.   

Thus, we evaluated the performance of the proposed method and compared it to the other 

traditional methods for longitudinal data with binary responses in the presence of missing data 

with a simulation study. We considered both the MCAR and the MAR missing data process in 

the comparison of the four statistical procedures. 

1.3.3 Development of General Framework for Summarizing Methods of Ranking Vectors 

of Observations 

We developed a general framework for summarizing methods of ranking vectors of observations. 

These were developed based on selection of mathematical functions to mimic standard 

approaches and ranking selected by physicians. If many clinicians are available to order the 

vectors of binary responses with multiple outcomes and adverse effects and homogeneity among 

their rankings is not obtained, it might be difficult to interpret the results and to apply the 

proposed method to the data to be analyzed. We examined the effects of the variability of 

rankings among clinicians and presented a statistical approach to efficiently use this 

heterogeneity in the analysis of the data. If a sufficient number of clinicians were not available to 

reach reasonable agreement of rankings, we developed strategies to use the information available 

from a small group of clinicians to employ the proposed method. 
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1.3.4 Consideration of Clinical Interventions Which Alter Outcomes 

Often in clinical trials, we encounter unpleasant side effects or non-responsiveness to therapy 

which for ethical reasons, may lead to increased medical intervention beyond the protocol 

therapy. Therefore, it is necessary to give non-protocol therapy because of a poor clinical 

outcome with protocol therapy. This may result in patients for whom the primary outcome is 

drastically altered or for which the primary outcome is no longer appropriate or meaningful. 

Standard techniques have difficulty incorporating these occurrences. Our proposed method 

addresses such a problem as long as the ‘need for intervention’ can be clinically ranked relative 

to the original vector of outcomes. We developed necessary statistics in order that the proposed 

method can be applied to such ‘interventions’ and evaluated the effect on the overall analysis.  
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2.0  LONGITUDINAL BINARY RESPONSES WITH COMPLETE DATA 

Our proposed method is to compare the overall evaluation of treatment between two groups by 

transforming the information on the entire vector of repeated outcomes into a ranking of vectors 

in terms of clinical relevance and then applying an appropriate statistical procedure dealing with 

ranked measurements such as Wilcoxon rank-sum test or Mann-Whitney U test or the regression 

methods based on ranks. Our approach requires a rank ordering of all the subjects in both groups 

based on the input from the clinicians. The agreement among the clinicians is an important 

consideration in the analysis of the method.  

2.1 PROPOSED METHODOLOGY 

Suppose that we have two treatment groups of subjects, A and B, to be compared. Assume that 

nA and nB  subjects are assigned to treatment A (Trt-A) and treatment B (Trt-B), respectively and 

measurements are taken from all N = n𝐴+ nB subjects over time in longitudinal study with 𝑘  

time points. Let 𝑥𝑖𝑡 denote the response from the 𝑖𝑡ℎ subject within the Trt-A and 𝑦jt denote the 

response from the 𝑗𝑡ℎ subject within the Trt-B at time 𝑡 (𝑡 = 1, 2, … , 𝑘;  𝑖 = 1,2, … ,𝑛𝐴;  𝑗 =

1,2, … ,𝑛𝐵). First, we assume that all measurements are observed from all subjects that is, there 

are no missing data. Without loss of generality, let 1 indicate presence of disease and 0 indicate 

absence of disease.  Thus,  

𝑿𝑖= (𝑥𝑖1, 𝑥𝑖2 , … , 𝑥𝑖𝑘 )1𝑥𝑘 is the sequence of observed outcomes regarding the 𝑖𝑡ℎ subject within 

the Trt-A with  
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𝑥𝑖𝑡 = � 1       𝑖𝑓 𝑑𝑖𝑠𝑒𝑎𝑠𝑒        
 0      𝑖𝑓 𝑛𝑜 𝑑𝑖𝑠𝑒𝑎𝑠𝑒  

� 𝑖 = 1,2, … ,𝑛𝐴,  𝑡 = 1,2, … ,𝑘 

𝒀𝑗= �𝑦𝑗1, 𝑦𝑗2 , … ,𝑦𝑗𝑘 �
1𝑥𝑘

 is the sequence of observed outcomes regarding the 𝑗𝑡ℎ subject within 

the Trt-B with  

𝑦𝑗𝑡 = �  1       𝑖𝑓 𝑑𝑖𝑠𝑒𝑎𝑠𝑒        
  0       𝑖𝑓 𝑛𝑜 𝑑𝑖𝑠𝑒𝑎𝑠𝑒  

� 𝑗 = 1,2, … ,𝑛𝐵 ,  𝑡 = 1,2, … , 𝑘 

Since 𝑘 repeated binary responses are measured, there are 2𝑘 possible response profiles 

over time. The proposed method is based on the assumption that the vectors can be ordered 

depending on their clinical relevance. We define a matrix with 2𝑘 rows and 𝑘 columns. Each row 

of this matrix represents one of the 2𝑘 possible response profiles. It should be noted that some of 

the rows might share the same ranked score depending on their clinical importance. We 

designate this matrix as S. Let S(m) indicate the m𝑡ℎ row of S and Rank (S(m)) denotes the 

assigned score to S(m). Define  

𝛿𝑖 = 𝑅𝑎𝑛𝑘(𝑆(r)) if 𝑿i ≡ 𝑆(r) , 𝑖 = 1, . . . ,𝑛𝐴;  𝑟 = 1, … , 2𝑘 

𝜉𝑗 = 𝑅𝑎𝑛𝑘(𝑆(s)) if 𝒀j ≡ 𝑆(s) , 𝑗 = 1, . . . ,𝑛𝐵;  𝑠 = 1, … , 2𝑘 

Hence, 𝛿1, … , 𝛿𝑛𝐴 are values of the subjects in Trt-A and 𝜉1, … , 𝜉𝑛𝐵 are values of the 

subjects in Trt-B. The Mann Whitney form of the test can be defined as  

𝑈𝑖𝑗 =

⎩
⎪
⎨

⎪
⎧

      0     𝑖𝑓 𝑿𝑖 < 𝒀𝑗  or 𝛿𝑖 < 𝜉𝑗

   0.5     𝑖𝑓 𝑿𝑖 = 𝒀𝑗  or 𝛿𝑖 = 𝜉𝑗

      1      𝑖𝑓 𝑿𝑖 > 𝒀𝑗  or 𝛿𝑖 > 𝜉𝑗

� 

It can be more convenient to work with the following form of the Mann Whitney test.  
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𝑈𝑖𝑗∗ =

⎩
⎪
⎨

⎪
⎧

  −1   𝑖𝑓 𝑿𝑖 < 𝒀𝑗  or 𝛿𝑖 < 𝜉𝑗

   0     𝑖𝑓 𝑿𝑖 = 𝒀𝑗  or 𝛿𝑖 = 𝜉𝑗

   1    𝑖𝑓 𝑿𝑖 > 𝒀𝑗  or 𝛿𝑖 > 𝜉𝑗

� 

It is easy to see that 𝑈𝑖𝑗∗ = 2𝑈𝑖𝑗 − 1 and we can calculate the statistic 𝑈 or 𝑈∗. 

We can calculate the Wilcoxon (1945) test statistic 𝑊. 𝛿1, … , 𝛿𝑛𝐴 , 𝜉1, … , 𝜉𝑛𝐵 can be 

ordered from lowest to highest score and the Wilcoxon statistic 𝑊 is the sum of the ranks of the 

𝛿’s in the combined ordered arrangement of 𝛿’s and 𝜉’s. When ties are present, ties can be 

replaced by the average of ranks that the set of tied values would have been assigned if the 

values were distinct.  

W = �𝑅𝑎𝑛𝑘(𝛿𝑖) = ����𝐼�𝛿𝑖>𝜉𝑗� + 0.5 𝐼�𝛿𝑖=𝜉𝑗��
𝑛𝐵

𝑗=1

+ ��𝐼�𝛿𝑖>𝛿𝑗� + 0.5 𝐼�𝛿𝑖=𝛿𝒋��
𝑛𝐴

𝑗=1

�
𝑛𝐴

𝑖=1

𝑛𝐴

𝑖=1

 

Each subject (or vectors of binary responses) in Trt-A can be compared with each subject 

in Trt-B. The Mann-Whitney (1947) statistic, 𝑈, is the number of times a 𝜉𝑗 (1 ≤ j  ≤  nB) in the 

Trt-B precedes a 𝛿𝑖 (1 ≤  i  ≤  nA) in the Trt-A in the combined ranking of the two treatment 

groups. 

𝑈 = ��𝑈𝑖𝑗

𝑛𝐵

𝑗=1

𝑛𝐴

𝑖=1

= ���𝐼�𝛿𝑖>𝜉𝑗� + 0.5𝐼�𝛿𝑖=𝜉𝑗��
𝑛𝐵

𝑗=1

𝑛𝐴

𝑖=1

 

or 

𝑈∗ = ��𝑈𝑖𝑗∗
𝑛𝐵

𝑗=1

𝑛𝐴

𝑖=1

= ���𝐼�𝛿𝑖>𝜉𝑗� − 𝐼�𝛿𝑖<𝜉𝑗��
𝑛𝐵

𝑗=1

𝑛𝐴

𝑖=1

 

where 𝐼{𝑣<0} is a set indicator with 𝐼{𝑣<0} = 1 if 𝑣 < 0 and 0 otherwise. 

When there are no ties, the 𝑈∗ statistic is related to the Wilcoxon statistic 𝑊 and Mann-

Whitney statistic 𝑈. It can be shown that  
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𝑈∗ = 2𝑊 − 𝑛𝐴(𝑛𝐴 + 𝑛𝐵 + 1) 

𝑈∗ = 2𝑈 − 𝑛𝐴𝑛𝐵 

Large values of 𝑈 or 𝑈∗ indicate that there is a difference between treatment groups.  

2.2 SIMULATION STUDY 

We conducted a simulation study to assess the empirical performance of the proposed method 

versus three commonly used methods for analysis of repeated binary measures: 1) Two-sample t-

test comparing the average of the proportion of negative (positive) responses over time between 

two treatment groups; 2) logistic regression modeling using GEE (GEE); and 3) mixed effects 

logistic regression model with random intercept (MERI). Since often investigators are interested 

in a consistent treatment effect across time between two treatment groups, we first did not 

include treatment by time interaction term in the fitting models with GEE and MERI in our 

simulation study. For completeness, we also compared the proposed method with GEE and 

MERI when the interaction term of treatment by time is considered.   

2.2.1 Statistical Models 

We now describe the three approaches applied to each of the simulated longitudinal binary 

responses in this section. Suppose that a total of N subjects are randomized to one of the two 

treatment groups (A and B). Assume that the number of subjects in Trt-A (𝑛𝐴) and Trt-B (𝑛𝐵) are 

equal and that observations from each subject are taken at four time points.  
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Let 𝑌𝑖𝑡 = 1 if the measurement taken from ith subject at time point t is positive (presence 

of disease) response and 𝑌𝑖𝑡 = 0 otherwise; 𝑖 = 1, … ,𝑁 = 𝑛𝐴 + 𝑛𝐵 and 𝑡 = 1, 2, 3, 4. Define a 

treatment indicator as 𝑇𝑟𝑡𝑖 = 0 if subject i is randomized to the Trt-A and 𝑇𝑟𝑡𝑖 = 1 if subject i 

randomized to the Trt-B. To simplify notation, we assume that subjects 𝑖 = 1, … ,𝑛𝐴 are 

randomized to Trt-A and subjects 𝑖 = 𝑛𝐴 + 1, … ,𝑛𝐴 + 𝑛𝐵 are randomized to Trt-B. 

Two-sample t-test comparing the mean of the proportions of negative responses 

The repeated binary outcomes for each subject over time are summarized as a proportion of 

positive responses and two treatment groups are compared based on the proportion of positive 

responses using the two-sample t-test. Let 𝑝𝐴𝑖 and 𝑝𝐵𝑖 be the proportion of positive responses for 

the 𝑖𝑡ℎ subject in Trt-A and Trt-B over the four time points, respectively. The mean of the 

proportions of positive responses for subjects in Trt-A is  

𝑝𝐴 =
∑ 𝑝𝐴𝑖
𝑛𝐴
𝑖=1
𝑛𝐴

 

and the mean of the proportions of positive responses for subjects in Trt-B is 

𝑝𝐵 =
∑ 𝑝𝐵𝑖𝑁
𝑖=𝑛𝐴+1

𝑛𝐵
 

The null hypothesis of no treatment effect can be tested to compare two treatment groups 

in terms of average proportion of positive responses over time using the two-sample t-test: 

𝐻0: 𝑝𝐴 = 𝑝𝐵 

Logistic Regression Model using GEE 

The marginal probability of positive response for the 𝑖𝑡ℎ subject at a given time point t (𝑝𝑖𝑡) was 

modeled as a logistic function of time and treatment group assuming no treatment by time 

interaction, that is,  
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𝑙𝑛 �
𝑝𝑖𝑡

1 − 𝑝𝑖𝑡
� = 𝛽0 + 𝛽1𝑇𝑖𝑚𝑒𝑖𝑡 + 𝛽2𝑇𝑟𝑡𝑖 

where 

𝑇𝑖𝑚𝑒𝑖𝑡 = 1, 2, 3, 4 for the four time points, 

𝑇𝑟𝑡𝑖 is the treatment indicator which equals to 0 for Trt-A and 1  for Trt-B, and  

𝑝𝑖𝑡 = 𝑃 𝑟(𝑌𝑖𝑡 = 1|𝑇𝑟𝑡𝑖). 

𝛽0 and 𝛽1 represent the logit of 𝑝𝑖𝑡 for Trt-A and the linear changes in the logit of positive 

response over time, respectively, and 𝛽2 indicates the difference between treatment groups over 

time. Since the objective is to evaluate the overall treatment effect, 𝛽2 is of primary interest in 

the simulation study. When a logistic regression model using GEE was applied to each simulated 

dataset, different working correlation structures, such as independent, exchangeable, auto-

regressive, and unstructured correlation structures were used. We tested the null hypothesis of no 

treatment difference, that is, 𝐻0: 𝛽2 = 0 

Mixed Effects Logistic Regression Model with Random Intercept 

Mixed-effects logistic regression models with a random intercept were considered for modeling 

each simulated binary data, that is,  

𝑙𝑛 �
𝑝𝑖𝑡

1 − 𝑝𝑖𝑡
� = 𝛽0 + 𝛽1𝑇𝑖𝑚𝑒𝑖𝑡 + 𝛽2𝑇𝑟𝑡𝑖 + 𝜁𝑖 

where the random subject effects 𝜁𝑖 are distributed as 𝑁�0,𝜎𝜁2� and 𝜁𝑖 independent across 

subjects i, given a random intercept and  𝑝𝑖𝑡 = 𝑃𝑟(𝑌𝑖𝑡 = 1|𝑇𝑟𝑡𝑖 , 𝜁𝑖), and 𝛽0, 𝛽1, and 𝛽2 represent 

the same parameters as  in logistic regression model using GEE above. We assumed that 𝑌𝑖𝑡 are 

independently distributed given 𝑝𝑖𝑡 as 𝑌𝑖𝑡|𝑝𝑖𝑡~𝐵𝑖𝑛𝑜𝑚𝑖𝑎𝑙(1,𝑝𝑖𝑡). 
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Similar to logistic regression model using GEE, our interest is to test the null hypothesis 

of no treatment effect over time. We tested the null hypothesis of no treatment difference, that is,  

𝐻0: 𝛽2 = 0 

2.2.2 Simulation Design 

The power and type I error rates of the four statistical procedures were compared through 

computer simulations under a range of scenarios including different marginal probabilities of 

positive response and different correlation structures among the binary observations.  

The type I empirical rates were computed as the proportion of time the null hypothesis of 

no treatment effect was rejected at the two-sided nominal α=0.05. If the empirical type I error 

was close to the nominal error (α=0.05), the test was considered valid. The statistical power for 

selected alternative hypotheses (i.e., treatment effect) was calculated as the proportion of 

rejections of the false null hypothesis of no treatment effect assuming a two-sided type I error of 

0.05.  

2.2.3 Data Generation 

Correlated binary outcomes were generated given the marginal probabilities and correlation 

structure using the method of Park et al. (1996). This method creates correlated binary data from 

correlated Poisson variables with no requirement of a complex numerical procedure to be solved. 

The only limitation of this technique is that negatively correlated binary random variables cannot 

be generated. However, it is not unusual to assume nonnegative correlations among binary 

observations taken repeatedly from the same subject over time. Demirtas (2004) presented an R 

routine for generating correlated binary variables using an algorithm developed by Park et al. 
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(1996). 2000 simulated data sets from a hypothetical longitudinal binary data of different sets of 

parameters were generated using the R function written by Demirtas (2004). In these 

simulations, we restricted attention to four time points. The response at each time point was 

either positive (=1) or negative (=0). In each simulation, correlated binary outcomes with 4 

repeated measurements were generated for the specified number of subjects for each of the two 

treatment groups separately given the marginal expectations (i.e., marginal probabilities of 

positive response at four time points are pA= �pA1, pA2, pA3, pA4� and pB= �pB1, pB2, pB3, pB4� for 

Trt-A and Trt-B, respectively) and the correlation structures among responses. The number of 

subjects was equal for both treatment groups with n = 60 subjects for each group.  

Six sets of marginal expectations of positive responses at four time points were used for 

comparing statistical power: (1) no change over time for placebo group while there is an 

improvement for drug group (pA= (.6, .6, .6, .6) and pB= (.6, .5, .4, .3)); (2) no change at the 

beginning of the study for both groups but the placebo group worsens while the drug group gets 

better later  in the study (pA= (.7, .7, .8, .9) and pB= (.7, .7, .6, .5)); (3) placebo group gradually 

worsens but the drug group gets better over time (pA= (.5, .6, .6, .7) and pB= (.5, .4, .4, .3)); (4) 

both groups show good progress but the drug group shows faster improvement (pA= (.8, .7, .7, .6) 

and pB= (.8, .6, .5, .4)); (5) placebo group gets worse while the drug group does not show any 

change over time (pA= (.4, .5, .6, .7) and pB= (.4, .4, .4, .4)); and (6) no change over time for the 

placebo group while the effect of drug is immediate and is maintained over time 

(pA= (.7, .7, .7, .7) and pB= (.5, .5, .5, .5)).  

A within-subject independent correlation structure (no correlation among the 

observations, i.e., repeated measurements may be taken at long time intervals resulting in 

negligible correlations among the measurements) for weakly dependent binary responses, 
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exchangeable correlation structure (constant correlation among the observations) with correlation 

coefficient being 0.3 for moderately dependent binary responses, and a first-order auto-

regressive, AR(1), correlation structure with correlation coefficient being 0.6 for strongly 

dependent binary responses  

i.e., 

𝐶𝑜𝑟𝑟 �𝑌𝑗 , 𝑌𝑘� = 0.6 𝑓𝑜𝑟 |𝑗 − 𝑘| = 1,

𝐶𝑜𝑟𝑟 �𝑌𝑗 ,𝑌𝑘� =  0.36 𝑓𝑜𝑟 |𝑗 − 𝑘| = 2,  and 𝐶𝑜𝑟𝑟 �𝑌𝑗 ,  𝑌𝑘� = 0.216 𝑓𝑜𝑟 |𝑗 − 𝑘| = 3were 

assumed for the association among the responses. No missing values were generated for this 

simulation study. Thus, the correlation structures were as follows: 

Independent correlation structure: 

𝑅 = �

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

�,        

Exchangeable correlation structure: 

𝑅 = �

1 0.3 0.3 0.3
0.3 1 0.3 0.3
0.3 0.3 1 0.3
0.3 0.3 0.3 1

�,     

AR(1) correlation structure: 

𝑅 = �

1 0.6 0.36 0.216
0.6 1 0.6 0.36

0.36 0.6 1 0.6
0.216 0.36 0.6 1

�. 

2.2.4 Strategies for Ordering Vectors of Binary Responses 

Since four repeated binary responses were generated, there are 24 = 16 possible response profiles 

over time. For each simulated data set, we ordered the vectors based on both the number of 
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positive responses (1 = disease), and the time to first/last appearance of disease. Although we 

will eventually obtain input from clinicians on some real life examples, for now we considered 

two different strategies for ordering the observed vectors. For the first ordering strategy to rank 

vectors of observations of subjects (strategy I), we have used a ranking which gives priority to 

the number of disease episodes and then breaks ties by ranking as a  poorer outcome those with 

the earliest episode. For the second ordering strategy (strategy II), we have used a ranking which 

gives priority to the number of disease episodes, as for strategy I, but then breaks ties by ranking 

as a poorer outcome those with the latest episode (Table 2.1). For both ordering strategies, a 

vector of four positive responses at all time points receives the lowest ranked score and a vector 

of four positive responses at all time points receives the highest ranked score. We compared two 

treatment groups with regard to the ordered vectors using the Wilcoxon rank-sum test.  

2.2.5 Simulation Results   

 The results for the type I error rates are presented in Table 2.2 and the results for the power are 

presented in Table 2.3.  

Type I Error Rate 

Table 2.2 presents the percentages of the type I error rates for each procedure when the marginal 

probabilities of positive response (undesirable outcome i.e., having disease) are the same and 

different at all four time points for both treatment groups using different correlation structures. 

Table 1 was produced under three different correlation structures: (1) no correlation between the 

repeated binary responses, (2) exchangeable correlation structure with correlation coefficients 

being 0.3, and (3) AR(1) correlation structure with correlation coefficient being 0.6. Simulation 

results showed that none of the procedures yielded high type I error rates and all procedures 
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produced type I error rates around the nominal value (α=0.05) when independent correlation 

structure was adopted. All methods were comparable with respect to type I error rate in the 

absence of correlation among the repeated binary responses.  

The proposed method using strategies I and II, t-test, and GEE with different correlation 

structures preserved the type I error well under the null hypothesis whereas MERI tended to 

produce slightly higher type I error rate when exchangeable correlation structure was occupied. 

GEE with unstructured correlation structure yielded a little higher type I error rate for the 

situation where the marginal probabilities of positive response were the same at the four time 

points (Patterns 1, 3, and 4) compared to the proposed method, t-test and GEE with other 

correlation structures.    

We did not detect apparent difference with respect to type I error rates over the methods 

when the AR(1) correlation structure with correlation coefficient being 0.6 was used. However, 

MERI model produced slightly higher type I error rates than the proposed method, t-test, and 

GEE with different correlation structures except unstructured (incorrect) correlation structure 

which yielded slightly higher type I error rates for some scenarios such as patterns 1, 4, 6, and 8. 

The reason of obtaining higher type I error rate with MERI can be explained by the fact that an 

increase in the correlation among the observations inflates the type I error rate. (Hedeker and 

Gibbons 2006; Liu and Wu 2008). Diggle et al. (2002) also showed that positive correlation 

increases the type I error rate for repeated binary responses. 

Overall, the proposed method yielded desirable Type I error rates around the nominal 5 

percent and performed well under different scenarios (different marginal probabilities and 

correlation structures).  

 



 

 24 

Statistical Power 

Statistical power of the competing methods from simulations are reported in Table 2.3 when the 

correlation structures are independent, exchangeable, and AR(1) with different marginal 

probabilities of positive response at four time points for each treatment group. 

Table 2.1: Ordering of 16 possible vectors based on the two different strategies 

STRATEGY I 

Number of disease episodes 

0 1 2 3 4 

R Profile R Profile R Profile R Profile R Profile 

16 [0 0 0 0] 12 [1 0 0 0] 6 [1 1 0 0] 2 [1 1 1 0] 1 [1 1 1 1] 

  13 [0 1 0 0] 7 [1 0 1 0] 3 [1 1 0 1]   

  14 [0 0 1 0] 8 [1 0 0 1] 4 [1 0 1 1]   

  15 [0 0 0 1] 9 [0 1 1 0] 5 [0 1 1 1]   

    10 [0 1 0 1]     

    11 [0 0 1 1]     

Algorithm: 
1. Rank first by number of disease episodes 
2. Break ties by considering earlier disease as poorer outcome  

STRATEGY II 

Number of disease episodes 

0 1 2 3 4 

 Profile  Profile  Profile  Profile  Profile 

16 [0 0 0 0] 15 [1 0 0 0] 11 [1 1 0 0] 5 [1 1 1 0] 1 [1 1 1 1] 

  14 [0 1 0 0] 10 [1 0 1 0] 4 [1 1 0 1]   

  13 [0 0 1 0] 9 [1 0 0 1] 3 [1 0 1 1]   

  12 [0 0 0 1] 8 [0 1 1 0] 2 [0 1 1 1]   

     [0 1 0 1]     

     [0 0 1 1]     

Algorithm: 
1. Rank first by number of disease episodes 
2. Break ties by considering later disease as poorer outcome  

(1=positive, 0=negative), R=Rank score.  Lower rank score is poorer outcome. 
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  When the marginal expectations of positive response are pA= (.4, .4, .4, .4) and 

pB= (.3, .3, .3, .3), the proposed method had slightly lower power than the other methods in the 

case of no correlation among observations. The proposed method yielded statistical power 

comparable to other procedures except MERI, which kept a little higher power than the other 

methods, in the presence of correlation among the responses (exchangeable and AR-1 correlation 

structures).  

When the marginal expectations of positive response are pA= (.8, .8, .8, .8) and pB= (.7, .7, .7, .7), 

our proposed method with two different ordering schemes had slightly lower statistical power 

than the other methods under the scenario of assuming no correlation among the responses. 

However, our proposed method yielded similar power compared with MERI and higher power 

than the t-test and GEE when we adapted the exchangeable correlation structure. The proposed 

method showed slightly higher or similar power in detecting treatment differences under the 

alternative hypothesis compared with the t-test and GEE, with correct or incorrect correlation 

structures for the scenario of applying AR(1).  

Under the scenario of no change over time for the placebo group but fast and constant 

improvement for treatment group (i.e., pA= (.7, .7, .7, .7) and pB= (.5, .5, .5, .5) or 

pA= (.5, .5, .5, .5) and pB= (.3, .3, .3, .3)), all procedures produced similar power regardless of 

assuming different correlation structures. 

In some clinical trials, placebo-treated subjects are expected to worsen over time and no 

improvement is observed for subjects randomized to drug group. In order to demonstrate this 

situation in our simulation study, we chose scenarios where the marginal expectations of positive 

response for placebo and drug groups are pA= (.4, .5, .6, .7) and pB = (.4, .4, .4, .4) or 

pA= (.6, .7, .8, .9) and pB= (.6, .6, .6, .6), respectively. Under these scenarios, the proposed 
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method with strategy II had higher statistical power than the competitive methods in the absence 

of correlation among the responses but the proposed method with strategy I had the lowest 

power. When we assumed that repeated measurers are correlated, the proposed method with 

strategy II had still higher power than the other procedures and loss in power was higher for 

other procedures than the proposed method with strategy II. 

When the marginal probabilities of positive response difference between two treatment 

groups is high at the beginning of the trial and this difference gradually decreases over time and 

equalize at the last time points (i.e., pA= (.7, .6, .5, .4) and pB = (.4, .4, .4, .4)), the proposed 

method with strategy I produced statistical power higher than the other procedures and the 

proposed method with strategy II produced the lowest power in the absence or presence of 

correlation among the responses. Note that our proposed method produces different power 

depending on the ordering strategy of the vectors. 

For pA= (.3, .5, .6, .8) and pB = (.8, .6, .5, .3) using different correlation structures, our 

proposed method with strategy I and strategy II had noticeably higher statistical power compared 

to other methods. Other procedures yielded power around the nominal 5 percent. It should be 

noted that GEE and MERI methods were not designed to be sensitive to interactions.  

Under the scenario pA= (.6, .6, .6, .6) and pB = (.6, .5, .4, .3), the proposed method with 

strategy II yielded higher power than the other procedures regardless of employing different 

assumptions of correlation among the repeated observations. Statistical power produced by the 

proposed method with strategy I was lower than that produced by the other procedures. 

Although our proposed method with strategy I had lower power than the other procedures, the 

method with strategy II yielded higher power compared to other procedures under the scenario 



 

 27 

where the marginal probabilities are pA= (.8, .7, .7, .6) and pB = (.8, .6, .5, .4),   pA= (.5, .6, .6, .7) 

and pB = (.5, .4, .4, .3) or pA= (.7, .7, .8, .9) and pB = (.7, .7, .6, .5). 

 

Table 2.2: Type I Error Rate (%): Simulation results for comparing the methods with full data 

 Placebo Drug PROPOSED t-test GEE MERI 
 p1 p2 p3 p4 p1 p2 p3 p4 I II  IND EX AR(1) UN  

Independent Correlation Structure  
1 .3 .3 .3 .3 .3 .3 .3 .3 5.2 4.7 4.6 4.6 4.6 4.6 5.2 4.2 
2 .4 .4 .4 .4 .4 .4 .4 .4 5.2 5.4 5.2 5.4 5.4 5.2 5.7 5.0 
3 .5 .5 .5 .5 .5 .5 .5 .5 4.8 4.5 4.8 4.9 4.9 5.0 5.1 4.5 
4 .7 .7 .7 .7 .7 .7 .7 .7 4.2 5.0 4.2 4.2 4.4 4.2 4.9 4.1 
5 .6 .4 .6 .4 .6 .4 .6 .4 5.3 5.0 5.4 5.8 5.8 5.7 5.7 4.9 
6 .4 .5 .6 .7 .4. 5 .6 .7 5.8 5.7 5.2 5.4 5.4 5.3 5.8 5.0 
7 .6 .7 .8 .9 .6 .7 .8 .9 5.3 5.5 5.4 5.4 5.5 5.6 5.8 5.0 
8 .7 .6 .5 .4 .7 .6 .5 .4 5.0 5.2 4.8 5.1 5.1 5.0 5.4 4.8 
9 .6 .6 .4 .4 .6 .6 .4 .4 5.0 5.1 4.8 5.0 5.0 5.0 5.2 4.2 

Exchangeable Correlation Structure 
1 .3 .3 .3 .3 .3 .3 .3 .3 5.1 5.4 5.0 5.0 5.1 5.2 5.7 6.1 
2 .4 .4 .4 .4 .4 .4 .4 .4 4.9 5.8 5.5 5.5 5.5 5.6 6.0 6.4 
3 .5 .5 .5 .5 .5 .5 .5 .5 5.4 5.8 5.7 5.8 5.8 5.8 6.2 6.8 
4 .7 .7 .7 .7 .7 .7 .7 .7 4.9 5.4 4.9 5.4 5.4 5.7 5.8 6.4 
5 .6 .4 .6 .4 .6 .4 .6 .4 4.8 4.8 4.6 4.6 4.6 4.6 5.1 5.4 
6 .4 .5 .6 .7 .4. 5 .6 .7 5.7 5.4 5.6 5.8 5.8 5.6 6.0 6.4 
7 .6 .7 .8 .9 .6 .7 .8 .9 5.8 4.7 4.8 5.2 5.6 5.2 5.6 6.2 
8 .7 .6 .5 .4 .7 .6 .5 .4 4.9 5.2 5.0 5.1 5.1 5.3 5.4 6.0 
9 .6 .6 .4 .4 .6 .6 .4 .4 4.7 4.4 4.6 4.7 4.7 5.2 5.3 6.0 

AR(1) Correlation  Structure 
1 .3 .3 .3 .3 .3 .3 .3 .3 5.0 5.4 4.7 4.7 5.0 5.4 5.8 6.0 
2 .4 .4 .4 .4 .4 .4 .4 .4 4.7 5.2 5.0 5.0 5.2 5.2 5.8 6.3 
3 .5 .5 .5 .5 .5 .5 .5 .5 4.4 4.7 4.9 5.0 5.0 5.2 5.4 5.6 
4 .7 .7 .7 .7 .7 .7 .7 .7 5.4 5.0 5.4 5.5 5.6 5.4 6.0 6.4 
5 .6 .4 .6 .4 .6 .4 .6 .4 5.2 5.4 5.1 5.2 5.1 5.1 5.4 6.1 
6 .4 .5 .6 .7 .4. 5 .6 .7 4.9 4.5 5.2 5.2 5.2 5.1 5.7 5.8 
7 .6 .7 .8 .9 .6 .7 .8 .9 5.4 4.8 5.0 5.2 5.2 5.4 5.6 6.1 
8 .7 .6 .5 .4 .7 .6 .5 .4 5.4 5.4 5.1 5.4 5.3 5.5 6.0 6.1 
9 .6 .6 .4 .4 .6 .6 .4 .4 5.0 5.4 5.2 5.2 5.4 5.2 5.5 6.4 

Abbreviations: PROPOSED, proposed method based on the ordering of strategy I and II in Table 2.1; t-test, t-
test comparing the means of the proportions of positive responses between the two groups; GEE, logistic 
regression model using GEE; MERI, mixed effects logistic regression model with random intercept; IND, 
independent correlation structure; EX, exchangeable correlation structure; AR(1), first-order auto-regressive 
correlation structure; UN, unstructured correlation structure; pt, marginal probability of positive response at 
time t, t = 1, 2, 3, 4.  
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We also compared our proposed method with GEE and MERI when the time by 

treatment interaction term was considered. We reported the simulation results for this 

comparison in Table 2.4. As expected, GEE and MERI methods gained power in some scenarios 

(i.e., pA= (.3, .5, .6, .8) and pB = (.8, .6, .5, .3), pA= (.4, .5, .6, .7) and pB = (.4, .4, .4, .4), 

pA= (.6, .6, .6, .6) and pB = (.6, .5, .4, .3)) compared to results in Table 2.3. Under these 

scenarios, powers of these methods are comparable with the proposed method when independent 

correlation structure is used and are higher than that of the proposed method in the presence of 

correlation among observations. For some scenarios (i.e., pA= (.4, .4, .4, .4) and 

pB = (.3, .3, .3, .3), pA= (.8, .8, .8, .8) and pB = (.7, .7, .7, .7), pA= (.7, .7, .7, .7) and 

pB = (.5, .5, .5, .5)), there is a decrease in power for GEE and MERI methods. Under these 

scenarios, the proposed method yielded higher power than these methods. 

In summary, the proposed method is competitive with and, for some scenarios, is 

preferable to the traditional methods. As the simulation study showed, different ordering 

strategies of the vectors of binary response give different results. 
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Table 2.3: Power (%): Simulation results for comparing the methods without missing data 

 Placebo Drug  PROPOSED t-test GEE MERI 

 p1 p2 p3 p4 p1 p2 p3 p4 I II  IND EX AR(1) UN  

Independent Correlation Structure    
1 .3 .5 .6 .8 .8 .6 .5 .3 56.9 54.4 5.0 5.2 5.2 5.2 7.8 3.6 
2 .4 .6 .7. 8 .4 .4 .4 .4 96.9 100 100 100 100 100 100 99.0 
3 .4 .5 .6 .7 .4 .4 .4 .4 69.4 97.7 92.0 92.2 92.2 92.2 92.7 91.5 
4 .7 .6 .5 .4 .4 .4 .4 .4 97.2 69.6 91.6 91.8 91.6 91.7 91.8 91.2 
5 .6 .7 .8 .9 .6 .6 .6 .6 96.9 100 100 100 100 100 100 99.9 
6 .8 .7 .7. 6 .8 .6 .5 .4 48.4 73.2 64.8 65.2 65.2 65.4 66.0 63.9 
7 .5 .6 .6. 7 .5 .4 .4 .3 92.3 99.9 99.4 99.4 99.4 99.4 99.2 99.4 
8 .7 .7 .8 .9 .7 .7 .6 .5 40.1 81.2 68.0 68.7 68.8 68.4 69.3 66.9 
9 .6 .6 .6 .6 .6 .5 .4. 3 70.0 97.0 91.4 91.7 91.7 91.7 91.8 91.0 

10 .4 .4 .4 .4 .3 .3 .3 .3 58.8 58.6 63.8 64.4 64.4 64.8 65.1 63.1 
11 .8 .8 .8 .8 .7 .7 .7 .7 64.8 66.2 70.6 71.3 71.4 71.4 71.4 70.2 
12 .7 .7 .7 .7 .5 .5 .5 .5 99.0 99.2 99.6 99.6 99.6 99.6 99.4 99.6 
13 .5 .5 .5 .5 .3 .3 .3 .3 99.0 99.0 99.7 99.7 99.7 99.7 99.7 99.7 

Exchangeable Correlation Structure    
1 .3 .5 .6 .8 .8 .6 .5 .3 30.6 31.4 4.8 5.0 5.0 5.0 8.5 5.8 
2 .4 .6 .7. 8 .4 .4 .4 .4 83.4 98.9 96.3 96.2 96.3 95.6 96.2 97.2 
3 .4 .5 .6 .7 .4 .4 .4 .4 47.1 81.2 69.4 69.6 70.2 69.3 70.8 73.2 
4 .7 .6 .5 .4 .4 .4 .4 .4 81.2 48.4 69.4 69.7 70.2 69.2 71.4 72.8 
5 .6 .7 .8 .9 .6 .6 .6 .6 49.4 88.0 73.5 74.3 69.6 73.3 71.8 78.3 
6 .8 .7 .7. 6 .8 .6 .5 .4 50.8 69.4 56.1 56.2 61.4 54.2 61.8 59.6 
7 .5 .6 .6. 7 .5 .4 .4 .3 71.4 95.3 88.2 88.4 88.4 87.1 89.2 89.2 
8 .7 .7 .8 .9 .7 .7 .6 .5 52.6 92.2 74.8 74.8 74.2 79.4 79.8 78.8 
9 .6 .6 .6 .6 .6 .5 .4. 3 53.2 83.4 68.0 68.2 68.7 68.1 69.3 69.6 

10 .4 .4 .4 .4 .3 .3 .3 .3 35.2 35.0 36.3 36.8 36.6 36.6 37.8 39.3 
11 .8 .8 .8 .8 .7 .7 .7 .7 51.8 51.8 46.0 46.3 46.2 45.2 46.4 52.6 
12 .7 .7 .7 .7 .5 .5 .5 .5 91.6 91.4 89.6 89.6 89.6 89.1 89.6 92.0 
13 .5 .5 .5 .5 .3 .3 .3 .3 89.4 90.4 91.4 91.6 91.6 90.2 91.4 92.2 

AR(1) Correlation Structure    
1 .3 .5 .6 .8 .8 .6 .5 .3 32.6 32.0 5.4 5.6 5.5 5.4 9.8 6.2 
2 .4 .6 .7. 8 .4 .4 .4 .4 71.2 96.0 89.2 89.4 90.2 89.7 89.6 90.7 
3 .4 .5 .6 .7 .4 .4 .4 .4 33.5 74.4 54.0 54.5 56.8 58.8 58.9 58.8 
4 .7 .6 .5 .4 .4 .4 .4 .4 68.8 38.2 53.3 53.4 55.4 57.4 60.0 56.5 
5 .6 .7 .8 .9 .6 .6 .6 .6 34.5 71.9 57.6 58.4 52.2 60.6 61.1 60.4 
6 .8 .7 .7. 6 .8 .6 .5 .4 62.6 76.4 69.4 69.3 72.2 65.1 69.0 71.4 
7 .5 .6 .6. 7 .5 .4 .4 .3 74.4 96.4 90.8 90.8 90.8 89.8 91.2 92.0 
8 .7 .7 .8 .9 .7 .7 .6 .5 41.2 87.1 72.0 72.4 72.0 79.5 81.4 74.7 
9 .6 .6 .6 .6 .6 .5 .4. 3 64.1 87.4 79.8 80.0 79.8 76.4 78.0 81.7 

10 .4 .4 .4 .4 .3 .3 .3 .3 36.0 36.0 36.8 37.0 36.8 36.5 38.0 40.4 
11 .8 .8 .8 .8 .7 .7 .7 .7 44.1 43.4 43.0 43.4 43.2 42.4 43.8 48.2 
12 .7 .7 .7 .7 .5 .5 .5 .5 91.4 90.0 90.6 90.8 90.8 90.5 91.1 92.4 
13 .5 .5 .5 .5 .3 .3 .3 .3 87.3 87.6 88.6 88.7 88.5 88.4 89.3 89.9 
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Table 2.4: Power (%): Simulation results for comparing the methods without missing data when treatment by 

time interaction is considered 

 Placebo Drug PROPOSED t-test GEE MERI 

 p1 p2 p3 p4 p1 p2 p3 p4 I II  IND EX AR(1) UN  
Independent Correlation Structure  

1 .3 .5 .6 .8 .8 .6 .5 .3 55.4 54.8 5.3 100 100 100 100 100 
2 .4 .6 .7. 8 .4 .4 .4 .4 97.4 100 99.8 100 100 100 100 100 
3 .4 .5 .6 .7 .4 .4 .4 .4 71.5 97.3 91.4 97.6 97.6 97.6 97.6 97.6 
4 .7 .6 .5 .4 .4 .4 .4 .4 96.8 69.4 90.0 96.3 96.3 96.2 96.4 96.6 
5 .6 .7 .8 .9 .6 .6 .6 .6 72.2 98.9 95.4 99.2 99.2 99.3 99.2 99.3 
6 .8 .7 .7. 6 .8 .6 .5 .4 66.8 88.2 82.8 84.6 84.6 84.6 85.0 84.7 
7 .5 .6 .6. 7 .5 .4 .4 .3 92.0 100 99.2 99.8 99.8 99.8 99.8 99.8 
8 .7 .7 .8 .9 .7 .7 .6 .5 67.0 99.4 95.0 99.8 99.8 99.8 99.8 99.8 
9 .6 .6 .6 .6 .6 .5 .4. 3 68.8 97.3 91.7 96.8 96.8 96.8 97.0 96.8 

10 .4 .4 .4 .4 .3 .3 .3 .3 58.6 58.1 63.7 55.4 55.4 55.6 56.1 53.6 
11 .8 .8 .8 .8 .7 .7 .7 .7 67.4 66.4 71.4 61.6 61.6 61.4 61.6 60.2 
12 .7 .7 .7 .7 .5 .5 .5 .5 98.8 98.7 99.2 98.4 98.4 98.4 98.4 98.4 
13 .5 .5 .5 .5 .3 .3 .3 .3 98.6 98.9 99.2 98.5 98.5 98.5 98.6 98.4 

Exchangeable Correlation Structure  
1 .3 .5 .6 .8 .8 .6 .5 .3 32.2 32.8 5.8 100 100 100 100 100 
2 .4 .6 .7. 8 .4 .4 .4 .4 82.2 98.9 96.8 100 100 100 100 100 
3 .4 .5 .6 .7 .4 .4 .4 .4 49.0 81.8 69.2 93.4 93.4 93.4 93.4 94.7 
4 .7 .6 .5 .4 .4 .4 .4 .4 80.6 48.4 68.8 92.5 92.5 91.8 92.1 93.6 
5 .6 .7 .8 .9 .6 .6 .6 .6 49.5 88.2 74.8 98.0 97.9 98.0 98.2 98.6 
6 .8 .7 .7. 6 .8 .6 .5 .4 51.7 69.4 57.0 71.3 72.0 65.8 70.7 71.6 
7 .5 .6 .6. 7 .5 .4 .4 .3 71.0 95.5 88.6 98.9 98.9 99.2 99.0 99.0 
8 .7 .7 .8 .9 .7 .7 .6 .5 49.2 91.3 72.6 99.8 99.8 99.7 99.8 99.8 
9 .6 .6 .6 .6 .6 .5 .4. 3 53.6 83.6 66.7 92.6 92.6 90.9 92.6 92.8 

10 .4 .4 .4 .4 .3 .3 .3 .3 36.1 36.0 37.6 30.1 30.1 30.0 31.4 33.2 
11 .8 .8 .8 .8 .7 .7 .7 .7 50.6 50.6 45.0 33.1 33.2 32.0 33.8 40.0 
12 .7 .7 .7 .7 .5 .5 .5 .5 93.1 92.2 91.2 83.0 83.0 82.1 83.6 86.1 
13 .5 .5 .5 .5 .3 .3 .3 .3 89.4 89.8 91.0 84.0 84.0 82.6 84.0 85.4 

Auto Regressive Correlation Structure  
1 .3 .5 .6 .8 .8 .6 .5 .3 33.9 31.0 5.0 100 100 100 100 100 
2 .4 .6 .7. 8 .4 .4 .4 .4 71.9 95.8 90.0 99.9 99.8 99.7 99.8 99.9 
3 .4 .5 .6 .7 .4 .4 .4 .4 33.4 70.6 52.4 93.1 92.8 90.5 91.0 95.2 
4 .7 .6 .5 .4 .4 .4 .4 .4 67.0 37.4 51.8 85.5 85.4 87.2 85.4 89.0 
5 .6 .7 .8 .9 .6 .6 .6 .6 34.0 71.8 56.6 97.4 97.4 96.1 96.6 98.5 
6 .8 .7 .7. 6 .8 .6 .5 .4 61.2 76.2 68.8 75.4 77.6 71.0 74.2 81.2 
7 .5 .6 .6. 7 .5 .4 .4 .3 72.4 96.4 89.4 99.6 99.6 99.6 99.6 99.8 
8 .7 .7 .8 .9 .7 .7 .6 .5 42.8 87.7 72.0 99.8 99.8 99.7 99.8 99.8 
9 .6 .6 .6 .6 .6 .5 .4. 3 63.6 87.6 79.5 94.0 94.1 93.6 94.2 96.2 

10 .4 .4 .4 .4 .3 .3 .3 .3 35.2 35.1 35.8 27.6 27.6 28.1 29.0 33.8 
11 .8 .8 .8 .8 .7 .7 .7 .7 48.8 46.7 47.6 36.3 36.3 36.2 37.6 44.9 
12 .7 .7 .7 .7 .5 .5 .5 .5 90.6 90.2 90.9 83.9 83.8 82.8 84.0 87.2 
13 .5 .5 .5 .5 .3 .3 .3 .3 89.2 89.2 90.2 83.8 83.8 82.8 84.2 87.0 
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2.3 POWER CALCULATION OF THE PROPOSED METHOD 

The proposed method uses a Wilcoxon-type test statistic applied to vectors of observations and 

as the number of replicates increases, there is no clear concept of an increase in effective sample 

size as exists for many of the tests for repeated measures. Therefore it is not clear that the power 

of the Wilcoxon test statistic will be competitive with standard techniques. We believe that it is 

important to examine the relationship of the power of the proposed method to the number of 

repeated measurements.  

We consider power calculations for a clinical trial that is designed to compare two 

treatment groups (treatment A and treatment B) on a binary response of disease that will be 

assessed longitudinally over time. We give an illustration under a scenario where the marginal 

probability of disease is the same at all time points but different for each group and repeated 

observations taken from each subject are not correlated (independent correlation structure).  

The Wilcoxon test statistic can be viewed as a test based on stochastic dominance or the 

probability that the rank of a randomly selected subject assigned to treatment A will be lower 

than that of a randomly selected subject assigned to treatment B. For simplicity, lower rank 

indicates worse outcome. We calculate the exact probability that a subject assigned to treatment 

A has a worse rank score than a subject assigned to treatment B for specified marginal 

probabilities and assuming independence as a function of the number of replicates. Let 𝑟 = the 

number of repeated measurements taken from each subject. We assume that the probability of 

observing disease at each time point is 𝑝𝐴 =  0.8 and 𝑝𝐵 =  0.7 for treatment A and B, 

respectively. For 𝑟 =  1, the probability that the rank of randomly chosen subject from treatment 

A is lower than that of randomly chosen from treatment B is the product of the probability that a 
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subject assigned to treatment A has disease and the probability that a subject assigned to 

treatment B does not have disease  

𝑃𝑟(𝐴 <  𝐵)  =  (0.8)(0.3)  =  0.24 

We consider the ordering of vectors based on the strategy I given in Section 2.2.4 to 

calculate the probability 𝑃𝑟(𝐴 <  𝐵) for 𝑟 > 1. Based on this strategy, more time points with 

disease is worse outcome and rank of a subject who has disease earlier is lower than that of a 

subject who has disease later if the subjects have the same number of time points with disease. 

For 𝑟 =  2, for example, a subject who had disease at both time points ([1, 1]) has the lowest 

rank and a subject who had no diseases at all time points ([0, 0]) is the highest rank. A subject 

whose profile is [1, 0] has lower rank score than a subject whose profile is [0, 1]. As 

pA= (0.8, 0.8) andpB= (0.7, 0.7)  for treatment A and B, respectively, for 𝑟 =  2,  

𝑃𝑟(𝐴 <  𝐵)  =  𝑃𝑟([1,1])𝑃𝑟([1,0])  +  𝑃𝑟([1,1])𝑃𝑟([0,1])  +  𝑃𝑟([1,1])𝑃𝑟([0,0])  +  

                              𝑃𝑟([1,0])𝑃𝑟([0,0])  +  𝑃𝑟 ([0,1])𝑃𝑟( [0,0])  +  𝑃𝑟 ([1,0])𝑃𝑟( [0,1])  

𝑃𝑟 (𝐴 < 𝐵) =  (0.64)(0.21) +  (0.64)(0.21) +  (0.64)(0.09) + (0.16)(0.09) + (0.16)(0.09)

+ (0.16)(0.21) = 0.3888 

We calculated 𝑃𝑟(𝐴 <  𝐵) for 𝑟 =  3, 4, 5 by writing a simple program in R package 

and present the results in Table 2.5. The probability that a subject in treatment A has lower rank 

than a subject in treatment B increases as the number of repeated measurements increases as 

shown in Table 2.5. It indicates that the power for testing treatment differences with the 

proposed method which uses a Wilcoxon test statistic increases with the increasing of the 

number of repeated measures. 

The power of the Wilcoxon test statistic was computed using the PROC POWER in SAS 

9.2 for different values of 𝑟. PROC POWER uses the O’Brien-Castelloe approximation to 
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calculate the power for an equal number of subjects of 60 per group (nA = nB = 60) and one-tailed 

alpha level of 0.025. We also estimated the power for the given sample sizes and one-sided Type 

I error of 0.025 through simulation study using 2000 simulation data sets. For each simulation, 

independent binary outcomes were generated given the marginal probabilities (e.g., 

pA= (0.8, 0.8) and pB= (0.7, 0.7) for 𝑟 =  2 and pA= (0.8, 0.8, 0.8) and pB= (0.7, 0.7, 0.7,) for 

𝑟 =  3) for 𝑟 repeated measurements as demonstrated in Section 2.2.3. The power estimates 

computed using SAS 9.2 and using the simulation study are compared in Table 2.5. Table 2.5 

examines the relationship between the power of the Wilcoxon test statistic and the number of 

repeated observations and shows that power estimates increases as the number of repeated 

measurements taken from each subject increases. 

 
Table 2.5: Statistical power calculation for a study with r repeated binary measures for an equal sample size 

of 60 per group and one-tailed alpha=0.025 

 Number of repeated binary measurements 
 2 3 4 5 

Pr (A < B) 0.39 0.48 0.55 0.59 

Power (%) 40.9 54.9 66.8 6.3 

Simulation (%) 39.4 57.1 66.2 75.8 

 

2.4 CONCLUSION 

 
We conducted simulation studies to compare the performance of our proposed method to that of 

commonly used methods for analysis of longitudinal binary data when there are no missing data. 

Simulation studies indicated that none of the approaches are uniformly better than the others. 

The type I error for all methods is reasonably close to the nominal value except MERI method 
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which produced higher type I error rates under the assumption of exchangeable and AR(1) 

correlation structures. There are some situations where our approach performs better/worse in 

terms of statistical power than the other approaches depending on the strategy for ordering 

vectors and the difference in the alternative hypotheses. In most situations, power for testing 

treatment differences with the proposed method versus the other standard methods is comparable 

and our proposed method is competitive with other methods. Note that our proposed method in 

the strategies of ranking we employed detects some types of interaction. Therefore, when 

interaction terms are not included in the GEE or MERI models, the proposed method tends to 

have slightly higher statistical power for alternatives that are different only for main effects but 

are very much inferior if the differences are due to an interaction. When an interaction term is 

included in these models, they lose statistical power for main effects and the proposed test often 

has superior power for main effect. We believe that our approach is feasible and it will readily be 

adaptable to missing data and multiple outcomes (intervention with other treatments). It is also 

more adjustable in distinguishing ‘clinically relevant difference’. 
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3.0  LONGITUDINAL BINARY RESPONSES WITH MISSING DATA 

Although many longitudinal studies are conducted to obtain measurements from all subjects at 

each of several time points, occurrence of missing data is common in such studies. In practice, 

all measurements from all subjects at pre-specified time points are not entirely observed. 

Withdrawal and loss to follow-up of subjects are one of the main concerns in longitudinal 

research. It is important to examine the missing data in order to draw valid and realistic results in 

the analysis of the data. As mentioned in Section 1.1, there are different methods of handling 

missing data in the analysis of repeated binary responses. Our proposed method allows several 

routes to be followed to incorporate missing data in the analysis of longitudinal binary outcomes. 

We restrict attention here to settings in which the pattern of missing data is monotone even 

though the proposed methodology can be applied to dataset in the presence of intermittent 

missing values. The motivation for the monotone missing data pattern is that it is more 

straightforward to address the dropouts compared to intermittent missing data.   

3.1 SET-UP AND NOTATION  

We introduce notations to be used throughout this chapter. We assume that 𝑛𝐴 and 𝑛𝐵 subjects 

are assigned to Trt-A and Trt-B, respectively and binary measurements are taken from all 

𝑁 = 𝑛𝐴+𝑛𝐵 subjects over time in longitudinal study with 𝑘 time points. To simplify notation, we 

assume that the design plan was to observe all subjects at the same number of time points. Let 

𝑿𝑖= (𝑥𝑖1, 𝑥𝑖2 , … , 𝑥𝑖𝑘 ) and 𝒀𝑗= (𝑦𝑗1, 𝑦𝑗2 , … ,𝑦𝑗𝑘) denote the 1𝑥𝑘 complete vectors of repeated 
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binary responses for subject 𝑖 in the Trt-A and subject 𝑗 in the Trt-B, respectively (i.e., outcomes 

that would have been observed if there were no missing data), with 𝑥𝑖𝑡 representing the binary 

response observed for the 𝑖𝑡ℎ subject in the Trt-A and 𝑦𝑗𝑡 representing the binary responses 

observed for the 𝑗𝑡ℎ subject in the Trt-B at time 𝑡 (t = 1,2,…, k,  i = 1,2,…, nA, j=1,2,…,nB). 

When some of the observations from subjects are not observed, we partition the vectors 𝑿𝑖 and 

𝒀𝑗 into 𝑿𝑖= (𝑿𝑖
O(𝑡−1),𝑿𝑖

M(𝑡)) and 𝒀𝑗= (𝒀𝑗
O(𝑡−1),𝒀𝑗

M(𝑡)), respectively, where 𝑿𝑖
O(𝑡−1) =

(𝑥𝑖1, 𝑥𝑖2 , … , 𝑥𝑖,𝑡−1)  denotes the observed part of 𝑿𝑖 before time 𝑡 at which dropout occurs and 

𝑿𝑖
M(𝑡) = (𝑥𝑖𝑡 , 𝑥𝑖,𝑡+1, … , 𝑥𝑖𝑘) denotes the unobserved missing part of 𝑿𝑖 after occurrence of 

dropout at time 𝑡; similarly, 𝒀𝑗
O(𝑡−1) = (𝑦𝑗1, 𝑦𝑗2 , … ,𝑦𝑗,𝑡−1)   denotes the observed part of 𝒀𝑗 

before time 𝑡 at which dropout occurs and 𝒀𝑗
M(𝑡) = (𝑦𝑗𝑡 ,𝑦𝑗,𝑡+1, … ,𝑦𝑖𝑘)   denotes the unobserved 

missing part of 𝒀𝑗 after occurrence of dropout at time 𝑡. Without loss of generality, 1 represents 

the presence of disease, 0 represents the absence of disease, and  ·  indicates a missing 

observation. If the measurement is observed it takes a value 0 or 1 and if the measurement is not 

observed, it is considered as missing. In this situation,  

𝑥𝑖𝑠 = �
 1 ,     𝑖𝑓 𝑑𝑖𝑠𝑒𝑎𝑠𝑒               

  0 ,     𝑖𝑓 𝑛𝑜 𝑑𝑖𝑠𝑒𝑎𝑠𝑒         
 · ,     𝑚𝑖𝑠𝑠𝑖𝑛𝑔                  

� 𝑖 = 1,2, … ,𝑛𝐴;  𝑠 = 1,2, … , 𝑘 

𝑦𝑗𝑠 = �
  1 ,     𝑖𝑓 𝑑𝑖𝑠𝑒𝑎𝑠𝑒               
   0 ,     𝑖𝑓 𝑛𝑜 𝑑𝑖𝑠𝑒𝑎𝑠𝑒         
  ·  ,      𝑚𝑖𝑠𝑠𝑖𝑛𝑔                  

� 𝑗 = 1,2, … ,𝑛𝐵;  𝑠 = 1,2, … , 𝑘 

When we restrict the missingness to dropouts, there are 𝑘 possible points at which a 

dropout can occur. Hence, there are 2𝑘 − 1 possible response profiles in case of the occurrence 

of dropout. If we assume that no dropout occurs at the 1𝑠𝑡 time point, there are 2𝑘 − 2 possible 

missingness profiles over time.  
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Since there are 2𝑘 possible response profiles over time for a complete sequence and 

2𝑘 − 2 possible profiles over time for an incomplete sequence, there are 2𝑘+1 − 2 possible 

vectors for complete and incomplete sequences together. In other words, the maximum number 

of binary vectors to be obtained cannot exceed 2𝑘+1 − 2. We define a scalar dropout indicator 

𝐷𝑠 = 𝑡 representing the time 𝑡 at which dropout occurs between time 𝑡 and (𝑡 + 1) for 𝑡 =

2, … ,𝑘 for 𝑠𝑡ℎ vector. For an incomplete vector of binary responses,  𝐷𝑠 denotes the time at 

which dropout occurs. For a complete vector of binary responses, 𝐷𝑠 = 𝑘 + 1 indicates no 

dropout (i.e. all measurements are observed). 

We define a matrix with (2𝑘+1 − 2) rows and 𝑘 columns. Each row of this matrix 

represents one of the possible response profiles with or without missing data and a ranked score 

will be assigned to each row. We designate this matrix as 𝒁. We will give details about how to 

create the  𝒁 matrix when missing data are encountered. 

For 𝑘 time points, 𝒁𝑠 = �𝑧𝑠1, 𝑧𝑠2, … , 𝑧𝑠𝑘� with 𝑠 =  1,2, … , 2𝑘+1 − 2 denoting one of the 

possible 2𝑘+1 − 2 binary representations for longitudinal binary outcomes in the presence or 

absence of missing data.   

If some responses are not observed, we partition 𝒁𝑠 into two sub-vectors such that 

𝐙𝑠
  O(𝑡−1) represents the sub-vector of observed measurements before time 𝑡 at which loss to 

follow-up occurs and 𝒁𝑠
  M(𝑡) represents the sub-vector of unobserved measurements after 

occurrence of dropout at time 𝑡. 

𝒁𝑠 = �𝒁𝑠
  O(𝑡−1),  𝒁𝑠

  M(𝑡)�                         (3.1) 

where 

𝒁𝑠
  O(𝑡−1) = �𝑧𝑠1, … , 𝑧𝑠,𝑡−1�  

                                                          𝑡 = 2, … ,𝑘 
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𝒁𝑠
  M(𝑡) = (𝑧𝑠𝑡, … , 𝑧𝑠𝑘)   

Let 𝐂  be a matrix with 2𝑘 rows and 𝑘 columns consisting of all 𝐂𝑠 , 𝑠 =  1, … , 2𝑘. Each 

row of 𝐂  represents one of the possible response profiles without missing observations as shown 

below (𝐂𝑠 denotes 𝑠𝑡ℎ  row of 𝐂  with 𝑘 binary outcomes and 𝐂𝑠,𝑝 denotes the element of the 𝑠𝑡ℎ 

row and 𝑝𝑡ℎ column of 𝐂): 

𝐂 = �
𝐂1
⋮
𝐂2𝑘

�                        (3.2) 

with 

𝑪𝑠,𝑝= � 1,       (ℎ − 1)2𝑘−𝑝  <  𝑠 < ℎ2𝑘−𝑝     ℎ = 1,3, … , 2𝑝 − 1;   𝑠 = 1,2, … , 2𝑘; 𝑝 = 1,2, … , 𝑘
0,       𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                                                                                                                             

� 

Let 𝑴 be a matrix with 2𝑘 − 2 rows and 𝑘 columns consisting of response sequences 

including at least one missing observation. Each row of 𝑴 denotes one of the possible response 

profiles with the occurrence of loss to follow-up as shown below: 

𝑴 = �
𝑴1      
⋮       

 𝑴2𝑘−2

�                          (3.3) 

with 

𝑴𝑠,𝑝=

⎩
⎪
⎨

⎪
⎧ 1,                  𝐺 + (ℎ − 1)2𝑘−𝑑−𝑝  <  𝑠  ≤  𝐺 + ℎ2𝑘−𝑑−𝑝               

           
0,                  𝐺 + ℎ2𝑘−𝑑−𝑝 <  𝑠  ≤  𝐺 + (ℎ + 1)2𝑘−𝑑−𝑝                

           
 ∙ ,                  𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                                                                             

�
𝑑 = 1,2, … , 𝑘 − 1
𝑝 = 1,2, … , 𝑘 − 𝑑
ℎ = 1,2, … , 2𝑝 − 1
𝑠 = 1,2, … , 2𝑘 − 2

 

where 

𝐺 = 2𝑘�2−1 + 2−2 + ⋯2−(𝑑−1)�𝐼(𝑑≥2) with indicator function 𝐼  
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The rows of the matrix 𝑴  with 2𝑘 − 2 rows and 𝑘 columns are added after the rows of 𝑪  

matrix with 2𝑘 rows and 𝑘 columns to obtain 𝒁 matrix with 2𝑘+1 − 2 rows and 𝑘 columns such 

as  

𝒁(2𝑘+1−2)𝑥𝑘 = �
𝑪2𝑘𝑥𝑘  

𝑴2𝑘−2𝑥𝑘
�                                                     (3.4) 

As an illustration for 𝑘 = 4, 𝑪 matrix with 24  =  16 rows and 4 columns, 𝑴 matrix with 

24 −  2 =  14 rows and 4 columns, and 𝒁 matrix with 24+1 − 2 = 30 rows and 4 columns 

would be  

𝑪 =

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎛

1 1 1 1
1 1 1 0
1 1 0 1
1 1 0 0
1 0 1 1
1 0 1 0
1 0 0 1
1 0 0 0
0 1 1 1
0 1 1 0
0 1 0 1
0 1 0 0
0 0 1 1
0 0 1 0
0 0 0 1
0 0 0 0⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎞

  𝑴 =

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎛

1 1 1 ·
1 1 0 ·
1 0 1 ·
1 0 0 ·
0 1 1 ·
0 1 0 ·
0 0 1 ·
0 0 0 ·
1 1 · ·
1 0 · ·
0 1 · ·
0 0 · ·
1 · · ·
0 · · ·⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎞

       𝒁 = �
𝑪

𝑴
�                (3.5) 

3.2 SCORE ASSIGNMENT TO THE VECTORS WITH MISSING DATA 

We assume that ranked scores are determined by a natural algorithm or obtained from a group of 

clinicians for all possible response profiles in the situation where no lost to follow-up has 

occurred. In other words, a group of clinicians ordered the complete sequences of binary 
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responses. We did not ask them to consider vectors with missing data in the ordering of the 

binary outcomes. Hence, we only have ranked scores of fully observed repeated responses from 

clinicians. We also do not incorporate the reasons of withdrawals from the study when assigning 

a score to the vectors including missing data. We basically use the matrix 𝑪 which is obtained 

based on subjective agreement of a group of clinicians as a reference to assign a score to each 

row of the 𝑴 matrix. We indicate a ranked score of a vector of binary responses, 𝑪𝑖 as 𝑅𝑎𝑛𝑘{𝑪𝑖} 

or 𝑅{𝑪𝑖}.  

The idea is to assign scores to the first 2𝑘−1 rows of 𝑴  using the assigned scores of each 

row of  𝑪  and sequentially assign scores to the other rows of 𝑴  using the scores assigned to the 

first 2𝑘−1 rows of 𝑴 calculated by using the scores of the rows of 𝑪. In order to apply this 

procedure, we need to calculate probabilities or weights in the following equation. 

Dropout at 𝑘 − 1   

𝑅{𝑴𝑠} = 𝑃𝑟[𝑴𝑠 = 𝑪2𝑠−1]𝑅{𝑪2𝑠−1} + 𝑃𝑟[𝑴𝑠 = 𝑪2𝑠]𝑅{𝑪2𝑠} ,         𝑠 = 1,2, … , 2𝑘−1         (3.6) 

Dropout at 𝑘 − 𝑑   

𝑅{𝑴𝐹} = 𝑃𝑟[𝑴F = 𝑴𝐿]𝑅{𝑴𝐿} + 𝑃𝑟[𝑴𝐹 = 𝑴𝑇]𝑅{𝑴𝑇}                                                     (3.7) 

where 

F  =  �2𝑘�2−1  +  2−2  +  …  + 2−(𝑑−1)�I(d≥2) + s�
                

                              

𝐿 =  �2𝑘(2−1  +  2−2  +  …  + 2−(𝑑−2))𝐼(𝑑−1≥2)  +  2𝑠 − 1�              
 

𝑇 = �2𝑘(2−1  +  2−2  +  …  + 2−(𝑑−2))𝐼(𝑑−1≥2) +  2𝑠�                     

  𝑤𝑖𝑡ℎ        
𝑑 =  2, 3, … ,𝑘 − 1

𝑠 =  1, 2, … ,  2𝑘−𝑑
 

In the above equation (3.7), 𝑘 represents the number of replicates, 𝑑 represents the 

number of missing observations in the vector, and 𝑘 − 𝑑 indicates the time lost to follow-up. 

In Section 3.2.1, we describe two techniques to assign a score to a vector of binary 

responses with missing data (row of 𝑴) using the scores assigned to the vectors of binary 
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responses without missing data (rows of 𝑪). Score of a vector with missing value can be assigned 

by estimating the probability that a response was positive (negative) if it had not been missing. In 

other words, if the probabilities in equations (3.6) and  (3.7) are estimated, score to be assigned 

to a vector with missing data can be calculated.  

In Section 3.2.2, we briefly discuss Gehan’s Wilcoxon statistic which had been proposed 

to analyze time to event data and Gould’s method which incorporates information about reason 

of withdrawals in the analysis. We modified these two approaches to apply the proposed method 

to assign score to the vectors with dropouts.  

3.2.1 Stochastic Approach 

We provide strategies for calculating the probabilities in (3.6) and (3.7) to estimate the scores of 

the vectors with dropouts.     

3.2.1.1 Crude Substitution  

One approach to assign a score to the vector of outcomes with missing values is to form a 

weighted average of the ranks that could theoretically have occurred if there were no missing 

data. Probabilities or weights in (3.6) and (3.7) can be determined based on a priori set 

probabilities.  

 The outcome at any time point may not be obtained from the subjects for different reasons. 

If the missing response was observed, it would have the value 0 or 1. We illustrate this approach 

in the case of four observations collected from each subject over time. For example, we assume 

that missingness occurs at the last time point. The score to be assigned to a vector with a missing 
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observation at the 4𝑡ℎ time point would be one of the two scores from the two possibly observed 

vectors of responses if the observation at the last time point would have been observed as 

outcome is binary taking one of the two outcomes. Therefore, we can assign a score to this 

vector between the two scores. Let [1, 0, 0, •] denotes the 1𝑥4 vector of incomplete binary data 

for a given subject with missing value occurring at the last time point (• indicates missing value). 

If the last observation from this subject was not missing, the complete outcome vector for this 

subject would be [1, 0, 0, 0] or [1, 0, 0, 1]. If 1 indicates a positive (undesirable or disease) 

outcome and a higher score is better, the score to be assigned to the vector with missing 

observation could be higher than the score assigned to [1, 0, 0, 1] and lower than the one 

assigned to  [1, 0, 0, 0]. This approach simply uses the fact that outcome is dichotomous and 

does not take into account the reasons of withdrawals. A score to be assigned to [1, 0, 0, •] would 

be a simple weighted average of the scores assigned to [1, 0, 0, 0] and [1, 0, 0, 1]. We could, for 

example, assign equal weights to the occurrence of a 0 or 1. A modification of the technique 

would be to give priority to the outcomes that previously occurred in this individual. We refer to 

this approach as the “crude substitution approach”. 

When ties are present, previous responses could be used to break the tied values. We 

illustrate a situation where ties can occur by extending the above example. Suppose we ordered 

the vectors of complete binary responses observed at all time points based on the information 

from clinicians or a nested set of criteria and assigned a score to [0, 1, 1, 0] which is higher than 

the score assigned to [1, 0, 0, 1] and lower than the one assigned to [1, 0, 0, 0]. Assume that 

applying the above method results in tied rank for the two vectors, [1, 0, 0, •] and [0, 1, 1, 0]. We 

can break the tied values by comparing these two vectors based on the observations measured in 

the first three time points. As 1 indicates positive response, [1, 0, 0] which is the first three 
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observations of [1, 0, 0, •] would be better result than the [0, 1, 1] which is the first three 

observations of [0, 1, 1, 0]. Therefore, we can assign a higher score to [1, 0, 0, •] than [0, 1, 1, 0].  

Moreover, we actually applied equal weight to the vectors ([1, 0, 0, 0] and [1, 0, 0, 1]) to 

assign a score to the vector with missing data in the first example above. In this hypothetical 

example, we assumed that the occurrence of 1 and that of 0 at the last time point are equal 

regardless of the previously observed responses.  

We illustrate how to assign scores to the vectors with missing data, rows of the 𝑴 matrix in 

(3.5), by using the assigned scores to the rows of 𝑪 based on strategy I in Table 2.1. We first 

assign scores to the first eight rows of 𝑴 by using equation (3.6) and scores assigned to the rows 

of 𝑪 and then assign scores to the other rows of 𝑴 by using equation (3.7). In the same way, 

scores can be assigned based on strategy II. 

The first row of 𝑴, 𝑴1 = (1 1 1 •), would have been 𝑪1 = (1 1 1 1) or 𝑪2 = (1 1 1 0) if a 

missing observation had been observed. The rank of this vector would be  

𝑅{𝑴1} = 𝑃𝑟[ 𝑴1=(1 1 1 1) ]𝑅{𝑪1} + 𝑃𝑟[𝑴1=(1 1 1 0)]𝑅{𝑪2}    

The last observation is more likely to be a 1 rather than 0 based on the previous responses 

in this vector and therefore, 𝑃𝑟[ 𝑴1= (1 1 1 1) ] would be higher than 𝑃𝑟[ 𝑴1= (1 1 1 0) ]. We 

assigned a score of 1 to 𝑪1 and 2 to 𝑪2 based on the strategy I in Table 2.1 If we assume that 

𝑃𝑟[ 𝑪1= (1 1 1 1) ] = 0.6 which is higher than 𝑃𝑟[ 𝑴1= (1 1 1 0) ] = 0.4, the rank of 𝑴1 is  

𝑅{𝑴1} = 0.6*1 + 0.4*2 = 1.4    

The second row of 𝑴, 𝑴2 = (1 1 0 •), would have been 𝑪3 = (1 1 0 1) or 𝑪4 = (1 1 0 0) if 

a missing observation had been observed. Based on the previous responses, we can assign equal 

weights to the vectors. As 𝑃𝑟[ 𝑴2= (1 1 0 1) ] = 𝑃𝑟[ 𝑴2= (1 1 0 0) ] = 0.5 and assigned scores to 

𝑪3 and 𝑪4 are 3 and 6, respectively, rank of 𝑴2 is  



 

 44 

𝑅{𝑴2} = 𝑃𝑟[ 𝑴2 = (1 1 0 1) ]𝑅{𝑪3} + 𝑃𝑟[𝑴2=(1 1 0 0)]𝑅{𝑪4} = 0.5*3 + 0.5*6 = 4.5    

Similarly, we assigned scores to the other vectors with one missing value (rows 3-8 of 𝑴) 

below.  

𝑅{𝑴3=(1 0 1 •)} = 𝑃𝑟[𝑴3=(1 0 1 1)]𝑅{𝑪5}  + 𝑃𝑟[𝑴3=(1 0 1 0)]𝑅{𝑪6} =0.5*4    + 0.5*7 = 5.5    

𝑅{𝑴4=(1 0 0 •)} = 𝑃𝑟[𝑴4=(1 0 0 1)]𝑅{𝑪7}  + 𝑃𝑟[𝑴4=(1 0 0 0)]𝑅{𝑪8} =0.4*8    + 0.6*12=10.4    

𝑅{𝑴5=(0 1 1 •)} = 𝑃𝑟[𝑴5=(0 1 1 1)]𝑅{𝑪9}  + 𝑃𝑟[𝑴5=(0 1 1 0)]𝑅{𝑪10}=0.6*5    + 0.4*9=6.6    

𝑅{𝑴6=(0 1 0 •)} = 𝑃𝑟[𝑴6=(0 1 0 1)]𝑅{𝑪11} + 𝑃𝑟[𝑴6=(0 1 0 0)]𝑅{𝑪12}=0.5*10 + 0.5*13=11.5    

𝑅{𝑴7=(0 0 1 •)} = 𝑃𝑟[𝑴7=(0 0 1 1)]𝑅{𝑪13} + 𝑃𝑟[𝑴7=(0 0 1 0)]𝑅{𝑪14}=0.5*11 + 0.5*14 = 12.5    

𝑅{𝑴8=(0 0 0 •)} = 𝑃𝑟[𝑴8=(0 0 0 1)]𝑅{𝑪15} + 𝑃𝑟[𝑴8=(0 0 0 0)]𝑅{𝑪16}=0.4*15 +  0.6*16=15.6    

By using (3.7) and the ranks of first eight rows of 𝑴, we assigned scores to the last six 

rows of 𝑴 as follows. 

𝑅{𝑴9=(1 1 • •)} = 𝑃𝑟[𝑴9=(1 1 1 •)]𝑅{𝑴1}    + 𝑃𝑟[𝑴9= (1 1 0 •)]𝑅{𝑴2}=0.6*1.4 + 0.4*4.5=2.6    

𝑅{𝑴10=(1 0 • •)} = 𝑃𝑟[𝑴10=(1 0 1 •)]𝑅{𝑴3}  + 𝑃𝑟[𝑴10=(1 0 0 •)]𝑅{𝑴4}=0.5*(5.5+10.4)=7.95    

𝑅{𝑴11=(0 1 • •)} = 𝑃𝑟[𝑴11=(0 1 1 •)]𝑅{𝑴5}  + 𝑃𝑟[𝑴11=(0 1 0 •)]𝑅{𝑴6}=0.5*(6.6+11.5)=9.1    

𝑅{𝑴12=(0 0 • •)} = 𝑃𝑟[𝑴12=(0 0 1 •)]𝑅{𝑴7}   + 𝑃𝑟[𝑴12=(0 0 0 •)]𝑅{𝑴8}=0.4*12.5+0.6*15.6=14.4    

𝑅{𝑴13=(1 • • •)} = 𝑃𝑟[𝑴13=(1 1 • •) ]𝑅{𝑴9} + 𝑃𝑟[𝑴13=(1 0 • •)]𝑅{𝑴10}=0.5*(2.6+7.95)=5.3    

𝑅{𝑴14=(0 • • •)} =

𝑃𝑟[𝑴14=(0 1 • •) ]𝑅{𝑴11}+𝑃𝑟[𝑴14=(0 0 • •)]𝑅{𝑴12}=0.5*(9.1+14.4)=11.75     

3.2.1.2 Logistic Regression Substitution 

In this section, we describe another strategy to assign scores to the vectors with missing data 

using the observed data and scores assigned to the possible vectors without missing data. We 

estimate the probability that a response is positive (negative) at a given time point by applying a 
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conditional logistic regression model given the previous responses and treatment variable. We fit 

conditional logistic regression models based on the non-missing data to predict expected values 

for response being positive (disease) at each time point separately.  

Consider a situation in which a binary response is obtained at each visit of 𝑡 = 1, … ,4 and  

𝒀𝑖 = (𝑌𝑖1, 𝑌𝑖2 , 𝑌𝑖3,  𝑌𝑖4). 𝑌𝑖𝑡 indicates the response variable for the 𝑖𝑡ℎ subject at time 𝑡 (𝑖 =

1, … ,𝑁). A measurement 𝑌𝑖𝑡 in a longitudinal sequence is described as a function of previous 

outcomes, 𝑌𝑖
  𝑂(𝑡−1) = �𝑌𝑖1, … ,𝑌𝑖,𝑡−1�. Missing values occurring after the first time point can be 

predicted by conditional estimates of the probability that the unobserved value would be equal to 

1 or 0 if it was observed. To compute these probabilities, we assume that the probability of a 

positive response is determined by previously observed responses and a treatment indicator. For 

example, a standard logistic regression model based on the available data at time 𝑡 = 2 given the 

non-missing data at time 𝑡 = 1 and treatment indicator can be fitted to estimate the probability of 

positive response at time 𝑡 = 2. Therefore, we fit the following logistic regression models to 

estimate the probabilities of positive response at points where missing data occurred given the 

treatment indicator and the previous response,  

𝑙𝑜𝑔𝑖𝑡(𝑃𝑟(𝑌𝑖2 = 1|𝑇𝑟𝑡𝑖 ,𝑦𝑖1)) = 𝛽0 + 𝛽1𝑇𝑟𝑡𝑖 + 𝛽2𝑦𝑖1 

𝑙𝑜𝑔𝑖𝑡(𝑃𝑟(𝑌𝑖3 = 1|𝑇𝑟𝑡𝑖 ,𝑦𝑖2)) = 𝛼0 + 𝛼1𝑇𝑟𝑡𝑖 + 𝛼2𝑦𝑖2 

𝑙𝑜𝑔𝑖𝑡(𝑃𝑟(𝑌𝑖4 = 1|𝑇𝑟𝑡𝑖 ,𝑦𝑖3)) = 𝛾0 + 𝛾1𝑇𝑟𝑡𝑖 + 𝛾2𝑦𝑖3. 

Then  

𝑃𝑟(𝑌𝑖2 = 1|𝑇𝑟𝑡𝑖 ,𝑦𝑖1) =
𝑒𝛽0+𝛽1𝑇𝑟𝑡𝑖+𝛽2𝑦𝑖1

1 + 𝑒𝛽0+𝛽1𝑇𝑟𝑡𝑖+𝛽2𝑦𝑖1
 

𝑃𝑟(𝑌𝑖3 = 1|𝑇𝑟𝑡𝑖 ,𝑦𝑖2) =
𝑒𝛼0+𝛼1𝑇𝑟𝑡𝑖+𝛼2𝑦𝑖2

1 + 𝑒𝛼0+𝛼1𝑇𝑟𝑡𝑖+𝛼2𝑦𝑖2
 

𝑃𝑟(𝑌𝑖4 = 1|𝑇𝑟𝑡𝑖 ,𝑦𝑖3) =
𝑒𝛾0+𝛾1𝑇𝑟𝑡𝑖+𝛾2𝑦𝑖3

1 + 𝑒𝛾0+𝛾1𝑇𝑟𝑡𝑖+𝛾2𝑦𝑖3
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We assume that the probability of a positive response at a given time point is entirely 

determined by the available responses observed at the previous time point. The estimated 

parameters are used to predict the probability of positive response for missing observations.  

For illustration, we demonstrate how to apply this approach to assign scores to the vectors 

with missing data. Here we empirically calculate the probabilities in (3.6) by using the available 

observations from the dataset. As we considered the first row of 𝑴, 𝑴1 = (1 1 1 •),  we estimate 

the probability that 𝑴1 is equal to 𝑪1 = (1 1 1 1) or 𝑪2 = (1 1 1 0) which is the probability that the 

last observation is 1 or 0. We estimate this probability by fitting the logistic regression model 

mentioned above and substitute into the following equation  

𝑅{𝑴1} = 𝑃𝑟[ 𝑴1=(1 1 1 1) ]𝑅{𝑪1}+𝑃𝑟[𝑴1=(1 1 1 0)]𝑅{𝑪2} 

Similarly, we estimate the probabilities of positive response at each time point where the 

observation was not obtained by fitting logistic regression models at each time point to assign 

scores to the other vectors with missing data.  

This approach differs from the ‘crude substitution approach’ in Section 3.2.1.1 since the 

assigned scores to the vectors with missing data depend on the empirical frequency distributions 

of known outcomes. We refer to this approach as “logistic regression substitution approach”. 

It should be noted that the reasons of missingness are not known and we assume that we do 

not have any information about reasons of occurrence of dropouts.  

3.2.2 Nonstochastic Approach 

The strategies considered here are not required to assume or estimate probabilities as in Section 

3.2.1. Some vectors with missing data can still be partially ranked because its relative score 
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compared to another vector does not change regardless of the ‘true’ outcomes for the missing 

data. Also in some clinical trials, subjects may drop out of the study without completing all 

schedules visits. If reasons for withdrawals are known, the information about withdrawals can be 

incorporated in the analysis.  

3.2.2.1  Modification of Gehan’s Wilcoxon Test  

In clinical trials where the primary outcome is time to occurrence of an event (e.g., death), some 

subjects are censored before completing the study. To incorporate subjects who were censored 

into the analysis of data, Gehan (1965) proposed a method for integrating information about 

dropping out of the study. The Gehan-Wilcoxon test is formulated on the basis of comparisons of 

all pairs of subjects where each pair contains one individual from each group. Even with 

incomplete data the relative rank of some pairs can be determined. For example, in a clinical trial 

comparing two treatment groups in terms of time to the occurrence of a death, if censored time of 

a subject X is greater than the time of death for a subject Y, X is ranked higher than Y because it 

is known that the time of death for subject X is greater than that for subject Y.  We can modify 

Gehan’s Wilcoxon test to apply the proposed method for analyzing longitudinal binary data. 

Consider a situation where binary response is measured over four time points. A subject X 

dropped out of the study after the second time point and [1, 1, •, •] denotes the profile for subject 

X. Another subject Y completed the study and the observed profile of this subject is [1, 0, 0, 0]. 

A subject X is ranked lower than a subject Y regardless of missing values because it is known 

that X would have worse outcome than Y even those missing values were assumed to be disease 

free.  
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3.2.2.2 Modification of Gould’s Method 

When we have information about reasons for discontinuing the trial, we can incorporate this 

information in the ranking. Follow-up measurements which are scheduled to be observed after 

the initiation of treatment may be missing for some subjects due to treatment-related reasons or 

the progression of the disease. Some subjects withdraw from the study as a result of an adverse 

effect, lack of efficacy of the treatment, recovery, and external reasons irrelevant to the progress 

of the disease or unwillingness to continue the study. For example, in placebo-controlled trials, 

subjects in the placebo group who experience little or no improvement may drop out from the 

study to look for better treatment or subjects in the drug group who recover considerably may 

withdraw from the study because they think that it is not necessary to continue the study. Such 

subjects with missing observations can be included in the analysis of the data by assigning a rank 

that represents a better or worse score relative to those actually observed based on the reason of 

withdrawal or the time of leaving the study.  

One method for analysis of data with missing observations proposed by Gould (1980) is 

to incorporate the information about reasons of withdrawals into a rank ordering of subjects. 

Gould proposed an approach for analyzing longitudinal data with continuous responses when the 

outcomes observed at the last time point are used to make comparisons between two treatment 

groups without using the previous observations. If subjects prematurely withdraw from the study 

due to outcome related reasons (i.e., lack of improvement, adverse experiences, and beneficial 

effect of treatment), informatively missing observations occur and so, a pre-scheduled outcome 

at the end of the study cannot be measured for these subjects. Gould (1980) suggested ordering 

these withdrawals by the drop-out reasons and using rank tests to compare the treatment groups 

based on the rank scores produced by incorporating subjects with missing data.  
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If it is known that subjects who did not complete the study have better or worse responses 

than those who completed the study (e.g. cured subjects or lack of treatment effect), relevant 

scores that may be used in an analysis are assigned to such subjects.  

We can modify Gould’s idea to account for missing data in the analysis of longitudinal 

binary responses by ranking withdrawals based on the reasons such as treatment-related adverse 

events and a satisfactory effect of treatment Subjects who have withdrawn from the study due to 

treatment-related reasons can be ranked as better/worse values based on their missing data 

information and reasons for withdrawals.  

Non-completers can be considered as ‘poor’ outcomes if they withdraw from the study 

due to an adverse side effect or treatment failure or they can be regarded as ‘good’ outcomes if 

reasons of leaving the study are satisfactory effect of treatment or cure. Subjects withdrawn from 

the study at the same time point might receive the same score if their withdrawal reasons are 

same. Thus, these subjects share the same tied rank value. These tied ranks can be broken by 

ordering these vectors on the basis of the responses obtained prior to withdrawal. Moreover, 

another variable measured at baseline or during the study can be used to break the ties. 

3.3 PROPOSED METHOD OF ANALYSIS 

Define  

𝛿𝑖 = Rank�𝒁(𝑟)�    if  𝑿𝑖 = �𝑿𝑖
𝑂(𝑡−1),𝑿𝑖

𝑀(𝑡) � ≡ 𝒁(𝑟) ,     𝑖 =  1,2, . . . ,  𝑛𝐴; 𝑟 =  1,2, … , 2𝑘+1 −  2 

𝜉𝑗 = Rank�𝒁(𝑠)�    if   𝒀j = (𝒀j
O(t−1),𝒀j

M(t) ) ≡ 𝒁(s) ,     𝑗 =  1, 2, . . . ,𝑛𝐵; 𝑠 =  1,2, … ,  2𝑘+1 −  2 
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Hence, 𝛿1, … , 𝛿𝑛𝐴 are values of the subjects in Trt-A and 𝜉1, … , 𝜉𝑛𝐵 are values of the subjects in 

Trt-B.  

We can compare each of the 𝑛𝐴 subjects in Trt-A with each of the 𝑛𝐵 subjects in Trt-B 

using the relative order of the two vectors of outcomes in the presence of missing data. The 

assigned score comparing subject 𝑖 in Trt-A with subject 𝑗 in Trt-B is denoted as 𝑈𝑖𝑗. Thus, the 

comparison of the two treatment groups can be defined by a series of scores 𝑈𝑖𝑗, 𝑖 = 1,2, … ,𝑛𝐴, 

𝑗 = 1,2, … ,𝑛𝐵. We assume that 𝑈𝑖𝑗 takes the values 0, 0.5 or 1 if the 𝑖𝑡ℎ subject is worse, the 

same or better than the 𝑗𝑡ℎ  subject, respectively. It can be defined as  

𝑈𝑖𝑗 =

⎩
⎪
⎨

⎪
⎧       0     𝑖𝑓 (𝑿𝑖

𝑂(𝑡−1),𝑿𝑖
𝑀(𝑡)) < (𝒀𝑗

𝑂(𝑡−1),𝒀𝑗
𝑀(𝑡)) 𝑜𝑟 𝛿𝑖 < 𝜉𝑗

   0.5     𝑖𝑓 (𝑿𝑖
𝑂(𝑡−1),𝑿𝑖

𝑀(𝑡)) = (𝒀𝑗
𝑂(𝑡−1),𝒀𝑗

𝑀(𝑡)) 𝑜𝑟 𝛿𝑖 = 𝜉𝑗

      1      𝑖𝑓 (𝑿𝑖
𝑂(𝑡−1),𝑿𝑖

𝑀(𝑡)) > (𝒀𝑗
𝑂(𝑡−1),𝒀𝑗

𝑀(𝑡)) 𝑜𝑟 𝛿𝑖 > 𝜉𝑗

� 

We compare two treatment groups by applying a Wilcoxon rank-sum test to the ranked 

scores, 𝛿1, … , 𝛿𝑛𝐴 , 𝜉1, … , 𝜉𝑛𝐵. Rank scores can be ordered from lowest to highest score and the 

Wilcoxon statistic 𝑊 is the sum of the ranks of the 𝛿’s in the combined ordered arrangement of 

𝛿’s and 𝜉’s. When ties are present, ties can be replaced by the average of ranks that the set of tied 

values would have been assigned if the values were distinct.  

W = �𝑅𝑎𝑛𝑘(𝛿𝑖) = ����𝐼�𝛿𝑖>𝜉𝑗� + 0.5 𝐼�𝛿𝑖=𝜉𝑗��
𝑛𝐵

𝑗=1

+ ��𝐼�𝛿𝑖>𝛿𝑗� + 0.5 𝐼�𝛿𝑖=𝛿𝒋��
𝑛𝐴

𝑗=1

�
𝑛𝐴

𝑖=1

𝑛𝐴

𝑖=1

 

The Mann-Whitney (1947) statistic, 𝑈, is the number of times a 𝜉𝑗 (1 ≤ j  ≤  nB) in the Trt-

B precedes a 𝛿𝑖 (1 ≤  i  ≤  nA) in the Trt-A in the combined ranking of the two treatment groups. 

𝑈 = ��𝑈𝑖𝑗

𝑛𝐵

𝑗=1

𝑛𝐴

𝑖=1

= ���𝐼�𝛿𝑖>𝜉𝑗� + 0.5𝐼�𝛿𝑖=𝜉𝑗��
𝑛𝐵

𝑗=1

𝑛𝐴

𝑖=1
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where 𝐼{𝑣<0} is a set indicator with 𝐼{𝑣<0} = 1 if 𝑣 < 0 and 0 otherwise. 

Large values of 𝑈 indicate that there is a difference between treatment groups 

3.4 SIMULATION STUDY 

We conducted a simulation study comparing the performance of the proposed method and the 

frequently applied three standard methods using simulated data sets with various primary 

assumptions about the complete data sets and missing data mechanisms. Statistical models 

corresponding to each method of analysis were described in Section 2.2.1. For the t-test 

comparing the average proportions of positive responses between two treatment groups, 

proportions for each subject in both treatment groups were calculated based on the observed 

responses in which the number of positive responses was divided by the number of observed 

measurements, not the number of time points. The methods were compared with respect to type I 

error rates and power. 

3.4.1 Simulation Design 

The simulation study consisted of two different phases: (1) the data-generating phase and (2) 

analysis phase. In the first step, repeated binary responses were generated for each treatment 

group (placebo and drug) separately and missing values were imposed on these binary 

measurements. In the second step, data with missing values were analyzed by our proposed 

method and other commonly used methods under a wide range of scenarios and different missing 

data assumptions.  
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3.4.2 Data Generation 

We assumed that measurements were collected at four time points (𝑡1, 𝑡2, 𝑡3, and 𝑡4). We 

simulated correlated binary responses given the marginal probabilities of positive (disease) 

responses and independent correlation structures, exchangeable correlation structures with 

correlation coefficient being 0.3, and AR(1), correlation structures with correlation coefficient 

being 0.6 (i.e., 𝐶𝑜𝑟𝑟 (𝑌𝑗 ,  𝑌𝑘)  =  0.6, 𝐶𝑜𝑟𝑟(𝑌𝑗 , 𝑌𝑘)  =  0.36, and 𝐶𝑜𝑟𝑟(𝑌𝑗 ,𝑌𝑘)  =  0.216 for |𝑗 −

𝑘|  =  1,2,3, respectively)  using the method of Park et al. (1996) as mentioned in Section 2.2.3. 

The response at each time point was either positive (= 1) or negative (= 0) if it was observed. 

The same sets of marginal expectations and correlation structures for the association among the 

measurements were considered as we used in Section 2.2.3.  

We assumed that the treatment indicator (A indicates placebo group and B indicates drug 

group) is completely measured and that dropout could occur at the 2𝑛𝑑, 3𝑟𝑑, or 4𝑡ℎ time points. 

When a measurement is missing from any subject at any given time point, all subsequent 

measurements for that subject are assumed to be missing (monotone missing data pattern). 2000 

simulated data sets of 60 subjects per treatment group for four time points were generated for 

each setting and a missingness mechanism imposed to the generated data. We applied all 

methods to the same simulated dataset.  

We subjected each simulated data set to various missing data patterns and proportion of 

withdrawals. After simulating full longitudinal binary responses for each treatment group, we 

randomly deleted responses (MCAR) at specified rates and deleted stochastically on the basis of 

the value of the covariate (treatment group) or on the basis of previously observed response 

(MAR) after the first time point to create an incomplete data set. We assumed that measurements 

from each subject were obtained at the first assessment. We first imposed missing values on 
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measurements at the second time point (𝑌2), then imposed missing values on those at the third 

time point (𝑌3) for the remaining subjects and then imposed missing values on those at the last 

time point (𝑌4) for the subjects who stayed in the study separately for each treatment group. Two 

separate scenarios were used for the MAR mechanism: The likelihood of missing values on the 

response is related to the treatment group for the first scenario and is correlated with the previous 

response prior to dropping out for the second scenario.  

For MCAR, the probability of drop-out at time 𝑡 = 2,3,4 did not depend on any variables 

or responses. After generating a complete data set, data were randomly deleted at rates of 10%, 

15%, and 25% for the 2𝑛𝑑, 3𝑟𝑑, and 4𝑡ℎ time points, respectively. The subjects were equally 

likely to drop out of the study for both treatment groups.  

Let 𝑌𝑖𝑡  be the observed binary response for subject 𝑖 =  1, … ,𝑁 and occasion 𝑡 =

 1, 2, 3, 4. 𝑀𝑖𝑡 = 0 denotes a missing response and 𝑀𝑖𝑡 = 1 denotes an observed response.  

𝑃𝑟(𝑀𝑖2  =  0|𝑀𝑖1  =  1)  =  0.10     

𝑃𝑟(𝑀𝑖3  =  0|𝑀𝑖2  =  1)  =  0.15   

𝑃𝑟(𝑀𝑖4  =  0|𝑀𝑖3  =  1)  =  0.25 

For the first scenario of MAR (MAR-1), rates of missingness are different for each 

treatment group at the 2𝑛𝑑, 3𝑟𝑑, and 4𝑡ℎ time points. Unequal drop-out rates in treatment and 

placebo groups were assumed. This MAR situation represents a reasonable scenario where 

missing data might predominantly occur in one treatment group relative to other group. It 

illustrates that more subjects in the placebo group than the treatment group drop out the study 

due to a lack of efficacy of the treatment. It results in different rates of missingness between the 

treatment groups. Thus, we assumed that proportions of withdrawals are higher in Trt-A than 

Trt-B at each time point. Rates of missigness of 10%, 15%, and 25% for the placebo group and 
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6%, 10%, and 16% for the treatment group at the 2𝑛𝑑, 3𝑟𝑑, and 4𝑡ℎ time points, respectively 

were considered. 

𝑃𝑟(𝑀𝑖2  =  0|𝑀𝑖1  =  1)  =  �0.10,      𝑝𝑙𝑎𝑐𝑒𝑏𝑜        
0.06,      𝑡𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡   

�  

𝑃𝑟(𝑀𝑖3  =  0|𝑀𝑖2  =  1)  =  �0.15,        𝑝𝑙𝑎𝑐𝑒𝑏𝑜          
0.10,       𝑡𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡     

� 

𝑃𝑟(𝑀𝑖4  =  0|𝑀𝑖3  =  1)  =  �0.25,      𝑝𝑙𝑎𝑐𝑒𝑏𝑜         
0.16,      𝑡𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡   

�   

For the second scenario of MAR (MAR-2), the likelihood of missingness occurring at a 

given time point was dependent on the previous response. The same dropout probabilities are 

used for both groups. The probability of drop-out at each time points after the first time point 

were gradually increased by 10%, 15%, and 25%, respectively. The marginal probabilities at 

four time points are 𝑝𝐴 = (𝑝𝐴1,𝑝𝐴2,𝑝𝐴3,𝑝𝐴4) and 𝑝𝐵 = (𝑝𝐵1,𝑝𝐵2,𝑝𝐵3,𝑝𝐵4) for Trt-A and Trt-B, 

respectively. The dropout model was specified as the probability of withdrawal at time point 𝑗 

given the response at the previous time point 𝑗 − 1 is modeled using a logistic regression in the 

form of 

𝑙𝑜𝑔𝑖𝑡�𝑃𝑟�𝑀𝑖𝑗  =  0�𝑀𝑖,𝑗−1  =  1�� =   𝜏𝑗−1  +  𝜏𝑦𝑌𝑖,𝑗−1  𝑓𝑜𝑟 𝑗 =  2, 3, 4 

From the above model, we calculated the intercept given the dependency of the missing 

value (𝜏𝑦) and the probability of positive response at the previous time point for 𝑗 = 2, 3, 4.  

𝜏𝑗−1  =  𝑙𝑜𝑔𝑖𝑡�𝑃𝑟�𝑀𝑖𝑗  =  0�𝑀𝑖,𝑗−1  =  1�� − 𝜏𝑦𝑌𝑖,𝑗−1   

We set the equal rates of dropout at the 2𝑛𝑑, 3𝑟𝑑, and 4𝑡ℎ time points for both treatment 

groups at 10%, 15%, and 25%, respectively. The missing pattern follows from the equations.   

𝑙𝑜𝑔𝑖𝑡[𝑃𝑟(𝑀𝑖2  =  0|𝑀𝑖1  =  1)]  =  �
−2.197 + 𝜏𝑦𝑝𝐴1,        𝑝𝑙𝑎𝑐𝑒𝑏𝑜             
−2.197 +  𝜏𝑦𝑝𝐵1,         𝑡𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡       

� 

𝑙𝑜𝑔𝑖𝑡[𝑃𝑟(𝑀𝑖3  =  0|𝑀𝑖2  =  1)]  =  �
−1.735 +  𝜏𝑦𝑝𝐴2,         𝑝𝑙𝑎𝑐𝑒𝑏𝑜         
−1.735 +  𝜏𝑦𝑝𝐵2,        𝑡𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡    

� 
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𝑙𝑜𝑔𝑖𝑡[𝑃𝑟(𝑀𝑖4  =  0|𝑀𝑖3  =  1)]  =  �
−1.099 +  𝜏𝑦𝑝𝐴3,          𝑝𝑙𝑎𝑐𝑒𝑏𝑜       
−1.099 +  𝜏𝑦𝑝𝐵3,         𝑡𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡  

� 

𝜏𝑦 = 0.8 was chosen for strong dependency of drop-out on the previous response in our 

simulation runs. Non-response rates for each treatment group were calculated from the missing 

data pattern above given the dependence of responses to missingness (𝜏𝑦) and marginal 

probabilities 𝑝𝐴 and 𝑝𝐵 to impose missing data mechanism on the complete data. 

3.4.3 Assigning Scores to the Vectors with Missing Data 

We considered the same strategies for ordering the observed vectors without missing data as 

shown in Table 2.1 in Section 2.2.4. We used these two strategies to assign scores to the vectors 

with missing data. Details regarding the score assignment to the vectors with missing data were 

given in Section 3.2.1.1. Assigned scores to the possible vectors with missing data, which are 

rows of matrix 𝑴 in (3.5), based on strategy I and strategy II are shown in Table 3.1.  

3.4.4 Simulation Results 

The simulation results for the Type I error rate are reported in Table 3.2, Table 3.3, and Table 3.4 

and the simulation results for the power are reported in Table 3.5, Table 3.6, and Table 3.7 when 

the missing data mechanism is MCAR, MAR-1, and MAR-2, respectively. Results comparing 

the proposed method with GEE and MERI methods in terms of power are presented in Table 3.8 

when the time by treatment interaction term was included under the assumption of MAR-2 

missing data mechanism and the assumption of AR(1) correlation structure. 
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Table 3.1: Assigned scores to the vectors with missing data 

 

 

 

 

 

 

 

 

 

 
 
 

(1 = positive, 0 = negative, and • = missing) 
 
 
Type I Error Rate  

The type I error rates of the proposed method and the competing methods are given in Table 3.2 

under different selection scenarios of marginal expectations at four time points and using three 

different correlation structures when the missing data mechanism was assumed to be MCAR. 

Under a variety of scenarios using different correlation structures, none of the methods differed 

substantially from the type I error rate except the proposed logistic regression substitution 

approach which noticeably inflated the type I error rate in all cases regardless of the missing data 

mechanism. When we use this approach to estimate the probability that an outcome is positive at 

a given time point, conditional logistic regression model excludes subjects missing the 

observation at that point and is likely to produce biased estimates of treatment effects. Therefore, 

the probabilities in equations (3.6) and (3.7) may not properly estimated and the type I error rates 

 
Rank Score 

Strategy 
Profile I II 

[ 1 1 1 • ] 1.4 2.6 
[ 1 1 0 • ] 4.5 7.5 
[ 1 0 1 • ] 5.5 6.5 
[ 1 0 0 • ] 10.4 12.2 
[ 0 1 1 • ] 6.6 4.8 
[ 0 1 0 • ] 11.5 10.5 
[ 0 0 1 • ] 12.5 9.5 
[ 0 0 0 • ] 15.6 14.4 
[ 1 1 • • ] 2.64 4.56 
[ 1 0 • • ] 7.95 9.35 
[ 0 1 • • ] 9.05 7.65 
[ 0 0 • • ] 14.36 12.44 
[ 1 • • • ] 5.3 6.96 
[ 0 • • • ] 11.71 10.1 
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produced by this approach are greatly inflated. Since the logistic regression substitution approach 

did not control the type I error rate at the nominal level of 0.05, we excluded this approach in the 

comparison of the methods, therefore, when we use the term “proposed method”, it will refer to 

“crude substitution approach”.  

The type I error rates for the proposed approach with the two different strategies (I and II) 

are close to or around the nominal 5 percent level regardless of the different correlation 

structures. The type I error rates for MERI are inflated when exchangeable or AR(1) correlation 

structure was assumed. In some cases, GEE with unstructured correlation structure yielded 

slightly higher type I error rate than the nominal level of 0.05. When compared to other methods, 

the proposed method (using both strategies) produced lower type I error rate in almost all cases.   

Under MAR-1, all methods produced desirable type I error rate around the nominal level 

when independent correlation structure was assumed, as reported in Table 3.3. Similar to the 

MCAR mechanism, the type I error rate for MERI was inflated when an exchangeable or AR(1) 

correlation structure was assumed. As explained in Section 2.2.3, MERI produces higher type I 

error rate as correlation among the observations within subject increases. GEE produced a 

slightly higher type I error rate in the scenario of pA = pB = (.6, .4, .6, .4) when the correlation 

structures were assumed to be exchangeable and AR(1). The proposed method exhibit inflation 

of the type I error rates for pA = pB = (.6, .7, .8, .9) under the all three correlation structure.     

Under MAR-2, as shown in Table 3.4, simulation results demonstrated that all methods 

controlled the type I error rate at the nominal level, even the MERI method which inflated the 

type I error rate under MCAR and MAR-1. The type I error rates for all methods were lower 

when MAR-2 was assumed compared to MAR-1 and MCAR. The type I error rate for the 

proposed method with strategy II was slightly lower than that for the other methods in all 
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scenarios. The type I error rates for the proposed method with strategy I and other methods were 

comparable.  

For the scenario of pA = pB = (.6, .7, .8, .9), a high type I error rate was produced by the 

proposed method (strategy I and especially strategy II) in the situation where the missing data 

mechanism was assumed to be MAR-1 while much lower type I error rate was produced under 

MCAR and MAR-2. 

Based on these results, we can conclude that the proposed method with crude substitution 

approach controlled the type I error rate around nominal level for almost all scenarios in the 

presence of missing data. 

Statistical Power 

The logistic substitution approach artificially yielded high power under the alternative hypothesis 

at the price of a largely inflated type I error rate under the null hypothesis in all scenarios 

(different marginal probabilities and different correlation structures) regardless of the missing 

data mechanism. Therefore, this method was excluded when the methods were further discussed 

in terms of power. 

The statistical powers of the methods under MCAR are presented in Table 3.5. In the 

situation where pA = (.3, .5, .6, .8) and pB = (.8, .6, .5, .3) and different correlation structures 

were assumed, the proposed method with strategy II dramatically reduced power while the other 

methods especially the t-test and the proposed method with strategy I, which yielded the highest 

power compared to other methods, Under MCAR, the t-test tended to reduce power more than 

the other methods for almost all scenarios except those where pA = (.7, .7, .7, .7) and  

pB = (.5, .5, .5, .5), pA = (.5, .5, .5, .5) and pB = (.3, .3, .3, .3), and pA = (.7, .6, .5, .4) and   
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Table 3.2: Type I Error (%): Simualtion results for comparing the methods with missing data. MCAR, 

missingness with equal dropout rates for both groups 

Dropout rates are equal for both groups: (0, 10%, 15%, 25%)         n = ( 60, 54, 46, 34 )  
 Placebo Drug Crude  Logistic t-test GEE MERI 
 p1 p2 p3 p4 p1 p2 p3 p4 I II I II  IND EX AR(1) UN  

Independent Correlation Structure  
1 .3 .3 .3 .3 .3 .3 .3 .3 4.8 4.2 9.2 20.2 5.0 5.4 5.4 5.2 5.9 5.0 
2 .4 .4 .4 .4 .4 .4 .4 .4 5.6 5.1 10.0 19.1 5.0 5.9 6.1 6.2 6.6 5.4 
3 .5 .5 .5 .5 .5 .5 .5 .5 4.6 4.1 8.6 18.4 4.6 4.6 4.6 4.6 5.0 4.0 
4 .7 .7 .7 .7 .7 .7 .7 .7 4.6 4.2 10.5 20.9 4.6 6.2 6.0 6.2 6.5 5.5 
5 .6 .4 .6 .4 .6 .4 .6 .4 5.0 4.6 9.7 18.6 5.8 5.3 5.4 5.3 6.0 4.4 
6 .4 .5 .6 .7 .4. 5 .6 .7 5.6 4.3 9.8 18.8 5.5 5.6 5.7 5.7 6.4 5.2 
7 .6 .7 .8 .9 .6 .7 .8 .9 4.2 2.4 6.8 15.1 4.8 4.6 4.8 4.6 5.2 4.5 
8 .7 .6 .5 .4 .7 .6 .5 .4 4.6 5.2 8.8 17.6 4.2 4.8 4.8 4.8 5.2 4.4 
9 .6 .6 .4 .4 .6 .6 .4 .4 4.6 4.4 9.4 18.0 5.6 5.6 5.4 5.6 5.8 4.9 

Exchangeable Correlation Structure 
1 .3 .3 .3 .3 .3 .3 .3 .3 4.6 4.6 9.4 14.8 5.1 5.8 5.8 5.8 6.2 6.8 
2 .4 .4 .4 .4 .4 .4 .4 .4 5.9 5.8 9.9 14.8 5.8 6.4 6.0 6.0 6.3 7.0 
3 .5 .5 .5 .5 .5 .5 .5 .5 4.7 4.8 9.4 13.6 4.6 5.6 5.0 5.2 5.4 6.2 
4 .7 .7 .7 .7 .7 .7 .7 .7 3.4 2.4 8.4 15.6 4.7 5.2 4.6 4.8 5.4 5.6 
5 .6 .4 .6 .4 .6 .4 .6 .4 5.3 4.6 9.1 12.0 5.3 5.0 5.2 5.2 5.8 6.1 
6 .4 .5 .6 .7 .4. 5 .6 .7 4.9 4.6 9.4 13.6 4.9 5.8 5.2 5.3 6.4 6.6 
7 .6 .7 .8 .9 .6 .7 .8 .9 3.6 2.5 6.2 11.4 4.7 5.0 5.2 5.4 5.6 6.4 
8 .7 .6 .5 .4 .7 .6 .5 .4 5.1 5.4 9.6 14.7 5.2 5.6 5.3 5.4 5.6 6.4 
9 .6 .6 .4 .4 .6 .6 .4 .4 4.8 4.4 9.2 14.4 4.8 5.1 5.0 5.0 5.2 6.1 

Auto-Regressive Correlation Structure  
1 .3 .3 .3 .3 .3 .3 .3 .3 3.8 3.6 8.2 13.8 4.8 5.3 5.2 5.4 5.6 6.2 
2 .4 .4 .4 .4 .4 .4 .4 .4 4.4 4.8 8.8 14.0 4.9 5.4 5.0 4.6 5.0 6.3 
3 .5 .5 .5 .5 .5 .5 .5 .5 5.5 4.8 8.5 13.7 5.5 5.6 5.0 5.3 5.7 6.3 
4 .7 .7 .7 .7 .7 .7 .7 .7 5.2 4.4 8.2 12.8 5.2 5.4 5.6 5.4 6.0 6.8 
5 .6 .4 .6 .4 .6 .4 .6 .4 4.7 5.0 8.6 12.6 4.5 4.8 4.9 4.9 5.2 5.9 
6 .4 .5 .6 .7 .4. 5 .6 .7 5.2 5.1 8.6 12.6 5.3 5.4 5.6 5.8 6.2 7.0 
7 .6 .7 .8 .9 .6 .7 .8 .9 3.6 2.2 6.0 8.8 4.4 4.0 4.2 4.5 5.1 5.0 
8 .7 .6 .5 .4 .7 .6 .5 .4 5.6 5.1 10.6 13.6 5.4 5.6 5.6 5.8 6.2 7.2 
9 .6 .6 .4 .4 .6 .6 .4 .4 4.0 4.4 8.8 13.9 3.9 4.1 4.6 4.4 4.7 5.1 

Abbreviations: Crude, proposed method by applying “crude substitution approach” for score assignment to 
the vectors with missing data based on the ordering of strategies I and II in Table 2.1; Logistic, proposed 
method by applying “logistic regression approach” for score assignment to the vectors with missing data 
based on the ordering of strategies I and II in Table 2.1; t-test, t-test comparing the means of the proportions 
of positive responses between the two groups; GEE, logistic regression model using GEE; MERI, mixed 
effects logistic regression model with random intercept; IND, independent correlation structure; EX, 
exchangeable correlation structure; AR(1), first-order auto-regressive correlation structure; UN, unstructured 
correlation structure; pt, marginal probability of positive response at time t, t = 1, 2, 3, 4. 
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Table 3.3: Type I Error Rate (%): Simulation results for comparing the methods with missing data. MAR-1, 

missingness with different dropout rates for each group 

Dropout rates:   Placebo: (0, 10%, 15%, 25%)               n = (60,  54,  46,  34)  
                             Drug   :  (0,  6%, 10%, 1                      n = (60,  56,  50,  42)  

 Placebo Drug Crude  Logistic t-test GEE MERI 
 p1 p2 p3 p4 p1 p2 p3 p4 I II I II  IND EX AR(1) UN  

Independent Correlation Structure  
1 .3 .3 .3 .3 .3 .3 .3 .3 5.4 5.4 8.5 15.2 5.6 5.5 5.4 5.5 5.9 5.0 
2 .4 .4 .4 .4 .4 .4 .4 .4 5.0 5.9 8.6 16.1 4.8 5.2 5.2 5.2 5.9 4.6 
3 .5 .5 .5 .5 .5 .5 .5 .5 5.0 4.5 8.2 14.5 4.9 4.8 4.8 5.0 5.1 4.4 
4 .7 .7 .7 .7 .7 .7 .7 .7 5.1 5.6 7.8 17.0 4.8 4.7 4.8 4.8 5.2 4.2 
5 .6 .4 .6 .4 .6 .4 .6 .4 4.5 5.0 7.6 14.2 4.8 4.8 4.8 5.0 5.1 4.4 
6 .4 .5 .6 .7 .4. 5 .6 .7 4.6 4.8 7.8 14.3 4.0 4.4 4.2 4.4 5.0 4.2 
7 .6 .7 .8 .9 .6 .7 .8 .9 6.4 7.2 7.0 13.2 6.0 5.6 5.6 5.7 5.8 5.3 
8 .7 .6 .5 .4 .7 .6 .5 .4 5.4 5.4 9.0 14.4 5.0 5.3 5.4 5.4 6.0 4.9 
9 .6 .6 .4 .4 .6 .6 .4 .4 5.4 5.2 8.2 15.4 5.6 5.5 5.4 5.6 6.0 5.4 

Exchangeable Correlation Structure  
1 .3 .3 .3 .3 .3 .3 .3 .3 4.6 5.2 7.8 10.6 4.7 4.2 4.8 4.0 5.4 5.5 
2 .4 .4 .4 .4 .4 .4 .4 .4 5.0 4.7 7.8 11.6 5.2 5.2 5.1 4.9 5.7 6.2 
3 .5 .5 .5 .5 .5 .5 .5 .5 4.6 4.4 7.9 11.8 4.6 4.6 4.3 4.5 5.0 5.6 
4 .7 .7 .7 .7 .7 .7 .7 .7 5.9 6.2 9.0 14.2 5.6 6.4 6.0 6.4 6.5 7.0 
5 .6 .4 .6 .4 .6 .4 .6 .4 5.8 5.6 9.2 13.2 6.0 6.2 6.1 6.2 6.6 7.2 
6 .4 .5 .6 .7 .4. 5 .6 .7 5.0 5.2 8.0 10.6 4.5 5.0 4.6 4.8 5.2 5.6 
7 .6 .7 .8 .9 .6 .7 .8 .9 6.4 6.9 7.6 10.9 4.8 5.5 5.8 5.8 6.0 6.6 
8 .7 .6 .5 .4 .7 .6 .5 .4 4.8 5.0 8.2 11.4 5.5 4.8 5.0 5.2 5.5 5.8 
9 .6 .6 .4 .4 .6 .6 .4 .4 5.2 4.9 8.4 11.0 5.3 5.0 5.4 5.2 6.2 6.4 

Auto-Regressive Correlation Structure  
1 .3 .3 .3 .3 .3 .3 .3 .3 6.0 5.8 7.8 12.2 4.5 5.6 5.1 5.0 5.4 6.2 
2 .4 .4 .4 .4 .4 .4 .4 .4 4.8 4.4 6.8 10.0 4.7 4.6 4.7 4.4 5.2 5.8 
3 .5 .5 .5 .5 .5 .5 .5 .5 5.8 5.2 8.0 11.2 5.4 5.6 5.6 5.2 5.8 6.8 
4 .7 .7 .7 .7 .7 .7 .7 .7 5.5 5.2 8.2 10.9 4.8 5.1 5.0 5.2 5.5 6.5 
5 .6 .4 .6 .4 .6 .4 .6 .4 5.6 5.5 8.6 12.2 5.6 6.4 6.2 6.0 6.5 7.5 
6 .4 .5 .6 .7 .4. 5 .6 .7 5.2 5.6 7.8 10.4 5.4 5.4 5.2 5.5 6.2 6.6 
7 .6 .7 .8 .9 .6 .7 .8 .9 6.6 7.8 8.1 9.8 6.2 5.3 5.4 5.8 6.6 7.2 
8 .7 .6 .5 .4 .7 .6 .5 .4 5.4 5.6 8.8 11.2 5.0 5.3 5.3 5.2 6.3 6.5 
9 .6 .6 .4 .4 .6 .6 .4 .4 4.4 5.2 7.2 11.6 4.7 4.8 4.5 4.6 5.0 5.4 

Abbreviations are same as in Table 3.2 
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Table 3.4: Type I Error Rate (%): Simulation results for comparing the methods with missing data. MAR-2, 

missingness with same dropout rates for each group 

Dropout rates are equal for both groups:  (0, 10%, 15%, 25%)             n = ( 60,  54,  46,  34 )  
 Placebo Drug Crude Logistic t-test GEE MERI 
 p1 p2 p3 p4 p1 p2 p3 p4 I II I II  IND EX AR(1) UN  

Independent Correlation Structure  
1 .3 .3 .3 .3 .3 .3 .3 .3 3.0 2.0 7.8 15.0 4.1 3.2 3.2 3.2 3.6 2.8 
2 .4 .4 .4 .4 .4 .4 .4 .4 4.4 3.4 8.4 14.2 4.5 4.0 4.1 4.1 4.0 3.6 
3 .5 .5 .5 .5 .5 .5 .5 .5 4.2 3.0 7.4 14.6 4.2 3.5 3.6 3.6 3.7 3.2 
4 .7 .7 .7 .7 .7 .7 .7 .7 3.0 2.9 7.2 16.0 3.8 3.6 3.6 3.6 3.7 3.2 
5 .6 .4 .6 .4 .6 .4 .6 .4 4.4 3.2 8.4 14.0 4.2 4.4 4.4 4.4 4.4 3.4 
6 .4 .5 .6 .7 .4. 5 .6 .7 4.8 3.2 10.0 16.9 4.6 4.5 4.4 4.3 4.6 3.5 
7 .6 .7 .8 .9 .6 .7 .8 .9 2.9 1.0 6.8 14.2 4.1 4.5 4.8 4.8 4.9 4.4 
8 .7 .6 .5 .4 .7 .6 .5 .4 4.0 3.4 8.4 13.6 3.6 4.0 4.0 3.9 3.9 3.6 
9 .6 .6 .4 .4 .6 .6 .4 .4 4.0 3.0 9.0 14.4 4.2 3.6 4.0 3.6 4.2 3.3 

Exchangeable Correlation Structure  
1 .3 .3 .3 .3 .3 .3 .3 .3 3.5 3.4 7.0 11.0 5.0 3.8 4.2 4.2 4.4 5.0 
2 .4 .4 .4 .4 .4 .4 .4 .4 4.2 4.0 8.0 10.2 4.6 4.4 5.0 4.9 5.4 6.0 
3 .5 .5 .5 .5 .5 .5 .5 .5 4.6 4.3 9.0 10.8 5.4 4.7 5.2 4.8 5.4 6.0 
4 .7 .7 .7 .7 .7 .7 .7 .7 3.0 2.4 8.6 14.4 5.2 5.2 5.2 5.2 5.4 5.6 
5 .6 .4 .6 .4 .6 .4 .6 .4 4.4 3.5 8.1 11.6 4.7 4.0 4.4 4.0 4.5 5.4 
6 .4 .5 .6 .7 .4. 5 .6 .7 4.8 3.5 9.2 11.9 4.5 5.0 4.8 4.8 5.2 6.0 
7 .6 .7 .8 .9 .6 .7 .8 .9 3.5 1.6 7.2 12.0 4.8 5.6 5.7 5.3 6.0 6.8 
8 .7 .6 .5 .4 .7 .6 .5 .4 3.5 3.2 8.2 10.0 4.8 3.6 4.4 4.2 4.8 5.2 
9 .6 .6 .4 .4 .6 .6 .4 .4 4.2 3.0 8.2 10.0 4.0 3.3 4.4 3.8 4.4 4.9 

Auto-Regressive Correlation Structure  
1 .3 .3 .3 .3 .3 .3 .3 .3 3.2 3.0 6.3 10.0 4.3 3.4 3.9 4.2 4.2 4.6 
2 .4 .4 .4 .4 .4 .4 .4 .4 3.4 2.8 6.8 10.6 4.4 3.4 4.2 4.1 4.6 5.2 
3 .5 .5 .5 .5 .5 .5 .5 .5 4.0 3.6 7.0 10.2 3.8 3.9 4.1 4.2 4.4 4.8 
4 .7 .7 .7 .7 .7 .7 .7 .7 4.0 3.6 7.4 10.4 5.6 4.6 5.2 4.8 5.8 6.2 
5 .6 .4 .6 .4 .6 .4 .6 .4 4.4 4.2 6.8 9.8 4.8 4.2 4.2 4.0 4.4 5.2 
6 .4 .5 .6 .7 .4. 5 .6 .7 4.3 3.6 7.0 11.4 4.4 4.2 4.3 4.4 4.6 5.3 
7 .6 .7 .8 .9 .6 .7 .8 .9 3.4 1.9 6.8 8.7 4.9 4.2 4.5 4.4 5.0 5.9 
8 .7 .6 .5 .4 .7 .6 .5 .4 4.0 3.7 8.3 9.4 4.8 4.1 4.8 4.8 5.1 5.4 
9 .6 .6 .4 .4 .6 .6 .4 .4 4.2 3.3 8.0 10.6 3.8 4.4 4.1 4.1 4.6 5.0 

Abbreviations are same as in Table 3.2. 

 

pB = (.4, .4, .4, .4)  regardless of assumption of correlation structures when compared to the 

results in Table 2.2.   

When the marginal probabilities were pA = (.4, .4, .4, .4) and pB = (.3, .3, .3, .3) with  

AR(1) correlation structure and the marginal probabilities were pA = (.8, .8, .8, .8) and 
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pB = (.7, .7, .7, .7) assuming both exchangeable and AR(1) correlation structures, the proposed 

approach with strategy II had slightly lower power than the other methods whereas it yielded 

statistical power comparable to other procedures in the absence of missing data (Table 2.2). In 

view of the results on Table 2.2, the results produced under MCAR (Table 3.5) were parallel in 

terms of comparisons of the power of the methods and the decrease in power for the proposed 

method with strategy II was less than the decrease in power for other methods. 

The results are reported in Table 3.6 when the dropout rates were different in each 

treatment group (MAR-1). We compared the results under MAR-1 (Table 3.6) to those under 

MCAR (Table 3.5). There were some scenarios where the results under MCAR were different 

than those under MAR-1.  

For the scenario of pA = (.6, .7, .8, .9) and pB = (.6, .6, .6, .6) assuming independent and 

AR(1) correlation structures, the power of the proposed method with strategy II reduced while 

GEE and MERI methods increased power under MAR-1 compared with MCAR and hence, the 

proposed method with strategy II, GEE, and MERI are comparable in terms of power. For the 

same scenario with the assumption of exchangeable correlation structure, the proposed method 

with strategy II demonstrated lower power than GEE and MERI under MAR-1 whereas it had 

higher power than other methods under MCAR. For the scenario where pA = (.7, .7, .8, .9) and 

pB = (.7, .7, .6, .5), the proposed method with strategy II yielded lower power when independent 

correlation structure was assumed and it yielded similar or slightly higher power compared with  

GEE and MERI methods when exchangeable and AR(1) correlation structure were 

employed under MAR-1. The proposed method with strategies I and II produced higher power 

when the marginal probabilities were pA = (.4, .4, .4, .4) and pB = (.3, .3, .3, .3) and produced 

lower power when the marginal probabilities were pA = (.8, .8, .8, .8) and pB = (.7, .7, .7, .7) 
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compared with other methods regardless of correlation structures. In other scenarios, results 

under MAR-1 were similar to those under MCAR. t-test tended to produce similar or higher 

power under MAR-1 compared to MCAR in all scenarios except pA = (.3, .5, .6, .8) and 

pB = (.8, .6, .5, .3) in which it produced lower power.  

The results are demonstrated in Table 3.7 when the missing data mechanism was assumed 

to be MAR-2. The results under MAR-2 were very similar to those under MCAR. All methods 

produced very close statistical power in detecting the treatment difference under the alternative 

hypothesis when both missing data mechanism of MCAR and MAR-2 were considered.   

Table 3.8 reported the simulation results to compare the proposed method with GEE and 

MERI approaches when the treatment by time interaction term is included for applying these 

methods. As expected and observed in Section 2.2.5, GEE and MERI methods achieved more 

power in some scenarios (i.e., pA= (.3, .5, .6, .8) and pB = (.8, .6, .5, .3), pA= (.4, .5, .6, .7) and 

pB = (.4, .4, .4, .4), pA= (.6, .6, .6, .6) and pB = (.6, .5, .4, .3)) compared to results in Table 3.7. 

Under these scenarios, powers of these methods are comparable with the proposed method when 

independent correlation structure is used and are higher than that of the proposed method in the 

presence of correlation among observations. For some scenarios (i.e., pA= (.4, .4, .4, .4) and 

pB = (.3, .3, .3, .3), pA= (.8, .8, .8, .8) and pB = (.7, .7, .7, .7), pA= (.7, .7, .7, .7) and 

pB = (.5, .5, .5, .5)), there is a decrease in power for GEE and MERI methods compared to results 

in Table 3.7. 

 

 

 

 



 

 64 

Table 3.5: Power (%): Simulation results for comparing the methods with missing data. MCAR, missingness 

with same dropout rates for each group 

 Placebo Drug Crude  Logistic t-test GEE MERI 
 p1 p2 p3 p4 p1 p2 p3 p4 I II I II  IND EX AR(1) UN  

Independent Correlation Structure  
1 .3 .5 .6 .8 .8 .6 .5 .3 85.4 6.0 60.0 72.2 64.2 31.4 29.4 32.0 36.2 28.0 
2 .4 .6 .7. 8 .4 .4 .4 .4 86.1 99.6 96.5 100 86.5 97.6 97.6 97.6 97.1 97.1 
3 .4 .5 .6 .7 .4 .4 .4 .4 47.0 82.5 70.4 96.3 50.9 71.4 71.6 71.4 71.0 69.2 
4 .7 .6 .5 .4 .4 .4 .4 .4 96.6 78.1 96.3 77.2 92.4 92.8 93.0 92.6 92.4 92.7 
5 .6 .7 .8 .9 .6 .6 .6 .6 47.2 87.4 71.8 98.3 53.8 76.6 76.8 76.4 77.2 74.7 
6 .8 .7 .7. 6 .8 .6 .5 .4 33.4 51.6 53.4 79.4 32.9 45.8 45.7 45.9 46.6 44.3 
7 .5 .6 .6. 7 .5 .4 .4 .3 75.7 97.4 92.1 100 77.0 93.1 93.0 93.1 93.0 92.7 
8 .7 .7 .8 .9 .7 .7 .6 .5 23.6 53.2 44.4 86.6 28.4 42.0 42.2 41.9 43.4 40.5 
9 .6 .6 .6 .6 .6 .5 .4. 3 46.6 83.1 70.8 97.2 50.2 70.2 70.6 70.2 70.6 68.4 

10 .4 .4 .4 .4 .3 .3 .3 .3 49.3 47.0 62.6 68.2 46.9 55.1 55.3 55.4 55.6 53.8 
11 .8 .8 .8 .8 .7 .7 .7 .7 52.6 47.6 69.2 75.9 53.3 61.4 61.7 61.6 62.4 60.4 
12 .7 .7 .7 .7 .5 .5 .5 .5 96.9 96.4 98.6 98.6 95.4 98.0 97.9 98.0 97.8 97.8 
13 .5 .5 .5 .5 .3 .3 .3 .3 97.0 96.4 99.0 8.6 94.9 98.4 98.4 98.5 98.1 98.4 

Exchangeable Correlation Structure  
1 .3 .5 .6 .8 .8 .6 .5 .3 65.2 5.8 39.9 48.8 46.8 20.4 27.6 27.3 37.2 29.4 
2 .4 .6 .7. 8 .4 .4 .4 .4 69.2 93.6 86.2 98.9 75.5 87.4 84.8 84.0 84.4 87.7 
3 .4 .5 .6 .7 .4 .4 .4 .4 34.0 62.2 53.0 83.8 39.8 51.0 48.1 50.2 50.5 52.6 
4 .7 .6 .5 .4 .4 .4 .4 .4 84.0 54.0 83.0 55.6 81.8 75.1 79.9 78.4 80.4 82.2 
5 .6 .7 .8 .9 .6 .6 .6 .6 34.2 66.8 57.4 92.8 42.6 57.6 50.1 53.9 52.4 59.0 
6 .8 .7 .7. 6 .8 .6 .5 .4 38.6 55.5 56.2 76.7 34.8 42.0 44.2 41.1 44.2 43.9 
7 .5 .6 .6. 7 .5 .4 .4 .3 54.7 84.8 74.1 96.2 59.7 71.8 69.4 68.2 70.0 72.1 
8 .7 .7 .8 .9 .7 .7 .6 .5 27.2 67.8 54.0 94.8 32.8 47.4 42.6 49.2 49.4 48.2 
9 .6 .6 .6 .6 .6 .5 .4. 3 38.5 67.3 57.2 85.8 38.3 49.2 46.0 47.1 47.9 48.3 

10 .4 .4 .4 .4 .3 .3 .3 .3 31.1 30.4 40.6 46.1 31.7 33.6 33.8 32.8 34.2 36.3 
11 .8 .8 .8 .8 .7 .7 .7 .7 39.4 33.8 54.8 60.1 39.4 40.1 40.6 40.2 42.0 46.0 
12 .7 .7 .7 .7 .5 .5 .5 .5 87.8 85.5 92.0 92.0 84.4 86.0 87.2 85.8 87.2 89.2 
13 .5 .5 .5 .5 .3 .3 .3 .3 85.0 83.8 89.8 89.6 85.6 86.1 86.9 86.7 87.7 88.3 

Auto Regressive Correlation Structure 
1 .3 .5 .6 .8 .8 .6 .5 .3 70.8 7.0 46.1 52.4 50.9 20.6 31.4 28.6 35.6 33.0 
2 .4 .6 .7. 8 .4 .4 .4 .4 47.6 86.7 71.2 97.2 53.2 69.2 65.6 68.6 68.9 68.2 
3 .4 .5 .6 .7 .4 .4 .4 .4 19.2 49.8 35.3 78.0 22.0 31.4 29.5 32.8 33.1 31.6 
4 .7 .6 .5 .4 .4 .4 .4 .4 73.3 39.4 70.0 44.0 68.3 60.3 67.1 67.2 70.6 68.9 
5 .6 .7 .8 .9 .6 .6 .6 .6 19.2 50.0 36.1 78.6 24.7 34.8 28.8 36.2 37.3 35.7 
6 .8 .7 .7. 6 .8 .6 .5 .4 50.9 65.4 66.5 80.6 46.4 55.4 57.6 52.2 55.9 57.8 
7 .5 .6 .6. 7 .5 .4 .4 .3 53.5 87.8 74.4 97.2 60.2 74.6 70.0 71.4 72.5 73.6 
8 .7 .7 .8 .9 .7 .7 .6 .5 24.4 64.4 49.7 91.4 31.4 44.4 40.8 49.7 52.2 44.4 
9 .6 .6 .6 .6 .6 .5 .4. 3 48.2 77.1 68.0 92.0 50.6 63.2 59.4 57.4 59.0 63.4 

10 .4 .4 .4 .4 .3 .3 .3 .3 31.8 28.6 41.8 47.2 33.0 34.0 34.6 34.6 35.7 38.3 
11 .8 .8 .8 .8 .7 .7 .7 .7 37.6 34.2 50.0 52.6 39.0 40.4 40.8 40.0 41.8 45.4 
12 .7 .7 .7 .7 .5 .5 .5 .5 85.5 83.0 90.2 90.2 85.6 85.6 86.6 85.4 86.8 88.2 
13 .5 .5 .5 .5 .3 .3 .3 .3 83.6 81.9 89.9 89.8 83.9 85.2 85.6 85.6 86.8 87.9 

Abbreviations are same as in Table 3.2. 
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Table 3.6: Power (%): Simulation results for comparing the methods with missing data. MAR-1, missingness 

with different dropout rates for each group 

Dropout rates:   Placebo: (0, 10%, 15%, 25%)             Drug   : (0, 6%, 10%, 16%)  
 Placebo Drug Crude  Logistic t-test GEE MERI 
 p1 p2 p3 p4 p1 p2 p3 p4 I II I II  IND EX AR(1) UN  

Independent Correlation Structure  
1 .3 .5 .6 .8 .8 .6 .5 .3 83.8 10.2 60.4 70.2 50.8 23.5 21.3 24.2 28.5 20.0 
2 .4 .6 .7. 8 .4 .4 .4 .4 88.8 96.4 97.2 100 89.8 98.7 98.8 98.8 98.3 98.4 
3 .4 .5 .6 .7 .4 .4 .4 .4 51.0 86.7 71.8 96.8 54.4 77.0 76.8 76.8 77.0 75.0 
4 .7 .6 .5 .4 .4 .4 .4 .4 97.4 78.0 97.2 74.4 93.8 93.3 93.2 93.5 93.0 93.0 
5 .6 .7 .8 .9 .6 .6 .6 .6 41.2 80.0 71.1 99.0 56.0 82.0 82.0 81.8 81.5 80.0 
6 .8 .7 .7. 6 .8 .6 .5 .4 32.8 52.8 49.2 76.2 46.0 48.0 47.9 47.8 49.2 46.0 
7 .5 .6 .6. 7 .5 .4 .4 .3 78.9 98.5 91.8 99.8 83.6 94.6 94.4 94.5 94.2 94.2 
8 .7 .7 .8 .9 .7 .7 .6 .5 17.6 42.2 41.4 83.6 33.1 47.4 48.0 47.6 48.1 45.4 
9 .6 .6 .6 .6 .6 .5 .4. 3 52.8 87.6 71.4 96.0 61.6 76.6 76.8 76.5 76.0 75.2 
10 .4 .4 .4 .4 .3 .3 .3 .3 58.2 59.2 63.4 68.2 48.8 55.3 55.6 55.6 95.8 54.4 
11 .8 .8 .8 .8 .7 .7 .7 .7 42.0 29.4 65.7 69.6 57.2 65.0 64.9 65.2 65.2 63.5 
12 .7 .7 .7 .7 .5 .5 .5 .5 96.2 94.9 98.7 98.5 95.8 98.4 98.3 98.4 98.4 98.2 
13 .5 .5 .5 .5 .3 .3 .3 .3 97.9 98.0 98.9 98.7 95.8 98.4 98.4 98.4 98.4 98.3 

Exchangeable Correlation Structure  
1 .3 .5 .6 .8 .8 .6 .5 .3 61.7 6.4 40.0 47.2 35.6 16.0 22.0 20.5 29.4 23.4 
2 .4 .6 .7. 8 .4 .4 .4 .4 68.2 91.8 83.4 98.4 75.0 87.6 85.8 84.7 86.0 88.0 
3 .4 .5 .6 .7 .4 .4 .4 .4 38.0 62.6 53.2 83.2 43.4 54.8 52.7 53.2 54.1 56.3 
4 .7 .6 .5 .4 .4 .4 .4 .4 84.3 53.8 82.8 54.0 81.2 74.9 78.4 76.7 79.6 81.2 
5 .6 .7 .8 .9 .6 .6 .6 .6 26.5 51.4 49.3 88.2 43.6 59.7 52.7 56.9 56.0 61.4 
6 .8 .7 .7. 6 .8 .6 .5 .4 34.2 52.0 50.3 72.6 43.2 43.1 45.6 40.9 45.7 45.0 
7 .5 .6 .6. 7 .5 .4 .4 .3 56.9 86.2 71.9 95.2 63.8 74.0 71.2 70.8 73.1 74.6 
8 .7 .7 .8 .9 .7 .7 .6 .5 21.4 56.4 47.5 91.8 40.2 53.4 49.2 56.0 55.4 54.0 
9 .6 .6 .6 .6 .6 .5 .4. 3 38.0 71.4 54.4 85.2 43.0 50.7 47.8 48.0 48.6 50.2 
10 .4 .4 .4 .4 .3 .3 .3 .3 41.8 41.7 47.7 50.0 35.8 35.4 36.8 36.2 38.3 40.0 
11 .8 .8 .8 .8 .7 .7 .7 .7 25.0 16.2 43.6 48.8 39.6 41.8 41.6 41.2 43.2 46.8 
12 .7 .7 .7 .7 .5 .5 .5 .5 84.0 80.0 91.0 90.0 86.2 86.2 87.6 86.4 88.0 89.7 
13 .5 .5 .5 .5 .3 .3 .3 .3 87.1 87.0 90.6 89.8 84.8 85.6 86.7 85.8 87.3 87.8 

Auto Regressive Correlation Structure 
1 .3 .5 .6 .8 .8 .6 .5 .3 64.2 11.0 46.0 52.4 39.4 17.3 25.0 23.6 30.7 26.6 
2 .4 .6 .7. 8 .4 .4 .4 .4 50.0 87.6 69.8 97.6 53.5 71.0 68.3 69.6 69.8 70.3 
3 .4 .5 .6 .7 .4 .4 .4 .4 25.4 56.4 39.2 80.4 24.8 36.0 34.0 37.6 36.8 36.6 
4 .7 .6 .5 .4 .4 .4 .4 .4 78.6 49.2 74.8 46.8 71.6 61.0 66.8 67.1 70.2 69.1 
5 .6 .7 .8 .9 .6 .6 .6 .6 18.4 43.4 34.2 73.9 30.1 42.6 37.4 43.0 43.1 42.4 
6 .8 .7 .7. 6 .8 .6 .5 .4 51.0 67.2 62.4 78.7 56.2 56.0 56.6 51.1 56.2 57.4 
7 .5 .6 .6. 7 .5 .4 .4 .3 59.6 91.8 74.0 97.8 64.8 75.6 71.5 71.6 73.0 75.0 
8 .7 .7 .8 .9 .7 .7 .6 .5 19.8 58.0 41.4 87.7 36.2 48.2 44.2 53.6 55.2 47.0 
9 .6 .6 .6 .6 .6 .5 .4. 3 53.4 82.0 67.4 91.3 59.2 65.0 61.9 59.3 62.2 65.6 
10 .4 .4 .4 .4 .3 .3 .3 .3 41.4 42.2 46.0 49.6 33.0 33.4 33.3 31.6 35.1 36.8 
11 .8 .8 .8 .8 .7 .7 .7 .7 26.4 19.6 39.3 41.7 41.1 41.6 41.5 40.9 42.6 47.9 
12 .7 .7 .7 .7 .5 .5 .5 .5 85.0 81.6 89.4 89.4 86.6 86.3 87.4 86.0 87.8 89.1 
13 .5 .5 .5 .5 .3 .3 .3 .3 89.2 88.2 91.8 91.2 85.4 85.6 85.7 85.0 86.5 88.4 

Abbreviations are same as in Table 3.2. 



 

 66 

Table 3.7: Power (%): Simulation results for comparing the methods with missing data. MAR-2, missingness 

with same dropout rates for each group 

Dropout rates are equal for both groups :  (0, 10%, 15%, 25%)                     n = ( 60,  54,  46,  34 )  
 Placebo Drug Crude  Logistic t-test GEE MERI 
 p1 p2 p3 p4 p1 p2 p3 p4 I II I II  IND EX AR(1) UN  

Independent Correlation Structure  
1 .3 .5 .6 .8 .8 .6 .5 .3 86.9 5.0 61.6 73.6 68.3 33.3 29.6 33.8 38.0 28.8 
2 .4 .6 .7. 8 .4 .4 .4 .4 86.6 99.6 97.4 100 85.2 98.0 98.0 98.0 97.4 97.5 
3 .4 .5 .6 .7 .4 .4 .4 .4 46.6 85.1 72.8 99.0 47.6 71.0 71.6 71.2 71.4 69.5 
4 .7 .6 .5 .4 .4 .4 .4 .4 97.4 78.8 97.7 80.6 94.0 95.3 95.1 95.2 94.8 95.0 
5 .6 .7 .8 .9 .6 .6 .6 .6 47.6 88.2 75.8 99.6 53.2 79.3 79.4 79.2 78.5 77.4 
6 .8 .7 .7. 6 .8 .6 .5 .4 50.4 74.8 54.6 79.4 54.0 67.5 67.4 67.4 67.6 65.8 
7 .5 .6 .6. 7 .5 .4 .4 .3 77.5 98.4 93.4 100 79.0 94.4 94.5 94.4 94.0 94.0 
8 .7 .7 .8 .9 .7 .7 .6 .5 40.8 90.7 47.7 89.4 51.6 76.1 76.2 76.0 77.3 74.1 
9 .6 .6 .6 .6 .6 .5 .4. 3 51.9 85.9 73.0 98.3 55.2 72.8 73.2 73.0 73.0 71.6 

10 .4 .4 .4 .4 .3 .3 .3 .3 51.0 49.6 65.4 72.0 48.4 55.4 55.8 55.2 56.2 54.6 
11 .8 .8 .8 .8 .7 .7 .7 .7 52.8 49.4 72.4 77.4 56.3 64.0 64.0 64.1 63.6 62.5 
12 .7 .7 .7 .7 .5 .5 .5 .5 97.4 97.8 99.3 99.3 96.2 98.6 98.6 98.6 98.8 98.6 
13 .5 .5 .5 .5 .3 .3 .3 .3 97.6 97.2 99.0 99.3 95.4 98.4 98.3 98.4 98.4 98.2 

Exchangeable Correlation Structure 
1 .3 .5 .6 .8 .8 .6 .5 .3 66.2 4.7 38.6 53.0 47.6 18.4 27.7 26.0 38.9 29.5 
2 .4 .6 .7. 8 .4 .4 .4 .4 67.2 93.6 87.5 99.2 71.8 87.8 84.4 84.0 84.0 86.8 
3 .4 .5 .6 .7 .4 .4 .4 .4 31.9 58.8 53.4 86.0 36.0 48.6 45.4 46.8 47.0 50.0 
4 .7 .6 .5 .4 .4 .4 .4 .4 84.6 52.9 84.5 57.4 80.4 76.6 80.8 78.8 81.3 83.0 
5 .6 .7 .8 .9 .6 .6 .6 .6 30.8 61.7 57.0 93.8 42.1 56.5 49.6 53.4 50.0 57.2 
6 .8 .7 .7. 6 .8 .6 .5 .4 38.8 57.8 56.4 79.0 38.6 42.9 46.7 41.6 46.6 45.1 
7 .5 .6 .6. 7 .5 .4 .4 .3 54.0 85.8 73.7 96.8 56.9 71.5 68.4 67.9 70.0 70.8 
8 .7 .7 .8 .9 .7 .7 .6 .5 28.2 69.2 57.7 97.2 37.5 51.4 47.8 54.0 52.6 51.9 
9 .6 .6 .6 .6 .6 .5 .4. 3 36.0 69.6 56.7 87.8 38.1 46.5 44.8 45.0 46.0 47.2 

10 .4 .4 .4 .4 .3 .3 .3 .3 31.8 30.2 40.2 45.9 32.1 32.1 33.4 32.5 34.3 36.2 
11 .8 .8 .8 .8 .7 .7 .7 .7 38.6 33.2 58.1 64.1 41.2 42.9 43.8 43.2 44.4 48.6 
12 .7 .7 .7 .7 .5 .5 .5 .5 86.8 85.2 93.2 93.4 85.1 85.8 87.2 85.8 86.8 89.2 
13 .5 .5 .5 .5 .3 .3 .3 .3 87.3 87.1 91.8 93.0 86.7 88.0 88.9 87.8 89.0 90.3 

Auto Regressive Correlation Structure  
1 .3 .5 .6 .8 .8 .6 .5 .3 68.9 6.4 41.9 54.0 46.8 19.6 30.2 27.4 33.0 31.0 
2 .4 .6 .7. 8 .4 .4 .4 .4 48.6 87.4 72.5 98.2 51.8 69.4 64.4 67.6 67.4 67.5 
3 .4 .5 .6 .7 .4 .4 .4 .4 19.2 52.1 37.0 84.2 21.0 29.6 28.0 32.0 31.4 31.2 
4 .7 .6 .5 .4 .4 .4 .4 .4 72.2 39.3 70.7 42.2 68.0 61.2 68.9 68.0 70.0 69.9 
5 .6 .7 .8 .9 .6 .6 .6 .6 20.0 50.8 40.0 84.0 27.2 38.4 32.1 39.2 39.1 37.8 
6 .8 .7 .7. 6 .8 .6 .5 .4 50.9 67.0 67.4 81.8 48.4 55.3 58.2 52.8 56.2 57.8 
7 .5 .6 .6. 7 .5 .4 .4 .3 54.0 89.8 74.0 97.3 59.0 73.6 68.0 69.0 70.4 72.3 
8 .7 .7 .8 .9 .7 .7 .6 .5 22.0 66.4 49.8 93.2 31.2 46.2 42.4 52.4 54.3 45.0 
9 .6 .6 .6 .6 .6 .5 .4. 3 49.3 77.8 66.5 92.0 52.6 62.2 58.4 56.9 58.6 62.2 

10 .4 .4 .4 .4 .3 .3 .3 .3 31.2 28.1 40.1 46.1 31.6 32.6 33.4 33.2 33.8 37.1 
11 .8 .8 .8 .8 .7 .7 .7 .7 34.8 32.1 48.8 52.8 39.4 38.5 40.2 39.8 41.7 45.2 
12 .7 .7 .7 .7 .5 .5 .5 .5 87.6 85.9 92.2 91.4 87.4 87.9 88.4 87.6 88.6 89.7 
13 .5 .5 .5 .5 .3 .3 .3 .3 83.3 82.2 88.8 90.0 82.7 84.6 85.4 84.8 85.6 87.4 

Abbreviations are same as in Table 3.2. 
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Table 3.8: Power (%): Simulation results for comparing the methods with missing data and treatment by 

time interaction. MAR-2, missingness with same dropout rates for each group 

Dropout rates are equal for both groups : (0, 10%, 15%, 25%)     n = ( 60,  54,  46,  34 )  

 Placebo Drug PROPOSED t-test GEE MERI 

 p1 p2 p3 p4 p1 p2 p3 p4 I II  IND EX AR(1) UN  
Independent Correlation Structure  

1 .3 .5 .6 .8 .8 .6 .5 .3 87.4 4.0 65.0 100 100 100 100 100 
2 .4 .6 .7. 8 .4 .4 .4 .4 87.5 99.4 87.2 99.8 99.8 99.8 99.6 99.8 
3 .4 .5 .6 .7 .4 .4 .4 .4 47.6 85.5 45.4 87.6 87.8 87.8 88.5 87.4 
4 .7 .6 .5 .4 .4 .4 .4 .4 97.0 78.6 93.2 95.6 95.6 95.6 95.6 95.7 
5 .6 .7 .8 .9 .6 .6 .6 .6 49.8 88.1 55.4 95.7 95.8 95.8 96.0 95.8 
6 .8 .7 .7. 6 .8 .6 .5 .4 50.7 73.8 53.7 70.2 70.5 70.2 71.2 70.4 
7 .5 .6 .6. 7 .5 .4 .4 .3 77.2 97.8 78.4 98.7 98.6 98.6 98.7 98.6 
8 .7 .7 .8 .9 .7 .7 .6 .5 37.5 89.7 51.2 98.4 98.4 98.4 98.4 98.2 
9 .6 .6 .6 .6 .6 .5 .4. 3 48.9 85.4 52.7 88.2 88.0 88.0 88.0 87.7 

10 .4 .4 .4 .4 .3 .3 .3 .3 50.8 48.2 45.8 42.8 42.8 43.0 44.0 41.2 
11 .8 .8 .8 .8 .7 .7 .7 .7 55.1 48.6 56.4 53.2 53.1 53.0 53.4 51.8 
12 .7 .7 .7 .7 .5 .5 .5 .5 97.6 96.9 95.8 96.6 96.6 96.6 96.4 96.2 
13 .5 .5 .5 .5 .3 .3 .3 .3 97.1 97.6 95.4 96.2 96.1 96.0 96.0 95.8 

Exchangeable Correlation Structure 
1 .3 .5 .6 .8 .8 .6 .5 .3 65.0 4.6 47.8 100 100 100 100 100 
2 .4 .6 .7. 8 .4 .4 .4 .4 66.8 93.6 70.6 98.2 98.8 98.5 98.9 89.3 
3 .4 .5 .6 .7 .4 .4 .4 .4 33.6 60.1 38.6 77.4 80.1 78.8 81.6 82.1 
4 .7 .6 .5 .4 .4 .4 .4 .4 82.6 54.2 79.4 90.4 90.4 89.6 90.4 91.6 
5 .6 .7 .8 .9 .6 .6 .6 .6 30.4 63.8 40.8 89.4 90.0 89.2 90.4 91.9 
6 .8 .7 .7. 6 .8 .6 .5 .4 39.2 57.4 39.3 55.3 60.3 54.9 60.5 60.3 
7 .5 .6 .6. 7 .5 .4 .4 .3 54.8 86.3 59.0 94.2 95.3 95.8 95.3 95.6 
8 .7 .7 .8 .9 .7 .7 .6 .5 25.2 65.9 34.5 95.4 96.0 95.4 96.0 96.4 
9 .6 .6 .6 .6 .6 .5 .4. 3 38.0 69.4 38.8 77.3 80.4 78.6 80.2 81.0 

10 .4 .4 .4 .4 .3 .3 .3 .3 32.0 30.0 32.6 22.6 24.6 23.8 26.0 26.8 
11 .8 .8 .8 .8 .7 .7 .7 .7 37.9 31.6 39.6 29.8 30.9 29.4 31.8 36.2 
12 .7 .7 .7 .7 .5 .5 .5 .5 87.7 85.6 85.4 77.0 78.1 77.2 79.5 82.2 
13 .5 .5 .5 .5 .3 .3 .3 .3 86.1 85.2 85.4 76.9 79.0 77.1 79.2 81.0 

Auto Regressive Correlation Structure  
1 .3 .5 .6 .8 .8 .6 .5 .3 70.2 6.7 50.2 100 100 100 100 100 
2 .4 .6 .7. 8 .4 .4 .4 .4 47.8 88.4 51.4 97.5 97.6 97.4 97.2 99.2 
3 .4 .5 .6 .7 .4 .4 .4 .4 17.8 51.6 20.0 74.7 76.4 71.7 72.8 84.0 
4 .7 .6 .5 .4 .4 .4 .4 .4 71.4 38.2 66.8 84.0 83.8 86.1 84.8 88.4 
5 .6 .7 .8 .9 .6 .6 .6 .6 19.2 51.1 25.8 89.3 88.6 86.0 86.2 92.3 
6 .8 .7 .7. 6 .8 .6 .5 .4 49.8 66.4 48.2 60.4 67.0 62.4 66.2 72.8 
7 .5 .6 .6. 7 .5 .4 .4 .3 51.5 88.2 57.4 96.1 96.8 96.6 96.8 98.0 
8 .7 .7 .8 .9 .7 .7 .6 .5 22.4 66.8 30.8 98.6 98.6 97.6 97.4 99.0 
9 .6 .6 .6 .6 .6 .5 .4. 3 48.0 78.4 50.8 83.6 85.8 85.8 86.2 90.2 

10 .4 .4 .4 .4 .3 .3 .3 .3 30.4 28.3 31.5 21.8 23.4 23.9 24.9 29.3 
11 .8 .8 .8 .8 .7 .7 .7 .7 39.8 36.4 43.8 32.7 34.1 32.6 35.4 41.3 
12 .7 .7 .7 .7 .5 .5 .5 .5 87.0 85.4 85.8 76.9 78.2 77.8 79.2 82.6 
13 .5 .5 .5 .5 .3 .3 .3 .3 85.6 83.6 83.5 77.2 76.8 76.8 78.4 81.7 

Abbreviations are same as in Table 3.2 except that Proposed, proposed method by applying “crude substitution 
approach” for score assignment to the vectors with missing data based on the ordering of strategies I and II. 
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3.5 CONCLUSION 

We compared the performance of our proposed method to other methods for analysis of 

longitudinal binary data in the presence of missing data via simulation study. The type I error 

rate of the proposed method with logistic regression substitution was considerably inflated so 

this method is not preferable. The type I error rate for MERI method was slightly inflated when 

the correlation structure is assumed to be exchangeable or AR(1). Other methods produced type I 

error rate reasonably close to the nominal value of 0.05.  

Under MCAR, MAR-1, and MAR-2 missing data mechanisms, simulation studies 

comparing the proposed method with other methods demonstrated that none of the approaches 

are uniformly better than the others in terms of power. All methods yielded very similar results 

for all scenarios under MCAR and MAR-2. Results obtained under MAR-1 were different for 

some scenarios. All method lost power in the presence of missing data but the lost in power is 

greater for t-test than other methods. Our proposed approach performs better/worse than the 

other approaches for some situations depending on strategies of ordering vectors and assigning 

scores to the vectors with missing data. The proposed method with crude substitution may be 

preferred method for some scenarios in which the proposed method gives higher empirical power 

and maintains control over the type I error rate.  

In most situations, our proposed method is competitive with other methods when data are 

not complete. We believe that our approach will be adaptable to multiple outcomes (intervention 

with other treatments, adverse side effects, and therapy with multiple effects).  
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4.0  METHODS OF RANKING VECTORS OF OBSERVATIONS 

Our proposed method is based on applying the Wilcoxon test statistic to vectors of repeated 

binary observations and events. The main requirement of applying the proposed method is to 

order vectors of observations in terms of meaningful importance. The ordering is determined by 

‘clinical relevance’. For some scenarios, clinically meaningful ordering of the vectors may be 

defined by a ‘natural algorithm’; while for other scenarios, the ordering could be obtained from a 

group of clinicians.  

If an agreement among clinicians with respect to ordering of the vectors of repeated 

observations is reached, it is reasonable to apply the proposed approach to the data to be 

analyzed. If there is no consensus among clinicians about orderings of vectors due to differences 

in opinion among clinicians, it might not be easy to interpret the results and to employ the 

proposed method in the analysis of the data (Follmann et al. 1992). On the other hand, it might 

be beneficial to obtain different rankings produced by a group of experts who have diverse 

backgrounds. In this case, data can be analyzed in different ways and a proper perspective can be 

obtained on the impact of variability of clinician assessment on study conclusions.  

In this chapter, we discuss natural algorithm and clinicians’ orderings with respect to 

obtaining the rankings of vectors of repeated observations. We apply the ordering algorithms to a 

clinical trial of the efficacy of treatment for children with acute otitis media (AOM). We measure 

the variability of orderings among clinicians and examine the effects of this heterogeneity in the 

analysis of the otitis media clinical trial data.  
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4.1 NATURAL ALGORITHM  

To demonstrate achievement of ordering vectors of observations, we present an illustration with 

a clinical trial comparing two treatment groups (e.g. drug versus placebo) to evaluate the effect 

of antibiotic treatment for children with acute otitis media to prevent AOM and to clear Middle 

Ear Effusion (MEE). Binary outcomes (1 = AOM or MEE, 0 = Disease-free) are obtained from 

each child for four time points which result in 16 possible profiles over time.  

We first rank the vectors according to the number of disease-free time points. A vector 

with 4 disease-free time points ranks higher than the one with 3 disease-free time points which 

ranks higher than a vector with 2 disease-free time points and so on. We assume, without loss of 

generality, that the lower rank score indicates poorer outcome. After applying the first criteria, 4 

vectors with one disease-free time points, 6 vectors with two disease-free time points, and 4 

vectors with three disease-free time points share separately the same tied rank scores. These tied 

ranks can be broken on the basis of time to occurrence of disease. We follow two different 

strategies to break ties.  

 Some trials expect to observe a rapid effect of antibiotic treatment and successful initial 

effect of therapy is important for these trials. Therefore, we break ties by considering earlier 

disease as a poorer outcome. Among the subjects who have the same number of time points with 

diseases, if the disease occurred earlier for the subject, then this subject has lower rank score than 

the one who had disease later (Table 4.1). For some trials, it can be important to examine 

subjects without disease at or near the end of the study so we can break ties by considering later 

diseases as poorer outcome. In this case, a subject who has disease earlier is assigned higher rank 

score than the one who has disease later (Table 4.2).  
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Table 4.1: Nested criteria for ordering of 16 possible outcomes, R=Rank 

Number of disease-free time points 

0 1 2 3 4 

R Profile R Profile R Profile R Profile R Profile 

1 [1 1 1 1] 2 [1 1 1 0] 6 [1 1 0 0] 12 [1 0 0 0] 16 [0 0 0 0] 

  3 [1 1 0 1] 7 [1 0 1 0] 13 [0 1 0 0]   

  4 [1 0 1 1] 8 [1 0 0 1] 14 [0 0 1 0]   

  5 [0 1 1 1] 9 [0 1 1 0] 15 [0 0 0 1]   

    10 [0 1 0 1]     

    11 [0 0 1 1]     

Algorithm: 

1. Rank first by number of disease-free time points 

2. Break ties by considering earlier disease as poorer outcome  

Lower rank is poorer outcome.  
 
  
 

Table 4.2: Nested criteria for ordering of 16 possible outcomes, R: Rank 

Number of disease-free time points 

0 1 2 3 4 

R Profile R Profile R Profile R Profile R Profile 

1 [1 1 1 1] 5 [1 1 1 0] 11 [1 1 0 0] 15 [1 0 0 0] 16 [0 0 0 0] 

  4 [1 1 0 1] 10 [1 0 1 0] 14 [0 1 0 0]   

  3 [1 0 1 1] 9 [1 0 0 1] 13 [0 0 1 0]   

  2 [0 1 1 1] 8 [0 1 1 0] 12 [0 0 0 1]   

    7 [0 1 0 1]     

    6 [0 0 1 1]     

Algorithm: 

1. Rank first by number of disease-free time points 

2. Break ties by considering later disease as poorer outcome  

Note: Lower rank is poorer outcome.   

 

Such a nested set of criteria should be very robust in assigning vector ranks and permits a 

priority to be assigned as to what type of differences are most important. Applying different 
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criteria generates different orderings. Note that a vector with 4 disease-free time points ranks as 

the best outcome and a vector with 4 disease episodes ranks as the worst outcome based on the 

both ordering criteria. Table 4.1 and Table 4.2 present ordering of possible outcomes based on 

the two different principles. 

  
4.2 CLINICIANS’ RANKINGS 

While ordering the vectors of repeated binary observations can be obtained by natural algorithm 

as the one just described, another approach to rank the outcomes is to ask a group of people who 

are expert in the area of study to order the vectors. Experts’ opinion and knowledge play an 

important role in the application of our proposed method. Experts can rank the vectors in order 

of clinically meaningful and relevant importance.  

4.2.1 Guidelines for Clinicians 

We collaborated with three clinicians who are knowledgeable about otitis media at Children’s 

Hospital of Pittsburgh of University of Pittsburgh Medical Center (UPMC). We asked them 3 

scenarios related to otitis media. The following instructions were provided to them and each 

clinician independently ranked the outcomes: 

We are developing a statistical test to use in randomized clinical trials that will give more 

weight to clinical considerations. It is based on ranking a set of outcomes from lowest to highest 

in regard to which is “clinically the least or most desirable”. We are giving you a scenario and 

we would like you to answer the given questions. Note that there is no correct answer and “ties” 

are allowed in ranking your set of outcomes i.e. two different outcomes might be considered as 
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clinically equivalent. This will be asked to a number of clinicians because the extent of clinical 

variability is one of the important issues for us. 

Scenario 1: Children entering the study with MEE are given a treatment and followed for 

a period of time. Four measurements, one measurement/month, are taken for each patient over 

the four months. A determination is made at each visit whether child has effusion (“1”) in either 

ear or no effusion (“0”). For example, [1 0 0 1] would indicate effusion at the 1st and 4th visit and 

no effusion at visit 2 and 3 for a patient. We have the following 16 possible outcomes for the 4 

months of measurements which can be obtained from each patient at the end of the study. We 

would like you to rank these outcomes from 1 (the least desirable or worst) to 16 (the most 

desirable or best). Some of the outcomes might be clinically equivalent so that they might have 

the same ranking score. Is there any “algorithm” you used to rank outcomes? 

 

Table 4.3: Possible outcomes with 4 time points 

1 [1 1 1 1] 5 [0 1 1 1] 9 [0 1 1 0] 13 [0 1 0 0] 

2 [1 1 1 0] 6 [1 1 0 0] 10 [0 1 0 1] 14 [0 0 1 0] 

3 [1 1 0 1] 7 [1 0 1 0] 11 [0 0 1 1] 15 [0 0 0 1] 

4 [1 0 1 1] 8 [1 0 0 1] 12 [1 0 0 0] 16 [0 0 0 0] 

Thank you for your help. 

4.2.2 Clinicians’ Responses 

All three clinicians responded to questions and returned their answers to us. We present the 

responses of clinicians. Table 4.4 demonstrates the considerations clinicians applied to order the 

16 vectors for 4 measurements. They ordered the vectors based on these criteria. Scores assigned 

to the vectors by clinicians are shown in Table 4.5. 
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Table 4.4: Considerations applied by three clinicians for ordering the vectors 

Clinician A 

1. The longer time without relapse the better. 

2. An ideal treatment should prevent relapse.  

3. Consecutive months of MEE worse than MEE for the same number of months but 

separated by no MEE. 

Clinician B 

1. More visits with MEE worse. 

2. Those with MEE at the last visit would be worse than those without MEE at the 

last visit within each number of visits with MEE. 

Clinician C 

1. The more “0” the better. 

2. The less continuous the period of “1” the better. 

3. Prefer to see resolution at last visit. 

 

As presented in Table 4.4, they reached an agreement that more time points with diseases 

are worse outcome. They first ordered the vectors based on the number of time points with 

diseases. For example, all clinicians assigned the highest score to the vector with no disease and 

the lowest score to the vector with diseases over four time points if higher score is better. They 

followed different strategies to break ties for vectors which have the same number of time points 

with diseases. While clinician B and C ordered the vectors with three diseases (profiles 2-5) 

similarly, clinician A ordered them in a different way as shown in Table 4.5. For ordering 

vectors with one disease (profiles 12-15), clinician B and C considered later diseases as poorer 

outcome and ordered the vectors almost identical  while clinician A regarded vectors with earlier 

disease as poorer outcome and ordered the vectors opposite way. Clinicians assigned the same 

scores to the vectors when they considered that they are indeterminate. For example, Clinician C 

assigned the same score to some of the vectors with 2 diseases (profiles 6, 8, 9, and 10).          
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Table 4.5: Rank scores assigned by clinicians 

 

 

 

 

 

 

 

 

4.2.3 Clinicians Agreement  

The degree of agreement between each pair of clinicians can be measured using Spearman’s rank 

correlation. Table 4.6 shows correlations between the pairs of clinicians for rankings of 16 

vectors.  

High degree of agreement between clinicians was observed. Correlations between pairs 

of clinicians range from 0.887 to 0.936. The reason of observing high correlations among the 

clinicians is partly because they considered the more time points with diseases as worse 

outcome. For example, all three clinicians agreed that a child with 4 visits of disease ranks lower 

than the one with 3 visits of disease. All clinicians did not follow the same criteria for breaking 

ties so the reduction in correlation coefficients may have been due to this disagreement. For 

example, one of them preferred to see resolution at the earlier visits while two of them to see 

  Clinician (original) Clinician (adjusted) 
 Profile A B C A B C 

1 [1 1 1 1] 1 1 1 1 1 1 
2 [1 1 1 0] 2 4 5 2 5 5 
3 [1 1 0 1] 3 3 4 4 3.5 4 
4 [1 0 1 1] 3 3 3 4 3.5 3 
5 [0 1 1 1] 3 2 2 4 2 2 
6 [1 1 0 0] 4 6 7 6 7 8.5 
7 [1 0 1 0] 5 5 8 8 6 11 
8 [1 0 0 1] 5 8 7 8 10 8.5 
9 [0 1 1 0] 5 9 7 8 11 8.5 

10 [0 1 0 1] 6 7 7 10 8.5 8.5 
11 [0 0 1 1] 7 7 6 11 8.5 6 
12 [1 0 0 0] 8 13 11 12 15 15 
13 [0 1 0 0] 9 12 10 13 14 13.5 
14 [0 0 1 0] 10 11 10 14 13 13.5 
15 [0 0 0 1] 11 10 9 15 12 12 
16 [0 0 0 0] 12 14 12 16 16 16 
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resolution at the later visits within the same number of diseases, therefore, they broke ties by 

using different rules. In some instances, they could not clearly rank some of the profiles which 

led them to assign the same rank to the some vectors. 

 

Table 4.6: Correlations (Spearman) among clinicians 

Clinician A B C 

A 1   
B .911 1  
C .887 .936 1 

4.3 APPLICATION TO A CLINICAL STUDY 

We illustrate an application of our proposed method in the analysis of otitis media clinical trial 

data in which repeated observations were obtained at 5 unequally spaced time points over a 

period of time. We evaluate the ordering strategies consisting of a natural algorithm based on 

two different criteria and experts’ rankings produced by three clinicians. We also compare our 

proposed approach with the other three standard methods. 

4.3.1 Data Description 

The motivating data of this study come from a randomized trial evaluating the effect of a 

treatment of acute otitis media for children between 7 months and 12 years of age. The trial, 

reported by Mandel, et al. (1995), compared 20 days of antimicrobial treatment versus the 

standard 10 days of amoxicillin treatment for children with AOM to prevent recurrences of AOM 

and to resolve the occurrence of middle ear effusion and also to determine if it is beneficial to 

change the antimicrobial agent after initial 10-day treatment with amoxicillin.  
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The study was designed as a placebo-controlled, double-blinded, randomized clinical 

trial. Patients were stratified according to their age (7-23 months, 2-6 years, and 7-12 years), 

laterality of effusion (unilateral or bilateral), and history of AOM during the previous year (0, 1-

2, 3+ episodes). In the first 10 days of the trial, all patients were given an initial dose of 

amoxicillin. In the second 10 days of the study (days 11 through 20), available two hundred and 

sixty seven children with AOM at entry were randomly assigned to receive one of the three 

treatment medications: 1) 88 children continued taking amoxicillin, 2) 86 children received 

amoxicillin-clavulanete (Augmentin), and 3) 93 children received a placebo. Follow-up 

assessments of examination of the ears, nose, and throat of each patient were scheduled at 10, 20, 

30, 60, and 90 days after entry. Since all subjects were given the same treatment in the first 10 

days, we assumed that the 20-day assessment time point was considered as the first time point so 

that there are 4 follow-up time points included in the analysis. 

Of the patients lost to follow up prior to the 10-day assessment (2 in the Amoxicillin 

group, 4 in the Augmentin group, and 4 in the placebo group), 3 patients discontinued the study 

with unknown reasons and 7 patients were released from the study due to recurrence of 

symptoms of acute infection before the end of the initial 10-day course of amoxicillin. 3 patients 

were withdrawn before the 20-day assessment, one in each treatment group. A total of 13 

patients were excluded from the analysis. Table 4.7 displays the overview of the missing data 

patterns by treatment group. Although the total number of patients in this trial was 267, the 

number of subjects who had complete data at all time points was 201. In addition to 13 patients 

excluded from the study, 30 patients were lost to follow-up after the 20-day assessment: 6 of 

them before 30-day, 16 of them before 60-day, and 8 of them before 90-day assessments. 23 
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patients missed only one of four visits during the period of the trial: 8 missed at the 20-day, 9 

missed at the 30-day, and 6 missed at the 60-day assessments.  

 

Table 4.7: Overview of missing data: Number of subjects in each missing data pattern 

Assessment (days) Number of Subjects by Treatment Group  
20 30 60 90 Amoxicillin Augmentin Placebo Total 

Completers     
O O O O 68 67 66 201 

Dropouts  
O O O M 1 3 4 8 
O O M M 6 3 7 16 
O M M M 2 2 2 6 
M M M M 1 1 1 3 

Intermittent  
M O O O 5 2 1 8 
O M O O 1 2 6 9 
O O M O 2 2 2 6 

(O: Observed, M: Missing) 

 

Table 4.8 summarizes frequency of the observed profiles for four time points in the 

dataset. Of the 74 patients who completed all scheduled visits without any diseases, 37%, 35%, 

and 28% of them were in the Amoxicillin, Augmentin, and Placebo groups, respectively. Among 

the 61 patients whose measurements at all time points were observed and who had only one visit 

with disease, the proportion of patients in Amoxicillin, Augmentin, and Placebo groups were  

31%, 39%, and 30%, respectively. Of the 31 patients who had 2 visits with disease and 2 visits 

without disease, the proportion of patients in Placebo (48%) was higher than the proportions of 

patients in Amoxicillin (29%) and Augmentin (23%) groups. The more patients were observed in 

Placebo (39%) and Amoxicillin (35%) groups compared to those in Augmentin group (26%) 

among the patients who had only one visit without disease over four time points.  
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Table 4.8: Frequencies: Observed profiles by treatment groups 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Note: 1 = Disease; 0 = Disease-free; • = Missing 
 

 Assessment (days) Frequency  
 20 30 60 90 Treatment Groups  

 Profile Amoxicillin Augmentin Placebo Total 
1 0 0 0 0 27 26 21 74 
2 0 0 0 1 5 6 7 18 
3 0 0 1 0 7 8 4 19 
4 0 1 0 0 3 8 0 11 
5 1 0 0 0 4 2 7 3 
6 0 0 1 1 3 2 2 7 
7 0 1 0 1 2 1 0 3 
8 0 1 1 0 1 0 1 2 
9 1 0 0 1 1 3 1 5 

10 1 0 1 0 0 0 3 3 
11 1 1 0 0 2 1 8 11 
12 0 1 1 1 1 3 2 6 
13 1 0 1 1 1 0 0 1 
14 1 1 0 1 2 0 3 5 
15 1 1 1 0 4 3 4 11 
16 1 1 1 1 5 4 3 12 
17 0 0 1 • 0 0 1 1 
18 0 1 1 • 0 3 0 3 
19 1 0 1 • 0 0 3 3 
20 1 1 1 • 1 0 0 1 
21 0 0 • • 0 2 0 2 
22 0 1 • • 4 0 3 7 
23 1 0 • • 1 0 0 1 
24 1 1 • • 1 1 3 5 
25 0 • • • 0 2 1 3 
26 1 • • • 2 0 1 3 
27 • 0 0 0 2 1 1 4 
28 • 0 1 1 1 1 0 2 
29 • 1 1 1 2 0 0 2 
30 0 • 0 0 1 2 1 4 
31 0 • 1 1 0 0 1 1 
32 1 • 0 0 0 0 2 2 
33 1 • 0 1 0 0 1 1 
34 1 • 1 1 0 0 1 1 
35 0 0 • 0 2 0 1 3 
36 0 1 • 0 0 1 0 1 
37 1 0 • 0 0 1 0 1 
38 1 1 • 0 0 0 1 1 
39 • 1 • • 0 0 1 1 
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All possible profiles with missing values were not observed in this dataset (e.g., [1 • 1 •] was not 

observed) and there was no particular profile with missing values that occurred mainly over 

groups. 

4.3.2 Data Analysis Results 

Since our purpose is to illustrate the application of the proposed method in analyzing data, we 

restrict attention to the comparison of two treatment groups (Augmentin versus Placebo). We 

considered the rankings produced by natural algorithm and clinicians’ opinion to order to the 

vectors and employed the proposed method to the data using each of these orderings.  

We applied the approach given in Section 3.2.2.1 to assign scores to the vectors with 

missing observations using the scores assigned to the complete vectors presented in Table 4.1, 

Table 4.2, and Table 4.3. We used the fact that missing response value would have been 1 

(disease) or 0 (no disease) if it was measured. We assumed that the probability of observing 

disease and that of observing no disease are equal if that missing value had been obtained. For 

example, to assign a score to the vector [0 0 1 •], the probability of obtaining [0 0 1 1] is equal to 

that of obtaining [0 0 1 0] and thus, simple average of the scores of [0 0 1 1] and [0 0 1 0] is 

assigned to [0 0 1 •]. In other words, the probabilities in equations (3.6) and (3.7) are chosen as 

0.5. Table 4.9 demonstrates the scores assigned to the vectors with missing values using the 

scores in Table 4.1, Table 4.2, and Table 4.3.      

The analyses present the results of comparing the treatment effect using the proposed 

method with different ordering strategies achieved by natural algorithm and clinicians’ opinion 

and the t-test comparing the proportions of diseases between the two treatment groups are 

presented in Table 4.10. Table 4.11 shows the analyses results from the GEE and Mixed Effects 
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Table 4.9: Scores assigned to the profiles with missing values 

Observed  Natural Algorithm Clinicians 

Profile  Possibilities 1 2 A B C 
[1 1 1 •] { R(1111) + R(1110) }  / 2 1.5 1.5 1.5 2.5 3 
[1 1 0 •] { R(1101) + R(1100) }  / 2 4.5 7.5 3.5 4.5 5.5 
[1 0 1 •] { R(1011) + R(1010) }  / 2 5.5 6.5 4 4 5.5 
[1 0 0 •] { R(1001) + R(1000) }  / 2 10 11.5 6.5 10.5 9 
[0 1 1 •] { R(0111) + R(0110) }  / 2 7 5.5 4 5.5 4.5 
[0 1 0 •] { R(0101) + R(0100) }  / 2 11.5 10.5 7.5 9.5 8.5 
[0 0 1 •] { R(0011) + R(0010) }  / 2 12.5 9.5 8.5 9 8 
[0 0 0 •] { R(0001) + R(0000) }  / 2 15.5 14 11.5 12 10.5 
[1 1 • •] { R(111 •) + R(110 •) } / 2 3 4.5 2.5 3.5 4.25 
[1 0 • •] { R(101 •) + R(100 •) } / 2 7.75 9.25 5.25 7.25 7.25 
[0 1 • •] { R(011 •) + R(010 •) } / 2 9.25 8 5.75 7.5 6.5 
[0 0 • •] { R(001 •) + R(000 •) } / 2 14 11.75 10 10.5 9.25 
[• 1 • •] { R(11 • •) + R(01 • •) }/ 2 6.125 6.25 4.125 5.5 5.375 
[1 • • •] { R(11 • •) + R(10 • •) }/ 2 5.375 6.875 3.875 5.375 5.75 
[0 • • •] { R(01 • •) + R(00 • •) }/ 2 11.625 9.875 7.875 9 7.875 
[• 1 1 1] { R(1111) +  R(0111) } / 2 3 1.5 2 1.5 1.5 
[• 0 1 1] { R(1011) +  R(0011) } / 2 7.5 4.5 5 5 4.5 
[• 0 0 0] { R(1000) +  R(0000) } / 2 14 15.5 10 13.5 11.5 
[1 • 1 1] { R(1111) +  R(1011) } / 2 2.5 2 2 2 2 
[1 • 0 0] { R(1100) +  R(1000) } / 2 9 13 6 9.5 9 
[0 • 1 1] { R(0111) +  R(0011) } / 2 8 4 5 4.5 4 
[0 • 0 0] { R(0100) +  R(0000) } / 2 14.5 15 10.5 13 11 
[1 • 0 1] { R(1101) +  R(1001) } / 2  5.5 6 4 5.5 5.5 
[1 1 • 0] { R(1110) +  R(1100) } / 2 4 8 3 5 6 
[1 0 • 0] { R(1010) +  R(1000) } / 2 9.5 12.5 6.5 9 9.5 
[0 1 • 0] { R(0110) +  R(0100) } / 2 11 11.5 7 10.5 8.5 
[0 0 • 0] { R(0010) +  R(0000) } / 2 15 14.5 11 12.5 11 

R ([]): rank score of the vector [] 
 

Model using the available data. While Wilcoxon tests produced significant treatment differences 

based on the ranking of natural algorithm 1, clinician A, and clinician B, the treatment 

comparison was not significant from the analysis when the ordering was achieved by natural 

algorithm 2. A borderline statistically significant difference (𝜒12 =3.22, p=0.0725) was found 

between the two treatment groups when the analysis was performed based on the ordering of 
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clinician C. A two-sample t-test comparing the average of the proportion of disease over time 

yielded a significant treatment difference with p=0.0369.  

 

Table 4.10: Data analysis results from the proposed method and two sample t-test 

 Method of Analysis 

 Proposed Method t-test 

 Natural Algorithm Clinician  

1 2 A B C  

Test Statistic 5.29 2.73 4.76 4.72 3.22 2.10 

p value 0.0215 0.0987 0.0292 0.0299 0.0725 0.0369 

 
 

Based on the main effects models testing the overall treatment effect over time, GEE and 

mixed effects logistic regression with random intercept methods yielded statistically significant 

treatment effect with p=0.0273 and p=0.0477, respectively. GEE and mixed effects logistic 

regression approaches produced significant treatment by time interaction effect (Table 4.11). 

The results based on the rankings of clinician A and B were similar because the rankings 

of these two clinicians are highly correlated. While the proposed method produced significant 

treatment difference based on the ordering of clinician A, the result was not significant based on 

the ordering of clinician C. The reason may be because clinician A and clinician B applied 

different algorithm to break ties. Even though high correlation between the rankings of clinician 

B and C is observed, the treatment difference was significant based on the rankings of clinician 

B but not clinician C. The reason of obtaining different results from clinician B and clinician C 

can be explained by the fact that they broke the ties for vectors with 2 diseases in a different way. 

Different ordering strategies produced different results as the proposed method yielded different 
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results based on the natural algorithm 1 and 2. As a summary, the levels of statistical significance 

of the proposed method were competitive at least with those of the other standard methods.  

 

Table 4.11: Data analysis results from GEE and mixed effects logistic regression model 

Main Effects Model 

 Marginal Model GEE Mixed Effects Model 

 Estimate SE p value Estimate SE p value 

Treatment (Augmentin) -0.48 0.2191 0.0273 -0.56 0.2801 0.0477 

Time (days) -0.003 0.0032 0.2924 -0.004 0.0036 0.2432 

Main and Interaction Effects Model 

 Marginal Model GEE Mixed Effects Model 

Treatment (Augmentin) -1.17 0.3795 0.0021 -1.41 0.4584 0.0024 

Time (days) -0.01 0.0046 0.0338 -0.013 0.0051 0.0148 

Treatment*Time   0.014 0.0062 0.0242   0.018 0.0074 0.0174 

4.4 CONCLUSION 

We presented several methods of ordering the vectors of observations. Ordering strategies 

obtained by natural algorithm and from a group of clinicians were applied to the otitis media 

clinical trial. We compared the results obtained from the proposed method using natural 

algorithm and clinicians’ ordering schemes with those produced by other methods. Results of the 

analysis show that the proposed method provides results similar to those obtained from other 

methods. We can conclude that our proposed method is competitive with other methods. Also, 

our proposed approach is adaptable to missing data.   

As shown in Table 4.1 and Table 4.5, clinician A ranked the vectors very similar to the 

natural algorithm 1 which orders the vectors by the number of time points with disease and the 

earlier time to occurrence of disease. As presented in Table 4.10, the proposed method using 
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these two orderings produced very similar results. If clinician B and C had followed the same 

strategies as clinician A to order the vectors, one general algorithm would be created (i.e., natural 

algorithm 1) and this algorithm would be used for the analysis. In other words, when a good 

agreement among the clinicians with respect to ordering of the vectors is attained, general 

algorithm can be developed based on the clinicians’ ordering (Bjorling et al. 1997). This 

established algorithm can be used as a reference for similar studies. 

The feasibility of our proposed method depends on the degree of agreement among 

clinicians with respect to the ordering of the vectors of repeated binary observations. When 

clinicians’ rankings are inconsistent with each other, it might be difficult to apply the proposed 

approach. One could use a specific ordering algorithm to evaluate the treatment effect, draw 

conclusion about treatment use, and interpret the results based on this ordering scheme. In this 

situation, consensus among the clinicians is not important (Brittain et al. 1997).  

In clinical trials, some subjects withdraw the study and the reasons for dropping out can 

be available for these subjects. For example, subjects leave the study due to a lack of treatment 

effect or adverse effects. Even though we did not incorporate the reasons of withdrawal in the 

analysis of otitis media trial, these informative missing data can be easily incorporated into our 

approach by ranking the vectors with missing data according to the reasons of withdrawal 

(Modification of Gould’s Method, Section 3.2.2.2). Our approach can handle this type of missing 

data while incorporating informative missing data into the analysis may be sophisticated for 

other methods (GEE, MERI).  

Even though all methods had similar results for this one dataset, it may not be the case in 

general. The simulation results showed that depending on the pattern of differences our proposed 

method can be a lot worse or a lot better than conventional methods. Present dataset had 
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interactions over time. Therefore we believe that for some diseases and some situations, there 

will be differences where our method will have an advantage because clinically important 

differences are being targeted.  
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5.0  REPEATED BINARY MEASURES WITH MULTIPLE OUTCOMES 

Clinical trials are often planned to compare two treatments (e.g., drug compared with a placebo) 

using repeated binary measurements over time and in general, a treatment effect is evaluated 

based on one response variable of interest. Additionally, several outcomes can be observed in 

such studies and these outcomes may cause different clinical influences on subjects. It may not 

be appropriate to evaluate the overall treatment effect without accounting for these occurrences. 

Using analyses based on single outcome may not capture all aspects of outcome to assess the 

overall effects of therapies under study and it may increase the risk of drawing improper 

conclusions. This chapter focuses on the proposed method in evaluating a treatment effect from 

longitudinal binary data with multiple outcomes.  

5.1 MULTIPLE OUTCOMES AND EVENTS 

In clinical studies, multiple outcomes may arise (e.g., AOM, MEE, or none in otitis media trial) 

and many symptoms may occur due to the progression of the disease in addition to single 

primary outcome (1=disease, 0=disease-free). Moreover, some undesirable effects of the therapy 

which could have an impact on patients’ quality of life may occur besides the benefits of the 

treatment. In some studies in which the effect of treatment declines over time or patients are 

unresponsive to the assigned therapy, it might be necessary to change the therapy. Also, some 

subjects prematurely withdraw the study and comparison of treatments may be affected if the 

patterns or circumstance of dropouts are different between the treatment groups. To effectively 
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evaluate a treatment effect, it is important to incorporate occurrences developing during the study 

such as different responses, serious side-effects, and ‘need for clinical intervention’ which can 

influence outcomes.  

In the presence of such occurrences, an overall evaluation of the treatment effect is not 

adequately determined by examining individual response because the related information about 

the treatment effect from various events is not considered (Gray and Brookmeyer 1998). While 

treatment groups are statistically compared in terms of main outcome, examination of qualitative 

findings and other possible responses that might reveal clinically meaningful difference must be 

included in the analyses. The proposed method allows the assessment of overall treatment effect 

in presence of these occurrences. It has the flexibility to integrate information across multiple 

events. The objective of this chapter is to discuss the proposed method for analyzing this type of 

longitudinal data and to demonstrate how to adapt the proposed method in distinguishing 

“clinically relevant difference”. We illustrate adjustment of the proposed method with an 

example using data from otitis media clinical trial.  

5.1.1 Adverse Effects and Need for Clinical Intervention  

In clinical trials, patients may experience several occurrences during the course of the trial such 

as serious adverse effects, insufficient effectiveness of treatment, and allergic reaction to the 

therapy. Although a treatment has a positive effect on a primary outcome, it can have a severe 

negative effect on another body system. It may be required to give a non-protocol clinical 

intervention or another treatment to the patients who experience serious side effects or are 

unresponsive to the medical treatment. The requirement of giving another therapy or intervention 

may result in a drastic change in the primary outcome and interfere with the study results. On the 
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other hand, a therapy, for example, may cause side effects yet has generally positive effect. If 

subjects who drop out due to adverse effects of therapy are not included in the analysis, 

favorable information about the effectiveness of the treatment may be ignored.       

When treatment and placebo are being compared, it is not uncommon that the placebo 

group has a lower rate of improvement of progression of disease than the treatment group. 

Therefore, non-protocol intervention may be necessary for subjects receiving placebo. Different 

rates of interventions in the treatment groups may result in the improper comparison of treatment 

groups and an incorrect conclusion that treatment is not preferable to placebo may be reached. 

For example, in a clinical trial of otitis media comparing the effect of antibiotic in children with 

acute otitis media, children in placebo group are more likely to need tube insertion than those in 

the treatment group to prevent fluid in their ears due to insufficient therapeutic effect. If a 

considerable number of children in the placebo group receives tube, effusion will not be 

observed and a desirable response will be obtained for these children. Ignoring a large number of 

tube insertions in the placebo group can lead to a misleading conclusion that treatment is not 

effective. Nevertheless, tube placement clinically is not regarded as a good outcome. 

In placebo-controlled studies, it is not unexpected that subjects in the treatment group 

may have lack of therapeutic effects or intolerable side effects. It might be required to give 

another therapy to the subjects who have experienced adverse effects of study treatment. 

Responses from subjects who had been randomly assigned to treatment group but received 

different therapy because of unpleasant side effects would not be similar to the responses from 

the subjects who did not change the assigned therapy. This results in difficulties in comparing 

treatment groups.  
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In such trials, it is important to accommodate these occurrences and qualitative measures, 

which are observed during the trial, to draw proper inferences and results. The relative benefits 

and side-effects of treatment must be weighed to evaluate the overall effect of the therapy. It 

would be useful to incorporate such events into the analysis in a way that preserves the clinical 

relevance of the outcomes. The proposed approach can be adaptable to such occurrences. 

5.1.2 Clustered Data 

In some studies, clustering of observational units arises and this induces dependence among the 

responses of the same cluster. For example, the left and right eyes of individual patients are 

evaluated for the examination of eye illnesses in the ophthalmology studies. In otitis media 

clinical trials where patients are followed over time after the initiation of antimicrobial treatment, 

measurements are obtained separately from each ear of a subject to assess the symptoms of acute 

infection. Since ears are clustered within subjects, the data are doubly nested. In this situation, 

two types of correlation are inherent: the correlation between ears or eyes of the same subject 

and the correlation between the measurements taken on each subject at different time points. 

Type I error rate is inflated or biased results may be obtained if an analysis ignores the 

correlation between the ears clustered within the same subjects (Hedeker and Gibbons 2006). 

Methods must account for the correlations that exist between measurements taken from each 

subject both at the same time and across time. 

Analyzing this type of data would be a challenge for some of the standard methods. For 

example, applying the GEE procedure to this kind of dataset could be appropriate however, this 

method would require a complicated correlation structure (Lefkopoulou et al. 1989). Even though 

the GEE method is robust against misspecification of correlation structure, it is important to 
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choose an appropriate correlation structure before performing GEE as incorrect choice of 

correlation structure causes a reduction in efficiency (Hedeker and Gibbons 2006). Our proposed 

method is a simpler approach and adaptable to handle this sort of data nested twice.  

For example, in a clinical trial for assessing the efficacy of antibiotic in children with 

AOM, a child who has experienced unsatisfactory treatment effects and has had bilateral 

effusion is more likely to have hearing loss which may damage language and cognitive 

development during early childhood than the one who has unilateral effusion because unaffected 

ear can prevent complete hearing loss (Bluestone and Klein 2001).  

Furthermore, otitis media with effusion (OME) is defined as an inflammation of the 

middle ear with fluid without signs or symptoms of acute infection. Bilateral OME for 3 months 

or more may result in tube placement regardless of hearing loss. If a child with unilateral OME 

for 6 months or more has significant hearing loss, language and learning problems, or middle ear 

abnormalities, placement of a tube would be appropriate to prevent OME and to improve hearing 

to reduce the risk for language and learning problems (Alper et al. 2004). Since tube placement, 

which is clinically considered a poor outcome, is required for children with long standing 

bilateral OME more than for those with unilateral OME, bilateral effusion is a different and 

worse outcome than the unilateral effusion, thus, they should be considered as separate 

outcomes. The proposed method has the ability to differentiate the difference between these two 

outcomes so that it accounts for correlation that occurs between observations within subject.      

5.1.3 Categorical Data 

Even though clinical trials are designed to measure the effect of the treatment on a single 

outcome, treatments have different impacts on patients. It is of importance to distinguish the 
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possible outcomes a patient may have in such trials. The effect of treatment is sometimes 

evaluated on each separate outcome using standard approaches. For example, in a trial of 

treatments for otitis media, therapy is given to subjects to improve several different outcomes 

such as prevention of AOM and resolution of MEE in the middle ear. Treatment effect is 

evaluated based on each individual response variable. One could count separately the total 

number of AOM and MEE episodes over time for each subject and compare the proportions of 

time with AOM and MEE between the two treatment groups to test the null hypothesis of no 

treatment effect on each outcome. Even though evaluating individual responses gives useful 

information about the treatment effect, it does not provide a single overall evaluation of the 

treatment effect. This crude analysis also results in the inflation of the experimentwise error rate.  

Since AOM is a worse outcome than MEE, one could consider treating outcome as 

ordinal data and apply GEE or mixed effects models to analyze longitudinal ordinal data. 

However, these analyses may not have enough statistical power to detect the effects of interest 

between two treatment groups if adequate frequencies of AOM or MEE are not observed. 

Infrequent sparse cells can be collapsed into one category due to the rare occurrence of AOM 

and MEE but collapsing categories can result in a loss of information. The proposed method does 

not suffer from such limitations. We can adapt our approach to analyze data with this type of 

outcome to detect clinically meaningful treatment effect without sacrificing information.    

5.2 ADAPTATION OF THE PROPOSED METHOD 

In the previous section, we discussed the possible outcomes which can occur in clinical studies 

besides a main outcome. Our proposed method can be adapted to accommodate these 
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occurrences as long as vectors of binary observations with multiple outcomes and adverse effects 

can be clinically ranked. If clinicians can order the vectors in a clinically relevant manner and 

consensus among clinicians about rankings is obtained, the proposed method can be easily 

applied to the data. In the absence of agreement among clinicians, interpretation of the results 

may not be easy and the proposed method may not be beneficially applied. However, a method 

could be employed incorporating the variability among clinicians (e.g. bootsraping clinical 

response) or enough weight might be obtained to develop an empirical algorithm for ranking 

outcomes (e.g. the disagreements might be considered as ties)  We present clinicians’ responses 

for complex situations and use the information from them to employ the proposed method to the 

otitis media data. 

5.2.1 Clinicians’ Opinion 

As discussed in the previous chapter, we obtained input from clinicians about ordering binary 

outcomes in Scenario 1, Section 4.2.1. We asked them to order vectors of observations for more 

complex scenarios. We present the rest of the instructions provided to three clinicians to order 

the vectors with multiple outcomes. 

5.2.1.1 Guidelines for Clinicians  

Scenario 2: Consider Scenario 1 with two modifications: 

1) The trial is six months  

2) If the treatment is not effective, the child receives tubes.   
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Thus we could have outcomes like [1 1 1 1 T T] which would indicate effusion at the first 

four visits and tube is inserted by visit five. How would you incorporate tubes into the ranking 

process?  What are the clinical criteria you use to place tubes? 

Scenario 3: We now address a more complicated algorithm. Specifically, we incorporate AOM 

into Scenario 1. We address this more complicated scenario in two steps:   

Step 1 – For a fixed pattern in Scenario 1, e.g. [1101], is there a simple way to order the 

outcomes with AOM superimposed within this MEE pattern? Thus, order 

1 [1  1   0   1] 
2 [A 1   0   1] 
3 [1  A  0   1] 
4 [1  1   0  A] 
5 [A A  0   1] 
6 [A 1   0  A] 
7 [1  A  0  A] 
8 [A A  0  A] 

where A indicates AOM. 

Is there a general algorithm you are applying?   

Step 2 – Are there any suggestions you have for ordering AOM superimposed on 

different patterns?  

e.g.  Pattern 1111 and 1110 

         1111 ↔   A1A0    less MEE but more AOM 

Any insight you have as to a general algorithm for these types of comparisons would be 

useful. 

Thank you for your help. We believe this could eventually result in a better procedure to 

analyze studies of patients with MEE. 
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5.2.1.2 Clinicians’ Responses 

Table 5.1 presents the responses from three clinicians for Scenario 2 about tube intervention. All 

clinicians agreed fairly well with each other regarding the tube insertion. It can be interpreted as 

tube placement is considered a poor outcome because patients who are unresponsive to medical 

treatment are likely to be given a tube. Also, it is worth noting that bilateral effusion is a different 

outcome than unilateral effusion since one of the criteria for placing tube for patients is to have 

3-6 months of effusion depending on the bilateral or unilateral. Therefore, it is important to 

account for this distinction between bilateral and unilateral effusion in the analysis. 

 

Table 5.1: Responses from 3 clinicians for Scenario 2 

Clinician A 
Tube would be worse than 6 months of effusion. 
Clinician B 
Functionally, [1111-11] would be (or may be) worse than [1111-TT], as hearing would most likely 
be within the normal range with tubes but may not be with effusion. The minimum criteria for 
undergoing tympanostomy tube insertion for OME is >3 months of bilateral effusion or >6 months 
unilateral effusion, unresponsive to medical treatment and not improving. Such factors as age of the 
child, hearing status, season, presence of developmental/school problems, also enter into the 
decision of whether or not to recommend tube placement. 
Clinician C 
1. ≥ 3-6 months continuous effusion especially if bilateral not improving and especially if 

significant hearing deficit 
2. Might also lean more about tubes if there was apparent and relevant patient discomfort. In 

reality, clinically this is more likely to occur in the presence of superimposed recurrent AOM. 
 
 
Table 5.2 illustrates the ordering of outcomes with AOM superimposed to MEE by three 

clinicians. Considerations suggested by them for ordering 8 vectors are given in Table 5.3. They 

reached a consensus about comparing AOM and MEE. They preferred MEE to AOM and agreed 

that AOM is worse outcome than MEE. All clinicians first order the vectors according to the 
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number of AOM which shows a high degree of consensus about importance of observing AOM 

or MEE. 

Based on clinicians’ considerations, a vector with 3 AOM is the worst outcome and a 

vector without AOM is the best outcome among these 8 trajectories. While Clinicians A and B 

did not break the ties in terms of time to occurrence of AOM, Clinician C considered the time to 

occurrence of AOM in the ordering and broke the ties based on this criterion. It is stated that 

other factors such as age and period of language development influence ordering the vectors with 

AOM and MEE. 

 

Table 5.2: Rank scores for Scenario 3 by clinicians 

  Clinician 
 Profile A B C 

1 [A A  0 A] 1 1 1 
2 [1  A  0 A] 3 3 2 
3 [A 1   0 A] 3 3 4 
4 [A A  0  1] 3 3 3 
5 [1  1   0 A] 6 6 7 
6 [1  A  0  1] 6 6 6 
7 [A 1   0  1] 6 6 5 
8 [1  1   0  1] 8 8 8 

 

 

A consensus may not be achieved when comparing a vector including one type of 

outcome with a vector including another type of outcome when there are different numbers of 

points of diseases. For example, it might be difficult to order vectors [1100] and [A000] as 

clinician C addressed in Table 5.3. One question to ask clinicians would be how many time 

points with MEE would be better, worse or equal to how many time points with AOM. For 

example, three time points with MEE over four time points ([1110]) is worse outcome than the 1 

time point with AOM ([A000]) based on the evaluation of clinician C. As a result, consensus 
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among clinicians may not be reached if rankings are applied to different type of outcomes. In this 

situation, the same scores are assigned to some vectors in the absence of agreement. 

 

Table 5.3: Responses from clinicians for Scenario 3 and Step 2 

Clinician A 

AOM is worse than MEE. It’s painful. I would rather have a child with OME for many months 

before opting for AOM. The age of the child also matters. If it is during language development and 

if the MEE is bilateral, it is worse. 

Clinician B 

AOM is more disruptive to the family and child than OME (in most cases), so the more the episodes 

of AOM, the worse the course. 

Clinician C 

A1A0 is worse than 1110. 

What about A000 vs. 1100? i.e. is any acute worse by diffusion? How much effusion? 

A000 vs. 1100 is difficult but feel A000 is worse because it requires antibiotic with attendant costs, 

potential adverse effects, etc patient discomfort to AOM. But I would consider 1110 worse than 

A000 because of continuous effusion. 

5.3 AN ILLUSTRATION: OTITIS MEDIA TRIAL 

Algorithms can be developed to take into account simultaneously whether disease status was 

none, fluid (MEE), infection (AOM); unilateral or bilateral disease; number of time points of 

disease and early disease versus late disease. Some hierarchy including all possible outcomes is 

defined and the outcomes are considered from top to bottom to assign scores to the subjects. We 

create a set of criteria for ranking vectors of observations with multiple outcomes for otitis media 

trial based on the clinicians’ responses presented above. We illustrate how our proposed method 

can be adjusted to the complex scenarios using this information. Table 5.4 depicts a set of 
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criteria. Based on the criteria given in Table 5.4, Bilateral AOM would be the worst outcome 

which can be observed at any time point. 

 

Table 5.4: Criteria for ranking outcomes 

1. AOM is worse outcome than MEE 

2. Bilateral AOM (MEE) is worse than unilateral AOM (MEE) 

3. Tube placement is considered as poor outcome 

 

 

Children with AOM entering the otitis media trial where subjects are assessed over 4 time 

points may have one of the three possible outcomes at any time point: AOM, MEE, or none in 

their one or both ears. Seven possible outcomes which can be observed in the otitis media trial 

are given in Table 5.5. If multiple outcomes were not considered and only one response is 

evaluated as disease (1 = AOM, MEE, unilateral or bilateral) or not disease (0 = none), patients 

1-4 and patients 5-7 would seperately share the same tied rank value. However, these tied ranks 

are broken on the basis of distinguishing these possible outcomes. For example, patient 2 who 

had bilateral effusion for the first two time points but remained effusion free for the last two 

time points would be considered as having worse outcome than patient 1 who had unilateral 

effusion for the first two points and stayed effusion free for the last two time points. Therefore, 

patient 2 is assigned a lower rank score than patient 1 when higher rank score is better. In the 

same manner, patient 4 is assigned a lower score than patient 3 because bilateral AOM are 

observed for patient 4 while unilateral AOM are observed for patient 3 in the first two time 

points. Therefore, a child with bilateral effusion ranks lower than a child with unilateral 
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effusion. These rank scores reflect relative ordering of the outcomes. Patients can be assigned 

different scores with respect to unilateral or bilateral outcome. 

Even though patient 1 and 3 did not have disease-free observations for the first two time 

points, patient 3 experienced 2 AOM while patient 1 experienced 2 MEE. Since AOM is 

regarded as worse outcome than MEE, patient 3 has a lower rank score than patient 1. Our 

proposed method can incorporate categorical outcomes in the analysis. Among the first four 

patients, patient 4 is assigned the lowest rank score due to the both AOM and bilateral. 

Comparing patient 3 and 6 may be indeterminate. The reason is that clinicians might not agree 

that 2 AOM is worse than 3 MEE although 2 AOM is worse outcome than 2 MEE. Comparing 

patient 4 and 7 may be uncertain due to the same reason. Therefore, the same score can be 

assigned to the vectors if they are not precisely ordered. Patient 5 would have the lowest score 

among these 7 trajectories because the tube was placed after the 3rd time points. The reason of 

observing no disease at the 4th time point for patient 5 is tube insertion which interferes with 

outcome.     

 

Table 5.5: Representation of trajectories from 7 patients form otitis media trial 

Patient ID Trajectories Score 
1     [MEE             MEE                 0                       0] 4 
2     [MEE-b          MEE-b             0                       0] 3 
3     [AOM            AOM                0                       0] 2 
4     [AOM-b         AOM-b            0                       0] 1 
5     [MEE             MEE-b          MEE-b      T        0] 0 
6     [MEE             MEE             MEE                    0] 2 
7     [MEE-b         MEE-b          MEE                    0] 1 

MEE-b denotes bilateral MEE, AOM-b denotes bilateral AOM, and T denotes tube insertion. 
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5.4 CONCLUSION 

We discussed how to adapt our proposed method in studies where several outcomes and 

occurrences are observed in addition to main outcome. The proposed method has the flexibility 

to incorporate these occurrences in the analysis but it might be difficult to employ the proposed 

method for some situations where there are different numbers of points of diseases and different 

type of outcomes because ordering vectors can be burdensome for clinicians. Even though 

clinicians rank the vectors in clinical relevant manner, there may not be a consensus among 

clinicians. However, the proposed method can still be applied by using specific individual 

ordering and in this case; interpretation is made based on this particular ordering. In some 

situations, enough weight might be calculated for each vector from clinicians’ ranking to develop 

an algorithm or tied values are assigned in the absence of agreement. 

On the other hand, the proposed method can be adjusted to extremely complex situations 

if a ‘hierarchy’ of criteria of ordering vectors can be applied. If vectors can be ordered in 

reasonable way, the proposed method can be easily applied. Also it can be readily adapted to 

accommodate non-protocol ‘outcomes’ (tube insertion in the otitis media trial).    
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6.0  DISCUSSION 

The purpose of this study is to develop a family of statistical tests based on the Wilcoxon test 

statistic which orders the vectors of repeated binary observations and events where the ordering 

is determined by “clinical relevance”. Our simulation studies indicate that the proposed method 

has statistical power competitive with and, for some scenarios, is preferable to conventional 

methods in the absence and presence of missing data. The real data analysis (otitis media trial) 

also shows that the proposed method and other methods give similar results indicating that the 

proposed method is appropriate and adaptable to missing data. 

Although the proposed method is not applicable to every situation, we believe that for 

some diseases and scenarios, this easy-to-apply, simple method is noteworthy in the sense that it 

can be adjusted to extremely complex situations if vectors can be hierarchically ordered in a 

reasonable fashion, it can be focused on alternatives that have high clinical relevance, and it can 

be readily adapted to accommodate non-protocol “outcomes” and missing data. Another 

advantage of the proposed approach is that no distributional assumptions are made and no 

assumptions are required regarding correlation among the observations.   

While the proposed method has advantages, there are a few limitations. Some outcomes 

may be difficult to order or clinicians order the vectors in different ways which result in 

disagreement among clinicians. However, same scores might be assigned to the vectors which 

are not easily ordered or disagreement among clinicians can be considered as ties. Another 

disadvantage of the proposed method might be that for long term follow-up, ranking of all 

possible ‘theoretical’ outcomes may not be feasible or may be burdensome for clinicians. For 
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example, there are 28 = 256 possible outcomes if the number of time points is 8. However, in 

real life, all possible outcomes may not be observed (e.g. Section 4.3.1 otitis media clinical trial).  

The proposed method with crude substitution approach was found to have statistical 

power comparable to other methods and to control the type I error rate reasonably close the 

nominal value of 0.05 depending on the ordering strategies in the presence of missing data in our 

simulation studies. However, simulation studies suggest that the proposed method with logistic 

regression substitution approach is not preferable due to the inflation of type I error rate. We 

believe that the logistic regression substitution approach can be improved by further 

investigations to control the type I error rate. 
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